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xv

Introduction to Recent Advances 
in Remote Sensing of the Environment

Aims and Scope

The main purpose of compiling such a book is to provide an authoritative supplementary 
text for upper-division undergraduate and graduate students, who may have chosen a 
textbook from a variety of choices in the market. This book collects two types of articles: 
(1) comprehensive review articles from leading authorities to examine the developments 
in concepts, methods, techniques, and applications in a subfield of environmental remote 
sensing, and (2) focused review articles regarding the latest developments in a hot topic 
with one to two concise case studies. Because of the nature of articles collected, this book 
can also serve as a good reference book for researchers, scientists, engineers, and policy-
makers who wish to keep up with new developments in environmental remote sensing.

Synopsis of the Book

This book is divided into four sections. Section I deals with various sensors, systems, or 
sensing using different regions of wavelengths. Section II exemplifies recent advances in 
algorithms and techniques, specifically in image preprocessing and thematic information 
extraction. Section III focuses on remote sensing of vegetation and related features of the 
Earth’s surface. Finally, Section IV examines developments in the remote sensing of air, 
water, and other terrestrial features.

The chapters in Section I provide a comprehensive overview of some important sen-
sors and remote sensing systems, with the exception of Chapter 5. By reviewing key con-
cepts and methods and illustrating practical uses of particular sensors/sensing systems, 
these chapters provide insights into the most recent developments and trends in remote 
sensing and further identify the major existing problems of these trends. These remote 
sensing systems utilize visible, reflected infrared, thermal infrared, and microwave spec-
tra, and include both passive and active sensors. In Chapter 1, Song and his colleagues 
evaluate one of the longest remote sensing programs in the world, that is, the U.S. Landsat 
program, and discuss its applications in vegetation studies. With a mission of long-term 
monitoring of vegetation and terrestrial features, Landsat has built up a glorious history. 
The remote sensing literature is filled with a large number of articles in vegetation clas-
sification and change detection. However, remote sensing of vegetation remains a great 
challenge, especially the sensing of biophysical parameters such as leaf area index (LAI), 
biomass, and forest successional stages (Song, Gray, and Gao 2010). A remarkable strength 
of the Landsat program is its time-series data, especially when considering the addition 
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of the upcoming Landsat Data Continuity Mission (LDCM); however, these data are not a 
panacea for vegetation studies. Song, Gray, and Gao (2010) suggest that the synergistic use 
of data from other remote sensors may provide complimentary vegetation information to 
Landsat data, such as high spatial resolution (<10 m) satellite images that provide textural 
information, radar sensors that provide information on the dielectric properties of the sur-
face and are capable of penetrating clouds, light detection and ranging (LiDAR, which pro-
vides geometric information), and coarse spatial but high temporal resolution sensors (e.g., 
Moderate Resolution Imaging Spectroradiometer [MODIS]). Chapter 1 provides an excel-
lent example for the integrated use of Landsat and MODIS data by introducing the spatial 
and temporal adaptive reflectance fusion model (Chapter 1, Section 1.3.5; Gao et al. 2006).

In Chapter 2, Shao and his colleagues provide a comprehensive review of selected data 
products, algorithms, and applications of MODIS. MODIS has its roots in earlier sensors 
such as the Advanced Very High Resolution Radiometer (AVHRR) and coastal zone color 
scanner (CZCS), but provides substantial improvements over these earlier sensing systems 
(Lillesand, Kiefer, and Chipman 2008). MODIS provides a wide range of data products 
applicable to land, ocean, and atmosphere. Chapter 2 focuses on the examination of land 
products and applications, in particular, application studies at the global and regional lev-
els. For each data product, the contributors document most recent advances, but also point 
out the product’s limitations in data quality and validation.

Lidar has been increasingly used in many geospatial applications due to its high data 
resolution, low consumption of time and cost, compared to many traditional remote sens-
ing technologies. Unlike other remotely sensed data, LiDAR data focus solely on geometry 
rather than on radiometry. Many researchers have used LiDAR in conjunction with opti-
cal remote sensing and geographic information system (GIS) data in urban, environment, 
and resource studies (Weng 2009). Chapter 3 offers a detailed introduction of the basic 
concept of LiDAR, and types of sensors and platforms. Based on the works of the author 
this chapter further provides a review of LiDAR remote sensing applications in estimat-
ing forest biophysical parameters and surface and canopy fuels, and for characterizing 
wildlife habitats.

Synthetic aperture radar (SAR) has been a key sensing system for various environmen-
tal applications, and the Earth and planetary exploration. In Chapter 4, Franceschetti and 
Tatoian introduce to the reader two new concepts of SAR imaging: (1) impulse SAR and 
(2) polychromatic SAR. The theoretical foundations of the two systems are presented with 
some preliminary experimental data for validating the theory. The authors further discuss 
the distinct advantages of these systems over conventional microwave imaging sensors 
and their potential applications, and speculate on future research directions.

Hyperspectral remote sensing, as a cutting-edge technology, has been widely applied in 
vegetation and ecological studies. Chapter 5 provides an overview of spectral characteris-
tics for a set of plant biophysical and biochemical parameters. A wide range of techniques 
are reviewed, including such spectral analysis techniques as spectral derivative analysis, 
spectral matching, spectral index analysis, spectral absorption features and spectral posi-
tion variables, hyperspectral transformation, spectral unmixing analysis, and hyperspec-
tral classifications. Further, two general analytical approaches are discussed: (1) empirical/
statistical methods and (2) physically based modeling. The chapter concludes with the 
authors’ perspectives on the future directions of hyperspectral remote sensing of vegeta-
tion biophysical parameters.

Thermal infrared (TIR) remote sensing techniques have been applied in urban climate 
and environmental studies. Chapter 6 examines the current practices, problems, and pros-
pects of this particular field of study, especially the applications of remotely sensed TIR 
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data in urban studies. It is suggested that the majority of previous researches have focused 
on land-surface temperature (LST) patterns and their relationships with urban-surface 
biophysical characteristics, especially with vegetation indices and land-use/land-cover 
types. Less attention has been paid to the derivation of urban heat island (UHI) param-
eters from LST data and to the use of remote sensing techniques to estimate surface energy 
fluxes. Major recent advances, future research directions, and the impacts of planned TIR 
sensors with LDCM and HyspIRI missions are outlined in the chapter. 

Section II presents new developments in algorithms and techniques, specifically in image 
preprocessing, thematic information extraction, and digital change detection. Chapter 
7 conducts a concise review of atmospheric correction algorithms for the optical remote 
sensing of land. This review focuses on physical models of atmospheric correction that 
describe the radiative transfer in the Earth’s atmosphere, instead of empirical methods. 
The author presents sequentially the correction algorithms for hyperspectral, thermal, and 
multispectral sensors, then discusses the combined method for performing topographic 
and atmospheric corrections, and ends with examples of correcting non-standard atmo-
spheric conditions, including haze, cirrus, and cloud shadow. The chapter concludes with 
the author’s perspective on major challenges and future research needs in atmospheric 
and topographic correction. In addition, the chapter includes a brief survey and a compari-
son of capacity among commercially available atmospheric correction software/modules, 
which will be very useful for students.

Geometric correction is more important now than ever due mainly to the growing need 
for off-nadir and high-resolution imaging, fully digital processing and interpretation of 
remote sensing images, and image fusion and remote sensing–GIS data integration in prac-
tical applications (Toutin 2010). Three-dimensional (3D) geometric processing and correc-
tion of Earth observation (EO) satellite data is a key issue in multisource, multiformat data 
integration, management, and analysis for many EO and geomatic applications (Toutin 
2010). Chapter 8 first reviews the source of geometric distortions (with relation to platform, 
sensor, other measuring instruments, Earth, and atmosphere), and then compares differ-
ent mathematical models for correcting geometric distortions (e.g., 2D/3D polynomial, 3D 
rational functions, and physical and deterministic models). Subsequently, the methods 
and algorithms in each processing step of the geometric correction are examined in detail, 
supplemented with plentiful literature. This type of examination allows the tracking of 
error propagation from the input data to the final output product.

Image classification is a fundamental protocol in digital image processing and pro-
vides crucial information for subsequent environmental and socioeconomic applications. 
Generating a satisfactory classification image from remote sensing data is not a straight-
forward task. Many factors contribute to this difficulty, including the characteristics of a 
study area, availability of suitable remote sensing data, ancillary and ground reference 
data, proper use of variables and classification algorithms, and the analyst’s experience 
(Lu and Weng 2007). Chapter 9 provides a brief overview of the major steps in image classi-
fication, and examines the techniques for improving classification performance, including 
the use of spatial information, multitemporal and ancillary data, and image fusion. A case 
study is further presented that explores the role of vegetation indices and textural images in 
improving vegetation classification performance in a moist tropical region of the Brazilian 
Amazon with Landsat Thematic Mapper (TM) imagery.

Object-based image analysis (OBIA; or GEOBIA for geospatial OBIA) is becoming a new 
paradigm among the mapping sciences (Blaschke 2010). With the improvement of OBIA 
software capacity and the increased availability of high spatial resolution satellite images 
and LiDAR data, vegetation-mapping capabilities are expected to grow rapidly in the near 
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future in terms of both the accuracy and the amount of biophysical vegetation parameters 
that can be retrieved (Blaschke, Johansen, and Tiede 2010). Chapter 10 reviews the devel-
opment of OBIA and the current status of its application in vegetation mapping. Two case 
studies are provided to illustrate this mapping capacity. The first case uses LiDAR data to 
map riparian zone extent and to estimate plant project cover (PPC) within the riparian zone 
in central Queensland, Australia. Whereas PPC was calculated at the pixel level, OBIA was 
used for mapping the riparian zone extent and validating the PPC results. The second case 
study aims at extracting individual tree crowns from a digital surface model (DSM) by 
using OBIA and grid computing techniques in the federal state of Upper Austria, Austria. 
Finally, the contributors share their insights on the existing problems and development 
trends of OBIA with respect to automation, the concept of scale, transferability of rules, 
and the impacts of improved remote sensing capacities.

Digital change detection requires the careful design of each step, including the statement 
of research problems and objectives, data collection, preprocessing, selection of suitable 
detection algorithms, and evaluation of the results (Lu et al. 2010). Errors or uncertainties 
may emerge from any of these steps, but it is important to understand the relationship 
among these steps and to identify the weakest link in the image-processing chain (Lu 
et al. 2010). In Chapter 11, Lu and his colleagues update earlier research (Lu et al. 2004) by 
re-examining the essential steps in change detection and by providing a case study for 
detecting urban land-use/land-cover in a complex urban–rural frontier in Mato Grosso 
state, Brazil, based on the comparison of extracted impervious surface data from multi-
temporal Landsat TM images. They conclude that the selection of a change detection pro-
cedure, whether a per-pixel, a subpixel, or an object-oriented method, must conform to the 
research objectives, remote sensing data used, and geographical size of the study area.

The remaining sections of the book focus on various environmental applications of 
remote sensing technology. Section III centers on the remote sensing of vegetation, but 
each chapter has a very different approach or perspective. Chapter 12 reviews many of the 
advancements made in the remote sensing of ecosystem structure, processes, and function, 
and also notes that there exist important trade-offs and compromises in characterizing 
ecosystems from space related to spatial, spectral, and temporal resolutions of the imag-
ing sensors. Huete and Glenn (2010) suggest that an enormous mismatch exists between 
leaf-level and species-level ecological variables and satellite spatial resolutions, and this 
mismatch makes it difficult to validate satellite-derived products. They further assert that 
high temporal resolution hyperspectral remote sensing satellite measurements provide 
powerful monitoring tools for the characterization of landscape phenology and ecosystem 
processes, especially when these remote sensing measurements are used in conjunction 
with calibrated, time-series-based in situ data sets from surface sensor networks.

In the western United States, wildfire is a major threat to both humans and the natural 
environment. Dr. Steve Yool and his colleagues at the University of Arizona have been tak-
ing great efforts to study the dynamic relationships among fire, climate, and people from 
an interdisciplinary perspective, which has been termed “pyrogeography” (Yool 2009). In 
Chapter 13, Yool introduces a remote sensing method to estimate and to map a fuel mois-
ture stress index by standardizing normalized difference vegetation index (NDVI) with 
the Z transform. This index can be employed as a spatial and temporal fine-scale metric 
to determine fire season (Yool 2010). Based on a case study conducted in southeastern 
Arizona, the author demonstrate that the onset and length of the fire season depend on 
elevation and other microclimatic factors. Fire-season summary maps derived from the 
fuel moisture stress index may potentially provide lead time to plan for future fire seasons 
(Yool 2010).
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Knowledge of forest disturbance and regrowth has obvious scientific significance in 
the context of global environmental change. Forest change analysis by using time-series 
analysis of Landsat images is a logical approach, given the long history of Landsat data 
records (see Chapter 1 for details). Chapter 14 introduces an approach for reconstructing 
forest disturbance history using Landsat data records. Major steps include the develop-
ment of Landsat time-series stacks (Huang et al. 2009), and performing change analysis 
using vegetation-change tracker algorithm (Huang et al. 2010). This approach has been 
used to produce disturbance products for many areas in the United States (Huang 2010). 
The author thus further presents two examples of application of this approach to the states 
of Mississippi and Alabama and the seven national forests in the eastern United States. The 
application of this approach for an area outside the United States is possible if the area has 
a long-term satellite data record of quality and temporally frequent acquisitions, and an 
inventory of Landsat holdings at international ground-receiving stations (Huang 2010).

Satellite-based modeling of the gross primary production (GPP) of terrestrial ecosys-
tems requires high-quality satellite data, extensive field measurements, and effective 
radiative transfer models. Current satellite-based GPP models are largely founded on the 
concept of light-use efficiency (Xiao et al. 2010). Such production efficiency models (PEMs) 
may be grouped into two categories based on how they calculate the absorption of light 
for photosynthesis: (1) those models using the fraction of photosynthetically active radia-
tion absorbed by vegetation canopy, and (2) those using the fraction of photosynthetically 
active radiation absorbed by chlorophyll (Xiao et al. 2010). Chapter 15 provides a review of 
satellite-based PEMs and highlights the major differences between these two approaches. 
The authors conclude that further research efforts are needed in the validation of satellite-
based production efficiency models (PEMs) and the error reduction of GPP estimates from 
net ecosystem exchange (NEE) data using a consistent method.

In Chapter 16, Thenkabail and colleagues discuss the maps and statistics of global crop-
lands and the associated water use determined by remote sensing and nonremote-sensing 
approaches. Sources of uncertainty in the areas and limitations of existing cropland maps 
are further examined. Thenkabail et al. (2010) conclude that among four major cropland 
area maps and statistics at the global level, one study employed a mainly multisensor 
remote sensing approach, whereas the others used a combination of national statistics and 
geospatial techniques. However, the uncertainties in these major maps and statistics, as 
well as the geographic locations of croplands, are quite high. They suggest that it is neces-
sary to utilize higher spatial and temporal resolution satellite images to generate global 
cropland maps with greater geographic precision, crop types, and cropping intensities.

Section V presents examples of applications of remote sensing technology for studies of 
air, water, and land. This section starts with atmospheric remote sensing, which has great 
significance in the estimation of aerosol and microphysical properties of the atmosphere 
in order to understand aerosol climatic issues at scales ranging from local and regional to 
global. Aerosol monitoring at the local scale is more challenging due to relatively weak 
atmospheric signals, coarse spatial resolution images, and the spectral confusion between 
urban bright surfaces and aerosols. Chapter 17 reviews MODIS algorithms for aerosol 
retrieval at both global and local scales, and illustrates them with a research involving 
the retrieval of aerosol optical thickness (AOT) over Hong Kong and the Pearl River Delta 
region, China, by using 500-m MODIS data. The feasibility of using 500-m AOT for map-
ping urban anthropogenic emissions, monitoring changes in regional aerosols, and pin-
pointing biomass-burning locations is also demonstrated. Wong and Nichol (2010) suggest 
that due to the high temporal resolution of MODIS imagery, aerosol retrieval can be accom-
plished on a routine basis for the purpose of air quality monitoring over megacities.
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The quality of inland, estuarine, and coastal waters is of high ecological and economical 
importance (Gitelson et al. 2010). Chapter 18 demonstrates the development, evaluation, 
and validation of algorithms for the remote estimation of chlorophyll-a (Chl-a) concentra-
tion in turbid, productive, inland, estuarine, and coastal waters, a pigment universally 
found in all phytoplankton species and routinely used as a substitute for biomass in all 
types of aquatic environments. The rationale behind the bio-optical algorithms is pre-
sented and the suitability of the developed algorithms for accurate estimation of Chl-a 
concentration is examined. Gitelson et al. (2010) assert that their algorithms, which are 
developed by a semi-analytical method and calibrated in a restricted geographic area, can 
be applied to diverse aquatic ecosystems without the need for further parameterization.

Chapter 19 is concerned with the interaction between the Earth’s land surface and the 
atmosphere. Here, Petropoulos and Carlson provide a concise review of the development 
of remote sensing-based methods currently used in the estimation of surface energy fluxes, 
that is, the one-layer model, two-layer model, and the “triangle” method (Gillies and Carlson 
1995; Gillies et al. 1997), by examining the main characteristics and by comparing their 
strengths and limitations. Next, remote sensing methods for estimation of soil-water con-
tent are assessed, which use visible, TIR, and microwave data, or their combinations. The 
remaining half of this chapter provides a detailed account of the triangle method, its theo-
retical background, implementation, and validation; and the soil–vegetation–atmosphere 
transfer (SVAT) model, which is essential for the implementation of the protocol. 

Urban environmental problems have become unprecedentedly significant in the twenty-
first century. The National Research Council Decadal Survey suggests that urban environ-
ment should be defined as a “new science” to be focused on the U.S. satellite missions of 
the near future (National Research Council 2007). As such, remote sensing of urban and 
suburban areas has recently become a new scientific frontier (Weng and Quattrochi 2006). 
Chapter 20 reviews remote sensing approaches to measure the biophysical features of the 
urban environment, and examines the most important concepts and recent research pro-
gresses. This chapter ends with the author’s prospects on future developments and emerg-
ing trends in urban remote sensing, particularly, in the aspect of algorithms.

The U.S. Geological Survey (USGS) National Land-Cover Database (NLCD) has been 
developed over the past two decades. NLCD products provide timely, accurate, and spa-
tially explicit national land cover at 30-m resolution, and have proven effective for address-
ing issues such as ecosystem health, biodiversity, climate change, and land management 
policy. Chapter 21 summarizes major scientific and technical issues in the development 
of NLCD 1992, NLCD 2001, and NLCD 2006 products. Experiences and lessons learned 
from the development of NLCD in terms of project design, technical approaches, and proj-
ect implementation are documented. Further, future improvements are discussed for the 
development of next-generation NLCD products, that is, the NLCD 2011.
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1
Remote Sensing of Vegetation 
with Landsat Imagery

Conghe Song, Joshua M. Gray, and Feng Gao

1.1  Introduction

The U.S. Landsat program is one of the most successful remote-sensing programs in the 
world. The launch of the Landsat series of satellites marked the beginning of a new era 
in remote sensing (Williams, Goward, and Arvidson 2006). Due to the critical role played 
by vegetation in the terrestrial ecosystem and the emphasis of Landsat sensors on vegeta-
tion reflectance characteristics, Landsat data greatly enhanced our understanding of the 
dynamics of vegetation and its functions in the terrestrial ecosystem (Cohen and Goward 
2004). The first Landsat satellite, initially called the Earth Resource Technology Satellite, 
was launched in 1972. To date, seven Landsat satellites have been launched (Table 1.1). 
Except Landsat 6, all other satellites in the series were successfully put in orbit. Table 1.2 
shows the history of sensors deployed on the Landsat satellites. The first three Landsat sat-
ellites had similar onboard sensors, including return beam vidicon (RBV) and multispectral 
scanners (MSSs). Starting with Landsat 4, thematic mapper (TM) sensors were deployed 
and RBV was removed. The TM sensors have 30 × 30 m spatial resolution for reflective 
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Table 1.1

Brief History of Landsat Satellites

Satellite Launch Date
Decommission 

Date
Orbit Height 

(km)

Temporal 
Resolution 

(days)

Landsat 1 July 23, 1972 January 6, 1978 900 18
Landsat 2 January 22, 1975 February 25, 1982 900 18
Landsat 3 March 5, 1978 March 31, 1983 900 18
Landsat 4 July 16, 1982 – 705 16
Landsat 5 March 2, 1984 – 705 16
Landsat 6 October 5, 1993 Failure 705 16
Landsat 7 April 15, 1999 – 705 16
LCDM December 2012 – 705 16

Table 1.2

Sensors Used or to Be Used in Landsat Series Satellites

Sensor Satellite Band Width (μm) Spatial Resolution (m)

RBV Landsat 1, 2 0.475–0.575 80
0.580–0.680 80
0.690–0.830 80

Landsat 3 0.505–9.750 30
MSS Landsat 1–5 0.50–0.60 79 (1–3)/82 (4–5)

0.60–0.70 79/82
0.70–0.80 79/82
0.80–0.11 79/82

Landsat 3 10.4–12.6 240
TM Landsat 4, 5 0.45–0.52 30

0.52–0.60 30
0.63–0.69 30
0.76–0.90 30
1.55–1.75 30
10.4–12.5 120
2.08–2.35 30

ETM Landsat 6 Same as TM Same as TM
0.50–0.90 15

ETM+ Landsat 7 Same as TM 30 (60 m thermal)
0.50–0.90 15

LCDM LCDM 0.433–0.453 30
0.450–0.515 30
0.525–0.600 30
0.630–0.680 30
0.845–0.885 30
1.560–1.660 30
2.100–2.300 30
0.5–0.680 15

1.360–1.390 30
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bands, and  120 × 120 m for the thermal band on the ground. This intermediate spatial 
resolution imagery provides land-surface information detailed enough for most scientific 
and application needs; the spatial resolution also allows the sensor to cover ground areas 
large enough for regional planning and management with a single scene (185 × 175 km).

The longest-serving satellite to date among the Landsat series is Landsat 5. It was launched 
in 1984, and remains in operation (as of December 1, 2009), with the exception of a few tem-
porary technical glitches. The TM sensors were upgraded to Enhanced Thematic Mapper 
(ETM) sensors for the ill-fated Landsat 6, and the ETM sensor was further improved to 
ETM+ onboard Landsat 7. The ETM+ sensor maintained the same multispectral bands 
as TM at the same spatial resolution with the addition of a panchromatic band (15 × 15 m 
spatial resolution). This band offers the opportunity to sharpen the other bands. With the 
advance of technology, the thermal band on Landsat 7 was refined to 60 × 60 m from its 
earlier 120 × 120 m spatial resolution. Unfortunately, the scan-line corrector on Landsat 7 
permanently malfunctioned since May 2003, causing a loss of approximately 25% of the 
data, most of which was located between scan lines toward the scene edges. Although 
some gap-filling remedy operations can recover most of the data lost, the gap-filled data 
cannot be guaranteed to have a quality equivalent to that of the original data. Fortunately, 
the Landsat Data Continuity Mission (LDCM), the follow-up Landsat satellite, is currently 
scheduled to launch in late 2012 (http://ldcm.nasa.gov). The LDCM sensors added two 
more reflective bands for coastal and cirrus clouds needs, but dropped the thermal band 
(Table 1.2). The Landsat image collection, spanning nearly four decades, is the longest 
continuous data record of land-surface conditions. Landsat data has contributed signifi-
cantly to the understanding of the Earth’s environment (Williams, Goward, and Arvidson 
2006). A complete review of the applications of Landsat images cannot be achieved within 
a single book chapter. This chapter primarily focuses on the use of Landsat images in 
extracting biophysical information of vegetation, with an emphasis on forests, which are 
the biggest challenges faced by remote-sensing scientists.

1.2 � Spectral Information of Vegetation in Landsat Thematic 
Mapper/Enhanced Thematic Mapper+ Bands

The spectral information of vegetation in Landsat TM/ETM+ imagery is primarily deter-
mined by the designation of spectral bands as seen in Table 1.2. The first three bands of 
TM/ETM+ sensors are in the visible spectrum. In the first three bands, reflected energy 
from vegetation is determined by the concentration of leaf pigments. Leaves strongly 
absorb solar radiation in the visible spectrum, particularly the red spectrum, for photosyn-
thesis. The fourth band is in the near-infrared (NIR) region of the solar spectrum, to which 
healthy green leaves are highly reflective. The contrast in leaf reflectance between the red 
and NIR spectra is the physical basis for numerous vegetation indices using optical remote 
sensing. The two mid-infrared bands relate to the moisture content in healthy vegetation.

Vegetation indices produced by the combination of reflectance in red and NIR bands 
are perhaps the most commonly used data in vegetation mapping using Landsat data. 
The two mid-infrared bands are also very useful for vegetation monitoring. Horler and 
Ahern (1986) found that the two mid-infrared bands are very sensitive to vegetation den-
sity, especially in the early stages of clear-cut regeneration. Fiorella and Ripple (1993a) 
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found that the TM ratio 4:5 is highly correlated with the age of young Douglas fir stands 
in the western Cascade mountains of Oregon. Kimes et al. (1996) were able to map the 
ages of young forest stands using TM 3, 4, 5 along with elevation, slope, and aspect in the 
H. J. Andrews Experimental Forest. Jakubauskas (1996) also found that the mid-infrared 
bands of Landsat TM images were useful in differentiating early successional stages of 
lodgepole pine stands in Yellowstone National Park.

The spectral information from Landsat TM/ETM+ reflective bands are not independent 
of each other, but are highly correlated. Two statistical approaches are often used to reduce 
information redundancy in the imagery. One commonly used approach is the principal 
component analysis (Richards 1984; Fung and Ledrew 1987; Seto et al. 2002), in which the 
image information from all six bands is compressed into the first few principal compo-
nents. Because the principal components are orthogonal to each other, there is no infor-
mation redundancy among the components. For Landsat imagery, more than 95% of the 
variation can be compressed into the first three components. Thus, principal component 
analysis can significantly reduce data volume with little information loss. However, the 
principal component transformation of remotely sensed data is image dependent, that is, 
the transformation coefficients vary from image to image and are sometimes difficult to 
interpret. A similar approach, the tasseled cap transformation, is often applied to compress 
information from the six reflective bands into three meaningful indices: brightness, green-
ness, and wetness (Crist and Cicone 1984). The tasseled cap transformation concept was 
originally developed by Kauth and Thomas (1976) for Landsat MSS data. The advantages 
of tasseled cap transformation over principal component analysis include (1) the resulting 
components are meaningful; and (2) the transformation coefficients are preset, that is, not 
dependent on images.

The tasseled cap indices, brightness, greenness, and wetness were extensively used 
in extracting vegetation information. Fiorella and Ripple (1993b) found that although all 
three indices can be used to separate old-growth forests from mature forests, wetness was 
more significant than brightness and greenness. Cohen, Spies, and Fiorella (1995) reached 
a similar conclusion that the tasseled cap wetness can be used to distinguish forest age 
classes for closed-canopy conifer forests in the western Cascade mountains of Oregon. 
The tasseled cap transformation was further developed by Collins and Woodcock (1996) 
to become the multitemporal tasseled cap transformation. Using this approach, they were 
able to detect tree mortality in the Lake Tahoe region.

1.3  Applications

1.3.1  Vegetation Cover

Vegetation-cover information in remote sensing usually involves one of two scales. On 
the regional scale, land surface is classified as either vegetated or nonvegetated, and the 
fraction of the vegetated area over the total area is referred to as vegetation cover. This 
regional vegetation cover can be obtained in a relatively straightforward manner through 
conventional classification of remotely sensed data, in which each pixel of the remotely 
sensed data is labeled as a land-cover type. A tally of all the vegetated pixels among 
the total pixels provides the vegetation cover. On the pixel scale, vegetation cover usu-
ally refers to the fraction of a single pixel occupied by green vegetation. Conventional 
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classification labels a pixel as one and only one land-cover type; thus, it cannot provide 
subpixel information. The spatial resolution of Landsat imagery often leads to multiple 
components of land-cover types in a single pixel. It is particularly common in complex 
landscapes, such as the urban environment, challenging the conventional classifica-
tion approach in estimating vegetation content. Subpixel vegetation cover is needed in 
order to accurately measure the vegetation cover of these areas. Obtaining subpixel 
vegetation-cover information requires the use of an analytical approach called spectral 
mixture analysis (SMA).

SMA makes the following assumptions: (1) the landscape is composed of a few funda-
mental components, referred to as endmembers, each of which is spectrally distinct from the 
others; (2) the endmember spectral signatures do not change within the area of interest; 
and (3) the composite remotely sensed signal for a mixed pixel is linearly related to the 
fractions of endmember presence (Sabol, Adams, and Smith 1992). The key step in SMA is 
appropriate endmember selection, including the number of endmembers and their corre-
sponding spectral signatures (Tompkins et al. 1997; Elmore et al. 2000; Theseira et al. 2003). 
Although Landsat TM/ETM+ imagery has six reflective bands, the number of endmem-
bers used for SMA is often only three or four due to the limitations in the dimensional-
ity of Landsat imagery. Smith et al. (1990) used three endmembers, vegetation, soil, and 
shade, to map vegetation cover in a desert environment with Landsat imagery. Ridd (1995) 
developed a three-endmember model, vegetation-impervious-soil (VIS), to map urban 
structure for Salt Lake City, Utah. The VIS model was later applied to Bangkok, Thailand 
(Madhavan et al. 2001) and Brisbane, Australia (Phinn et al. 2002). Small (2001) modified 
the VIS model to a vegetation low albedo and high albedo (VLH) model for New York City 
after analyzing a time series of Landsat TM imagery. Wu and Murray (2003) added a soil 
endmember to the VLH model and it became a four-endmember model to describe the 
urban structure for Columbus, Ohio.

The endmember signatures can be obtained from “pure” pixels in the image over which 
the mixture analysis is performed. Endmembers whose spectral signatures are obtained in 
this manner are called image endmembers. The advantage of image endmembers is that the 
endmember spectral signatures are at the same relative measurement scale as the image 
to be analyzed. The challenge is to identify the pure pixels that can be treated as end-
members. An alternative approach is to obtain the endmember signature from a spectral 
signature reference library that was developed from spectroradiometer measurements on 
the ground. Endmembers whose spectral signatures are obtained from a reference spec-
tral library are called reference endmembers. Although the reference endmember signatures 
can be very accurate, care must be taken when using them for SMA as the signature data 
and the image data are measured by two instruments under very different conditions. The 
assumption that the endmember spectral signatures do not change within the area of inter-
est is an oversimplification of the real world. There are significant endmember signature 
variations. For example, the vegetation endmember can be grass, coniferous, and broadleaf 
trees, each of which has a very different spectral signature from the others. To accommo-
date the variations of endmember signatures, Roberts et al. (1998) developed the multiple 
endmember SMA (MESMA), in which the spectral signatures of endmembers were dynam-
ically selected from a spectral library containing hundreds of reference endmembers. Song 
(2005) developed a Bayesian SMA (BSMA) to account for the effect of endmember signa-
ture variation. In BSMA, an endmember spectral signature is no longer a single or enumer-
able spectral signature, but a probability distribution function. The BSMA is an effective 
approach that accounts for endmember spectral signature variation and helps reduce error 
in extracting subpixel vegetation fraction from Landsat imagery (Song 2005).
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1.3.2 L eaf Area Index

1.3.2.1  Measuring Leaf Area Index on the Ground

Leaves are the interface for energy and gaseous exchanges between the terrestrial ecosystem 
and the atmosphere. The amount of leaves in a given area is measured by leaf area index 
(LAI), which is generally defined as the one-sided total leaf area divided by the ground 
area over which the leaves are distributed (Monteith and Unsworth 1973). This definition 
is applicable to broadleaf trees. For coniferous trees, a projected leaf area is used (Myneni, 
Nemani, and Running 1997). LAI is considered to be the most important land-surface bio-
physical parameter in understanding terrestrial ecosystem functions (Running and Hunt 
1993). Therefore, the continuous estimation of LAI over a large geographic area via remotely 
sensed data is of high interest to scientists. In fact, it is the only viable option for estimating 
LAI continuously over the Earth’s land surface.

Estimating LAI from remotely sensed data is highly challenging due to a number of fac-
tors. It is very difficult to obtain accurate LAI on the ground for model development and 
validation using remotely sensed data, particularly for forested areas. Two approaches can 
be used to obtain LAI on the ground, as reviewed multiple times (Breda 2003; Weiss et al. 
2004; Jonckheere et al. 2004): direct and indirect approaches. The direct approach involves 
direct measurements of leaf area. The most destructive direct approach is complete har-
vesting of all vegetation within a delimited area. This approach is applicable for herbs and 
crops, but impractical in forests. For forests, a destructive sampling approach is often used, 
in which a standard tree is identified for each species and size class. The standard tree 
is then harvested so that its total leaf area can be accurately measured and an allometric 
relationship between total individual leaf area and the tree-stem diameter at breast height 
(DBH) can be developed. The allometric relationship is then applied to estimate the total 
leaf area for all individual trees within a sampling plot; then LAI can be calculated. This 
is perhaps the most accurate measure of LAI, but it is also very labor intensive. Few stud-
ies can afford this kind of sampling. Moreover, the allometric relationships developed at 
one place do not transfer well to other places. The least destructive, but time-consuming, 
direct approach to measure LAI is the litter-trap approach, in which multiple litter traps 
of preset size are deployed in the forest stands. Leaves that fall into the traps are periodi-
cally harvested and their areas measured. For a deciduous forest, the maximum LAI can 
be estimated at the end of the growing season. However, for a coniferous forest, one needs 
multiple years of data to estimate the peak LAI. This approach is time-consuming and 
requires that constant attention be paid to the litter traps (McCarthy et al. 2007). An inter-
mediate destructive approach takes into consideration sapwood cross-sectional areas. Pipe 
theory (Shinozaki et al. 1964) provides the theoretical basis for this approach. Marshall and 
Waring (1986) found that using sapwood cross-sectional areas to estimate LAI was more 
accurate than using DBH.

Indirect approaches using optical instruments are more efficient in measuring LAI. 
Jonckheere et al. (2004) reviewed the theory and performance of optical instruments 
used in estimating LAI, including LAI-2000 (Licor, Inc., Lincoln, NE), TRAC (3rd Wave 
Engineering, Ontario, Canada), DEMON (CSIRO, Canberra, Australia), Ceptometer 
(Decagon Devices, Inc., Pullman, WA), and a digital hemispherical camera. The theoretical 
basis for the optical measurements of LAI is Beer’s law. Assuming random leaf distribu-
tion within the canopy space, Beer’s law predicts canopy gap fraction as

	 P G L( ) exp( ( ) /cos )θ θ θ= − Ω 	 (1.1)
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where θ is the solar zenith angle, P(θ) is the canopy gap fraction in the direction of θ, and 
G(θ) is the leaf projection factor of unit LAI in the direction of θ. The clumping index is 
Ω, and the LAI is L in Equation 1.1. Most of the optical instruments measure P(θ) for the 
canopy. Given P(θ) and certain assumption for G(θ), we can obtain ΩL, that is, the effective 
LAI (Le), but not L. The gap fractions measured by optical instruments are the combined 
effects of leaf and woody components. To obtain LAI, one needs to correct the measured 
effective foliage area index for woody areas and the leaf clumping effect in Beer’s law as 
follows:

	 L L= (1 ) e– /α Ω 	 (1.2)

where α is the woody to total area ratio, which depends on the vegetation type. Gower, 
Kucharik, and Norman (1999) provided α values for some common tree species, varying 
from 0.03 to 0.22. Chen and Cihlar (1996) used the LAI-2000 device to measure Le and the 
TRAC device to measure Ω to estimate L. For conifer species, there is an additional level of 
clumping, at the needle-to-shoot scale. The needle-to-shoot area ratio, γ, is needed to cor-
rect for the clumping index Ω. Gower, Kucharik, and Norman (1999) provided γ values for 
a few common needleleaf trees, ranging from 1.20 to 2.08. Kucharik, Norman, and Gower 
(1999) designed an imaging device to estimate γ. Therefore, for conifer forests, LAI can be 
derived from effective LAI measured with the optical instruments as

	 L L= (1 ) e– /α γ Ω 	 (1.3)

1.3.2.2  Mapping Leaf Area Index with Landsat Imagery

Landsat TM/ETM+ imagery has a unique advantage over many other satellite images in 
mapping LAI because its spatial resolution is fine enough to identify individual stands. In 
the meantime, the image covers a sufficiently large area to meet most application needs. 
Because there are numerous other factors influencing remotely sensed signals received at 
Landsat TM/ETM+ sensors, including LAI, leaf angle distribution, leaf clumping, sun and 
viewing angles, and background conditions, LAI cannot be inverted analytically from 
remotely sensed signals (Gobron, Pinty, and Verstraete 1997; Eklundh, Harrie, and Kuusk 
2001). Most studies that map LAI using Landsat imagery have been based on empirical mod-
els. The mapping of LAI using Landsat imagery based on empirical models generally takes 
place in three steps: (1) measuring LAI for sampling plots on the ground, (2) developing an 
empirical model between LAI for the sampling plots and some spectral measurements for 
the same locations, and (3) applying the empirical model spatially within the area of interest. 
The most commonly used spectral measurements include the normalized difference vegeta-
tion index (NDVI) and the simple ratio (SR) vegetation index. For Landsat TM imagery, NDVI 
is calculated from the surface reflectance values of the red (TM3) and NIR (TM4) bands as

	 NDVI TM4 TM

TM TM
= +
ρ ρ
ρ ρ

– 3

4 3
	 (1.4)

where ρ TM3 and ρ TM4 are surface reflectances for TM3 and TM4, respectively. The SR veg-
etation index is

	 SR TM4

TM
= ρ
ρ 3 	 (1.5)
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One of the earliest studies that used Landsat TM–type data was by Peterson, Westman, 
and Stephenson (1986); they used Airborne Thematic Mapper simulator data to study the 
potential of Landsat TM imagery for mapping LAI. Their study was based on 18 conifer 
stands with LAI values ranging from 0.6 to 16.1. These stands were distributed across west 
central Oregon along an environmental gradient with a wide range of moisture and tem-
perature. Using atmospherically corrected surface reflectance, both linear (R2 = 0.83) and 
log-linear (R2 = 0.91) regression explained the variation in LAI well. However, Peterson, 
Westman, and Stephenson (1986) cautioned the use of the empirical relationships they 
developed for a particular vegetation zone within the region. A study by Spanner (1994) 
found that the empirical relationship between LAI and spectral vegetation indices strongly 
depends on canopy cover and understory condition. To reduce the canopy cover effect, 
Nemani et al. (1993) used the mid-infrared band to correct NDVI, resulting in an improved 
relationship between NDVI and LAI.

Chen and Cihlar (1996) evaluated the potential of both NDVI and SR vegetation index 
in mapping LAI using Landsat TM imagery. They found that NDVI and SR vegetation 
index are better correlated to effective LAI than LAI. Due to the influence of understory 
vegetation, midsummer Landsat TM imagery is not as good as late-spring imagery in 
extracting LAI. Turner et al. (1999) compared spectral vegetation indices with different 
radiometric correction levels across three temperate zones, and found that NDVI based on 
surface reflectance best correlates with LAI. However, the NDVI–LAI relationship reaches 
an asymptote when the LAI value reaches 3–5. They also found that the sensitivity of spec-
tral vegetation indices to LAI differs between coniferous and deciduous forests. Thus, it 
is desirable to stratify land-cover classes in order to achieve local accuracy using spectral 
vegetation indices to estimate LAI. The study by Fassnacht et al. (1997) reports similar 
conclusions.

Both NDVI and SR vegetation index make use of information in only two of the six 
bands from Landsat TM/ETM+ imagery. Nemani et al. (1993) used an additional band, 
the mid-infrared band, to reduce canopy openness effect in NDVI, leading to an improved 
empirical model. Brown et al. (2000) applied the same mid-infrared band to the SR vegeta-
tion index. Because the mid-infrared correction leads to a lower SR, Brown et al. (2000) 
called the corrected SR the reduced SR (RSR). Chen et al. (2002) suggested that RSR can 
unify coniferous and deciduous vegetation cover types in mapping LAI. Although RSR 
was not initially developed based on Landsat TM imagery, Chen et al. (2002) used the 
RSR approach to develop a fine-resolution LAI surface based on Landsat TM imagery and 
scaled up the algorithm with coarse spatial resolution imagery to produce an LAI surface 
covering Canada. In order to make full use of the spectral information available in all 
bands and to account for uncertainty in reflectance measurements, Cohen et al. (2003) pro-
posed a reduced major axis (RMA) regression approach to link LAI with spectral informa-
tion through canonical transformation. The RMA approach can significantly improve the 
relationship between LAI and spectral information from Landsat imagery.

Because of the empirical nature of the approaches used to map LAI with Landsat imag-
ery, the fitness of the model varies significantly from study to study, as shown in Table 1.3. 
These empirical models generally do not transfer well to places outside the area in which 
they were developed. Therefore, for any new applications, one still has to develop his or 
her own empirical models, and he or she should not expect the same good performance of 
certain empirical models to reappear. There is still a significant amount of trial-and-error 
efforts needed before an appropriate empirical LAI model can be developed. In the future, 
mapping of LAI should not be limited to Landsat data only. The recent abundance of high 
spatial resolution imagery offers new opportunities for mapping LAI (Colombo et al. 2003; 
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Soudani et al. 2006; Song and Dickinson 2008). In addition, remotely sensed data from 
lidar sensors can provide valuable information for mapping LAI (Riano et al. 2004; Roberts 
et al. 2005; Morsdorf et al. 2006), although lidar remote sensing does not cover the area 
in a wall-to-wall fashion as optical remote sensing does. The synergistic use of informa-
tion from multiple sensors, each of which provides complementary information, should 
be adopted in the future for accurate mapping of LAI.

1.3.3 B iomass

Biomass refers to the total dry weight of all parts that make up a live plant, including those 
above (e.g., leaves, branches, and stems) and below (e.g., fine and coarse roots) ground. It is 
the accumulation of the annual net primary production over the plant life after litter fall 
and mortality. The information of forest biomass is of great scientific and economic value, 
particularly over large areas. Obtaining biomass for individual plants requires destruc-
tive sampling of aboveground components and excavation of belowground components. 
Destructive sampling is relatively easy to perform for herbaceous plants, but it is extremely 
laborious and time-consuming to perform for forests (Whittaker et al. 1974). Moreover, 
destructive sampling cannot be used to obtain biomass over large areas, particularly for 
forests. A common approach to estimate areal-based biomass for forest ecosystems is to 
develop an allometric relationship between the easily measured stem diameter at breast 
height (DBH), and the individual biomass sampled on a species-specific basis, and then 
apply this allometry to each individual within a sampling plot to estimate the areal-based 
biomass. Tremendous efforts have been devoted to developing species-specific allometric 
relationships for biomass in the past (Grier and Logan 1977; Gholz et al. 1979; Ter-Mikaelian 
and Korzukhin 1997; Smith, Heath and Jenkins 2003; Jenkins et al. 2003). However, the 
application of such species-specific biomass allometery to sampling plots cannot provide 
spatially explicit distribution of biomass over large areas. Remotely sensed data pro-
vide the potential to scale up biomass from sampling plots to spatially explicit biomass 

Table 1.3

Regression Models in the Literature Using Landsat TM/ETM+ Images to Map LAI

Vegetation Index Ground LAI Model R2 Source

SR Allometry SR = 1.23 + 0.614 LAI 0.82 Running et al. 1986
SR Allometry SR = 1.92 SR0.583 0.91 Peterson et al. 1986
NDVI Allometry LAI = −1431 + 32.25 NDVI 0.86 Curran et al. 1992
NDVIc Allometry NDVIc = 0.70 exp (0.70 LAI) 0.64 Nemani et al. 1993
SR Ceptometer SR = 3.1196 + 4.5857 log (LAI) 0.97 Spanner et al. 1994
SR LAI-2000/TRAC SR = 2.781 + 0.843 LAI 0.53 Chen and Cihlar 1996
NDVI Allometry NDVI = 0.607 + 0.0377 LAI 0.72 Fassnacht et al. 1997
NDVI Allometry NDVI = 0.5724 + 0.0989 LAI – 

0.0114 LAI2 + 0.0004 LAI3

0.74 Turner et al. 1999

RSR LAI-2000/TRAC RSR = α + β LAIa 0.55 Brown et al. 2000
RSR LAI-2000/TRAC RSR = 1.0743 LAI + 1.2843 0.63 Chen et al. 2002
CI Allometry LAI = 4.19 – 1.68 CI 0.72 Berterretche et al. 2005
NDVI LAI-2000 LAI = α exp (βNDVI)a 0.77 Soudani et al. 2006

Note:	 The spectral indices in the table include simple ratio (SR), reduced simple ratio (RSR), normalized differ-
ence vegetation index (NDVI), corrected normalized difference vegetation index (NDVIc), and canonical 
index (CI).

a	 Model parameters were not provided in the paper.
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over a region. Three types of remotely sensed data are investigated in the literature for 
their potential use in mapping biomass: optical (Sader et al. 1989; Foody et al. 1996), radar 
(Dobson et al. 1995), and lidar (Lefsky et al. 1999). The mapping of biomass using remotely 
sensed data from radar and lidar sensors is beyond the scope of this chapter.

Optical remotely sensed signals over a vegetated area are primarily energy reflected by 
the leaves; that is, biomass does not have a direct remote-sensing signal. However, LAI 
usually reaches asymptote soon after canopy closure, whereas biomass can continue to 
increase for many years (Song, Woodcock, and Li 2002). Figure 1.1 shows the results of 
coupled GORT-ZELIG modeling from the Geometric Optical Radiative Transfer (GORT) 
model with the ZELIG forest succession model for a typical stand in the H. J. Andrews 
Experimental Forest. Forest biomass increases almost linearly in the first 100 years. 
However, the remotely sensed signals are only sensitive to biomass change when biomass 
is below 100 Mg/ha. Moreover, the relationships of NDVI and tasseled cap greenness with 
biomass are influenced by background conditions. Tasseled cap wetness is resistant to 
background noise, but all indices suffer from signal saturation problems. It is interesting to 
note that the threshold for signal saturation from GORT-ZELIG simulation is very similar 
to the threshold value for saturation from empirical studies (Steininger 2000).

The most common approach used for mapping biomass with Landsat TM/ETM+ 
imagery is to develop an empirical model that directly relates remotely sensed signals 
(e.g., surface reflectance or vegetation indices) to biomass derived on the ground, and 
then apply this empirical model spatially to the area of interest (Foody 2003; Zheng 
et al. 2004). Numerous successful applications of this approach have been reported 
(Anderson, Hanson, and Haas 1993; Roy and Ravan 1996; Fazakas, Nilsson, and 
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Olsson 1999;  Steininger  2000; Tomppo et al. 2002). However, these successful applica-
tions were performed in areas with low biomass. When the biomass is high, the remotely 
sensed signals no longer respond to biomass increase (Sader et al. 1989; Trotter, Dymond, 
and Goulding 1997). Lu (2005) reviewed the potential of using Landsat TM imagery for 
mapping aboveground biomass in the Brazilian Amazon, and found that the spectral 
signals are suitable for aboveground biomass for forests with simple structure. He also 
indicated that spatial information is useful in mapping aboveground biomass, although 
other studies found that spatial information from Landsat TM imagery provides little 
help in extracting canopy structure because the spatial resolution is too coarse compared 
to the size of trees (Cohen, Spies, and Bradshaw 1990; Song and Woodcock 2002).

Overall, the mapping of biomass remains a major challenge in remote sensing. Both 
optical and radar remote sensing suffer from a signal saturation problem (Sader et al. 1989; 
Dobson et al. 1995). An alternative is to use remotely sensed data from lidar sensors. Lidar 
data provide canopy height information, from which canopy biomass can be derived using 
allometry. Use of lidar remote sensing overcomes the signal saturation problem. However, 
the height–biomass allometry is species specific. Lidar can only provide canopy height, but 
not species-specific information. Moreover, lidar data does not provide wall-to-wall cover-
age except for small footprint lidar for a small area. Synergistic use of multiple sensors is 
needed in the future for mapping biomass accurately with remotely sensed data.

1.3.4  Monitoring Forest Successional Stages with Landsat Imagery

1.3.4.1  Forest Succession

Forest ecosystems are the most complex terrestrial ecosystems on Earth, providing key 
ecological goods and services for many other plants and animals, as well as for humans 
(Dixon et al. 1994; Dobson, Bradshaw, and Baker 1997; Noble and Dirzo 1997; Myers 
et al. 2000). Forests are constantly undergoing changes, even without human disturbance. 
This process is called forest succession (Clements 1916). Forest succession is a complex eco-
logical process that involves multidimensional changes, including, but not limited to, the 
growth and mortality of individual trees as well as the establishment of new individuals. 
Depending on the initial condition, forest succession can be classified into primary suc-
cession and secondary succession. Primary succession begins in an area that has not been 
previously occupied by a vegetation community, whereas secondary succession occurs in 
an area from which a community was removed (Odum 1953). The ecological goods and 
services provided by the forest ecosystem are highly dependent on forest successional 
stages (Song and Woodcock 2003a; Pregitzer and Euskirchen 2004; Lamberson et al. 1992). 
Therefore, it is not only important to know the location and size of forest areas, but it is 
also crucial to know its successional stages in order to accurately understand their current 
ecological functions or to predict their future ecological roles. Remote sensing offers the 
potential to monitor forest successional stages over large areas.

1.3.4.2  Empirical Approaches

Two kinds of change occur in forest ecosystems: the gradual change of forest succession, 
and the sudden change of deforestation due to anthropogenic (e.g., timber harvesting) or 
natural (e.g., fire) disturbances. It is usually quite straightforward to map deforestation 
with Landsat TM/ETM+ imagery as a result of dramatic change in surface reflectance 
before and after the disturbance (Skole and Tucker 1993; Cohen et al. 1998; Woodcock et al. 
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2001). A common empirical approach used to map forest successional stages is supervised 
image classification. This approach first breaks the continuous successional sere into a dis-
crete set of successional stages. Then, a training set for each successional stage is identified 
in the image, and a classifier is trained with the training set to classify the entire image. Hall 
et al. (1991) studied the pattern of forest succession in Superior National Forest with two 
Landsat MSS images (dated July 3, 1973 and June 18, 1983) after correcting the atmospheric, 
seasonal, and sensor differences for the two images. Two sets of reference data were used. 
One set was developed through ground observations, and the other was based on aerial 
photography and high-resolution airborne digital imagery. These data were plotted in the 
Cartesian space of MSS bands 1 and 4, and the spectral space for each successional stage 
was delineated and applied to the rest of the image. Jakubauskas (1996) classified the lodge-
pole pine forests into six successional stages with a Landsat TM image based on 69 ground 
control sites. Helmer, Brown, and Cohen (2000) were able to differentiate secondary and 
old-growth forests through supervised classification with multidate Landsat images for 
montane tropical forests. Fiorella and Ripple (1993b) used unsupervised classification to 
sort a Landsat TM image into 99 spectral clusters, and then regrouped these clusters into 
five successional stages. Cohen, Spies, and Fiorella (1995) were able to separate the closed-
canopy conifer forests into two or three age classes with regression analysis. Kimes et al. 
(1996) were able to map forest stand ages for young stands (age <50 years) by combining 
Landsat TM data with ancillary data for a neural network classifier. For recently regen-
erated secondary forests, it is possible to extract the forest age based on the time when 
deforestation occurred (Foody et al. 1996; Lucas et al. 2002; Kennedy, Cohen, and Schroeder 
2007; Huang et al. 2009). However, this approach works only for relatively young second-
ary forests. These successful empirical applications do not provide much guidance for new 
applications elsewhere. More sophisticated approaches for monitoring forest succession 
should be built on physical-based algorithms (Hall, Shimabukuro, and Huemmrich 1995).

1.3.4.3  Physical-Based Approaches

1.3.4.3.1  Li–Strahler Model

Remotely sensed signals are essentially reflected energy within the sensor instantaneous 
field of view recorded at the given sun–sensor geometry within a particular wavelength 
range. For a forested scene, the structure and composition of the canopy as well as the back-
ground condition determine how much energy is received at the satellite sensor. Numerous 
models have been developed to understand the relationship between scene structure and 
the energy it reflects (Suits 1972; Verhoef 1984; Li and Strahler 1985). Most of these models are 
forward models, that is, the model can predict the energy reflected given the scene structure 
and sun–sensor geometry. Among such models, the Li–Strahler model (Li and Strahler 1985) 
can be inverted for mean crown size and canopy cover over a stand, thus providing informa-
tion for forest succession. The Li–Strahler model assumes the reflected spectral energy for 
a pixel is the area-weighted average of the first scattering of four scene components: sunlit 
crown (C), shaded crown (T), sunlit background (G), and shaded background (Z), that is,

	 S K K K K= + + +c z g tC Z G T 	 (1.6)

where S is the ensemble reflected spectral energy from a pixel, and the Ks are the areal frac-
tions of the corresponding scene components. Li and Strahler (1985) provided mathemati-
cal models describing the scene-component fractions based on optical theory given the 
sun–sensor and tree crown geometry. Thus, the model is also called the geometric–optical 
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model. Li and Strahler (1985) showed that the average tree crown radius for a forest stand 
can be inverted from the remotely sensed images as follows:

	 R
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1
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+
( )
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ω
ω

	 (1.7)

where R is the expected value of tree crown horizontal radius, and ω = + −( )1 12 4Cr  with Cr 
being the coefficient of variation of the crown radius. The parameter m is called the “tree-
ness” factor, which is defined as the ratio of the sum of squared crown radii of all trees in a 
pixel to the area of the pixel (A), that is, m r A nR Aii

n
= ( ) =

=∑ 2
1

2/ / , where n is the number of 

trees in the pixel. V(m) and M are the interpixel variance and the mean value of m within 
a forest stand, respectively. The treeness factor (m) for a given pixel can be derived from 
remotely sensed data as follows:

	 m =
GS
GXΓ

	 (1.8)

where ⎥⎥ GS⎥⎥ is the Euclidean distance between G (sunlit background reflectance) and S 
(ensemble pixel reflectance) in the spectral space, and X is the gravity center of the triangle 
CTZ. Similarly, ⎥⎥GX⎥⎥ is the Euclidean distance between G and X; Γ is a scalar of geo
metry factor. The Li–Strahler model assumes the pixel size is significantly larger than the 
tree crown size, yet there is significant variation in tree counts among the pixels covering 
a forest stand. Thus, the forest stand is significantly larger than the pixel size. The spa-
tial resolution of Landsat TM/ETM+ data meets the aforementioned requirements well. 
Franklin and Strahler (1988) and Wu and Strahler (1994) achieved some success in estimat-
ing tree crown size with the Li–Strahler model. However, in more comprehensive studies, 
Woodcock et al. (1994, 1997) showed that although tree cover can be mapped effectively 
with the Li–Strahler model, separation of crown cover into tree crowns based on the inver-
sion of the Li–Strahler model was poor.

1.3.4.3.2  GORT-ZELIG Model

The Li–Strahler model assumes that tree crowns are three-dimensional opaque objects 
randomly distributed in the scene. Multiple scattering of photons within the forest canopy 
and between the background and the canopy was significantly simplified. Li, Strahler, and 
Woodcock (1995) further improved the model to account for the multiple scattering of pho-
tons by integrating the geometric–optical model with a traditional turbid medium radiative 
transfer model (GORT). They also modified the crown shape from the previously considered 
cone to the more flexible ellipsoid. The ellipsoid is a more realistic abstraction for most tree 
crowns (Peddle, Hall, and LeDrew 1999). Ni et al. (1999) further simplified the original GORT 
model to become an analytical model. The analytical GORT is relatively simple to apply in 
modeling the bidirectional reflectance distribution function (BRDF) for a forest scene, and 
also integrates the strength of both geometric–optical and radiative transfer models.

Song, Woodcock, and Li (2002) coupled the GORT model with a gap-type forest succes-
sional model, ZELIG (Urban 1990), which was in turn developed based on the JABOWA 
(Botkin, Janak, and Wallis 1972) and the FORENA (Shugart and West 1977) models. The 
ZELIG model provides canopy structure to GORT, which provides canopy reflectance 
under a given sun–sensor geometry. Song, Woodcock, and Li (2002) simulated a Douglas 
fir/western hemlock stand for the first 50 years of succession and produced the canopy 
reflectance for the six reflectance bands of Landsat TM sensors under two contrasting 
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background conditions. Figure 1.2 shows the spectral–temporal trajectories associated 
with forest succession in the tasseled cap brightness/greenness space. The spectral–
temporal trajectory of forest succession is highly nonlinear, indicating that the monitoring 
of forest succession requires multiple images in time to determine the forest’s successional 
stage. Background conditions strongly influence the canopy reflectance before canopy clo-
sure. For a bright grass background, the establishment of trees leads to a rapid decrease 
in brightness due to the shadows cast. However, for a dark soil background, the establish-
ment of new trees causes a rapid increase in greenness but a minimal change in bright-
ness. The spectral trajectories from the two contrasting backgrounds converge when the 
canopy closes, minimizing the influence of background conditions.

To validate the nonlinearity of forest succession, spectral–temporal trajectories were 
constructed from multiple Landsat images for several stands with similar ages but differ-
ent growth conditions in the H. J. Andrews Experimental Forest. Figures 1.3a–c show that 
the observed spectral–temporal trajectories for a few well-regenerated young stands, con-
structed from a series of multitemporal Landsat images, do possess the modeled nonlinear-
ity. However, the one stand (Figure 1. 3d) that was not well regenerated did not show the 
modeled spectral–temporal trajectory. Biophysical modeling, such as GORT-ZELIG, pro-
vides a theoretical basis for understanding the manifestation of forest succession in optical 
imagery through time.

A complete forest succession sere can span several centuries, whereas Landsat TM imag-
ery dates only as far back as 1984. There are no satellite images that provide coverage for 
a complete forest succession sere. A similar strategy that was used in traditional forest 
succession studies can be used in monitoring forest succession with satellite imagery, that 
is, the “substitute space for time” strategy. This strategy reconstructs a complete forest suc-
cession sere with forests at different successional stages at the same time, but in different 
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places. Figure 1.4 shows the spectral–temporal trajectories for a complete forest succession 
sere reconstructed from a multitemporal Landsat TM image series for several stands. The 
spectral–temporal trajectories for a complete forest succession sere are more complicated 
than the modeled trajectories for young stands.

Song, Schroeder, and Cohen (2007) further improved the GORT-ZELIG simulation by 
introducing a two-layer canopy structure, an understory and an overstory, so that the 
simulation can continue to the old-growth successional stage. They also introduced leaf 
spectral signature changes from mature to old-growth forests. Figure 1.5 shows the non-
linear spectral–temporal trajectory for a typical stand on a flat surface in the H. J. Andrews 
Experimental Forest. The tasseled cap brightness index decreases rapidly in the first 10–15 
years and then slowly with stand age. The tasseled cap greenness and wetness indices 
increase relatively rapidly with stand age in the first 10–15 years and then decrease gradu-
ally with stand age.

Song, Schroeder, and Cohen (2007) used more than 1000 stands with known age classes 
from the U.S. Forest Service forest inventory and analysis (FIA) data in western Oregon 
and multiple Landsat images to validate the modeled successional trajectory (Figure 1.6). 
Because of the long time involved, the substitute space for time strategy was used to con-
struct a successional trajectory for a complete forest succession sere. Each age class in the 
FIA plots represents a span of 10 years. Therefore, the initial rapid change in the bright-
ness, greenness, and wetness indices as modeled in Figure 1.5 cannot be seen. However, 
the gradual decrease in brightness and greenness is clear from the mean values of all 
stands at the same age class despite tremendous variations in the spectral signature. The 
decrease in tasseled cap wetness is not seen when all the stands are put together. The 
decreasing trend became clear after the stands were separated into coastal ranges and 
western Cascades (Figure 1.7). Song, Schroeder, and Cohen (2007) also did some regres-
sion analysis to predict the age class of stands. They found that using spectral information 
from multiple Landsat images improved the prediction of stand age based on the adjusted 
R2 in the analysis.
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Figure 1.5
Modeled temporal trajectories with GORT-ZELIG for tasseled cap brightness, greenness, and wetness asso-
ciated with forest succession from young to old-growth stages for a typical stand in the H. J. Andrews 
Experimental Forest. (Reprinted from Remote Sensing of Environment, 106, Song, C., Schroeder, T. A., and Cohen, 
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Figure 1.6
Observed mean successional trajectory reconstructed from a single Landsat thematic mapper imagery in west-
ern Oregon based on U.S. Forest Service forest inventory and analysis plot data. The vertical lines indicate stan-
dard deviation: (a) brightness, (b) greenness, and (c) wetness. (Reprinted from Remote Sensing of Environment, 
106, Song, C., Schroeder, T. A., and Cohen, W. B., Predicting temperate conifer forest successional stage distribu-
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Figure 1.7
The observed temporal trajectory for wetness for the same forest inventory and analysis plots in Figure 1.6c, after 
separating the plots into geographic regions: (a) coastal ranges of Oregon and (b) western Cascades of Oregon. 
(Reprinted from Remote Sensing of Environment, 106, Song, C., Schroeder, T. A., and Cohen, W. B. Predicting tem-
perate conifer forest successional stage distributions with multitemporal Landsat Thematic Mapper imagery, 
228–237. Copyright (2007), with permission from Elsevier.)
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1.3.4.4  Factors of Uncertainty

Several factors contribute to the noise in Landsat remotely sensed data for monitoring 
forest succession, including sensor degradation, atmospheric effects, phenology, topog-
raphy, and sun–sensor geometry (Song and Woodcock 2003b). Landsat 5 sensor deg-
radation is well known (Thome et al. 1997; Teillet et al. 2001; Chander, Markham, and 
Helder 2009). In the past, the data user had to sort through the literature to determine 
the sensor gain for a particular image. In this Internet era, the time-dependent sensor 
gains of Landsat 5 can be obtained online, and images are also provided. Landsat 7 
ETM+ sensors were found to be stable (Teillet et al. 2001). Among the numerous uncer-
tain factors, when and how to correct for atmospheric effects on Landsat images are 
the most confusing issues faced by data users, particularly relatively new data users. 
Song et al. (2001) evaluated the commonly used correction approaches for classification 
and change detection. They found that the more complicated approach for atmospheric 
correction did not necessarily lead to higher classification and change detection accura-
cies. They further evaluated such approaches for monitoring forest succession (Song and 
Woodcock 2003b). The effect of atmospheric correction depends on the spectral infor-
mation used. For example, the tasseled cap wetness index is not sensitive to different 
algorithms, whereas the tasseled cap greenness index and NDVI are quite sensitive to 
the algorithm used.

Forests often occur in mountainous areas on Earth. Although trees always grow upright 
regardless of the slope of a surface, topography changes the sun–object–sensor geome-
try, thereby influencing the proportions of shaded and sunlit objects seen by the sensor 
(Schaaf, Li, and Strahler 1994). Moreover, remotely sensed images collected by Landsat 
sensors over different years from the same place are often affected by seasonal varia-
tions, which give rise to noise from multiple confounding factors. First, due to phenology, 
the amount of leaves that reflects solar radiation to the sensor varies with the season. 
Therefore, the same forest can have very different spectral signals in different seasons 
(Song and Woodcock 2003b). Second, the position of the sun can change significantly in 
different seasons, causing changes in the proportions of sunlit and shaded objects view-
able by the sensors. Variations in local topography can further complicate the problem. 
The sun–object–sensor geometry effect can be modeled by biophysical models, such as the 
GORT-ZELIG model (Song, Woodcock and Li 2002); but the phenological effect is difficult 
to incorporate in these models to account for changes in canopy reflectance. Thus, model-
ing forest succession using multitemporal images is best done with images collected close 
to the anniversary date.

1.3.5 L andsat and Moderate Resolution Imaging Spectroradiometer Data Fusion

Landsat TM/ETM+ data provide enough spatial details for monitoring land-cover and 
land-use change. However, the 16-day revisit cycle has limited their use for studying 
global biophysical processes, which evolve rapidly during the growing season. In cloudy 
areas of the Earth, the problem is much worse; researchers are fortunate to get two to three 
clear images per year, and often they get none at all. In the meantime, Moderate Resolution 
Imaging Spectroradiometer (MODIS) sensors aboard the Terra and Aqua platforms provide 
daily global observations that are valuable in capturing rapid surface changes. However, 
spatial resolutions of 250 × 1000 m may not be good enough for heterogeneous areas. To 
better utilize Landsat and MODIS data, one solution is to combine the spatial resolution of 
Landsat with the temporal frequency of MODIS.
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The Terra platform crosses the equator at about 10:30 a.m., local time, roughly 30 minutes 
later than Landsat 7. Their orbital parameters are identical; thus, the viewing (near-nadir) 
and solar geometries for the Terra platform are close to those of the corresponding Landsat 
acquisition. The MODIS observations include 250-m spatial resolution for red (band 1) and 
NIR (band 2) wavebands and 500-m spatial resolution for the other five MODIS land bands 
(bands 3–7). The MODIS land bands have corresponding spectral means to the Landsat 
ETM+ sensor except their bandwidths are narrower than ETM+. Comparisons between 
MODIS and Landsat surface reflectance data reveal that they are very consistent (Masek 
et al. 2006).

Traditional image fusion methods such as the intensity–hue–saturation (IHS) transfor-
mation, principal component substitution (PCS), and wavelet decomposition focus on pro-
ducing new multispectral images that combine high-resolution panchromatic data with 
multispectral observations acquired simultaneously at coarser resolutions. They are use-
ful for generating pan-sharpened images. However, they are not effective in synthesiz-
ing spatial resolution and temporal coverage when input data sources are acquired from 
different dates that may be affected by larger geolocation errors, larger coarse-to-fine reso-
lution ratio, and dynamic land-surface changes.

In order to combine Landsat and MODIS data, a spatial and temporal adaptive reflec-
tance fusion model (STARFM) was developed (Gao et al. 2006). It provides valuable infor-
mation for applications that require high resolution in both time and space (Hilker et al. 
2009a). This model uses a weighting function to fuse MODIS and Landsat data by intro-
ducing additional information from spectrally similar neighboring pixels. The changes of 
reflectance from coarse-resolution homogeneous pixels are applied to the fine-resolution 
image. Simulations and predictions based on actual Landsat and MODIS images show that 
STARFM can predict reflectance well if coarse-resolution homogeneous pixels exist in the 
image (Gao et al. 2006). This approach makes several reasonable assumptions. First, atmo-
spherically corrected surface reflectance values are assumed to be comparable from time 
to time and location to location. Second, similar adjacent land-cover areas are assumed to 
have similar spectral patterns and temporal change patterns over a limited area. Third, the 
surface reflectance of a homogeneous land-cover type is assumed to be identical for both 
coarse and fine spatial resolutions.

Figure 1.8 shows the STARFM-predicted surface reflectance (e) on September 17, 2001 
at Landsat spatial resolution from MODIS images of the same day (b) and ETM+/MODIS 
image pairs on August 12, 2001 (a and d) and September 29, 2002 (c and f). The model-
predicted image captures rapid seasonal changes from MODIS data while retaining the 
Landsat spatial details. Clear land and water boundaries can be predicted from the addi-
tional spatial information from neighboring pixels. Linear objects such as roads are obvi-
ous in the predicted images.

The STARFM method does not explicitly handle the directional dependence of reflec-
tance in MODIS products. It uses either MODIS surface reflectance (Vermote, El Saleous, 
and Justice 2002) from nadir view or MODIS nadir BRDF-adjusted reflectance (Schaaf et al. 
2002) as inputs. Roy et al. (2008) considered a semiphysical fusion approach that uses the 
MODIS BRDF/albedo product and Landsat ETM+ data to predict ETM+ reflectance. This 
method assumes that the MODIS modulation term c is representative of the reflectance 
variation at Landsat ETM+ scale, which may not hold when reflectance change occurs in a 
spatially heterogeneous manner at scales larger than the 30-m Landsat pixels and smaller 
than the 500-m MODIS pixels (Roy et al. 2008).

The STARFM algorithm relies on the spectrally similar pixels from Landsat image for 
prediction. It cannot predict disturbance events if the changes caused by disturbances are 
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transient and not recorded in the base Landsat images. Hilker et al. (2009b) proposed a 
new fusion algorithm based on the STARFM algorithm called spatial temporal adaptive algo-
rithm for mapping reflectance change (STAARCH). The STAARCH algorithm uses the MODIS-
derived change sequence to identify the dates of the disturbance events, with which the 
STAARCH algorithm can choose the optimal Landsat base data and thus improve the 
accuracy of the synthetic Landsat images for each available date of MODIS imagery.

The STARFM algorithm can predict fine-resolution data well if homogeneous coarse-
resolution pixels exist in the image (Gao et al. 2006). It is less ideal if the prediction area 
is complex and most coarse-resolution pixels are mixed. To solve this problem, enhanced 
STARFM (ESTARFM) was developed by considering conversion coefficients in the model 
based on the pixel unmixing theory (Zhu et al. 2010) so that homogeneous pixels and het-
erogeneous pixels have different conversion coefficients in the prediction. The ESTARFM 
algorithm also has the potential to be applied to different data sources/sensors that may 
not be consistent due to the differences in sensor characteristics or data processing.

1.4  Conclusions

The role of Landsat imagery in monitoring vegetation is irreplaceable. The spatial resolu-
tion of Landsat TM/ETM+ imagery is fine enough to provide the spatial details of 
vegetation, and coarse enough to allow a single Landsat scene to cover 185 × 175 km, 

(c) MODIS, September 29, 2001

(f) ETM+, September 29, 2001(e) Prediction, September 17, 2001

(b) MODIS, September 17, 2001(a) MODIS, August 12, 2001

(d) ETM+, August 12, 2001

Figure 1.8
(See color insert following page 426.) Predicted Landsat surface reflectance (e) using STARFM from daily 
Moderate Resolution Imaging Spectroradiometer (MODIS) reflectance imagery (b) and Landsat/MODIS image 
pairs (a and d, c and f). (Reprinted from Gao, F., Masek, J., Schwaller, M., and Forrest, H., On the blending of the 
Landsat and MODIS surface reflectance: Predicting daily Landsat surface reflectance, IEEE Trans Geosci Remote 
Sens 44(8):2207–18. © (2006) IEEE.)
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meeting most regional application needs. The design of the spectral bands best captures 
the reflectance characteristics of vegetation. In addition, nearly four decade’s worth of 
image archive has been continuously recorded, which is the longest data record among all 
remote-sensing programs, and the temporal information has proven invaluable for moni-
toring vegetation conditions. Landsat data have been successfully used for monitoring 
vegetation area changes by land-use/land-cover classification and change detection, SMA, 
and extracting biophysical parameters, such as LAI, biomass, and forest successional 
stages. Two types of approaches were used in the literature: empirical approaches and 
biophysical models. Although classification and change detection with Landsat imagery 
for areal changes in vegetation have been well established in the literature, the extraction 
of biophysical parameters, particularly LAI, biomass, and forest successional stages, 
remains a challenging task, primarily because of signal saturation. The best use of Landsat 
data in the future requires synergistic use of data from different sensors, including optical 
sensors at higher spatial resolution that provide texture information or coarse spatial reso-
lutions that provide temporal information, and lidar/radar sensors, which provide compli-
mentary vegetation information unavailable from Landsat. Unquestionably, LCDM will 
greatly enhance the value of the Landsat data series for scientific investigations, which 
will be unrivaled by any other sensor. The Landsat series data will continue to play a piv-
otal role in enhancing our understanding of vegetation spatial patterns as well as the eco-
logical functions of the vegetation in the future.
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2
Review of Selected Moderate-Resolution 
Imaging Spectroradiometer Algorithms, 
Data Products, and Applications

Yang Shao, Gregory N. Taff, and Ross S. Lunetta

2.1  Introduction

The Moderate-Resolution Imaging Spectroradiometer (MODIS) is one of the key instruments 
designed as part of the National Aeronautics and Space Administration (NASA)’s Earth-
Observing System (EOS) to provide long-term global observation of the Earth’s land, ocean, 
and atmospheric properties (Asrar and Dokken 1993). The instrument was developed based 
on experiences with the Advanced Very High Resolution Radiometer (AVHRR) and the 
Landsat Thematic Mapper (TM). MODIS was designed not only for providing continuous 
global observations but also as a new-generation sensor with an increased combination 
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of spectral, spatial, radiometric, and temporal resolutions. In addition to emphasizing the 
advances in the sensor instrument, the MODIS mission also emphasizes the development 
of operational data-processing algorithms to generate global remote-sensing spectral data 
sets and a variety of value-added products spanning both the optical and biophysical 
domains. The motivation is to provide MODIS standard products to the general scientific 
community to support both theoretical and practical applications. Two MODIS instru-
ments were initially scheduled for launch on the EOS-AM and EOS-PM platforms in June 
1998 and December 2000, respectively (Running et al. 1994). The actual launch dates were 
December 18, 1999 (EOS-Terra) and May 4, 2002 (EOS-Aqua). Terra MODIS data have been 
available since February 2000. Subsequently, numerous scientific papers have been pub-
lished on MODIS data, algorithms, validation, and applications.

This chapter provides a review of selected MODIS data products and algorithms. We 
review a large number of MODIS algorithm theoretical basis documents (ATBDs) devel-
oped by individual MODIS science teams and scientific papers published over the last 
10–15 years. Our main interest is to review MODIS algorithms in order to increase under-
standing of the standard data products, document advances and limitations, and identify 
data quality and validation issues. The general organization of this chapter is as follows: 
First, we briefly describe the MODIS sensor characteristics. Then, we review selected 
MODIS data products and algorithms for land, atmosphere, and ocean disciplines. Our 
focus is on the MODIS land product because of its relatively wider use among the three. 
Finally, we review a wide range of applications and research activities that emphasize the 
broad range of MODIS products.

2.1.1  Moderate-Resolution Imaging Spectroradiometer Sensor Characteristics

Both EOS-Terra and EOS-Aqua are polar-orbiting sun-synchronous platforms. The orbit 
height of EOS platforms is 705 km at the equator. Terra’s equatorial crossing time (descend-
ing) is 10:30 a.m. local time, approximately 30 minutes later than the Landsat 7 satellite. Aqua 
crosses (ascends) the equator at approximately 1:30 p.m. Each MODIS instrument has a two-
sided scan mirror that operates perpendicular to the spacecraft track. The mirror scanning 
extends 55° at either sides of the nadir, providing a nominal swath of 2330 km. The wide 
swath allows nearly global coverage to be obtained by each instrument every 1–2 days.

In addition to high temporal resolution, the MODIS sensor has high spectral, spatial, and 
radiometric resolutions compared to previous sensor systems, such as the AVHRR. A total 
of 36 spectral bands are carefully positioned across the 0.412–14.235 μm spectral region. 
Among the 36 spectral bands, the first two bands are located in the red (0.648 μm) and near-
infrared (NIR; 0.858 μm) regions with a spatial resolution of 250 m. There are five additional 
bands (bands 3–7: 0.470 μm, 0.555 μm, 1.240 μm, 1.640 μm, and 2.13 μm) with a spatial reso-
lution of 500 m located in the visible to shortwave infrared (SWIR) spectral regions. The 
remaining 29 spectral bands (bands 8–36) have 1000-m spatial resolution, and are located 
in the middle and long-wave thermal infrared (TIR) regions. The MODIS instrument also 
has a 12-bit radiometric resolution and an advanced onboard calibration subsystem that 
ensures high calibration accuracy (Guenther et al. 1998; Justice et al. 1998). The sensor char-
acteristics are considered to be substantially improved over other similar observation sys-
tems (Townshend and Justice 2002). Unlike the AVHRR (mainly designed for monitoring 
the atmosphere), the MODIS sensor, is well suited for a wide range of research applications 
intended to improve the understanding of land, ocean, and atmosphere processes, domain 
interactions, and the impacts of human activity on the global environment. Table 2.1 shows 



Review of Selected Moderate-Resolution Imaging Spectroradiometer	 33

Table 2.1

MODIS Technical Specifications Including Primary Use, Band Numbers, Bandwidths, Spectral 
Radiance, Spatial Resolutions, and SNR

Primary Use Band
Bandwidth 

(μm)

Spectral 
Radiance

(W/m2·μm·sr) SNR

Spatial 
Resolution at 

Nadir (m)

Land/cloud boundaries   1 0.620–0.670 21.8 128 250
  2 0.841–0.876 24.7 201

Land/cloud properties   3 0.459–0.479 35.3 243 500
  4 0.545–0.565 29.0 228
  5 1.230–1.250 5.4 74
  6 1.628–1.652 7.3 275
  7 2.105–2.155 1.0 110

Ocean color/phytoplankton/
biogeochemistry

  8 0.405–0.420 44.9 880 1000
  9 0.438–0.448 41.9 838
10 0.483–0.493 32.1 802
11 0.526–0.536 27.9 754
12 0.546–0.556 21.0 750
13 0.662–0.672 9.5 910
14 0.673–0.683 8.7 1087
15 0.743–0.753 10.2 586
16 0.862–0.877 6.2 516

Atmospheric water vapor 17 0.890–0.920 10.0 167 1000
18 0.931–0.941 3.6 57
19 0.915–0.965 15.0 250

Primary Use Band
Bandwidth 

(μm)

Spectral 
Radiance 

(W/m2·μm·sr)
Required 
NEΔT(K)a

Spatial 
Resolution at 

Nadir (m)

Surface/cloud temperature 20 3.660–3.840 0.45 0.05 1000
21 3.929–3.989 2.38 2
22 3.929–3.989 0.67 0.07
23 4.020–4.080 0.79 0.07

Atmospheric temperature 24 4.433–4.598 0.17 0.25 1000
25 4.482–4.549 0.59 0.25

Cirrus clouds 26 1.360–1.390 6.00 150b 1000 m
Water vapor 27 6.535–6.895 1.16 0.25 1000

28 7.175–7.475 2.18 0.25
29 8.400–8.700 9.58 0.05

Ozone 30 9.580–9.880 3.69 0.25 1000
Surface/cloud temperature 31 10.780–11.280 9.55 0.05 1000

32 11.770–12.270 8.94 0.05
Cloud top altitude 33 13.185–13.485 4.52 0.25 1000

34 13.485–13.785 3.76 0.25
35 13.785–14.085 3.11 0.25
36 14.085–14.385 2.08 0.35

a	 NEΔT(K) = noise-equivalent temperature difference.
b	 SNR.
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MODIS technical specifications including primary use, band numbers, bandwidths, spec-
tral radiance, spatial resolutions, and signal-to-noise ratio (SNR).

2.1.2  Data Products and Algorithms

The MODIS instrument calibration, algorithm development, and standard data products 
are provided by the MODIS science team. The science team consists of over 70 American 
and international scientists, divided into four discipline groups for calibration, land, atmo-
sphere, and ocean. Each discipline group has clearly defined scientific responsibilities, and 
close interactions between the groups are maintained throughout algorithm development, 
data processing, evaluation, and product distribution.

MODIS data products are broadly categorized into five levels from level 0 to level 4. 
The MODIS level-0 data set is the initial data set automatically converted from the instru-
mental raw format. The level-0 data are subsequently split into granules, and an Earth 
location algorithm is employed to add geodetic position information to each MODIS gran-
ule. This creates the MODIS level-1A product that contains geodetic information, such as 
latitude, longitude, height, satellite zenith/azimuth angle, and solar zenith/azimuth angle 
(Nishihama et al. 1997). Level-1A data are further processed to generate level-1B prod-
uct (calibrated radiance for all bands and surface reflectance values for selected bands). 
Additional information such as data quality flags and error estimates are also provided. 
The MODIS level-1B data are still considered to be instrument data. The data are used 
primarily as input to derive higher-order MODIS geophysical products (levels 2–4). For 
example, MODIS level 2G is a gridded product that stores level-2 data in an Earth-based 
uniform grid system. Level-3 data provide an estimation of optical or biophysical variables 
for each grid element for predefined spatial and temporal resolutions (e.g., daily, eight-day, 
and monthly). Algorithms for level-3 products often include spatial resampling, averaging, 
and temporal composition. Finally, level-4 data are generated through a variety of algo-
rithms, models, and statistical methods. Generally, additional ancillary data are required 
to generate level-4 data (e.g., MODIS net primary production [NPP] product).

MODIS data products are also labeled by collection version. Each collection version indi-
cates a complete set of MODIS files corresponding to a specific data updating or reprocess-
ing stage. At the time of preparation of this chapter, the MODIS science team had completed 
the processing of collection-5 data. The MODIS team anticipates that another round of data 
processing will be conducted in 2010, subject to the availability of new MODIS algorithms. 
The distribution of MODIS land, atmosphere, and ocean data is primarily supported by 
three data centers: the Goddard Space Flight Center in Greenbelt, MD (level 2, level 2G, 
ocean color, sea-surface temperature); the U.S. Geological Survey EROS Data Center in 
Sioux Falls, SD (land products); and the National Snow and Ice Data Center (NSIDC) in 
Boulder, CO (snow and sea ice). The MODIS level-1 and atmosphere products are distrib-
uted through the Level-1 and Atmosphere Archive and Distribution System Web site.

2.2  Moderate-Resolution Imaging Spectroradiometer Land Products

MODIS land products are developed by the MODIS land discipline group (MODLAND). 
Standard land products include both remote sensing surface variables (i.e., radiance, sur-
face reflectance) and a wide range of derived variables such as vegetation indexes (VIs), 
leaf area index (LAI), fraction of photosynthetically active radiation (fPAR), bidirectional 
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reflectance distribution function (BRDF), land-surface temperature (LST), NPP, fire and 
burn scar, land cover and land-cover change, and snow and sea ice cover (Justice et al. 1998; 
Running et al. 1994). Detailed descriptions of MODIS land products are provided by 
Justice et al. (1998) and ATBDs developed by the MODIS science team. Selected MODIS 
land products, algorithms, and validation issues will be reviewed in this chapter.

2.2.1  Surface Reflectance

The core of the MODIS surface reflectance algorithm is atmospheric correction. Atmospheric 
gases, aerosols, and clouds have direct impacts on solar radiation though absorption and 
scattering. The atmospheric effects may modify pixel brightness and change wavelength 
dependence on radiance (Herman and Browning 1975; Kaufman 1989). The objective of 
atmospheric correction is to remove atmospheric effects, and thus extract surface reflec-
tance values as if they were measured at ground level. The successful retrieval of surface 
reflectance values is important for improving remote-sensing data quality and subsequent 
data analysis and applications (Gordon, Brown, and Evans 1988; Liang et al. 2002; Tanre, 
Holben, and Kaufman 1992).

One of the principal challenges for an operational atmospheric correction algorithm is 
the large variations of aerosols and water vapor in space and time. Often, the optical char-
acteristics of aerosols are very difficult to model because of large variations in aerosol 
loadings, particle sizes, and distributions. Due to the lack of available data on aerosol char-
acteristics, previous operational atmospheric correction algorithms often assume stan-
dard atmosphere with zero or constant aerosol loading to simplify the problem. The main 
advantage of the MODIS atmospheric correction algorithm is that it derives atmospheric 
characteristics from the MODIS data itself. The MODIS-derived data on aerosol optical 
thickness and water vapor content are coupled with MODIS spectral information and other 
ancillary data (i.e., a digital elevation model) in a radiative transfer model to derive sur-
face reflectance values. The direct implementation of the radiative transfer model at a per-
pixel level is impossible for daily global MODIS data, because of the high computational 
cost involved. Therefore, a lookup table (LUT) approach is used to simplify the radiative 
transfer computation. A number of atmospheric effect quantities, such as path radiance, 
atmospheric reflectance for isotropic light, and diffuse transmittance, are precalculated for 
different aerosol loadings and sun-view geometries using the second simulation of a satel-
lite signal in the solar spectrum (6S) code (Vermote et al. 1997). Surface reflectance values 
are then estimated using a second-degree equation. The detailed mathematical equations 
and algorithms are described by Vermote and Vermeulen (1999).

It should be noted that the MODIS atmospheric correction algorithm also considers adja-
cent effects, BRDF, and atmosphere coupling effects. The adjacent effects occur when the 
reflectance of a target pixel is mixed with those from surrounding pixels (Tanre, Herman, 
and Deschamps 1981). These effects should not be ignored for heterogeneous ground sur-
faces, especially for fine-resolution pixels (i.e., 250 m). The MODIS atmospheric correc-
tion algorithm employs an inverting approach to correct the adjacent effects under linear 
combination assumptions (Tanre, Herman, and Deschamps 1981). The coupling of BRDF 
with atmospheric correction is implemented using a priori estimates of surface BRDF. The 
MODIS algorithm uses the BRDF from a previous 16-day period (Strahler et al. 1996), which 
increases accuracy compared to the commonly used Lambertian assumption.

MODIS surface reflectance values are derived for MODIS bands 1–7 using the atmospheric 
correction algorithms. The major advantage of this approach is that MODIS-derived atmo-
spheric optical properties are used to achieve automated and operational correction at the 
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global level (Kaufman and Tanre 1996). The quality of MODIS surface reflectance is highly 
dependent on a number of MODIS-derived input data products (i.e., atmospheric proper-
ties) and on radiative transfer models that incorporate various theoretical assumptions. 
The validation of MODIS surface reflectance products has been conducted by intensive 
field campaigns and continuous validation at various validation sites. Liang et al. (2002) 
suggested that the direct comparison of MODIS surface reflectance values and ground 
point measurements is unrealistic due to scale mismatch. They proposed deriving surface 
reflectance values using higher-resolution remote sensing data (e.g., Landsat data) along 
with field calibration data, and then upscaling (i.e., degrading) the high-resolution sur-
face reflectance values to the MODIS spatial resolution. In their validation work, MODIS 
surface reflectance values appear to have reasonable accuracy (±5%) when compared to 
the degraded Landsat-derived surface reflectance values. Note that this validation effort 
was conducted mostly for vegetated areas on relatively clear days. Additional continu-
ous validation is needed for different land-cover conditions and aerosol loadings. It is 
important to incorporate additional validation results to further improve the quality of the 
MODIS surface reflectance data product, because the product serves as an important input 
to many higher-level MODIS algorithms that produce MODIS land products such as VIs, 
land-cover classification, change detection, fire products, and others.

2.2.2  Vegetation Indexes

It has been widely shown that VIs provide valuable measurements of vegetation activity 
and conditions (Tucker 1979; Tucker, Townshend, and Goff 1985). The normalized differ-
ence VI (NDVI) is probably the most commonly used VI, because it is highly correlated 
with many other biophysical parameters related to vegetation canopy properties, pro-
cesses, and functions (Curran 1980; Tucker et al. 1981; Asrar et al. 1984; Goward, Tucker, 
and Dye 1985). Mathematically, NDVI is a simple ratio of two linear combinations of spec-
tral reflectance values of NIR and red bands,

	 NDVI NIR red

NIR

= −
+

ρ ρ
ρ ρred

	 (2.1)

where ρNIR and ρred denote surface reflectance values at the NIR and red wavelength inter-
vals, respectively. NDVI data is one of the standard MODIS VI products (Justice et al. 1998; 
Huete et al. 2002). This data set is also referred to as continuity data, which extend the 
AVHRR’s long-term NDVI records.

In addition to the NDVI product, MODIS VI products also include a newly developed 
enhanced VI (EVI) (Huete et al. 2002),

	 EVI NIR red

NIR red blue

= × −
+ × − × +
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C C L
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where G is the gain factor, C1 and C2 are aerosol resistance coefficients, and L is the canopy 
background adjustment. The numeric values for these coefficients are 2.5, 6.0, 7.5, and 1.0, 
respectively (Huete, Justice, and Liu 1994; Liu and Huete 1995). Compared to NDVI, EVI 
provides improved sensitivity of vegetation signals in high biomass or dense forest regions 
(Huete et al. 2002). The EVI is also better correlated with tree canopy structure characteristics 
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such as LAI (Gao et al. 2000). The finest spatial resolution of the MODIS VI product is 250 m. 
It should be noted that there is no 250-m blue band for the MODIS instrument; thus, the 
500-m blue-band surface reflectance values are used as replacements to generate 250-m EVI 
products. Also, water, clouds/shadows, and pixels with heavy aerosol loadings are masked 
out for the VI products, since VI values are not robust for these cover types.

The MODIS standard VI products are provided at 250 m, 500 m, 1.0 km, and 0.05° (5600 m) 
resolutions through 16-day data composites. The MODIS VI data composite algorithm was 
developed based on the experiences gained from the AVHRR-NDVI composite algorithm. 
The motivation was to generate cloud-free and consistent NDVI products at the global 
scale. The AVHRR-NDVI composite algorithm selects the maximum NDVI value for a pixel 
within each 14-day time interval. This is commonly referred to as the maximum value com-
positing (MVC) algorithm. One main drawback of this algorithm is that it favors pixels with 
large view angles. Such pixels often have higher NDVI values than the nadir-view pixels, 
but they may not be cloud free (Goward et al. 1991). The MODIS science team developed 
two new approaches to solve this problem: the constrained-view angle–MVC (CV–MVC) 
approach and the BRDF-composite (BRDF-C) approach. The CV–MVC compares the two 
highest NDVI/EVI values and selects the one with the smaller view angle for composit-
ing, which typically improves the spatial consistency for VI time-series data. The BRDF-C 
algorithm is considered to be more complicated. It requires a minimum of five valid VI 
values for each pixel to mathematically interpolate nadir-view reflectance values and VIs 
(Walthall et al. 1985). This largely limits its applicability in regions with frequent cloud 
cover; thus, it can be considered a region-dependent algorithm. Currently, CV–MVC is 
used as the primary compositing algorithm for MODIS VI products with MVC as a backup 
algorithm. The BRDF-C algorithm is not used due to its regional dependency.

The results of the validation of MODIS VIs have been reported by a number of research-
ers (Huete et al. 2002; Gao et al. 2003; Brown et al. 2006). Gao et al. (2003) compared MODIS 
VIs with those from high spatial resolution images through a scaling-up approach. It was 
found that both MODIS 1-day VI and 16-day composited VI matched well with the values 
derived from higher spatial resolution data sets. Huete et al. (2002) conducted validation 
work in four field campaigns across the United States and at sites in North America and 
South America. They compared MODIS NDVI and EVI with regard to temporal (sea-
sonal) vegetation profiles, dynamic range and saturation, and their relationships with 
biophysical variables such as LAI, biomass, canopy cover, and fraction of absorbed pho-
tosynthetically active radiation (APAR). The MODIS NDVI and EVI temporal profiles 
matched during the vegetation growing season in selected biomes. One noticeable dif-
ference between MODIS NDVI and EVI was the dynamic range. Whereas MODIS NDVI 
appears to be saturated (e.g., >0.9) in high biomass regions, EVI shows more sensitivities 
in such regions without suffering data saturation. The latter is also more advantageous in 
that it differentiates forest types such as broadleaf and needleleaf forests, whereas MODIS 
NDVI shows very similar signals for these forest types. These differences can have direct 
impacts on VI-based land-cover mapping applications. A comparison between MODIS-
NDVI and AVHRR-NDVI also showed interesting results (Huete et al. 2002). These two 
time-series products have very similar signals for arid and semiarid regions in dry sea-
sons; however, MODIS-NDVI products have much higher values in wet seasons. Brown 
et al. (2006) further suggested that the differences between these two NDVI products are 
land cover–dependent and they cannot simply be interchanged for analyses. These stud-
ies suggest the challenge of data “continuity” between AVHRR-NDVI and MODIS-NDVI 
data records. The contributing factors include differences in sensor band characteristics 
and the atmospheric correction and compositing algorithms used. Further research is 
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needed to link AVHRR-NDVI and MODIS-NDVI in a more consistent manner for moni-
toring global vegetation conditions and changes.

2.2.3  Land Cover and Change Detection Products

Timely and accurate global land-cover information is important for a wide range of stud-
ies, including those on global climate change, carbon and hydrologic balance, terrestrial 
ecosystems, and human impacts on the natural earth system (Townshend and Justice 2002). 
Operational global land-cover mapping, however, is extremely challenging due to limita-
tions in training data, a high computational cost, and intrinsic spectral confusion between 
land-cover classes. Historically, global land-cover maps have been compiled by a number of 
research institutions and organizations (Friedl et al. 2002). The first remote sensing–based 
global map was produced by DeFries and Townshend (1994) using time-series AVHRR-
NDVI monthly composite data at a 1.0-degree spatial resolution. AVHRR-based global 
maps at finer spatial resolutions (e.g., 1–8 km) have been subsequently developed using 
a variety of classification algorithms (Loveland et al. 2000). The main concern regarding 
the AVHRR-derived land-cover data products is related to AVHRR sensor characteristics, 
which were not configured for land-cover mapping. The MODIS science team has high 
expectations for MODIS-derived land-cover map products, mainly due to the improved 
sensor characteristics (spatial, spectral, and radiometric resolutions), advances in com-
puter algorithms, such as those on atmospheric correction and image classification, and 
improved quality and quantity of training data sites. Land-cover mapping and land-cover 
change was identified as the most important task of the MODIS land science team (Asrar 
and Dokken 1993; Running et al. 1994).

MODIS land-cover classification follows the International Geosphere-Biosphere 
Programme classification scheme. A total of 17 land-cover classes are defined including 
11 natural vegetation classes, 3 nonvegetation classes, and 3 human-altered classes (Friedl 
et al. 2002). The training data points are designed to ensure global representation through 
the system for terrestrial ecosystem parameterization (Muchoney et al. 1999). This global 
site database includes more than 1373 sites. Training data points are developed mainly 
through visual interpretation of high-resolution remote sensing imagery. Additional ancil-
lary data were also used to augment training data points. Note that the global site database 
is dynamic and needs to be updated continually to meet the requirements of operational 
global land-cover mapping. The inputs for MODIS land-cover classification include the 
16-day composite of MODIS surface reflectance values (bands 1–7) and the EVI. Two image-
classification algorithms were considered for land-cover classification by the MODIS sci-
ence team. A supervised decision-tree algorithm (Quinlan 1993) was selected over a neural 
network (Carpenter et al. 1992) algorithm, based on global operational considerations. An 
advanced boosting algorithm (Freund 1995) was integrated with the decision-tree algo-
rithm. This provided more robust estimates of per-pixel probabilities of class membership. 
Currently, standard MODIS land-cover products are provided at 500-m and 0.05-degree 
spatial resolutions on annual intervals.

The validation of MODIS land-cover data products is an ongoing process. Initial results 
from Friedl et al. (2002) suggest improved classification performance over AVHRR-derived 
products. This can be attributed to increased MODIS sensor characteristics, advances in atmo-
spheric correction, and improved classification algorithms. The accuracy of MODIS land-cover 
products, however, does appear to have high regional differences. The quality of MODIS 
land-cover products at high latitudes is particularly questionable due to the deterioration 
of MODIS inputs at such latitudes (e.g., low solar zenith angles). Considerable classification 
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confusion may occur between agriculture and natural vegetation. In a recent study, Giri, Zhu, 
and Reed (2005) compared the MODIS global land-cover data and the Global Land Cover 
2000 (GLC-2000) data. These two global land-cover data sets are derived using very differ-
ent input data and classification algorithms. Although a general agreement was found at the 
class aggregated level, there were substantial differences for individual classes. Moreover, 
the agreements were highly variable across different biomes. This calls for further studies in 
the development of land-cover classification schemes and classification algorithms.

The MODIS land-cover change algorithm does not use a postclassification comparison 
approach. The main reason is that the classification errors associated with two individual 
image classifications can be accumulated during postclassification comparisons, which 
may seriously impact change detection performances (Singh 1989). Instead, the MODIS 
land-cover change algorithm relies on the analysis of multitemporal image stacks or time-
trajectories to assess the land-cover dynamics caused by processes such as deforestation, 
agricultural expansion, and urbanization. Change-vector analysis (Lambin and Strahler 
1994) is the primary change detection technique used in the MODIS land-cover change 
algorithm. The input data for the change-vector analysis include a variety of MODIS-derived 
spectral–spatial variables such as VIs, surface temperature, and spatial structure indexes. 
To detect the annual land-cover change between consecutive years, these variables are com-
piled for each individual year by monthly (32-day) composites. The land-cover states of the 
two consecutive years can be treated as two points located in a multitemporal feature space. 
A change vector can thus be generated by linking these two points in the multitemporal 
feature space. The direction and magnitude of the change vector are assessed to identify 
potential land-cover changes (Lambin and Strahler 1994). The main advantages of using 
change-vector analysis are that it can overcome the error accumulation problem and identify 
subtle land-cover changes. Currently, the MODIS land-cover change product is provided 
at 1.0-km spatial resolution. In addition to the annual land-cover change product, Zhan 
et al. (2002) developed the vegetative cover conversion product as a global alarm product of 
land-cover change caused by anthropogenic activities and extreme natural events. The spa-
tial resolution of the land-cover change alarm product is 250 m. The MODIS level-1B data 
was used as input for decision trees to detect wildfire, flood, and deforestation activities. 
Furthermore, the MODIS research team at the University of Maryland is actively develop-
ing enhanced land-cover and land-cover change products. Such products include the global 
250-m land-cover change indicator product, the global 500-m vegetation continuous fields 
(VCF) product, and the global 1.0-km land-cover product. The validation of MODIS land-
cover change products is an ongoing process. A  review of the recent literature suggests 
that very few studies have been performed for the validation of MODIS land-cover change 
products at the local, regional, and global levels.

2.2.4  Fire Products

MODIS fire products consist of both fire detection and burn scar products. The theo-
retical background of the fire detection algorithm is provided by Kaufman et al. (1992). 
The MODIS fire detection algorithm also benefits from the rich experiences gained from 
the AVHRR and visible and infrared (IR) scanner (Giglio, Kendall, and Tucker 2000). The 
main objective of the algorithm is to automatically detect locations where active burning is 
occurring. The primary inputs for the fire detection algorithm are MODIS spectral signals 
at 4 and 11 μm. The MODIS channel at 4 μm is considered to be the most sensitive channel 
for both fire flaming and fire smoldering, whereas the channel around 11 μm (TIR) detects 
strong emissions from fires (Dozier 1981). The MODIS fire detection algorithm consists of 
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multiple processing steps to identify fire pixels. The initial step removes obvious nonfire 
pixels through a preliminary classification; potential fire pixels are then identified through 
the thresholding of brightness temperatures (T4 and T11) derived from the MODIS channels 
at 4 and 11 μm. The threshold values of T4 are specified as 310 K and 305 K for daytime 
and nighttime pixels, respectively. In addition, the difference between T4 and T11 needs to 
be larger than 10 K for a pixel to be labeled as a potential fire pixel. The MODIS spectral 
values at bands 1 (0.648 μm), 2 (0.858 μm), and 7 (2.13 μm) are also incorporated in the deci-
sion rules to reduce false alarms (e.g., sun glint) and confusion caused by clouds (Nath, 
Rao, and Rao 1993).

Within the potential fire pixels, the MODIS fire algorithm further considers two 
approaches to identify unambiguous fire pixels. The first approach relies on high thresh-
old values of brightness temperatures to identify actual fire pixels. The second approach 
examines the contextual information of neighboring pixels (from 3 × 3 to 21 × 21) to identify 
active fire pixels. At least eight valid neighboring pixels are required for the background 
contextual analysis using 4 and 11 μm brightness temperature values. The brightness tem-
perature values for focal pixels are compared with the background contextual statistics to 
make decisions. The final fire products are labeled using the following categories: missing 
data, cloud, water, nonfire, fire, or unknown (Giglio et al. 2003). The fire radiative power is 
also computed for each fire pixel using the empirical relationship developed by Kaufman 
et al. (1998). A range of standard MODIS fire products are provided at various processing 
levels (level 2, level 2G, and level 3) with different spatial (1.0 km and 0.5°) and temporal 
resolutions (daily, eight-day, and monthly composite).

The MODIS burn scar algorithm was developed by Roy et al. (2002). Burn scar products 
identify the spatial extent of the recent burn area, in contrast to the identification of active 
fire in the MODIS fire algorithm. The identification of burn scars at the global scale is an 
extremely challenging task since the spectral signals of burn areas are very similar to 
those of other land-cover types such as flooding area and shadows from clouds and sur-
face relief. The current MODIS burn scar algorithm can be considered a change detection 
approach through a statistical and temporal modeling of bidirectional reflectance vari-
ables. For each pixel, the bidirectional reflectance values within a predefined temporal 
window (i.e., 16-day) are used in a statistical model to predict a subsequent reflectance 
value. This predicted value is then compared to the actual observed surface reflectance 
value to identify the chance of change. Threshold values are specified to identify pixels 
with large decreases of surface reflectance values. The primary inputs to the MODIS burn 
scar algorithm are MODIS bands 2 (841–876 nm) and 5 (1230–1250 nm), which are the most 
sensitive to burning and postfire reflectance change. Additionally, simple band relation-
ships among MODIS bands 2, 5, and 7 are used in the MODIS burn scar algorithm to 
reduce false alarms such as cloud shadow or soil moisture changes.

The validation of MODIS file product has been conducted by several researchers using 
Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)-derived fire 
products as references (Morisette et al. 2005; Csiszar, Morisette, and Giglio 2006). These 
studies concluded that approximately 50% of the large fire clusters (45–60 ASTER pixels) 
were correctly identified. Ellicott et al. (2009) validated the MODIS-derived fire products 
(during 2001–2007) and found a slight underestimation in fire extent. They further ana-
lyzed the spatial distribution and found that Africa and South America account for about 
70% of global fires annually, suggesting high rates of biomass burning in those regions. 
For the validation of burn scar products, Chang and Song (2009) compared the standard 
MODIS burn scar products with burned areas derived in the SPOT-based L3JRC product 
for the years 2000–2007. The spatial and temporal patterns of these two products were 
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found to be consistent, especially during the fire season. The research also suggested that 
MODIS burn scar products performed better than L3JRC products when compared with 
selected ground-based measurements in Canada, China, Russia, and the United States. 
One noticeable problem with the MODIS burn scar product is the underestimation of burn 
area in boreal forests.

2.2.5  Snow and Sea Ice Cover

Data regarding spatial extents and dynamics of global snow cover are important for stud-
ies pertaining to hydrologic and biogeochemical cycling, surface albedo, global energy 
balances, and climate change (Robinson, Dewey, and Heim 1993). Although large-scale 
hemispheric snow maps are routinely developed by the National Environmental Satellite 
Data and Information Service and the Interactive Multisensor Snow and Ice Mapping 
System (IMS), their spatial resolutions are generally coarse (e.g., IMS product at a reso-
lution of 25 km). The MODIS snow-cover algorithm, or Snowmap, was developed as an 
automated computer algorithm that can be used to identify snow cover at higher spatial 
resolutions (e.g., 500 m) globally (Hall, Riggs, and Salomonson 2001; Hall et al. 2002).

Snow cover has distinct spectral signals that can be clearly differentiated from most 
other natural land-cover types. The primary confusion is with clouds, but previous 
research suggests that snow and cloud cover have different spectral responses at visible 
and SWIR channels. Specifically, snow cover has a strong reflectance in the visible range, 
but a low reflectance in the SWIR spectral region. On the other hand, clouds typically have 
strong reflectance values in both spectral regions (Dozier 1989). A ratio-based normalized 
difference snow index (NDSI) has been developed for snow mapping with Landsat data 
(Dozier 1989). The NDSI is also one of the primary algorithms used for MODIS Snowmap 
products.

	 NDSI
band 4 band 6
band 4 band 6

= −
+

	 (2.3)

The MODIS Snowmap algorithm uses sensor reflectance values in bands 4 and 6 to com-
pute the NDSI (Equation 2.3). A pixel is labeled as snow if the NDSI value is larger than 
the threshold value of 0.4. Additional decision rules in the Snowmap include the thresh-
olding of MODIS bands 2 (>0.11) and 4 (>0.10). Generally, the NDSI value decreases as the 
purity of snow pixels is reduced. In order to identify a partial snow pixel (e.g., >50%) in a 
forested region, Snowmap incorporates MODIS-NDVI to map the snow pixel. For instance, 
pixels might be labeled as snow in cases of NDVI = 0.1 approximately and NDSI <0.4 (Hall 
et  al. 2002). Currently, standard MODIS snow products are provided at daily and tem-
poral compositing of 8-day and monthly intervals. The temporal compositing algorithm 
simply selects a maximum value within a specified temporal interval. A similar decision-
rules technique used in Snowmap has also been employed for the MODIS sea ice product 
through the sea ice mapping algorithm (Icemap).

Validation of the Snowmap product has been difficult due to limited reference data and 
scale mismatch between various remote sensing–derived snow map products. Klein and 
Barnett (2003) conducted a snow map validation study for the upper Rio Grande River 
basin of Colorado and New Mexico using snow-cover map products developed by the 
National Operational Hydrologic Remote Sensing Center (NOHRSC). A high overall agree-
ment of 86% was reported. The MODIS and NOHRSC snow-cover maps were also com-
pared with in situ snow measurements. The MODIS Snowmap product performed best, 
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with a 94% agreement. Noticeable MODIS Snowmap errors occurred in locations where 
snow depths were less than 4 cm. Ault et al. (2006) compared MODIS snow products with 
data from a number of observation stations that included amateur observations across 
the Laurentian Great Lakes region. The MODIS snow-cover map matched very well with 
observational data sets. Major errors identified in the MODIS snow-cover map occurred in 
forested areas. Hall and Riggs (2007) reported that the accuracy of selected MODIS snow 
product images (500 m) was approximately 93%. Confusion between snow and cloud was 
a major problem. Although the Snowmap algorithm successfully differentiates a majority 
of snow and cloud pixels at a 500-m spatial resolution, there were large uncertainties at the 
partial or subpixel level. Additional uncertainties were attributed to thin snow cover. The 
snow-cover composite data is believed to be less accurate due to error accumulation from 
the daily snow product (Hall and Riggs 2007).

2.2.6  Leaf Area Index and Fraction of Photosynthetically Active Radiation

The term LAI denotes one-side green leaf area per unit ground area. It is a plant-canopy 
attribute that is often used in process-based ecosystem, hydrology, and global climate 
models (Sellers et al. 1997). The term fPAR denotes the fraction of photosynthetically active 
radiation absorbed by plant canopies. A large amount of research has been conducted 
to study the relationships among plant-canopy reflectance, spectral VIs, LAI, and fPAR 
(Asrar et al. 1984; Asrar, Myneni, and Kanematsu 1989). One common approach estimates 
LAI and fPAR by developing empirical models based on remote sensing surface reflec-
tance or VIs such as NDVI (Asrar, Myneni, and Kanematsu 1989).

The MODIS LAI/fPAR algorithm relies on a three-dimensional (3D) radiative transfer 
model and an LUT approach to estimate LAI/fPAR. A global biome map is developed to 
allocate land-cover types to six broad biomes, including grasses and cereal crops, shrubs, 
broadleaf crops, savannas, broadleaf forests, and needleleaf forests (Myneni et al. 2002). 
This simplifies a number of assumptions and input parameters for the radiative transfer 
model. The 3D radiative transfer model generates several spectral and angular signatures 
that can be compared to the MODIS directional surface reflectance values through a LUT. 
The MODIS LAI/fPAR algorithm then derives location-specific results by incorporating 
the law of energy conservation (Knyazikhin et al. 1998). Further details about the MODIS 
LAI/fPAR algorithm and its theoretical background can be found in work by Knyazikhin 
et al. (1999). Standard MODIS LAI/fPAR products include 1-km spatial resolution data for 
both the daily and eight-day maximum value composite data set.

Privette et al. (2002) conducted initial validation work for MODIS LAI products using 
field-sampled data in southern Africa and found that the accuracy of these products is 
within an acceptable level. The MODIS LAI products successfully depicted the structural 
and phenological variability in semiarid woodlands and savannas. Wang et al. (2004) 
conducted LAI validation work in a needle-leaf forest site near Ruokolahti, Finland. Field-
based LAI measures were first linked to high-resolution Landsat images and then aggre-
gated to match the MODIS spatial resolution. The MODIS LAI products showed a higher 
variation than expected. The values were also overestimated compared to the field-based 
LAI measures. The authors suggest that the understory vegetation might cause such uncer-
tainties. Iiames (2008) assessed MODIS LAI products for the evergreen needleleaf biome in 
the southeastern United States. The major challenges were attributed to the uncertainties 
in the creation of the high-resolution LAI reference map, land-cover classification, and the 
influences from vegetative understory. Yang et al. (2006) further addressed the sources of 
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MODIS LAI uncertainties, including the inputs of land-cover maps, surface reflectance, 
and LUTs used in the MODIS LAI algorithm. Kanniah et al. (2009) assessed the accuracy of 
LAI and fPAR for a north Australian savanna site and found that the MODIS products cap-
tured the seasonal variation in LAI and fPAR well, especially the most recent collection-5 
data. However, Xiao et al. (2009) raised concerns related to the spatial–temporal discon-
tinuity of MODIS LAI products for many locations. They proposed a new algorithm for 
estimating LAI from time-series MODIS reflectance data to increase temporal continuity 
and improve accuracy.

2.2.7  Net Primary Productivity

In addition to developing standard products linked to plant-canopy structure and bio-
optical properties, the MODIS science team also emphasizes the development of algo-
rithms and standard products for plant productivity and processes. One of the standard 
MODIS products that provides a key measure of vegetation productivity is NPP. It denotes 
the rate of net carbon gain by vegetation over a specified time period and can also be repre-
sented as the difference between gross primary production (GPP) and plant respiration. It 
is commonly measured at monthly, annual, or longer temporal intervals. The estimation of 
NPP requires the integration of ecological principles, remote sensing data, and other ancil-
lary surface data sets. Potter et al. (1993) found that NPP can be estimated as a product of 
APAR and an efficiency of radiation use. The theoretical basis of the relationship between 
APAR and NPP is provided by Monteith (1972, 1977).

Theoretically, NPP values can be estimated based on an empirical relationship between 
APAR and NPP that has been demonstrated in numerous studies (Asrar et al. 1984; Goward, 
Tucker, and Dye 1985). However, the relationship between the two variables is also depen-
dent on vegetation type and numerous other control factors, such as concentration of 
photosynthetic enzymes, canopy structure, and soil-water availability (Russell, Jarvis, and 
Monteith 1989; Running et al. 1999). This represents a considerable challenge to the devel-
opment of an operational MODIS NPP algorithm using the APAR-based approach. The cur-
rent MODIS NPP algorithm relies on an alternative approach that computes the difference 
between GPP and plant respiration. The basis for this approach is that APAR is actually 
more closely related to GPP than to NPP (Running et al. 1999). A detailed algorithm flow-
chart can be found in the work of Running et al. (1999). The primary algorithm can be bro-
ken down into two subroutines: The first estimates the daily GPP using standard MODIS 
fPAR products and ancillary surface meteorological measures as inputs. Different radiation 
conversion efficiency parameters are also provided as inputs using a LUT (stratified by 
biome types). The second subroutine estimates daily plant respiration. MODIS LAI is used 
as one of the inputs to estimate leaf mass, which is further used as an input in estimating 
plant respiration. The results from the two subroutines (estimated GPP and plant respira-
tion) are used to derive daily NPP. The daily NPP product is provided at a spatial resolution 
of 1.0 km. In addition to the daily NPP, the MODIS algorithm also provides annual NPP. 
The annual NPP is estimated by integrating daily NPP and subtracting a number of respi-
ration parameters for live woody tissue, leaves, and fine roots (Running et al. 1999).

Turner et al. (2006) evaluated MODIS NPP and GPP products across multiple biomes. The 
GPP at eddy covariance flux towers and plot-level measurements of NPP were scaled up 
to 25 km2 and compared with the MODIS products. The authors report large variations in 
results over different biome types and land uses. The MODIS products overestimated NPP 
and GPP at low-productivity sites and underestimated those values at high-productivity 
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sites. One of the main error sources was attributed to the inputs (e.g., fPAR estimates) to the 
MODIS NPP algorithm (Turner et al. 2006).

2.3 � Moderate-Resolution Imaging Spectroradiometer 
Atmosphere and Ocean Products

2.3.1  Aerosols

MODIS atmosphere and ocean products are developed by the MODIS atmosphere discipline 
group and ocean discipline group, respectively.

Aerosols, especially human-made aerosols, may lead to large reductions in the amount 
of solar irradiance reaching the Earth’s surface and increases in the solar heating of the 
atmosphere (Ramanathan et al. 2001). Aerosol loadings and distributions are often poorly 
characterized, because they are highly variable in space and time. Remote sensing–based 
characterization is generally performed by estimating aerosol optical depth or thickness. 
To account for the very different surface reflectance properties associated with oceans and 
the land surface, the MODIS products incorporate two independent algorithms to retrieve 
aerosol optical depth (Kaufman et al. 1997).

The aerosol algorithm over ocean integrates a radiative transfer model and LUT to pro-
duce aerosol optical depth estimates. The radiative transfer model has been run under a 
range of predefined aerosol conditions that describe particle modes (whether fine or coarse 
particles), total loadings, sensor–sun geometry angles, wind speed, and other parameters 
computed from ancillary data (Ahmad and Fraser 1982). The theoretical background is 
provided by Wang and Gordon (1994), who use fine or coarse particle modes to model mul-
tiple scattering process of radiance. The radiative transfer model produces an LUT that can 
link spectral reflectance values to aerosol spectral properties or optical depth estimates. 
The observed MODIS surface reflectance values are simply compared to the values in the 
LUT to find the best fit using a least-squares algorithm.

Aerosols over the land surface are more concentrated compared to those over the ocean 
surface, because the majority of aerosol sources are located on land (Kaufman et al. 1997). The 
estimation of aerosol optical depth over land surface is considered to be more challenging 
due to the highly variable reflective properties associated with different land-cover types. 
The radiance components from the land surface cannot be easily separated from those of 
aerosols (note that the ocean surface is generally darker and water-leaving radiance can often 
be assumed to be zero). This is one of the major reasons that aerosol optical depth was not 
routinely estimated at the global level before the use of MODIS data (Kaufman et al. 1997).

The MODIS aerosol algorithm over land relies on the accurate identification of dark sur-
face pixels. VI-based dark pixel detection was found to be unreliable for global applica-
tions, because VIs themselves are affected by the presence of aerosols (Holben et al. 1986). 
For the MODIS aerosol algorithm over land, two MODIS spectral bands at 2.1 and 3.8 μm 
are used to detect dark pixels (Kaufman et al. 1997). The spectral band at 2.1 μm is pre-
ferred, especially when the reflectance value for this band is lower than 0.05. The wave-
lengths of these two spectral bands are considerably longer than those of typical aerosol 
particles; thus, the surface reflectance retrieved for these spectral bands can be considered 
free from aerosol impacts. Under aerosol-free conditions, there are stable relationships 
between surface reflectance in the visible bands (0.47 and 0.66 μm) and that in the SWIR 
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bands (2.1 and 3.8 μm). Thus, the surface reflectance values in visible bands can be esti-
mated from those derived for the SWIR channels (Kaufman et al. 1997). The difference 
between the estimated and the MODIS-derived surface reflectance values in visible bands 
can be attributed to the presence of aerosols. This is the fundamental assumption of the 
MODIS aerosol algorithm for land surfaces.

Validations of aerosol optical depth estimates have been conducted by a number of 
researchers. Remer et al. (2002) compared 8000 MODIS-derived optical depth values and 
aerosol robotic network (AERONET) measurements. MODIS estimates were reported to be 
within the acceptable uncertainty levels over ocean and land surfaces. Chu et al. (2002) com-
pared the MODIS-derived aerosol optical depths and measurements from 30 AERONET 
sites. They found that the levels of consistency were higher for continental inland regions 
than for coastal regions. The partial water surface may have contaminated the aerosol 
optical depth estimation in the coastal regions. The authors also suggest that the lack of 
AERONET sites in East Asia, India, and Australia makes global validation of MODIS aero-
sol optical depths particularly challenging. Aloysius et al. (2009) compared MODIS-derived 
aerosol optical depths and National Centers for Environmental Prediction reanalysis data 
over the southeast Arabian Sea. They reported high correlations (R2 = 0.96) between the two 
data sets. At the local level, Li et al. (2005) suggested that the standard MODIS 10-km aero-
sol optical depth estimates are insufficient to characterize the local aerosol variation over 
urban areas. They modified the MODIS aerosol algorithm and derived aerosol optical depth 
at 1.0-km spatial resolution over Hong Kong. High accuracies were reported compared to 
field measures. This suggests that there is considerable potential for using MODIS data in 
the estimation of aerosol optical depth at a higher spatial resolution over local areas.

2.3.2  Clouds

Clouds play major roles in the Earth’s radiation budget and climate change research 
(Ramanathan 1987). The MODIS atmosphere science team has developed a variety of algo-
rithms to generate MODIS cloud products, including a cloud mask and cloud physical and 
optical properties. The review provided here focuses on the MODIS cloud detection, or cloud 
mask algorithm. The MODIS cloud mask algorithm employs an automated and threshold-
based approach to identify clouds. The algorithm is based on previous cloud detection 
research and experiences from the International Satellite Cloud Climatology Project (ISCCP; 
Rossow and Garder 1993) and the AVHRR processing scheme over cloud, land, and ocean 
(APOLLO; Gesell 1989) cloud detection algorithm (Ackerman et al. 2006). These algorithms 
primarily use multiple radiance thresholds testing to label pixels as cloudy or clear. The 
ISCCP algorithm also integrates spatial and temporal information in its decision rules.

The primary inputs to the MODIS cloud detection algorithm include 19 MODIS visible 
and IR radiance values. Additional ancillary data sets include sun-sensor geometry angles, 
ecosystem classifications, land and water distributions, elevation above mean sea level, 
daily snow and ice maps from NSIDC, and the daily sea ice concentration product from the 
National Oceanic and Atmospheric Administration (NOAA). The ancillary data provide a 
basis to segment the Earth’s surface into a range of surface conditions over time, including 
daytime land, daytime water, nighttime land, nighttime water, daytime desert, and daytime 
and nighttime snow or ice surfaces (Ackerman et al. 2006). The MODIS cloud detection algo-
rithm employs different threshold testing for different surface conditions over time. For a 
specific surface condition at a given time, each 1.0-km pixel is put through a variety of radi-
ance and temperature-based threshold tests, which can be classified into the following five 
groups: simple IR threshold tests, brightness temperature differences, solar reflectance tests, 
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NIR thin cirrus, and IR thin cirrus testing. One advantage of the MODIS cloud detection 
algorithm is the inclusion of a confidence level for each threshold test, rather than providing 
simple categorical labels such as cloudy or clear. The confidence level is computed based 
on the distance of the pixel from the threshold value, and a continuous value is derived for 
each test (high confidence of clear pixel = 1; high confidence of cloudy pixel = 0). For each 
threshold testing group, a minimum confidence value is determined. The final confidence 
level is then integrated from the results of the five groups. As a result, the MODIS algorithm 
provides multiple levels of “confidence” for the cloud mask product (i.e., cloudy, probably 
clear, confidently clear, and uncertain). This allows users to develop their own decision 
rules while processing or using the standard MODIS cloud mask product.

Berendes et al. (2004) compared MODIS-derived daytime cloud products with obser-
vations from ground-based instrumentation located in northern Alaska. They report 
agreement within ±20% between the two data sets. In their study, the MODIS cloud mask 
appeared to be more accurate than ground-based instruments in the detection of thin cir-
rus clouds. However, other researchers suggest that the detection of cirrus cloud cover still 
remains a major challenge to MODIS cloud masking. Dessler and Yang (2003) analyzed 
MODIS cloud mask products for two 3-day periods from December 2000 and June 2001. 
They report that approximately one-third of the pixels flagged as cloud free by the MODIS 
cloud mask contained detectable thin cirrus clouds. Further research is needed to improve 
the detection of thin cirrus clouds by the MODIS cloud algorithm.

2.3.3  Ocean

Numerous standard MODIS ocean data products are provided by the MODIS science 
team, including normalized water-leaving radiance, pigment concentration, chlorophyll fluo-
rescence, chlorophyll-a pigment concentration, photosynthetically available radiation, 
suspended solids concentration, organic matter concentration, ocean water attenuation 
coefficient, ocean primary productivity, sea-surface temperature, phycoerythrin concen-
tration, and ocean aerosol properties.

Many MODIS ocean algorithms were developed from experiences with the coastal zone 
color scanner (Gordon and Voss 1999). A common perception is that water color (spec-
tral measures) can be used to derive important biophysical parameters related to phy-
toplankton pigment concentration, primary productivity, and sea-surface temperature. 
One main challenge of ocean-color characterization is that the retrieval of the relevant 
signal from the total radiance is difficult, because the water-leaving radiance is quite small 
(<10%) compared to the total radiance received at the sensor. In other words, at-sensor 
radiance is dominated by atmospheric effects over the ocean surface. It is, therefore, neces-
sary to conduct an atmospheric correction for the MODIS ocean-color products. A detailed 
atmospheric correction algorithm is provided by Gordon and Voss (1999). The output of 
the algorithm is called normalized water-leaving radiance, which approximates water-
leaving radiance (sun at zenith) free of atmospheric impacts for most oceanic conditions. 
The normalized water-leaving radiance is further used as an input to generate almost all 
other MODIS ocean products. For instance, the current MODIS pigment concentration and 
bio-optical properties are largely dependent on empirical or semiempirical relationships 
derived between spectral and biophysical measures obtained from the same field obser-
vations. Therefore, the normalized water-leaving radiance over a large ocean area can be 
compared to those spectral measures obtained at field observations to generate estimates 
of pigment concentration or other biophysical properties.



Review of Selected Moderate-Resolution Imaging Spectroradiometer	 47

2.3.4  Other Algorithms

It must be noted that the MODIS science team has developed a large number of algorithms 
over the period of MODIS instrument design, prelaunch, and postlaunch phases. Some of 
these algorithms are continually updated, which leads to several MODIS data reprocessing 
procedures. Because this chapter only reviews some selected MODIS algorithms and prod-
ucts, it is by no means a complete description of all MODIS algorithms and products. There 
is a range of MODIS standard products that are not discussed in this chapter, particularly 
in the atmosphere and ocean disciplines. The ATBDs developed by the MODIS science 
team are probably the best resource for readers interested in a more in-depth review of 
MODIS algorithms, their theoretical backgrounds, and the available data products.

2.4  Moderate-Resolution Imaging Spectroradiometer Applications

Since the launch of MODIS-Terra, hundreds of scientific papers have been published on 
the application of MODIS data at global, regional, and local levels. The remote sensing 
literature has covered research on the following topics: global climate models (Oleson 
et al. 2003; Tian et al. 2004), land cover and change detection (Lunetta et al. 2006; Zhang 
et al. 2008; Gill et al. 2009), forest disturbance and vegetation dynamics (Evrendilek and 
Gulbeyaz 2008; Hansen et al. 2008; Hilker et al. 2009; Maeda et al. 2009), vegetation and 
crop phenology monitoring (Zhang et al. 2003; Sakamoto et al. 2005), terrestrial ecosystem 
carbon exchange (Garbulsky et al. 2008; Xiao et al. 2009), ecohydrologic analysis (Hwang 
et al. 2008), crop mapping and crop yield estimation (Doraiswamy et al. 2004; Sakamoto 
et al. 2009), human health issues (Hu 2009), air quality assessment (Gupta and Christopher 
2008), water quality monitoring and assessment (Hu et al. 2004), and species and habitat 
distribution (Vina et al. 2008).

At the global level, various MODIS data products have been used as primary inputs to 
climate models, and as reference data to validate the climate models (Oleson et al. 2003; 
Tian et al. 2004). For example, Tian et al. (2004) compared the land surface albedo from 
the community land model (CLM; Bonan et al. 2002) with MODIS albedo products (Gao 
et al. 2005) under two land-surface scenarios. The first land scenario used older standard 
parameters in the CLM for a “control run.” The second scenario used a range of newly 
derived MODIS land parameters such as VCF, LAI, land cover, and plant functional type as 
the model inputs. Improved CLM results are reported when the MODIS-derived products 
were used as land-surface parameters. Lawrence and Chase (2007) developed new CLM 
land-surface parameters based on MODIS land products and found that the new model 
had substantial improvements in surface albedo estimation, which further improved the 
simulation of precipitation and near-surface air temperature. Although the MODIS data 
algorithms and products show much promise for climate modeling, Dickinson (2008) sug-
gests that one of the major challenges faced by the current remote sensing data are spa-
tial and temporal discontinuities. For example, general land cover on the Earth’s surface 
should be quite stable over time, except for some small random changes caused by human 
or natural disturbances. However, spatial and temporal discontinuities often occur in 
remote sensing–derived land-surface parameters as a result of system limitations or sys-
tematic errors. Future research should address these problems, mainly through algorithm 
improvements.
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The use of MODIS data for applications in forest disturbance, vegetation dynamics, 
urban development, agricultural expansion, and crop mapping and management gener-
ally relies on image-classification and change detection techniques. Instead of using the 
standard MODIS global data, researchers often need to develop their own classification 
and change detection algorithms for local and regional applications. There are three moti-
vations for researchers to develop their own products using MODIS spectral informa-
tion: First, the information desired at local and regional levels is generally more detailed 
than those given in the MODIS global data sets. Second, the spatial resolution of standard 
MODIS global data might be too coarse for local applications. Third, the accuracy of the 
MODIS global data sets varies across regions. It is often possible to improve accuracy using 
an increased number of training data points, ancillary data, and algorithms that fit better 
with local conditions.

The desire to obtain more detailed land-use and cover-type information can be illus-
trated by a number of research projects that focus on crop mapping using MODIS data. 
The standard MODIS land-cover product does not include specific crop types in its map-
ping scheme. Recent studies suggest that MODIS data has sufficient spatial and tempo-
ral resolution to identify major crop types such as corn, soybean, and wheat in intensive 
agricultural regions in the United States (Wardlow, Egbert, and Kastens 2007; Wardlow 
and Egbert 2008; Shao et al. 2010). These studies often rely on the use of MODIS time-
series NDVI or a phenology-based analysis for land-cover and crop identification. Xiao 
et al. (2005) found that the MODIS-NDVI profiles were also useful in characterizing rice 
distributions, mainly due to the unique NDVI profiles associated with rice transplanting, 
growing, and fallow periods. The results from these studies suggest that the unique com-
bination of spatial, spectral, and temporal resolutions associated with MODIS data results 
in more detailed land-use and cover-type classification at regional and local scales.

The 500-m or 1.0-km spatial resolution land-cover products may be too coarse for many 
regional- or local-scale applications. This is particularly evident for areas with complex or 
heterogeneous land-cover patterns at finer spatial scales (Lobell and Asner 2004; Knight 
et al. 2006). Many researchers have employed spectral mixture analysis to unmix MODIS 
pixels, and thus derive proportional land cover at the subpixel level. Chang et al. (2007) esti-
mated proportional corn and soybean cover within MODIS 500-m data. Knight et al. (2006) 
examined the potential of subpixel land-cover estimation using multitemporal MODIS-
NDVI 250-m data. The subpixel land-cover mapping problem was also addressed by the 
MODIS science team. It is actually designed as a part of the MODIS enhanced land-cover 
and land-cover change products. Hansen et al. (2002) employed a regression tree algorithm 
to derive subpixel tree-cover products at 500-m spatial resolution. His subpixel classifica-
tion approach relied on training pixels that contain tree-cover proportions derived from 
high-resolution satellite images. The regression tree was trained to model the relation-
ship between MODIS signals and tree proportions at the subpixel level. The assessment 
of the subpixel tree-cover estimation accuracy was extremely challenging due to the lack 
of reference data sets, especially at regional or global scales. The trend toward subpixel 
analysis is not limited to land-cover classification; researchers are also actively working on 
subpixel cloud detection and subpixel snow-cover mapping (Salomonson and Appel 2004). 
The relationship between sensor spatial resolution and ground surface features continues 
to be a challenging topic for the remote-sensing research community.

MODIS-based change detection has been employed by many researchers to study 
deforestation, urbanization, and agricultural expansion (Lunetta et al. 2006; Zhang et al. 
2008; Gill et al. 2009). Most of the change detection algorithms have been developed for 
the 250-m MODIS data, because many human-introduced land-cover changes occur 
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at fine spatial scales. Lunetta et al. (2006) developed an automated land-cover change 
alarm product in the Albemarle-Pamlico Estuary System region of the United States. 
The approach relied on detecting pixels that have experienced significant changes in the 
annually-integrated NDVI values. A large drop in annually-integrated NDVI may suggest 
possible land-cover changes such as urban development or vegetation clear-cutting. Jin 
and Sader (2005) also used the MODIS 250-m VIs to detect forest harvest disturbance in 
northern Maine. They found that although the MODIS single-day and 16-day composite 
NDVI data showed no significant difference in overall detection accuracies, the single-day 
NDVI actually performed better when disturbed patch sizes were smaller.

Zhang et al. (2003) examined vegetation phenology using a time-series MODIS VI. They 
used a series of piecewise logistic functions to detect the transition dates of vegetation 
activity on an intraannual basis. Sakamoto et al. (2005) analyzed time-series data of EVI. 
Subsequent to data smoothing, the points of maximum, minimal, and inflection were 
identified to examine phenological stages of paddy rice, which were then used to evaluate 
crop productivity and management. Soudani et al. (2008) examined vegetation phenologi-
cal dates for deciduous forest stands using 250-m daily MODIS-NDVI data. Key pheno-
logical dates (e.g., onset of green-up) matched well with in situ observations. The level of 
temporal uncertainty in MODIS-NDVI data is approximately 8 days. This MODIS-derived 
vegetation phenology can be particularly useful for research in vegetation–climate inter-
actions and modeling (Pettorelli et al. 2005).

One potential source of uncertainty in time-series studies is the error of misregistra-
tion. Although the MODIS science team has substantially increased the registration accu-
racy over several reprocessing procedures, the 75–100 m misregistration error is still a 
substantial challenge for performing time-series analysis at the 250-m spatial resolution 
(Tan et al. 2006). The impacts of misregistration in time-series composite data can be 
even larger due to a potential “multiplier effect” and the selection of pixels under differ-
ent sun-sensor geometry angles. Therefore, it is important for users to understand these 
potential error sources. Additional research is needed to further our understanding of the 
cumulative impacts associated with MODIS data quality, sun-sensor geometry informa-
tion, and misregistration errors.

2.5  Summary

The MODIS instrumental characteristics represent a new generation of sensor systems for 
global observation. Global coverage of MODIS data are obtained every 1–2 days. The spec-
tral, spatial, and radiometric resolutions are also substantially improved in MODIS com-
pared to previous global sensor systems such as the AVHRR. In addition to the spectral 
products commonly provided for all remote sensing platforms, the MODIS science team 
devoted tremendous efforts in developing a wide range of MODIS-derived scientific data 
sets that are readily available for the scientific community. The MODIS data represent not 
only a “continuous” remote sensing data record that extends previous sensor systems, but 
also a substantial improvement by integrating the most advanced remote-sensing theory, 
algorithm development, data processing, validation, and distribution.

A majority of the current MODIS algorithms are operational at the global level. Data 
quality has been improving over several data reprocessing cycles. Validation of MODIS 
standard products is an ongoing effort undertaken by both the MODIS science team and 
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independent researchers. Most validation efforts suggest a high level of data quality for the 
MODIS products. This can be attributed to the improvement of spectral, spatial, temporal, 
and radiometric resolutions, as well as improvements made in algorithm development 
by the MODIS science team. The success of MODIS is also evident from the exponential 
growth of applications that use MODIS data products at global, regional, and local levels. 
Future development of MODIS data and algorithms may integrate more feedback from 
continuous data quality validation and applications. These include many potential topics 
such as subpixel analysis, scaling problems, biophysical applications, in situ data integra-
tion (of cloud, ice, water, and land data), and optical and climate modeling.

Acknowledgments

The U.S. Environmental Protection Agency (EPA) partially funded and contributed to the 
development of this chapter. Although this work was reviewed by the EPA and has been 
approved for publication, it may not necessarily reflect official agency policy. Mention of any 
trade names or commercial products does not constitute endorsement or recommendation 
for use.

References

Ackerman, S. et al. 2006. Discriminating clear-sky from cloud with MODIS algorithm theoretical 
basis document (MOD35). Available online at http://modis-atmos.gsfc.nasa.gov/_docs/atbd_
mod06.pdf, 125p.

Ahmad, Z., and R. S. Fraser. 1982. An iterative radiative-transfer code for ocean-atmosphere systems. 
J Atmos Sci 39:656–65.

Aloysius, M. et al. 2009. Validation of MODIS derived aerosol optical depth and an investigation on 
aerosol transport over the South East Arabian Sea during ARMEX-II. Ann Geophys 27:2285–96.

Asrar, G. et al. 1984. Estimating absorbed photosynthetic radiation and leaf-area index from spectral 
reflectance in wheat. Agron J 76:300–6.

Asrar, G., and D. J. Dokken. 1993. EOS Reference Handbook. Greenbelt, MD: NASA.
Asrar, G., R. B. Myneni, and E. T. Kanematsu. 1989. Estimation of plant canopy attributes from spec-

tral reflectance measurements. In Theory and Applications of Optical Remote Sensing, ed. G. Asrar. 
New York: Wiley.

Ault, T. W. et al. 2006. Validation of the MODIS snow product and cloud mask using student and 
NWS cooperative station observations in the Lower Great Lakes Region. Remote Sens Environ 
105:341–53.

Berendes, T. A. et al. 2004. Cloud cover comparisons of the MODIS daytime cloud mask with surface 
instruments at the North Slope of Alaska ARM site. IEEE Trans Geosci Remote Sens 42:2584–93.

Bonan, G. B. et al. 2002. The land surface climatology of the community land model coupled to the 
NCAR community climate model. J Clim 15:3123–49.

Brown, M. E. et al. 2006. Evaluation of the consistency of long-term NDVI time series derived from 
AVHRR, SPOT-Vegetation, SeaWiFS, MODIS, and Landsat ETM+ sensors. IEEE Trans Geosci 
Remote Sens 44:1787–93.



Review of Selected Moderate-Resolution Imaging Spectroradiometer	 51

Carpenter, G. A. et al. 1992. Fuzzy ART: A neural network architecture for incremental supervised 
learning of analog multidimensional maps. IEEE Trans Neural Netw 3:698–713.

Chang, D., and Y. Song. 2009. Comparison of L3JRC and MODIS global burned area products from 
2000 to 2007. J Geophys Res Atmos, 114:D16106, doi:10.1029/2008JD011361.

Chang, J. et al. 2007. Corn and soybean mapping in the United States using MODN time-series data 
sets. Agron J 99:1654–64.

Chu, D. A. et al. 2002. Validation of MODIS aerosol optical depth retrieval over land. Geophys Res Lett 
29:8007, doi:10.1029/2001GL013205.

Csiszar, I. A., J. T. Morisette, and L. Giglio. 2006. Validation of active fire detection from moderate-
resolution satellite sensors: The MODIS example in northern Eurasia. IEEE Trans Geosci Remote 
Sens 44:1757–64.

Curran, P. J. 1980. Multispectral remote sensing of vegetation amount. Prog Phys Geog 4:175–84.
Defries, R. S., and J. R. G. Townshend. 1994. NDVI-derived land-cover classifications at a global-

scale. Int J Remote Sens 15:3567–86.
Dessler, A. E., and P. Yang. 2003. The distribution of tropical thin cirrus clouds inferred from terra 

MODIS data. J Clim 16:1241–7.
Dickinson, R. E. 2008. Applications of terrestrial remote sensing to climate modeling. In Advances in 

land remote sensing: system, modelling, inversion and application, ed. S. Liang, 498. Springer Press.
Doraiswamy, P. C. et al. 2004. Crop condition and yield simulations using Landsat and MODIS. 

Remote Sens Environ 92:548–59.
Dozier, J. 1981. A method for satellite identification of surface-temperature fields of subpixel resolu-

tion. Remote Sens Environ 11:221–9.
Dozier, J. 1989. Spectral signature of Alpine snow cover from the LANDSAT Thematic Mapper. 

Remote Sens Environ 28:9–22.
Ellicott, E. et al. 2009. Estimating biomass consumed from fire using MODIS FRE. Geophys Res Lett 

36:1–5, doi:10.1029/2009GL038581.
Evrendilek, F., and O. Gulbeyaz. 2008. Deriving vegetation dynamics of natural terrestrial ecosys-

tems from MODIS NDVI/EVI data over Turkey. Sensors 8:5270–302.
Freund, Y. 1995. Boosting a weak learning algorithm by majority. Inf Comput 121:256–85.
Friedl, M. A. et al. 2002. Global land cover mapping from MODIS: Algorithms and early results. 

Remote Sens Environ 83:287–302.
Gao, X. et al. 2000. Optical-biophysical relationships of vegetation spectra without background con-

tamination. Remote Sens Environ 74:609–20.
Gao, F. et al. 2003. Detecting vegetation structure using a kernel-based BRDF model. Remote Sens 

Environ 86:198–205.
Gao, F. et al. 2005. MODIS bidirectional reflectance distribution function and albedo Climate 

Modeling Grid products and the variability of albedo for major global vegetation types. 
J Geophys Res Atmos 110:D01104, doi:10.1029/2004JD005190.

Garbulsky, M. F. et al. 2008. Remote estimation of carbon dioxide uptake by a Mediterranean forest. 
Glob Chang Biol 14:2860–7.

Gesell, G. 1989. An algorithm for snow and ice detection using AVHRR data-an extension to the 
APOLLO software package. Int J Remote Sens 10:897–905.

Giglio, L., J. D. Kendall, and C. J. Tucker. 2000. Remote sensing of fires with the TRMM VIRS. Int J 
Remote Sens 21:203–7.

Giglio, L. et al. 2003. An enhanced contextual fire detection algorithm for MODIS. Remote Sens Environ 
87:273–82.

Gill, T. K. et al. 2009. Estimating tree-cover change in Australia: Challenges of using the MODIS veg-
etation index product. Int J Remote Sens 30:1547–65.

Giri, C., Z. L. Zhu, and B. Reed. 2005. A comparative analysis of the Global Land Cover 2000 and 
MODIS land cover data sets. Remote Sens Environ 94:123–32.

Gordon, H. R., J. W. Brown, and R. H. Evans. 1988. Exact Rayleigh scattering calculations for use with 
the NIMBUS-7 Coastal Zone Color Scanner. Appl Opt 27:862–71.



52	 Advances in Environmental Remote Sensing

Gordon, H. R., and K. J. Voss. 1999. MODIS normalized water-leaving radiance, Version 4, MODIS 
Algorithm Theoretical Basis Document (ATBD). Technical Report OD 18, NAS5-31363, 
University of Miami, Coral Gables, FL,93p.

Goward, S. N., C. J. Tucker, and D. G. Dye. 1985. North-American vegetation patterns observed with 
the NOAA-7 advanced very high-resolution radiometer. Vegetatio 64:3–14.

Goward, S. N. et al. 1991. Normalized difference vegetation index measurements from the advanced 
very high-resolution radiometer. Remote Sens Environ 35:257–77.

Guenther, B. et al. 1998. Prelaunch algorithm and data format for the Level 1 calibration products for 
the EOS-AM1 Moderate-Resolution Imaging Spectroradiometer (MODIS). IEEE Trans Geosci 
Remote Sens 36:1142–51.

Gupta, P., and S. A. Christopher. 2008. An evaluation of Terra-MODIS sampling for monthly and 
annual particulate matter air quality assessment over the Southeastern United States. Atmos 
Environ 42:6465–71.

Hall, D. K., and G. A. Riggs. 2007. Accuracy assessment of the MODIS snow products. Hydrol Processes 
21:1534–47.

Hall, D. K., G. A. Riggs, and V. V. Salomonson. 2001. Algorithm Theoretical Basis Document (ATBD) 
for the MODIS snow and sea ice-mapping algorithms. Available at http://modis.gsfc.nasa.gov/
data/atbd/atbd_mod10.pdf, 45p.

Hall, D. K. et al. 2002. MODIS snow-cover products. Remote Sens Environ 83:181–94.
Hansen, M. C. et al. 2002. Towards an operational MODIS continuous field of percent tree cover 

algorithm: Examples using AVHRR and MODIS data. Remote Sens Environ 83:303–19.
Hansen, M. C. et al. 2008. Humid tropical forest clearing from 2000 to 2005 quantified by using multi-

temporal and multiresolution remotely sensed data. Proc Natl Acad Sci U S A 105:9439–44.
Herman, B. M., and S. R. Browning. 1975. Effect of aerosols on earth-atmosphere albedo. J Atmos Sci 

32:1430–45.
Hilker, T. et al. 2009. A new data fusion model for high spatial- and temporal-resolution mapping of 

forest disturbance based on Landsat and MODIS. Remote Sens Environ 113:1613–27.
Holben, B. N. 1986. Characteristics of maximum-value composite images from temporal AVHRR 

data. Int J Remote Sens 7:1417–34.
Hu, Z. Y. 2009. Spatial analysis of MODIS aerosol optical depth, PM2.5, and chronic coronary heart 

disease. Int J Health Geogr 8:27, doi:10.1186/1476-072X-8-27.
Hu, C. M. et al. 2004. Assessment of estuarine water-quality indicators using MODIS medium-

resolution bands: Initial results from Tampa Bay, FL. Remote Sens Environ 93:423–41.
Huete, A., C. Justice, and H. Liu. 1994. Development of vegetation and soil indexes for MODIS-EOS. 

Remote Sens Environ 49:224–34.
Huete, A. et al. 2002. Overview of the radiometric and biophysical performance of the MODIS veg-

etation indices. Remote Sens Environ 83:195–213.
Hwang, T. et al. 2008. Evaluating drought effect on MODIS Gross Primary Production (GPP) with an 

eco-hydrological model in the mountainous forest, East Asia. Glob Chang Biol 14:1037–56.
Iiames J. S. et al. 2008. Validation of an integrated estimation of loblolly pine (Pinus taeda L.) leaf area 

index using two indirect optical methods in the southeastern United States. Southern Journal of 
Applied Forestry 32:101–110.

Jin, S. M., and S. A. Sader. 2005. MODIS time-series imagery for forest disturbance detection and 
quantification of patch size effects. Remote Sens Environ 99:462–70.

Justice, C. O. et al. 1998. The Moderate-Resolution Imaging Spectroradiometer (MODIS): Land remote 
sensing for global change research. IEEE Trans Geosci Remote Sens 36:1228–49.

Kanniah, K. D. et al. 2009. Evaluation of Collections 4 and 5 of the MODIS Gross Primary Productivity 
product and algorithm improvement at a tropical savanna site in northern Australia. Remote 
Sens Environ 113:1808–22.

Kaufman, Y. J. 1989. The atmospheric effect on remote sensing and its correction. In Theory and 
Applications of Optical Remote Sensing, ed. G. Asrar, 336–428. New York: John Wiley & Sons.

Kaufman, Y. J., and D. Tanre. 1996. Strategy for direct and indirect methods for correcting the aerosol 
effect on remote sensing: From AVHRR to EOS-MODIS. Remote Sens Environ 55:65–79.



Review of Selected Moderate-Resolution Imaging Spectroradiometer	 53

Kaufman, Y. J. et al. 1992. Biomass burning airborne and spaceborne experiment in the Amazonas 
(BASE-A). J Geophys Res Atmos 97:14581–99.

Kaufman, Y. J. et al. 1997. The MODIS 2.1-mu m channel-correlation with visible reflectance for use 
in remote sensing of aerosol. IEEE Trans Geosci Remote Sens 35:1286–98.

Kaufman, Y. J. et al. 1998. Potential global fire monitoring from EOS-MODIS. J Geophys Res Atmos 
103:32215–38.

Klein, A. G., and A. C. Barnett. 2003. Validation of daily MODIS snow cover maps of the Upper Rio 
Grande River Basin for the 2000–2001 snow year. Remote Sens Environ 86:162–76.

Knight, J. F. et al. 2006. Regional scale land cover characterization using MODIS-NDVI 250-m multi-
temporal imagery: A phenology-based approach. Giscience Remote Sens 43:1–23.

Knyazikhin, Y. et al. 1998. Synergistic algorithm for estimating vegetation canopy leaf area index and 
fraction of absorbed photosynthetically active radiation from MODIS and MISR data. J Geophys 
Res Atmos 103:32257–75.

Knyazikhin, Y. et al. 1999. MODIS Leaf Area Index (LAI) and Fraction of Photosynthetically Active 
Radiation Absorbed by Vegetation (FPAR) Product (MOD15) algorithm theoretical basis docu-
ment. Available at http://modis.gsfc.nasa.gov/data/atbd/atbd_mod15.pdf, 130p.

Lambin, E. F., and A. H. Strahler. 1994. Change-vector analysis: A tool to detect and categorize land-cover 
change processes using high temporalresolution satellite data. Remote Sens Environ 48:231–44.

Lawrence, P. J., and T. N. Chase. 2007. Representing a new MODIS consistent land  surface  in the 
Community Land Model (CLM 3.0). J Geophys Res Biogeosci 112:G01023, doi:10.1029/2006JG000168.

Li, C. C. et al. 2005. Retrieval, validation, and application of the 1-km aerosol optical depth from 
MODIS measurements over Hong Kong. IEEE Trans Geosci Remote Sens 43:2650–8.

Liang, S. L. et al. 2002. Validating MODIS land surface reflectance and albedo products: Methods and 
preliminary results. Remote Sens Environ 83:149–62.

Liu, H. Q., and A. Huete. 1995. A feedback based modification of the NDVI to minimize canopy back-
ground and atmospheric noise. IEEE Trans Geosci Remote Sens 33:457–65.

Lobell, D. B., and G. P. Asner. 2004. Cropland distributions from temporal unmixing of MODIS data. 
Remote Sens Environ 93:412–22.

Loveland, T. R. et al. 2000. Development of a global land cover characteristics database and IGBP 
DISCover from 1 km AVHRR data. Int J Remote Sens 21:1303–30.

Lunetta, R. S. et al. 2006. Land-cover change detection using multi-temporal MODIS NDVI data. 
Remote Sens Environ 105:142–54.

Maeda, E. E. et al. 2009. Predicting forest fire in the Brazilian Amazon using MODIS imagery and 
artificial neural networks. Int J Appl Earth Obs Geoinf 11:265–72.

Monteith, J. L. 1972. Solar radiation and productivity in tropical ecosystems. J Appl Ecol 9:747–66.
Monteith, J. L. 1977. Climate and efficiency of crop production in Britain. Philos Trans R Soc Lond B 

Biol Sci 281:277–94.
Morisette, J. T. et al. 2005. Validation of the MODIS active fire product over Southern Africa with 

ASTER data. Int J Remote Sens 26:4239–64.
Muchoney, D. et al. 1999. The IGBP DISCover confidence sites and the system for terrestrial 

ecosystem parameterization: Tools for validating global land-cover data. Photogramm Eng 
Remote Sensing 65:1061–7.

Myneni, R. B. et al. 2002. Global products of vegetation leaf area and fraction absorbed PAR from 
year one of MODIS data. Remote Sens Environ 83:214–31.

Nath, A. N., M. V. Rao, and K. H. Rao. 1993. Observed high-temperatures in the sunglint area over 
the North Indian-Ocean. Int J Remote Sens 14:849–53.

Nishihama, M. et al. 1997. MODIS Level 1A Earth Location: Algorithm Theoretical Basis Document 
version 3.0, SDST-092. MODIS Science Data Support Team. Maryland, USA: NASA Goddard 
Spaceflight Centre, 147p.

Oleson, K. W. et al. 2003. Assessment of global climate model land surface albedo using MODIS data. 
Geophys Res Lett 30:1443, doi:10.1029/2002GL016749.

Pettorelli, N. et al. 2005. Using the satellite-derived NDVI to assess ecological responses to environ-
mental change. Trends Ecol Evol 20:503–10.



54	 Advances in Environmental Remote Sensing

Potter, C. S. et al. 1993. Terrestrial ecosystem production-a process model based on global satellite 
and surface data. Global Biogeochem Cycles 7:811–41.

Privette, J. L. et al. 2002. Early spatial and temporal validation of MODIS LAI product in the Southern 
Africa Kalahari. Remote Sens Environ 83:232–43.

Quinlan, J. R. 1993. C4.5: Programs for Machine Learning. San Mateo, CA: Morgan Kaufmann.
Ramanathan, V. 1987. The role of Earth radiation budget studies in climate and general-circulation 

research. J Geophys Res Atmos 92:4075–95.
Ramanathan, V. et al. 2001. Atmosphere-aerosols, climate, and the hydrological cycle. Science 294:2119–24.
Remer, L. A. et al. 2002. Validation of MODIS aerosol retrieval over ocean. Geophys Res Lett 29:8008, 

doi:10.1029/2001GL013204.
Robinson, D. A., K. F. Dewey, and R. R. Heim. 1993. Global snow cover monitoring-an update. Bull 

Am Meteorol Soc 74:1689–96.
Rossow, W. B., and L. C. Garder. 1993. Cloud detection using satellite measurements of infrared and 

visible radiances for ISCCP. J Clim 6:2341–69.
Roy, D. P., P. E. Lewis, and C. O. Justice. 2002. Burned area mapping using multi-temporal moderate 

spatial resolution data-a bi-directional reflectance model-based expectation approach. Remote 
Sens Environ 83:263–86.

Running, S. W. et al. 1994. Terrestrial remote-sensing science and algorithms planned for EOS MODIS. 
Int J Remote Sens 15:3587–620.

Running, S. W. et al. 1999. MODIS daily photosynthesis (PSN) and annual net primary production 
(NPP) product (MOD17): Algorithm theoretical basis documents. Available at http://
www.ntsg.umt.edu/modis/ATBD/ATBD_MOD17_v21.pdf, 59p.

Russell, G., P. G. Jarvis, and J. L. Monteith. 1989. Absorption of radiation by canopies and stand 
growth. In Plant Canopies: Their Growth, Form and Function, ed. G. Russell, B. Marshall and 
P. G. Jarvis, 21–39. Cambridge, UK: Cambridge University Press.

Sakamoto, T. et al. 2005. A crop phenology detection method using time-series MODIS data. Remote 
Sens Environ 96:366–74.

Sakamoto, T. et al. 2009. Agro-ecological interpretation of rice cropping systems in flood-prone areas 
using MODIS imagery. Photogramm Eng Remote Sensing 75:413–24.

Salomonson, V. V., and I. Appel. 2004. Estimating fractional snow cover from MODIS using the 
normalized difference snow index. Remote Sens Environ 89:351–60.

Sellers, P. J. et al. 1997. Modeling the exchanges of energy, water, and carbon between continents and 
the atmosphere. Science 275:502–9.

Shao, Y. et al. 2010. Mapping cropland and major crop types across the Great Lakes Basin using 
MODIS-NDVI data. Photogramm Eng Remote Sensing 75:73–84.

Singh, A. 1989. Digital change detection techniques using remotely-sensed data. Int J Remote Sens 
10:989–1003.

Soudani, K. et al. 2008. Evaluation of the onset of green-up in temperate deciduous broadleaf forests 
derived from Moderate-Resolution Imaging Spectroradiometer (MODIS) data. Remote Sens 
Environ 112:2643–55.

Strahler, A. H. et al. 1996. MODIS BRDF/albedo product: Algorithm theoretical basis documentation. 
Version 4.0. NASA/EOS ATBD, 94p.

Tan, B. et al. 2006. The impact of gridding artifacts on the local spatial properties of MODIS data: 
Implications for validation, compositing, and band-to-band registration across resolutions. 
Remote Sens Environ 105:98–114.

Tanre, D., M. Herman, and P. Y. Deschamps. 1981. Influence of the background contribution upon 
space measurements of ground reflectance. Applied Optics 20(20):3676–84.

Tanre, D., B. N. Holben, and Y. J. Kaufman. 1992. Atmospheric correction algorithm for NOAA-
AVHRR products - theory and application. IEEE Trans Geosci Remote Sens 30:231–48.

Tian, Y. et al. 2004. Land boundary conditions from MODIS data and consequences for the albedo 
of a climate model. Geophys Res Lett 31:L05504, doi:10.1029/2003GL019104.

Townshend, J. R. G., and C. O. Justice. 2002. Towards operational monitoring of terrestrial systems by 
moderate-resolution remote sensing. Remote Sens Environ 83:351–9.



Review of Selected Moderate-Resolution Imaging Spectroradiometer	 55

Tucker, C. J. 1979. Red and photographic infrared linear combinations for monitoring vegetation. 
Remote Sens Environ 8:127–50.

Tucker, C. J. et al. 1981. Remote-sensing of total dry-matter accumulation in winter-wheat. Remote 
Sens Environ 11:171–89.

Tucker, C. J., J. R. G. Townshend, and T. E. Goff. 1985. African land-cover classification using satellite 
data. Science 227:369–75.

Turner, D. P. et al. 2006. Evaluation of MODIS NPP and GPP products across multiple biomes. Remote 
Sens Environ 102:282–92.

Vermote, E. F., and A. Vermeulen. 1999. MODIS Algorithm Technical Background Document, atmospheric 
correction algorithm: Spectral reflectances (MOD09). NASA contract NAS5-96062 University of 
Maryland, USA.

Vermote, E. F. et al. 1997. Second simulation of the satellite signal in the solar spectrum, 6S: An over-
view. IEEE Trans Geosci Remote Sens 35:675–86.

Vina, A. et al. 2008. Evaluating MODIS data for mapping wildlife habitat distribution. Remote Sens 
Environ 112:2160–9.

Walthall, C. L. et al. 1985. Simple equation to approximate the bidirectional reflectance from vegeta-
tive canopies and bare soil surfaces. Appl Opt 24:383–7.

Wang, M. H., and H. R. Gordon. 1994. Radiance reflected from the ocean-atmosphere system-
synthesis from individual components of the aerosol-size distribution. Appl Opt 33:7088–95.

Wang, Y. J. et al. 2004. Evaluation of the MODIS LAI algorithm at a coniferous forest site in Finland. 
Remote Sens Environ 91:114–27.

Wardlow, B. D., and S. L. Egbert. 2008. Large-area crop mapping using time-series MODIS 250-m 
NDVI data: An assessment for the U.S. Central Great Plains. Remote Sens Environ 112:1096–116.

Wardlow, B. D., S. L. Egbert, and J. H. Kastens. 2007. Analysis of time-series MODIS 250-m veg-
etation index data for crop classification in the U.S. Central Great Plains. Remote Sens Environ 
108:290–310.

Xiao, X. M. et al. 2005. Mapping paddy rice agriculture in southern China using multi-temporal 
MODIS images. Remote Sens Environ 95:480–92.

Xiao, Z. Q. et al. 2009. A temporally integrated inversion method for estimating leaf area index from 
MODIS data. IEEE Trans Geosci Remote Sens 47:2536–45.

Yang, W. Z. et al. 2006. MODIS leaf area index products: From validation to algorithm improvement. 
IEEE Trans Geosci Remote Sens 44:1885–98.

Zhan, X. et al. 2002. Detection of land cover changes using MODIS 250-m data. Remote Sens Environ 
83:336–50.

Zhang, X. Y. et al. 2003. Monitoring vegetation phenology using MODIS. Remote Sens Environ 
84:471–5.

Zhang, X. et al. 2008. Land cover classification of the North China Plain using MODIS_EVI time 
series. ISPRS J Photogramm Remote Sens 63:476–84.





57

3
Lidar Remote Sensing

Sorin C. Popescu

3.1  Foundations of Laser Theory

Laser ranging systems are commonly referred to as “lidar” systems. Lidar is an acronym 
describing light detection and ranging systems, which are sometimes also referred to as 
“ladar,” either from laser detection and ranging or from laser radar. A universally accepted 
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terminology does not exist, but most commonly we refer to these systems as lidar systems, 
although the spelling of lidar may differ—lidar, LiDAR, or LIDAR.

Lasers have been one of the greatest scientific developments of the twentieth century. 
After five decades of achievements in this field, lasers are still a symbol of high technology. 
The word laser is an acronym that summarizes the nature of laser light—light amplifica-
tion by the stimulated emission of radiation. Therefore, a laser is a special type of light 
source with certain characteristics related to its wavelength, output power, duration of 
emission, beam divergence, coherence, and the systems and materials that generate it.

Albert Einstein developed the foundation of stimulated emission of radiation and 
published his findings in 1916 and 1917. In essence, Einstein demonstrated that atoms can 
absorb and emit radiation spontaneously and that atoms in certain excited states can be 
induced to emit radiation. For about 40 years after Einstein’s theoretical work on stimulated 
emission was published, the concept was used only in theoretical discussions and had lit-
tle relevance in experimental work. The first successful production of stimulated emission 
was achieved by Charles H. Townes between 1951 and 1953, who was then at Columbia 
University; he built a device called a “maser”—microwave amplification by the stimulated 
emission of radiation. This device produced a coherent beam of microwaves. Later, in 1964, 
Townes shared the Nobel Prize in physics with two other maser pioneers, Nikolai Basov and 
Aleksander Prokhorov. A collaborator of Townes, Arthur Schawlow, also received the Nobel 
Prize in physics in 1981 for research done on lasers. However, the winner of the laser inven-
tion race, who is accredited with the development of the first ruby laser in 1960, is Theodore 
H. Maiman, with what was at that time the Hughes Aircraft Corporation research laboratory 
(Maiman 1960). The ruby laser is a good example of what we expect a laser to be. The wave-
length of the ruby laser is toward the end of the red region of the electromagnetic spectrum, 
at 694 nm, and it emits coherent waves in short pulses in a concentrated beam of light.

There are many types of lasers. Depending on how they operate, laser sources can emit 
light in a pulsed mode or as steady beams; the latter are also known as “continuous-wave” 
(CW) lasers. Laser pulses are characterized by pulse duration and repetition rates. The pulse 
duration can range from milliseconds to femtoseconds, that is, from 10−3 to 10−15 seconds 
(Hecht 1992, p. 13). Because the human eye’s response is much slower than the laser pulse 
frequency, some lasers that may look continuous to the eye are actually pulsed lasers.

Lasers can also be differentiated based on power output, which spans a wide range 
from milliwatts—thousandths of a watt—to kilowatts. Nevertheless, lasers cannot adjust 
their power output on demand, but they may be able to adjust it over a limited range. 
Power output is a characteristic of the materials that produce lasers. Moreover, each type 
of laser-producing material emits laser light with a characteristic wavelength or a range of 
wavelengths. Table 3.1 presents a list of the most common laser types based on materials 

Table 3.1

Most Common Laser Types

Laser Material Type Laser Light Wavelength (nm)

Organic dye dissolved in solvent 300–1000 (tunable laser)
Rare gas ions (e.g., argon ion) 450–530
Helium neon 543 (red), 632.8 (green), 1150 (near-infrared)
Semiconductor 670–680 and 750–900
Nd: YAG 1064 (near-infrared)
Hydrogen fluoride 2600–3000
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producing laser light and their wavelengths, in nanometers, although the actual list is 
much longer with lasers ranging from the ultraviolet region to the microwave region.

3.1.1  How Is Laser Light Generated?

A laser is a light source with unique properties. As the expansion of the acronym suggests, 
a laser amplifies light signals that stimulate emission of radiation. The stimulated emis-
sion occurs in an amplifying medium contained in an optical resonator or cavity, which 
holds the amplified light and redirects it through the medium for repeated amplifications. 
A set of two mirrors feed the light back into the amplifier medium. One cavity mirror 
reflects essentially all of the light back into the amplifying medium, whereas the other 
mirror transmits a constant fraction of the light, for example, 10%, which becomes the laser 
beam, and reflects the rest back into the medium.

3.2  Laser Light Properties

Laser light has important properties that differentiate it from white or ordinary light, 
most notably coherence, wavelength and spectral purity, directionality, beam divergence, 
power modulation, and polarization. Probably the best known property of laser light is 
coherence.

3.2.1  Coherence of Laser Light

Figure 3.1 illustrates the concept of coherence, when light waves are in phase with one 
another, which means their peaks are lined up at the same point in time. To have coherent 
waves, light waves must start with the same phase at the same position, and they also need 
to have the same wavelength, that is, to be spectrally pure. Perfect coherence is difficult to 
achieve, and not all types of laser light are equally coherent. Coherence can be character-
ized as spatial or temporal. Laser light waves may encounter different optical path condi-
tions, which make them drift out of phase. As such, temporal coherence is defined by how 
long the laser light waves remain in phase as they travel. Spatial coherence measures the 
area over which light waves are coherent, and it is the essential prerequisite that gives a 
strong directionality to laser beams. Probably the most fundamental difference between 
laser light and radiation from other light sources, such as ordinary light, is that laser light 
has the potential to generate beams with very high temporal and spatial coherence.

Coherent light waves in phase with each other

Figure 3.1
Coherent electromagnetic waves.
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3.2.2 L aser Wavelength and Spectral Purity

Laser light is commonly considered monochromatic, meaning that all photons have nearly 
the same wavelength. Although lasers normally emit a range of wavelengths, the band-
width of even the broadest-band laser is much narrower than that of ordinary light.

3.2.3 L aser Beam Divergence

Laser light can form tightly focused beams that travel long distances without spreading 
out like ordinary light. The most common definition of beam divergence is based on the 
spreading angle measured in milliradians (mrad). The divergence of most CW lasers is 
around 1 mrad, whereas for pulsed lasers it may be slightly larger. For reference purposes, 
a full circle, or 360°, equals 2π radians, 1 radian equals approximately 57.30°, and 1 mrad 
corresponds to 0.057°. Laser beam divergence is usually reported for the far field, at large 
distances from the laser, and the divergence angle is normally measured from the center 
of the beam to the edge (Hecht 1992). Most commonly, beam divergence is considered the 
angle between the beam sides (Baltsavias 1999). No matter how divergence is measured, 
calculating the size of the beam or the laser footprint diameter is a trigonometric problem 
(see Equation 3.1). Where do we consider the edge of the beam? Laser beam propagation 
can be approximated by assuming that the beam is a Gaussian-type beam, which means 
that the intensity profile follows a Gaussian function, with the transverse irradiance pro-
file shown in Figure 3.2. This profile shows that the beam intensity gradually drops off 
toward the sides of the beam, and the beam edge is considered where intensity has fallen 
to 1/e2 or 13.5% of its peak, or maximum axial value (Hecht 1992).

Figure 3.3a shows an exaggerated divergence of a laser beam in a simplified representation 
that ignores the near range of the laser beam where the light rays remain parallel, some-
times called the “Rayleigh range.”

	 D H= 2 2tan( / )θ 	 (3.1)

where
D is the beam diameter (diameter of illuminated area or footprint), H is the distance 

from the laser to the illuminated spot (flying height for airborne laser scanning), and θ is 
the divergence angle.

For a small divergence angle and large distances occurring in airborne laser applications, 
the angle in radians offers a good enough approximation of its tangent function; therefore, 
a commonly used formula is

	 D H= θ 	 (3.2)

For example, for a beam with a divergence of 1 mrad and a distance of 1000 m, the foot-
print diameter becomes 1 m. With airborne laser scanning, the illuminated footprint size 
and shape is also affected by the scanning angle and the slope of the terrain. With airborne 
laser scanning, Equation 3.2 can be used for calculating footprint diameter of laser beams 
at nadir, but for laser beams at a certain scan angle on a flat terrain, Equation 3.3 provides 
a more appropriate calculation using trigonometry with triangles ABC and ABD shown 
in Figure 3.3b:

	 D H= +



 − −











tan tanθ θ θ θ
scan scan2 2  	 (3.3)
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A formula that is easier to use can be derived from Equation 3.3 by considering the laser 
path distance equal to H/cos(θscan). Projecting the footprint on the flat terrain gives the fol-
lowing formula:

	 D
H=

cos2θ
θ

scan

	 (3.4)

For the example given for Equation 3.4, for a beam with a divergence of 1 mrad and a flying 
height of 1000 m, the footprint diameter at a scanning angle of 20° from nadir becomes 
1.13 m. For inclined terrain, the footprint size calculation becomes more complicated, with 
details and formulas given by Baltsavias (1999).

3.3  Laser Ranging

Laser range finding uses the same principles as radar distance measurements, with the 
major difference being the use of shorter wavelengths of the electromagnetic spectrum. 
The basic principle of laser ranging is the measurement of the time it takes for a laser 
signal to travel from the transmitter to the reflecting surface of a target and back to the 
receiver, although two major physical effects are used: For pulsed lasers, the traveling time 
of light pulse is measured and converted to a distance estimate, whereas for CW lasers, 
ranging is obtained by measuring the phase difference between the transmitted and the 
received signals. These range-finding techniques belong to time-of-flight (TOF) methods.

Soon after lasers were invented, precise distance measurements were obtained through 
laser range finding. In the late 1960s, the National Aeronautics and Space Administration 
(NASA) used lasers to measure the distance from the Earth to reflectors installed on the 
Moon by Apollo missions. Armed forces use lasers to measure distances to targets on the 
battlefield, whereas a plethora of handheld laser range finders are used in hunting, golf, 
archery, and other sports. Terrestrial field surveyors and engineers also use range find-
ers, more recently coupled with theodolites in total stations. With respect to laser ranging 
for remote-sensing purposes, laser sensors are installed on air- or spaceborne platforms, 
which most commonly employ pulsed laser systems with scanning technology. Ground-
based laser sensors are installed on tripods and are capable of scanning targets on the 
ground from various angles.

Most laser ranging applications use pulsed lasers, usually solid-state lasers with high 
power outputs. A common laser type is the neodymium-doped yttrium aluminum garnet 
(Nd: YAG) laser, which emits light with a wavelength of 1064 nm, in the infrared portion 
of the electromagnetic spectrum, with pulse widths around 10 nanoseconds and several 
megawatts of power (Wehr and Lohr 1999).

For range measurements with pulsed lasers, the laser system measures the traveling 
time between the emitted pulse and the received echo, and the distance between the rang-
ing unit and the target surface is calculated by

	 D c
t=
2

	 (3.5)

where c is the speed of light and t is the pulse travel time; t is divided by two since the 
pulse travels twice the distance to the target, that is, from transmitter to target and from 
target to receiver.
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Travel time is measured by a time counter relative to the leading edge of the pulse 
(Figure 3.4). The leading edge is not well defined, but generally it is considered as a frac-
tion of the signal peak to avoid issues caused by various pulse amplitudes (Baltsavias 
1999).

For accurate range measurements, the laser pulse should be short. Equation 3.6 relates 
range resolution (ΔD) and time resolution (Δt):

	 ∆ = ∆
D c

t
2

	 (3.6)

Equation 3.6 shows that the range resolution is determined by the resolution of the time 
interval measurement. As such, for a 10-nanosecond pulse, the range resolution is 3 × 105 
km/s × 10−8 s/2 = 1.5 m. Equations 3.5 and 3.6 show that range measurement accuracy does 
not depend on the distance. The term “resolution” should not be confused with range 
measurement accuracy. Range resolution refers to the smallest change in the distance that 
can be resolved with the TOF laser. Range accuracy refers to the largest total error in mea-
suring distances and is usually in the order of centimeters for airborne laser range finders, 
although it differs in the vertical and horizontal axes.

For CW lasers, ranging is obtained by modulating the laser intensity with a sinusoidal 
signal. The traveling time is proportional to the phase difference between the transmit-
ted and the received signals, and the distance information is extracted from the received 
signal by comparing its modulation phase with that of the emitted signal. Due to laser 
complexity in achieving a similar ranging performance to pulsed lasers, CW lasers are 
rarely used.
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Figure 3.4
Variation of beam power level with time.
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3.4  Laser Ranging Power Balance

Airborne and satellite laser range measurements are influenced by atmospheric conditions, 
laser power, and the reflectivity of the target. The power of the laser echo received at the 
sensor is directly proportional to target reflectivity. Table 3.2 shows the typical reflectivity 
of various materials for a laser wavelength of 900 nm. Range and reflectivity are directly 
related, or more specifically, the range is proportional to the square root of reflectivity.

	 R ∝ ρ 	 (3.7)

Equation 3.7 can be used to determine a correction factor for maximum laser range depend-
ing on the reflectivity of the target, as shown in Figure 3.5. As the figure shows, targets 
with a reflectivity of 40% restrict maximum range to about 70% of the maximum range for 
a target with 80% reflectivity. When flying an airborne laser scanning system over forests 
with mixed species, coniferous and deciduous, it is important to be aware of the maximum 
range limitations for the two species types. For coniferous trees with a typical reflectivity 
of about 30%, the maximum range is approximately 60% of that for deciduous trees, which 
have a typical reflectivity of about 60%.

The reflectivity of a target also affects the minimum size of a detectable object. For 
example, if we ignore the influence of other factors, such as atmospheric conditions, target 
shape, or terrain slope, a laser system that is capable of measuring the distance to a target 
with a reflectivity of 30% should be capable of detecting a target with a reflectivity of 60% 
that is half the size of the less-reflective target.

Table 3.2

Reflectivity Values for Various Diffuse Reflecting 
Materials and Surfaces, Natural and Human-Made, 
for a Laser Wavelength of 900 nm

Material Reflectivity

White paper Up to 100%
Dimension lumber (pine, clean, dry) 94%
Snow 80%–90%
White masonry 85%
Limestone, clay Up to 75%
Deciduous trees Typically 60%
Coniferous trees Typically 30%
Carbonate sand (dry) 57%
Carbonate sand (wet) 41%
Beach sands, bare areas in dessert Typically 50%
Rough wood pallet (clean) 25%
Concrete, smooth 24%
Asphalt with pebbles 17%
Lava 8%

Source:	 Adapted from Riegl, U. S. A. (n.d.). http://www
	 .rieglusa.com (retrieved January 16, 2008).
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3.5  Enabling Technologies

In the late 1960s, NASA used lasers to measure the distance from the Earth to reflectors 
installed on the Moon by Apollo missions. About 3 decades later, since the mid-1990s, laser 
ranging using airborne and terrestrial scanners became accepted as a proven technology 
with multiple applications for the surveying and mapping communities. There are no major 
differences between the optical and mechanical principles of airborne, spaceborne, and ter-
restrial lidar scanning systems, other than those in the mounting platforms and the com-
plexity of additional technologies for determining sensor position and orientation. These 
additional or enabling technologies, along with advances in laser sensor technology, have 
defined the developmental stages of scientific and commercial laser scanning systems.

3.5.1 G lobal Positioning System Unit

Global positioning system (GPS) units have become essential components of navigation 
systems and surveying tools. This system is a key component of “direct georeferencing,” 
which consists of the direct recording of the position and orientation parameters of a 
remote sensing instrument used for registering the acquired data to a geographic coor-
dinates system. Mapping applications of direct georeferencing include aerial photogram-
metry and airborne lidar.

3.5.2  Inertial Measurement Unit

The inertial measurement unit (IMU) is sometimes referred to as a part of the inertial 
navigation system (INS), which integrates other components in addition to the IMU, such 
as a navigation processor to handle navigational computations, a GPS, an electronic com-
pass, or a barometric system. The IMUs detect motion with respect to a hypothetical sta-
tionary reference system and normally contain three gyroscopes and three accelerometers, 
all orthogonal, measuring angular velocities and linear accelerations, respectively. By pro-
cessing the signals from these devices, normally recorded at a frequency of 50–1000 Hz, 
it is possible to track the position and orientation of the device, the current rate of accelera-
tion, and changes in rotational attributes, including pitch, roll, and yaw.
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Correction factor for maximum laser range based on target reflectivity (normalized for 80% reflectivity).



66	 Advances in Environmental Remote Sensing

In an airborne lidar application, the IMU is used to measure the orientation of the laser 
beam at the exact time of a range measurement. Most commonly, the IMU is mounted rig-
idly to the lidar sensor housing in order to provide orientation parameters with respect to 
the laser reference point, which can be the laser scanning mirror or the fiber optic bundle, 
depending on the sensor scanning principle. A calibration process known as “boresight 
calibration” corrects for the mounting misalignment between the IMU and the lidar refer-
ence frame. Typically, the boresight calibration of a sensor requires airborne calibration 
using a reference surface test to correct for pitch, roll, and heading offsets. 

The GPS-aided INS provides direct measurement of the position and orientation 
parameters and is also referred to as a direct georeferencing system. When used with a 
remote sensor, such as a lidar sensor or a digital camera, direct georeferencing provides all 
the information needed to register the acquired data in geographic coordinates. Since the 
mid-1990s, direct georeferencing has become an alternative to aerial triangulation by either 
totally replacing it or complementing it. Aerial triangulation is used to solve for aerial pho-
tography camera exterior orientation parameters, which convey the information necessary 
to tie image measurements to ground coordinates for planimetric and topographic map 
compilation, orthophoto production, and digital terrain model editing. Direct georeferenc-
ing systems are integral components of airborne remote sensing systems, including lidar, 
interferometric synthetic aperture radar, and digital cameras.

3.6  Components of a Lidar System

A lidar system may include different components depending on the mounting platform. 
These can be air- or spaceborne components or ground-based components. Ground-based 
lidar systems, also referred to as “terrestrial” lidar or laser scanning systems, can be 
mounted on mobile and fixed, but portable, platforms. Air- or spaceborne instruments 
can fly on rotary or fixed-wing platforms and satellites, respectively. The basic compo-
nents of an airborne lidar system are shown in Figure 3.6. For airborne systems, the three 
main components include (1) a laser ranging unit, (2) an orientation unit, most commonly 
referred to as the IMU and (3) the GPS unit. Computer hardware and software integrate 
data streams coming from all components and provide data storage and a variety of post-
acquisition registration, processing, and export functions. Terrestrial lidar systems vary in 
complexity and may include the same components as an airborne system, especially for 
mobile units mounted on vehicles or boats, or may have a simpler construction for fixed 
units mounted on a tripod. The latter types may include only the laser ranging unit, a 
computer, data storage components, and an optional digital camera.

The IMU describes the orientation or the attitude of the unit in terms of roll, pitch, and 
yaw (Figure 3.7) and serves the characterization of flight dynamics and the derivation of 
accurate ground coordinates for each laser shot. The GPS unit consists of an onboard dif-
ferential GPS receiver, which is commonly assisted by one or more ground stations for 
improving the accuracy of laser footprint coordinates after post-processing.

By knowing the location of the sensor platform and the sensor in three-dimensional (3D) 
coordinates (GPS-provided data), the trajectory of the laser beam provided by the orienta-
tion of the sensor (IMU data), the angle of the laser pulse relative to the sensor, recorded 
by the laser scanning device, and the range to targets on the Earth’s surface as measured 
by the laser ranging unit, we can compute accurate 3D coordinates for each laser footprint 



Lidar Remote Sensing	 67

on the ground. All these data sources that allow the calculation of the 3D coordinates in 
a post-processing mode are integrated by computer hardware and software and linked 
together using a time stamp.

3.6.1 L aser Ranging Unit

The principles of laser ranging are described in Section 3.3. The pulse ranging measurement 
principle is employed by most airborne, satellite, and terrestrial systems, and they com-
monly include a laser transmitter and a receiver, each with their associated optics. 
The laser ranging unit may be coupled with an optical and mechanical scanning unit that 
deflects the laser beams across their flight path to collect a swath of ranging data.

Laser ranging
unit

GPS

Computer

Data
storage

IMU

Laser pulses

Figure 3.6
Basic components of an airborne lidar system. GPS = global positioning system; IMU = inertial measurement unit.

Yaw

Pitch

Roll

Figure 3.7
Orientation unit (inertial measurement unit) detects changes in roll, pitch, and yaw.
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The transmitter part of the laser ranging unit expands the laser beam to reduce the 
area density of the laser-pulse-transmitted energy and controls the divergence of the laser 
beam (Fujii and Fukuchi 2005). The receiver part works as a photodiode by converting the 
backscattered laser light intensity into electrical impulses. The received laser power of the 
backscattered echo is only a small fraction of the transmitted power.

3.7  Types of Laser Sensors

Different lidar sensors may have similar components, but the recorded data may be of 
distinct formats. This section categorizes lidar sensors based on their ability to record dis-
crete returns or waveform data and presents the three different platforms used for acquir-
ing lidar data, terrestrial, airborne, and satellite-based.

3.7.1  Discrete-Return Lidar Sensors

The design of the receiver part of the laser ranging unit is particularly important as it may 
determine the type of lidar data the receiver records—discrete return measurements or 
the full waveform. In the first case, a laser pulse may provide multiple returns depend-
ing on the type of surface it intercepts. When the laser beam hits porous objects, such as 
the forest canopy, it may intercept foliage or tree branches over part of the laser footprint, 
which may backscatter enough energy to trigger the recording of the travel time by the 
laser receiver (Figure 3.8). After hitting the top of the canopy, part of the laser beam may 
continue its travel through openings in the canopy until it again hits another layer of foli-
age or branches, or possibly the ground, which may generate secondary returns of the 
same pulse. Depending on the complexity of the forest canopy and the settings of the laser 
receiver, a laser pulse may generate up to four or five discrete returns, sometimes with less 
dependence on the limitations imposed by the receiver.

Ideally, a laser pulse hitting the forest canopy would provide a return from the top of 
the canopy—the first return in Figure 3.8—and it would still be able to penetrate to the 
ground and record a last return from the forest floor—the third return in Figure 3.8. Such 
measurements allow us to accurately characterize vegetation height and the terrain eleva-
tion under the canopy. Some of the laser pulses intercepting the canopy may provide only 
one return when foliage, branches, or tree trunks block the entire footprint or when these 
pulses hit the bare ground without intercepting tall layers of vegetation. Similarly, when 
the laser footprint covers completely nonporous objects, such as roofs, sides of buildings, 
or other human-made structures, the laser pulse will provide only one return. Therefore, 
discrete-returns lidar data include first returns, intermediate returns, and last returns.

Most discrete-returns lidar sensors use constant fraction discriminators (CFDs) to mini-
mize the “range walk” or systematic variation in range with signal level. Backscattered 
laser signals have varying amplitudes depending on the initial pulse energy, size of the 
intercepted object, and target reflectance characteristics. In order to handle such varia-
tions, most laser receivers use a constant amplitude ratio to identify a laser return and 
record its travel time and power, denoted as amplitude or intensity. The CFD is used to 
define the leading edge of the pulse (Figure 3.9), which, as explained in Section 3.3, is not 
well defined but generally considered to be a fraction of the signal peak to avoid issues 
caused by various pulse amplitudes (Baltsavias 1999).
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The CFD-based receivers need to reset their detectors to prepare for the next pulse or the 
next echo returned from the same pulse; therefore, there is a time separation between returns 
recorded for the same echo. Although the reset time, sometimes referred to as “nominal 
dead time,” varies with sensors and manufacturers, it is most commonly around 8–10 nano-
seconds. This reset time translates to a range separation of 1.2–1.5 m between the recorded 
returns of the same pulse, when considering to- and from-target travel times.

The reset time and the minimum range separation between multiple returns have 
implications for detecting ground covered by vegetation. When the ground is covered 
by tall grasses or shrubs with heights less than 1.2–1.5 m, the laser beam may provide a 
return from the top of the vegetation cover and may penetrate to the ground and gener-
ate a secondary ground return. This ground return may not be detected due to the fact 
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Laser beam interaction with vegetation and variation of the backscattered laser signal.
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that no returns are recorded by the receiver within the reset time. This situation does not 
mean that characterizing ground elevation is always biased toward higher elevation val-
ues when there is a low layer of vegetation. A significant number of laser pulses will pen-
etrate to the ground, and laser point classification algorithms will identify lower pulses 
that most likely hit the ground and use them to generate digital elevation models.

Some airborne lidar sensors manufactured during the mid-1990s (e.g., Optech ALTM 
1020, Optech, Inc., Vaughan, Ontario, Canada) could be toggled to record either the 
first or the last return, and two flights over the same area were necessary to get the 
bare ground terrain model and the top of the canopy surface, when flown over forest 
vegetation. Surveys in the U.S. Pacific Northwest carried out using the Optech ALTM 
1020 scanning system indicated a minimum 2030% penetration of coniferous canopies 
(Flood and Gutelius 1997). In the same region, with conifer-dominated stands and 
dense overstory, Means (2000) observed a very low penetration to the ground of only 
1–5%, for a small-footprint lidar. Kraus and Pfeifer (1998) estimated a penetration rate 
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of less than 25% for their lidar study in the Vienna Woods (Wienerwald), in Austria, 
using an Optech ALTM 1020 lidar system.

A study by Popescu, Wynne, and Nelson (2002) conducted in Virginia over forests of 
varying age classes including deciduous, coniferous, and mixed stands estimated the pen-
etration rate for the last return laser hits, or first return when there was only one return, 
to be approximately 4%. The laser point density on the ground, for one flight line, was 
0.47 points per square meter for the first return, and the last return when there was only 
one return; 0.20 points per square meter for the second return, less than half compared to 
the first return point density; 0.02 points per square meter for the third return; and 0.0001 
points per square meter for the fourth return. None of the pulses were able to produce a 
fifth return for the given vegetation conditions, although the sensor, an AeroScan system 
that later became Leica’s ALS40 sensor (Leica Geosystems, Inc., Heerbrugg, Switzerland), 
was configured to receive up to five returns.

Since the early 1990s, discrete-returns lidar sensors have experienced major technologi-
cal advances, reflected mainly in an increased pulse frequency, the recording of multiple 
returns for each pulse, the recording of intensity information, and the positional accuracy. 
The latest generation of airborne laser scanners has added waveform-recording capability 
and the ability to handle multiple pulses in the air. Systems that are able to track echoes 
from multiple pulses in the air have the potential to significantly increase the productivity 
of airborne lidar data acquisition systems as these systems, do not depend on receiving the 
target reflection before starting the next range measurement cycle. More pulses providing 
range measurements will enable lidar data users to fly a notably wider swath while main-
taining the same point densities as conventional systems, or acquire significantly increased 
point densities for the same swath widths, leading to appreciably reduced flight costs in the 
end. Due to such innovative technological achievements developed by commercial laser 
systems manufacturers and the increased number of service providers, airborne lidar is 
used routinely for topographic mapping, vegetation assessment and forest inventory, 3D 
urban modeling, wireless communications planning, corridor mapping of power lines and 
oil pipes, and transportation planning, to mention just a few of the applications. Ground-
based laser scanners have been used mainly for surveying and industrial 3D mapping.

Despite the advances in scanning lidar technology, a number of research groups are 
using airborne lidar profiling systems to extract elevation profiles along flight lines, mainly 
due to the lower cost of the sensor and the reduced data volume acquired during flight 
time. Such a system has been developed at NASA for forest research, called a “portable 
airborne laser system” (PALS), by Nelson, Short, and Valenti (2003). This system is in fact 
based on off-the-shelf components, including a Riegl laser range finder, a Garmin GPS 
receiver, and a video camera.

3.7.2  Waveform Lidar Systems

Lidar sensors able to record the entire backscatter amplitude of the laser pulse are referred 
to as waveform lidar systems. Such sensors have been used from both airborne and satel-
lite platforms.

3.7.2.1  Airborne Lidar Systems

Whereas discrete-returns lidar systems record, for each laser pulse, the time of travel and 
the intensity of every return, waveform lidar systems record the time-varying intensity of 
the returned energy from each laser pulse and therefore provide information on the height 
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distribution of the returned intensity (Figure 3.9). The shape of the returned intensity offers 
a direct description of the vertical distribution of surfaces illuminated by the laser pulse 
(Harding et al. 2001; Dubayah et al. 2000) and is useful in characterizing complex targets, 
such as forest canopy. The returned energy is digitized at equal time intervals, such as for 
every nanosecond.

Terrestrial applications using waveform lidar have been documented from the early 
1980s. Aldred and Bonner (1985) were the first to describe an application of waveform lidar 
to study forest canopies in Canada. For their study, they used a laser system originally 
developed for characterizing bathymetric water depth and measured forest biophysical 
properties, such as tree height, canopy cover, and type of tree species—hardwoods, coni-
fers, or mixed. They also studied the effect of different laser beam footprint sizes on stand-
height estimates and found that the footprint diameter was not critical when estimating 
stand height. An interesting investigation in their study looked at different methods of 
estimating tree height by analyzing waveform start and end points and concluded that the 
leading edge threshold, followed by the peak-to-peak and trailing edge values, provided 
the best forest height estimates. Another bathymetric lidar system with dual frequency, 
532 and 1064 nm, and waveform recording was used by Nilsson (1996) to measure tree 
heights and timber volume. The pulse length was 7 nanoseconds, the sampling interval 
was 2.5 nanoseconds, and the digitized waveform was a combination of the two, green 
and infrared, returns.

It has been proven that waveform lidar systems are most successful for vegetation analy-
sis. NASA has developed experimental sensors that record the complete waveform from 
medium- and large-footprint lasers with a ground beam diameter between 5 m and tens 
of meters as predecessors of spaceborne lidar systems. Two NASA airborne research lidar 
systems have been used to characterize vegetation: the scanning lidar imager of canopies 
by echo recovery (SLICER; Blair et al. 1994; Harding et al. 1994) and the laser vegetation 
imaging sensor (LVIS; Blair and Hofton 1999). The LVIS sensor emits laser pulses with a 
duration of 10 nanoseconds at full width half maximum (FWHM) and digitizes the detected 
return energy at 500 megasamples per second or every 0.5 nanoseconds. The LVIS beam 
diameter depends on the flying height, with a typical size of 10–25 m for its footprint. This 
sensor has a scan angle of about 12° and can cover 2-km swaths from an altitude of 10 km.

3.7.2.2  Commercial Waveform-Recording Small-Footprint Lidar

A discrete-returns lidar system has limitations with respect to the number of echoes it 
can record from a single pulse. A waveform-recording lidar overcomes this constraint by 
recording the entire laser pulse energy as a function of time. This approach to recording 
the laser backscatter amplitude with high frequency affords a better characterization of 
the vertical distribution of reflecting surfaces within the laser footprint, which for most 
of the commercial airborne sensors is smaller than 1 m in diameter.

As explained in Section 3.7.1, discrete-returns systems are affected by the reset time 
between separate returns of the same pulse, which translates to a range separation of 
1.2–1.5 m between consecutive echoes, when considering to- and from-target travel times. 
This has implications for detecting ground covered by vegetation, such as tall grasses or 
shrubs, when the laser beam may provide a return from the top of the vegetation cover and 
penetrate to the ground and generate a secondary ground return.

By using adequate modeling of the recorded waveform, it has been shown that full-
waveform analysis enables the extraction of additional information compared to discrete-
return systems, such as the range to the ground peak underneath tall grasses, shrubs, 
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or forest vegetation (Gutierrez, Neuenschwander, and Crawford 2005). Most often, wave-
form analysis extracts range, elevation variation, and reflectance properties from the pulse 
width and amplitude. In their study conducted in 2005, Gutierrez, Neuenschwander, and 
Crawford compared the elevations derived from a conventional discrete-return system 
with waveform data collected using the same sensor, an Optech ALTM instrument, and 
found that elevation data agree well between the two datasets. They also concluded that 
the waveform data provided increased information about the vertical distribution of 
reflecting surfaces. A common approach to extracting information from waveform data is 
to model the waveform as a series of Gaussian distribution functions, as demonstrated for 
LVIS by Hofton, Minster, and Blair (2000), or Persson et al. (2005).

Some of the commercial airborne lidar systems are able to collect waveforms for small-
footprint laser beams, such as the Riegl LMS-Q680 (Riegl USA, Orlando, FL), TopEye Mark II 
(Blom, Sweden), or Optech’s ALTM 3100 (Vaughn, Ontario, Canada). Some sensor manufac-
turers, such as Optech and Leica, provide the option of waveform digitizer modules that 
can be integrated with their discrete-return systems to allow full-waveform digitization.

3.7.2.3  Spaceborne Lidar Systems

The lidar waveform-recording technology developed for the NASA airborne systems 
made use of prototypes of methods and techniques later used by spaceborne altimeter 
systems such as the shuttle laser altimeter (SLA; Garvin et al. 1998), which in 1996–1997 
provided the first global-scale laser altimeter dataset. In 1997, the Mars orbiter laser altim-
eter (MOLA), an instrument used aboard the Mars Global Surveyor spacecraft, acquired its 
first pass across the surface of Mars. The altimeter obtained measurements of topographic 
profiles, surface reflectivity, and backscattered laser pulse width, with surface spot sizes of 
70–300 m (Smith et al. 1998). The next space-based system was the geoscience laser altim-
eter system (GLAS) carried on the ice, cloud and land elevation satellite (ICESat), which 
was launched on January 13, 2003 from the Vandenberg Air Force Base in California.

An overview of the ICESat mission is provided by Schutz et al. (2005). The ICESat laser 
measurements were designed with the primary objective of monitoring ice sheets mass 
balance. Measurements are currently distributed in 15 science data products, which have 
interdisciplinary applications, including the characterization of land topography and veg-
etation canopy heights. The system operates by sending laser pulses with a frequency of 
40 Hz and pulse duration of approximately 5 nanoseconds. The returning laser echo is 
sampled every nanosecond, and the digitized pulses are referred to as laser waveforms. 
The ICESat platform orbits at an altitude of approximately 600 km, and from that height 
above the ground, the laser footprints have approximately a 64-m circular diameter. More 
precisely, the footprints are elliptical, with their size and ellipticity varying during the 
course of the mission. Along one orbital transect, the footprints are spaced at about 172-m 
intervals (Schutz et al. 2005). The GLAS surface elevations are reported with respect to 
the TOPEX/Poseidon reference ellipsoid. Among all GLAS standard products, the level-1 
altimetry products, GLA01, contain waveforms digitized in 544 bins with a bin size of 
1 nanosecond or equivalently 15 cm; however, beginning with the data acquisition phase 
L3A (October 2004), the bin size of BIN 1-151 has been changed to 4 nanoseconds (60 cm) to 
reduce the risk of waveform truncation. The level-2 global land-surface products, GLA14, 
provide an alternate fitting that locates up to six Gaussian components (mode, amplitude, 
and sigma) to characterize the shape of the total waveform. The ICESat spacecraft allows 
for off-nadir pointing of the laser, by up to ±5°, in order to target areas of interest or to com-
pensate for orbit drift (Schutz et al. 2005).
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3.7.3  Flash Lidar

An alternative to scanning the target of interest with pulses of laser light is offered by the 
flash lidar technology. Rather than using one receiver to detect echoes from each laser 
pulse, flash lidar uses a focal plane array as a detector to acquire a frame of 3D data from a 
laser pulse that floods the scene. The concept of the flash lidar detector is similar to that of 
the focal plane array of a two-dimensional optical digital camera. Each pixel in the array 
configuration can independently measure the travel time for each laser pulse.

The sensor captures an entire frame of range data from a single pulse of laser light with 
a certain frequency, such as 60 frames per second. Just like scanning lidar sensors, flash 
lidar sensors are capable of capturing both range and intensity data.

At the time of this writing, little information is available about the flash lidar technol-
ogy. Few companies pursue the development of this technology, such as Ball Aerospace & 
Technologies Corp., Boulder, CO, and Advanced Scientific Concepts, Inc., Santa Barbara, CA.

3.7.4 G round-Based Lidar

Over the last 30 years, lasers have been incorporated into surveying instruments such as 
simple range finders or more complex total stations. Such uses of lasers have led to the 
development of ground-based or terrestrial lidar scanners, which are capable of scanning 
the landscape surrounding their location. Most of the time, such sensors are set up on a 
tripod or on vehicles, and they are respectively called “static” and “dynamic” or “mobile” 
systems. Static systems do not require the integration of supporting technologies or units, 
such as GPS and IMUs, whereas mobile systems need direct georeferencing through the 
use of GPS and IMUs.

Ground-based lidar systems have developed considerably over the last decade, and the 
use of such sensors has resulted in the proliferation of a large number of applications, 
from surveying, architecture, accident scene reconstruction, monitoring of buildings and 
bridges, measurement of complex industrial facilities, monitoring of quarries and open 
mines, and recording of building and monument facades, to geological structures and 
vegetation analysis.

Most of the ground-based lidar systems utilize the TOF principle for range measure-
ments, although a few employ the phase measuring technique. Depending on the cover-
age they are capable of illuminating with lidar points, ground-based lidar systems can be 
differentiated as panoramic, hybrid, or camera-type scanners (Steiger 2003). Panoramic 
scanners cover the surrounding landscape in a systematic pattern with 360° coverage in 
the horizontal plane and more than 270° in the vertical plane, practically missing only the 
area below the instrument’s tripod in covering a full spherical field of view. Although the 
hybrid scanners are capable of scanning a 360° field of view in the horizontal plane, they 
may have limited scanning angles toward the zenith, since most such scanners are used 
for topographic applications and are not required to scan objects overhead. The camera-
type scanners normally have a limited field of view in both horizontal and vertical planes. 
Panoramic scanners are the most versatile for indoor or outdoor applications and can be 
set to cover a limited viewing angle, if so desired.

With respect to the range over which ground-based systems can be used, depending on 
the manufacturer and the intended application, such systems can record ranges from 100 m 
to 1 km. The most common terrestrial sensors are manufactured by the same companies 
that build airborne lidar sensors, such as Leica, Optech, and Riegl, although there are 
other systems as well, such as Trimble, Topcon, or research systems like Echidna.
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With the development of dynamic terrestrial laser scanners, mobile mapping literally 
takes on new dimensions. The mobile lidar technology has in fact many similarities with 
airborne lidar, mainly in requiring continuous georeferencing of the moving vehicle that 
carries one or more sensors. As such, the mobile lidar technology integrates GPS and IMU 
components. Such systems are mainly used in the urban environment for reproducing 
facades of buildings from the ground level, which can be integrated with airborne datasets 
for producing accurate and complete 3D urban models.

3.8  Lidar Data Format

Until recently, discrete-return lidar data were provided in text or binary format, which was 
usually proprietary, most commonly with geographic coordinates and intensity recordings 
for multiple returns and pulses making up the point cloud. The drawback of this approach 
was the lack of portability and consistency among software tools used for processing the 
datasets from different providers or different sensors. The first version of a standard lidar 
file format, the LAS 1.0 (Graham 2005), was released in 2002 with the intention of allowing 
different lidar hardware and software tools to output data in a common format. The initial 
LAS specification was a relatively compact binary encoding of point location and point 
attribute data. The third revision of the LAS format specification was released in July 2009, 
and it is owned by the American Society for Photogrammetry & Remote Sensing (ASPRS). 
The LAS 1.3 specification includes a noteworthy improvement over previous specifica-
tions, that is, the possibility of encoding lidar waveform data. In addition, the LAS 1.3 
includes important information regarding the sensor used to collect lidar data, processing 
software, number of lidar points, point coordinates, intensity, classification, and other rel-
evant data. Table 3.3 shows the standard lidar point classes in LAS 1.3.

Table 3.3

Standard Lidar Point Classes in the ASPRS LAS 1.3 Data Format

Classification Value (Bits 0:4) Meaning

0 Created, never classified
1 Unclassified 1
2 Ground
3 Low vegetation
4 Medium vegetation
5 High vegetation
6 Building
7 Low point (noise)
8 Model key point (mass point)
9 Water
10 Reserved for ASPRS definition
11 Reserved for ASPRS definition
12 Overlap points 2
13–31 Reserved for ASPRS definition
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3.9  Examples of Environmental Applications of Lidar Remote Sensing

Environmental applications of lidar remote sensing cover a wide spectrum, such as 
applications in environmental engineering, mapping geologic faults under the forest can-
opy, monitoring coastal changes, assessing landslide hazards, quantifying the growth and 
retreat of ice sheets, and estimating vegetation structural attributes, biophysical param-
eters, and habitat characterization. Developments in lidar remote-sensing applications for 
environmental studies are occurring rapidly, and they are driven by intensive research 
and increasing availability of lidar data from commercial and governmental sources. Two 
general application trends can be observed: (1) characterizing the topographic features 
and (2) assessing the 3D structure of vegetation canopies. Topography mapping with lidar 
remote sensing is potentially the fastest-growing area of environmental applications. 
Most environmental studies need topographic information, and lidar has proven its abil-
ity to acquire highly accurate and detailed elevations, which have a strong influence on 
the structure, spatial extent, composition, and function of ecological systems. Most often, 
topographic applications use discrete-returns lidar data provided by commercial remote 
sensing companies. When deriving topographic information, a substantial number of lidar 
points in the point cloud, mainly representing vegetation hits, are discarded in the step 
known as “vegetation removal.” On the contrary, for most ecological applications that use 
discrete-returns lidar data, the lidar returns from the canopy are of the highest interest. In 
addition to the discrete-return airborne systems, waveform lidar data have been used for 
characterizing vegetation structure over large areas. Since topographic lidar applications 
have been described in great detail in other texts, such as the works of Maune (2007) or 
Shan and Toth (2009), Sections 3.9.1 through 3.9.3 provide examples of lidar remote sensing 
applications for environmental studies of vegetation and habitat characteristics.

3.9.1 L idar for Estimating Forest Biophysical Parameters

The use of remote sensing in mapping the spatial distribution of canopy characteristics 
allows an accurate and efficient estimation of tree dimensions and canopy properties at 
local, regional, and even global scales. In particular, lidar remote sensing has the capabil-
ity to acquire direct 3D measurements of the forest structure that are useful for estimating 
a variety of forest biophysical parameters, such as tree height; crown dimensions, canopy 
closure, leaf area index, tree density, forest volume, and forest biomass, and in mapping 
fire risk by assessing surface and canopy fuels.

During the late 1980s, a number of lidar studies for estimating tree height, forest biomass, 
and carbon date were conducted, for example, studies by Maclean and Krabill (1986), 
Nelson, Swift, and Krabill (1988), and Nelson, Krabill, and Tonelli (1988). These first stud-
ies used profiling lidar systems and developed models to predict stem volume and dry 
biomass based on forest canopy height and closure as measured by airborne lidar. Since 
then, numerous researchers have used a variety of lidar systems and sampling techniques 
to quantify tree dimensions, standing timber volume, aboveground biomass, and carbon 
date, mainly with scanning systems.

Previous lidar studies, whether using waveform or discrete-return lidar data, attempted 
to derive measurements, such as tree height and crown dimensions, at stand level (Næsset 
and Bjerknes 2001; Hall et al. 2005), plot level (Holmgren, Nilsson, and Olsson 2003; Hyyppä 
et al. 2001; Lim and Treitz 2004; Popescu, Wynne, and Scrivani 2004), or individual tree 
level (Persson, Holmgren, and Söerman 2002; Coops et al. 2004; Yu et al. 2004; Holmgren 
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and Persson 2004; Roberts et al. 2005; Chen et al. 2006; Koch, Heyder, and Weinacker 2006; 
Popescu 2007) and then use allometric relationships or statistical analysis to estimate other 
characteristics, such as biomass, volume, crown bulk density, and canopy fuel parame-
ters. Figure 3.10 shows a lidar point cloud with a point density of 8 points per square 
meter collected by a discrete-return sensor over coniferous forests in the western United 
States. Figure 3.11 displays the ground-based lidar data acquired from a tripod system in 
Mesquite forests in central Texas.

Forest canopy structure was estimated using data from scanning lasers that provided 
lidar data with full-waveform digitization (Harding et al. 1994, 2001; Lefsky et al. 1997; 
Means et al. 1999). Small-footprint, discrete-returns systems were used to estimate canopy 
characteristics, with many studies focusing on tree height (Næsset 1997; Magnussen and 
Boudewyn 1998; Magnussen, Eggermont, and LaRiccia 1999; Næsset and Økland 2002; 
Popescu, Wynne, and Nelson 2002; McCombs, Roberts, and Evans 2003; Maltamo et al. 
2004; Popescu and Wynne 2004) or crown dimensions, such as the study conducted by 
Popescu, Wynne, and Nelson (2003). Figure 3.12 shows a portion of a canopy height model 
of mixed forest conditions in the southern United States. The canopy model has been pro-
cessed automatically with methods described by Popescu and Wynne (2004) in identifying 
individual trees, and their heights and crown dimensions have been measured.

After more than two decades of research in vegetation assessment with lidar, the following 
four aspects could be concluded: First, with waveform lidar systems having large foot-
prints, robust regressions can be developed to predict volume and biomass over large area 
extents. The R2 values for plot-level models range from 0.8 to 0.9 (Lefsky et al. 1999, 2002; 

Figure 3.10
(See color insert following page 426.) Lidar point cloud over coniferous forests in the western United States.

Figure 3.11
(See color insert following page 426.) Ground-based lidar data collected over Mesquite trees in central Texas.
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Drake et al. 2002). With discrete-returns systems, that is, scanning lidar systems with small 
footprints, usually of submeter range, the strength of the prediction models for volume and 
biomass are more variable, with R2 values ranging from 0.4 to 0.9 (Nilsson 1996; Næsset 
1997, 2002; Nelson, Short, and Valenti 2003; Popescu, Wynne, and Nelson 2003; Popescu, 
Wynne, and Scrivani 2004; Zhao, Popescu, and Nelson 2009; Popescu and Zhao, 2009). 
Second, conifer attributes can be estimated with higher accuracy than hardwood param-
eters. The evidence for this statement is found scattered throughout the literature and may 
be attributed to the more complex canopy structure of deciduous stands and individual 
tree growth form, which make height–volume or biomass relationships noisier for hard-
woods (Lefsky et al. 1999; Popescu, Wynne, and Scrivani 2004; Næsset 2004). Third, despite 
intense research efforts and few operational uses, there is a lack of lidar processing tools 
and, thus, investigators are spending considerable efforts on developing software. Fourth, 
airborne lidar data can be used to inventory biomass and carbon at scales from local to 
regional and global. With scanning lidar, biomass and carbon can be accurately estimated 
at local scales; for examples, see the studies by Popescu et al. (2003, 2004). Using profiling 
lidar data, as in the studies of Nelson, Short, and Valenti (2003), biomass and carbon can 
be estimated over large areas, whereas satellite lidar (e.g., ICESat/GLAS) can be used for 
global estimates of canopy properties (Ranson et al. 2004).

3.9.2 L idar Applications for Estimating Surface and Canopy Fuels

Few lidar studies focus on assessing canopy structure and characteristics, such as fuel 
weight, canopy and crown base height, and crown bulk density (Pyysalo and Hyyppä 
2002; Holmgren and Persson 2004; Riaño et al. 2003, 2004; Andersen, McGaughey, and 
Reutebuch 2005; Mutlu et al. 2008; Mutlu, Popescu, and Zhao 2008; Popescu and Zhao 2008). 
Among these studies, there seems to be a unanimous acceptance that airborne lidar over-
estimates crown base height for individual trees or plot-level canopy base height, which 
is an intuitive finding given the fact that airborne lidar portrays crowns from above, and 
lower branches have a reduced probability of being intercepted by laser pulses that might 
be blocked by higher branches (Holmgren and Persson 2004; Andersen, McGaughey, and 
Reutebuch 2005).

Figure 3.12
(See color insert following page 426.) Automatically measuring individual trees on a lidar-derived canopy 
height model. Circles represent computer-measured crown diameters, whereas each cross sign indicates identi-
fied individual trees.



Lidar Remote Sensing	 79

3.9.3 L idar Remote Sensing for Characterizing Wildlife Habitat

Ecologists have long recognized the importance of vegetation structure for characterizing 
wildlife habitat, but field methods for gathering such information are time consuming and 
challenging. Vertical forest structure is related to biodiversity and habitat. “In general, the 
more vertically diverse a forest is the more diverse will be its biota …” (Brokaw and Lent 
1999). Remote sensing techniques provide an attractive alternative (e.g., Turner et al. 2003), 
especially when 3D data are acquired directly with sensors such as lidar.

Hinsley et al. (2002) and Hill et al. (2003) employed an airborne laser system to assess 
bird habitat. They used an airborne laser scanning system to map forest structure across 
a 157-hectare deciduous woodland in the eastern United Kingdom. The researchers 
related laser-based forest canopy heights to chick mass (i.e., nestling weight), a surrogate 
for breeding success, which, in turn, is a function of “territory quality.” They found that 
for one species, chick mass increased with increasing forest canopy height, and for a sec-
ond species, chick mass decreased. Hill et al. (2003) concludes that airborne laser scanning 
data can be used to predict habitat quality and to map species distributions as a function 
of habitat structure.

Nelson, Keller, and Ratnaswamy (2005) mapped and estimated the areal extent of 
Delmarva fox squirrel (DFS) habitat using an airborne profiling lidar flown over Delaware. 
The study results indicated that (1) systematic airborne lidar data can be used to screen 
extensive areas to locate potential DFS habitat; (2) 78% of sites meeting certain minimum 
length, height, and canopy closure criteria will support DFS populations, according to a 
habitat suitability model; (3) airborne lidar can be used to calculate county and state acre-
age estimates of potential habitat; and (4) the linear transect data can be used to calculate 
selected patch statistics.

Hyde et al. (2005) used a large-footprint (12.5 m) scanning lidar to map California spot-
ted owl habitat across a 60,000-hectare study area in the Sierra Nevada, California. They 
looked at forest canopy height, canopy cover, and biomass in the mountainous forests. 
Their ultimate objective was to produce maps for the U.S. Forest Service for wildlife habi-
tat and forest resource management and to conclude that lidar provides “important met-
rics that have been exceptionally difficult to measure over large areas.”

Recent studies, such as the ones conducted by Clawges et al. (2008) or Vierling et al. 
(2008), show the potential of using airborne lidar in studying animal–habitat relationships 
and in quantifying the vegetation structural attributes important for wildlife species. 
Clawges et al. used lidar to assess avian species diversity, density, and occurrence in a 
pine aspen forest in South Dakota. They concluded that lidar data can provide an alterna-
tive to field surveys for some vegetation structure indices, such as total vegetation volume, 
shrub density index, and foliage height diversity. They calculated different foliage height 
diversity indices using various foliage height categories and found that habitat assessment 
may be enhanced by using lidar data in combination with spectral data.

3.10  Lidar Systems for Atmospheric Studies

Although this chapter focuses on lidar remote sensing for environmental applications, laser 
remote sensing technologies are also used efficiently for providing four-dimensional—space 
and time—measurements of the atmosphere and its constituents. Range-resolved mea-
surements of the atmosphere have been carried out from the ground, air, and space. 
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In fact, Middleton and Spilhaus (1953), who are credited with coining the lidar acronym, 
did so in the context of meteorological instruments, but without expressly mentioning what 
it could be the acronym of. Fiocco and Smullin described atmospheric measurements with 
a ruby laser in 1963. Currently, lidar systems used in atmospheric studies observe spatial 
and temporal distribution of atmospheric gases, atmospheric pressure, temperature, tur-
bulence, and wind (Weitkamp, 2005). Physical processes observed with these lidars include 
laser backscattering by aerosols and clouds (Mie scattering), laser backscattering by mol-
ecules (Rayleigh scattering), absorption by atoms and molecules (differential absorption 
lidar [DIAL]), Raman scattering, fluorescence, and Doppler shift by aerosols and clouds 
(Doppler lidar). These lidar systems are not discussed further in this book. Similarly, this 
book does not discuss short-distance laser remote sensing technologies used in industrial, 
security, and medical applications. Interested readers can find a relatively rich lidar lit-
erature for atmospheric studies both in book and scientific articles formats, for example, 
studies by Fujii and Fukuchi (2005).

3.11  Conclusions

Lidar data availability is increasing along with the spectrum of lidar applications in 
environmental remote sensing at a multitude of scales and the user’s need for up-to-date 
information on sensors, processing algorithms, and applications. As such, the goal of 
this chapter is to provide the fundamentals of lidar remote sensing technology and some 
examples of environmental applications of this technology for characterizing the 3D struc-
ture of vegetation canopies.

The present widespread use of lidar remote sensing offers an optimistic vision of the 
future for environmental applications and research investigations. Intrinsic lidar data 
structure allows the integration of data acquired by different platforms, terrestrial, air-
borne, and spaceborne, as complementary or validation tools for applications at multiple 
scales from local to regional and global. In addition, the fusion of lidar and optical or radar 
data aims at reducing the limitations of each technology and utilizing their synergistic 
characteristics for complex environmental assessment. In the context of global climate and 
environmental changes, lidar proves to be an important technology that makes possible 
the analysis of the 3D structure of vegetation canopies and facilitates operational applica-
tions and scientific discovery. There is no doubt that lidar will continue to be one of the 
most important geospatial data acquisition technologies subject to continuous develop-
ments of all its components: acquisitions systems and hardware, data formats, processing 
algorithms and software, operational principles, quality, accuracy, and standards.
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4
Impulse Synthetic Aperture Radar

Giorgio Franceschetti and James Z. Tatoian

4.1  Scenario

Synthetic aperture radar (SAR) is one of the key sensors currently positioned on satel-
lites for Earth and planetary exploration. It is also widely used on airplanes for imaging 
of Earth’s surface without the time and space constraints imposed by the satellites’ pre-
scribed orbits. Additional applications, such as subsurface imaging after earthquakes and 
through-the-wall detection and identification of criminals and/or terrorist activities, are 
now emerging in the homeland security area (Amin 2010).

A SAR system radiates chirped pulses from different equispaced positions along the 
azimuth, which is usually a straight line; a linear array is thus synthesized. After raw 
data processing, the (microwave) image of the illuminated area is obtained, where the 
range and azimuth resolutions are ∆ ∆r f f= [ ( )]2λ  and ∆x L= 2, respectively. In the above 
expressions, λ and f are the wavelength and frequency of the pulse carrier, respectively, Δf 
is the chirp bandwidth, and L is the effective length of the radiating antenna. The azimuth 
resolution Δx requires the length of the synthesized array to be equal to λ r L, where r 
is the distance between the sensor and the ground (assumed to be flat), and the spacing 
between the synthesized array elements does not exceed L 2. The conventional way to 
derive these results is by using the Doppler shift, in which a reference is made to the move-
ment of the antenna platform with constant velocity along the azimuth. Although this 
procedure may lead to correct results (Curlander and McDonough 1991), it is essentially 
inappropriate from a physical viewpoint. Actually, the platform movement does not play 
any significant role in the SAR imaging (see image parameters Δr and Δx: only the array 
parameters are relevant and not the platform velocity). Accordingly, the proper way to 
trace the SAR system performance is to make a reference to the array, with the synthesiz-
ing procedure being just a technical detail; the subsequent processing procedure corre-
sponds to a near-to-far field transformation (Franceschetti and Lanari 1999) by means of a 
proper beam-forming technique. This viewpoint allows for rational and sound extensions 
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of the SAR performance in interferometric or tomographic three-dimensional (Fornaro 
and Serafino 2006) and forward-looking applications currently being developed. The latter 
correspond to end-fire phased array synthesis (instead of broadside, as in the conventional 
SAR), and the former correspond to two-dimensional phased array synthesis.

The above-mentioned extensions are simply generalizations of the conventional SAR sys-
tems, easily understandable if the phased array model is adopted in place of the Doppler 
shift. This chapter presents a completely new type of SAR system that radiates short car-
rierless pulses, namely the Impulse Synthetic Aperture Radar (ImpSAR). Again, the SAR sys-
tem model is fully adopted, with the only difference being the use of synthezised timed 
arrays (Franceschetti, Tatoian, and Gibbs 2005), and not phased arrays. This is done for two 
reasons: (1) the term “phase” has no meaning in the time domain, and (2) the use of a fre-
quency approach is convenient and helpful for narrowband signals, but can be misleading 
if the waveform bandwidth becomes large, that is, for ultra wideband (UWB) signals. The 
latter approach is unreasonably complicated, not transparent from a physical viewpoint, 
and also requires essentially inane classifications of the signals with reference to their 
relative bandwidth. An extension of ImpSAR to 3D imaging is also presented, where two-
dimensional timed arrays are employed, and no phase unwrapping procedures take place, 
because the concept of phase in this context is irrelevant.

Higher range resolution of ImpSAR requires shorter radiated pulses, implying lower 
average radiated power, while radiated pulse amplitude is dictated by the currently avail-
able hardware technology. This limitation may be mitigated by employing larger antenna 
arrays in many applications where sensing from large standoff distances is required, includ-
ing homeland security scenarios involving airborne and ground-based SAR systems.

Finally, the raw ImpSAR data may provide additional valuable information. Because 
each pulse instantaneously spans a very large bandwidth, it follows that the latter can be 
sliced among several subbands. Each subband can be independently processed, generat-
ing a number of conventional narrowband SAR images equal to the number of subbands. 
The name of the algorithm, which requires only software assets (the hardware being that 
of the ImpSAR), is polychromatic SAR, as it produces microwave images at different micro-
wave frequency bands (different colors). This is particularly attractive in the low-frequency 
range, where the use of a conventional SAR usually presents weight- and size-related prob-
lems, especially for the airborne systems.

In this chapter, the full theory of ImpSAR and polychromatic SAR is presented, together 
with some preliminary experimental data that validate the theory, suggesting a promising 
future for these innovative systems.

4.2  Timed Array Analysis

Let us consider an array, composed of 2N+1 elements, as depicted in Figure 4.1. Each 
element is excited by the same signal f t( ). In the far field, the radiated field is propor-
tional to

	 F t f t n t
n N

N

( , ) ( )ϑ = −
=−
∑ ∆ 	 (4.1)

where ∆t a c= sinϑ , and c is the speed of light in vacuum.
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A definition of the radiation diagram similar to that of sinusoidal field is possible by 
substituting its radiated power density with energy density as follows (Franceschetti, 
Tatoian, and Gibbs 2005):

	 g
F t t

F t t
( )

( , )d

( , )d
ϑ

ϑ
= ∫
∫

2

2 0
	 (4.2)

As an illustrative example, the case N = 2 is depicted in Figure 4.2, where the feeding signal 
f t( ) is the rectangular pulse, f t t T( ) = rect[ ], T being the pulsewidth.

Furthermore, in the far field, that is, in the properly defined Fraunhofer region of 
the array in time domain, r L cT> ( )2 22 , we have 2 2N t Na c L c T∆ = ≅ ≤( ) sin ( )sinθ θ , 
L N a Na= + ≅( )2 1 2  being the array length. These equalities are valid for large arrays, which 
is the case hereafter.

Computation of the radiation diagram, Equation 4.2, is now in order. From Equation 4.1, 
it follows that

	 F t t N T2 20 2 1( , )d ( )∫ = + 	 (4.3)

n=−N n=−1 n=1 n=N

a
L

θ

Figure 4.1
Array composed of 2N+1 identical elements. (From Franceschetti, G., J. Tatoian, and G. Gibbs, Timed arrays in a 
nutshell, IEEE Trans Antennas Propagat 53(12):4073–82), © (2005) IEEE.)
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Figure 4.2
Timed array excited by a rectangular pulse and the resulting far-field radiated signals: (a) Received and super-
posed pulses along the broadside direction; (b) received pulses along the direction θ; (c) superposed received 
pulses along the direction θ. (From Franceschetti, G., J. Tatoian, and G. Gibbs, Timed arrays in a nutshell, IEEE 
Trans Antennas Propagat 53(12):4073–82), © (2005) IEEE.)
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and
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where the last equality is valid for large arrays. Computation of Equation 4.4 makes refer-
ence to the diagrams depicted in Figure 4.2. The integral is broken down into two parts: 
the first is the time interval where the pulses are synchronized; the second part is relative 
to the remaining time-interval, and is obtained by the evaluation of a finite summation  
(Franceschetti, Tatoian, and Gibbs 2005).

Dividing Equation 4.4 by Equation 4.3 leads to the formal expression of the radiation 
diagram; see Equation 4.2, hence

	 g
N t

T
N a

cT
L

( )
( ) ( ) sin sϑ θ= − + = − + = −1

1
3

2 1
1

1
3

2 1
1

1
3

∆ in θ
cT

	 (4.5)

Letting g( )Θ = 1 2 and solving for the (conventional) 3-dB beamwidth 2Θ, we obtain

	 sin ,Θ Θ Θ≅ = =
3
2

2
3cT

L
cT
L

	 (4.6)

The definition in Equation 4.2 for the radiation diagram emphasizes the power content of 
the radiated beam. The alternative definition

	 ξ ϑ
ϑ

( )
[ ( , ) ( , )] d

( , )d

s= −
−

= −∫
∫

1
0

0
1

1
6

2

2

F t F t t

F t t

L inϑ
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	 (4.7)

refers to the shape of the pulse, ξ being the similarity factor in a quadratic norm (Franceschetti, 
Tatoian, and Gibbs 2005). Assuming as convenient value for the similarity factor ξ(Θ) = 
0.917, and solving for the beamwidth 2Θ, we obtain

	 sin ,Θ Θ Θ≅ = =
cT
L

cT
L2

2 	 (4.8)
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Examination of the results in Equations 4.6 and 4.8 suggests that a suitable definition of 
timed-array 3-dB beamwidth is

	 Θ = 2cT
L

	 (4.9)

which is essentially the same as the expression used in the narrowband case where wave-
length λ is substituted by 2 cT—twice the spatial extension of the pulse. In passim, this 
correspondence 2 cT ↔ λ turns out to be valid for most (for instance, see the previously 
quoted Fraunhofer region definition), if not all parameters describing the performance of 
pulsed antennas and arrays (Franceschetti, Tatoian, and Gibbs 2005), and was a conjecture 
advocated over 30 years ago (Franceschetti and Papas 1974).

Consider the synthesized timed array as depicted in Figure 4.3. The 3-dB beamwidth 
of the array element is given by 2cT/l, l being its effective length. The array length for the 
best attainable resolution is equal to the illuminated swath dimension, hence L cT l r= ( )2 , 
r being the distance of the array from the ground. Accordingly, the azimuth resolution of 
the timed array is given by

	 ∆x
cT
L

r
cT

cT l r
r

l= = =2 2
2 2 2( )

	 (4.10a)

where the additional factor 2 in the denominator of the intermediate expression accounts 
for the round-trip propagation: the time delay Δt between the pulses radiated by nearby 
elements of the array doubles, virtually reducing the beamwidth of the synthetic array, as 
shown in Equations 4.5 and 4.6. The final result is identical to that of a conventional SAR. 
The range resolution is obviously given by

	 ∆r
cT=
2

	 (4.10b)

which is the standard expression for a radiated pulse.
All the above derivations, leading to Equations 4.10a and b, are made under the 

assumption that the imaged point, P, in Figure 4.3 is in the far field, which is not always 
the case. Accordingly, some processing of the raw data is necessary in order to trans-
form the received near-field data to the far-field data; this can be implemented by a 

L

P

l
r2cT

Figure 4.3
The synthetic timed array. (From Franceschetti, G., J. Tatoian, and G. Gibbs, Timed arrays in a nutshell, IEEE 
Trans Antennas Propagat 53(12):4073–82), © (2005) IEEE.)
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simple shift-and-add procedure. If one denotes fn (t), − N ≤ n ≤ N, to be the pulse radiated 
by the array element n, then the received pulse is

	 f t f t
r na

cn n( )′ = −
+ ( )











2
2 2

	 (4.11)

whereas in the far field it is

	 f t
r n a

c
f t

r na r
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
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= −

+ { }





2 2

2sin ( )θ
= −

+{ }





f t
r na r

cn 2
2 2( ) 	 (4.12)

the r value being determined by the arrival time of the pulse radiated and received by the 
array element n = 0. Letting

	 ρn
r na

r
r na= + − +

2 2
2 2( )

( ) 	 (4.13)

and substituting 2ρn/c into Equation 4.11 lead to the conclusion that the azimuthally 
compressed image of P is given by

	 g P f t
cn
n

n N

N

( ) = ′ −



=−

∑ 2
ρ

	  (4.14)

which justifies naming the procedure shift-and-add. Note that

	 ρn
r na

r
r na

na
r

= + − + ≅
2 2

2 2
2

2
( )

( )
( )

	 (4.15)

if (na/r)2 << 1. This may somehow simplify the procedure, but not significantly.
An example of an experimentally obtained ImpSAR image of an M16 rifle, along with its 

optical image, is shown in Figure 4.4. In the experiment, the width of the radiated pulse is 
100 picoseconds, the length of the timed array is 4.5 m, and the distance between the target 
and the antenna is 6.0 m.

Figure 4.4
Optical (top) and microwave (bottom) images of the M16 rifle.
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These parameters imply that range and azimuth resolutions are 1.3 and 8.0 cm, respectively, 
as shown in Equation 4.10. Note that the image not only resolves fine details of the target, 
but also has intrinsic peculiarities not present in conventional microwave images. This may 
be due to the wide bandwidth of the incident signal, so that the illuminated target cannot be 
modeled simply as a collection of point scatterers. Its resonant response should also be taken 
into account. This is an open problem worth exploring along two lines: improving the qual-
ity of the processed image and extracting value-added information from it (Franceschetti, 
Tatoian, and Gibbs 2009).

4.3  Radiated Pulse

In order to introduce the transmitted pulse, let us assume that the signal applied to the 
terminals of the transmitting antenna is

	 u t
t
T

t
T

t
C

U t( ) exp exp (= −

 − +





−

1 )	  (4.16)

with C and T being the design parameters discussed in this section. The radiated signal is 
proportional to the derivative of the input signal (Franceschetti 1997), namely
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The radiated signal can be viewed as the superposition of two pulses, as detailed in the 
following equation. A prepulse

	 g t
T

C T
C

t
T

t
C1

1
1( ) exp exp= + − −


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
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
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
U t( ) 	  (4.18a)

is the first term in Equation 4.17, which is dominant for t < C.
A postpulse

	 g t
T

t
C

t
C

U t2
1

( ) exp ( )= −

 	  (4.18b)

is the second term in Equation 4.17, which is dominant for t > C.
Both pulses start at t = 0, and decay to 0 as t → ∞. For the following analysis, it is conve-

nient to introduce the parameter ξ = T/C  and normalize the time to C, that is, t → t/C. The 
graph of g (t) for ξ = 0.1, ignoring the scaling factor 1/T, is depicted in Figure 4.5.

Figure 4.5 shows that the pulse g (t) is composed of a narrow positive pulse followed 
by a wide negative pulse. The total integrated area of the signal is zero, as it should be 
(Franceschetti 1997), so that the first pulse is tall in contrast to the second one. The width t0 
of the first pulse is obtained by solving the relation g1 (t0) = g2 (t0), leading to the equation
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	 exp −





= −

+
t

t0
01

1
1ξ ξ 	 (4.19)

Equation 4.19 represents the intersection of an exponential and a linear function whose 
slopes at the origin are −1/ξ and −1/(1 + ξ ), respectively. In view of the expected small 
value of ξ , the slope of the exponential is close to 90º, whereas that of the straight line is 
close to 45º. It follows that the intersection of the two curves takes place where the expo-
nential is close to zero, and thus, the point of the intersection is approximated by

	 t0 1≅ + ξ 	  (4.20)

Equation 4.20 also provides the overall zero-to-zero (normalized) pulsewidth, as shown in 
Figure 4.5. In nonnormalized units, this pulsewidth is

	 ∆T C= +( )1 ξ 	 (4.21)

Again, the design of a short pulse favors small values for the parameter ξ . This assump-
tion leads to simpler and more understandable expressions for the derived relations.

The maximum value of the first pulse is expected to be close to the maximum of the 
function g1 (t), because g2 (t) is small in the time interval t < 1. This maximum value can be 
computed to be
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For subsequent analysis, it is convenient to note that for ξ → 0
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whereas for ξ → ∞ 
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Figure 4.5

Graph of the function g (t) for ξ = 0.1 and T = 0.1 in arbitrary time units. 
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It follows that the function ξ 1n [(1 + ξ )/ξ ]  is a steadily increasing function of ξ , starting 
from 0 at ξ = 0 and approaching 1 for ξ → ∞. Similarly, the second term in Equation 4.22,
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is a steadily decreasing function of ξ, starting from 1 at ξ = 0 and approaching 1/e = 0.368 for 
ξ → ∞. The above results, again, favor the choice of small values for the parameter ξ. Thus, 
for ξ = 0.1 we get t1M = 0.240, which is consistent with the graph in Figure 4.5. Letting T = 0.1, 
g1(t1m) = 7.87, whereas an examination of Figure 4.5 suggests a smaller value g(tm) = 6.20 due 
to the negative contribution of the term g2(t) .

Evaluation of the spectrum of the radiated pulse follows. In the normalized Laplace 
domain p → pL, the computation is straightforward, leading to
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G(0) = 0, as it should be, because radiated fields cannot contain DC frequency components.
We can show that the equivalent compact expression for the spectrum of the radiated 

pulse is
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In the Fourier domain, p = iω, ωC → ω being the normalized angular frequency, and the 
squared modulus of the spectrum is given by
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Equation 4.27 is symmetric with respect to the frequency axis. Considering the positive 
branch of the spectrum and equating its derivative, with respect to ω2, to zero gives
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whose solution
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determines the maximum value of the spectrum

	

G G GMAX M
2 2 2

4

2

1

1 1

1 1 1
1

= ≅

=






+ + +

( ) ( )

[ ]
( )

ω

ξ ξ
ξ























=




 +

≅




2

2 2
1

2
1

1 2
1

2ξ ξ ξ
	  (4.30)

A graph of the power spectrum versus the normalized angular frequency is depicted in 
Figure 4.6 for the case ξ = 0.1. In Equation 4.30 the final two results report its limiting 
expressions for small values of the parameter ξ.

A possible estimate of the bandwidth of the power spectrum |G(ω)|2 is obtained by enforc-

ing the condition G
G

( )
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ω
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2
< M . Referring to Equations 4.27 and 4.30, the angular-

frequency bounds of the bandwidth are obtained by solving the following equation:
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Figure 4.6
Graph of the power spectrum of the signal g(t) depicted in Figure 4.5 associated with ξ = 0.1. The spectrum is 
symmetric about y axis; therefore, only positive normalized frequencies are depicted.
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The expected solutions of the equation are on the order of unity due to the small assumed 
value of ξ. Equation 4.31 can be simplified
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and we immediately obtain the following values for the normalized upper and lower 
frequency bounds of the bandwidth and the bandwidth itself:

	 ω ω ω ω ωU L U L= = = − =2 41 0 41 2� ; � ; ∆ 	  (4.33)

4.4  Polychromatic Synthetic Aperture Radar

In order to implement the polychromatic SAR imaging system, the bandwidth of the scat-
tered pulse must be broken down into subbands, which are processed independently. The 
resulting spectrum of the “chopped” signal is obtained by applying a suitable filter func-
tion, H(ω − Ω), to the spectrum of the radiated pulse G(ω) defined in Equation 4.25. Here,  
Ω is the value of the normalized angular frequency ω at the center of the chosen subband, 
subject to the constraints

	 Ω+ ≤γ 2 41� 	 (4.34a)

and

	 Ω− ≥γ 0 41� 	 (4.34b)

where 2γ is the normalized filter bandwidth. These constraints assure that the subdivided 
bandwidth falls inside the radiated pulse bandwidth Δω, as shown in Equation 4.33.

The selected bell-shaped filter function

	 H( )ω γ
ω γ

=
+

2

2 2
	  (4.35)

exhibits a maximum at ω = 0, where it attains the value H(0) = 1, and two symmetric 
inflection points at ω γ= ± 3, where the function and its square attain the values
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and
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Equation 4.37 shows that 2 γ is essentially coincident with the 3-dB bandwidth of the filter.
For the SAR processing design, it is convenient to determine the shape and compute 

the parameters of the “chopped” signal. Letting GΩ(ω) = G(ω) H(ω − Ω) be the bandwidth 
of the “chopped” signal, this signal is computed as the (inverse) Fourier Transform of its 
spectrum GΩ(ω), namely
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where positive and negative values of Ω are used in the positive and negative ranges of ω, 
respectively. The signal represented by Equation 4.38 is the same when radiated only by the 
bandwidth GΩ(ω), and not by G(ω), and coincides with the signal scattered by a point target 
located inside the illuminated area, except for a scaling factor and time delay.

To proceed further, let us compute the inverse Fourier transform of H(ω − Ω), as 
follows:
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where the Fourier integrals have been computed by closing the integration contour in the 
upper and lower halves of the complex plane ω + iω′ with half circles of infinite radius for 
t > 0 and t < 0, respectively.

Equation 4.39 represents the impulse response of the filter function centered at ω = Ω, 
whose expression in the phasor domain is

	 ˆ ( ) exp( )exp( )h t t i tΩ Ω= −γ γ 	 (4.40)

In order to be consistent with the usual procedure used in conventional SAR processing 
that utilizes I- and Q-channels, we move to the phasor domain for the continuation of our 
analysis.

Examination of Equation 4.38 shows that

	 ˆ ( ) ( ) ˆ ( )g t g t h tΩ Ω= ⊗ 	 (4.41)
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where the symbol ⊗ is the convolution operator, and the hat symbol indicates the phasor 
quantities. Though this convolution is rather elaborate, it can be computed and examined 
(Eureka Aerospace 2008). Only a simplified analysis is reported hereafter in order to pres-
ent and point out the basic features and qualifying parameters of polychromatic SAR.

The design value of γ for the filter function is dictated by the usual choices for its rela-
tive bandwidth, 2γ/Ω. In a conventional SAR system, this relative bandwidth is usually 
between 1% and 10% in airborne and spaceborne applications. Raw polychromatic SAR 
data is processed, yielding a number of microwave images, which are coincident (or at 
least similar) to those obtainable with conventional SAR systems. For the large value of 
Ω = 2, this normalized bandwidth is at most 0.2, which is much smaller than the signal 
bandwidth of 2 given in Equation 4.33. The conclusion is that

	 G G H G HΩ Ω Ω Ω( ) ( ) ( ) ( ) ( )ω ω ω ω= − ≅ − 	  (4.42)

so that

	 ˆ ( ) ˆ ( ) exp( )exp( )g t h t t i tΩ Ω Ω∝ = −γ γ 	 (4.43)

The signal represented by Equation 4.43 is proportional to the signal that would be trans-
mitted if only the subbands around Ω were used. The return signal scattered by a point 
target at range r is proportional to exp( )exp[ ( )]− − ′ − ′γ t t i t tΩ , where t′ = 2r/c. An estimate 
of the attainable range resolution is obtained by compressing the raw data, implemented 
by removing the exp(iΩt) term via heterodyning and evaluating the convolution
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and we get the same result by substituting η → |η| when η ≤ 0. We conclude that the pro-
cessed signal is given, except for a multiplicative constant, by

	 ˆ( ) exp ( ) exp( )s t
t t

t t i t=
+ − ′

− − ′ − ′
1 γ

γ
γ Ω 	  (4.46)

The modulus of the signal attains its maximum value, ŝM = 1 γ , at t  −  t′ = 0, steadily 
decreases for |t − t′|> 0, and exhibits two inflection points at t − t′ = ± 1/γ, where its value is 
2 1 0 736 0 707ˆ exp( ) � ˆ � ˆs s sM M M− = ≅ . The latter result provides an estimate of the effective 
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pulsewidth, 2/γ, centered at t = t′, of the compressed signal, leading to the evaluation of the 
attainable range resolution.

Referring to nonnormalized quantities, we get
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where λ Ω = 2πc/Ω is the wavelength of the center (carrier) angular frequency of the 
“chopped” bandwidth signal. The result given by Equation 4.47 mirrors that of the range 
resolution attainable by a conventional chirped SAR system, namely (λ/2)/(Δ f / f ), where 
f → Ω/2π and Δ f → 2γ are the carrier frequency and chirp bandwidth, respectively. An 
example of polychromatic SAR imaging is depicted in Figure 4.7.

The difference between the ImpSAR image, which uses the entire 12-GHz bandwidth of 
the radiated signal, and polychromatic SAR images, each limited to a 3-GHz bandwidth 
centered at the frequencies indicated, is clearly pronounced. Different responses of the 
large target to different frequencies are also observed—a result that is open to further 
analysis.

4.5  Conclusions

In this chapter, two novel concepts of SAR imaging, namely impulse SAR and polychro-
matic SAR, were discussed at length. The theoretical foundation of the two systems has 
been presented and validated by experimental results. These two sensors exhibit promising 

Optical image ImpSAR image fΩ = 4 GHz

fΩ = 10 GHzfΩ = 8 GHzfΩ = 6 GHz

Figure 4.7
A comparison between impulse synthetic aperture radar (ImpSAR) and polychromatic synthetic aperture radar 
(SAR) images. The figure on the top left is the optical image of the target, and the second one is the ImpSAR 
image. The other figures are polychromatic SAR images, with the “chopped” bandwidth set to 3 GHz and cen-
tered at the frequencies indicated.
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features and have a wide range of potential applications where they have distinct advan-
tages over conventional microwave imaging systems.

Impulse SAR has a number of attractive features. Its high range resolution is easily 
achievable with very short carrierless pulses; the absence of phase infers the absence of the 
grating lobes that are convenient for stereometric applications; signal processing is very 
fast, because it is directly implemented in time domain using the shift-and-add procedure. 
Finally, compared to conventional SAR systems, ImpSAR hardware is simple, and the sys-
tem design and integration are straightforward. Moreover, its wide bandwidth allows an 
easy extension to polychromatic SAR.

Polychromatic SAR has the useful capability of generating multiple images simultane-
ously, which is of particular importance to the target detection and identification process. 
It is implemented purely in software (as it runs on existing ImpSAR hardware), and its 
utility can be easily extended to low-frequency ranges. This feature is particularly attrac-
tive as it extends SAR utility to ground-penetrating applications, including detection and 
identification of buried mines, unexploded ordnance, improvised explosive devices, pipes, 
and underground structures.

There is no doubt that, for the time being, the use of these sensors is limited to ground 
and airborne operations. However, this issue is only due to the limits of attainable radiat-
ing power using available solid-state pulsers and is expected to be solved with the increas-
ing demand for impulse imaging technology.

Additional theoretical analysis is required to improve these systems, in particular, a 
deeper examination of the scattering of large bodies by very narrow pulses, when the pulse 
and the target are on two different spatial scales. This difference has not been explored 
on purpose, as it is believed that the problem should be modeled and solved directly in 
the time domain, without passing through the frequency domain, which is an ill-suited 
approach to the presented problem. This theoretical exploration is in progress.
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5
Hyperspectral Remote Sensing of 
Vegetation Bioparameters

Ruiliang Pu and Peng Gong

5.1  Introduction

Imaging spectroscopy, as a new remote-sensing technique (i.e., “hyperspectral remote 
sensing”), is of growing interest to Earth remote sensing. Hyperspectral remote sensing 
refers to a special type of imaging technology that collects image data in many narrow 
contiguous spectral bands (<10-nm bandwidth) throughout the visible and solar-reflected 
infrared portions of the spectrum (Goetz et al. 1985). Since many Earth surface materials 
show diagnostic absorption features that are from 20- to 40-nm spectral resolution (Hunt 
1980), spectral imaging systems, which acquire spectral data in contiguous narrow bands 
at <10-nm resolution, can produce data with sufficient resolution for direct identification 
of those materials with diagnostic spectral features. However, traditional remote sensing 
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systems, which usually are called “multispectral remote sensing” systems and acquire 
data in a few discrete wide bands (usually >50-nm bandwidth), cannot resolve these spec-
tral features (Goetz et al. 1985; Vane and Goetz 1988). Therefore, the value of hyperspectral 
remote sensing lies in its ability to acquire a complete reflectance spectrum for each pixel 
in an image, and it is developed for improving identification of materials and quantitative 
determination of physical and chemical properties of targets of interest, such as minerals, 
water, vegetation, soils, and human-made materials.

Imaging spectroscopy was developed for mineral mapping in the early 1980s (Goetz 
et al. 1985). The first imaging spectrometer, named the Airborne Imaging Spectrometer 
(AIS), was developed by the Jet Propulsion Laboratory (JPL) with a total of 128 spectral 
bands covering the spectral range between 0.9 and 2.4 μm in late 1982. The data made it 
possible to identify the minerals kaolinite and limestone unambiguously, which proved 
that direct mineral identification from orbit was possible (Goetz 1995). Funded by the 
National Aeronautics and Space Administration (NASA) and proposed by the JPL, the sec-
ond generation of imaging spectrometers, represented by the Airborne Visible/Infrared 
Imaging Spectrometer (AVIRIS), came into being in 1987. The AVIRIS was the first imag-
ing spectrometer to cover the solar reflected spectrum from 0.4 to 2.5 μm with a swath of 
614 pixels. This spectrometer collects upwelling radiance through 224 contiguous spectral 
bands at approximately 10-nm bandwidth across the spectrum (Green et al. 1998). The 
AVIRIS has acquired and provided a large number of hyperspectral images for scientific 
research and applications every year since 1987 (Vane and Goetz 1993; Green et al. 1998). 
In parallel, following the AIS system, the fluorescence line imager (FLI; Hollinger et al. 
1988), Advanced Solid-State Array Spectrometer (ASAS; Huegel 1988), Compact Airborne 
Spectrographic Imager (CASI; http://www.itres.com/Home), hyperspectral digital image 
collection experiment (HYDICE; Basedow et al. 1993), and Airborne Hyperspectral Scanners 
(HyMap; http://www.intspec.com) also provided a large number of hyperspectral images 
to researchers and practitioners. In addition to airborne hyperspectral systems, NASA and 
the European Space Agency (ESA) started developing the first generation of spaceborne 
hyperspectral sensor systems in 2000. Earth Observing-1 (EO-1; http://eo1.gsfc.nasa.gov/
technology/) was launched on November 21, 2000. The three primary EO-1 instruments 
are the Advanced Land Imager (ALI), Hyperion, and a linear etalon imaging spectrometer 
array (LEISA) atmospheric corrector (AC). Among the three sensors, Hyperion and LAC are 
both hyperspectral sensors. The Hyperion instrument provides a new class of Earth obser-
vation data for improving Earth surface characterization. It has a high-resolution hyper-
spectral imager capable of resolving 220 spectral bands (from 0.4 to 2.5 μm) with a 30-m 
spatial resolution (Ungar et al. 2003). The Compact High-Resolution Imaging Spectrometer 
(CHRIS) is a new imaging spectrometer used aboard the ESA’s PROBA satellite launched 
on October 22, 2001 (http://earth.esa.int/missions/thirdpartymission/proba.html).

All the aforementioned hyperspectral sensor systems have provided a large amount of 
valuable hyperspectral image data for various research and applications. The initial moti-
vation for the development of imaging spectrometry was mineral identification, although 
early experiments were also conducted in botanical remote sensing (Goetz et al. 1985). 
However, since 1988, imaging spectrometry has been successfully applied to a wide range 
of disciplines including geology, ecology and vegetation, atmospheric science, hydrology, 
and oceanography.

Ecology and the study of terrestrial vegetation are important application fields for 
hyperspectral remote sensing (Green et al. 1998). A number of forest ecosystem variables, 
including leaf area index (LAI), absorbed fraction of photosynthetically active radiation 
(fPAR), canopy temperature, and community type are correlated with remotely sensed 
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data or their derivatives (Johnson, Hlavka, and Peterson 1994). However, sensors in com-
mon use, such as the Landsat Multispectral Scanner (MSS) and the Thematic Mapper (TM), 
which integrate radiance data over wide bands of the electromagnetic spectrum, have lim-
ited value in studying the dominant canopy reflectance features such as the red spectral 
absorption band, near-infrared (NIR) reflectance band, and mid-infrared water absorption 
band (Wessman, Aber, and Peterson 1989). Moreover, the extraction of red edge and other 
optical parameters (e.g., Miller, Hare, and Wu 1990; Miller et al. 1991; Pu, Foschi, and Gong 
2004) that are related to plant stress or senescence is impossible with broadband sensors.

Many minerals found on the Earth’s surface have unique and diagnostic spectral reflec-
tance signatures. Plants, on the other hand, are composed of the same few compounds and 
therefore should have similar spectral signatures (Vane and Goetz 1993). Indeed, major fea-
tures of “peaks and valleys” along the spectral reflectance curve of a plant are due to the pres-
ence of pigments (e.g., chlorophyll [Chl]), water, and other chemical constituents. Therefore, 
characterization of diagnostic absorption features in plant spectra with hyperspectral data 
as done in geological mapping and mineral identification can also be done for extraction of 
the biochemical and biophysical parameters of plants (e.g., Wessman, Aber, and Peterson 
1989; Johnson, Hlavka, and Peterson 1994; Curran, Windham, and Gholz 1995; Jacquemoud 
et al. 1996; Gong et al. 2003; Pu and Gong 2004; Cheng et al. 2006; Asner and Martin 2008).

Hyperspectral sensors aboard different types of platforms have made it possible to 
acquire higher spectral resolution data that contain more information on the subtle spec-
tral features of plant canopies. The use of narrow (1–10 nm) instead of broad (50–200 nm) 
spectral bands could offer new potentials for remote sensing applied to vegetation (Guyot, 
Baret, and Jacquemond 1992). Hyperspectral data have been proven to be more useful in 
estimating biochemical content and concentration at both the leaf and canopy levels (e.g., 
Peterson et al. 1988; Johnson, Hlavka, and Peterson 1994; Darvishzadeh, Skidmore et al. 
2008; Asner and Martin 2008) and some other ecosystem components such as LAI, plant 
species composition, and biomass (e.g., Gong, Pu, and Miller 1995; Gong, Pu, and Yu 1997; 
Martin et al. 1998; le Maire et al. 2008) than traditional remotely sensed data. Therefore, 
besides classification and identification of vegetation types, in terrestrial ecosystem study, 
hyperspectral remote sensing can be applied to the estimation of biochemical and bio-
physical parameters and to the evaluation of ecosystem functions.

In this chapter, we focus on a review of hyperspectral remote sensing techniques for 
extraction and assessment of plant biophysical and biochemical parameters. The objectives 
of this chapter are

Provide an overview of the spectral characteristics of typical biophysical and bio-•	
chemical parameters.
Review information extraction and assessment techniques and methods specifi-•	
cally developed for analyzing imaging spectrometer data.

5.2  Spectral Characteristics of Typical Bioparameters

The spectral reflectance properties and characteristics of a list of typical plant bio param-
eters, including the biophysical and biochemical parameters (Table 5.1), have been the sub-
ject of systematic plant spectral reflectance studies. Typical biophysical parameters for their 
spectral analysis consist of vegetation canopy LAI, specific leaf area (SLA), crown closure 
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Table 5.1 

Typical Plant Biophysical and Biochemical Parameters

Biophysical Parameter Definition and Description Spectral Response and Characteristics

LAI The total one-sided area of all leaves in 
the canopy per unit area of ground.

The absorption spectral features caused 
by pigments in the visible region and 
by water content and other 
biochemicals in the SWIR region are 
useful for extracting and mapping LAI 
and CC.

SLA Projected leaf area per unit leaf dry 
mass (cm2/g).

Not directly related to water absorption 
bands, but SLA is a leaf structural 
property linked to the entire 
constellation of foliar chemicals and 
photosynthetic processes.

CC Percentage of land area covered by the 
vertical projection of plants (tree 
crowns).

Same as that for LAI.

Species Various plant species and species 
composition.

Spectral differences due to differences 
and variation in phenology/
physiology, internal leaf structure, 
biochemicals, and ecosystem type.

Biomass The total of absolute amount of 
vegetation present (often considered 
in terms of the aboveground biomass) 
per unit area of ground.

Spectral responses to LAI, stand/
community structure, species and 
species composition, and image 
textural information.

NPP The net flux of carbon between the 
atmosphere and terrestrial vegetation 
can be expressed on an annual basis in 
terms of net biomass accumulation, or 
NPP (Goetz and Prince 1996).

Spectra reflect vegetation condition and 
changes in LAI or canopy light 
absorption through time in visible and 
NIR regions.

fPAR Effective absorbed fPAR in the visible 
region.

In the visible spectral region 400–700 nm, 
most absorbed by plant pigments, such 
as Chl-a and -b, Cars, and Anths; and 
leaf water and N contents for 
photosynthesis.

Chls (Chl-a, Chl-b) Green pigments Chl-a and Chl-b for 
plant photosynthesis processing, 
found in green photosynthetic 
organisms, (mg/m2 or nmol/cm2).

Chl-a absorption features are near 430 
and 660 nm, and Chl-b absorption 
features are near 450 and 650 nm in 
vivo (Lichtenthaler 1987; Blackburn 
2006). But it is known that in situ 
Chl-a absorbs at both 450 and 670 nm.

Cars Any of a class of yellow to red 
pigments, including carotenes and 
xanthophylls (mg/m2).

Cars absorption feature in the blue 
region is near 445 nm in vivo 
(Lichtenthaler 1987). But it is known 
that in situ Cars absorb at 500 nm and 
even at a little bit longer wavelength.

Anths Any of various water-soluble pigments 
that impart to flowers and other plant 
parts colors ranging from violet and 
blue to most shades of red (mg/m2).

Anths absorption feature in the green 
region is at 530 nm in vivo, but in 
situ Anths absorb around 550 nm 
(Gitelson et al. 2001, 2009; Blackburn 
2006).

N Plant nutrient element (%). The central wavelengths of N 
absorption features are near 1.51, 2.06, 
2.18, 2.30, and 2.35 μm.
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(CC), vegetation species and composition, biomass, effective absorbed fPAR, and net pri-
mary productivity (NPP), which reflect photosynthesis rate. Typical biochemical param-
eters are major pigments (Chls, carotenoids [Cars], and anthocyanins [Anths]), nutrients 
(nitrogen [N], phosphorus [P], and potassium [K]), leaf or canopy water content (W), and 
other biochemicals (e.g., lignin, cellulose, and protein). Analysis results are useful for deter-
mining the physicochemical properties of plants derived from spectral data and helpful for 
extracting bioparameters in order to assess vegetation and ecosystem conditions. Some 
analysis results of spectral characteristics for the list of typical biophysical and biochemical 
parameters from hyperspectral data are summarized in Sections 5.2.1 through 5.2.7.

5.2.1  Leaf Area Index, Specific Leaf Area, and Crown Closure

The LAI, SLA, and CC are important structural parameters for quantifying the energy and 
mass exchange characteristics of terrestrial ecosystems such as photosynthesis, respiration, 
transpiration, the carbon and nutrient cycle, and rainfall interception. The LAI parameter 
quantifies the amount of live green leaf material present in the canopy per unit ground area, 
whereas SLA describes the amount of leaf dry mass present in the plant canopy. The CC 
parameter can only quantify the percentage of area covered by the vertical projection of live 
green leaf material present in the canopy. The physiological and structural characteristics 
of plant leaves determine their typically low visible-light reflectance, except in green light. 
The high NIR reflectance of vegetation allows optical remote sensing to capture detailed 
information about the live, photosynthetically active forest canopy structure, and thus help 
understand the mass exchange between the atmosphere and the plant ecosystem (Zheng 

Table 5.1 (Continued)

Biophysical Parameter Definition and Description Spectral Response and Characteristics

P Plant nutrient element (%). No direct and significant absorption 
features across 0.40–2.50 μm, but it 
does indirectly affect the spectral 
characteristics of other biochemical 
compounds.

K Plant nutrient element (%). Foliar K concentration has only a slight 
effect on sclerenhyma cell walls, and 
thus on NIR reflectance.

W Leaf or canopy water content or 
concentration (%).

The central wavelengths of those 
absorption features are near 0.97, 1.20, 
1.40, and 1.94 μm.

Lignin A complex polymer, the chief 
noncarbohydrate constituent of wood, 
which binds to cellulose fibers and 
hardens and strengthens the cell walls 
of plants (%).

The central wavelengths of lignin 
absorption features are near 1.12, 1.42, 
1.69, and 1.94 μm.

Cellulose A complex carbohydrate, which is 
composed of glucose units, and forms 
the main constituent of the cell wall in 
most plants (%).

The central wavelengths of cellulose 
absorption features are near 1.20, 1.49, 
1.78, 1.82, 2.27, 2.34, and 2.35 μm.

Protein Any of a group of complex organic 
macromolecules that contain carbon, 
hydrogen, oxygen, N, and usually 
sulfur, and are composed of one or 
more chains of amino acids (%).

The central wavelengths of protein 
absorption features are near 0.91, 1.02, 
1.51, 1.98, 2.06, 2.18, 2.24, and 2.30 μm.
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and Moskal 2009). As LAI and CC increase, many absorption features become significant 
due to changes in their amplitude, width, or location. The absorption features, including 
those caused by pigments in the visible region and by water content and other biochemi-
cals in the shortwave infrared (SWIR) region (Curran 1989; Elvidge 1990), are useful in 
extracting and mapping LAI and CC. Different from LAI and CC, the spectral properties 
of SLA are not directly related to water absorption bands in the full range of a vegetation 
spectrum. However, SLA has a leaf structural property linked to the entire constellation 
of foliar chemicals and photosynthetic processes (Wright et al. 2004; Niinemets and Sack 
2006). It is related to the NIR spectral reflectance that is dominated by the amount of leaf 
water content and leaf thickness (Jacquemoud and Baret 1990). Thus, at the leaf level, SLA 
is highly correlated with leaf spectral reflectance (Asner and Martin 2008).

Optical remote sensing, especially hyperspectral remote sensing, is aimed at retrieving 
the spectral characteristics of leaves, quantified by LAI, SLA, and CC, which are determined 
by the internal biochemical structure and pigments content of leaves. Currently, many spec-
tral analysis techniques and methods (see reviews for individual methods and techniques 
in Section 5.3) are available for extracting and assessing the biophysical parameters LAI, 
SLA, and CC from various hyperspectral sensors, especially imaging spectrometers, such 
as spectral derivatives (e.g., Gong, Pu, and Miller 1992; Gong, Pu, and Miller 1995), spectral 
position variables (e.g., Miller, Hare, and Wu 1990; Pu, Gong et al. 2003), spectral indices 
(e.g., Gong et al. 2003; Delalieux et al. 2008), and physically based models (e.g., Schlerf and 
Atzberger 2006; Asner and Martin 2008; Darvishzadeh, Roshanak et al. 2008).

5.2.2  Species and Composition

Foliage spectral variability among individual species, or even within a single crown, is 
attributed not only to differences in internal leaf structure and biochemicals (e.g., water, 
Chl content, epiphyll cover, and herbivory; Clark, Roberts, and Clark 2005) but also to dif-
ference and variation in the phenology/physiology of plant species. In addition, the rela-
tive importance of these biochemical and structural properties among individual species 
is also dependent on measured wavelength, pixel size, and ecosystem type (Asner 1998). 
Few studies have been systematically carried out to determine the best wavelengths suit-
able for species recognition in the field. This obviously depends on species-specific bio-
chemical characteristics that are related to foliar chemistry (Martin et al. 1998). Martin and 
Aber (1997) used AVIRIS data to estimate the N and lignin content in forest canopy foliage. 
Although either of the two by itself is insufficient to identify species, combined informa-
tion can differentiate between species. For example, red pine and hemlock were reported 
to have very similar N concentration, but very different levels of lignin (Martin et al. 1998). 
Pu (2009) used 30 selected spectral variables evaluated by analysis of variance (ANOVA) 
from in situ hyperspectral data to identify 11 broadleaf species in an urban environment. 
Among the 30 selected spectral variables, most of the spectral variables are directly related 
to leaf chemistry. For example, some selected spectral variables are related to water absorp-
tion bands around 0.97, 1.20, and 1.75 μm, and the others are related to spectral absorption 
features of Chls, red-edge optical parameters, simple ratio (SR), vegetation index (VI), and 
reflectance at 680 nm, and other biochemicals such as lignin (near 1.20 and 1.42 μm), cel-
lulose (near 1.20 and 1.49 μm), and N (near 1.51 and 2.18 μm; Curran 1989). In identifying 
invasive species in Hawaiian forests from native and other introduced species by remote 
sensing, Asner et al. (2008) confirmed the viewpoint that the observed differences in can-
opy spectral signatures are linked to relative differences in measured leaf pigments (Chls 
and Cars), nutrients (N and P), and structural (SLA) properties, as well as to canopy LAI.
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5.2.3 B iomass

Leaf canopy biomass is calculated as the product of the leaf dry mass per area (LMA; unit: 
g/m2, or the inverse of SLA) and LAI. Therefore, based on the spectral responses to LAI 
and LMA, both biophysical parameters can be estimated from hyperspectral data; thus, 
the leaf mass of the entire canopy is estimated (le Maire et al. 2008). Many VIs, such as the 
normalized difference VI (NDVI) and the SR constructed with NIR and red bands have 
been developed and directly applied to estimate leaf or canopy biomass. It has been rec-
ommended that VIs remove variability caused by canopy geometry, soil background, sun 
view angles, and atmospheric conditions when measuring biophysical properties (Elvidge 
and Chen 1995; Blackburn and Steele 1999). Broadband VIs use, in principle, average spec-
tral information over a wide range, resulting in the loss of critical spectral information 
available in specific narrow (hyperspectral) bands (Hansena and Schjoerring 2003). Since 
many narrow bands are available for constructing VIs, selection of the correct wavelengths 
and bandwidths is important. When some VIs derived from hyperspectral data are used to 
estimate some biophysical parameters, narrow bands (10 nm) perform better than broad-
band (e.g., TM bands) using standard red/NIR and green/NIR NDVIs (NDVIgreen; e.g., 
Gong et al. 2003; Hansena and Schjoerring 2003). For example, NDVISWIR constructed with 
reflectances at wavelengths 1540 and 2160 nm is the best index for leaf mass estimation 
(le Maire et al. 2008); many hyperspectral bands in the SWIR region and some in the NIR 
region have the greatest potential to form spectral indices for LAI estimation (e.g., most 
effective band wavelengths centered around 820, 1040, 1200, 1250, 1650, 2100, and 2260 nm 
with bandwidths ranging from 10 to 300 nm; Gong et al. 2003).

5.2.4  Pigments: Chlorophylls, Carotenoids, and Anthocyanins

The Chls (Chl-a and Chl-b) are Earth’s most important organic molecules, as they are the 
most important pigments necessary for photosynthesis. The second major group of plant 
pigments, composed of carotene and xanthophylls, is Cars, whereas Anths are water-
soluble flavonoids, which form the third major group of pigments in leaves, but there 
is no unified explanation for their presence and function (Blackburn 2007b). Published 
spectral absorption wavelengths of isolated pigments show that Chl-a absorption fea-
tures are around 430 and 660 nm and Chl-b absorption features are around 450 and 
650 nm in vivo (Lichtenthaler 1987; Blackburn 2007b). But it is known that in situ Chl-a 
absorbs at both 450 and 670 nm. Cars absorption feature in the blue region is at 445 nm 
in vivo and β-carotene at 470 nm (Lichtenthaler 1987; Blackburn 2007b) in vivo. But it is 
also known that in situ Cars absorb at 500 nm and even at wavelengths that are a little 
bit longer. The absorption feature of Anths in the green region is at 530 nm in vivo, but 
in situ Anths absorb around 550 nm (Gitelson, Merzlyak, and Chivkunova 2001; Gitelson, 
Chivkunova, and Merzlyak 2009; Blackburn 2007b; Ustin et al. 2009).

Based on the spectral properties of the pigments, some researchers have used red edge 
(e.g., Curran, Windham, and Gholz 1995; Cho, Skidmore, and Atzberger 2008) optical 
parameters to estimate plant leaf and canopy Chls content and concentration. However, 
most of them have developed and used various VIs, constructed in either ratios or nor-
malized difference ratios of two narrow bands in the visible and NIR regions, to estimate 
the major plant pigments Chls, Cars, and Anths at leaf or canopy levels (e.g., Gitelson 
and Merzlyak 1994; Blackburn 1998; Gitelson, Merzlyak, and Chivkunova 2001; Gitelson 
et al. 2002; Gitelson, Keydan, and Merzlyak 2006; Richardson, Duigan, and Berlyn 2002; 
Rama  Rao et al. 2008). In addition, many researchers also employ physically based 
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models at leaf or canopy levels to retrieve the pigments (e.g., Asner and Martin 2008; 
Feret et al. 2008) and use data transform approaches like wavelet analysis to retrieve 
Chl concentration from leaf reflectance spectra (Blackburn and Ferwerda 2008). (For a 
more detailed description and review of concrete analysis methods and techniques, see 
Section 5.3.)

5.2.5  Nutrients: Nitrogen, Phosphorous, and Potassium

The foliage and canopy N is related to a variety of ecological and biochemical processes 
(Martin et al. 2008). It is the most important nutrient element needed by plants for growth. 
The second and third most limiting nutrient constituents, P and K, are essential in all 
phases of plant growth; they are used in cell division, fat formation, energy transfer, seed 
germination, and flowering and fruiting (Milton, Eiswerth, and Ager 1991; Jokela et al. 
1997). Among the three basic nutrient elements, N has significant absorption features 
that have been found in the visible, NIR, and SWIR regions. According to Curran (1989), 
N absorption features in their isolated form are located around 1.51, 2.06, 2.18, 2.30, and 
2.35 μm. Since many biochemical compounds comprise N, such as Chls and protein, their 
spectral properties are also characterized by N concentration in plant leaves. It seems 
that P has no direct and significant absorption features across the visible, NIR, and SWIR 
regions, but it does indirectly affect the spectral characteristics of other biochemical com-
pounds. The documented spectral changes include a higher reflectance in the green and 
yellow portions of the electromagnetic spectrum in P-deficient plants and a difference in 
the position of the long-wavelength edge (the red edge) of Chl absorption band centered 
around 0.68 μm (Milton, Eiswerth, and Ager 1991). Foliar K concentration has only a slight 
effect on needle morphology, thereby affecting NIR reflectance. This is because the scler-
enchyma cell walls are thicker, with a high K concentration, which leads to higher NIR 
reflectance of leaves (Jokela et al. 1997).

To estimate nutrient concentrations from hyperspectral data, including in situ spectral 
measurements and imaging data, many analysis techniques and methods (see reviews 
for such individual methods and techniques in Section 5.3) have been developed. They 
include spectral derivatives (Milton, Eiswerth, and Ager 1991; Gong, Pu, and Heald 2002), 
spectral indices (Gong, Pu, and Heald 2002; Serrano, Peñuelas, and Ustin 2002; Hatfield 
et al. 2008; Rama Rao et al. 2008), spectral position variables (Gong, Pu, and Heald 2002; 
Cho and Skidmore 2006), continuum-removal method (Huber et al. 2008), statistical regres-
sion (LaCapra et al. 1996; Martin and Aber 1997; Martin et al. 2008), and inversion of physi-
cally based models (Asner and Martin 2008; Cho, Skidmore, and Atzberger 2008).

5.2.6 L eaf or Canopy Water Content

The evaluation of water status in vegetation is an important component of hyperspec-
tral remote sensing (Goetz et al. 1985; Curran, Kupiec, and Smith 1997). Previous work on 
assessing the plant water status mainly depended on water spectral absorption features 
in the 0.40–2.50 μm region. According to Curran (1989), the central wavelengths of the 
absorption features are around 0.97, 1.20, 1.40, and 1.94 μm. In addition, the reflectance of 
dry vegetation shows an absorption feature centered at 1.78 μm by other chemicals (cel-
lulose, sugar, and starch; Curran 1989) rather than by water, because pure water does not 
cause such an absorption feature (Palmer and Williams 1974). In general, the reflectance 
spectra of green and yellow leaves in those absorption bands are quickly saturated and 
solely dominated (Elvidge 1990) by changes in the leaf water content.
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To extract these spectral absorption features, one of the most important techniques is 
to make use of VIs (Peñuelas et al. 1993; Peñuelas, Filella, and Sweeano 1996; Pu, Ge et al.  
2003; Cheng et al. 2006; Colombo et al. 2008). Other analysis techniques (see reviews of these 
individual methods and techniques in Section 5.3) include spectral derivatives (Pu, Ge et al. 
2003; Pu, Foschi, and Gong 2004), spectral position variables (Pu, Foschi, and Gong 2004), 
continuum-removal method (Pu, Ge et al. 2003; Huber et al. 2008), statistical regression 
(Curran, Kupiec, and Smith 1997; Colombo et al. 2008), and inversion of physically based 
models (Ustin et al. 1998; Clevers, Kooistra, and Schaepman 2008; Colombo et al. 2008).

5.2.7  Other Biochemicals: Lignin, Cellulose, and Protein

The spectral absorption features of other biochemicals are mostly located in the SWIR 
region (1.00–2.50 μm). According to Curran (1989), the central wavelengths of lignin absorp-
tion features are around 1.12, 1.42, 1.69, and 1.94 μm; the central wavelengths of cellulose 
absorption features are around 1.20, 1.49, 1.78, 1.82, 2.27, 2.34, and 2.35 μm; and the central 
wavelengths of protein absorption features are around 0.91, 1.02, 1.51, 1.98, 2.06, 2.18, 2.24, 
and 2.30 μm. So far, most techniques (see reviews for individual methods and techniques in 
Sections 5.3.1 through 5.3.9) for estimating the concentrations of lignin, cellulose, and protein 
from hyperspectral data use derivative spectra (Peterson et al. 1988; Wessman, Aber, and 
Peterson 1989; Curran, Kupiec, and Smith 1997), logarithm spectra (Card, Peterson, and Matson 
1988; Peterson et al. 1988; Zagolski et al. 1996), spectral indices (Gastellu-etchegorry et al. 1995; 
Serrano, Peñuelas, and Ustin 2002), and/or statistical regression (Gastellu-etchegorry et al. 
1995; LaCapra et al. 1996; Curran, Kupiec, and Smith 1997; Martin and Aber 1997).

5.3  Analysis Techniques and Methods

There are many analysis techniques and methods that currently are available to be used 
for extracting and assessing bioparameters from various hyperspectral data. A total of nine 
types or categories of the techniques and methods are reviewed in following Sections 5.3.1 
through 5.3.9.

5.3.1  Derivative Analysis

In situ data or imaging hyperspectral data obtained in the field are rarely from a single 
object. They are contaminated by illumination variations caused by terrain relief, cloud, 
and viewing geometry. The spectral reflectance of a target of interest could also be affected 
by radiometric contributions from background materials like soil spectra. Derivative anal-
ysis has been considered a desirable tool in removing or compressing the effect of illu-
mination variations (Demetriades-Shah, Steven, and Clark 1990; Tsai and Philpot 1998). 
It has also proven effective in reducing background effects when the spectral pattern of 
background materials has a lower frequency of variation (Gong, Pu, and Miller 1992; Li 
et al. 1993). For derivative analysis of hyperspectral data, a finite approximation (Tsai and 
Philpot 1998) can be applied to calculate the first- and second-order derivative spectra as 
follows:

	 ′ ≈ −+ −ρ λ ρ λ ρ λ λ( ) [ ( ) ( )]/i i i1 1 ∆ 	 (5.1)



110	 Advances in Environmental Remote Sensing

and

	
′′ ≈ ′ − ′

≈ −
+ −

+

ρ λ ρ λ ρ λ λ
ρ λ ρ

( ) [ ( ) ( )]/

[ ( ) (
i i i

i

1 1

1 2

∆
λ ρ λ λi i) ( )]/+ −1

2∆
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where ′ρ λ( )i  and ′′ρ λ( )i  are the first and second derivatives, respectively, ρ(λi) is reflectance 
at a wavelength (band) i, and Δλ is the wavelength interval between λi + 1 and λi − 1 equal to 
twice the bandwidth in this case.

Derivative spectra have been successfully employed in hyperspectral data analysis for 
biophysical and biochemical parameter extraction (e.g., Gong, Pu, and Heald 2002; Pu, Ge 
et al. 2003; Huang et al. 2004; Galvão, Formaggio, and Tisot 2005; Laba et al. 2005; Cho and 
Skidmore 2006; Asner et al. 2008; Lucas and Carter 2008). It is believed that the accuracy 
of derivative analysis is sensitive to the signal-to-noise ratio of hyperspectral data and 
higher-order spectral derivative processing is susceptible to noise (Cloutis 1996). Lower-
order derivatives (e.g., the first-order derivative) are less sensitive to noise and hence more 
effective in operational remote sensing. For example, Gong, Pu, and Yu (1997, 2001) report 
that the first derivative of tree spectra could considerably improve the accuracy of recog-
nizing six conifer species commonly found in northern California.

5.3.2  Spectral Matching

Researchers van der Meer and Bakker (1997) developed a cross-correlogram spectral 
matching (CCSM) technique, taking into consideration the correlation coefficient between 
a target spectrum and a reference spectrum, the skewness of the spectra, and criterion of 
correlation significance. A cross-correlogram (i.e., CCSM) is constructed by calculating the 
cross-correlation at different match positions between a test (target) spectrum and a refer-
ence (a laboratory or pixel spectrum known to characterize a target of interest) spectrum, 
and is suitable for processing hyperspectral data. Further, van der Meer (2006) compared 
spectral angle mapper (SAM) with the vector CCSM between a known reference and an 
unknown target spectrum and the spectral information divergence (SID; Chang 2000) in 
differentiating the minerals alunite, kaolinite, montmorillonite, and quartz using both 
synthetic and real (i.e., AVIRIS) hyperspectral data of a (artificial or real) hydrothermal 
alteration system. The SID measures the discrepancy in probability distributions between 
two pixel vectors. His results suggest that SID and CCSM outperform SAM, and that SID 
is more effective in mapping the four minerals.

Given two spectral signature curves, ρ ρ ρ ρr r r rL
T= ( , , ���, )1 2  and ρ ρ ρ ρt t t tL

T= ( , , ���, )1 2 , these 
measures are defined as follows:

	 Cross-correlation r
n

n
m

r t r t

r r

= ∑ − ∑ ∑

∑ − ∑
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ρ ρ2 ( )  ∑ − ∑( ) 
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	 (5.3)

where the cross-correlation rm, at each match position m, is equivalent to the linear cor-
relation coefficient and is defined as the ratio of covariance to the product of the sum of 
standard deviations; n is the effective number of bands when calculating the CCSM; and L 
is total number of bands (n < L).

SID is given by

	 SID( , ) ( ) ( )ρ ρ ρ ρ ρ ρ
r t

D Dr t t r= +  	 (5.4)
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where
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Equations 5.5 and 5.6 are derived from the probability vectors p p p pL
T= …( , , , )1 2  and 

q q q qL
T= …( , , , )1 2  for the spectral signatures of vectors ρr and ρt, where pk rk rll

L
=

=∑ρ ρ
1

, 

qk tk tl

L
=

=∑ρ ρ l1
, I ql t l( ) logρ = − , and similarly I pl r l( ) logρ = − . Measures Il(ρt) and Il(ρr) are 

referred to as the “self-information” of ρt for band l. Note that Equations 5.5 and 5.6 repre-
sent the relative entropy of ρt with respect to ρr (indicated by the ‖ symbol).

In the study of the spectroscopic determination of two health levels of the coast live oak 
leaves, Pu, Kelly et al. (2008) used the CCSM algorithm to discriminate between healthy 
and infected leaves by matching unknown leaf spectra with known infected leaf spectra 
in association with water stress. Wang et al. (2009) also classified land-cover types with 
the CCRM spectral matching technique. In spectral matching, it should be noted that the 
accuracy of spectral matching techniques (e.g., CCSM) is directly affected by geometry of 
sensors’ observations and target size. This effect can be minimized by performing spectral 
normalization before conducting spectral matching (Pieters 1983). In general, such match-
ing techniques are more useful for change detection of scene components than for identi-
fication of the unknown scene components (Yasuoka et al. 1990).

5.3.3  Spectral Index Analysis

When multispectral data is used to construct various spectral VIs, the advantage of VIs is 
their ease of use. When using hyperspectral data to conduct spectral VI analysis, hyper-
spectral remote sensing has the added advantage of increased chance and flexibility to 
choose spectral bands. With multispectral data, one may have only the choice to use the 
red and NIR bands. However, with hyperspectral data, one can choose many such red 
and NIR narrowband combinations (Gong et al. 2003). Accordingly, spectral VIs applied 
to hyperspectral data are called “narrowband VIs” (Zarco-Tejada et al. 2001; Eitel et al. 
2006; He, Guo, and Wilmshurst 2006). Table 5.2 lists a set of 66 VIs that are developed for 
hyperspectral data. These VIs frequently appear in the literature on extracting and evalu-
ating plant biophysical and biochemical parameters from hyperspectral data. The 66 VIs 
are grouped into five categories so that readers can conveniently locate a VI (or a group 
of VIs), based on the characteristics and functions of the VIs: (1) multiple bioparameters, 
(2) pigments (Chls, Cars, and Anths), (3) foliar chemistry, (4) water, and (5) stress. Within 
individual categories, the VIs are arranged in alphabetical order. A brief review of these 
VIs is given in this section.

Specifically, the use of VIs for extracting and assessing vegetation LAI, SLA, and CC 
includes the use of enhanced VI (EVI), two-band enhanced VI (EVI2), greenness index 
(GI), LAI determining index (LAIDI), modified Chl absorption ratio index 1 (MCARI1), 
modified Chl absorption ratio index 2 (MCARI2), modified SR (MSR), modified triangular 
VI 1 (MTVI1), modified triangular VI 2 (MTVI2), normalized difference infrared index 
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(NDII), normalized difference VI (NDVI), pigment-specific normalized difference (PSND), 
hyperspectral perpendicular VI (PVIhyp), renormalized difference VI (RDVI), hyperspec-
tral ratio VI (RVIhyp), standard of LAIDI (sLAIDI), spectral polygon VI (SPVI), SR, and wide 
dynamic range VI (WDRVI). For example, Gong et al. (2003) and Weihs et al. (2008) used 
PVIhyp, SR, NDVI, RDVI, and RVIhyp, constructed from hyperspectral image data Hyperion 
and HyMap, to estimate forest LAI. He, Guo, and Wilmshurst (2006) and Darvishzadeh, 
Skidmore et al. (2008) estimated LAI of grassland ecosystems with VIs: RDVI, MCARI2, 
and NDVI. With LAIDI and sLAIDI VIs, Delalieux et al. (2008) determined LAI in orchards. 
And Li et al. (2008) used MTVI2 to map LAI over an agricultural area from CASI hyper-
spectral image data.

Some VIs, including adjusted transformed soil-adjusted VI (ATSAVI), leaf water VI 
1(LWVI-1), leaf water VI 2 (LWVI-2), NDVI, SR, triangular VI (TVI), and modified SR 
(mSR705), can be used for identifying and mapping plant species and composition. For 
example, Galvão, Formaggio, and Tisot (2005) developed and used VIs, LWVI-1, LWVI-2, 
and NDVI to discriminate five sugarcane varieties in southern Brazil with EO-1 Hyperion 
data. Hestir et al. (2008) used mSR705 VI to map invasive species with airborne hyper-
spectral data (HyMap). Further, Lucas and Carter (2008) assessed vascular plant species 
richness on Horn Island, Mississippi, with various SR VIs constructed from HyMap hyper-
spectral image data. For estimating biomass from hyperspectral data, some VIs, such as 
EVI, modified normalized difference (mND705), mSR705, NDVI, SR, and WDRVI, are very 
useful. For example, Hansena and Schjoerring (2003) and le Maire et al. (2008) used vari-
ous narrowband NDVIs and SRs to estimate wheat crop and broadleaf forest biomass, 
respectively.

With hyperspectral data, many VIs were developed for estimating plant pigments, espe-
cially for Chls (Chl-a and Chl-b). They are blue green pigment index (BGI), blue red pigment 
index (BRI), Chl absorption ratio index (CARI), Chl index using green reflectance (Chlgreen), 
Chl index using red edge reflectance (Chlred-edge), modified SR of derivatives (DmSR), leaf Chl 
index (LCI), modified Chl absorption in reflectance index (MCARI), mND705, mSR705, nor-
malized total pigment to Chl index (NPCI), normalized phaeophytinization index (NPQI), 
plant biochemical index (PBI), photochemical/physiological reflectance index (PRI), PSND, 
red edge vegetation stress index (RVSI), structural independent pigment index (SIPI), TVI, 
NDVI, and SR. The VIs specifically developed for estimating Cars contents at leaf level 
include Car reflectance index (CRI), double difference (DD), eucalyptus pigment indexes 
(EPIs), modified Car reflectance index (mCRI), PRI, pigment-specific SR (PSSR), ratio analy-
sis of reflectance spectra (RARS), and SIPI. A few VIs were designed for estimating Anths 
contents in foliage. They are anthocyanin reflectance index (ARI), modified ARI (mARI), 
and red-green ratio (RGR). These VIs were developed from various hyperspectral data and 
have been applied for estimating plant pigments by researchers (e.g., Gitelson and Merzlyak 
1994; Blackburn 1998; Gamon and Surfus 1999; Gitelson, Buschmann, and Lichtenthaler 
1999; Gitelson, Merzlyak, and Chivkunova 2001; Richardson, Duigan, and Berlyn 2002; 
Rama Rao et al. 2008). For instance, Blackburn (1998) used various narrowband SR, PSND, 
and SIPI VIs to quantify Chls and Cars of Pteridium aquilinum grass at leaf and canopy 
scales. Gitelson et al. (2001, 2006) developed mCRI, ARI, and mARI VIs with in situ spectral 
measurements taken from tree leaves to estimate Chls, Cars, and Anths contents. Rama Rao 
et al. (2008) developed a new VI, named PBI, for improved estimation of plant biochemicals 
from spaceborne hyperspectral data. The VI PBI is an SR of reflectances at 810 and 560 nm. 
It has the potential to retrieve leaf total Chls and N concentrations of various crops and at 
different geographical locations. Hatfield et al. (2008) used PSND and PRI to determine the 
pigments of agricultural crops. A study by le Maire et al. (2008) estimated leaf Chls content 
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of broadleaf forest with NDVI and SR VIs derived from in situ and Hyperion hyperspec-
tral data. Chappelle, Kim, and McMurtrey (1992) recommended the use of R760/R500 as a 
quantitative measure of Cars. Peñuelas, Baret, and Filella (1995) proposed the use of SIPI for 
estimating Cars. For Anths estimation, Gamon and Surfus (1999) used a ratio of red-green 
reflectances R600–700/R500–600, and Gitelson, Merzlyak, and Chivkunova (2001), Gitelson, 
Keydan, and Merzlyak (2006) used an ARI and an mARI to estimate Anths content at the 
plant leaf level. However, Sims and Gamon (2002, page 352) concluded, “estimation of Cars 
and Anths contents remains more difficult than estimation of Chls content.”

Many narrowband VIs were designed for estimating water content at the leaf and can-
opy levels. These VIs include disease water stress index (DSWI), LWVI-1, LWVI-2, mois-
ture stress index (MSI), NDII, normalized difference water index (NDWI), PVIhyp, 3-band 
ratio at 1200 nm (RATIO1200), 3-band ratio at 975 nm (RATIO975), RVIhyp, RVSI, SWIR water 
stress index (SIWSI), SR water index (SRWI), and water index (WI). For example, Peñuelas 
et al. (1993, 1996) studied the reflectances of gerbera, pepper, bean plants, and wheat in the 
950–970 nm region as an indicator of water status. Their results showed that the ratio of 
the reflectance at 970 nm, one of the water absorption bands, to the reflectance at 900 nm 
as the reference wavelength (R970/R900 or WI) closely tracked changes in relative water con-
tent (RWC), leaf water potential, stomatal conductance, and cell wall elasticity. Cheng et al. 
(2006) and Clevers, Kooistra, and Schaepman (2008) used NDWI, WI, and SIWSI to esti-
mate vegetation water content for different canopy scenarios with hyperspectral AVIRIS 
data. Colombo et al. (2008) estimated leaf and canopy water content in a poplar plantation 
using SRWI, NDII, and MSI derived from airborne hyperspectral image data. Pu, Ge et al. 
(2003) determined water status in coastal live oak leaves with RATIO1200 and RATIO975 
indices derived from hyperspectral measurements.

A few VIs are designed for estimating nutrient constituents and concentrations of other 
biochemicals, such as lignin and cellulose. They are cellulose absorption index (CAI), nor-
malized difference N index (NDNI), normalized difference lignin index (NDLI), NDVI, 
PBI, and SR. For example, Serrano, Peñuelas, and Ustin (2002) proposed NDNI and NDLI 
to assess N and lignin concentrations in chaparral vegetation using AVIRIS hyperspectral 
image data. Gong, Pu, and Heald (2002) and Hansena and Schjoerring (2003) used narrow-
band NDVI and SR indices to assess nutrient constituent concentrations (N, P, and K) in a 
conifer species and N status in wheat crops from hyperspectral data. Further, Rama Rao 
et al. (2008) estimated leaf N concentration of cotton and rice crops with PBI derived from 
Hyperion hyperspectral data.

5.3.4 A nalysis of Absorption Features and Spectral Position Variables

Analysis of spectral absorption features is one step further toward the recognition of 
some essential properties of a target of interest. Quantitative characterization of absorp-
tion features allows for abundance estimation from hyperspectral data. Spectral absorp-
tion features are caused by a combination of factors inside and outside the matter surface, 
including electronic processes, molecular vibrations, abundance of chemical constituents, 
granular size and physical structure, and surface roughness relative to electromagnetic 
wavelength. Figure 5.1 shows the major absorption and reflectance features for vegetation.

In order to analyze the absorption features of a spectral reflectance curve, one needs to 
normalize the spectral curve so that only the spectral values inside the absorption features 
will be less than 1(100%). This can be done using a continuum-removal technique proposed 
by Clark and Roush (1984). As shown in Figure 5.2, a continuum is defined for each spec-
tral curve by finding the high points (local maxima) along the curve and fitting straight 
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line segments between these points. This can be done either manually or automatically. 
The normalized curve is obtained by dividing the original spectral value at each band 
location with the value on the straight line segments at the corresponding wavelength 
location. Quantitative measures can be determined from each absorption peak after nor-
malization of the raw spectral reflectance curve. An asymmetric term can also be defined 
by subtracting area A from area B (Figure 5.2; Kruse, Lefkoff, and Dietz 1993). The quan-
titative measures shown in Figure 5.2 can be used to determine the abundances of certain 
compounds in a pixel. For example, Pu, Ge et al. (2003) explored the effectiveness of these 
absorption parameters in correlation with the leaf water content of oak trees at various 
stages of disease infection. Galvão, Formaggio, and Tisot (2005) successfully used some 
absorption features extracted with this technique and other spectral indices from EO-1 
Hyperion data to discriminate the five sugarcane varieties in southeastern Brazil. Huber 
et al. (2008) also estimated foliar biochemistry (the concentrations of N and carbon, and 
the content of water) from hyperspectral HyMap data in mixed forest canopy using such a 
continuum-removal technique.

Some absorption features or spectral position variables can also be modeled. For exam-
ple, the red edge of vegetation between 670 and 780 nm has been widely modeled by a 
number of researchers. Based on the spectral properties of the pigments, some researchers 
have used red edge optical parameters (e.g., Curran, Windham, and Gholz 1995; Belanger, 
Miller, and Boyer 1995; Cho, Skidmore, and Atzberger 2008) to estimate plant leaf and can-
opy Chls content and concentration. Guyot, Baret, and Jacquemond (1992) proposed a four-
point interpolation method to find the wavelength position of the inflection point on the 
red edge position and the red well position. Other methods include polynomial fitting (Pu, 
Gong et al. 2003), Lagrangian interpolation (Dawson and Curran 1998), inverted Gaussian 
model fitting (Miller, Hare, and Wu 1990), and linear extrapolation techniques (Cho and 
Skidmore 2006). The red edge optical parameters can be used for estimating Chls con-
centrations (Belanger, Miller, and Boyer 1995; Curran, Windham, and Gholz 1995), nutri-
ent constituent concentrations (Gong, Pu, and Heald 2002; Cho, Skidmore, and Atzberger 
2008), leaf relative water content (Pu, Ge et al. 2003; Pu, Foschi, and Gong 2004), and forest 
LAI (Pu, Gong et al. 2003). In addition, Pu, Foschi, and Gong (2004) proposed to extract 
20 spectral variables (10 maximum-first derivatives plus 10 corresponding wavelength-
position variables) from 10 slopes defined across a reflectance curve from 0.4 to 2.5 μm 
for estimating oak leaf relative water content. All these efforts can help extract absorption 
feature measures and other spectral features from original hyperspectral data for estimat-
ing vegetation parameters.

5.3.5  Hyperspectral Transformation

The principal component (PC) analysis (PCA) technique has been applied to reduce the 
data dimension and feature extraction from hyperspectral data for assessing leaf or can-
opy biophysical and biochemical parameters (e.g., Gong, Pu, and Heald 2002; Pu and Gong 
2004). With a covariance (or correlation) matrix calculated from vegetated pixels only, it is 
commonly believed that the eigenvalues and corresponding eigenvectors computed from 
the covariance (or correlation) matrix are able to enhance vegetation variation informa-
tion in the first several PCs. Because the PCA does not always produce images that show 
steadily decreasing image quality with increasing component number, Green et al. (1988) 
developed one transform method called “maximum noise fraction” (MNF) transform to 
maximize the signal-to-noise ratio when choosing PCs with increasing component num-
ber. Then, several MNFs to maximize the signal-to-noise ratio are selected for further 
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analysis of hyperspectral data, such as for determining endmember spectra for spectral 
mixture analysis (Pu, Gong et al. 2008; Walsh et al. 2008) and hyperspectral mosaic (Hestir 
et al. 2008).

“Canonical discriminant analysis” (CDA) also is a dimension-reduction technique 
equivalent to canonical correlation analysis that can be used to determine the relation-
ship between the quantitative variables and a set of dummy variables coded from the 
class variable in a low-dimensional discriminant space (Khattree and Naik 2000; Zhao 
and Maclean 2000). Given a classification variable and several quantitative variables, CDA 
derives canonical variables, linear combinations of the quantitative variables that summa-
rize between-class variation in much the same way that PCA summarizes most variation 
in the first several PCs. In other words, CDA involves human effort and knowledge derived 
from training samples, whereas PCA performs a relatively automatic data transformation 
and tries to concentrate the majority of data variance in the first several PCs. However, 
unlike PCA, CDA is only occasionally analyzed and tested as a data transformation tech-
nique by researchers in the remote-sensing community for dimensional reduction and 
feature extraction (e.g., Zhao and Maclean 2000; van Aardt and Wynne 2001, 2007).

The wavelet transform (WT) is a relatively new signal-processing tool that provides 
a systematic means for analyzing signals at various scales or resolutions and shifts. In 
the past two decades, WT has been successfully applied to image processing, data com-
pression, pattern recognition (Mallat 1998), image texture feature analysis (Fukuda and 
Hirosawa 1999), and feature extraction (Simhadri et al. 1998; Pittner and Kamarthi 1999). 
Wavelets have proven to be quite powerful in these remote-sensing application areas. 
This is attributed to the facts that the WT can decompose a spectral signal into a series 
of shifted and scaled versions of the mother wavelet function, and that the local energy 
variation (represented as peaks and valleys) of a spectral signal in different bands at 
each scale can be detected automatically and provide some useful information for further 
analysis of hyperspectral data (Pu and Gong 2004). With continuous WT (CWT), one can 
analyze both single-dimensional and multidimensional signals, such as hyperspectral 
image cubes, across a continuum of scales. With discrete WT (DWT), signals are analyzed 
over a discrete set of scales, typically dyadic (2j, j = 1, 2, 3, …), and the transforms can be 
realized using a variety of fast algorithms and customized hardware (Bruce, Morgan, and 
Larsen 2001). The WT can decompose signals over dilated (scaled) and translated (shifted) 
wavelets (Mallat 1989; Rioul and Vetterli 1991). There are many different types of mother 
wavelets and wavelet bases to be selected for use. In practice, researchers need to test most 
of the wavelet families to find the most useful wavelet family in a particular project. After 
a set of DWT coefficients for each level or scale of a pixel-based spectrum is calculated, 
the energy feature of the wavelet decomposition coefficients is computed at each scale for 
both approximation and details and is used to form an energy feature vector (Pittner and 
Kamarthi 1999; Bruce, Morgan, and Larsen 2001; Li et al. 2001; Pu and Gong 2004). This 
can become a feature extraction through a dimension reduction. With hyperspectral data 
of vegetation and the WT technique, several studies already demonstrate the benefits of 
wavelet analysis. For example, Pu and Gong (2004) used the mother wavelet function db3 
in MATLAB® (Misiti et al. 1996) to transform Hyperion data (167 available bands in their 
analysis) for extracting features through a dimension reduction for mapping forest LAI 
and CC. By using the wavelet analysis method, Blackburn (2007a) and Blackburn and 
Ferwerda (2008) retrieved plant pigments (Chls and Cars) concentration from leaf and 
canopy spectra, although further work is needed to refine this approach. Hsu and Tseng 
(2000) and Henry et al. (2004) used the wavelet analysis method (multiscale transform) 
to extract useful spectral features from hyperspectral data (AVIRIS and in situ spectral 
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measurements) for plant/crop-type classification. They concluded that using spectral 
features extracted with the wavelet analysis method from hyperspectral data resulted 
in higher classification accuracy than using features with other methods (e.g., PCA and 
multiple VIs).

5.3.6  Spectral Unmixing Analysis

Unlike laboratory and in situ spectral reflectances, which are usually measured from “pure 
materials,” a large portion of remotely sensed data is spectrally mixed. In order to iden-
tify various pure materials and to determine their spatial proportions from the remotely 
sensed data, the spectral mixing process has to be properly modeled. Once the spectral 
mixing process is modeled, the model can be inverted to derive the spatial proportions 
and spectral properties of pure materials. There are two types of spectral mixing: (1) lin-
ear spectral mixing and (2) nonlinear spectral mixing. Both linear and nonlinear spectral 
mixing models are simple tools used to describe spectral mixing processes. A real spectral 
mixing process could be complicated and can be more explicitly dealt with using radiative 
transfer (RT) models (e.g., Li and Strahler 1985, 1992); also their solutions are often difficult 
to obtain (Liang and Strahler 1993; Gong, Wang, and Liang 1999). Linear spectral mixing 
model (LSM) and its inversion have been widely used since the late 1980s. An LSM has 
been extensively applied to extract the abundance of various components within mixed 
pixels. The nonlinear spectral mixture model can be found detailed in the works of Sasaki 
et al. (1984) and Zhang et al. (1998). In addition, an artificial neural network (ANN) algo-
rithm has been tested to unmix mixed pixels into fractional abundances of endmembers 
in some studies (Foody 1996; Wang and Zhang 1998; Flanagan and Civco 2001; Pu, Gong 
et al. 2008).

In the spectral mixture analysis, a typical LSM at pixel (i, j) can be expressed as follows:

	 Rij = MFij + εij	 (5.7)

where Rij is a K-dimension reflectance (or digital number) vector, Fij is an L-dimension frac-
tion vector, M is a K L×  endmember spectral matrix, and εij is a K-dimension error vector 
representing residual error. The goal of spectral unmixing is to solve for Fij, with Rij and M 
known. When the number of endmembers in pixel (i, j) are appropriately accounted for, Fij 
should satisfy the following conditions:
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It is well known that the inversion of Equation 5.7 (i.e., spectral unmixing) can be achieved 
with a least-squares solution (LSS) when K L>  (e.g., Adams, Smith, and Gillespie 1989; 
Sohn and McCoy 1997; Maselli 1998; Pu, Gong et al. 2008).

A feed-forward ANN algorithm is a nonlinear solution to the LSM, used for unmix-
ing mixed pixels. The network training mechanism is an error-propagation algorithm 
(Rumelhart, Hinton, and Williams 1986; Pao 1989). In a layered structure, the input to each 
node is the sum of the weighted outputs of the nodes in the prior layer, except for the nodes 
in the input layer, which are connected to the feature values. The nodes in the last layer 
output a vector that corresponds to similarities in each class, or fractions of endmembers 
within a mixed pixel. One layer between the input and output layers is usually sufficient 
for most learning purposes. The learning procedure is controlled by a learning rate and 
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a momentum coefficient, which need to be specified empirically based on the results of 
a limited number of tests. Network training is done by repeatedly presenting training 
samples (pixels) with the known fractions of endmembers. Training is terminated when 
the network output meets a minimum error criterion or optimal test accuracy is achieved. 
The trained network can then be used to estimate the fraction of each endmember in a 
mixed pixel.

This simple mixing model (LSM) has an advantage in that it is relatively simple and 
provides a physically meaningful measure of abundance in mixed pixels. However, there 
are a number of limitations to the simple mixing concept: The endmembers used in LSM 
are the same for each pixel, regardless of whether the materials represented by the end-
members are present in the pixel; it fails to account for the fact that the spectral contrast 
between those materials is variable; the LSM cannot account for subtle spectral differences 
among materials efficiently; and the maximum number of components that an LSM can 
map is limited by the number of bands in the image data (Li and Mustard 2003). Therefore, 
Roberts et al. (1998) introduced multiple endmember spectral mixture analysis (MESMA), 
a technique for identifying materials in a hyperspectral image using endmembers from 
a spectral library. The MESMA technique overcomes the limitations of the simple mix-
ing model. Using the MESMA, the number of endmembers and their types are allowed 
to vary for each pixel in the image. The general MESMA procedure starts with a series 
of two-endmember candidate models, evaluates each model based on selection criteria 
and then, if required, constructs candidate models that incorporate more endmembers 
(Roberts et al. 1998).

The key to successful spectral mixture analysis is the selection of appropriate endmem-
bers (Gong, Miller, and Spanner 1994; Tompkins et al. 1997). Determination of endmembers 
involves identifying the number of endmembers and extracting their corresponding spec-
tral signatures. The pixel purity index (PPI), according to Boardman (1993), can be combined 
with the use and interpretation of scatter plots of MNF (Green et al. 1988) to characterize 
the relative abundance of endmembers across a scene to help determine endmember spec-
tra. The ability to detect different surface materials in the endmember analysis of remotely 
sensed data is a function of spectral contrast among endmembers, noise, and spectral reso-
lution (Shipman and Adams 1987; Sabol, Adams, and Smith 1990). Sufficient spectral infor-
mation from hyperspectral data ensures the successful unmixing of mixed pixels. To select 
endmembers during the processing of MESMA, three selection criteria are fraction, root 
mean square error (RMSE), and the residuals of contiguous bands (Roberts et al. 1998). The 
minimum RMSE model is assigned to each pixel, and it can be used to map materials and 
fractions within the image (Painter et al. 1998) with the MESMA approach.

A number of researchers have applied LSM to hyperspectral data to estimate the abun-
dance of general vegetation cover or specific vegetation species (Asner and Heidebrecht 
2003; Miao et al. 2006; Judd et al. 2007; Hestir et al. 2008; Walsh et al. 2008; Pignatti et al. 
2009). A neural network (NN)–based nonlinear solution also was applied to hyperspectral 
data to estimate the abundance of specific vegetation species (Pu, Gong et al. 2008; Walsh 
et al. 2008). Several researchers have applied the MESMA approach in a variety of environ-
ments for vegetation mapping. For example, Roberts et al. (1998, 2003) used MESMA and 
AVIRIS hyperspectral image data to map vegetation species and land-cover types in south-
ern California chaparral. Using AVIRIS image data and the MESMA approach, Li, Ustin, 
and Lay (2005) and Rosso, Ustin, and Hastings (2005) mapped coastal salt marsh vegeta-
tion in China and the marshland vegetation of San Francisco Bay, California, respectively. 
In addition, Fitzgerald et al. (2005) successfully mapped multiple shadow fractions in a 
cotton canopy with MESMA approach and hyperspectral imagery.
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5.3.7  Hyperspectral Image Classification

Traditional multispectral classifiers can be used, but they may have a less than expected 
effect as they face difficulties caused by the high dimensionality of hyperspectral data 
and the high correlation of adjacent bands with a limited number of training samples. In 
order to overcome these problems, a feature extraction preprocessing before classification 
is necessary. Feature extraction schemes such as PCA (or its noise-adjusted version, MNF), 
Fisher’s linear discriminant analysis (LDA), or CDA) have been applied in transforming 
and reducing the data dimension by maximizing the ordered variance of the whole data 
set or the ratio of between-class variance and within-class variance of the training sam-
ples. Jia and Richards (1999) proposed a segmented PC transformation (i.e., segmented 
PCA or segPCA) to reduce the computation cost by selecting subsets of the covariance 
matrix in a lower segmented dimension. Penalized discriminant analysis (PDA) was sug-
gested to deal with the high correlation among the bands more efficiently by penalizing 
the high within-class variance and to improve the performance of LDA (Yu et al. 1999). 
Jia and Richards (1994, 2002) first segmented the whole spectral space into several sub-
spaces using a spectral correlation matrix and then used the maximum likelihood clas-
sifier, called “simplified maximum likelihood classification,” to classify an image scene. 
Jimenez and Landgrebe (1998) segmented and transformed the whole spectrum into sev-
eral subspectra, estimated training statistics at the subspaces, and iteratively updated an 
orthogonal projection matrix until a minimum Bhattacharyya distance (BD) was obtained 
among the classes.

Fisher’s LDA and CDA search for successive linear combinations of data to maximize 
the ratio of between-class variance and within-class variance of training samples in an 
expectation of spreading the means or the cluster centers of different classes as much as 
possible while keeping the within-class variation at a similar level for all classes (Yu et al. 
1999; Xu and Gong 2007; Pu and Liu 2010). It is based on an assumption of reliable estima-
tion of training statistics. Segmented LDA (segLDA) first divides the whole spectrum into 
subblocks, with each block containing a set of continuous highly correlated spectral bands. 
Denote the dimension of the kth subblock as Ik, and I1 + … + Ik + … + IK = I. For each sub-
block of spectral bands, estimate the between-class covariance matrix and the within-class 
covariance matrix in a subspace that has a dimension equal to the number of bands in the 
subblock. Then, apply LDA to each subblock to generate new component images (features) 
with a number of min(C − 1, Ik), where C is the number of classes and k is the kth subblock. 
This projection is supposed to spread the means of the classes as much as possible. With the 
newly projected images for each subblock, we could either select the first few feature images 
from each subblock to generate a combined pool of new features that can be subsequently 
used for classification, or select more feature images less than min(C − 1, Ik) from the kth 
subblock for k = 1, …, K to form a new subspace. The LDA approach can be applied multiple 
times to reduce the data dimension in the search for an optimal set of orthogonal subspaces 
for use in final classification. The PDA introduces a penalty matrix Ω to the within-class 
covariance matrix to penalize and limit the effect that a band with high within-class varia-
tion may have in the case of LDA, while reserving the low within-class variation band. The 
function of the penalty matrix was geometrically interpreted by Yu et al. (1999). The matrix 
unequally smooths within-class variation for all the classes in the hyperspectral space. The 
realization of segmented PDA (segPDA) and segmented CDA (segCDA) is similar to that of 
segLDA in the sense that segmentation is done before applying PDA, except that PDA adds 
a penalty term to the estimation of the within-class covariance matrix. Similar to segPCA, 
segLDA, segCDA, and segPDA all save significant computation time.
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Xu and Gong (2007) compared several feature extraction algorithms used for band 
reduction of Hyperion data. These include PCA, segPCA, LDA, segLDA, PDA, and seg-
PDA. Feature reductions were all followed by classification of Hyperion images using a 
minimum distance (MD) classifier. With segPDA, segLDA, PDA, and LDA, similar accura-
cies were achieved, whereas the segPDA and segLDA newly proposed by Xu and Gong 
(2007) greatly improved computation efficiency. They also outperformed segPCA and 
PCA in classification accuracy due to the use of specific intra- and interclass covariance 
information. Similar to the conclusion drawn by Xu and Gong (2007), Pu and Liu (2010) 
also concluded that segCDA outperformed segPCA and segmented stepwise discriminant 
analysis (SDA) when 13 tree species were discriminated using in situ hyperspectral data 
and segCDA. Based on the study by Pu and Liu (2010), CDA or segCDA (under the condi-
tion of limited training samples) should be applied broadly in mapping forest-cover types, 
species identification, and other land use/land-cover classification practices with multi/
hyperspectral remote sensing data, because it is superior to PCA and SDA for selection of 
features that are used for image classification.

Support vector machines (SVMs) as a new type of classifiers have been successfully 
applied to the classification of hyperspectral remote-sensing data. Traditionally, classifiers 
first model the density of various classes and then find a separating surface for classifica-
tion. However, the estimation of density for various classes with hyperspectral data suffers 
from the Hughes phenomenon (Hughes 1968): For a limited number of training samples, 
the classification rate decreases as the dimension increases. The SVM approach does not 
suffer from this limitation because it directly seeks a separating surface through an opti-
mization procedure that finds so-called support vectors that form the boundaries of the 
classes. This is an interesting property of hyperspectral image processing because usually 
there is only a set of limited training samples available to define the separating surface 
for classification. Further, the properties of SVMs make them well suited to hyperspectral 
image classification since they can handle data efficiently in high dimensionality, deal with 
noisy samples in a robust way, and make use of only those most characteristic samples as 
support vectors in the construction of classification models. Melgani and Bruzzone (2004) 
provided a detailed introduction of SVMs for the classification of hyperspectral imag-
ery. SVMs are considered to be kernel-based classifiers that are based on mapping data 
from the original input feature space to a kernel feature space of higher dimensionality 
and then solving a linear problem in that space (Burges 1998). Camps-Valls and Bruzzone 
(2005) introduced several other kernel-based classifiers, including kernel Fisher discrimi-
nant analysis, regularized radial basis function NN, and a regularized boosting algorithm. 
They compared them with the SVMs and reported comparable accuracies in classifying 
the same agricultural AVIRIS scene as used by Melgani and Bruzzone (2004).

The SVM approach can significantly improve classification accuracy with hyperspectral 
data. For example, Melgani and Bruzzone (2004) tested four SVM strategies for multiclass 
discrimination including the “one against all,” “one against one,” “binary hierarchical tree 
balanced branches,” and “binary hierarchical tree one against all” algorithms. They applied 
these algorithms to an AVIRIS image acquired over an agricultural area with nine classes 
and compared their performances with radial basis function NNs and K-nearest neighbor 
(K-NN) algorithms. They reported overall accuracies greater than 90% with an accuracy 
improvement of 7–12% over the NN and K-NN algorithms. Pal and Mather (2004) used 
a multiclass SVM for land-cover classification of Digital Airborne Imaging Spectrometer 
(DAIS) hyperspectral image data. Results showed that SVM outperforms maximum likeli-
hood, univariate decision tree, and back propagation NN classifiers. For classification pur-
poses with hyperspectral HyMap data, Camps-Valls et al. (2004) used SVMs for a six-class 
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crop classification and analyzed their performance in terms of efficiency and robustness as 
compared to extensively used NNs and fuzzy methods. They concluded that SVMs yield 
better outcomes than NNs and fuzzy methods in terms of classification accuracy, simplic-
ity, and robustness.

5.3.8 E mpirical/Statistical Analysis Methods

Most researchers have employed statistical analysis methods to correlate biophysical or 
biochemical parameters with spectral reflectance, VIs, or derivative spectra in the visible, 
NIR, and SWIR wavelengths of hyperspectral data at leaf, canopy, or plant community 
level (Peterson et al. 1988; Wessman et al. 1988; Bolstad and Lillesand 1991; Smith et al. 
1991; Gong, Pu, and Miller 1992, 1995; Gong, Pu, and Yu 1997; Franklin and McDermind 
1993; Banninger, Johnson, and Peterson 1994; Johnson, Hlavka, and Peterson 1994; Matson 
et al. 1994; Pinel et al. 1994; Yoder and Waring 1994; Gastellu–Etchegorry et al. 1995; Gamon 
et al. 1995; Yoder and Pettigrew-Crosby 1995; Grossman et al. 1996; Zagolski et al. 1996; 
LaCapra et al. 1996; Gitelson and Merzlyak 1997; Martin and Aber 1997; Chen, Elvidge, 
and Groeneveld 1998; Blackburn 1998; Fourty and Baret 1998; Martin et al. 1998; Datt 1998; 
Serrano, Peñuelas, and Ustin 2002; Galvão, Formaggio, and Tisot 2005; Colombo et al. 2008; 
Darvishzadeh, Skidmore et al. 2008; Hestir et al. 2008; Huber et al. 2008). Johnson, Hlavka, 
and Peterson (1994) determined predictive relationships for biochemical concentrations 
using regressions between the chemical composition of forest canopy and the AVIRIS 
reflectance. Using data from AVIRIS and a CASI, Matson et al. (1994) demonstrated that 
canopy biochemicals carried information about forest ecosystem processes and suggested 
that some of this chemical information might be estimated remotely using hyperspectral 
data collected by airborne sensors. They found that the first differences were in the range 
of 1525–1564 nm, which figured prominently in all N equations. After correlating VIs of 
RNIR/R700 and RNIR/R550 with Chl content, Gitelson and Merzlyak (1996, 1997) demonstrated 
that the indices for Chl assessment were important for two deciduous species, maple and 
chestnut. In spectral feature analysis associated with N, P, and K deficiencies in Eucalyptus 
saligna seedling leaves, Ponzoni and Goncalves (1999) proved that spectral reflectance can 
be better estimated using a combination of nutrient constituents (N, P, and K) as indepen-
dent variables with the results from simple and multiple regression. Martin et al. (1998) 
determined forest species composition using high spectral resolution remote-sensing data 
with an approach that combined forest species–specific chemical characteristics and pre-
viously derived relationships between hyperspectral data (AVIRIS) and foliar chemistry. 
They classified 11 forest-cover types, including pure and mixed stands of deciduous and 
conifer species, with an overall accuracy of 75%. With EO-1 Hyperion hyperspectral image 
data, Galvão, Formaggio, and Tisot (2005) successfully discriminated five sugarcane vari-
eties in southeastern Brazil using a multiple discriminant analysis method that produced 
a classification accuracy of 87.5%. With multiple linear regression models, continuum-
removal technique, and normalized HyMap spectra, Huber et al. (2008) estimated foliar 
concentrations of N and carbon, and content of water in a mixed forest canopy.

Partial least-squares regression (PLSR) is a technique that reduces the large number of 
measured collinear spectral variables to a few noncorrelated latent variables or PCs. The 
PCs represent the relevant structural information present in the measured reflectance 
spectra and are used to predict the dependent variables (i.e., biophysical and biochemical 
parameters; Darvishzadeh, Skidmore et al. 2008). The PLSR approach is different from 
PC regression (PCR) in the methods used in extracting factors (also called “components,” 
“latent vectors,” or “latent variables”). In short, PCR produces the weight (coefficient) 
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matrix reflecting the covariance structure between the predictor variables, whereas PLSR 
produces the weight (coefficient) matrix reflecting the covariance structure between 
the predictor and response variables. In other words, PCR extracts factors to explain as 
much predictor sample variation as possible, whereas PLSR balances the two objectives of 
explaining both response variation and predictor variation as much as possible. Recently, 
there has been increasing interest in applying the PLSR approach to calibrate relationships 
between spectral variables, often derived from hyperspectral data and a set of bioparam-
eters (Hansena and Schjoerring 2003; Asner and Martin 2008; Darvishzadeh, Skidmore 
et al. 2008; Martin et al. 2008; Weng, Gong, and Zhu 2008; Prieto-Blanco et al. 2009). For 
example, using spectral measurements taken from leaves and bioparameter data (Chl-a, 
Chl-b, Cars, Anths, water, N, P, and SLA) collected from 162 Australian tropical forest 
species, along with PLSR approach and canopy RT modeling, Asner and Martin (2008) 
concluded that a suite of leaf properties among tropical forest species can be estimated 
using full-range leaf spectra of fresh foliage collected in the field. Hansena and Schjoerring 
(2003) used two-band combinations in the normalized difference VIs constructed from in 
situ spectral measurements taken from wheat crop canopy and PLSR approach to estimate 
canopy green biomass and N status. They concluded that PLSR analysis may be a useful 
exploratory and predictive tool when applied to hyperspectral reflectance data analysis. 
The optimal number of PCs was determined by the guidelines described by Esbensen 
(2000). The basic PLSR algorithm will not be introduced here, but further information on 
the PLSR model can be found in the work of Ehsani et al. (1999).

Although univariate and multiple regression analysis methods are relatively simple and 
their modeling results frequently have higher estimation accuracy, empirical or statistical 
relationships are often site, species, and sensor specific, and thus cannot be directly applied 
to other study areas since the plant canopy structure and sensors’ viewing geometry may 
vary among different sites and species. Therefore, during the last two decades, physically 
based modeling approaches have attracted the attention of many researchers, who have 
retrieved biophysical and biochemical parameters by inversing various physically based 
models from simulated spectra or real imaging data.

5.3.9  Physically Based Modeling

The theoretical basis of physically based models consists of developing a leaf or canopy 
scattering and absorption model that involves biochemistry and biophysics. These models, 
including RT and geometric–optical (GO) models, consider the underlying physics and 
complexity of the leaf internal structure and therefore are robust and have the potential 
to replace statistically based approaches (Zhang et al. 2008a, 2008b). In the context of the 
remote sensing of bioparameters, such models have been used in the forward mode to cal-
culate leaf or canopy reflectance and transmittance and in the inversion mode to estimate 
leaf or canopy chemical and physical properties. For example, many researchers employ 
physically based models at leaf or canopy level to retrieve biochemical parameters, includ-
ing leaf pigments from either simulated spectra or hyperspectral image data (Asner and 
Martin 2008; Feret et al. 2008; Zhang et al. 2008a, 2008b).

A number of RT models have been developed at leaf and canopy levels. They mostly 
simulate leaf reflectance and transmittance spectra between 0.4 and 2.50 μm. Among mod-
els focusing on leaf optical properties, the most important RT models may include the 
Propriétés Spectrales (PROSPECT) model (Jacquemoud and Baret 1990; Jacquemoud et al. 
1996; Fourty et al. 1996; Demarez et al. 1999; le Maire, Francois, and Dufrene 2004), the leaf 
incorporating biochemistry exhibiting reflectance and transmittance yields (LIBERTY) 
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model (Dawson, Curran, and Plummer 1998; Coops and Stone 2005), and the leaf experi-
mental absorptivity feasibility model (LEAFMOD; Ganapol et al. 1998). Among those 
focusing on canopy optical properties, the most popular RT models are the scattering by 
arbitrary inclined leaves (SAIL; Verhoef 1984; Asner 1998) model and its improved versions 
that have been adapted to account for some heterogeneity within the vegetation canopy, 
for example, GeoSAIL (Verhoef and Bach 2003), 2M-SAIL (Weiss et al. 2001; Le Maire et al. 
2008), and 4SAIL2 (Verhoef and Bach 2007). The other important canopy reflectance mod-
els include fast canopy reflectance (FCR; Kuusk 1994), the new advanced discrete model 
(NADIM; Jacquemoud et al. 2000; Ceccato et al. 2002), the Markov chain canopy reflectance 
model (MCRM; Kuusk 1995) adapted for row crops (Cheng et al. 2006), and the four mod-
els used for simulating discontinuous forest canopies, including discrete anisotropic RT 
(DART; Demarez and Gastellu-Etchegorry 2000), spreading of photons for radiation inter-
ception (SPRINT; Zarco-Tejada, Miller, Harron et al. 2004), forest light interaction model 
(FLIM; Zarco-Tejada, Miller, Morales et al. 2004), and three-dimensional forest light inter-
action (FLIGHT; Koetz et al. 2004). In addition, during the last two decades, researchers 
have developed some leaf-canopy-coupled models, including PROSAIL (Baret et al. 1992; 
Broge and Leblance 2000), LEAFMOD +CANMOD (Ganapol et al. 1999), LIBERTY+FLIGHT 
(Dawson et al. 1999), and LIBERTY+SAIL (Dash and Curran 2004). Among the RT models, 
based on the literature searched and analyzed by Jacquemoud et al. (2009), the most popu-
lar and important RT models on leaf, canopy, and leaf-canopy-coupled optical properties 
are PROSPECT, SAIL, and PROSAIL, as well as their modified versions.

The PROSPECT models, including the latest versions PROSPECT-4 and -5 (Feret et al. 
2008), can provide specific absorption and scattering coefficients of leaf components. The 
model is widely used and well validated (Fourty et al. 1996). The SAIL model is a four-
stream RT model developed by Verhoef (1984). It was later modified by Kuusk (1991) to take 
the hot spot feature into account. Linking the two models into PROSAIL allowed descrip-
tion of both the spectral and directional variation of canopy reflectance as a function of 
leaf biochemistry (mainly Chls, water, and dry matter contents) and canopy architecture 
(primarily LAI, LAD, and relative leaf size; Jacquemoud et al. 2009). The coupled leaf-canopy 
and other RT models are used to understand the way in which leaf reflectance proper-
ties are influenced by the larger number of controlling factors at canopy scale (Demarez 
and Gastellu-Etchegorry 2000). Coupled models have enabled the development and refine-
ment of spectral indices that are insensitive to factors such as canopy structure, illumination 
geometry, and soil/litter reflectance (Broge and Leblanc 2000; Daughtry et al. 2000). Such 
approaches have also been used in defining predictive relationships that have been applied 
to hyperspectral imagery to generate maps of Chl (Haboudane et al. 2002; Zarco-Tejada, 
Miller, Morales et al. 2004, Zarco-Tejada, Berjon et al. 2005).

The GO models belong to one type of RT models developed to capture the variation of 
remote sensing signals on the Earth’s surface with illumination and observation angles. 
Since GO models emphasize the effect of canopy architecture, they are very effective in 
capturing the angular distribution pattern of the reflected radiance, and are thus used 
widely in remote-sensing applications (Chen and Leblanc 2001) as aforementioned RT 
models. There are a lot of different types of GO models. For example, a model developed 
by Li and Strahler (1985) described the vegetation canopy using opaque geometric shapes 
(cones or cylinders), which cast shadows on the ground. Consequently, crown transpar-
ency is assumed to be zero. These GO models are mainly used to describe (sparse) forests 
or shrublands, where shadowing plays an important role.

Physically based models must be inverted to retrieve vegetation characteristics from 
the observed reflectance data. So far, different inversion techniques for physically based 
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models mainly include iterative optimization methods (Goel and Thompson 1984; Liang 
and Strahler 1993; Jacquemoud et al. 1995; Jacquemoud et al. 2000; Meroni, Colombo, and 
Panigada 2004), lookup table (LUT) approaches (Knyazikhin et al. 1998; Weiss et al. 2000; 
Combal, Baret, and Weiss 2002; Combal et al. 2003; Gastellu-Etchegorry, Gascon, and Esteve 
2003), and ANNs (Gong, Wang, and Liang 1999; Weiss and Baret 1999; Walthall et al. 2004; 
Schlerf and Atzberger 2006). In the iterative optimization approach, a stable and optimum 
inversion is not guaranteed. Moreover, the traditional iterative method is time-consuming 
and often requires a simplification of the models when processing large datasets. This 
may result in a decrease of the inversion accuracy and makes the retrieval of biophysical 
and biochemical variables unfeasible for large geographic areas (Houborg, Soegaard, and 
Boegh 2007). Methods employing LUTs can partially overcome this drawback. They oper-
ate using a database of simulated canopy reflectance variables in structural and radiomet-
ric properties. However, LUT creation can be complicated and requires an extensive set of 
reliable field measurements. The ANN technique, proposed in the forward and inverse 
modeling of RT models for retrieving bioparameters, is expected to reduce such complexity 
of inversion. For proper training (ANN) and representation (LUT), the techniques basically 
rely on a large database of simulated canopy reflectance spectra to achieve a high degree of 
accuracy. This increases the computational time for identifying the most appropriate LUT 
entry and the time required for training the ANN (Kimes et al. 2000; Liang 2004).

5.4  Summary and Future Directions

Hyperspectral remote sensing, or imaging spectroscopy, is a cutting-edge technology that 
can be utilized in ecological studies for extracting and assessing vegetation characteriza-
tion. In this chapter, the spectral characteristics, properties, and/or responses of a set of 
plant biophysical and biochemical parameters were reviewed. These bioparameters mainly 
include typical biophysical parameters (LAI, SLA, CC, species/composition, biomass, NPP, 
and fPAR) and biochemical parameters (plant pigments such as Chl-a and Chl-b, Cars, 
and Anths, plant nutrients such as N, P, and K, leaf or canopy water content, and other 
chemicals such as lignin and cellulose; and protein concentration). To extract and assess 
typical bioparameters from various hyperspectral data, including laboratory and in situ 
hyperspectral measurements, spectra synthesized and/or simulated from physically based 
models, and airborne and spaceborne hyperspectral image data, relatively speaking, a 
wide range of analysis techniques and approaches that have already been developed and 
demonstrated are extensively reviewed in this chapter. The spectral analysis techniques 
cover spectral derivative analysis, spectral matching, spectral index analysis, spectral 
absorption features and spectral position variables, hyperspectral transformation, spec-
tral unmixing analysis, and hyperspectral classifications; and the two general categories 
of analysis methods include empirical/statistical methods and physically based models. 
Advantages and disadvantages, or merits and drawbacks, for some specific analysis tech-
niques and approaches were also discussed here. Data from imaging spectroscopy have 
repeatedly been shown to produce accurate estimates of many biochemical parameters 
and physical characteristics related to key ecological processes. Imaging spectroscopy is 
the only technology available to measure many important environmental properties over 
large regions, particularly canopy water content, dry plant residues, and soil biochemical 
properties (Ustin et al. 2004).



130	 Advances in Environmental Remote Sensing

In the future, the richness of information available in the continuous spectral coverage 
afforded by both airborne and spaceborne imaging spectrometers will make it possible to 
address questions regarding vegetation bioparameters more correctly and accurately. Since 
hyperspectral data can provide richer and more delicate spectral information than multi-
spectral data, spectral unmixing and automatic target detection remain important infor-
mation extraction tasks in hyperspectral data analysis, and the use of PCA, mathematical 
programming, and factor analysis need to be further assessed in solving the linear mix-
ing problem. Inversion of physically based RT models with hyperspectral data assisted by 
analysis of multiangular data will be useful in solving nonlinear spectral mixing problems 
because the angular data can be used to retrieve the structural information of vegetation.

When using various spectral VIs to estimate different bioparameters, the use of opti-
mized VIs should be considered because there are many potential narrow bands ready 
to be used for developing various VIs from hyperspectral data. Experience has proven 
that with some optimized VIs for estimating some bioparameters, the estimation accu-
racy can be significantly increased (e.g., Gong et al. 2003). When attempting to identify a 
robust, generic solution, there is currently only limited evidence available with which one 
can rank the performance of the range of existing hyperspectral analysis approaches in 
quantifying plant bioparameters. Therefore, it is necessary to conduct intercomparison of 
hyperspectral approaches (Blackburn 2007b) across a large number of bioparameters using 
a large number of different analysis techniques. A sensitivity study is needed to determine 
the set of variables that can be retrieved with a reasonable accuracy for available imaging 
spectroscopy systems. Finally, although many analysis techniques have been developed 
and are available in some applications for estimating biochemicals from hyperspectral 
data at the leaf scale, in order to exploit the opportunities offered by imaging spectrometry 
for synoptic, consistent, and spatially continuous information, it is important to develop 
suitable methods that can also derive estimates of foliar biochemical concentrations from 
canopy-scale reflectance spectra. For this case, several strategies are available for the 
analysis of canopy spectra (Zarco-Tejada et al. 2001). This is a scaling issue, a problem 
encountered frequently in ecological studies.
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6
Thermal Remote Sensing of Urban Areas: 
Theoretical Backgrounds and Case Studies

Qihao Weng

6.1  Introduction

Remote-sensing thermal infrared (TIR) data have been widely used in urban climate and 
environmental studies (Weng 2009). A series of satellite and airborne sensors have been 
developed to collect TIR data from the Earth’s surface, such as the Heat Capacity Mapping 
Mission (HCMM), Landsat Thematic Mapper (TM)/Enhanced TM (ETM+), Advanced 
Very High Resolution Radiometer (AVHRR), Advanced Spaceborne Thermal Emission 
and Reflection Radiometer (ASTER), TIR Multispectral Scanner (TIMS), and Moderate 
Resolution Imaging Spectroradiometer (MODIS). In addition to land-surface temperature 
(LST) measurements, these TIR sensors may be utilized to obtain emissivity data from 
different surfaces with varied resolutions and accuracies. Both LST and emissivity data 
are used in urban studies mainly for analyzing LST patterns and their relationship with 
surface characteristics, assessing the urban heat island (UHI) phenomenon, and relating 
LSTs with surface energy fluxes for characterizing landscape properties, patterns, and pro-
cesses (Quattrochi and Luvall 1999).

Contents

6.1	 Introduction......................................................................................................................... 143
6.2	 Relationship between Land-Surface Temperature and 

Vegetation Abundance....................................................................................................... 144
6.2.1	 �Statistical Analysis of the Land-Surface Temperature: Vegetation 

Abundance Relationship��������������������������������������������������������������������������������������� 144
6.2.2	 Thermal-Vegetation Index Approach to the Land-Surface 

Temperature–Vegetation Relationship���������������������������������������������������������������� 145
6.2.3	 �Case Study: TVX Space and Its Temporal Trajectory Analysis in Tabriz, 

Iran, Using Landsat TM/ETM+ Images�������������������������������������������������������������� 147
6.3	 �Use of Remotely Sensed Data to Characterize and Model Urban Heat Islands........ 149

6.3.1	 Background.............................................................................................................. 149
6.3.2	 �Case Study: Characterizing an Urban Heat Island in Beijing, China, 

Using Advanced Spaceborne Thermal Emission and Reflection 
Radiometer Images������������������������������������������������������������������������������������������������� 150

6.4	 Estimation of Urban Heat Fluxes Using Remote Sensing Data................................... 151
6.5	 Future Prospects of Thermal Infrared Sensors.............................................................. 154
Acknowledgments....................................................................................................................... 155
References...................................................................................................................................... 155



144	 Advances in Environmental Remote Sensing

By examining the recent literature and providing case studies, this chapter reviews 
methods and applications of thermal remote sensing applied to urban areas. The emphasis 
is on the summarization of major advances and problems in the LST–vegetation relation-
ship, UHI modeling with remotely sensed TIR data, and the estimation of urban surface 
heat fluxes. The last part of the chapter offers the author’s viewpoint on the prospects of 
TIR remote sensing systems.

6.2 � Relationship between Land-Surface Temperature 
and Vegetation Abundance

The LST is an important parameter in urban thermal environment and dynamics stud-
ies. This parameter modulates the air temperature of the lower layer of the urban atmo-
sphere, and is a primary factor in determining surface radiation and energy exchange, 
internal climate of buildings, and human comfort in cities (Voogt and Oke 1998). The 
physical properties of various types of urban surfaces, their color, the sky view factor, 
street geometry, traffic loads, and anthropogenic activities are important factors that 
determine LSTs in urban environments (Chudnovsky, Ben-Dor, and Saaroni 2004). The 
LST of urban surfaces corresponds closely to the distribution of land use and land-cover 
(LULC) characteristics (Lo, Quattrochi, and Luvall 1997; Weng 2001, 2003; Weng, Lu, and 
Schubring 2004). To study urban LSTs, some sophisticated numerical and physical models 
have been developed, including energy balance models (Oke et al. 1999; Tong et al. 2005), 
laboratory models (Cendese and Monti 2003), three-dimensional (3D) simulations (Saitoh, 
Shimada, and Hoshi 1996), Gaussian models (Streutker 2002), and other numerical simula-
tions. Among these models and simulations, statistical analysis plays an important role 
in linking LST to surface characteristics, especially at larger geographic scales (Bottyán 
and Unger 2003). Previous studies have linked LST to biophysical and meteorological fac-
tors, such as built-up area and height (Bottyán and Unger 2003), urban and street geom-
etry (Eliasson 1996), LULC (Dousset and Gourmelon 2003), and vegetation (Weng, Lu, and 
Schubring 2004), as well as population distribution (Fan and Sailor 2005; Weng, Lu, and 
Liang 2006; Xiao et  al. 2008) and the intensity of human activities (Elvidge et al. 1997). 
However, it is the relationship between LST and various vegetation indices that has been 
the most extensively documented in the literature.

The LST–vegetation index relationship has been used by Carlson, Gillies, and Perry (1994) 
to retrieve surface biophysical parameters, by Kustas et al. (2003) to extract subpixel thermal 
variations, and by Lambin and Ehrlich (1996) and Sobrino and Raissouni (2000) to analyze 
land-cover dynamics. Many studies observe a negative relationship between LST and veg-
etation indices. This finding has pushed research in two major directions: (1) statistical 
analysis of LST–vegetation abundance relationship and (2) the thermal-vegetation index 
(TVX) approach. The latter by definition is a multispectral method of combining LST and a 
vegetation index in a scatter plot to observe their associations (Quattrochi and Ridd 1994).

6.2.1 � Statistical Analysis of the Land-Surface Temperature: Vegetation 
Abundance Relationship

To understand the statistical relationship between LST and vegetation cover, different veg-
etation indices have been employed in search of a representative index. Goward, Xue, and 
Czajkowski (2002) showed that different spectral vegetation indices, such as normalized 
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difference vegetation index (NDVI) and simple ratio, were related to leaf area index (LAI) 
and green biomass. For a long time now, NDVI has been used to quantify vegetation patterns 
and dynamics within cities, and has been incorporated with LST to measure the impacts of 
urbanization (Weng and Lu 2008). The relationship between NDVI and fractional vegetation 
cover (Fr) is not singular. Small (2001) suggested that NDVI did not provide areal estimates 
of the amount of vegetation. The NDVI measurements are a function of the visible and near-
infrared reflectance from the plant canopy, reflectance of the same spectra from the soil, and 
atmospheric reflectance, and they are subject to the influence of errors related to observational 
and other errors (Yang, Yang, and Merchnat 1997). Plant species, leaf area, soil background, 
and shadow can all contribute to NDVI variability (Jasinski 1990). The relationship between 
NDVI and other measures of vegetation abundance (e.g., LAI values greater than 3) is well 
known to be nonlinear (Asrar et al. 1984). This nonlinearity and the platform dependency 
of NDVI suggest that this index may not be a good indicator for quantitative analyses of 
vegetation (Small 2001), and the relationship between NDVI and LST needs further calibra-
tion. More quantitative, physically based measures of vegetation abundance are called for, 
especially in applications that require biophysical measures (Small 2001). The importance of 
spatial resolution for detecting landscape patterns and changes should also be emphasized 
(Frohn 1998), and the relationship between NDVI variability and pixel size should be further 
investigated (Jasinski 1990).

More recent investigations are directed at finding a surrogate to NDVI. Weng, Lu, and 
Schubring (2004) derived the vegetation fraction at different scales (pixel aggregation 
levels), made a comparison between NDVI and vegetation fraction in terms of their 
effectiveness as an indicator of urban thermal patterns, and found a stronger negative 
correlation between vegetation fraction and LST than between NDVI and LST. Yuan and 
Bauer (2007) made a similar correlation analysis between impervious surface area (ISA) 
and NDVI, suggested that ISA showed higher stability and lower seasonal variability, 
and recommended it as a complementary measure to NDVI. Xian and Crane (2006) sup-
ported the aforementioned observations by suggesting that the combined use of ISA, 
NDVI, and LST can explain temporal thermal dynamics across cities.

6.2.2 � Thermal-Vegetation Index Approach to the Land-Surface 
Temperature–Vegetation Relationship

The combination of LST and NDVI by a scatter plot results in a triangular shape (Carlson, 
Gillies, and Perry 1994; Gillies and Carlson 1995; Gillies et al. 1997). Several methods have 
been developed to interpret the LST–NDVI space, including the “triangle” method using 
a “soil–vegetation–atmosphere transfer” (SVAT) model (Carlson, Gillies, and Perry 1994; 
Gillies and Carlson 1995; Gillies et al. 1997), in situ measurement method (Friedl and 
Davis 1994), and remote sensing–based method (Betts et al. 1996). However, difficulties 
still exist in interpreting LST for sparse canopies because the measurements combine the 
temperature of the soil and that of vegetation, and the combinations are often nonlinear 
(Sandholt, Rasmussen, and Andersen 2002). Different versions of the TVX approach have 
been developed over the past decades. Price (1990) found that radiant surface tempera-
ture showed more variations in sparsely vegetated areas than in densely vegetated areas. 
This behavior results in the atypical triangular shape or, as observed by Moran et al. 
(1994), in a trapezoidal shape for large heterogeneous regions under conditions of strong 
sunlight (Gillies et al. 1997). In Chapter 19, Carlson and Petropoulos provide a compre-
hensive review of the triangle method for estimating surface evapotranspiration and soil 
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moisture. The slope of the LST–NDVI curve has been related to soil moisture conditions 
(Carlson, Gillies, and Perry 1994; Gillies and Carlson 1995; Gillies et al. 1997; Goetz 1997; 
Goward, Xue, and Czajkowski 2002), the evapotranspiration of the surface (Boegh et al. 
1998), and other applications in shaping the TVX concept. Ridd (1995) and Carlson, Gillies, 
and Perry (1994) interpreted different sections of the triangle and related them to differ-
ent LULC types. Lambin and Ehrlich (1996) presented a comprehensive interpretation 
of the TVX space. Carlson and Arthur (2000) gave a physical meaning to the TVX space. 
Further, Goward, Xue, and Czajkowski (2002) provided a detailed analysis of the underly-
ing biophysics of the observed TVX relationship, and suggested that the relationship was 
the result of modulation of radiant surface temperature by vegetation cover. The TVX 
approach was the subject of studies focusing on the development of new applications, and 
the patterns and dynamics of different vegetation types at all scales from local to global. 
Researchers used the TVX concept to develop new indices and estimated parameters. 
Moran et al. (1994) used the TVX trapezoid to develop a new index called a “water-deficit 
index” (WDI) to estimate evapotranspiration in the absence of meteorological data using 
the difference between surface and air temperatures. Lambin and Ehrlich (1996) pro-
posed radiant surface temperature—NDVI ratios in the TVX space—and showed its use-
fulness in land-cover mapping. Owen, Carlson, and Gillies (1998) used the same space 
and suggested a land-cover index (LCI) for assessing UHI. Carlson and Arthur (2000) 
extended the TVX approach to calculate ISA and surface runoff. Jiang and Islam (2001), 
by linear decomposition of TVX scatter plot, estimated the “α” parameter of the Priestly–
Taylor equation in the absence of ground meteorological data. Sandholt, Rasmussen, and 
Andersen (2002) proposed a “temperature-vegetation dryness index” (TVDI) based on 
the relationship between surface temperature and NDVI, and showed the effectiveness of 
TVDI by explaining larger spatial variations better than hydrologic models. Nishida et al. 
(2003) estimated evapotranspiration fraction (EF) using a new TVX algorithm to provide 
global time-series coverage of EF from MODIS data. Chen et al. (2006) investigated the 
relationship between temperature and various newly developed indices, and found that 
NDVI presented a limited range.

Apart from the introduction of new indices, much research has been carried out in 
the extraction of new TVX metrics. Several studies have focused on the slope of the 
LST–NDVI fit line (Nemani and Running 1989; Smith and Choudhury 1991). Variations 
in slope and intercept of the TVX space have been interpreted in relation to surface 
parameters. Nemani and Running (1989) related the slope of the TVX correlation to the 
stomatal resistance and evapotranspiration in a deciduous forest. Sandholt, Rasmussen, 
and Andersen (2002) linked TVX correlation slope to the evapotranspiration rate and 
used this relationship to estimate air temperature. The TVX concept has further been 
used to anaylze pixel trajectories. The idea emerged over the past decade that land-
surface parameters associated with individual pixels can be visualized as vectors trac-
ing out paths in a multiparameter space (Lambin and Ehrlich 1994). Several studies 
verified that urbanization is the major cause of the observed migration of pixels within 
the TVX space (Owen, Carlson, and Gillies 1998; Carlson and Sanchez-Azofiefa 1999). 
Owen, Carlson, and Gillies (1998) found that the initial location of the migrating pix-
els in the TVX triangle determined the magnitude and direction of the path. Carlson 
and Sanchez-Azofeifa (1999) used the TVX method to assess how surface climate was 
affected by rapid urbanization and deforestation in San Jose, Costa Rica. They found 
that urbanization was more effective in causing changes in surface climate than defor-
estation, and that different development styles followed different paths in the space. 
Carlson and Arthur (2000) compared average trajectories of different development 
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styles, and showed that in the advanced stages of development, the paths come closer 
and indistinguishable from one another.

Finally, the TVX approach has been used in the so-called triangle inversion method 
to derive surface parameters. Carlson, Gillies, and Perry (1994) used an SVAT model 
to show the feasibility of extracting surface parameters such as soil moisture content 
and Fr from the analysis of the TVX space without ground data. This inversion method 
was used to impose physical limits on a solution of the SVAT model parameterized for 
a test site to remotely sense variables used in the model to derive surface biophysical 
variables. Gillies et al. (1997) verified that the borders of the triangle constrained the 
solutions for determining surface energy fluxes. Goward, Xue, and Czajkowski (2002) 
used the TVX approach as a means for assessing soil moisture conditions from satel-
lite data. Owen, Carlson, and Gillies (1998) used this method to assess the impacts of 
urbanization on surface parameters. Some authors, however, have drawn attention to the 
problems presented by the TVX space. Goward, Xue, and Czajkowski (2002) showed that 
plant stomatal function confused the interpretation of the TVX space given by experi-
mental studies to use TVX slope to assess soil moisture conditions. Nishida et al. (2003) 
discussed four main difficulties of the TVX method used for evapotranspiration (ET) 
estimation: (1) the method’s dependency on meteorological data, (2) computational dif-
ficulties encountered in the inversion of numerical models on a global scale, (3) problems 
involved in accurate estimation in dense vegetation, and (4) estimation difficulties faced 
in complex landscapes. While trying to establish guidelines in order to overcome the 
aforementioned problems by a new model, they suggested their model was effective for 
urbanization monitoring since EF is able to capture variations in surface energy parti-
tioning (Nishida et al. 2003).

6.2.3 � Case Study: TVX Space and Its Temporal Trajectory Analysis 
in Tabriz, Iran, Using Landsat TM/ETM+ Images

Amiri et al. (2009) examined the spatial and temporal dynamics of LST in relation to LULC 
change in the TVX space by using Landsat TIR and reflective data. A methodology was 
developed to detect and monitor urban expansion and to trace the changes in biophysical 
parameters such as NDVI and LST resulting from changes in LULC. The Tabriz metro-
politan area (38°05′, 46°17′) in Iran was selected as the study area. Multitemporal images 
acquired by Landsat 4 TM, Landsat 5 TM, and Landsat 7 ETM+ sensors on June 30, 1989, 
August 18, 1998, and August 2, 2001, respectively, were processed to extract LULC classes 
and LST. The relationship between the temporal dynamics of LST and LULC was then 
examined. The TVX space was constructed in order to study the temporal variability of 
thermal data and vegetation cover.

Figure 6.1a shows the Fr/T* scatter plot (TVX space) with sample LULC classes based 
on the Landsat TM image of August 18, 1998. To create the plot, the cloud-contaminated 
pixels were first excluded. The NDVI values were rescaled between bare soil (NDVI0) and 
dense vegetation (NDVIS), following a method suggested by Owen, Carlson, and Gillies 
(1998). The Fr was then calculated as the square of the rescaled value N*. Areas with high 
and low temperatures (Tmax and T0) were selected from the bare and wet soils, respectively, 
and their data were used to calculate the normalized temperature values of T* (Gillies et al. 
1997). The resulting Fr/T* scatter plot showed a typical triangular pattern, with a clear 
“warm edge” defined by the right side of the pixel envelope.

The temporal trajectory of pixels in the TVX space made it possible to observe most 
changes due to urbanization as the pixels migrated from the low-temperature dense 
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vegetation condition to the high-temperature sparse vegetation condition in the TVX 
space (Figure 6.1b). Our result further showed that in the late stages of urbanization, 
affected pixels tend to converge and entirely lose their initial characteristics in the 
TVX space. The uncertainty analysis revealed that trajectory analysis in the TVX space 
involved a class-dependant noise component. This uncertainty emphasized the need 
for multiple LULC control points in the TVX space. In addition, this case study sug-
gests that the use of multitemporal satellite data together with the examination of 
changes in the TVX space is effective and useful in urban LULC change monitoring 
and analysis of urban surface temperature conditions as long as the uncertainty issue 
is addressed.
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Figure 6.1
(See color insert following page 426.) Fractional vegetation cover (Fr)/T* scatter plot (thermal-vegetation index 
[TVX] space) with sample land use and land-cover (LULC) classes from a Landsat thematic mapper (TM) image 
of the city of Tabriz and change trajectory in the TVX space for a specific period: (a) The scatter plot with sample 
LULC classes from a Landsat TM image of Tabriz (38°05′, 46°17′) in northwestern Iran, which was acquired on 
August 18, 1998; (b) change trajectory in the TVX space for a long (1989–1998) period (June 30, 1989–August 18, 
1998). The vectors show the magnitude of change associated with LULC change from green space, cultivation, 
and barren pixels to urbanized pixels. (From Amiri, R., Q. Weng, A. Alimohammadi, and S. K. Alavipanah, 
Remote Sens Environ, 113, 12, 2009. With permission.)
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6.3 � Use of Remotely Sensed Data to Characterize 
and Model Urban Heat Islands

6.3.1 B ackground

Remotely sensed TIR data is a unique source of information in defining surface heat islands, 
which are related to canopy layer heat islands. In situ data (in particular, permanent mete-
orological station data) offers a high temporal resolution and long-term coverage but lacks 
spatial details. Observations and measurements by moving vehicles overcome this limita-
tion to some extent, but do not provide a synchronized view over a city. Only remotely 
sensed TIR data can provide a continuous and simultaneous view of the whole city, which 
is of prime importance in the detailed investigation of urban surface climate. Rao (1972) 
was the first to assess the possibility of detecting the thermal footprint of urban areas. 
Since then, a wide range of TIR sensors have been developed and employed to study LST 
and UHI; they offer several improvements over their ancestors. However, in many of the 
previous studies, there is confusion between LST patterns and UHIs. A “satellite-derived” 
heat island is largely an artifact of the low-spatial-resolution imagery used, and the term 
“surface temperature patterns” is more meaningful than surface heat island (Nichol 1996). 
It remains a valid scientific issue how satellite-derived LSTs can be utilized to derive UHI 
parameters, and to model and simulate the UHI over space and time.

Previous studies of urban thermal landscapes and UHIs have been conducted using 
National Oceanic and Atmospheric Administration (NOAA) AVHRR data (Kidder and 
Wu 1987; Balling and Brazell 1988; Roth, Oke, and Emery 1989; Gallo et al. 1993; Gallo and 
Owen 1998; Streutker 2002). However, for all these studies, the 1.1-km spatial resolution 
AVHRR data were found suitable only for large-area urban temperature mapping and 
not for establishing accurate and meaningful relationships between image-derived values 
and those measured on the ground. The 120-m resolution Landsat TM (and later ETM+ 
data of 60-m resolution) TIR data have also been extensively utilized to derive LSTs and 
to study UHIs. Carnahan and Larson (1990) used the TM TIR data to observe mesoscale 
temperature differences between urban and rural areas in Indianapolis, Indiana, whereas 
Kim (1992) studied similar phenomena in Washington, DC. Nichol (1994) utilized TM TIR 
data to monitor microclimate for housing estates in Singapore, and further calculated 
LSTs of building walls based on a 3D geographic information system (GIS) model (Nichol 
1998). Weng (2001, 2003) examined LST patterns and their relationships with land cover 
in Guangzhou and in the urban clusters in the Pearl River Delta of China. Weng, Lu, and 
Schubring (2004) utilized a Landsat ETM+ image to examine the LST–vegetation abun-
dance relationship in Indianapolis. More recently, Lu and Weng (2006) applied spectral 
mixture analysis (SMA) to ASTER images in order to derive hot-object and cold-object 
fractions from the TIR bands of the sensor and biophysical variables from the nonthermal 
bands. Statistical analyses were then conducted to examine the relationship between LST 
and the derived fraction variables across the resolution from 15 to 90 m.

The most recent advances include development and utilization of quantitative surface 
descriptors for assessing the interplay between urban material fabric and urban thermal 
behavior (Weng, Lu, and Schubring 2004; Weng, Lu, and Liang 2006; Lu and Weng 2006; 
Weng and Lu 2008). Moreover, the landscape ecology approach was employed to assess 
this interplay across various spatial resolutions and to identify the operational scale at 
which both LST and LULC processes interacted to generate the urban thermal landscape 
patterns (Weng, Liu, and Lu 2007; Liu and Weng 2008). Because an ASTER sensor collects 
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both daytime and nighttime TIR images, analysis of LST spatial patterns has also (Xiao 
et al. 2008) been conducted for a diurnal contrast (Nichol 2005).

A key issue in the application of TIR remote-sensing data in urban climate studies is the 
use of LST measurements at the microscale to characterize and quantify UHIs observed at 
the mesoscale. Streutker (2002, 2003) used AVHRR data to quantify the UHI of Houston, 
Texas, as a continuously varying two-dimensional (2D) Gaussian surface superimposed 
on a planer rural background, and derived the UHI parameters of magnitude (i.e., inten-
sity), spatial extent, orientation, and central location. Rajasekar and Weng (2009) applied 
a nonparametric model by applying fast Fourier transformation (FFT) to MODIS imagery 
for characterization of the UHI over space, so that UHI magnitude and other parameters 
may be derived. Despite these advances, estimation of UHI parameters from multitempo-
ral and multilocation TIR imagery still remains a promising research direction and will 
continue to be so in the years to come, given the increased interest of the urban climate 
community in using remote-sensing data.

6.3.2 � Case Study: Characterizing an Urban Heat Island in Beijing, China, Using 
Advanced Spaceborne Thermal Emission and Reflection Radiometer Images

This section briefly introduces a method for characterizing UHIs using remotely sensed 
LST data and explains its application in Beijing, China. Higdon (2002) explained the pro-
cess convolution for a one-dimensional (1D) process and made suggestions for its exten-
sion to two or three dimensions. In this case study, the process convolution model was 
extended to model the UHI of Beijing as a 2D Gaussian process using ASTER LST data. 
The procedure is detailed next.

Let y(1,1), …, y(i,j) (where q is a 2D matrix of (1,1), …, (i,j)) be data recorded over the 2D 
spatial locations s(1,1), …, s(i,j) in S. In this research, the spatial method represents data as 
the sum of an overall mean μ, a spatial process z = (z(1,1), …, z(i,j))T, and Gaussian white noise 
ε = (ε(1,1), …, ε(i,j))T with variance σ2

ε:
	 y s z= + + ε 	 (6.1)

Here, the elements of z are the restriction of the spatial process z(s) to the 2D data locations 
s(1,1), …, s(i,j); z(s) is defined to be a mean zero Gaussian process. But rather than specifying 
z(s) through its covariance function, it is determined by the latent process x(s) and the 
smoothing kernel k(s). The latent process x(s) is restricted to be nonzero at the 2D spatial 
sites ω(1,1), …, ω(a,b), also in S, and x = (x(1,1), …, x(a,b))T where xωp = x(ωp); p = (1,1), …, (a,b). Each 
xp is then modeled as an independent draw from an N(0,σ2

ω) distribution. The resulting 
continuous Gaussian process is then

	 z S X k sj p
p

a b

( ) ( )
( , )

( , )

= −
=
∑ ω

1 1

	 (6.2)

where k(s –ωp) is a kernel centered at ωp. This gives the following linear model:

	 y l Kxi j= + +µ ε( , ) 	 (6.3)

where l(i,j) is the (i,j)th vector of ls; the elements of K are given by

	 K k s xpq p q q= −( )ω 	 (6.4)
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	 x N lx a b~ ( , )( , )0 2σ  and	 (6.5)

	 ε σ~ ( , )( , )N lx i j0 2 	 (6.6)

The results of convolution modeling can then be analyzed for patterns over space and 
time. The results of the kernel convolution can be compared to examine how UHI mag-
nitude, center, and spatial extent change over space and time. In order to determine UHI 
magnitude, the mean temperature value within each image is considered as a background 
temperature and all values less than the mean are brought to the same level.

Figure 6.2 shows the results of kernel convolution (with a smoothing parameter of 0.6) 
for two ASTER images of Beijing acquired on August 31, 2004 and April 9, 2004, respec-
tively. The August image clearly displays a UHI (Figure 6.2a) with a magnitude of 7°C. 
The built-up area had a higher temperature than the surrounding rural areas, and there 
was a temperature gradient from the urban areas in the southeastern corner to the moun-
tainous area in the northwest. In contrast, the April image shows an urban heat sink in 
central Beijing (Figure 6.2b). According to our computation, the intensity of the heat sink 
was about 3°C. Higher temperatures corresponded to the three suburban agricultural/
residential areas in the north, northwest, and south. The lowest temperature was detected 
in the western mountainous area.

6.4  Estimation of Urban Heat Fluxes Using Remote Sensing Data

Knowledge of urban surface energy balance is fundamental to the understanding of UHIs 
and urban thermal behavior (Oke 1982, 1988). Three items of information are needed in order 
to estimate land surface energy fluxes: (1) energy driving forces (i.e., incident solar energy, 
albedo, and resulting net radiation), (2) soil moisture availability and the vegetation–soil 
interaction, and (3) capacity of the atmosphere to absorb the flux, which depends on sur-
face air temperature, vapor pressure gradients, and surface winds (Schmugge, Hook, and 
Coll 1998). Previous studies have focused on the methods for estimating variables related 
to the first two items from satellite remote sensing data, but little has been done to estimate 
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Figure 6.2
(See color insert following page 426.) The results of kernel convolution for two advanced spaceborne thermal 
emission and reflection radiometer (ASTER) images of Beijing: (a) A true color composite of Beijing using ASTER 
acquired on August 31, 2004; (b) and (c) the results of convoluted images (with a smoothing parameter of 0.6) 
showing thermal landscape pattern of Beijing on August 31, 2004 and April 9, 2004, respectively. The temperature 
is given in degrees Celsius.
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the surface atmospheric parameters (Schmugge, Hook, and Coll 1998). These parameters 
are measured in the traditional way in the network of meteorological stations or by in situ 
field measurements.

Remote sensing TIR data can be applied to relate LSTs with surface energy fluxes for 
characterizing landscape properties, patterns, and processes (Quattrochi and Luvall 1999). 
Remotely sensed thermal imagery has the advantage of providing a time-synchronized 
dense grid of temperature data over a whole city, whereas optical sensing data have been 
used to monitor discrete land-cover types and to estimate biophysical variables (Steininger 
1996). Together, remote sensing data can be used to estimate surface parameters related to 
the soil–vegetation system and surface soil moisture, radiation forcing components, and 
indicators of the surface’s response to them (i.e., LST; Schmugge, Hook, and Coll 1998). If the 
advantage of time-sequential observations of satellite sensors (some sensors can even scan 
a specific geographic location twice a day—one at daytime and one at nighttime) is con-
sidered, remote-sensing data have great potential for studying the urban surface energy 
budget, as well as the spatial pattern and temporal dynamics of urban thermal landscapes. 
One of the earliest studies that combined surface energy modeling and remote sensing 
approaches was conducted by Carlson et al. (1981). They used satellite temperature mea-
surements in conjunction with a 1D boundary layer model to analyze the spatial patterns 
of turbulent heat fluxes, thermal inertia, and ground moisture availability in Los Angeles, 
CA, and St. Louis, MO. This method was later applied in Atlanta by using AVHRR data, 
in which the net urban effect was determined as the difference between urban and rural 
simulations (Hafner and Kidder 1999). Because analyses of surface energy flux are exten-
sively conducted over vegetated and agricultural areas, successful methods have been 
applied to urban areas (Zhang, Aono, and Monji 1998; Chrysoulakis 2003). Zhang, Aono, 
and Monji (1998) used Landsat TM data, in combination with routine meteorological data 
and field measurements, to estimate the urban surface energy fluxes in Osaka, Japan, and 
to analyze their spatial variability in both summer and winter. Chrysoulakis (2003) used 
ASTER imagery, together with in situ spatial data, to determine the spatial distribution 
of all-wave surface net radiation balance in Athens, Greece. Kato and Yamaguchi (2005) 
combined ASTER and Landsat ETM+ data with ground meteorological data to investigate 
the spatial patterns of surface energy fluxes in Nagoya, Japan, over four distinct seasons. 
Furthermore, this study separated anthropogenic heat discharge and natural heat radia-
tion from sensible heat flux.

The seasonal and spatial variability of surface heat fluxes is crucial to the understanding 
of UHI phenomenon and dynamics, which has not been thoroughly addressed by previous 
studies. In a recent study, based on the two-source energy balance (TSEB) algorithm, we 
developed a method to estimate urban heat fluxes by the combined use of multispectral 
ASTER images and routine meteorological data, and applied it to the city of Indianapolis, for 
understanding the seasonal changes in the heat fluxes. The ASTER images of the four sea-
sons were acquired and processed with atmospheric, radiometric, and geometric corrections 
before using them for the analysis. The ASTER data pertaining to surface kinetic tempera-
ture, surface spectral emissivity, and surface reflectance (VNIR and SWIR) was used. All 
the images were resampled to a resolution of 90 m. The nonvegetation and vegetation areas 
were separated for estimating heat fluxes based on computed NDVI values. The needed 
meteorological data was obtained from the Indiana State Climate Office, including data 
regarding shortwave radiation, air temperature, relative humidity, air pressure, and wind 
speed. Shortwave radiation data was obtained from the National Solar Radiation Database.

Figure 6.3 shows the estimated net radiation, sensible heat flux, latent heat flux, and 
ground heat flux on October 13, 2006, recorded in Indianapolis. The mean values and 
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standard deviations of the surface heat fluxes by LULC type are displayed in Table 6.1. 
This study found that the estimated surface heat fluxes showed a strong seasonality, with 
the highest net radiation recorded in summer, followed by spring, fall, and winter. Sensible 
heat flux tended to change largely with surface temperature, whereas latent heat was 
largely modulated by the change in vegetation abundance and vigor over a year and the 
accompanying moisture condition. The fluctuation in all heat fluxes tended to be high in 
the summer months and low in the winter months. Sensible and latent heat fluxes showed 
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Figure 6.3
(See color insert following page 426.) Net radiation, sensible heat flux, latent heat flux, and soil heat flux on 
October 13, 2006 in Indianapolis estimated by the combined use of advanced spaceborne thermal emission and 
reflection radiometer image and ground meteorological data.

Table 6.1

Statistics of Surface Heat Fluxes by LULC Type in Indianapolis on October 13, 2006 (Unit: W/m2)

Heat Fluxes

Urban and 
Built-Up 

Land
Agricultural 

Land
Forest 
Land Grassland Water

Bare 
Ground Overall

Net 
radiation

377.87 
(40.97)

394.98
(33.30)

426.37 
(20.15)

378.76 
(25.99)

484.40 
(28.61)

363.61 
(56.88)

396.47
(40.73)

Soil 
heat flux

151.15 
(16.39)

118.49
(9.99)

63.96 
(3.02)

113.63 
(7.80)

169.54 
(10.01)

109.08 
(17.07)

113.09
(37.30)

Sensible 
heat flux

293.34 
(41.95)

183.35
(31.91)

269.26 
(95.34)

243.82 
(73.24)

77.49 
(11.86)

91.10 
(14.51)

242.62
(100.31)

Latent 
heat flux

0.94
(8.78)

65.99
(39.88)

63.73 
(34.70)

39.67 
(37.31)

231.50 
(52.90)

150.20 
(49.28)

39.53
(52.15)



154	 Advances in Environmental Remote Sensing

a stronger spatial variability than net radiation and ground heat flux. By computing heat 
fluxes by LULC type, we further investigated the geographic pattern and spatial vari-
ability of urban surface energy balance. The variations in net radiation among the LULC 
types were found to be attributable mainly to surface albedo and temperature, whereas 
the within-class variability in turbulent heat fluxes were more associated with changes in 
vegetation, water bodies, and other surface factors.

6.5  Future Prospects of Thermal Infrared Sensors

There has been significant progress in the studies focusing on LST–vegetation rela-
tionship, UHI modeling with remotely sensed TIR data, and estimation of urban sur-
face heat fluxes. However, urban climate and environmental studies will be difficult, 
if not impossible, without TIR sensors having a global imaging capacity. At present, 
there are few sensors that have such TIR capabilities. The TM sensor aboard Landsat 
5 has been acquiring images of the Earth nearly continuously from July 1982 to the 
present, with a TIR band of 120-m resolution, and is thus long overdue. On April 2, 
2007, updates to the radiometric calibration of Landsat 5 TM data processed and dis-
tributed by the U.S. Geological Survey (USGS) Earth Resources Observation System 
(EROS) created an improved Landsat 5 TM data product that is now more compa-
rable radiometrically to Landsat 7 ETM+ and provides the basis for continued long-
term studies of the Earth’s land surfaces. Another TIR sensor that has global imaging 
capacity is with Landsat 7 ETM+. On May 31, 2003, the ETM+ scan-line corrector 
(SLC) failed permanently. Although it is still capable of acquiring useful image data 
with the SLC turned off, particularly within the central part of any given scene, the 
National Aeronautics and Space Administration (NASA) has teamed up with USGS 
to focus on the Landsat Data Continuity Mission (LDCM), which is most likely not 
to have a TIR imager. In addition, Terra’s ASTER TIR bands of 90-m resolution have 
been increasingly used in urban climate and environmental studies in recent years. 
The ASTER is an on-demand instrument, which means that data are acquired only 
over requested locations. The Terra satellite, launched in December 1999 as part of 
NASA’s Earth Observing System, has a life expectancy of 6  years, and is now also 
overdue. The scientific and user community is looking forward to a Landsat ETM–like 
TIR sensor. The draft requirements for the LDCM thermal imager indicate that two 
thermal bands (10.3–11.3 μm and 11.5–12.5 μm) of 90 m or better spatial resolution are 
preferred (for details, readers are referred to the LDCM Web site, http://ldcm.nasa.gov/
procurement/TIRimagereqs051006.pdf). The National Research Council Decadal Survey 
indicates the need for such a TIR sensor. The Hyperspectral Infrared Imager (HyspIRI) 
is defined as a mission with tier-2 priority to be launched in the next 8–10 years. Because 
of its hyperspectral visible and shortwave infrared bandwidths and its multispectral 
TIR capabilities, HyspIRI will be well suited for deriving land-cover and other biophysi-
cal attributes for urban climate and environmental studies (for more information, the 
readers are referred to the HyspIRI Web site, http://hyspiri.jpl.nasa.gov/). Its TIR imager 
is expected to provide seven bands between 7.5 and 12 μm and one band at 4 μm, all 
with 60-m spatial resolution. This TIR sensor is intended for the imaging of global land 
and shallow water (less than 50 m) with a 5-day revisit at the equator (1 day and 1 night 
imaging). These improved capabilities would allow for a more accurate estimation of 



Thermal Remote Sensing of Urban Areas	 155

LST and emissivity, and for deriving unprecedented information on biophysical char-
acteristics and even socioeconomic information such as population, quality of life indi-
cators, and human settlements. Such information cannot be obtained from the current 
generation of satellites devices in orbit, such as MODIS, Landsat, or ASTER. Two major 
areas of application identified by the HyspIRI science team are urbanization and human 
health through the combined use of visible to shortwave infrared (VSWIR) and TIR data. 
Until then, we may have to bear with Landsat and ASTER for medium-resolution TIR 
data, and MODIS and AVHRR for coarse-resolution data. It is from this perspective that 
international collaborations on Earth resources satellites become very important.
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7
Atmospheric Correction Methods for Optical 
Remote Sensing Imagery of Land

Rudolf Richter

The optical part of the electromagnetic spectrum covers wavelengths from 100 nm to 
1 mm. However, only a small part of the optical spectrum can be used for remote sens-
ing from airborne and spaceborne platforms, because of the characteristics of the scat-
tering, absorption, and emission of radiation by the terrestrial atmosphere. Figure 7.1 
presents a typical atmospheric transmittance curve in those spectral regions that can 
be exploited with remote sensing techniques. Basically, there exist three large spectral 
intervals: 0.4–2.5 μm, 3–5 μm (mid-infrared or MIR), and 8–14 μm (thermal infrared or 
TIR). For technical reasons, the first region is often split into the visible to near-infrared 
(VIS to NIR or VNIR; 0.4–1.0 μm; no detector cooling required) and short-wave infrared 
(SWIR; 1.0–2.5 μm; detector cooling required) regions. The main absorbing gases in the 
atmosphere are water vapor, ozone, carbon dioxide, and oxygen; the most variable gas in 
space and time is water vapor.

The 0.4–3.0 μm region is often referred to as a “reflective” or “solar” region. The 
reflected solar radiation dominates in this region compared to ambient emitted radia-
tion, whereas the emitted TIR radiation dominates in the 8–14 μm domain (Figure 7.2). 
The reflected solar radiation is plotted for three surface reflectance (ρ) levels, and the 
emitted radiation for a 300-K blackbody. The atmospheric influence is neglected in this 
figure.

In the MIR interval, reflected solar and emitted thermal radiations have the same order 
of magnitude, and both contributions have to be considered during atmospheric correc-
tion (AC). As the majority of existing high spatial resolution instruments does not possess 
MIR channels, we will not discuss this case but refer to the works of Hook et al. (2001) and 
Mushkin, Balick, and Gillespie (2005).

Table 7.1 contains an overview of some typical multispectral and hyperspectral instru-
ments covering the reflective region, the TIR region with one channel, and the TIR region 
with more than 10 channels. Currently, all high spatial resolution (footprint <100 m) 
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hyperspectral instruments in orbit are restricted to the VNIR/SWIR region as they lack 
thermal channels. Airborne instruments covering the solar region and possessing at least a 
few thermal channels are still rare, and this is even more true for hyperspectral systems.

AC methods can be grouped into empirical approaches and physical models describ-
ing radiative transfer (RT) in the Earth’s atmosphere. Here, we will only discuss RT-based 
approaches. As AC algorithms necessarily depend on the spectral regions covered by an 
instrument and also on the available number of channels, we will present the retrieval 
algorithms beginning with hyperspectral systems and terminating with a few channel 
multispectral instruments.

7.1 � Atmospheric Correction for Hyperspectral 
Instruments (Solar Region)

Hyperspectral instruments are characterized by a large number (100 or more) of contigu-
ous channels with a narrow spectral bandwidth (typically, 3–20 nm). A review article on 
this subject was published recently (Gao et al. 2009). The RT equation for a homogeneous 
surface under clear sky conditions can be formulated as follows:

	 L L
E

s
= +

−p
gτ ρ π
ρ
/

1
	 (7.1)

where L, Lp, τ, Eg, ρ, and s are at-sensor radiance, path radiance, ground-to-sensor trans-
mittance, total solar flux on the ground, surface reflectance, and spherical albedo of the 
atmosphere, respectively. For brevity, the dependence on wavelength, solar and view-
ing geometry, and atmospheric parameters has been omitted. The at-sensor radiance is 

Table 7.1 

Prototypes of Multispectral and Hyperspectral Sensors

Multispectral Hyperspectral

Platform VNIR  /SWIR VNIR  / TIR VNIR  /SWIR VNIR  /TIR

Satellite SPOT, Ikonos Landsat TM, 
ETM+, ASTER

Hyperion, CHRIS –

Aircraft ADS80 Daedalus ATM AVIRIS, APEX MASTER

SPOT: System Pour l’Observation de la Terre, http://en.wikipedia.org/wiki/SPOT_(satellite)
Ikonos: http://en.wikipedia.org/wiki/ikonos
ADS80: http://www.leica-geosystems.com 
Landsat: http://landsat.gsfc.nasa.gov 
ASTER: http://asterweb.jpl.nasa.gov 
Daedalus ATM: http://www.nasa.gov/centers/dryden/research/Airsci/ER-2/tms.html 
Hyperion: http://eo1.usgs.gov 
CHRIS: http://earth.esa.int/proba 
AVIRIS: http://aviris.jpl.nasa.gov 
APEX: http://www.apex-esa.org/modules/APEX 
MASTER: MODIS ASTER Simulator, http://masterweb.jpl.nasa.gov 
Web sites accessed 16/09/2010.
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measured by the sensor, whereas the relevant atmospheric parameters (aerosol type, aero-
sol optical thickness, water vapor column) can be retrieved from the imagery, enabling 
the calculation of Lp, τ, Eg, and s. With this knowledge, Equation 7.1 can be solved for ρ. In 
practice, scenes always consist of heterogeneous fields of different reflectance. Then, atmo-
spheric cross talk occurs among such fields (Dave 1980; Richter et al. 2006), and radiation 
from the neighboring terrain spills over from the background to the considered target (see 
the schematic sketch in Figure 7.3).

In this case, Equation 7.1 has to be solved iteratively. Frequently used RT codes are 
DISORT (Stamnes et al. 1988), 6S (Vermote et al. 1997), MODTRAN (Berk et al. 1998), and 
libRadtran (Mayer and Kyling 2005). These codes calculate the at-sensor radiance for speci-
fied sun and observer geometries and atmospheric parameters. AC uses inverse modelling 
to retrieve the surface reflectance. Whereas 6S is restricted to the solar spectral region, the 
other two codes also cover the thermal domain.

As the recorded image data is digitized and rescaled to fit into an 8 or 16 bit/pixel encod-
ing, a linear equation with an offset (c0) and gain (c1) has to be applied per channel to con-
vert the scaled digital number (DN) to the corresponding at-sensor radiance, as follows:

	 L c c= +0 1DN 	  (7.2)

The metafile of an image usually contains these radiometric calibration coefficients. Care 
has to be taken as different units are frequently used, for example, W ⋅ m−2 ⋅ sr −1 ⋅ μm−1, 
mW ⋅ cm−2 ⋅ sr −1 ⋅ μm−1, and others.

For aerosol retrieval over land, different approaches exist depending on the spectral 
coverage of the instrument; whereas Kaufman et al. (1997) require SWIR bands, Guanter, 
Alonso, and Moreno (2005) suggest VNIR bands. The former method first masks dark 
land pixels in a 2.1- or 1.6-μm channel and then uses the following empirical correlation of 
SWIR surface reflectance values with reflectances in the blue/red region:

	 ρ ρ µ ρ ρ(red) m and (blue) (red)= =0 5 2 1 0 5� ( � ) � 	  (7.3)

Target ρt
Background ρb

Sensor

1

2

3

4

Figure 7.3
Schematic sketch of the adjacency effect. Radiation component 1 represents path radiance, component 2 repre-
sents direct plus diffuse flux on the target, component 3 represents volume scattering of adjacency, and compo-
nent 4 represents atmospheric backscattering of adjacency effect.
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Several water vapor retrieval techniques have been published, using atmospheric window 
channels as a reference and channels in the absorption regions to measure the water vapor 
column (Gao and Goetz 1990; Carrere and Conel 1993; Schläpfer et al. 1998).

Another important issue is the removal of the effect of thin cirrus clouds. These can usu-
ally not be detected with channels in the VIS spectrum, but a narrow channel in the 1.38-μm 
region (for example, those available from Moderate Resolution Imaging Spectroradiometer 
[MODIS] and Airborne Visible/Infrared Imaging Spectrometer [AVIRIS] instruments) can 
be employed for cirrus detection and removal (Gao et al. 2002).

A typical artifact of pushbroom spectrometers is the spectral smile, an optical aberration 
that causes the spectrometer entrance slit, which represents the across-track swath, to be 
projected as a curve on the rectilinear detector array (Mouroulis, Green, and Chrien 2000). 
Therefore, for accurate water vapor and surface reflectance retrieval, one has to perform 
AC on a per-column basis as the channel center wavelength varies with the across-track 
position.

7.2  Atmospheric Correction for the Thermal Region

In the thermal spectrum, atmospheric transmittance is mainly influenced by water vapor, 
ozone (around 9.6 μm), and carbon dioxide (14 μm; see Figure 7.1). The aerosol influence 
still exists, but it is strongly reduced compared to the solar domain because of the much 
larger wavelength. Therefore, an accurate estimate of the water vapor column is required 
for retrieving surface properties, that is, spectral emissivity and surface temperature. 
Figure 7.4 shows a sketch of the radiation components in the thermal region: path radiance 
(L1 = Lp), emitted surface radiance (L2), and reflected radiance (L3). Thermal path radiance 
occurs due to emitted radiation from the atmosphere. The atmosphere also generates a 
hemispherical downwelling thermal flux F on the ground. As the surface emissivity ε is 
smaller than 1, the radiation reflected from the ground is (1 − ε)F/π, assuming an opaque 
surface, that is, ρ = 1 − ε.

F

L = c0 + c1DN

L1 L2 L3

ε, T

Figure 7.4
Radiation components in the thermal region.
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Therefore, the at-sensor radiance can be written as

	 L L B T F= + + −p τε τ ε π( ) ( ) /1 	 (7.4)

where B is Planck’s blackbody function. The problem with this equation is that it contains 
two unknowns: the emissivity ε and temperature T. So for n thermal channels, we always 
have n + 1 unknowns, namely n emissivities and one temperature, which is an underde-
termined set of equations. For most natural surfaces, the emissivity in the 10–12-μm region 
ranges between 0.95 and 0.99. If only a single thermal band is available (Landsat Thematic 
Mapper [TM], Enhanced TM plus [ETM+]), the emissivity is usually fixed at a constant 
value, say ε = 0.97, and Equation 7.4 is solved for the surface leaving radiance B(T). The 
temperature T is then calculated by inverting Planck’s function with an exponential fit 
function for a certain temperature range (Richter and Coll 2002).

If several thermal channels are available, iterative temperature/emissivity separation 
(TES) methods can be applied (Gillespie et al. 1998; Dash et al. 2002; Young, Johnson, and 
Hackwell 2002). As an example, in the normalized emissivity method (NEM), the surface 
temperature is calculated for all channels with a constant user-defined emissivity, and for 
each pixel the channel with the highest temperature is finally selected, because it is clos-
est to the kinetic surface temperature. If the assumed start emissivity is correct, the true 
kinetic temperature will be obtained; otherwise, the result will have a small absolute tem-
perature error. Afterward, the emissivities are calculated for each channel. In the adjusted 
NEM (Coll et al. 2001), the start emissivity is not constant but depends on the surface cover 
(vegetation, soil, sand, or water), which is determined by the reflective bands. Therefore, a 
closer match with the actual pixel-dependent emissivity can be expected and, as a conse-
quence, a higher temperature accuracy.

Surface and air temperature are among the key parameters of weather and climate. 
Together with the factor of water, they determine plant growth, crop yield, carbon uptake 
by vegetation, evapotranspiration, and energy balance and influence the hydrological 
cycle (Carlson et  al. 1981; Friedl 2002). Therefore, even a single thermal channel added 
to an instrument with reflective bands will distinctly broaden the range of applications. 
Additionally, multispectral or hyperspectral thermal bands allow an evaluation of the 
emissivity spectrum, which contains material-specific diagnostic features (Vincent 1975; 
Salisbury and D’Aria 1992).

7.3 � Atmospheric Correction for Multispectral Instruments (Solar Region)

Typical multispectral instruments have a small number (smaller than 10) of broad bands in 
the solar or reflective region. Aerosol retrieval using Equation 7.3 and the radiative trans-
fer in Equation 7.1 requires at least a channel in the red spectrum (around 650 nm) and a 
SWIR1 (1.6 μm) or SWIR2 (2.2 μm). Since the channels are placed in atmospheric window 
regions, they are only marginally influenced by the atmospheric water vapor column, and 
as water vapor cannot be retrieved from those channels, a climatologic average value or 
data from nearby weather stations or from other satellites has to be used. For sensors 
with only three or four VNIR bands, an empirical aerosol retrieval algorithm has been 
published that can be used for scenes containing dark vegetation areas (Richter, Schläpfer, 
and Müller 2006).
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The proposed European Space Agency (ESA) Sentinel-2 instrument (ESA 2007) has 13 
bands of different spatial resolutions (10, 20, and 60 m) with AC channels at 60 m (443, 
940, and 1375 nm). The swath width is 290 km. Sentinel-2 will provide enhanced-quality 
continuity with existing missions of SPOT and Landsat. The launch is planned for 2013. 
The blue, red, and SWIR2 bands allow aerosol retrieval and the NIR bands (865, 940 nm) 
allow water vapor retrieval. In addition, thin cirrus can be detected with the 1375-nm 
band. As this sensor exceeds the typical number of bands of multispectral instruments 
and can perform image-based aerosol and water vapor retrieval, it is sometimes called 
“superspectral.”

7.4  Combined Atmospheric and Topographic Correction

A large part of the land surface of the Earth is occupied by mountains. In these areas, there 
is a strong influence of the topography on the signal recorded by optical remote sensing 
instruments, that is, for the same surface cover, slopes oriented away from and toward 
the sun will appear darker and brighter, respectively, if compared to a horizontal geom-
etry. This behavior causes problems for subsequent classification and thematic evaluation. 
Therefore, a combined atmospheric and topographic correction has to be performed in 
rugged terrain. A number of topographic correction techniques have been developed to 
eliminate or at least reduce the topographic influence (Teillet, Guindon, and Goodenough 
1982; Riano et al. 2003; Richter, Kellenberger, and Kaufmann 2009).

All proposed methods rely on a digital elevation model (DEM) of the scene to describe 
the topography. If θn, θs, ϕs, and ϕn denote solar zenith angle, terrain slope, solar azimuth, 
and topographic azimuth, respectively, the local solar illumination angle β can be obtained 
from the topographic slope, aspect angles, and the solar geometry

	 cos ( , ) cos cos ( , ) sin sin cos{β θ θ θ θ φx y x yn n= + −s s s φφn x y( , )}	 (7.5)

where x, y indicate the pixel coordinates in an image that depends on the terrain slope 
θn and aspect ϕn. If ρ T and ρH denote the reflectance of an inclined (terrain) and a hori-
zontal surface, respectively, then the Lambertian method of topographic normalization is 
defined as

	 ρ ρ θ
βH T

s= cos
cos

	 (7.6)

For a low illumination, that is, small values of cosβ, the corrected reflectance is too large 
and the corresponding parts of an image are overcorrected. In the case of topographic 
shadow, cosβ tends to 0 and ρH to infinity. All methods can be applied to surface reflectance 
(after AC) or the apparent or top-of-atmosphere (TOA) reflectance, that is, ρ π θ= L E/ cos s 
(L = at-sensor radiance, E = extraterrestrial solar irradiance).

The Minnaert method uses an exponent K for the term (cos θs/cos β) where K usually 
ranges between 0 and 1, which is derived from the image data on a per-channel basis. 
The third technique (C normalization) also belongs to a class of non-Lambertian methods. 
It uses an additive term c in the numerator and denominator of the cosine functions of 
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Equation 7.6 to avoid very high values in the topographic correction. This term c accounts 
for the diffuse radiance component, and it is calculated on a per-channel basis, evaluating 
a statistical regression of image data (see the study by Riano et al. [2003] for details). The 
fourth approach (Shepherd and Dymond 2003) calculates horizontal reflectance as a func-
tion of solar and terrain angles (θs, β) and also depends on the sensor view angles on a flat 
terrain (θv) and an inclined terrain (βv). This algorithm includes an additive geometric term 
in the denominator of Equation 7.6 to avoid an overcorrection in faintly illuminated areas.

A fifth method (Richter, Kellenberger, and Kaufmann 2009) is a modified Minnaert 
approach that differs from the standard Minnaert method by employing a set of empirical 
rules for determining the threshold solar illumination angle, and a criterion to prevent 
overcorrection. The problem is that no method achieves the best ranking in all situations.

Figure 7.5 presents an example of a combined atmospheric and topographic correction 
for a SPOT-5 scene from a part of the Swiss Alps (dated September 21, 2005). Elevations 
range between 1200 and 3000 m, and the scene contains steep slopes of up to 58°. The cor-
rected scene was processed according to the fifth method, and most topographic features 
are compensated well in the result.

7.5  Nonstandard Atmospheric Conditions (Haze, Cirrus, Cloud Shadow)

Conditions such as haze, cirrus, and cloud shadow comprise situations with bound-
ary layer haze of varying optical thickness, with cirrus and scattered clouds, and with 
cloud shadow. These cases pose special scene-dependent problems that are difficult or 
impossible to solve with RT codes. Usually, simplifications have to be made, for exam-
ple, single scattering has to be assumed because the cloud geometry is unknown or too 
complex. Nevertheless, significant progress has been achieved during the last decade. 
Figures 7.6 and 7.7 present two examples of haze removal and deshadowing of satellite 
imagery.

In Figure 7.6, haze was removed for an ALOS AVNIR-2 scene (http://www.alos-restec.jp, 
accessed 16/09/2010) with the assumption that it is an additive signal component to the 
ground-reflected radiance and normal path radiance in the haze-free regions. Multiple 
scattering effects were neglected. Haze is subtracted with the so-called haze optimized 

Figure 7.5
(See color insert following page 426.) Example of a combined atmospheric and topographic correction of a 
SPOT-5 scene from a part of the Swiss Alps. Left to right: Original SPOT-5 scene (color coding for red, green, 
and blue bands is 1650, 840, and 660 nm, respectively), illumination map, and combined atmospheric and topo-
graphic correction. (From Richter, R. et al., Rem Sens Environ, 1, 2009. With permission.)
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transform (HOT; Zhang, Guindon, and Cihlar 2002), followed by an AC to obtain surface 
reflectance.

Figure 7.7 (left) shows a SPOT-5 subscene from Romania that contains a large percentage 
of scattered clouds. The right part of the figure is the result of applying a deshadowing 
algorithm on the original subscene (Richter and Muller 2005). Obviously, a lot of features 
that appear hidden in the original scene can be recognized in the deshadowed result.

7.6  Atmospheric Correction Codes for Land

A brief survey on commercially available AC codes for land imagery is included in Gao 
et al. (2009). Among the most popular algorithms are ACORN (ImSpec LLC, http://www.
imspec.com, Palmdale, CA), FLAASH (developed by Spectral Sciences, Inc., MA; distributed 
by ITT Visual Information Solutions, CO, http://www.ittvis.com), ISDAS (Canada Centre 
for Remote Sensing, Quebec, Canada, http://www.ccrs.nrcan.gc.ca), and ATCOR (German 
Aerospace Center [DLR], Cologne, Germany; distributed by ReSe company, Langeggweg, 
Switzerland, http://www.rese.ch). Table 7.2 summarizes the main features of these codes. 
In the table, a plus sign indicates that the corresponding feature is supported, whereas a 
minus sign marks that the capability is missing. Most features are supported by all codes; 
however, processing of thermal band imagery can be done only with ATCOR. In addition, 
topographic correction is supported only by ISDAS and ATCOR.

Figure 7.6
Haze removal of ALOS AVNIR-2 imagery from northern Germany (dated April 16, 2007; band 1 at 463 nm). Left: 
Original subscene. Right: surface reflectance after haze removal.

Figure 7.7
(See color insert following page 426.) Deshadowing of SPOT-5 imagery (dated May 22, 2005; color coding of 
red, green, and blue bands is 830, 660, and 555 nm, respectively). Left and right: Original and deshadowed scene, 
respectively.
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7.7  Open Challenges

Atmospheric and topographic correction algorithms will continue to be improved in the 
future. Enhanced processing of hyperspectral imagery will benefit from an increase in 
the accuracy of RT models, particularly concerning scattering in the blue spectral region 
and updates of molecular absorption parameters. In addition, the sensor signal-to-noise 
ratio, radiometric calibration accuracy, and stability are likely to be improved. An open 
concern is the question of the most accurate solar irradiance database. The Committee 
on Earth Observation Satellites (CEOS; http://www.ceos.org, accessed 15/09/2010) recom-
mends the Thuillier database, whereas others approve of the new Kurucz (1997) database, 
which is the default used in MODTRAN4. Although the solar constant, that is, irradiance 
integrated over the whole spectral range, is known with an accuracy of about 1%, much 
larger discrepancies exist for the spectral irradiance, depending on the spectral resolu-
tion. Figure 7.8 presents relative differences between the Thuillier (Thuillier et al. 2003) 
and the new Kurucz spectra for bandwidths of 3 and 10 nm. There are large differences 
between these sources, especially in the blue part of the spectrum. These discrepancies 
can probably be resolved within a few years when updated and more accurate measure-
ments become available. Another problem is that the Thuillier database ends at 2.4 μm, 
whereas a number of hyperspectral instruments have channels up to 2.5 μm.

However, a number of challenges will probably persist for many years, especially for 
fully automated processing environments. Examples include the difficult cases of nonstan-
dard atmospheric conditions, that is, removal of boundary layer haze of varying thickness 
and deshadowing of cloud shadow regions, especially under geometrically complex situa-
tions with scattered clouds at different altitude layers or a combination of haze, cloud, and 
shadow regions. Additionally, topographic correction techniques need to be improved, as 
there is no acknowledged method that works best in all mountainous regions of the Earth 
under all surface-cover conditions and seasons. This means that AC will remain an excit-
ing research topic for a long time.

Table 7.2

Comparison of Popular AC Codes

Feature ACORN FLAASH ISDAS ATCOR

Multispectral instruments + + + +
Hyperspectral instruments + + + +
Adjacency correction − + + +
Water vapor retrieval + + + +
Haze removal − − − +
Spectral polishing − + − +
Spectral smile correction + − − +
Thermal region: Surface 
temperature, emissivity

− − − +

Rugged terrain: DEM 
topographic correction

− − + +

Note:	 A plus sign indicates that the corresponding feature is supported, whereas a minus sign indicates 
the capability is missing.



Atmospheric Correction Methods for Optical Remote Sensing Imagery of Land	 171

References

Berk, A., L. S. Bernstein, G. P. Anderson, P. K. Acharya, D. C. Robertson, J. H. Chetwynd, and 
S. M. Adler-Golden. 1998. MODTRAN cloud and multiple scattering upgrades with applica-
tion to AVIRIS. Rem Sens Environ 65:367–75.

Carlson, T., J. Dodd, S. Benjamin, and J. Coope. 1981. Satellite estimation of the surface energy bal-
ance, moisture availability, and thermal inertia. J Appl Meteorol 20:67–87.

Carrere, V., and J. E. Conel. 1993. Recovery of atmospheric water vapor total column abundance from 
imaging spectrometer data around 940 nm—sensitivity analysis and applications to airborne 
visible/infrared imaging spectrometer (AVIRIS) data. Rem Sens Environ 44:179–204.

Coll, C., V. Caselles, E. Rubio, F. Sospreda, and E. Valor. 2001. Temperature and emissivity separation 
from calibrated data of the digital airborne imaging spectrometer. Rem Sens Environ 76:250–9.

Dash, P., F.-M. Götsche, F.-S. Oleson, and H. Fischer. 2002. Land surface temperature and emissiv-
ity estimation from passive sensor data: Theory and practice—current trends. Int J Rem Sens 
23:2563–94.

Dave, J. V. 1980. Effect of atmospheric conditions on remote sensing of a surface nonhomogeneity. 
Photogramm Eng Rem Sensing 46:1173–80.

ESA. 2007. GMES Sentinel-2 mission requirements document. http://esamultimedia.esa.int/docs/
GMESSentinel-2_MRD.pdf, accessed 15/09/2010.

Friedl, M. A. 2002. Forward and inverse modelling of land surface energy balance using surface temp
erature measurements. Rem Sens Environ 79:344–54.

Gao, B.-C., and A. F. H. Goetz. 1990. Column atmospheric water vapour and vegetation liquid water 
retrieval from airborne imaging spectrometer data. J Geophys Res 95(D4):3549–64.

Gao, B.-C., M. J. Montes, C. O. Davis, and A. F. H. Goetz. 2009. Atmospheric correction algorithms for 
hyperspectral remote sensing data of land and ocean. Rem Sens Environ 113:S17–24.

Gao, B.-C., P. Yang, W. Han, R.-R. Li, and W. J. Wiscombe. 2002. An algorithm using visible and 
1.38 μm channels to retrieve cirrus cloud reflectances from aircraft and satellite data. IEEE Trans 
Geosci Rem Sens 40:1659–68.

Gillespie, A., S. Rokugawa, T. Matsunaga, J. S. Cothern, S. Hook, and A. B. Kahle. 1998. A temperature 
and emissivity separation algorithm for advanced spaceborne thermal emission and reflection 
radiometer (ASTER). IEEE Trans Geosci Rem Sens 36:1113–26.

Guanter, L., L. Alonso, and J. Moreno. 2005. A method for the surface reflectance retrieval from 
PROBA/CHRIS data over land: Application to ESA SPARC campaigns. IEEE Trans Geosci Rem 
Sens 43:2908–17.

5

−5

−10

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0

Wavelength (μm)

Re
l. 

di
ffe

re
nc

e (
%)

Δ=100× {E(NKur)−E(�uil)}/E(NKur)
Thin, thick: 3, 10 nm (�uillier 2002)

 

2

0

−2

−4

−6
1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

Re
l. 

di
ffe

re
nc

e (
%)

Thin, thick: 3, 10 nm (�uillier 2002)
Δ=100× {E(NKur)−E(�uil)}/E(NKur)

Wavelength (μm)

Figure 7.8
Comparison of the relative differences between new Kurucz and Thuillier irradiance.



172	 Advances in Environmental Remote Sensing

Hook, S. J., J. J. Myers, K. J. Thome, M. Fitzgerald, and A. B. Kahle. 2001. The MODIS/ASTER air-
borne simulator (MASTER)—a new instrument for earth science studies. Rem Sens Environ 
76:93–102.

Kaufman, Y. J., A. Wald, L. A. Remer, B.-C. Gao, R. R. Li, and L. Flynn. 1997. The MODIS 2.1 mum 
channel—correlation with visible reflectance for use in remote sensing of aerosol. IEEE Trans 
Geosci Rem Sens 35:1286–98.

Kurucz, R. L. 1995. The solar spectrum: Atlases and line identifications. Astron Soc Pac Conf Ser 
81:17–31.

Mayer, B., and A. Kyling. 2005. Technical note: The libRadtran software package for radiative transfer 
calculations – description and examples of use. Atmos Chem Phys 5:1855–77.

Mouroulis, P., R. O. Green, and T. G. Chrien. 2000. Design of pushbroom imaging spectrometers for 
optimum recovery of spectroscopic and spatial information. Appl Opt 39:2210–20.

Mushkin, A., L. K. Balick, and A. R. Gillespie. 2005. Extending surface temperature and emissivity 
retrieval to the mid-infrared (3–5 μm) using the multispectral thermal imager (MTI). Rem Sens 
Environ 98:141–51.

Riano, D., E. Chuvieco, J. Salas, I. Aguado. 2003. Assessment of different topographic corrections in 
Landsat TM data for mapping vegetation types. IEEE Trans Geosci Rem Sens 41:1056–61.

Richter, R., M. Bachmann, W. Dorigo, and A. Müller. 2006. Influence of the adjacency effect on ground 
reflectance measurements. IEEE Geosci Rem Sens Lett 3:565–9.

Richter, R., and C. Coll. 2002. Bandpass-resampling effects for the retrieval of surface emissivity. Appl 
Opt 41:3523–29.

Richter, R., T. Kellenberger, and H. Kaufmann. 2009. Comparison of topographic correction methods. 
Rem Sens Environ 1:184–96.

Richter, R., and A. Müller. 2005. De-shadowing of satellite/airborne imagery. Int J Rem Sens 
26:3137–48.

Richter, R., D. Schläpfer, and A. Müller. 2006. An automatic atmospheric correction algorithm for 
visible/NIR imagery. Int J Rem Sens 27:2077–85.

Salisbury, J. W., and D. M. D’Aria. 1992. Emissivity of terrestrial materials in the 8–14 μm atmospheric 
window. Rem Sens Environ 42:83–106.

Schläpfer, D., C. C. Borel, J. Keller, and K. I. Itten. 1998. Atmospheric precorrected differential absorp-
tion technique to retrieve columnar water vapor. Rem Sens Environ 65:353–66.

Shepherd, J. D., and J. R. Dymond. 2003. Correcting satellite imagery for the variance of reflectance 
and illumination with topography. Int J Rem Sens 24:3503–14.

Stamnes, K., S. C. Tsay, W. J. Wiscombe, and K. Jayaweera. 1988. Numerically stable algorithm for 
discrete-ordinate-method radiative transfer in multiple scattering and emitting media. Appl 
Opt 27:2502–9.

Teillet, P. M., B. Guindon, and D. G. Goodenough. 1982. On the slope-aspect correction of multispec-
tral scanner data. Int J Rem Sens 8:84–106.

Thuillier, G., M. Herse, D. Labs et al. 2003. The solar spectral irradiance from 200 to 2400 nm as 
measured by the SOLSPEC spectrometer from the ATLAS and EURECA missions. Solar Phy 
214:1–22.

Vermote, E. F., D. Tanre, J. L. Deuze, M. Herman, and J. J. Morcrette. 1997. Second simulation of the 
satellite signal in the solar spectrum: 6S: An overview. IEEE Trans Geosci Rem Sens 35:675–86.

Vincent, R. K. 1975. The potential role of thermal infrared multispectral scanners in geological remote 
sensing. Proc IEEE 63:137–47.

Young, S. J., B. R. Johnson, and J. A. Hackwell. 2002. An in-scene method for atmospheric compensa-
tion of thermal hyperspectral data. J Geophys Res 107(D24):4774–93.

Zhang, Y., B. Guindon, and J. Cihlar. 2002. An image transform to characterize and compensate for 
spatial variations in thin cloud contamination of Landsat images. Rem Sens Environ 82:173–87.



173

8
Three-Dimensional Geometric Correction 
of Earth Observation Satellite Data

Thierry Toutin

8.1  Introduction

Why orthorectify Earth observation (EO) satellite data? Any EO data, regardless of whether 
they are acquired by a scanner or a frame camera aboard a satellite, or by a photographic 
system in an aircraft or any other platform/sensor combination, will have various geome
tric distortions, depending on the manner in which the data are acquired. This problem is 
inherent in remote sensing, as we attempt to accurately represent the three-dimensional 
(3D) surface of Earth as a two-dimensional (2D) image. Consequently, raw images contain 
such significant geometric distortions that they cannot be used directly with geographic 
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information system (GIS)–ready products. Thus, multisource data integration (raster and 
vector) for geomatics applications requires geometric and radiometric processing adapted 
to the nature and characteristics of the data in order to keep the best information from 
each image in the composite orthorectified products.

The processing of multisource data can be based on the concept of “terrain-geocoded 
images,” a term originally invented in Canada for defining value-added products (Guertin 
and Shaw 1981). Photogrammetrists, however, prefer the term “orthoimage” when refer-
ring to the unit of terrain-geocoded data, where all distortions including those of the relief 
are corrected. To integrate different data under this concept, each raw image must be sepa-
rately converted to an orthoimage so that each component orthoimage of the data set can 
be registered, compared, combined, and so on, not only pixel-by-pixel but also with carto-
graphic vector data in a GIS.

Why does the geometric correction process seem more important today than in the past? 
In 1972, the impact of geometric distortions was quite negligible for different reasons:

The images, such as those from a Landsat multispectral scanner (Landsat-MSS), •	
were nadir viewing, and the resolution was coarse (around 80–100 m).
The products resulting from the image processing were analog on paper.•	
The interpretation of the final products was performed visually.•	
The fusion and integration of multisource and multiformat data did not exist at •	
that time.

Today, the impacts of geometric distortions, although they are similar to the ones in the 
past, are less negligible because of the following factors:

The images are off-nadir viewing, and the resolution is fine (submeter level).•	
The products resulting from image processing are fully digital products.•	
The interpretation of the final products is realized on the computer.•	
The fusion of multisource images (different platforms and sensors) is in general use.•	
The integration of multiformat data (raster/vector) is a general tendency in geomatics.•	

One must admit that the new EO data, their method and processing, the resulting pro-
cessed data, and their analysis and interpretation introduced new needs and requirements 
for geometric corrections, due to a drastic evolution accompanied by large scientific and 
technology improvements between the two periods. Even if the literature is quite abun-
dant mainly in terms of books and peer-reviewed articles (an exhaustive list is given in 
the references section), it is important to update the problems and the solutions recently 
adopted for geometrically correcting remote sensing images with the latest developments 
and research studies from around the world. This chapter will then address the following 
concepts:

The sources of geometric distortions and deformations with different categoriza-•	
tions (Section 8.2)
The modeling of these distortions with different 2D/3D physical/empirical mod-•	
els and mathematical functions (Section 8.3)
The 3D geometric correction method and algorithms with their processing steps •	
and errors (Section 8.4)
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Comparisons between the models and mathematical functions, their applicability, and 
their performance on different types of images (frame camera, visible and infrared [VIR] 
oscillating or pushbroom scanners, and side-looking antenna radar [SLAR] or synthetic 
aperture radar [SAR] sensors at high, medium, or low resolutions) are also addressed. The 
errors with their propagation from the input data to the final results are also evaluated 
through the full processing steps.

8.2  Sources of Geometric Distortions

Each EO image acquisition system produces unique geometric distortions in its raw images 
and consequently the geometry of these images in its own local coordinate system does 
not correspond to the terrain and to the user’s specific map projection. Obviously, the geo-
metric distortions vary considerably with different factors, such as the platform (airborne 
and satellite), the sensor (VIR and SAR; total field of view [FOV], low to high resolution), 
and the associated scanner (whiskbroom, pushbroom, frame, etc.). However, it is possible 
to make general categorizations of these distortions.

The sources of distortions (Table 8.1) can be grouped into two broad categories: (1) the 
“observer” or the acquisition system (platform, imaging sensor, and other measuring 
instruments, such as gyroscope and stellar sensors) and (2) the “observed” (atmosphere 
and Earth). In addition to these distortions, deformations related to map projections 
have to be taken into account because the terrain and most GIS end-user applications 
are generally represented and performed respectively in a topographic map space and 
not in a referenced ellipsoid. Figures 8.1 and 8.2 illustrate the geometry of acquisition 
and the quasi-polar elliptical orbit approximation of remote sensing satellites around the 
Earth, respectively. The map deformations are logically included in the distortions of the 
observed.

Previous studies made a second-level categorization into low-, medium-, and high-fre-
quency distortions (Friedmann et al. 1983), where frequency is determined or compared 

Table 8.1

Description of Error Sources for the Two Categories, the Observer and the Observed, 
with Different Subcategories

Category Subcategory Description of Error Sources

The observer or the acquisition 
system

Platform (spaceborne or airborne) Variation of the movement; variation in 
platform attitude (low to high 
frequencies)

Sensor (VIR, SAR, or HR images) Variation in sensor mechanics (scan 
rate, scanning velocity, etc.); lens 
distortions, viewing/look angles; 
panoramic effect with the FOV

Measuring instruments Time variations or drift; clock 
synchronicity

The observed Atmosphere Refraction and turbulence
Earth Curvature, rotation, topographic effect
Map Geoid to ellipsoid, ellipsoid to map



176	 Advances in Environmental Remote Sensing

with the image acquisition time. Examples of low-, medium-, and high-frequency distor-
tions are those arising from orbit variations, Earth rotation, and local topographic effects, 
respectively. Although this categorization was suitable in the 1980s when there were very 
few remote sensing systems, today, with so many different acquisition systems, it is no 
longer acceptable because it differs with each acquisition system. For example, attitude 

Figure 8.1
(See color insert following page 426.) Geometry of viewing of a satellite scanner in orbit around the Earth. 
(Courtesy and copyright Serge Riazanoff, VisioTerra, 2009.)
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Figure 8.2
(See color insert following page 426.) Near-Earth, quasi-circular, quasi-polar, sun-synchronous orbit for EO 
satellites. The different revolutions around the poles with a constant illumination angle (top) showing the same 
illumination condition all the year (bottom). (Courtesy and copyright Serge Riazanoff, VisioTerra, 2009.)
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variations are a high-frequency distortion for QuickBird or airborne pushbroom scanner, 
a medium-frequency distortion for System Pour l’Observation de la Terre (high resolution 
in the visible SPOT-HRV) and Landsat Enhanced Thematic Mapper (Landsat-ETM+), and 
a low-frequency distortion for Landsat-MSS, but not a distortion for a medium resolution 
imaging spectrometer (MERIS).

The geometric distortions and their error sources given in Table 8.1 are deterministic 
and predictable and generally well understood. Some of these distortions, especially those 
related to instrumentation, are systematic and generally corrected at ground receiving sta-
tions or by the image vendors. Other distortions are not taken into account and corrected 
because they are specific to each acquisition time and location; further, information on the 
atmosphere is rarely available. Such distortions are also geometrically negligible for low- 
to medium-resolution images.

8.2.1  Distortions Related to the Platform

Some basic information on satellite orbits and celestial mechanics are useful to better 
understand platform-related distortions. The EO satellites obey the celestial mechanical 
laws defined by Newton and Kepler for an unperturbed trajectory (Keplerian orbit) and 
by Gauss and Lagrange for a perturbed trajectory (osculatory orbit; Escobal 1965; Centre 
National d’Études Spatiales 1980). A number of perturbations (due to Earth gravity and 
surface irregularities, atmospheric drag, etc.) slowly change the Keplerian orbit based on 
the two-body attraction of Newton’s law into an osculatory orbit (Centre National d’Études 
Spatiales 1980). Information on orbits is often needed, and different orbital models can be 
used depending on their utility and required accuracy (Bakker 2000):

To calculate the satellite location on its osculatory orbit in order to compute the •	
Earth coordinates of scanned pixels, requiring high accuracy (submeters) over a 
small time frame (seconds)

To predict when the satellite will pass over a specific area, requiring low accuracy •	
(kilometers) but over a long time frame (days)

Many orbital models have been developed since 1960 using the same mechanical laws 
with Gaussian/Lagrangian equations; the differences between the orbital models are 
mainly in the number and types of perturbations and the techniques to integrate them. 
As defined and adapted by the North American Aerospace Defense Command, sim-
plified general perturbations (SGPs), SGP4, and the most accurate SGP8 are the orbital 
models to be used for low- and near-Earth satellites (orbital period less than 225 minutes 
and altitude less than 6000 km). Most, if not all, of the civilian EO spacecrafts have near-
Earth, retrograde, quasi-circular, quasi-polar, geosynchronous, and sun-synchronous 
orbits (Figure 8.2).

Near-Earth orbits (altitude more than 300 km) are high enough to reduce the atmo-
spheric drag. Retrograde orbits with 90°–180° inclination are westward-launched orbits, 
which require extra fuel to compensate for the Earth’s rotation, but they provide the 
only solution for obtaining sun-synchronous orbits. Quasi-circular orbits avoiding 
large changes in altitude enable images with similar scales to be acquired, which is 
desirable for EO. Quasi-polar orbits with 90°–100° inclination enable sensors to image 
the entire Earth, including most of the poles. Because geosynchronous orbits have a 
repeating ground track, they have an orbital period that is an integer multiple of the 
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Earth’s sidereal rotation period. This integer multiple is called the “repeat cycle.” The 
special case of a geosynchronous orbit that is circular and directly above the equator is 
called a “geostationary orbit.” The satellite track on the ground, also called the “path,” 
is kept fixed within certain limits related to orbit maintenance accuracy. Paths are arti-
ficially divided into squared scenes at regular intervals, generating rows. An example 
of the path–row system is the World Reference System of Landsat satellites. The main 
advantage is that the satellite follows a fixed pattern on the Earth, which is desirable 
for operational EO systems. Sun-synchronous orbits enable satellites to pass overhead 
at the same local solar time and thus to acquire images with almost identical illumina-
tion or lighting conditions (Figure 8.2). Although the comparison of multidate images 
is easier with a sun-synchronous orbit, this approach has some disadvantages, espe-
cially as variations in illumination reveal different structural details. In addition, sun-
synchronous orbits require retrograde orbits and strict relationships between orbital 
parameters (mainly inclination and height), which must be preserved during the satel-
lite’s lifetime.

The distortions associated with near-Earth satellites are mainly due to the interaction 
between the platform and Earth (Earth’s gravity, shape, and movement, generating a 
quasi-elliptic movement; Escobal 1965; Centre National d’Études Spatiales 1980; Light 
et al. 1980). The satellite has six degrees of freedom in space, which can be determined 
by (Toutin 1983; Kim and Dowman 2006) knowing any one of the following sets of 
details:

The satellite’s position relative to Earth’s center (three parameters: •	 X, Y, Z) and 
orientation (a solid angle)
Its position/velocity (left part of Figure 8.3) while the attitude is roll, pitch, yaw, or •	
a specific kind of Euler angles (right part of Figure 8.3)
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Its osculatory orbit with six parameters relative to the instantaneous orbit (semi-•	
major axis, eccentricity, inclination, ascending-node longitude, perigee argument, 
and mean anomaly; Figure 8.4)
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Depending on the acquisition time (used as the seventh parameter) and the size of the 
image, all these parameters are time dependent due to orbital perturbations and thus 
generate a range of nonsystematic distortions. All these nonsystematic and time-dependent 
distortions are not predictable and must be evaluated for each image from satellite track-
ing data or ground-control information or both. Some effects of these distortions include 
the following:

Platform altitude variation (•	 z axis) is the most critical among position parameters. 
It can change the pixel spacing in the across-track direction, whereas X and Y 
parameters generate only a translation in the sensed ground area. However, the 
altitude variation of the satellite (around 8–10 m/s for near-Earth orbits at around 
800-km altitude) is not too significant over the time required to acquire a full scene 
(5–10 seconds for high- to medium-resolution satellite sensors). It only represents 
1/8000 relative pixel variation. For SPOT-5 panchromatic super mode (12,000 pix-
els with 2.5-m spacing), it generates 0.3-m variation in pixel spacing, which cumu-
latively generates an error around 2 m at the edge of the image.
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Figure 8.4
Description of a satellite osculatory orbit and its approximation by a Keplerian ellipse. X, Y, Z are the position 
coordinates in a geocentric frame reference system, I is the orbit inclination, Ω is the longitude of the ascend-
ing node (N), ω is the argument of the perigee (P), (ω + v) is the argument of the satellite, and ρ is the distance 
between the Earth’s center (O) and the satellite.
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Platform velocity variations can change the line spacing or create line gaps/over-•	
laps. Variations in spacecraft velocity only cause distortions in the along-track 
direction.
Platform altitude variation (Figure 8.5) can change the orientation and the shape •	
of VIR images (but it does not affect SAR image geometry). The roll is the rotation 
around the flight vector (x axis; right part of Figure 8.3), hence in a “wing down” 
direction, its variation causes lateral shifts and scale changes in the across-track 
direction. The pitch is the vertical rotation of the platform, in the “nose up” plane, 
and its variation results in scan-line spacing changes. The yaw is the rotation 
around the vertical axis and its variation changes the orientation of each scanned 
line, resulting in a skew between the scan lines. Variations in platform altitude 
can be severe in terms of location on the ground (absolute offset of hundreds of 
meters) over the time required to scan a full scene (5–10 seconds), and are signifi-
cant when the variation is sudden over a few lines (relative offset of tens of meters 
within milliseconds).

8.2.2  Distortions Related to Sensors

Sensor-related distortions include the following:

Calibration parameters uncertainties arise from lens distortions (pertaining to •	
focal length, principal point, detector position, and decentering, as well as radial/
tangential distortions) and the instantaneous FOV (IFOV) for VIR sensors, or the 
range gate delay (timing) for SAR sensors. The uncertainties in focal length change 
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Figure 8.5
Example of System Pour l’Observation de la Terre attitude variations (top), and its impact on image geometry 
(bottom): pitch (left), roll (center), and yaw (right).
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the pixel size and those in the principal point cause a systematic shift of the scan 
lines and of the full image. Lens distortion causes imaged positions to be dis-
torted along radial/tangential lines from the principal point, which depends on 
the detector position in the focal plane. This last distortion is already corrected for 
preprocessed/georeferenced images (e.g., IKONOS), but it has to be corrected for 
high-resolution (HR) sensors (below 10-m resolution). Information is sometimes 
included in the metadata (e.g., SPOT-5).
The panoramic distortion in combination with the curvature of Earth and top-•	
ographic relief changes the ground pixel sampling along the column direction. 
Panoramic distortion occurs for large ± 30°-FOV sensors (MERIS, Moderate 
Res-olution Imaging Spectroradiometer [MODIS], etc.) As the sensor scans across 
each line, the distance from the sensor to the ground increases further away from 
the center of the swath, and the sensor scans a larger area as it moves closer to the 
edges. The further away from nadir an object, the larger the compression. This 
effect results in the compression of image features at points away from the nadir, 
and this distortion is called “tangential scale” distortion. On the other hand, with 
large off-nadir viewing systems (such as an agile HR sensor with an FOV of few 
degrees), the area covered by the IFOV for a large off-nadir image is larger than 
that covered for a nadir image. However, pixel spacing in the column direction is 
almost constant (due to small FOV) for a given off-nadir viewing. This distortion 
is called an “off-nadir viewing” distortion.

8.2.3  Distortions Related to the Earth

Earth-related distortions include the following:

The rotation of the Earth generates latitude-dependent displacements from east to •	
west between scanned lines. The eastward rotation of the Earth, during a satellite 
orbit, causes the sweep of scanning systems to cover an area slightly to the west 
of each previous scan, which cumulates as the number of scan lines accumulates. 
The resultant imagery is thus skewed westward across the image. The amount 
of linear rotation varies with the scanning time: It is longer for Landsat than for 
SPOT. This is known as “skew” distortion.
Earth’s curvature creates variation of ground spacing in the along-track direction, •	
which increases with the distance from the ground nadir point. Its effect is related 
to both the FOV and the off-nadir viewing angle, which increases with the dis-
tance from the nadir point.
Earth’s topographic relief generates a parallax in the viewing direction.•	

Because the extracted information from the EO satellite data are afterward integrated with 
multisource multiformat data, generally in GIS, they have to be finally projected into the 
user’s map reference system. The deformations associated with map projection include 
the approximation of the geoid by a reference ellipsoid (Figure 8.6) and the projection of 
the reference ellipsoid on a plane surface. In general, a conformal projection, which pre-
serves angles, is used in mapping, such as the universal transverse mercator projection 
with its latitudinal (B–Y) and 3°-longitudinal (1–60) zones (Figure 8.7).
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8.3  Geometric Modeling of Distortions

All geometric distortions other than the ones discussed in Sections 8.2.1 through 8.2.3 
require models and mathematical functions to perform geometric corrections of imagery, 
either with 2D/3D empirical models (such as 2D/3D polynomial or 3D rational functions 
[RFs]) or with rigorous 2D/3D physical and deterministic models. With 2D/3D physi-
cal models, which reflect the physical reality of the viewing geometry (platform, sensor, 
Earth, and sometimes map projection), geometric correction can be performed either step 
by step with a mathematical function for each distortion/deformation or simultaneously 
with a “combined” mathematical function. The step-by-step solution is generally applied 
at the ground receiving station when the image distributors sell value-added products 
(georeferenced, map-oriented, or geocoded), whereas end users generally use and prefer 
the combined solution.

8.3.1  Two-Dimensional/Three-Dimensional Empirical Models

The 2D/3D empirical models can be used when the parameters of the acquisition systems 
or a rigorous 3D physical model are not available. Since they do not reflect the source of 

Other
ellipsoid

hRF hg
hoe

Topographic surface
(DTM)

Reference
ellipsoid

Geoid

Figure 8.6
The approximation of the geoid by ellipsoids. (Courtesy and copyright Serge Riazanoff, VisioTerra, 2009.)

Figure 8.7
(See color insert following page 426.) Example of a cylindrical conformal projection: the universal transverse 
mercator projection with its 3° longitudinal (1–60) zones and latitudinal (A–Z) zones.
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distortions described in Section 8.2, such models do not require a priori information on 
any component of the total system (platform, sensor, Earth, and map projection).

Such empirical models are based on different mathematical functions:

Two-dimensional polynomial functions, such as•	
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Three-dimensional polynomial functions, such as•	
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Three-dimensional RFs, such as•	
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where X, Y, and Z are the terrain or cartographic coordinates, i, j, and k are integer incre-
ments, and m, n, and p are integer values, generally between 0 and 3, with m = n (=p) being 
the order of the polynomial functions, generally 3.

Each 2D first-, second-, and third-order polynomial function will then have 3, 6, and 10 
unknown terms. Each 3D first-, second-, and third-order polynomial function will then 
have 4, 10, and 20 unknown terms. The 2D/3D first-order polynomial functions are also 
called “affine transformations.” Each 3D first-, second-, and third-order RF will have 8, 20, 
and 40 unknown terms, named the rational polynomial coefficients (RPCs). In fact, the 
3D RFs are extensions of the collinearity equations (Section 8.3.2), which are equivalent to 
3D first-order RFs. Depending on the imaging geometry in each axis (flight and scan), the 
order of polynomial functions (numerator and denominator for RFs) can be different and/
or specific terms, such as XZ for 2D or XZ, YZ2, or Z3 for 3D, can be differently dropped 
from the polynomial functions when these terms cannot be related to any physical ele-
ment of the image acquisition geometry. Then these “intelligent” polynomial functions 
reflect better the geometry in both axes and reduce overparameterization and the correla-
tion between terms. Okamoto (1981, 1988) has already applied this reduction of terms for 
one-dimensional central perspective photographs and line scanners, respectively.

8.3.1.1  Two-Dimensional Polynomial Functions

Because the 2D polynomial functions, with their formulation, are well known and docu-
mented since the 1970s (Wong 1975; Billingsley 1983), only a few characteristics are given 
here. Polynomial functions of the first order (6 terms) allow for only correcting a transla-
tion in both axes, a rotation, a scaling in both axes, and an obliquity. Polynomial functions 
of the second order (12 terms) allow for correction of, in addition to the previous parame-
ters, torsion and convexity in both axes. Polynomial functions of the third order (20 terms) 
allow for correction of the same distortions as a second-order polynomial function along 
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with other distortions, which do not necessarily correspond to any physical reality of the 
image acquisition system. In fact, previous research studies have demonstrated that third-
order polynomial functions introduce errors in relative pixel positioning in orthoimages, 
such as Landsat-Thematic Mapper (TM) or SPOT-HRV (Caloz and Collet 2001), as well as 
in geocoding and integrating multisensor images, such as SPOT-HRV and airborne SAR 
(Toutin 1995a).

Since 2D polynomial functions do not reflect the sources of distortion during image 
formation and do not correct for terrain relief distortions, they are limited to images with 
few or small distortions, such as nadir viewing images, systematically corrected images, 
and/or small images over flat terrain (Bannari et al. 1995). Since these functions correct 
for local distortions at the ground control point (GCP) location, they are very sensitive to 
input errors and hence GCPs have to be numerous and regularly distributed (de Leeuw, 
Veugen, and van Stokkom 1988). Consequently, these functions should not be used when 
precise geometric positioning is required for multisource/multiformat data integration 
and in high relief areas.

The 2D polynomial functions, as the simplest solution, were mainly used until the 1980s 
on images, whose systematic distortions, excluding the relief, had already been corrected 
by the image providers. As reported by Wong (1975), 2D fourth-order polynomial func-
tions are theoretically valid for low-resolution Earth Resources Technology Satellite 
(ERTS)-1 imagery to approximate a rigorous 2D physical model (Kratky 1971). Extensions 
to conformal/orthogonal polynomial functions (Wong 1975; de Leeuw, Veugen, and van 
Stokkom 1988) and surface spline functions (Goshtasby 1988) were also used for Landsat-
MSS. As mentioned in Section 8.1, good geometric accuracy was not a key point in the 
analysis of analog images, for which 2D polynomial functions could be appropriated. More 
recently, simple affine and projective functions applied to IKONOS Geo images (Hanley 
and Fraser 2001) or hybrid and projective functions applied to IKONOS Geo and Indian 
Remote Sensing (IRS)-1C images (Valadan Zoej et al. 2002) achieved good results because 
the images were acquired with near-nadir viewing angles over a flat terrain. However, 
although it is now known that 2D polynomial functions are not suitable regardless of the 
image type and size as well as the terrain relief, some users still apply them, apparently 
without knowing their implications for subsequent processing operations and the result-
ing digital products.

8.3.1.2  Three-Dimensional Polynomial Functions

3D polynomial functions are an extension of 2D polynomial functions, and are obtained 
by adding Z terms related to the third dimension of the terrain. However, they are prone 
to the same problems as any empirical function, except for the relief, that is, they are appli-
cable to small images, they need numerous regularly distributed GCPs, they correct locally 
at GCPs, they are very sensitive to errors, and they have a lack of robustness and consisten-
cies in an operational environment. Their use should thus be limited to small images or to 
systematically corrected images, in which all distortions except the relief have been pre-
corrected. For these reasons, second-order conformal polynomial functions have been pri-
marily used in aerial photogrammetry during the 1960s (Baetslé 1966; Schut 1966). Due to 
the larger size of satellite images, they have been mainly used with georeferenced images: 
SPOT-HRV (level 1 and 2) using first-order functions (Baltsavias and Stallmann 1992; 
Okamoto et al. 1998), and SPOT-HRV (level 1B) and Landsat-TM (level bulk or georefer-
enced) using second-order functions (Palà and Pons 1995). More recently, first-order affine 
functions were applied to IKONOS Geo products (Ahn, Cho, and Jeon 2001; Fraser, Hanley, 
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and Yamakawa 2002; Fraser, Baltsavias, and Gruen 2002; Jacobsen 2002; Vassilopoulou 
et al. 2002). The terms related to terrain elevation in the 3D polynomial function could be 
reduced to aiZ for VIR images and to aiZ and ajZ2 for SAR images, whatever the order of 
the polynomial functions used. The main reason is that there is no physical interrelation 
between the X and Z or the Y and Z directions for most of the sensors used.

In fact, Kratky (1971, 1989) has already used third- or fourth-order 3D polynomial func-
tions with this term reduction to approximate the 2D or 3D physical models developed for 
ERTS or SPOT raw images, respectively. The main reason why he developed his SPOT 3D 
polynomial model was that the real-time computation for implementing his specific physi-
cal model solution was not feasible on a stereo workstation. He would certainly not have 
done this approximation with the higher-performance computers now available. More 
recently, tests were also performed using Kratky’s polynomial functions with IKONOS 
Geo products acquired with near-nadir viewing over high relief areas (Kersten et al. 2000; 
Vassilopoulou et al. 2002). The second study (Vassilopoulou et al. 2002) evaluated orthoim-
age errors over the GCPs, and 1–2-m errors were achieved depending on their number, 
definition, and image measurement accuracy; however, this statistical evaluation is biased, 
as it used checked data applied in the geometric correction process. However, as previ-
ously mentioned in this section, the 3D affine transformation, also evaluated in the second 
study (Vassilopoulou et al. 2002), gave the same results as fourth-order polynomial func-
tions, but with much less GCPs.

8.3.1.3  Three-Dimensional Rational Functions

Although they were occasionally used during the 1980s (Okamoto 1981, 1988), interest in 
3D RFs was recently renewed (Li 1998) among the civilian photogrammetric and remote 
sensing communities with the launch of the first civilian HR IKONOS sensor in 1999 
(Grodecki 2001; Fraser, Dial, and Grodecki 2006; Shaker 2007; Fraser and Ravanbakhsh 
2009; Tong, Liu, and Weng 2009). Since sensor and orbit parameters are not included in 
the metadata, 3D rational function models (RFMs) could be an alternative to 3D physical 
models. The 3D RFMs can be used in two approaches (Madani 1999):

	 1.	To approximate an already-solved existing 3D physical model (terrain independent)
	 2.	To normally compute the RPCs of all the polynomial RFs with GCPs (terrain 

dependent)

8.3.1.3.1  Terrain-Independent Rational Function Model Approach

The first approach, inappropriately called terrain independent because the process still 
requests some GCPs to remove RFM bias (explained in this section), is performed in two 
steps. A 3D regular grid of the imaged terrain is first defined, and the image coordinates 
of the 3D grid ground points are computed using an already-solved existing 3D physical 
model. These grid points and their 3D ground and 2D image coordinates are then used 
as GCPs to resolve the 3D RFs and compute the RPCS of polynomial functions. There are 
some disadvantages to RFs (Madani 1999):

The inability to model local distortions (such as high-frequency variations with •	
VIR sensors or SAR sensors)
A limitation in the image size•	
The difficulty in the interpretation of RPCs due to the lack of physical meaning•	
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A potential failure to zero denominator•	
A potential correlation between the RPCs of RFs•	

A different strategy can be adopted to reduce these limitations. To solve the inability to 
model local distortions, RFs should be applied to georeferenced data with systematic dis-
tortions corrected (such as IKONOS Geo images) rather than raw data with no geometric 
distortions corrected (such as QuickBird-2 or SPOT-5). To reduce the limitation in image 
size, the image itself could be subdivided into subimages with separate 3D RFs required 
for each subimage (Yang 2001). This results in much more geometric and also radiometric 
processing. To reduce the disadvantage of potential failure and correlation, the nonsignifi-
cant and/or high correlated RPCs can be eliminated to avoid zero crossing and instability 
of RFs depending on image geometry (Dowman and Dolloff 2000). To overcome some of 
these problems, a “universal real-time image geometry model” based on RFs has been 
developed (OGC 1999). It is a dynamic RF of variable orders, whose RPCs can be either 
chosen as a function of the sensor geometry or eliminated using an iterative procedure 
(Robertson 2003). This reduction of RPCs is then similar to the orientation theory devel-
oped in the 1980s (Okamoto 1981, 1988). In addition, when the denominator functions are 
omitted, RFs become simple 3D polynomial functions.

Dowman and Dolloff (2000) addressed the advantages of a universal real-time image 
geometry model, such as universality, confidentiality, efficiency, and ability for informa-
tion transfer, as well as its disadvantages, such as loss of accuracy, numerical instabil-
ity of the solution (due to overparameterization, correlation, interpolation errors), failure 
for highly distorted imagery, uncertainty (there is no relation to physical perturbations), 
and complexity (in defining the functions and number of GCPs). Some of these advan-
tages or disadvantages are also related to 3D polynomial functions, as mentioned in 
Section 8.3.1.3.

Image vendors, government agencies that do not want to deliver satellite/sensor infor-
mation with the image, and commercial photogrammetric workstation suppliers are the 
main users of this first approach. Image vendors thus provide with the image all the 
parameters of 3D RFs. Consequently, the users can theoretically process the images with-
out GCP for generating orthoimages with digital elevation model (DEM). This approach 
is adopted by different image resellers around the world, which provide third-order RPCs 
with small-FOV HR images: GeoEye with IKONOS and GeoEye-1 images (Grodecki 2001; 
Grodecki and Dial 2003), DigitalGlobe and MacDonald, Dettwiler, and Associates (MDA) 
with QuickBird-2 and WorldView-2 images (Hargreaves and Roberston 2001; Robertson 
2003), the Indian Space Research Organization (ISRO) with Cartosat-1, and, recently, MDA 
with Radarsat-2. This first approach was also tested under specific circumstances in an aca-
demic environment with aerial photographs, SPOT, Earth Resources Observation System 
(EROS)-A, Formosat-2, and QuickBird images by computing parameters of first- to third-
order RFs from already-solved 3D physical models (Tao and Hu 2001; Chen, Teo, and Liu 
2006; Bianconi et al. 2008).

The application of the first approach using vendor-provided third-order RPCs has become 
more popular these last years with HR images because of their small FOV, for example, 
IKONOS, QuickBird, Cartosat-1, WorldView, GeoEye, and Radarsat-2 (Fraser, Hanley, and 
Yamakawa 2002; Fraser, Baltsavias, and Gruen 2002; Tao and Hu 2002; Robertson 2003; Tao, 
Hu, and Jiang 2004; Fraser and Ravanbakhsh 2009; Toutin and Omari 2011). Applications 
using stereo images for digital surface model (DSM) generation were also performed 
(Lehner, Müller, and Reinartz 2005) with accuracy comparisons of stereo-extracted DSMs 
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using empirical (RFM second approach) and physical (collinearity) models (Toutin 2006a). 
However, biases or random errors still exist after applying the RFs, and the results need to 
be postprocessed. The original RPCs can be refined with linear equations using additional 
accurate user GCPs (Lee et al. 2002) or using 2D polynomial functions (Fraser, Hanley, and 
Yamakawa 2002; Fraser, Baltsavias, and Gruen 2002; Di, Ma, and Li 2003; Tao, Hu, and Jiang 
2004; Noguchi et al. 2004; Fraser and Hanley 2005; Wang et al 2005; Tong, Liu, and Weng 
2010). For the last solution, 1 or 2 GCPs are used for zero-order 2D polynomial functions 
(bidirectional shift) and 6–10 GCPs for first- or second-order 2D polynomial functions to 
compute their parameters with a least-squares adjustment process. The use of these GCPs 
in RFM postprocessing is the reason why this approach is inappropriately called terrain 
independent. Later, Toutin (2006a) showed that first- or second-order polynomial func-
tions that refine the IKONOS RFM do not significantly improve the final accuracy when 
compared to just a bias compensation (zero order). The main reason is that there is no more 
systematic geometric distortion in georeferenced IKONOS images except the relief. On the 
other hand, experiments for refining the RFM of raw QuickBird images, which display 
more severe geometric distortions, were not so coherent between different studies:

Noguchi et al. (2004) demonstrated that a bias with a time-dependent drift (par-•	
tial first-order functions with two parameters) has to be used for correcting some 
“unexplained” systematic errors.
Fraser and Hanley (2005) reversed the findings of Noguchi et al. (2004), stating •	
that just a bias refinement (zero-order) is enough because the time-dependent drift 
did not correct systematic errors.
Cheng, Smith, and Sutton (2005), Toutin (2006a), and Tong, Liu, and Weng (2010) •	
demonstrated that full first-order functions (with six parameters) have at least to 
be used.
Tong, Liu, and Weng (2010) found the existence of potential high-order error sig-•	
nals in vendor-provided RPCs that can be corrected with second-order functions 
and a large number (around 20) of GCPs.

A likely explanation for these contradictions for QuickBird RFM refinement is mainly 
related to the RFM dependency on local distortions with “level-1A” images and the ter-
rain relief. The study sites of Cheng and his coauthors (2005) and Toutin (2006a) were 1000 
and 450 m in elevation range, respectively (first-order polynomial refinement), whereas the 
study site of Noguchi et al. (2004) was 240 m (shift and time-dependent drift refinement) 
and that of Fraser and Hanley (2005) was only 50 m (shift refinement). No indication of the 
terrain relief in Shanghai, China, was given in the study by Tong, Liu, and Weng (2010).

On the other hand, some operational studies using 3D RFs with different HR images 
(level-1A EROS-A1, IKONOS Geo, level-1A QuickBird-2) showed inferior and less consis-
tent results (Kristóf, Csató, and Ritter 2002) than previous ones conducted in university 
environments. Some inconsistencies and errors with the IKONOS orthoimages generated 
from RFs were not explained (Davis and Wang 2001), and these errors did not appear 
when the 3D physical model was used. Tao and Hu (2002) achieved 2.2-m horizontal accu-
racy with almost 7-m bias when processing stereo IKONOS images using the first-approach 
RF method. Kristóf, Csató, and Ritter (2002) and Kim and Muller (2002) obtained 5-m ran-
dom errors computed on precise independent check points (ICPs); larger errors away from 
the GCPs were also reported (Petrie 2002).
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8.3.1.3.2  Terrain-Dependent Rational Function Model Approach

The second approach, called the terrain-dependent approach, can be performed by end 
users with the same processing method as with polynomial functions. Since there are 
40 and 80 RPCs for the four second- and third-order polynomial functions, a minimum 
of 20 and 40 GCPs, respectively, are required to resolve 3D RFs. However, the RFs do not 
model the physical reality of the image acquisition geometry, and they are sensitive to 
input errors, similar to 2D/3D polynomial functions. Since RFs, similar to 2D/3D polyno-
mial functions, mainly correct locally at GCP locations with some remaining distortions 
between GCPs (Petrie 2002), many more GCPs will be required to reduce their error propa-
gation in an operational environment. A piecewise approach as described in Section 8.3.1.3 
(Yang 2001) should also be used for large images (SPOT, Landsat, IRS, Radarsat), which 
will increase the number of GCPs proportionally to the number of subimages, making the 
method inadequate in an operational environment.

Some academic studies conducted in well-controlled research environments demonstrated 
the feasibility of using medium-resolution to HR images: level-1B SPOT and/or Landsat-TM 
georeferenced images (Okamoto et al. 1998; Tao and Hu 2001), Radarsat-SAR fine-mode 
ground-range image (Dowmann and Dolloff 2000), and IKONOS Geo images (Fraser, Hanley, 
and Yamakawa 2002; Fraser, Baltsavias, and Gruen 2002; Tao and Hu 2002). All the results 
were presented with georeferenced images (all systematic distortions corrected) acquired 
over a flat/hilly terrain, or over high relief areas with almost-nadir viewing angles, and con-
sequently with almost no geometric distortions. In fact, the RFM solution is highly depen-
dent on actual terrain relief, and on the number, accuracy, and distribution of GCPs (Tao 
and Hu 2002). In addition, the results for IKONOS images were not significantly better than 
using simple 3D first-order polynomial functions (translation–rotation scaling corrections in 
addition to the relief correction; Fraser, Hanley, and Yamakawa 2002; Fraser, Baltsavias, and 
Gruen 2002; Vassilopoulou et al. 2002) due to the fact that IKONOS Geo images are already 
corrected for all geometric distortions except the relief. However, some of these studies and 
results cannot be easily extrapolated because the conditions of experimentation were not 
properly and completely defined, such as the geometric characteristics of images used, level 
of geometric correction already applied to images, source, accuracy, distribution, and num-
ber of GCPs, source, accuracy, distribution, and number of checked data, and the size of the 
terrain and its relief. Since this approach is not efficient, it is no longer used.

8.3.2  Two-Dimensional/Three-Dimensional Physical Models

The 2D/3D physical functions used to perform the geometric correction differ from one 
another, depending on the sensor, platform, and the sensor’s image acquisition geometry 
(Figure 8.8):

Radar
(side-looking acquisition)

Wiskbroom
(mechanical sweeping acquisition)

Camera
(instantaneous acquisition)

Pushbroom
(CCD line acquisition)

Figure 8.8
Image acquisition geometry of different satellite sensors. (Courtesy and copyright Serge Riazanoff, VisioTerra, 2009.)
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Array camera systems (for instantaneous acquisition), such as photogrammetric •	
cameras, metric cameras (MC), or large format cameras (LFC)
Mechanical rotating or sweeping mirrors, such as Landsat-MSS, TM, or ETM•	 +
Pushbroom scanners (for line acquisition), such as MERIS, SPOT-HRV/high reso-•	
lution in geometry (HRG), and IRS-1C/D
Agile scanners (for line acquisition), such as IKONOS, QuickBird, WorldView•	
The SAR sensors (for side-looking acquisition), such as Environmental Satellite •	
(ENVISAT), Radarsat-1/2, CosmoSkyMed, Terra-SAR

Although each sensor has its own unique characteristics, one can draw generalities 
for the development of 2D/3D physical models in order to fully correct all distortions 
described in Section 8.2. The physical model should mathematically model all distor-
tions of the platform (position, velocity, and attitude for VIR sensors), sensor (lens, 
viewing/look angles, and panoramic effect), Earth (ellipsoid and relief for 3D), and car-
tographic projection. The geometric correction process can address each distortion one-
by-one, either step-by-step or simultaneously. In fact, it is better to consider the total 
geometry of viewing (platform + sensor + Earth + map), because some of the distortions 
are correlated and have the same type of impact on the ground. It is theoretically more 
precise to compute only one combined parameter rather than each component of this 
combined parameter separately; this also avoids overparameterization and correlation 
between terms.

Some examples of combined parameters include the following:

The “orientation” of the image is a combination of the platform heading due to •	
orbital inclination, yaw of the platform, and convergence of the meridian.
The “scale factor” in the along-track direction is a combination of the velocity, •	
altitude, and pitch of the platform, the detection signal time of the sensor, and a 
component of the Earth’s rotation in the along-track direction.
The “leveling angle” in the across-track direction is a combination of platform roll, •	
the viewing angle, orientation of the sensor, Earth’s curvature, etc.

Considerable research has been carried out to develop robust and rigorous 3D physical 
models that describe the acquisition geometry related to different types of images (VIR 
and SAR images; low-, medium-, and high-resolution images) and of platforms (space-
borne and airborne). The 2D physical model was developed for ERTS imagery (Kratky 
1971), and 3D physical models were developed for the following:

Low-/medium-resolution VIR satellite images (Bähr 1976; •	 Masson d’Autume 1979; 
Konecny 1979; Sawada et al. 1981; Khizhnichenko 1982; Friedmann et al. 1983; 
Guichard 1983; Toutin 1983; Salamonowicz 1986; Konecny, Kruck, and Lohmann 
1986; Gugan 1987; Konecny et al. 1987; Kratky 1987; Shu 1987; Paderes, Mikhail, and 
Fagerman 1989; Westin 1990; Novak 1992; Robertson et al. 1992; Ackermann et al. 
1995; Sylvander et al. 2000; Westin 2000)
High-resolution VIR satellite images (Gopala Krishna et al. 1996; Jacobsen •	
1997; Cheng and Toutin 1998; Toutin and Cheng 2000; Bouillon et al. 2002, 2006; 
Chen and Teo 2002; Hargreaves and Robertson 2001; Toutin 2003a; Westin and 
Forsgren 2002)
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The SAR satellite images (Rosenfield 1968; Gracie et al. 1970; Leberl 1978; Wong, •	
Orth, and Friedmann 1981; Curlander 1982; Naraghi, Stromberg, and Daily 1983; 
Guindon and Adair 1992; Toutin and Carbonneau 1992; Tannous and Pikeroen 
1994; Toutin and Chénier 2009)
Airborne VIR images (Derenyi and Konecny 1966; Konecny 1976; Gibson 1984; •	
Ebner and Muller 1986; Hoffman and Muller 1988)
Airborne SLAR/SAR images (La Prade 1963; Rosenfield, 1968; Gracie et al. 1970; •	
Derenyi 1970; Konecny 1970; Leberl 1972; Hoogeboom, Binnenkade, and Veugen 
1984; Toutin, Carbonneau, and St-Laurent 1992)

The 2D physical model for ERTS by Kratky (1971) took into consideration and mathemati-
cally modeled, in a step-by-step manner, the effects of scanner geometry, panoramic effect, 
Earth’s rotation, satellite circular orbit and attitude, nonuniform scan rate, and map pro-
jection to finalize with a dual simple equation (one for each axis), which mathematically 
integrated all the previous error equations.

The general starting points of other research studies in deriving the mathematical func-
tions of the 3D physical model are, generally, as follows:

The well-known collinearity condition and equations (Bonneval 1972; Wong 1980) •	
for VIR images are given by
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where (x,y) are the image coordinates; (X,Y,Z) are the map coordinates, (X0,Y0,Z0) are 
the projection center coordinates, –f is the focal length of the VIR sensor, and [mij] are 
the nine elements of the orthogonal 3-rotation matrix.
The Doppler and range equations for radar images are as follows:•	
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where f is the Doppler value, r is the range distance, S

 and VS

 
 are the sensor position 

and velocity, P


 and VP

 
 are the target point position and velocity on the ground, and 

λ is the radar wavelength.

It should be noted that collinearity equations were adapted as radargrammetric equa-
tions to process radar images (Leberl 1972, 1990) and later as an integrated and unified 
mathematical equation to process multisensor (VIR or radar) images (Toutin 1995b).



Three-Dimensional Geometric Correction of Earth Observation Satellite Data	 191

The collinearity equations are valid for an instantaneous image or scan-line acquisi-
tion, such as photogrammetric cameras (LFC, MC), and VIR scanner sensors (used aboard 
SPOT, Landsat), and the Doppler-range equations are valid for a SAR scan line. However, 
since the parameters of neighboring scan lines of scanners are highly correlated, it is pos-
sible to link the exposure centers and rotation angles of different scan lines to integrate 
supplemental information, such as either of the following:

The ephemeris and attitude data using the laws of celestial mechanics (Figures 8.3 •	
and 8.4) for satellite images
The global positioning system (GPS) and inertial navigation system (INS) data for •	
airborne images

The integration of different distortions and the mathematical derivation of equations for 
different sensors are outside the scope of this chapter. They are described for photogram-
metric cameras in the works of Bonneval (1972) or Wong (1980), for scanner images in 
those of Leberl (1972), Konecny (1976), or de Masson d’Autume (1979), for ERTS/Landsat 
images in the works of Kratky (1971), Bähr (1976), or Salamonowicz (1986), for pushbroom 
scanners, such as SPOT, in those of Guichard (1983), Toutin (1983), Konecny, Kruck, and 
Lohmann (1986), and Konecny et al. (1987), and for SAR data in the works of Leberl (1978) 
or Curlander (1982).

8.4  Methods, Processing, and Errors

Whatever the mathematical functions used, the geometric correction method and process-
ing steps are more or less the same. The processing steps are as follows (Figure 8.9):

Acquisition of image(s) and “preprocessing of metadata”•	
Acquisition of the ground points (control/check/pass) with image coordinates and •	
map coordinates X, Y, (Z)
Computation of the unknown terms of the mathematical functions used for the •	
geometric correction model for one or more images
Image(s) rectification with or without DEM•	

The main differences in the processing steps between physical and empirical models are 
denoted in italic style, and between 2D and 3D models in bold style. The metadata are 
useless for empirical models because the models do not reflect the geometry of viewing, 
whereas  the Z-elevation coordinates for GCPs and DEM are of no use for 2D empirical 
models.

8.4.1 A cquisition of Images and Metadata

With VIR images, different types of image data with different levels of preprocessing can 
be obtained, but different image providers unfortunately use a range of terminology to 
denominate the same type of image data. Terminology should be standardized, mainly for 
the convenience of end users.
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Raw images with only normalization and calibration of the detectors (e.g., level 1A •	
for SPOT, EROS, and Formosat, level 1B1 for Advanced Land-Observing Satellite 
[ALOS], basic for QuickBird/WorldView, single look complex for Radarsat) with-
out any geometric correction are satellite-track oriented. For SAR data, this level 
corresponds to the slant-range geometry. In addition, the full metadata related to 
sensor, satellite (ephemeris and attitude), and image are provided.
Georeferenced images (e.g., level 1B for SPOT, 1SYS for Cartosat, standard for •	
QuickBird/WorldView, 1G for Landsat-ETM+, SAR georeferenced fine/SAR geo-
referenced extrafine [SGF/SGX] for Radarsat) corrected for systematic distortions 
due to sensor, platform, and the Earth’s rotation and curvature are satellite-track 
oriented. For SAR data, this level corresponds to the ground-range geometry. 
Generally, only a few metadata related to sensor and satellite are provided; some 
of this metadata are related to level-1B processing.
Map-oriented images, also called geocoded images, (e.g., level 2A for SPOT, Geo •	
standard for IKONOS, 1B2 for ALOS, systematically geocoded/precision geo-
coded [SSG/SPG] for Radarsat) corrected for the same distortions as georefer-
enced images are oriented toward the north. For SAR data, this level corresponds 
to the ground-range geometry. Generally, very few metadata related to sensor and 
satellite are provided; most of this metadata are related to level-2A processing and 
ellipsoid/map characteristics.

8.4.1.1  Raw Level-1A Images

For the sake of understanding, the easiest terminology defined for SPOT images are used. 
The raw level-1A images are preferred by photogrammetrists because the 3D physical 
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models derived from collinearity equations are well known and well developed, and are 
easily used in soft-copy workstations. Since different 3D physical models are largely avail-
able for such VIR images, raw level-1A-type images should now be favored by the remote 
sensing community as well. Specific software to read and preprocess the appropriate meta-
data (ephemeris, attitude, sensor, and image characteristics) have to be realized for each 
image sensor according to the 3D physical model used. Using laws of celestial mechanics 
and Lagrangian equations (Escobal 1965; Centre National d’Études Spatiales 1980; Light 
et al. 1980), the ephemeris (position and velocity; Figure 8.3 [left]) can be transformed into 
specific osculatory orbital parameters (Figure 8.4) to reduce time-related effects (Toutin 
1983). Since the Lagrangian equations take into account the variation of the Earth’s gravita-
tional potential to link the different positions of the satellite during image formation, this 
method is more accurate and robust than using a constant ellipse with second-order time-
dependent polynomial functions (Guichard 1983; Toutin 1983; Tannous and Pikeroen 1994; 
Bannari et al. 1995). This statement is more applicable when “long-strip” images from the 
same orbit are used with low-resolution images (Robertson et al. 1992; Sylvander et al. 2000; 
Westin 2000), with multiimage path processing (Toutin 1985; Sakaino et al. 2000) or with 
a block bundle adjustment method using single-sensor images (Veillet 1991; Campagne 
2000; Kornus, Lehner, and Schroeder 2000; Cantou 2002; Toutin 2003b, c, d, e), and when 
using multisensor images (Toutin 2004a, 2006b).

The 3D physical models were also applied to HR airborne images (Konecny 1976; 
Gibson 1984; Ebner and Muller 1986) and HR spaceborne images, such as those from push-
broom scanners IRS–1C/D (Gopala Krishna et al. 1996; Jacobsen 1997; Cheng and Toutin 
1998), the asynchronous scanner from EROS (Chen and Teo 2002; Westin and Forsgren 
2002; Bianconi et al. 2008), and SPOT-5 scanners (Bouillon et al. 2002, 2006; Toutin 2004c, 
2006c) and the new HR images from, for example, QuickBird-2, Formosat-2 (Hargreaves and 
Robertson 2001; Toutin 2004b, c; Chen, Teo, and Liu 2006; Bianconi et al. 2008), and others 
for achieving subpixel accuracy. On the other hand, results using the RFM second approach 
were also published with raw HR small-FOV images (QuickBird-2, Cartosat-1, Formosat-2, 
etc.; Noguchi et al. 2004; Cheng, Smith, and Sutton 2005; Fraser and Hanley 2005; Lehner, 
Müller, and Reinartz 2005; Chen, Teo, and Liu 2006; Toutin 2006a), but not with large-FOV 
images due to their inability to model high-frequency distortions inherent in raw level-1A 
large-swath or long-strip images (Madani 1999; Dowman and Dolloff 2000).

8.4.1.2  Georeferenced Level-1B Images

Since they have been systematically corrected and georeferenced, level-1B images retain 
just the terrain elevation distortion, in addition to a rotation–translation related to the map 
reference system. A 3D first-order polynomial model with Z-elevation parameters can thus 
be efficient for this approach, depending on the requested final accuracy. For scanners 
with across-track viewing capability, only the Z-elevation parameter in the X equation 
is useful. The second-order polynomial models could also be used (Palà and Pons 1995) 
for correcting some residual errors of 1B processing. Possible solutions to overcome the 
empirical model approximation are either the conversion of 1B images back to 1A images 
using metadata and reverse transformation (Al-Roussan et al. 1997) or the “reshaping and 
resizing” of 1B images to the raw imagery format (Valadan Zoej and Petrie 1998). This 1B 
geometric modeling can be mathematically combined with normal level-1A 3D physical 
models to avoid multiple image resampling. Although this mathematical procedure used 
for 1B images works better than empirical models, it is recommended that raw images 
with rigorous 3D physical models (collinearity equations) be directly used.
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8.4.1.3  Map-Oriented Level-2A Images

Similar to level-1B images, map-oriented images (level 2A) also retain elevation distor-
tion, but image lines and columns are not related to sensor-viewing and satellite direc-
tions. A 3D first-order polynomial model with Z-elevation parameters in both axes can 
thus be efficient for this approach, depending on the requested final accuracy. For level 
1B, second-order empirical models (polynomial or rational) can be used for correcting 
some residual errors of the 2A processing, but it is generally no longer possible to convert 
back the 2A image with the reverse transformation. Due to the fact that IKONOS Geo 
images are already corrected for all systematic geometric distortions except terrain relief, 
the following 2D/3D empirical models were recently applied to achieve pixel accuracy 
or better:

The 2D first-order polynomial and RF functions on flat terrain (Hanley and Fraser •	
2001)
The 3D first-order polynomial functions (Ahn, Cho, and Jeon 2001; Fraser, Hanley, •	
and Yamakawa 2002; Fraser, Baltsavias, and Gruen 2002; Vassilopoulou et al. 
2002)
The 3D fourth-order polynomial functions (Kersten et al. 2000; Vassilopoulou •	
et al. 2002)
The 3D third-order RF functions using the first approach (described in Section •	
8.3.1.3.1) with parameters computed from Space Imaging’s (Thornton, CO) camera 
model (Grodecki 2001; Fraser, Hanley, and Yamakawa 2002; Fraser, Baltsavias, and 
Gruen 2002; Tao and Hu 2002)

The 3D third-order RF functions using the first approach (described in Section •	
8.3.1.3.1) with parameters provided with IKONOS Geo images and using GCPs 
either to remove bias (Fraser, Hanley, and Yamakawa 2002) or to improve the origi-
nal RF parameters (Lee et al. 2002)

Although the results are in the order of pixel accuracy, they are generally achieved in an 
academic environment or by the image providers using images or subimages acquired 
over flat/hilly terrain. Only few results were published in high relief terrain (Kersten 
et al. 2000; Vassilopoulou et al. 2002). Conversely, other academic or operational studies 
using the first or second RF approach obtained larger errors of few (2–5) pixels (Davis 
and Wang 2001; Kristóf, Csató, and Ritter 2002; Kim and Muller 2002; Petrie 2002; Tao and 
Hu 2002).

The 3D physical model has been approximated and developed for IKONOS Geo images 
using basic information such as metadata and the laws of celestial mechanics (Toutin and 
Cheng 2000). Even in the approximated form, this 3D physical model (“using a global 
geometry and adjustment”) has proven to be robust and to achieve consistent results 
over different study sites and environments (urban, semirural, and rural; Europe, North 
America, and South America), different relief (flat to high), and different cartographic data 
(differential GPS [DGPS], orthophotos, digital topographic maps, DEM; Toutin 2003a). 
This 3D physical model has been used in different operational applications, such as in 
digital image base map generation (Davis and Wang 2001), urban management (Hoffmann 
et al. 2001; McCarthy, Cheng, and Toutin 2001; Meinel and Reder 2001; Ganas, Lagios, and 
Tzannetos 2002), and land resources management (Kristóf, Csató, and Ritter 2002; Toutin 
2003b).
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8.4.1.4  Synthetic Aperture Radar Images

SAR images are standard products in slant- or ground-range presentations. They are gen-
erated digitally during postprocessing from raw signal SAR data (Doppler frequency, time 
delay). Errors present in the input parameters related to the image geometry model will 
propagate through to the image data. These include errors in the estimation of slant range 
and Doppler frequency, and also errors related to the satellite’s ephemeris and the ellipsoid. 
Assuming the presence of some geometric error residuals, the parameters of a 3D physical 
model reflect these residuals. As mentioned in Section 8.3.2, the 3D physical model starts 
generally either from traditional Doppler and range equations (Curlander 1982), from the 
equations of radargrammetry (Konecny 1970; Leberl 1978, 1990), or from generalized equa-
tions (Leberl 1972; de Masson d’Autume 1979; Toutin 1995b). Due to the large elevation dis-
tortions in SAR images, 2D polynomial models cannot be used even in rolling topography 
(Toutin 1995a) or to extract planimetric features (de Sève, Toutin, and Desjardins 1996). 
Further, since different 3D SAR physical models are largely available, few attempts have 
been made to apply 3D polynomial or RF empirical models to SAR images (spaceborne 
or airborne images). Dowman and Dolloff (2000) present preliminary results with one 
Radarsat-1 SAR fine-mode image, but the conditions of experimentation (study site and 
terrain relief, cartographic data and accuracy, type and approach of RFs) are not described. 
More recently, third-order RFMs with some term reduction are provided with Radarsat-2, 
whatever the mode (ultrafine to ScanSAR), beam (20°–40°), or format (slant, ground) con-
sidered. According to MDA, their accuracies are similar to that of the physical model used 
for their computation, but with larger errors with ScanSAR and seep angles (Robertson 
2009, pers. comm.). Without independent evaluation of these SAR RFMs, extrapolation to 
other SAR data should be carefully evaluated (Toutin and Omari 2011).

8.4.2 A cquisition of Ground Control Points

Whatever the VIR and/or SAR geometric model used, even when the RF terrain-
independent approach is used to remove the bias or refine RF parameters, some GCPs 
have to be acquired to compute or refine the parameters of the mathematical functions 
in order to obtain a cartographic standard accuracy. Generally, an iterative least-squares 
adjustment process is applied when more GCPs than the minimum number required by 
the model (as a function of unknown parameters) are used. The number of GCPs used is 
a function of different conditions: the method of collection, sensor type and resolution, 
image spacing, geometric model, study site, physical environment, GCP definition and 
accuracy, and final expected accuracy. Figure 8.10 shows examples of well-defined GCPs 
and tools to extract their image coordinates. If GCPs are determined a priori without 
any knowledge of the images to be processed, 50% of the points may be rejected. If GCPs 
are determined a posteriori with knowledge of the images to be processed, the reject 
factor will be smaller (20%–30%). Consequently, all the aspects of GCP collection do not 
have to be considered separately, but rather as a whole to avoid too large discrepancies 
in the accuracies of these different aspects. For example, a DGPS survey is too good to 
process Landsat data in mountainous study sites, and on the other hand, road intersec-
tions and topographic maps of scale 1:50,000 are not good enough to process QuickBird 
images if you expect a high final pixel accuracy. The weakest aspect in the GCP collec-
tion, which is of course different for each study site and image, will thus be the major 
source of error in error propagation and the overall error budget of the mathematical 
model computation.
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Since empirical models do not reflect the geometry of viewing and do not filter errors, 
many more GCPs than the theoretical minimum are required to reduce the propaga-
tion of input errors in geometric models. When the cartographic data accuracy and/or 
the positioning accuracy are in the same order of magnitude as the sensor resolution, 
twice as many GCPs is a minimum requirement; around 20, 40, or 80 GCPs should then 
be acquired for second-order 2D polynomial, 3D polynomial, or 3D terrain-dependent RF 
models, respectively. The third-order models obviously require more GCPs, mainly the 
RFs. Further, in order to ensure robustness and consistency in an operational environ-
ment, it is safer to collect more than twice the required minimum mentioned previously 
in this section. It could then be a restriction on the use of such empirical models in an 
operational environment. However, when using 3D first-approach RF models with the 
already-computed RPCs provided by an image vendor, only a few (1–10) GCPs are needed 
to remove the errors with 2D polynomial functions or to refine the RF parameters. When 
more than one image is processed, each image requires its own GCPs and the geometric 
models are generally computed separately, that is, there is no relative orientation or link 
between adjacent images because RFMs were computed independently by the image pro-
viders. However, some block adjustment can be performed with RFs (Dial and Grodecki 
2002; Fraser, Hanley, and Yamakawa 2002; Grodecki and Dial 2003). Because empirical 
models are sensitive to GCP distribution and number, GCPs should be spread over the full 
image(s) in planimetry and also in the elevation range for the 3D models to avoid large 
errors between GCPs. It is also better to have medium-accurate GCPs (lakes, tracks, ridges) 
than no GCP at the tops of mountains. If the image is larger than the study site, it is recom-
mended to reduce the GCP collection to the study site area because the empirical models 
correct only locally.

Figure 8.10
Examples of well-defined ground control points (GCPs) and tools for image pointing and for extracting their 
image coordinates.
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With 3D physical models, fewer GCPs (1–6) are required per image. When more than 
one image is processed, a spatiotriangulation method with 3D block-bundle adjustment 
can be used to process all the images together (VIR and SAR). This enables users to dras-
tically reduce the number of GCPs for the block with the use of tie points (TPs; Veillet 
1991; Belgued et al. 2000; Campagne 2000; Kornus, Lehner, and Schroeder 2000; Sakaino 
et al. 2000; Cantou 2002; Toutin 2003b, c, d, e). When the map and positioning accuracy 
is of the same order of magnitude as the sensor resolution, twice (or a little less) the 
theoretical minimum is recommended. When the accuracy is lower, the number should 
be increased depending also on the final expected accuracy (Savopol et al. 1994). Since 
more confidence, consistency, and robustness can be expected with physical models (due 
to global image processing and filtering of input errors) than with empirical models, 
it is not necessary to increase the number of GCPs in operational environments. The 
GCPs should preferably be spread at the border of the image(s) to avoid extrapolation in 
planimetry, and it is also preferable to cover the full elevation range of the terrain (low-
est and highest elevations). Contrary to empirical models, it is not necessary for physi-
cal models to have a regular distribution in the planimetric and elevation ranges. Since 
physical models correct globally, the GCP collection has to be performed in the full image 
size even if the study site is smaller. First, it will be easier to find GCPs over the full image 
than over a subarea, and second, more homogeneity is thus obtained in the different area 
of the image.

The GCP cartographic coordinates can be obtained from GPS, air photo surveys, paper 
or digital maps, GIS, orthorectified photos or images, chip databases, and so on, depend-
ing on the requested accuracy of the input/output data. The cartographic coordinates 
obtained from these sources have drastically different accuracies: from better than 0.2 m 
with DGPS to 25–50 m with 1:50,000 paper maps, certainly the most common GCP source 
used around the world. Consequently, with lower accuracy, more GCPs must be used 
(Savopol et al. 1994). Image coordinates are obtained interactively on the screen or auto-
matically using a GCP chip database and image correlation tools. When multiple images 
with overlapping coverage are processed, image coordinates are obtained in stereoscopy 
(the best solution) or simultaneously in “double monoscopy” because some workstations 
do not have full stereoscopic capabilities for multisensor images. The double monoscopy 
image measurements will then create artificial X- and Y-parallaxes (few pixels) between 
the images, and the parallax errors will propagate through the bundle adjustment (rela-
tive and absolute orientations). The error propagation is larger with SAR images than with 
VIR images due to a lower image measurement accuracy (1–2 pixels vs. 1/3–1/2 pixel), 
and not only increases with smaller intersection angles but also with shallower same-side 
SAR look angles (Toutin 1998, 1999). Consequently, when possible, true stereoscopic image 
measurements using human depth perception, which enables a better relative correspon-
dence of the GCP between images and a better absolute positioning on the ground, should 
be used.

8.4.3 G eometric Model Computation

When more than one image (VIR or SAR) is processed over large study sites (Figure 8.11), a 
spatiotriangulation process based on a block adjustment can be first applied to simultane-
ously compute all geometric models (Figure 8.9). The spatiotriangulation method has been 
applied using 3D physical models to different VIR/SAR/HR data, acquired either from 
a single sensor (Veillet 1991; Belgued et al. 2000; Campagne 2000; Kornus, Lehner, and 
Schroeder 2000; Sakaino et al. 2000; Cantou 2002; Toutin 2003b, c, d, e) or from multiple 
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sensors (Toutin, 2004a, 2006c). Spatiotriangulation was also applied using 3D RF models 
to HR optical data acquired only from a single sensor (Dial and Grodecki 2002; Fraser, 
Hanley, and Yamakawa 2002; Grodecki and Dial 2003). Figure 8.11 shows an example of 
a block formed with 17 level-1A panchromatic/multiband SPOT HRG images (300 × 240 
km) acquired over Gatineau Hills, Canada, generated from six strips of two to four images 
(Toutin 2003e).

All model parameters of each image/strip are determined by a common least-squares 
adjustment so that individual models are properly tied in and the entire block is optimally 
oriented in relation to the GCPs. With the spatiotriangulation process, the same number of 
GCPs is theoretically needed to adjust a single image, an image strip, or a block. However, 
some TPs between the adjacent images have to be used to link the images or strips or both. 
The elevation of TPs (ETPs) must be added when the intersection geometry of the adjacent 
images is weak, such as with intersection angles less than 15°–20° (Toutin 2003b, c, d, e). 
There are a number of advantages to the spatiotriangulation process:

The reduction of the number of GCPs•	
A better relative accuracy between images•	
A more homogeneous and precise mosaic over large areas•	
A homogeneous GCP network for future geometric processing•	
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Figure 8.11
Image block of 17 level-1A panchromatic/multiband System Pour l’Observation de la Terre high geometric reso-
lution (SPOT-HRG) images over Gatineau Hills, Canada (300 × 240 km) generated from six strips of two to four 
images. (SPOT Image © CNES 1991–1998.)
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Whatever the number of images (spatiotriangulation or single image) and the geometric 
models (physical or empirical) used, each GCP contributes to two observation equations: (1) 
an equation in X and (2) an equation in Y. The observation equations per image are used to 
esta-blish the error equations for GCPs, TPs, and ETPs. Each group of error equations can 
be weighted as a function of the accuracy of the image and cartographic data. The normal 
equations are then derived and resolved with the unknowns computed. In addition, for 
the 3D physical models, conditions or constraints on osculatory orbital parameters or other 
parameters (GPS/INS) can be added in the adjustment to take into account the knowledge 
and the accuracy of the ephemeris or other data, when available. These conditions and con-
straints thus prevent the adjustment from diverging, and they also filter the input errors.

Since there are always redundant observations to reduce the input error propagation 
in geometric models, a least-squares adjustment is generally used. When the mathemati-
cal equations are nonlinear, which is the case for physical and second- and higher-order 
empirical models, some means of linearization (series expansions or Taylor’s series) must 
be used. A set of approximate values for the unknown parameters in the equations must 
thus be initialized:

To zero for empirical models, because they do not reflect the image acquisition •	
geometry
From the osculatory orbital/flight and sensor parameters of each image for physi-•	
cal models

More information on least-squares methods applied to geomatics data can be obtained 
from the studies of Mikhail (1976) and Wong (1980). The results of this processing step are 
as follows:

The parameter values for the geometric model used for each image•	
The residuals in •	 X and Y directions (and the Z direction if more than one image is 
processed) for each GCP/ETP/TP and their root-mean-square (RMS) residuals
The errors and bias in •	 X and Y directions (and the Z direction if more than one 
image is processed) for each ICP if any, and their RMS errors
The computed cartographic coordinates for each point, including ETPs and TPs•	

When more GCPs than the theoretically required minimum are used, the GCP residuals 
reflect the modeling accuracy, whereas the ICP RMS errors reflect the final accuracy, tak-
ing into account ICP accuracy. As mentioned in Section 8.4.2, this final accuracy is mainly 
dependent on the geometric model and the number of GCPs used versus their cartographic 
and image coordinates. When ICPs are not accurate, their errors are included in the com-
puted RMS errors; consequently, the final internal accuracy of the modeling will be better 
than these RMS errors.

When no ICP is available, GCP RMS residuals can be carefully used as an approxima-
tion of the final accuracy, only when using physical models. However, the fact that RMS 
residuals can be small with empirical models does not necessarily mean a good accuracy 
because these models correct locally at GCPs and the least-squares adjustment minimizes 
residuals at GCPs. Errors are still present among GCPs (Davis and Wang 2001; Petrie 2002). 
On  the other hand, by using overabundant GCPs with physical models, the input data 
errors (image measurement or map or both) do not propagate through the physical models 
but are mainly reflected in the GCP residuals due to a global adjustment. Consequently, it is 
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thus “normal and safe” with 3D physical models to obtain RMS residuals in the same order 
of magnitude as the GCP accuracy, and the physical model by itself will be more accurate. 
In other words, the internal accuracy of images will be better than the RMS residuals. In 
contrast to empirical methods, which are sensitive to GCP number and spatial distribution 
(including their elevation), 3D physical models are not affected by these factors because 
they precisely retain the complete viewing geometry, given that there is no extrapolation 
in planimetry and also in elevation.

8.4.4  Digital Elevation Model Generation from Stereo Images

When two images are acquired over the same site from two different viewpoints, it is 
possible to reconstruct the terrain relief and to generate digital terrain models (DTMs). 
Because the sensor did not image the bald Earth but the top of feature surfaces, DEMs 
are in fact DSMs, which include the height, or a part, of natural and human-made sur-
faces (trees, houses, fences, etc.; Figure 8.12). Principally, two image-matching methods can 
be used to extract the elevation parallax for generating DSMs: (1) the computer-assisted 
(visual) method or (2) the automatic method. These two methods can of course be inte-
grated to take into account the strength of each one.

Computer-assisted visual matching is an extension of the traditional photogrammetric 
method to extract elevation data (contour lines) on a stereoplotter. It then requires full 
stereoscopic capabilities to generate the online 3D reconstruction of the stereo model and 
to capture in real time the 3D planimetric and elevation features. For elevation, spot ele-
vations, contour lines, or irregular grid, DEM can be generated. Stereoscopic viewing is 
realized on a computer screen using a system of optics. The stereo images are separated 
spatially, radiometrically, or temporally. Spatial separation is achieved by the use of two 
monitors or a split screen and an optical system using mirror or convex lenses or both. 
Radiometric separation is achieved by anaglyphic or polarization techniques with colored 
or polarized lens, respectively. Temporal separation is achieved by an alternate display of 
the two images and using special synchronized lenses (Walker and Petrie 1996).

Right image

DEM
(pixel values
representing the
elevation)

The x, y and z
position

Left image

Pixels

A A

A

B
B

B

Matching pixels

Figure 8.12
Digital elevation models from stereoscopic images acquired from two different viewpoints. The heights of nat-
ural or human-made surfaces are included in the elevation.
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To obtain true 3D performance in a stereo workstation, the images are resampled into an 
epipolar or a quasi-epipolar geometry, in which only the X-parallax related to the eleva-
tion is retained (de Masson d’Autumne 1979; Baker and Binford 1981). Another solution to 
control the image positioning from the raw imagery is to automatically follow the dynamic 
change by cancelling the Y-parallax using the previously computed stereo model (Toutin 
et al. 1993; Toutin and Beaudoin 1995). In the same way as with a conventional stereoplot-
ter, the operator cancels the X-parallax by fusing the two floating marks (one per image) on 
the ground. The system then measures the bidimensional parallax between the images for 
each point, and computes the X, Y, and Z cartographic coordinates using 3D intersection. 
The visual matching then combines in the brain a geometric aspect (fusing the floating 
marks together) and a radiometric aspect (fusing the floating marks on the corresponding 
image point). Some automatic tasks (displacement of the image or cursor, prediction of the 
corresponding image point position) are added.

However, computer-assisted visual matching, principally used with paper-format 
images  and analytical stereo workstations, is a long and expensive process to derive 
DEM. When using digital images, automated image matching can thus be used. Since 
image matching has been a lively research topic for the last 30 years, an enormous body of 
research work and literature exists on the image matching of different EO sensors.

Most of the research studies on satellite image matching are based on Marr’s research 
(1982) at the Massachusetts Institute of Technology (MIT), dealing with the modeling of 
human vision. If a computer program can be realized to see things as a human would, then 
the algorithm must have some basis in human visual processing. The stereo disparity is 
based on the following two “correct” assumptions about the real world (Marr and Poggio 
1977): (1) a point of a surface has a unique position in space at any one time and (2) matter 
is cohesive. The first generation of image matching processes based on these assumptions 
is the gray-level image matching process. Gray-level matching between two images really 
implies that the radiometric intensity data from one image, representing a particular ele-
ment of the real world, must be matched with the intensity data from the second image, 
representing the same real-world element.

Although satellite images of the real world represented by gray levels is not like a 
random-dot stereogram (which is easily matchable), gray-level matching has been widely 
studied and applied to remote sensing data. Most of the matching systems operate on ref-
erence and search windows. For each position in the search window, a match value is com-
puted from the gray-level values in the reference window. The local maximum of all the 
match values computed in the search window is the good spatial position of the searched 
point. The match value can be computed with the normalized cross-correlation coefficient, 
sum of mean normalized absolute differences, stochastic sign change, or outer minimal 
number estimator methods. The first is considered to be the most accurate (Leberl et al. 
1994) computation method and is largely used with remote sensing images. Leberl et al. 
also noticed that matching errors were smaller with SPOT images and digitized aerial 
photographs than with SAR images. The last two match-value computation methods have 
rarely or never been used by the remote sensing community.

Another solution to the problem of matching, introduced by Förstner (1982), is the least-
squares approach, minimizing the squares of the image gray-level differences in an itera-
tive process. This method makes possible the use of well-known mathematical tools and 
the estimation of error. Rosenholm (1986) found that the more-complicated least-squares 
method applied on simulated SPOT images did not give any significant improvement 
when compared with the cross-correlation coefficient method. However, this least-squares 
method seems to be more accurate with real SPOT data (Day and Muller 1988).
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The notion of least-squares matching in the object domain (groundel) rather than in the 
image domain (pixel) was later introduced by Helava (1988). Predicted image densities, cor-
responding to each groundel, are mathematically computed with known geometric and 
radiometric image parameters, and matched to the original ones. The uncertainty in the 
parameters of a particular groundel is resolved by the least-squares method. An advan-
tage of this approach is that more than two images from the same or different sensors can 
be used to make the least-squares solution meaningful; a disadvantage is the inability to 
correctly model the groundel attributes for each image. Due to these reasons, this match-
ing technique is mainly used with air photos, since more than two images overlap the 
same ground area and their geometry and radiometry are better controlled.

Since one of Marr’s assumptions was either missing or incorrectly implemented in gray-
level matching (mainly with images of the real world), Marr developed a second generation 
of image matching: feature-based matching (Marr and Hildreth 1980). The same element 
of the real world may look considerably different in remote sensing images acquired at dif-
ferent times and with different geometries between the sensor, illumination, and terrain. 
Instead, the edges in the images reflect the true structures (Cooper, Friedman, and Wood 
1987). Although feature-based matching has not become very popular among the remote 
sensing community with satellite data, some applications have been realized with simu-
lated SPOT and real Landsat-TM (Cooper, Friedman, and Wood 1987). The DEM results 
were not as good as those obtained by Simard and Slaney (1986) with Landsat-TM stereo 
pair using gray-level matching. Hähn and Förstner (1988) also found that the least-squares 
matching method is more accurate than feature-based matching, which is converse to 
Marr’s theoretical prediction. Later, Schneider and Hahn (1995) tested the two methods 
to extract TPs on Modular Opto-electronic Multispectral Stereo Scanner (MOMS-2/D2) 
stereo images. Their results in planimetry and elevation were twice as accurate with inten-
sity-based matching than with feature-based matching.

Hybrid approaches using multiprimitive multi-image matching can thus achieve bet-
ter and faster results by combining gray-level matching and feature-based matching with 
a hierarchical multiscale algorithm, and also with computer-assisted visual matching. 
An example is the algorithm and software, satellite image precision processing (SAT-PP), 
developed by the Institute of Geodesy and Photogrammetry of the Swiss Federal Institute 
of Technology, Zurich (ETH Zurich), Switzerland, for multisensor data (Eisenbeiss et al. 
2005; Figure 8.13). The feature-based approach may produce good results for identified 
features, but it produces no elevation at intermediate points. They can then be used as seed 
points for gray-level matching. Another hybrid approach is to generate gradient ampli-
tude images in a first step with gray-level values derived from the original stereo images 
instead of gradient images with only binary edge values. In the second step, any gray-level 
matching technique can be used on these preprocessed images (Paillou and Gelautz 1999). 
The linear gradient operator can be designed to be optimal to remove noise (if any) and to 
enhance edges. No attempt has been made with VIR images.

Although computer-assisted visual matching is a long process, it has been proven to be 
very accurate with photos or different satellite VIR data (Leberl et al. 1994; Raggam et al. 
1994; Dorrer et al. 1995; Toutin and Beaudoin 1995). It can thus be used to eliminate blun-
ders, to fill mismatched areas, or in areas where automated image matching gives errors 
larger than 1 pixel (about 10% for SPOT and 15% for digitized photographs; Leberl et al. 
1994). It can also be used to generate seed points for automated matching.

Other developments have been realized and tested principally for airborne or close-
range stereo images, but rarely with satellite images, such as the global approach, scale 
space algorithms, relational matching, consideration of break lines, and multiple image 
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primitives. Some other research studies using the recognition of corresponding structures 
(Della Ventura et al. 1990) or of uniform regions (Petit-Frère 1992; Abbasi-Dezfouli and 
Freeman 1996), a moment-based approach with fine-invariant features (Flusser and Suk 
1994), or a wavelet transform approach (Djamdji and Bijaoui 1995) were performed. They 
were only used to extract well-defined GCPs for image registration between different spa-
ceborne VIR images.

More development must be done to integrate these solutions for generating seed points 
for gray-level matching. Some apparent contradictions should also be considered in future 
research studies, such as

The theoretical prediction of Marr (1982) that feature-based matching is better than •	
gray-level matching versus better experimental results with gray-level matching 
than with feature-based matching

Initial DSM generation (at highest level of pyramid)
Multiple primitive multiimage matching

Geometrically
constrained

candidate search
adaptive matching

parameter
determination

Probability relaxation based relational matching

Feature point extraction
and matching

DSM represented by TIN (intermediate
integration of feature point, grid points and edges)

Grid point generation
and matching

Edge extraction
and matching

Modified multiimage geometrically
constrained matching (MPGC)

Final DSM

Image preprocessing and image
pyramid generation

Images and orientation data

Figure 8.13
Overview of the multiprimitive, multiimage matching method employed in satellite image precision processing 
(SAT-PP) software package developed by the Institute of Geodesy and Photogrammetry of the Swiss Federal 
Institute of Technology Zurich (ETH Zurich), Switzerland. (From Baltsavias, E., L. Zhang, and H. Eisenbeiss. 
2005. DSM generation and interior orientation determination of ikonos images using a test field in Switzerland. 
In International Society of Photogrammetry, Remote Sensing Workshop “High-Resolution Earth Imaging for Geospatial 
Information”, May 17–20. CD-ROM. With permission.)
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The theoretical automated image matching error (much better than one pixel) ver-•	
sus the experimental results (one and more pixels, depending on the data)

The so-called superiority of computer matching over visual matching versus the •	
experimental results

Overall, studies conducted until now confirm our earlier statement in this section that 
image matching has been a lively research topic for the past 30 years, but only time will tell 
whether it will remain so for the next 30 years.

Whatever the matching method and the strategy adopted, there is always a need for 
postprocessing the extracted elevation data, for example, to remove blunders, fill the mis-
matched areas, correct for vegetation cover, and smooth the DEM. Different methods can 
be used depending on the capability of the (stereo) workstation: manual, automatic, or 
interactive. A blunder-removal function is needed to remove any artifacts or noise when 
an elevation value is drastically different from its neighbors. These functions generally use 
existing filters based on statistical computation (mean, standard deviation). Some func-
tions tend to remove small noisy areas, whereas inversely, some tend to increase failed 
areas on the rationale that the pixels surrounded by failed pixels tend to have a high prob-
ability of being noisy. These functions are well adapted to be performed automatically.

To fill the mismatched and the noisy areas once they are detected, interpolation func-
tions are used to replace the mismatched values by interpolating from good elevation 
values of the edges of the failed areas. Standard interpolation functions (bilinear, distance-
weighted), which can be performed automatically, are adequate for small areas (less than 
200 pixels). For larger areas, an operator should interactively stereo extract seed points to 
fill the mismatched areas of the raw DEM. Another solution is to first transform the DEM 
into a triangular irregular network (TIN) and then display it over the stereo pair in the 
stereo workstation. The operator can then edit the appropriate vertex of triangles to better 
fit the shape of the TIN with his or her 3D perception of the terrain relief. In addition, the 
operator can extract some specific geomorphologic features (mountain crests, thalwegs, 
lake shorelines), which can be integrated to generally reduce the largest errors at the lowest 
and highest elevations in the DEM. Using human 3D perception to edit DEM is thus advan-
tageous since it produces a more coherent and consistent terrain relief reconstruction.

Forested areas also have to be edited for vegetation cover, depending on the relation 
between sensor resolution, the expected DEM accuracy, and canopy height. An automatic 
classification or an interactive stereo extraction or both can delimit the different forested 
areas and measure their canopy height. This information is then used to reduce the eleva-
tions at the ground level. Finally, an appropriate method of filtering must also be applied 
to smooth the “pit and hummock” pattern of the DEM, while preserving the sharp breaks 
in slopes. Filtering improves the relative DEM accuracy or the relationship between neigh-
boring values, whereas the absolute DEM accuracy appears to be controlled by the genera-
tion method, system, and software (Giles and Franklin 1996). Unfortunately, only a few 
research studies and scientific results have been devoted to and published on the post-
processing step. Most of the time, stereo workstation manufacturers develop their own 
methods and tools to achieve this last, but not least, step of DEM generation.

8.4.5  “Orthorectification”

The last step of the geometric processing is image rectification with DEM (Figure 8.14). To 
orthorectify the original image into a map image, there are two processing operations:
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	 1.	A geometric operation to compute the cell coordinates in the original image for 
each map image cell (Figure 8.14a)

	 2.	A radiometric operation to compute the intensity value or digital number (DN) of 
the map-image cell as a function of the intensity values of original image cells that 
surround the previously computed position of the map image cell (Figure 8.14b)

8.4.5.1  Geometric Operation

The geometric operation requires the two equations of the geometric model with the pre-
viously computed unknown parameters, and sometimes elevation information. Since the 
2D models do not use elevation information, the accuracy of the resulting rectified image 
will depend on the image viewing/look angle and the terrain relief. On the other hand, 
3D models take into account the elevation distortion and a DEM is thus needed to create 
accurate orthorectified images. This rectification should then be called an orthorectifica-
tion. But if no DEM is available, different altitude levels can be input for different parts 
of the image (a kind of “rough” DEM) in order to minimize this elevation distortion. It is 
then important to have a quantitative evaluation of the DEM impact on the rectification/
orthorectification process, both in terms of elevation accuracy for the positioning accuracy 
and grid spacing for the level of details. This last aspect is more important with HR images 
because a poor grid spacing when compared with the image spacing could generate arti-
facts for linear features (wiggly roads or edges).

(a)
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Rectified image

Observed landscape
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Unprocessed image
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Corrected
image

Original image

Figure 8.14
Image rectification to project the original image to the ground reference system: the geometric (a) and radio-
metric (b) operations.
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Figures 8.15 and 8.16 give the relationship between DEM accuracy (including interpola-
tion in the grid), and the viewing and look angles with the resulting positioning error 
on VIR and SAR orthoimages, respectively. These curves were mathematically computed 
with the elevation distortion parameters of a 3D physical model (Toutin 1995b). However, 
they could also be used as an approximation for other 3D physical and empirical models. 
One of the advantages of these curves is that they can be used to find any third parameter 
when two others are known. It can be useful not only for the quantitative evaluation of 
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Relationship between the digital elevation model (DEM) accuracy (in meters), the viewing angle (in degrees) of 
the visible and infrared (VIR) image, and the resulting positioning error (in meters) generated on the orthoim-
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the orthorectification but also to forecast the appropriate input data, DEM, or the viewing/
look angles, depending on the objectives of the project.

For example (Figure 8.15), with a SPOT image acquired with a viewing angle of 10° and 
having a 45-m accurate DEM, the error generated on the orthoimage is 9 m. Inversely, 
if  a  4-m final positioning accuracy for the orthoimage is required and there is a 10-m 
accurate DEM, the VIR image should be acquired with a viewing angle less than 20°. The 
same error evaluation can be applied to SAR data using the curves given in Figure 8.16. 
As another example, if positioning errors of 60 and 20 m on standard-1 (S1) and fine-5 (F5) 
orthoimages, respectively, are required, a 20-m elevation error, which includes the DEM 
accuracy and the interpolation into the DEM, is thus sufficient. For HR images (spaceborne 
or airborne), the surface heights (buildings, forest, hedges) should be either included in the 
DTM to generate a DSM or taken into account in the overall elevation error. In addition, 
an inappropriate DEM in terms of grid spacing can generate artifacts with HR images 
acquired with large viewing angles, principally over high relief areas (Zhang, Tao, and 
Mercer 2001).

Finally, for any map coordinates (X, Y), with the Z-elevation parameter extracted from 
a DEM when 3D models are used, the original image coordinates (column and line) are 
computed from the two resolved equations of the model. However, the computed image 
coordinates of the map image will not be directly overlaid on a pixel center of the original 
image; in other words, the column and line computed values will be rarely, if ever, integer 
values.

8.4.5.2  Radiometric Operation

Since the computed coordinate values in the original image are not integers, one must 
compute the DN to be assigned to the map image cell. In order to compute the DN to 
be assigned to the map image cell, the radiometric operation uses a resampling kernel 
applied to original image cells: either the DN of the closest cell (called “nearest neighbor 
resampling”), or a specific interpolation or deconvolution algorithm using the DNs of sur-
rounding cells. In the first case, the radiometry of the original image and the image spec-
tral signatures are not altered, but the visual quality of the image is degraded. In addition 
to radiometric degradation, a geometric error of up to half a pixel is introduced. This can 
cause a disjointed appearance in the map image. If these visual and geometric degrada-
tions are acceptable to the end user, it can be an advantageous solution.

In the second case, different interpolation or deconvolution algorithms (bilinear interpo-
lation or sinusoidal function) can be applied. The bilinear interpolation takes into account 
the four cells surrounding the cell. The final DN is then computed either from two succes-
sive linear interpolations in line and column using the DNs of the two surrounding cells in 
each direction or in one linear interpolation using the DNs of the four surrounding cells. 
The DNs are weighted as a function of the cell distance from the computed coordinate 
values. Due to the weighting function, this interpolation creates a smoothing in the final 
map image.

The theoretically ideal deconvolution function is the sin(x)/x function. As this sin(x)/x 
function has an infinite domain, it cannot be exactly computed. Instead, it can be repre-
sented by a piecewise cubic function, such as the well-known cubic convolution. The cubic 
convolution then computes third-order polynomial functions using a 4 × 4 cell window. 
The DNs are first computed successively in the four-column and -line directions, and the 
final DN is the arithmetic mean of these DNs. This cubic convolution does not smooth, but 
enhances and generates some contrast in the map image (Kalman 1985).
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Due to technological improvements in computers these last years, the sin(x)/x function 
can now be directly applied as a deconvolution function with different window sizes (gen-
erally, 8 × 8 or 16 × 16). The computation time with the 16 × 16-cell window can be 40–80 
times more than the computation time required for nearest neighbor resampling. The final 
image is, of course, sharper, with more details on features.

All these interpolation or deconvolution functions can be applied to VIR and SAR 
images. However, they are geometric resampling kernels, which are not very well adapted 
to SAR images. Instead, for SAR images it is better to use statistical functions based on the 
characteristics of the radar used, such as existing adaptive filters using local statistics (Lee 
1980; Lopes et al. 1993; Touzi 2002). Combining the filtering process with the resampling 
process also avoids multiple radiometric processing and transformation, which largely 
degrades the image content and its interpretation (Toutin 1995b).

Since interpolation or deconvolution functions transform the DNs and then alter the 
radiometry of the original image, problems may be encountered in subsequent spectral 
signature or pattern recognition analysis. Consequently, any process based on image radi-
ometry should be performed before using the interpolation or deconvolution algorithms.

Figures 8.17 and 8.18 are examples of the application of different resampling kernels to 
WorldView-1 panchromatic mode image and Radarsat-2 SAR ultrafine-mode (U2) ground-
range image, respectively, during their orthorectification process with DEM. Subimages 
(around 200 × 200 pixels) were resampled with a factor of three to better illustrate the 
variations among the resampling kernels. The WorldView and Radarsat resampled image 

(a) (b)

(c) (d)

Figure 8.17
Examples of geometric resampling kernels applied to WorldView-2 panchromatic mode image during the 
orthorectification process with digital elevation model: The subimages are 193 × 219 pixels with 0.15-m spacing. 
Letters (a) through (d) refer to different geometric resampling kernels (nearest neighbor, bilinear, cubic convolu-
tion, and sin(x)/x with 16 × 16 window, respectively). (WorldView-1 Image © and courtesy Digital Globe, 2009.)
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pixels are then 0.15 and 0.5 m, respectively. Letters (a) through (d) refer to different geo-
metric resampling kernels (nearest neighbor, bilinear, cubic convolution, and sin(x)/x with 
16 × 16 window, respectively), and letters (e) and (f) refer to statistical adaptive SAR filters 
(enhanced Lee and gamma filters with 5 × 5 window, respectively). For both VIR and SAR 
images, the nearest neighbor resampling kernel (a) generates “blocky” images, whereas 
the bilinear resampling kernel (b) generates fuzzy images or out-of-focus images. One 
can also see the step gradient, which is reduced with the kernel sequence (from a to d). 
The best results are obtained with sinusoidal resampling kernels (c and d), but the true 
sinusoidal function (d) generates sharper features that represent the original circle shapes 
extremely well (Figure 8.17). The sin(x)/x function with the 16 × 16 window kernel should 
thus be favored for optical images during orthorectification, although the processing time 
is longer for this kernel.

On the other hand, with the Radarsat-2 SAR image (Figure 8.18), all the white dots (cor-
responding to houses) change from square shapes (a) to round shapes (b, c, d), which do 
not correspond with the original geometry of square houses. In addition, worm-shaped 
artifacts (typically from large oversampling) are generated in homogeneous flat areas 
around the houses and in the “black” streets; these artifacts become more evident with 
the sequence of (a) through (d) resampling kernels. Consequently, the three last geomet-
ric resampling kernels (bilinear, cubic convolution, and sin(x)/x) should not be used with 
SAR images. The two adaptive filters (e and f) not only give a better image appearance 

(a) (c)

(e) (f )

(b)

(d)

Figure 8.18
Examples of geometric/statistical resampling kernels applied to Radarsat-2 synthetic aperture radar (SAR) 
ultrafine-mode (U2) image during the orthorectification process with digital elevation model (DEM). The sub-
images are 265 × 262 pixels with 0.5-m spacing. Letters (a) through (d) refer to geometric resampling kernels 
(nearest neighbor, bilinear, cubic convolution, sin(x)/x with 16 × 16 window, respectively), and letters (e) and (f) 
refer to statistical adaptive SAR filters (enhanced Lee and gamma filters with 5 × 5 window, respectively). 
(Radarsat-2 Data © MacDonald, Dettwiler, and Associates Ltd. (2008)—All Rights Reserved and Courtesy of 
Canadian Space Agency.)



210	 Advances in Environmental Remote Sensing

than all the geometric resampling kernels due to the fact that the SAR speckle is filtered 
at the same time, but also keep the original feature shapes (even the neighboring houses 
are better separated and discriminated) without generating worm-shaped artifacts. These 
statistical kernels are better adapted for SAR images, even with six-time oversampling of 
SAR resolution (3 m), and they should always be favored during orthorectification.
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9.1  Introduction

The classification of remotely sensed data has long attracted the attention of the remote 
sensing community because classification results are fundamental sources for many envi-
ronmental and socioeconomic applications. Scientists and practitioners have made great 
efforts in developing advanced classification approaches and techniques for improving 
classification accuracy (Gong and Howarth 1992; Kontoes et al. 1993; Foody 1996; San 
Miguel-Ayanz and Biging 1997; Aplin, Atkinson, and Curran 1999; Stuckens, Coppin, and 
Bauer 2000; Franklin et al. 2002; Pal and Mather 2003; Gallego 2004; Lu and Weng 2007; 
Blaschke 2010; Ghimire, Rogan, and Miller 2010). However, classifying remotely sensed 
data into a thematic map remains a challenge because many factors, such as the complexity 
of the landscape under investigation, the availability of reference data, the selected remotely 
sensed data, image-processing and image classification approaches, and the analyst’s expe-
riences, may affect classification accuracy. Many uncertainties or errors may be introduced 
into the classification results; thus, much effort should be devoted to the identification of 
these major factors in the image classification process and then to improving them. This 
chapter provides a brief overview of the major steps involved in the process of image clas-
sification, discusses the potential techniques for improving land-cover classification per-
formance, and provides a case study for land use/cover classification in a moist tropical 
region of the Brazilian Amazon with Landsat thematic mapper (TM) imagery.

9.2  Overview of Image Classification Procedure

Classification of remotely sensed imagery is a complex process and requires the consider-
ation of many factors. Figure 9.1 illustrates the major steps of an image classification proce-
dure. Sections 9.2.1 through 9.2.8 provide brief descriptions for each step.

9.2.1  Nature of Remote Sensing Image Classification

Before implementing image classification for a specific study area, it is very important 
to clearly define the research problems that need to be solved, the objectives, and the 
location and size of the study area (Jensen 2005). In particular, clearly understanding the 
needs of the end user is critical. It is helpful to list some questions, such as the following: 
What is the detailed classification system and what are the most interesting land covers? 
What is the accuracy for each land cover or overall accuracy? What is the minimum 
mapping unit? What previous research work has been done and how can one maintain 
compatibility with it? What data sources are available and what data are required? What 
are the time, cost, and labor constraints? These questions directly affect the selection of 
remotely sensed data, selection of classification algorithms, and design of a classification 
procedure for a specific purpose.

9.2.2  Determination of a Classification System and Selection of Training Samples

A suitable classification system is a prerequisite for successful classification. In general, 
a classification system is designed based on the user’s needs, the spatial resolution of 
the remotely sensed data, compatibility with previous work, available image-processing 
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and classification algorithms, and time constraints. Such a system should be informative, 
exhaustive, and separable (Landgrebe 2003; Jensen 2005). In many cases, a hierarchical 
classification system is adopted to take different conditions into account.

A sufficient number of training samples and their representativeness are critical for 
image classifications (Hubert-Moy et al. 2001; Chen and Stow 2002; Landgrebe 2003; 
Mather 2004). Training samples are usually collected from fieldwork or from fine spatial 
resolution aerial photographs and satellite images. Different collection strategies, such as 
single pixel, seed, and polygon, may be used, but they will influence classification results, 
especially for classifications with fine spatial resolution image data (Chen and Stow 2002). 
When the landscape under investigation is complex and heterogeneous, selection of a suf-
ficient number of training samples becomes difficult. This problem becomes complicated 
if medium or coarse spatial resolution data are used for classification, because a large 
volume of mixed pixels may occur. Therefore, selection of training samples must consider 
the spatial resolution of the remote sensing data being used, the availability of ground 
reference data, and the complexity of the landscapes under investigation.

9.2.3  Selection of Remotely Sensed Data

Remotely sensed data have different spatial, radiometric, spectral, and temporal resolu-
tions. Understanding the strengths and weaknesses of different types of sensor data is 
essential for selecting suitable remotely sensed data for image classification. Some pre-
vious literature has reviewed the characteristics of major types of remote sensing data 
(Barnsley 1999; Estes and Loveland 1999; Althausen 2002; Lefsky and Cohen 2003). The 
selection of suitable remotely sensed data requires considering such factors as the needs 
of the end user, the scale and characteristics of the study area, available image data and 
their characteristics, cost and time constraints, and the analyst’s experience in using the 
selected images. The end user’s need determines the nature of classification and the scale 

5. Feature extraction (e.g., vegetation indices, textures,
    transformation, and data fusion) and selection

4. Data preprocessing (e.g., geometric
    rectification, radiometric and
    atmospheric calibration)

3. Collection of materials
    (remotely sensed and ancillary data)

1. Research objectives and characteristics of the study area

2. Determination of
    classification system
    and selection of
    training samples

8. Evaluation of
    classified image

7. Postclassification
    processing

6. Image classification
    with a suitable classifier

Figure 9.1
Major steps involved in the image classification procedure.
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of the study area, thus affecting the selection of remotely sensed data. In general, at a local 
level, a fine-scale classification system is needed, thus high spatial resolution data such as 
IKONOS and QuickBird data are helpful. At a regional scale, medium spatial resolution 
data such as those from Landsat TM and Terra Advanced Spaceborne Thermal Emission 
and Reflection Radiometer (ASTER) are the most frequently used data. At a continental 
or global scale, coarse spatial resolution data such as Advanced Very High Resolution 
Radiometer (AVHRR), Moderate Resolution Imaging Spectroradiometer (MODIS), and 
System Pour l’Observation de la Terre (SPOT) vegetation data are preferable.

Atmospheric condition is another important factor that influences the selection of 
remote sensing data. The frequent cloudy conditions in moist tropical regions are often 
an obstacle for capturing high-quality optical sensor data. Therefore, different kinds of 
radar data may serve as an important supplementary data source. Since multiple sources 
of sensor data are now readily available, image analysts have more choices to select suit-
able remotely sensed data for a specific study. In this situation, monetary cost is often an 
important factor affecting the selection of remotely sensed data.

9.2.4  Image Preprocessing

Image preprocessing may include the examination of image quality, geometric rectifica-
tion, and radiometric and atmospheric calibration. If different ancillary data are used, data 
conversions among different sources or formats and quality evaluation of these data are 
necessary before they can be incorporated into a classification procedure. The examination 
of original images to see any remote sensing system–induced radiometric errors is neces-
sary before the data are used for further processing. Accurate geometric rectification or 
image registration of remotely sensed data is a prerequisite for combining different source 
data in a classification process.

If a single-date image is used for classification, atmospheric correction may not be 
required (Song et al. 2001). However, when multitemporal or multisensor data are used, 
atmospheric calibration is mandatory. This is especially true when multisensor data, such 
as TM and SPOT or TM and radar are integrated for an image classification. A variety of 
methods, ranging from simple relative calibration to the dark-object subtraction (DOS) 
method and complex physically based models (e.g., second simulation of the satellite sig-
nal in the solar spectrum [6S]), have been developed for radiometric and atmospheric 
correction (Markham and Barker 1987; Gilabert, Conese, and Maselli 1994; Chavez 1996; 
Stefan and Itten 1997; Vermote et al. 1997; Tokola, Löfman, and Erkkilä 1999; Heo and 
FitzHugh 2000; Song et al. 2001; Du, Teillet, and Cihlar 2002; Lu et al. 2002; McGovern et al. 
2002; Canty, Nielsen, and Schmidt 2004; Hadjimitsis, Clayton, and Hope 2004; Chander, 
Markham, and Helder 2009). Topographic correction is important if the study area is 
located in rugged or mountainous regions (Teillet, Guindon, and Goodenough 1982; Civco 
1989; Colby 1991; Meyer et al. 1993; Richter 1997; Gu and Gillespie 1998; Hale and Rock 2003; 
Lu et al. 2008a). A detailed description of atmospheric and topographic correction is beyond 
the scope of this chapter. Interested readers may check the references cited in this section 
to identify a suitable approach for a specific study.

9.2.5  Feature Extraction and Selection

Selecting suitable variables is a critical step for successfully performing an image classi-
fication. Many potential variables may be used in image classification, including spectral 
signatures, vegetation indices, transformed images, textural or contextual information, 
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multitemporal images, multisensor images, and ancillary data. Because of the different 
capabilities of these variables in land-cover separability, the use of too many variables 
in a classification procedure may decrease classification accuracy (Price, Guo, and Stiles 
2002). It is important to select only those variables that are most useful in separating 
land-cover or vegetation classes, especially when hyperspectral or multisource data are 
employed. Many approaches, such as principal component analysis, minimum noise frac-
tion transform, discriminant analysis, decision boundary feature extraction, nonparamet-
ric weighted feature extraction, wavelet transform, and spectral mixture analysis (Myint 
2001; Okin et al. 2001; Rashed et al. 2001; Asner and Heidebrecht 2002; Lobell et al. 2002; 
Neville et al. 2003; Landgrebe 2003; Platt and Goetz 2004), may be used for feature extrac-
tion, in order to reduce the data redundancy inherent in remotely sensed data or to extract 
specific land-cover information.

Optimal selection of spectral bands for image classification has been extensively 
discussed in the literature (Mausel, Kramber, and Lee 1990; Landgrebe 2003). Graphic 
analysis (e.g., bar graph spectral plots, cospectral mean vector plots, two-dimensional 
feature space plot, and ellipse plots) and statistical methods (e.g., average divergence, trans-
formed divergence, Bhattacharyya distance, and Jeffreys–Matusita distance) have been 
used to identify optimal subsets of bands (Jensen 2005). In practice, divergence-related 
algorithms based on training samples are often used to evaluate class separability and 
select optimal bands.

9.2.6  Selection of a Suitable Classification Algorithm

In recent years, many advanced classification approaches, such as artificial neural net-
works, decision trees, fuzzy sets, and expert systems, have been widely applied in image 
classification. Cihlar (2000) discussed the status and research priorities of land-cover 
mapping for large areas. Franklin and Wulder (2002) assessed land-cover classification 
approaches with medium spatial resolution remotely sensed data. Published works by 
Tso and Mather (2001) and Landgrebe (2003) specifically focused on image-processing 
approaches and classification algorithms. In general, image classification approaches can 
be grouped into different categories, such as supervised versus unsupervised, parametric 
versus nonparametric, hard versus soft (fuzzy) classification, per-pixel, subpixel, and per-
field (Lu and Weng 2007). There are many different classification methods available. For 
the sake of convenience, Lu and Weng (2007) grouped classification approaches as per-
pixel, subpixel, per-field, contextual, and knowledge-based approaches, and a combina-
tion approach of multiple classifiers, and described the major advanced classification 
approaches that have appeared in the recent literature. In practice, many factors, such 
as the spatial resolution of the remotely sensed data, different data sources, classifica-
tion systems, and the availability of classification software, must be taken into account 
when selecting a classification method for use. If the classification is based on spectral 
signatures, parametric classification algorithms such as maximum likelihood are often 
used; otherwise, if multisource data are used, nonparametric classification algorithms 
such as the decision tree and neural network are commonly used. Spatial resolution is an 
important factor affecting the selection of a suitable classification method. For example, 
high spectral variation within the same land-cover class in high spatial and radiometric 
resolution images such as those from QuickBird and IKONOS often results in poor clas-
sification accuracy when a traditional per-pixel classifier is used. In this circumstance, 
per-field or object-oriented classification algorithms outperform per-pixel classifiers 
(Thomas, Hendrix, and Congalton 2003; Benz et al. 2004; Jensen 2005; Stow et al. 2007; 
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Mallinis et al. 2008; Zhou, Troy, and Grove 2008). For medium and coarse spatial resolu-
tion data, however, spectral information is a more important attribute than spatial infor-
mation because of the loss of spatial information. Since mixed pixels create a problem in 
medium- and coarse-resolution imagery, per-pixel classifiers have repeated difficulties in 
dealing with them. Subpixel-based classification methods can provide better area estima-
tion than per-pixel-based methods (Lu and Weng 2006).

9.2.7  Postclassification Processing

Research has indicated that postclassification processing is an important step in improving 
the quality of classifications (Harris and Ventura 1995; Murai and Omatu 1997; Stefanov, 
Ramsey, and Christensen 2001; Lu and Weng 2004). Its roles include the recoding of land 
use/cover classes, removal of “salt-and-pepper” effects, and modification of the classified 
image using ancillary data or expert knowledge. Traditional per-pixel classifiers based 
on spectral signatures often lead to salt-and-pepper effects in classification maps due to 
the complexity of the landscape. Thus, a majority filter is often applied to reduce noise. 
Also, ancillary data are often used to modify the classification image based on established 
expert rules. For example, forest distribution in mountainous areas is related to elevation, 
slope, and aspects. Data describing terrain characteristics can be used to modify classifica-
tion results based on the knowledge of specific vegetation classes and topographic factors. 
In urban areas, housing or population density is related to urban land-use distribution 
patterns, and such data can be used to correct some classification confusions between 
commercial and high-intensity residential areas or between recreational grass and crops 
(Lu and Weng 2006). As more and more ancillary data, such as digital elevation mod-
els (DEMs) and soil, roads, population, and economic data become available, geographic 
information systems (GIS) techniques will play an important role in managing these ancil-
lary data and in modifying the classification results using the established knowledge or 
relationships between land cover and these ancillary data.

9.2.8 E valuation of Classification Performance

The evaluation of classification results is an important process in the classification pro-
cedure. Different approaches may be employed, ranging from a qualitative evaluation 
based on expert knowledge to a quantitative accuracy assessment based on sampling 
strategies. A classification accuracy assessment generally includes three basic compo-
nents: (1) sampling design, (2) response design, and (3) estimation and analysis proce-
dures (Stehman and Czaplewski 1998). The error matrix approach is one of the most 
widely used in accuracy assessment (Foody 2002). In order to properly generate an error 
matrix, one must consider the following factors: reference data collection, classification 
scheme, sampling scheme, spatial autocorrelation, and sample size and sample unit 
(Congalton and Plourde 2002). After the generation of an error matrix, other impor-
tant accuracy assessment elements, such as overall accuracy, omission error, commis-
sion error, and kappa coefficient, can be derived (Congalton and Mead 1983; Hudson 
and Ramm 1987; Congalton 1991; Janssen and van der Wel 1994; Kalkhan, Reich, and 
Czaplewski 1997; Stehman 1996; Smits, Dellepiane, and Schowengerdt 1999; Congalton 
and Plourde 2002; Foody 2002, 2004; Congalton and Green 2008). In particular, kappa 
analysis is recognized as a powerful method for analyzing a single error matrix and 
for comparing the differences among various error matrices (Congalton 1991; Smits, 
Dellepiane, and Schowengerdt 1999; Foody 2004). Many authors, such as Congalton (1991), 
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Janssen and van der Wel (1994), Smits, Dellepiane, and Schowengerdt (1999), Foody (2002), 
and Congalton and Green (2008), have reviewed the methods for classification accuracy 
assessment.

9.3 � Overview of Major Techniques for Improving 
Classification Performance

Different remotely sensed data will have variations in spatial, spectral, radiometric, and 
temporal resolutions, as well as differences in polarization. Making full use of these char-
acteristics is an effective way of improving classification accuracy (Lu and Weng 2005; 
Lu et al. 2008b). Generally speaking, spectral response is the most important information 
used for land-cover classification. As high spatial resolution data become readily available, 
textural and contextual information become significant in image classification (Lu et al. 
2008b). This section discusses some major techniques used for improving the performance 
of land-cover classification.

9.3.1 U se of Spatial Information

The spatial resolution of an image determines the level of detail that can be observed on 
the Earth’s surface, and spatial information plays an important part in improving land 
use/cover classification accuracy, especially when high spatial resolution images such as 
IKONOS and QuickBird images are employed (Sugumaran, Zerr, and Prato 2002; Goetz 
et al. 2003; Herold, Liu, and Clarke 2003; Hurtt et al. 2003; van der Sande, de Jong, and de 
Roo 2003; Xu et al. 2003; Zhang and Wang 2003; Wang et al. 2004; Stow et al. 2007; Mallinis 
et al. 2008; Zhou, Troy, and Grove 2008). A major advantage of these fine spatial resolution 
images is that such data greatly reduce the mixed-pixel problem, and there is the potential 
to extract much more detailed information on land-cover structures from these data than 
from medium or coarse spatial resolution data. However, some new problems associated 
with fine spatial resolution image data emerge, notably the shadows caused by topography, 
tall buildings, or trees, and the high spectral variation within the same land-cover class. 
These challenges may lower classification accuracy if classifiers cannot effectively handle 
them (Irons et al. 1985; Cushnie 1987). The huge amount of data storage capacity and severe 
shadow problems in fine spatial resolution images leads to challenges in selecting suit-
able image-processing approaches and classification algorithms. Spatial information may 
be used in different ways, such as in contextual-based or object-oriented classification 
approaches, or textural images (Blaschke 2010; Ghimire, Rogan, and Miller 2010).

9.3.2  Integration of Different Sensor Data

Images from different sensors may contain distinctive features in reflecting land-cover sur-
faces. Data fusion or integration of multisensor data takes advantage of the strengths of 
distinct image data for improving visual interpretation and quantitative analysis. Many meth-
ods have been developed to integrate spectral and spatial information (Gong 1994; Dai and 
Khorram 1998; Pohl and van Genderen 1998; Chen and Stow 2003; Ulfarsson, Benediktsson, 
and Sveinsson2003; Lu et al. 2008b; Amarsaikhan et al. 2010; Ehlers et al. 2010). Solberg, 
Taxt, and Jain (1996) broadly divided data fusion methods into four categories: (1) statistical, 
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(2)  fuzzy logic, (3) evidential reasoning, and (4) neural network. Pohl and van Genderen 
(1998) reviewed data fusion methods, including color-related techniques (e.g., color com-
posite, intensity, hue, and saturation [IHS], and luminance and chrominance), statistical/
numerical methods (e.g., arithmetic combination, principal component analysis, high-pass 
filtering, regression variable substitution, canonical variable substitution, component sub-
stitution, and wavelets transforms), and various combinations of these methods. A recent 
review paper by Zhang (2010) further overviewed multisource data fusion techniques and 
discussed their trends. Li, Li, and Gong (2010) discussed the measures based on multivari-
ate statistical analysis to evaluate the quality of data fusion results. In general, data fusion 
involves two major procedures: (1) geometric coregistration of two data sets and (2) mixture 
of spectral and spatial information contents to generate a new data set that contains the 
enhanced information from both data sets. Accurate registration between the two data sets 
is extremely important for precisely extracting information contents from both data sets, 
especially for line features such as roads and rivers. Radiometric and atmospheric calibra-
tions are also needed before multisensor data are merged.

9.3.3 U se of Multitemporal Data

Temporal resolution refers to the time interval in which a satellite revisits the same loca-
tion. A higher temporal resolution provides better opportunities to capture high-quality 
images. This is particularly useful for areas such as moist tropical regions, where adverse 
atmospheric conditions regularly occur. The use of remotely sensed data collected over 
different seasons has proven useful in improving classification accuracy, especially for 
crop and vegetation classification (Brisco and Brown 1995; Wolter et al. 1995; Lunetta and 
Balogh 1999; Oetter et al. 2000; Liu, Takamura, and Takeuchi 2002; Guerschman et al. 2003). 
For example, Lunetta and Balogh (1999) compared single- and two-date Landsat-5 TM 
images (spring leaf-on and fall leaf-off images) for wetland mapping in Maryland and 
Delaware, and found that multitemporal images provided better classification accuracies 
than single-date imagery by itself. An overall classification accuracy of 88% was achieved 
from multitemporal images, compared with 69% from single-date imagery.

9.3.4 U se of Ancillary Data

Ancillary data, such as topography, soils, roads, and census data, may be combined with 
remotely sensed data to improve classification performance. Harris and Ventura (1995) and 
Williams (2001) suggested that ancillary data may be used to enhance image classification 
in three ways: (1) preclassification stratification, (2) classifier modification, and (3) postclas-
sification sorting. Since land-cover distribution is related to topography, topographic data 
have proven to be valuable in improving land-cover classification accuracy in mountainous 
regions (Janssen, Jaarsma, and van der Linden 1990; Meyer et al. 1993; Franklin, Connery, 
and Williams 1994), and topographic data are useful at all three stages of image classifica-
tion as (1) a stratification tool in preclassification, (2) an additional channel during clas-
sification, and (3) a smoothing means in postclassification (Senoo et al. 1990; Maselli et al. 
2000). In urban studies, DEM data are rarely used to aid image classification due to the fact 
that urban regions are often located in relatively flat areas. Instead, data related to human 
systems such as population distribution and road density are frequently incorporated in 
urban classifications (Mesev 1998; Epstein, Payne, and Kramer 2002; Zhang et al. 2002; Lu 
and Weng 2006). As discussed in Section 9.2.7, GIS techniques play an important role in the 
effective use of ancillary data in improving land use/cover classification performance.



Remote Sensing Image Classification	 227

9.4 � Case Study for Land-Cover Classification with 
Landsat Thematic Mapper Imagery

The previous sections have briefly reviewed major steps for image classification and poten-
tial measures for improving classification accuracy. The following section provides a case 
study in the moist tropical region of Brazil for showing how combination of remote sensing-
derived variables and original spectral bands improved classification performance.

9.4.1 R esearch Problem and Objective

Landsat TM imagery is the most common data source for land-cover classification, and 
much previous research has explored methods to improve classification performance, 
including the use of advanced classification options such as neural network, extraction 
and classification of homogeneous objects (ECHO), object-oriented classifiers, decision tree 
classifier, and subpixel-based methods (Lu et al. 2004a, Lu and Weng 2007; Blaschke 2010). 
However, the role of vegetation indices and textural images in improving land-cover clas-
sification performance is still poorly understood, in particular in moist tropical regions 
such as the Brazilian Amazon. Therefore, we selected Altamira, Pará state, Brazil, as a case 
study to explore the role of vegetation indices and textural images in improving vegetation 
classification performance.

9.4.2  Study Area

Altamira is located along the Trans-Amazonian Highway (BR-230) in the northern Brazilian 
state of Pará. The city of Altamira lies on the Xingu River at the eastern edge of the study 
area (see Figure 9.2). In the 1950s, an effort was made to attract colonists from northeastern 
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Figure 9.2
Altamira of Para state, Brazil, was selected as the area for the case study.
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Brazil, who came and settled along streams as far as 20 km from the city center. With the 
construction of the Trans-Amazonian Highway in 1970, this population and older caboclo 
settlers from earlier rubber boom eras claimed land along the new highway and legal-
ized their land claims. Early settlement was driven by geopolitical goals of settling in the 
northern region of Brazil and by political economic policies aimed at shifting production 
of staples like rice, corn, and beans from the southernmost Brazilian states to the northern 
region. The uplands have a somewhat rolling topography, with highest elevation measur-
ing approximately 350 m. Floodplains along the Xingu are flat, with the lowest elevation 
measuring approximately 10 m. Nutrient-rich alfisols and infertile ultisols and oxisols are 
found in the uplands of this area. The overall soil quality of this area is above-average 
fertility for Amazonia. The dominant native types of vegetation are mature moist forest 
and liana forest. Major deforestation in the area, began in 1972, which was concurrent with 
the construction of the Trans-Amazonian Highway (Moran 1981). Deforestation has led to 
a complex composition of different vegetation types in this area, such as different second-
ary succession stages, pasture, and agroforestry (Moran et al. 1994; Moran, Brondízio, and 
Mausel 1994; Moran and Brondízio 1998). Annual rainfall in Altamira is approximately 
2000 mm and is concentrated during the period from late October through early June; the 
dry period occurs between June and September. The average temperature is about 26°C 
(Tucker, Brondízio, and Moran 1998).

9.4.3  Methods

After the research problems were clearly identified, research objectives were defined, and 
the study area was selected, the next step was to design a feasible classification procedure, 
which may include reference data collection for use as training samples, development of 
suitable variables from the selected remote sensing data, selection of a suitable classifica-
tion algorithm, and evaluation of the classified image.

9.4.3.1  Data Collection and Preprocessing

Sample plots for different land covers, especially for different stages of secondary succes-
sion and pasture, were collected during the summer of 2009 in the Altamira study area. 
Prior to fieldwork, candidate sample locations of complex vegetation areas were identified 
in the laboratory. In each sample area, the locations of different vegetation-cover types were 
recorded using a global positioning system (GPS) device, and detailed written descrip-
tions and photographs of vegetation stand structures (e.g., height, canopy cover, species 
composition) were recorded. Sketch-map forms were used in conjunction with small field 
maps showing the candidate sample locations on A4 paper to note the spatial extent and 
patch shape of vegetation-cover types in the area surrounding the GPS point. Following 
the fieldwork, GPS points and field data were edited and processed using GIS and remote 
sensing software to create representative area of interest (AOI) polygons to be used for 
image classification. The AOI polygons were created by identifying areas of uniform pixel 
reflectance in an approximate 3 × 3 pixel window size on the Landsat TM imagery. A land-
cover classification system was designed based on our research objectives, compatibility 
with our previous research work (Mausel et al. 1993; Moran et al. 1994; Moran, Brondízio, 
and Mausel 1994; Moran and Brondízio 1998) and field surveys. The land-cover classifica-
tion system included three forest classes (upland, flooding, and liana), three succession 
stages (initial, intermediate, and advanced stages, or SS1, SS2, and SS3), pasture, and four 
nonvegetated classes (water, wetland, urban, and burn scars).
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A Landsat-5 TM image acquired on July 2, 2008 was geometrically registered to a pre-
viously corrected Landsat TM image with a geometric error of less than half a pixel. The 
nearest-neighbor resampling algorithm was used to resample the TM imagery to a pixel 
size of 30 × 30 m. An improved image-based DOS model was used to perform radio-
metric and atmospheric correction (Chavez 1996; Lu et al. 2002; Chander, Markham, and 
Helder 2009). The gain and offset for each band and solar elevation angle were obtained 
from the image header file. The path radiance was identified based on clear water for 
each band.

9.4.3.2  Selection of Suitable Vegetation Indices

Many vegetation indices have been used for different purposes, such as estimation of 
biophysical parameters (Bannari et al. 1995; McDonald, Gemmell, and Lewis 1998). Lu et al. 
(2004b) examined the relationships between vegetation indices and forest stand structure 
attributes such as biomass, volume, and average stand diameter in different biophysical 
conditions in the Brazilian Amazon. In this research, they found that vegetation indices 
with TM band 5 had higher correlation coefficients than those without band 5, such as 
normalized difference vegetation index (NDVI), in study areas like Altamira with complex 
forest stand structure. Therefore, in this research, different vegetation indices, including 
band 5, were designed, as well as other indices as summarized in Table 9.1. In order to 
identify suitable vegetation indices for improving vegetation classification performance, 
training sample plots for different vegetation types based on field surveys were selected 
for conducting separability analysis with the transformed divergence algorithm (Mausel, 
Kramber, and Lee 1990; Landgrebe 2003). Individual vegetation indices and a combination 
of two or more indices were explored. When different combinations of two or more indices 

Table 9.1

Vegetation Indices Used in Research

Sl. No. Vegetation Index Equation

1 TC1 0.304TM1 + 0.279TM2 + 0.474TM3 + 0.559TM4 + 0.508TM5 + 0.186TM7
2 TC2 −0.285TM1 − 0.244TM2 − 0.544TM3 + 0.704TM4 + 0.084TM5 − 0.180TM7
3 TC3 0.151TM1 + 0.197TM2 + 0.328TM3 + 0.341TM4 − 0.711TM5 − 0.457TM7
4 ASVI ((2NIR+1) (2NIR+1) 8(NIR 2RED+BLUE) )/22− − −

5 MSAVI ((2NIR+1) (2NIR+1) 8(NIR 2RED) )/22− − −

6 ND4_2 (TM4 − TM2)/(TM4 + TM2)
7 ND4_25 (TM4 − TM2 − TM5)/(TM4 + TM2 + TM5)
8 ND42_53 (TM4 + TM2 − TM5 − TM3)/(TM4 + TM2 + TM5 + TM3)
9 ND42_57 (TM4 + TM2 − TM5 − TM7)/(TM4 + TM2 + TM5 + TM7)
10 ND4_35 (TM4 − TM3 − TM5)/(TM4 + TM3 + TM5)
11 ND45_23 (TM4 + TM5 − TM2 − TM3)/(TM4 + TM5 + TM2 + TM3)
12 ND4_57 (2 × TM4 − TM5 − TM7)/(TM4 + TM5 + TM7)
13 NDVI (TM4 − TM3)/(TM4 + TM3)
14 NDWI (TM4 − TM5)/TM4 + TM5)

Note:	 ND = normalized difference; ASVI = atmospheric and soil vegetation index; MSAVI = modified soil 
adjusted vegetation index; TC = tasseled-cap transform. NIR, RED, and BLUE represent near-infrared, 
red, and blue band in TM image, that is, TM bands 4, 3 and 1. The ND number represents the TM spec-
tral band.
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are tested, standard deviation and correlation coefficients are used to determine the best 
combination of vegetation indices according to the following equation:

	

Best com ation STDbin =
= =
∑ ∑i
i

n

ij
j

n

R
1 1

/

	

 (9.1)

where STDi is the standard deviation of the vegetation index image i, Rij is the correlation 
coefficient between two vegetation index images i and j, and n is the number of vegetation 
index images.

9.4.3.3  Selection of Suitable Textural Images

Many texture measures have been developed and textural images have proven useful 
in improving land-cover classification accuracy (Haralick, Shanmugam, and Dinstein 
1973; Kashyap, Chellappa, and Khotanzad 1982; Marceau et al. 1990; Augusteijn, Clemens, 
and Shaw 1995; Shaban and Dikshit 2001; Chen, Stow, and Gong 2004; Lu et al. 2008b). 
Of the many texture measures, gray-level co-occurrence matrix (GLCM)-based textural 
images have been extensively used in image classification (Marceau et al. 1990; Lu et al. 
2008b). Lu (2005) explored the roles of textural images in biomass estimation and found 
that textural images based on variance with TM band 2 and a window size of 9 × 9 
had a significant relationship with biomass. In another study, Lu and his colleagues (Lu 
et al. 2008b) explored textural images in vegetation classification and found that textural 
images based on entropy, second moment, dissimilarity, and contrast, with window sizes 
of 7 × 7 or 9 × 9, exhibit better performance. Therefore, in our research, GLCM-based tex-
ture measures such as variance, homogeneity, contrast, dissimilarity, and entropy were 
explored with a window size of 9 × 9 and Landsat TM bands 2, 3, 4, 5, and 7. Separability 
analysis with transformed divergence based on selected training sample plots of differ-
ent vegetation classes was used for the selection of a potential single textural image or 
a combination of two or more textural images. The analysis of correlation and standard 
deviation of each textural image was used to identify the best combination according to 
Equation 9.1.

9.4.3.4  Land-Cover Classification

Maximum likelihood classification (MLC) is the most common parametric classifier that 
assumes normal or near-normal spectral distribution for each feature of interest and an 
equal prior probability among the classes. This classifier is based on the probability that a 
pixel belongs to a particular class. It takes the variability of classes into account by using 
the covariance matrix. A detailed description of MLC can be found in many textbooks (e.g., 
Richards and Jia 1999; Lillesand and Kiefer 2000; Jensen 2005). In our research, MLC was 
used to conduct land-cover classification based on different scenarios, in order to explore 
the roles of vegetation indices and textural images in improving land-cover, especially 
vegetation classification in the moist tropical region. The scenarios included the consider-
ation of six TM spectral bands, a combination of spectral and vegetation indices, a combi-
nation of spectral and textural images, and a combination of spectral indices, vegetation 
indices, and textural images. These classification results were analyzed based on accuracy 
assessment.
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9.4.3.5  Accuracy Assessment

Accuracy assessment is often required for a land-cover classification. A common method for 
accuracy assessment involves the use of an error matrix, for which the literature has provided 
the meanings of and calculation methods for overall accuracy, producer’s accuracy, user’s 
accuracy, and kappa coefficient (Congalton 1991; Smits, Dellepiane, and Schowengerdt 1999; 
Foody 2002; Congalton and Green 2008). In this study, a total of 338 test sample plots were 
used for accuracy assessment. An error matrix was developed for each classification scenario, 
and then producer’s accuracy and user’s accuracy for each class and overall accuracy and 
kappa coefficient for each scenario were calculated based on the corresponding error matrix.

9.4.4  Results

This section provides the analysis of the identified vegetation indices and textural images 
and compared the classified results with MLC based on different scenarios.

9.4.4.1  Identification of Vegetation Indices and Textural Images

Since the classification of vegetation is especially difficult in our research, the selection 
of vegetation indices or textural images is essential to enhance vegetation separability, 
especially for different types of forest and secondary succession stages. Therefore, three 
forest types (upland forest, flooding forest, and liana forest), three succession stages 
(initial, intermediate, and advanced succession stages, or SS1, SS2, and SS3), and pasture 
were selected. The separability analysis indicated that the best single vegetation index 
includes ND4-25, TC2 (TC stands for tasseled cap), ND42-53, ND4-35, and TC3, and the 
best single textural images are from the dissimilarity on TM bands 2 or 3 (TM2-DIS, 
TM3-DIS), contrast on TM band 2 (TM2-CON), and homogeneity on TM bands 2 or 3 
(TM2-HOM or TM3-HOM). However, no single individual vegetation index or textural 
image could separate the vegetation types. According to the separability analysis and the 
best combination model, a combination of two vegetation indices or two textural images 
provided the best results for vegetation separability. Three or more vegetation indices or 
textural images did not significantly improve vegetation separability; a similar conclu-
sion was reached in our previous research (Lu et al. 2008b). Therefore, the best combina-
tion for two vegetation indices is TC2 and ND42-57, and the best combination for two 
best textural images is TM2-DIS and TM4-DIS (dissimilarity based on TM bands 2 and 4). 
Figure 9.3 provides the comparison of TM spectral bands, two selected vegetation indi-
ces, and two textural images, showing the different features for vegetation types, espe-
cially the textural images.

9.4.4.2  Comparison of Classification Results

The comparison of accuracy assessment among different scenarios (see Table 9.2) indi-
cated that although the incorporation of vegetation indices into spectral bands has a lim-
ited role in improving vegetation classification performance, it is helpful in improving the 
extraction and separability of pasture, water, and urban land covers; in contrast, the incor-
poration of textural images into spectral bands was valuable for improving vegetation 
classification performance, especially for upland forest, flooding forest, and intermediate 
and advanced succession classes. This research indicates that the incorporation of both 



232	 Advances in Environmental Remote Sensing

Table 9.2

Comparison of Accuracy Assessment Results with MLC among Different Scenarios

Land-Cover Types

6SB 6SB and 2VI 6SB and 2TX
6SB and 2VI and 

2TX

PA UA PA UA PA UA PA UA

Upland forest 37.04 95.24 24.07 92.86 66.67 78.26 66.67 78.26
Flooding forest 93.75 50.00 100.00 41.03 100.00 66.67 100.00 69.57
Liana forest 95.45 66.67 95.45 63.64 81.82 66.67 84.09 69.81
SS1 84.00 61.76 80.00 64.52 92.00 57.50 92.00 58.97
SS2 67.86 90.48 67.86 86.36 78.57 95.65 82.14 92.00
SS3 89.66 74.29 86.21 75.76 79.31 85.19 86.21 89.29
Pasture 83.33 94.83 86.36 95.00 75.76 96.15 77.27 98.08
Water 68.18 100.00 95.45 100.00 72.73 100.00 95.45 100.00
Nonvegetated 
wetland

53.85 100.00 69.23 90.00 69.23 100.00 53.85 87.50

Urban 100.00 71.05 100.00 100.00 100.00 79.41 100.00 100.00
Burn scars 100.00 87.50 92.86 86.67 92.86 100.00 100.00 87.50
Overall accuracy 77.22 77.51 80.18 82.84
Kappa 
coefficient

0.7446 0.7485 0.7770 0.8071

6SB represents TM six spectral bands; 6SB and 2VI represent the combination of six spectral bands and two veg-
etation indices; 6SB and 2TX represent the combination of six spectral bands and two textural images; and 6SB 
and 2VI and 2TX represent the combination of six spectral bands, two vegetation indices, and two textural images. 
PA and UA represent producer’s accuracy and user’s accuracy.
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Figure 9.3
A comparison of thematic mapper (TM) bands 4 and 5, two vegetation indices, and two textural images. (a) and 
(b) TM bands 4 and 5; (c) and (d) the second component from tasseled cap transformation and the vegetation 
index based on bands 4, 2, 5, and 7; and (e) and (f) textural images based on dissimilarity on band 2 and band 4 
and a window size of 9 × 9 pixels.
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vegetation indices and textural images into spectral bands provides the best classification 
performance. Figure 9.4 provides a comparison of classification results among the four 
scenarios. It indicates that the use of textural images can reduce the salt-and-pepper effect 
in the classification image, which is often produced with the per-pixel-based classification 
method.

9.4.5  Summary of the Case Study

This study indicates the importance of textural images in improving vegetation classifica-
tion accuracies. A critical step is to identify suitable textural images that can provide the 
best separability for specified classes. For the selection of a single textural image, one can 
select the textural image with the highest separability, but for the selection of two or more 
textural images, a method based on comparing the standard deviation and correlation 
coefficients between the images provides an easy way to identify a suitable combination.

9.5  Final Remarks

Image classification has made great progress over the past decades in the following three 
areas: (1) development and use of advanced classification algorithms, such as subpixel, 
per-field, and knowledge-based classification algorithms; (2) use of multiple remote sens-
ing features, including spectral, spatial, multitemporal, and multisensor information; and 
(3) incorporation of ancillary data into classification procedures, including such data as topo-
graphic, soils, roads, and census data. Spectral features are the most important information 
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Figure 9.4
(See color insert following page 426.) Comparison of classification results among different scenarios with the 
maximum likelihood classifier: (a) six Thematic Mapper spectral bands, (b) combination of spectral bands and 
two vegetation indices, (c) combination of spectral bands and two textural images, and (d) combination of spec-
tral bands, two vegetation indices, and two textural images.
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required for image classification. As spatial resolution increases, how to effectively use the 
spatial information inherent in the image becomes an important question to be consid-
ered. Thus, object-, texture-, or contextual-based methods have attracted increased atten-
tion (Lam 2008; Blaschke 2010; Ghimire, Rogan, and Miller 2010). Classification approaches 
may vary with different types of remote sensing data. In high spatial resolution data such 
as those from IKONOS and QuickBird, the high spectral variation within the same land-
cover class poses a challenge. A combination of spectral and textural information and the 
use of per-field or object-oriented classification algorithms can reduce this problem. For 
medium and coarse spatial resolution data, mixed pixels are a problem, resulting in poor 
area estimation for classified images when per-pixel classifiers are used. Thus, subpixel 
features from spectral mixture analysis or fuzzy membership have been used in image 
classification. Moreover, image data have been integrated with ancillary data as another 
means for enhancing image classification in which GIS plays an important role. When mul-
tisource data are used in a classification, parametric classification algorithms such as MLC 
are typically not appropriate. Advanced nonparametric classifiers, such as neural network, 
decision tree, and evidential reasoning, or the knowledge-based approach appear to be the 
most appropriate choices.

The success of an image classification depends on many factors. The availability of high-
quality remotely sensed imagery and ancillary data, design of a proper classification pro-
cedure, and skills and experiences of the analyst are most important. For a particular study, 
it is often difficult to identify the best classifier due to a lack of guidelines for classifier 
selection and the unavailability of suitable classification algorithms at hand. Comparative 
studies of different classifiers are thus frequently conducted. Moreover, the combination of 
different classification approaches has been shown to be helpful for improving classifica-
tion accuracy. Future research is necessary to develop guidelines for the applicability and 
capability of major classification algorithms.
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10
Object-Based Image Analysis for 
Vegetation Mapping and Monitoring

Thomas Blaschke, Kasper Johansen, and Dirk Tiede

10.1  Introduction

Environmental monitoring requirements, conservation goals, spatial planning enforce-
ment, and ecosystem-oriented natural resources management, to name just a few drivers, 
lend considerable urgency to the development of operational solutions that can extract 
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tangible information from remote sensing data. The “workhorses” of satellite data 
generation, such as the Landsat and System Pour l’Observation de la Terre (SPOT) satel-
lites or the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) 
and Moderate Resolution Imaging Spectroradiometer (MODIS) instruments, have become 
important in global and regional studies of biodiversity, nature conservation, food secu-
rity, deforestation impact, desertification monitoring, and other application fields. With 
the increasing spatial resolution of the “1-m generation” of IKONOS (launched in 1999), 
QuickBird (2001), and OrbView (2003) sensors and the increasing availability of airborne 
optical digital high spatial resolution imaging sensors and laser scanners, new application 
fields that had previously been the domain of analog airborne remote sensing can now 
be tackled with increasing flexibility and precision, at reduced costs and for remote areas 
not previously accessible. In late 2007, the first commercial satellite with a spatial resolu-
tion of less than half a meter (WorldView-1; 0.44-m panchromatic) became operational, 
followed by multispectral sensors such as GeoEye-1 (2008) and WorldView-2 (2009), pro-
viding pan-sharpened subhalf-meter resolution image data. At present, we see security 
applications, vehicle detection, urban mapping, and vegetation assessment applications 
developing rapidly, in terms of both number and sophistication. By simplification and 
generalization, we can distinguish two major trends: (1) an increasing amount of data is 
being produced in an ever-broadening range of spatial, spectral, radiometric, and tem-
poral resolutions, including the aforementioned high spatial resolutions; and (2) national 
and supranational programs and systems are being developed for regular or on-demand 
vegetation surveys.

Suitable remotely sensed image data for mapping vegetation cover and properties at 
different spatial scales (from global to local) are becoming increasingly available. There 
is an extensive body of work covering the usefulness of these image data and the associ-
ated methods for vegetation mapping and monitoring (Coppin et al. 2004; Lu et al. 2004). 
However, mapping and monitoring of biophysical vegetation parameters and extraction 
of stand parameters such as height, age, and foliage projective cover on a regular and 
cost-effective basis had not been possible until recently due to a lack of data with suf-
ficient spatial resolution (Congalton et al. 2002; Gergel et al. 2007; Kayitakire, Hamel, 
and Defourny 2006). The availability of data from high spatial resolution sensors such 
as the IKONOS, QuickBird, GeoEye-1, and WorldView-2 satellite sensors and airborne 
multispectral, hyperspectral, and light detection and ranging (lidar) sensors has opened 
up new opportunities for the development of operational mapping and monitoring of 
small features such as individual tree crowns and narrow riparian zones (Hurtt et al. 
2003). The capacity to map these small features and related vegetation structural param-
eters has improved over the last decade through the use of object-based image analysis 
(OBIA).

This chapter assesses the potential of OBIA for vegetation mapping and monitoring. 
The acronyms OBIA and GEOBIA, which stands for geospatial OBIA, are both used herein 
interchangeably. The chapter summarizes trends in vegetation remote sensing and reflects 
very briefly on underlying concepts such as image segmentation, which is much older 
than the popularized commercial software of today. The goal of this chapter is to provide 
a review of OBIA applications for remote sensing of vegetation. Sections 10.2.1 through 
10.2.4 provide a background on the use of OBIA for remote sensing of vegetation and infor-
mation on how the main remote sensing systems used for vegetation/forestry applications 
differ from one another. The intent is not to review the sensors, but to focus on OBIA 
methods used for vegetation studies, which are also demonstrated through two separate 
case studies in this chapter.
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10.2 � Object-Based Image Analysis for Remotely 
Sensed Vegetation Mapping

The objective of OBIA is to develop and apply theory, methods, and tools for replicat-
ing and improving human interpretation of remotely sensed image data in an automated 
manner. OBIA consists of image segmentation, that is, clustering of pixels into homoge-
nous objects, and subsequent classification or labeling of the objects, and modelling based 
on the characteristics of objects (Johansen, Bartolo and Phinn, 2010).

10.2.1  Object-Based Image Analysis

Having identified an increasing dissatisfaction with pixel-by-pixel image analysis, Blaschke 
and Strobl (2001) raised the provocative question “What’s wrong with pixels?” Although 
this critique was not new (see Blaschke and Strobl 2001; Burnett and Blaschke 2003; 
Blaschke, Burnett, and Pekkarinen 2004 for a more thorough discussion), they observed a 
hype in applications “beyond pixels.” A common denominator of these applications was, 
and still is, that they are built on image segmentation, that is, the partitioning of an image 
into meaningful geographically based objects (see also Hay et al. 2003; Benz et al. 2004; 
Liu et al. 2006; Hay et al. 2005; Lang and Blaschke 2006; Lang 2008; Hay and Castilla 2008; 
Blaschke, Lang, and Hay 2008). Image segmentation is not at all a new concept (Haralick 
and Shapiro 1985; Pal and Pal 1993); it has its roots in industrial image processing and 
was not used extensively in geospatial applications during the 1980s and 1990s (Blaschke, 
Burnett, and Pekkarinen 2004).

It is widely agreed (Blaschke and Strobl 2001; Hay et al. 2003; Burnett and Blaschke 
2003; Flanders, Hall-Beyer, and Pereverzoff 2003; Benz et al. 2004; Blaschke, Burnett, and 
Pekkarinen 2004; Zhang et al. 2005; Liu et al. 2006; Lang 2008; Hay and Castilla 2008) that 
OBIA builds on older segmentation, edge-detection, feature extraction, and classifica-
tion concepts that have been used in remote sensing image analysis for decades (Kettig 
and Landgrebe 1976; Haralick and Shapiro 1985; Pal and Pal 1993; Hay, Niemann, and 
McLean 1996; Ryherd and Woodcock 1996). Its emergence has nevertheless provided a 
bridge between the spatial concepts applied in multiscale landscape analysis (Hay et al. 
2001; Wu and David 2002; Burnett and Blaschke 2003; Laliberte et al. 2004), geographic 
information systems (GISs), and the synergy between image-objects and their radiomet-
ric characteristics and analyses in Earth observation satellite data (Blaschke, Burnett, and 
Pekkarinen 2004; Langanke, Burnett, and Lang 2007; Laliberte, Fredrickson, and Rango 
2007; Stow et al. 2008; Tiede, Lang, and Hoffmann 2008; Trias-Sanz, Stamon, and Louchet 
2008; Weinke, Lang, and Preiner 2008).

Uses for segmentation methods outside remote sensing are legion (Pal and Pal 1993). 
Within remote sensing applications, segmentation algorithms are numerous, and the 
number has been rapidly increasing over the past few years (Blaschke, Burnett, and 
Pekkarinen 2004; Neubert, Herold, and Meinel 2008). Image segmentation from an algo-
rithmic perspective is generally divided into four categories: (1) point based, (2) edge 
based, (3) region based, and (4) combined (for technical details of segmentation techniques, 
readers are referred to the study by Pal and Pal [1993]). As known to most readers, image 
segmentation is not a remote sensing–specific concept. Rather, many algorithms originate 
from industrial image processing. Blaschke, Burnett, and Pekkarinen (2004) specifically 
reviewed various segmentation algorithms for remote sensing applications. Segmentation 
provides the building blocks of OBIA (Hay and Castilla 2008; Lang 2008). Segments are 
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regions that are generated by one or more criteria of homogeneity in one or more dimen-
sions (of a feature space), respectively. Thus, segments have additional spectral informa-
tion compared to single pixels (e.g., mean values per band, median values, minimum and 
maximum values, mean ratios, variance); but of even greater advantage than the diversi-
fication of spectral value descriptions of objects is the additional spatial information for 
objects (Blaschke and Strobl 2001; Flanders, Hall-Beyer, and Pereverzoff 2003; Benz et al. 
2004; Hay and Castilla 2008). It has been frequently claimed that this spatial dimension 
(distances, neighborhood, topologies, etc.) is crucial to OBIA methods, and that this is a 
major reason for the marked increase in the use of segmentation-based methods in recent 
times compared to the use of image segmentation in remote sensing during the 1980s and 
1990s (Hay et al. 2003; Benz et al. 2004; Blaschke, Burnett, and Pekkarinen 2004; Liu et al. 
2006). It is this additional information and the reduction of feature reflectance variation at 
the object level that makes object-based feature extraction and conversion of image data 
sets into thematic map products so unique.

10.2.2  Object-Based Image Analysis and Increasing Spatial Resolution

The OBIA approach is tied in with high spatial resolution situations. In an image, such a 
situation may occur if the pixels are significantly smaller than the objects under consider-
ation (Blaschke 2010; Strahler 1986). Only then is regionalization of the pixels into groups 
of the pixels and finally objects useful and needed. In a high spatial resolution image, 
the specific advantages of the OBIA approach can be deployed, although regionalization 
approaches have also been applied to other situations, for example, to Landsat images. 
Recent studies have also utilized OBIA methods for medium or coarse spatial resolution 
data (Dorren, Maier, and Seijmonsbergen 2003; Duveiller et al. 2008; Myint et al. 2008).

A central task of image segmentation is the production of a set of nonoverlapping seg-
ments (polygons). Before performing OBIA, this step is separated from the classification 
process (Blaschke 2010). The problem, though, is scale. Scale is a “window of perception” 
(Marceau 1999), and we typically end up with several scales in imagery, if the spatial reso-
lution is finer than the size of the objects of interest (Figure 10.1). A segmentation algorithm 
is used with the expectation that it will divide the image into relatively homogeneous 
and semantically significant groups of pixels. Burnett and Blaschke (2003) called these 
groups “object candidates,” which must be recognized by further processing steps and 
must be transformed into meaningful objects. It is well known that semantically signifi-
cant regions are found in an image at different spatial scales of analysis (Hay et al. 2001; 
Hay et al. 2003), and OBIA is inextricably linked to multiscale analysis concepts (Burnett 
and Blaschke 2003; Benz et al. 2004; Laliberte et al. 2004; Lang 2008; Hay and Castilla 
2008), even if single levels are targeted for specific applications (Lang and Langanke 2006; 
Lang 2008; Weinke, Lang, and Preiner 2008). Burnett and Blaschke (2003) called this OBIA 
concept “multiscale segmentation/object relationship modeling” (MSS/ORM). Lang and 
Langanke (2006) developed an iterative one-level representation (OLR), and Tiede, Lang, 
and Hoffmann (2008) applied the OLR concept convincingly to airborne lidar data for 
tree crown segmentation (as did many other research groups, e.g., Brennan and Webster 
2006; Bunting and Lucas 2006). Weinke, Lang, and Preiner (2008) empirically applied and 
evaluated both these OBIA concepts, and found pros and cons for each approach. For high 
spatial resolution image data (pixels <5 m), we can discriminate fields or forest stands at 
coarse scales, whereas at finer spatial scales, we can discriminate individual trees or plants 
(Figure 10.1). Parameters and thresholds in a typical single-scale segmentation algorithm 
must therefore be tuned to the correct scale for analysis. It is, however, often not possible 
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Figure 10.1
(See color insert following page 426.) Different spatial scales of observations in high spatial resolution 
QuickBird image data shown as a false-color composite. The three spatial scales show individual tree crowns 
and stands and associated feature segmentation within an Australian tropical savanna landscape as well as a 
tree community segmentation level showing riparian vegetation, savanna woodlands, and rangelands. This 
figure illustrates the multiscale concept by creating multiple scales of segmentation through successive group-
ing of image pixels into homogeneous image objects, providing a more intuitive and hierarchical partitioning 
of the image results, which cannot effectively be achieved in per-pixel approaches.
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to determine the correct spatial scale of analysis in advance, as different kinds of images 
require different scales of analysis. Further, significant objects may appear at different 
spatial scales of analysis in the same image.

It should be clearly stated that much of the work referred to as OBIA originated around 
the software known as “eCognition” (Flanders et al. 2003; Benz et al. 2004). Further, only 
few “early” OBIA developers used the term “object based.” Some authors used “object 
oriented” (Blaschke and Hay 2001; Benz et al. 2004), and some of these later switched to 
object based (with or without a hyphen), whereas some authors still use the term object 
oriented. It has so far been assumed that most authors prefer to use the term “based” 
since “oriented” may be too closely related to the object-oriented programming paradigm 
(see Hay and Castilla 2008, for a deeper discussion, and Blaschke 2010, for an overview of 
the different usages). Interestingly, there is not much critique on OBIA. In order to avoid 
potential flaws or too much optimism in this chapter, we performed a systematic search 
in the ISI Web of Knowledge and by using Google Scholar. Although hardly any critique 
was found, Blaschke (2010, p. 12) identified a “‘technopositivistic’ tendency” in the early 
OBIA literature. The only article we found that attests a poor performance in a comparison 
study is a recent publication by Mas, Gao, and Pacheco (2010). These authors analyzed the 
sensitivities of 85 landscape metrics to different classification methods and parameters for 
a Landsat image. Images classified based on pixel-based methods were smoothed using 
different methods (majority fitering, sieving, and clumping). Not surprisingly, for the spa-
tial resolution of Landsat, this study found a poor performance of the OBIA method.

The idea of incorporating contextual information in the classification of remote sensing 
images can be traced back to the 1970s (Kettig and Landgrebe 1976), although the impor-
tance of incorporating texture increases with increasing spatial resolution (Kayitakire, 
Hamel, and Defourny 2006). What might have been considered a relatively homogeneous 
forest patch using Landsat imagery may be differentiated further to include structural 
aspects and density or biomass estimations using QuickBird imagery. With increasing 
spatial resolution comes the ability to map in more detail vegetation cover, forest structure, 
forest function, species composition, crown closure, stand height, stem density, vegetation 
age and volume, and other structural biophysical parameters (Wulder et al. 2004).

10.2.3 R emote Sensing of Vegetation

The mapping and monitoring of vegetation conditions has been one of the most important 
objectives of remote sensing since the advent of remote sensing technology (Lillesand, 
Kiefer, and Chipman 2008). Aerial photography was the sole source of information for 
vegetation mapping prior to 1972, when the first Landsat satellite was launched. The map-
ping and monitoring of vegetation properties has been revolutionized by satellite remote 
sensing and multispectral imaging systems, which became commercially available dur-
ing the 1970s. The number of methods used in image analysis and classification is legion. 
These methods may be grouped roughly into an investigation of vegetation classes and 
ecosystems with a focus on classification and delineation of extents of units classified 
as homogeneous concerning a given property (Baltzer 2001; Foody 2003; Lefsky, Cohen, 
and Spies 2001; Lucas et al. 2000; Roberts et al. 2002), and biophysical parameter stud-
ies (Wulder 1998; Shoshany 2000; Turner, Ollinger, and Kimball 2004; Boyd and Danson 
2005). For example, Wulder (1998) summarized some potential image processing methods 
that may be useful for the estimation of forest structural biomass estimation parameters. 
Treitz and Howarth (1999) reviewed hyperspectral remote sensing for biophysical para
meter estimation in the forest ecosystem. Asner, Hicke, and Lobell (2003) summarized 
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the per-pixel analysis of forest structure using vegetation indices, spectral mixture ana
lysis, and canopy-reflectance modeling. Regarding remote sensing applications, we may 
summarize that in addition to the experimental, hypothetical, and case study styles of 
investigations, we witness more and more the use of remote sensing within vegetation 
studies with increasing modes of operational usage (Boyd and Danson 2005; Boyd 2009).

Vegetation mapping and monitoring has benefited significantly from the more readily 
available high spatial resolution image data, which have proven essential for vegetation 
and forest inventories at local to regional spatial scales. Higher spatial resolution may not 
necessarily result in improved mapping accuracies (Harvey and Hill 2001; Wang, Sousa, 
and Gong 2004), as the accuracy also depends on the size of the features to be mapped 
(Johansen and Phinn 2006; Gergel et al. 2007). Although increased spatial resolution pro-
vides opportunities for detecting small features and for mapping objects of interest in 
great detail, it also creates a variety of challenges in image analysis due to the variabil-
ity of reflectance values within features of interest, for example, sunlit and shaded parts 
within one tree crown (Aplin, Atkinson, and Curran 1999; Cochrane 2000; Goetz et al. 
2003; Sawaya et al. 2003). The suitability of high spatial resolution image data for detailed 
vegetation mapping and monitoring in various environments is supported by the ability 
to scale-up mapping results derived at high spatial resolutions.

Most optical sensors are only capable of providing detailed information on the horizon-
tal distribution and not the vertical distribution of woody vegetation and forests. In many 
areas of the world, active microwave sensing is the only operational option. Radar data are 
routinely used for acquiring remotely sensed data within given time frameworks because 
radar systems can collect Earth feature data irrespective of weather and light conditions. 
Due to this unique feature of radar data compared with optical sensor data, radar data 
have been used extensively in many fields, including forest-cover identification and map-
ping, discrimination of forest compartments and forest types, and estimation of forest 
stand parameters. A large number of research papers have proven the potential of radar 
data for ecological applications, including aboveground biomass estimation (for an over-
view, readers are referred to Wulder 1998; Santos et al. 2002; Lu 2006).

Airborne lidar sensors derive information on the elevation and reflectance of terrain and 
vegetation from a pulse or continuous-wave laser fired from an airborne transmitter, for 
which the transmitter’s position is precisely and accurately measured. Processing of the 
reflected lidar signal provides an accurate measure of the distance between the transmit-
ter and the reflecting surfaces based on the time of travel of the pulse and the position of 
the sensor (Lefsky et al. 2002). Since 2004, full-waveform lidar has become commercially 
available, allowing the complete waveform of the backscattered signal echo to be recorded 
(Mallet and Bretar 2009). Both discrete-return and full-waveform lidar data can provide 
detailed information on the heights of canopy and understory surfaces with vertical and 
horizontal accuracies within a few centimeters. There are several published studies that 
suggest lidar data can be accurately employed for mapping and monitoring vegetation con-
dition. Some of them have focused on the detection of individual tree crowns (Brandtberg 
et al. 2003; Persson, Holmgren, and Soderman 2002) and the estimation of tree heights, 
crown dimensions, and vertical structure (Anderson et al. 2006; Zimble et al. 2003).

With the improvement of analysis techniques and OBIA software capacity along with 
the increasing amount of commercially available high spatial resolution image and lidar 
data, mapping capabilities are expected to grow rapidly in the future in terms of both 
accuracy and the amount of biophysical vegetation properties that can be successfully 
mapped. A number of remotely sensed data studies of vegetation have used OBIA. These 
studies are reviewed in Sections 10.2.4.1 through 10.2.4.5.
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10.2.4  State-of-the-Art Object-Based Image Analysis of Vegetation

In general, the number of OBIA publications is growing rapidly (Blaschke 2010) as is—more 
specifically—the utilization of OBIA for vegetation analysis and classification. Over the last 
few years, the number of empirical studies published in peer-reviewed journals reflects 
the improvements that OBIA offers over per-pixel analyses (Blaschke 2010). Whereas per-
pixel image analysis takes into account only spectral reflectance and texture calculated 
through the use of moving square windows, OBIA includes information on feature shape, 
context, neighborhood, and multiple spatial scales.

10.2.4.1  Vegetation Inventory and Classification

Yu et al. (2006) carried out a comprehensive vegetation inventory for protected seashore 
areas in northern California using high spatial resolution airborne image data and ancil-
lary topographic data, and found object-based approaches more suitable than pixel-based 
approaches for vegetation mapping, as they overcame the problem of the salt-and-pepper 
effects found in pixel-based classification. Dorren, Maier, and Seijmonsbergen (2003) 
favored an OBIA approach rather than a pixel-based analysis to discriminate broad-
scale forest-cover types from Landsat image and digital elevation model (DEM) data of 
a mountainous area in Austria. Yan et al. (2006) compared per-pixel and OBIA classi
fications for land-cover mapping in a coal fire area in Inner Mongolia, and found the 
differences in accuracy, expressed in terms of proportions of correctly allocated pixels, 
to be statistically significant. They concluded that the thematic mapping result using 
an OBIA approach gave a much higher accuracy than that obtained using the per-pixel 
approach.

10.2.4.2  Change Detection

Im, Jensen, and Tullis (2008) compared three different change detection techniques, based 
on object/neighborhood correlation, image analysis, and image segmentation, with two 
different per-pixel approaches, and found that object-based change classifications were 
superior (kappa up to 90%) compared to the other change detection results (kappa from 80% 
to 85%). Johansen et al. (2010) compared QuickBird-based change detection maps of differ-
ent vegetation types derived from object-based and per-pixel inputs used in three change 
detection techniques (postclassification comparison, image differencing, and tasseled cap 
transformation) and found the object-based inputs to provide more accurate change detec-
tion results in all cases. Desclée, Bogaert, and Defourny (2006) proved the effectiveness of 
object-based change detection by detecting forestland-cover changes in deciduous and 
coniferous stands (>90% detection accuracy) from three System Pour l’Observation de 
la Terre (SPOT) images covering an 1800-km2 study area in east Belgium over a 10-year 
period. Duveiller et al. (2008) investigated land-cover change by combining a systematic 
regional sampling scheme based on high spatial resolution imagery with object-based, 
unsupervised, classification techniques for a multidate segmentation, to obtain objects 
with similar land-cover change trajectories, which were then classified by unsupervised 
procedures. This approach was applied to the Congo River basin to accurately estimate 
deforestation at regional, national, and landscape levels. Krause et al. (2004) integrated 
Landsat and ASTER data, aerial photographs, and point data obtained by fieldwork. They 
assessed temporal–spatial changes on a mangrove peninsula in northern Brazil and the 
adjacent rural socioeconomic impact area, as well as the nature of the mangrove structure. 
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Structural change was analyzed, and the authors were able to differentiate between strong 
and weak patterns in the mangrove ecosystem, suggesting different management mea-
sures and monitoring at hierarchical scales. For mangroves on the Caribbean coast of 
Panama, Wang, Sousa, and Gong (2004) were able to enhance spectral separability among 
mangrove species by using objects as the basic spatial units, as opposed to pixels. Another 
example of an efficient OBIA-based analysis of a mangrove ecosystem is described by 
Conchedda, Durieux and Mayaux (2008).

10.2.4.3  High Spatial Resolution Optical Data

Chubey, Franklin, and Wulder (2006) used OBIA to derive forest inventory parameters 
from IKONOS image data of a 77-km2 study area in Alberta, Canada, and achieved the best 
relationships between field- and image-derived discrete land-cover types, species com-
position, and crown closure. Radoux and Defourny (2007) used high spatial resolution 
satellite images and OBIA methods to produce large-scale maps and quantitative infor-
mation about the accuracy and precision of delineated boundaries for forest management 
using IKONOS and SPOT-5 image data. They found that tree shade and the interaction of 
stand patterns and sensor viewing angles produced a positive bias along forest/nonforest 
boundaries. For a highly fragmented forest landscape on southern Vancouver Island, 
Canada, Hay et al. (2005) proved how segments corresponded cognitively to individual 
tree crowns, ranging up to forest stands, using segmentation, object-specific analysis, and 
object-specific upscaling. Gergel et al. (2007) distinguished forest structural classes in ripar-
ian forests in British Columbia, Canada, for riparian restoration planning using QuickBird 
image data, and achieved accuracies ranging from 70% to 90% for most classes. Bunting 
and Lucas (2006) delineated tree crowns using seed identification and a region-growing 
algorithm within mixed-species forests of complex structure in central-east Queensland, 
Australia, based on 1-m airborne Compact Airborne Spectrographic Imager (CASI) hyper-
spectral data, and achieved mapping accuracies of greater than 70%. Mallinis et al. (2008) 
performed a multiscale, object-based analysis of a QuickBird satellite image to delineate 
forest vegetation polygons in a natural forest in northern Greece and found the inclusion of 
texture important; they also found that the use of classification trees yielded better results 
than the nearest-neighbor algorithm. Johansen et al. (2007) mapped the vegetation struc-
ture of Vancouver Island and discriminated structural stages in vegetation for riparian 
and adjacent forested ecosystems, using various texture parameters for a QuickBird image 
including co-occurrence contrast, dissimilarity, and homogeneity texture measures. An 
OBIA classification resulted in a very detailed map of vegetation structural classes, with 
an overall accuracy of 79%.

10.2.4.4  Light Detection and Ranging Data

Due to the high spatial resolution of lidar data, OBIA is increasingly used for both urban 
applications and delineating artificial objects, as well as for natural or near-natural objects. 
For instance, Xie, Roberts, and Johnson (2008) used an object-based geographic image 
retrieval approach for detecting invasive, exotic Australian pine in southern Florida using 
high spatial resolution orthophotos and lidar data. A moderate retrieval performance 
was achieved, with the lidar data proving to be most useful. Maier, Tiede, and Dorren 
(2008) incorporated very detailed information from lidar-derived canopy surface models 
and found that single and multilayered stands could be correctly distinguished in 82% 
of the sample plots. Also, stands with many small gaps and few but large gaps could be 
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discriminated. Pascual et al. (2008) presented a two-stage approach for characterizing the 
structure of Pinus sylvestris stands in forests of central Spain. Building on the delineation of 
forest stands and a digital canopy height model derived from lidar data, they investigated 
forest structure types.

10.2.4.5  Incorporating Nonspectral Information

Weiers et al. (2004), Bock et al. (2005), Lathrop, Montesano, and Haag (2006), and Diaz-Varela 
et al. (2008) demonstrated the usefulness of OBIA methods for habitat mapping tasks. 
Whereas Weiers et al. (2004) and Bock et al. (2005) used time-series analysis of Landsat 
Thematic Mapper (TM)/Enhanced TM (ETM+) image data for parts of northern Germany, 
Lathrop, Montesano, and Haag (2006) assessed sea grass on New Jersey’s Atlantic coast 
using high spatial resolution airborne image data. Diaz-Varela et al. (2008) mapped highly 
heterogeneous landscapes of northern Spain from Landsat TM image data. Wiseman, 
Kort, and Walker (2009) successfully identified and quantified 93 out of 97 shelterbelts 
across the Canadian Prairie provinces using multispectral reflectance, shape, texture, and 
other relational properties in comparison with 1:40,000 scale orthophoto interpretation. 
Spectral reflectance, variance, and shape parameters were combined to differentiate spe-
cies compositions for six shelterbelts. Addink, de Jong, and Pebesma (2007) demonstrated 
with airborne hyperspectral image data, in a very detailed study with 243 field plots, that 
the accuracy of vegetation parameters, aboveground biomass, and leaf area index (LAI) 
in southern France was higher for object-based analysis than for per-pixel analysis and 
that object size affects prediction accuracy. Stow et al. (2008) could differentiate changes 
in “true shrubs” and “subshrubs” within coastal sage scrub vegetation communities in 
California with an overall accuracy of 83% using high spatial resolution airborne image 
data, and they proved that patterns of shrub distribution were more related to anthropo-
genic disturbance than to a long drought. Su et al. (2008) used OBIA methods to improve 
texture analysis based on both segmented image objects and moving windows across 
a QuickBird image scene, and co-occurrence matrix (gray-level co-occurrence matrix 
[GLCM]) textural features (homogeneity, contrast, angular second moment, and entropy) 
were calculated. Single additional features, such as Moran’s I, were able to improve the 
user’s and producer’s accuracies by up to 16% for shrub- and grasslands. A comparison 
of results between spectral and textural–spatial information indicated that textural and 
spatial information can be used to improve the object-based classification of vegetation in 
urban areas using high spatial resolution imagery. Luscier et al. (2006) precisely evaluated 
an OBIA method based on digital photographs of vegetation to objectively quantify the 
percentage ground cover of grasses, forbs, shrubs, litter, and bare ground within 90 plots 
of 2 × 2 m. The observed differences between true cover and OBIA results ranged from 
1% to 4% for each category. Ivits et al. (2005) analyzed landscape patterns for 96 sampling 
plots in Switzerland, based on object-derived patch indices for land-use intensities ranging 
from old-growth forests to intensive agricultural landscapes. Landscape patterns could be 
quantified on the basis of merged Landsat ETM–Indian Remote Sensing (IRS), QuickBird, 
and aerial photographic data. Gitas, Mitri, and Ventura (2004) mapped burned areas on 
the Spanish Mediterranean coast from National Oceanic and Atmospheric Administration 
(NOAA) Advanced Very High Resolution Radiometer (AVHRR) image data using object-
based classification and achieved 90% spatial agreement with a digital fire perimeter map. 
These are just some examples of an increasing body of peer-reviewed literature on OBIA. 
For the sake of completeness, we should mention that OBIA methods include ways to 
incorporate various kinds of auxiliary information such as elevation, cadastre, bioclimate 
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data, soil information, road networks, and transportation networks, to name just a few. In 
information-rich societies, we may regard remote sensing as only one out of many sources 
of information. Within spatial data infrastructures (SDIs), many examples exist that prove 
the potential for joint remote sensing/GIS applications. This is one of the basic ideas of 
the theoretical framework described by Burnett and Blaschke (2003), briefly outlined in 
Section 10.4.

10.3 � Case Studies of Object-Based Image 
Analysis for Mapping Vegetation

To demonstrate how OBIA can be used to deliver environmental management–ready veg-
etation information, two case studies involving innovative approaches are presented in 
this section. The two case studies focus on automating the mapping process for vegetation 
feature extraction, integrating field and image data, and mapping small features, that is, 
individual tree crowns, over large spatial extents.

10.3.1 � Case Study 1: Mapping Plant Projective Cover within Riparian Zones Using 
Object-Based Image Analysis and Light Detection and Ranging Data

The first case study focusing on the mapping of riparian plant projective cover (PPC) from 
LiDAR data using OBIA will first provide an introduction on riparian zone and PPC map-
ping and research objective. Subsequent sections will present the methods used and the 
OBIA results of riparian zone extent and PPC mapping.

10.3.1.1  Introduction

Riparian zones, or areas bordering streams, are found along rivers and creeks, and extend 
outward to the limits of historic flooding (Naiman and Decamps 1997). Plant project cover 
(PPC) is an important parameter to map in riparian zones, as it provides information on a 
number of riparian zone functions. The PPC value affects the amount of light reaching the 
streams, which in turn regulates water temperature and the level of algal growth. The PPC 
measurements can also provide an estimate of riparian zone fragmentation. The PPC value 
has been linked to bank stability, as tree roots provide a stabilizing effect on stream banks 
(Bennett and Simon 2004). Finally, PPC can directly influence riparian zone and in-stream 
wildlife habitats, as riparian zones provide unique microclimatic conditions, refuge from 
fires, and in-stream woody debris for important habitats (Land and Water Australia 2002). 
The objective of this study was to use lidar data to map riparian zone extent, then estimate 
PPC within the riparian zone and validate the PPC results. The work was conducted in 
central Queensland, Australia. Whereas PPC was calculated at the pixel level, OBIA was 
used for mapping riparian zone extent and validating the PPC results.

10.3.1.2  Methods

This methods section will first present the study area followed by methods used to pro-
duce the LiDAR derived products and the OBIA of riparian zone extent and PPC with 
riparian zones. Finally the validation approach based on field data will be explained.
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10.3.1.2.1  Study Area

The study area was located in central Queensland along Mimosa Creek in a subtropi-
cal savanna woodland area (24°31.S; 149°46.E; Figure 10.2). Although the riparian zone 
remains relatively intact, the surrounding woody vegetation has been extensively 
cleared for agriculture and grazing. However, patches of remnant woodland vegeta-
tion remain, and regrowth is common. The study area receives 600–700 mm of rain, 
mainly between October and March. The stream and riparian zone widths of Mimosa 
Creek were in most cases between 10 and 30 m and 15 and 80 m, respectively. Riparian 
vegetation ranged from open to very dense canopy with varying amounts of subcanopy 
vegetation.

10.3.1.2.2  Production of Standard Light Detection and Ranging Products

Lidar data were captured by the Leica ALS50-II sensor on July 15, 2007 along Mimosa 
Creek, 6 weeks after the field acquisition campaign. The lidar data were captured approxi-
mately 1000 m above terrain, and consisted of 4 returns and a point density of 4 points/m2. 
The lidar returns were classified as ground or nonground by the data provider using pro-
prietary software.

The following four lidar products were produced for use in OBIA: (1) digital terrain 
model (DTM), (2) terrain slope, (3) fractional cover count, and (4) canopy height model 
(Figure 10.3). The DTM was produced at a pixel size of 0.5 m using an inverse distance-
weighted interpolation of returns classified as ground hits. From this DTM, the rate of 
change in horizontal and vertical directions was calculated to produce a terrain slope 
layer. Fractional cover count, defined as 1 minus the gap fraction probability, was cal-
culated from the proportion of counts from first returns 2 m above the ground level 
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Figure 10.2
(See color insert following page 426.) Location and field photos of the Mimosa Creek savanna woodland 
riparian study site in central Queensland.
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within 2.4 × 2.4 m bins. The height threshold of 2 m above the ground was also used in 
the field for measuring PPC. A detailed explanation of calculating PPC from fractional 
cover counts can be found in the study by Armston et al. (2009). The height of all first 
returns above the ground was calculated by subtracting the ground elevation from the 
first return elevation to obtain a representation of the top of the canopy (Suarez et al. 
2005). These lidar-derived raster products were used for OBIA to derive maps of riparian 
zone extent and PPC.

10.3.1.2.3  Mapping Riparian Zone Extent

To map PPC within the riparian zone, the riparian zone extent had to be mapped. As 
the streambed defines the interior edge of the riparian zone, the streambed extent was 
first classified. The external perimeter of the riparian zone was mapped from a combina-
tion of geomorphic and vegetation characteristics. The Definiens Developer 7 software 
(Definiens 2007; Munich, Germany) was used for mapping the streambed and the riparian 
zone extent.

The segmentation process first split the image up into small square objects using chess-
board segmentation. As streambeds are normally located at the lowest elevation in the 
landscape, the small square objects with the lowest minimum DTM values were first iden-
tified. As streambeds are generally flat and surrounded by steep stream banks, objects in 
contact with the minimum-value DTM object were continuously fused as long as they did 
not exceed a terrain slope of 8° and a DTM height difference of more than 1.5 m compared 
to the minimum DTM values. This produced one large object, with the majority of the 
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Figure 10.3
Light detection and ranging–derived raster products, including a digital terrain model, terrain slope, fractional 
cover counts, and a layer showing the maximum height of first returns within each pixel, used as input bands 
for object-based image analysis.
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area belonging to the streambed. This area was segmented once again using chessboard 
segmentation, and context, slope, and elevation information was used to refine the area 
belonging to the streambed to establish the internal borders of the riparian zone.

The mapping of the riparian zone extent was carried out using both vegetation and 
geomorphic information from the lidar-derived PPC, canopy height model, DTM, and 
terrain slope layers (Figure 10.4a). The segmentation and classification processes required 
some prior knowledge, which in this case was obtained through fieldwork measure-
ments to ensure accurate mapping. A chessboard segmentation producing small square 
objects was initially used to set conditions for mapping potential riparian vegetation 
if the objects were within 100 m from the streambed and had a PPC value >40% and 
a tree height >8 m (Figure 10.4b). The thresholds were based on field measurements. 
Then, areas next to the streambed with steep slopes of >10° were classified as banks. The 
stream banks can be considered part of the riparian zone even without the presence of 
vegetation (Figure 10.4c). Objects enclosed by potential riparian vegetation and stream 
banks were classified as gaps and included as potential riparian vegetation (Figure 10.4d 
and e). After merging potential riparian vegetation, banks, and gaps, those objects that 
did not border the streambed were omitted (Figure 10.4e and f). Elevation differences 
between the streambed and the external perimeter of the riparian zone provided very 
useful information for mapping the riparian zone extent to ensure the riparian zones do 
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Figure 10.4
(See color insert following page 426.) Object-based image analysis steps for mapping the extent of the riparian 
zone from light detection and ranging data ((a) through (h)).
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not extend into nonriparian areas in hilly landscapes. Based on field observations, a DTM 
value of 5 m above the streambed was set as the maximum elevation for riparian zones 
within a distance of 100 m from the streambed (Figure 10.4g). Potential riparian zone 
objects were then merged and omitted if they were not in contact with the streambed. As 
the external riparian zone perimeter is often defined based on the vegetation and canopy 
extent (Naiman and Decamps 1997), a region-growing algorithm was applied to grow 
the extent of the riparian zone if PPC >70%, the distance to the streambed was <100 m, 
and the elevation difference between the streambed and the riparian zone perimeter 
was <7 m (Figure 10.4h).

10.3.1.2.4  Plant Projective Cover Mapping

The PPC was mapped at the pixel level using the lidar-derived fractional cover count layer 
and an existing power function (Armston et al. 2009):

	 PPC gap= −1 0 6447Ρ �

where Pgap is 1 minus the lidar cover fraction. The riparian zone extent map was used to 
mask the PPC layer.

10.3.1.2.5  Field Data Acquisition and Validation

Field data were obtained at 11 sites within the area covered by the lidar data. At each site, 
the widths of the riparian zone and the streambed were measured with a tape measure. 
Digital vertical photos were taken of the canopy cover using a lens with a focal length of 
35 mm, at 5-m intervals along 5 parallel transects at each site located perpendicular to 
the stream. These transects started at the edge of the streambed and ended at least 10 m 
beyond the external perimeter of the riparian zone. The field photos were analyzed and 
converted to a measure of PPC using the approach by van Gardingen et al. (1999). The 
global positioning system (GPS) readings averaged for 20 minutes at the start and end of 
each transect line, and were used for georeferencing.

As the field photos covered slightly different areas of the canopy because of the vary-
ing heights of the lower parts of the canopy and in order to take into account slight 
geometric offsets between field and lidar data, a pixel-based validation approach was 
deemed inappropriate. An object-based approach was found most suitable for the 
integration of field and lidar data. To keep objects homogenous and thereby avoid the 
averaging out of variance of pixel values, the PPC layer was used for a multiresolu-
tion segmentation with a maximum focus on color as opposed to shape. The object 
sizes were approximated to single tree crowns, clusters of tree crowns, and individual 
gaps. This preserved extreme values from areas with very dense and sparse canopy 
cover. The PPC values derived from field photos taken within the corresponding objects 
were averaged and related to the mean PPC value of the respective object. Field-derived 
photo points located within 2 m of an object edge were omitted to take into account 
geometric offsets between field and lidar data and the uncertainty of the areal coverage 
of the canopy within the field photos.

10.3.1.3  Results and Discussion

The width of the riparian zone, and hence the riparian zone extent, was accurately mapped 
from the lidar data as PPC; tree height and geomorphic characteristics such as bank 
slope and elevation differences provided useful information in addition to contextual 
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class-related information (R2 = 0.99, root-mean-square error (RMSE) = 3.2 m, and n = 10; 
Figure 10.5). However, knowledge from fieldwork regarding the maximum riparian zone 
width, stream bank slope, and elevation differences between the streambed and the exter-
nal perimeter of the riparian zone enabled calibration of the parameters of the developed 
rule set. The PPC within the riparian zone could be mapped using the OBIA-derived 
riparian zone extent as a mask and the algorithm developed by Armston et al. (2009) 
for the conversion of lidar-derived fractional cover counts to PPC (Figure 10.5). A major 
advantage of the OBIA approach was the use of contextual information in relation to the 
mapped streambed. Knowing the location and the extent of the streambed enabled the 
use of features such as distance to the streambed, relative border of the streambed, and 
elevation difference in relation to the streambed for mapping the riparian zone extent. The 
initial segmentation into small square objects and the subsequent merging and region-
growing algorithms were useful and enabled the integration of context information. The 
object-based approach using lidar data for mapping riparian zone extent and validat-
ing predicted PPC within the riparian zone was robust for the study area examined and 
reduced the effects of slight misregistrations between field and image data, which often 
complicate the integration of pixel-based analysis of high spatial resolution image and 
field data.

The matchup of single photo points with single pixels or windows of pixels, for exam-
ple, 3 × 3 pixels, within imaged areas exhibiting large PPC variations resulted in a rela-
tionship with larger RMSE values between field and lidar data. The validation of PPC 
using independent PPC measurements showed a better relationship between field and 
lidar-derived PPC when assessed at the object level (Figure 10.6). This was because of the 
averaging of field measurements and pixels into homogenous objects rather than using 
square windows of pixels not taking into account PPC homogeneity. The use of windows 
of 15 × 15 m averaged out many of the extreme PPC values, as no consideration was given 
to the PPC homogeneity within the windows. As a small-scale parameter of 10 was used 

Riparian zone

No PPC

80%–100% PPC

60%–80% PPC

40%–60% PPC

20%–40% PPC

0%–20% PPC

Streambed

200 200 m100 0

Figure 10.5
(See color insert following page 426.) Mapped riparian zone extent and plant project cover overlaying the 
digital terrain model.
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for the multiresolution segmentation of the PPC layer with emphasis on color, that is, 
PPC values, areas with similar PPC values were merged. The integration of field data 
(averaged within each object) and PPC objects reduced issues related to slight geometric 
offsets between field and image data. Also, as the canopy photos corresponded to areas 
of different sizes of the canopy, because of the varying heights of the lower parts of the 
photographed canopy cover, the object-based approach was found to be more suitable. 
These results indicate that object-based techniques may be used for model inversion for 
extracting key riparian biophysical parameters from high spatial resolution image and 
field data.

10.3.1.4  Summary

Object-based image analysis proved to be a powerful tool for mapping riparian zone 
extent and integrating high spatial resolution image and field data. Contextual informa-
tion proved to be essential for mapping riparian zone extent from lidar-derived raster 
products. The fine detail of high spatial resolution lidar and field data was more appro-
priately integrated at the object level to preserve the full range of image layer values and 
to account for potential geometric offsets between the data sets. The developed approach 
may be used in other woodland riparian areas having similar contextual landscape and 
stream characteristics with minor adjustments required for slope, elevation, PPC, and 
riparian zone width input parameters based on field measurements.

10.3.2 � Case Study 2: Tree Crown Extraction in a Low Mountain Range Area from 
UltraCamX-Derived Surface Models Using Object-Based Image Analysis 
and Grid Computing Techniques

The second case study focuses on the identification of single trees and the delineation of 
tree crowns, based on UltraCamX-derived surface models and the application of grid com-
puting techniques for specific high data volume–processing.
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Figure 10.6
Relationship between field and light detection and ranging–derived plant projective cover assessed at 
(a) 225-m2 square plots and (b) object-derived plots. (From Johansen, K. et al. 2010b. Ecol Indic 10(4). With 
permission.)
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10.3.2.1  Introduction

The second case study focuses on the identification of single trees. In the last decade, several 
algorithms were developed to extract individual tree parameters from high spatial resolu-
tion data supporting forest inventories (see Brandtberg et al. 2003; Persson, Holmgren, and 
Soderman 2002). Through the availability of high spatial resolution digital surface mod-
els (DSMs)—at the moment primarily captured by airborne laser scanning (lidar)—forest 
inventories of the future will be increasingly based on such data sets. Biophysical structural 
parameters such as tree density, tree height, crown width, and plant projective cover can be 
automatically extracted from high spatial resolution DSM data over large spatial extents. 
Various research applications already exist in this area, and especially the combination of 
multispectral imagery and DSM data is considered very promising for future forest invento-
ries. An overview of applications for automated forest parameter extraction is given by Koch 
and Dees (2008), and Mallet and Bretar (2009). Since acquisition of laser-scanning data for 
DMS creation is still expensive and complex for short-term monitoring duties, for example, 
for yearly bark beetle monitoring (Wermelinger 2004), the aim of this study was to extract 
individual tree crowns from DSM data, which was calculated using airborne high spatial 
resolution UltraCamX (Vexcel Imaging GmbH, Graz, Austria) stereo image data. In this 
study, trees that were taller than 2 m were considered, and their height and crown width 
were derived. Coniferous and deciduous species were differentiated based on the spectral 
reflectance information of the imagery. Moreover, grid computing techniques were applied to 
cope with the large amount of data and, in this case, the computationally intensive OBIA.

10.3.2.2  Methods

This methods section gives an overview about the study area and the data sets used fol-
lowed by the description of the developed algorithm for single tree crown extraction and 
the field data based validation approach.

10.3.2.2.1  Study Area and Data

The study area comprises almost 14 km2 of forested area in the federal state of Upper 
Austria, Austria (Figure 10.7a). It is a low mountain forest area dominated by spruce (Picea 
abies) and beech (Fagus sylvatica) stands. Other tree species such as firs, sycamores, Douglas 
firs, and alders cover less than 7% of the area.

In this case study, data from different sources were combined: airborne multispectral 
UltraCamX stereo image data, a DSM derived from these data, representing the Earth’s 
surface including features such as vegetation, buildings, and bridges, and an already exist-
ing DEM, representing ground surface topography, derived from lidar data (Figure 10.7c). 
Because of limited ground surface topographic variation, the DEM was deemed suit-
able to use for several monitoring cycles to normalize the DSM (nDSM) derived from the 
UltraCamX stereo data, by subtracting the DEM from the DSM. This means that the time 
frame between different airborne lidar acquisitions can be expanded for our study area 
and compensated by UltraCamX data, with the benefit of capturing not only up-to-date 
DSM data but also current optical imagery.

The UltraCamX frames were acquired with 80%/60% overlap in October 2008, result-
ing in digital infrared orthophotos with a pixel size of 0.125 m. From these data, a DSM 
was produced by Forest Mapping Management (FMM) of Austria, with the same spatial 
resolution. Additionally, a DEM based on lidar data from April 2007 with a pixel size of 
1 m was provided by the federal state of Upper Austria, which was used to normalize 
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the surface model (nDSM), that is, to get real vegetation heights. The height accuracy of 
the lidar data in the forested area was between ±20 and ±50 cm, positional accuracy was 
±30 cm, and point density was 1.7 points/m2 (DORIS 2009).

10.3.2.2.2  Algorithm Development

For individual tree crown extraction, an object-based algorithm written in Cognition 
Network Language (CNL; in the Definiens developer software) by Tiede and Hoffmann 
(2006) was adapted to the very high spatial resolution nDSM data set. The algorithm starts 
from local nDSM maxima as seed points and delineates individual tree crowns based 
on underlying height values and height-value changes. This innovative approach uses a 
region-controlled extraction of local maxima as well as region-controlled parameters in 
the rule set. Regions were initially delineated at a coarser spatial scale to represent stand-
like units with similar height and vegetation structure. In this case, four different regions 
representing different average stand heights were distinguished. This a priori information 
controlled the tree crown extraction rule sets for every region, aiming to adapt the algo-
rithm to the regional forest structure types. The core delineation process was performed 
in two steps: (1) The regions were broken down into pixels (“pixel-sized objects”) within 
a region’s boundary. (2) From these pixel-sized objects, tree crowns were built in a region-
growing manner using local maxima as seed points, that is, the following parameters were 
automatically adapted depending on the particular region (see the study by Tiede, Lang, 
and Hoffmann [2008]): The search radius for the local-maximum method was automati-
cally adapted for each region depending on the average height; a stopping criterion for the 

(a)

(b)

(c)

Figure 10.7
(See color insert following page 426.) Location of the study area in the Austrian state of Upper Austria. Data 
sets used in the case study are (a) UltraCamX digital infrared orthophotos, (b) normalized digital surface model 
derived from the UltraCamX stereo imagery, and (c) an existing light detection and ranging–based digital eleva-
tion model.
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region-growing process depending on the underlying nDSM data was adapted, if the can-
didate objects that were taken into account exceeded a certain height difference, assuming 
that in this case the crown edge has been reached; and a maximum crown width to avoid 
uncontrolled growth of tree crowns in case a local maximum was not detected correctly, 
preventing a merging of objects with other potential tree crowns. This last parameter was 
also dependent on the height information given by the initially delineated regions. In the 
last step, the resulting tree crowns were separated into coniferous or deciduous trees, based 
on their spectral reflectance properties represented in the orthophoto data.

Because of the large data volume (nDSM >10 GB; approximately 900 million pixels), there 
was a need for specific high data volume–processing techniques to be applied. Grid com-
puting techniques were applied within the eCognition Server (developed by Definiens) 
environment to automatically split the data set into 65 tiles, which were then distributed 
for processing among different computers (Figure 10.8a). The same rule set was applied to 
each tile, and the tiled results were subsequently merged. This process allowed the pro-
cessing of large data sets and significantly decreased the processing time. However, stitch-
ing of the tiles required postprocessing of the results in order to remove errors introduced 
at the boundaries of the different tiles. Examples of these errors include double crowns 
because of biased local-maxima calculations or half-delineated crowns due to the break-
ing off of the region-growing algorithm, which can occur at the border of the tiles if a 
crown is divided. Although the crown representation in nDSM data yields only one local 
maximum, the division of the crown due to the tiling process can potentially bias the local-
maximum search. For each of the divided crown representations, a maximum is found, 
and the region-growing algorithm uses each maximum as a seed point but breaks off at the 
image tile border (Figure 10.8b). A Visual Basic for Applications (VBA) routine in ArcGIS 

(a) (b)

Figure 10.8
Tiling of normalized digital surface model (nDSM) using the eCognition Server: (a) Tiling of the nDSM into 
65 parts for applying grid computing techniques, and (b) automated postprocessing of extracted tree crowns 
and crown maxima at the border of the tiles. Double crowns were merged and double local maxima were 
removed. (From Tiede, D., A. Osberger, and H.  Novak. Automatisierte Baumextraktion mit höchstaufgelös-
ten Oberflächenmodellen abgeleitet aus UltraCamX-Daten. In Angewandte Geoinformatik 2009, ed. J. Strobl, 
T. Blaschke and G. Griesebner, 2009. Wichmann Verlag, Heidelberg. With permission.)
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was programmed to postprocess the results, that is, by removing multiple local maxima 
within the same tree crown by keeping the tallest point, and subsequently merging split 
tree crowns that were originally delineated as two separate crowns in two different tiles.

10.3.2.2.3  Validation

Quantitative validation of the tree crown extraction results was conducted by a forest 
expert using field measurements and classical forest inventories in the study area (Austrian 
Forest Inventory), which is one of the most intensive national forest-monitoring systems 
in Europe. From circular plots of 100 m2, relevant tree parameters, such as tree height, tree 
species, and forest stand structure, were measured. The position of each plot was mea-
sured with a GPS receiver from the center of the circular plots.

10.3.2.3  Results

A total of approximately 380,000 tree crowns with heights above 2 m were automatically 
extracted, and almost the same amount of tree crowns were delineated (Figure 10.9). 
The relatively few exceptions were mainly dead trees or trees with no distinct crown. 
Calculation time, without pre- and postprocessing, comprised 20 hours by usage of three 
standard personal computers. The required processing time can be reduced further if 
the number of computers used is increased. The development of the rule set was more 
time consuming, but through the use of normalized surface height data, the transfer-
ability of the rule set to other images or areas was improved. Rule sets relying on spec-
tral information generally require modification of thresholds and membership functions 
between different images, because of differences in seasonality, time of image acquisi-
tion, and atmospheric effects. The only part of the algorithm relying on spectral informa-
tion was the differentiation of different species after the tree crown extraction process.

10.3.2.3.1  Single Tree Extraction

Field validation showed that the automated tree crown extraction results depended on 
the height of the individual tree crown. In Table 10.1, the validation results for different 
stand height classes are visualized together with the number of GPS-measured valida-
tion plots and the average tree detection rate per stand height class. In stands with average 
tree heights of 14–18 m, the average detection rate was 64%, whereas stands with an aver-
age height >26 m had detection rates over 90%. Problems were encountered in stands with 
complex structures, where several individual tree crowns were counted as one tree. The 
opposite situation, that is, identification of more crowns than the number of trees present, 
occurred for some deciduous trees and trees with distinct within-canopy foliage clump-
ing (double crowns), where two or more local maxima per tree were detected. The latter 
case can be considered a general methodological problem utilizing local-maximum-based 
algorithms.

In coniferous stands with an average height >18 m, comparison with on-ground forest 
inventories revealed results that are suitable for use in operational mapping environments 
without postclassification corrections. In mixed stands, results depended on the propor-
tion of different species, type of species, and vertical structure of the stands.

10.3.2.3.2  Tree Height Derivation

The extracted heights of the trees showed a higher accuracy than measurements for class
ical forest inventories. Comparisons between automated and manual height estimations 
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Figure 10.9
(See color insert following page 426.) Results of individual tree crown extraction and delineation for the whole 
study area (right) and subsets showing (a) the normalized digital surface model, (b) the overlaid tree crowns, 
and (c) the tree crowns with the extracted local maxima (color coded according to the extracted height values).

Table 10.1

Sample-Based Validation of Individual Tree Crown Extraction

Average Stand 
Height (m)

Number of GPS 
Sample Points

Tree Detection
	 Rate (%)a

<14 3 52
14–18 11 64
18–22 14 77
22–26 12 86
26–30 9 94

a	 Percentage of all correctly extracted trees within a radius of 5.64 m 
around each GPS sample point.



Object-Based Image Analysis for Vegetation Mapping and Monitoring	 263

in the field revealed much better results for the automated derivation of mean tree crown 
height and tree height (local-maximum extraction) values.

10.3.2.3.3  Tree Species

The differentiation of different tree species was hampered by the low solar illumination 
angle at the time of acquiring the UltraCamX data in October 2008. Therefore only a differ-
entiation between coniferous and deciduous trees was performed, based on the normal-
ized difference vegetation index (NDVI) of the imagery. In the sample plots, no errors were 
observed for this differentiation.

10.3.2.4  Discussion and Outlook

Individual tree crown parameters extracted from the UltraCamX data and the derived 
DSM could be obtained in a fast and accurate manner using automated OBIA methods. 
The results offer possibilities for more cost-efficient forest-monitoring tasks in the future. 
The available data sets were acquired in October 2008, and yielded a high degree of shad-
ows. It is likely that the results could be improved using data acquired between May and 
August. It turned out that the acquisition date did not influence the part of the workflow 
that used lidar data, although it hampered a species differentiation based on optical data.

For even-aged forests, the proposed method is able to deliver relevant stand and tree crown 
parameters. Although the tree crown detection in evenly structured stands is troubled, the 
delineation of stand structures based on individual trees is another advantage compared to 
the manual estimations used in forest inventories. Also, an automated derivation of grow-
ing stock under the consideration of the respective tree crown size could lead to more objec-
tive or comprehensible growing stock estimations than forest taxation in the field.

Compared to classical forest inventories (in western and central Europe), this approach 
reveals a possibility to produce faster and more accurate results, mainly through the reduc-
tion of manual measurement expenditure. Object-based approaches are in this case bridg-
ing the gap between remote sensing and GIS. The results are GIS-ready and parameterized 
information about single trees and can directly be fed into forest inventory databases and 
GISs. Future research will focus on the transferability (Walker and Blaschke 2008) of the 
approach to areas that are dominated by deciduous trees, and also on a more general com-
parison of parameters derived from airborne lidar data–based DSMs and high-resolution 
optical data. It should be emphasized that the comparisons of lidar data and UltraCamX 
data in this context address only the derived products (DSM and DEM), not the sensors, 
generally. Lidar data with multiple returns allow measurements of vertical structural 
parameters from a single data set, whereas the calculation of a DSM from stereo UltraCamX 
data, as used in this case study, offers continuous optical data at very high spatial resolu-
tions. On the contrary, achieving a similarly high spatial resolution and vertical accuracy 
with lidar data, would require a very high point density during lidar data acquisition.

10.4  Summary and Discussion

The case studies described in this chapter demonstrate how OBIA can be used to improve 
vegetation mapping through the use of not only spectral and textural information but 



264	 Advances in Environmental Remote Sensing

also geometric (width or size of an object) and contextual information. These capabilities 
significantly improve the ability to accurately map vegetation biophysical parameters. For 
high spatial resolution vegetation mapping applications, OBIA can improve the integra-
tion of field and image data for validation and potentially also for calibration and model 
development. The case studies also demonstrate the suitability of OBIA for feature extrac-
tion. Feature extraction from high spatial resolution image data has previously been ham-
pered by the large spectral reflectance variability of individual features at the pixel level, 
for example, for the extraction of individual tree crowns. Through the use of objects, we 
may overcome this limitation by reducing the reflectance variability of single pixels. The 
case studies prove that there is great potential for automating the feature extraction pro-
cess for vegetation studies over large spatial extents, which will undoubtedly be a major 
focus of future research.

Applications of OBIA are developing rapidly. Several books on OBIA/GEOBIA have 
been published, and several special issues of scientific journals were recently devoted to 
this topic. One of the most recent trends is for OBIA methods to become part of dedi-
cated workflows and converge with mainstream GIS applications (Baatz, Hoffmann, and 
Willhauck 2008). Blaschke (2010) concludes that this rapidly increasing body of scientific 
literature conveys a sense of optimism that OBIA methods generate multiscale geospatial 
information, which is tempered by some disquiet that the increasingly complex classifi
cation rule sets and workflows raise at least as many research questions as they resolve.

There is a realization that the higher spatial resolution and detection detail available 
using improved optical instruments, such as radar, lidar, and even sonar (sound navigation 
ranging; Lucieer 2008), create problems with the “traditional” approach to land-use/land-
cover mapping. The OBIA approach supports attempts to overcome a purely descriptive 
categorization of the spectral characteristics of pixels, and paves the way for a combined 
use of spectral and spatial (contextual) information toward developing conditioned infor-
mation (Lang 2008).

Recently, OBIA research has been directed more toward the automation of image pro-
cessing. As a consequence of the rapidly increasing proliferation of high spatial resolution 
imagery and the improved access to this type of imagery, more and more research is now 
concerned with automatic object delineation. Automated object recognition is certainly an 
end goal, but at present, it is mainly achieved in a stepwise manner, either with strongly 
interlinked procedures building workflows or with clear breaks in these workflows. In 
both cases, the necessary steps involve addressing various multiscale instances of related 
objects within a single image (e.g., individual tree crowns, tree clusters, stands, and for-
ests). An increasing number of research articles deal with object and feature recognition 
and feature extraction. Still, although intrinsically tied to OBIA, for the majority of applica-
tions we can note that they are not an end in themselves.

We pointed to the fact that when dealing with high spatial resolution imagery, the 
question of scale or addressing the right scale gains importance. As mentioned in Section 
10.2.2, Burnett and Blaschke (2003) have developed a methodology to derive objects at 
several levels simultaneously and to utilize this information in a classification. They 
called it MSS/ORM. One of the underlying ideas is to provide a methodological basis 
for a seamlessly integrated GIS/remote sensing analysis environment. In this respect, 
the multiscale approach is powerful when addressing area metrics, shape metrics, topo-
logical relationships (“borders to,” “is embedded in,” “is surrounded by”), and hierar-
chical relationships (“is subobject of,” “is super object of”). Lang and Langanke (2006) 
have, however, convincingly shown that for specific cases, an OLR might be sufficient 
and more straightforward than MSS/ORM. In either case, the delineation of relatively 
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homogeneous areas is the basic method, and the common denominator of various real-
izations of OBIA is the objective to derive “meaningful objects.” Since the appropriate 
scale of observation is a function of the type of environment and the type of information 
that is being sought (Woodcock and Harward 1992; Marceau 1999; Hay et al. 2001), the 
selection of scale is very important and is a hot research topic of OBIA. Recently, Dragut, 
Tiede, and Levick (in press) developed a tool called “estimation of scale parameter” (ESP), 
which builds on the idea of local variance (LV) of object heterogeneity within a scene and 
allows one to iteratively generate image-objects at multiple scale levels in a bottom-up 
approach, while calculating the LV for each scale. Variation in heterogeneity is explored 
by evaluating LV plotted against the corresponding scale. It is hoped that one of the 
major obstacles of OBIA, namely, the selection of the right scale, may be overcome with 
such tools. In this case, thresholds in the rates of change of LV may indicate scale levels at 
which the image can be segmented in an appropriate manner, relative to the data proper-
ties at the scene level.

10.5  Future Research

Today, the bottleneck of large data volume throughput can be overcome by the use of 
server technologies. As this technology has become accessible for government depart-
ments and private agencies only within the last few years, it is likely to have major future 
implications on the OBIA of vegetation for large-area mapping relative to spatial resolu-
tion. In this chapter, we described two case studies with large data volumes. The Austrian 
study area was spread over 14 km2 with a pixel size of 12.5 cm. This resulted in 900 million 
pixels. Such large amounts of data were impossible to process a few years ago. Despite the 
enormous progress in processing power, we point out that as the spatial extent, and hence 
the data volume, for OBIA increases, more conditions will need to be fulfilled in order to 
accurately map vegetation parameters over large areas. We conclude that more complex 
rule sets with increasing transferability are required, and multiscale analyses are often 
mandatory, which require (multi-)scale concepts. The transferability of rule sets may be 
improved through the use and integration of existing geographic information from spa-
tial data infrastructures. The integration of the temporal domain through the time-series 
analysis of vegetation dynamics may also provide additional information for integration 
into rule sets, but the ontological and epistemological foundation of OBIA is still in its 
infancy.

An increasing number of OBIA subdisciplines are likely to develop in the future through 
further developments in software, available image and spatial data, and increasing research 
in this area. From this review of OBIA and the two case studies, we conclude that OBIA 
has major advantages for vegetation mapping because of the high levels of reflectance 
variability within individual vegetation features. The addition of shape and contextual 
information improves the capability to map vegetation features and structural parameters. 
However, because of the complexity of vegetation reflectance characteristics and vegeta-
tion dynamics, many challenges still remain for OBIA-based vegetation studies. We believe 
that with the continuing human impact on vegetation and predicted climate change, there 
is an urgent need to explore this new mapping discipline in order to take full advantage of 
its potential and to build up further capacities for detailed operational mapping and moni-
toring of vegetation through the use of OBIA.
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11
Land-Use and Land-Cover Change Detection

Dengsheng Lu, Emilio Moran, Scott Hetrick, and Guiying Li

11.1  Introduction

Change detection is the process of identifying differences in the state of an object or 
phenomenon by observing it at different times (Singh 1989). Timely and accurate change 
detection of Earth’s surface features provides the foundation for a better understand-
ing of the relationships and interactions between human and natural phenomena in 
order to better manage and use resources. The advantages of repetitive data acquisi-
tion, its synoptic view, and a digital format suitable for computer processing have made 
remotely sensed data the major data sources for different change detection applications 
during the past decades (Lu et al. 2004; Kennedy et al. 2009). In general, change detec-
tion involves the application of multitemporal data sets to quantitatively analyze the 
temporal effects of the phenomena of interest. Good change detection research should 
provide the following information: area change and rate of change, spatial distribution 
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of changed types, change trajectories of land-cover types, and accuracy assessment of 
change detection results (Lu et al. 2004).

The objective of change detection is to compare spatial representation of two points in 
time by controlling all variances caused by differences in variables that are not of interest 
and to measure changes caused by differences in the variables of interest (Green, Kempka, 
and Lackey 1994). The basic premise in using remotely sensed data for change detection 
is that changes in the objects of interest will result in changes in reflectance values or 
local textures that are separable from changes caused by other factors, such as differences 
in atmospheric conditions, illumination, viewing angles, and soil moisture (Deer 1995). 
In practice, many factors, such as the quality of image registration, the quality of atmo-
spheric correction or normalization between multitemporal images, the complexity of the 
landscape and topography under investigation, the analyst’s skill and experience, and 
the selected change detection methods, can affect change detection results (Lu et al. 2004; 
Jensen 2005). Errors and uncertainties may come from different steps taken, such as in 
image preprocessing and selection of the change detection algorithm. It is important to 
understand the major steps in implementing the change detection procedure and to reduce 
errors or uncertainties in each step. Different authors have often arrived at different and 
sometimes controversial conclusions about which change detection techniques are most 
effective. Therefore, in this chapter, we describe the major steps used in the change detec-
tion procedure and provide a case study showing how to use change detection techniques 
to solve practical problems.

11.2  Overview of Change Detection Procedure

There are two categories of changes: changes between classes and changes within classes. A 
change between classes is a conversion of land cover from one category to a completely dif-
ferent category, for example through deforestation or urbanization. A change within classes 
is a modification of the condition of the land-cover type within the same category, for exam-
ple through selective logging (Lu et al. 2004). The change detection procedure can be based 
on per-pixel, subpixel, or object-oriented methods, which require different image processing 
and change detection algorithms. The research objectives, remote sensing data used, and the 
geographical size of the study area can affect the design of the change detection procedure, 
including the use of different image processing methods and change detection techniques 
(Lu et al. 2004; Jensen 2005). In general, at a local scale, object-oriented methods are useful for 
reducing the spectral variation within the same land cover when very high spatial resolu-
tion images such as QuickBird or IKONOS are available. At a regional scale, per-pixel-based 
methods are often used when medium spatial resolution images such as Landsat Thematic 
Mapper (TM) images are available. For a national and global scale at which coarse spatial 
resolution images such as Moderate Resolution Imaging Spectroradiometer (MODIS) and 
Advanced Very High Resolution Radiometer (AVHRR) images are available, subpixel-based 
change detection techniques may provide better results than per-pixel-based techniques 
due to the mixed-pixel problem. However, in practice, per-pixel-based techniques are still 
the most common methods for land-cover change detection at different scales because the 
image processing techniques and change detection algorithms are mainly based on per-
pixel data analysis. Therefore, this section mainly focuses on the per-pixel-based change 
detection procedure. Figure 11.1 illustrates the major steps and corresponding contents for 
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the change detection procedure. The following subsections provide a brief description for 
each step.

11.2.1  Nature of Change Detection Problems

Before change detection is conducted in a specific study area, it is very important to clearly 
define the research problems that need solving, the objectives, and the location and size of 
the study area (Jensen 2005). These issues directly affect the selection of remotely sensed 
data and the selection of change detection algorithms. It is helpful to list some questions, 
for example, the kinds of change detection contents that are required: binary change and 
nonchange information, detailed “from-to” change trajectories, or the detection of continu-
ous change. What is the accuracy overall and for each change detection trajectory? How 
large is the study area? What is the change detection period? What kinds of remote sensing 

Major steps

Nature of change
detection problems

Selection of change
detection algorithms

Evaluation of change
detection results

Main contents

• Research problems and objectives
• Geographic location and size
• Time period
• Category of change detection
• Accuracy requirement

• Geometric rectification and registration
• Radiometric and atmospheric correction
• Topographic correction if needed

• Per-pixel-based processing such as image
 transformation and vegetation indices
• Subpixel based processing such as
 spectral mixture analysis
• Image classification

• Understanding major characteristics of
 different remote sensing data
• Consideration of atmospheric and
 environmental conditions
• Characteristics of the study area

• Understanding the characteristics of
 change detection algorithms
• Selection of suitable algorithms
• Comparison of different algorithms if
 needed

• Determination of sampling strategy and
 sample size
• Collection of reference data
• Accuracy assessment

Selection of remotely
sensed data

Image preprocessing

Image processing or
classification

Figure 11.1
Major steps and corresponding main contents for a remote sensing-based land-cover change detection 
procedure.
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data and/or ancillary data are available? Based on these questions, one can identify specific 
research questions and objectives. After that, one can design a change detection procedure 
suitable for the specific study area and purpose.

11.2.2  Data Collection

Many remotely sensed data generated from both airborne and spaceborne sensors with 
different spatial, radiometric, spectral, and temporal resolutions, are available. In order 
to select suitable data sets for a specific study, it is important to understand the strengths 
and weaknesses of different types of sensor data. Some previous literature has reviewed 
the characteristics of the major types of remote sensing data (Barnsley 1999; Estes and 
Loveland 1999; Althausen 2002; Lefsky and Cohen 2003). For example, Barnsley (1999) and 
Lefsky and Cohen (2003) summarized the characteristics of different remote sensing data 
in spectral, radiometric, spatial and temporal resolutions, polarization, and angularity. The 
user’s need, scale and characteristics of the study area, availability of various image data 
and their characteristics, cost and time constraints, and the analyst’s experience in using 
the selected image may be the most important factors affecting the selection of remotely 
sensed data for a specific study area (Lu et al. 2004; Lu and Weng 2007). In general, at a 
local level, a fine-scale land-cover change scheme is required; thus, high spatial resolution 
data such as IKONOS, QuickBird, and SPOT 5 HRG (High-Resolution Geometric) data are 
helpful. At a regional scale, medium spatial resolution data such as Landsat TM and Terra 
Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) are the most 
frequently used data sources. On a continental or global scale, coarse spatial resolution 
data such as AVHRR, MODIS, and SPOT VEGETATION are preferable.

For a successful implementation of a change detection analysis using remotely sensed 
data, careful considerations of the remote sensor system, environmental characteris-
tics, and image processing methods are important. The temporal, spatial, spectral, and 
radiometric resolutions of remotely sensed data have a significant impact on the suc-
cess of a remote sensing change detection project. The important environmental factors 
include atmospheric conditions, soil moisture conditions, and phenological characteris-
tics (Weber 2001; Jensen 2005). When selecting remote sensing data for change detection 
applications, it is important to use the same sensor, radiometric, and spatial resolution 
data with anniversary or very near anniversary acquisition dates in order to eliminate 
the effects of external sources, such as sun angle, seasonal, and phenological differences. 
However, in a specific study, selection of the same sensor data may be difficult, especially 
in moist tropical regions due to often cloudy conditions. Thus, the use of different sensor 
data for change detection is required (Lu et al. 2008a). Detailed descriptions about the 
considerations of remote sensing systems and environmental characteristics before imple-
menting a change detection study are available in previous literature, such as Coppin and 
Bauer (1996), Biging et al. (1999), and Jensen (2005).

11.2.3  Image Preprocessing

Before implementing a change detection analysis, the following two conditions should be 
satisfied: (1) precise coregistration between multitemporal images and (2) precise radio-
metric and atmospheric calibration or normalization between multitemporal images. 
The importance of accurate geometric registration of multitemporal images is obvious, 
because largely spurious results of change detection are produced if there is misregistra-
tion (Townshend et al. 1992; Dai and Khorram 1998; Stow 1999; Verbyla and Boles 2000; 
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Carvalho et al. 2001; Stow and Chen 2002). Many textbooks have detailed the description 
of image-to-map rectification or image-to-image registration (e.g., Jensen 2005).

The same invariant objects could have different spectral signatures in different 
acquisition-date images due to different sun elevation angles and azimuth angles, vegeta-
tion phenological conditions, soil moisture, and atmospheric conditions. In such a case, 
the conversion of digital numbers to radiance or surface reflectance is a requirement for 
quantitative analyses of multitemporal images. A variety of methods, such as relative cali-
bration, dark object subtraction, and 6S (second simulation of the satellite signal in the 
solar spectrum) have been developed for radiometric and atmospheric normalization or 
correction (Markham and Barker 1987; Gilabert, Conese, and Maselli 1994; Chavez 1996; 
Stefan and Itten 1997; Vermote et al. 1997; Tokola, Lofman, and Erkkila 1999; Heo and 
FitzHugh 2000; Yang and Lo 2000; Song et al. 2001; Du, Teillet, and Cihlar 2002; Lu et al. 
2002; McGovern et al. 2002; Vicente-Serrano, Perez-Cabello, and Lasanta 2008; Chander, 
Markham, and Helder 2009). If the study area is rugged or mountainous, topographic cor-
rection may be necessary. More detailed information about topographic correction is avail-
able in Teillet, Guindon, and Goodenough (1982), Civco (1989), Colby (1991), Meyer et al. 
(1993), and Lu et al. (2008b).

11.2.4  Image Processing and Classification

Change detection can be conducted using spectral bands or derived images such as vegeta-
tion indices and transformed images. For example, much previous research has indicated 
the usefulness of the visible red-band images in change detection analysis (Jensen and Toll 
1982; Fung 1990; Chavez and Mackinnon 1994; Lu et al. 2005) because vegetation has low 
reflectance, but impervious surfaces or soils have high reflectance in this band. However, a 
single band cannot reflect all changed information due to the complex landscapes. For many 
situations, use of transformed images or vegetation indices can be more effective in extract-
ing the differences of changed features than single spectral bands (Lu et al. 2005). Image 
transformation is often used to reduce data redundancy and the number of image channels 
so that the information contents are concentrated in a few transformed images (Jensen 2005). 
Different techniques have been developed to transform the multispectral data into a new 
data set. Principal component analysis (PCA), tasseled cap, minimum noise fraction, wavelet 
transform, and spectral mixture analysis (Myint 2001; Okin et al. 2001; Rashed et al. 2001; 
Asner and Heidebrecht 2002; Lobell et al. 2002; Neville et al. 2003; Landgrebe 2003; Platt 
and Goetz 2004; Lu et al. 2008a) are among the most commonly used techniques. Vegetation 
indices are recommended for removing the variability, which is caused by canopy geometry, 
soil background, sun view angles, and atmospheric conditions when measuring biophysical 
properties (Elvidge and Chen 1995; Blackburn and Steele 1999). Many vegetation indices have 
thus been developed and applied to biophysical parameter studies (Anderson and Hanson 
1992; Anderson, Hanson, and Haas 1993; Eastwood et al. 1997; Mutanga and Skidmore 2004). 
Vegetation indices are often used for land-cover change detection, especially for vegetation 
change.

For many applications, detailed land-cover change trajectories are required; thus, 
classification-based change detection techniques, such as postclassification comparison, are 
often used. Scientists and practitioners have made great efforts to develop advanced classifi-
cation approaches and techniques for improving classification accuracy (Gong and Howarth 
1992; Kontoes et al. 1993; Foody 1996; San Miguel-Ayanz and Biging 1997; Aplin, Atkinson, 
and Curran 1999; Stuckens, Coppin, and Bauer 2000; Franklin et al. 2002; Pal and Mather 
2003; Gallego 2004; Lu and Weng 2007; Blaschke 2010; Ghimire, Rogan, and Miller 2010). 
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Much previous literature has been specifically concerned with image classification (Tso and 
Mather 2001; Landgrebe 2003). Lu and Weng (2007) provided a comprehensive up-to-date 
review of classification approaches and techniques. Since classification results are the 
required data sets for detecting detailed land-use and land-cover “from-to” change tra-
jectories, high classification accuracies are critical for change detection because individual 
classification accuracy will affect the change detection accuracy.

11.2.5  Selection of Change Detection Algorithms

For a given research purpose, when the remotely sensed data and study areas are identi-
fied, selection of an appropriate change detection method has considerable significance 
in producing a high-quality change detection product. Some techniques, such as image 
differencing, can only provide change or nonchange information, whereas other tech-
niques, such as postclassification comparison, can provide a complete matrix of change 
directions. In general, change detection techniques can be roughly grouped into two cat-
egories: (1) those detecting binary change or nonchange information, such as using image 
differencing, image ratioing, vegetation index differencing, and PCA and (2) those detect-
ing detailed “from-to” change trajectory, such as using the postclassification comparison 
and hybrid change detection methods (Lu et al. 2004). Previous literature has reviewed 
many change detection techniques (Singh 1989; Coppin and Bauer 1996; Yuan, Elvidge, 
and Lunetta 1998; Serpico and Bruzzone 1999; Coppin et al. 2004; Lu et al. 2004; Jensen 
2005; Kennedy et al. 2009). Lu et al. (2004) grouped change detection methods into seven 
categories: (1) algebra, (2) transformation, (3) classification, (4) advanced models, (5) geo-
graphic information system approaches, (6) visual analysis, and (7) other approaches, and 
summarized the major characteristics, advantages, and disadvantages for the selected 
techniques. Due to the importance of monitoring changes among Earth’s surface features, 
the research of change detection techniques has long been an active topic, and new tech-
niques are constantly appearing.

When implementing change or nonchange detection, one critical step is to select appro-
priate thresholds in both tails of the histogram representing the changed areas (Singh 1989). 
Two methods are often used for the selection of thresholds (Singh 1989; Yool, Makaio, and 
Watts 1997): (1) interactive procedure or manual trial-and-error procedure—an analyst 
interactively adjusts the thresholds and evaluates the resulting image until satisfied; and 
(2) statistical measures—selection of a suitable standard deviation from the mean. The two  
disadvantages of the threshold technique are (1) the resulting differences may include 
external influences caused by atmospheric conditions, sun angles, soil moistures, and phe-
nological differences in addition to true land-cover change; and (2) the threshold is highly 
subjective and scene dependent, depending on the analyst’s familiarity with the study 
area and skill (Lu et al. 2004, 2005). When implementing the detailed “from-to” change 
detection, the results are mainly dependent on the classification accuracy for each date 
being analyzed (Jensen 2005). In other words, classification errors from the individual-date 
images will affect the final change detection accuracy. The critical step is to develop an 
accurate classification image for each date.

In practice, an analyst often selects several methods to implement change detection in a 
study area and then compares and identifies the best result through accuracy assessment 
(Muchoney and Haack 1994; Michener and Houhoulis 1997; Macleod and Congalton 1998; 
Yuan and Elvidge 1998; Mas 1999; Dhakal et al. 2002; Lu et al. 2005). Although a large 
number of change detection applications have been implemented and different change 
detection techniques have been tested, the question of which method is best suited for 
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a specific study area remains unanswered. No single method is suitable for all cases. The 
method selected depends on an analyst’s knowledge of the change detection methods and 
skills in handling remote sensing data, the image data used, and characteristics of the 
study areas.

11.2.6 E valuation of Change Detection Results

Accuracy assessment for change detection is particularly difficult due to problems in col-
lecting reliable temporal field-based data sets; thus, much previous research on change 
detection did not provide a quantitative analysis of the research results. Standard accu-
racy assessment techniques have been developed mainly for single-date remotely sensed 
data. Previous literature has provided the meanings and calculation methods for these 
elements (Congalton, Oderwald, and Mead 1983; Congalton 1991; Janssen and van der 
Wel 1994; Kalkhan, Reich, and Czaplewski 1997; Biging et al. 1999; Smits, Dellepiane, and 
Schowengerdt 1999; Congalton and Plourde 2002; Foody 2002; Congalton and Green 2008). 
The error matrix-based accuracy assessment method is the most common and valuable 
method for the evaluation of change detection results. In addition, some new methods 
have been developed to analyze the accuracy of change detection (Morisette and Khorram 
2000; Lowell 2001). Morisette and Khorram (2000) used “accuracy assessment curves” to 
analyze satellite-based change detection, and Lowell (2001) developed an area-based accu-
racy assessment method for the analysis of change maps. A monograph titled “Accuracy 
assessment of remotely sensed-derived change detection,” edited by Siamak Khorram 
(Biging et al. 1999), is specifically focused on the accuracy assessment of land-cover change 
detection. This monograph describes the issues affecting the accuracy assessment of land-
cover change detection, identifies the factors of a remote sensing processing system that 
affect accuracy assessment, presents a sampling design to estimate the elements of the 
error matrix efficiently, illustrates possible applications, and gives recommendations for 
accuracy assessment of change detection.

11.3 � Case Study for Detecting Urbanization with 
Multitemporal Landsat TM Images

Section 11.2 briefly overviewed the major steps used in the change detection procedure. This 
section provides a case study for showing how to conduct a change detection for examining 
urban expansion based on multitemporal TM images in a complex urban-rural landscape.

11.3.1 R esearch Problem and Objective

Digital change detection in urban environments is a challenge due to three characteristics 
unique to urban areas: (1) urban land-use and land-cover changes usually account for a 
small proportion of the study area and are scattered in different locations; (2) impervious 
surfaces and similar spectral features between impervious surfaces and other nonvegeta-
tion land covers are complex; and (3) the spatial resolution of remotely sensed imagery 
is limited. Although many change detection techniques, such as PCA, image differenc-
ing, and postclassification comparison, can be applied to urban land-use and land-cover 
change detection (Singh 1989; Coppin and Bauer 1996; Coppin et al. 2004; Lu et al. 2004; 
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Kennedy et al. 2009), the detection results are often poor, especially in urban–rural frontiers. 
Therefore, this research aims to develop a change detection procedure suitable for detect-
ing urbanization in a complex urban–rural frontier, based on the comparison of extracted 
impervious surface data sets from multitemporal Landsat TM images.

11.3.2  Description of the Study Area

Lucas do Rio Verde (hereafter called simply Lucas) in Mato Grosso state, Brazil, has a rela-
tively short history and small urban extent. It was established in the early 1980s (Figure 11.2), 
and has experienced rapid urbanization. This region is connected to the city of Santarém, 
a river port on the Amazon River, and to the heart of the soybean growing area at the city 
of Cuiabá by highway BR-163, which runs through the county. The economic base of Lucas 
is large-scale agriculture, including the production of soy, cotton, rice, and corn, as well as 
poultry and swine. The county is at the epicenter of soybean production in Brazil, and it is 
expected to grow in population threefold in the next 10 years. Because it is, at present, a rela-
tively small town, yet has complex urban–rural spatial patterns derived from its highly cap-
italized agricultural base, large silos and warehouses, and planned urban growth, Lucas is 
an ideal site for exploring techniques for detecting urbanization with remote sensing data.

11.3.3  Methods

After the research objectives were clearly defined, the next step was to select suitable remote 
sensing data and to design a feasible procedure for implementing change detection.
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Study area—Lucas do Rio Verde Municipio, Mato Grosso state, Brazil.
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11.3.3.1  Data Collection and Preprocessing

Landsat images acquired on June 21, 1984, June 6, 1996, and May 22, 2008 were used in this 
research. Radiometric and atmospheric calibration was conducted using the image-based 
dark-object subtraction (DOS) method. The DOS model is an image-based procedure that 
standardizes imagery for the effects caused by solar zenith angle, solar radiance, and atmo-
spheric scattering (Lu et al. 2002; Chander, Markham, and Helder 2009). The equations 
used for Landsat TM image calibration are
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λ θ
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where Lλ is the apparent at-satellite radiance for spectral band λ, DNλ is the digital number 
of spectral band λ, Rλ is the calibrated reflectance, Lλ.haze is path radiance, Esunλ is exo atmo-
spheric solar irradiance, D is the distance between the Earth and sun, and θ is the sun zenith 
angle. The path radiance for each band is identified based on the analysis of water bodies 
and shades in the images. The gainλ and biasλ are the radiometric gain and bias correspond-
ing to spectral band λ, and they are often provided in an image header file or metadata file 
or calculated from maximal and minimal spectral radiance values (Lu et al. 2002). All TM 
images were geometrically coregistered into the UTM projection with geometric errors of 
less than one pixel, so that all images have the same coordinate system. The nearest neighbor 
resampling technique was used to resample the Landsat TM images into a pixel size of 30 m 
× 30 m during image-to-image registration.

11.3.3.2  Mapping of Impervious Surface Distribution

Per-pixel impervious surface mapping is often based on the image classification of spectral 
signatures (Shaban and Dikshit 2001; Dougherty et al. 2004; Jennings, Jarnagin, and Ebert 
2004), but the spectral confusion between impervious surfaces and other land covers often 
results in a poor classification performance in the urban landscape (Lu and Weng 2005), 
especially in a complex urban–rural frontier. This research developed a method based on the 
combination of filtering images and unsupervised classification of Landsat spectral signa-
tures for mapping per-pixel impervious surface distribution. The fact that the red-band image 
in Landsat TM has high spectral values for impervious surfaces, but has low spectral values 
for vegetation and water or wetlands provides the potential for rapidly mapping impervi-
ous surfaces. The minimum and maximum filters with a window size of 3 × 3 pixels were 
separately applied to the Landsat red-band image. The image differencing between maxi-
mum and minimum filtering images was used to highlight linear features (mainly roads) 
and other impervious surfaces. Examining the difference image indicated that a threshold 
value of 13 can be used to extract the impervious surface image. The spectral signature of 
the initial impervious surface image was then extracted and was further classified into 60 
clusters using an unsupervised classification method to refine the impervious surface image 
by removing the nonimpervious surface pixels. Finally, manual editing of the impervious 
surface image was conducted to make sure that all impervious surfaces, especially in urban 
regions, were extracted. The final impervious surface image was overlain on the TM color 
composite to visually examine the quality of the impervious surface results to assure that all 
urban area and major roads were properly extracted. The same method was applied to all 
three dates of TM imagery to generate a time series of impervious surface images.
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11.3.3.3  Detection of Urbanization

Many change detection methods may be used for land-cover change detection (Lu et al. 
2004), but most of them are not suitable for the detection of urbanization due to the unique 
characteristics of the urban landscape. Therefore, the change detection of urbanization 
in this research is based on the comparison of extracted impervious surface images in 
order to eliminate the impacts of spectral confusion between impervious surfaces and 
other land covers, such as between dark impervious surfaces and water or wetland, and 
between bright impervious surfaces and bare soils or harvested fields. Two methods were 
used in this research. The first method was to produce a color composite by assigning the 
2008, 1996, and 1984 impervious surface images as red, green, and blue, for visual interpre-
tation of impervious surface change. Another method was to produce the change detec-
tion result based on a comparison of extracted impervious surface images pixel by pixel. 
The total impervious surface area change was also calculated.

11.3.3.4  Evaluation of Urbanization Results

Accuracy assessment of change detection results is an important part of the change detection 
procedure for understanding the reliability and confidence in the results. In this research, 
quantitative assessment of the change detection was difficult due to the lack of high spatial 
resolution images or field survey data for Landsat TM imagery in 1996 and 1984. Therefore, 
the evaluation of change detection results was based on a cross-comparison between the 
TM color composite and urbanization images. No quantitative evaluation was conducted.

11.3.4 R esults

Evaluation of the per-pixel impervious surface image based on overlaying it with the TM 
color composite indicated that a combination of filtering images and unsupervised classifi-
cation methods developed in this research can effectively extract the pixel-based impervi-
ous surface image in a complex urban–rural frontier. Figure 11.3 shows where impervious 
surface change occurred between the TM acquisition dates. The impervious surface images 
of 2008, 1996, and 1984 were assigned as red, green, and blue in the color composite; thus, red 
indicates that impervious surfaces increased between 1996 and 2008, and yellow indicates 
that the impervious surface increased between 1984 and 1996. This figure shows that the 
major impervious surface increase between 1984 and 1996 was in central Lucas because it 
was established in the early 1980s, and then, the impervious surface rapidly increased in the 
north, northwest, and south parts of town, and more roads were constructed after 1996.

In per-pixel-based results, each extracted impervious surface pixel is assumed to be 100% 
impervious surface. Thus, the total impervious surface area for this study area can be cal-
culated by multiplying the total pixel number of impervious surfaces and the TM pixel size 
(30 m by 30 m). This research indicates that the total impervious surface area in 1984 only 
accounted for 0.24% of the total study area, which gradually increased to 0.43% in 1996 and 
to 1.29% in 2008, implying rapid urbanization rate during the change detection periods.

11.3.5  Summary of the Case Study

The per-pixel-based method for mapping impervious surface distribution and monitoring its 
change is valuable for visual interpretation of urbanization. The method, based on the com-
bination of filtering image differencing and unsupervised classification, can be successfully 
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used to map impervious surface distribution in the complex urban–rural frontier, which is 
often difficult for traditional classification methods. In addition, the detection of urbaniza-
tion based on the extracted impervious surface images can eliminate the impacts of environ-
mental conditions on remote sensing surface reflectance, which often results in a different 
reflectance for the same land covers. However, the areal extent of impervious surfaces is over-
estimated significantly, especially in the urban–rural frontier due to the mixed-pixel problem 
in Landsat TM images (Wu and Murray 2003; Lu and Weng 2006). From the view of area cal-
culation of urbanization, fractional impervious surface distribution based on subpixel-based 
method, such as spectral mixture analysis, must be developed (Lu and Weng 2006).

11.4  Final Remarks

Change detection has long been an active research topic, and many techniques have been 
developed in recent decades. The availability of more and more different types of sensor 
data and different ancillary data, along with a need for more detailed and accurate change 
detection information, provides new challenges for developing suitable change detection 
techniques for specific purposes. Change detection is a comprehensive procedure that 
requires careful design of different steps, including the statement of research problems 
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(See color insert following page 426.) Color composite of three dates of impervious surface distribution in 
2008, 1996, and 1984 by assigning them as red, green, and blue, illustrating the spatial distribution and patterns 
of impervious surface changes.
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and objectives, data collection, preprocessing, selection of suitable change detection algo-
rithms, and evaluation of the results. Errors or uncertainties may emerge from any of the 
different steps, thus affecting the change detection results. Understanding the relation-
ships between the change detection stages, identifying the weakest links in the image 
processing chain, and then devoting efforts to improving them are keys to a successful 
change detection project. In addition, the designed change detection procedure should 
carefully take the spectral and spatial resolutions of the data, polarization, and angle 
features into account. Previous research on change detection is based mainly on per-
pixel comparison. As high spatial resolution images such as QuickBird and WorldView 
become readily available, object-based or texture-based change detection methods may 
provide new insights and have recently attracted increasing attention (Lam 2008; Zhou, 
Troy, and Grove 2008; Blaschke 2010; Wu, Yang, and Lishman 2010).
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12
Remote Sensing of Ecosystem 
Structure and Function

Alfredo R. Huete and Edward P. Glenn

12.1  Introduction

Earth-observing remote sensing technologies are becoming widely adopted within the 
resource management, ecosystem sciences, and sustainable development communities. 
Satellite data offer unprecedented capabilities to capture the spatial and temporal detail of 
ecosystem properties at regional to global scales, and remote sensing tools are now employed 
in characterizing ecosystem structure and biologic properties and in monitoring ecosystem 
health, seasonal dynamics, and functional processes. The moderate resolution Landsat and 
coarser resolution National Oceanic and Atmospheric Administration (NOAA) Advanced 
Very High Resolution Radiometer (AVHRR) programs have provided systematic time-series 
observations since the early and late 1970s, respectively, for ecosystem and agricultural pro-
ductivity assessments, land-cover mapping, vegetation-climate studies, drought monitor-
ing, biodiversity and habitat loss, invasive species, and many other ecological applications. 
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Many global change advancements in vegetation responses to climate variability, including 
the impacts of the El Niño-Southern Oscillation events, can be attributed to the develop-
ment and consistency of these programs (Tucker et al. 1991; Myneni et al. 1997).

Earth’s terrestrial surface is covered by vegetation canopies consisting of diverse struc-
tural and functional land-cover types and ecosystems. The relationship between the solar 
energy incident at the surface and the spectral composition of the reflected energy pro-
vides a wealth of information about the biogeochemical nature (pigments, leaf chemistry, 
soil mineralogy), moisture status, and physical and structural characteristics of the surface 
(canopy height, leaf area, vegetation physiognomy, soil roughness). Remotely sensed data 
in the spectral, spatial, and temporal domains further reveal information about surface 
processes, including photosynthesis, evapotranspiration, land surface functioning, and 
ecosystem disturbance (Running 2006). In this chapter, we review many of the advance-
ments made in the remote sensing of ecosystem structures, processes, and functions.

12.2  State and Composition of the Surface

Vegetated canopies are assemblages of plant species with grass-, shrub-, or tree-like struc-
tures overlying fresh and decaying litter and soils with mineral and organic properties. 
The species-specific leaf elements vary in morphology, specific leaf area, and color. Canopy 
biophysical and biochemical variables relevant to the characterization of vegetation states 
include vegetation fraction (Fv), leaf area index (LAI), fraction of absorbed photosynthetically 
active radiation ( fAPAR), chlorophyll content, and canopy water content, all of which are impor-
tant ecosystem parameters of interest for biogeochemical, productivity, and climate models. It 
is an enormous task to collect reliable field data of these properties with sufficient spatial and 
temporal coverage for use in ecosystem analysis. In many cases, remote sensing measure-
ments, with their synoptic and repetitive sampling capabilities, may be the most efficient and 
only method to assess widespread ecosystem properties (Kerr and Ostrevsky 2003).

12.2.1 B iogeochemistry

Narrowband hyperspectral reflectance signatures are commonly used to find the biogeo-
chemistry of landscapes and retrieve quantitative information about canopy chemistry, 
water content, and soil composition (Ustin et al. 2004; Thenkabail et al. 2000; Ben-Dor et al. 
2008), and many studies are aimed at finding the right, optimal combination of narrow 
waveband reflectance data to extract such information.

Spectral signatures of leaf, soil, litter, and woody samples are obtained by laboratory 
and field spectroradiometer measurements. Leaf spectra can also be measured in situ with 
a leaf clip apparatus that is attached to field spectrometers or with an integrating sphere, in 
which reflectance, transmittance, and absorptance spectra are obtained (Carter and Knapp 
2001). Spectral signature libraries of soils, rocks, leaves, and plants are available, for exam-
ple, the USGS digital spectral library (http://speclab.cr.usgs.gov/spectral-lib.html) and the 
ASTER spectral library (http://speclib.jpl.nasa.gov). Leaf spectra can also be generated 
from simulation models, such as the PROSPECT model (Jacquemoud 1990).

The reflectance properties of a leaf vary with pigment content, dry matter organic 
compounds, water, and leaf structural characteristics (leaf shape, specific leaf area). Leaf 
spectra are therefore highly variable, with species, leaf age, stress, and health providing 
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opportunities  to remotely sense physiological responses to growth conditions and 
environmental change. Many comprehensive reviews on leaf optics are available in the 
literature (Gates et al. 1965; Knipling 1970; Colwell 1974).

An example of a healthy spectral signature of a green leaf is shown in Figure 12.1. There 
are three main spectral domains: (1) the visible (VIS, 0.4–0.7 μm), (2) the near-infrared (NIR, 
0.7–1.1 μm), and (3) the shortwave-infrared (SWIR, 1.3–2.5 μm) regions. Very low reflec-
tances in the VIS region are associated with the strong absorbing capacity of leaf pigments, 
mainly chlorophyll a, chlorophyll b, carotenoids, and xanthophylls, with the chlorophyll 
pigments accounting for 60–75% of the energy absorbed (Gates et al. 1965; Figure 12.2). 
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Spectral reflectance signatures of green and senesced (yellow) leaves, dry and wet soil, and woody bark.
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A  green reflectance peak is evident at 0.55 μm, owing to slightly less absorptance, and 
is responsible for the green appearance of healthy leaves. Chlorophyll content at the leaf 
level is directly inferred using hyperspectral indices and leaf- and plant-canopy simula-
tion models (Broge and Leblanc 2001; Zarco-Tejada et al. 2004). Carotenoid content pro-
vides complementary information on vegetation physiological status. Thus, the spatial and 
temporal dynamics of plant pigments are key indicators of ecosystem properties, given 
the strong coupling of pigments to plant physiological status and stress (Blackburn 2007). 
Because most of the energy in the 0.4–0.7 μm range is apparently absorbed by pigments to 
drive photosynthesis, the term “photosynthetically active radiation” (PAR) is often used to 
describe radiation in the VIS part of the spectrum.

Beyond the highly absorbing red region is a sharp “red-edge” transition region at around 
0.70–0.78 μm, in which the absorbing leaves become highly reflective and transmissive in 
NIR wavelengths. Spectral reflectance curves in the NIR are sensitive to leaf morphol-
ogy and leaf structural properties, particularly the spongy mesophyll layer in which NIR 
reflectance increases with an increasing number of cell layers and intercellular spaces. 
Several secondary water absorption features at 0.96, 1.1, and 1.24 μm can be used to assess 
leaf water content. As a result of NIR sensitivity to leaf structural properties, the NIR spec-
tral region is very useful in plant biodiversity studies and in discriminating among plant 
species and leaf shape (needle-leaf, broadleaf, grass) that are often not discriminable in the 
VIS spectrum.

The NIR spectral domain also has a strong transition region between 1.1 and 1.3 μm, 
where reflectances decrease sharply and become highly absorbing in the SWIR, attrib-
uted to strong absorption by leaf water. Thus, variations in leaf water content have a large 
effect on reflectances in the SWIR as well as on portions of the NIR, with important water 
absorption features present at 1240, 1640, and 2100 nm, resulting in negative relation-
ships between reflectances at these wavelengths and leaf water content. However, such 
variations are commonly leaf-type and plant-species dependent.

12.2.2 L eaf Stress

Plant physiological stress due to drought, disease, and nutrient deficiencies alters leaf 
spectral signatures throughout the spectrum; however, many studies have found very 
consistent stress-related changes occurring in the VIS wavelengths (400–720 nm; Carter 
1994). In general, reflectance increases in the red, green–yellow, and red-edge spectral 
regions with decreasing chlorophyll amounts, and it also increases consistently with 
plant stress at wavelengths near 700 nm, causing the slope of the red edge to shift toward 
the blue spectrum. The concentrations of other pigments, such as carotenoids, are more 
persistent with stress and remain high enough in stressed leaves that there is very lit-
tle change in absorption in the blue range (400–500 nm) compared to healthy leaves 
(Gitelson et al. 2003).

Beyond the red edge, in the NIR and SWIR spectral regions, reflectances become inde-
pendent of chlorophyll, and changes in reflectances occur with leaf anatomy or water 
content changes in response to stress. Leaf reflectances in the NIR generally decrease 
with stress, relative to healthy leaves, due to deterioration of leaf cellular structure 
(Knipling 1970). In the SWIR region, several studies have shown increases in leaf reflec-
tances associated with plant stress (Gausman and Allen 1973; Tucker 1980), providing 
useful information to infer canopy moisture content and soil moisture status in the plant 
root zone.
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12.2.3  Soil, Litter, and Woody Components

Soil spectral reflectance signatures have been studied in laboratory and field measure-
ments and have been found to be primarily a function of absorption features associated 
with primary and secondary minerals (iron oxides, clays, carbonates, salts), organic mat-
ter and litter content, as well as soil structure and surface moisture status (Baumgardner 
et al. 1985). Overall, soil spectral reflectances increase with increasing wavelengths across 
the VIS and NIR as a result of strong Fe–O charge transfer absorption in the blue region 
(Figure 12.1). Soils have distinct features caused by vibrational processes in the SWIR, 
which include two broad water absorption bands at 1.4 and 1.9 μm. Minerals with OH, CO3 
(e.g., calcite), and SO4 (e.g., gypsum) exhibit vibrational features in the 1.8–2.5 μm region, 
whereas silicate layers with OH absorb near 1.4 and 2.2 μm (Mulders 1987). However, 
strong mineral absorption spectra are rarely found in soil samples, due to their highly 
heterogeneous mineral mixtures and strong soil particle coatings of secondary minerals 
(FeO) and organic (humic) molecules. As a result, Stoner and Baumgardner (1981) reported 
only five basic soil spectral reflectance curve shapes determined by the relative presence 
and amounts of iron and organic compounds.

The spectral signature of a soil is further modified by surface structural properties (parti-
cle size, roughness) and optical geometric factors (sun view geometry). Reflectance decreases 
with increasing surface roughness because coarse aggregates contain a lot of interaggre-
gate spaces and “light traps.” Roughness will alter the spectral signature of a soil and the 
inferences made of its soil color and mineralogy because the shorter wavelengths are most 
affected. The bidirectional reflectance distribution function (BRDF) describes the manner in 
which surfaces scatter radiation across all sun-surface-sensor view geometries and can be 
used, through models, to derive geometric descriptors, such as size, shape, and orientation of 
surface “roughness” elements, of a soil (Irons et al. 1992). Kimes et al. (2000) further suggested 
that the relationships between spectral bands are most useful in assessing soil properties.

Quantitative methods for extracting information about physical and biochemical char-
acteristics of soils have been developed and recognized in the field of soil spectroscopy. 
As an example, Ben-Dor and Bannin (1994) used a VIS and NIR analysis scheme to predict 
a wide variety of chemical constituents of soils, including CaCO3, Fe2O3, Al2O3, SiO2, free 
iron oxides, and K2O, from fine-resolution spectra of arid and semiarid soils. Soil spectral 
properties and their use in soil applications and mapping are reviewed comprehensively 
by Baumgardner et al. (1985), Ben-Dor et al. (2008), and Anderson and Croft (2009).

Soil spectral reflectance curves also decrease with wetting, by as much as 40–60%, with 
the strongest decrease occurring in the water-sensitive SWIR spectral region (Figure 12.1). 
The reflectance ratio between dry and wet soils further varies with soil type, having larger 
ratios in forest soils with low organic matter, relative to darker, organic-rich grassland 
soils (Baumgardner et al. 1985). A fundamental limitation of optical remote sensing is that 
only soil moisture at the surface and near-surface soil moisture changes more quickly than 
soil moisture at greater depths, making it very difficult to infer soil wetness below a few 
centimeters.

The presence of plant litter and its stage of decomposition will alter soil spectral reflec-
tance signatures (Stoner and Baumgardner 1981). There are also nonphotosynthetic vegeta-
tion (NPV) components within a canopy that influence canopy spectra. Wood and standing 
litter have distinctive narrowband lignocellulose absorption features in the SWIR that allow 
for their discrimination (Elvidge 1990; Asner et al. 2000). As in assessments of plant stress 
and chlorophyll, there are many soil and NPV absorption features that cannot be resolved 
with the use of broadband sensors and require high spectral resolution sampling.
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12.3  Ecosystem Structure

A complete characterization of landscape ecological properties requires information on 
both canopy biogeochemical and structural properties. At the canopy scale, reflectances 
become an integrated signal of many leaves and species, NPV elements, and soil orga-
nized in various canopy structural assemblages. The structural makeup of a canopy will 
include leaf angle distribution (LAD), leaf clumpiness, plant physiognomy (shrub/tree/
grass), plant height, and crown diameter. There are complex and dynamic patterns of light 
interactions with the photosynthetic elements of a canopy, resulting in sunlit and shaded 
or diffuse surfaces, dependent on the sun position and atmospheric conditions. This com-
plicates the interpretation and extrapolation of laboratory and field spectra to canopy- and 
ecosystem-scale measurements.

Despite the structural complexities and mixing of spectral signatures, there remain many 
common features between leaf- and canopy-scale spectra, especially the high spectral 
reflectance contrasts commonly observed across the VIS, NIR, and SWIR spectral regions. 
For example, the greater the contrast between the red and the NIR spectral regions, the 
greater the amount and/or vigor of vegetation (Figure 12.3). Thus, information contained 
in leaf, NPV, and soil spectra will manifest itself at the canopy scale, although with some 
important modifications. Spectral reflectance signatures at the canopy and landscape 
scales are collected with field- and tower-mounted spectroradiometers, as well as with 
airborne (e.g., AVIRIS) and the EO-1 Hyperion spaceborne imaging sensors (Asner 1998; 
Ustin et al. 2004; Shimabukuro et al. 1994).

12.3.1  Spectral Measures

The spectral behavior of vegetation canopies in the VIS, NIR, and SWIR regions forms the 
theoretical basis for the design and development of various empirical and physical-based 
methods to retrieve biophysical variables, including the use of hyperspectral techniques, 
spectral indices, radiative transfer model inversions, and BRDF approaches. Vegetation 
indices (VIs) are optical measures of canopy greenness, a composite property of total 
canopy chlorophyll, leaf area, canopy cover, and structure. VIs are robust and seamless 
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(See color insert following page 426.) Canopy level spectral reflectance signatures measured by an EO-1 
Hyperion sensor over Araguaia National Park, Brazil.
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biophysical measures, computed the same across all pixels in time and space regardless 
of biome type, land-cover condition, and soil type. VIs are typically used as proxies to 
characterize ecosystem states and processes and have become indispensable tools in many 
ecological applications, including productivity and phenology studies, vegetation-climate 
interactions, land-cover classification, land-use change detection, drought monitoring, 
biodiversity, habitat loss, and public health.

A VI measures the contrast between the chlorophyll-absorbing red spectral region and 
nonabsorbing leaf NIR reflectance signal to quantify the amount and vigor of vegetation. 
There are a variety of ways in which these two bands may be combined to estimate green-
ness, and this has resulted in a multitude of VI equations from spectral band ratios, nor-
malized differences, linear band combinations to optimized band combinations (Gobron 
et al. 2000; Huete 1988; Tucker 1979). For an effective VI, its capability to capture essential 
biophysical phenomena with adequate fidelity and minimal external influences (atmo-
sphere and soil), and its global extension in time and space should be considered.

The normalized difference VI (NDVI) is a functional variant of the simple ratio (SR = 
ρN/ρR) that provides greenness values normalized between −1 and +1:

	 NDVI
(SR 1)
(SR 1)

=
( )
( )

N R

N R

= −
+

−
+

ρ ρ
ρ ρ

	 (12.1)

where ρN and ρR are reflectances in the NIR and red bands, respectively. In NIR–red space, 
NDVI depicts vegetation isolines (i.e., lines of constant NDVI value) with increasing slopes 
but with constant zero intercepts (Figure 12.4). An important advantage of ratio-based 
indices is their ability to produce stable values by normalizing many extraneous sources 
of noise. This normalizing ability was particularly useful in the early AVHRR era, in which 
data quality problems due to sensor instrument noise and atmosphere contamination were 
particularly prevalent. The NDVI also presents some disadvantages in landscape stud-
ies, related to the nonlinearity of ratios, sensitivity to soil background, and saturation at 
moderate-to-high vegetation densities. Canopies overlying darker soils have much higher 
NDVI values (up to twofold) than equivalent canopies underlain by bright soils, particu-
larly at moderate vegetation covers (∼50% and LAI of 1; Huete 1988).
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The “soil-line” concept was formulated by Richardson and Wiegand (1977) as a way to 
separate soil-induced optical variations from those of vegetation. The perpendicular veg-
etation index (PVI) measured the vector distance of a vegetated pixel in NIR–red spectral 
space, orthogonal to the soil line, as a quantitative measure of vegetation amount in a pixel 
(Figure 12.4). This provided a vegetation measure referenced to the spectral variations of 
the underlying soils. The tasseled cap concept expands on this 2-band concept to 4 and 
6 bands (Landsat MSS and TM, respectively) and allows one to separate other pixel fea-
tures besides vegetation (Healey et al. 2005).

A first-order Beer’s law approximation of soil-vegetation radiative transfer allows the 
influence of the backscattered soil signal to be effectively removed, as in the soil adjusted 
vegetation index (SAVI):

	 SAVI (1 ) ( )/( )N R N R= + − + +L Lρ ρ ρ ρ 	 (12.2)

where L is the soil adjustment factor. The parameter L shifts the vegetation isolines in NIR–
red space away from the origin and has a value of 0.5 for the global case (Figure 12.4; Huete, 
1988). The enhanced vegetation index (EVI) is an optimized combination of blue, red, and 
NIR bands, developed as a Moderate Resolution Imaging Spectroradiometer (MODIS) sat-
ellite product and designed to extract canopy greenness, independent of underlying soil 
backgrounds and atmospheric aerosol variations (Figure 12.5). The EVI gains its heritage 
from the SAVI and the atmospherically resistant vegetation index (ARVI; Kaufman and 
Tanré 1992; Huete et al. 2002)

	 EVI 2�5( )/( )N R N 1 R 2 B= − + +ρ ρ ρ ρ ρL C C− 	 (12.3)

where ρN, ρR, ρB are reflectances in the NIR, red, and blue bands, respectively, L is the 
canopy background adjustment factor, and C1 and C2 are the aerosol resistance weights. 
Although MODIS surface reflectance data is atmospherically corrected, the aerosol resis-
tance term stabilizes residual aerosol noise after atmospheric correction, such as from 
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Figure 12.5
Example of MODIS-enhanced vegetation index spatial and temporal variations over Europe and Asia for com-
posite day of year 177 (June) and 257 (September). The darker colors represent maximum levels of greenness.



Remote Sensing of Ecosystem Structure and Function	 299

over- and undercorrected pixels. The coefficients of the EVI equation in the standard 
MODIS products are L = 1, C1 = 6 and C2 = 7.5.

There are many optical measures and techniques that are used to specifically exploit 
hyperspectral remote sensing, including higher-order derivative analysis of spectral sig-
natures, band ratioing and continuum removal, lignocellulose absorption indices, mixture 
modeling (Asner and Lobell 2000), and plant physiological indices such as the photochem-
ical reflectance index (PRI; Gamon, Serrano, and Surfus 1997) and the “green” chlorophyll 
index (Gitelson et al. 2005). Spectral mixture analysis is a linear unmixing technique that 
decomposes spectral measurements into a set of unique reflecting features, such as green 
vegetation, NPV, soils, and shade (Smith et al. 1990; Roberts et al. 1993). The basis of a linear 
mixing scheme is that the measured spectral response is equal to the weighted sum of 
multiple reflecting spectral features:

	 d r cik ij jk
j

n

= + ε
=1
∑ 	 (12.4)

where dik is the measured spectral response of spectral mixture k in waveband i, n is 
the number of independent reflecting components in the mixture, rij is the response of 
component j in waveband i, cjk is the relative contribution of component j in spectral 
mixture k, and ε is the residual error. Spectral unmixing has been effectively applied to 
AVIRIS (224 bands) hyperspectral imagery to extract soils information from vegetated 
canopies (Palacios-Orueta et al. 1999). Asner and Lobell (2000) developed a SWIR-based 
endmember approach to separate and generate green vegetation, NPV, and soil compo-
nent images. Mixing models based on hyperspectral imaging data have also been used to 
study land-cover and land-use changes in the Amazon (Roberts et al. 2003; Shimabukuro 
et al. 1994) and in soil and precipitation influences in Hawaiian forests (Asner et al. 2005). 
Some shortcomings of linear mixing models are that prior identification of important 
endmembers may be required, and there may be nonlinear mixing influences present 
within pixels.

12.3.2 B iophysical Ecological Variables

There are both horizontal and vertical aspects of canopy structure of importance to their 
ecological characterization. LAI, or foliage density, is defined as the one-sided area of leaves 
in a canopy projected on the ground and integrates all leaf area from the top to bottom of a 
canopy. Vegetation fraction (Fv) represents the ground surface covered with vegetation and 
only considers the horizontal properties of a canopy. Various ecological applications and 
models will require estimates of one or both of these canopy variables, and some models 
require separate estimates of LAI and Fv, such as in the calculation of roughness lengths 
for turbulent energy transfer (Glenn et al. 2008). The chlorophyll and water contents of a 
canopy are also important in analyzing canopy ecophysiological functioning, and the fAPAR 
is a fundamental canopy parameter to understand radiation dynamics and canopy pro-
cesses. Some thorough reviews on remote sensing of ecological properties can be found in 
Glenn et al. (2008), Kerr and Ostrovsky (2003), and Pettorelli et al. (2005).

In deriving spectral relationships with specific biophysical variables, the strong cova-
riation among the variables is an important limitation during vegetation canopy devel-
opment. Thus, as a woody or herbaceous canopy grows, Fv, LAI, total chlorophyll and 
water contents, as well as phenology (leaf age) and leaf structure (LAD), may change 
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simultaneously, rendering it difficult to isolate spectral variations attributed to spe-
cific vegetation biophysical components. These covarying factors become integrated 
in spectral–biophysical relationships, resulting in strong local-scale empirical relation-
ships, which become weaker when extended to other sites with different canopy struc-
tures. Thus, for example, an NDVI–Fv empirical relationship may also include variations 
in spectral reflectance due to changes in LAI, leaf age, and chlorophyll status. One 
method to circumvent this problem is to use canopy radiative transfer models, in which 
individual canopy factors can be varied while keeping the other factors constant. Such 
models are useful to assess spectral sensitivities to the individual canopy factors and to 
categorize structural assemblages into standard conditions with implicit assumptions, 
for use in canopy radiative transfer inversions and lookup tables (LUT; Jacquemoud 
et al. 1995).

12.3.2.1  Vegetation Fraction (Fv)

Vegetation fraction, Fv, is an important ecosystem variable useful to assess Et, rainfall 
interception, and turbulent energy transfer parameters. In general, NDVI is most com-
monly used to assess Fv, with both linear and nonlinear relationships reported (Carlson 
and Ripley 1997). Leprieur et al. (2000) found a curvilinear regression between the Fv and 
NDVI over a precipitation gradient in the south Sahel and found most of the uncertainties 
in the relationship to be associated with the degree of clumping from the woody vegeta-
tion (shrubs and trees). Others have shown distinctly linear NDVI–Fv relationships to be 
nonlinear with a change in soil background type for the same canopy (Huete et al. 1985; 
Bausch 1993). Montandon and Small (2008) and Jiang et al. (2006) concluded that the NDVI 
may not be suitable to infer Fv because of its nonlinearity and scaling problems, which 
are most pronounced over moderately vegetated canopies underlain by darker soil back-
grounds or standing water.

To minimize the nonlinear effects, satellite-based Fv products are sometimes derived 
through linear and normalized combinations of high (vegetation) and low (soil) NDVI 
values within a scene or biome type (Zeng et al. 2000; Gutman and Ignatov 1998). This is 
done by scaling the NDVI from bare soil to dense vegetation for Fv retrieval

	 Fv
0

0

(NDVI NDVI )
(NDVI NDVI )

=
−

∞−
	 (12.5)

where NDVI0 and NDVI∞ are the signals from bare soil and dense green vegetation, respec-
tively. However, Glenn et al. (2008) showed that different plant species will yield different 
Fv–NDVI relationships because they have different VI values at dense cover, associated 
with differences in chlorophyll content and canopy architecture, particularly clump LAI 
values. Furthermore, such relationships may also be sensor dependent, as AVHRR NDVI 
values over dense vegetation are lower than those of MODIS NDVI due to the narrower 
spectral bandwidths and more complete atmospheric correction (aerosols, water vapor) in 
MODIS NDVI.

There have been several studies aiming to linearize the NDVI equation itself, resulting 
in improvements to VI–Fv relationships (e.g., Jiang and Huete 2010). The PVI, tasseled 
cap greenness, and decomposed vegetation fraction component that is derived from spec-
tral mixture modeling also provide measures of Fv that are much more linear than ratio 
methods, such as NDVI (Anderson et al. 2010; Ustin et al. 2004; Roberts et al. 1993).
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12.3.2.2  Leaf Area Index

LAI (m2/m2) is an important canopy variable for many ecosystem processes and model 
studies. LAI is difficult to measure in the field and optical and direct harvesting methods 
frequently produce different results; therefore, there is much interest in developing remote 
sensing methods for LAI estimations. Spectral VIs are generally sensitive to LAI for relatively 
low LAI values (Bégué 1993; Asner et al. 2003), with increasingly weak and nonlinear relation-
ships at LAI beyond 2 or 3, after which the NDVI becomes saturated (Baret and Guyot 1991).

LAI–VI relationships strongly vary with vegetation type, phenology period, and satel-
lite sensor. Significant but nonlinear relationships have been found between Landsat NDVI 
with field-measured LAI values in coniferous forest sites in Siberia; however, poorer rela-
tionships were found using coarser resolution MODIS NDVI (Chen et al. 2005). Lower 
correlations are reported in broadleaf forest canopies compared with needle-leaf stands, 
possibly a result of NDVI saturation (Fassnacht et al. 1997). For example, in a beech decidu-
ous forest in Europe, NDVI–LAI relationships varied across different phenology periods, 
with the worst correlations occurring in periods of maximum LAI owing to NDVI satura-
tion (Wang et al. 2005). In larger-scale field validation campaigns conducted over a series 
of biomes, Cohen et al. (2003) reported only weak correlations between field-measured LAI 
and several satellite products, including a MODIS LAI product based on three-dimensional 
(3D) canopy radiative transfer modeling and generated LUT (Myneni et al. 2002). The can-
opy model uses generalized attributes for each of six biome structural types, including leaf 
optical properties, Fv, plant LAI, and soil background as input variables to the model. The 
product works well over areas that match the generalized biome types; however, in other 
ecosystems, MODIS LAI overpredicts ground LAI by a factor of 2 (Leuning et al. 2005), thus, 
empirical approaches are more common in the accurate estimation of LAI at a local scale.

Whereas the NDVI is very sensitive to the red band that has a low canopy optical pen-
etration depth, other indices show a greater sensitivity on the NIR that senses to greater 
canopy optical depths. These include the PVI, SAVI, and EVI, all exhibiting a higher LAI 
sensitivity (Fensholt et al. 2004; Huete et al. 2002). Houborg and Soegaard (2004) found 
MODIS EVI was able to accurately describe the variation in green biomass over agriculture 
areas in Denmark, up to a maximum green LAI of 5 (r2 = 0.91). Thus, the EVI may better 
depict biophysical canopy structural variations and be less prone to saturation in high-
biomass (LAI) areas.

12.3.2.3  Canopy Chlorophyll Content

Chlorophyll content at the canopy level is a key property of plant communities, and 
its assessment from satellite data is relevant to studies of ecosystem productivity, CO2 
fluxes, and vegetation stress (Gitelson et al. 2003; Gitelson et al. 2006; Blackburn 2007). 
Hyperspectral indices that are sensitive to leaf chlorophyll include the first derivative of 
the red-edge slope at 700–740 nm and various hyperspectral (narrowband) versions of VIs. 
In the intense chlorophyll absorption range at 670–680 nm, chlorophyll sensitivity is very 
low in moderate-to-high LAI conditions, and relatively large amounts of chlorophyll must 
be lost from the leaves before a significant optical difference occurs. Increased chlorophyll 
sensitivity can be attained by shifting away from this intense absorption region, such as at 
wavelengths near 690–720 nm (beginning of the red edge) as well as in the green–yellow 
spectrum (Carter and Knapp 2001). Although spectral absorption in the red is normally 
correlated with chlorophyll content, other factors need to be considered at the canopy 
scale, including canopy architecture, chlorophyll distribution within the canopy, LAI, and 
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absorption associated with soil background, all of which confound the direct retrieval of 
canopy chlorophyll contents.

Fundamentally, VIs are more directly related to the chlorophyll content or greenness 
of the canopy, rather than leaf area or vegetation ground cover, as plants with different 
chlorophyll contents will also have different VI values for the same Fv or LAI. In general, 
total canopy chlorophyll content tends to be curvilinearly related with VIs because surface 
leaves intercept more light than leaves deeper in the canopy (Gitelson et al. 2006), and the VI 
is also subject to red-band chlorophyll saturation problems. Most satellite sensors acquire 
red reflectances from broad bandwidths, which are inadequate for the remote sensing of 
vegetation biochemical properties and are unable to capture fine chlorophyll spectral fea-
tures and their variation with plant stress and leaf phenology (Broge and Leblanc 2001).

Canopy chlorophyll activity decreases with stress and disturbance, affecting reflec-
tances in the VIS spectrum. Stress is also associated with a displacement in reflectances or 
shift in the “red-edge” reflectances toward shorter wavelengths. This is sometimes called 
“blue shift” and is readily quantified by the first derivative of the red-edge inflection point. 
Blue shift has been observed with plant nutrients and mineral stress, as well as with plants 
affected by heavy metal contamination (Rock et al. 1986), and corresponds strongly to 
lower leaf chlorophyll concentrations.

12.3.2.4  Canopy Water Content and Soil Moisture

Knowledge of the water status of a vegetation canopy can provide valuable information 
on vegetation drought status and soil moisture conditions. Soil moisture further acts as an 
integrator of the amount and occurrence of precipitation events, influencing the partition-
ing of surface available energy into sensible and latent heat fluxes. Despite its importance, 
there has been limited success in implementing remotely sensed soil moisture observa-
tions at appropriate time and space scales needed for current hydrology, climate, and bio-
geochemical models. Accurate assessments of soil moisture are difficult due to complex 
land-cover conditions and very large soil moisture variability across landscapes, with 
unknown scale dependencies.

Vegetation water indices (WIs) employing 1240-, 1640-, or 2100-nm wavelengths in lieu 
of the red band used in VIs have recently been used as independent vegetation measures 
related to moisture condition rather than chlorophyll amount (Zarco-Tejada, Rueda, and 
Ustin 2003; Figure 12.6). Although VIs have also been correlated with vegetation water con-
tent, they are physiologically related to canopy chlorophyll content, and several studies have 
found WIs to be more effective in mapping canopy water content, such as the Soil Moisture 
Experiments 2002 (SMEX02) campaign, in which the NDVI was found to be saturated while 
the WIs remained sensitive to increasing amounts of green vegetation (Jackson et al. 2004). 
Ceccato et al. (2001) concluded that VIs were less suitable for retrieving canopy water contents 
because the relationship between chlorophyll and water is species specific. Furthermore, 
decreases in chlorophyll content do not always imply a decrease in water content.

The assessment of vegetation water content or equivalent water thickness (g · H2O/cm2 
leaf area) is obtained by combining NIR and SWIR reflectance values. The use of two 
or more bands helps minimize variations in leaf internal structure and leaf dry matter 
content as well as in canopy geometry, shadowing, and soil surface moisture that also 
influence SWIR reflectance (Ceccato et al. 2001). An example of a WI is the moisture stress 
index, calculated as the simple ratio between SWIR (1600 nm) and NIR (820 nm) spectral 
reflectances, which has been successfully used to derive leaf scale functions of water con-
tent (Hunt and Rock 1989).
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Hardisky, Smart, and Klemas (1983) developed the normalized difference infrared index 
(NDII), contrasting the NIR with SWIR (1600 nm) wavelengths:

	 NDII
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They found that this index was strongly correlated with canopy water content. Several 
variants of this index are now used in a wide range of studies using high spectral resolu-
tion as well as broadband reflectances. Xiao, Zhang et al. (2004) and Xiao, Hollinger et al. 
(2004) used the normalized difference between the NIR and SWIR bands (1580–1750 nm) 
from the SPOT-4 VEGETATION (VGT) and MODIS sensors as measures of land surface 
moisture status and named this the land surface water index (LSWI). Xiao et al. (2005) 
found satellite-derived LSWI to be sensitive to seasonal fluctuations in canopy or leaf 
water contents in Amazon tropical forests.

Fensholt and Sandholt (2003) formulated the shortwave-infrared water stress index 
(SIWSI) from daily MODIS NIR and SWIR (1628–1652 nm) reflectances:
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They reported high correlations between SIWSI and soil moisture in the root zone in a 
Sahel vegetation study in Senegal. The normalized difference water index (NDWI) uses 
NIR reflectances at 860 and 1240 nm wavelengths:
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Figure 12.6
Spectral reflectance variations in the NIR and SWIR spectral regions for various leaf model simulated water 
contents. MODIS bands 4 and 5 are depicted and used in formulation of the NDWI. (From Remote Sensing of 
Environment, 85, Zarco-Tejada, P. J., Rueda, C. A., and Ustin, S. L., Water content estimation in vegetation with 
MODIS reflectance data and model inversion methods, 109. Copyright (2003), with permission from Elsevier.)
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with the liquid water absorption feature at 1240 nm enhanced by the high NIR scattering 
in the leaf (Gao 1996). Whereas the SWIR region responds to both vegetation and soil sur-
face moisture, the 1240-nm water-absorbing region has been shown to respond to canopy 
moisture status only. This formulation was applied to MODIS bands 5 (1230–1250 nm) and 
2 (841–876 nm) and was found to be a strong indicator of canopy water content during the 
growing season in the Sahel (Fensholt and Sandholt 2003). However, it was found that in 
dry years the vegetation cover was too dry to provide information on canopy water con-
tent, suggesting that a minimum, threshold vegetation amount must be present for detec-
tion with WIs.

The growth of vegetated ecosystems is largely sustained by the water availability in the 
soil, with the subsoil supplying water to plants long after the surface has dried out. There 
are other indirect methods to derive information on the moisture status of soil and the 
canopy it supports, involving the use of thermal and optical remote sensing data (Moran 
et al.; Nemani and Running 1989). For example, the water deficit index measures variations 
in canopy temperatures associated with subsoil (root zone) and soil moisture conditions. 
As soil moisture declines, canopy temperatures tend to increase due to decreases in tran-
spiration. This is depicted in a Vegetation Index-Surface minus air temperature scatterplot 
(trapezoid shaped), which enables us to separate and quantify variations in canopy tem-
perature attributed to vegetation cover from those due to changes in soil moisture status 
(Figure 12.7). In some cases, differences between canopy and air temperatures are used, 
which enables a direct coupling of the trapezoid end points to Penman–Monteith energy 
balance equations.

12.3.2.5  Fraction of Photosynthetically Active Radiation Absorbed

The fraction of fAPAR by a vegetation canopy is related to primary productivity as a func-
tion of a light-use efficiency (LUE) coefficient defining the amount of carbon fixed per unit 
radiation intercepted (Blackburn 2007):

	 fAPAR APAR/PAR= 	 (12.9)
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where APAR is the absorbed photosynthetically active radiation and PAR is the incident 
photosynthetically active radiation, which encompasses the radiation in the VIS portion 
of the spectrum.

Monteith and Unsworth (1990) showed that in theory the simple ratio of NIR to red 
reflectance, and by extension other VIs, is a unique function of the fAPAR. The NDVI has 
been found to be linearly correlated with fAPAR in field and modeling studies, across several 
biome types, and its integral over the growing season has been correlated with ecosystem 
net primary production (Asrar et al. 1984). However, such relationships are generally site- 
and phenology-dependent and become increasingly nonlinear in canopies underlain by 
darker soil backgrounds (Sellers 1987). In a Kalahari field campaign, known as SAFARI, 
field-measured fAPAR was found to be strongly linearly related with MODIS NDVI, and 
reported as, fAPAR = 0.88 × NDVI + 0.03; however, this varied distinctly between seasonal 
green-up and dry-down periods, with slopes ranging from 0.96 to 0.44, respectively 
(Huemmrich et al. 2005). In a multibiome MODIS study across North America, Sims et al. 
(2006) empirically derived a linear “green” fAPAR–NDVI relationship across different spe-
cies as fAPAR = 1.24 × NDVI – 0.168.

A significant proportion, up to 40%, of incident PAR may be absorbed by nonphoto-
synthetic elements of a canopy, such as woody or senesced plant material (Asner et al. 
2000). Using MODIS data and a coupled leaf-canopy radiative transfer model (PROSAIL-2), 
Zhang et al. (2005) separated fAPAR into canopy, leaf, and chlorophyll components and 
found MODIS NDVI best approximated total canopy fAPAR, while MODIS EVI was more 
closely coupled with fAPAR associated with chlorophyll. They noted that only chlorophyll 
fAPAR is used for photosynthesis and therefore useful in quantifying primary production. 
This was also demonstrated by Xiao, Zhang et al. (2004) and Xiao, Hollinger et al. (2004) in 
studies on broadleaf and needle-leaf forests with seasonal MODIS data, suggesting a close 
relationship of EVI with the chlorophyll content of the canopy.

12.3.2.6  Surface Roughness

Laser altimetry, or lidar (light detection and ranging), is an emerging remote sensing tech-
nology that directly measures a 3D representation of the surface structure and roughness 
and maps the 3D spatial patterns of vegetated canopies (Figure 12.8). The basic measure-
ment made by a lidar sensor is the distance between the sensor and the target surface, 
determined by the elapsed time between the emission of a laser pulse and the arrival of 

Peruvian amazon (Carnegie Airborne Observatory)

Figure 12.8
(See color insert following page 426.) Example of airborne lidar for mapping the three-dimensional properties 
of canopy surfaces (Adapted with permission from Macmillan Publishers Ltd., Tollefson, J., Nature 461:1048, 
copyright 2009.)
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the reflection of that pulse (Lefsky et al. 2002). Lidar can increase the accuracy of biophysi-
cal retrievals by directly measuring the 3D structure of plant canopies as well as subcan-
opy topography, thereby producing highly accurate estimates of vegetation height, cover, 
and landscape stability (Anderson and Croft 2009). There have been many recent studies 
integrating airborne lidar with hyperspectral imagery for forest disturbance, selective log-
ging, and the spread of invasive species and associated biochemical alterations (Asner and 
Knapp 2008; Tollefson 2009).

The BRDF has also been used to characterize the structure and spatial heterogeneity 
of landscapes. The BRDF specifies the reflectance behavior of a surface and scattering as 
a function of view and illumination angles for a given wavelength and is a fundamental 
and intrinsic property governing the reflectance behavior of a surface. The anisotropy of a 
BRDF signal varies with the biophysical properties of the canopy (Fv, LAI, LAD), specular 
and diffuse reflection of leaves, and different types of shadows cast by the surface. Even a 
relatively bare surface soil exhibits a range of BRDF behaviors associated with soil microre-
lief, compactness, and smoothness, resulting in corresponding variations in specular and 
diffuse reflection (Anderson and Croft 2009).

In vegetated canopies, surface and volume scattering components are in the BRDF sig-
nal and gap-driven BRDF signals from forested canopies. BRDF profiles can be measured 
with field goniometer systems such as the PARABOLA or obtained from wide viewing 
and multiangular satellite sensors, as in MODIS and MISR (Diner et al. 1991). The BRDF 
properties of a canopy will influence the reflectances derived from satellite sensors with 
important implications for the interpretation of time-series composited satellite products 
(Shuai et al. 2008). Generally, sensor view geometries in the forward scatter direction will 
detect more canopy shade and will be darker relative to the backscatter measurement that 
views more of the sunlit portion of canopies.

12.3.3  Pedosphere

Soils are an integral part of an ecosystem and its functioning, and they function as the 
Earth’s geomembrane, regulating biogeochemical and hydrologic cycles of matter and 
energy within terrestrial ecosystems. The soil body is sometimes referred to as the pedo-
sphere and exhibits great spatial variability as a result of the interactions of climate, topog-
raphy, parent material, and organisms acting on it over time. With the majority of the 
Earth’s terrestrial surface classified as “open canopies,” there is an appreciable soil surface 
signal present in most satellite imagery, providing information about soil degradation and 
erosional processes, salinity, crust formation, organic matters, soil moisture, and texture.

EO-1 Hyperion and airborne AVIRIS imagery have been used to derive soil properties 
such as clays and carbonates that contribute to soil stability, and are therefore useful in 
quantifying vulnerability to erosion. Erosion alters the biochemical composition of the 
surface as well as its structure, and therefore, spectral signatures will vary with different 
stages of erosion (Ben-Dor et al. 2009). Hyperion data have been used in assessments of 
soil carbon and salinity, and ASTER data have been used in land degradation applications, 
gully erosion studies, and salinity detection (Anderson and Croft 2009).

Many studies have demonstrated the possibility of inferring information about a soil 
from  the spectral signatures of the overlying vegetation. This technique is known as 
geobotany and relies on the detection of anomalies in the vegetation cover to obtain infor-
mation on soil and geologic characteristics. Subsurface soil properties cannot be detected 
with air- and spaceborne remote sensing measures; however, pedotransfer functions are 
increasingly being developed to derive soil properties beneath the surface. In one study, 
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fiber-optic methods inserted into a soil profile provided soil spectral information at varying 
depths, which enabled the inference of subsoil properties from soil surface spectral mea-
surements (Ben-Dor et al. 2009).

Most remote sensing techniques used to derive soil information, however, remain unde-
veloped, and there are currently no operational remote sensing algorithms available for 
deriving soil-related data products. As noted by Ben-Dor et al. (2008), the adoption of imag-
ing spectroscopy techniques remains a new frontier in soil science, with advances limited 
by the lack of availability of operational hyperspectral sensors. Nevertheless, remote sens-
ing remains the only viable technique to map, monitor, and manage soils.

12.4  Ecosystem Functioning

Remote sensing studies of ecosystem function consider biogeochemical and water 
exchanges within the soil–plant–atmosphere system, light absorption and ecosystem 
productivity, and environmental controls and stress factors that impact vegetation physi-
ological function. Ecosystem metabolic processes include plant photosynthesis and transpi-
ration, primary productivity and decomposition, carbon and water cycles, and phenology. 
In contrast to field-based measurements of vegetation function, remote sensing provides 
measures of ecological processes across a diversity of spatial and temporal scales (Kerr 
and Ostrovsky 2003).

Gross primary production (GPP) is the amount of carbon fixed during photosynthesis 
with units of mass of carbon per unit area per time (g-C · m−2 · d−1). GPP is related to the 
amount of PAR absorbed by green vegetation multiplied by LUE; that is, the efficiency 
with which the absorbed light is used in photosynthesis (Monteith and Unsworth 1990):

	 GPP LUE APAR LUE PARAPAR= ⋅ ⋅ ⋅= f 	 (12.10)

where GPP and APAR have the same molar units (e.g., μmol · m−2 · d−1) and fAPAR is derived 
through empirical VI relationships, typically through its relationship with NDVI (Baret 
and Guyot 1991; Goetz et al. 1999; Goward and Huemmrich 1992; Gamon et al. 1995).

LUE depicts the ability of an ecosystem to convert energy into biomass, that is, the 
efficiency of carbon captured by a canopy, and it can be expressed as the ratio of GPP 
and APAR. LUE values can vary considerably across vegetation types and in response 
to the environmental controls of water, temperature, and light, and hence are quite dif-
ficult to derive. Many ecosystem models estimate LUEmax using LUT for each vegeta-
tion type and then adjust these values downward on the basis of environmental stress 
factors derived from available meteorologic information (Turner et al. 2006). The net 
primary production and photosynthesis (NPP/PSN) products are based on the Biome-
BGC (BioGeochemical) terrestrial ecosystems model. These products combine remotely 
sensed vegetation structural parameters, LAI, and fAPAR with meteorologic data sets to 
derive photosynthesis rates, turbulent energy, and mass fluxes, and subsequently GPP 
(Figure 12.9; Running et al. 2004).

MODIS EVI and LSWI have also been incorporated into LUE-productivity models, such 
as the vegetation photosynthesis model (VPM; Xiao, Zhang et al. 2004) and the vegetation 
photosynthesis and respiration model (Mahadevan et al. 2008), yielding tower-calibrated 
predictions of GPP and gross or net ecosystem exchange across evergreen and deciduous 
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forest sites in temperate North America and in seasonally moist tropical evergreen forest 
in the Amazon (Xiao, Zhang et al. 2004; Xiao, Hollinger et al. 2004; Xiao et al. 2005).

	 GPP (LUE ) PARmax APAR= ⋅ ⋅ ⋅ ⋅ ⋅T W P f 	 (12.11)

where fAPAR is derived from EVI, and LUEmax is multiplied by temperature (T), moisture 
(W), and phenology (P) scalars. LSWI is used to adjust the scalars with respect to changes 
in canopy and soil moisture status. Potter et al. (2007) input MODI EVI data into the NASA 
CASA (Carnegie Ames Stanford Approach) model and found modeled outputs enabled 
prediction of peak growing season uptake rates of CO2 in irrigated croplands and in moist 
temperate forests.

Several researchers have proposed the use of narrowband spectral indices as a direct 
measurement of LUE to avoid land-cover generalizations and reduce uncertainties in 
modeling efforts. The PRI is a normalized difference ratio of two narrow wavelengths, 
one at ∼531 nm and a second reference band at 570 nm, that provides a scaled LUE (Gamon, 
Serrano, and Surfus 1997). Reflectance variations at 531 nm have been associated with 
the conversion of xanthophyll pigments from an epoxidized (violaxanthin) state to a 
de-epoxidized (antheraxanthin and zeaxanthin) state as a way of dissipating excess light 
energy to protect the photosynthetic apparatus (Drolet et al. 2008). Xanthophyll pigment 
composition is therefore closely related to the photosynthetic LUE (Blackburn 2007).

PRI has been computed from MODIS ocean color narrowband reflectances and is found 
to be well correlated with daily net primary productivity in a temperate deciduous forest 
(Drolet et al. 2005). Other narrowband spectral techniques are also being studied for dis-
cerning photosynthetic efficiency and LUE, including certain spectroscopic approaches 
and “red-edge” reflectance indices that have performed better than PRI (Gitelson et al. 
2009). Chlorophyll fluorescence (ChlF) is another indicator of photosynthetic function 
that can be extracted from high-resolution reflectance spectra at canopy and ecosystem 
scales. Overall, more research is needed in the use of narrowband hyperspectral data to 
better understand photosynthetic efficiency at the ecosystem level and its role in limiting 
carbon uptake.

0 200 400 600 800 1000 1200 Barren Urban Water
Mean NPP (2000−2006) gC/m2/yr

Figure 12.9
(See color insert following page 426.) MODIS annual NPP global product averaged for the years 2000–2006 
(From Running, S., Numerical Terradynamic Simulation Group. http://www.ntsg.edu. Accessed September 
2010. With permission.)
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Remote sensing has also been used to directly generate independent measures of veg-
etation processes without considering LUE or fAPAR. Rahman et al. (2005) used MODIS EVI 
to directly estimate GPP, rather than attempt to derive LUE and estimate fAPAR. They ana-
lyzed 10 AmeriFlux tower sites over a wide range of biome types and found that MODIS 
EVI alone  was able to estimate GPP with relatively high accuracy and without the need 
for meteorologic data or direct estimation of LUE (Figure 12.10a). Sims et al. (2006) further 
noted that the relationship between tower GPP fluxes and MODIS EVI was stronger for 
deciduous forests and weaker for evergreen sites; however, the EVI was able to estimate GPP 
with relatively high accuracy across many sites and without directly considering LUE, thus 
simplifying carbon balance models over most vegetation types. Yang et al. (2007) developed 
a continental-scale measure of GPP by integrating MODIS EVI and AmeriFlux data using an 
inductive machine learning technique called support vector machines (SVM).

Strong linear relationships between MODIS EVI and tower-calibrated GPP measure-
ments of seasonal carbon fluxes were also found in high-biomass tropical forests in the 
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Figure 12.10
Relationships of MODIS greenness with Fluxnet tower measures of (a) GPP and (b) Et at MaeKlong and La Paz 
sites, respectively. (From Agric for Meteorol, 148, Huete, A.R. et al., Multiple site tower flux and remote sensing com-
parisons of tropical forest dynamics in Monsoon Asia, 748. Copyright (2008), with permission from Elsevier; From 
Huete, A.R. et al., Applications of the MODIS sensor for monitoring terrestrial land cover, ed. J. Maas, Instituto 
Nacional de Ecologia, Centre de Investigaciones en Geografia Ambiental, Mexico, 2010. With permission.)
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Amazon and Southeast Asia (Huete et al. 2006; Huete et al. 2008). With this seasonal 
synchrony of EVI with tower GPP, Ichii et al. (2007) constrained the Biome-BGC ecosystem 
model with MODIS satellite EVI values and mapped the spatial variability in the rooting 
depths of forest trees over the Amazon, improving the assessments of carbon and water 
and energy cycles in tropical forests.

VIs are also used to estimate canopy foliage properties for use in surface energy balance 
and soil–vegetation–atmosphere transfer models and also in combination with ground 
data to directly estimate Et. Combined remote sensing and in situ tower flux measure-
ments have also yielded close relationships with water fluxes (Figure 12.10b). With the aid 
of an SVM model, Yang et al. (2006) derived continental-scale estimates of Et by combin-
ing MODIS data with eddy covariance flux tower measurements and found MODIS EVI 
to be the most important explanatory factor in their estimates of Et (root mean square of 
0.62 · mm · d−1). Nagler et al. (2005) reported seasonal Et measurements at flux tower sites 
in semi-arid upland grass, shrub, and riparian communities in Arizona and New Mexico 
to be strongly correlated with MODIS EVI (r = 0.80–0.94). Seasonal VI profiles tend to track 
tower Et fairly well when transpiration dominates water fluxes and soil evaporation is 
minimal, such as in riparian areas and during interstorm periods in upland sites, because 
the VI values would not be able to detect soil evaporation contributions to total canopy Et 
following precipitation events (Glenn et al. 2007).

The high correlation between VIs and tower fluxes in so many different ecosystems 
may seem surprising because, in theory, CO2 and water exchanges are controlled in part 
by stomatal resistance and related not just to canopy properties but also to environmen-
tal variables (PAR, soil moisture, air temperature, vapor pressure deficit, wind), which 
can vary considerably over short periods. However, as reviewed by Glenn et al. (2008), 
ecological processes tend to adjust plant characteristics (e.g., foliage density) over periods 
of weeks or months to match the capacity of the environment to support photosynthesis 
and maximize growth. This is known as the resource optimization theory (Field et al. 
1995), which treats photosynthesis and plant production as integrators of resource avail-
ability. Leaves are expensive to produce and maintain, and so when plants undergo water 
or nutrient stress, or are exposed to unfavorable conditions, they reduce their leaf area to 
use resources more efficiently.

Monteith and Unsworth (1990) noted that VIs can legitimately be used to estimate the 
rate of processes that depend on radiation absorbed by the leaves (Ra), such as GPP and 
transpiration (T), whereas the relationship of LAI or Fv to Ra is strongly nonlinear and 
depends on leaf architecture and spectral properties. Although there is often a lack of 1:1 
correspondence between VIs and canopy attributes such as LAI or Fv, this does not com-
promise the utility of VIs in predicting physiological processes such as transpiration and 
photosynthesis, which are primarily driven by light absorbed by leaves (LAI) at the top 
of canopy (Glenn et al. 2008). Sellers (1987) similarly concluded that VIs may be more 
indicative of biophysical processes, such as GPP and T, and less reliable predictors of LAI 
and Fv. In summary, remote sensing is most commonly used to generate maps of vegeta-
tion “state” properties (LAI, Fv, fAPAR) that are then utilized in productivity and hydrology 
models, along with meteorologic parameters. On the other hand, remote sensing can also 
be used to directly provide independent estimates of water and carbon fluxes, which can 
then be used to constrain models in both spatial and temporal domains.

There remain many challenges on how best to integrate spatially extensive satellite 
data with local tower measures from multiple sites for regional scaling, modeling, and 
predicting vegetation processes in response to climate variability (Running et al. 1999). 
High temporal frequency and coarse resolution satellite data, such as MODIS, are critical 
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to achieving greater sensitivity to seasonal landscape patterns; however, such data may 
be too coarse, spatially, to adequately define heterogeneous landscapes. Li et al. (2008) 
found that the source area influencing the tower measurement, in heterogeneous semi-
arid landscapes, was poorly resolved by the size of the satellite pixels. This affected the 
interpretation of spatial variations of land surface fluxes over heterogeneous areas and 
the evaluation of the performance of the land surface model. Other challenges include the 
need to assess autotrophic and heterotrophic ecosystem respiration and the efficiency of 
conversion of assimilate into growth. To improve remote sensing of ecosystem function-
ing, both spectral and temporal data are needed, and in the hyperspectral domain, more 
knowledge is needed on key spectral bands diagnostic of physiological function, water 
status, and carbon exchange.

12.5  Phenology

Phenology is the study of the timing of recurring biological events, which can include 
the timing of budbreak, flowering, pollination, leaf flushing and extension, maturity, and 
senescence within canopies. Phenology is an integrative science for exploring vegetation 
responses to environmental controls, and as such, represents a critical biological response 
to climate change (Schwartz, Ahas, and Aasa 2006; Morisette et al. 2009). Variations and 
shifts in phenology influence biogeochemical processes, photosynthesis, water cycling, 
soil moisture depletion, and canopy physiology. Thus, there is much interest in charac-
terizing seasonal cycles within and across ecosystems and understanding the impact of 
changes in phenology on ecosystem functioning. We can further suggest that an accurate 
representation of the seasonal dynamics of ecosystem functioning is a prerequisite to driv-
ing ecosystem productivity models and predicting future interannual trends and changes 
resulting from climate change and land-use impacts.

Remote sensing enables the synoptic and repetitive monitoring of vegetation for investi-
gating landscape phenology at regional and continental scales. High temporal frequency 
satellite time-series data, such as MODIS, AVHRR, and SPOT-VGT, have been extensively 
used for long-term analysis of biome-dependent responses to climate warming (Zhang 
et al. 2004). Remote sensing provides spatial and spectral depictions of phenological-event 
timing, event value, direction and rates of change, and integrated time between events 
(Figure 12.11; White et al. 2009; Zhang et al. 2003; Jenerette, Scott, and Huete 2010). Most 
often, VIs are used to depict vegetation seasonal activity, and there is currently a 30+ year 
record of AVHRR NDVI data available for phenology studies at 5–8 km spatial resolu-
tion. MODIS has a 10+ year satellite phenology product derived from EVI and available at 
0.250–1 km resolutions (Zhang et al. 2003; Liang and Schwartz 2009). An example of a maxi-
mum greeness date phenology map derived from MODIS EVI is depicted in Figure 12.12).

The seasonality of ecosystem metabolism in temperate forests is dominated by an active 
growing season that transitions into a dormant season in which metabolism substantially 
slows. However, in tropical forests, seasonality is not so obvious, and controls on phenol-
ogy are not well understood. For example, recent MODIS phenology studies in tropical 
areas have found positive greening vegetation responses to seasonal drying (Huete et al. 
2006; Myneni et al. 2007) and interannual drought (Saleska et al. 2007), which suggest 
these tropical forests are light-limited and respond to increased dry-period light availabil-
ity. Tropical rainforests present challenges to remote sensing due to the near ubiquitous 
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presence of clouds and high LAI levels that cause saturation in the photosynthetically 
active and chlorophyll-sensitive spectral region. Other ecosystems also present chal-
lenges in remote sensing of assessments of phenology. Savannas are very complex due 
to multiple physiognomies of mixed woody-herbaceous systems (shrub, grass, and trees), 
each with phenologies responding to different environmental controls (Ratana, Huete, 
and Ferreira 2005). Arid regions exhibit high-frequency rainfall pulse events that are 
spatially heterogeneous and have weak vegetation spectral signals (Jenerette, Scott, and 
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Huete 2010; Okin et al. 2001). Similarly, northern latitude regions have very strong and 
highly variable snow background signals that complicate the interpretation of remote 
sensing of phenology.

There are many factors that confuse the assessment of ecosystem phenology with remote 
sensing data. Foremost is the issue of clouds, aerosols, and view/sun angle effects, which 
contaminate the remotely sensed signal (Los et al. 2005). Despite various compositing and 
filtering schemes, coarse resolution satellite data remain noisy and need to be carefully exam-
ined for both systematic and random errors. During humid periods, cloud cover restricts the 
availability of good quality satellite data, whereas in the dry season, aerosols from biomass 
burning may pose problems. As a result, different satellite products from the AVHRR and 
MODIS instruments show variable and inconsistent seasonal patterns over tropical rainfor-
ests, with some products showing canopy drying in the dry season while other products 
show greening and a positive response to drought. Large inconsistencies have been reported 
in cross-comparisons of satellite products (including MODIS, SPOT-VGT, and AVHRR) for 
tropical evergreen broadleaf forests (Garrigues et al. 2008), and inconsistencies have been 
reported among MODIS products and field LAI observations (Doughty and Goulden 2008).

12.6  Conclusions

In this chapter we have highlighted some important advancements in the assessments 
and studies of ecosystem structure and functioning from space. Remotely sensed mea-
sures of green foliage density and vegetation dynamics are powerful tools for assessing 
the physiological status of vegetation and for monitoring ecosystem processes related to 
light absorption, in particular canopy photosynthesis, primary production, phenological 
greening and browning, and plant transpiration. However, there exist important trade-offs 
and compromises in characterizing ecosystems from space related to the spatial, spectral, 
and temporal capabilities of the imaging sensors. Multiple sensor systems with appropri-
ate combinations of spectral, spatial, and temporal resolutions are needed to improve the 
remote characterization of ecosystem structure and function.

High temporal frequency measurements are important in obtaining the sufficient cloud-
free data necessary to sample phenological variations. Even in arid regions, cloud-free 
satellite imagery may be difficult to acquire during the short growing season due to the 
sporadic rainfall and clouds that accompany vegetation activity. However, high temporal 
frequency satellite data are spatially too coarse to adequately resolve complex ecosystems 
and highly heterogeneous landscapes and fragmentation patterns associated with distur-
bance and land-use activities.

Spatial patterns of ecosystem variability are best defined at fine (<1 m) and moderate 
(<30 m) resolutions. There is normally an enormous mismatch between leaf- and species-
level ecological variables and satellite spatial resolutions that render it difficult to validate 
satellite-derived products. Lastly, most satellite sensors measure ecosystem characteristics 
and monitor phenological events from broadband reflectances that are limited in their 
ability to capture fine chlorophyll and biochemical spectral variability corresponding to 
multispecies canopies, leaf age spectral variations, and variable plant stress responses. 
Hyperspectral remote sensing measurements add spectral fidelity to extract important 
biochemical canopy features of ecosystems that can potentially be useful in characterizing 
species and functional types (Sanchez-Azofeifa and Castro 2006).
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Hyperspectral remote sensing combined with high temporal frequency satellite mea-
surements provide powerful monitoring tools for characterizing landscape phenology 
and ecosystem processes. Hyperspectral imagery provides fine spectral and spatial detail 
that improves detection of land-cover types and physiognomies, while coarser resolution 
sensors, such as MODIS, provide frequent temporal measurements for obtaining more 
complete phenology profiles. The important advancements being made in surface sen-
sor networks, such as Fluxnet, will further offer well-calibrated, time-series-based in 
situ data sets, for a more thorough validation and characterization of satellite ecology 
products. Finally, the upcoming potential launches of new hyperspectral missions, such 
as Hyperspectral Infrared Imager (HyspIRI) and the NPOESS Visible/Infrared Imager 
Radiometer Suite (VIIRS), as well as lidar missions and hyperspatial sensors, such as the 
recently launched DigitalGlobe’s WorldView-2, will greatly expand ecosystem studies and 
provide new opportunities and challenges for multisensor data fusion and the scaling 
and extension of leaf physiologic processes and phenology from species and ecosystem to 
regional and global scales.
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13
Remote Sensing of Live Fuel Moisture

Stephen R. Yool

13.1  Introduction and Background

Pyrogeography (i.e., the geography of fire) is a multidimensional subfield of geography 
concerned with the study of the complex space–time interactions between fire and people. 
Humans have always been the keepers of the flame; thus, pyrogeography is, true to its 
geographic roots, integrative, spanning the physical, biological, and social sciences (Yool 
2009). In this chapter, we consider that humans can use remote sensing technology as a 
tool to understand and monitor how climate dynamics mediate planetary pyrogeography 
and to manage fuels under changing climate conditions. We believe that such information 
is key to the long-term security of human systems and ecosystems.
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13.1.1  Problem Statement

Climate warming and earlier springs have increased fire activity significantly in the 
fuel-laden forests of the western United States (Westerling et al. 2006). Coincidental expan-
sion of the wildland–urban intermix has increased the probability of ignitions in these 
fire-starved forests. Ignition probabilities are mediated chiefly by variations in the interan-
nual precipitation and topography (slope, elevation, and aspect), which affect live and dead 
fuel moistures. The diversity of microclimates within rugged-montane landscapes chal-
lenges conventional applications of the normalized difference vegetation index (NDVI) 
as a proxy for live fuel moistures, limiting fire management to broad-scale fire seasons 
(i.e., large areal extents over intervals of months). In this chapter, we explore the complex 
space–time variability in live fuel moistures. Our chief aim is to review current research 
on remote sensing for monitoring live fuel moistures, present a new monitoring metric, 
and use a case study and field data for validation.

13.1.2  Chapter Organization and Preview

In this chapter, we use NDVI time-series data from the 1-km resolution Advanced Very 
High Resolution Radiometer (AVHRR) to introduce the fuel moisture stress index (FMSI). 
We also used the free online U.S. Geological Survey AVHRR maximum value composite 
(MVC) product, which is compiled every 10–14 days. The FMSI is the inverse z-score of 
the multitemporal NDVI MVC; thus, it has a nominal spatial resolution of 1 km2. We show 
that the FMSI predicts the length of the fire season for each 1-km2 area with a temporal 
resolution of about 2 weeks. We begin with a review of live fuel moisture metrics, starting 
with the NDVI. We discuss NDVI advantages, summarize the debate regarding the NDVI, 
and then describe the shortwave and thermal infrared spectra as other useful moisture 
metrics. In Section 13.2, “Data and Methods,” we introduce FMSI development and imple-
mentation. Validation appears in Section 13.3, Results and Discussion, followed by the 
summary and conclusions in Section 13.4.

13.1.3 L ive Fuel Moisture Metrics: The NDVI

The NDVI, which was developed in the early 1970s, is an established metric for vegeta-
tion conditions and is the most well-known, well-used, and well-debated metric in remote 
sensing science. The NDVI is produced by dividing the difference with the sum of the 
reflectances from the near infrared (NIR) and red spectral bands (Rouse et al. 1974):

	 NDVI NIR red NIR red= − +( )/( )ρ ρ ρ ρ 	 (13.1)

producing values from –1 to 1 (positive values indicate greater “greenness” and negative 
values indicate lesser “greenness”). The NDVI is not a direct measure of vegetation mois-
ture content, but it measures photosynthetic activity and cell turgor, both of which have 
a strong relationship with internal plant moisture. The internal structure characteristics 
of hydrated plant leaves have been shown, for example, to reflect NIR radiation strongly, 
but as the vegetation loses moisture, the NIR reflectance decreases, due possibly to the dif-
ference between the index of refraction of air and water occupying the space within these 
cells (Chuvieco et al 2002). As the vegetation cures (dries), red reflectance rises and NIR 
reflectance falls, decreasing the NDVI.
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13.1.4  NDVI Advantages

There are multiple advantages to adopting the NDVI for live fuel moisture modeling, and 
particularly the NDVI from the AVHRR. AVHRR “sees” the world twice daily and pro-
vides a nearly complete stream of biweekly maximum value composites (MVC) data that 
span 1989 (start of MVC data record) to the present. Although we detected no obvious 
radiometric bias in the AVHRR time series selected for our protocols (i.e., no drifting of 
the mean NDVI), we should note that the quality of the NDVI time series can be limited 
by the orbital drift of the platform (Trishchenko, Cihlar, and Li 2002). AVHRR NDVI pixels 
also have a comparatively coarse nominal spatial resolution (1 km2), limiting analyses to 
broad landscape-scale dynamics. The sacrifice of fine spatial resolution, however, favors 
access to landscape-scale fuel conditions and also opens data accessibility; small file sizes 
facilitate image processing on less powerful computers. Moreover, we believe that AVHRR 
is useful to monitor fire hazards broadly because climate affects fuel moisture variations 
at broad spatial scales.

13.1.5  NDVI Debate

There is noteworthy debate about the merits and demerits of the NDVI as a proxy for the 
vegetation moisture content. Leblon (2001) provides a comprehensive overview of stud-
ies using the NDVI for live fuel moisture monitoring. Multiple studies have confirmed a 
functional relationship between the NDVI and the moisture condition of grasses, shrubs, 
and forest understory species (Paltridge and Barber 1988; Chladil and Nunez 1995; Alonso 
et al. 1996; Deshayes et al. 1998; Burgan, Klaver, and Klaver 1998). However, the relation-
ship between the NDVI and reflectance from canopies of conifer forests has not been well 
characterized (Hardy and Burgan 1999). This is likely due to the number of complex factors 
contributing to the spectral response of each pixel within a mixed conifer forest, including 
diverse species and morphology, as well as the obscuring of the understory by the over-
story signal, which may have a very different moisture condition (Eidenshink, Burgan, 
and Hass 1990; Hardy and Burgan 1999; Leblon 2001). One potential solution to control 
such variability, which we feature in this chapter, is to measure the relative NDVI flux 
of each conifer canopy over time; the 1-km grid cell serves to “self reference” each cano-
py’s characteristics (e.g., species, morphology), isolating distinctive canopy characteristics 
through time.

13.1.6  NDVI Distortions

One particular difficulty in applying the NDVI to fuel moisture monitoring is the distor-
tion of the signal by rock and bare soil when biomass density varies significantly across 
time within a given pixel. Consider two scenarios, A and B, shown in Figure 13.1, which 
illustrates a highly schematized canopy as viewed by a sensor over three seasons. Scenario 
A, season 1, shows a healthy tree that becomes a moisture-stressed tree in season 2 and 
then returns to health again in season 3. In scenario A, the resulting NDVI signal accurately 
quantifies the rise and fall of stress within the constant population. Scenario B, season 1, 
shows a single healthy tree. In season 2, a number of other healthy plants have sprouted 
to fill the scene. In season 3, a drought causes stress in this new larger population. But the 
NDVI signal indicates that season 3 is in less stress than season 1, because the new stressed 
foliage filling in the canopy results in a higher NDVI value than the unvegetated soil that 
surrounds the single lush plant in season 1 of scenario B. Techniques have been suggested 
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to handle the signal distortion by bare soil, including the noteworthy soil-adjusted veg-
etation index (SAVI) and its derivatives (Huete 1988). SAVI requires an estimate of soil 
background cover to be most effective. The NDVI MVC lacks the spectral resolution for 
SAVI and at 1 km the NDVI MVC product averages the dominant surface covers; it is as 
such the most practical, economical, and understandable product for fire researchers and 
managers.

13.1.7 R elative Greenness: An NDVI-Based Indicator of Live Fuel Moisture Stress

The relative greenness (RG; Burgan and Hartford 1993) and departure from average (DA; 
Hartford and Burgan 1994) indices were developed to produce a measure of fire poten-
tial in live fuels that is made comparable from one pixel to another by relating current 
NDVI observations to a historical range or mean. RG compares NDVI maximums and 
minimums for the same period (i.e., from 1989 to the start of the MVC data record) to the 
current NDVI value:

	 RG NDVI since1989 max since 1989 si= − −( min )/( min nce 1989) 	 (13.2)

DA divides the current NDVI value by the mean for the same period since 1989:

	 DA NDVI/mean NDVI since1989= 	 (13.3)

In addition to indicating high or low values that are uniquely meaningful to a given pixel, 
calculating relative values over the same periods for multiple years distinguishes changes 
in NDVI, which are not due to annual phenological patterns. RG and DA related well to the 
1994 wildfires in the northern Rocky Mountains, but Leblon (2001) notes that the critical 
fire hazard threshold values are difficult to define for both indices.

1 2 3

1

a

b

2 3

1 3

2

1 3
2

+NDVI
(low
stress)

NDVI vs. season

−NDVI
(high
stress)
+NDVI
(low
stress)

−NDVI
(high
stress)

Healthy vegetation
Stressed vegetation

Figure 13.1
The population variability problem. Soil and background signal can distort the NDVI signal when biomass 
density changes within a pixel.
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13.1.8  NDVI Alternatives

Previous work established the importance of the thermal infrared, which when combined 
with the NDVI data produced a negative slope that characterized the range of vegeta-
tion water content (Nemani and Running 1989; Sandholt, Rasmussen, and Andersen 2002; 
Dupigny-Giroux and Lewis 1999). Dupigny-Giroux and Lewis (1999) found good relation-
ships between plant moisture, NDVI, and surface temperature using Landsat, but reported 
that these relationships did not hold for coarser resolution AVHRR data. Ceccato et al. 
(2001) described why most surrogates for vegetation water content (e.g., vegetation stress 
indices, curing and chlorophyll content) cannot retrieve the water content at the leaf level, 
using instead a combination of shortwave infrared (SWIR) and NIR. Bowyer and Danson 
(2004) reported related work that the leaf area index, fractional vegetation cover, and solar 
zenith angle influence the longer SWIR wavelengths more than the shorter SWIR wave-
lengths and NIR, concluding that useful empirical relationships between the vegetation 
moisture content and remotely sensed vegetation indices are possible. Although we had to 
rule out the SWIR because the AVHRR carries no SWIR bands, we conducted experiments 
to test the relationships between AVHRR NDVI and thermal infrared bands. Our results 
for the AVHRR were consistent with those reported for AVHRR by Dupigny-Giroux and 
Lewis (1999). Because we wanted our protocols to be as portable as possible, we took the 
conservative position of using the NDVI as the exclusive metric for fuel moisture stress.

13.2  Data and Methods

13.2.1  Study Regions

Fire season length depends in part on moisture variations in live vegetative fuels (grasses, 
shrubs, trees) as mediated by the precipitation, temperature, topography, and winds. We 
will feature the data from three montane regions in southeastern Arizona: (1) the Catalina-
Rincon Mountains, (2) the Chiricahua Mountains, and (3) the Huachuca Mountains 
(Figure 13.2). Southeastern Arizona is characterized by a classic basin and range topogra-
phy, with numerous mountain ranges or sky islands studding a relatively level plain that 
rises from about 914 m at the base of the Catalina-Rincons to about 1524 m at the base of 
the Huachucas. The Catalina-Rincon site spans the largest range of elevation of the three 
regions, whereas the Chiricahuas and Huachucas have higher base elevations and give 
rise to higher peaks.

The annual precipitation pattern in this region is bimodal, with high intensity “mon-
soon” rains occurring in July and August, when moisture from the tropical regions of 
Mexico and the Gulf of California is drawn into Arizona. Longer duration precipitation is 
supplied by fronts and synoptic scale disturbances during the winter months of December 
and January, giving rise to snow occurring at higher elevations. Arid conditions may per-
sist from March through July at lower elevations. This arid fore-summer cures fuels, which 
are especially susceptible to ignition by lightning strikes early in the monsoon season.

The large range of elevation and rugged terrain found over these regions supports a rich 
biodiversity. Vegetation type “transitions” from desert scrub or grassland at the base of sky 
islands up to forests of mixed conifer and subalpine fir. As far back as the nineteenth cen-
tury, the concept of “life zones” was developed by C. Hart Merriam, who identified climate/
vegetation relationships in the San Francisco Peaks in northern Arizona (Merriam 1890). 
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Forrest Shreve documented relationships between vegetation and climate with changing 
elevation and topography in the Catalinas (Shreve 1915). Later workers confirmed that 
major vegetation communities form a sequence of zones where the elevation and aspect 
create favorable microclimates (Brown 1994; Whittaker and Niering 1964, 1968).

13.2.2  Fuel Moisture Stress Index

We used the U.S. Geological Survey NDVI MVC product to develop the FMSI. The maxi-
mum NDVI is selected from each (roughly) two week period of daily observations, pro-
ducing an MVC image for each pixel over this interval. The effects of clouds, directional 
and off-nadir viewing effects, atmospheric attenuation, sun angle, and shadow effects 
are minimized in MVC images (Holben 1986). The NDVI MVC is rescaled from 0 to 200 
(Eidenshink 1992). We noted that the MVC data are not error free. Hence, they must be 
screened for undetected clouds and missing data records.

We transformed NDVI values into z-scores to measure the live fuel moisture stress rela-
tive to a given pixel’s unique history (Yool 2001):

	
FMSI( )

( )
x

x= − − µ
σ 	

(13.4)
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Figure 13.2
Location of three study sites in southeastern Arizona. The Chiricahuas are located just west of the Arizona/
New Mexico border. These shaded relief maps highlight mountains, urban areas, roads, and rivers.
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where x is the NDVI value of a pixel for a given date, µ is the mean value for this pixel for 
the same AVHRR biweekly period in all years since 1989, and σ is the standard deviation 
for this pixel for the same period in all years since 1989. We extended our work through 
2006 only due to time and data processing constraints, but note that the updated NDVI 
MVC product is available free from the U.S. Geological Survey. The period “drilldown” 
relates each period to the same period in all other years. This transformation produces the 
FMSI—the inverse of the standardized NDVI—scaled so that high FMSI values represent 
high-moisture stress.

To measure fuel condition variations throughout the fire season of each year, we pro-
duced an FMSI time series from the AVHRR NDVI MVC imagery for three sites of the 
study, which included an FMSI image for each biweekly period. Positive values of the 
FMSI indicate above-average moisture stress and negative values indicate below-average 
moisture stress. We compared the FMSI time series during the fire season with the fire 
records for our sites.

13.2.3  Defining the Fire Season across a Heterogeneous Landscape

Parameter elevations on independent slopes model (PRISM) data were used to show 
low- and high-elevation correlations between precipitation, temperature, and FMSI for 
each 1-km grid cell over southern Arizona’s April–June fire season (Crimmins 2003, pers. 
comm.). PRISM data are continuous, digital grid estimates of monthly, yearly, and event-
based climatic parameters. These data sets are used worldwide as the highest-quality 
spatial climate data. The climate data had a 4-km spatial resolution, but were autocorre-
lated sufficiently to be downscaled to 1 km for this study (Crimmins 2003, pers. comm.). 
We used a 1500-m threshold to represent the transition between grass and scrub brush 
versus the upland Madrean evergreen woodlands. We believed that the grass and brush 
fuels responded to rain or drought at shorter time scales; woody upland fuels, by contrast, 
can rely more on stored soil moisture. Results indicated that the average FMSI for April 
through June in elevations below 1500 m correlated significantly (R2 value >0.8 at 95% con-
fidence) with the preceding winter (December through March) mean precipitation anom-
aly and also to current (April through June) mean temperature anomaly. In elevations 
above 1500 m (i.e.,  the  limit of the Lower Sonoran Life Zone [Merriam 1890]), however, 
no significant correlation was found between the FMSI averaged over the months April 
through June and the preceding years (Crimmins 2003, pers. comm.).

13.3  Results and Discussion

13.3.1  Comparing FMSI Time Series to Legacy Observations

Forrest Shreve observed nearly a century ago that the arid fore-summer in and around 
the Catalinas varied in length from 16 weeks in the lower bajada to 6 weeks at 8000 feet. 
At low elevations, frost is unlikely beyond the end of February (Figure 13.3), but at high 
elevations, frost can occur as late as the end of May. The bimodal precipitation pattern 
does not change with elevation, but a slow progression of warming temperatures clearly 
proceeds upward in elevation as the spring weeks pass. FMSI trends are consistent with 
Shreve’s findings.
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Figure 13.3
(See color insert following page 426.) (a;c;e) Earliest correlating climate drivers across the three sites. 
Precipitation is most often the earliest correlating climate driver in low elevations. (b;d;f) Color-coding in this 
figure indicates (1) pixels where FMSI did not correlate significantly to either driver, (2) pixels where FMSI cor-
related first to preceding winter precipitation, (3) pixels where FMSI correlated only to precipitation, (4) pixels 
where FMSI correlated first to temperatures and (5) pixels that correlated only to temperature.
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13.3.2  Comparing the FMSI to the Fire Record

Does the incidence of wildfire expand to increasingly higher elevations as the arid fore-
summer progresses (i.e., Shreve [1915] and the FMSI consistent)? To answer this question, 
we show the fire record and corresponding box plots of these fires (Figures 13.4a and b) 
and the FMSI (Figure 13.4c). (The Coronado National Forest provided geographic informa-
tion system files on the fire activity in the Catalina-Rincon Mountains for the study period 
of record.)

Box plots provide insight to the statistical distribution of values in data by graphically 
depicting median (location), spread (dispersion), skewness, and outliers. The horizontal line 
contained within the box marks the median value (second quartile) of the data. The box 
contains the middle 50% of the data points. The difference between the upper and lower 
quartiles is known as the interquartile range, and is a measure of the variability of the data.

Figure 13.4a plots the number of wildfires >10 acres (~4 hectares). Wildfires in the three 
study sites occur at lower elevations starting in March and continue all the way through 
to July, but occurs only at higher elevations later in the season. Figure 13.4b, derived from 
Figure 13.4a, strongly suggests that the season of the most critical fuel moisture stress and 
peak vulnerability to ignition begins at different times across these landscapes, depending 
on various local factors (e.g., wind patterns and aspect), but it appears mediated chiefly by 
elevation. Area burned increased monthly (as the curing progressed to higher elevations 
and put more fuels in play), peaking in June, then falling in July with the arrival of mon-
soonal rains. Figure 13.4c depicts the FMSI representation in terms of the length of the fire 
season. The FMSI agrees with the elevation basis of curing revealed by actual fires.

13.3.3  Shreve Was Correct

We concluded that the initial poor correlations between the FMSI and the two climate 
variables in elevations above 1500 m arose because we assumed the same range of time 
for the fire season, April through June, for every pixel in the three sky island sites. But 
Shreve (1915) was correct. Before an average fire season, the FMSI can be calculated and 
a representative fire season composite map can be produced. Hence, the length of the fire 
season for each pixel in the study site must be determined.

13.3.4  Determining Length of the Fire Season for Each Pixel

We determined for every pixel in each of the three sites the strongest correlations between 
the FMSI over all possible ranges of biweekly periods between March and July, and pre-
cipitation in the preceding winter months (December through March). We also deter-
mined the strongest correlations between the FMSI over all possible ranges of biweekly 
periods between March and July, and the temperature over all possible months between 
February and July that precede or are concurrent with each range of the FMSI periods 
tested. Figure 13.5 summarizes the results.

The results showed significant (95% confidence) correlations between the FMSI and one 
or both climate variables for most pixels in each of the three sites. However, correlating 
ranges of time are often too short to be considered reasonable fire season approximations, 
and correlations between the FMSI and the two climate drivers often exist over differ-
ent ranges of biweekly periods. Precipitation correlations can extend from early March 
through July, and some number of precipitation correlations end before the earliest of 
monsoon rains, which is feasible. Nearly all temperature-correlating FMSI period ranges 
are concentrated between May and June, and some continue through July.
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Figure 13.4
(See color insert following page 426.) (a) Actual fires for the period of record covered by the FMSI. Earliest 
fires (e.g., March) occur at lower elevations in the Catalina-Rincons. The FMSI shows lower elevations remain 
vulnerable as the fire season “progresses” in elevation. By July, all elevations are vulnerable; this is evident in 
Figure 13.4b, which shows July fires span high and low elevations; and in Figure 13.4c, where the FMSI shows 
the early, sustained vulnerability of low-elevation fuels. (b) Box plot showing fire counts by elevation per month. 
The medians are the dotted lines within the box. Each box contains 50% of the values. The “whiskers” denote 
minimum and maximum values. Median fire counts tend to increase in elevation by month. (c) The length of 
fire season (LOFS) as determined by the FMSI, which shows live fuels cure later at higher elevations; fire season 
thus is later at higher elevations, and this is consistent with Figures 13.4a and 13.4b.
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When the FMSI begins to correlate with one or both climate drivers, we interpret this 
to mean that moisture resources have begun to be tapped significantly, and vegetation 
has entered its annual season of arid fore-summer survival, with increased vulnerabil-
ity to combustion. We designated the FMSI period associated with the earliest signifi-
cant correlation to either climate variable as the first period in a given pixel’s fire season. 
Correlations to the second climate variable, when they occur later in the season, could 

Winter precipitation

Arid fore-summer

Determining the temporal boundaries of one pixel’s fire season

Maximum possible fire season length
for a pixel in this climate division

First good correlation
between FMS and
antecedent season

precipitation or current
season temperatures

Average difference 
between FMS in periods 
15 and 14 indicates annual
drop in FMS at this time

This pixel’s
fire season

Monsoon
Yikes!

DMonth: J
Biweekly period:

F M A
6 7 8 9 10 11 12 13 14 15

M J J A S
5

Figure 13.5
For this pixel, the earliest significant correlation occurs in period 8, indicating the beginning of the fire season. 
The average difference between FMSI in periods 14 and 15 indicates FMSI characteristically drops in period 15 
each year, indicating monsoonal moistures usually begins alleviating fuel moisture stress by this time. Thus, 
period 14 is selected to be the last period of this pixel’s fire season.
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indicate an exhaustion stage. The earliest correlating climate driver is most often the pre-
cipitation, except in upper elevations and urbanized areas, where temperature is often the 
earliest correlating climate driver. The maps in Figure 13.3 show the earliest correlating 
climate driver for each of the three sites.

The end of the fire season should be tied closely to the arrival of the monsoon rains (typi-
cally between periods 13 and 15). We designated the last period of each pixel’s fire season 
as that period between 13 and 15 that precedes the period when the average (taken over 
all years in the dataset) FMSI difference between periods is negative and stays negative 
through period 15. This average drop in FMSI suggests that monsoonal moisture is usu-
ally effective by this time for this pixel. When no drop in value is detected, period 15 is 
assumed to be the end of the season. Lack of a drop in the FMSI could possibly be due to 
a characteristic longer lag in vegetative response to monsoon moisture and characteristi-
cally later rains in these locations. Figure 13.6 illustrates how one pixel’s fire season would 
be modeled.

13.3.5 A nnual Fire Season Fuel Moisture Stress Maps

Using the model described previously, we determined the fire season temporal bound-
aries for each pixel in each study site. To characterize a year’s fire season over a study 
site, the FMSI for that year was averaged over the range of fire season biweekly periods 

Low FMS High FMS

Figure 13.6
(See color insert following page 426.) Fire season summary map for the Catalina-Rincon site for the year 2004, 
clearly showing fire scars from the previous year’s Aspen fire in the Catalinas and the smaller Helens II fire in 
the Rincons.
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unique to each pixel in the given site. As shown in Figure 13.5, the fire season summary 
of each year for the given pixel would be found by averaging the FMSI for each year 
over periods 8 through 14. The fire season summary is a composite image in which 
pixel values represent their unique fire season means for the given year and is visual-
ized in Figure 13.6, which shows the fire season summary map of the Catalina-Rincon 
site for the year 2004. Figure 13.7 shows the chronological sequence for all years for all 
three sites.

Fire seasons begin earliest in the Catalina region, and the distribution of fire season range 
here is the most diverse of the three regions, which may be attributable to the Catalina’s 
considerable variation in land cover and elevation. Fire seasons begin later in the slightly 
higher-elevation Chiricahua region and much later in the Huachuca region, which is the 
highest-elevation region of the three study regions.

The population variability problem is very evident in fire season summary maps fol-
lowing fires. Scars from the Aspen and Bullock fires, which occurred in the Catalina-
Rincons in 2003, are still visible in the 2006 Catalina fire season summary (see Figure 
13.7). In the years following a fire, there will be markedly less photosynthetic activity. 
Depending on the degree of the burn, however, there may be lifeless biomass or no bio-
mass in a given location. As in the years following severe drought, interpretation of the 
FMSI in recently burned locations can be ambiguous because the FMSI does not distin-
guish between absent biomass and dead biomass, which presents a much greater fire 
hazard. Fire history would establish whether the FMSI is responding to live fuels under 
stress or to recent burns.

Figure 13.7 shows the fire season summaries for all three sites from 1989 to 2006. 
This chronological sequence reveals comparable trends in fuel moisture stress patterns 
among the three regions, suggesting synoptic climate forcing of live fuel moistures. Fuel 
moisture stress appears most severe in 1989–1990, 1996, 2002–2004, and 2006. The years 
with the least stress are 1993 and 1998. In general, the Huachucas appear to have had 
more stress, whereas the Catalinas appear to have had slightly less stress, than the other 
two regions.

1989

Cat

Chi

Hua
1990 1991 1992 1993 1994 1995 1996 1997

Fire season summaries in chronological sequence for the three southeastern Arizona study sites
The figure below shows 15–18 years of fire season fuel moisture stress in three sky island
regions of southeastern Arizona. Each column represents a year and each row represents a site.

Notes:
– Because satellite imagery was not available for all periods spanning March through July, the following fire season
    summaries are approximations:
 – Catalina: 1990, 1999, and 2003
 – Chiricahua: 1990, 1991, and 1999
 – Huachuca: 1990
– White pixels indicate nondata.

1998 1999 2000 2001 2002 2003 2004 2005 2006

Figure 13.7
(See color insert following page 426.) Fire season summaries in chronological sequence.
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13.3.6  Visualizing Links between the Average Fire Season FMSI and Climate Drivers

We plotted fire season summaries on a grid to show the links between the FMSI and 
climate factors (Figure 13.8). Monthly means were converted to z-scores so they could be 
compared to FMSI results, also z-scores. Climatologies, over which z-scores were calcu-
lated, were determined by examining every possible range of years to find the range that 
yields the highest count/mean of significant correlations between the FMSI and the given 
climate variable.
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Figure 13.8
(See color insert following page 426.) The FMSI/climate grid for the Catalina-Rincon study site. Fire season 
summaries for 18 years are plotted using precipitation and temperature z-scores for each year.
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The precipitation coordinate of each year is simply the mean z-score calculated over the 
immediately preceding December through March period for Arizona climate division 7; 
thus, precipitation coordinates in the FMSI/climate grids are the same for all three study 
regions. However, the values represented by the temperature axis in the FMSI/climate 
grids are weighted mean z-scores based on the ranges of months over which temperature 
correlated strongest to the FMSI over the pixels of the given study site, making the FMSI/
climate grid for each study region unique. The FMSI/climate grid for the Catalina site is 
shown in Figure 13.8.

Orange–red-colored fire season summaries cluster in the upper left (hot and dry) cor-
ners of FMSI/climate grids, whereas blue-colored fire season summaries gravitate into the 
lower right (cool and wet) corners of FMSI/climate grids. No years appear in the lower 
left (cool and dry) or upper right (hot and wet) corners of FMSI/climate grids, describing 
spatiotemporal patterns since 1989.

The noteworthy anomaly on all three FMSI/climate grids is the 2003 fire season sum-
mary, with “hot” colors that contrast sharply with nearby fire season summaries in the 
average or above-average regions. We verified with personnel at the Arizona Remote 
Sensing Center that the sudden increase in the FMSI in the fire seasons of 2002 and 2003 
was not caused by any known inconsistency in sensor calibration or imagery preprocess-
ing between 1989 and 2003. Our conclusion, therefore, is that the 2002 and 2003 fire season 
summaries accurately reported unusually severe FMSI. However, if conditions in 2003 
were not as severe as in 2000, why does the 2003 fire season summary show overall higher 
FMSI than the 2000 fire season summary? The simplest assumption is that FMSI is medi-
ated by more than just antecedent winter rains and fire season temperatures; we speculate 
here that strong seasonal winds in the region are responsible for the high FMSI values 
observed in 2003. Through anecdotal evidence, we are aware that strong winds fanned the 
2003 Aspen fire out of control. Wind thus plays such a strong role in fire behavior that it 
cannot be discounted as a possible explanation for this anomaly.

Is it possible that severe conditions occurring over a number of years in a row pushed 
vegetation populations within these landscapes over a threshold of fuel moisture stress 
“criticality”? A sequence of severe years culminating in the 2002 fire season may have 
forced large amounts of the vegetation in these landscapes beyond their survival capacity, 
such that they could not revive in the next spring despite the moister and cooler conditions 
of 2003. This is yet another example of the population variability problem. Is FMSI high in 
2003 because there is more bare dirt between living plants or because there is more dead 
biomass still standing from the previous harsh year? More field work would be required 
to answer these questions.

13.4  Summary and Conclusions

We used a standardized AVHRR NDVI time series to derive FMSI to characterize the 
vegetation moisture stress for the highly variable landscapes of three different montane 
regions in southeastern Arizona. The algorithm was developed to search (since 1989 data 
onset) for the strongest correlations between measured fuel moisture stress, winter pre-
cipitation from December through March, and temperature from March through July.

These correlations suggest a significant relationship between the FMSI and climate 
drivers. Results also support Shreve’s observations that the arid fore-summer begins 
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progressively later as elevations increase. Dependency of vegetation survival on the pre-
ceding winter precipitation and current temperature conditions is often evident early at 
lower elevations, but not until June or later at the highest elevations. In addition to the 
elevation, other microclimate factors, such as aspect, vegetation type, soil type, and so on, 
impact the fuel moisture stress in any given location.

We produced a composite map representing annual fire season fuel moisture stress for 
each year by averaging the FMSI over each pixel’s unique fire season. We plotted these fire 
season summary maps against the winter precipitation and current fore-summer tem-
peratures, depicting patterns in fuel moisture stress between 1989 and 2006. This is a short 
span of time, climatologically speaking, but as fire season summaries are added with each 
new year, longer-term climate patterns could emerge within the FMSI/climate grid. Such 
modeling efforts with current and new systems will bring us closer to understanding fire 
behavior and will empower humans to manage planetary fuel resources effectively.
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14.1  Introduction

Forest change is highly related to many surface processes of the Earth. Covering about 
40% of the ice-free land surface, forests contain nearly 80% of the total carbon estimated 
to be in the terrestrial aboveground biosphere (Waring and Running 1998). Forest distur-
bance and recovery processes are major mechanisms that determine the carbon residence 
time in the terrestrial biosphere and the net carbon flux between the biosphere and the 
atmosphere (Law et al. 2004; Hirsch et al. 2004). By shaping the landscape pattern of forest 
age and structure (Peterken 2001), forest change can affect land hydrology, climate, and 
biogeochemical processes (Band 1993; Sahin and Hall 1996; Giambelluca et al. 2000), and it 
has complex but often adverse impacts on biological conservation by threatening the habi-
tats of endangered species (DeFries et al. 2005; Zartman 2003; e.g., Kinnaird et al. 2003). 
Knowledge of forest disturbance history and recovery is therefore necessary in order to 
advance many earth science applications.

Reliable characterization of forest change requires dense time-series observations at fine 
spatial resolutions. Spatially, many disturbances caused by human activities are at hectare 
or subhectare levels, while damage caused by fires and other natural disturbances can 
range from a few hectares to hundreds of thousands of hectares or more. Temporally, they 
can be abrupt or gradual processes, depending on the nature of disturbances. Harvest, 
fire, and storm typically result in abrupt changes, while changes due to insects and dis-
eases can last several years or longer. However, forest growth is always a gradual process. 
Establishment of a forest stand always takes time, and trees continue to grow after a stand 
is established. Proper characterization of such gradual processes requires temporally 
dense observations. Furthermore, although many disturbances often result in abrupt spec-
tral changes that are relatively easy to detect using satellite images acquired before and 
immediately after each disturbance, the spectral change signals often become obscured 
and eventually undetectable as trees grow back following those disturbances (Huang, 
Goward, Masek et al. 2009; Figure 14.1). As a result, forest change products derived using 
temporally sparse observations typically have considerable omission errors (Lunetta et al. 
2004; Masek et al. 2008).

A collection of Landsat images acquired through current and previous Landsat mis-
sions (Goward et al. 2006), referred to as the Landsat record in this chapter, provides a 
unique data source for reconstructing forest change history. With the earliest Landsat 
images acquired in 1972, this record allows for assembling temporally dense image stacks 

Image
selection

High-level
preprocessing

(LEDAPS)

LTSS IRU
quality

verification

Criteria:
• Best quality
• Leaf-on season

• Updated radiometric
   calibration
• Atmospheric adjustment
• Precision registration
• Orthorectification

• Movie loops
• Temporal profiles

Figure 14.1
Major steps for developing a Landsat time-series stack (LTSS). (From Huang, C. et al. Int J Digital Earth, 2, 3, 2009. 
With permission.)
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for assessing forest change in many areas (Huang, Goward, Masek et al. 2009). The fine 
spatial resolutions of Landsat images provide the spatial details necessary for character-
izing many of the changes arising due to both natural and anthropogenic disturbances 
(Townshend and Justice 1988). Two major steps are involved in forest analysis using tem-
porally dense Landsat image stacks: (1) development of Landsat time-series stacks (LTSS) 
and (2) change analysis using LTSS. The LTSS should consist of high-quality images that 
can be readily analyzed for accurate detection of land-cover change and related phenom-
ena, a status called imagery-ready-to-use (IRU; Goward 2006). Change analysis using 
LTSS can be achieved in several ways. One is to divide each LTSS into a sequence of image 
pairs and analyze each pair using any of the existing bitemporal change detection tech-
niques (Coppin et al. 2004; Lu et al. 2004; Singh 1989). Obviously, such an approach would 
be extremely inefficient. Furthermore, bitemporal techniques cannot take advantage of 
the rich temporal information contained in the LTSS, which is particularly useful for 
characterizing land-cover and change processes. Although algorithms capable of analyz-
ing three or more images simultaneously have also been developed (Lunetta et al. 2004; 
Cohen et al. 2002; Coppin and Bauer 1996), most of them suffer shortcomings similar to 
those mentioned above. Analyzing all images simultaneously in an LTSS is an alternative 
to change analysis using LTSS. Two existing change detection algorithms belong to this 
approach. One is a trajectory-based change detection algorithm developed by Kennedy, 
Choen, and Schroeder (2007) and the other is a vegetation change tracker (VCT) algo-
rithm developed by Huang et al. (2010). The latter was developed specifically for use 
with LTSS. LTSS development and the VCT algorithm have been described separately in 
previous publications (Huang, Goward, Masek et al. 2009; Huang et al. 2010). This chapter 
intends to provide a coherent description of the entire LTSS-VCT approach, along with 
summaries of assessments of the disturbance products derived using this approach and 
two applications.

14.2  Landsat Time-Series Stack Development

An LTSS is defined as a temporal sequence of Landsat images acquired at a nominal 
temporal interval for an area defined by a path/row tile of the World Reference System 
(WRS). These images should have an IRU quality, which is defined as follows: They are the 
best available images, and they have high levels of geolocation accuracy and radiometric 
integrity. The temporal frequency of observations in an LTSS is driven by data availability 
and the temporal characteristics of the changes to be detected. For forest change analysis, 
annual or seasonal observations are desirable, but if such frequent observations are not 
available, LTSS with biennial or longer temporal intervals may also be used, especially in 
high-latitude regions where trees grow slowly. However, due to limited data availability 
and cloud contamination, the actual temporal intervals between consecutive acquisitions 
in an LTSS can be different from the nominal interval of that LTSS (example acquisition 
dates of some LTSS can be found in the study by Huang, Goward, Schleeweis et al. 2009; 
Table 14.1).

The process for developing an LTSS comprises an image selection protocol, automated 
high-level preprocessing algorithms, and IRU quality-verification procedures (Figure 14.1). 
The high-level preprocessing algorithms include updated radiometric calibration for 
Landsat-5 images, atmospheric adjustment to surface reflectance, precision registration, and 
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orthorectification. Here, the term “high level” is used to differentiate these algorithms from 
the standard correction algorithms for Landsat images (Landsat Project Science Office 2000). 
These high-level preprocessing algorithms have been implemented as fully automated 
routines in the Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) to 
facilitate batch job processing.

14.2.1  Image Selection

The main purpose of image selection is to identify high-quality Landsat acquisitions that 
are needed to constitute an LTSS. Because Thematic Mapper (TM) and Enhanced Thematic 
Mapper+ (ETM+; except the panchromatic band) images have almost identical spatial and 
spectral characteristics, they are used interchangeably in the LTSS, as in many other land-
cover change analyses (e.g., Vicente-Serrano, Pérez-Cabello, and Lasanta 2008; Lo and Yang 
2002). The following two issues need to be considered in image selection:

	 1.	A selected image must be acquired during the leaf-on season. Images acquired 
outside this temporal window are generally not suitable for forest change anal-
ysis, because leaf-off deciduous forests can be spectrally confused with dis-
turbed forest land. For each WRS path/row, the leaf-on season can be defined 
based on vegetation phenology derived using Moderate Resolution Imaging 
Spectroradiometer (MODIS) and Advanced Very High Resolution Radiometer 
(AVHRR) measurements (Schwartz, Reed, and White 2002; Zhang et al. 2003), 
which includes June to mid-September for most areas in the conterminous United 
States. This criterion can be relaxed to include May and October for the southern 
United States.

	 2.	 In order to maximize the proportion of usable pixels within each selected image, 
it should have minimal or no quality problems arising from instrument errors or 
from cloud and shadow contamination.

14.2.2 U pdated Radiometric Calibration

Radiometric calibration is part of the U.S. Geological Survey (USGS) process for producing 
standard level-1 Landsat imagery (Landsat Project Science Office 2000). For Landsat-7 
images, the ETM+ sensor has been monitored since its launch (Markham et al. 2004). As 
such, the conversion of ETM+ level-1 radiometry to at-sensor radiance is a simple mat-
ter of applying the rescaling gains and biases from the ETM+ header file to the imag-
ery. However, for Landsat-5 images, there have been many revisions to the calibration 

Table 14.1

Standard Deviation Values (Reflectance in Percentage) Used in Equations 14.4 and 14.5

Band 1 Band 2 Band 3 Band 4 Band 5 Band 7

0.80 0.582 0.617 3.575 1.214 0.768

Source:	 Huang, C. et al. Remote Sens Environ, 114, 1, 2010. With permission.
Note:	 These values were the average of those derived using images acquired in different years from 

different places.
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coefficients (Chander et al. 2004; Chander and Markham 2003; Markham and Barker 1986; 
Markham et al. 2004). Prior to May 2003, internal calibration (IC) lamps measurements were 
used to determine the gain coefficient. During the 1990s, it became increasingly appar-
ent that variations in the IC-derived gain values reflected a combination of real changes 
in sensor calibration (i.e., detector sensitivity and filter properties) and changes in the IC 
lamps themselves.

From May 2003 to April 2007, following the Landsat-7/Landsat-5 underfly experi-
ment in April 1999, a cross-calibration between ETM+ and TM was established (Chander 
et al. 2004; Teillet et al. 2004), which was used to determine the gain value for Landsat-5 
images. After April 2007, further investigations using invariant ground targets in North 
Africa suggested that the initial lookup table (LUT) had an error for the first part of the 
Landsat-5 history (about 1985–1992). Instead, records of at-sensor radiance from these sites 
suggested a more gradual decay in gain throughout the mission life. As such, Landst-5 
imagery processed after April 2007 used a revised LUT (Chander et al. 2004).

The production date of a Landsat-5 image needs to be used to determine the calibration 
that was originally applied to that image, which can then be “undone” by applying 
the reciprocal of the gain, and then the most recent LUT can be applied. Conversion to 
top-of-atmosphere (TOA) reflectance is then performed for the reflective bands using the 
scene-specific solar geometry, and sensor-specific bandpasses convolved with the CHKUR 
exoatmospheric irradiances from MODTRAN-4 (Landsat Project Science Office 2000; 
Markham and Barker 1986).

For the thermal band, the raw digital number is converted to TOA (apparent) tempera-
ture using the standard approach provided by Markham and Barker (1986) for TM images 
and by the Landsat Project Science Office (2000) for ETM+ images. For Landsat-5 images, 
however, a radiance correction to the calibration published in late 2007 needs to be consid-
ered (Barsi et al. 2007).

14.2.3 A tmospheric Adjustment to Surface Reflectance

The LEDAPS atmospheric adjustment algorithm was designed to calculate surface 
reflectance by compensating for atmospheric scattering and absorption effects on the TOA 
reflectance (Masek et al. 2006). The basic assumptions of this algorithm are that the target 
is Lambertian and infinite and the gaseous absorption and particle scattering in the atmo-
sphere can be decoupled.

Developed based on a similar method used for MODIS and AVHRR (Vermote, El Saleous, 
and Justice 2002), this approach uses the 6S (second simulation of a satellite signal in the 
solar spectrum) radiative transfer code to compute the transmission, intrinsic reflectance, 
and spherical albedo for relevant atmospheric constituents, including gases, ozone, water 
vapor, and aerosols (Vermote et al. 1997).

Ozone concentration was derived from the Total Ozone Mapping Spectrometer (TOMS) 
aboard the Nimbus-7, Meteor-3, and Earth Probe platforms as well as from the National 
Oceanic and Atmospheric Administration’s (NOAA) Tiros Operational Vertical Sounder 
ozone data when TOMS data was not available. Column water vapor was taken from 
NOAA National Centers for Environmental Prediction (NCEP) reanalysis data (available 
at http://dss.ucar.edu/datasets/ds090.0). Digital topography (1-km GTOPO30) and NCEP 
surface pressure data were used to adjust Rayleigh scattering to local conditions. Aerosol 
optical thickness was directly derived from the Landsat image using the dark, dense veg-
etation method of Kaufman et al. (1997).
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14.2.4  Precision Registration and Orthorectification

Raw satellite images usually contain significant geometric distortions arising due to a 
range of sources, including platform- and instrument-related sources, as well as those due 
to the Earth’s curvature, rotation, and topography (Toutin 2003). Beginning from late 2008, 
the USGS decided to distribute terrain-corrected (L1T) images as the standard Landsat 
imagery product. In general, no additional geometric correction is necessary for those L1T 
images because their geolocation errors are typically less than 1 pixel. Unfortunately, as 
of the writing of this chapter, this USGS standard has not been adopted by international 
ground-receiving stations. The standard systematic correction (L1G) products distributed 
by those stations can have geolocation errors of 500 m or more. This results primarily 
from uncontrolled orbital drift. Further analysis of image relief displacement as a result 
of topography has shown that at swath edges geolocation is in error by about 120 m per 
kilometer of elevation. Therefore, the LEDAPS precision registration and orthorectification 
algorithm are still needed for images obtained from international ground-receiving sta-
tions. Details of this algorithm have been provided by Gao, Masek, and Wolfe (2009).

14.2.5 L andsat Time-Series Stacks Imagery-Ready-to-Use Quality Verification

Prior to its use in downstream applications, each developed LTSS needs to be verified to 
determine whether the processed images have geometric or radiometric artifacts, which 
can result from the following:

Unidentified quality problems with the input images•	
Unknown bugs that may exist in the LEDAPS preprocessing algorithms•	
Incorrect inputs regarding the geometry or radiometry of the concerned images•	

If artifacts are found in some LTSS images, they need to be fixed, or the images contami-
nated by those artifacts need to be excluded from downstream change analysis to avoid 
resulting in spurious changes. The verification procedures include a quick visualization 
approach and a spectral–temporal profile method. Prior to verification, the images of each 
LTSS need to be clipped so that they have exactly the same spatial domain.

14.2.5.1  Image Clipping

Due to difficulties in orbital control, satellite orbits can shift slightly among repeat passes. 
As a result, several images for a single WRS location are not necessarily congruent to the 
same geographic region (i.e., they do not overlay on top of each other exactly). Therefore, 
pixels near the edge of a WRS tile can have valid values on some dates but not on other 
dates. Temporal analysis of such incomplete observations is difficult. To avoid this problem, 
a common area mask is used to exclude such observations from being analyzed. For each 
LTSS, this mask is defined as the maximal geographic area where all image acquisitions 
have valid pixel values (except the missing data area caused by missing scan lines that 
may exist in certain acquisitions), and all images of the LTSS are clipped using this mask.

14.2.5.2  Visual Verification

Visual inspection is a simple yet effective method for verifying the quality of the LTSS 
images. By flipping the images from one date to another, an experienced image analyst can 
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quickly identify inconsistencies among the images, which are often indicators of geomet-
ric or radiometric artifacts, and can gain first-hand knowledge of the change processes to 
be analyzed later. To facilitate quick visualization of the LTSS images, the clipped images 
are converted to the JPEG format (note that other visualization-ready formats can be used 
in the place of the JPEG format here), which are then assembled to create a movie loop. 
For each LTSS, a single-stretching method is used during the conversion in order to create 
comparable color tones among the images. After testing with different stretching methods, 
it was found that a single-stretching method per band could produce satisfactory visual 
effects for images acquired in most areas consisting primarily of closed or near-closed 
canopy forests. The general linear stretching equation is 

	 out_value
in_value refl_min
refl_max ref

= −
− l_min

× 255 	 (14.1)

where in_value and out_value are the input surface reflectance (%) and output stretched 
values, respectively. The single set of refl_min and refl_max applicable to most vegetated 
areas are given in Table 14.2.

In semiarid areas, some partially vegetated areas may appear saturated in bands 2 and 
3 when stretched using Equation 14.1. To avoid this problem, the following nonlinear 
stretching method is used for those two bands for images acquired in such areas (band 4 
is stretched using Equation 14.2):

	 Out value In value In value_ _ � _= × − ×13 0 15 2 	 (14.2)

14.2.5.3  Spectral–Temporal Profile

Spectral–temporal profiles can provide a more quantitative assessment of the radiomet-
ric consistency among the images within each LTSS. Such profiles are created using the 
spectral values of targets that are considered relatively stable over time. Because the pri-
mary use of the LTSS assembled here is forest change analysis, the “stable targets” in this 
context refer to conifer stands that do not have visual signs of being disturbed during the 
entire observing period of each LTSS. For each LTSS, a few examples of such stands are 
identified, and the average spectral values of those stands are calculated for each acquisi-
tion date. The values for all dates are then plotted as a function of the acquisition date. 
Figure 14.2 shows that the TOA reflectance values can vary greatly, mostly due to changing 
atmospheric conditions from year to year. Most of those variations are removed or greatly 
reduced by performing atmospheric corrections.

Table 14.2

Parameters Used in Equation 14.1 for Stretching the Surface Reflectance 
Images to Create JPEG Images for Use in the Movie Loop

Refl_min (%) Refl_max (%)

Band 2 0 15
Band 3 0 15
Band 4 2 50

Source:	� Huang, C. et al. Int J Digital Earth, 2, 3, 2009. With permission.
Note: � Only standard false color images were created using the TM/ETM+ bands 4, 

3, and 2 shown in red, green, and blue colors.
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14.3  Vegetation Change Tracker Algorithm

14.3.1  Overview of the Algorithm

The VCT algorithm is developed based on the following spectral–temporal properties of 
forest, disturbance, and postdisturbance recovery processes:

Due to light absorption by green vegetation and canopy shadowing, forest is one •	
of the darkest vegetated surfaces in satellite images acquired during the leaf-on 
growing season in visible and some shortwave infrared bands (Colwell 1974; 
Goward, Huemmrich, and Waring 1994; Huemmrich and Goward 1997; Kauth and 
Thomas 1976).
During the mid-growing season, undisturbed forests typically maintain relatively •	
stable spectral signatures over many years, while most nonforest land-cover types 
have more spectral variability, both seasonally and interannually.
Most forest disturbance events result in a sudden reduction or removal of forest •	
canopy cover and woody biomass and are often manifested by abrupt spectral 
changes.
Depending on the nature of a disturbance, the resultant change signal in the spectral •	
data can last several years or longer. This is because reestablishment of a new forest 
stand due to a disturbance takes time, or no forest stand will be reestablished if that 
disturbance results in a conversion from a forest to a nonforest land-cover type.

The algorithm consists of two major steps: individual image masking and normalization 
and time-series analysis (Figure 14.3).

Note that because VCT uses the spectral–temporal information as recorded to detect for-
est disturbances in an LTSS, the detected disturbances are not necessarily limited to those 
defined in forestry or ecology. In VCT, a disturbance refers to any event that can result in 
significant reduction or removal of forest canopy cover and woody biomass, including 
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Figure 14.2
A comparison of the temporal variability of the top-of-atmospheric (TOA) reflectance and the LEDAPS surface 
reflectance (SR) for (a) bands 1–3 and (b) bands 4, 5, and 7 for conifer stands within the WRS path 16/row 36 
LTSS that did not experience major disturbances. The LEDAPS atmospheric adjustment substantially reduced 
the temporal variability in the visible bands.
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harvest, selective logging, tree reduction for fuel treatment or other purposes, and dam-
ages due to fire, storm, insects, or diseases, although not all these events can be detected 
reliably by the current version of the VCT. Throughout this chapter, recovery, regrowth, 
and regeneration are used interchangeably, referring to the recovery process of a forest 
stand from a nonstand replacement disturbance, or the reestablishment of a new forest 
stand from a stand-clearing disturbance.

14.3.2  Individual Image Masking and Normalization

In this step, each image is analyzed individually to create initial masks for water, cloud, 
and shadow and to normalize the image using known forest samples. This step has the 
following major processes: creation of a land–water mask, identification of forest samples, 
calculation of forest indices, and masking of cloud and cloud shadow.

14.3.2.1  Land–Water Masking

Based on the known spectral properties of typical water bodies (Jensen 1996), a pixel is 
flagged as a water pixel if it has a low reflectance value in the shortwave infrared band 
(band 5) and satisfies at least one of the following two conditions:

	 1.	 It has a decreasing trend of reflectance values from the visible to the infrared bands.
	 2.	 It has a low normalized difference vegetation index (NDVI) value, where NDVI 

is calculated using the reflectance value of the red (Rred) and near-infrared (RNIR) 
bands:

	 NDVI NIR red

NIR red

= −
+

R R
R R

	 (14.3)

14.3.2.2  Identification of Forest Samples

Although the LTSS images have been corrected to achieve high levels of radiometric integ-
rity, VCT uses forest samples to further normalize image radiometry and to calculate 
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Overall data flow and processes of the vegetation change tracker algorithm. (From Huang, C. et al. Remote Sens 
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forest likelihood measures. Such forest samples are identified based on the known spec-
tral properties of forest. Specifically, dense, mature forests typically appear dark and 
green in a true color composite imagery and are among the most easily distinguishable 
features in remote sensing imagery (Dodge and Bryant 1976). As such, some of them 
can be identified reliably using histograms created from local image windows (e.g., 5 × 
5 km). Because forest pixels are typically the darkest vegetated pixels, they are gener-
ally located toward the lower end of each histogram. When a local image window has 
a significant portion of forest pixels, those pixels form a peak called a “forest peak” in 
the histogram. In the absence of water, dark soil, and other dark nonvegetated surfaces, 
which are masked out using appropriately defined NDVI and brightness threshold val-
ues, forest pixels are delineated using threshold values defined by the forest peak. Huang 
et al. (2008) described this approach in detail in their study.

14.3.2.3  Calculation of Forest Indices

The identified forest samples are used to calculate a number of indices that are indicative 
of the likelihood of each pixel being a forest pixel. Suppose the mean and standard devia-
tion of the band i spectral values of forest samples within an image are bi and SDi, respec-
tively, then, for any pixel with a band i value of bi, a forest z-score (FZi) value for the band 
can be calculated as follows:

	 FZ
SDi
i

i

b b= −
	 (14.4)

For multispectral satellite images, an integrated forest z-score (IFZ) value for that pixel is 
defined by integrating FZi over the spectral bands, as follows:

	 IFZ
NB

FZ
NB

=
=
∑1 2

1

( )i
l

	 (14.5)

where NB is the number of bands used. For Landsat TM and ETM+ images, bands 3, 5, 
and 7 are used to calculate the IFZ. Bands 1 and 2 are not used because they are highly 
correlated with band 3. The near-infrared band is not included in the IFZ calculation 
because (1) it is less sensitive to logging and other nonfire disturbances than the other 
spectral bands and (2) spectral changes in this band do not always correlate with distur-
bance events.

A major problem with using SDi calculated from forest samples within each individual 
image is that the value can vary greatly as a function of the forest type composition in 
that Landsat image. The SDi calculated this way will be low for images consisting of forest 
pixels that are spectrally similar but can be very high for images consisting of both open 
canopy forests with bright backgrounds and closed canopy forests. Such a dependency of 
the SDi and hence the IFZ on the composition of forest types within each image makes it 
difficult to develop generic change detection algorithms for use over a wide range of for-
est biomes. To mitigate this problem, the average standard deviation values derived using 
images acquired in different years from different places of the United States are used in 
Equations 14.4 and 14.5 (Table 14.2). The FZi and IFZ indices calculated using Equations 
14.4 and 14.5 have a number of appealing properties:
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IFZ is an inverse measure of the likelihood of a pixel being a forest pixel. Pixels •	
having a low IFZ value near 0 are close to the spectral center of forest samples, 
while those having high IFZ values are likely nonforest pixels (Figure 14.4).
Assuming forest pixels have a normal distribution in the spectral space, FZ•	 i 
could be directly related to the probability of a pixel being a forest pixel using 
the standardized normal distribution table (SDST; Davis 1986). As the root mean 
square of FZi, IFZ can be interpreted similarly. Specifically, over 99% of forest 
pixels likely have IFZ values less than 3. Although in reality forests may not 
have a rigorous normal distribution, and the standard deviation values used 
here are not calculated from the image of interest, such an approximate prob-
ability interpretation makes it possible to define probability-based threshold 
values that might be applicable to images acquired on different dates over dif-
ferent locations.
While deciduous and coniferous forests often have different spectral characte•	
ristics, during the growing season they have similar IFZ values that are substan-
tially more stable over time and are mostly lower than those of nonforest land-cover 
types (Figure 14.4). This observation makes it possible to detect forest changes 
using the IFZ index without knowing the forest type, although the differences 
between the IFZ values of different forest types can be greater than those shown 
in Figure 14.4 (see also Section 14.3.3.2).

In addition to the FZi and IFZ indices, the VCT also calculates a normalized burn ratio 
index (NBRI):

	 NBRI NIR

NIR

= −
+

R R
R R

7

7

	 (14.6)
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where RNIR and R7 are reflectance in the near-infrared band (band 4) and band 7, respec-
tively. NBRI is correlated with field-measured burn severity indices (Chen et al. 2008; 
Escuin, Navarro, and Fernandez 2008) and is used to improve the detection of fire distur-
bance events using VCT.

14.3.2.4  Cloud and Shadow Masking

Although the major goal of image selection in LTSS development is to minimize cloud con-
tamination due to frequent cloudy conditions in many areas, some LTSS images inevitably 
contain cloudy pixels. Cloudy pixels generally have high brightness values and low green-
ness values. If unflagged, most likely they will be mapped as nonforest regardless of the 
actual surface conditions beneath the clouds. For forest change analysis, unflagged clouds 
over forests likely will be mapped as forest disturbance. Cloud shadow over forests may 
also be mapped as disturbance, because as the spectral signature of forests under shadow 
can be quite different from that of sunlit forests. The cloud masking algorithm used in the 
VCT is based on the observation that clouds generally appear bright in reflective bands and 
cold in thermal bands and can be separated from cloud-free observations using threshold 
values defined by a set of linear boundaries in a spectral-temperature space. Once a cloud 
patch is flagged, its height is calculated using its temperature and a normal lapse rate 
(Smithson, Addison, and Atkinson 2008). The shadow location of the cloud is then pre-
dicted according to solar illumination geometry and the calculated cloud height; the dark 
pixels at or near the predicted shadow location are flagged as actual shadow. Details on 
this cloud and shadow algorithm have been provided by Huang et al. (in press).

14.3.3  Time-Series Analysis

After the masking and normalization steps are completed for all images in an LTSS, 
temporal interpolation is used to derive interpolated values for the pixels flagged as cloud, 
shadow, or another bad observation. The resultant masks and indices are then used to 
determine change and no-change classes and to derive a suite of attributes to characterize 
the changes that are mapped.

14.3.3.1  Temporal Interpolation

Pixels contaminated by cloud or cloud shadow should not be used in change analysis 
because they could result in spurious changes. However, ignoring such pixels in the analy-
sis will result in holes in the derived change products. To avoid this problem, VCT uses 
temporal interpolation to derive interpolated values for pixels flagged as cloud or shadow. 
Specifically, for each pixel masked as cloud or cloud shadow in a particular year i, the 
temporally nearest noncloud and nonshadow observations acquired before (p) and after 
(n) year i are used to calculate its value as follows:

	 x x i p
x x

n pi p
n p= + − ×
−
−

( ) 	 (14.7)

where x is any of the indices calculated in Section 14.3.2. If no noncloud, nonshadow obser-
vation can be found in the years before (or after) the current acquisition year, then the 
value for the current year is set to that of the temporally nearest noncloud, nonshadow 
observation acquired after (or before) year i. For each pixel flagged as cloud or shadow, 
temporal interpolation is applied to all the indices calculated in Section 14.3.2.
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14.3.3.2  Determination of Change and No-Change Classes

Time-series analysis of forest cover and change is based mainly on the physical interpreta-
tion of the IFZ. Because the IFZ measures the likelihood of a pixel being a forest pixel, its 
value should change in response to forest change. Figure 14.5 shows typical temporal profiles 
of the IFZ for major land-cover and forest change processes. For persisting forest land where 
no major disturbance occurred during the years being monitored (throughout this chapter 
the term “persisting” indicates that the cover type of a pixel remained the same during the 
entire observing period), the IFZ value is low and relatively stable throughout the monitor-
ing period (Figures 14.4 and 14.5a). During any year a sharp increase in the IFZ value indi-
cates the occurrence of a disturbance in that year. A sequence of gradually decreasing IFZ 
values following that disturbance represents the regeneration process of a new forest stand 
(Figure 14.5b). Conversion from nonforest to forest (afforestation) or regeneration of a forest 
stand from a disturbance that occurred before the first LTSS acquisition is documented by a 
gradual decrease in the IFZ from high values to the level of undisturbed forests (Figure 14.5c). 
While certain crops may be spectrally similar to forest and can have low IFZ values during 
certain seasons, their IFZ values likely will fluctuate greatly as surface conditions change 
from one year to another due to harvest and crop rotation (Figures 14.4 and 14.5d).

Based on these distinctive IFZ temporal profiles of different land-cover and forest change 
processes, decision rules are used to identify persisting land-cover types and to detect dis-
turbances in a sequence of steps (Figure 14.6).

Step 1: Persisting water—Pixels identified as water by the water masks created in Section 
14.3.2.1 for all acquisition years are classified as persisting water. Because some water 
bodies may be turbid during some seasons and may not be masked as water during 
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that season, any pixel that is masked as water at least half of the time and is also 
masked as water at least once during the first third of the observing period and once 
during the last third of the observing period is also classified as persisting water.

Step 2: Persisting forest—Pixels not classified as persisting water in step 1 are further 
analyzed in this step. Persisting forest pixels are characterized by having low IFZ val-
ues throughout the entire observing period. Based on the approximate probability 
interpretation of the IFZ (see Section 14.3.2.3), most forests with closed or near-closed 
canopy cover should have IFZ values of less than a threshold value of 3. In the next 
two steps, this threshold value is used to separate low and high IFZ values.

Step 3: Persisting nonforest—Pixels not classified as persisting forest in step 2 are fur-
ther analyzed in this step. While most persisting nonforest pixels have high and 
often temporally variable IFZ values, some of them can be spectrally similar to 
certain forest pixels and can have low IFZ values during a particular season of a 
year. The likelihood of most nonforest pixels to have consecutive low IFZ values 
(CLIV), however, is low (Figure 14.4). Therefore, if a pixel has a CLIV record, it was 
likely a forest pixel at least during the years when it had the CLIV record. Such a 
pixel is referred to as a once-forested pixel. Obviously, the longer the CLIV record a 
pixel has, the more likely the pixel was a once-forested pixel and less likely a per-
sisting nonforest pixel. In VCT, a minimum number of consecutive low IFZ values 
(MNCLIV) is used to determine whether a pixel is a persisting nonforest pixel or 
was once forested. A pixel is classified as a persisting nonforest pixel if its longest 
CLIV record is less than the MNCLIV threshold value.

Step 4: Disturbance detection—A pixel not classified as any of the three persisting 
land-cover classes in the previous steps should be once-forested and should have 
consecutive low IFZ values during the years when the pixel remained forested. 
A disturbance typically results in a sharp increase in the IFZ values (Figure 14.5b). 
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Major steps and decision rules used by the vegetation change tracker to determine persisting land-cover types 
and forest disturbance classes. (From Huang, C. et al. Remote Sens Environ, 114, 1, 2010. With permission.)
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Unfortunately, an increase in the IFZ can also result from noisy observations, includ-
ing unflagged cloud, shadow, and instrument- or processing-related errors, because 
these noisy observations typically have high IFZ values. With each LTSS consisting 
of carefully selected Landsat images (Huang, Goward, Masek, et al. 2009), the likeli-
hood of a pixel having unflagged data quality problems in consecutive acquisition 
years should be low. Therefore, if a pixel remained forested before and after a noisy 
observation, the noisy observation most likely will result in a spike in the IFZ tem-
poral profile, that is, a high IFZ value preceded and immediately followed by low 
IFZ values, not consecutive high IFZ values. On the other hand, most disturbances, 
especially those leading to significant losses of forest canopy and live biomass, likely 
will result in consecutive high IFZ values (CHIV).

 A conversion from forest to a nonforest land-cover type typically should result in non-
forest signals (i.e., mostly high IFZ values) in the years following that disturbance event. 
For a disturbance followed by forest regeneration, including reestablishment of urban 
trees in areas converted from forest to an urban environment, the IFZ should remain high 
until the young trees grow to a stage such that they spectrally look like forest.

Therefore, VCT uses the CHIV record following an IFZ hike to determine whether the 
increase was caused by a noisy observation or a disturbance. Only an IFZ hike followed by 
a CHIV record at least as long as a predefined minimum number of consecutive high IFZ 
values (MNCHIV) is mapped as a disturbance.

Note that open canopy forests with bright backgrounds typically have IFZ values much 
higher than those of closed canopy forests and likely will be classified as persisting nonforest 
using the IFZ threshold value of 3 as defined in step 2. To minimize this problem, for images 
consisting of both closed and open canopy forest types, steps 2 through 4 are performed 
twice. In the first iteration, the initial IFZ threshold value of 3 is used to characterize forests 
and disturbances for areas having closed canopy forests. Pixels classified as persisting non-
forest in the first iteration are reanalyzed in the second iteration, during which the IFZ thresh-
old value in step 2 is relaxed for better characterization of forest and disturbances for areas 
having open canopy forests. Based on extensive examination of various sparse forests in the 
semi-arid western United States, the IFZ threshold value is set to 6.5 in the second iteration.

Some fires, especially understory fires, do not always result in high IFZ values. The 
VCT uses the NBRI to detect fire pixels. Because fires typically result in low NBRI val-
ues (Escuin, Navarro, and Fernandez 2008), they are detected by searching for significant 
decreases in the NBRI temporal profile.

For disturbances that occurred at the beginning of the time series, there may not be a 
CLIV record that satisfies the MNCLIV criterion. Likewise, disturbances that occurred at 
the end of the time series will not have a CHIV record that satisfies the MNCHIV criterion. 
Therefore, use of the MNCLIV and MNCHIV threshold values will not allow detection of 
such disturbances. To alleviate this problem, the MNCLIV is relaxed for disturbances that 
occurred at the beginning of the time series, and the MNCHIV criteria is relaxed for dis-
turbances that occurred at the end of the time series. If a pixel reaches step 4 but its longest 
CHIV record is shorter than the MNCHIV and the CHIV record is not at the end of the 
time series, it is classified as a persisting forest.

14.3.3.3  Disturbance Characterization

For each disturbance detected by the VCT, a disturbance year and several disturbance mag-
nitude measures are calculated to characterize the disturbance. In addition, two attributes 
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are used to summarize the IFZ profile that follows the disturbance, which may be useful 
for characterizing the regeneration process that may follow each detected disturbance. 
These attributes are defined in Figure 14.7.

Disturbance year: For a typical forest disturbance, the IFZ value increases sharply 
following a CLIV record (Figure 14.5b). While the disturbance occurs somewhere 
between the acquisition dates of two consecutive images that exhibit a sharp 
increase, the disturbance year is defined by the acquisition year of the second 
image. Regeneration from a disturbance that occurred before the first LTSS acqui-
sition is indicated by an initially high IFZ value, which decreases gradually in 
subsequent years and remains low for several consecutive years (Figure 14.5c). 
This category of disturbance is called preseries disturbance.

Disturbance magnitude measures: Disturbance magnitude refers to the spectral change 
resulting from a disturbance. For the multispectral Landsat images, different dis-
turbance magnitude measures can be calculated using different spectral bands or 
indices. The VCT calculates three disturbance magnitudes, with the first calculated 
using the IFZ, the second using the NDVI, and the third using the NBRI. Figure 14.7 
shows the calculation of the IFZ disturbance magnitude. Note that other spectral 
indices, such as the band-specific FZi values or the tasseled cap indices (Crist and 
Cicone 1984; Huang et al. 2002), can also be used to calculate disturbance magnitudes. 
Further studies are needed to determine the disturbance magnitude measures that 
can better characterize the nature and intensity of detected disturbances.

Regeneration characteristics: If forest regeneration occurred after a disturbance, the 
regeneration process is tracked by a regeneration curve (Figure 14.7). This curve 
refers to the portion of the IFZ profile from the disturbance year to a target mea-
surement year later than the disturbance year, or to the year before the next dis-
turbance if that disturbance occurred before the target measurement year. Further 
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studies are needed to evaluate how this curve tracks the growing process of for-
ests in terms of biomass accumulation and height growth.

Note that in regions like the southeastern United States where certain tree species grow fast 
enough to allow more than one forest harvest during the observing period of an LTSS, some 
fields may experience more than one disturbance. In such cases, the VCT detects all distur-
bances and calculates the above-described attributes for each detected disturbance.

14.4  Algorithm Assessment and Example Applications

The LTSS-VCT approach has been used in many areas of the United States, including 
Mississippi (Li et al. 2009b), Alabama (Li et al. 2009a), and 30 locations across the United 
States where LTSS have been assembled through the North American Forest Dynamics 
(NAFD) project (Goward et al. 2008; Huang, Goward, Masek et al. 2009). The disturbance 
maps derived at selected locations have been evaluated both qualitatively and quantita-
tively. This section briefly describes the assessments of the disturbance products and sum-
marizes two applications of the LTSS-VCT approach, one for Mississippi and Alabama and 
the other for seven national forests (NFs) in the eastern United States (Figure 14.8). More 
details on the assessments of disturbance products are provided by Huang et al. (2010) and 
Thomas et al. (forthcoming), and detailed descriptions of these two applications have been 
provided by Li et al. (2009a,b) and Huang, Goward, Schleewis, et al. (2009).

14.4.1  Products Assessment

The comprehensive validation of the entire suite of VCT products as described in 
Section 14.3.3.3 was found to be extremely challenging. Linking the disturbance magni-
tude measures to changes in biomass or other biophysical variables requires pre- and post-
disturbance measurements obtained using methods that would allow reliable retrieval 
of those variables. Similarly, linking the regeneration curve to vegetation biophysical 
changes associated with regeneration processes requires multitemporal reference data sets 
on those biophysical variables. Such reference data sets will likely be scarce, especially for 
older disturbances that occurred in the 1990s and 1980s, although their availability has yet 
to be better understood. Therefore, current efforts have focused on the disturbance year 
product, including limited field assessment, visual assessment, and design-based accuracy 
assessment to evaluate VCT disturbance products.

14.4.1.1  Field-Based Assessment

The disturbance year maps have been assessed through limited field trips conducted in 
Virginia (path 15/row 34, October 2005), Mississippi and Alabama (path 21/row 37 and 
path 21/row 39, May 2007), and Oregon (path 45/row 49, July 2007). Ground data collected 
through these field trips were generally inadequate for assessing all disturbance classes. 
However,  they allowed a better understanding of the nature of the mapped disturbances 
and the processes that occurred following those disturbances. Field evidence was easy 
to find for recent disturbance events that resulted in complete or near-complete removal 
of the forest canopy, including harvest and urban development. Older disturbances that 
occurred years before the field trips and were followed by regeneration of new forest stands 
were often evidenced by the existence of young, even-aged forests, and the disturbance 
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year was roughly reflected by the height of the regenerating trees. Likely due to vigorous 
growth of understory vegetation in Virginia, Mississippi, and Alabama, evidence of less-
intensive disturbances such as storm damage, insect or disease defoliation, and selective 
logging was difficult to find in these areas. Due to slow vegetation growth under dry 
environmental conditions on the eastern side of the Cascades in Oregon, many stumps left 
from recent and old (likely >5 years) selective loggings were found during the field trip, 
and some selective loggings were mapped successfully by the VCT.

14.4.1.2  Visual Assessment

Because the spectral change signals of most forest disturbances can be identified reliably 
by experienced image analysts (Huang et al. 2008; Masek et al. 2008), especially when 
images acquired immediately before and after the occurrence of those disturbances are 
available (Cohen et al. 1998), visual inspection of the disturbances mapped by VCT against 
the input Landsat images can provide an immediate and still reliable way to evaluate those 
disturbances (Figure 14.9). Based on this observation, the VCT disturbance year maps were 
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Figure 14.8
Locations of Mississippi and Alabama as well as the seven national forests that were selected as the study areas 
in the two example applications of the LTSS-VCT approach described in this chapter. The NFs are shown in gray 
polygons. The images (with the WRS path/row shown as two numbers separated by a slash) in the background 
are disturbance maps produced using the LTSS-VCT approach. (From Huang, C. et al. Remote Sens Environ, 113, 
7, 2009. With permission.)
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evaluated qualitatively and quantitatively. Qualitative assessments included visual inspec-
tion of most of the maps generated by the VCT. When suspicious changes were noticed, 
the pre- and postdisturbance Landsat images were inspected to determine whether those 
changes were real. These qualitative assessments revealed that most of the disturbance 
maps were quite reasonable. Here, a “reasonable” disturbance map was defined as follows: 
the map had minimum speckles; for human disturbance events such as harvest and log-
ging, the mapped disturbance polygons had regular shapes or linear features that were 
often the results of human activities and for natural disturbances such as fire and storm, 
the disturbance patches typically had irregular shapes.

14.4.1.3  Design-Based Accuracy Assessment

To obtain quantitative estimates of the accuracies of the disturbance year maps produced 
by the VCT, a design-based accuracy assessment was conducted over six sites selected 
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Figure 14.9
(See color insert following page 426.) Visual validation of three mapped disturbances using pre- and post- 
disturbance Landsat images. The disturbance year map was selected from a 17.1 × 11.4 km area in the Uwharrie 
national forest located in North Carolina (WRS path 16/row 36). The size of each Landsat image chip shown to 
the left is 2.85 × 2.85 km. (From Huang, C. et al. Remote Sens Environ, 113, 7, 2009. With permission.)
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to represent different forest biomes and disturbance regimes in the United States. For 
each site, reference samples were selected with known inclusion probabilities, and 
those probabilities were considered in deriving accuracy estimates. Such assessments 
would allow unbiased inference on the accuracy of a map (Stehman 2000). Table 14.3 
summarizes the accuracy estimates derived from these assessments. It shows that the 
disturbance year maps had overall accuracies ranging from 0.77 to 0.86. Except for the 
southern Utah site (WRS path 37/row 34), the kappa values ranged from 0.67 to 0.76. 
The producer’s and user’s accuracies averaged over all classes ranged from 0.57 to 0.67 
and 0.67 to 0.80, respectively, and ranged from 0.52 to 0.63 and 0.63 to 0.79, respectively, 
when averaged over the disturbance classes. The average accuracies of the disturbance 
classes indicate that although those classes were typically rare (up to 1–3% of total area 
per disturbance year) as compared with no-change classes (Masek et al. 2008; Lunetta 
et al. 2004), on average, the VCT was able to detect more than half the disturbances with 
relatively low levels (i.e., 21–37% for five validation sites) of false alarm.

14.4.2  Forest Disturbance in Mississippi and Alabama

Mississippi and Alabama are located next to each other in the deep south of the United 
States, having a total land area of 125,443 km2 and 135,775 km2, respectively. Eighteen 
WRS path/row tiles are required to cover these two states. Both states are heavily for-
ested, and forestry is a vital component of their economy. Forest management activities 
and hurricanes and storms along the Gulf coast are the major drivers of forest change. To 
quantify the rate of forest change in the two states, an LTSS consisting of approximately 
one image every 2 years from 1984 to 2007 was assembled for each of 18 WRS path/row 
tiles; the images were then analyzed using the VCT to produce disturbance products and 
to calculate forest fragmentation metrics (Li et al. 2009a, b). A wall-to-wall disturbance 
map showing the most recent disturbances was produced for each state by mosaicking 
the maps at the WRS path/row tile level (Figure 14.10). The results revealed that the two 
states had widespread disturbances in some coastal areas in recent years, most of which 
were likely the result of Hurricane Katrina and other tropical storms. Most of the distur-
bances mapped in inland areas were stand-clearing harvest. The two states had roughly 
the same level of disturbance rates with similar trends (Figure 14.11). The average annual 

Table 14.3

Overall Accuracy, Kappa, and Average Producers’ and Users’ Accuracy Values of the VCT 
Disturbance Year Products Assessed for All Land Cover and Disturbance Year Classes 
Seen in Those Products

WRS Path/
Row

Overall 
Accuracy Kappa

Average Accuracy of Individual Classes

All Classes Disturbance Classes

Producers’ Users’ Producers’ Users’
12/31 0.85 0.76 0.67 0.67 0.63 0.63
15/34 0.80 0.75 0.67 0.78 0.62 0.77
21/37 0.78 0.74 0.64 0.79 0.59 0.79
27/27 0.77 0.67 0.64 0.80 0.60 0.79
37/34 0.86 0.43 0.31 0.55 0.24 0.52
45/29 0.84 0.73 0.57 0.72 0.52 0.70



Forest Change Analysis Using Time-Series Landsat Observations	 359

La
nd

sa
t-

de
ri

ve
d 

fo
re

st
 d

is
tu

rb
an

ce
s

A
la

ba
m

a,
 1

98
4–

20
07

N

La
nd

 co
ve

r a
nd

 fo
re

st
di

st
ur

ba
nc

e 
ye

ar

0
15

30
60

90
12

0 Ki
lo

m
et

er
s

La
nd

sa
t-

de
ri

ve
d 

fo
re

st
 d

is
tu

rb
an

ce
s

M
is

si
ss

ip
pi

, 1
98

4–
20

07

0
15

30
60

90
12

0 Ki
lo

m
et

er
s

Pr
e-

19
86

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

W
at

er
Pe

rs
ist

in
g 

fo
re

st

Pe
rs

ist
in

g
no

nf
or

es
t

La
nd

 co
ve

r a
nd

 fo
re

st
di

st
ur

ba
nc

e 
ye

ar
N

Co
un

ty
 b

ou
nd

ar
y

Pe
rs

ist
in

g 
no

nf
or

es
t

Pe
rs

ist
in

g 
fo

re
st

W
at

er
Pr

e-
19

85
19

85
19

86
19

87
19

88
19

89
19

90
19

91
19

92
19

93
19

94
19

95
19

96
19

97
19

98
19

99
20

00
20

01
20

02
20

03
20

04
20

05
20

06
20

07

Fi
g

u
r

e 
14

.1
0

(S
ee

 c
ol

or
 i

n
se

rt
 f

ol
lo

w
in

g 
p

ag
e 

42
6.

) D
is

tu
rb

an
ce

 y
ea

r 
m

ap
 d

er
iv

ed
 u

si
ng

 th
e 

LT
SS

-V
C

T
 a

pp
ro

ac
h 

fo
r 

M
is

si
ss

ip
pi

 (l
ef

t)
 a

nd
 A

la
ba

m
a 

(r
ig

ht
).



360	 Advances in Environmental Remote Sensing

disturbance rate was 1.98% or 1592 km2 for Mississippi, each year from 1985 to 2004, and 
for Alabama, 2.02% or 1970 km2 for the same period.

14.4.3  Dynamics of National Forests in the Eastern United States

The NFs in the United States are managed for multiple purposes, including outdoor 
recreation, rangeland, timber, watershed, and wildlife and fish (USDA 2007). They are 
subject to disturbances arising from various management activities and natural events 
such as fire, storms, insects, and diseases. Continuous monitoring of forest changes 
arising from such disturbances is essential for assessing the conditions of the NFs 
and the effectiveness of management approaches. The sample areas selected through 
the NAFD project (Goward et al. 2008; Huang, Goward, Masek, et al. 2009) covered or 
intersected with seven NFs in the eastern United States, including the De Soto National 
Forest in Mississippi, Talladega National Forest in Alabama, Francis Marion National 
Forest in South Carolina, Uwharrie National Forest in North Carolina, Chequamegon 
National  Forest in Wisconsin, Hiawatha National Forest in Michigan, and the 
Superior National Forest in Minnesota (Figure 14.8). The disturbance maps produced by 
NAFD project using biennial LTSS allowed an assessment of these NFs and their sur-
rounding areas (Huang, Goward, Schleeweis, et al. 2009). Specifically, the results showed 
that each of the seven NFs consisted of 90% or more forest land. During the observing 
period of 1984–2006, about 30–45% of the land pixels in four NFs in the southeastern 
United States and 10–20% in three NFs in the northern United States were disturbed at 
least once. For each NF, three buffer zones, defined at 0–5 km, 5–10 km, and 10–15 km 
from the boundary of the NF, generally had lower percentages of forest land than that 
within the NF, and the proportion of disturbed forest in the buffer zones were consider-
ably higher than that within the NF. Temporally, the annual disturbance rates varied 
considerably both within the boundary and in the three buffer zones of each NF. Except 
for the Uwharrie National Forest, where no obvious trend was found as to whether the 
NF experienced higher or lower disturbance rates than its buffer zones, the disturbance 

15

12

9

6

3

0

Pe
rc

en
t f

or
es

t d
ist

ur
be

d 
(%

)

1985–89 1990–94 1995–99 2000–04
Year interval

MS AL

Figure 14.11
5-year cumulative disturbance rates (percent forest area disturbed) derived using the LTSS-VCT approach in 
Mississippi and Alabama.
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rates within the other NFs were generally lower than in their buffer zones during most 
of the years of the observing period of each LTSS.

14.5  Summary and Conclusions

The Landsat record provides a unique data source for understanding the dynamics of land 
cover and the related surface properties for the decades, dating back to the early 1970s. This 
chapter presents an approach for reconstructing forest disturbance history over the last 
few decades using the Landsat record. In this approach, LTSS consisting of a dense time 
series of IRU quality Landsat observations are produced using streamlined algorithms and 
procedures, and forest changes are mapped with known disturbance year using the VCT 
algorithm. This approach has been used to produce disturbance products for many areas 
in the United States. Two applications of this approach in Mississippi and Alabama and 
in seven NFs in the eastern United States were summarized in this chapter. Visual assess-
ments of the disturbance year products derived using this LTSS-VCT approach revealed 
that most of them were reasonably reliable. Design-based accuracy assessment revealed 
that overall accuracies of around 80% were achieved for disturbances mapped at indi-
vidual disturbance year level. Average user’s and producer’s accuracies of the disturbance 
classes were around 70% and 60% for five of the six validation sites, respectively, suggest-
ing that although forest disturbances were typically rare as compared with no-change 
classes, on average the VCT was able to detect more than half of those disturbances with 
relatively low levels of false alarms. Field assessment revealed that VCT was able to detect 
most stand-clearing disturbance events, including harvest, fire, and urban development, 
while some non-stand-clearing events such as thinning and selective logging were also 
mapped in the western United States.

In addition to the disturbance year products for characterizing the occurrence of 
disturbances, using spectral indices the VCT algorithm also calculates several change 
magnitude measures and tracks postdisturbance processes. Validation or calibration of 
these measures and indices requires a time series of ground measurements or other types 
of reference data sets that match the LTSS acquisitions temporally. Existing reference data 
sets will not likely be adequate for this purpose, although their availability has yet to be 
better understood. Obtaining a time series of reference data sets suitable for calibrating or 
validating data products derived using dense satellite observations should be one of the 
major goals in planning future reference data collection efforts.

The ability to reconstruct forest disturbance history using the LTSS-VCT approach for 
a given area depends on the availability of a long-term satellite data record consisting 
of quality, temporally frequent acquisitions for that area. Based on knowledge gained 
through the NAFD project and an in-depth analysis of the USGS Landsat archive (Goward 
et al. 2006), most areas in the United States have some Landsat images for use with the 
LTSS-VCT. An inventory of Landsat holdings at international ground-receiving stations 
will be needed in order to determine the feasibility of assembling an LTSS at a specific 
temporal interval for regions outside the United States. To ensure that long-term records 
of global forest disturbance history can be reconstructed in the future, it is necessary to 
develop the satellite capabilities today that will allow acquisition of adequate Landsat or 
Landsat-class images for making at least one cloud-free composite during the peak grow-
ing season of every year.
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15
Satellite-Based Modeling of Gross Primary 
Production of Terrestrial Ecosystems

Xiangming Xiao, Huimin Yan, Joshua Kalfas, and Qingyuan Zhang

15.1  Introduction

Plant photosynthesis occurs within the chloroplasts of plant leaves and is composed 
of two distinct processes: (1) light absorption, that is, chlorophyll absorbs photosyn-
thetically active radiation (PAR, mostly visible spectrum) from sunlight; and (2) car-
bon fixation, that is, the absorbed energy is then used to combine water and CO2 to 
produce sugar (Figure 15.1). Plant photosynthesis is well understood at the chloroplast 
and leaf levels through direct measurements by instruments (Taiz and Zeiger 2002). 
However, there is no direct instrument-based measurement of plant photosynthesis at 
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the canopy and landscape scales, and how to scale up photosynthesis from individual 
leaves to the canopy and landscape is still a challenging and hotly debated topic. At 
the canopy and landscape scales, photosynthesis is often termed gross primary pro-
duction (GPP).

Application of the eddy covariance technique to measure the net ecosystem exchange 
(NEE) of CO2 between terrestrial ecosystems and the atmosphere dates back to 1974 (Shaw 
et al. 1974). In 1990, the first year-long continuous CO2 flux measurements using the eddy 
covariance technique were conducted at the Harvard forest site in Massachusetts (Wofsy 
et al. 1993). CO2 flux tower sites provide integrated CO2 flux measurements over footprints 
with sizes and shapes (linear dimensions typically ranging from hundreds of meters to 
several kilometers) that vary with the tower height, canopy physical characteristics, and 
wind velocity (Baldocchi et al. 1996). Continuous measurements of the CO2 NEE between 
terrestrial ecosystems and the atmosphere through the eddy covariance technique have 
allowed for more detailed study of ecosystem respiration and GPP at ecosystem and land-
scape scales (Wofsy et al. 1993). NEE between the terrestrial ecosystem and the atmosphere, 
as measured at a half-hourly frequency throughout a year, is the difference between the 
GPP and the ecosystem respiration (Re):

	 NEE GPP e= −R 	 (15.1)

Since the early 1990s, more than 600 eddy flux tower sites have been established, cover-
ing all major biome types in the world. It is important to note that the footprint sizes 
of CO2 eddy flux towers are comparable with the spatial resolution of several major 
satellite observation platforms (e.g., Moderate Resolution Imaging Spectroradiometer 
[MODIS], SPOT-4/Vegetation). Therefore, several studies have compared the dynamics 
of satellite-derived vegetation indices with CO2 fluxes from flux towers, with a goal to 
establish a linkage between the ecosystem metabolism (CO2 flux) and satellite-based 
observations of vegetation dynamics (Xiao et al. 2004). Due to the changes in climate, 
soils, land use, and management, however, there are still great uncertainties in esti-
mating seasonal dynamics and spatial variation of GPP at the canopy and landscape 
scales.

H2O

Light

[ADP + Pi], NADP+

ATP + NADPH

Light reactions Carbon reactions
O2 CO2 + H2O

(CH2O)n

Chlorophyll CH2O∼P

Figure 15.1
Schematic diagram of plant photosynthesis that illustrates the light absorption process and the carbon fixation 
process.
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Satellite-based optical remote sensing platforms (e.g., Landsat, Advanced Very High 
Resolution Radiometer [AVHRR], SPOT-4/Vegetation, and MODIS) provide frequent 
observations of the land surface of the entire Earth, and the radiometric values recorded 
by the optical sensors are associated with the biophysical and biochemical properties of 
vegetation and soils. As the mathematical transformations are calculated using different 
spectral bands (e.g., red and near-infrared [NIR]), vegetation indices have been widely 
used to track vegetation dynamics at the land surface. For example, the normalized dif-
ference vegetation index (NDVI), which is calculated from the red and NIR bands of the 
National Oceanic and Atmospheric Administration (NOAA) AVHRR sensors, is now the 
longest time-series data record for vegetation study (Myneni et al. 1997; White et al. 2005). 
NDVI is calculated as follows:

	 NDVI NIR red

NIR red

= −
+

ρ ρ
ρ ρ

	 (15.2)

In the early 1970s, a satellite-based production efficiency model was first proposed to esti-
mate the net primary production (NPP) using photosynthetically active radiation absorbed 
(APAR) by the vegetation canopy (APARcanopy) and the radiation use efficiency (Monteith 
1972, 1977). Since then, a number of models driven by satellite images have been developed 
to estimate the GPP and NPP (Potter et al. 1993; Field et al. 1995; Prince and Goward 1995; 
Running et al. 1994; Running et al. 2004; Xiao et al. 2004; Sims et al. 2008; Sims et al. 2006). 
Satellite-based models of GPP were largely founded on the concept of light-use efficiency 
(LUE). Depending upon their approaches to estimating APAR for photosynthesis, these 
production efficiency models (PEMs) can be grouped into two categories based on how 
they calculate light absorption for photosynthesis: (1) those using the fraction of photo-
synthetically active radiation (FPAR) absorbed by vegetation canopy (FPARcanopy); and (2) 
those using the FPAR absorbed by chlorophyll (FPARchl). This chapter aims to provide a 
brief review of satellite-based PEMs and to highlight the major differences between these 
two approaches (FPARcanopy and FPARchl). The following discussion is composed of the 
following: (1) the concepts of leaf area index (LAI), FPARcanopy, and APARcanopy and a brief 
introduction of two PEMs built upon the concept of FPARcanopy, (2) the concept of chloro-
phyll, FPARchl, and APARchl, (3) a detailed description of the vegetation photosynthesis 
model (VPM) that is built upon the concept of FPARchl, and (4) a case study of VPM simula-
tion results from a cropland site.

15.2  Leaf Area Index, APARcanopy, and FPARcanopy

LAI, APARcanopy, and FPARcanopy have all been a focus of both the ecology and the remote 
sensing communities over the past few decades. A number of remote sensing studies have 
been conducted to develop quantitative relationships between the NDVI and LAI, and 
between the NDVI and FPARcanopy (Prince and Goward 1995; Ruimy et al. 1999). Approaches 
based on the NDVI-LAI and NDVI-FPARcanopy relationships have been the dominant para-
digm at the crossroads of the fields of remote sensing science and ecology, for example, 
satellite-based PEMs (Figure 15.2).
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A number of satellite-based PEMs use the concept of FPARcanopy to estimate the GPP and 
NPP (Potter et al. 1993; Field et al. 1995; Prince and Goward 1995; Running et al. 2004). GPP 
is calculated as follows:

	 GPP FPAR PARg canopy= × ×ε 	 (15.3)

where εg is the LUE for photosynthesis or GPP. Brief descriptions of two models are 
provided in Sections 15.2.1 and 15.2.2.

15.2.1  Global Production Efficiency Model

The global production efficiency model (GLO-PEM) estimates both the GPP and NPP based 
on the production efficiency approach (see Equation 15.3). It has several linked components 
that describe the processes of canopy radiation absorption, utilization, autotrophic respira-
tion, and the regulation of these processes by environmental factors (Prince and Goward 
1995; Goetz et al. 2000). The GLO-PEM uses NDVI to estimate FPARcanopy (see Goward and 
Huemmrich 1992 for more details):

	 FPAR NDVIcanopy = × −1 08 0 08� � 	 (15.4)
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Figure 15.2
A simple comparison between two paradigms of production efficiency models. GPP = gross primary produc-
tion; NDVI = normalized difference vegetation index; FPAR = fraction of photosynthetically active radiation; 
PAR = photosynthetically active radiation; EVI = enhanced vegetation index; LSWI = land surface water index; 
Chl = chlorophyll; NPV = nonphotosynthetic vegetation; NIR = near-infrared; and SWIR = shortwave infrared.
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In the GLO-PEM, εg is estimated through a modeling approach based on plant physio-
logical principles (Prince and Goward 1995). Plant photosynthesis depends on both the 
capacity of the photosynthetic enzymes to assimilate CO2 (Collatz et al. 1991; Farquhar 
et al. 1980) and the stomatal conductance of CO2 from the atmosphere into the intercellu-
lar spaces (Harley et al. 1992). These two processes are affected by environmental factors, 
such as air temperature, water vapor pressure deficit, soil moisture, and atmospheric CO2 
concentration. Detailed descriptions of approaches for modeling εg have been provided in 
many earlier publications (Prince and Goward 1995; Collatz et al. 1991; Goetz and Prince 
1998; Collatz et al. 1992; Goetz and Prince 1999).

15.2.2  MODIS Daily Photosynthesis Model

The photosynthesis (PSN) model uses Equation 15.3 to estimate GPP, but εg and FPARcanopy 
are derived using different methods (Running et al. 2004; Running et al. 1999; Running 
et al. 2000). FPARcanopy is produced as a part of the MOD15 (LAI and FPAR) product suite. 
In MOD17, a set of biome-specific maximum LUE parameters is extracted from the biome 
properties lookup table (Running et al. 2000).

	 ε εg scalar scalar= × ×0 T W 	 (15.5)

where ε0 is the maximum LUE, Tscalar is estimated as a function of daily minimum tempera-
ture, and Wscalar is estimated as a function of daylight average water vapor pressure deficit. 
In this approach, biome is defined according to the MODIS land-cover product (MOD12) 
(Running et al. 2004; Running et al. 2000; Friedl et al. 2002).

15.3  Chlorophyll, Light Absorption by Chlorophyll, and FPARchl

From the biochemical perspective, vegetation canopies are composed of chlorophyll (chl) 
and nonphotosynthetic vegetation (NPV). The latter includes both canopy-level (e.g., 
stem, senescent leaves) and leaf-level (e.g., cell walls, vein, and other pigments) materi-
als. Therefore, FPARcanopy should be partitioned into FPARchl and FPAR absorbed by NPV 
(FPARNPV) (Xiao et al. 2004a,b; Xiao et al. 2005a).

	 Canopy chlorophyll NPV= + 	 (15.6)

	 FPAR FPAR FPARcanopy chl NPV= + 	 (15.7)

How much difference is there between FPARcanopy and FPARchl in a vegetation canopy? 
Does the difference between FPARcanopy and FPARchl change over the plant growing sea-
son? Using a radiative transfer model (PROSAIL2) and daily MODIS data, results from tem-
perate deciduous forests (Zhang et al. 2005; Zhang et al. 2006) have shown that FPARcanopy 
is significantly larger than FPARchl, and the difference between FPARcanopy and FPARchl 
changes as much as 30%–40% over the plant growing season (Figure 15.3).
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As shown in Figure 15.1, photosynthesis starts with light absorption by leaf chlorophyll. 
Only the PAR absorbed by chlorophyll (product of PAR × FPARchl) is responsible for pho-
tosynthesis or GPP. Based on the conceptual partitioning of chlorophyll and NPV within a 
leaf and canopy, the VPM was developed for estimating GPP over the photosynthetically 
active period of vegetation (Xiao et al. 2004a). The VPM is briefly described as follows:

	 GPP FPAR PARg chl= × ×ε 	 (15.8)

This biochemical approach, based on the chlorophyll–FPARchl relationship, is currently 
an emerging paradigm in the field of remote-sensing–based PEMs, and other additional 
models have been developed using the FPARchl concept (Sims et al. 2008; Sims et al. 2006; 
Mahadevan et al. 2008). Figure 15.2 summarizes the major differences between FPARcanopy 
and FPARchl approaches in estimating light absorption and GPP.

15.4  Detailed Description of the Vegetation Photosynthesis Model

15.4.1  Model Input Data

15.4.1.1  Satellite Data

The satellite-based VPM uses two vegetation indices as input data: the enhanced vegetation 
index (EVI) and the land surface water index (LSWI). These vegetation indices differ from 
the widely used NDVI (Equation 15.2). NDVI is often applied in PEMs to estimate the 
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(FPARcanopy, FPARleaf, and FPARchl respectively), as illustrated in a deciduous broadleaf forest at the Harvard 
forest site, Massachusetts (see Zhang et al. 2005 for more details).
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vegetation productivity of terrestrial ecosystems (Field et al. 1995; Prince and Goward 
1995; Nemani et al. 2003). It is known that NDVI suffers several limitations, including 
sensitivity to atmospheric conditions, sensitivity to soil background (e.g., soil moisture), 
and saturation of index values in multilayered and closed canopies (Xiao et al. 2004). EVI 
directly adjusts the reflectance in the red band as a function of the reflectance in the blue 
band, accounting for residual atmospheric contamination (e.g., aerosols), variable soil, and 
canopy background reflectance (Huete et al. 1997):

	 EVI NIR red

NIR red blue

=
−

+ − +
G
C C L
( )

( )
ρ ρ

ρ ρ ρ1 2

	 (15.9)

where G is 2.5, C1 is 6, C2 is 7.5, and L is 1, and ρNIR, ρred, and ρblue are land surface reflec-
tances of the NIR, red, and blue bands, respectively.

Because the shortwave infrared (SWIR) spectral band is sensitive to vegetation water 
content and soil moisture, a combination of NIR and SWIR bands has been used to derive 
water-sensitive vegetation indices (Xiao et al. 2004b; Ceccato et al. 2002a,b; Ceccato et al. 
2001). LSWI is calculated as the normalized difference between NIR and SWIR spectral 
bands (Xiao et al. 2002):

	 LSWI NIR SWIR

NIR SWIR

= −
+

ρ ρ
ρ ρ

	 (15.10)

where ρNIR and ρSWIR are reflectances of the NIR and the SWIR band, respectively.
Satellite images from two advanced optical sensors (vegetation onboard SPOT-4 satellite 

and MODIS onboard Terra satellite) have blue, red, NIR, and SWIR bands, which allow the 
calculation of EVI and LSWI indices. EVI and LSWI have now been used widely to char
acterize the growing conditions of vegetation (Zhang et al. 2003; Boles et al. 2004).

15.4.1.2  Climate Data

The climate input data sets for the VPM include daily minimum temperature (°C), daily 
maximum temperature (°C), and the daily sum of PAR (mol/day). The daily climate data 
come from either in situ measurements (e.g., CO2 flux tower sites, weather stations) or cli-
mate model simulations (e.g., NCEP Reanalysis climate data), depending upon the avail-
ability of climate data (Zhang et al. 2009; Zhao et al. 2005; Raich et al. 1991).

15.4.2 Estimation of Vegetation Photosynthesis Model Parameters

15.4.2.1  Light Absorption by Chlorophyll

In the VPM, FPARchl within the photosynthetically active period of vegetation is estimated 
as a linear function of EVI, and the coefficient, a, is set to be 1.0 (Xiao et al. 2004a,b):

	 FPAR EVIchl = ×α 	 (15.11)
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15.4.2.2  Effect of Temperature on Gross Primary Production

Temperature affects photosynthesis; there are a number of ways to estimate the effect 
of  temperature on photosynthesis (Tscalar). In the VPM, Tscalar is estimated at each 
time step using the equation developed for the terrestrial ecosystem model (Raich 
et al. 1991):

	 T
T T T T

T T T Tscalar =
− −

− − −
( )( )

[( )( )]
min max

min max ( )T T− opt
2

	 (15.12)

where Tmin, Tmax, and Topt are the minimum, maximum, and optimum temperatures for 
photosynthetic activities, respectively. If air temperature falls below Tmin, Tscalar is set to be 
zero. The values of the Tmin, Tmax, and Topt parameters vary with vegetation types.

15.4.2.3  Effect of Water on Gross Primary Production

Wscalar, the effect of water on plant photosynthesis, has been estimated as a function of 
soil moisture and/or water vapor pressure deficit in a number of PEMs (Field et al. 1995; 
Prince and Goward 1995; Running et al. 2000). For instance, in the Carnegie Ames Stanford 
Approach (CASA) model, soil moisture was estimated using a one-layer bucket model 
(Malmstrom et al. 1997). Soil moisture represents water supply to the leaves and canopy, 
and water vapor pressure deficit represents evaporative demand in the atmosphere. The 
leaf and canopy water content is largely determined by dynamic changes of both the soil 
moisture and water vapor pressure deficit.

The availability of time-series data of NIR and SWIR bands from the new generation of 
advanced optical sensors (e.g., variable geometry turbocharger, MODIS) offers opportuni-
ties for quantifying the canopy water content at large spatial scales through both the vege-
tation indices approach (Ceccato et al. 2002a) and the radiative transfer modeling approach 
(Zarco-Tejada et al. 2003). Vegetation indices that are based on NIR and SWIR bands are 
sensitive to changes in equivalent water thickness (g/cm2) at the leaf and canopy levels 
(Ceccato et al. 2002a,b; Ceccato et al. 2001; Hunt and Rock 1989). As a first-order approxi-
mation, the VPM uses a satellite-derived water index to estimate the seasonal dynamics 
of Wscalar:

	 Wscalar
LSWI

LSWI
= +

+
1

1 max

	 (15.13)

where LSWImax is the maximum LSWI value within the plant growing season for indi-
vidual pixels.

15.4.2.4  Effect of Leaf Age and Phenology on Gross Primary Production

The leaf age affects the seasonal patterns of photosynthetic capacity and NEE in decidu-
ous forest (Wilson et al. 2001). Turner et al. (Turner et al. 2003) compared daily LUE from 
four CO2 flux tower sites: an agriculture field, a tall grass prairie, a deciduous broadleaf 
forest, and a boreal forest. Their results suggested that parameters on cloudiness and the 
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phenological status of vegetation should be included in modeling vegetation primary pro-
duction. In the VPM, Pscalar is used to account for the effect of the leaf age on photosynthesis 
at the canopy level. Calculation of Pscalar is dependent upon leaf longevity (deciduous ver-
sus evergreen). For a canopy that is dominated by leaves with a life expectancy of 1 year 
(one growing season, e.g., deciduous trees and shrubs), Pscalar is calculated at two different 
phases:

	 Pscalar
LSWI

(From bud-burst to complete= +1
2

leaf expansion) 	 (15.14)

	 Pscalar (After complete leaf expansion)= 1 	 (15.15)

Evergreen trees and shrubs have a green canopy throughout the year, because foliage is 
retained for several years. The canopy of evergreen forests is thus composed of green 
leaves of various ages. To deal with different age classes in evergreen forest canopies, fixed 
turnover rates of foliage of evergreen forests at the canopy level have been used in some 
process-based ecosystem models (Aber and Federer 1992; Law et al. 2000). For evergreen 
forests, we simply assume Pscalar = 1 (Xiao et al. 2004b); we also assume this for tundra, 
grassland, and cropland (e.g., wheat) vegetation, which have new leaves emerging through 
most of the plant growing season (Li et al. 2007).

15.4.2.5 Maximum LUE

LUE (εg) is affected by temperature, water, and leaf phenology:

	 ε εg scalar scalar scalar= × × ×0 T W P 	 (15.16)

where ε0 is the apparent quantum yield or the maximum LUE (μmol CO2/μmol PPFD), 
and Tscalar, Wscalar, and Pscalar are the scalars for the effects of temperature, water, and leaf 
phenology on the LUE of vegetation, respectively. A full description of the VPM is given 
elsewhere (Xiao et al. 2004b; Xiao et al. 2005a).

The maximum LUE (ε0) for individual vegetation types can be estimated from the non-
linear analysis of the observed half-hourly NEE and incident PAR data from eddy cova-
riance flux tower sites. In the VPM, the ecosystem-level ε0 values vary with vegetation 
types. The Michaelis–Menten function (Equation 15.17) is used to estimate the ε0 values of 
individual vegetation types; half-hourly NEE and PAR data for weekly to 10-day periods 
within the peak period of the plant growing season (e.g., from July to August) are used:

	 NEE
PPFD GPP
PPFD GPP e= × ×

× +
−α

α
max

max

R 	 (15.17)

where α is the maximum LUE or apparent quantum yield (as photosynthetic photon flux 
density [PPFD] approaches 0), GPPmax is the maximum gross ecosystem exchange, and Re 
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is the ecosystem respiration. The estimated α value is used as an estimate of the ε0 param-
eter in the VPM.

15.4.3  Model Evaluation

Evaluating GPP estimates at the canopy level is a challenging task. Recent progress in 
partitioning the observed NEE data into GPP and Re makes it possible to directly evaluate 
GPP estimates from various models. Daily GPP and Re flux data at individual flux sites are 
generated from half-hourly NEE flux data by the CO2 eddy covariance flux community 
(Baldocchi et al. 2001; Mizoguchi et al. 2009).

15.5 � Case Study Estimating Gross Primary Production of C4 Maize 
Cropland Using the Vegetation Photosynthesis Model

The VPM has been evaluated for and applied to several major biome types, including 
tropical rainforests (Xiao et al. 2005b), temperate deciduous broadleaf forests (Xiao et al. 
2004a; Wu et al. 2009), evergreen needle-leaf forests (Xiao et al. 2004b; Xiao et al. 2005a), 
alpine tundra (Li et al. 2007), grassland (Wu et al. 2008), and winter wheat–maize crop-
lands (Yan et al. 2009). Here, we present a case study of C4 maize cropland to illustrate the 
model simulation.

The Rosemount G21 site is located at the University of Minnesota’s Rosemount Research 
and Outreach Center, approximately 25 km south of St. Paul, MN (Baker and Griffis 2005). 
The site has silty loam soil with a surface layer of high organic carbon content. It has a 
temperate continental climate, and the plant growing season begins in May and ends in 
October. In 2005, maize was planted at this site, and no irrigation occurred during the 
entire growing season.

In this case study, MODIS 8-day Land Surface Reflectance (MOD09A1) data sets 
were downloaded from the EROS Data Center of the U.S. Geological Survey (http://
www.edc.usgs.gov/). The MODIS sensor onboard the National Aeronautics and Space 
Administration (NASA) Terra satellite has 36 spectral bands. Seven spectral bands are 
primarily designed for the study of vegetation and land surface: blue (459–479 nm), green 
(545–565 nm), red (620–670 nm), NIR (841–875 nm, 1230–1250 nm), and SWIR (1628–1652 nm, 
2105–2155 nm). The reflectance values of four spectral bands (blue, red, NIR [841–875 nm], 
and SWIR [1628–1652 nm]) during 2005 were used to calculate vegetation indices (NDVI, 
EVI, and LSWI). Time series of vegetation indices for one MODIS pixel, within which an 
eddy covariance flux tower is located, were used for the VPM simulation. In this case, 
the extent of the flux tower’s footprint (<250 m radius) is approximately the same as one 
MODIS pixel (a 500-m square).

We obtained level-4 data for the Rosemount G21 site from the AmeriFlux network Web 
site (http://public.ornl.gov/ameriflux/), including climate data (air temperature, PAR) and 
CO2 flux data. Level-4 data contain gap-filled and u*-filtered NEE data, with GPP and Re 
calculated at hourly, daily, weekly, and monthly intervals. Flags regarding the quality of 
the original and gap-filled data were also provided within the data set.

Figure 15.4 shows the seasonal dynamics of PAR, mean air temperature, precipitation, 
three vegetation indices (NDVI, EVI, and LSWI), and GPP for 2005. The seasonal dynamics 
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surface water index (LSWI); and (c) vegetation photosynthesis model (VPM)-predicted gross primary production 
(GPP, g C/m2/day) and estimated GPP from the CO2 eddy covariance (EC) flux tower data at the Rosemount G21 
flux tower site, Minnesota, in 2005. Maize was cultivated in 2005. In the VPM simulation, the model parameters 
are ε0 = 1.5 g C/mol PPFD, LSWImax = 0.37, Tmin = 0°C, Topt = 27°C, and Tmax = 48°C.
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of GPP predicted by the VPM agree reasonably well with GPP estimated by partitioning 
the NEE data of the flux tower site.

15.6  Summary

FPARcanopy can be conceptually partitioned into FPARchl and FPARNPV, but quantifying 
both leaf chlorophyll content and FPARchl across various terrestrial biomes over time is a 
challenging task. It will require (1) extensive field measurements of chlorophyll content at 
the leaf, canopy, and landscape levels; (2) improved radiative transfer models that couple 
both leaf-level biochemical properties (e.g., chlorophyll, other pigments, and dry matter) 
and canopy-level biophysical properties (e.g., the plant area index, stem fraction, and LAI); 
and (3) high-quality satellite images (Zhang et al. 2009).

A comparison between FPARchl and FPARcanopy is an important topic for both the remote 
sensing and ecosystem modeling communities. The concept of FPARcanopy has been widely 
accepted in scientific literature and is useful for estimating light absorption by vegeta-
tion canopy. A radiative transfer model was applied to generate standard products of 
FPARcanopy and the LAI, using MODIS data (Myneni et al. 2002). Seasonal dynamics of 
resultant FPARcanopy data was often compared with the field-measured LAI, and the impact 
of FPARcanopy data on the seasonal dynamics of GPP in the context of an input data set for 
the PSN model was also assessed (Turner et al. 2006; Heinsch et al. 2006). Note that the 
amount of PAR absorbed by canopy (APARcanopy = FPARcanopy × PAR) is often much larger 
than the amount of PAR absorbed by leaf chlorophyll (APARchl = FPARchl × PAR). When 
APARcanopy is used in a GPP model, its uncertainty in light absorption for photosynthesis 
is likely to propagate into GPP estimates. In recent years, several new models have used 
FPARchl or EVI to estimate light absorption by chlorophyll and GPP (Sims et al. 2008; Sims 
et al. 2006; Yan et al. 2009); they are more consistent with the light absorption process of 
photosynthesis at the chlorophyll level (Figure 15.1). Therefore, research efforts for retriev-
ing the leaf chlorophyll content and FPARchl are critically needed for reducing uncertainty 
in modeling GPP. The terrestrial ecosystem science and the remote sensing communities 
need to undertake regular measurements of both biochemical (chlorophyll, nitrogen, and 
FPARchl) and structural (LAI, FPARcanopy) variables across the leaf, canopy, and landscape 
levels and develop data sets of the chlorophyll content over land ecosystems. Furthermore, 
because a large portion of leaf nitrogen is within leaf chloroplasts, developing quantitative 
relationships among chlorophyll, FPARchl, and nitrogen could have significant implication 
for reducing the uncertainty in estimating the GPP and the carbon cycle.

Validation of satellite-based PEMs is a long-term effort that requires coordination from 
both the remote sensing community and the CO2 eddy covariance flux community. At pres-
ent, there are more than 600 eddy covariance flux tower sites operating across various biomes 
of the world. These sites cover different types of land uses and management practices, as 
well as different stages of disturbance and recovery. The eddy flux community needs to (1) 
partition half-hourly NEE data into GPP and ecosystem respiration; (2) provide the GPP data 
to users in a timely fashion; and (3) quantify LUE in a consistent approach, using observed 
half-hourly NEE and PAR data and the nonlinear Michaelis–Menten equation (Equation 
15.17). As there are a number of methods for estimating the GPP from the observed NEE 
data, additional effort is needed to reduce the error of GPP estimates from the NEE data 
using a method consistent across flux tower sites (Richardson et al. 2006; Falge et al. 2002).
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16
Global Croplands and Their Water Use from Remote 
Sensing and Nonremote Sensing Perspectives

Prasad S. Thenkabail, Munir A. Hanjra, Venkateswarlu Dheeravath, 
and Muralikrishna Gumma

16.1  Introduction

Croplands are the largest user of water worldwide. Much of the water is used for food 
production, making global croplands and their water use important to world food secu-
rity. Of all the water used by humans, croplands consume an overwhelming proportion 
(60%–90%; Thenkabail et al. 2009a; Thenkabail et al. 2009b; Thenkabail et al. 2009c). There 
are two types of cropland water use (Falkenmark and Rockström 2006): (1) green water use 
by rain-fed croplands from the unsaturated soil zone and (2) blue water use by irrigated 
croplands from rivers, reservoirs, lakes, and from saturated zones or groundwater aquifers 
and rain over irrigated croplands (Hoff et al. 2010; Rockström et al. 2008). However, alter-
native demands for land water use are increasing steeply due to urbanization (Deyong 
et al. 2009), industrialization (Liu et al. 2005), environmental flows and ecosystem services 
(Gordon, Finlayson, and Falkenmark 2009), maintaining water quality (and associated 
health of the populations), and recreational and other demands (Gordon, Peterson, and 
Bennett 2008).

Global cropland maps and water-use assessments are identified as one of the most 
important variables for all areas of societal benefits in the 10-year implementation plan 
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of the Group on Earth Observation (Herold et al. 2008). Croplands nearly stagnated in 
the last decade. Especially, irrigated croplands that were at the center of the “green revo-
lution” and currently produce about 45% of the world’s food from just 25% of cropland 
areas has stopped expanding (Thenkabail et al. 2009a). Yet the demand for food and water 
continues to increase rapidly. The world population is growing at nearly 100 million per 
year and is expected to reach 9.15 billion by 2050 (UNDP 2009; Table 16.1). Irrigated crop-
lands that increased rapidly between the 1970s and 2000s have almost stagnated, and the 
era of “green revolution” (increases in crop per unit area and cropping intensity) seems 
nearly over while the populations of emerging markets are consuming more calories per 
capita, croplands are diverted to biofuel crops, and the much anticipated “blue revolution” 
(growing “more crop per drop”) has not taken off. As a result, the world is facing a food 
crisis that has not been experienced since the 1970s. Investments in agricultural research 
and development have fallen in all developing countries and even in Organization for 
Economic Cooperation and Development (OECD) member countries, and the era of cheap 
food has come to an end as food prices are likely to continue rising until 2015 and even 
beyond. The current trends in world population growth, food demand, food prices, global 
cropland, and water competition in agriculture pose new challenges to world food secu-
rity (Khan and Hanjra 2009).

Increasing the water use and cropland area for producing more food are not easy options. 
Alternative demands for water in other fields as well as uncertainties in water availability 
associated with climate change rule out such options. Increasing cropland areas is also not 

Table 16.1

World Population (in Thousands) under All Variants, 1950–2050

Year Medium Variant High Variant Low Variant Constant-Fertility Variant

1950 2,529,346 2,529,346 2,529,346 2,529,346
1955 2,763,453 2,763,453 2,763,453 2,763,453
1960 3,023,358 3,023,358 3,023,358 3,023,358
1965 3,331,670 3,331,670 3,331,670 3,331,670
1970 3,685,777 3,685,777 3,685,777 3,685,777
1975 4,061,317 4,061,317 4,061,317 4,061,317
1980 4,437,609 4,437,609 4,437,609 4,437,609
1985 4,846,247 4,846,247 4,846,247 4,846,247
1990 5,290,452 5,290,452 5,290,452 5,290,452
1995 5,713,073 5,713,073 5,713,073 5,713,073
2000 6,115,367 6,115,367 6,115,367 6,115,367
2005 6,512,276 6,512,276 6,512,276 6,512,276
2010 6,908,688 6,908,689 6,908,687 6,908,688
2015 7,302,186 7,369,003 7,235,360 7,342,730
2020 7,674,833 7,850,649 7,498,821 7,798,900
2025 8,011,533 8,324,226 7,698,240 8,264,771
2030 8,308,895 8,762,174 7,855,775 8,741,186
2035 8,570,570 9,181,935 7,966,536 9,241,316
2040 8,801,196 9,606,206 8,024,592 9,782,041
2045 8,996,344 10,037,286 8,022,171 10,374,956
2050 9,149,984 10,461,086 7,958,779 11,030,273

Source:	 UNDP. 2009. Population Division of the Department of Economic and Social Affairs of the United Nations 
Secretariat. World Population Prospects: The 2008 Revision, http://esa.un.org/unpp (October 31, 2009).
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an option for a number of reasons. For instance, land-use and land-cover (LULC) changes, 
particularly deforestation for crop production, are shown to have a stronger impact on 
ecosystem carbon budgets than the projected climate change scenarios (Tan et al. 2009). 
At current levels, agricultural croplands already account for 50% of methane (CH4) and 
60% of nitrous oxide (N2O; Zou et al. 2009). Agricultural N2O emissions are projected to 
increase by 35–60% by 2030 due to increased chemical and manure nitrogen inputs (IPCC 
2007). Irrigated rice paddies are a major source of atmospheric CH4 (Maraseni, Mushtaq, 
and Maroulis 2009; USEPA 2006). Conversion of natural ecosystems to croplands will also 
mean a loss of the already endangered or threatened flora and fauna. Inclusion of agricul-
ture in any carbon trading scheme will exert pressure on food crops and reallocate water 
from crops with higher emissions to perennial crops or forest plantation grown for carbon 
sequestration.

The above factors raise the following central questions:

How can the world population be fed without unsustainably increasing cropland •	
areas and/or water allocation for food production?
What strategies can save water from existing cropland areas so as to create “new •	
water” (saved water from agriculture) for alternative uses?

In order to answer the above questions, we need to determine existing cropland areas 
and their water use. This can help better understand and plan for food production in the 
coming decades by sustainable allocations of cropland areas and their water-use patterns. 
Thereby, the goal of this chapter is to determine and discuss the current state-of-art on (1) 
global cropland area maps and statistics and (2) global cropland water use.

This chapter discusses the following: Global croplands and their water use are deter-
mined by remote sensing and nonremote sensing approaches, with emphasis on the former 
(Section 16.2). Sources of uncertainty in the areas and limitations of existing cropland maps 
are discussed in Sections 16.3 and 16.4. Estimates of global croplands water use are provided 
at a country-by-country level using a uniform and systematic framework to allow compari-
sons across countries (Section 16.5) as well as from regional and local studies using various 
remote sensing products (Section 16.6). The main conclusions and policy implications on 
global cropland and their water use for future food security are discussed in Section 16.7.

16.2 � Global Croplands (Rain-Fed and Irrigated) Using Remote 
Sensing and Nonremote Sensing Approaches

Global cropland (irrigated and rain-fed) areas increased from 265 Mha in 1700 to about 
1.5 Mha in 2000. Major studies on cropland area (Goldewijk et al. 2009; Portmann, Siebert, 
and Döll 2009; Ramankutty et al. 2008; Siebert and Döll 2009; Thenkabail et al. 2009a; 
Thenkabail et al. 2009c) estimated the total croplands (irrigated and rain-fed) to be about 
1.5 billion hectares for the nominal year 2000. Thus, by 2000, agriculture covered about 
10% of the world’s terrestrial surface (148,940,000 km2).

Global cropland mapping is possible by integrating agricultural statistics and census 
data from national systems and spatial mapping technologies involving geographic infor-
mation systems (Ramankutty et al. 2008; Figure 16.1). The availability of advanced remote 
sensing imagery (Table 16.2) along with secondary data and recent advances in data access, 
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quality, processing, and delivery have made possible the estimation of croplands based 
on  remote sensing at the global level (Thenkabail et al. 2009a; Thenkabail et al. 2009c; 
Figure 16.2).

16.2.1  Remote Sensing Advances in Global Cropland Mapping

The specific remote sensing advances enabling global cropland mapping and generation 
of their statistics include factors such as free access to well-calibrated and guaranteed 
data such as Landsat and Moderate Resolution Imaging Spectrometer (MODIS), frequent 
temporal coverage of data such as MODIS backed by high-resolution Landsat data, free 
access to high-quality secondary data such as long-term precipitation, evapotranspiration, 
surface temperature, soils, and global digital elevation map (GDEM), global coverage of 
data, Web-access and broad bandwidth, and advances in computer technology and data 
processing.

These advances have enabled better estimates of global cropland and water use at the 
country level, using unified and systematic frameworks. For instance, Ramankutty et al. 
(2008) estimated global croplands to be 1.54 billion hectares for the nominal year 2000. 
Thenkabail et al. (2009a) and Thenkabail et al. (2009c) also obtained a similar estimate 
(1.53 billion hectares; Table 16.3). However, Portmann, Siebert, and Doll’s (2009) estimates 
were lower (1.3 billion hectares; Table 16.3). A country-by-country comparison of cropland 
areas for 197 countries showed a very high correlation with an R2 value of 0.89 (Figure 16.3) 
between the studies Ramankutty et al. (2008), Thenkabail et al. (2009a), and Thenkabail 
et al. (2009c).

16.2.2 � Global Irrigated Croplands Using Remote Sensing 
and Nonremote Sensing Approaches

Irrigated croplands use about 80% of all blue water (water in rivers, reservoirs, lakes, 
aquifer groundwater, and direct rainfall) used by humans. About 45% of the total food 
in the world is produced from about 25% of the irrigated croplands (399 million hectares; 

Cropland fraction

<0.01
0.01–0.2
0.2–0.4
0.4–0.6
0.6–0.8
0.8–1.0

Figure 16.1
(See color insert following page 426.) Global cropland map at nominal 5-minutes (0.083333 decimal degrees) 
resolution using national statistics and geospatial techniques for the nominal year 2000. Total area of croplands 
is 1.47 billion hectares. (Adapted from Ramankutty, N. et al. Global Biogeochem Cycles, 22, 2008.)
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Thenkabail et al. 2009a). This denotes that the importance of irrigated cropland for water 
and food security is very high.

There are also two premier global irrigated area maps (GIAMs) and statistics. These 
are (1) Thenkabail et al. (2009a) and Thenkabail et al. (2009c); and (2) Portmann, Siebert, 
and Döll (2009) and Siebert and Döll (2008, 2009), which is revised from their previ-
ous work (Siebert, Hoogeveen, and Frenken 2006). These products are also referred 
to as (1) GIAM of the International Water Management Institute’s (IWMI), which is 
based on coarse-resolution remote sensing (Thenkabail et al. 2007; Thenkabail et al. 
2009a; Thenkabail et al. 2009c; Thenkabail et al. 2005); and (2) global map of irrigated 
areas (GMIA) of the Food and Agricultural Organization of the United Nations and 
the University of Frankfurt (FAO/UF), which is based on national statistics (Siebert, 
Hoogeveen, and Frenken 2006). The irrigated and rain-fed cropland data, products, 
and state-of-the-art methods are disseminated through a dedicated Web portal (http://
www.iwmigiam.org), a comprehensive book (Thenkabail et al. 2009c) with contribu-
tions from 53 authors worldwide, and several peer-reviewed publications (Thenkabail 
et al. 2009a; Thenkabail et al. 2009b).

These two premier GIAMs and statistics have provided better estimates of irrigated 
cropland worldwide. Portmann, Siebert, and Doll (2009) estimated “area equipped for irri-
gation” (but not necessarily irrigated, as some areas may be left fallow depending on water 
availability) in the world to be 312 Mha for the nominal year 2000 (Table 16.3). An equiva-
lent definition of the phrase “area equipped for irrigation” is the total area available for 
irrigation (TAAI) or net irrigated area (Thenkabail et al. 2009a). The TAAI of the world for 
the year 2000 was 399 Mha. Thenkabail et al. (2009a) also determined annualized irrigated 

Legend
01 Irrigated, major (major and minor reservoirs)
02 Irrigated, minor (ground water, small reservoirs, and tanks)
03 Rainfed croplands
04 Rainfed croplands and grasslands/shrublands
05 Natural vegetation with rainfed fragments
00 Other area and ocean

1000 0 1000 2000 Kilometers

180 120

180 120 60

60

60

60

0

60

180120600

60

0

0 60 120 180

Figure 16.2
(See color insert following page 426.) Global cropland map at nominal 1-km resolution using remote sensing 
for the nominal year 2000. Total cropland area was determined to be 1.53 billion hectares, of which 399 Mha 
was irrigated area. Because irrigated areas often had more than one crop per year, the total annualized irrigated 
area was 467 Mha. (Adapted from Thenkabail, P.S. et al. Rem Sens, 1, 2009b. http://www.mdpi.com/2072-
4292/1/2/50; Thenkabail, P.S. et al. Remote Sensing of Global Croplands for Food Security, CRC Press/Taylor & 
Francis, Boca Raton, FL, 2009c.)
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area (AIA or gross irrigated area) taking into account the cropping intensity. The AIA of 
the world in 2000 was 467 Mha (Table 16.3). A country-by-country comparison of irrigated 
cropland areas for 197 countries (Figure 16.4) showed very high correlation with R2 value 
of 0.94 between the studies by Portmann, Siebert, and Döll (2009), Siebert and Döll (2009), 
and Thenkabail et al. (2009a).
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Figure 16.3
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mote sensing approach of Ramankutty et al. (2008) versus the remote sensing approach of Thenkabail, P.S. 
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16.2.3 � Global Rain-Fed Croplands Using Remote Sensing 
and Nonremote Sensing Approaches

Rain-fed croplands are the major user of rainfall and green water. About 70% of all 
precipitation is stored as green water (unsaturated zone of soils). Rain-fed croplands 
depend on this water for crop growth and food production. Recent estimates show that 
rain-fed croplands produce about 55% of the world’s food from 75% (1.13 billion hect-
ares) of the cropland areas (Thenkabail et al. 2009c). Rain-fed croplands, even though they 
are far less productive than irrigated areas, are the main source of livelihood for sub-
sistence farmers and are the key focus of future crop and water productivity increases 
(Falkenmark and Rockström 2006). They are also considered environmentally friendly, 
given the problems of salinization and land degradation in irrigated cropland areas (Khan 
and Hanjra 2008).

16.3  Uncertainty in Global Cropland Areas

There are substantial differences in cropland areas when compared at a country-by-
country level (Table 16.3, Figures 16.3 and 16.4). The differences (Dheeravath et al. in 
press; Thenkabail et al. 2009b) were in both traditional approaches (Portmann, Siebert, 
and Döll 2009; Ramankutty et al. 2008; Siebert and Döll 2008, 2009) and remote sens-
ing (Thenkabail et al. 2009a; Thenkabail et al. 2009c). The main causes of differences in 
areas reported in various studies can be attributed to, but not limited to, reluctance of 
agencies at national and state levels to furnish census data on irrigated areas in view 
of their institutional interests in sharing of water and water data; reporting of large 
volumes of census data with inadequate statistical analysis; subjectivity involved in 
observation-based data collection processes; inadequate accounting of irrigated areas, 
especially minor irrigation from groundwater, in national statistics; definition issues 
involved in mapping using remote sensing as well as national statistics; difficulties 
in arriving at precise estimates of area fractions using remote sensing; difficulties in 
separating irrigated croplands from rain-fed croplands; and imagery resolution in 
remote sensing  (Ramankutty et al. 2008 versus; Thenkabail et al. 2009a; Thenkabail 
et al. 2009c).

16.4  Limitations of Existing Global Cropland Maps and Statistics

The various coarser-resolution cropland area maps discussed in Section 16.2 have many 
limitations. These include the following:

Absence of precise spatial location of these cropland areas•	
Uncertainties in differentiating irrigated areas from rain-fed areas•	
Absence of crop types or varieties, cropping intensities, and sources of irrigation•	

Addressing such limitations remains crucial for comprehensive water-use assessments 
and food security analysis. The errors of omissions in coarser-resolution data are high 
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as a result of its inability to capture fragmented, smaller patches of croplands accurately. 
In addition, the coarser-resolution data adds significant errors of commissions. As a result 
of the large pixel size, it can at times map patchy noncropland areas that surround crop-
lands as cropland areas. In either case, the need for finer spatial resolution products to 
resolve the issue is a must (Wardlow and Egbert 2008).

This will require scientists to map global cropland areas at a higher resolution (e.g., 
Landsat 30-m resolution in fusion with MODIS 250-m time series) or ideally a new finer-
resolution product. Such a product should (1) define more precisely the actual area and the 
spatial distribution of cropland areas; (2) develop methods and techniques for consistent 
and unbiased estimates of irrigated versus rain-fed cropland areas over space and time for 
the entire world; (3) elaborate on the extent of multiple irrigated and rain-fed cropping over 
a year, particularly in Brazil (Galford et al. 2008) and Asia (Xiao et al. 2006), where two or 
even three crops may be grown in 1 year, but where cropping intensities are not accurately 
known or recorded in secondary statistics; and (4) account for irrigation source. This will 
be a significant advance because irrigated and rain-fed cropping intensity and their crop 
types have a huge influence on the quantum of water used by crops and associated indi-
cators of agricultural productivity, crop diversification, and food security. Accounting for 
irrigation sources can help identify the hot spots where surface or groundwater could be 
overexploited and thus enhance the resilience of cropland and water resources to climate 
change and associated pressure points.

16.5  Cropland Water Use: A Global Perspective

Globally, only about 6% (3,091 km3/y) to 7% (3,798 km3/y) of the available renewable water 
(54,695 km3/y) is currently withdrawn (but not necessarily used) by irrigated croplands 
(Table 16.4). However, a country-by-country assessment (Table 16.5) shows water with-
drawal of more than 100% (meaning importation or groundwater mining) in countries 
such as United Arab Emirates, Saudi Arabia, and Libya; more than 50% in countries such 
as Jordan, Cyprus, Yemen, Israel, and Tunisia, 20–50% in countries such as China, India, 
Uzbekistan, Iran, and Iraq; less than 10% in countries such as the United States, Italy, and 
Greece; and less than 1% in countries such as the Democratic Republic of Congo, Canada, 
and Brazil. This implies a highly uneven spatial distribution in water availability and water 
withdrawal for irrigation around the world. Further, such spatial variabilities are also 
very high within countries such as the United States, Australia, and China. Intracountry 

Table 16.4

Water Use by Croplands for the Nominal Year 2000

Blue Water Use by 
Irrigated Crops  
(km3/yr)

Green Water Use 
by Irrigated Crops 

(km3/yr)

Green Water 
Use by Rainfed 
Crops (km3/yr)

Total Water Use 
by Irrigated and 
Rainfed Crops 

(km3/yr) Reference

1180 919 4586 6685 Siebert and 
Döll (2009)

1800 - 5000 6800 Falkenmark and 
Rockström (2006)

7500 Postel (1998)
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variations are large; for instance, China is facing severe water shortages in the north, 
including the Yellow River Basin, while the south still has abundant water resources. 
Intracountry water transfers have been proposed as a solution to address such water scar-
city issues (Xu, Ye, and Li 2008). However, it is not clear how to bring the water back to its 
origin to avoid potential environmental and socioeconomic consequences. In countries 
with large spatial variability in water availability, intracountry virtual water trade may 
help address the issue (Wichelns 2005), with a lower footprint on the environment albeit at 
a slightly higher economic cost (food transport may be more expensive than water trans-
port; Sarkar et al. 2007). Shifting people instead of transferring water may be yet another 
alternative (Wichelns 2003), apart from global virtual water trade (Hanasaki et al. 2010). 
In any case, precise estimates of water use and withdrawals can help evaluate the impacts 
of these alternative strategies as well as optimize the productivity of croplands and their 
water use.

Water used by crops is different from water withdrawal. Also, there are no clear assess-
ments of water used by rain-fed croplands. This calls for water-use assessment based on 
blue water use (water used by crops from rivers, reservoirs, lakes, and groundwater in the 
saturated zone) and green water use (water used by crops in saturated zone of the ground; 
Figure 16.5; Falkenmark 2007). Siebert and Döll (2008, 2009) made such an assessment over 
the irrigated areas of the world. They determined that global irrigated areas consume 2099 
km3/y, of which 919 km3/y is green water use (precipitation that falls directly on irri-
gated croplands) and the 1180 km3/y is blue water use (Table 16.4). A country-by-country 
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Figure 16.5
Concept of blue water versus green water. (Adapted from Falkenmark, M., and J. Rockström, J Water Resour 
Plann Manage, 132, 2006.)
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water withdrawal versus water required (water approximately used) shows a consistent 
pattern of high water withdrawal to actual water required or used by irrigated crop-
lands (Figure 16.6). Water withdrawals are even higher when irrigated areas computed by 
Thenkabail et al. (2009a) are used (Table 16.5). Typically, 1.6–2.5 times the water required 
(equivalent to the water used for optimal growing conditions) is actually withdrawn, thus 
achieving only 40–60% irrigation efficiency (Table 16.5). Clear assessments of green water 
use can improve the productivity of rain-fed agriculture and harness the potential of green 
water for increasing resilience to global environmental change (Hoff et al. 2010; Rockström 
et al. 2008).

16.6 E stimates from Regional Studies

Regional cropland area maps and statistics are the primary inputs for water use and food 
security modeling, environmental and natural resource management, assessment, plan-
ning, development, and better targeting of related policies and investments. A variety of 
georeferenced maps and data sets are needed to address global environmental change 
and water security issues, from regional to global scales to characterize current cropland 
patterns, document major changes in land and water use, and place renewed emphasis 
on land and water use in thematic classification schemes. Over the past decade, cropland 
mapping science has made considerable strides using remote sensing and nonsensing 
data. Examples include mapping irrigated areas over the continental United States, with 
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a strong correlation and small bias, little over 2% of the total irrigated area in the United 
States, compared to existing large area irrigation database (Ozdogan and Gutman 2008); 
four LULC-related maps for the state of Kansas that progressively classified crop or non-
crop, general crops, summer crops, and irrigated or rain-fed crops, with cropland areas 
generally having accuracies usually within 1–5% of USDA reported crop areas for most 
classes (Wardlow and Egbert 2008); use of field data and Landsat to map land cover at 
four sites in North America containing agricultural cropland, with overall accuracy of 
81–95% (Cohen et al. 2003); modeling of water and carbon cycle for analyzing the season-
ality of hydrologic processes, water management, and carbon cycles in California (Ichii 
et al. 2009); use of Advanced Very High Resolution Radiometer (AVHRR) imagery every 
10 days at 1-km resolution and ground measurements to validate cropland map/leaf area 
index (LAI), with an accuracy of 50–75% for individual AVHRR and vegetation pixels, 
with mixed crop types found to cause some bias in a wide application in Canada (Chen 
et al. 2002), and land-cover classification that successfully compares with the Coordination 
of Information on the Environment database that serves as a reference for the reliability 
of the study over France (Han, Champeaux, and Roujean 2004); use of QuickBird satellite 
data for surface reflectance and water content retrieval for corn and potato croplands in 
Minnesota, with mean relative differences of 0.03% and 0.06% respectively (Wu, Wang, 
and Bauer 2005), and over Europe for the years 2000–2003, with ground measurement 
differences lower than 0.5 LAI units in most cases (Verger et al. 2009); comparison of 
nine sites varying widely in biome type and land use, but including croplands, using 
1-km spatial resolution MODIS sensor to compare annual net primary production in mul-
tiple biomes (Turner et al. 2006); modeling of agricultural water and urban surface runoff 
based on remote sensing in Denmark, from field to macro scales in catchments dominated 
by agricultural, forest, and urban land use (Boegh et al. 2009); and identification of rapid 
transformation from natural vegetation to row-crop agriculture and conversion from sin-
gle crops to double crops from 2000 to 2005 in southwestern Brazil (Galford et al. 2008). 

Examples from Asia include the urbanization of Shenzhen City, China, between 1999 and 
2005, and analysis of its impact on net primary productivity and annual reduction of car-
bon in croplands using MODIS, Landsat, meteorological and other field data (Deyong et al. 
2009); spatial and temporal patterns of croplands in Chin during 1990–2000, showing that 
most of the lost cropland had good quality, whereas the most gained cropland had poor 
quality (Liu et al. 2005) and landscape changes for the Three Gorges Reservoir area of the 
Yangtze River from 1977 to 2005 (Zhang, Zhengjun, and Xiaoxia 2009); mapping of paddy 
rice agriculture in south and southeast Asia, with area estimates of paddy rice highly cor-
related at the national level and positively correlated with the subnational level statistical 
data sets (Xiao et al. 2006) as well as mapping of cropland, seasonal water use, and crop 
water productivity in the Indo-Gangetic river basin, including Bangladesh, India, Nepal, 
and Pakistan, by combining remotely sensed imagery, national statistics, and meteorologi-
cal data (Cai and Sharma 2010); and monitoring 25 years of land-cover change dynamics in 
Africa through a sample-based remote sensing approach (Brink and Eva 2009).

Some other applications include land-cover generalizations and wetland detection 
(Cook et al. 2009), timing and extent of fires (Roy et al. 2008), agricultural burning and 
emissions from biomass (McCarty, Justice, and Korontzi 2007), and large-scale global 
disturbances such as hurricanes and ice storms (Mildrexler, Zhao, and Running 2009). 
Recent applications include the use of land cover, land use, and land functions and 
their relations (Verburg et al. 2009). Multifunctional productivity of croplands and 
water resources has not been assessed yet. Spatially explicit insights are needed in 
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order to better assess and evaluate the potential welfare impacts. Multisource data 
fusion (Huang et al. 2010; You, Wood, and Wood-Sichra 2009) is a promising approach 
to improve global and regional cropland maps and their water use and can contribute 
to the predictive capabilities of global and regional water and carbon cycles and climate 
and ecosystem models (Sun et al. 2008). Spatial, temporal, spectral, multitype, or dimen-
sional data fusion is quite new and poses significant challenges. Currently, a number 
of global and regional land-cover products exist, and they all have been produced from 
optical, moderate-resolution remote sensing and are thematically focused on charac-
terizing the different cropland and vegetation types; some include temporal signature 
compliance to classification processes. However,  they are not designed to be compa-
rable and exist as independent data sets, and the lack of interoperability is a significant 
challenge (Herold et al. 2008) such that the uncertainties in estimates of cropland area 
across products are an issue (Heistermann, Müller, and Ronneberger 2006; Khan et al. 
2010; Xiao et al. 2003).

16.7  Conclusions and Policy Implications

There are four major cropland area maps and statistics at the global level. One study pri-
marily used multisensor remote sensing (Thenkabail et al. 2009a; Thenkabail et al. 2009c). 
The other three studies used a combination of national statistics and geospatial tech-
niques (Goldewijk et al. 2009; Portmann, Siebert, and Döll 2009; Ramankutty et al. 2008; 
Siebert and Döll 2008, 2009). The total global cropland areas estimated by these four stud-
ies ranged between 1.3 and 1.54 billion hectares for the nominal year 2000. Only two stud-
ies, reported in four peer-reviewed papers (Portmann, Siebert, and Döll 2009; Siebert and 
Döll 2008, 2009; Thenkabail et al. 2009a; Thenkabail et al. 2009c), separated the irrigated 
areas from rain-fed areas. The global irrigated area estimates, without considering crop-
ping intensity, ranged between 312 Mha (Portmann, Siebert, and Döll 2009) and 399 Mha 
(Thenkabail et al. 2009a). Only Thenkabail et al. (2009a) estimated the irrigated areas by 
considering cropping intensity as well, at 467 Mha. However, these studies varied sig-
nificantly in providing precise spatial location of cropland areas and separating irrigated 
areas from rain-fed areas. Furthermore, none of the studies provide a proper assessment 
of crop type and/or crop dominance or irrigation by its source. A proper assessment and 
precise estimates of these aspects of global croplands are crucial given that 60–90% of all 
human water use is by croplands.

The global crop water use varied between 6685 and 7500 km3 yr−1; of this about 70% 
is by rain-fed croplands (green water use) and 30% by irrigated croplands (blue water 
use). However, irrigated croplands use blue water (water in rivers, reservoirs, lakes, and 
pumped groundwater from the saturated zone). About 80% of all blue water currently 
used by humans goes to irrigated areas. This highlights the need for continued focus on 
irrigated croplands and their water use for enhancing global food security.

Uncertainties in global and regional cropland areas, their water use, and the precise geo-
graphic location of these parameters are quite high at present. The need for high-resolution 
remote sensing products that can provide a greater geographic precision, crop types, and 
cropping intensities (by using high spatial resolution with high temporal resolution data) 
remains crucial for ensuring water and food security in the future.
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17
Remote Sensing of Aerosols from Space: A Review 
of Aerosol Retrieval Using the Moderate-
Resolution Imaging Spectroradiometer

Man Sing Wong and Janet Nichol

17.1  Introduction

Aerosols are solid or liquid airborne particulates of variable composition, which reside 
in stratified layers of the atmosphere. Generally, they are defined as atmospheric parti-
cles of sizes between about 0.1 and 10 μm, though the sizes of condensation nuclei are 
typically about 0.01 μm. Under normal conditions, most atmospheric aerosol exists in the 
troposphere. Natural sources such as dust storms, desert and soil erosion, biogenic emis-
sions, forest and grassland fires, and sea spray account for about 90% of aerosols, and the 
rest result from anthropogenic activity. The background (natural) tropospheric aerosols 
are temporally and spatially variable. The study of aerosols is important because of their 
effects on the Earth radiation budget, climate change, atmospheric conditions, and human 
health. Recent research has focused on fine aerosols due to their long-term damage to the 
respiratory system (Davidson, Phalen, and Solomon 2005; Dominici et al. 2006).

The most convenient unit of measurement for aerosols by remote sensing is aerosol 
optical thickness (AOT) because it represents the total attenuation due to scattering and 
absorption along a path measured vertically through atmosphere (Equation 17.1):

	 I I e m= −
0

τλ 	 (17.1)
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where I is the observed intensity for a given path length, I0 is the intensity of radiation at 
the source, τλ is the optical thickness as a function of wavelength, and m is air mass.

Due to the inadequacy of fixed air quality stations, which are unable to capture spatial 
variability, there is increasing interest in satellite sensors for synoptic measurement of 
atmospheric turbidity based on AOT. Retrieval of aerosols from satellite remote sensing is 
not straightforward because no single algorithm can function over all land surface types. 
The main state-of-the art aerosol retrieval algorithms have been devised for land (veg-
etation), land (bright surfaces), or ocean. Only a few sensors have been designed specifi-
cally for aerosol retrieval, but others that are not explicitly designed for this application 
have been used for aerosol retrieval. These include the Total Ozone Mapping Spectrometer 
(TOMS) whose primary purpose is monitoring the atmospheric ozone content (Herman 
et al. 1997; Hsu et al. 1999), the Advanced Very High Resolution Radiometer (AVHRR), 
which was designed for measuring sea surface temperature and vegetation, and the Sea-
Viewing Wide Field-of-View Sensor (SeaWiFS), which was developed to study ocean color 
and marine biogeochemical processes. The Earth-Observing System (EOS) TERRA with 
the Moderate Resolution Imaging Spectroradiometer (MODIS) and Multiangle Imaging 
Spectroradiometer (MISR) also provides capabilities for atmosphere, as well as land and 
ocean, studies (Tanré et al. 1997; Wanner et al. 1997).

However, the detection of atmospheric parameters from remote sensing platforms 
is usually hindered by the signal from the ground surface, being stronger than that 
from the atmosphere, contrary to other applications, where the atmospheric effect is 
considered as noise and should be removed. Most algorithms for quantification of aero-
sol amounts are thus dependent on obtaining the surface reflectance at the bottom of 
atmosphere (BOA) and then subtracting that from the total remotely sensed signal at 
the top of atmosphere (TOA). In addition, aerosol remote sensing algorithms can be 
classified into three major types according to the type of sensing system: (1) multi-
wavelength retrieval, (2) polarization retrieval, and (3) active measurement using lidar. 
The most frequently used method is the multiwavelength retrieval, which is applied 
to sensors such as MODIS, AVHRR, TOMS, and SeaWiFS with considerable success; 
uncertainties are reported to be between 20% and 30%. The percentage of uncertain-
ties is similar to that of polarization retrieval, with the Polarization and Directionality 
of the Earth’s Reflectances (POLDER) instrument said to give an error of 30% (Herman 
et al. 1997). The newly launched Cloud-Aerosol Lidar and Infrared Pathfinder Satellite 
Observations (CALIPSO) conducts active measurement of vertical aerosol distribution 
at 5-km horizontal resolution, but the uncertainty of AOT retrieval from CALIPSO is 
approximately 40% (Vaughan et al. 2004). This chapter focuses on the use of multiwave-
length algorithms with MODIS images.

The MODIS is a sensor aboard the TERRA and AQUA satellites. TERRA was launched 
in 1999, passing from north to south in the morning (approximately 10:30 a.m. local time), 
and AQUA was launched in 2002, passing from south to north in the afternoon (approx-
imately 1:30 p.m. local time). With 36 wavebands at 250-m, 500-m and 1-km resolution, 
MODIS can be used for atmospheric, oceanic, and land studies at both global and local 
scales. MODIS also provides specific products such as atmospheric aerosols, ocean color, 
land-cover maps, and fire products. Calibration of the MODIS satellite observations for 
aerosols is currently achieved by a network of Aerosol Robotic Network (AERONET) sta-
tions distributed around the world. AERONET (Holben et al. 1998) is a federated network 
of ground sun photometers with more than 400 sites. An AERONET station consists of a 
Cimel sun photometer, which measures the aerosol extinction every 15 minutes using mul-
tiple wavelengths, a solar panel, and a controller. It provides real-time AOT, precipitable 
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water, inversion products, including size distribution, single-scattering albedo (SSA), and 
refractive index, based on the solutions of radiative transfer equations. There are three 
levels of data: 1, 1.5, and 2, which represent the raw data, cloud-screened data, and cloud-
screened and quality-assured data, respectively.

17.2  Aerosol Observations Using MODIS (Operational Products)

Before and following the launch of MODIS in 1999, a number of algorithms for aerosol 
retrieval were devised. These state-of-the art methodologies include (1) the dense dark 
vegetation (DDV) algorithm (known as collection-4 algorithm; Kaufman and Tanré 1998), 
(2) the second-generation MODIS operation algorithm (known as collection-5 algorithm; 
Levy et al. 2007), and (3) the deep blue algorithm (Hsu et al. 2004, 2006). These multiwave-
length algorithms take advantage of different aerosol scattering properties at different 
wavelengths (e.g., longer wavelengths have smaller aerosol loadings). Thus, by virtue of 
their spectral differences, the amount and, to some extent, the type and size of aerosols can 
be inferred from a combination of longer and shorter wavelengths. This section will briefly 
describe the rationales and operational methodologies of these methods.

Kaufman and Tanré (1998) proposed the DDV method, using a shortwave infrared 
(SWIR; 2.1 μm) wavelength to estimate surface reflectances for shorter wavelength bands 
(red region: 0.66 μm and blue region: 0.47 μm) over dense forests. This methodology only 
works over dense forests and only with selected kernels containing >60% vegetated dark 
surfaces. Kaufman and Tanré (1998) and Kaufman and Sendra (1987) give equations for 
estimating the surface reflectances for red and blue wavelengths from their correlations 
with a SWIR band representing surface reflectances (Equations 17.2 and 17.3):

	 ρ ρµ µ0 47 2 120 25� �m m= ⋅⋅ 	  (17.2)

	 ρ ρµ µ0 66 2 120 5� �m m= ⋅⋅ 	  (17.3)

It is assumed that due to aerosol there is difference between the original TOA reflec-
tances from the blue and red bands and the surface reflectances derived from the SWIR 
band. This difference is then fitted to a best-fit aerosol model, with the knowledge of the 
expected aerosol types in the study area, for example, continental (Lenoble and Brogniez 
1984), industrial or urban (Remer et al. 1996), biomass burning (Hao and Liu 1994), and 
marine (Husar, Prospero, and Stowe 1997), to obtain an AOT value for each image wave-
band. Dubovik et al. (1998) suggested that a window with a size of 10 km gives the best 
signal-to-noise ratio for global aerosol retrieval using MODIS. However, this method has 
several limitations, including (1) only coarse resolution that is suitable for global moni-
toring can be achieved, (2) its operation is limited to vegetated areas and cannot operate 
over bright urban surfaces, and (3) it has low accuracy in southeast China (Kaufman and 
Tanré 1998). In addition, Chu et al. (2002) showed that collection-4 algorithm (DDV’s algo-
rithm, Equations 17.2 and 17.3) had a positive bias in comparison to the AERONET sun 
photometer data. Remer et al. (2005) and Levy et al. (2004) also reported certain inherent 
problems in determining surface reflectance using the MODIS collection-4 algorithm. 
Their results imply that inaccurate surface properties can lead to errors (±0.05 ± 0.2τ) in 
aerosol retrieval.
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Due to these perceived errors, Levy et al. (2007) then modified the algorithm by consid-
ering band correlation based on the normalized difference vegetation index NDVISWIR, 
and the scattering angle, since Gatebe et al. (2001) and Remer, Wald, and Kaufman (2001) 
suggested the VISIBLE/SWIR ratio is angle dependent. The rationale of Levy et al.’s col-
lection-5 method is to first identify the dark pixels. A kernel of 10-km size is used for 
scanning, and the dark pixels are identified as those with surface reflectance less than 
0.25 at 2.12 μm wavelength. The darkest 20% and the brightest 50% of pixels inside the 
box are discarded, and the remaining 30%, or at least 12 pixels, inside the box are used 
for NDVISWIR calculation (Equation 17.4). Following this, the pixels are classified into three 
categories based on the NDVISWIR (Equation 17.5), and the f linear equations (Equation 17.6) 
are applied to those three categories with three sets of slope and intercepts. The values of 
linear equations are determined by band correlation analysis using atmospherically cor-
rected MODIS images.
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The collection-5 algorithm also operates over bright surfaces if the surface reflectance 
at 2.12 μm is less than 0.4 and the number of pixels inside the 10-km kernel is greater 
than 12. Then, a 0.47-μm channel is used for aerosol retrieval, and the continental model 
is assigned during the lookup table (LUT) calculation. This capability for bright surface 
aerosol retrieval combined with the increased threshold of surface reflectance for dark 
pixel selection (0.15 in DDV and 0.25 in collection-5) allows the collection-5 algorithm to 
work over semiurban and suburban areas, although the method still does not work well 
over large and very bright surfaces, such as deserts or complex land surfaces. Also, since 
only one band at the 0.47 μm wavelength is used and only one aerosol model is assigned 
for aerosol retrieval, the quality of AOT over bright surfaces is deemed poor, with greater 
uncertainties. Nevertheless, when the new collection-5 algorithm was evaluated (Li et al. 
2007; Mi et al. 2007), a significant improvement was found, with an increase of 27% in accu-
racy over the original DDV algorithm, when correlated with ground measurements.

Aerosol retrieval over bright surfaces is challenging because the land surface and atmo-
spheric aerosol contents are not easy to differentiate because both have high reflectance 
values. The operational DDV and collection-5 algorithms retrieve aerosols over land when 
the surface reflectances are less than 0.15 and 0.25 at a 2.12 μm wavelength, respectively. 
They are unable to retrieve aerosols over large bright surface areas like the Mongolian 
and Saharan deserts, which are the most important sources of dust in China and Africa. 
Hsu et al. (2004, 2006) recently developed the deep blue algorithm for aerosol retrieval 
over bright surfaces such as desert, arid, and semiarid areas using MODIS images. This 
algorithm makes use of ratio between two blue wavelengths (412 and 490 nm) since the 
surfaces are bright in the red region and darker in the blue region. The deep blue algorithm 
has been demonstrated successfully only for large homogeneous surfaces such as deserts 
and not for areas of complex land cover, like urban areas.
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17.3 � High-Resolution Aerosol Observations of Densely Urbanized Region 
(Case Study of Hong Kong and the Pearl River Delta Region)

17.3.1  Study Area

Hong Kong (Figure 17.1), a city with a service-based economy located in southeast China, 
has suffered serious air pollution over the last decade. The Hong Kong PolyU AERONET 
station shows aerosol levels to be high, compared with other urban stations worldwide, 
for example a mean AOT of 0.69 for 440-nm band, compared with 0.57 for Beijing, 0.55 for 
Singapore, 0.22 for Rome, and 0.24 for the Goddard Space Flight Center. The Pearl River 
Delta (PRD) region is often covered with haze and gray smoke, which is observed on daily 
MODIS satellite images. Wu et al. (2005) showed that the AOT in this region is often higher 
than 0.6 at 550 nm. Previous studies in the PRD region have measured a range of particle 
concentrations for PM10 (particulate matter with aerodynamic diameter less than or equal 
to 10 μm) of 70–234 μg/m3, with high average PM10 concentrations of above 200 μg/m3 
in winter, and around 100 μg/m3 for PM2.5 (particulate matter with aerodynamic diam-
eter less than or equal to 2.5 μm) in autumn (Wei et al. 1999; Cao et al. 2003, 2004). These 
high concentrations of suspended particulates create low visibility and greatly affect the 
regional radiative budget (Wu et al. 2005). During the long dry season in winter, north-
easterly air masses mainly bring continental pollution into the PRD region and Hong 
Kong (Gnauk et al. 2008). The consequent effects on visibility and health due to continuous 
bad air have appeared gradually since 2000. The Hong Kong Environmental Protection 
Department (EPD 2004) reported that an increase of 10 μg/m3 in the concentration of NOx, 
SO2, respiratory suspended particulate (RSP), and ozone causes associated diseases such as 
respiratory, chronic pulmonary, and cardiovascular heart diseases to increase by 0.2–3.9%, 
respectively. Ko et al. (2007) demonstrated that air pollution is accompanied by increased 
hospital admissions for chronic obstructive pulmonary disease in Hong Kong, especially 
during winter. Wong et al. (1999) also found significant relationships between hospital 
admissions in Hong Kong for all respiratory diseases, all cardiovascular diseases, chronic 
obstructive pulmonary diseases, and heart failure, and concentrations of the following 

Foshan 7 m
Guangzhou 10 m

Shunde 1 m
Panyu 1 m

Zhongshan 4 m

Zhuhai 2 m

Macau 1 m 25 kms

Hong Kong 7 m

Pearl
River
Estuary

Huizhou 3 m

Shenzhen 10 m

Dongguan 7 m

Yuen Long

114.00

22
.5

0
22

.3
0 22.30

22.50

114.20 114.40

114.00

0.0 0.4 0.8 1.2

AOT_550 nm_MODO4_C005

1.6 2.0

Air quality
monitoring
stations

114.20 114.40

Tsuen Wan

Tap Mun

Tung Chung Central
AERONET
Hok Tsui

AERONET
POLYU

Figure 17.1
Left: Hong Kong and cities of the Pearl River Delta region, with population size (millions). Right: Study area of 
Hong Kong overlaid with five air quality monitoring stations, two AERONET stations, and a MODIS collection-5 
aerosol optical thickness image on January 28, 2007.



428	 Advances in Environmental Remote Sensing

four pollutants: nitrogen dioxide, sulfur dioxide, ozone, and PM10. The low visibility 
due to air pollutants in Hong Kong also affects marine and air navigation and affects the 
attractiveness of Hong Kong as a tourist destination.

The gathering of data over large regions such as the Hong Kong and Guangdong prov-
inces of China (area of approximately 179,000 km2) is a major challenge to air pollution 
monitoring. The 16 air monitoring stations set up over this region are obviously insuffi-
cient for detailed observation. It is now realized that the only way to obtain measurements 
of aerosols over uninstrumented areas is from space (NASA 2009), and that this is the only 
way by which long-term global monitoring of aerosols can be done.

Images showing synoptic coverage over the PRD region as well as large parts of China 
often covered with gray haze are now available from the MODIS satellite sensor of the 
National Aeronautic and Space Administration (NASA), which provides images of the 
globe on a twice-daily basis, at spatial resolutions of 250 m, 500 m, and 1 km. From these, 
NASA has developed the MODIS level-2 AOT product (MOD04). However, the 10-km spa-
tial resolution of this product only provides meaningful depictions on a regional scale, and 
aerosol monitoring over complex regions, such as urban and rural areas in Hong Kong ter-
ritories (1095 km2), requires more spatial detail.

17.3.2  Methodology

17.3.2.1  Contrast Reduction Method and Li et al. Method

The heterogeneous land algorithm, also known as the contrast reduction method (Tanré 
et al. 1988), is based on the principle of measuring the blurring effect between highly con-
trasting adjacent pixels (Tanré et al. 1979; Mekler and Kaufman 1980). This has been used by 
Sifakis and Deschamps (1992), Sifakis, Soulakellis, and Paronis (1998), and Retalis, Cartalis, 
and Athanassiou (1999) for very “high”-resolution aerosol estimation over complex urban 
areas such as Athens using SPOT and Landsat images. A fairly high correlation of 0.76 
was obtained between Landsat-derived AOT and SO2 over Athens (Sifakis, Soulakellis, 
and Paronis 1998). The major drawback of this method for deriving high-resolution aero-
sol images is that it measures path radiance (aerosol scattering between adjacent image 
pixels) within a kernel of 15 × 15 pixels. Thus, for SPOT, a 20-m pixel produces an aerosol 
image of 300 × 300 m. Using MODIS, the resolution of the resulting aerosol product is 7.5 × 
7.5 km. This resolution is too low for the spatial detail required over densely urbanized 
regions. In addition, accuracy is said to be sensitive to the selected aerosol model because 
particle shape and size distribution are crucial to the specular scattering and reflectance 
properties.

Li et al. (2005) developed a 1-km AOT algorithm for Hong Kong, using the same prin-
ciples as that of the DDV algorithm of Kaufman and Tanré (1998), but under more stringent 
conditions for the cloud mask and vegetation screening. Error was within 15–20% com-
pared with handheld sun photometer measurements, although too few validation sources 
were available in the region to obtain robust AOT measurements from the satellite data. 
Furthermore, the DDV algorithm used would not give accurate results over bright urban 
areas. Li et al. (2005) further suggested that based on 44 measurements from MICROTOPSII 
sun photometers, the sulfate and biomass burning models found in the second simulation 
of a satellite signal in the solar spectrum (6S) radiative transfer model were unsuitable for 
Hong Kong. Indeed, the diversity of aerosol sources in the region coupled with often high 
humidity poses challenges for finding a suitable model. Because the MICROTOPSII mea-
surements used for validation in the study lack inversion data such as size distribution and 
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SSA, which are available from AERONET, more rigorous studies are needed to provide an 
operational aerosol retrieval method for complex regions.

17.3.2.2  Our Method

In order to estimate aerosols over variable cover types, including bright and dark surfaces, 
a newly developed methodology is described here for aerosol retrieval from MODIS 500-m 
data (Wong et al. 2009, 2010). For this study, five MODIS 500-m channels and two MODIS 
250-m channels were acquired for aerosol retrieval, as well as for cloud and water mask-
ing. Figure 17.2 illustrates this AOT retrieval method.

The AERONET data (2005–2007) from the Hong Kong PolyU station were acquired and 
clustered to give four different aerosol models. The aerosol models coupled with relative 
humidity data and different viewing geometries were input into the Santa Barbara DISORT 
radiative transfer (SBDART; Ricchiazzi et al. 1998) code to build LUTs. The LUT construc-
tion was based on the four local aerosol models, namely, (1) mixed urban aerosol (which is 
a mixture of urban and marine pollutants), (2) polluted urban aerosol (which is dominated 
by local urban aerosol), (3) dust (which is long-distance Asian dust), and (4) heavy pollution 
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(which has a high AOT value and represents a mixture of particle types such as very small 
carbonaceous and sulfate particles), 9 solar zenith angles (0°–80°, Δ = 10°), 17 view zenith 
angles (0°–80°, Δ = 5°), 18 relative sun/satellite azimuth angles (0°–170°, Δ = 10°), and 8 RH 
values (RH = 0%, 50%, 70%, 80%, 90%, 95%, 98%, and 99%). The SBDART code uses the 
aerosol properties associated with a given model, with the combinations of values for the 
four parameters listed earlier (amounting to 264,384 combinations for three bands [470, 
550, 660 nm]), to compute the hypothetical AOT. To minimize the computer memory, the 
specific relative humidity was first retrieved and LUT geometry was interpolated to the 
specific satellite geometry. Finally, the simulated aerosol reflectances and TOA reflectances 
were created as a function of AOT.

The MODIS 500-m calibrated reflectance images in 2007 were acquired from NASA’s 
Distributed Active Archive Centers (DAAC). Geometric correction, reprojection, cloud and 
water screening, view angle screening, and Rayleigh correction were first applied to the 
images. The minimum reflectance technique (MRT) was then applied to the MODIS 500-m 
images in order to obtain the surface reflectance. The MRT was first developed for TOMS 
(Herman and Celarier 1997) and applied to the Global Ozone Monitoring Experiment 
(GOME; Koelemeijer, De haan, and Stammes 2003) data at coarse resolution (>1°). The MRT 
obtained the surface reflectance by extracting the minimum reflectance (or darkest) pixels 
for a land surface from many Rayleigh corrected images over a period. For validation pur-
poses, the derived surface reflectance images were compared with field measurements 
and MODIS surface reflectance products (MOD09).

The aerosol reflectances can then be derived by decomposing the TOA reflectances from 
surface reflectance and Rayleigh path reflectances (Equation 17.7). The derived aerosol 
reflectances are then compared with simulated aerosol reflectances from LUTs using the 
spectral fitting technique. The aerosol model with minimum residual is selected, and the 
corresponding aerosol reflectance and AOT values are obtained. Finally, the AOT images 
at 550 nm are derived:

	 ρ ρ ρ θ θ ρ
ρTOA Aer Ray

Tot 0 Tot s Surf

Su

= +
−

+ ⋅ ⋅Γ Γ( ) ( )
1 rf Hem⋅r 	 (17.7)

where θ0  is the solar zenith angle, θs is the satellite zenith angle, ρAer is the aerosol reflec-
tance, ρRay  is the Rayleigh reflectance, ΓTot ( )θ0  is the transmittance along the path from 
the sun to the ground, ΓTot s( )θ  is the transmittance along the path from the sensor to the 
ground, ρSurf  is the surface reflectance, and rHem  is the hemispheric reflectance.

When the derived AOT images are compared with a whole year’s measurements with 
AERONET and MICROTOPSII, a strong correlation is observed between MODIS collection-5 
AOT and AERONET data (Figure 17.3a). This is surprising because Kaufman and Tanré (1998) 
predicted AOT retrieval problems for the southern region of China, due to high humidity 
combined with a diversity of aerosol types. Similar correlations (r2 = 0.79 for AERONET and 
r2 = 0.76 for MICROTOPSII) are obtained for 500-m AOT data (Figures 17.3b and c), com-
pared with r2 = 0.83 for the MODIS collection-5. In addition, similar RMS errors (MODIS 
500 m = 0.176, collection-5 = 0.167), similar MAD errors (MODIS 500 m = 0.142, collection 
5 = 0.129), and similar bias estimators (MODIS 500 m = 0.011, collection-5 = 0.011) are also 
obtained from MODIS 500-m data compared with the MODIS operational collection-5 prod-
ucts at 10-km resolution. It is significant that 500-m AOT data not only retrieves AOT images 
at a much higher spatial resolution but also retrieves AOT over bright urban surfaces as well 
as dark vegetated areas. Both of these improvements are important for a topographically 
complex area with heterogeneous land cover like Hong Kong.
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Although the signal-to-noise ratio of the 10-km resolution data is 20 times higher than the 
500-m resolution data (Kaufman and Tanré 1998), Henderson and Chylek (2005) showed 
that there are only small changes in the accuracy of aerosol retrieval with increasing pixel 
sizes from 40 × 80 m2 to 2040 × 4080 m2. Therefore, any loss of accuracy due to a decreased 
signal-to-noise ratio of 500-m AOT data is believed to be small enough to be compensated 
by an increased accuracy from higher spatial resolution.

The AOT distribution over Hong Kong and the PRD region on October 20, 2007 from 
MODIS 500-m data is shown in Figure 17.4b. Only approximately 15 pixels cover the entire 
territories of Hong Kong, with an AOT image at 10-km resolution (Figure 17.4a), while there 
are 400 times more using 500-m resolution (Figure 17.4b). The spatial pattern of aerosols, 
especially in Shenzhen (the Chinese city near Hong Kong), is much more precisely defined 
using the 500-m AOT image compared with the 10-km pixels of MOD04. Figure 17.4c shows 
the 500-m AOT images over Kowloon peninsula and part of Hong Kong island overlaid 
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with road networks. Urban districts like Hung Hom, Sham Shui Po, Kowloon Bay, and Ap 
Lei Chau observe high AOT values (∼1.0), whereas the rural areas have relatively low AOT 
values (∼0.3).

17.3.2.3  Applications of High-Resolution Aerosol Products

17.3.2.3.1  Monitoring Anthropogenic Emissions in the PRD Region

An example of rapid changes in AOT over the PRD region occurred on January 28, 2007 
and January 30, 2007. Two MODIS 500-m AOT images are shown in Figures 17.5a and b. 
The AOT at 550 nm on January 28, 2007 is relatively low with a range of ∼0.4 in rural areas 
to ∼1.4 in urban areas. It is particularly notable that in the industrialized areas of the PRD, 
for example, in Guangzhou city and Shunde district, high AOT values are observed, but in 
other areas, low AOT values are observed due to strong wind speeds (∼4 m/s). However, 
a marked increase in AOT occurred 2 days later on January 30, 2007. This extremely high 
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(See color insert following page 426.) Aerosol optical thickness image at 550-nm and 500-m resolution over 
Hong Kong and the Pearl River Delta region on (a) January 28, 2007 and (b) January 30, 2007.
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AOT (∼1.8), which is observed over most industrialized areas in the PRD, is shown in red 
in Figure 17.5b. Many industries and power plants are located there, and due to very low 
wind speeds (∼1 m/s) on that day, pollutants were trapped in the PRD region. The pollut-
ants would progressively accumulate as wind speeds decreased from 4 m/s on January 28, 
2007 to 2 m/s on January 29, 2007 and 1 m/s on January 30, 2007.

17.3.2.3.2  Mapping Aerosols from Biomass Burning

China is still an agricultural country, and had a yield of 690 million tons of straw in 2000 
(Wang et al. 2007), of which 36% was used for domestic fuel and 7% was disposed of by open 
fires (Gao et al. 2002). In the PRD region with extensive areas of dense forest, biomass burn-
ing (intentional or accidental) occurs frequently. This section demonstrates the application 
of MODIS 500-m AOT images to locate and pinpoint local sources of biomass burning.

Figure 17.6a shows the Rayleigh-corrected RGB image on November 30, 2007. Biomass 
burning is clearly evident on the left of the image (marked on the image), which is located 
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in the dense forest area of Zhaoqing county. MODIS 500-m AOT images (Figure 17.6b) are 
also observed to have high AOT values (>1.8). The smoke plumes and the source of burn-
ing can be easily identified on the 500-m AOT image, whereas they cannot be identified 
on the MODIS 10-km AOT image. In addition, large patches over urban areas are masked 
out with no AOT data values on MODIS collection-5 algorithm (Figure 17.6c) due to their 
high surface reflectances not meeting the surface reflectance criteria in the collection-5 
AOT algorithm. The same fire spots are also depicted on the Web Fire Mapper developed 
by the Geography Department of the University of Maryland. An easterly wind from a 
wind direction map confirms the direction of fire smoke. The images derived from our 
method not only can retrieve aerosols over bright urban surfaces but also can pinpoint 
small pollution sources such as biomass burning.

17.4  Summary

Satellite remote sensing for aerosol retrieval has been developed over 3 decades, and the 
techniques now permit aerosol mapping at global, regional, and local scales. Operational 
satellite aerosol products are now available from space agencies such as the National 
Oceanic and Atmospheric Administration (NOAA), NASA, and the European Space 
Agency (ESA). This chapter reviews different algorithms operating on MODIS images, 
including the DDV algorithm (known as collection-4 algorithm), the second-generation 
MODIS operation algorithm (known as collection-5 algorithm), the deep blue algorithm at 
10-km resolution, Li et al.’s (2005) method at 1-km resolution, and Wong et al.’s (2009, 2010) 
method at 500-m resolution.

We described Wong et al.’s (2009, 2010) algorithm using the MODIS 500-m resolution 
images for the retrieval of aerosol properties over complex urbanized regions such 
as Hong Kong and the PRD region. Strong correlations with AERONET (r2 = 0.79) and 
MicrotopsII (r2 = 0.76) sun photometer measurements, as well as low RMS error (0.176), 
low MAD error (0.142), and low bias estimator (0.011) were obtained for MODIS 500-m AOT 
data. The aerosol retrieval methodology presented here can be transferred to other mega 
cities. The MODIS 500-m AOT images are able to locate local-scale anthropogenic emis-
sions such as traffic “black spots” and industrial emissions and to map rapid changes in 
AOT at regional scales. Moreover, aerosols from biomass burning can be identified using 
the MODIS 500-m AOT images, as the smoke plume and the source of burning can be 
easily identified. As such, with the high temporal resolution of MODIS, the 500-m AOT 
images can be used to monitor cross-boundary aerosols and the development of pollutant 
sources in the PRD region surrounding Hong Kong.

Two major impediments to the use of remote sensing for routine air quality monitor-
ing over complex regions are the need for several images per day for accurate forecasting 
and the unknown relationship between AOT, which represents the whole atmospheric 
column, and air pollution levels near the ground. The first impediment may be overcome 
by the provision of geostationary satellites with multispectral sensors in the visible region 
or a constellation of satellites to supplement MODIS TERRA and AQUA, such as the forth-
coming National Polar-Orbiting Operational Environmental Satellite System (NPOESS) 
program. The second one may be minimized as AOT retrievals become more accurate 
with improved future sensors and algorithms. Then, the inclusion of local meteorological 
data, including wind speed, humidity, and inversion height, should permit the retrieval 
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of fractional column AOT concentrations, including the near-ground layers. The estab-
lishment of robust relationships between fractional column AOT concentrations and pol-
lutants of concern, such as fine particulates (PM2.5), aerosol precursor gases, ozone, and 
oxides of nitrogen, in the future will make aerosol remote sensing an essential tool for city 
and regional environmental authorities.
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18
Remote Estimation of Chlorophyll-a Concentration 
in Inland, Estuarine, and Coastal Waters

Anatoly A. Gitelson, Daniela Gurlin, Wesley J. Moses, and Yosef Z. Yacobi

18.1  Introduction

Inland, estuarine, and coastal waters comprise only a small fraction of the Earth’s aquatic 
component, but are extensively exploited by human activities. The water quality in these 
ecosystems is, therefore, of high ecological and economic importance, and in this respect, 
quantitative evaluation of phytoplankton biomass is a crucial endeavor. Despite the high 
variability of its composition, size, and forms (Reynolds 2006), phytoplankton may be rela-
tively easily monitored by the estimation of the concentration of chlorophyll-a (chl-a), a 
pigment universally found in all phytoplankton species and routinely used as a substitute 
for biomass in all types of aquatic environments.
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Remote sensing is an effective method for synoptic monitoring of chl-a concentration 
over potentially heterogeneous areas of phytoplankton distribution. Even a few remotely 
sensed images are useful in the design or improvement of in situ sampling strategies by 
identifying representative locations and optimizing the timing for sampling. Remote sens-
ing studies typically involve mapping of constituent concentrations in water bodies using 
water-leaving radiance or reflectance collected by a sensor held above or below the water 
surface. The estimation of constituent concentrations usually requires the development of 
a model, which is a mathematical combination of reflectances at different wavelengths, in 
such a way that the model is maximally sensitive to changes in the concentration of the 
constituent of interest (e.g., chl-a) and is minimally sensitive to changes in concentrations 
of other constituents present in the water.

In this chapter, we will present algorithms for the remote estimation of chl-a concentra-
tion in turbid protective waters and show how they work at close range and at satellite 
altitude. This chapter also contains

Brief background information on the commonly used remote sensing models for •	
estimating chl-a concentration
A description of a semianalytical model that uses reflectances in the red and near-•	
infrared (NIR) wavelengths for estimating chl-a concentration
The data and methods used•	
The results of calibrating and validating the NIR–red models using reflectance •	
data measured in situ and from satellites
The results supporting the potential for a universal NIR–red algorithm•	
A discussion on the challenges and limitations in developing a universal NIR–red •	
algorithm for accurately estimating chl-a concentration from the satellite data rou-
tinely acquired over turbid productive waters from around the globe

18.2  Background

Historically, remote sensing of chl-a concentration has been commonly used for open 
ocean, case I waters (Morel and Prieur 1977) using reflectances in the blue and green spec-
tral regions (Gordon and Morel 1983; Kirk 1994; Mobley 1994). In turbid productive waters, 
however, the reflectances in these spectral regions cannot be used for estimating chl-a con-
centration due to overlapping and uncorrelated absorption by colored dissolved organic 
matter (CDOM) as well as scattering and absorption by detritus and tripton, which are 
higher in turbid waters than in open oceans (Figure 18.1; GKSS 1986; Gitelson 1992; Dekker 
1993; Gons 1999; Gons et al. 2000; Dall’Olmo and Gitelson 2005; Schalles 2006; Gitelson, 
Schalles, and Hladik 2007).

Many investigations have been directed toward the development of remote sensing tech-
niques for the estimation of the concentration of chl-a and other water constituents in turbid 
productive waters (Bukata et al. 1979; Vasilkov and Kopelevich 1982; Gitelson, Keydan, and 
Shishkin 1985; Vos, Donze, and Bueteveld 1986; Gitelson, Kondratyev, and Garbusov 1987; 
Gitelson and Kondratyev 1991; Gitelson 1992; Dekker 1993; Gitelson et al. 1993a; Gitelson, 
Szilagyi, and Mittenzwey 1993b; Jupp, Kirk, and Harris 1994; Bukata et al. 1995; Gege 1995; 
Gons 1999; Gons et al. 2000; Pierson and Strömbäck 2000; Kallio et al. 2001; Kutser et al. 2001; 
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Strömbäck and Pierson 2001; Ruddick et al. 2001; Thiemann and Kaufmann 2002; Kallio, 
Koponen, and Pulliainen 2003; Albert 2004). The two main approaches used in the con-
struction of algorithms for the remote estimation of chl-a concentration in turbid produc-
tive waters were analytical and empirical/semianalytical. The analytical approach is based 
on specific inherent optical properties (IOP), such as absorption and scattering coefficients 
per unit concentration of constituents, which are used to simulate reflectance spectra by 
using a radiative transfer technique. Then, by a process of optimization based on minimiz-
ing the difference between the simulated and measured reflectance spectra, the concentra-
tions of different constituents are adjusted and subsequently determined. If the values of 
the specific IOPs included in the model are fairly close to those of the water body where the 
reflectance data were measured, this approach may yield accurate results. However, spe-
cific IOPs vary widely in space and time even within a water body. Thus, the assumption 
of a priori IOP determination is not often valid for turbid productive waters. The empirical 
or semianalytical approach involves algorithms that are based on relationships between 
physically based models and experimental results.

The spectral features of turbid productive waters have been studied for a wide range of 
chl-a concentrations from 3 to more than 200 mg ⋅ m−3 (Gitelson, Keydan, and Shishkin 1985; 
Gitelson et al. 1986; Gitelson, Kondratyev, and Garbusov 1987; Gitelson and Kondratyev 
1991; Gitelson 1992; Quibell 1992; Dekker 1993; Gitelson 1993; Gitelson et al. 1993a; Gitelson, 
Szilagyi, and Mittenzwey 1993b; Gitelson et al. 1994; Han et al. 1994; Han and Rundquist 
1994; Matthews and Boxall 1994; Millie et al. 1995; Rundquist, Schalles, and Peake 1995; 
Yacobi, Gitelson, and Mayo 1995; Han and Rundquist 1996; Vos, Donze, and Bueteveld 
1986; Han and Rundquist 1997; Gons 1999; Gitelson et al. 2000; Gons et al. 2000; Dall’Olmo, 
Gitelson, and Rundquist 2003; Dall’Olmo and Gitelson 2005; Dall’Olmo 2006; Dall’Olmo 
and Gitelson 2006; Schalles 2006; Gitelson, Schalles, and Hladik 2007; Gitelson et al. 2008; 
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Figure 18.1
Spectra of the absorption coefficients of phytoplankton, aφ(λ), nonalgal particles, aNAP(λ), CDOM, aCDOM(λ), and 
water, aw(λ) for a moderately turbid lake with a chl-a concentration of 27.8 mg ⋅ m−3 and total suspended solids 
(TSS) concentration of 6.5 mg ⋅ L−1. (Values of aw(λ) taken from Mueller, J. L. 2003. Inherent optical properties: 
Instrument characterizations, field measurements and data analysis protocols. In Ocean Optics Protocols for 
Satellite Ocean Color Sensor Validation, Revision 4, Volume IV, Erratum 1 to Pegau, S., J. R. V. Zaneveld, and 
J. L. Mueller. 2003. Inherent optical property measurement concepts: Physical principles and instruments. In 
Inherent Optical Properties: Instruments, Characterizations, Field Measurements, and Data Analysis Protocols. Ocean 
Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 4, Volume IV, ed. J. L. Mueller, G. S. Fargion, 
and C. R. McClain. Goddard Space Flight Center Technical Memorandum 2003-211621.)
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Gitelson et al. 2009; Moses 2009; Moses et al. 2009a,b). Three main features of chl-a are 
potentially important in the context of concentration estimation using spectral reflectance. 
First, chl-a has a strong absorption band around 670 nm, forming a trough in the reflectance 
spectrum. The magnitude of reflectance around 670 nm (ρ670) is related to chl-a concentra-
tion. However, chl-a absorption is often not the sole factor controlling ρ670, as it depends 
also on the concentration of inorganic and organic suspended solids (ISS and OSS). Thus, 
ρ670 alone cannot be used for a reliable estimation of chl-a concentration (Dekker 1993; 
Gitelson et al. 1993a; Gitelson, Szilagyi, and Mittenzwey 1993b; Gitelson et al. 1994; Yacobi, 
Gitelson, and Mayo 1995).

A peak due to solar-induced chl-a fluorescence near 685 nm is the second significant 
spectral feature in the red region (Neville and Gower 1977; Gower 1980; Doerffer 1981). 
With an increase in chl-a concentration, the fluorescence peak near 685 nm increases; 
therefore, it was used as an indicator of chl-a concentration, which was calculated as the 
height above the baseline positioned from 650 through 730 nm (Neville and Gower 1977; 
Gower 1980; Doerffer 1981; GKSS 1986; Fischer and Kronfeld 1990). However, the quantita-
tive accuracy of this approach is limited by the varying fluorescence efficiencies of different 
phytoplankton populations and changes in water absorption, which reduce the available 
light. Another limitation is the reabsorption of the fluoresced light by chl-a, resulting in a 
decrease in the emitted signal; this happens when the chl-a concentration increases above 
10–15 mg ⋅ m−3 (Kishino, Sugihara, and Okami 1986; Gitelson 1992; Gitelson 1993). Thus, 
although the use of chl-a fluorescence at 685 nm seems to be useful and effective for the 
estimation of low chl-a concentrations, it is not expedient for the development of algo-
rithms that yield consistent and accurate results for a wide range of chl-a concentrations in 
turbid productive waters with highly variable optical properties.

The third reflectance feature specific to chl-a is a peak in the NIR region around 700 
nm. The magnitude of the peak, as well as its position, depends on the chl-a concentra-
tion (Vasilkov and Kopelevich 1982; Gitelson et al. 1986; Vos, Donze, and Bueteveld 1986; 
Gitelson 1992; Gitelson 1993; Gitelson et al. 1994; Yacobi, Gitelson, and Mayo 1995, Schalles 
et al. 1998) but is also affected by absorption and scattering by other constituents.

Most of the algorithms developed to quantify chl-a concentration are based on the prop-
erties of the peak near 700 nm. These include the ratio of the reflectance peak (ρmax) to ρ670 
(ρmax/ρ670), the ratio ρ705/ρ670 (Gitelson et al. 1986; Gitelson and Kondratyev 1991; Dekker 1993; 
Gitelson et al. 1993a; Gitelson, Szilagyi, and Mittenzwey 1993b), and the position of this peak 
(Gitelson 1992). Gons (1999) used the ratio of reflectances at 704 and 672 nm, the absorption 
coefficients of water at these wavelengths, and the backscattering coefficient at 776 nm to 
estimate chl-a concentrations ranging from 3 to 185 mg ⋅ m−3. In many studies, close rela-
tionships have been found between chl-a concentrations and NIR-to-red reflectance ratios, 
with the red wavelength around 675 nm and the NIR wavelength varying between 700 
and 725 nm (Hoge, Wright, and Swift 1987; Yacobi, Gitelson, and Mayo 1995; Pierson and 
Strömbäck 2000; Pulliainen et al. 2001; Ruddick et al. 2001; Oki and Yasuoka 2002; Dall’Olmo 
and Gitelson 2005). Using vector analysis, Stumpf and Tyler (1988) showed that the ratio of 
reflectances in the NIR and red bands of the Advanced Very High Resolution Radiometer 
(AVHRR) and Coastal Zone Color Scanner (CZCS) can be used to identify phytoplankton 
blooms and to estimate chl-a concentrations above 10 mg ⋅ m−3 in turbid estuaries.

These methods are based on the assumption that optical parameters such as the specific 
absorption coefficient of phytoplankton, a*ϕ(λ), and the chl-a fluorescence quantum yield, 
η, remain constant. In reality, these parameters depend on the physiological state and 
structure of the phytoplankton community and can vary widely. It was shown that a*ϕ(675) 
can vary up to fourfold for chl-a concentrations ranging from 0.02 to 25 mg ⋅ m3 (Bricaud 
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et al. 1995). Fluorescence quantum yield is affected by the taxonomic composition of phy-
toplankton, illumination conditions, light adaptation, nutritional status, and temperature 
and can vary by eightfold for chl-a concentrations ranging from 2 to 30 mg ⋅ m−3, which is 
typical for inland and coastal waters (GKSS 1986). Therefore, the assumptions of constant 
a*ϕ(λ) and η are a significant source of uncertainty in models for the remote estimation of 
chl-a concentrations.

18.3  Semianalytical NIR–Red Model

A fundamental relationship between the remote sensing reflectance (ρrs) and IOPs was 
formulated as follows (Gordon, Brown, and Jacobs 1975):

	 ρ λ λ
λ λrs

b

b

( )
( )

( ) ( )
∝

+
b

a b
	 (18.1)

where a(λ) is the absorption coefficient and bb(λ) is the backscattering coefficient.
Recently, a conceptual model based on Equation 18.1 was developed and used to esti-

mate pigment concentration in terrestrial vegetation at leaf and canopy levels (Gitelson, 
Gritz, and Merzlyak 2003; Gitelson et al. 2005):

	 Pigment content ( )1 2 3∝ − ×− −[ ( ) ( )]ρ λ ρ λ ρ λ1 1 	 (18.2)

where ρ(λ1), ρ(λ2), and ρ(λ3) are the reflectance values at wavelengths λ1, λ2, and λ3 respec-
tively. λ1 is in a spectral region such that ρ(λ1) is maximally sensitive to absorption by the 
pigment of interest, although it is still affected by absorption by other pigments and scat-
tering by all particulates. λ2 is in a spectral region such that ρ(λ2) is minimally sensitive to 
absorption by the pigment of interest and its sensitivity to absorption by other constituents 
is comparable to that of ρ(λ1). Thus, the difference [ρ−1(λ1) − ρ−1(λ2)] is related to the concentra-
tion of the pigment of interest. However, the difference is still potentially affected by varia-
tions in scattering by particles. Consequently, information on λ3 is required. Wavelength λ3 
is located in a spectral region where the reflectance ρ(λ3) is minimally affected by absorp-
tion due to any constituent and is therefore used to account for the variability in scattering 
between samples.

Dall’Olmo, Gitelson, and Rundquist (2003) suggested the use of this conceptual 
model (Equation 18.2) for estimating chl-a concentration in turbid productive waters. In 
Equation 18.1, the absorption coefficient, a(λ), is the sum of the absorption coefficients of 
water, aw(λ), phytoplankton, aϕ(λ), nonalgal particles, aNAP(λ), and CDOM, aCDOM(λ). Follow
ing Gordon’s concept, the model presented in Equation 18.2 (called henceforth the three-
band NIR–red model) was designed by choosing three optimal wavelengths, such that the 
contributions due to absorption by constituents other than chl-a and backscattering by 
particles are kept to a negligible minimum, and the model output is maximally sensitive to 
chl-a concentration. The red region around 670 nm, where chl-a absorption is maximal (but 
the reflectance may be affected also by other constituents), was chosen as λ1. λ2 is longer 
than λ1, where absorption by chl-a, aϕ(λ), is minimal and the absorption by other constitu-
ents, aNAP(λ) and aCDOM(λ), is about the same as at λ1. Thus, ρ−1(λ1) is a measure of absorp-
tion by chl-a and other constituents, and ρ−1(λ2) is a measure of absorption by constituents 
other than chl-a. λ3 is at a wavelength beyond λ2 in the NIR region, where the absorption 
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by all particles and dissolved constituents is null. The backscattering coefficient is consid-
ered spectrally uniform across the range of wavelengths considered (from λ1 through λ3; 
Dall’Olmo and Gitelson 2005), which is a fundamental assumption in the model.

The subtraction of ρ−1(λ2) from ρ−1(λ1) isolates the absorption by chl-a as follows:

ρ λ ρ λ λ φλ λ λ− −−
+ + + +
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Another assumption is that the absorption by water at λ3 is much greater than the total 
backscattering, such that aw(λ3) >>bb(λ) and a(λ) ≅ aw(λ3).
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λ

( )
( )

3 ∝ b
a
b

w 3

	 (18.4)

Considering the fact that the absorption by water, aw(λ), is independent of the 
constituent concentrations and ignoring its dependence on temperature, the model has 
the following form:

	 [ ( ) ( )] ( )ρ λ ρ λ ρ λ λφ
− −− ×1 1

1 2 3( )∝ a 	 (18.5)

Absorption by phytoplankton is related to chl-a concentration as follows:

	 a a Cφ φλ λ( ) ( )= ×*
chl-a 	 (18.6)

where a*ϕ(λ) is the chl-a specific absorption coefficient and Cchl-a is the concentration of 
chl-a.

Thus, the three-band NIR–red model was finally formulated as

	 [ ( ) ( )] ( )ρ λ ρ λ ρ λ− −− × ∝1
1

1
2 3 chl-a 	 (18.7)

Dall’Olmo and Gitelson (2005) have found that the optimal wavelengths for the accurate esti-
mation of chl-a concentrations in the range of 2 to 180 mg ⋅ m−3 were as follows: λ1 = 670 nm, 
λ2 = 710 nm, and λ3 = 740 nm. Testing the model for several data sets collected in inland 
and estuarine waters, Gitelson, Schalles, and Hladik (2007) and Gitelson et al. (2008) found 
relatively wide optimal spectral bands of wavelengths of λ1 = 660–670 nm, λ2 = 700–720 nm, 
and λ3 = 730–760 nm, which provided accurate estimations of chl-a concentration with the 
three-band NIR–red model.

For waters that do not have significant concentrations of nonalgal particles and colored 
dissolved organic matter, the subtraction of ρ−1(λ2) in the model may be omitted (Dall’Olmo 
and Gitelson 2005), which leads to the special case of a two-band NIR–red model (Stumpf 
and Tyler 1988):

	 ρ λ ρ λ− × ∝1
3( ( chl-1) ) a 	 (18.8)

where λ1 is in the red region and λ3 in the NIR region beyond 730 nm. 
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Another two-band model, which is different in its formulation from the previously 
mentioned two-band model (Equation 18.8), is (Gitelson 1992; Gitelson, Szilagyi, and 
Mittenzwey 1993) 

	 ρ λ ρ λ− × ∝1
2( ( chl-1) ) a 	 (18.9)

where λ1 is in the red region and λ2 is in the region of the reflectance peak, around 700–710 
nm. Recently, a four-band model was suggested (Le et al. 2009) for the estimation of chl-a 
concentration in productive waters with very high concentrations of inorganic suspended 
matter:

	 [ ( ) – ( )] [ ( ) – ( )]ρ ρ ρ ρ− − − − −×1 1 1 1 1662 693 74 7 50 0

The three-band NIR–red model was modified by including one more spectral band, ρ705, 
in order to reduce the effect of variations in scattering by suspended matter. The Medium 
Resolution Imaging Spectrometer (MERIS), the Moderate Resolution Imaging Spectro-
radiometer (MODIS), and the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) are three 
commonly used spaceborne optical sensors, whose data may be used for the estimation of 
chl-a concentration using NIR–red models. The spectral bands in the red and NIR regions 
for these sensors are as follows:

MERIS—Spectral bands centered at 665 nm (band 7), 681 nm (band 8), 708 nm •	
(band 9), and 753 nm (band 10)
MODIS—Spectral bands centered at 667 nm (band 13), 678 nm (band 14), and •	
748 nm (band 15)
SeaWiFS—Spectral bands centered at 670 nm (band 6) and 765 nm (band 7)•	

The proximity of the 681-nm MERIS band and the 678-nm MODIS band to the chl-a flu-
orescence wavelength at 685 nm means that the variable quantum yield of fluorescence 
(Dall’Olmo and Gitelson 2006) might affect the accuracy of chl-a concentration estimated 
using these bands. Therefore, these bands were eliminated as candidates for inclusion in 
NIR–red models for estimating chl-a concentration. Thus, the NIR–red models for estimating 
chl-a concentration using satellite data are as follows:

Three-band MERIS NIR–red model based on Equation 18.7:

	 chl- band7 band9 band10a ∝ − ×− −[( ) ( ) ] ( ) ρ ρ ρ1 1 	  (18.10)

Two-band MERIS NIR–red model based on Equation 18.9:

	 chl- band7 band9a ∝ ×−( ) ( )ρ ρ1 	 (18.11)

Two-band MODIS NIR–red model based on Equation 18.8:

	 chl- band13 band15a ∝ ×−( ) ( )ρ ρ1 	 (18.12)

An appropriate equivalent for Equation 18.12 for SeaWiFS should be based on bands 6 
and 7 of that sensor. Note that the two-band MERIS NIR–red model (Equation 18.11) is 
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fundamentally different from the two-band MODIS NIR–red model (Equation 18.12), yield-
ing significantly different results.

18.4  Data and Methods

18.4.1  Field Measurements

The field data were collected at 89 stations from July through November 2008 and at 63 sta-
tions from April through July 2009 at the Fremont Lakes State Recreation Area in eastern 
Nebraska, and included a standard set of optical water quality parameters. In the field, 
water transparency was measured with a standard Secchi disk, and turbidity was mea-
sured with a HACH 2100 portable turbidimeter. Surface water samples were collected at 
a depth of 0.5 m and stored on ice in a dark container. Water samples for wet laboratory 
analysis of chl-a concentrations, total particulate absorption coefficients, ap(λ), absorption 
coefficients of non-algal particles, aNAP(λ), and absorption coefficients of phytoplankton, 
aφ(λ), were filtered through 25-mm Whatman GF/F filters within 24 hours after collection. 
The filters for the extraction of chl-a were stored in a freezer at a temperature of −18°C for 
a maximum of 4 weeks. Surface water samples for laboratory analysis of TSS, ISS, and OSS 
were filtered through 47-mm Whatman GF/F filters within 42 hours. The filtrates were 
filtered through 47-mm Whatman 0.2-μm nylon membranes for laboratory analysis of the 
absorption coefficients of CDOM, aCDOM (λ).

Backscattering coefficients, bb(λ), were measured in the field in 2009 with a customized 
ECO Triplet sensor. The bb(λ) measurements were corrected for salinity, and absorption by 
water (Mueller 2003), particulates, and CDOM (absorption coefficients were taken from 
laboratory measurements).

Hyperspectral reflectance measurements were taken by means of two intercalibrated 
Ocean Optics USB2000 miniature fiber optic spectrometers. Data were collected over opti-
cally deep water in the range of 400–900 nm in intervals of ∼0.3 nm with a spectral resolu-
tion of ∼1.5 nm. Radiometer 1, equipped with a 25° field-of-view optical fiber, was pointed 
downward to measure the below-surface upwelling radiance, Lu(λ), at nadir. The tip of 
the optical fiber was kept just below the water surface by means of a 2-m long, hand-held 
dark pole on the sunlit side of the boat. To simultaneously measure the incident irradi-
ance Ed(λ), radiometer 2, connected to an optical fiber fitted with a cosine collector, was 
pointed upward and mounted on a 2.5-m mast. The integration time of radiometer 2 was 
up to 10 times shorter than the integration time of radiometer 1. Hyperspectral reflectance 
measurements were collected from 10 a.m. to 2 p.m. The solar zenith angles ranged from a 
maximum of 66.44° in November 2008 to a minimum of 18.16° in June 2009.

The critical issue with regard to the dual-fiber approach is that the transfer functions of 
the radiometers used for measuring upwelling and downwelling fluxes, which describe 
the relationship of the incident flux measured by the sensor to the data numbers produced 
by the radiometers, should be identical. We studied the identity of the two radiometers 
used in this study and found that the difference between their transfer functions did not 
exceed 0.4% (Dall’Olmo and Gitelson 2005).

To match their transfer functions, the radiometers were intercalibrated by measur-
ing simultaneously the upwelling radiance, Lref(λ), from a white Spectralon® reflectance 
standard (Labsphere, Inc., North Sutton, NH), and correspondingly, the irradiance 
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incident on the reflectance standard, Eref(λ). The remote sensing reflectance at nadir was 
computed by
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where Lu(λ) is the below-surface upwelling radiance at nadir, Ed(λ) is the incident irradi-
ance, t is the water-to-air transmittance (taken as equal to 0.98), ρref(λ) is the irradiance 
reflectance of the Spectralon® reflectance standard linearly interpolated to match the 
wavelength of each radiometer, π is used to transform the irradiance reflectance into 
remote sensing reflectance, n is the refractive index of water relative to air (taken as equal 
to 1.33), and F(λ) is the spectral immersion factor computed after Ohde and Siegel (2003). 
The reflectance spectra were collected and processed using the CALMIT Data Acquisition 
Program (CDAP) developed at the Center for Advanced Land Management Information 
Technologies (CALMIT) at the University of Nebraska—Lincoln.

18.4.2 L aboratory Measurements

Pigments were extracted in subdued light conditions in a laboratory at the University of 
Nebraska—Lincoln. The samples were extracted for 5 minutes in 10 mL of 99.5% ethanol 
at 78°C and cooled in the dark for 4 hours (modified from Nusch 1980). The samples were 
then centrifuged for 5 minutes in a Cole-Parmer EW-17250-10 fixed-speed centrifuge, 
and chl-a concentrations were quantified fluorometrically with a Turner 10-AU-005 CE 
fluorometer on the same day (Welschmeyer 1994). The instrument was calibrated every 
3 months with a 100 μg ⋅ L−1 chl-a standard prepared from C6144-1MG Anacystis nidulans 
chl-a (Sigma-Aldrich). The Anacystis nidulans chl-a was dissolved in 1 L of 99.5% ethanol, 
and the concentration was determined spectrophotometrically (Ritchie 2008). Standard 
curves with a series of 10 dilutions were made at the time of the calibration to study the 
linearity of the single point calibration of the instrument for chl-a concentrations from 
0 to 200 μg ⋅ L−1. Concentrations of TSS, ISS, and OSS were determined gravimetrically 
(Eaton et al. 2005).

Particulate absorption coefficients were measured by the quantitative filter technique 
(Mitchell et al. 2003). The suspended particles were concentrated on 25-mm Whatman 
GF/F filters, and spectral measurements of the optical density (OD) were made within 
1.5 hours after the filtration of the water samples with a Cary 100 Varian spectrophotom-
eter. The filters were scanned in the range 400–800 nm at intervals of 1 nm and the sig-
nal from a MilliQ water-saturated reference filter was subtracted automatically from the 
measurements of the OD. Total particulate absorption coefficients, ap(λ), were calculated 
as follows:

	 a
Vp fp nullOD OD( )
ln( )

/
[ � [ ( ) ] �λ λ= × − +10
0 3893 0 4

A
3340 2× −[ ( ) ] ]OD ODfp nullλ

where ODfp(λ) is the OD of the sample on the filter, ODnull is the average OD of the 
sample in the range 780–800 nm, which was applied for the null point correction of the 
OD measurement, V is the volume of water filtered in cubic meters, and A is the area of 
the filter in square meters. The equation includes a quadratic function for the pathlength 
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amplification correction of the measurements (Cleveland and Weidemann 1993) derived 
by Dall’Olmo (2006) for water samples from lakes and reservoirs in Nebraska and labo-
ratory cultures of Microcystis and Synechococcus. Removal of the light absorption by pig-
ments for the measurement of the absorption coefficient of nonalgal particles, aNAP(λ), 
followed the modified approach presented by Ferrari and Tassan (1999). The samples 
were treated with 120 μL sodium hypochlorite solution in MilliQ water (0.1%–0.2% active 
Cl) and rinsed with 50 mL MilliQ water after a 20-minute reaction time. The absorp-
tion coefficients of nonalgal particles were calculated similarly to the total particulate 
absorption coefficients. The absorption coefficients of phytoplankton, aϕ(λ), were finally 
calculated by the subtraction of the absorption coefficients of nonalgal particles from the 
particulate absorption coefficients.

The absorption coefficients of CDOM were measured spectrophotmetrically imme-
diately after the filtration of the water samples. The optical densities of the filtrates 
were measured in a 0.1-m cuvette in the range 200–800 nm at intervals of 1 nm with the 
Cary 100 Varian spectrophotometer and the signal from a MilliQ water reference sam-
ple was subtracted automatically from the measurements. Filtrates and MilliQ water 
reference samples were kept at 24°C (the temperature in the sample compartment of 
the instrument) to minimize the effects of a temperature-dependent water absorption 
feature at a wavelength of 750 nm. The absorption coefficients of CDOM, aCDOM(λ), were 
calculated by

	 a
lCDOM s nullOD OD( )

ln( )
[ ( ) ]λ λ= −10

where ODs(λ) is the OD of the sample, ODnull is the average OD of the sample in the range 
780–800 nm, which was applied for the null point correction, and l is the pathlength of the 
cuvette in meters.

18.4.3  Descriptive Statistics of Water Quality Parameters

The descriptive statistics of Fremont Lakes water quality parameters indicate the typical 
range of variations for turbid productive inland, estuarine, and coastal waters (Tables 18.1 
and 18.2) with chl-a concentrations that ranged from 2.3 to 200.8 mg ⋅ m−3 in 2008 and from 
4.0 to 196.4 mg ⋅ m−3 in 2009. The distributions of the chl-a concentrations in 2008 and 2009 
were significantly different from normal distributions (p <.001 for 2008 and 2009, Shapiro-
Wilk test) and skewed toward lower chl-a concentrations. TSS concentrations ranged from 
1.2 to 15.0 mg ⋅ L−1 in 2008 and from 1.3 to 22.9 mg ⋅ L−1 in 2009 and were uncorrelated with 
chl-a concentrations.

18.4.4  Model Calibration and Validation Using Satellite Data

To test the performance of NIR–red models for the estimation of chl-a concentration using 
the data acquired by spaceborne sensors, seven data collection campaigns were under-
taken (in April, July, September, and October of 2008 and March, April, and June of 2009) 
on the Taganrog Bay and the Azov Sea by the crew at the Southern Scientific Centre of the 
Russian Academy of Sciences in Rostov-on-Don, Russia. Water samples were collected at 
each station, filtered through Whatman GF/F filters, and analyzed for chl-a and TSS. Chl-a 
was extracted in hot ethanol and its concentration was quantified spectrophotometrically. 
TSS concentrations were determined gravimetrically.



Remote Estimation of Chlorophyll-a Concentration	 449

MERIS images acquired up to 2 days before or after the date of in situ data acquisition 
were used in cases where the same-day images were not available. For the whole data set, 
the average temporal difference between the times of in situ and satellite data acquisitions 
was less than 1 day. The remote sensing reflectance was retrieved through the bright pixel 
atmospheric correction procedure (Moore, Aiken, and Lavender 1999). Surface reflectance at 
the appropriate wavelengths was subsequently used in the three-band (Equation 18.10) and 
two-band (Equation 18.11) MERIS models (for details, see Moses et al. 2009a).

Table 18.2

Descriptive Statistics of the Optical Water Quality Parameters Measured in the Fremont Lakes, 
Nebraska in 2009

N Min Max Median Mean
Standard 
Deviation

Coefficient of 
Variation

Chl-a (mg ⋅ m−3) 63 3.97 196.39 16.07 30.027 35.187 1.172

Secchi disk depth (m) 63 0.39 3.32 1.12 1.374 0.770 0.560
Turbidity (NTU) 63 1.08 23.40 4.73 6.077 5.311 0.874

TSS (mg ⋅ L−1) 63 1.32 22.89 5.83 6.668 4.672 0.701

ISS (mg ⋅ L−1) 63 0.10 6.22 1.00 1.392 1.395 1.002

OSS (mg ⋅ L−1) 63 0.85 17.00 4.50 5.276 3.988 0.756

ap(670) (m−1) 63 0.063 2.659 0.282 0.4458 0.4990 1.1192
aNAP(670) (m−1) 63 0.008 0.120 0.047 0.0533 0.0286 0.5368
aϕ(670) (m−1) 63 0.038 2.551 0.214 0.3925 0.4829 1.2302

a*ϕ(670) (m2·g−1) 63 0.008 0.019 0.013 0.0126 0.0020 0.1566
aCDOM(440) (m−1) 63 0.353 1.349 0.648 0.6852 0.2203 0.3215
aCDOM(670) (m−1) 63 0.003 0.042 0.015 0.0172 0.0088 0.5121
bb(660) (m−1) 44 0.016 0.095 0.056 0.0529 0.0248 0.4697

Table 18.1

Descriptive Statistics of the Optical Water Quality Parameters Measured in the Fremont Lakes, 
Nebraska in 2008

N Min Max Median Mean
Standard 
Deviation

Coefficient of 
Variation

Chl-a (mg ⋅ m−3) 89 2.27 200.81 27.44 33.540 29.439 0.878

Secchi disk depth (m) 89 0.51 4.20 0.98 1.205 0.697 0.579
Turbidity (NTU) 89 1.51 19.20 6.79 7.585 4.386 0.578

TSS (mg ⋅ L−1) 89 1.19 15.00 6.80 7.298 3.258 0.446

ISS (mg ⋅ L−1) 87 0.15 5.85 0.80 1.109 0.951 0.857

OSS (mg ⋅ L−1) 87 0.81 12.80 6.00 6.259 2.972 0.475

ap(670) (m−1) 80 0.045 4.333 0.471 0.5583 0.5436 0.9737
aNAP(670) (m−1) 80 0.003 0.311 0.063 0.0759 0.0583 0.7670

aϕ(670) (m−1) 80 0.042 4.245 0.369 0.4823 0.5370 1.1133

a*ϕ(670) (m2 ⋅ mg−1) 80 0.005 0.026 0.013 0.0144 0.0048 0.3301

aCDOM(440) (m−1) 80 0.455 1.453 0.895 0.8806 0.2468 0.2803

aCDOM(670) (m−1) 80 0.012 0.050 0.024 0.0249 0.0084 0.5561
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18.5  Results

18.5.1  Optical Properties of the Constituents

The spectra of ap(λ), aNAP(λ), and aϕ(λ) indicate different sources of nonalgal particles (inor-
ganic particles, detritus, and organisms other than phytoplankton) and a diverse phy-
toplankton species composition (the presence of Cyanophyta is indicated by absorption 
around 625 nm in several spectra) in the Fremont Lakes (Figure 18.2a through c). The rela-
tionship of the absorption coefficients of phytoplankton at a wavelength of 676 nm, aϕ(676), 
and chl-a concentration in the Fremont Lakes was

	 chl- with 992a = × + =72 39 676 0 195 0� ( ) � �a Rφ

It was only slightly different from the relationship published by Oubelkheir et al. (2005) for 
the Mediterranean Sea (Figure 18.2d):

	 chl- with 942a = × =67 8 676 01 16� ( ) ��a Rφ

The spectra of the absorption coefficients of CDOM, aCDOM(λ), displayed a uniform pattern, 
but a wide range of values (Figure 18.3). We found a conspicuous intra-annual difference 
as the absorption coefficients of CDOM at a wavelength of 440 nm, aCDOM(440) ranged from 
0.45 to 1.45 m−1 in 2008 and from 0.35 to 1.35 m−1 in 2009.
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The spectra of the backscattering coefficients, bb(λ) (Figure 18.4a), were similar to the 
spectra for different moderately turbid inland and coastal waters (Kutser et al. 2009). 
Ten of 44 spectra had a higher bb at 660 nm than at 740 nm. This indicated that the 
assumption of the spectrally uniform backscattering coefficient across the range of the 
wavelength from λ1 to λ3 (Dall’Olmo and Gitelson 2005) might not hold for turbid pro-
ductive waters. The backscattering coefficients at 660 nm, bb(660), did not relate to the 
ISS concentration (Figure 18.4b), but had a close relationship with the concentration of 
OSS (Figure 18.4c).

18.5.2  Spectral Reflectance Properties

The reflectance spectra of the waters studied were highly variable over the visible and 
NIR spectral regions (Figure 18.5). The spectra were quite similar in magnitude and shape 
to the reflectance spectra collected in turbid productive waters (Lee et al. 1998; Gitelson 
et al. 2000; Dall’Olmo and Gitelson 2005; Schalles 2006). In the blue spectral range between 
400 and 500 nm, chlorophylls and carotenoids strongly absorb light (Bidigare et al. 1990). 
The minimum, near 440 nm, used in algorithms for the estimation of chl-a in oligotrophic 
waters (Gordon and Morel 1983), was almost indistinct, and the reflectance in this range 
was low, with no pronounced spectral features over the broad range of turbidity and 
phytoplankton densities. In addition to the strong absorption by all thylakoid-bound 
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pigments, the absorption by dissolved organic matter and tripton influences the reflec-
tance in the range of 400–500 nm. As a result, the maximum band ratios, based on the 
wavelengths of 442.5, 490, 510, and 560 nm, that is, (ρrs[442.5]/ρrs[560], ρrs[490]/ρrs[560], and 
ρrs[510]/ρrs[560]), used for the estimation of chl-a concentrations in case I ocean waters 
(O’Reilly et al. 1998), were poorly related to chl-a concentrations in the case of the produc-
tive system of Fremont Lakes (Figure 18.6). Reciprocal of reflectance, which directly relates 
to the absorption coefficient,
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showed five distinct features (Figure 18.7): (1) high ρrs
−1 values in the blue range due to 

absorption by chlorophylls, carotenoids, CDOM, and tripton; (2) a trough in the green 
region near 550–570 nm (B in Figure 18.7) due to minimal absorption by all algal pigments 
and scattering by inorganic suspended matter and detritus, as well as by phytoplankton 
cells that control the magnitude of reflectance in this range; (3) a peak near 625 nm due 
to phycocyanin absorption (PC in Figure 18.7) that typically covaries with cyanobacterial 
abundance and seasonality (Schalles et al. 1998); (4) a peak at 670–680 nm corresponding 
to the in situ red chl-a absorption maximum (chl-a in Figure 18.7), and (5) a minimum in 
the NIR near 700 nm (A in Figure 18.7).

The prominent trough in the reciprocal of the reflectance around 700 nm (A in Figure 18.7) 
corresponds to a peak in the reflectance spectrum (Figure 18.5). The nature of this reflec-
tance peak is elucidated by the examination of the absorption spectra of phytoplankton 
and pure water (aφ(λ) + aw(λ)) for variable chl-a concentrations (Figure 18.8). Chl-a absorbs 
up to approximately 730 nm, although at that point the absorption is only 0.3% and 0.5% 
of the absorption at 440 and 675 nm, respectively (Bidigare et al. 1990). Nevertheless, in 
productive waters, chl-a concentration is sufficient to exert a detectable impact on the 
optical characteristics of water, as chl-a absorption interacts with the absorption of pure 
water. With the increase of chl-a concentration, the curve of the absorption coefficient 
becomes wider, and when the absorptions by chl-a and pure water become equal, the 
combined absorption by all constituents is minimal (Vasilkov and Kopelevich 1982; 
Gitelson et al. 1986; Vos, Donze, and Bueteveld 1986; Gitelson 1992; Gitelson et al. 1993a; 
Gitelson, Szilagyi, and Mittenzwey 1993b). Consequently, with the increase in chl-a, this 
intersection point aφ(λ) = aw(λ) takes place at progressively longer wavelengths (Figures 
18.8 and 18.9).

The magnitude of the reflectance peak near 700 nm (Figure 18.5) is related to chl-a 
concentration: an increase in chl-a concentration means an upsurge of phytoplank-
ton biomass, which results in an increase in the cell surface area, leading to enhanced 
scattering (Gitelson 1992; Gitelson et al. 1993a; Gitelson et al. 1994; Yacobi, Gitelson, and 
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Mayo 1995; Schalles et al. 1998). However, in the waters studied, the correlation coefficient 
of the relationship “peak magnitude versus chl-a concentration” was less than 0.1 (not 
shown), indicating the crucial (if not dominant) role of scattering by inorganic suspended 
matter and detritus in that spectral region.

As absorption by all constituents decreases beyond 715–720 nm, the reflectance in the 
NIR region (ρNIR) is controlled by scattering by all particulate matter and relates closely to 
the total suspended matter concentration (Figure 18.10).
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18.5.3 � Calibration and Validation of NIR–Red 
Models Using Proximal Sensing

Using an optimization procedure for the three-band model (Equation 18.7), for the 2008 
data set, the optimal spectral region for λ1 was found to be around 670 nm, which is in 
accordance with previous studies (Dall’Olmo and Gitelson 2005: Gitelson, Schalles, and 
Hladik 2007; Gitelson et al. 2008). The magnitude of the reciprocal reflectance at 670 nm 
was poorly correlated with chl-a concentration (Figure 18.11a). Since (ρ670)−1 is directly 
related to chl-a absorption (Equation 18.13), an increase in chl-a concentration should lead 
to an increase in (ρ670)−1, but Figure 18.11a shows just the opposite for stations with chl-a 
concentrations < 20 mg ⋅ m−3; that is, (ρ670)−1 decreases as chl-a concentration increases. This 
is due to the role of suspended solids. The relationship between (ρ670)−1 and the concentra-
tion of TSS (Figure 18.11b) shows a steep decrease in (ρ670)−1 as TSS concentration increases, 
confirming that scattering by suspended solids was a main factor controlling reflectance 
at 670 nm.

To reduce the effects of scattering by suspended particles and absorption by nonalgal 
particles and CDOM on the reflectance at 670 nm, ρ−1(λ2) at 710 nm was used. ρ−1

710 ∝ 
(aCDOM(λ) + aNAP(λ) + awater(λ) + bb(λ))/bb(λ) was strongly related to the TSS concentration (not 
shown) as well as to absorption by all constituents except chl-a. The difference ρ−1

670  − ρ−1
710 

∝ achl-a/bb(λ) was, therefore, more closely related to chl-a (Figure 18.12). However, it was still 
dependent on backscattering, bb(λ), and thus was strongly affected (especially for chl-a < 10 
mg ⋅ m−3) by the scattering of all suspended particles. The reflectance in the NIR region of 
the spectrum is clearly influenced by the concentration of TSS (Figure 18.10) and is closely 
related to bb(λ); so ρ750 ∝ bb(λ) was used to remove the effect of the differences between 
samples in scattering by suspended particles.

Taking into account all the aforementioned considerations and using them in the algo-
rithm construction, we have found a very close relationship between chl-a concentration 
and the three-band NIR–red model (Equation 18.7) with simulated MERIS bands: determi-
nation coefficient R2 ≈ 0.94 (Figure 18.13a and b). We also established relationships between 
the chl-a concentration and the two-band models with simulated MODIS and MERIS 
bands. The two-band NIR–red model with simulated MERIS bands (Equation 18.9) had a 
close relationship (R2 ≈ 0.94) with chl-a concentration (Figure 18.13c) in the range typical for 
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productive waters and slightly lower when chl-a concentrations were limited to 30 mg ⋅ m−3, 
the range typical for coastal and estuarine waters (Figure 18.13d). The two-band NIR–red 
model with simulated MODIS bands (Equation 18.8) also had a close linear relationship, with 
a chl-a concentrations ranging from 2 to 90 mg ⋅ m−3 and R2 = 0.75 (Figure 18.13e). However, 
the model was almost not sensitive to chl-a concentrations below 30 mg ⋅ m−3 (Figure 18.13f). 
The R2 was below 0.18, which shows that the two-band MODIS NIR–red model is not reli-
able for estimating low to moderate chl-a concentrations. Due to the low accuracy and unre-
liability of the two-band MODIS NIR–red model at low to moderate chl-a concentrations, no 
attempt was made to calibrate this model for potential use with the satellite data.

Thus, we calibrated the NIR–red models with simulated MERIS bands and established 
the algorithms for estimating the chl-a concentration for the range of chl-a concentrations 
from 2 to 120 mg ⋅ m−3 measured in 2008:

	 chl- -Band MERIS NIR-red modela = × +243 862 3� ( ) 27 219� 	 (18.14)

	 chl- -Band MERIS NIR-red modela = × −72 66 2 46� ( ) �535 	  (18.15)
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The next step was to validate the algorithms (Equations 18.14 and 18.15) using the data 
set obtained in 2009. The relationships between the three-band and two-band MERIS 
NIR–red models and chl-a concentrations measured in 2009 were very close (R2 > 0.94), 
and the best fit functions of these relationships were very close to those obtained for the 
2008 data. Using simulated MERIS band reflectances measured in 2009, we estimated chl-a 
concentrations, chl-aest (Equations 18.14 and 18.15), and compared them with the concen-
trations measured analytically, chl-ameas. The relationships between the estimated and the 
measured chl-a concentrations were very close for both models, thereby allowing a highly 
accurate estimation of chl-a concentration (Figure 18.14).

The three-band MERIS NIR–red model is

	 chl- chl-est measa a= × +0 9475 1 3693� � 	
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The root mean square error (RMSE) of chl-a estimation was below 3.89 mg ⋅ m−3 for chl-a 
concentrations ranging from 4 to 104 mg ⋅ m−3.

The two-band MERIS NIR–red model is

	 chl- chl-est measa a= × −0 9823 0 6848� �   	

The RMSE of chl-a estimation was below 4.72 mg ⋅ m−3.

18.5.4 � Calibration and Validation of NIR–Red 
Models Using Satellite Data

Data obtained in four campaigns in 2008 and three campaigns in 2009 in Azov Sea were used 
to test the performance of the two-band and three-band MERIS NIR–red models for the esti-
mation of chl-a concentration using MERIS data. Of all the stations where in situ data were 
collected, the stations that satisfied the following criteria were considered for comparisons:

The station is at least at a two-pixel length from the shoreline.•	
The station is in a cloud-free/haze-free pixel in an image acquired within 2 days •	
before or after the date of in situ data collection.
The atmospheric correction procedure did not produce reflectance spectra with •	
negative values beyond 443 nm.

Altogether from the 7 in situ data collection campaigns, there were 18 stations from the 2008 
data set and 19 stations from the 2009 data set that satisfied the above criteria. The stations 
from the 2008 data set were used to establish and calibrate the relationship between chl-a con-
centrations and the model values, and the stations from the 2009 data set were used to test the 
validity of the algorithms. The minimum, maximum, median, and mean in situ chl-a concen-
trations of the 18 stations used for calibration were 0.63 mg ⋅ m−3, 65.51 mg ⋅ m−3, 24.35 mg ⋅ m−3, 
and 26.97 mg ⋅ m−3, respectively. The corresponding chl-a concentrations for the 19 stations 
used for validation were 0.2 mg ⋅ m−3, 79.67 mg ⋅ m−3, 13.97 mg ⋅ m−3, and 19.76 mg ⋅ m−3, respec-
tively. The TSS concentration ranged from 0.4 g ⋅ m−3 to 27.4 g ⋅ m−3 for the entire data set.

For the stations chosen for calibration, the three-band and two-band MERIS NIR–red 
model values had very close linear relationships with in situ chl-a concentrations, with R2 
higher than 0.96 (Figure 18.15). The calibrated MERIS NIR–red algorithms were as follows:
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The three-band MERIS NIR–red algorithm was

	 chl- 665
1

708
1a = × ( ) ×  +232 29 23 17753� �ρ ρ ρ− −− 44 	 (18.16)

The two-band MERIS NIR–red algorithm was

	 chl- 665
1

708a = × ×( ) −61 324 37 94� �ρ ρ− 	 (18.17)

It is important to note that the slope and intercept of both MERIS NIR–red algorithms were 
close to the slope and intercept of the algorithms calibrated using in situ reflectances col-
lected in 2008 from the Fremont Lakes in Nebraska (Equations 18.14 and 18.15).

The algorithms thus calibrated were used to estimate the chl-a concentration at the 19 
stations from the 2009 data set, which was marked for validation. The validation procedure 
included (1) the estimation of chl-a concentrations by applying the calibrated algorithms 
(Equations 18.16 and 18.17) to the remote sensing reflectances, retrieved for the stations in 
the validation data set; and (2) the comparison between the estimated chl-a concentrations 
and the in situ chl-a concentrations. The comparison showed that the chl-a concentrations 
estimated using the calibrated algorithms were remarkably accurate.

The three-band MERIS NIR–red model was

	 chl- chl-est measa a= ×0 97 0 65� – � 	

The two-band MERIS NIR–red model was

	 chl- chl-est measa a= ×0 99 1 17� – � 	

The three-band MERIS NIR–red algorithm yielded an RMSE of 7.97 mg ⋅ m−3, whereas the 
two-band MERIS NIR–red algorithm had an even smaller RMSE of 6.93 mg ⋅ m−3.

The two-band MERIS NIR–red model was more accurate than the three-band MERIS 
NIR–red model for the estimation of chl-a concentration. We assume that the reason for 
the difference originates in the reflectance at λ3 (753 nm in the three-band MERIS NIR–
red model), which does not depend on chl-a concentration, but is susceptible to varia-
tions due to scattering by ISS and OSS. Significantly, the reflectance at 753 nm bears a 
considerably different relationship with the concentration of suspended matter than do 
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the reflectances at 665 nm and 708 nm (Moses 2009), thereby invalidating the assump-
tion of spectral independence of scattering by suspended particles in the wavelength 
range from λ1 through λ3 in the three-band model (Dall’Olmo, Gitelson, and Rundquist 
2003). Therefore, the effects of scattering by ISS and OSS might not be fully removed 
using the three-band MERIS NIR–red model. Therefore, scattering potentially introduces 
uncertainties in chl-a estimation by the three-band MERIS NIR-red model, especially at 
low to moderate chl-a concentrations, where ρ665 is highly affected by the scattering of 
suspended solids, and ρ750 is very small and minor differences in its magnitude cause 
significant changes in the output of the three-band model.

In addition, the two-band MERIS NIR–red model takes full advantage of both the reflec-
tance trough around 665 nm (due to absorption by chl-a) and the reflectance peak near 700 nm, 
which is related to both chl-a and suspended solids concentrations. The effect of scattering by 
suspended matter on the reflectance at 665 nm is similar to that on the reflectance at 708 nm, 
and therefore, the ratio ρ708/ρ665 virtually cancels out the effect of scattering by suspended 
particles. Consequently, the two-band MERIS NIR-red model is sensitive to chl-a concentra-
tion and stable, reliable, and accurate over a wide range of chl-a concentrations, and perhaps 
is the best-suited model for application to data acquired by satellite-carried sensors.

Moreover, λ3 in the three-band MERIS model (Equation 18.10) is at a longer wavelength 
(753 nm) than λ2 in the two-band MERIS NIR–red model (Equation 18.12). Hence, the 
three-band MERIS NIR–red model was more sensitive than the two-band MERIS NIR–red 
model to uncertainties in the atmospheric correction procedure, due to the low signal-to-
noise ratio, especially for stations with low chl-a concentrations and low magnitudes of 
reflectance in the NIR region. This, in addition to the reasons described previously, may 
explain the looser fit of points with chl-a concentrations below 10 mg ⋅ m−3 and the slightly 
higher RMSE for the three-band MERIS NIR–red model. Hence, even though both the 
algorithms yield high accuracies, the two-band MERIS NIR–red algorithm is preferred 
over the three-band MERIS NIR–red algorithm.

18.6  Toward a Universal NIR–Red Algorithm

The presented analysis indicates that there was no need to reparameterize the MERIS 
NIR–red algorithms for different water bodies. The slopes and intercepts of the two-band 
and three-band MERIS NIR–red algorithms derived from MERIS satellite data (Equations 
18.16 and 18.17) were similar to corresponding figures for the two-band and three-band 
MERIS NIR–red algorithms derived from the data collected from the Fremont Lakes in 
2008 (Equations 18.14 and 18.15). When the two-band MERIS NIR–red algorithm developed 
using the Fremont Lakes 2008 data set (reflectance spectra measured using field spectrom-
eters) was applied to the MERIS data acquired over the Azov Sea in 2008 and 2009, the 
estimated chl-a concentrations closely matched with the chl-a concentrations measured in 
situ, with a very low RMSE of 3.64 mg ⋅ m−3 (Figure 18.16). This remarkable result illustrates 
the insensitivity of the algorithm to differences in the kind of remote sensor and the type 
of data processing, and strongly presents a case for the universal applicability of the two-
band MERIS NIR–red algorithm. This is further illustrated in Figure 18.17, which shows 
plots of the in situ–measured chl-a concentration versus chl-a concentrations estimated by 
the two-band MERIS NIR–red algorithm developed using the 2008 Fremont Lakes data, for 
Lake Kinneret (Israel), Chesapeake Bay, Azov Sea, and Fremont Lakes (see also Table 18.3). 
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Estimation of chl-a concentrations in the Azov Sea in 2009 by the two-band MERIS model calibrated using the 
Fremont Lakes 2008 data set (Equation 18.15).
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Estimation of chl-a concentrations in the Azov Sea, Lake Kinneret (Israel), Chesapeake Bay, and the Fremont 
Lakes in 2009 by the two-band MERIS model, calibrated using the Fremont Lakes 2008 data set.

Table 18.3 

Accuracy of the Estimation of Chl-a by the Two-Band MERIS NIR–Red Model Calibrated by Data 
Taken at the Fremont Lakes in 2008

Water Body
Number of Stations 

for Calibration

Chl-a (mg ⋅ m−3)
Coefficient of 

Variation
Coefficient of 

VariationMin Max

Lake Kinneret 58 4.60 20.75 1.46 0.13
Chesapeake Bay 11 6.20 34.89 3.42 0.24
Azov Sea 26 0.63 65.51 3.64 0.13
Fremont Lakes 2009, 
Nebraska

84 3.97 83.18 3.92 0.19
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The algorithm is remarkably consistent and highly accurate for data from different waters 
and different remote sensors (field spectrometers and satellite-carried sensors).

18.7  Limitations and Challenges in Developing Satellite Algorithms

The results presented here illustrate the high potential of the three-band and two-band 
NIR–red models to accurately estimate chl-a concentration in turbid productive waters, 
using the reflectance measured by field spectrometers as well as MERIS satellite data. 
Nevertheless, challenges still remain in calibrating the models for universal application 
with satellite data (Moses et al. 2009a,b). The MERIS NIR–red algorithms were developed 
and validated with a rather small data set (18 stations for calibration and 19 stations for 
validation). The algorithms should be tested using a larger set of data from water bodies 
with a wider variability of constituent composition and from different geographic loca-
tions. Some of the limitations and challenges involved in developing such a universal algo-
rithm are discussed next.

18.7.1  Atmospheric Correction

A successful correction for atmospheric effects on satellite data and an accurate retrieval 
of surface reflectance are crucial to the success of the NIR–red model. The slope and offset 
of the relationship between chl-a concentration and the NIR–red model values are affected 
by atmospheric effects on the satellite images. This is pronouncedly seen in multitempo-
ral data sets in which the atmospheric effects are not uniform on all the images. A reli-
able atmospheric correction procedure that is able to uniformly correct the nonuniform 
atmospheric effects across multitemporal data from multiple geographic locations is man-
datory before an attempt to apply NIR–red algorithms on a universal scale. Significant 
differences have been observed in the shape and magnitude of surface reflectances (espe-
cially, the chl-a absorption in the red and the reflectance peak in the NIR region) retrieved 
through different atmospheric correction procedures for the same station (Moses 2009; 
Moses et al. 2009b). This means that the NIR–red model will produce very different esti-
mates for the same chl-a concentration, depending on the particular atmospheric correc-
tion procedure used.

For the data analyzed in this research, the bright pixel atmospheric correction proce-
dure, implemented in the standard processing of MERIS data, has given the most consis-
tent and reliable results. However, inconsistencies still exist, and the procedure sometimes 
yields negative reflectances, especially for very turbid waters. The procedure needs to be 
tested for data from other geographic locations with variations in the type and quantity of 
aerosol loading. In situ reflectances measured at the time of satellite image acquisition will 
help to analyze the consistency of atmospheric correction procedures and their effect on 
the performance of the NIR–red models.

18.7.2  Temporal Variation of Water Quality

A satellite captures its entire swath within a few seconds, whereas it takes several hours to 
collect in situ data. As natural waters are normally highly dynamic, it is conceivable that 
the investigated water body might have undergone considerable changes in its biophysi-
cal and optical characteristics during these few hours. In our studies, differences in chl-a 
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concentrations of up to a factor of two have been observed within a few hours (Moses 2009; 
Moses et al. 2009b). Thus, it is important that the temporal variations in the concentrations 
of optically active constituents, such as chl-a, TSS, ISS, and CDOM, have to be accounted for. 
This problem is magnified when there is no cloud-free satellite image available for the day of 
in situ data collection, and one has to use the image acquired a day or two before or after.

With the in situ stations spread quite far from each other and considering the satellite 
pixel dimension and the necessity to have stations separated by at least two pixel lengths, 
it has been rather difficult to collect in situ data using a single vessel at more than 10–12 
stations within a time frame of a few hours surrounding the satellite overpass. The bio-
physical and optical characteristics at some of these stations might be different at the time 
of measurement from what they were at the time of satellite overpass. Furthermore, some 
of these stations might fall under cloud cover or haze. Thus, the number of stations avail-
able for comparison with the same-day images is very few, thereby making it difficult to 
develop reliable calibration equations for the model.

The effect of temporal variability is not uniform for all water bodies, but is rather case-
specific. As indicated in some of our results, there have been cases where a temporal dif-
ference of up to 2 days did not adversely affect the estimation of chl-a concentration due 
to the stable biophysical condition of the water body. Nevertheless, it is still essential to 
account for the temporal variations in the water quality between the time of in situ data 
collection and the time of satellite image acquisition when attempting to calibrate or vali-
date chl-a algorithms.

18.7.3  Within-Pixel Spatial Heterogeneity

Often, the spatial heterogeneity in the water body might be such that the point in situ sta-
tion may not be truly representative of the satellite pixel area (260 m × 290 m for MERIS 
and 1 km × 1 km for MODIS) surrounding the station. In analyzing fluorescence measure-
ments taken continuously along a transect in the Azov Sea in June 2005, significant varia-
tions were found in fluorescence values within every 300-m and 1-km lengths along the 
transect (Moses et al. 2009b; Moses 2009). When the water within each satellite pixel is not 
truly homogeneous, it becomes difficult to confidently and reliably compare the satellite-
derived values to point in situ observations.

18.7.4  Need for a Modified In Situ Data Collection Strategy

The significance of the effects of the factors mentioned earlier and the difficulty in isolat-
ing them necessitate the development of in situ data collection techniques that may help to 
understand and account for these factors. In order to reliably assess the accuracy of atmo-
spheric correction procedures and its effect on the performance of the NIR–red models, 
actual measurements of the water-leaving radiance should be collected in situ at the time 
of satellite overpass. Within-pixel spatial heterogeneity and temporal variation have to be 
accounted for by taking multiple measurements around each station so as to characterize 
the spatial variation within the satellite pixel area around the station and taking repeated 
measurements (at least twice, covering the length of time elapsed between the satellite 
overpass and the in situ data collection) at each station to characterize the temporal varia-
tion. If these factors are not accounted for, they present inherent hurdles to the develop-
ment of reliable regression equations for the calibration of models. Of course, the rigor and 
the extent to which the in situ data collection procedures need to be adapted depend on the 
particular conditions at the water body.
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18.8  Conclusions

NIR–red models are consistently highly accurate over a wide range, including low  
to moderate chl-a concentrations. They need not be reparameterized for different water 
bodies. The two-band MERIS NIR–red model is the most suitable model for estimating 
chl-a concentration in turbid productive waters using satellite data. The two-band MODIS 
NIR–red model can be used for estimating chl-a concentrations exceeding 20 mg ⋅ m−3 (e.g., 
for detecting phytoplankton blooms). However, it is not accurate in estimating low to 
moderate chl-a concentrations.

Our work suggests that universal NIR–red algorithms are possible and may be applied 
to decipher information acquired by spaceborne sensors for the estimation of chl-a concen-
tration in inland, estuarine, and coastal waters around the globe.
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19
Retrievals of Turbulent Heat Fluxes and Surface 
Soil Water Content by Remote Sensing

George P. Petropoulos and Toby N. Carlson

19.1  Introduction

Earth’s land surface and atmosphere are under a constant exchange of energy, momen-
tum, and water via the flux of sensible heat (H; the heat energy transferred between the 
surface and air when there is a difference in temperature between them) and latent heat 
(LE; the flux of heat from the Earth’s surface to the atmosphere that is associated with 
evaporation of water at the surface and plant transpiration). Soil water content is defined 
as the water content available in the soil profile of a specific depth. Accurate knowledge of 
both LE and H as well as soil water content are of great importance in a large number of 
regional- and global-scale applications, such as monitoring of plant water requirements, 
plant growth and productivity, and management of irrigation and cultivation procedures 
(Dodds, Meyer, and Barton 2005; Consoli, Urso, and Toscano 2006). Such data are also of 
key significance in the numerical modeling and prediction of atmospheric and hydrologic 
cycles and in improving the accuracy of weather forecasting models (Jacob et al. 2002). 
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Furthermore, quantitative information on these parameters is important for monitoring 
the degradation and desertification of land (Xu and Chen 2005; McCabe and Wood 2006), 
for understanding the processes that control ecosystem carbon dioxide (CO2) exchange 
(Yepez et al. 2003), and for understanding the interactions between parameters in different 
ecosystem processes (Wever, Flanagan, and Carlson 2002).

The advent of satellite-based remote sensing over the last nearly 4 decades has led to a 
considerable amount of work in determining whether such systems can provide spatially 
explicit maps of these parameters from space. The general attributes that make such satel-
lite remote sensing techniques attractive for the retrieval of land-surface fluxes and surface 
moisture content are summarized, for instance, by De Troch et al. (1996) and Engman and 
Schultz (2000). These traits include their ability to provide synoptic views in a spatially 
contiguous fashion and in a repetitive manner, without a disturbing influence on the area 
to be surveyed and without accessibility issues to the site. Optical remote sensing–based 
methods can provide information on vegetation health and biomass amount, whereas 
thermal methods detail the temperature structure of the land surface, which has a direct 
relationship to heat flux parameters. Microwave-based methods offer all-weather capabil-
ity and daytime and nighttime observations which, combined with their strong depen-
dence on the dielectric properties of the target (for soils, which is largely a function of the 
amount of soil water present), make them potentially very powerful for estimating various 
hydrometerological parameters, mainly soil moisture (Schmugge et al. 2002). Particularly, 
the combined use of satellite data from optical and thermal infrared radiometers has 
shown a promising avenue in the retrieval of both LE and H fluxes and soil surface mois-
ture content (the latter is defined as the water contained at the first 5 cm of the soil depth; 
Moran et al. 2004; Stisen et al. 2008).

The aim of this chapter is twofold: First, to provide a comprehensive overview of the 
development of remote sensing–based methods currently used in the estimation of land-
surface atmosphere fluxes and surface soil water content. Second, to present in more detail 
how these methods work, showing a paradigm from the use of one such methodology. 
A variant of the method we describe has been proposed in the operational retrieval of soil 
water content by the National Polar-Orbiting Operational Environmental Satellite System 
(NPOESS), in a series of platforms planned to be launched in the next 12 years starting 
in 2013 (Chauhan, Miller, and Ardanuy 2003). To facilitate an effective understanding of 
the topic with which this chapter is concerned, we first provide a brief discussion that 
addresses what type of information a remote sensing radiometer measures and how these 
measures can be interpreted. In the largest part, this chapter is aimed at describing the use 
of satellite remote sensing data, although it is equally applicable to airborne remote sens-
ing observations, provided that appropriate data is available from such sensor systems.

19.2 � Remote Sensing of Surface Energy Fluxes and 
Soil Water Content: An Overview

In the following sections is made available an overview of the remote sensing techniques 
which have been employed for the estimation of surface energy fluxes and of soil surface 
moisture content. However, before that is discussed what a remote sensing radiometer 
actually measures is rather important in being able to understand the basis of the different 
approaches.
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19.2.1  What Does a Remote Sensing Radiometer Measure?

Remote sensing radiometers do not directly measure either soil water content or LE and H 
fluxes. The spectral radiance measures they provide should be combined in some form of 
retrieval algorithm or model in order to estimate these parameters. Therefore, let us first 
consider what type of information one can measure from a remote sensing sensor using 
information from optical, thermal, or microwave sensors. A frequently used sensor mea-
sures the upwelling long-wave flux, from which one can calculate a blackbody temperature 
(TBB), or the temperature of an object that has not been corrected for emissivity and atmo-
spheric effects. An often misused term in thermal remote sensing is a quantity called the 
“skin temperature.” This is actually the blackbody radiometric surface temperature (Ts), 
called kinetic temperature, (Tkin), and sometimes referred to as the “dynamic” tempera-
ture, and is not necessarily the air temperature (Tair). The term “skin temperature” on the 
other hand may erroneously be assigned to the temperature of a uniform surface, whereas 
it is actually derived from the radiant flux emitted from a mixture of vegetation canopy 
and bare soil. While such skin temperatures may reflect the turbulent heat flux from that 
surface pixel, the soil water content may be highly misrepresented in the measurement. 
A detailed description of the terminology used in thermal infrared remote sensing for 
natural surfaces, detailing the differences between the terms used, has been provided by 
Norman and Becker (1995).

In order to understand the ambiguity of such measurements, we refer to Figure 19.1, 
which is a schematic interpretation of what one actually “sees” in making an optical, ther-
mal, or microwave remote measurement from a satellite. The dotted line on the right rep-
resents the vertical profile of substrate temperature below a sunlit bare soil. The greatest 
temperature variation belowground (and aboveground) is, of course, nearest the surface. 
At the surface itself, the radiant surface temperature is given by the value at point g. Point 
d denotes the surface air temperature Tair (say at 10 m elevation) for this case, in which the 
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Figure 19.1
Schematic of vertical profiles of soil water content (Wv) and soil temperature (T) at different conditions. The thin 
pair of dotted lines near the top of figure represents soil water content averages over the top 5 cm. The letters at 
the top of the diagram are explained in the text (see also Carlson, T.N. et al. 2004).
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surface may be either bare or shaded by vegetation; at that level, the horizontal variation 
of Tair will not vary greatly between points above vegetation and above nearby bare soil. 
Points e and f, respectively, represent the radiometric surface temperature of sunlit vegeta-
tion and the radiometric surface temperature of a mixture of sunlit vegetation and sunlit 
bare soil.

The dot-dashed and solid lines represent the soil water content, respectively, below the 
sunlit bare soil surface and a surface consisting of bare soil and vegetation and therefore 
partly shaded. Herein, we will discuss in Sections 19.2.2 and 19.2.3 how soil water con-
tent might be inferred from optical and thermal measurements, though the subject of 
microwave soil water content will be largely avoided in this chapter. We do know that 
microwave measurements can be inverted to yield a vertically averaged soil water content 
estimate over a depth, usually no more than several centimeters below the land surface. An 
inversion of the radiometric surface temperature over the bare soil would yield a soil water 
content very close to that of the surface as given by the point labeled a, a rather low amount. 
Points b and c, however, might represent the soil water content obtained from microwave 
measurements on the same day, respectively, for the bare soil and surfaces partially shaded 
by vegetation, essentially average values for the top 5 cm. Of course, the depth over which 
the microwave measurements apply depends on the wavelength of the sensor and is there-
fore not necessarily equal to 5 cm. Here, we have assumed a depth of 5-cm measurement 
simply to illustrate that the soil water content is some sort of average, which is not equal to 
the surface value that is supposedly obtained from the temperature measurement (g). The 
point here is that values b and c obtained from microwaves neither represent the full soil 
column average nor do they resemble that obtained from the temperature for the sunlit 
bare soil. Indeed, taken as an ensemble of bare soil and soil shaded by an arbitrary amount 
of vegetation, almost any soil water content value can be obtained. Even if each type of 
measurement, optical, thermal, or microwave, were to yield a “correct” value, one could 
not be sure over what depth that supposedly accurate soil water content would apply.

Clearly, comparing one type of measurement with another or with an in situ soil sample 
is fraught with ambiguities. One way to reduce ambiguity in estimating soil water content 
is to separate the bare soil fraction of the satellite pixel from the vegetated fraction and to 
assume that the derived surface soil water content is represented by that obtained from 
the bare soil temperature. This approach will constitute an underpinning for deriving all 
the subsequent parameters from satellite measurements. Let us therefore now concentrate 
on reviewing briefly how one obtains a few useful land-surface parameters such as the 
LE and H fluxes and soil water content with as little ambiguity as possible using mainly 
optical and thermal remote sensing techniques for a mix of bare soil and vegetation in 
clear-sky conditions.

19.2.2  Overview of Estimation of Turbulent Fluxes by Remote Sensing

Several algorithms have been developed in the last 4 decades for estimating the exchange 
of moisture and heat between the surface and the atmosphere from space- or airborne sys-
tems; these are often used in combination with ancillary surface and atmospheric observa-
tions. Table 19.1 summarizes some of the available satellite sensors providing data suitable 
for the retrieval of surface energy fluxes and soil water content. Overviews of the available 
methodologies can be found in studies by Diak et al. (2003), Courault, Seguin, and Olioso 
(2005), and Verstraeten, Veroustraete, and Feyen (2008).

The vast majority of remote sensing–based  methods employed today for estimating 
energy fluxes are fundamentally residual-based approaches, working based on the principle 
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of energy conservation. In such methods, net radiation (Rn) and soil heat flux (G) are com-
puted using well-established approaches (see the review of Diak et al. 2003), whereas H flux 
is estimated based on the evaluation of difference between the surface radiometric tem-
perature (Ts) and the Tair gradient at a single time, using only Ts (or a derivative quantity) 
as the surface boundary condition. Subsequently, LE flux is computed from the difference 
between Rn and G and H fluxes, based on the principle of energy conservation.

The simplest scheme was originally proposed by Seguin and Itier (1983) and elabo-
rated on by Carlson, Capehart, and Gillies (1995). This scheme uses the midday Ts and 
the net radiation to estimate the mean daily evapotranspiration. The two empirical coef-
ficients for the simple equation are themselves variables, depending on the wind speed 
and fractional vegetation cover (Fr). More physically based (but equally simple) estima-
tion schemes propose the so-called one-layer models (Hall et al. 1992; Inoue and Moran 
1997). In these models, energy balance, temperature, and vapor pressure regimes of the 
vegetation canopy and the soil are not distinguished. Those models typically use Ts in 
place of the aerodynamic temperature and link H flux to the difference between Ts and 
Tair through a single aerodynamic resistance. However, with these models major problems 
exist in the interpretation of the derived results when the soil surface is partially covered 
by vegetation (e.g., discussions by Kustas et al. 1989; Moran et al. 2005). Because of par-
tial plant cover, the surface temperature measured by a thermal infrared sensor will be 
a composite temperature between that of the vegetation and the soil substrate. Relevant 
studies have shown that these models tend to overestimate the H flux term, especially over 
sparse canopies, because the resistance to heat transport from the soil component within 
the sensor’s field of view is often significantly larger than the resistance above the canopy. 

Table 19.1

Examples of Spaceborne Sensors Currently in Orbit Providing Observations Appropriate to Derive 
Surface Heat Fluxes and Soil Surface Moisture

Sensor Name Manufacturer Platform
Spatial 

Resolution
Spectral 

Resolution Revisit Period

ASTER NASA/ERSDAC Terra VNIR: 15 m 
SWIR: 30 m 
TIR: 90 m

VNIR: 4 
SWIR: 6 
TIR: 5

16 days

Landsat 
TM/ETM+

NASA/U.S. 
Department of 
Defense

Landsat VNIR: 30 m 
SWIR: 30 m 
TIR: 120 m 
(TM)/60 m 
(ETM+)

VNIR: 4 
SWIR: 2 
TIR: 1

16 days

MODIS NASA Terra and Aqua VNIR: 
250 m/500 m 
SWIR: 500 m 
TIR: 1 km

VNIR: 
18 SWIR: 
2 TIR: 16

2 daytime/
2 nighttime

AVHRR NASA NOAA VNIR: 1.1 km 
SWIR: 1.1 km 
TIR: 1.1 km

VNIR: 2 
SWIR: 1 
TIR: 2/3

2 daytime/
2 nighttime

AATSR ESA ENVISAT VNIR: 1 km 
SWIR: 1 km 
TIR: 1 km

VNIR: 3 
SWIR: 1 
TIR: 3

2 daytime/
2 nighttime

SEVIRI EUMETSAT/ESA Meteosat-2 VNIR: 1.1 
and 3.0 km, 
SWIR: 3 km

VNIR: 4 
TIR: 8

96 scenes per day 
(every 15’)
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Another drawback in the use of such methods is that no distinction is made between soil 
and vegetation components, which in turn makes impossible the identification of vegeta-
tion stress conditions (see the review by Schmugge et al. 2002).

As an improvement to these simple “one-layer” models, “two-layer (two-source)” mod-
els have been developed. These models have included treatment for the temperature and 
energy balance regimes separately for the vegetation canopy and soil surface components, 
accounting for the variation in surface resistance due to the variation in vegetation cover 
and surface roughness (Norman, Kustas, and Humes 1995; Anderson et al. 1997; Brasa 
et al. 1998; Norman et al. 2000; Chehbouni et al. 2000; French, Schmugge, and Kustas 
2002). Validation of the LE and H estimates from such models has demonstrated a vary-
ing degree of accuracy, despite the complexity with which the soil and vegetation com-
ponents are treated in these types of models (Norman et al. 2003). As noted by Kustas, 
Zhan, and Schmugge (1998), an important advantage of two-layer models is that they can 
be useful in interpreting aggregated flux estimates using bulk atmospheric boundary 
layer approaches over heterogeneous surfaces (Hipps, Swiatek, and Kustas 1994; Kustas 
and Norman 1996). Furthermore, another important advantage of some of these two-layer 
models (e.g., that of Mecikalski et al. 1999) is that they accommodate a view-angle depen-
dence of surface brightness temperature. Consideration of the latter has shown that it can 
have a pronounced effect on the accuracy of the LE and H retrievals, especially over sparse 
vegetation where changes in the view angle cause large differences in the fractions of veg-
etation and bare soil visible within the radiometer footprint. Nonetheless, one of the main 
drawbacks of two-layer models in comparison with one-layer models is their increased 
architectural complexity, which results in difficulties in their implementation, requiring a 
larger number of shelter-level meteorological inputs (primarily wind speed, aerodynamic 
resistance, friction velocity, air and aerodynamic temperature) and introducing errors in 
their representativeness (Beven and Fisher 1996; Jacob et al. 2002).

A different approach for deriving spatial maps of land-surface heat fluxes from remote 
sensing observations—and in some cases also soil water content—is to place theoreti-
cal boundary lines on the observed inverse relationship between an estimate of the land 
radiometric temperature and a spectral vegetation index (VI). VI is an index related to the 
amount of vegetation present, often taken as Fr (Jiang and Islam 1999; Sandhold, Rasmussen, 
and Andersen 2002). In such a scatter plot, the boundary lines may resemble a triangle (or 
trapezoid). Even though it has been demonstrated that the derivation of spatially distrib-
uted estimates of turbulent heat fluxes using the Ts/VI triangular scatter plot is feasible 
without the use of a boundary layer model (Moran et al. 1994, 1996), more sophisticated 
approaches (Gillies et al. 1997; Carlson 2007a) have proposed the retrieval of the above 
parameters from the combined use of the contextual interpretation of the Ts/VI domain 
with thermodynamic principles embodied in a two-layer surface/boundary layer energy 
balance (in particular, soil–vegetation–atmosphere transfer [SVAT]) models. This type of 
approach has certain advantages over one- and two-layer models, including a potentially 
improved ability to deal with surface heterogeneity (because this can be encapsulated in 
the VI measure), their potential to provide easier transformation between instantaneous 
and daytime average fluxes (which is often based on the conservation of a flux ratio, the 
Bowen ratio, during the day), ability to avoid dependence on external surface and meteoro-
logical parameters, and that the key input data are relatively easy to obtain from space- or 
airborne data over large areas (i.e., VI and surface radiometric temperature and nominal 
Tair), and that they allow for the correlation between the input (i.e., Fr, Ts) and output vari-
ables (soil water content and surface heat fluxes) to be nonlinear, contrary to the majority of 
all other analogous methods that are based on the Ts/VI pixel envelope or one- or two-layer 
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models that assume linear interpretations of the Ts/VI domain. Nevertheless, an important 
limitation of these approaches is the assumption that the temperature of live leaf surfaces 
is close to that for potential transpiration. This restriction, however, does not significantly 
affect the results as long as the vegetation is not seriously stressed. Another minor diffi-
culty that conceivably restricts the use of these methods relates to the difficulty in choos-
ing the appropriate parameters for the SVAT model, as their use requires some familiarity 
by the users; the latter will be shown to be relatively unimportant, however. Finally, the Ts/
VI methods require a large number of pixels to be sampled over a varied terrain.

Despite these potential impediments, the method of Gillies and Carlson (1995) and Gillies 
et al. (1997), the so-called triangle method, has been applied in a number of studies that 
have highlighted its potential for mapping surface heat fluxes and that have shown its abil-
ity to provide distributed estimates of LE and H with an accuracy of around 25–55 W ⋅ m−2, 
or about 10–30% (Gillies et al. 1997, Brunsell and Gillies 2003). This accuracy is generally 
comparable to other Ts/VI scatter plot–based methods (Jiang and Islam 2001) and/or also 
some two-layer models (Norman et al. 2003). These numbers are to be compared with 
the accuracy in the measurement of these fluxes using ground instrumentation, which is 
around 10–15% (as referred to in Jiang, Islam, and Carlson 2004; and also in Kustas and 
Norman 1996; Wilson et al. 2002). Thus, current methods are pressing the limit of accuracy 
in the use of remote measurements to estimate LE, H, and soil surface water content.

19.2.3  Overview of Estimation of Soil Water Content by Remote Sensing

Substantial research has been carried out indicating that soil water content, or at least 
“surface wetness,” can be estimated by several methods using mainly visible (VIS) chan-
nels (Whalley, Leeds-Harrison, and Bowman 1991; Leone and Sommer 2000; Schlesinger 
et al. 1996), thermal infrared (TIR; Cracknell and Xue 1996; Gillies et al. 1997; Sobrino 
and Raissouni 2000) or microwave data (Quesney et al. 2000; Wang et al. 1997; Biftu and 
Gan 1999; Griffiths and Wooding 1996; Oldak et al. 2003; Njoku and Entekhabi 1996). 
Comprehensive reviews of the basic approaches can be found in Kostov and Jackson (1993) 
and Moran et al. (2004).

The relationship between spectral reflectance particularly and soil water content has 
been discussed in many studies (Weidong et al. 2002), and several research workers have 
demonstrated that observations from optical sensors could be used for the retrieval of 
soil water content, particularly over bare soil surfaces (Idso et al. 1975; Sommer, Hill, and 
Meiger 1998; Whalley, Leeds-Harrison, and Bowman 1991). However, the use of visible and 
near-infrared data is limited by the fact that such data offer a measurement of target reflec-
tance of only the top several millimeters of the surface, as already shown in Figure 19.1. 
Another problem with the use of this type of data is related to the inference of both clouds 
and vegetation canopy with the optical signal, of which the latter has a limited capability 
to penetrate. Furthermore, soil reflectance measurements are not only a function of the soil 
water content but also of the soil composition, physical structure, and observation condi-
tions. Optical methods require that the satellite pixel contain at least some fraction of bare 
soil. Finally, while such data have a high spatial resolution, they usually have quite low 
temporal coverage if made at high spatial resolution (30 m), which makes them less suit-
able for watershed management applications (Muller and Decamps 2000).

Soil water content estimates can also be derived using TIR data, utilizing the physically 
based negative association between surface temperature (Ts) and soil water content (Friedl 
and Davis 1994; Schmugge 1978). A number of studies have also explored the added 
value of multiview Ts observations for this purpose (Chehbouni et al. 2001; Francois 2002). 
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Other studies have been based on the correlations between Ts, spectral vegetation indices, 
and soil water content, resulting in many variations in this approach (Lambin and Ehrich 
1996; Carlson, Capehart, and Gillies 1995; Prihodko and Goward 1997; Sandhold, Rasmussen, 
and Andersen 2002). Although such approaches have a high spatial resolution and have 
shown potential, they are confronted by several caveats in their implementation. First, they 
are characterized by the same problems as the optical-based methods (i.e., low depth of 
signal penetration degrading the influence of vegetation canopy and cloud cover and infre-
quent coverage). The most serious problem in using such models is that they are empirical 
in nature and their performance is a function of local meteorological conditions (e.g., wind 
speed, Tair, and humidity; Nemani et al. 1993) and/or local relief (Gillies and Carlson 1995). 
They have demonstrated a varying degree of accuracy in retrieving soil water content across 
different land-cover types (Smith and Choudhury 1991; Czajkowski et al. 2002).

Several authors have suggested that the microwave domain is currently the optimum 
spectral region for deriving soil water content (Quesney et al. 2000; Wang et al. 1997), with 
accuracies that can be within 5% (vol/vol) for bare soils (Mancini, Hoeben, and Troch 1999; 
Hoeben and Troch 2000). Microwave sensors have several advantages over both the optical 
and thermal domains, including their capability for cloud penetration, their all-weather 
and day/night coverage capability, and their signal independence from solar illumina-
tion variations. Both active and passive microwave sensors are used in these approaches 
(Zribi et al. 2005). The use of passive microwave sensors is limited by their coarse resolu-
tion (on the order of tens of kilometers), making such data inappropriate for watershed-
scale applications and appropriate only for meteorological and climate models on a more 
global scale (Schmugge et al. 2002). Active microwave sensors can provide high-resolution 
data (on the order of tens of meters), but they are rather sensitive to soil surface rough-
ness and vegetation-cover variations and are often also dependent on the terrain struc-
ture as a function of instrument look angle (Dobson and Ulaby 1998; Walker and Houser 
2004). According to a review by Moran et al. (2004), the only satellite systems that currently 
meet the spatial resolution (10–100 km over a swath width of 50–500 km) and coverage 
(repeat time/revisit every 2–3 days) required for monitoring surface moisture content at 
watershed scales are the active microwave sensors. Active microwave remote sensing via 
Synthetic Aperture Radar (SAR) offers the potential to map soil water content at high reso-
lutions over large areas (Verhoest et al. 1998; Troch et al. 1997). A significant limitation of 
SAR for watershed-scale applications is that the sun-synchronous satellites can provide at 
best only weekly or even longer temporal coverage for the same orbital path. Lastly, note 
that the accuracy of current remote sensing technology in microwave sensing instruments 
may be much lower over vegetated systems as a result of the interaction of the microwave 
signal with the vegetation canopy, whereas the obtained results also relate to the thin near-
surface layer rather than the entire soil profile (Moran et al. 2004). Moreover, as pointed out 
in regard to Figure 19.1, the interpretation of microwave soil water content measurements 
and their comparison with other methodologies is not necessarily unambiguous.

In view of the practical and theoretical difficulties associated with the direct use of 
observations from VIS, TIR, and microwave remote sensing for the retrieval of soil water 
content, recent investigations have focused on the combined use of remote sensing data 
and hydrologic models, including two-layer SVAT models. These techniques aim to 
improve estimates of the soil water content profile by combining the horizontal cover-
age and spatial resolution of remote sensing data with the vertical coverage and temporal 
continuity of hydrologic models. Moradkhani (2008) reviews the mathematical and data 
assimilation approaches adopted in such methods, whereas Olioso et al. (1999) provide 
a comprehensive discussion on the variety of methods used for incorporating remote 
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sensing data specifically into SVAT models. A sizeable body of literature also advocates 
the improved ability of methods assimilating information from remote sensing observa-
tions into a land-surface model for deriving the soil water content at much greater depths 
(Crosson et al. 2002; Heathman et al. 2003). However, data assimilation methods have sev-
eral difficulties in their practical use. Nevertheless, many support the idea that a combined 
approach which uses remotely sensed data with a SVAT model scheme is the most prom-
ising research direction for satellite-estimation of surface soil water content at watershed 
scales (e.g. see review by Moran et al. 2004). The method of Gillies et al. (1997) and Carlson 
(2007a), which was briefly mentioned in the previous paragraph, belongs in this category.

19.3  The “Triangle” Method

In the following sections is made available a more detailed description of the principles 
and working of this so-called “triangle” method as well as examples from its implementa-
tion to date. This discussion also includes a brief reference to the biophysical properties 
encapsulated within the Ts/VI domain.

19.3.1  Theoretical Basis of the Ts/VI Methods

The emergence of the triangular (or trapezoid) shape in Ts/VI feature space is the result of 
the low variability of Ts and its relative insensitivity to soil water content variations over 
areas covered by dense vegetation, but its increased sensitivity (and thus larger spatial 
variation) over areas of bare soil. The right-hand side border of the triangle (or trapezoid; 
the so-called dry edge or warm edge) shown in Figure 19.2 is defined by the locus of 
points of highest temperatures that contain differing amounts of bare soil and vegetation 
and are assumed to represent conditions of limited surface soil water content and zero 
evaporative flux from the soil. Likewise, the left-hand border (the so-called wet edge or 
cold edge) corresponds to a set of cooler pixels that have varying amounts of vegetation, 
which represent those pixels at the limit of maximum surface soil water content. Variation 
along the lower edge (i.e., the “base”) of the triangle (or trapezoid) represents pixels of bare 
soil and is assumed to reflect the combined effects of soil water content variations and 
topography, while the triangle’s (or trapezoid’s) apex equates to full vegetation cover (as 
expressed by the highest VI value). Points within the triangular space correspond to pixels 
with varying VI (i.e., Fr) and surface soil water content between those with bare soil and 
those with dense vegetation. For data points having the same VI, Ts can range markedly. 
As vegetation transpires, the vegetation surface is cooled, but as vegetation undergoes 
water stress, the plant closes its stomata and the resulting transpiration decrease causes 
leaf temperature to increase. However, this effect is difficult to determine from a satel-
lite image of a vegetation ensemble, as the leaf temperature of such an ensemble tends 
to remain close to that of potential transpiration until severe wilting has occurred. Thus, 
for pixels with the same VI, those with minimum Ts represent the strongest evaporative 
cooling, while those with maximum Ts represent the weakest evaporative cooling. In this 
way, the triangle’s (or trapezoid’s) “dry edge” is considered to represent the lower limit of 
evapotranspiration for the different vegetation conditions found at that value of Fr within 
the scene, whereas the reverse is implied for the “wet edge.” That the high vegetation end 
of the triangle (or trapezoid) exhibits either a small or a vanishing variation in a scaled 
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radiometric surface temperature is an indication that the spatial variation in transpiration 
over dense vegetation is unimportant, the implication being that surface soil water content 
exerts little effect on the transpiration. Accordingly, all the Ts/VI models assume potential 
transpiration over the vegetated part of the pixel, regardless of the value of Fr, while soil 
evaporation is allowed to vary. These assumptions are consistent with the fact that M0 
lines tend to merge near the top of the triangle (Figure 19.2), thus making it impossible to 
resolve the spatial variation of soil water content in the presence of dense vegetation or to 
anticipate the effect of severe water stress on the vegetation. The presence of a trapezoidal 
shape, rather than a perfectly triangular shape in the Ts/VI plot, is the result of the soil 
thermal inertia variation, which changes with changing soil water content, thus affecting 
the soil heat storage and therefore the soil temperature.

Several studies have also been concerned with the examination of the main factors driv-
ing the shape of the Ts/VI scatter plot, an overview of which was made available recently 
by Petropoulos, Carlson et al. (2009). According to their overview, the main factors affect-
ing the shape of the Ts/VI pixel envelope include the Fr, soil surface moisture content, 
synoptic state of the atmosphere (Tair, vapor pressure deficit), atmospheric forcing, and the 
characteristics of the specific location of the study area (e.g., soil type, landform, local cli-
mate, spatial heterogeneity in surface attributes, geographical location). A way to circum-
vent having to account for these environmental factors is to scale the surface temperature 
between the maximum and minimum values for pixels forming the triangular pattern. 
This transformation results in values assigned to pixels within the triangle tending to 
remain approximately in the same relative location with respect to the triangle boundaries 
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for differing values of the environmental parameters, for example, surface albedo, surface 
emissivity, bulk stomatal resistance, atmospheric temperature, and net radiation. A pos-
sible weakness in the triangle method is that it requires a large number of pixels, some 
of which should contain bare, dry soil (as in an urban center) and some of which should 
contain dense vegetation. Given a sufficiently large sampling area, these criteria are likely 
to be met.

Section 19.3.2 provides a more in-depth description of one such methodology—the 
so-called triangle method of Gillies et al. (1997)—which is employed today in the retrieval 
of spatially explicit maps of the turbulent energy fluxes and surface soil water content via 
the interpretation of the remotely sensed Ts/VI scatter plot.

19.3.2  Triangle Method Implementation

The steps followed for the implementation of the so-called triangle method for the retrieval 
of both M0 and surface heat fluxes are summarized in Figure 19.3, whereas details concern-
ing the working of this approach can be found in the studies by Gillies and Temesgen 
(2000) and Carlson (2007a). As seen from Figure 19.3, a preliminary data preprocessing 
includes data resampling to a common spatial resolution, masking clouds and water. The 
first step in the method implementation is the computation of the normalized difference 
vegetation index (NDVI), which was originally proposed by Deering et al (1975):

	 NDVI NIR RED

NIR RED

= −
+

ρ ρ
ρ ρ

	 (19.1)

where ρNIR and ρRED denote the near-infrared and the red surface spectral reflectances, 
respectively. NDVI values can range between −1 and +1; more typically, NDVI val-
ues over a varying mixture of bare soil and vegetation vary between 0 and 0.8. Those 
for water are below 0, whereas those for bare soils typically range between 0 and 0.1 
(Jensen 2000).

The NDVI is then scaled to an N* value:

	 N* = −
−

NDVI NDVI
NDVI NDVIs 0

0 	 (19.2)

where NDVI0 and NDVIs are the minimum and maximum values of NDVI at minimum 
(0%) and maximum (100%) vegetation cover, respectively. These values are generally com-
puted from the scatter plot of the Ts versus the NDVI maps, as shown in Figure 19.4.

Then, N* is related to the Fr, following Gillies and Carlson (1995) and Choudhury et al. (1994):

	 F Nr = *2 	 (19.3)

where Fr is the vegetation fraction and N* is the linearly scaled NDVI. Transformation of 
N* to Fr allows us to plot both the SVAT-simulated and the measured surface radiant tem-
peratures from the satellite sensor on the same scale.

The next step of the implementation of the method includes the Ts normalization using 
the following equation:

	 T
T T

T Tscaled =
−
−

0 min

max min

	 (19.4)
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were recently summarized by Carlson (2007a).
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where Tmin and Tmax are the expected minimum and the maximum Ts for wet, vegetated pix-
els and for the dry, bare soil, respectively, interpolated from the scatter-plot bounds, and Ts 
corresponds to the radiometric temperature value of any pixel in the scene (Figure 19.4).

As stated by Carlson (2007a), Tmin is the temperature of a dense clump of vegetation in 
well-watered soil and Tmax is the temperature of dry, bare soil represented by the highest 
temperatures in the image. Tscaled is a generalized measure of the degree to which the sur-
face temperature resembles that of either a wet, vegetated surface or a dry, bare soil sur-
face. As such, Tscaled is believed to provide a more fundamental variable than does Ts, which 
varies with atmospheric conditions and time of day. The temperature normalization tends 
to impose a uniformity or universality on triangles that might otherwise have different 
shapes, allowing all unmasked pixel data to be inserted in the simulated triangle. It also 
offers the possibility to compare composite data from different observation periods, which 
in turn permits the monitoring of key parameters implicated in land-surface processes 
and land-use change with time.

Subsequently, in step 2 of Figure 19.3, the satellite observations of Ts (or equally Tscaled) 
and Fr are coupled with a SVAT model in order to derive the inversion equations that 
will provide the spatially explicit maps of land-surface fluxes and M0. This process is 
described in detail by Gillis and Temesgen (2000). Briefly, the process is composed of the 
following steps:

	 1.	First, the SVAT model is parameterized using the time and geographic location as 
well as the general soil and vegetation characteristics of the study site, together 
with the appropriate atmospheric profile data. Parameters are adjusted principally 
based on field observations.
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Figure 19.4
Scatter plot of normalized difference vegetation index (NDVI) versus surface radiant temperature for an NS001 
airborne image over Walnut Gulch, Arizona, during summertime. Salient features of the triangle are the maximum 
and minimum temperatures, as vertical, dashed lines (Tmax and Tmin); the warm edge (heavy dashed lines); the cold 
edge; and the limits for dense vegetation (NDVIs) and bare soil (NDVI0). (Courtesy of Carlson, T.N., Sens, 7, 2007a.)
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	 2.	Then, the SVAT model’s input parameters are further adjusted, and the SVAT is 
iterated repetitively until the extreme values of Fr and Ts in the Ts/Fr scatter plot 
(see Figure 19.4) between the simulated (modeled with the SVAT) and observed 
(obtained from the satellite-derived data) are matched. In other words, initial 
model simulations endeavor to align observed Ts with two end points (NDVI0, 
NDVIs) where they intersect the “dry” edge. This extrapolation to NDVI0 and 
NDVIs guarantees that the implied temperatures along the “dry” edge for bare 
soil and full vegetation cover are consistent with simulations for M0 of zero. Note 
that the first model is run for dry, bare soil conditions. Alternately, scaling the tem-
peratures as described above requires only that the model temperatures be scaled 
in the same manner, thereby eliminating the necessity of iterating the model in 
order to match its output with the measured Tmax.

	 3.	Once the model tuning is completed, the SVAT model is repetitively run keeping 
the time (corresponding to the satellite overpass) constant but varying Fr and M0 
over all possible values (0%–100% and 0–1 respectively), here in increments of 10 
and 0.1, respectively, for all possible theoretical combinations of M0, Fr. The result 
is a matrix of model outputs, including the columns of the following simulated 
parameters: M0, Fr, Tscaled (or equally Tkin), LE, and H, all for the time of satellite 
overpass and calculated for each combination of Fr and M0. An example of such 
matrix is shown in Figure 19.5.

Fr M0 M0actual Rn LE H

•
•
•
•
•
•

•
•
•
•
•
•

•
•
•
•
•
•

•
•
•
•
•
•

•
•
•
•
•
•

•
•
•
•
•
•

•
•
•
•
•
•

Tkin
0
0
0
0
0
0
0
0
0
0
0

10

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
0.00

0.04
0.13
0.22
0.31
0.40
0.50
0.59
0.68
0.77
0.87
0.96
0.04

312.56
333.29
351.66
368.26
383.94
398.83
413.24
427.02
440.71
453.95
467.02
327.89

17.39
49.97
75.28
95.81

113.47
128.94
142.95
155.42
167.55
178.48
188.83

20.08

24.79
23.07
21.77
20.81
20.03
19.39
18.86
18.44
18.04
17.72
17.43
23.76

184.09
165.06
151.62
140.70
132.30
125.45
119.74
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110.94
107.43
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196.70

90
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100
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100
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100
100

1.00
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0.20
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0.40
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0.70
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0.04
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0.23
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0.41
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0.79
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255.67
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225.52

Figure 19.5
Example of the matrix of model outputs created from the iteration of the M0 and Fr after the soil–vegetation–
atmosphere fransfer (SVAT) initialization.
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	 4.	Next, this output matrix is used to derive a series of nonlinear (quadratic) equa-
tions empirically, relating Fr and scaled surface temperature (Tscaled) to each of the 
other variables of interest: H, LE, latent heat flux ratio (LE/Rn), and sensible heat 
flux ratio (H/Rn). By this method, the set of physically based relationships between 
various surface-atmosphere parameters, as described by the detailed biophysical 
descriptions included in the SVAT model, are inherent in the matrix outputs, and 
are used to derive a series of simple, empirical relations relating each of these 
parameters to just the locations Fr and Tscaled recorded at that location. Because 
these parameters of Fr and Tscaled are derivable from the satellite data, these empiri-
cal equations could then be used to derive the required spatially explicit maps of 
the land-surfaces fluxes LE and H as well as of M0 from the satellite products of 
Fr and Tscaled. The quadratic polynomial equations derived from the SVAT model 
matrix model outputs have the general form as follows (here shown for the version 
relating M0 to Fr and Ts and/or Tscaled):

	 M a T Fpq
p q

qp
0

0

3

0

3

=
==
∑∑ ( *) ( )scaled r 	 (19.5)

	 where the coefficients ap,q are derived from nonlinear regression between the 
matrix values of Fr, Tscaled, and M0 and p and q vary from 0 to 3.

Equation (19.5) is expanded functionally as (here for example for M0)
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Thus, by this method, the set of physically based relationships between the different 
surface-atmosphere parameters (as described by the detailed biophysical descriptions 
included in the SVAT model and inherent in the matrix outputs) are used to derive a series 
of simple, empirical relations whereby Fr and Ts (or equally Tscaled) recorded at each location 
are used to generate output values for H and LE for a range of measured values of Fr and 
Ts. Because these variables of Fr and Tscaled are derivable from the satellite data, empirical 
equations such as this can then be used to obtain the required spatially explicit maps of 
the LE and H fluxes as well as of M0 from satellite observations. Also, although these coef-
ficients pertain to a set of specific environmental conditions, they may be used with some 
caution for a variety of initial atmospheric conditions without much loss of accuracy, pro-
vided that the radiometric surface temperatures are scaled as in Equation 19.4 and a scaled 
NDVI (Equation 19.2) or Fr (Equation 19.3) is used; a table of the coefficients for polynomi-
als relating M0 and H to Tscaled and Fr is provided by Carlson (2007a). As such they can be 
applied by the user without the need to run a SVAT model. Figure 19.6 shows the interior 
of the triangle mapped as a function of scaled radiometric surface temperatures (Equation 
19.4) versus Fr (Equation 19.3). Note that although the isopleths of M0 are nearly straight 
lines, both M0 and EF vary in a highly nonlinear fashion between the cold (wet) and warm 
(dry) edges.
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19.3.3  Overview of the SVAT Model Architecture Used in the Triangle Method

This section briefly overviews the SVAT model architecture that has been used to generate 
the polynomials referred to in the triangle method implementation, although, in general, 
any similar SVAT model can be used. The different facets of the SVAT model’s overall struc-
ture, namely, the physical, vertical, and horizontal, are illustrated in Figure 19.7 (left). This 
model is essentially a one-dimensional boundary layer model with a plant component. It 
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has been developed to simulate the various physical processes that take place as a function 
of time in a column that extends from the root zone below the soil surface up to a level 
higher than the surface vegetation canopy. It performs simulations over a 24-hour cycle, 
starting from a set of initial conditions given in the early morning (at 5:30 a.m. local time).

The underlying constraint in the model is that the energy fluxes at the Earth’s surface and 
within the plant canopy must balance appropriately (Figure 19.7, right). Initial forcing of the 
model begins with the calculation of solar radiation, determined from a one-dimensional 
solar radiation model. For a mixture of soil vegetation and bare soil patches, the shortwave 
incoming radiation and downward long-wave radiation are calculated in an identical way 
for the bare soil and vegetation regimes, and the radiation partitioning is computed as a 
function of the foliage density. In a similar way, the LE and H fluxes, the upward flux of 
long-wave radiation above the plant canopy, and the G flux are taken as weighted averages 
of the bare soil and vegetation components according to the Fr value set within the model. 
The partitioning of the surface turbulent fluxes of momentum, heat, and mass is param-
eterized as a function of the dynamic stability of air, canopy structure, and water evapora-
tive capability of the soil and vegetation layers. Simulated fluxes are expressed in the units 
of watts per square meter (W ⋅ m−2) of leaf area in order that they can be related to the 
surface energy balance via a shelter factor, which is a function of the leaf area index (LAI). 
The soil and vegetation temperatures are obtained by solving the energy budget equations 
simultaneously at the ground and canopy levels. Ts and the fluxes above the canopy are 
then computed from a weighted average of bare soil and vegetation components of upward 
long-wave radiation fluxes. Flux per unit leaf area is converted into flux per unit surface 
area by scaling the fluxes by the LAI divided by a “shelter factor” (see Mascart et al. 1991). 
The shelter factor accounts for the fact that not all leaves transpire at the sunlit amount 
because available solar radiation decreases with height beneath the top of the canopy.

An extensive mathematical account of the model basis has been provided by Carlson 
and Boland (1978) and Carlson et al. (1981), bare soil component of the model is described 
by Carlson et al. (1981), its vegetation component by Taconet et al. (1986) and Mehrez et al. 
(1992), and its plant hydraulics by Lynn and Carlson (1990) and Olioso, Carlson, and Brisson 
(1996). An overview of the model use to date can also be found in a study by Petropoulos, 
Carlson, and Wooster (2009). The most recent version of the SVAT model, called SimSphere, 
is freely available from Web site of the Department of Meteorology of Pennsylvania State 
University (http://www.agry.purdue.edu/climate/dev//simsphere.asp).

19.3.4 E xample Applications of the Triangle Method

19.3.4.1  Testing the Setting

In the remaining part of the chapter we summarize some results of a study conducted as 
a validation exercise concerning the examination of the ability of the triangle method to 
provide estimates of LE and H fluxes as well as M0 in a variety of ecosystem, environmen-
tal, and topographical conditions in Europe. In the framework of this research study, the 
triangle method was applied using satellite data from the Advanced Spaceborne Thermal 
Emission and Reflection Radiometer (ASTER) satellite radiometer and the most recent 
version of the Penn State two-layer SVAT model, called SimSphere. In order to provide an 
all-inclusive analysis of the triangle method performance, this study aimed at evaluating 
individually the performance of the triangle method in deriving the energy fluxes and 
M0 and subsequently the ability of the SVAT model itself to produce the diurnal turbulent 
heat fluxes and other key land-surface parameters. Also, as an integral part of the SVAT 
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model verification that was executed, a cutting-edge sensitivity analysis (SA) methodol-
ogy was implemented, allowing derivation of quantitative measures of the sensitivities of 
key model outputs simulated by the model with respect to the model inputs. SA can be 
defined broadly as the process of determining the effect of changing the value of one or 
more input variables and observing the effect of that process on the model output. SA is 
generally regarded by many researchers as a necessary part of any model building, and 
its use should be considered in any field in which models are used (Saltelli et al. 2004). SA 
can be used for several purposes in modeling practice, including the understanding of a 
model’s behavior and its coherence with the real world. SA is also necessary to establish 
the dependency of a model’s outputs on its input parameters and illuminate the internal 
relationships of the different parameters within the model.

Validation of the results produced from the triangle method and the simulations from 
the SVAT model alone were performed using in situ validated observations taken from the 
selected observations collected from selected CarboEurope flux tower network (Aubinet 
et al. 2000), the largest ground-based measurement network operating at present in Europe. 
Agreement between the observed and the predicted parameters for each case was initially 
examined by directly comparing the predictions and the simulations for all days of the 
experiment, but subsequently by comparing predictions and observations in relation to land 
use and terrain type. In addition, another aspect of analysis concerned the assessment of the 
effect of clouds between the model predictions and observations in agreement. Judgment on 
which days (or time periods) were cloud-free was based on analysis of the observations of 
Rg, where cloud-free days were flagged as those having smoothly varying Rg curves, a prop-
erty signifying clear-sky conditions. Finally, additional comparisons were also performed 
with the data stratified by the degree of energy balance closure (EBC), the assessment of 
which was accomplished by widely recognized methods (Wilson et al. 2002; Liu, Hiyama, 
and Yamaguchi 2006). To quantify the level of agreement between the parameters compared 
each time, a series of appropriate statistical measures were computed, such as root-mean-
square difference (RMSD) and the mean absolute difference (MAD); a detailed description of 
these can be found in the studies of Silk (1979), Burt and Barber (1996), and Wilmott (1982).

In terms of SA, this was conducted to SimSphere using a software platform called the 
Gaussian Emulation Machine for Sensitivity Analysis (GEM SA), which performs glo
bal sensitivity analysis (GSA) based on Bayesian analysis of computer code outputs 
(BACCO; Kennedy and O’Hagan 2001) and is a freely available software tool (http://www.
tonyohagan.co.uk/academic/GEM/index.html). Details concerning the statistical emula-
tion process can be found in a study by Kennedy and O’Hagan (2000), while a tutorial 
introducing the method workings is available in a study by O’Hagan (2006).

For convenience and efficiency, selected results from this verification exercise study are 
presented separately for the verification of the triangle method and the SVAT model alone, 
whereas this section closes by presenting studies in which the concept of the triangle 
method has been extended toward the retrieval of other parameters associated with the 
already discussed biophysical parameters computed from the Ts/VI feature space.

19.3.4.2  Validation of the Triangle Method Predictions

For the evaluation of the triangle-inverted maps of M0 and LE and H fluxes at the selected 
CarboEurope sites, point-by-point comparisons were performed. Such point-based com-
parisons have been the most common approach followed in analogous validation experi-
ments of satellite-derived maps of surface energy fluxes and M0, including even past 
verification exercises of the triangle method (Gillies et al. 1997; Brunsell and Gillies 2003; 
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Chauhan, Miller, and Ardanuy 2003). In addition, mean retrievals of the inverted param-
eters from a 3 × 3 pixel area surrounding each tower location were also compared to the 
in situ data in order to minimize spatial registration errors and reduce random “noise” 
in the satellite-derived retrievals. Figures 19.8 and 19.9 illustrate the results from the 
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Figure 19.8
Agreement between in situ, point, and 3 × 3-area average M0 (vol/vol) at various sites for all the case days on 
which LE fluxes were available at the ASTER satellite overpass times.
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comparisons of both M0 and LE fluxes derived from triangle method implementation 
versus the corresponding measurements from the selected validation sites and all days 
(including those marked as “cloud-passing”) taken from the CarboEurope sites.

Validation results from the triangle method indicated that M0 and LE fluxes were in gen-
eral overestimated by the triangle method, whereas the opposite was found for H fluxes. It 
is also worth noting that in the same data set, 56% of predicted M0 and 42% of predicted LE 
fell within ∼35% of the corresponding in situ values. Analogous results were also reported 
in 3 × 3 area-averaged comparisons for all the triangle-inverted parameters that were com-
pared. Closer agreements with the ground observations were generally found when com-
parisons were limited to cloud-free days at flat terrain sites. Indeed, for such conditions, the 
triangle method was found to estimate the instantaneous LE fluxes with a mean RMSD of 
35 W ⋅ m−2 (or equally mean MAE of 27 W ⋅ m−2), whereas M0 comparisons showed a mean 
RMSD of 0.22 and a mean MAD of 0.17 and a general overestimation of observed M0 by a 
mean bias of 0.13 vol/vol. Analogous results were also found in general in the comparisons 
concerning H fluxes. Overall, agreement found for both M0 and the instantaneous LE fluxes 
to a large extent was also comparable to accuracy levels reported in previous verification 
studies of the triangle method using satellite data from different sensors and at different 
implementation conditions (Carlson, Capehart, and Gillies 1995; Gilles et al. 1997; Capehart 
and Carlson 1997; Brunsell and Gillies 2003).

19.3.4.3  Validation of the SVAT Model Predictions

The Penn State SVAT model (SimSphere) has been developed over a period of more than 
2 decades. There exist a number of implementations that have been applied in many stud-
ies investigating interactions between the land surface and the atmosphere, with results 
evaluated based on comparison of both field measurements and outputs from other models 
or via the study of scientific scenarios. A review of SVAT model use to date was provided 
by Petropoulos, Carlson, and Wooster (2009). Currently, the focus has been on expanding 
the range of model or in situ data intercomparisons to other regions, time periods, and 
comparison of data sets.

In this framework, SimSphere was applied to simulate the diurnal evolutions of vari-
ous parameters (including LE and H fluxes), and the results were compared against mea-
surements from flux towers at the selected CarboEurope test sites that covered different 
environmental and ecosystem conditions. In addition, the SA assisted in identifying and 
characterizing quantitatively the sensitivity of key model outputs to the input parameters, 
allowing one to study their interactions and derive absolute sensitivity measures appro-
priate to the structure of the SimSphere model.

Results for the comparisons that were performed during this study for a 30-minute mean 
average of LE and H fluxes for all days of comparison between SimSphere and the CarboEurope 
observations are shown in Figures 19.10 and 19.11. Table 19.2 summarizes the SimSphere 
model inputs, which were included in the sensitivity analysis conducted. Figures 19.12 and 
19.13 present results also for SA that was conducted in SimSphere key model outputs, namely, 
the daily average latent heat flux (LEdaily ) and the daily average sensible heat flux (Hdaily).

In terms of the diurnal comparisons performed (Figures 19.10 and 19.11), despite the 
nonideal conditions of the SimSphere evaluation in some of the days of comparison (i.e., 
cloud-passing days, rugged terrain), SimSphere was able to produce simulations that 
agreed reasonably with the observations in terms of the diurnal changes and seasonal pat-
terns. Generally, SimSphere was found to frequently overestimate the relatively small LE 
fluxes observed during the dry days for which comparisons were made. These days were 
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characterized by low in situ soil volumetric moisture and high Tair and H fluxes. The values 
of LE were underestimated comparatively on moist days. Comparisons of all cases of days 
(including those days marked previously “cloud-passing”) showed that specifically LE and 
H fluxes were almost consistently underestimated by approximately 35%. Observed LE flux 
was frequently overestimated by SimSphere, with a mean bias of +14 W ⋅ m−2 and a mean 
RMSD of 29.5 W ⋅ m−2 (d-index of 0.889), whereas observed H flux was underestimated, with 
a mean bias of −11 W ⋅ m−2 and a mean RMSD of 52.2 W ⋅ m−2 (d-index of 0.826). H fluxes were 
found to be almost consistently underestimated by the model by approximately 25−33%. 
However, comparisons performed for just the subset of data of cloud-free days of flat ter-
rain sites where the degree of EBC of the flux tower data had been confirmed indicated a 
closer agreement between the parameters. Under such conditions, the RMSD for LE and H 
were 27.11 and 68.75 W ⋅ m−2, respectively (d-index of 0.881 and 0.762, respectively). Other 
studies (e.g., Gillies et al. 1997) show much smaller values of RMSD for H fluxes.

In summary, the agreement reported here, especially for the cloud-free days at flat ter-
rain sites, was comparable to, if not sometimes better than, those reported in analogous 
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Figure 19.10
Comparisons of in situ measured and predicted values of latent heat (LE) fluxes for all the simulations days 
(left) and for the days flagged as cloud-free only (right) separated by land-use type. Each point in the figure is a 
single 30-minute flux measurement.
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Figure 19.11
Comparisons of in situ measured and predicted values of sensible heat flux (H) for all the simulations days (left) 
and for the days flagged as cloud-free only (right) separated by land-use type. Each point in the figure is a single 
30-minute flux measurement.
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past verifications of this specific SVAT model (e.g., Todhunter and Terjung 1986; Carlson 
and Boland 1978; Gillies et al. 1997). Moreover, when considering interpreting these results, 
instrumental uncertainty related to the flux tower measures should be borne in mind 
(for Rn−10% and for turbulent heat fluxes ∼10−20%), which can explain partially the dis-
agreement reported here between model predictions and ground measurements. Overall, 
despite the occasionally inferior performance of the model in simulating the examined 
parameters (mainly the underestimation of H fluxes), SimSphere was able to identify the 

Table 19.2

Summary of the SimSphere Inputs Included in the Sensitivity Analysis Study

Short Name of 
Model Input

Actual Name of the 
Model Input

Process in Which Each 
Parameter Is Involved Min Max Units

X1 Slope Time and location 0 45 Degrees
X2 Aspect Time and location 0 360 Degrees
X3 Station height Time and location 0 4.92 m
X4 Fractional vegetation cover Vegetation 0 100 0/0
X5 Leaf area index Vegetation 0 10 m2 ⋅ m–2

X6 Foliage emissivity Vegetation 0.951 0.99 −
X7 [Ca] (external [CO2] in the leaf) Vegetation 250 710 ppmv
X8 [Ci] (internal [CO2] in the leaf) Vegetation 110 400 ppmv
X9 [o3] (ozone concentration 

in the air)
Vegetation 0 0.25 ppmv

X10 Vegetation height Vegetation 0.021 20 m
X11 Leaf width Vegetation 0.012 1 m
X12 Minimum stomatal resistance Plant 10 500 s ⋅ m–1

X13 Cuticle resistance Plant 200 2000 sm–1

X14 Critical leaf water potential Plant –5 –30 bar
X15 Critical solar parameter Plant 25 300 W ⋅ m–2

X16 Stern resistance Plant 0.011 0.15 s ⋅ m–1

X17 Surface moisture availability Hydrologic 0 1 vol/vol
X18 Root zone moisture availability Hydrologic 0 1 vol/vol
X19 Substrate maximum volume water 

content
Hydrologic 0.01 1 vol/vol

X20 Substrate climatological mean 
temperature

Surface 3.5 30 °C

X21 Thermal inertia Surface 0.951 0.98 W ⋅ m–2 ⋅ K–1

X22 Ground emissivity Surface 0.05 5 −
X23 Atmospheric precipitable water Meteorological 0.02 2 cm
X24 Surface roughness Meteorological 1 10 m
X25 Obstacle height Meteorological 0.02 2 m
X26 Fractional cloud cover Meteorological 1 10 0/0
X27 RKS (saturated thermal 

conductivity)
Soil 0 10 See Cosby 

et al. 1984 
for units.

X28 Cosby B (Cosby et al. 
1984 “b” parameter)

Soil 2 12

X29 THM (saturated volume water 
content)

Soil 0.3 0.5

X30 PSI (saturated water potential) Soil 1 7
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patterns of the change expected, if not always the magnitudes. SimSphere evaluation 
results evidenced the use of the model as a tool that identifies the patterns of the change 
expected, if not always the magnitudes, thus indicating the usefulness of the model in 
practical applications either as a stand-alone tool or in combination with remote sensing 
via the implementation of the triangle inversion method of Carlson, Capehart, and Gillies 
(1995) and Gillies and Carlson (1995).
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Figure 19.12
Results of SA done for the LEdaily  using the BACCO GEM GSA method. Here are illustrated the results from the 
computed main effects and total effects for each of the SimSphere inputs. The large total effect in comparison to 
the corresponding main effect of each model input indicates the presence of high interaction effects. Parameters 
Xi shown in the x-axis are explained in Table 19.2.
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Figure 19.13
Results sensitivity analysis done for Hdaily  using the BACCO GEM GSA method. Here are illustrated the results 
from the computed main effects and total effects for each of the SimSphere inputs. The large total effect in com-
parison to the corresponding main effect of each model input indicates the presence of high-interaction effects. 
Parameters Xi shown in the x-axis are explained in Table 19.2.
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In terms of the SA, as seen from Figures 19.12 and 19.13, the BACCO GEM GSA method 
was employed in identifying the most responsive inputs of SimSphere and also capturing 
their key interactions for each of the simulated target quantities on which the GSA was 
conducted. Figures 19.11 and 19.12 illustrate the computed main effects and the total effects 
for two of the simulated parameters in the model in which their sensitivity was exam-
ined. The main effect represents the expected amount of variance that would be removed 
from the total output variance if we were able to learn the true value of each model input 
parameter (within its uncertainty range). Thus, the main effect provides a quantitative 
indication of the relative importance of an individual input variable Xi in driving the total 
output uncertainty. The total effect collects in one single term all the interactions involving 
one input parameter and represents the expected amount of output variance that would 
remain unexplained if the considered model input and only that was left free to vary over 
its range, the value of all other input parameters variables having been learned.

Results of the SA indicate that only a small fraction of the model input parameters exert 
appreciable influence on the target quantities. Both the simulated H and LE fluxes were 
found to be most sensitive to aspect ratio, Fr, M0 terrain slope, surface roughness, and 
vegetation height as well as to the substrate climatological mean temperature and ther-
mal inertia. Notable was the sharing of the interaction effects between the model param-
eters, reflecting the complexity of the model architecture. Results, however, did suggest 
the presence of highly complex interaction structures within SimSphere, which drove a 
considerable fraction of the variance of the studied model outputs. Other influential input 
parameters for all model outputs of which their sensitivity was examined were reported 
to be surface roughness, vegetation height, substrate climatological mean temperature 
(the latter governing the deep soil temperature), and thermal inertia. The detailed results 
of the SA, which was conducted herein, are presented in a study by Petropoulos, Wooster 
et al. (2009).

19.3.4.4  Other Applications

A number of studies were focused on demonstrating the use of remote sensing, especially 
utilizing the triangle method, such as for the study of urbanization. More specifically, 
Owen, Carlson, and Gillies (1998) implemented the triangle method proposed by Carlson, 
Capehart, and Gillies (1995), Gillies and Carlson (1995), and Gillies et al. (1997) using NOAA-
AVHRR and Landsat TM imagery. Carlson and Sanchez-Azofeifa (1999), studying urban 
growth in San Jose, Costa Rica, showed the effect of development in specific residential 
areas during a 9-year period. They were able to relate the temporal movement of particular 
image pixels within the Ts/Fr triangular envelope to changes in urbanization, expressed 
as increases in Ts as a result of the decline in both Fr and M0; we suggested that a scaled 
temperature along with Fr would permit us to view the time history of pixels in Fr/Tscaled 
space. They suggested the use of vectors, that is, trajectories, for visualization of the tem-
poral movement of such pixels. Carlson and Arthur (2000) extended the above concept by 
relating the area of impervious surfaces, specifically the impervious surface area (ISA) 
fraction, referred to earlier, and the surface runoff to the triangle domain. Estimating ISA 
requires an additional step beyond the aforementioned image analyses. Although several 
techniques currently exist for estimating ISA, the method we favor requires one to per-
form a classification of the image, separating the pixels into different land-use categories, 
such as urban, forest, and water. We then assume that ISA exists only within the pixels 
classified as urban and that within the urban pixels ISA is equal to the fractional part of 
the pixel not covered by vegetation (1 − Fr).
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This method of calculating ISA has been demonstrated using the triangle approach with 
Landsat TM data on a case-study site over the seriously degraded Conestoga Watershed 
in Lancaster County, PA (Carlson 2007b), a region that has undergone rapid urban devel-
opment over the past decade. In Figure 19.14, the light-shaded areas pertain to ISA val-
ues generally between 30% and 70%, which is characteristic of residential development. 
The darker areas within the light shading denote ISA in excess of 70%, characteristic of 
commercial and industrial development; the latter typically resides in or near the center of 
a city, in this case the city of Lancaster. Besides being a sensitive monitor of urbanization 
and the human use of the land, ISA is highly useful for estimating urban storm water run-
off and for assessing the possible effects of urban development on stream water quality.

Owen, Carlson, and Gillies (1998) suggested a scheme for formulating equations to pre-
dict the effects of various urban development scenarios on the microscale surface tem-
perature and moisture. Arthur-Hartanft, Carlson, and Clarke (2003) extended the work 
of Carlson and Arthur (2000) by showing how another parameter, storm water runoff, 
can be linked to the triangular domain. They demonstrated the potential of coupling the 
triangle method outputs with the SLEUTH cellular automata urban growth model (Clarke, 
Hoppen, and Gaydos 1996) for potential use in urban planning and policy decision mak-
ing. Another application particularly suited to urban hydrology makes use of land classifi-
cation by satellite to estimate surface runoff in streams from rainfall events. This approach 
uses the concept of ISA to calculate the runoff potential (Carlson 2007b).

From a very different perspective, Crombie et al. (1999) used NOAA-AVHRR data to 
implement the triangle method in the area of Egypt’s Nile Delta and used the derived 
spatially explicit maps of M0 as an index to assess the prevalence of diseases such as 
malaria and filariasis, because the mosquitoes that carry the parasite require standing 
water for breeding. Their results unfortunately failed to show a very significant correla-
tion between filariasis infection rate and retrieved M0 (R2 = 0.37). In another study, Ray 
et al. (2002) employed the triangle approach of Gilles et al. (1997) to investigate the differ-
ences in cumulus cloud formation, M0, surface energy fluxes, and top of the atmosphere 
shortwave irradiance between areas of agricultural development and native vegetation 
in southwestern Australia. Using three Terra MODIS scenes obtained in December 2000, 
they found that local effects due to land use had a significant influence on the formation 

Figure 19.14
Satellite-derived (Landsat TM) analysis of impervious surface area in percent for the Conestoga Watershed in 
Lancaster County, eastern Pennsylvania, for the year 2000. The arrow denotes the town of Lancaster.
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of cumulus clouds. The authors used the monthly maps of cumulus frequency for the year 
2000 and showed the preferential development of cumulus clouds over areas of native 
vegetation in summer and over agricultural areas in winter, but for the dry season, the 
inverted M0 and surface energy fluxes showed areas of native vegetation to be moister. 
Their study demonstrated that enhanced LE over native vegetation implied a moister 
boundary layer that could be responsible for preferential cloud formation over native veg-
etation during the dry season.

19.4  Summary and Future Outlook

This chapter for the most part has been confined to providing an overview of the retrieval 
of H and LE heat fluxes as well as soil water content using information derived from ther-
mal and optical remote sensing sensors, with an emphasis placed on the so-called triangle 
method of Gillies et al. (1997) and Carlson (2007a). As was clearly evidenced from the review 
of the Ts/VI methods, which was also undertaken here, the state-of-the-art in the retrieval of 
surface heat fluxes from optical and thermal remote sensing yields the retrieval of LE and H 
with a 10−30% accuracy, a range probably approaching the limit of accuracy currently pos-
sible using satellite measurements, as was also indicated by Jiang, Islam, and Carlson (2004). 
This has been generally considered to be reasonable, given that the accuracy in the measure-
ment of these fluxes using ground instrumentation is generally around 10−15% (as referred 
to in Jiang, Islam, and Carlson 2004). However, in terms of the surface soil water content esti-
mation, unlike radar-derived estimates, it appears that optical and thermal remote sensing 
are not able to achieve the accuracy of approximately ±4% vol/vol in the retrieval of surface 
soil water content recommended for a large range of applications, as reported, for instance, 
by Engman (1992), Calvet and Noilhan (2000), and Walker and Houser (2004).

From all the methods employed today in the retrieval of the LE and H fluxes as well as 
M0 using optical and thermal remote sensing data, those based on the triangular (or trap-
ezoid) space that emerges from a satellite-derived surface temperature (Ts) and VI appear 
to possess certain advantages. The ability of these methods to relate the patterns encapsu-
lated by the Ts/VI pixel envelope to key biophysical properties explains the large number 
of studies concerned with their implementation for retrieving spatially explicit maps of 
H, LE fluxes, and M0. Of course, care must be taken in interpreting the surface moisture 
availability, as the precise meaning of any soil water content derived from satellite is fun-
damentally uncertain, as pointed out in reference to Figure 19.1.

The most efficient and possibly the most consistently accurate one of these Ts/VI methods 
for estimating surface variables is the so-called triangle method of Gillies and Carlson (1995) 
and Gillies et al. (1997), the workings of which are presented in this chapter, along with 
some examples of validation exercises. Results from various validation exercises that have 
been conducted have shown that this method is able to provide results of at least similar, 
or in some occasions, better accuracy compared to other methods available. However, this 
method has several advantages in its use compared to other methods discussed in this chap-
ter, which make it ideal for use by in the operational estimation of soil water content from 
the Visible/Infrared Imager/Radiometer Suite (VIIRS) and the Microwave Imager Sounder 
(MIS) under NPOESS starting in the year 2016 (Chauchan et al. 2003).

It is understandable that arguments for a further comprehensive validation of this method 
are now of a high priority and scientific interest. It also appears that to best promote the 
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use of Ts/VI approaches, a number of technological/theoretical/practical hurdles must 
be overcome. The spatial and temporal resolution of satellite instruments with appropri-
ate specifications for Ts/VI methods should be improved to allow the study of the surface 
heat fluxes and soil surface moisture at the spatiotemporal frequencies required. Also, the 
development of techniques for the implementation of these methods over cloudy conditions 
and conditions representative of a non-full-range of surface conditions, which is at pres-
ent holding these methods from operational applications, should be further investigated. 
Further work toward the development of methods for the operational retrieval of surface 
heat fluxes and surface soil water content utilizing remotely sensed data becomes more 
indispensable considering the forthcoming launch of new satellites. The VIIRS instrument 
planned to be placed in orbit by the NPOESS/NASA Preparatory Project in 2011, as well 
as the Sentinel-3 mission of the European Space Agency (ESA), which is planned to be 
launched in 2012, providing thermal infrared observations from space at 750 and 1 km, 
respectively, are expected to be highly valuable in estimating land atmosphere energy 
fluxes and surface soil water content from remote sensing in the coming years. The impor-
tance of the use of data from the above sensors is even strengthened by the fact that no 
future mission has been yet formalized regarding the continuation of spaceborne thermal 
infrared data acquisitions at very high spatial resolutions and at a global scale, as a succes-
sion of the Landsat and ASTER missions.
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20
Remote Sensing of Urban Biophysical 
Environments

Qihao Weng

20.1  Introduction

Urban environmental problems have become unprecedentedly significant in the twenty-
first century. This is not a simple consequence of ever-increasing urban population and 
land, but also because urbanization is one of the most profound examples of human modi-
fication of the Earth. Urbanization may have an impact on local energy, water and carbon 
exchanges, climate, habitat, and biodiversity. Depending on the size of the area affected, 
the impacts may be on a local, regional, or global scale. Continued urbanization and the 
associated environmental impacts are receiving great attention in the remote sensing com-
munity and beyond. It has been suggested that urban environment should be defined 
as a “new science” to be focused on U.S. satellite missions such as Hyperion in the near 
future. Driven by societal needs and improved spatial, spectral, and geometric (e.g., light 
detection and ranging [LiDAR]) resolutions in sensor technology and image processing 
algorithms, in recent years we have witnessed a great increase in the number of publica-
tions, special issues, and books on urban remote sensing. The Decadal Survey (National 
Research Council 2007) further suggests improving the temporal resolution of satellites 
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capable of urban imaging. Therefore, we may well be entering an era of “high-definition” 
urban remote sensing. This chapter reviews recent research progresses in several aspects 
of urban remote sensing, including urban landscape, impervious surface, urban air qual-
ity, and vegetation. The chapter ends with the author’s prospects on future developments 
and emerging trends in urban remote sensing.

20.2  Remote Sensing of Urban Landscapes

Urban areas are composed of a variety of materials, including different types of artifi-
cial materials (concrete, asphalt, metal, plastic, glasses, etc.), soils, rocks and minerals, and 
green and nonphotosynthetic vegetation. These materials comprise land cover and are 
used in different manners for various purposes by humans. Land cover can be defined 
as the biophysical state of the Earth’s surface and immediate subsurface, including biota, 
soil, topography, surface and groundwater, and man-made structures (Turner et al. 1995). 
In other words, it describes both natural and man-made coverings of the Earth’s surface. 
Land use can be defined as human use of the land. Land use involves both the manner in 
which the biophysical attributes of the land are manipulated and the purpose for which 
the land is used (Turner et al. 1995). Remote sensing technology has often been applied 
to map land use or land cover, instead of materials. Each type of land cover may possess 
unique surface properties (material); however, mapping land covers and materials have 
different requirements. Land-cover mapping needs to consider surface characteristics 
in addition to those from the material (Herold et al. 2006). The surface structure (rough-
ness) may influence the spectral response as much as the intraclass variability (Gong and 
Howarth 1990; Myint 2001; Shaban and Dikshit 2001; Herold et al. 2006). Two different 
land covers, for example asphalt roads and composite shingle or tar roofs, may have very 
similar materials (hydrocarbons) and thus may be difficult to discern, although from a 
material perspective, these surfaces can be mapped accurately with hyperspectral remote 
sensing techniques (Herold et al. 2006). Therefore, land-cover mapping needs to take into 
account the intraclass variability and spectral separability. On the other hand, analysis of 
land-use classes would nearly be impossible with spectral information alone. Additional 
information, such as spatial, textural, and contextual information, is usually required in 
order to have a successful land-use classification in urban areas (Gong and Howarth 1992; 
Stuckens, Coppin, and Bauer 2000; Herold, Liu, and Clark 2003).

Traditional classification methods of land use and land cover (LULC) based on detailed 
fieldwork suffered two major common drawbacks: confusion between LULC and the lack 
of uniformity or comparability in classification schemes, leaving behind a sheer difficulty 
for comparing land-use patterns over time or between areas (Mather 1986). The use of aerial 
photographs and satellite images after the late 1960s does not solve these problems, because 
these techniques are based on the formal expression of land use rather than on the actual 
activity itself (Mather 1986). In fact, many land-use types cannot be identified from the air. 
As a result, mapping of the Earth’s surface tends to present a mixture of LULC data with 
an emphasis on the latter (Lo 1986). This problem is reflected in the title of the classifica-
tion developed in the United States for the mapping of the country at a scale of 1:100,000 or 
1:250,000, commencing in 1974 (Anderson et al. 1976). Moreover, the U.S. Geological Survey 
(USGS) LULC Classification System has been designed as a resource-oriented one. Therefore, 
eight out of nine of the first-level categories relate to nonurban areas. The 2001 National 
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Land-Cover Database developed by the USGS reflects both problems (Homer et al. 2004). 
Alternative to the USGS scheme, the Land-Based Classification Standard developed by the 
American Planning Association emphasizes extracting urban or suburban land-use infor-
mation. The parcel-level land-use information is obtained from in situ survey, aerial photog-
raphy, and high-resolution satellite imagery (HRSI), based on the characteristics of activity, 
function, site development, structure, and ownership (American Planning Association 2004). 
Generally speaking, the success of most land-use or land-cover mapping is typically mea-
sured by the ability to match remote sensing spectral signatures to the Anderson classifica-
tion scheme, which, in urban areas, is mainly land use (Ridd 1995). The confusion between 
LULC contributes to the low classification accuracy (Foody 2002), while less emphasis on 
land cover in urban areas weakens the ability of digital remote sensing as a research tool for 
characterizing and quantifying the urban ecological structure and process (Ridd 1995).

Another major problem in urban LULC classification is related to so-called mixed pixels. 
It is rare that urban land classification can yield an accuracy of greater than 80% by using 
per-pixel classification (i.e., “hard classification”) algorithms (Mather 1999). The low accu-
racy of LULC classification in urban areas is largely attributed to the mixed-pixel problem, 
in which several types of LULC are contained in one pixel. The mixed-pixel problem results 
from the fact that the scale of observation (i.e., pixel resolution) fails to correspond to the 
spatial characteristics of the target (Mather 1999). Therefore, the “soft”/fuzzy approach of 
LULC classifications has been applied, in which each pixel is assigned a class membership 
of each LULC type rather than a single label (Wang 1990). Nevertheless, as Mather (1999) 
suggested, neither “hard” nor “soft” classifications were an appropriate tool for analyzing 
heterogeneous landscapes. Both Ridd (1995) and Mather (1999) maintained that charac-
terization, rather than classification, should be applied in order to provide a better under-
standing of the compositions and processes of heterogeneous landscapes such as urban 
areas. To do so, one must be able to quantify accurately the spatial pattern of the landscape 
and its temporal changes (Wu et al. 2000). Therefore, it is necessary to have a standardized 
method to define theses component surfaces and to detect and map them in repetitive and 
consistent ways so that a global model of urban morphology may be developed, and moni-
toring and modeling of their changes over time may be possible (Ridd 1995).

Ridd (1995) proposed a conceptual model for remote sensing analysis of urban land-
scapes, that is, the vegetation–impervious surface–soil (V-I-S) model. This model assumes 
that land cover in urban environments is a linear combination of three components, namely, 
vegetation, impervious surface, and soil. Ridd believed that this model can be applied to 
spatial–temporal analyses of urban morphology, biophysical, and human systems. While 
urban land-use information may be more useful in socioeconomic and planning applica-
tions, biophysical information that can be directly derived from satellite data is more suit-
able for describing and quantifying urban structures and processes (Ridd 1995). The V-I-S 
model was actually developed for Salt Lake City, Utah, but has been tested in other cities 
(Ward, Phinn, and Murray 2000; Madhavan et al. 2001; Setiawan, Mathieu, and Thompson-
Fawcett 2006). All of these studies employed the V-I-S model as the conceptual framework 
to relate urban morphology to medium-resolution satellite imagery, but “hard classifica-
tion” algorithms were applied. Weng and Lu (2009) applied the V-I-S model for character-
izing urban landscapes and analyzing their dynamics in Indianapolis, Indiana between 
1991 and 2000. The technique of linear spectral mixture analysis (LSMA) was employed 
to extract landscape (V-I-S) components from Landsat images, which were further classi-
fied into urban thematic classes. Their results indicated that the reconciliation between the 
V-I-S model with LSMA for Landsat imagery was an effective approach for characterizing 
and quantifying the spatial and temporal changes of urban landscape compositions.
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20.3  Remote Sensing of Impervious Surfaces

Impervious surfaces are anthropogenic features through which water cannot infiltrate 
into the soil, such as roads, driveways, sidewalks, parking lots, and rooftops. In recent 
years, impervious surface area (ISA) has emerged not only as an indicator of the degree 
of urbanization but also as a major indicator of environmental quality (Arnold and 
Gibbons 1996). ISA is found to be inversely related to vegetation cover in urban areas. In 
other words, as impervious cover increases within a watershed or an administrative unit, 
vegetation cover decreases. The percentage of land covered by impervious surfaces varies 
significantly with land-use categories and subcategories (Soil Conservation Service 1975). 
Detecting, monitoring, and mapping impervious surfaces is valuable not only for envi-
ronmental management, for example, water quality assessment and storm water taxation, 
but also for urban planning, for example, building infrastructure and sustainable urban 
growth.

Many techniques have been applied to characterize and quantify impervious surfaces 
using either ground measurements or remotely sensed data. Field surveys with global 
positioning systems, although expensive and time-consuming, can provide reliable infor-
mation on impervious surfaces. Manual digitizing from hard-copy maps and remote 
sensing imagery (especially aerial photographs) have also been used for mapping imper-
viousness. This technique has become more heavily involved with automation methods 
such as scanning and the use of feature extraction algorithms in recent years. Various 
digital remote sensing approaches have been developed to measure impervious surfaces, 
including mainly multiple regression, subpixel classification, artificial neural network, and 
the classification and regression tree (CART) algorithm. The multiple regression approach 
relates percentage of ISA to remote sensing and/or geographic information system (GIS) 
variables (Chabaeva, Civco, and Prisloe 2004; Bauer et al. 2004). Subpixel classification 
divides an image pixel into fractional components, assuming that the spectrum measured 
by a remote sensor is a linear or nonlinear combination of the spectra of all components 
within the pixel (Ji and Jensen 1999; Wu and Murray 2003; Lu and Weng 2004, 2006; Weng, 
Hu, and Lu 2008; Weng, Hu, and Liu 2009). The artificial neural network approach applies 
advanced machine learning algorithms to derive impervious surface coverage (Flanagan 
and Civco 2001; Weng and Hu 2008; Hu and Weng 2009). The CART approach produces a 
rule-based model for prediction of continuous variables based on training data and yields 
the spatial estimates of subpixel percent imperviousness (Yang et al. 2003). Spectral mix-
ture analysis (SMA) as a subpixel classifier has been gaining great interest in the remote 
sensing community in recent years. As a physically based image analysis procedure, it 
supports repeatable and accurate extraction of quantitative subpixel information (Roberts 
et al. 1998). Because of its effectiveness in handling spectral mixture problems, LSMA 
has been widely used in estimating impervious surfaces (Ward, Phinn, and Murray 
2000; Madhavan et al. 2001; Phinn et al. 2002; Wu and Murray 2003; Lu and Weng 2006; 
Weng, Hu, and Lu 2008; Weng, Hu, and Liu 2009). Different methods of impervious sur-
face extraction based on the SMA model have been developed. For example, impervious 
surface may be extracted as one of the endmembers in the standard SMA model (Phinn 
et al. 2002). Impervious surface estimation can also be done by adding high-albedo and 
low-albedo fraction images, with both as the SMA endmembers (Weng, Hu, and Lu 2008). 
Moreover, a multiple endmember SMA method has been developed (Rashed et al. 2003), in 
which several impervious surface endmembers can be extracted and combined. However, 
these SMA-based methods have a common problem, that is, the impervious surface is 
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often overestimated in areas with a small amount of impervious surface, but is under-
estimated in areas with a large amount of impervious surface. The similarity in spectral 
properties among nonphotosynthetic vegetation, soil, and different kinds of impervious 
surface materials makes it difficult to distinguish impervious from pervious materials. In 
addition, shadows caused by tall buildings and large tree crowns in urban areas may lead 
to underestimation of ISA. Lu and Weng (2006) employed Landsat thermal infrared data 
to remove pervious cover from impervious cover based on their distinct thermal response. 
Weng, Hu, and Liu (2009) found that using LULC and land-surface temperature (LST) 
maps as image masks, the accuracy of impervious surface estimation can be significantly 
improved.

Previous research has largely used medium spatial resolution images such as Landsat 
Thematic Mapper (TM)/Enhanced Thematic Mapper+ (ETM+) and Terra’s Advanced 
Spaceborne Thermal Emission and Reflectance Radiometer (ASTER) images for extrac-
tion of impervious surfaces (Wu and Murray 2003; Yang et al. 2003; Lu and Weng 2006; 
Weng, Hu, and Liu 2009). However, both spatial and spectral resolution are regarded as 
too coarse for use in urban environments because of the heterogeneity and complexity of 
urban impervious surface materials. Urban areas may have substantially distinct types and 
amounts of impervious surfaces. Identifying one suitable endmember to represent all types 
of impervious surfaces is often found to be problematic. Lu and Weng (2004) suggested that 
three possible approaches may be taken to overcome these problems: (1) stratification, (2) 
use of multiple endmembers, and (3) use of hyperspectral imagery. In the SMA model, 
the maximum number of endmembers is directly proportional to the number of spectral 
bands used. The vastly increased dimensionality of a hyperspectral sensor may remove 
the sensor-related limit on the number of endmembers available. More significantly, the 
fact that the number of hyperspectral image channels far exceeds the likely number of 
endmembers for most applications readily permits the exclusion of any bands with low 
signal-to-noise ratios or with significant atmospheric absorption effects from the analysis 
(Lillesand, Kiefer, and Chipman 2004). Weng, Hu, and Lu (2008) found that the Hyperion 
image was more powerful in discerning low-albedo surface materials and that the improve-
ment mainly came from the additional bands in the mid-infrared spectrum.

High spatial resolution satellite images, such as IKONOS and QuickBird images, offer 
great potential for accurate urban mapping, but proper algorithms need to be developed 
and applied (Lu and Weng 2009; Tong, Liu, and Weng 2009). As the spatial resolution 
increases, the proportion of pure pixels most likely increases and mixed pixels decreases 
(Hsieh, Lee, and Chen 2001). Therefore, subpixel classifiers may not be appropriate. 
Moreover, traditional image classification methods are mostly based on the color and tone 
of the pixels. Other important information rich in high-resolution imagery, such as texture, 
shape, and context, are completely neglected (Sharma and Sarkar 1998). As a result, it is not 
suitable to employ traditional classifiers for feature extraction from high spatial resolution 
imagery. An important step with these high-resolution images is to separate dark ISAs 
and shadowed impervious surfaces from water and shadows cast by tree crowns. Lu and 
Weng (2009) demonstrated that a hybrid approach based on a decision tree classifier and 
an unsupervised ISODATA classifier can effectively extract impervious surfaces from 
IKONOS images, which provided significantly better results than the maximum likeli-
hood classifier.

In earlier studies, various image segmentation techniques were developed and applied 
for feature extraction with a fair amount of success (Mayer et al. 1997; Wei, Zhao, and 
Song 2004; Karimi and Liu 2004; Guo, Weeks, and Klee 2007; Cao and Jin 2007; Yun and 
Uchimura 2007). However, most of the segmentation techniques are not robust enough for 
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a spectrally complex environment (Pal and Pal 1993), which makes them less suitable for 
urban classification. Therefore, it is necessary to develop new techniques to tackle these 
problems. The object-based image analysis (GEOBIA) approach uses not only the spec-
tral properties but also characteristics such as shape, texture, context, relationship with 
neighbors, and super- and subpixels. Successful results have been obtained with this 
approach (Voorde et al. 2004). GEOBIA operates on objects that are composed of many 
pixels grouped by image segmentation (Shackelford and Davis 2003). GEOBIA has been 
developed and applied with varying degrees of success (Blaschke 2010). For example, Van 
Coillie, Verbeke, and De wulf (2007) developed a three-step object-based classification 
that included image segmentation, feature selection by generic algorithms, and joint neu-
ral network–based object classification. Zhou and Wang (2008) developed an algorithm 
of multiple agent segmentation and classification that included four steps: (1) image seg-
mentation, (2) shadow-effect, (3) multivariate analysis of variance (MANOVA)-based clas-
sification, and (4) postclassification. This algorithm was applied for impervious surface 
extraction in Rhode Island. In addition, rule-based classification is another method to clas-
sify image objects. However, traditional rule-based classification is based on strict binary 
rules. Objects are assigned to a class if the objects meet the rules of that class. These rules 
may not be suitable for classifying objects because the attributes of different features may 
overlap (Jin and Paswaters 2007). Fuzzy logic can better cope with the uncertainties inher-
ent in the data and vague in human knowledge (Jin and Paswaters 2007).

20.4  Remote Sensing of Urban Climate and Air Quality

Chapter 6 reviewed recent remote sensing literatures on urban LST and urban heat island 
(UHI) using thermal infrared data or a combined use of visible and infrared data. This sec-
tion briefly discusses some recent studies of urban air quality using remotely sensed and 
other geospatial data. Urban areas are associated with sources of a variety of air pollutants 
and regional pollution problems, such as acid rain and photochemical smog. Cities are also 
major contributors to global air pollution related to ozone depletion and carbon dioxide 
(CO2) warming. Within an urban area, the pollution level varies with the distance to pollu-
tion sources, including both stationary and mobile sources (e.g., vehicles). Local pollution 
patterns in cities are mainly related to the distribution of different LULC categories, occur-
rence of water bodies and parks, building and population densities, division of functional 
districts, layout of transportation network, and air flushing rates. It is well known that pol-
lution levels rise with land-use density, which tends to increase toward a city center (Marsh 
and Grossa 2002). Therefore, there is generally an urban–rural gradient in the concentra-
tions of air pollutants. For example, the concentrations of particulates, CO2, and nitrate ion 
(an oxide as in acid rain) in the inner city are typically two to three times higher than in 
suburban areas and five times higher than in rural areas (Marsh and Grossa 2002).

Furthermore, urban areas experience another type of pollution—heat pollution. Because 
of the construction of tall and closely spaced buildings, the flushing capability of the air at 
the ground level is largely reduced. Thermal variations within an urban area mainly relate 
to different LULC classes, surface materials, and air flushing rates (Marsh and Grossa 
2002). However, the relationship between air pollution and urban heat (and thus UHIs) is 
not fully understood, although both relate to the pattern of urban LULC. UHIs favor the 
development of air pollution problems, but are not an indicator of air pollution (Ward and 
Baleynaud 1999). Higher urban temperatures generally result in higher ozone levels due 
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to increased ground-level ozone production (DeWitt and Brennan 2001). Moreover, higher 
urban temperatures mean increased energy use, mostly due to a greater demand for air 
conditioning. As power plants burn more fossil fuels, the pollution level is driven up. A 
few studies have so far examined the correlation between LST and air pollution measure-
ments. Poli et al. (1994) investigated the relationship between satellite-derived apparent 
temperatures and daily sums of total suspended particulates (TSP) and sulfur dioxide 
(SO2) in the winter in five locations of Rome, Italy. They found that apparent temperatures 
had a strong negative correlation with TSP, but a weak correlation with SO2. Brivio et al. 
(1995) used three Advanced Very High Resolution Radiometer (AVHRR) images of Milan, 
Italy, acquired on February 12–14, 1993, to study the correlation of apparent temperatures 
with air quality parameters, including TSP and SO2. A weak correlation was found with 
both TSP and SO2, which could be explained by the large pixel size of the image. Ward 
and Baleynaud (1999) explored the correlation between Landsat TM band-6 digital counts 
and the concentrations of pollutants, including black particulates (BP), SO2, nitrogen diox-
ide (NO2), nitrogen monoxide (NO), and strong acidity (AF), in Nantes, France, based on 
the measurements of daily sums, individual measurements every 15 minutes, and daily 
mean values taken on May 22, 1992. Apparent temperatures were highly positively cor-
related with BP and moderately correlated with SO2 and daily means of NO2, NO, and AF, 
but weakly correlated with instantaneous measurements of NO2 and NO. Weng and Yang 
(2006) investigated the relationship of patterns of air pollution with patterns of urban land 
use and thermal landscape in Guangzhou, China, by using GIS analysis. Ambient air 
quality measurements for SO2 , nitrogen oxide, carbon monoxide, TSP, and dust level were 
obtained between 1981 and 2000. They found that the spatial patterns of air pollutants 
probed were positively correlated with urban built-up density, and with satellite-derived 
LST values, particularly with measurements taken during summer. These cited studies 
contribute to the literature by providing more evidence on the correlation between air 
pollution and urban thermal patterns.

20.5  Remote Sensing of Urban Vegetation

Various remote sensing techniques and methods have been developed and applied 
to monitoring, mapping, and modeling vegetation. Aerial photos are used to identify 
individual plants by crown shape and size, while photogrammetry techniques are used to 
measure tree height, crown diameter, and closure. At the advent of satellite multispectral 
remote sensing imagery, many efforts are being made to understand the spectral behav-
ior of leaves and the spectral response pattern of canopies. To measure the biomass and 
vegetative vigor, various vegetation indexes have been developed that are often grouped 
into slope-based (e.g., normalized difference vegetation index [NDVI]), distance-based 
(e.g., the perpendicular vegetation index), and those through orthogonal transformation 
techniques (e.g, the Kauth-Thomas tasseled cap transformation). However, most of the 
studies that utilize satellite multispectral imagery have been focused on nonurban veg-
etation at the regional or global scales due to their coarse spatial and spectral resolutions. 
The emergence of hyperspectral sensors (imaging spectrometers) alters this situation 
and provides an excellent opportunity to study urban vegetation. These instruments can 
acquire images in many very narrow, contiguous spectral bands throughout the visible, 
near-infrared, mid-infrared, and thermal-infrared portions of the spectrum and thus can 
give information on the diagnostic absorption and reflection characteristics of tree species 
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that are “lost” within the bands of conventional multispectral scanners (Goetz et al. 1985). 
Hyperspectral sensors have been applied to analyze the spectral properties of numerous 
plant biophysical parameters (e.g., leaf area index, crown closure, biomass, and net primary 
productivity) and biochemical parameters (e.g., plant pigments and nutrients) by statistical 
analysis or the physically based modeling approach (Pu et al. 2008). LSMA, a physically 
based modeling method, has recently been applied to estimate urban vegetation abun-
dance in several studies (Small 2001; Weng et al. 2004; Song 2005). High spatial resolution 
images (less than 5 m) from IKONOS and QuickBird were used to validate the results of 
estimation based on medium-resolution multispectral images (Small and Lu 2006; Nichol 
and Wong 2007). More recently, LiDAR data has been regarded as a critical data source in 
urban vegetation studies (Popescu, Wynne, and Nelson 2003; Secord and Zakhor 2007); 
it provides land-surface elevation information by emitting a laser pulse and providing 
high vertical and horizontal resolutions of less than 1 m. When combined with an object-
oriented method and hyperspectral imagery, LiDAR data shows great potential for identi-
fication of tree species (Voss and Sugumaran 2008).

In urban environmental studies, the relationship between LST and vegetation indices 
(e.g, NDVI) has been extensively documented (Weng 2009). The LST-vegetation index rela-
tionship has been used by Carlson, Gillies, and Perry (1994) to retrieve surface biophysical 
parameters, by Kustas et al. (2003) to extract subpixel thermal variations, and by Lambin 
and Ehrlich (1996) and Sobrino and Raissouni (2000) to analyze land-cover dynamics. 
Many studies observed a negative relationship between LST and vegetation indices. This 
finding has stimulated research in two major directions, namely, statistical analysis of the 
LST-vegetation abundance relationship (e.g., Weng et al. 2004) and the thermal vegetation 
index approach, which is a multispectral method of combining LST and a vegetation index 
in a scatter plot to observe their associations (Quattrochi and Ridd 1994). Another inter-
esting relationship among urban biophysical variables is found between vegetation vigor 
and LST. Weng, Hu, and Liu (2009) found that vegetation phenology had a fundamen-
tal impact on impervious surface estimation when linear spectral unmixing technique 
was employed. Plant phenology can cause changes in the variance partitioning and thus 
affect the mixing space characterization, leading to a less accurate estimation of impervi-
ous surfaces. Yuan and Bauer (2007) made a correlation analysis between ISA and NDVI 
and suggested that ISA showed a higher stability and a lower seasonal variability; they 
recommended it as a complementary measure to NDVI in UHI studies. Xian Carne (2006) 
suggested that the combined use of ISA, NDVI, and LST can explain temporal thermal 
dynamics across the cities.

20.6 � Improved Sensors and Algorithms Integral to Urban 
Remote Sensing

20.6.1 U ltra High-Resolution Satellite Imagery and LiDAR Data

With the recent advent of very HRSI, such as IKONOS (launched in 1999), QuickBird (2001), 
and OrbView (2003) images, great efforts have been made in the applications of these 
remote sensing images in urban and environmental studies. HRSIs have been widely 
applied in urban land-cover mapping (Thomas, Hendrix, and Congalton 2003; Warner and 
Steinmaus 2005; Im, Jensen, and Hodgson 2008; Wulder et al. 2008; Lu and Weng 2009), 
3D shoreline extraction and coastal mapping (Di, Ma, and Li 2003; Ma, Di, and Li 2003), 
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earthquake damage assessment (Al-Khudhairy, Caravaggi, and Glada 2005; Miura and 
Midorikawa 2006), digital terrain modeling and digital elevation model (DEM) generation 
(Toutin 2004a, b), 3D object reconstruction (Tao and Hu 2002), and topographic mapping 
and change detection (Birk et al. 2003; Holland, Boyd, and Marshall 2006). Many GIS data-
bases also use high-accuracy geopositioning HRSI images as the base maps, providing 
both metric and thematic information.

These fine spatial resolution images contain rich spatial information, providing a greater 
potential to extract much more detailed thematic information (e.g., LULC, impervious sur-
face, and vegetation), cartographic features (e.g., buildings and roads), and metric informa-
tion with stereoimages (e.g., height and area), which are ready to be used in GIS. However, 
some new problems come with the HRSI image data, notably shades caused by topography, 
tall buildings, or trees, and high spectral variation within the same land-cover class. The 
shade problem increases the difficulty to extract both thematic and cartographic informa-
tion. The shade problem and high spectral variation are common with the high degree of 
spectral heterogeneity in complex landscapes, such as in urban areas (Lu and Weng 2009). 
These disadvantages may lower image classification accuracy if the classifiers used cannot 
effectively handle them (Irons et al. 1985; Cushnie 1987). In addition, the huge amount of 
data storage and the computer display of HRSI images can also affect image processing in 
general and the selection of classification algorithms in particular.

With respect to the extraction of cartographic features, HRSI image data provide a great 
possibility to achieve the effectiveness and efficiency of extraction through automated extrac-
tion methods. But the issues of shade and image distortion can affect the resultant accuracy 
to a certain degree. LiDAR data, which provides land-surface elevation information by emit-
ting a laser pulse and providing high vertical and horizontal resolutions of less than 1 m, 
has been increasingly used in many geospatial applications due to its high data resolution, 
short time consumption, and low cost. Unlike other remotely sensed data, LiDAR data focus 
solely on geometry rather than radiometry. Some typical products derived include DEM, 
the surface elevation model, triangulated irregular network, and intermediate return infor-
mation. As a result, feature classification and extraction based on LiDAR data are widely 
performed (Filin 2004; Forlani et al. 2006; Clode et al. 2007; Lee, Lee, and Lee 2008).

LiDAR data show great potential for building and road extraction because elevation 
data can be derived quickly and at a high resolution in comparison to photogrammetric 
techniques (Miliaresis and Kokkas 2007). The DEM and associated products and LiDAR-
derived cartographic information have become an important GIS data source in recent 
years. It should also be noted that many researchers have used LiDAR in conjunction with 
optical remote sensing and GIS data in urban, environment, and resource studies. These 
new data sources also require a processing functionality that is not currently standard 
in many systems (Poulter 1995). Techniques for information or pattern extraction from 
such remote sensing data sets and data analysis need to be developed, for example, self-
organizing neural networks, integrated spatial and temporal representation and analysis, 
and data mining (Wilkinson 1996).

20.6.2 E nhanced and New Image Analysis Algorithms

20.6.2.1  Knowledge-Based Expert Systems

This approach is now increasingly becoming attractive due to its ability to accommodate 
multiple sources of data, such as satellite imagery and GIS data. GIS plays an important role 
in developing knowledge-based classification approaches, because of its ability to manage 
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different sources of data and spatial modeling. As different kinds of ancillary data, such as 
DEM, soil map, housing and population density, road network, temperature, and precipita-
tion, become readily available, they may be incorporated into a classification procedure in 
different ways. One approach is to develop knowledge-based classifications based on the 
experts’ knowledge of the spatial distribution pattern of land-cover classes and selected 
ancillary data. For example, elevation, slope, and aspect are related to vegetation distribu-
tion in mountainous regions. Data on terrain features are thus useful for separation of 
vegetation classes. Population, housing, and road densities are related to urban land-use 
distribution and may be very helpful in the distinctions between commercial or industrial 
lands and high-intensity residential lands, between recreational grassland and pasture or 
crops, or between residential areas and forest land (Lu and Weng 2006). Similarly, tem-
perature, precipitation, and soil-type data are related to land-cover distribution at a large 
scale. Effective use of these relationships in a classification procedure has proven to be 
very helpful in improving classification accuracy. Expert systems are considered to have 
great potential for providing a general approach to the routine use of image ancillary data 
in image classification (Hinton 1996). A critical step is to develop rules that can be used in 
an expert system or a knowledge-based classification approach. Three methods have been 
employed to build rules for image classification: (1) explicitly eliciting knowledge and rules 
from experts and then refining the rules (Stefanov, Ramsey, and Christensen 2001; Hung 
and Ridd 2002; Stow et al. 2003), (2) implicitly extracting variables and rules using cognitive 
methods (Hodgson 1998; Lloyd, Hodgson, and Stokes 2002), and (3) empirically generat-
ing rules from observed data with automatic induction methods (Huang and Jensen 1997; 
Hodgson et al. 2003; Tullis and Jensen 2003).

20.6.2.2  Artificial Neural Network

Artificial neural network (ANN) has been increasingly applied in recent years. The neu-
ral network has several advantages, including a nonparametric nature, arbitrary decision 
boundary capability, ability to adapt to different types of data and input structures, fuzzy 
output values, and generalization for use with multiple images (Paola and Schowengerdt 
1995). The fact that ANN behaves like general pattern recognition systems and assumes 
no prior statistical model for the input data makes it an excellent technique for integrating 
remote sensing and GIS data. Although many neural network models have been devel-
oped, the multilayer perceptron (MLP) feed-forward neural network is most frequently 
used (Kavzoglu and Mather 2003). MLP has been applied in LULC classifications (Foody 
et al. 1997; Zhang and Foody 2001; Kavzoglu and Mather 2003), impervious surface esti-
mation (Weng and Hu 2008), and change detection (Li and Yeh 2002). Other applications 
include water properties estimation (Schiller and Doerffer 1999; Zhang et al. 2002; Corsini 
et al. 2003), forest structure mapping (Ingram, Dawson, and Whittaker 2005), understory 
bamboo mapping (Linderman et al. 2004), cloud detection (Jae-Dong et al. 2006), and mean 
monthly ozone prediction (Chattopadhyay and Bandyopadhyay 2007). Although MLP has 
been widely applied, some drawbacks have been raised by previous research. For instance, 
how to design the number of hidden layers and the number of hidden layer nodes in the 
model are still challenges. Another issue is that MLP requires training sites to include both 
presence and absence data. The desired output must contain both true and false infor-
mation, so that the network can learn all kinds of patterns for a study area in order to 
classify accordingly (Li and Eastman 2006). However, in some cases, absence data is not 
always readily available. Finally, MLP has the local minima problem in the training pro-
cess, which may significantly affect the accuracy of the result.
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Another neural network approach, Kohonen’s self-organizing map (SOM), has not been 
applied as widely as MLP (Pal, Laha, and Das 2005). SOM can be used for both super-
vised and unsupervised classifications and has the properties for both vector quantization 
and projection (Li and Eastman 2006). SOM has been used for both “hard” classification 
and “soft” classification in previous studies. Ji (2000) compared a Kohonen self-organizing 
feature map and MLP for image classification at the per-pixel level. Seven classes were 
identified, and the results showed that SOM provided an excellent alternative to the MLP 
neural network in “hard” classification. Lee and Lathrop (2006) conducted a SOM-LVQ-
GMM to extract urban land cover from Landsat ETM+ imagery at the subpixel level. They 
found that SOM can generate promising results in “soft” classification and that SOM had 
several advantages over MLP. Hu and Weng (2009) compared the two neural networks to 
three ASTER images of Marion County, Indiana, and found that SOM outperformed MLP 
slightly for every season of image data, especially in the residential areas.

20.6.2.3  Object-Based Image Analysis

The object-oriented concept was first introduced to the GIS community in the late 1980s 
(Egenhofer and Frank 1992), and since then, especially after the 1990s, a great deal of 
research has been conducted with the object-oriented approach (Bian 2007). In remote 
sensing, image segmentation, which is usually applied before image classification, has 
a longer history and has its roots in industrial image processing, but had not been used 
extensively in the geospatial community in the 1980s and 1990s (Blaschke 2010). Object-
oriented image analysis has been increasingly used in remote sensing applications due to 
the advent of HRSI data and the emergence of commercial software such as eCognition 
(Benz et al. 2004; Wang et al. 2004). Image segmentation merges pixels into objects, and 
a classification is then implemented based on objects, instead of individual pixels. In the 
process of creating objects, a scale determines the occurrence or absence of an object class, 
and the size of an object affects the classification result. This approach has proven to be 
able to provide better classification results than per-pixel-based classification approaches, 
especially for fine spatial resolution data. Object-oriented image analysis holds great 
potential in the development of a fully integrated GIS (Ehlers 2007). Two key difficulties 
lie in (1) algorithms for smoothing and thinning to produce acceptable vectors, and (2) the 
automated assignment of attributes to vectors, points, nodes, and so on (Faust, Anderson, 
and Star 1991).

20.6.2.4  Data Mining

Data mining is a field that has been developed by encompassing principles and techniques 
from statistics, machine learning, pattern recognition, numeric search, and scientific visu-
alization to accommodate new data types and data volumes being generated (Miller and 
Han 2001). The tasks of data mining vary, but the premise, to discover unknown infor-
mation from large databases, remains the same. In short, data mining can be defined as 
analysis of (often large) observational data sets to find unsuspected relationships and to 
summarize the data in novel ways that are both understandable and useful to the data 
owners (Hand, Mannila, and Smyth 2001). Over the last few years, the techniques of data 
mining have been pushed by three major technological factors that have advanced in par-
allel. First, the growth in the amount of data has led to the development of mass storage 
devices. Second, the problem of accessing this information has led to the development of 
advanced and improved processors. Third, the need for automating the tasks involved 
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in data retrieval and processing led to advancements in statistic and machine learning 
algorithms. Data mining tasks can be broadly classified into five categories based on their 
tasks, that is, (1) segmentation, (2) dependency analysis, (3) outlier analysis, (4) trend detec-
tion, and (5) characterization. In order to do these tasks, various techniques, such as cluster 
analysis, neural networks, genetic algorithms, Bayesian networks, decision trees, and so 
on are applied. Some of these techniques are also good at executing more than one task 
and have their own advantages and disadvantages (Rajasekar, Bijker, and Stein 2007). Data 
mining techniques have been successfully applied to the combined data sets of GIS and 
remote sensing (Mennis and Liu 2005; Mennis 2006; Rajasekar and Weng 2009a,b) and may 
be a good approach for the processing and analysis of HRSI or other image data of high 
volume.

20.6.2.5  Data Fusion

Images from different sensors contain distinctive features. Data fusion or integration of 
multisensor or multiresolution data takes advantage of the strengths of distinct image data 
for improving visual interpretation and quantitative analysis. In general, three levels of 
data fusion can be identified (Gong 1994): (1) pixel (Luo and Kay 1989), (2) feature (Jimenez, 
Morales-Morell, and Creus 1999), and (3) decision (Benediktsson and Kanellopoulos 1999). 
Data fusion involves two merging procedures: (1) geometric coregistration of two data sets 
and (2) mixture of spectral and spatial information contents to generate a new data set 
that contains enhanced information from both data sets. Accurate registration between 
the two data sets is extremely important for precisely extracting the information contents 
from both data sets, especially for line features, such as roads and rivers. Radiometric and 
atmospheric calibrations are also needed before multisensor data are merged.

Many methods have been developed to fuse spectral and spatial information in previ-
ous studies (Gong 1994; Pohl and Van Genderen 1998; Chen and Stow 2003; Lu and Weng 
2005). Solberg, Taxt, and Jain (1996) broadly divided data fusion methods into four catego-
ries: (1) statistical, (2) fuzzy logic, (3) evidential reasoning, and (4) neural network. Dai and 
Khorram (1998) presented a hierarchical data fusion system for vegetation classification. 
Pohl and Van Genderen (1998) provided a literature review on the methods of multisensor 
data fusion. The methods, including color-related techniques (e.g., color composite, inten-
sity–hue–saturation [IHS], and luminance-chrominance), statistical/numerical methods 
(e.g., arithmetic combination, principal component analysis, high-pass filtering, regres-
sion variable substitution, canonical variable substitution, component substitution, and 
wavelets), and various combinations of the above methods were examined. IHS transfor-
mation was identified as the most frequently used method for improving the visual dis-
play of multisensor data (Welch and Ehlers 1987), but the IHS approach can only employ 
three image bands, and the resultant image may not be suitable for further quantitative 
analysis such as image classification. Principal component analysis is often used for data 
fusion because it can produce an output that can better preserve the spectral integrity of 
the input data set. In recent years, wavelet-merging techniques have also shown to be an 
effective approach to enhance spectral and spatial information contents (Li, Kwok, and 
Wang 2002; Simone et al. 2002; Ulfarsson, Benediktsson, and Sveinsson 2003). Previous 
research works indicated that integration of Landsat TM and radar (Ban 2003; Haack 
et al. 2002), SPOT HRV and Landsat TM (Welch and Ehlers 1987; Munechika et al. 1993; 
Yocky 1996), and SPOT multispectral and panchromatic bands (Garguet-Duport et al. 1996; 
Shaban and Dikshit 2001) can improve classification results. An alternative integrated use 
of multiresolution images, such as Landsat TM or SPOT and Moderate Resolution Imaging 
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Spectroradiometer (MODIS) or AVHRR, is to refine the estimation of LULC types from 
coarse spatial resolution data (Moody 1998; Price 2003).

20.6.2.6  Hyperspectral Imaging

The spectral characteristics of land surfaces are the fundamental principles for land-
cover classification using remotely sensed data. The spectral features include the num-
ber of spectral bands, spectral coverage, and spectral resolution (or bandwidth). The 
number of spectral bands used for image classification can range from a limited num-
ber of multispectral bands (e.g., four bands in SPOT data and seven for Landsat TM) 
to a medium number of multispectral bands (e.g., ASTER with 14 bands and MODIS 
with 36 bands) and to hyperspectral data (e.g., Airborne Visible/Infrared Imaging 
Spectrometer and EO-1 Hyperion images with 224 bands). The large number of spec-
tral bands provides the potential to derive detailed information on the nature and 
properties of different surface materials on the ground, but it also means difficulty 
in image processing and a large data redundancy due to high correlation among the 
adjacent bands. High-dimension data also require a larger number of training samples 
for image classification. Increase of spectral bands may improve classification accu-
racy, but only when those bands are useful in discriminating the classes (Thenkabail, 
Enclona et al. 2004a). In previous research, hyperspectral data have been successfully 
used for LULC classification (Benediktsson, Sveinsson, and Arnason 1995; Hoffbeck 
and Landgrebe 1996; Platt and Goetz 2004; Thenkabail, Enclona, et al. 2000a,b) and 
vegetation mapping (McGwire, Minor, and Fenstermaker 2000; Schmidt et al. 2004). As 
spaceborne hyperspectral data such as EO-1 Hyperion become available, research and 
applications with hyperspectral data will increase. Weng, Hu, and Lu (2008) found 
that a Hyperion image was more powerful in discerning low-albedo surface materi-
als, which has been a major obstacle for impervious surface estimation with medium-
resolution multispectral images. A sensitivity analysis of the mapping of impervious 
surfaces using different scenarios of the Hyperion band combinations suggested that 
the improvement of mapping accuracy in general and the better ability in discriminat-
ing low-albedo surfaces mainly came from additional bands in the mid-infrared region 
(Weng, Hu, and Lu 2008).

20.7  Conclusions

The majority of previous remote sensing studies of urban biophysical environment have 
used medium-spatial resolution (10–100 m) images. The concepts and image analysis algo-
rithms in urban remote sensing have been developed based on the images of such reso-
lutions. The advent of high spatial resolution satellite images (especially those with less 
than 5-m resolution), spaceborne hyperspectral images, and LiDAR data has provided an 
unprecedented opportunity for urban remote sensing, and in the meantime, is challeng-
ing the traditional remote sensing concepts, models, and image processing algorithms. 
The desire to take advantage of the opportunity to combine ever-increasing computa-
tional power, modern telecommunications technologies, more plentiful and capable digital 
data, and more advanced algorithms has driven the field of urban remote sensing into a 
new frontier of scientific inquiry. Various emerging trends in image processing and data 
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analysis will advance urban remote sensing, including attribute analysis or classification of 
remote sensing data by more powerful ANN models and knowledge-based expert systems, 
object-based image analysis, object search by data mining techniques, and enhanced 
environmental mapping via data fusion of different sensors and hyperspectral imaging.
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21
Development of the USGS National Land-
Cover Database over Two Decades

George Xian, Collin Homer, and Limin Yang

21.1  Introduction

Land-cover composition and change have profound impacts on terrestrial ecosystems. 
Land-cover and land-use (LCLU) conditions and their changes can affect social and physi-
cal environments by altering ecosystem conditions and services. Information about LCLU 
change is often used to produce landscape-based metrics and evaluate landscape condi-
tions to monitor LCLU status and trends over a specific time interval (Loveland et al. 2002; 
Coppin et al. 2004; Lunetta et al. 2006). Continuous, accurate, and up-to-date land-cover 
data are important for natural resource and ecosystem management and are needed to 
support consistent monitoring of landscape attributes over time. Large-area land-cover 
information at regional, national, and global scales is critical for monitoring landscape 
variations over large areas.
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Previous studies have demonstrated that LCLU activities have significant impacts on 
biophysical conditions such as soil moisture availability (Li et al. 2000), length of growing 
season (White et al. 2002), and local and regional climate conditions including temperature, 
precipitation, and severe storm frequency (Pielke 2001; Stone and Weaver 2003; Marshall, 
Pielke, and Steyaert 2003; Changnon 2003; Rozoff, Cotton, and Adegoke 2003; Georgescu et al. 
2009). Understanding the impacts of landscape change on ecosystems requires both better 
observations and more comprehensive modeling studies (Xian and Crane 2005; Findell et al. 
2007; Ge et al. 2007). Contemporary, accurate, and consistently repeatable land-cover charac-
terizations such as land-cover classifications and continuous field predictions (e.g., impervi-
ous surface and tree canopy [TC] cover) are important for global change studies (DeFries, 
Field, and Fung 1995; Seneviratne et al. 2006; Seto and Shepherd 2009). However, at regional 
or national scales, such efforts face a number of challenges, including the timely acquisition 
of data, the high cost of creating national products, and the development of appropriate ana-
lytical techniques to successfully evaluate the current conditions and associated changes.

The National Land-Cover Database (NLCD) encompasses three major successful data 
releases to date. These include a 1992 conterminous U.S. land-cover data set with one the-
matic layer of land cover (NLCD 1992), an updated U.S. 50-state and Puerto Rico land-
cover database with three thematic layers including land cover, percent imperviousness, 
and percent TC (NLCD 2001), and an NLCD 1992–2001 retrofit land cover change product 
that was specially designed to identify land-cover changes between the two data sets (i.e., 
NLCD 1992 and 2001). All NLCD products have been developed under the auspices of the 
Multiresolution Land Characteristics Consortium (MRLC; Loveland and Shaw 1996; Homer 
et al. 2004). MRLC was originally formed in early 1990 and consisted of several U.S. fed-
eral agencies, including the U.S. Geological Survey (USGS), U.S. Environmental Protection 
Agency (EPA), National Oceanic and Atmospheric Administration (NOAA), and U. S. 
Forest Service (USFS; Loveland and Shaw 1996). Under the coordination of MRLC 1990, 
National Land Cover Data 1992 (NLCD 1992) was developed (Vogelmann et al. 2001).

In 1999, the MRLC initiated an expansion that resulted in six new agencies joining the 
consortium: National Aeronautics and Space Administration (NASA), National Park Service, 
Natural Resources Conservation Service, Bureau of Land Management, U.S. Fish and Wildlife 
Service, and the Office of Surface Mining. This expansion enabled the creation of a more com-
prehensive land-cover database for the nation, encompassing all 50 states and Puerto Rico 
(Homer et al. 2004). NLCD 2001 was produced as a three-product suite including products 
that identified 1 of 16 classes of land cover, the percent urban impervious surface, and the 
percent TC for every 30-m cell for all 50 states (Homer et al. 2007). The primary data used to 
create NLCD 2001 included data from both Landsat Thematic Mapper (TM) and Enhanced 
Thematic Mapper (ETM+) in circa 2001. An NLCD 1992 and 2001 land-cover change product 
was also produced to offer users direct land-cover change analysis for the 9 years between 
NLCD 2001 (nominal year 2001) and NLCD 1992 (nominal year 1992). This product was devel-
oped to provide more accurate and useful land-cover change data than would be possible by 
direct comparison of NLCD 1992 and NLCD 2001 (Fry et al. 2009). The successful completion 
of these large-area land-cover characterization activities is attributable primarily to improved 
algorithms available for land-cover characterization and the availability of high-quality 
remote sensing and geospatial data sets. Currently, a new update of NLCD 2001 to circa 2006 
is under production to provide 5-year land-cover change information for the nation.

The primary goal of this chapter is to briefly summarize the methods used and experi-
ences learned from the activities of NLCD development. We also illustrate the merits of 
the new framework for developing NLCD 2011, which is planned to be accomplished by 
2016 for the nation.
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21.2  Development of NLCD 1992 and NLCD 2001

21.2.1  Development of NLCD 1992

In early 1990, several federal agencies recognized the need for national land-cover data of 
medium spatial resolution to support their environmental and natural resource manage-
ment programs. MRLC was convened to pool resources for the purchase and processing of 
Landsat data for the conterminous United States to U.S. federal agencies in a standard pro-
cessed format. These data included leaf-on and leaf-off seasonal Landsat 5 imagery mosa-
ics for the nation and were used to develop a seamless national land-cover product for 
the conterminous United States. In addition to Landsat 5 imagery, other ancillary geospa-
tial data were compiled to support land-cover mapping, including USGS Digital Terrain 
Elevation Data and its derivatives (slope, aspect, and shaded relief), U.S. Census Bureau 
population density data, USGS land use data analysis of 1970s, the National Wetlands 
Inventory (NWI) data, and the USDA State Soil Geographic (STATSGO) Database.

The land-cover classification scheme designed for NLCD 1992 was a modified Anderson 
LCLU classification system with 21 classes (Anderson et al. 1976). Land cover was classified 
by each of the 10 federal regions using either an unsupervised or supervised classifica-
tion method (Vogelmann et al. 2001). For the unsupervised method, a k-mean clustering 
algorithm was applied to either a leaf-on or leaf-off Landsat image to generate spectral 
clusters, with clusters labeled subsequently by interpreters. In many cases, ancillary data 
(e.g., census, slope, aspect, and elevation) were used to resolve spectral confusion, so that 
each Landsat TM pixel could be labeled as one of the 21 land-cover classes. A supervised 
approach using a classification tree algorithm was used at the later stage of the project. 
Details of the mapping procedures used for NLCD 1992 can be found in Vogelmann, Sohl, 
and Howard (1998) and Vogelmann et al. (2001). Figure 21.1 presents land-cover maps from 
NLCD 1992 of the southeastern part of the Seattle, Washington, and Sioux Falls, South 
Dakota areas, displaying mostly forest in the Seattle area and urban and agricultural 
classes in the Sioux Falls area.

Following the completion of the land-cover mapping, an accuracy assessment was con-
ducted using a procedure based on a statistical sampling design. The sampling incor-
porated three layers of stratification and a two-stage cluster sampling protocol (Stehman 
et al. 2003). Each mapping region constituted a stratum and was sampled independently. 
The reference data used for assessing land-cover data quality were the aerial photographs 
acquired by the National Aerial Photography Program in 1990 (Zhu et al. 2001). The overall 
agreement between the reference data and the mapped land-cover type for the regions 
ranges from 38% to 70% for full legend (21 classes) and from 70% to 85% for aggregated 
legend (7 classes), which resembles the Anderson level I classification scheme (Yang et al. 
2001; Stehman et al. 2003; Wickham et al. 2004).

The production of NLCD 1992 represented the first ever medium-resolution consistent 
land cover produced for the conterminous United States. This effort identified many tech-
nological and data constraints and revealed areas that still needed improvement for a new 
effort. First, better stratification of the spatial mapping units was needed to further opti-
mize land-cover mapping. Second, a more complete data stream was required that encom-
passed three dates of Landsat imagery and comprehensive ancillary data sets. Third, new 
classification algorithms were needed to successfully mine this expanded data stream. 
Fourth, the products themselves needed to be represented as multiple database layers 
rather than a single product.
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21.2.2  Development of NLCD 2001

NLCD 2001 was designed to incorporate many of the lessons learned from NLCD 1992 
production, as well as target new MRLC 2001 member requirements. NLCD 2001 is a 
multiattribute, multisource database that includes a suite of data layers (30-m resolution) 
intended for many applications at both national and local scales. NLCD 2001 followed a 
database approach that moved beyond the traditional remote sensing classification of land 
cover, which focuses on a single-legend classification system and a single land-cover layer 
that meet only specific requirements. Traditional land-cover products, while useful, had 
often been developed according to the specific project needs and did not meet general 
application requirements or allow crosswalk to other land-cover schemes for broader user 
applications. The local product focus had restricted the broad development of remote sens-
ing data sets, especially for nationwide implementations. The NLCD 2001 was designed 
as a database approach and consisted of a suite of three products: land cover based on the 
Anderson level II classification scheme, percent impervious surface, and percent TC char-
acterized for each 30-m cell for the nation.

Seattle, Washington

Sioux Falls, South Dakota

0 250 500 1,000

N

km

Land-cover class
Open water
Low-int, resident
High-int, resident
Comm/indust/trans
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Quarry/strip mine
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Deciduous forest
Evergreen forest

Mixed forest
Shrub
Grass
Pasture
Row crop
Small grains
Woody wetland
Herb. wetland

Figure 21.1
(See color insert following page 426.) NLCD1992 land cover for the Seattle, Washington and Sioux Falls, South 
Dakota areas.
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The NLCD 2001 adopted several innovative approaches to develop the database. 
Ecologically based mapping zone delineation was used to define NLCD 2001 mapping 
regions that are relatively homogeneous with distinct ecological features. Six factors were 
considered in defining these mapping zones: physiography, LCLU characteristics, spectral 
feature uniformity, edge-matching feasibility among mapping zones, the size of each map-
ping zone, and the number of Landsat images required to make a mosaic (Homer et al. 
2004). A total of 66 mapping zones were identified in the conterminous United States.

A vegetation phenology–based Landsat scene selection strategy was implemented in 
order to establish the image base that was best suitable for land-cover characterization. 
Landsat image selection was based on knowledge of the LCLU features and the phenol-
ogy of vegetation within each mapping zone. For each mapping zone, a preferred image 
acquisition time window was identified based on the maximum separation of the major 
land-cover types using Advanced Very High Resolution Radiometer (AVHRR) normalized 
differential vegetation index (NDVI) time-series data. Following the identification of the 
target dates, three Landsat scenes for each path and row were selected as consistent remote 
sensing data sources for land-cover mapping in each mapping zone.

In order to ensure that the combination of three dates of imagery for each path and 
row was effective, a consistent satellite image preprocessing strategy was used to pro-
duce good-quality data for multiscene mosaics, spectral transformations, and information 
extraction. The image preprocessing follows a standard procedure to ensure the consis-
tency of image data used in land-cover mapping. Specifically, preprocessing steps include 
radiometric and geometric calibration, orthorectification of the images through terrain 
correction with improved accuracy of ground control points and digital elevation model 
(DEM) data, conversion of digital number (DN) to at-sensor reflectance and radiant tem-
perature, and a tasseled cap transformation of the original spectral bands into greenness, 
brightness, and wetness components using a new set of transformation coefficients based 
on Landsat ETM+ at-satellite reflectance (Huang et al. 2002).

Consistent and efficient classification methods were also implemented for the NLCD 
2001. To improve the consistency and efficiency of the classification process, a data min-
ing technique of using a classification and regression tree (CART) was adopted to develop 
NLCD 2001. For land-cover mapping, a classification tree algorithm was chosen for the 
land-cover classification. A classification tree is a nonparametric statistical approach that 
does not require the normality of input variables and can handle both categorical and 
continuous data. The algorithm provides a robust and efficient way to extract information 
from a large quantity of satellite and ancillary data by creating classification rules that can 
be readily interpreted and applied spatially. Additional algorithms chosen for NLCD 2001 
also included regression models to calculate percent impervious surface area (ISA) and 
TC estimates. The decision tree model develops a sequence of classification trees, in which 
each subsequent tree attempts to reduce the misclassification errors resulting from the 
previous one. The algorithm also provided a cross-validation procedure for conducting 
training and rule-based modeling to ensure better quality assurance while products were 
being produced. To quantify percentages of urban impervious surfaces and TC at Landsat 
subpixel level, a regression tree algorithm was utilized. This algorithm generalizes a set 
of rules based on training data to predict percent imperviousness or TC density for each 
pixel of an image. Essentially, the algorithm establishes a statistical relationship between 
known imperviousness (or TC density) at a location and the corresponding Landsat spec-
tral reflectance. The regression tree model then uses a sequence of multivariate linear 
equations to calculate the percent impervious surface in urban areas and the percent TC 
in forest lands.
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Extensive and high-quality training data were collected for the use of CART in NLCD 
2001. The success of land-cover characterization using CART relies greatly on the avail-
ability of abundant high-quality training data. A major effort was devoted to the collection 
of training data for land-cover classification and imperviousness and TC density estimates. 
For land-cover classification, the training data were compiled from several data sources 
through collaborations with MRLC members and state and local organizations. Sources of 
training data included NLCD field collections, MRLC partner programs, such as forest plot 
data collected by the USDA Forest Service’s Forest Inventory and Analysis (FIA) program, 
information from state and local organizations, and other miscellaneous sources. For mod-
eling imperviousness and TC density, a set of high spatial resolution training data was 
developed on imagery from the USGS Digital Ortho-Quads and satellite-based IKONOS 
imagery provided by NASA’s Science Data Purchase Program (Yang et al. 2003). Typically 
six to eight small representative urban and forest areas were classified on these high-reso-
lution sources for subsequent training of the regression tree models.

NLCD 2001 products for all 50 states and Puerto Rico were delivered in 2008. Figure 21.2 
shows NLCD 2001 land cover (Figure 21.2a) and TC (Figure 21.2b) in the Seattle area, and 
land cover (Figure 21.2c) and impervious surface (Figure 21.2d) in the Sioux Falls area. 
The displayed extents in Figure 21.2 are the same as in Figure 21.1. In the NLCD 1992, the 
vegetated land in the Sioux Falls airport was incorrectly classified as small grains. In the 
NLCD 2001, this part of land was corrected as developed, open space. The roads missed in 
the NLCD 1992 for the Seattle area were added in the 2001 product. The NLCD 2001 prod-
ucts provide more detail and close-to-true land-cover data in these regions.

Among the 16 classes of land cover over the conterminous United States, shrub and 
scrub is the most common class, occupying 21.03% of the total area (Homer et al. 2007). 
The second largest class is cultivated crops, at 15.67% of the total area. For TC, cells repre-
senting canopy density from 91% to 100% represent the largest proportion (16.36% of the 
total area), and canopy groupings from 1% to 10% represent the smallest proportion (1.96% 
of the total area). The total area of TC is approximately 2,691,988 square kilometers. For 
impervious cells, groupings from 1% to 10% represent the largest proportion (47.13% of the 
total area; likely due to the large number of tertiary roads outside the urban areas), and 
groupings from 91% to 100% represent the smallest proportion (1.49% of the total area). The 
total spatial extent of impervious surface is approximately 457,059 square kilometers.

An accuracy assessment of NLCD 2001 (conterminous United States) was conducted 
using a similar sampling procedure, reference data collection, and analysis protocol that 
were implemented for the NLCD 1992 accuracy assessment. The sampling design was a 
two-stage cluster sample with three levels of stratification. Ten mapping regions within the 
conterminous United States were sampled and evaluated independently. Nationwide over-
all accuracies of NLCD 2001 were 78.5% (Anderson level I) and 85% (modified Anderson 
level II), respectively, as compared with the overall accuracies of the NLCD 1992 of 58% 
and 80% (level II). The overall accuracy for 10 geographic regions of the United States 
ranges from 68% to 86% at level II and from 79% to 91% at the Anderson level I classifica-
tion scheme (Wickham et al. 2010). The assessment for percent impervious surface and 
tree cover estimates was also conducted for the conterminous United States (Greenfield, 
Nowak, and Walton 2009). The NLCD mapping zones were aggregated into five large 
regions. Four mapping zones from each of five regions were randomly selected. Within 
each of the mapping zones, 200 random points were placed in each selected geographic 
zone for photo interpretation. Overall, NLCD 2001 underestimated the tree cover when 
compared with the photo interpretation method by a mean of 9.7%, and it underestimated 
the impervious surface cover by a mean of 5.1%.
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21.2.3  Development of the NLCD 1992–2001 Land-Cover Change Retrofit Product

The NLCD 1992–2001 land-cover change retrofit product was developed to provide more 
accurate and useful land-cover change data than would be possible by the direct compari-
son of NLCD 1992 and NLCD 2001. Substantial differences in imagery, legends, and meth-
ods between these two land-cover products needed to be overcome in order to support 
comparison. For the change analysis method to meet the requirements of both the national 
spatial scale and the nearly decadal temporal range, implementation of the NLCD 1992–
2001 land-cover products required production across many Landsat TM and ETM+ path 
and rows simultaneously. To meet these requirements, a hybrid change analysis process 
was developed to incorporate both postclassification comparison and specialized ratio-
differencing change analysis techniques (Fry et al. 2009).

At a resolution of 30 m, the completed NLCD 1992–2001 land-cover change retrofit prod-
uct contains unchanged pixels from the NLCD 2001 land-cover data set that have been 
crosswalked to a modified Anderson level I class code and changed pixels labeled with a 
“from-to” class code. Figure 21.3 presents the NLCD 1992–2001 land-cover change retrofit 
product for the Seattle and Sioux Falls areas. The displayed extents in Figure 21.3 are the 
same as in Figure 21.1. The change class represents the changes of land-cover type from 
1992 to 2001 within the Anderson level I class scheme because of the inconsistency of the 
two products in the level II scheme.

Analysis of the results for the conterminous United States indicated that about 3% of the 
land-cover data set changed between 1992 and 2001. Variations among the forest, grass and 
shrub, and agriculture classes accounted for the majority of mapped land-cover change 
(Fry et al. 2009).

Open water
Agriculture

Urban Barren
Wetland Ice/snow

Forest Grassland/shrub
Change class

Class

4
km

210 N 4
km

210 N

Figure 21.3
(See color insert following page 426.) The NLCD 1992–2001 retrofit land cover changes for the Seattle and 
Sioux Falls areas. The change class represents changes in land-cover type from 1992 to 2001.
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21.3  NLCD 2006 and Beyond

21.3.1  NLCD 2006

The NLCD 1992 and 2001 products have been released based on a 10-year cycle. NLCD 
has been widely recognized as an important data source to quantitatively describe the 
terrestrial ecosystem conditions and support landscape change research. With these 
national data layers, there has been nearly a 5-year time lag between the image capture 
date and product release. However, in some areas, terrestrial ecosystems often experience 
significant natural and anthropogenic disturbances during production time, resulting in 
products that may be out of date. To keep the NLCD as temporally relevant as possible, a 
new frequency of 5 years was introduced for a more timely capture of land-cover change. 
NLCD 2006 represents the first database conceived to address the needs of the user com-
munity for more frequent land-cover monitoring and provide a reduction of production 
time between image capture and product release. NLCD 2006 was designed to provide 
updated land-cover, ISA, and TC data and additional information that can be used to iden-
tify the pattern, nature, and magnitude of changes that occurred between 2001 and 2006.

To achieve this goal in a cost-effective manner, the selected approach seeks to identify 
the areas of landscape change occurring after 2001 and to update land-cover data only 
for those changed areas. For the areas that have not changed, the NLCD 2006 products 
would remain the same. One advantage in monitoring land-cover change with remotely 
sensed data is that temporal sequences of images can accurately indicate spectral changes 
based on variations in the surface physical condition, assuming that digital values are 
radiometrically consistent for all scenes (Cakir, Khorram, and Nelson 2006). Multitemporal 
remotely sensed data can be used as primary sources to identify such spectral changes 
and extrapolate land-cover types for updating land-cover classification and the continuous 
variables related to LCLU change over a large geographic region.

A prototype method was developed by the USGS for updating NLCD 2006 (Xian, 
Homer, and Fry 2009). Here, we illustrate the prototype method used to update NLCD 
2001 products, including land cover, ISA, and TC, to circa 2006. The method involves the 
use of change vector (CV) analysis to identify changed pixels, coupled with decision tree 
classification (DTC) and regression tree modeling (RTM) trained by using NLCD 2001 data 
designated in unchanged pixels, to label changed pixels in the updated 2006 land cover 
and to calculate updated continuous variables in the ISA and TC. This prototype method 
has been implemented for NLCD 2006 production.

The NLCD 2006 method depends upon two dates of Landsat imagery in 2001 and 2006 
acquired in the same season by satellite paths and rows. This method focuses on radiometric 
spectral change detection from satellite images and change identification for all potential 
land-cover changes. Although the method is designed for using two-date image pairs for 
change detection, multiple-date image pairs can also be used to improve the change detec-
tion performance if images are available for different seasons. Figure 21.4 illustrates the over-
all procedures for obtaining NLCD 2006 land cover, ISA, and TC products. In this method, 
the land-cover product must be produced prior to the imperviousness and TC products.

21.3.1.1  Landsat Imagery Selection and Processing

To satisfy the preprocessing requirement for change detection, multitemporal image 
geometric precision, radiometric, and atmospheric corrections are accomplished first. 
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Figure 21.4
Flow chart of NLCD 2006 prototyping method for updating land cover, impervious surface, and tree canopy 
products.
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The atmospheric correction converts a DN to the top-of-atmosphere reflectance using 
the same procedures as for NLCD 2001 (Homer et al. 2004). Images are then normal-
ized using a linear regression normalization algorithm to reveal changes in the surface 
reflectance from multidate satellite images. The normalized image is used to reduce 
false changes caused by seasonal phenology and atmospheric effects from two-date 
images. Accordingly, scene pairs are normalized using the following linear regression 
formula:

	 s a x bi i i i= + 	 (21.1)

where xi is the DN of band i in the image that is to be normalized (subject image), si is the 
normalized DN of band i in the subject image, ai is the slope or gain, and bi is the intercept 
or offset accounting for the difference in the mean and variance between radiance values 
in different dates. The transformation coefficients ai and bi are computed from a linear 
regression carried out on reference and subject images, in which clouds and shadows are 
excluded for the whole scene.

21.3.1.2  Change Vector Analysis and Land-Cover Change Detection

The normalized and reference images were used to calculate a CV image. A CV represents 
the spectral feature differences that may represent changes in LCLU types between two 
dates. If a pixel’s values in two images on dates t1 and t2 are represented by a reference vec-
tor (R) and a subject vector (S), which are expressed as

	 R S= =( , , ��� ) , ( , , ��� )r r r s s sn
T

n
T

1 2 1 2
	 (21.2)

where n is the number of bands, then the change magnitude is calculated with the following 
equation:

	 ∆V = − + − + + −[( ) ( ) ( ) ] /r s r s r sn n1 1
2

2 2
2 2 1 2 	 (21.3)

Generally, a greater value of a CV indicates a higher possibility of real change in 
the land-cover type, and a specific threshold is usually used to determine pixels of 
change or no-change. The normalized process reduces the variance range for pixels in 
unchanged areas.

A multithreshold approach was developed to determine the validity of pixels of change 
or no-change by calculating a specific threshold for each land-cover type. To simplify the 
class legend during threshold calculations, the NLCD 2001 product was recategorized 
to eight land-cover classes according to the Anderson level I classification. After all pix-
els were labeled as change or no-change, they were combined to create a binary mask 
file for the construction of training data sets from NLCD 2001 baseline products (Xian, 
Homer, and Fry 2009). One advantage of using CV to identify the changed or unchanged 
areas between two dates is that both potential changes among the categories and within a 
category are incorporated in changed areas.
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21.3.1.3  Land-Cover Classification

The land cover is classified using similar procedures as the NLCD 2001 land-cover classi-
fication. The overall approach of the strategy includes three key procedures: training data 
construction, decision tree model creation, and land-cover classification for each Landsat 
path and row. The training samples are selected from the portion of the NLCD 2001 land-
cover product that is unchanged. Samples of each land-cover class are held proportional 
to the total number of pixels in that class to ensure that adequate pixels of each land-cover 
class are included in the training data set for a path and row. These samples are then used to 
create an environment file that serves as the dependent variable for the decision tree model. 
Independent variables used as input to the model are the 2006 Landsat reflectance (bands 
1–5 and 7), the thermal band, the tasseled cap derivative, and digital elevation data. Separate 
and unique classification models are developed for each path and row. A set of decision 
rules is produced to determine the class of a target variable (land-cover type) based on this 
training data set. Each rule set defines the conditions under which decisions are established 
for labeling land-cover types. Land-cover classifications are processed only for identified 
changed pixels, with baseline land-cover type remaining static for unchanged pixels. The 
NLCD 2001 full-legend land-cover product is used as a baseline to construct training data 
sets for each area. Modeling results (usually having cross-validation errors retained within 
4–10%) are used to update the land-cover status for changed pixels on NLCD 2006.

21.3.1.4  Impervious Surface Estimation

The NLCD 2006 percent impervious surface is estimated using similar procedures as 
the NLCD 2001 imperviousness calculation, which quantifies the spatial distribution of 
ISA as a continuous variable from 1% to 100%. The overall approach consists of three key 
procedures: training data collection, RTM, and imperviousness estimation. The training 
data sets are selected from the unchanged impervious surfaces of the NLCD 2001 baseline. 
The regression tree model is constructed using the training data sets as the dependent vari-
able and the Landsat image and ancillary data sets as the independent variables. A set of 
rules is produced to predict a target variable (percent imperviousness) based on the train-
ing data set. Each rule set defines the condition under which a multivariate linear regres-
sion model is established for prediction. The linear model is a simplified equation to fit the 
training data covered by the rule. Models based on the regression tree algorithm provide a 
propositional logic representation of these conditions in the form of numbers of tree rules.

Imperviousness estimations are conducted only for identified changed pixels, with base-
line ISA values remaining static for unchanged pixels. The NLCD 2006 land-cover product 
is used to create a mask file to remove false estimations in nonurban areas defined by land-
cover classes that would not logically include urban development.

21.3.1.5  Tree Canopy Estimation

The overall approach to update the NLCD 2006 TC product is similar to that for the 
NLCD 2006 ISA product updating. The spatial distribution of TC is quantified as a 
continuous variable from 1% to 100%. The procedures include training data collection, 
RTM, and TC estimation. The training data sets are determined from unchanged tree 
coverage areas, and the regression tree model is constructed using the training data set 
as the dependent variable (percent TC) and the Landsat image and ancillary data sets as 
the independent variables. Multiple rule-based regression equations are produced for 
predicting the target variables (percent TC) based on the training data set. After TC is 
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extrapolated to the entire satellite scene, the change mask file can then be implemented 
to ensure that updating is accomplished only for targeted changed areas, with baseline 
TC values remaining static for unchanged pixels. The NLCD 2006 land-cover product 
is used as a reference to remove false estimations in nontree areas determined by land-
cover classes that would not logically include significant trees.

The TC updating strategy was also explored using coarser spatial resolution remotely 
sensed data to allow updating to be conducted over an even larger geographic region for 
further efficiency and lower cost. The 56-m resolution advanced wide field sensor (AWiFS) 
imagery, which has four reflectance bands and a larger spatial coverage, was prototyped 
for TC change estimations. Assessment of the TC training data sets obtained from Landsat 
versus TC training data sets obtained from AWiFS revealed that products produced from 
AWiFS were reasonably comparable to those obtained from Landsat imagery. Although a 
TC procedure for NLCD 2006 has been prototyped, there is currently no TC production 
underway for NLCD 2006.

21.3.1.6  Examples of the NLCD 2006 Updates

To demonstrate the updated results, land cover, ISA, and TC changes in same areas 
presented previously in the Seattle and Sioux Falls regions are presented in Figure 21.5. 
Both 2001 and 2006 Landsat images (Figure 21.5a and b), newly updated 2006 land cover 
(Figure 21.5c), and TC (Figure 21.5d) are displayed for the Seattle area. Figure 21.5e 
through h include 2001 and 2006 Landsat images, land cover, and ISA in 2006 for the 
Sioux Falls area. The land-cover changes observed in the Seattle region are due to forest 
harvest patterns of cutting and regrowth in various stages. Changes associated with 
forest disturbances including both regrowth and new forest-cutting were observed and 
classified. Many new urban developments occurred on agricultural land in the Sioux 
Falls area. The land-cover map shows the new urban land use emerging on the edge 
of the city. The new ISA map also captures the new growth in the region. Figure 21.5h 
shows that the ISA variations in the southeastern and northwestern parts of Sioux Falls 
are identified on the map. New growths of ISA are associated with residential housing 
developments in suburban areas and emerged at the edge of existing urban areas.

TC was first estimated using a 2006 Landsat image and the 2001 baseline TC data set. 
Figure 21.6a and c show TC in 2006 and changes that occurred between 2001 and 2006 in 
an area on the southeastern side of Seattle. Both TC and its changes are in 30-m resolu-
tion. Areas having current and previous forest-cutting activities showed relatively lower 
and higher TC coverage in 2006, respectively. Meanwhile, in the 2001 and 2006 change 
graphics (Figure 21.6b), areas that have TC decreases and increases are colored as red and 
green, respectively. The TC amounts were also estimated using a 2006 AWiFS image that 
has a larger spatial extent than a Landsat image (Figure 21.6c). TC was estimated using 
the AWiFS image in the overlap area covered by both images. The TC training and ancil-
lary data sets were subsets and were rescaled to 56 m. The TC was estimated following 
the same procedures as used for Landsat except the input Landsat image was replaced 
by an AWiFS image. Figure 21.6d displays the TC change that occurred between the 2001 
baseline and the new 2006 image in 56-m resolution. Our preliminary results show that 
the comparison agreement between the Landsat and AWiFS predictions (both portrayed 
in 56 m) is 94% for TC decreasing areas and 92% for increasing areas, respectively. Our 
preliminary conclusions are that the AWiFS imagery provides a larger, more efficient spa-
tial coverage and can be used for updating percent TC without losing the primary change 
features of the forest land.
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21.3.2  NLCD 2011

With just two eras of delivered land cover, and a third in production, the NLCD data 
provide fundamental support for a wide variety of federal and state requirements and 
management programs. However, as most federal and state environmental programs 
are periodic, they must produce updated information at specified intervals and so are 
dependent on an accurate portrayal of current land cover. Furthermore, because land-
cover change is always occurring, long time lags between land-cover updates may 
result in unacceptable accuracies for their applications. Hence, the NLCD has, by neces-
sity, evolved toward an operational land-cover monitoring program that provides land 
cover and land-cover change products on 5-year intervals. The NLCD 2011 is the next-
generation proposed design to ensure future NLCD products, which support national 
needs. Key to the design will be better integration of multiple scales (250 m, 30 m, and 
potentially 1–2 m), additional thematic richness, and full integration of a land-cover 
change paradigm.

(a) (b) (c) (d)

(e) (f ) (g) (h)

0 1 2 4 km
N 0 1 2 4 km

N 0 1 2 4 km
N 0 1 2 4 km

N

0 1 2 4 km 0 1 2 4 km
N 0 1 2 4 km

N 0 1 2 4km
NN

Figure 21.5
(See color insert following page 426.) Landsat imagery in (a) 2001 (b) 2006, (c) 2006 land cover, (d) 2006 percent 
tree canopy in the Seattle area. Landsat imagery in (e) 2001 (f) 2006, (g) 2006 land cover, and (h) 2006 impervious 
surface in the Sioux Falls area. The color legends for land cover, tree canopy, and impervious surface are the 
same as in Figure 21.2.
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21.3.2.1  Principles of NLCD 2011

According to the objectives of the NLCD 2011 planned initiative, a set of guiding principles 
have been established to focus the development of NLCD 2011 products, including the 
following: (1) the NLCD 2011 should be a multiscale and multitemporal database capa-
ble of monitoring the nation’s land cover and land-cover change; (2) the products should 
be flexible enough with acceptable accuracy to support a variety of MRLC requirements; 
(3) the products must be well defined, not currently under production by other entities, 
and accommodate maximum leveraging of existing relevant data or products that are 
already in production; (4) the NLCD 2011 will be centered around medium spatial resolu-
tion (30-m) data as the backbone of the database and will be complemented by those of a 
coarser (250-m) and finer (1–5-m) resolutions; (5) methods and algorithms used for model-
ing the attributes of the NLCD 2011 should be based on scientifically sound concepts and 
should be quantifiable, scalable, and repeatable; (6) the products will require identical pro-
tocols across the country, spanning spectral sources, preprocessing, classification, models, 
algorithms, synthesis, and quality assessment; (7) a team-oriented research and develop-
ment process will be used to prototype an initial design and to ensure that the best science 
is used in product generation; and (8) the products will be developed to ensure full MRLC 
support for subsequent operational production.

21.3.2.2  Overall Design Considerations of NLCD 2011

The development of the NLCD 2011 is planned to be based on an integrated framework 
that encompasses LCLU change products at various thematic, spatial, and temporal resolu-
tions. The main deliverables will include land-cover products of 30 m every 5 years, 250 m 
annually, and 1–5 m as needed in selected locations. The temporal and spatial resolutions 
of these products will be designed to be seamlessly integrated to enable the investigation, 
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Figure 21.6
(See color insert following page 426.) (a) Tree canopy in 2006 and (b) the tree canopy change from 2001 to 2006 
in the Seattle area estimated by using Landsat image. (c) Tree canopy estimated using 2006 AWiFS image. (d) The 
tree canopy change from 2001 to 2006 in 56-m resolution for the same area. In both (b) and (d), red and green 
represent tree canopy decrease and increase from 2001 to 2006, respectively.
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confirmation, calibration, and assessment of a wide variety of land-cover change issues 
across a broad spectrum of user-defined scales. The overall design should yield prod-
ucts that enable users to identify a variety of land-cover changes, including those caused 
by intense, local events (e.g., fire, urban development, drought, and flooding), and others 
caused by gradual, broad-based events (e.g., climate change, disease, succession, urban 
intensification, and invasive species). Since the NLCD 2011 is envisioned as a multiresolu-
tion, multiattribute, and multisource database that is intended for many applications at 
both national and local scales, the following six key components are proposed and illus-
trated in Figure 21.7: (1) a comprehensive reference database for NLCD mapping, mod-
eling, and product evaluation, including data sets available from national and regional 
land and vegetation monitoring and mapping programs or projects, reference data derived 
from the high spatial resolution remote sensing data, and ancillary geospatial data sets; 
(2) a well-calibrated remote sensing database including Moderate Resolution Imaging 
Spectroradiometer (MODIS) 250-m imagery, Landsat 30-m (or Landsat-like) imagery and 
15-m imagery at selected locations; (3) land-cover classes, estimates of TC height, percent 
ISA, bare ground, TC, and shrub canopy at 30 m; (4) land-cover classes, estimates of per-
cent ISA, bare ground, TC, and shrub canopy at 250 m annually; (5) changes of spectral, 
land cover, ISA, bare ground, and canopy density at 250 m every 2 years and those at 30 m 
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Figure 21.7
A potential product framework proposed for NLCD 2011.
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every 5 years; and (6) land cover, imperviousness, bare ground, tree canopy, and shrub 
canopy estimates at 1–5 m resolution for selected sample sites.

21.4  Conclusions

The U.S. NLCD products have been developed over two decades and have allowed unprec-
edented land-cover analysis to occur in thousands of applications across federal, state, 
regional, and private entities. Continuation of the MRLC partnership, evolution of more 
abundant data streams, new implementation strategies, and improved algorithms have all 
been important contributions to NLCD development. The NLCD is now evolving beyond 
simple land-cover characterization, with new emphasis on capturing land-cover change 
between eras. The NLCD 1992–2001 retrofit land-cover change product represents the first 
effort to harmonize two eras of NLCD to discover the amount of land-cover change, but 
technically could only be accomplished on Anderson level I classes. The NLCD 2006 rep-
resents the first suite of NLCD products to integrate the land-cover change assessment as 
part of the characterization update process on all NLCD classes. The NLCD 2006 provides 
a cost-effective and faster way to enable more frequent land-cover product updates by 
using semiautomated data-processing protocols to reduce the cost, improve production 
efficiencies, and increase objectivity. The NLCD 2006 is now in operational production for 
the conterminous United States, with a completion date of early 2011.

With the advent of the NLCD 2011, now in the planning stage, and free of the Landsat data 
costs that hindered our 1992 and 2001 efforts, we expect that the NLCD product suite will 
have fully matured to better serve the nation’s land-cover monitoring needs. The NLCD 
2011 design, shown in Figure 21.7, will enable a better integration of multiple scales, add 
additional thematic richness, and represent full implementation of a land-cover change par-
adigm. Continuing the evolution of the NLCD within the MRLC umbrella will also ensure 
that future products are not only actually produced, but remain application relevant.
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(c) MODIS, September 29, 2001(b) MODIS, September 17, 2001(a) MODIS, August 12, 2001

(f) ETM+, September 29, 2001(e) Prediction, September 17, 2001(d) ETM+, August 12, 2001

Figure 1.8
Predicted Landsat surface reflectance (e) using STARFM from daily Moderate Resolution Imaging Spectrorad
iometer (MODIS) reflectance imagery (b) and Landsat/MODIS image pairs (a and d, c and f). (Reprinted from 
Gao, F., Masek, J., Schwaller, M., and Forrest, H., On the blending of the Landsat and MODIS surface reflectance: 
Predicting daily Landsat surface reflectance, IEEE Trans Geosci Remote Sens 44(8):2207–18. © (2006) IEEE.)

Figure 3.10
Lidar point cloud over coniferous forests in the western United States.



Figure 3.12
Automatically measuring individual trees on a lidar-derived canopy height model. Circles represent computer-
measured crown diameters, whereas each cross sign indicates identified individual trees.

Figure 3.11
Ground-based lidar data collected over Mesquite trees in central Texas.
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Fractional vegetation cover (Fr)/T* scatter plot (thermal-vegetation index [TVX] space) with sample land use 
and land-cover (LULC) classes from a Landsat thematic mapper (TM) image of the city of Tabriz and change 
trajectory in the TVX space for a specific period: (a) The scatter plot with sample LULC classes from a Landsat 
TM image of Tabriz (38°05′, 46°17′) in northwestern Iran, which was acquired on August 18, 1998; (b) change 
trajectory in the TVX space for a long (1989–1998) period (June 30, 1989–August 18, 1998). The vectors show the 
magnitude of change associated with LULC change from green space, cultivation, and barren pixels to urban-
ized pixels. (From Amiri, R., Q. Weng, A. Alimohammadi, and S. K. Alavipanah, Remote Sens Environ, 113, 12, 
2009. With permission.)
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Figure 6.3
Net radiation, sensible heat flux, latent heat flux, and soil heat flux on October 13, 2006 in Indianapolis estimated 
by the combined use of advanced spaceborne thermal emission and reflection radiometer image and ground 
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Figure 6.2
The results of kernel convolution for two advanced spaceborne thermal emission and reflection radiometer 
(ASTER) images of Beijing: (a) A true color composite of Beijing using ASTER acquired on August 31, 2004; 
(b) and (c) the results of convoluted images (with a smoothing parameter of 0.6) showing thermal landscape pat-
tern of Beijing on August 31, 2004 and April 9, 2004, respectively. The temperature is given in degrees Celsius.



Figure 7.5
Example of a combined atmospheric and topographic correction of a SPOT-5 scene from a part of the Swiss 
Alps. Left to right: Original SPOT-5 scene (color coding for red, green, and blue bands is 1650, 840, and 660 nm, 
respectively), illumination map, and combined atmospheric and topographic correction. (From Richter, R. et al., 
Rem Sens Environ, 1, 2009. With permission.)

  

Figure 7.7
Deshadowing of SPOT-5 imagery (dated May 22, 2005; color coding of red, green, and blue bands is 830, 660, and 
555 nm, respectively). Left and right: Original and deshadowed scene, respectively.



Figure 8.1
Geometry of viewing of a satellite scanner in orbit around the Earth. (Courtesy and copyright Serge Riazanoff, 
VisioTerra, 2009.)



Figure 8.7
Example of a cylindrical conformal projection: the universal transverse mercator projection with its 3˚ longitu-
dinal (1–60) zones and latitudinal (A–Z) zones.
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Figure 8.2
Near-Earth, quasi-circular, quasi-polar, sun-synchronous orbit for EO satellites. The different revolutions 
around the poles with a constant illumination angle (top) showing the same illumination condition all the year 
(bottom). (Courtesy and copyright Serge Riazanoff, VisioTerra, 2009.)
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Figure 10.1
Different spatial scales of observations in high spatial resolution QuickBird image data shown as a false-color 
composite. The three spatial scales show individual tree crowns and stands and associated feature segmenta-
tion within an Australian tropical savanna landscape as well as a tree community segmentation level showing 
riparian vegetation, savanna woodlands, and rangelands. This figure illustrates the multiscale concept by cre-
ating multiple scales of segmentation through successive grouping of image pixels into homogeneous image 
objects, providing a more intuitive and hierarchical partitioning of the image results, which cannot effectively 
be achieved in per-pixel approaches.
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Figure 10.4
Object-based image analysis steps for mapping the extent of the riparian zone from light detection and rang-
ing data ((a) through (h)).
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Figure 10.7
Location of the study area in the Austrian state of Upper Austria. Data sets used in the case study are 
(a) UltraCamX digital infrared orthophotos, (b) normalized digital surface model derived from the UltraCamX 
stereo imagery, and (c) an existing light detection and ranging–based digital elevation model.
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Figure 10.9
Results of individual tree crown extraction and delineation for the whole study area (right) and subsets showing 
(a) the normalized digital surface model, (b) the overlaid tree crowns, and (c) the tree crowns with the extracted 
local maxima (color coded according to the extracted height values).
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Figure 12.3
Canopy level spectral reflectance signatures measured by an EO-1 Hyperion sensor over Araguaia National 
Park, Brazil.
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Figure 11.3
Color composite of three dates of impervious surface distribution in 2008, 1996, and 1984 by assigning them as 
red, green, and blue, illustrating the spatial distribution and patterns of impervious surface changes.



Peruvian amazon (Carnegie Airborne Observatory)

Figure 12.8
Example of airborne Lidar for mapping the three-dimensional properties of canopy surfaces (Adapted with 
permission from Macmillan Publishers Ltd., Tollefson, J., Nature 461:1048, copyright 2009.)
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Figure 12.9
MODIS annual NPP global product averaged for the years 2000–2006 (From Running, S., Numerical 
Terradynamic Simulation Group. http://www.ntsg.edu. Accessed September 2010. With permission.)
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Figure 13.3
(a;c;e) Earliest correlating climate drivers across the three sites. Precipitation is most often the earliest correlat-
ing climate driver in low elevations. (b;d;f) Color-coding in this figure indicates (1) pixels where FMSI did not 
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Figure 13.4
(a) Actual fires for the period of record covered by the FMSI. Earliest fires (e.g., March), occur at lower elevations 
in the Catalina-Rincons. The FMSI shows lower elevations remain vulnerable as the fire season “progresses” 
in elevation. By July, all elevations are vulnerable; this is evident in Figure 13.4b, which shows July fires span 
high and low elevations; and in Figure 13.4c, where the FMSI shows the early, sustained vulnerability of low-
elevation fuels. (b) Box plot showing fire counts by elevation per month. The medians are the dotted lines within 
the box. Each box contains 50% of the values. The “whiskers” denote minimum and maximum values. Median 
fire counts tend to increase in elevation by month. (c) The length of fire season (LOFS) as determined by the 
FMSI, which shows live fuels cure later at higher elevations; fire season thus is later at higher elevations, and 
this is consistent with Figures 13.4a and 13.4b.
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Figure 13.6
Fire season summary map for the Catalina-Rincon site for the year 2004, clearly showing fire scars from the 
previous year’s Aspen fire in the Catalinas and the smaller Helens II fire in the Rincons.
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Figure 13.8
The FMSI/climate grid for the Catalina-Rincon study site. Fire season summaries for 18 years are plotted using 
precipitation and temperature z-scores for each year.
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Figure 14.9
Visual validation of three mapped disturbances using pre- and post-disturbance Landsat images. The distur-
bance year map was selected from a 17.1 × 11.4 km area in the Uwharrie national forest located in North Carolina 
(WRS path 16/row 36). The size of each Landsat image chip shown to the left is 2.85 × 2.85 km. (From Huang, C. 
et al. Remote Sens Environ, 113, 7, 2009. With permission.)
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Figure 16.1
Global cropland map at nominal 5-minutes (0.083333 decimal degrees) resolution using national statistics and 
geospatial techniques for the nominal year 2000. Total area of croplands is 1.47 billion hectares. (Adopted from 
Ramankutty, N. et al. Global Biogeochem Cycles, 22, 2008.)
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Figure 16.2
Global cropland map at nominal 1-km resolution using remote sensing for the nominal year 2000. Total 
cropland area was determined to be 1.53 billion hectares, of which 399 Mha was irrigated area. Because irri-
gated areas often had more than one crop per year, the total annualized irrigated area was 467 Mha. (Adapted 
from Thenkabail, P.S. et al. Rem Sens, 1, 2009b. http://www.mdpi.com/2072-4292/1/2/50; Thenkabail, P.S. et al. 
Remote Sensing of Global Croplands for Food Security, CRC Press/Taylor & Francs, Boca Raton, FL, 2009c.)



112.20

23
.8

0
23

.4
0

23
.0

0
22

.6
0

22
.2

0

112.60 113.00 113.40 113.80 114.20 114.60

112.20 112.60 113.00 113.40
AOT_550 nm_MOD04_C005

113.80 114.20 114.60

23.80
23.40

23.00
22.60

22.20

0.0 0.4 0.8 1.2 1.6 2.0
(a)

112.20

23
.8

0
23

.4
0

23
.0

0
22

.6
0

22
.2

0

112.60 113.00 113.40 113.80 114.20 114.60

112.20 112.60 113.00 113.40
AOT_550 nm_MODIS_500 m

113.80 114.20 114.60

23.80
23.40

23.00
22.60

22.20

0.0 0.4 0.8 1.61.2 2.0
(b)

0.0
0 1 2 4 km

0.25 0.50

AOT_550 nm_MODIS_500 m

0.75 1.00 1.25
(c)

Figure 17.4
Aerosol optical thickness image at 550 nm, (a) derived from MODIS collection-5 algorithm, (b) derived from 
MODIS 500-m data, and (c) derived from MODIS 500-m data overlaid with road layer.
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Figure 17.5
Aerosol optical thickness image at 550-nm and 500-m resolution over Hong Kong and the Pearl River Delta 
region on (a) January 28, 2007 and (b) January 30, 2007.
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Figure 17.6
(a) Rayleigh-corrected RGB image on November 30, 2007, (b) aerosol optical thickness (AOT) image at 500-m 
resolution, and (c) AOT collection-5 image at 10-km resolution.
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Figure 19.2
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Figure 21.1
NLCD1992 land cover for the Seattle, Washington and Sioux Falls, South Dakota areas.
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