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Introduction to Recent Advances
in Remote Sensing of the Environment

Aims and Scope

The main purpose of compiling such a book is to provide an authoritative supplementary
text for upper-division undergraduate and graduate students, who may have chosen a
textbook from a variety of choices in the market. This book collects two types of articles:
(1) comprehensive review articles from leading authorities to examine the developments
in concepts, methods, techniques, and applications in a subfield of environmental remote
sensing, and (2) focused review articles regarding the latest developments in a hot topic
with one to two concise case studies. Because of the nature of articles collected, this book
can also serve as a good reference book for researchers, scientists, engineers, and policy-
makers who wish to keep up with new developments in environmental remote sensing.

Synopsis of the Book

This book is divided into four sections. Section I deals with various sensors, systems, or
sensing using different regions of wavelengths. Section II exemplifies recent advances in
algorithms and techniques, specifically in image preprocessing and thematic information
extraction. Section III focuses on remote sensing of vegetation and related features of the
Earth’s surface. Finally, Section IV examines developments in the remote sensing of air,
water, and other terrestrial features.

The chapters in Section I provide a comprehensive overview of some important sen-
sors and remote sensing systems, with the exception of Chapter 5. By reviewing key con-
cepts and methods and illustrating practical uses of particular sensors/sensing systems,
these chapters provide insights into the most recent developments and trends in remote
sensing and further identify the major existing problems of these trends. These remote
sensing systems utilize visible, reflected infrared, thermal infrared, and microwave spec-
tra, and include both passive and active sensors. In Chapter 1, Song and his colleagues
evaluate one of the longest remote sensing programs in the world, that is, the U.S. Landsat
program, and discuss its applications in vegetation studies. With a mission of long-term
monitoring of vegetation and terrestrial features, Landsat has built up a glorious history.
The remote sensing literature is filled with a large number of articles in vegetation clas-
sification and change detection. However, remote sensing of vegetation remains a great
challenge, especially the sensing of biophysical parameters such as leaf area index (LAI),
biomass, and forest successional stages (Song, Gray, and Gao 2010). A remarkable strength
of the Landsat program is its time-series data, especially when considering the addition
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xvi Introduction to Recent Advances in Remote Sensing of the Environment

of the upcoming Landsat Data Continuity Mission (LDCM); however, these data are not a
panacea for vegetation studies. Song, Gray, and Gao (2010) suggest that the synergistic use
of data from other remote sensors may provide complimentary vegetation information to
Landsat data, such as high spatial resolution (<10 m) satellite images that provide textural
information, radar sensors that provide information on the dielectric properties of the sur-
face and are capable of penetrating clouds, light detection and ranging (LiDAR, which pro-
vides geometric information), and coarse spatial but high temporal resolution sensors (e.g.,
Moderate Resolution Imaging Spectroradiometer [MODIS]). Chapter 1 provides an excel-
lent example for the integrated use of Landsat and MODIS data by introducing the spatial
and temporal adaptive reflectance fusion model (Chapter 1, Section 1.3.5; Gao et al. 2006).

In Chapter 2, Shao and his colleagues provide a comprehensive review of selected data
products, algorithms, and applications of MODIS. MODIS has its roots in earlier sensors
such as the Advanced Very High Resolution Radiometer (AVHRR) and coastal zone color
scanner (CZCS), but provides substantial improvements over these earlier sensing systems
(Lillesand, Kiefer, and Chipman 2008). MODIS provides a wide range of data products
applicable to land, ocean, and atmosphere. Chapter 2 focuses on the examination of land
products and applications, in particular, application studies at the global and regional lev-
els. For each data product, the contributors document most recent advances, but also point
out the product’s limitations in data quality and validation.

LiDAR has been increasingly used in many geospatial applications due to its high data
resolution, low consumption of time and cost, compared to many traditional remote sens-
ing technologies. Unlike other remotely sensed data, LIDAR data focus solely on geometry
rather than on radiometry. Many researchers have used LiDAR in conjunction with opti-
cal remote sensing and geographic information system (GIS) data in urban, environment,
and resource studies (Weng 2009). Chapter 3 offers a detailed introduction of the basic
concept of LiDAR, and types of sensors and platforms. Based on the works of the author
this chapter further provides a review of LiDAR remote sensing applications in estimat-
ing forest biophysical parameters and surface and canopy fuels, and for characterizing
wildlife habitats.

Synthetic aperture radar (SAR) has been a key sensing system for various environmen-
tal applications, and the Earth and planetary exploration. In Chapter 4, Franceschetti and
Tatoian introduce to the reader two new concepts of SAR imaging: (1) impulse SAR and
(2) polychromatic SAR. The theoretical foundations of the two systems are presented with
some preliminary experimental data for validating the theory. The authors further discuss
the distinct advantages of these systems over conventional microwave imaging sensors
and their potential applications, and speculate on future research directions.

Hyperspectral remote sensing, as a cutting-edge technology, has been widely applied in
vegetation and ecological studies. Chapter 5 provides an overview of spectral characteris-
tics for a set of plant biophysical and biochemical parameters. A wide range of techniques
are reviewed, including such spectral analysis techniques as spectral derivative analysis,
spectral matching, spectral index analysis, spectral absorption features and spectral posi-
tion variables, hyperspectral transformation, spectral unmixing analysis, and hyperspec-
tral classifications. Further, two general analytical approaches are discussed: (1) empirical/
statistical methods and (2) physically based modeling. The chapter concludes with the
authors’ perspectives on the future directions of hyperspectral remote sensing of vegeta-
tion biophysical parameters.

Thermal infrared (TIR) remote sensing techniques have been applied in urban climate
and environmental studies. Chapter 6 examines the current practices, problems, and pros-
pects of this particular field of study, especially the applications of remotely sensed TIR
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data in urban studies. It is suggested that the majority of previous researches have focused
on land-surface temperature (LST) patterns and their relationships with urban-surface
biophysical characteristics, especially with vegetation indices and land-use/land-cover
types. Less attention has been paid to the derivation of urban heat island (UHI) param-
eters from LST data and to the use of remote sensing techniques to estimate surface energy
fluxes. Major recent advances, future research directions, and the impacts of planned TIR
sensors with LDCM and HyspIRI missions are outlined in the chapter.

Section II presents new developments in algorithms and techniques, specifically inimage
preprocessing, thematic information extraction, and digital change detection. Chapter
7 conducts a concise review of atmospheric correction algorithms for the optical remote
sensing of land. This review focuses on physical models of atmospheric correction that
describe the radiative transfer in the Earth’s atmosphere, instead of empirical methods.
The author presents sequentially the correction algorithms for hyperspectral, thermal, and
multispectral sensors, then discusses the combined method for performing topographic
and atmospheric corrections, and ends with examples of correcting non-standard atmo-
spheric conditions, including haze, cirrus, and cloud shadow. The chapter concludes with
the author’s perspective on major challenges and future research needs in atmospheric
and topographic correction. In addition, the chapter includes a brief survey and a compari-
son of capacity among commercially available atmospheric correction software/modules,
which will be very useful for students.

Geometric correction is more important now than ever due mainly to the growing need
for off-nadir and high-resolution imaging, fully digital processing and interpretation of
remote sensing images, and image fusion and remote sensing—GIS data integration in prac-
tical applications (Toutin 2010). Three-dimensional (3D) geometric processing and correc-
tion of Earth observation (EO) satellite data is a key issue in multisource, multiformat data
integration, management, and analysis for many EO and geomatic applications (Toutin
2010). Chapter 8 first reviews the source of geometric distortions (with relation to platform,
sensor, other measuring instruments, Earth, and atmosphere), and then compares differ-
ent mathematical models for correcting geometric distortions (e.g., 2D/3D polynomial, 3D
rational functions, and physical and deterministic models). Subsequently, the methods
and algorithms in each processing step of the geometric correction are examined in detail,
supplemented with plentiful literature. This type of examination allows the tracking of
error propagation from the input data to the final output product.

Image classification is a fundamental protocol in digital image processing and pro-
vides crucial information for subsequent environmental and socioeconomic applications.
Generating a satisfactory classification image from remote sensing data is not a straight-
forward task. Many factors contribute to this difficulty, including the characteristics of a
study area, availability of suitable remote sensing data, ancillary and ground reference
data, proper use of variables and classification algorithms, and the analyst’s experience
(Lu and Weng 2007). Chapter 9 provides a brief overview of the major steps in image classi-
fication, and examines the techniques for improving classification performance, including
the use of spatial information, multitemporal and ancillary data, and image fusion. A case
study is further presented that explores the role of vegetation indices and textural images in
improving vegetation classification performance in a moist tropical region of the Brazilian
Amazon with Landsat Thematic Mapper (TM) imagery.

Object-based image analysis (OBIA; or GEOBIA for geospatial OBIA) is becoming a new
paradigm among the mapping sciences (Blaschke 2010). With the improvement of OBIA
software capacity and the increased availability of high spatial resolution satellite images
and LiDAR data, vegetation-mapping capabilities are expected to grow rapidly in the near



xviii Introduction to Recent Advances in Remote Sensing of the Environment

future in terms of both the accuracy and the amount of biophysical vegetation parameters
that can be retrieved (Blaschke, Johansen, and Tiede 2010). Chapter 10 reviews the devel-
opment of OBIA and the current status of its application in vegetation mapping. Two case
studies are provided to illustrate this mapping capacity. The first case uses LiDAR data to
map riparian zone extent and to estimate plant project cover (PPC) within the riparian zone
in central Queensland, Australia. Whereas PPC was calculated at the pixel level, OBIA was
used for mapping the riparian zone extent and validating the PPC results. The second case
study aims at extracting individual tree crowns from a digital surface model (DSM) by
using OBIA and grid computing techniques in the federal state of Upper Austria, Austria.
Finally, the contributors share their insights on the existing problems and development
trends of OBIA with respect to automation, the concept of scale, transferability of rules,
and the impacts of improved remote sensing capacities.

Digital change detection requires the careful design of each step, including the statement
of research problems and objectives, data collection, preprocessing, selection of suitable
detection algorithms, and evaluation of the results (Lu et al. 2010). Errors or uncertainties
may emerge from any of these steps, but it is important to understand the relationship
among these steps and to identify the weakest link in the image-processing chain (Lu
et al. 2010). In Chapter 11, Lu and his colleagues update earlier research (Lu et al. 2004) by
re-examining the essential steps in change detection and by providing a case study for
detecting urban land-use/land-cover in a complex urban—rural frontier in Mato Grosso
state, Brazil, based on the comparison of extracted impervious surface data from multi-
temporal Landsat TM images. They conclude that the selection of a change detection pro-
cedure, whether a per-pixel, a subpixel, or an object-oriented method, must conform to the
research objectives, remote sensing data used, and geographical size of the study area.

The remaining sections of the book focus on various environmental applications of
remote sensing technology. Section III centers on the remote sensing of vegetation, but
each chapter has a very different approach or perspective. Chapter 12 reviews many of the
advancements made in the remote sensing of ecosystem structure, processes, and function,
and also notes that there exist important trade-offs and compromises in characterizing
ecosystems from space related to spatial, spectral, and temporal resolutions of the imag-
ing sensors. Huete and Glenn (2010) suggest that an enormous mismatch exists between
leaf-level and species-level ecological variables and satellite spatial resolutions, and this
mismatch makes it difficult to validate satellite-derived products. They further assert that
high temporal resolution hyperspectral remote sensing satellite measurements provide
powerful monitoring tools for the characterization of landscape phenology and ecosystem
processes, especially when these remote sensing measurements are used in conjunction
with calibrated, time-series-based in situ data sets from surface sensor networks.

In the western United States, wildfire is a major threat to both humans and the natural
environment. Dr. Steve Yool and his colleagues at the University of Arizona have been tak-
ing great efforts to study the dynamic relationships among fire, climate, and people from
an interdisciplinary perspective, which has been termed “pyrogeography” (Yool 2009). In
Chapter 13, Yool introduces a remote sensing method to estimate and to map a fuel mois-
ture stress index by standardizing normalized difference vegetation index (NDVI) with
the Z transform. This index can be employed as a spatial and temporal fine-scale metric
to determine fire season (Yool 2010). Based on a case study conducted in southeastern
Arizona, the author demonstrate that the onset and length of the fire season depend on
elevation and other microclimatic factors. Fire-season summary maps derived from the
fuel moisture stress index may potentially provide lead time to plan for future fire seasons
(Yool 2010).
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Knowledge of forest disturbance and regrowth has obvious scientific significance in
the context of global environmental change. Forest change analysis by using time-series
analysis of Landsat images is a logical approach, given the long history of Landsat data
records (see Chapter 1 for details). Chapter 14 introduces an approach for reconstructing
forest disturbance history using Landsat data records. Major steps include the develop-
ment of Landsat time-series stacks (Huang et al. 2009), and performing change analysis
using vegetation-change tracker algorithm (Huang et al. 2010). This approach has been
used to produce disturbance products for many areas in the United States (Huang 2010).
The author thus further presents two examples of application of this approach to the states
of Mississippi and Alabama and the seven national forests in the eastern United States. The
application of this approach for an area outside the United States is possible if the area has
a long-term satellite data record of quality and temporally frequent acquisitions, and an
inventory of Landsat holdings at international ground-receiving stations (Huang 2010).

Satellite-based modeling of the gross primary production (GPP) of terrestrial ecosys-
tems requires high-quality satellite data, extensive field measurements, and effective
radiative transfer models. Current satellite-based GPP models are largely founded on the
concept of light-use efficiency (Xiao et al. 2010). Such production efficiency models (PEMs)
may be grouped into two categories based on how they calculate the absorption of light
for photosynthesis: (1) those models using the fraction of photosynthetically active radia-
tion absorbed by vegetation canopy, and (2) those using the fraction of photosynthetically
active radiation absorbed by chlorophyll (Xiao et al. 2010). Chapter 15 provides a review of
satellite-based PEMs and highlights the major differences between these two approaches.
The authors conclude that further research efforts are needed in the validation of satellite-
based production efficiency models (PEMs) and the error reduction of GPP estimates from
net ecosystem exchange (NEE) data using a consistent method.

In Chapter 16, Thenkabail and colleagues discuss the maps and statistics of global crop-
lands and the associated water use determined by remote sensing and nonremote-sensing
approaches. Sources of uncertainty in the areas and limitations of existing cropland maps
are further examined. Thenkabail et al. (2010) conclude that among four major cropland
area maps and statistics at the global level, one study employed a mainly multisensor
remote sensing approach, whereas the others used a combination of national statistics and
geospatial techniques. However, the uncertainties in these major maps and statistics, as
well as the geographic locations of croplands, are quite high. They suggest that it is neces-
sary to utilize higher spatial and temporal resolution satellite images to generate global
cropland maps with greater geographic precision, crop types, and cropping intensities.

Section V presents examples of applications of remote sensing technology for studies of
air, water, and land. This section starts with atmospheric remote sensing, which has great
significance in the estimation of aerosol and microphysical properties of the atmosphere
in order to understand aerosol climatic issues at scales ranging from local and regional to
global. Aerosol monitoring at the local scale is more challenging due to relatively weak
atmospheric signals, coarse spatial resolution images, and the spectral confusion between
urban bright surfaces and aerosols. Chapter 17 reviews MODIS algorithms for aerosol
retrieval at both global and local scales, and illustrates them with a research involving
the retrieval of aerosol optical thickness (AOT) over Hong Kong and the Pearl River Delta
region, China, by using 500-m MODIS data. The feasibility of using 500-m AOT for map-
ping urban anthropogenic emissions, monitoring changes in regional aerosols, and pin-
pointing biomass-burning locations is also demonstrated. Wong and Nichol (2010) suggest
that due to the high temporal resolution of MODIS imagery, aerosol retrieval can be accom-
plished on a routine basis for the purpose of air quality monitoring over megacities.
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The quality of inland, estuarine, and coastal waters is of high ecological and economical
importance (Gitelson et al. 2010). Chapter 18 demonstrates the development, evaluation,
and validation of algorithms for the remote estimation of chlorophyll-a (Chl-a) concentra-
tion in turbid, productive, inland, estuarine, and coastal waters, a pigment universally
found in all phytoplankton species and routinely used as a substitute for biomass in all
types of aquatic environments. The rationale behind the bio-optical algorithms is pre-
sented and the suitability of the developed algorithms for accurate estimation of Chl-a
concentration is examined. Gitelson et al. (2010) assert that their algorithms, which are
developed by a semi-analytical method and calibrated in a restricted geographic area, can
be applied to diverse aquatic ecosystems without the need for further parameterization.

Chapter 19 is concerned with the interaction between the Earth’s land surface and the
atmosphere. Here, Petropoulos and Carlson provide a concise review of the development
of remote sensing-based methods currently used in the estimation of surface energy fluxes,
thatis, the one-layer model, two-layer model, and the “triangle” method (Gillies and Carlson
1995; Gillies et al. 1997), by examining the main characteristics and by comparing their
strengths and limitations. Next, remote sensing methods for estimation of soil-water con-
tent are assessed, which use visible, TIR, and microwave data, or their combinations. The
remaining half of this chapter provides a detailed account of the triangle method, its theo-
retical background, implementation, and validation; and the soil-vegetation—atmosphere
transfer (SVAT) model, which is essential for the implementation of the protocol.

Urban environmental problems have become unprecedentedly significant in the twenty-
first century. The National Research Council Decadal Survey suggests that urban environ-
ment should be defined as a “new science” to be focused on the U.S. satellite missions of
the near future (National Research Council 2007). As such, remote sensing of urban and
suburban areas has recently become a new scientific frontier (Weng and Quattrochi 2006).
Chapter 20 reviews remote sensing approaches to measure the biophysical features of the
urban environment, and examines the most important concepts and recent research pro-
gresses. This chapter ends with the author’s prospects on future developments and emerg-
ing trends in urban remote sensing, particularly, in the aspect of algorithms.

The U.S. Geological Survey (USGS) National Land-Cover Database (NLCD) has been
developed over the past two decades. NLCD products provide timely, accurate, and spa-
tially explicit national land cover at 30-m resolution, and have proven effective for address-
ing issues such as ecosystem health, biodiversity, climate change, and land management
policy. Chapter 21 summarizes major scientific and technical issues in the development
of NLCD 1992, NLCD 2001, and NLCD 2006 products. Experiences and lessons learned
from the development of NLCD in terms of project design, technical approaches, and proj-
ect implementation are documented. Further, future improvements are discussed for the
development of next-generation NLCD products, that is, the NLCD 2011.
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1.1 Introduction

The U.S. Landsat program is one of the most successful remote-sensing programs in the
world. The launch of the Landsat series of satellites marked the beginning of a new era
in remote sensing (Williams, Goward, and Arvidson 2006). Due to the critical role played
by vegetation in the terrestrial ecosystem and the emphasis of Landsat sensors on vegeta-
tion reflectance characteristics, Landsat data greatly enhanced our understanding of the
dynamics of vegetation and its functions in the terrestrial ecosystem (Cohen and Goward
2004). The first Landsat satellite, initially called the Earth Resource Technology Satellite,
was launched in 1972. To date, seven Landsat satellites have been launched (Table 1.1).
Except Landsat 6, all other satellites in the series were successfully put in orbit. Table 1.2
shows the history of sensors deployed on the Landsat satellites. The first three Landsat sat-
ellites had similar onboard sensors, including return beam vidicon (RBV) and multispectral
scanners (MSSs). Starting with Landsat 4, thematic mapper (TM) sensors were deployed
and RBV was removed. The TM sensors have 30 x 30 m spatial resolution for reflective
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TABLE 1.1
Brief History of Landsat Satellites

Temporal
Decommission Orbit Height Resolution
Satellite Launch Date Date (km) (days)
Landsat 1 July 23,1972 January 6, 1978 900 18
Landsat 2 January 22, 1975 February 25, 1982 900 18
Landsat 3 March 5, 1978 March 31, 1983 900 18
Landsat 4 July 16, 1982 - 705 16
Landsat 5 March 2, 1984 - 705 16
Landsat 6 October 5, 1993 Failure 705 16
Landsat 7 April 15, 1999 - 705 16
LCDM December 2012 - 705 16
TABLE 1.2
Sensors Used or to Be Used in Landsat Series Satellites
Sensor Satellite Band Width (pm) Spatial Resolution (m)
RBV Landsat 1,2 0.475-0.575 80
0.580-0.680 80
0.690-0.830 80
Landsat 3 0.505-9.750 30
MSS Landsat 1-5 0.50-0.60 79 (1-3)/82 (4-5)
0.60-0.70 79/82
0.70-0.80 79/82
0.80-0.11 79/82
Landsat 3 10.4-12.6 240
™ Landsat 4, 5 0.45-0.52 30
0.52-0.60 30
0.63-0.69 30
0.76-0.90 30
1.55-1.75 30
10.4-12.5 120
2.08-2.35 30
ETM Landsat 6 Same as TM Same as TM
0.50-0.90 15
ETM+ Landsat 7 Same as TM 30 (60 m thermal)
0.50-0.90 15
LCDM LCDM 0.433-0.453 30
0.450-0.515 30
0.525-0.600 30
0.630-0.680 30
0.845-0.885 30
1.560-1.660 30
2.100-2.300 30
0.5-0.680 15

1.360-1.390 30
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bands, and 120 x 120 m for the thermal band on the ground. This intermediate spatial
resolution imagery provides land-surface information detailed enough for most scientific
and application needs; the spatial resolution also allows the sensor to cover ground areas
large enough for regional planning and management with a single scene (185 x 175 km).

Thelongest-serving satellite to date among the Landsat series is Landsat 5. It was launched
in 1984, and remains in operation (as of December 1, 2009), with the exception of a few tem-
porary technical glitches. The TM sensors were upgraded to Enhanced Thematic Mapper
(ETM) sensors for the ill-fated Landsat 6, and the ETM sensor was further improved to
ETM+ onboard Landsat 7. The ETM+ sensor maintained the same multispectral bands
as TM at the same spatial resolution with the addition of a panchromatic band (15 x 15 m
spatial resolution). This band offers the opportunity to sharpen the other bands. With the
advance of technology, the thermal band on Landsat 7 was refined to 60 x 60 m from its
earlier 120 x 120 m spatial resolution. Unfortunately, the scan-line corrector on Landsat 7
permanently malfunctioned since May 2003, causing a loss of approximately 25% of the
data, most of which was located between scan lines toward the scene edges. Although
some gap-filling remedy operations can recover most of the data lost, the gap-filled data
cannot be guaranteed to have a quality equivalent to that of the original data. Fortunately,
the Landsat Data Continuity Mission (LDCM), the follow-up Landsat satellite, is currently
scheduled to launch in late 2012 (http://ldcm.nasa.gov). The LDCM sensors added two
more reflective bands for coastal and cirrus clouds needs, but dropped the thermal band
(Table 1.2). The Landsat image collection, spanning nearly four decades, is the longest
continuous data record of land-surface conditions. Landsat data has contributed signifi-
cantly to the understanding of the Earth’s environment (Williams, Goward, and Arvidson
2006). A complete review of the applications of Landsat images cannot be achieved within
a single book chapter. This chapter primarily focuses on the use of Landsat images in
extracting biophysical information of vegetation, with an emphasis on forests, which are
the biggest challenges faced by remote-sensing scientists.

1.2 Spectral Information of Vegetation in Landsat Thematic
Mapper/Enhanced Thematic Mapper+ Bands

The spectral information of vegetation in Landsat TM/ETM+ imagery is primarily deter-
mined by the designation of spectral bands as seen in Table 1.2. The first three bands of
TM/ETM+ sensors are in the visible spectrum. In the first three bands, reflected energy
from vegetation is determined by the concentration of leaf pigments. Leaves strongly
absorb solar radiation in the visible spectrum, particularly the red spectrum, for photosyn-
thesis. The fourth band is in the near-infrared (NIR) region of the solar spectrum, to which
healthy green leaves are highly reflective. The contrast in leaf reflectance between the red
and NIR spectra is the physical basis for numerous vegetation indices using optical remote
sensing. The two mid-infrared bands relate to the moisture content in healthy vegetation.

Vegetation indices produced by the combination of reflectance in red and NIR bands
are perhaps the most commonly used data in vegetation mapping using Landsat data.
The two mid-infrared bands are also very useful for vegetation monitoring. Horler and
Ahern (1986) found that the two mid-infrared bands are very sensitive to vegetation den-
sity, especially in the early stages of clear-cut regeneration. Fiorella and Ripple (1993a)
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found that the TM ratio 4:5 is highly correlated with the age of young Douglas fir stands
in the western Cascade mountains of Oregon. Kimes et al. (1996) were able to map the
ages of young forest stands using TM 3, 4, 5 along with elevation, slope, and aspect in the
H. J. Andrews Experimental Forest. Jakubauskas (1996) also found that the mid-infrared
bands of Landsat TM images were useful in differentiating early successional stages of
lodgepole pine stands in Yellowstone National Park.

The spectral information from Landsat TM/ETM+ reflective bands are not independent
of each other, but are highly correlated. Two statistical approaches are often used to reduce
information redundancy in the imagery. One commonly used approach is the principal
component analysis (Richards 1984; Fung and Ledrew 1987; Seto et al. 2002), in which the
image information from all six bands is compressed into the first few principal compo-
nents. Because the principal components are orthogonal to each other, there is no infor-
mation redundancy among the components. For Landsat imagery, more than 95% of the
variation can be compressed into the first three components. Thus, principal component
analysis can significantly reduce data volume with little information loss. However, the
principal component transformation of remotely sensed data is image dependent, that is,
the transformation coefficients vary from image to image and are sometimes difficult to
interpret. A similar approach, the tasseled cap transformation, is often applied to compress
information from the six reflective bands into three meaningful indices: brightness, green-
ness, and wetness (Crist and Cicone 1984). The tasseled cap transformation concept was
originally developed by Kauth and Thomas (1976) for Landsat MSS data. The advantages
of tasseled cap transformation over principal component analysis include (1) the resulting
components are meaningful; and (2) the transformation coefficients are preset, that is, not
dependent on images.

The tasseled cap indices, brightness, greenness, and wetness were extensively used
in extracting vegetation information. Fiorella and Ripple (1993b) found that although all
three indices can be used to separate old-growth forests from mature forests, wetness was
more significant than brightness and greenness. Cohen, Spies, and Fiorella (1995) reached
a similar conclusion that the tasseled cap wetness can be used to distinguish forest age
classes for closed-canopy conifer forests in the western Cascade mountains of Oregon.
The tasseled cap transformation was further developed by Collins and Woodcock (1996)
to become the multitemporal tasseled cap transformation. Using this approach, they were
able to detect tree mortality in the Lake Tahoe region.

1.3 Applications
1.3.1 Vegetation Cover

Vegetation-cover information in remote sensing usually involves one of two scales. On
the regional scale, land surface is classified as either vegetated or nonvegetated, and the
fraction of the vegetated area over the total area is referred to as vegetation cover. This
regional vegetation cover can be obtained in a relatively straightforward manner through
conventional classification of remotely sensed data, in which each pixel of the remotely
sensed data is labeled as a land-cover type. A tally of all the vegetated pixels among
the total pixels provides the vegetation cover. On the pixel scale, vegetation cover usu-
ally refers to the fraction of a single pixel occupied by green vegetation. Conventional
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classification labels a pixel as one and only one land-cover type; thus, it cannot provide
subpixel information. The spatial resolution of Landsat imagery often leads to multiple
components of land-cover types in a single pixel. It is particularly common in complex
landscapes, such as the urban environment, challenging the conventional classifica-
tion approach in estimating vegetation content. Subpixel vegetation cover is needed in
order to accurately measure the vegetation cover of these areas. Obtaining subpixel
vegetation-cover information requires the use of an analytical approach called spectral
mixture analysis (SMA).

SMA makes the following assumptions: (1) the landscape is composed of a few funda-
mental components, referred to as endmembers, each of which is spectrally distinct from the
others; (2) the endmember spectral signatures do not change within the area of interest;
and (3) the composite remotely sensed signal for a mixed pixel is linearly related to the
fractions of endmember presence (Sabol, Adams, and Smith 1992). The key step in SMA is
appropriate endmember selection, including the number of endmembers and their corre-
sponding spectral signatures (Tompkins et al. 1997; Elmore et al. 2000; Theseira et al. 2003).
Although Landsat TM/ETM+ imagery has six reflective bands, the number of endmem-
bers used for SMA is often only three or four due to the limitations in the dimensional-
ity of Landsat imagery. Smith et al. (1990) used three endmembers, vegetation, soil, and
shade, to map vegetation cover in a desert environment with Landsat imagery. Ridd (1995)
developed a three-endmember model, vegetation-impervious-soil (VIS), to map urban
structure for Salt Lake City, Utah. The VIS model was later applied to Bangkok, Thailand
(Madhavan et al. 2001) and Brisbane, Australia (Phinn et al. 2002). Small (2001) modified
the VIS model to a vegetation low albedo and high albedo (VLH) model for New York City
after analyzing a time series of Landsat TM imagery. Wu and Murray (2003) added a soil
endmember to the VLH model and it became a four-endmember model to describe the
urban structure for Columbus, Ohio.

The endmember signatures can be obtained from “pure” pixels in the image over which
the mixture analysis is performed. Endmembers whose spectral signatures are obtained in
this manner are called image endmembers. The advantage of image endmembers is that the
endmember spectral signatures are at the same relative measurement scale as the image
to be analyzed. The challenge is to identify the pure pixels that can be treated as end-
members. An alternative approach is to obtain the endmember signature from a spectral
signature reference library that was developed from spectroradiometer measurements on
the ground. Endmembers whose spectral signatures are obtained from a reference spec-
tral library are called reference endmembers. Although the reference endmember signatures
can be very accurate, care must be taken when using them for SMA as the signature data
and the image data are measured by two instruments under very different conditions. The
assumption that the endmember spectral signatures do not change within the area of inter-
est is an oversimplification of the real world. There are significant endmember signature
variations. For example, the vegetation endmember can be grass, coniferous, and broadleaf
trees, each of which has a very different spectral signature from the others. To accommo-
date the variations of endmember signatures, Roberts et al. (1998) developed the multiple
endmember SMA (MESMA), in which the spectral signatures of endmembers were dynam-
ically selected from a spectral library containing hundreds of reference endmembers. Song
(2005) developed a Bayesian SMA (BSMA) to account for the effect of endmember signa-
ture variation. In BSMA, an endmember spectral signature is no longer a single or enumer-
able spectral signature, but a probability distribution function. The BSMA is an effective
approach that accounts for endmember spectral signature variation and helps reduce error
in extracting subpixel vegetation fraction from Landsat imagery (Song 2005).
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1.3.2 Leaf Area Index
1.3.2.1 Measuring Leaf Area Index on the Ground

Leaves are the interface for energy and gaseous exchanges between the terrestrial ecosystem
and the atmosphere. The amount of leaves in a given area is measured by leaf area index
(LAI), which is generally defined as the one-sided total leaf area divided by the ground
area over which the leaves are distributed (Monteith and Unsworth 1973). This definition
is applicable to broadleaf trees. For coniferous trees, a projected leaf area is used (Myneni,
Nemani, and Running 1997). LAl is considered to be the most important land-surface bio-
physical parameter in understanding terrestrial ecosystem functions (Running and Hunt
1993). Therefore, the continuous estimation of LAI over a large geographic area via remotely
sensed data is of high interest to scientists. In fact, it is the only viable option for estimating
LAI continuously over the Earth’s land surface.

Estimating LAI from remotely sensed data is highly challenging due to a number of fac-
tors. It is very difficult to obtain accurate LAI on the ground for model development and
validation using remotely sensed data, particularly for forested areas. Two approaches can
be used to obtain LAI on the ground, as reviewed multiple times (Breda 2003; Weiss et al.
2004; Jonckheere et al. 2004): direct and indirect approaches. The direct approach involves
direct measurements of leaf area. The most destructive direct approach is complete har-
vesting of all vegetation within a delimited area. This approach is applicable for herbs and
crops, but impractical in forests. For forests, a destructive sampling approach is often used,
in which a standard tree is identified for each species and size class. The standard tree
is then harvested so that its total leaf area can be accurately measured and an allometric
relationship between total individual leaf area and the tree-stem diameter at breast height
(DBH) can be developed. The allometric relationship is then applied to estimate the total
leaf area for all individual trees within a sampling plot; then LAI can be calculated. This
is perhaps the most accurate measure of LAI but it is also very labor intensive. Few stud-
ies can afford this kind of sampling. Moreover, the allometric relationships developed at
one place do not transfer well to other places. The least destructive, but time-consuming,
direct approach to measure LAI is the litter-trap approach, in which multiple litter traps
of preset size are deployed in the forest stands. Leaves that fall into the traps are periodi-
cally harvested and their areas measured. For a deciduous forest, the maximum LAI can
be estimated at the end of the growing season. However, for a coniferous forest, one needs
multiple years of data to estimate the peak LAI This approach is time-consuming and
requires that constant attention be paid to the litter traps (McCarthy et al. 2007). An inter-
mediate destructive approach takes into consideration sapwood cross-sectional areas. Pipe
theory (Shinozaki et al. 1964) provides the theoretical basis for this approach. Marshall and
Waring (1986) found that using sapwood cross-sectional areas to estimate LAI was more
accurate than using DBH.

Indirect approaches using optical instruments are more efficient in measuring LAIL
Jonckheere et al. (2004) reviewed the theory and performance of optical instruments
used in estimating LAI, including LAI-2000 (Licor, Inc., Lincoln, NE), TRAC (3rd Wave
Engineering, Ontario, Canada)) DEMON (CSIRO, Canberra, Australia), Ceptometer
(Decagon Devices, Inc., Pullman, WA), and a digital hemispherical camera. The theoretical
basis for the optical measurements of LAI is Beer’s law. Assuming random leaf distribu-
tion within the canopy space, Beer’s law predicts canopy gap fraction as

P(0) = exp(— G(6)QL/cosb) (1.1
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where 0 is the solar zenith angle, P(6) is the canopy gap fraction in the direction of 6, and
G(0) is the leaf projection factor of unit LAI in the direction of 6. The clumping index is
Q, and the LAl is L in Equation 1.1. Most of the optical instruments measure P(0) for the
canopy. Given P(8) and certain assumption for G(6), we can obtain QL, that is, the effective
LAI (L,), but not L. The gap fractions measured by optical instruments are the combined
effects of leaf and woody components. To obtain LAL one needs to correct the measured
effective foliage area index for woody areas and the leaf clumping effect in Beer’s law as
follows:

L=(1-a)L./Q (1.2)

where o is the woody to total area ratio, which depends on the vegetation type. Gower,
Kucharik, and Norman (1999) provided o values for some common tree species, varying
from 0.03 to 0.22. Chen and Cihlar (1996) used the LAI-2000 device to measure L, and the
TRAC device to measure Q to estimate L. For conifer species, there is an additional level of
clumping, at the needle-to-shoot scale. The needle-to-shoot area ratio, 7, is needed to cor-
rect for the clumping index Q. Gower, Kucharik, and Norman (1999) provided vy values for
a few common needleleaf trees, ranging from 1.20 to 2.08. Kucharik, Norman, and Gower
(1999) designed an imaging device to estimate y. Therefore, for conifer forests, LAI can be
derived from effective LAI measured with the optical instruments as

L=(1-0)L.y/Q (1.3)

1.3.2.2 Mapping Leaf Area Index with Landsat Imagery

Landsat TM/ETM+ imagery has a unique advantage over many other satellite images in
mapping LAI because its spatial resolution is fine enough to identify individual stands. In
the meantime, the image covers a sufficiently large area to meet most application needs.
Because there are numerous other factors influencing remotely sensed signals received at
Landsat TM/ETM+ sensors, including LA leaf angle distribution, leaf clumping, sun and
viewing angles, and background conditions, LAI cannot be inverted analytically from
remotely sensed signals (Gobron, Pinty, and Verstraete 1997, Eklundh, Harrie, and Kuusk
2001). Most studies that map LAI using Landsat imagery have been based on empirical mod-
els. The mapping of LAI using Landsat imagery based on empirical models generally takes
place in three steps: (1) measuring LAI for sampling plots on the ground, (2) developing an
empirical model between LAI for the sampling plots and some spectral measurements for
the same locations, and (3) applying the empirical model spatially within the area of interest.
The most commonly used spectral measurements include the normalized difference vegeta-
tion index (NDVI) and the simple ratio (SR) vegetation index. For Landsat TM imagery, NDVI
is calculated from the surface reflectance values of the red (TM3) and NIR (TM4) bands as

_ Prvia —Pr™ms
NDVI= Prva T Prvs (14)

where pry; and pryy are surface reflectances for TM3 and TM4, respectively. The SR veg-
etation index is

SR = Pt (L5)

" Pz
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One of the earliest studies that used Landsat TM-type data was by Peterson, Westman,
and Stephenson (1986); they used Airborne Thematic Mapper simulator data to study the
potential of Landsat TM imagery for mapping LAL Their study was based on 18 conifer
stands with LAI values ranging from 0.6 to 16.1. These stands were distributed across west
central Oregon along an environmental gradient with a wide range of moisture and tem-
perature. Using atmospherically corrected surface reflectance, both linear (R? = 0.83) and
log-linear (R? = 0.91) regression explained the variation in LAI well. However, Peterson,
Westman, and Stephenson (1986) cautioned the use of the empirical relationships they
developed for a particular vegetation zone within the region. A study by Spanner (1994)
found that the empirical relationship between LAl and spectral vegetation indices strongly
depends on canopy cover and understory condition. To reduce the canopy cover effect,
Nemani et al. (1993) used the mid-infrared band to correct NDV], resulting in an improved
relationship between NDVI and LAL

Chen and Cihlar (1996) evaluated the potential of both NDVI and SR vegetation index
in mapping LAI using Landsat TM imagery. They found that NDVI and SR vegetation
index are better correlated to effective LAI than LAIL Due to the influence of understory
vegetation, midsummer Landsat TM imagery is not as good as late-spring imagery in
extracting LAL Turner et al. (1999) compared spectral vegetation indices with different
radiometric correction levels across three temperate zones, and found that NDVI based on
surface reflectance best correlates with LAL However, the NDVI-LAI relationship reaches
an asymptote when the LAI value reaches 3-5. They also found that the sensitivity of spec-
tral vegetation indices to LAI differs between coniferous and deciduous forests. Thus, it
is desirable to stratify land-cover classes in order to achieve local accuracy using spectral
vegetation indices to estimate LAIL The study by Fassnacht et al. (1997) reports similar
conclusions.

Both NDVI and SR vegetation index make use of information in only two of the six
bands from Landsat TM/ETM+ imagery. Nemani et al. (1993) used an additional band,
the mid-infrared band, to reduce canopy openness effect in NDVI, leading to an improved
empirical model. Brown et al. (2000) applied the same mid-infrared band to the SR vegeta-
tion index. Because the mid-infrared correction leads to a lower SR, Brown et al. (2000)
called the corrected SR the reduced SR (RSR). Chen et al. (2002) suggested that RSR can
unify coniferous and deciduous vegetation cover types in mapping LAI Although RSR
was not initially developed based on Landsat TM imagery, Chen et al. (2002) used the
RSR approach to develop a fine-resolution LAI surface based on Landsat TM imagery and
scaled up the algorithm with coarse spatial resolution imagery to produce an LAI surface
covering Canada. In order to make full use of the spectral information available in all
bands and to account for uncertainty in reflectance measurements, Cohen et al. (2003) pro-
posed a reduced major axis (RMA) regression approach to link LAI with spectral informa-
tion through canonical transformation. The RMA approach can significantly improve the
relationship between LAI and spectral information from Landsat imagery.

Because of the empirical nature of the approaches used to map LAI with Landsat imag-
ery, the fitness of the model varies significantly from study to study, as shown in Table 1.3.
These empirical models generally do not transfer well to places outside the area in which
they were developed. Therefore, for any new applications, one still has to develop his or
her own empirical models, and he or she should not expect the same good performance of
certain empirical models to reappear. There is still a significant amount of trial-and-error
efforts needed before an appropriate empirical LAl model can be developed. In the future,
mapping of LAI should not be limited to Landsat data only. The recent abundance of high
spatial resolution imagery offers new opportunities for mapping LAI (Colombo et al. 2003;
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TABLE 1.3

Regression Models in the Literature Using Landsat TM/ETM+ Images to Map LAI

Vegetation Index Ground LAI Model R? Source

SR Allometry SR=1.23+0.614 LAI 0.82 Running et al. 1986

SR Allometry SR =1.92 SR%583 0.91 Peterson et al. 1986

NDVI Allometry LAI=-1431 +32.25 NDVI 0.86 Curran et al. 1992

NDVI, Allometry NDVI, =0.70 exp (0.70 LAI) 0.64 Nemani et al. 1993

SR Ceptometer SR =3.1196 + 4.5857 log (LAI) 0.97 Spanner et al. 1994

SR LAI-2000/TRAC SR =2.781 +0.843 LAI 0.53 Chen and Cihlar 1996

NDVI Allometry NDVI =0.607 +0.0377 LAI 0.72 Fassnacht et al. 1997

NDVI Allometry NDVI=05724+0.0989 LAI- 074  Turner et al. 1999
0.0114 LAT? + 0.0004 LA

RSR LAI-2000/TRAC RSR=a+ B LAIR 0.55 Brown et al. 2000

RSR LAI-2000/TRAC RSR =1.0743 LAI +1.2843 0.63 Chen et al. 2002

CI Allometry LAI=419-1.68CI 0.72 Berterretche et al. 2005

NDVI LAI-2000 LAI= o exp (BNDVI)? 0.77 Soudani et al. 2006

Note: The spectral indices in the table include simple ratio (SR), reduced simple ratio (RSR), normalized differ-
ence vegetation index (NDVI), corrected normalized difference vegetation index (NDVI,), and canonical
index (CI).

2 Model parameters were not provided in the paper.

Soudani et al. 2006; Song and Dickinson 2008). In addition, remotely sensed data from
lidar sensors can provide valuable information for mapping LAI (Riano et al. 2004; Roberts
et al. 2005; Morsdorf et al. 2006), although lidar remote sensing does not cover the area
in a wall-to-wall fashion as optical remote sensing does. The synergistic use of informa-
tion from multiple sensors, each of which provides complementary information, should
be adopted in the future for accurate mapping of LAIL

1.3.3 Biomass

Biomass refers to the total dry weight of all parts that make up a live plant, including those
above (e.g., leaves, branches, and stems) and below (e.g., fine and coarse roots) ground. It is
the accumulation of the annual net primary production over the plant life after litter fall
and mortality. The information of forest biomass is of great scientific and economic value,
particularly over large areas. Obtaining biomass for individual plants requires destruc-
tive sampling of aboveground components and excavation of belowground components.
Destructive sampling is relatively easy to perform for herbaceous plants, but it is extremely
laborious and time-consuming to perform for forests (Whittaker et al. 1974). Moreover,
destructive sampling cannot be used to obtain biomass over large areas, particularly for
forests. A common approach to estimate areal-based biomass for forest ecosystems is to
develop an allometric relationship between the easily measured stem diameter at breast
height (DBH), and the individual biomass sampled on a species-specific basis, and then
apply this allometry to each individual within a sampling plot to estimate the areal-based
biomass. Tremendous efforts have been devoted to developing species-specific allometric
relationships for biomass in the past (Grier and Logan 1977; Gholz et al. 1979; Ter-Mikaelian
and Korzukhin 1997, Smith, Heath and Jenkins 2003; Jenkins et al. 2003). However, the
application of such species-specific biomass allometery to sampling plots cannot provide
spatially explicit distribution of biomass over large areas. Remotely sensed data pro-
vide the potential to scale up biomass from sampling plots to spatially explicit biomass
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over a region. Three types of remotely sensed data are investigated in the literature for
their potential use in mapping biomass: optical (Sader et al. 1989; Foody et al. 1996), radar
(Dobson et al. 1995), and lidar (Lefsky et al. 1999). The mapping of biomass using remotely
sensed data from radar and lidar sensors is beyond the scope of this chapter.

Optical remotely sensed signals over a vegetated area are primarily energy reflected by
the leaves; that is, biomass does not have a direct remote-sensing signal. However, LAI
usually reaches asymptote soon after canopy closure, whereas biomass can continue to
increase for many years (Song, Woodcock, and Li 2002). Figure 1.1 shows the results of
coupled GORT-ZELIG modeling from the Geometric Optical Radiative Transfer (GORT)
model with the ZELIG forest succession model for a typical stand in the H. J. Andrews
Experimental Forest. Forest biomass increases almost linearly in the first 100 years.
However, the remotely sensed signals are only sensitive to biomass change when biomass
is below 100 Mg/ha. Moreover, the relationships of NDVI and tasseled cap greenness with
biomass are influenced by background conditions. Tasseled cap wetness is resistant to
background noise, but all indices suffer from signal saturation problems. It is interesting to
note that the threshold for signal saturation from GORT-ZELIG simulation is very similar
to the threshold value for saturation from empirical studies (Steininger 2000).

The most common approach used for mapping biomass with Landsat TM/ETM+
imagery is to develop an empirical model that directly relates remotely sensed signals
(e.g., surface reflectance or vegetation indices) to biomass derived on the ground, and
then apply this empirical model spatially to the area of interest (Foody 2003; Zheng
et al. 2004). Numerous successful applications of this approach have been reported
(Anderson, Hanson, and Haas 1993; Roy and Ravan 1996; Fazakas, Nilsson, and
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FIGURE 1.1

The GORT-ZELIG model results for biomass and its relationship with spectral indices: (a) temporal trajectory
of biomass for a typical stand in H. J. Andrews Experimental Forest; (b) normalized difference vegetation
index (NDVI) versus biomass; (c) tasseled cap greenness versus biomass; and (d) tasseled cap wetness versus
biomass.



Remote Sensing of Vegetation with Landsat Imagery 13

Olsson 1999; Steininger 2000; Tomppo et al. 2002). However, these successful applica-
tions were performed in areas with low biomass. When the biomass is high, the remotely
sensed signals no longer respond to biomass increase (Sader et al. 1989; Trotter, Dymond,
and Goulding 1997). Lu (2005) reviewed the potential of using Landsat TM imagery for
mapping aboveground biomass in the Brazilian Amazon, and found that the spectral
signals are suitable for aboveground biomass for forests with simple structure. He also
indicated that spatial information is useful in mapping aboveground biomass, although
other studies found that spatial information from Landsat TM imagery provides little
help in extracting canopy structure because the spatial resolution is too coarse compared
to the size of trees (Cohen, Spies, and Bradshaw 1990; Song and Woodcock 2002).

Overall, the mapping of biomass remains a major challenge in remote sensing. Both
optical and radar remote sensing suffer from a signal saturation problem (Sader et al. 1989;
Dobson et al. 1995). An alternative is to use remotely sensed data from lidar sensors. Lidar
data provide canopy height information, from which canopy biomass can be derived using
allometry. Use of lidar remote sensing overcomes the signal saturation problem. However,
the height-biomass allometry is species specific. Lidar can only provide canopy height, but
not species-specific information. Moreover, lidar data does not provide wall-to-wall cover-
age except for small footprint lidar for a small area. Synergistic use of multiple sensors is
needed in the future for mapping biomass accurately with remotely sensed data.

1.3.4 Monitoring Forest Successional Stages with Landsat Imagery
1.3.4.1 Forest Succession

Forest ecosystems are the most complex terrestrial ecosystems on Earth, providing key
ecological goods and services for many other plants and animals, as well as for humans
(Dixon et al. 1994; Dobson, Bradshaw, and Baker 1997, Noble and Dirzo 1997, Myers
et al. 2000). Forests are constantly undergoing changes, even without human disturbance.
This process is called forest succession (Clements 1916). Forest succession is a complex eco-
logical process that involves multidimensional changes, including, but not limited to, the
growth and mortality of individual trees as well as the establishment of new individuals.
Depending on the initial condition, forest succession can be classified into primary suc-
cession and secondary succession. Primary succession begins in an area that has not been
previously occupied by a vegetation community, whereas secondary succession occurs in
an area from which a community was removed (Odum 1953). The ecological goods and
services provided by the forest ecosystem are highly dependent on forest successional
stages (Song and Woodcock 2003a; Pregitzer and Euskirchen 2004; Lamberson et al. 1992).
Therefore, it is not only important to know the location and size of forest areas, but it is
also crucial to know its successional stages in order to accurately understand their current
ecological functions or to predict their future ecological roles. Remote sensing offers the
potential to monitor forest successional stages over large areas.

1.3.4.2 Empirical Approaches

Two kinds of change occur in forest ecosystems: the gradual change of forest succession,
and the sudden change of deforestation due to anthropogenic (e.g., timber harvesting) or
natural (e.g., fire) disturbances. It is usually quite straightforward to map deforestation
with Landsat TM/ETM+ imagery as a result of dramatic change in surface reflectance
before and after the disturbance (Skole and Tucker 1993; Cohen et al. 1998; Woodcock et al.
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2001). A common empirical approach used to map forest successional stages is supervised
image classification. This approach first breaks the continuous successional sere into a dis-
crete set of successional stages. Then, a training set for each successional stage is identified
in the image, and a classifier is trained with the training set to classify the entire image. Hall
et al. (1991) studied the pattern of forest succession in Superior National Forest with two
Landsat MSS images (dated July 3, 1973 and June 18, 1983) after correcting the atmospheric,
seasonal, and sensor differences for the two images. Two sets of reference data were used.
One set was developed through ground observations, and the other was based on aerial
photography and high-resolution airborne digital imagery. These data were plotted in the
Cartesian space of MSS bands 1 and 4, and the spectral space for each successional stage
was delineated and applied to the rest of the image. Jakubauskas (1996) classified the lodge-
pole pine forests into six successional stages with a Landsat TM image based on 69 ground
control sites. Helmer, Brown, and Cohen (2000) were able to differentiate secondary and
old-growth forests through supervised classification with multidate Landsat images for
montane tropical forests. Fiorella and Ripple (1993b) used unsupervised classification to
sort a Landsat TM image into 99 spectral clusters, and then regrouped these clusters into
five successional stages. Cohen, Spies, and Fiorella (1995) were able to separate the closed-
canopy conifer forests into two or three age classes with regression analysis. Kimes et al.
(1996) were able to map forest stand ages for young stands (age <50 years) by combining
Landsat TM data with ancillary data for a neural network classifier. For recently regen-
erated secondary forests, it is possible to extract the forest age based on the time when
deforestation occurred (Foody et al. 1996; Lucas et al. 2002; Kennedy, Cohen, and Schroeder
2007; Huang et al. 2009). However, this approach works only for relatively young second-
ary forests. These successful empirical applications do not provide much guidance for new
applications elsewhere. More sophisticated approaches for monitoring forest succession
should be built on physical-based algorithms (Hall, Shimabukuro, and Huemmrich 1995).

1.3.4.3 Physical-Based Approaches
1.3.4.3.1 Li—-Strahler Model

Remotely sensed signals are essentially reflected energy within the sensor instantaneous
field of view recorded at the given sun—sensor geometry within a particular wavelength
range. For a forested scene, the structure and composition of the canopy as well as the back-
ground condition determine how much energy is received at the satellite sensor. Numerous
models have been developed to understand the relationship between scene structure and
the energy it reflects (Suits 1972; Verhoef 1984; Li and Strahler 1985). Most of these models are
forward models, that is, the model can predict the energy reflected given the scene structure
and sun—sensor geometry. Among such models, the Li-Strahler model (Li and Strahler 1985)
can be inverted for mean crown size and canopy cover over a stand, thus providing informa-
tion for forest succession. The Li-Strahler model assumes the reflected spectral energy for
a pixel is the area-weighted average of the first scattering of four scene components: sunlit
crown (C), shaded crown (T), sunlit background (G), and shaded background (Z), that is,

S=K.C+K,Z+K,G+K,T (1.6)

where § is the ensemble reflected spectral energy from a pixel, and the Ks are the areal frac-
tions of the corresponding scene components. Li and Strahler (1985) provided mathemati-
cal models describing the scene-component fractions based on optical theory given the
sun-sensor and tree crown geometry. Thus, the model is also called the geometric—optical
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model. Li and Strahler (1985) showed that the average tree crown radius for a forest stand

can be inverted from the remotely sensed images as follows:

_ V(m)—oM?
(1+0)M

2

(1.7)

where R is the expected value of tree crown horizontal radius, and o = (1+C?)* -1 with C,
being the coefficient of variation of the crown radius. The parameter m is called the “tree-
ness” factor, which is defined as the ratio of the sum of squared crown radii of all trees in a

pixel to the area of the pixel (A), that is, m = (Z; 12 ) /A =nR?/A, where n is the number of

trees in the pixel. V(m) and M are the interpixel variance and the mean value of m within
a forest stand, respectively. The treeness factor () for a given pixel can be derived from
remotely sensed data as follows:

_lcsi s
TIGX]

where ||GS|| is the Euclidean distance between G (sunlit background reflectance) and S
(ensemble pixel reflectance) in the spectral space, and X is the gravity center of the triangle
CTZ. Similarly, ||GX|| is the Euclidean distance between G and X; T is a scalar of geo-
metry factor. The Li-Strahler model assumes the pixel size is significantly larger than the
tree crown size, yet there is significant variation in tree counts among the pixels covering
a forest stand. Thus, the forest stand is significantly larger than the pixel size. The spa-
tial resolution of Landsat TM/ETM+ data meets the aforementioned requirements well.
Franklin and Strahler (1988) and Wu and Strahler (1994) achieved some success in estimat-
ing tree crown size with the Li-Strahler model. However, in more comprehensive studies,
Woodcock et al. (1994, 1997) showed that although tree cover can be mapped effectively
with the Li-Strahler model, separation of crown cover into tree crowns based on the inver-
sion of the Li-Strahler model was poor.

1.3.4.3.2 GORT-ZELIG Model

The Li-Strahler model assumes that tree crowns are three-dimensional opaque objects
randomly distributed in the scene. Multiple scattering of photons within the forest canopy
and between the background and the canopy was significantly simplified. Li, Strahler, and
Woodcock (1995) further improved the model to account for the multiple scattering of pho-
tons by integrating the geometric—optical model with a traditional turbid medium radiative
transfer model (GORT). They also modified the crown shape from the previously considered
cone to the more flexible ellipsoid. The ellipsoid is a more realistic abstraction for most tree
crowns (Peddle, Hall, and LeDrew 1999). Ni et al. (1999) further simplified the original GORT
model to become an analytical model. The analytical GORT is relatively simple to apply in
modeling the bidirectional reflectance distribution function (BRDF) for a forest scene, and
also integrates the strength of both geometric-optical and radiative transfer models.

Song, Woodcock, and Li (2002) coupled the GORT model with a gap-type forest succes-
sional model, ZELIG (Urban 1990), which was in turn developed based on the JABOWA
(Botkin, Janak, and Wallis 1972) and the FORENA (Shugart and West 1977) models. The
ZELIG model provides canopy structure to GORT, which provides canopy reflectance
under a given sun-sensor geometry. Song, Woodcock, and Li (2002) simulated a Douglas
fir/western hemlock stand for the first 50 years of succession and produced the canopy
reflectance for the six reflectance bands of Landsat TM sensors under two contrasting
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FIGURE 1.2

The modeled temporal trajectory of forest succession with GORT-ZELIG in the tasseled cap brightness/greenness
space for a typical stand in the H. J. Andrews Experimental Forest with two contrasting background condi-
tions. The numbers on the lines indicate years in succession. (Reprinted from Remote Sensing of Environment, 82,
Song, C., Woodcock, C. E., and Li, X, The spectral/temporal manifestation of forest succession in optical imag-
ery: The potential of multitemporal imagery, 285-302. Copyright (2002), with permission from Elsevier.)

background conditions. Figure 1.2 shows the spectral-temporal trajectories associated
with forest succession in the tasseled cap brightness/greenness space. The spectral-
temporal trajectory of forest succession is highly nonlinear, indicating that the monitoring
of forest succession requires multiple images in time to determine the forest’s successional
stage. Background conditions strongly influence the canopy reflectance before canopy clo-
sure. For a bright grass background, the establishment of trees leads to a rapid decrease
in brightness due to the shadows cast. However, for a dark soil background, the establish-
ment of new trees causes a rapid increase in greenness but a minimal change in bright-
ness. The spectral trajectories from the two contrasting backgrounds converge when the
canopy closes, minimizing the influence of background conditions.

To validate the nonlinearity of forest succession, spectral-temporal trajectories were
constructed from multiple Landsat images for several stands with similar ages but differ-
ent growth conditions in the H. ]. Andrews Experimental Forest. Figures 1.3a—c show that
the observed spectral-temporal trajectories for a few well-regenerated young stands, con-
structed from a series of multitemporal Landsat images, do possess the modeled nonlinear-
ity. However, the one stand (Figure 1. 3d) that was not well regenerated did not show the
modeled spectral-temporal trajectory. Biophysical modeling, such as GORT-ZELIG, pro-
vides a theoretical basis for understanding the manifestation of forest succession in optical
imagery through time.

A complete forest succession sere can span several centuries, whereas Landsat TM imag-
ery dates only as far back as 1984. There are no satellite images that provide coverage for
a complete forest succession sere. A similar strategy that was used in traditional forest
succession studies can be used in monitoring forest succession with satellite imagery, that
is, the “substitute space for time” strategy. This strategy reconstructs a complete forest suc-
cession sere with forests at different successional stages at the same time, but in different
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FIGURE 1.3

Observed successional trajectories for four stands identified on the ground in the H. J. Andrews Experimental
Forest: (a), (b), and (c) are three successfully regenerated stands and (d) is a poorly regenerated stand. The
successional trajectories were constructed from two overlapping Landsat thematic mapper scenes (4629:
path = 46, row = 29; 4529: path = 45, row = 29). (Reprinted from Remote Sensing of Environment, 82, Song, C.,
Woodcock, C. E,, and Li, X, The spectral/temporal manifestation of forest succession in optical imagery: The
potential of multitemporal imagery, 285-302. Copyright (2002), with permission from Elsevier.)
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FIGURE 1.4

Spectral-temporal trajectories of forest succession from young to old-growth forests reconstructed using the
substitute space for time strategy in the H. J. Andrews Experimental Forest. The successional trajectories were
constructed from two overlapping Landsat thematic mapper scenes (4629: path = 46, row = 29; 4529: path = 45,
row =29). (Reprinted from Remote Sensing of Environment, 82, Song, C., Woodcock, C. E., and Li, X, The spectral/
temporal manifestation of forest succession in optical imagery: The potential of multitemporal imagery, 285-302.
Copyright (2002), with permission from Elsevier.)
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FIGURE 1.5

Modeled temporal trajectories with GORT-ZELIG for tasseled cap brightness, greenness, and wetness asso-
ciated with forest succession from young to old-growth stages for a typical stand in the H. J. Andrews
Experimental Forest. (Reprinted from Remote Sensing of Environment, 106, Song, C., Schroeder, T. A., and Cohen,
W. B, Predicting temperate conifer forest successional stage distrubtions with multitemporal Landsat Thematic
Mapper imagery, 228-237. Copyright (2007), with permission from Elsevier.)

places. Figure 1.4 shows the spectral-temporal trajectories for a complete forest succession
sere reconstructed from a multitemporal Landsat TM image series for several stands. The
spectral-temporal trajectories for a complete forest succession sere are more complicated
than the modeled trajectories for young stands.

Song, Schroeder, and Cohen (2007) further improved the GORT-ZELIG simulation by
introducing a two-layer canopy structure, an understory and an overstory, so that the
simulation can continue to the old-growth successional stage. They also introduced leaf
spectral signature changes from mature to old-growth forests. Figure 1.5 shows the non-
linear spectral-temporal trajectory for a typical stand on a flat surface in the H. J. Andrews
Experimental Forest. The tasseled cap brightness index decreases rapidly in the first 10-15
years and then slowly with stand age. The tasseled cap greenness and wetness indices
increase relatively rapidly with stand age in the first 10-15 years and then decrease gradu-
ally with stand age.

Song, Schroeder, and Cohen (2007) used more than 1000 stands with known age classes
from the U.S. Forest Service forest inventory and analysis (FIA) data in western Oregon
and multiple Landsat images to validate the modeled successional trajectory (Figure 1.6).
Because of the long time involved, the substitute space for time strategy was used to con-
struct a successional trajectory for a complete forest succession sere. Each age class in the
FIA plots represents a span of 10 years. Therefore, the initial rapid change in the bright-
ness, greenness, and wetness indices as modeled in Figure 1.5 cannot be seen. However,
the gradual decrease in brightness and greenness is clear from the mean values of all
stands at the same age class despite tremendous variations in the spectral signature. The
decrease in tasseled cap wetness is not seen when all the stands are put together. The
decreasing trend became clear after the stands were separated into coastal ranges and
western Cascades (Figure 1.7). Song, Schroeder, and Cohen (2007) also did some regres-
sion analysis to predict the age class of stands. They found that using spectral information
from multiple Landsat images improved the prediction of stand age based on the adjusted
R?in the analysis.



Remote Sensing of Vegetation with Landsat Imagery 19

0.4 0.35
0.351F 0.3 =
o INIT-. 71 - L e NGRS
§ 02 S§p CERRAAA S }\N o
"0:.0 0.2 R "‘H\T T"TTT 8 0.15 1 TI [+
=015 EEEEEI g O TTITLg
2 00 YTV S o J@Agsss!
0.05 0.05
0 T T T T 0 T T T T
0 5 10 15 20 0 5 10 15 20
Age class Age class
(@) (b)
0
0.02 .y R
—0.04 1 Tt T E — =
@ 1
g -0.06
§ -0.08
-0.1
-0.12
_0014 T T T T
0 5 10 15 20
Age class
(©)
FIGURE 1.6

Observed mean successional trajectory reconstructed from a single Landsat thematic mapper imagery in west-
ern Oregon based on U.S. Forest Service forest inventory and analysis plot data. The vertical lines indicate stan-
dard deviation: (a) brightness, (b) greenness, and (c) wetness. (Reprinted from Remote Sensing of Environment,
106, Song, C., Schroeder, T. A., and Cohen, W. B., Predicting temperate conifer forest successional stage distribu-
tions with multitemporal Landsat Thematic Mapper imagery, 228-237. Copyright (2007), with permission from
Elsevier.)
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The observed temporal trajectory for wetness for the same forest inventory and analysis plots in Figure 1.6¢, after
separating the plots into geographic regions: (a) coastal ranges of Oregon and (b) western Cascades of Oregon.
(Reprinted from Remote Sensing of Environment, 106, Song, C., Schroeder, T. A., and Cohen, W. B. Predicting tem-
perate conifer forest successional stage distributions with multitemporal Landsat Thematic Mapper imagery,
228-237. Copyright (2007), with permission from Elsevier.)
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1.3.4.4 Factors of Uncertainty

Several factors contribute to the noise in Landsat remotely sensed data for monitoring
forest succession, including sensor degradation, atmospheric effects, phenology, topog-
raphy, and sun-sensor geometry (Song and Woodcock 2003b). Landsat 5 sensor deg-
radation is well known (Thome et al. 1997; Teillet et al. 2001; Chander, Markham, and
Helder 2009). In the past, the data user had to sort through the literature to determine
the sensor gain for a particular image. In this Internet era, the time-dependent sensor
gains of Landsat 5 can be obtained online, and images are also provided. Landsat 7
ETM+ sensors were found to be stable (Teillet et al. 2001). Among the numerous uncer-
tain factors, when and how to correct for atmospheric effects on Landsat images are
the most confusing issues faced by data users, particularly relatively new data users.
Song et al. (2001) evaluated the commonly used correction approaches for classification
and change detection. They found that the more complicated approach for atmospheric
correction did not necessarily lead to higher classification and change detection accura-
cies. They further evaluated such approaches for monitoring forest succession (Song and
Woodcock 2003b). The effect of atmospheric correction depends on the spectral infor-
mation used. For example, the tasseled cap wetness index is not sensitive to different
algorithms, whereas the tasseled cap greenness index and NDVI are quite sensitive to
the algorithm used.

Forests often occur in mountainous areas on Earth. Although trees always grow upright
regardless of the slope of a surface, topography changes the sun—object-sensor geome-
try, thereby influencing the proportions of shaded and sunlit objects seen by the sensor
(Schaaf, Li, and Strahler 1994). Moreover, remotely sensed images collected by Landsat
sensors over different years from the same place are often affected by seasonal varia-
tions, which give rise to noise from multiple confounding factors. First, due to phenology,
the amount of leaves that reflects solar radiation to the sensor varies with the season.
Therefore, the same forest can have very different spectral signals in different seasons
(Song and Woodcock 2003b). Second, the position of the sun can change significantly in
different seasons, causing changes in the proportions of sunlit and shaded objects view-
able by the sensors. Variations in local topography can further complicate the problem.
The sun—object-sensor geometry effect can be modeled by biophysical models, such as the
GORT-ZELIG model (Song, Woodcock and Li 2002); but the phenological effect is difficult
to incorporate in these models to account for changes in canopy reflectance. Thus, model-
ing forest succession using multitemporal images is best done with images collected close
to the anniversary date.

1.3.5 Landsat and Moderate Resolution Imaging Spectroradiometer Data Fusion

Landsat TM/ETM+ data provide enough spatial details for monitoring land-cover and
land-use change. However, the 16-day revisit cycle has limited their use for studying
global biophysical processes, which evolve rapidly during the growing season. In cloudy
areas of the Earth, the problem is much worse; researchers are fortunate to get two to three
clear images per year, and often they get none at all. In the meantime, Moderate Resolution
Imaging Spectroradiometer (MODIS) sensors aboard the Terra and Aqua platforms provide
daily global observations that are valuable in capturing rapid surface changes. However,
spatial resolutions of 250 x 1000 m may not be good enough for heterogeneous areas. To
better utilize Landsat and MODIS data, one solution is to combine the spatial resolution of
Landsat with the temporal frequency of MODIS.
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The Terra platform crosses the equator at about 10:30 A.m., local time, roughly 30 minutes
later than Landsat 7. Their orbital parameters are identical; thus, the viewing (near-nadir)
and solar geometries for the Terra platform are close to those of the corresponding Landsat
acquisition. The MODIS observations include 250-m spatial resolution for red (band 1) and
NIR (band 2) wavebands and 500-m spatial resolution for the other five MODIS land bands
(bands 3-7). The MODIS land bands have corresponding spectral means to the Landsat
ETM+ sensor except their bandwidths are narrower than ETM+. Comparisons between
MODIS and Landsat surface reflectance data reveal that they are very consistent (Masek
et al. 2006).

Traditional image fusion methods such as the intensity-hue—saturation (IHS) transfor-
mation, principal component substitution (PCS), and wavelet decomposition focus on pro-
ducing new multispectral images that combine high-resolution panchromatic data with
multispectral observations acquired simultaneously at coarser resolutions. They are use-
ful for generating pan-sharpened images. However, they are not effective in synthesiz-
ing spatial resolution and temporal coverage when input data sources are acquired from
different dates that may be affected by larger geolocation errors, larger coarse-to-fine reso-
lution ratio, and dynamic land-surface changes.

In order to combine Landsat and MODIS data, a spatial and temporal adaptive reflec-
tance fusion model (STARFM) was developed (Gao et al. 2006). It provides valuable infor-
mation for applications that require high resolution in both time and space (Hilker et al.
2009a). This model uses a weighting function to fuse MODIS and Landsat data by intro-
ducing additional information from spectrally similar neighboring pixels. The changes of
reflectance from coarse-resolution homogeneous pixels are applied to the fine-resolution
image. Simulations and predictions based on actual Landsat and MODIS images show that
STARFM can predict reflectance well if coarse-resolution homogeneous pixels exist in the
image (Gao et al. 2006). This approach makes several reasonable assumptions. First, atmo-
spherically corrected surface reflectance values are assumed to be comparable from time
to time and location to location. Second, similar adjacent land-cover areas are assumed to
have similar spectral patterns and temporal change patterns over a limited area. Third, the
surface reflectance of a homogeneous land-cover type is assumed to be identical for both
coarse and fine spatial resolutions.

Figure 1.8 shows the STARFM-predicted surface reflectance () on September 17, 2001
at Landsat spatial resolution from MODIS images of the same day (b) and ETM+/MODIS
image pairs on August 12, 2001 (a and d) and September 29, 2002 (c and f). The model-
predicted image captures rapid seasonal changes from MODIS data while retaining the
Landsat spatial details. Clear land and water boundaries can be predicted from the addi-
tional spatial information from neighboring pixels. Linear objects such as roads are obvi-
ous in the predicted images.

The STARFM method does not explicitly handle the directional dependence of reflec-
tance in MODIS products. It uses either MODIS surface reflectance (Vermote, El Saleous,
and Justice 2002) from nadir view or MODIS nadir BRDF-adjusted reflectance (Schaaf et al.
2002) as inputs. Roy et al. (2008) considered a semiphysical fusion approach that uses the
MODIS BRDF/albedo product and Landsat ETM+ data to predict ETM+ reflectance. This
method assumes that the MODIS modulation term c is representative of the reflectance
variation at Landsat ETM+ scale, which may not hold when reflectance change occurs in a
spatially heterogeneous manner at scales larger than the 30-m Landsat pixels and smaller
than the 500-m MODIS pixels (Roy et al. 2008).

The STARFM algorithm relies on the spectrally similar pixels from Landsat image for
prediction. It cannot predict disturbance events if the changes caused by disturbances are
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(d) ETM+, August 12,2001 (e)

FIGURE 1.8

(See color insert following page 426.) Predicted Landsat surface reflectance (e) using STARFM from daily
Moderate Resolution Imaging Spectroradiometer (MODIS) reflectance imagery (b) and Landsat/MODIS image
pairs (a and d, c and f). (Reprinted from Gao, F., Masek, J., Schwaller, M., and Forrest, H., On the blending of the
Landsat and MODIS surface reflectance: Predicting daily Landsat surface reflectance, IEEE Trans Geosci Remote
Sens 44(8):2207-18. © (2006) IEEE.)

transient and not recorded in the base Landsat images. Hilker et al. (2009b) proposed a
new fusion algorithm based on the STARFM algorithm called spatial temporal adaptive algo-
rithm for mapping reflectance change (STAARCH). The STAARCH algorithm uses the MODIS-
derived change sequence to identify the dates of the disturbance events, with which the
STAARCH algorithm can choose the optimal Landsat base data and thus improve the
accuracy of the synthetic Landsat images for each available date of MODIS imagery.

The STARFM algorithm can predict fine-resolution data well if homogeneous coarse-
resolution pixels exist in the image (Gao et al. 2006). It is less ideal if the prediction area
is complex and most coarse-resolution pixels are mixed. To solve this problem, enhanced
STARFM (ESTARFM) was developed by considering conversion coefficients in the model
based on the pixel unmixing theory (Zhu et al. 2010) so that homogeneous pixels and het-
erogeneous pixels have different conversion coefficients in the prediction. The ESTARFM
algorithm also has the potential to be applied to different data sources/sensors that may
not be consistent due to the differences in sensor characteristics or data processing.

1.4 Conclusions

The role of Landsat imagery in monitoring vegetation is irreplaceable. The spatial resolu-
tion of Landsat TM/ETM+ imagery is fine enough to provide the spatial details of
vegetation, and coarse enough to allow a single Landsat scene to cover 185 x 175 km,
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meeting most regional application needs. The design of the spectral bands best captures
the reflectance characteristics of vegetation. In addition, nearly four decade’s worth of
image archive has been continuously recorded, which is the longest data record among all
remote-sensing programs, and the temporal information has proven invaluable for moni-
toring vegetation conditions. Landsat data have been successfully used for monitoring
vegetation area changes by land-use/land-cover classification and change detection, SMA,
and extracting biophysical parameters, such as LAI, biomass, and forest successional
stages. Two types of approaches were used in the literature: empirical approaches and
biophysical models. Although classification and change detection with Landsat imagery
for areal changes in vegetation have been well established in the literature, the extraction
of biophysical parameters, particularly LAIL biomass, and forest successional stages,
remains a challenging task, primarily because of signal saturation. The best use of Landsat
data in the future requires synergistic use of data from different sensors, including optical
sensors at higher spatial resolution that provide texture information or coarse spatial reso-
lutions that provide temporal information, and lidar/radar sensors, which provide compli-
mentary vegetation information unavailable from Landsat. Unquestionably, LCDM will
greatly enhance the value of the Landsat data series for scientific investigations, which
will be unrivaled by any other sensor. The Landsat series data will continue to play a piv-
otal role in enhancing our understanding of vegetation spatial patterns as well as the eco-
logical functions of the vegetation in the future.
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2.1 Introduction

The Moderate-Resolution Imaging Spectroradiometer (MODIS) is one of the key instruments
designed as part of the National Aeronautics and Space Administration (NASA)’'s Earth-
Observing System (EOS) to provide long-term global observation of the Earth’s land, ocean,
and atmospheric properties (Asrar and Dokken 1993). The instrument was developed based
on experiences with the Advanced Very High Resolution Radiometer (AVHRR) and the
Landsat Thematic Mapper (TM). MODIS was designed not only for providing continuous
global observations but also as a new-generation sensor with an increased combination
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of spectral, spatial, radiometric, and temporal resolutions. In addition to emphasizing the
advances in the sensor instrument, the MODIS mission also emphasizes the development
of operational data-processing algorithms to generate global remote-sensing spectral data
sets and a variety of value-added products spanning both the optical and biophysical
domains. The motivation is to provide MODIS standard products to the general scientific
community to support both theoretical and practical applications. Two MODIS instru-
ments were initially scheduled for launch on the EOS-AM and EOS-PM platforms in June
1998 and December 2000, respectively (Running et al. 1994). The actual launch dates were
December 18, 1999 (EOS-Terra) and May 4, 2002 (EOS-Aqua). Terra MODIS data have been
available since February 2000. Subsequently, numerous scientific papers have been pub-
lished on MODIS data, algorithms, validation, and applications.

This chapter provides a review of selected MODIS data products and algorithms. We
review a large number of MODIS algorithm theoretical basis documents (ATBDs) devel-
oped by individual MODIS science teams and scientific papers published over the last
10-15 years. Our main interest is to review MODIS algorithms in order to increase under-
standing of the standard data products, document advances and limitations, and identify
data quality and validation issues. The general organization of this chapter is as follows:
First, we briefly describe the MODIS sensor characteristics. Then, we review selected
MODIS data products and algorithms for land, atmosphere, and ocean disciplines. Our
focus is on the MODIS land product because of its relatively wider use among the three.
Finally, we review a wide range of applications and research activities that emphasize the
broad range of MODIS products.

2.1.1 Moderate-Resolution Imaging Spectroradiometer Sensor Characteristics

Both EOS-Terra and EOS-Aqua are polar-orbiting sun-synchronous platforms. The orbit
height of EOS platforms is 705 km at the equator. Terra’s equatorial crossing time (descend-
ing) is 10:30 A.m. local time, approximately 30 minutes later than the Landsat 7 satellite. Aqua
crosses (ascends) the equator at approximately 1:30 p.m. Each MODIS instrument has a two-
sided scan mirror that operates perpendicular to the spacecraft track. The mirror scanning
extends 55° at either sides of the nadir, providing a nominal swath of 2330 km. The wide
swath allows nearly global coverage to be obtained by each instrument every 1-2 days.

In addition to high temporal resolution, the MODIS sensor has high spectral, spatial, and
radiometric resolutions compared to previous sensor systems, such as the AVHRR. A total
of 36 spectral bands are carefully positioned across the 0.412-14.235 um spectral region.
Among the 36 spectral bands, the first two bands are located in the red (0.648 pm) and near-
infrared (NIR; 0.858 um) regions with a spatial resolution of 250 m. There are five additional
bands (bands 3-7: 0.470 um, 0.555 pm, 1.240 um, 1.640 um, and 2.13 um) with a spatial reso-
lution of 500 m located in the visible to shortwave infrared (SWIR) spectral regions. The
remaining 29 spectral bands (bands 8-36) have 1000-m spatial resolution, and are located
in the middle and long-wave thermal infrared (TIR) regions. The MODIS instrument also
has a 12-bit radiometric resolution and an advanced onboard calibration subsystem that
ensures high calibration accuracy (Guenther et al. 1998; Justice et al. 1998). The sensor char-
acteristics are considered to be substantially improved over other similar observation sys-
tems (Townshend and Justice 2002). Unlike the AVHRR (mainly designed for monitoring
the atmosphere), the MODIS sensor, is well suited for a wide range of research applications
intended to improve the understanding of land, ocean, and atmosphere processes, domain
interactions, and the impacts of human activity on the global environment. Table 2.1 shows
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TABLE 2.1

MODIS Technical Specifications Including Primary Use, Band Numbers, Bandwidths, Spectral
Radiance, Spatial Resolutions, and SNR

Spectral Spatial
Bandwidth Radiance Resolution at
Primary Use Band (pm) (W/m?2-pm-sr) SNR Nadir (m)
Land/cloud boundaries 1 0.620-0.670 21.8 128 250
2 0.841-0.876 247 201
Land/cloud properties 3 0.459-0.479 35.3 243 500
4 0.545-0.565 29.0 228
5 1.230-1.250 54 74
6 1.628-1.652 7.3 275
7 2.105-2.155 1.0 110
Ocean color/phytoplankton/ 8 0.405-0.420 44.9 880 1000
biogeochemistry 9 0.438-0.448 419 838
10 0.483-0.493 32.1 802
11 0.526-0.536 27.9 754
12 0.546-0.556 21.0 750
13 0.662-0.672 9.5 910
14 0.673-0.683 8.7 1087
15 0.743-0.753 10.2 586
16 0.862-0.877 6.2 516
Atmospheric water vapor 17 0.890-0.920 10.0 167 1000
18 0.931-0.941 3.6 57
19 0.915-0.965 15.0 250
Spectral Spatial
Bandwidth Radiance Required Resolution at
Primary Use Band (pm) (W/m2pm-sr) NEAT(K)? Nadir (m)
Surface/cloud temperature 20 3.660-3.840 0.45 0.05 1000
21 3.929-3.989 2.38 2
22 3.929-3.989 0.67 0.07
23 4.020-4.080 0.79 0.07
Atmospheric temperature 24 4.433-4.598 0.17 0.25 1000
25 4.482-4.549 0.59 0.25
Cirrus clouds 26 1.360-1.390 6.00 1500 1000 m
Water vapor 27 6.535-6.895 116 0.25 1000
28 7.175-7.475 2.18 0.25
29 8.400-8.700 9.58 0.05
Ozone 30 9.580-9.880 3.69 0.25 1000
Surface/cloud temperature 31 10.780-11.280 9.55 0.05 1000
32 11.770-12.270 8.94 0.05
Cloud top altitude 33 13.185-13.485 4.52 0.25 1000
34 13.485-13.785 3.76 0.25
35 13.785-14.085 3.11 0.25
36 14.085-14.385 2.08 0.35

2 NEAT(K) = noise-equivalent temperature difference.
b SNR.
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MODIS technical specifications including primary use, band numbers, bandwidths, spec-
tral radiance, spatial resolutions, and signal-to-noise ratio (SNR).

2.1.2 Data Products and Algorithms

The MODIS instrument calibration, algorithm development, and standard data products
are provided by the MODIS science team. The science team consists of over 70 American
and international scientists, divided into four discipline groups for calibration, land, atmo-
sphere, and ocean. Each discipline group has clearly defined scientific responsibilities, and
close interactions between the groups are maintained throughout algorithm development,
data processing, evaluation, and product distribution.

MODIS data products are broadly categorized into five levels from level O to level 4.
The MODIS level-0 data set is the initial data set automatically converted from the instru-
mental raw format. The level-0 data are subsequently split into granules, and an Earth
location algorithm is employed to add geodetic position information to each MODIS gran-
ule. This creates the MODIS level-1A product that contains geodetic information, such as
latitude, longitude, height, satellite zenith/azimuth angle, and solar zenith/azimuth angle
(Nishihama et al. 1997). Level-1A data are further processed to generate level-1B prod-
uct (calibrated radiance for all bands and surface reflectance values for selected bands).
Additional information such as data quality flags and error estimates are also provided.
The MODIS level-1B data are still considered to be instrument data. The data are used
primarily as input to derive higher-order MODIS geophysical products (levels 2-4). For
example, MODIS level 2G is a gridded product that stores level-2 data in an Earth-based
uniform grid system. Level-3 data provide an estimation of optical or biophysical variables
for each grid element for predefined spatial and temporal resolutions (e.g., daily, eight-day,
and monthly). Algorithms for level-3 products often include spatial resampling, averaging,
and temporal composition. Finally, level-4 data are generated through a variety of algo-
rithms, models, and statistical methods. Generally, additional ancillary data are required
to generate level-4 data (e.g., MODIS net primary production [NPP] product).

MODIS data products are also labeled by collection version. Each collection version indi-
cates a complete set of MODIS files corresponding to a specific data updating or reprocess-
ing stage. At the time of preparation of this chapter, the MODIS science team had completed
the processing of collection-5 data. The MODIS team anticipates that another round of data
processing will be conducted in 2010, subject to the availability of new MODIS algorithms.
The distribution of MODIS land, atmosphere, and ocean data is primarily supported by
three data centers: the Goddard Space Flight Center in Greenbelt, MD (level 2, level 2G,
ocean color, sea-surface temperature); the U.S. Geological Survey EROS Data Center in
Sioux Falls, SD (land products); and the National Snow and Ice Data Center (NSIDC) in
Boulder, CO (snow and sea ice). The MODIS level-1 and atmosphere products are distrib-
uted through the Level-1 and Atmosphere Archive and Distribution System Web site.

2.2 Moderate-Resolution Imaging Spectroradiometer Land Products

MODIS land products are developed by the MODIS land discipline group (MODLAND).
Standard land products include both remote sensing surface variables (i.e., radiance, sur-
face reflectance) and a wide range of derived variables such as vegetation indexes (VIs),
leaf area index (LAI), fraction of photosynthetically active radiation (fPAR), bidirectional
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reflectance distribution function (BRDF), land-surface temperature (LST), NPP, fire and
burn scar, land cover and land-cover change, and snow and sea ice cover (Justice et al. 1998;
Running et al. 1994). Detailed descriptions of MODIS land products are provided by
Justice et al. (1998) and ATBDs developed by the MODIS science team. Selected MODIS
land products, algorithms, and validation issues will be reviewed in this chapter.

2.2.1 Surface Reflectance

The core of the MODIS surface reflectance algorithm is atmospheric correction. Atmospheric
gases, aerosols, and clouds have direct impacts on solar radiation though absorption and
scattering. The atmospheric effects may modify pixel brightness and change wavelength
dependence on radiance (Herman and Browning 1975; Kaufman 1989). The objective of
atmospheric correction is to remove atmospheric effects, and thus extract surface reflec-
tance values as if they were measured at ground level. The successful retrieval of surface
reflectance values is important for improving remote-sensing data quality and subsequent
data analysis and applications (Gordon, Brown, and Evans 1988; Liang et al. 2002; Tanre,
Holben, and Kaufman 1992).

One of the principal challenges for an operational atmospheric correction algorithm is
the large variations of aerosols and water vapor in space and time. Often, the optical char-
acteristics of aerosols are very difficult to model because of large variations in aerosol
loadings, particle sizes, and distributions. Due to the lack of available data on aerosol char-
acteristics, previous operational atmospheric correction algorithms often assume stan-
dard atmosphere with zero or constant aerosol loading to simplify the problem. The main
advantage of the MODIS atmospheric correction algorithm is that it derives atmospheric
characteristics from the MODIS data itself. The MODIS-derived data on aerosol optical
thickness and water vapor content are coupled with MODIS spectral information and other
ancillary data (i.e., a digital elevation model) in a radiative transfer model to derive sur-
face reflectance values. The direct implementation of the radiative transfer model at a per-
pixel level is impossible for daily global MODIS data, because of the high computational
cost involved. Therefore, a lookup table (LUT) approach is used to simplify the radiative
transfer computation. A number of atmospheric effect quantities, such as path radiance,
atmospheric reflectance for isotropic light, and diffuse transmittance, are precalculated for
different aerosol loadings and sun-view geometries using the second simulation of a satel-
lite signal in the solar spectrum (6S) code (Vermote et al. 1997). Surface reflectance values
are then estimated using a second-degree equation. The detailed mathematical equations
and algorithms are described by Vermote and Vermeulen (1999).

It should be noted that the MODIS atmospheric correction algorithm also considers adja-
cent effects, BRDF, and atmosphere coupling effects. The adjacent effects occur when the
reflectance of a target pixel is mixed with those from surrounding pixels (Tanre, Herman,
and Deschamps 1981). These effects should not be ignored for heterogeneous ground sur-
faces, especially for fine-resolution pixels (i.e., 250 m). The MODIS atmospheric correc-
tion algorithm employs an inverting approach to correct the adjacent effects under linear
combination assumptions (Tanre, Herman, and Deschamps 1981). The coupling of BRDF
with atmospheric correction is implemented using a priori estimates of surface BRDF. The
MODIS algorithm uses the BRDF from a previous 16-day period (Strahler et al. 1996), which
increases accuracy compared to the commonly used Lambertian assumption.

MODIS surface reflectance values are derived for MODIS bands 1-7 using the atmospheric
correction algorithms. The major advantage of this approach is that MODIS-derived atmo-
spheric optical properties are used to achieve automated and operational correction at the
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global level (Kaufman and Tanre 1996). The quality of MODIS surface reflectance is highly
dependent on a number of MODIS-derived input data products (i.e., atmospheric proper-
ties) and on radiative transfer models that incorporate various theoretical assumptions.
The validation of MODIS surface reflectance products has been conducted by intensive
field campaigns and continuous validation at various validation sites. Liang et al. (2002)
suggested that the direct comparison of MODIS surface reflectance values and ground
point measurements is unrealistic due to scale mismatch. They proposed deriving surface
reflectance values using higher-resolution remote sensing data (e.g., Landsat data) along
with field calibration data, and then upscaling (i.e., degrading) the high-resolution sur-
face reflectance values to the MODIS spatial resolution. In their validation work, MODIS
surface reflectance values appear to have reasonable accuracy (+5%) when compared to
the degraded Landsat-derived surface reflectance values. Note that this validation effort
was conducted mostly for vegetated areas on relatively clear days. Additional continu-
ous validation is needed for different land-cover conditions and aerosol loadings. It is
important to incorporate additional validation results to further improve the quality of the
MODIS surface reflectance data product, because the product serves as an important input
to many higher-level MODIS algorithms that produce MODIS land products such as Vls,
land-cover classification, change detection, fire products, and others.

2.2.2 Vegetation Indexes

It has been widely shown that VIs provide valuable measurements of vegetation activity
and conditions (Tucker 1979; Tucker, Townshend, and Goff 1985). The normalized differ-
ence VI (NDVI) is probably the most commonly used VI, because it is highly correlated
with many other biophysical parameters related to vegetation canopy properties, pro-
cesses, and functions (Curran 1980; Tucker et al. 1981; Asrar et al. 1984; Goward, Tucker,
and Dye 1985). Mathematically, NDVI is a simple ratio of two linear combinations of spec-
tral reflectance values of NIR and red bands,

NDV] = PNIR ~Pred. @.1)
PNIR T Pred

where PNk and Pred denote surface reflectance values at the NIR and red wavelength inter-
vals, respectively. NDVI data is one of the standard MODIS VI products (Justice et al. 1998;
Huete et al. 2002). This data set is also referred to as continuity data, which extend the
AVHRR’s long-term NDVI records.

In addition to the NDVI product, MODIS VI products also include a newly developed
enhanced VI (EVI) (Huete et al. 2002),

EVI=G x PNIR ~ Pred (22)
Pnr T C1 XPred — C2 X Pplye L

where G is the gain factor, C; and C, are aerosol resistance coefficients, and L is the canopy
background adjustment. The numeric values for these coefficients are 2.5, 6.0, 7.5, and 1.0,
respectively (Huete, Justice, and Liu 1994; Liu and Huete 1995). Compared to NDVI, EVI
provides improved sensitivity of vegetation signals in high biomass or dense forest regions
(Huete et al. 2002). The EVI1is also better correlated with tree canopy structure characteristics
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such as LAI (Gao et al. 2000). The finest spatial resolution of the MODIS VI product is 250 m.
It should be noted that there is no 250-m blue band for the MODIS instrument; thus, the
500-m blue-band surface reflectance values are used as replacements to generate 250-m EVI
products. Also, water, clouds/shadows, and pixels with heavy aerosol loadings are masked
out for the VI products, since VI values are not robust for these cover types.

The MODIS standard VI products are provided at 250 m, 500 m, 1.0 km, and 0.05° (5600 m)
resolutions through 16-day data composites. The MODIS VI data composite algorithm was
developed based on the experiences gained from the AVHRR-NDVI composite algorithm.
The motivation was to generate cloud-free and consistent NDVI products at the global
scale. The AVHRR-NDVI composite algorithm selects the maximum NDVI value for a pixel
within each 14-day time interval. This is commonly referred to as the maximum value com-
positing (MVC) algorithm. One main drawback of this algorithm is that it favors pixels with
large view angles. Such pixels often have higher NDVI values than the nadir-view pixels,
but they may not be cloud free (Goward et al. 1991). The MODIS science team developed
two new approaches to solve this problem: the constrained-view angle-MVC (CV-MVC)
approach and the BRDF-composite (BRDF-C) approach. The CV-MVC compares the two
highest NDVI/EVI values and selects the one with the smaller view angle for composit-
ing, which typically improves the spatial consistency for VI time-series data. The BRDF-C
algorithm is considered to be more complicated. It requires a minimum of five valid VI
values for each pixel to mathematically interpolate nadir-view reflectance values and VIs
(Walthall et al. 1985). This largely limits its applicability in regions with frequent cloud
cover; thus, it can be considered a region-dependent algorithm. Currently, CV-MVC is
used as the primary compositing algorithm for MODIS VI products with MVC as a backup
algorithm. The BRDF-C algorithm is not used due to its regional dependency.

The results of the validation of MODIS VIs have been reported by a number of research-
ers (Huete et al. 2002; Gao et al. 2003; Brown et al. 2006). Gao et al. (2003) compared MODIS
VIs with those from high spatial resolution images through a scaling-up approach. It was
found that both MODIS 1-day VI and 16-day composited VI matched well with the values
derived from higher spatial resolution data sets. Huete et al. (2002) conducted validation
work in four field campaigns across the United States and at sites in North America and
South America. They compared MODIS NDVI and EVI with regard to temporal (sea-
sonal) vegetation profiles, dynamic range and saturation, and their relationships with
biophysical variables such as LAI, biomass, canopy cover, and fraction of absorbed pho-
tosynthetically active radiation (APAR). The MODIS NDVI and EVI temporal profiles
matched during the vegetation growing season in selected biomes. One noticeable dif-
ference between MODIS NDVI and EVI was the dynamic range. Whereas MODIS NDVI
appears to be saturated (e.g., >0.9) in high biomass regions, EVI shows more sensitivities
in such regions without suffering data saturation. The latter is also more advantageous in
that it differentiates forest types such as broadleaf and needleleaf forests, whereas MODIS
NDVI shows very similar signals for these forest types. These differences can have direct
impacts on VI-based land-cover mapping applications. A comparison between MODIS-
NDVI and AVHRR-NDVI also showed interesting results (Huete et al. 2002). These two
time-series products have very similar signals for arid and semiarid regions in dry sea-
sons; however, MODIS-NDVI products have much higher values in wet seasons. Brown
et al. (2006) further suggested that the differences between these two NDVI products are
land cover—dependent and they cannot simply be interchanged for analyses. These stud-
ies suggest the challenge of data “continuity” between AVHRR-NDVI and MODIS-NDVI
data records. The contributing factors include differences in sensor band characteristics
and the atmospheric correction and compositing algorithms used. Further research is
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needed to link AVHRR-NDVI and MODIS-NDVI in a more consistent manner for moni-
toring global vegetation conditions and changes.

2.2.3 Land Cover and Change Detection Products

Timely and accurate global land-cover information is important for a wide range of stud-
ies, including those on global climate change, carbon and hydrologic balance, terrestrial
ecosystems, and human impacts on the natural earth system (Townshend and Justice 2002).
Operational global land-cover mapping, however, is extremely challenging due to limita-
tions in training data, a high computational cost, and intrinsic spectral confusion between
land-cover classes. Historically, global land-cover maps have been compiled by a number of
research institutions and organizations (Friedl et al. 2002). The first remote sensing—based
global map was produced by DeFries and Townshend (1994) using time-series AVHRR-
NDVI monthly composite data at a 1.0-degree spatial resolution. AVHRR-based global
maps at finer spatial resolutions (e.g., 1-8 km) have been subsequently developed using
a variety of classification algorithms (Loveland et al. 2000). The main concern regarding
the AVHRR-derived land-cover data products is related to AVHRR sensor characteristics,
which were not configured for land-cover mapping. The MODIS science team has high
expectations for MODIS-derived land-cover map products, mainly due to the improved
sensor characteristics (spatial, spectral, and radiometric resolutions), advances in com-
puter algorithms, such as those on atmospheric correction and image classification, and
improved quality and quantity of training data sites. Land-cover mapping and land-cover
change was identified as the most important task of the MODIS land science team (Asrar
and Dokken 1993; Running et al. 1994).

MODIS land-cover classification follows the International Geosphere-Biosphere
Programme classification scheme. A total of 17 land-cover classes are defined including
11 natural vegetation classes, 3 nonvegetation classes, and 3 human-altered classes (Friedl
et al. 2002). The training data points are designed to ensure global representation through
the system for terrestrial ecosystem parameterization (Muchoney et al. 1999). This global
site database includes more than 1373 sites. Training data points are developed mainly
through visual interpretation of high-resolution remote sensing imagery. Additional ancil-
lary data were also used to augment training data points. Note that the global site database
is dynamic and needs to be updated continually to meet the requirements of operational
global land-cover mapping. The inputs for MODIS land-cover classification include the
16-day composite of MODIS surface reflectance values (bands 1-7) and the EVI. Two image-
classification algorithms were considered for land-cover classification by the MODIS sci-
ence team. A supervised decision-tree algorithm (Quinlan 1993) was selected over a neural
network (Carpenter et al. 1992) algorithm, based on global operational considerations. An
advanced boosting algorithm (Freund 1995) was integrated with the decision-tree algo-
rithm. This provided more robust estimates of per-pixel probabilities of class membership.
Currently, standard MODIS land-cover products are provided at 500-m and 0.05-degree
spatial resolutions on annual intervals.

The validation of MODIS land-cover data products is an ongoing process. Initial results
from Friedl et al. (2002) suggest improved classification performance over AVHRR-derived
products. This can be attributed to increased MODIS sensor characteristics, advances in atmo-
spheric correction, and improved classification algorithms. The accuracy of MODIS land-cover
products, however, does appear to have high regional differences. The quality of MODIS
land-cover products at high latitudes is particularly questionable due to the deterioration
of MODIS inputs at such latitudes (e.g., low solar zenith angles). Considerable classification
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confusion may occur between agriculture and natural vegetation. In a recent study, Giri, Zhu,
and Reed (2005) compared the MODIS global land-cover data and the Global Land Cover
2000 (GLC-2000) data. These two global land-cover data sets are derived using very differ-
ent input data and classification algorithms. Although a general agreement was found at the
class aggregated level, there were substantial differences for individual classes. Moreover,
the agreements were highly variable across different biomes. This calls for further studies in
the development of land-cover classification schemes and classification algorithms.

The MODIS land-cover change algorithm does not use a postclassification comparison
approach. The main reason is that the classification errors associated with two individual
image classifications can be accumulated during postclassification comparisons, which
may seriously impact change detection performances (Singh 1989). Instead, the MODIS
land-cover change algorithm relies on the analysis of multitemporal image stacks or time-
trajectories to assess the land-cover dynamics caused by processes such as deforestation,
agricultural expansion, and urbanization. Change-vector analysis (Lambin and Strahler
1994) is the primary change detection technique used in the MODIS land-cover change
algorithm. The input data for the change-vector analysis include a variety of MODIS-derived
spectral-spatial variables such as VIs, surface temperature, and spatial structure indexes.
To detect the annual land-cover change between consecutive years, these variables are com-
piled for each individual year by monthly (32-day) composites. The land-cover states of the
two consecutive years can be treated as two points located in a multitemporal feature space.
A change vector can thus be generated by linking these two points in the multitemporal
feature space. The direction and magnitude of the change vector are assessed to identify
potential land-cover changes (Lambin and Strahler 1994). The main advantages of using
change-vector analysis are that it can overcome the error accumulation problem and identify
subtle land-cover changes. Currently, the MODIS land-cover change product is provided
at 1.0-km spatial resolution. In addition to the annual land-cover change product, Zhan
et al. (2002) developed the vegetative cover conversion product as a global alarm product of
land-cover change caused by anthropogenic activities and extreme natural events. The spa-
tial resolution of the land-cover change alarm product is 250 m. The MODIS level-1B data
was used as input for decision trees to detect wildfire, flood, and deforestation activities.
Furthermore, the MODIS research team at the University of Maryland is actively develop-
ing enhanced land-cover and land-cover change products. Such products include the global
250-m land-cover change indicator product, the global 500-m vegetation continuous fields
(VCF) product, and the global 1.0-km land-cover product. The validation of MODIS land-
cover change products is an ongoing process. A review of the recent literature suggests
that very few studies have been performed for the validation of MODIS land-cover change
products at the local, regional, and global levels.

2.2.4 Fire Products

MODIS fire products consist of both fire detection and burn scar products. The theo-
retical background of the fire detection algorithm is provided by Kaufman et al. (1992).
The MODIS fire detection algorithm also benefits from the rich experiences gained from
the AVHRR and visible and infrared (IR) scanner (Giglio, Kendall, and Tucker 2000). The
main objective of the algorithm is to automatically detect locations where active burning is
occurring. The primary inputs for the fire detection algorithm are MODIS spectral signals
at4 and 11 um. The MODIS channel at 4 um is considered to be the most sensitive channel
for both fire flaming and fire smoldering, whereas the channel around 11 um (TIR) detects
strong emissions from fires (Dozier 1981). The MODIS fire detection algorithm consists of
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multiple processing steps to identify fire pixels. The initial step removes obvious nonfire
pixels through a preliminary classification; potential fire pixels are then identified through
the thresholding of brightness temperatures (T, and T;,) derived from the MODIS channels
at 4 and 11 pm. The threshold values of T, are specified as 310 K and 305 K for daytime
and nighttime pixels, respectively. In addition, the difference between T, and T;; needs to
be larger than 10 K for a pixel to be labeled as a potential fire pixel. The MODIS spectral
values at bands 1 (0.648 um), 2 (0.858 pm), and 7 (2.13 um) are also incorporated in the deci-
sion rules to reduce false alarms (e.g., sun glint) and confusion caused by clouds (Nath,
Rao, and Rao 1993).

Within the potential fire pixels, the MODIS fire algorithm further considers two
approaches to identify unambiguous fire pixels. The first approach relies on high thresh-
old values of brightness temperatures to identify actual fire pixels. The second approach
examines the contextual information of neighboring pixels (from 3 x 3 to 21 x 21) to identify
active fire pixels. At least eight valid neighboring pixels are required for the background
contextual analysis using 4 and 11 um brightness temperature values. The brightness tem-
perature values for focal pixels are compared with the background contextual statistics to
make decisions. The final fire products are labeled using the following categories: missing
data, cloud, water, nonfire, fire, or unknown (Giglio et al. 2003). The fire radiative power is
also computed for each fire pixel using the empirical relationship developed by Kaufman
et al. (1998). A range of standard MODIS fire products are provided at various processing
levels (level 2, level 2G, and level 3) with different spatial (1.0 km and 0.5°) and temporal
resolutions (daily, eight-day, and monthly composite).

The MODIS burn scar algorithm was developed by Roy et al. (2002). Burn scar products
identify the spatial extent of the recent burn area, in contrast to the identification of active
fire in the MODIS fire algorithm. The identification of burn scars at the global scale is an
extremely challenging task since the spectral signals of burn areas are very similar to
those of other land-cover types such as flooding area and shadows from clouds and sur-
face relief. The current MODIS burn scar algorithm can be considered a change detection
approach through a statistical and temporal modeling of bidirectional reflectance vari-
ables. For each pixel, the bidirectional reflectance values within a predefined temporal
window (i.e.,, 16-day) are used in a statistical model to predict a subsequent reflectance
value. This predicted value is then compared to the actual observed surface reflectance
value to identify the chance of change. Threshold values are specified to identify pixels
with large decreases of surface reflectance values. The primary inputs to the MODIS burn
scar algorithm are MODIS bands 2 (841-876 nm) and 5 (1230-1250 nm), which are the most
sensitive to burning and postfire reflectance change. Additionally, simple band relation-
ships among MODIS bands 2, 5, and 7 are used in the MODIS burn scar algorithm to
reduce false alarms such as cloud shadow or soil moisture changes.

The validation of MODIS file product has been conducted by several researchers using
Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)-derived fire
products as references (Morisette et al. 2005; Csiszar, Morisette, and Giglio 2006). These
studies concluded that approximately 50% of the large fire clusters (45-60 ASTER pixels)
were correctly identified. Ellicott et al. (2009) validated the MODIS-derived fire products
(during 2001-2007) and found a slight underestimation in fire extent. They further ana-
lyzed the spatial distribution and found that Africa and South America account for about
70% of global fires annually, suggesting high rates of biomass burning in those regions.
For the validation of burn scar products, Chang and Song (2009) compared the standard
MODIS burn scar products with burned areas derived in the SPOT-based L3JRC product
for the years 2000-2007. The spatial and temporal patterns of these two products were
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found to be consistent, especially during the fire season. The research also suggested that
MODIS burn scar products performed better than L3JRC products when compared with
selected ground-based measurements in Canada, China, Russia, and the United States.
One noticeable problem with the MODIS burn scar product is the underestimation of burn
area in boreal forests.

2.2.5 Snow and Sea Ice Cover

Data regarding spatial extents and dynamics of global snow cover are important for stud-
ies pertaining to hydrologic and biogeochemical cycling, surface albedo, global energy
balances, and climate change (Robinson, Dewey, and Heim 1993). Although large-scale
hemispheric snow maps are routinely developed by the National Environmental Satellite
Data and Information Service and the Interactive Multisensor Snow and Ice Mapping
System (IMS), their spatial resolutions are generally coarse (e.g.,, IMS product at a reso-
lution of 25 km). The MODIS snow-cover algorithm, or Snowmap, was developed as an
automated computer algorithm that can be used to identify snow cover at higher spatial
resolutions (e.g., 500 m) globally (Hall, Riggs, and Salomonson 2001; Hall et al. 2002).

Snow cover has distinct spectral signals that can be clearly differentiated from most
other natural land-cover types. The primary confusion is with clouds, but previous
research suggests that snow and cloud cover have different spectral responses at visible
and SWIR channels. Specifically, snow cover has a strong reflectance in the visible range,
but a low reflectance in the SWIR spectral region. On the other hand, clouds typically have
strong reflectance values in both spectral regions (Dozier 1989). A ratio-based normalized
difference snow index (NDSI) has been developed for snow mapping with Landsat data
(Dozier 1989). The NDSI is also one of the primary algorithms used for MODIS Snowmap
products.

band 4—band 6
NDS[= ——WMM————
band 4 + band 6 @3)

The MODIS Snowmap algorithm uses sensor reflectance values in bands 4 and 6 to com-
pute the NDSI (Equation 2.3). A pixel is labeled as snow if the NDSI value is larger than
the threshold value of 0.4. Additional decision rules in the Snowmap include the thresh-
olding of MODIS bands 2 (>0.11) and 4 (>0.10). Generally, the NDSI value decreases as the
purity of snow pixels is reduced. In order to identify a partial snow pixel (e.g.,, >50%) in a
forested region, Snowmap incorporates MODIS-NDVI to map the snow pixel. For instance,
pixels might be labeled as snow in cases of NDVI = 0.1 approximately and NDSI <0.4 (Hall
et al. 2002). Currently, standard MODIS snow products are provided at daily and tem-
poral compositing of 8-day and monthly intervals. The temporal compositing algorithm
simply selects a maximum value within a specified temporal interval. A similar decision-
rules technique used in Snowmap has also been employed for the MODIS sea ice product
through the sea ice mapping algorithm (Icemap).

Validation of the Snowmap product has been difficult due to limited reference data and
scale mismatch between various remote sensing-derived snow map products. Klein and
Barnett (2003) conducted a snow map validation study for the upper Rio Grande River
basin of Colorado and New Mexico using snow-cover map products developed by the
National Operational Hydrologic Remote Sensing Center (NOHRSC). A high overall agree-
ment of 86% was reported. The MODIS and NOHRSC snow-cover maps were also com-
pared with in situ snow measurements. The MODIS Snowmap product performed best,
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with a 94% agreement. Noticeable MODIS Snowmap errors occurred in locations where
snow depths were less than 4 cm. Ault et al. (2006) compared MODIS snow products with
data from a number of observation stations that included amateur observations across
the Laurentian Great Lakes region. The MODIS snow-cover map matched very well with
observational data sets. Major errors identified in the MODIS snow-cover map occurred in
forested areas. Hall and Riggs (2007) reported that the accuracy of selected MODIS snow
product images (500 m) was approximately 93%. Confusion between snow and cloud was
a major problem. Although the Snowmap algorithm successfully differentiates a majority
of snow and cloud pixels at a 500-m spatial resolution, there were large uncertainties at the
partial or subpixel level. Additional uncertainties were attributed to thin snow cover. The
snow-cover composite data is believed to be less accurate due to error accumulation from
the daily snow product (Hall and Riggs 2007).

2.2.6 Leaf Area Index and Fraction of Photosynthetically Active Radiation

The term LAI denotes one-side green leaf area per unit ground area. It is a plant-canopy
attribute that is often used in process-based ecosystem, hydrology, and global climate
models (Sellers et al. 1997). The term fPAR denotes the fraction of photosynthetically active
radiation absorbed by plant canopies. A large amount of research has been conducted
to study the relationships among plant-canopy reflectance, spectral VIs, LAIL and fPAR
(Asrar et al. 1984; Asrar, Myneni, and Kanematsu 1989). One common approach estimates
LAI and fPAR by developing empirical models based on remote sensing surface reflec-
tance or VIs such as NDVI (Asrar, Myneni, and Kanematsu 1989).

The MODIS LAI/fPAR algorithm relies on a three-dimensional (3D) radiative transfer
model and an LUT approach to estimate LAI/fPAR. A global biome map is developed to
allocate land-cover types to six broad biomes, including grasses and cereal crops, shrubs,
broadleaf crops, savannas, broadleaf forests, and needleleaf forests (Myneni et al. 2002).
This simplifies a number of assumptions and input parameters for the radiative transfer
model. The 3D radiative transfer model generates several spectral and angular signatures
that can be compared to the MODIS directional surface reflectance values through a LUT.
The MODIS LAI/fPAR algorithm then derives location-specific results by incorporating
the law of energy conservation (Knyazikhin et al. 1998). Further details about the MODIS
LAI/fPAR algorithm and its theoretical background can be found in work by Knyazikhin
et al. (1999). Standard MODIS LAI/fPAR products include 1-km spatial resolution data for
both the daily and eight-day maximum value composite data set.

Privette et al. (2002) conducted initial validation work for MODIS LAI products using
field-sampled data in southern Africa and found that the accuracy of these products is
within an acceptable level. The MODIS LAI products successfully depicted the structural
and phenological variability in semiarid woodlands and savannas. Wang et al. (2004)
conducted LAI validation work in a needle-leaf forest site near Ruokolahti, Finland. Field-
based LAI measures were first linked to high-resolution Landsat images and then aggre-
gated to match the MODIS spatial resolution. The MODIS LAI products showed a higher
variation than expected. The values were also overestimated compared to the field-based
LAl measures. The authors suggest that the understory vegetation might cause such uncer-
tainties. [iames (2008) assessed MODIS LAI products for the evergreen needleleaf biome in
the southeastern United States. The major challenges were attributed to the uncertainties
in the creation of the high-resolution LAI reference map, land-cover classification, and the
influences from vegetative understory. Yang et al. (2006) further addressed the sources of
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MODIS LAI uncertainties, including the inputs of land-cover maps, surface reflectance,
and LUTs used in the MODIS LAI algorithm. Kanniah et al. (2009) assessed the accuracy of
LAl and fPAR for a north Australian savanna site and found that the MODIS products cap-
tured the seasonal variation in LAI and fPAR well, especially the most recent collection-5
data. However, Xiao et al. (2009) raised concerns related to the spatial-temporal discon-
tinuity of MODIS LAI products for many locations. They proposed a new algorithm for
estimating LAI from time-series MODIS reflectance data to increase temporal continuity
and improve accuracy.

2.2.7 Net Primary Productivity

In addition to developing standard products linked to plant-canopy structure and bio-
optical properties, the MODIS science team also emphasizes the development of algo-
rithms and standard products for plant productivity and processes. One of the standard
MODIS products that provides a key measure of vegetation productivity is NPP. It denotes
the rate of net carbon gain by vegetation over a specified time period and can also be repre-
sented as the difference between gross primary production (GPP) and plant respiration. It
is commonly measured at monthly, annual, or longer temporal intervals. The estimation of
NPP requires the integration of ecological principles, remote sensing data, and other ancil-
lary surface data sets. Potter et al. (1993) found that NPP can be estimated as a product of
APAR and an efficiency of radiation use. The theoretical basis of the relationship between
APAR and NPP is provided by Monteith (1972, 1977).

Theoretically, NPP values can be estimated based on an empirical relationship between
APAR and NPP that has been demonstrated in numerous studies (Asrar et al. 1984; Goward,
Tucker, and Dye 1985). However, the relationship between the two variables is also depen-
dent on vegetation type and numerous other control factors, such as concentration of
photosynthetic enzymes, canopy structure, and soil-water availability (Russell, Jarvis, and
Monteith 1989; Running et al. 1999). This represents a considerable challenge to the devel-
opment of an operational MODIS NPP algorithm using the APAR-based approach. The cur-
rent MODIS NPP algorithm relies on an alternative approach that computes the difference
between GPP and plant respiration. The basis for this approach is that APAR is actually
more closely related to GPP than to NPP (Running et al. 1999). A detailed algorithm flow-
chart can be found in the work of Running et al. (1999). The primary algorithm can be bro-
ken down into two subroutines: The first estimates the daily GPP using standard MODIS
fPAR products and ancillary surface meteorological measures as inputs. Different radiation
conversion efficiency parameters are also provided as inputs using a LUT (stratified by
biome types). The second subroutine estimates daily plant respiration. MODIS LAI is used
as one of the inputs to estimate leaf mass, which is further used as an input in estimating
plant respiration. The results from the two subroutines (estimated GPP and plant respira-
tion) are used to derive daily NPP. The daily NPP product is provided at a spatial resolution
of 1.0 km. In addition to the daily NPP, the MODIS algorithm also provides annual NPP.
The annual NPP is estimated by integrating daily NPP and subtracting a number of respi-
ration parameters for live woody tissue, leaves, and fine roots (Running et al. 1999).

Turner et al. (2006) evaluated MODIS NPP and GPP products across multiple biomes. The
GPP at eddy covariance flux towers and plot-level measurements of NPP were scaled up
to 25 km? and compared with the MODIS products. The authors report large variations in
results over different biome types and land uses. The MODIS products overestimated NPP
and GPP at low-productivity sites and underestimated those values at high-productivity
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sites. One of the main error sources was attributed to the inputs (e.g., fPAR estimates) to the
MODIS NPP algorithm (Turner et al. 2006).

2.3 Moderate-Resolution Imaging Spectroradiometer
Atmosphere and Ocean Products

2.3.1 Aerosols

MODIS atmosphere and ocean products are developed by the MODIS atmosphere discipline
group and ocean discipline group, respectively.

Aerosols, especially human-made aerosols, may lead to large reductions in the amount
of solar irradiance reaching the Earth’s surface and increases in the solar heating of the
atmosphere (Ramanathan et al. 2001). Aerosol loadings and distributions are often poorly
characterized, because they are highly variable in space and time. Remote sensing—based
characterization is generally performed by estimating aerosol optical depth or thickness.
To account for the very different surface reflectance properties associated with oceans and
the land surface, the MODIS products incorporate two independent algorithms to retrieve
aerosol optical depth (Kaufman et al. 1997).

The aerosol algorithm over ocean integrates a radiative transfer model and LUT to pro-
duce aerosol optical depth estimates. The radiative transfer model has been run under a
range of predefined aerosol conditions that describe particle modes (whether fine or coarse
particles), total loadings, sensor-sun geometry angles, wind speed, and other parameters
computed from ancillary data (Ahmad and Fraser 1982). The theoretical background is
provided by Wang and Gordon (1994), who use fine or coarse particle modes to model mul-
tiple scattering process of radiance. The radiative transfer model produces an LUT that can
link spectral reflectance values to aerosol spectral properties or optical depth estimates.
The observed MODIS surface reflectance values are simply compared to the values in the
LUT to find the best fit using a least-squares algorithm.

Aerosols over the land surface are more concentrated compared to those over the ocean
surface, because the majority of aerosol sources are located on land (Kaufman et al. 1997). The
estimation of aerosol optical depth over land surface is considered to be more challenging
due to the highly variable reflective properties associated with different land-cover types.
The radiance components from the land surface cannot be easily separated from those of
aerosols (note that the ocean surface is generally darker and water-leaving radiance can often
be assumed to be zero). This is one of the major reasons that aerosol optical depth was not
routinely estimated at the global level before the use of MODIS data (Kaufman et al. 1997).

The MODIS aerosol algorithm over land relies on the accurate identification of dark sur-
face pixels. VI-based dark pixel detection was found to be unreliable for global applica-
tions, because VIs themselves are affected by the presence of aerosols (Holben et al. 1986).
For the MODIS aerosol algorithm over land, two MODIS spectral bands at 2.1 and 3.8 um
are used to detect dark pixels (Kaufman et al. 1997). The spectral band at 2.1 pm is pre-
ferred, especially when the reflectance value for this band is lower than 0.05. The wave-
lengths of these two spectral bands are considerably longer than those of typical aerosol
particles; thus, the surface reflectance retrieved for these spectral bands can be considered
free from aerosol impacts. Under aerosol-free conditions, there are stable relationships
between surface reflectance in the visible bands (0.47 and 0.66 pm) and that in the SWIR
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bands (2.1 and 3.8 um). Thus, the surface reflectance values in visible bands can be esti-
mated from those derived for the SWIR channels (Kaufman et al. 1997). The difference
between the estimated and the MODIS-derived surface reflectance values in visible bands
can be attributed to the presence of aerosols. This is the fundamental assumption of the
MODIS aerosol algorithm for land surfaces.

Validations of aerosol optical depth estimates have been conducted by a number of
researchers. Remer et al. (2002) compared 8000 MODIS-derived optical depth values and
aerosol robotic network (AERONET) measurements. MODIS estimates were reported to be
within the acceptable uncertainty levels over ocean and land surfaces. Chu et al. (2002) com-
pared the MODIS-derived aerosol optical depths and measurements from 30 AERONET
sites. They found that the levels of consistency were higher for continental inland regions
than for coastal regions. The partial water surface may have contaminated the aerosol
optical depth estimation in the coastal regions. The authors also suggest that the lack of
AERONET sites in East Asia, India, and Australia makes global validation of MODIS aero-
sol optical depths particularly challenging. Aloysius et al. (2009) compared MODIS-derived
aerosol optical depths and National Centers for Environmental Prediction reanalysis data
over the southeast Arabian Sea. They reported high correlations (R? = 0.96) between the two
data sets. At the local level, Li et al. (2005) suggested that the standard MODIS 10-km aero-
sol optical depth estimates are insufficient to characterize the local aerosol variation over
urban areas. They modified the MODIS aerosol algorithm and derived aerosol optical depth
at 1.0-km spatial resolution over Hong Kong. High accuracies were reported compared to
field measures. This suggests that there is considerable potential for using MODIS data in
the estimation of aerosol optical depth at a higher spatial resolution over local areas.

2.3.2 Clouds

Clouds play major roles in the Earth’s radiation budget and climate change research
(Ramanathan 1987). The MODIS atmosphere science team has developed a variety of algo-
rithms to generate MODIS cloud products, including a cloud mask and cloud physical and
optical properties. The review provided here focuses on the MODIS cloud detection, or cloud
mask algorithm. The MODIS cloud mask algorithm employs an automated and threshold-
based approach to identify clouds. The algorithm is based on previous cloud detection
research and experiences from the International Satellite Cloud Climatology Project (ISCCP;
Rossow and Garder 1993) and the AVHRR processing scheme over cloud, land, and ocean
(APOLLO; Gesell 1989) cloud detection algorithm (Ackerman et al. 2006). These algorithms
primarily use multiple radiance thresholds testing to label pixels as cloudy or clear. The
ISCCP algorithm also integrates spatial and temporal information in its decision rules.

The primary inputs to the MODIS cloud detection algorithm include 19 MODIS visible
and IR radiance values. Additional ancillary data sets include sun-sensor geometry angles,
ecosystem classifications, land and water distributions, elevation above mean sea level,
daily snow and ice maps from NSIDC, and the daily sea ice concentration product from the
National Oceanic and Atmospheric Administration (NOAA). The ancillary data provide a
basis to segment the Earth’s surface into a range of surface conditions over time, including
daytime land, daytime water, nighttime land, nighttime water, daytime desert, and daytime
and nighttime snow or ice surfaces (Ackerman et al. 2006). The MODIS cloud detection algo-
rithm employs different threshold testing for different surface conditions over time. For a
specific surface condition at a given time, each 1.0-km pixel is put through a variety of radi-
ance and temperature-based threshold tests, which can be classified into the following five
groups: simple IR threshold tests, brightness temperature differences, solar reflectance tests,
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NIR thin cirrus, and IR thin cirrus testing. One advantage of the MODIS cloud detection
algorithm is the inclusion of a confidence level for each threshold test, rather than providing
simple categorical labels such as cloudy or clear. The confidence level is computed based
on the distance of the pixel from the threshold value, and a continuous value is derived for
each test (high confidence of clear pixel = 1; high confidence of cloudy pixel = 0). For each
threshold testing group, a minimum confidence value is determined. The final confidence
level is then integrated from the results of the five groups. As a result, the MODIS algorithm
provides multiple levels of “confidence” for the cloud mask product (i.e.,, cloudy, probably
clear, confidently clear, and uncertain). This allows users to develop their own decision
rules while processing or using the standard MODIS cloud mask product.

Berendes et al. (2004) compared MODIS-derived daytime cloud products with obser-
vations from ground-based instrumentation located in northern Alaska. They report
agreement within +20% between the two data sets. In their study, the MODIS cloud mask
appeared to be more accurate than ground-based instruments in the detection of thin cir-
rus clouds. However, other researchers suggest that the detection of cirrus cloud cover still
remains a major challenge to MODIS cloud masking. Dessler and Yang (2003) analyzed
MODIS cloud mask products for two 3-day periods from December 2000 and June 2001.
They report that approximately one-third of the pixels flagged as cloud free by the MODIS
cloud mask contained detectable thin cirrus clouds. Further research is needed to improve
the detection of thin cirrus clouds by the MODIS cloud algorithm.

2.3.3 Ocean

Numerous standard MODIS ocean data products are provided by the MODIS science
team, including normalized water-leaving radiance, pigment concentration, chlorophyll fluo-
rescence, chlorophyll-a pigment concentration, photosynthetically available radiation,
suspended solids concentration, organic matter concentration, ocean water attenuation
coefficient, ocean primary productivity, sea-surface temperature, phycoerythrin concen-
tration, and ocean aerosol properties.

Many MODIS ocean algorithms were developed from experiences with the coastal zone
color scanner (Gordon and Voss 1999). A common perception is that water color (spec-
tral measures) can be used to derive important biophysical parameters related to phy-
toplankton pigment concentration, primary productivity, and sea-surface temperature.
One main challenge of ocean-color characterization is that the retrieval of the relevant
signal from the total radiance is difficult, because the water-leaving radiance is quite small
(<10%) compared to the total radiance received at the sensor. In other words, at-sensor
radiance is dominated by atmospheric effects over the ocean surface. It is, therefore, neces-
sary to conduct an atmospheric correction for the MODIS ocean-color products. A detailed
atmospheric correction algorithm is provided by Gordon and Voss (1999). The output of
the algorithm is called normalized water-leaving radiance, which approximates water-
leaving radiance (sun at zenith) free of atmospheric impacts for most oceanic conditions.
The normalized water-leaving radiance is further used as an input to generate almost all
other MODIS ocean products. For instance, the current MODIS pigment concentration and
bio-optical properties are largely dependent on empirical or semiempirical relationships
derived between spectral and biophysical measures obtained from the same field obser-
vations. Therefore, the normalized water-leaving radiance over a large ocean area can be
compared to those spectral measures obtained at field observations to generate estimates
of pigment concentration or other biophysical properties.
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2.3.4 Other Algorithms

It must be noted that the MODIS science team has developed a large number of algorithms
over the period of MODIS instrument design, prelaunch, and postlaunch phases. Some of
these algorithms are continually updated, which leads to several MODIS data reprocessing
procedures. Because this chapter only reviews some selected MODIS algorithms and prod-
ucts, it is by no means a complete description of all MODIS algorithms and products. There
is a range of MODIS standard products that are not discussed in this chapter, particularly
in the atmosphere and ocean disciplines. The ATBDs developed by the MODIS science
team are probably the best resource for readers interested in a more in-depth review of
MODIS algorithms, their theoretical backgrounds, and the available data products.

2.4 Moderate-Resolution Imaging Spectroradiometer Applications

Since the launch of MODIS-Terra, hundreds of scientific papers have been published on
the application of MODIS data at global, regional, and local levels. The remote sensing
literature has covered research on the following topics: global climate models (Oleson
et al. 2003; Tian et al. 2004), land cover and change detection (Lunetta et al. 2006; Zhang
et al. 2008; Gill et al. 2009), forest disturbance and vegetation dynamics (Evrendilek and
Gulbeyaz 2008; Hansen et al. 2008; Hilker et al. 2009; Maeda et al. 2009), vegetation and
crop phenology monitoring (Zhang et al. 2003; Sakamoto et al. 2005), terrestrial ecosystem
carbon exchange (Garbulsky et al. 2008; Xiao et al. 2009), ecohydrologic analysis (Hwang
et al. 2008), crop mapping and crop yield estimation (Doraiswamy et al. 2004; Sakamoto
et al. 2009), human health issues (Hu 2009), air quality assessment (Gupta and Christopher
2008), water quality monitoring and assessment (Hu et al. 2004), and species and habitat
distribution (Vina et al. 2008).

At the global level, various MODIS data products have been used as primary inputs to
climate models, and as reference data to validate the climate models (Oleson et al. 2003;
Tian et al. 2004). For example, Tian et al. (2004) compared the land surface albedo from
the community land model (CLM; Bonan et al. 2002) with MODIS albedo products (Gao
et al. 2005) under two land-surface scenarios. The first land scenario used older standard
parameters in the CLM for a “control run.” The second scenario used a range of newly
derived MODIS land parameters such as VCF, LAJ, land cover, and plant functional type as
the model inputs. Improved CLM results are reported when the MODIS-derived products
were used as land-surface parameters. Lawrence and Chase (2007) developed new CLM
land-surface parameters based on MODIS land products and found that the new model
had substantial improvements in surface albedo estimation, which further improved the
simulation of precipitation and near-surface air temperature. Although the MODIS data
algorithms and products show much promise for climate modeling, Dickinson (2008) sug-
gests that one of the major challenges faced by the current remote sensing data are spa-
tial and temporal discontinuities. For example, general land cover on the Earth’s surface
should be quite stable over time, except for some small random changes caused by human
or natural disturbances. However, spatial and temporal discontinuities often occur in
remote sensing—derived land-surface parameters as a result of system limitations or sys-
tematic errors. Future research should address these problems, mainly through algorithm
improvements.
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The use of MODIS data for applications in forest disturbance, vegetation dynamics,
urban development, agricultural expansion, and crop mapping and management gener-
ally relies on image-classification and change detection techniques. Instead of using the
standard MODIS global data, researchers often need to develop their own classification
and change detection algorithms for local and regional applications. There are three moti-
vations for researchers to develop their own products using MODIS spectral informa-
tion: First, the information desired at local and regional levels is generally more detailed
than those given in the MODIS global data sets. Second, the spatial resolution of standard
MODIS global data might be too coarse for local applications. Third, the accuracy of the
MODIS global data sets varies across regions. It is often possible to improve accuracy using
an increased number of training data points, ancillary data, and algorithms that fit better
with local conditions.

The desire to obtain more detailed land-use and cover-type information can be illus-
trated by a number of research projects that focus on crop mapping using MODIS data.
The standard MODIS land-cover product does not include specific crop types in its map-
ping scheme. Recent studies suggest that MODIS data has sufficient spatial and tempo-
ral resolution to identify major crop types such as corn, soybean, and wheat in intensive
agricultural regions in the United States (Wardlow, Egbert, and Kastens 2007, Wardlow
and Egbert 2008; Shao et al. 2010). These studies often rely on the use of MODIS time-
series NDVI or a phenology-based analysis for land-cover and crop identification. Xiao
et al. (2005) found that the MODIS-NDVI profiles were also useful in characterizing rice
distributions, mainly due to the unique NDVI profiles associated with rice transplanting,
growing, and fallow periods. The results from these studies suggest that the unique com-
bination of spatial, spectral, and temporal resolutions associated with MODIS data results
in more detailed land-use and cover-type classification at regional and local scales.

The 500-m or 1.0-km spatial resolution land-cover products may be too coarse for many
regional- or local-scale applications. This is particularly evident for areas with complex or
heterogeneous land-cover patterns at finer spatial scales (Lobell and Asner 2004; Knight
et al. 2006). Many researchers have employed spectral mixture analysis to unmix MODIS
pixels, and thus derive proportional land cover at the subpixel level. Chang et al. (2007) esti-
mated proportional corn and soybean cover within MODIS 500-m data. Knight et al. (2006)
examined the potential of subpixel land-cover estimation using multitemporal MODIS-
NDVI 250-m data. The subpixel land-cover mapping problem was also addressed by the
MODIS science team. It is actually designed as a part of the MODIS enhanced land-cover
and land-cover change products. Hansen et al. (2002) employed a regression tree algorithm
to derive subpixel tree-cover products at 500-m spatial resolution. His subpixel classifica-
tion approach relied on training pixels that contain tree-cover proportions derived from
high-resolution satellite images. The regression tree was trained to model the relation-
ship between MODIS signals and tree proportions at the subpixel level. The assessment
of the subpixel tree-cover estimation accuracy was extremely challenging due to the lack
of reference data sets, especially at regional or global scales. The trend toward subpixel
analysis is not limited to land-cover classification; researchers are also actively working on
subpixel cloud detection and subpixel snow-cover mapping (Salomonson and Appel 2004).
The relationship between sensor spatial resolution and ground surface features continues
to be a challenging topic for the remote-sensing research community.

MODIS-based change detection has been employed by many researchers to study
deforestation, urbanization, and agricultural expansion (Lunetta et al. 2006; Zhang et al.
2008; Gill et al. 2009). Most of the change detection algorithms have been developed for
the 250-m MODIS data, because many human-introduced land-cover changes occur
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at fine spatial scales. Lunetta et al. (2006) developed an automated land-cover change
alarm product in the Albemarle-Pamlico Estuary System region of the United States.
The approach relied on detecting pixels that have experienced significant changes in the
annually-integrated NDVI values. A large drop in annually-integrated NDVI may suggest
possible land-cover changes such as urban development or vegetation clear-cutting. Jin
and Sader (2005) also used the MODIS 250-m VIs to detect forest harvest disturbance in
northern Maine. They found that although the MODIS single-day and 16-day composite
NDVI data showed no significant difference in overall detection accuracies, the single-day
NDVI actually performed better when disturbed patch sizes were smaller.

Zhang et al. (2003) examined vegetation phenology using a time-series MODIS VI. They
used a series of piecewise logistic functions to detect the transition dates of vegetation
activity on an intraannual basis. Sakamoto et al. (2005) analyzed time-series data of EVI.
Subsequent to data smoothing, the points of maximum, minimal, and inflection were
identified to examine phenological stages of paddy rice, which were then used to evaluate
crop productivity and management. Soudani et al. (2008) examined vegetation phenologi-
cal dates for deciduous forest stands using 250-m daily MODIS-NDVI data. Key pheno-
logical dates (e.g., onset of green-up) matched well with in situ observations. The level of
temporal uncertainty in MODIS-NDVI data is approximately 8 days. This MODIS-derived
vegetation phenology can be particularly useful for research in vegetation—climate inter-
actions and modeling (Pettorelli et al. 2005).

One potential source of uncertainty in time-series studies is the error of misregistra-
tion. Although the MODIS science team has substantially increased the registration accu-
racy over several reprocessing procedures, the 75-100 m misregistration error is still a
substantial challenge for performing time-series analysis at the 250-m spatial resolution
(Tan et al. 2006). The impacts of misregistration in time-series composite data can be
even larger due to a potential “multiplier effect” and the selection of pixels under differ-
ent sun-sensor geometry angles. Therefore, it is important for users to understand these
potential error sources. Additional research is needed to further our understanding of the
cumulative impacts associated with MODIS data quality, sun-sensor geometry informa-
tion, and misregistration errors.

2.5 Summary

The MODIS instrumental characteristics represent a new generation of sensor systems for
global observation. Global coverage of MODIS data are obtained every 1-2 days. The spec-
tral, spatial, and radiometric resolutions are also substantially improved in MODIS com-
pared to previous global sensor systems such as the AVHRR. In addition to the spectral
products commonly provided for all remote sensing platforms, the MODIS science team
devoted tremendous efforts in developing a wide range of MODIS-derived scientific data
sets that are readily available for the scientific community. The MODIS data represent not
only a “continuous” remote sensing data record that extends previous sensor systems, but
also a substantial improvement by integrating the most advanced remote-sensing theory,
algorithm development, data processing, validation, and distribution.

A majority of the current MODIS algorithms are operational at the global level. Data
quality has been improving over several data reprocessing cycles. Validation of MODIS
standard products is an ongoing effort undertaken by both the MODIS science team and
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independent researchers. Most validation efforts suggest a high level of data quality for the
MODIS products. This can be attributed to the improvement of spectral, spatial, temporal,
and radiometric resolutions, as well as improvements made in algorithm development
by the MODIS science team. The success of MODIS is also evident from the exponential
growth of applications that use MODIS data products at global, regional, and local levels.
Future development of MODIS data and algorithms may integrate more feedback from
continuous data quality validation and applications. These include many potential topics
such as subpixel analysis, scaling problems, biophysical applications, in situ data integra-
tion (of cloud, ice, water, and land data), and optical and climate modeling.
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3.1 Foundations of Laser Theory

Laser ranging systems are commonly referred to as “lidar” systems. Lidar is an acronym
describing light detection and ranging systems, which are sometimes also referred to as
“ladar,” either from laser detection and ranging or from laser radar. A universally accepted
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terminology does not exist, but most commonly we refer to these systems as lidar systems,
although the spelling of lidar may differ—lidar, LiDAR, or LIDAR.

Lasers have been one of the greatest scientific developments of the twentieth century.
After five decades of achievements in this field, lasers are still a symbol of high technology.
The word laser is an acronym that summarizes the nature of laser light—light amplifica-
tion by the stimulated emission of radiation. Therefore, a laser is a special type of light
source with certain characteristics related to its wavelength, output power, duration of
emission, beam divergence, coherence, and the systems and materials that generate it.

Albert Einstein developed the foundation of stimulated emission of radiation and
published his findings in 1916 and 1917. In essence, Einstein demonstrated that atoms can
absorb and emit radiation spontaneously and that atoms in certain excited states can be
induced to emit radiation. For about 40 years after Einstein’s theoretical work on stimulated
emission was published, the concept was used only in theoretical discussions and had lit-
tle relevance in experimental work. The first successful production of stimulated emission
was achieved by Charles H. Townes between 1951 and 1953, who was then at Columbia
University; he built a device called a “maser”—microwave amplification by the stimulated
emission of radiation. This device produced a coherent beam of microwaves. Later, in 1964,
Townes shared the Nobel Prize in physics with two other maser pioneers, Nikolai Basov and
Aleksander Prokhorov. A collaborator of Townes, Arthur Schawlow, also received the Nobel
Prize in physics in 1981 for research done on lasers. However, the winner of the laser inven-
tion race, who is accredited with the development of the first ruby laser in 1960, is Theodore
H. Maiman, with what was at that time the Hughes Aircraft Corporation research laboratory
(Maiman 1960). The ruby laser is a good example of what we expect a laser to be. The wave-
length of the ruby laser is toward the end of the red region of the electromagnetic spectrum,
at 694 nm, and it emits coherent waves in short pulses in a concentrated beam of light.

There are many types of lasers. Depending on how they operate, laser sources can emit
light in a pulsed mode or as steady beams; the latter are also known as “continuous-wave”
(CW) lasers. Laser pulses are characterized by pulse duration and repetition rates. The pulse
duration can range from milliseconds to femtoseconds, that is, from 10~ to 1015 seconds
(Hecht 1992, p. 13). Because the human eye’s response is much slower than the laser pulse
frequency, some lasers that may look continuous to the eye are actually pulsed lasers.

Lasers can also be differentiated based on power output, which spans a wide range
from milliwatts—thousandths of a watt—to kilowatts. Nevertheless, lasers cannot adjust
their power output on demand, but they may be able to adjust it over a limited range.
Power output is a characteristic of the materials that produce lasers. Moreover, each type
of laser-producing material emits laser light with a characteristic wavelength or a range of
wavelengths. Table 3.1 presents a list of the most common laser types based on materials

TABLE 3.1

Most Common Laser Types

Laser Material Type Laser Light Wavelength (nm)

Organic dye dissolved in solvent 300-1000 (tunable laser)

Rare gas ions (e.g., argon ion) 450-530

Helium neon 543 (red), 632.8 (green), 1150 (near-infrared)
Semiconductor 670-680 and 750-900

Nd: YAG 1064 (near-infrared)

Hydrogen fluoride 2600-3000
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producing laser light and their wavelengths, in nanometers, although the actual list is
much longer with lasers ranging from the ultraviolet region to the microwave region.

3.1.1 How Is Laser Light Generated?

A laser is a light source with unique properties. As the expansion of the acronym suggests,
a laser amplifies light signals that stimulate emission of radiation. The stimulated emis-
sion occurs in an amplifying medium contained in an optical resonator or cavity, which
holds the amplified light and redirects it through the medium for repeated amplifications.
A set of two mirrors feed the light back into the amplifier medium. One cavity mirror
reflects essentially all of the light back into the amplifying medium, whereas the other
mirror transmits a constant fraction of the light, for example, 10%, which becomes the laser
beam, and reflects the rest back into the medium.

3.2 Laser Light Properties

Laser light has important properties that differentiate it from white or ordinary light,
most notably coherence, wavelength and spectral purity, directionality, beam divergence,
power modulation, and polarization. Probably the best known property of laser light is
coherence.

3.2.1 Coherence of Laser Light

Figure 3.1 illustrates the concept of coherence, when light waves are in phase with one
another, which means their peaks are lined up at the same point in time. To have coherent
waves, light waves must start with the same phase at the same position, and they also need
to have the same wavelength, that is, to be spectrally pure. Perfect coherence is difficult to
achieve, and not all types of laser light are equally coherent. Coherence can be character-
ized as spatial or temporal. Laser light waves may encounter different optical path condi-
tions, which make them drift out of phase. As such, temporal coherence is defined by how
long the laser light waves remain in phase as they travel. Spatial coherence measures the
area over which light waves are coherent, and it is the essential prerequisite that gives a
strong directionality to laser beams. Probably the most fundamental difference between
laser light and radiation from other light sources, such as ordinary light, is that laser light
has the potential to generate beams with very high temporal and spatial coherence.

Coherent light waves in phase with each other

FIGURE 3.1
Coherent electromagnetic waves.
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3.2.2 Laser Wavelength and Spectral Purity

Laser light is commonly considered monochromatic, meaning that all photons have nearly
the same wavelength. Although lasers normally emit a range of wavelengths, the band-
width of even the broadest-band laser is much narrower than that of ordinary light.

3.2.3 Laser Beam Divergence

Laser light can form tightly focused beams that travel long distances without spreading
out like ordinary light. The most common definition of beam divergence is based on the
spreading angle measured in milliradians (mrad). The divergence of most CW lasers is
around 1 mrad, whereas for pulsed lasers it may be slightly larger. For reference purposes,
a full circle, or 360° equals 2r radians, 1 radian equals approximately 57.30°, and 1 mrad
corresponds to 0.057°. Laser beam divergence is usually reported for the far field, at large
distances from the laser, and the divergence angle is normally measured from the center
of the beam to the edge (Hecht 1992). Most commonly, beam divergence is considered the
angle between the beam sides (Baltsavias 1999). No matter how divergence is measured,
calculating the size of the beam or the laser footprint diameter is a trigonometric problem
(see Equation 3.1). Where do we consider the edge of the beam? Laser beam propagation
can be approximated by assuming that the beam is a Gaussian-type beam, which means
that the intensity profile follows a Gaussian function, with the transverse irradiance pro-
file shown in Figure 3.2. This profile shows that the beam intensity gradually drops off
toward the sides of the beam, and the beam edge is considered where intensity has fallen
to 1/e2 or 13.5% of its peak, or maximum axial value (Hecht 1992).

Figure 3.3a shows an exaggerated divergence of alaser beam in a simplified representation
that ignores the near range of the laser beam where the light rays remain parallel, some-
times called the “Rayleigh range.”

D=2Htan(6/2) 3

where

D is the beam diameter (diameter of illuminated area or footprint), H is the distance
from the laser to the illuminated spot (flying height for airborne laser scanning), and 8 is
the divergence angle.

For a small divergence angle and large distances occurring in airborne laser applications,
the angle in radians offers a good enough approximation of its tangent function; therefore,
a commonly used formula is

D=Ho 3.2)

For example, for a beam with a divergence of 1 mrad and a distance of 1000 m, the foot-
print diameter becomes 1 m. With airborne laser scanning, the illuminated footprint size
and shape is also affected by the scanning angle and the slope of the terrain. With airborne
laser scanning, Equation 3.2 can be used for calculating footprint diameter of laser beams
at nadir, but for laser beams at a certain scan angle on a flat terrain, Equation 3.3 provides
a more appropriate calculation using trigonometry with triangles ABC and ABD shown

in Figure 3.3b:
D= H[tan(emn + g) - ’can(GsCan - g)] 3.3)
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A formula that is easier to use can be derived from Equation 3.3 by considering the laser
path distance equal to H/cos(8,.,,). Projecting the footprint on the flat terrain gives the fol-
lowing formula:

H
D=—96 3.4
c0s20 G4

For the example given for Equation 3.4, for a beam with a divergence of 1 mrad and a flying
height of 1000 m, the footprint diameter at a scanning angle of 20° from nadir becomes
1.13 m. For inclined terrain, the footprint size calculation becomes more complicated, with
details and formulas given by Baltsavias (1999).

3.3 Laser Ranging

Laser range finding uses the same principles as radar distance measurements, with the
major difference being the use of shorter wavelengths of the electromagnetic spectrum.
The basic principle of laser ranging is the measurement of the time it takes for a laser
signal to travel from the transmitter to the reflecting surface of a target and back to the
receiver, although two major physical effects are used: For pulsed lasers, the traveling time
of light pulse is measured and converted to a distance estimate, whereas for CW lasers,
ranging is obtained by measuring the phase difference between the transmitted and the
received signals. These range-finding techniques belong to time-of-flight (TOF) methods.

Soon after lasers were invented, precise distance measurements were obtained through
laser range finding. In the late 1960s, the National Aeronautics and Space Administration
(NASA) used lasers to measure the distance from the Earth to reflectors installed on the
Moon by Apollo missions. Armed forces use lasers to measure distances to targets on the
battlefield, whereas a plethora of handheld laser range finders are used in hunting, golf,
archery, and other sports. Terrestrial field surveyors and engineers also use range find-
ers, more recently coupled with theodolites in total stations. With respect to laser ranging
for remote-sensing purposes, laser sensors are installed on air- or spaceborne platforms,
which most commonly employ pulsed laser systems with scanning technology. Ground-
based laser sensors are installed on tripods and are capable of scanning targets on the
ground from various angles.

Most laser ranging applications use pulsed lasers, usually solid-state lasers with high
power outputs. A common laser type is the neodymium-doped yttrium aluminum garnet
(Nd: YAG,) laser, which emits light with a wavelength of 1064 nm, in the infrared portion
of the electromagnetic spectrum, with pulse widths around 10 nanoseconds and several
megawatts of power (Wehr and Lohr 1999).

For range measurements with pulsed lasers, the laser system measures the traveling
time between the emitted pulse and the received echo, and the distance between the rang-
ing unit and the target surface is calculated by

t
D=c— 3.5
; 5
where c is the speed of light and ¢t is the pulse travel time; t is divided by two since the
pulse travels twice the distance to the target, that is, from transmitter to target and from

target to receiver.
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Travel time is measured by a time counter relative to the leading edge of the pulse
(Figure 3.4). The leading edge is not well defined, but generally it is considered as a frac-
tion of the signal peak to avoid issues caused by various pulse amplitudes (Baltsavias
1999).

For accurate range measurements, the laser pulse should be short. Equation 3.6 relates
range resolution (AD) and time resolution (Af):

AD= c% (3.6)

Equation 3.6 shows that the range resolution is determined by the resolution of the time
interval measurement. As such, for a 10-nanosecond pulse, the range resolution is 3 x 10°
km/s x108s/2 =15 m. Equations 3.5 and 3.6 show that range measurement accuracy does
not depend on the distance. The term “resolution” should not be confused with range
measurement accuracy. Range resolution refers to the smallest change in the distance that
can be resolved with the TOF laser. Range accuracy refers to the largest total error in mea-
suring distances and is usually in the order of centimeters for airborne laser range finders,
although it differs in the vertical and horizontal axes.

For CW lasers, ranging is obtained by modulating the laser intensity with a sinusoidal
signal. The traveling time is proportional to the phase difference between the transmit-
ted and the received signals, and the distance information is extracted from the received
signal by comparing its modulation phase with that of the emitted signal. Due to laser
complexity in achieving a similar ranging performance to pulsed lasers, CW lasers are
rarely used.

At

Transmitted pulse Next transmitted pulse

ANEVAN

t =Travel time |

Received pulse

/\ Time

FIGURE 3.4
Variation of beam power level with time.
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3.4 Laser Ranging Power Balance

Airborne and satellite laser range measurements are influenced by atmospheric conditions,
laser power, and the reflectivity of the target. The power of the laser echo received at the
sensor is directly proportional to target reflectivity. Table 3.2 shows the typical reflectivity
of various materials for a laser wavelength of 900 nm. Range and reflectivity are directly
related, or more specifically, the range is proportional to the square root of reflectivity.

Re<\fp 3.7)

Equation 3.7 can be used to determine a correction factor for maximum laser range depend-
ing on the reflectivity of the target, as shown in Figure 3.5. As the figure shows, targets
with a reflectivity of 40% restrict maximum range to about 70% of the maximum range for
a target with 80% reflectivity. When flying an airborne laser scanning system over forests
with mixed species, coniferous and deciduous, it is important to be aware of the maximum
range limitations for the two species types. For coniferous trees with a typical reflectivity
of about 30%, the maximum range is approximately 60% of that for deciduous trees, which
have a typical reflectivity of about 60%.

The reflectivity of a target also affects the minimum size of a detectable object. For
example, if we ignore the influence of other factors, such as atmospheric conditions, target
shape, or terrain slope, a laser system that is capable of measuring the distance to a target
with a reflectivity of 30% should be capable of detecting a target with a reflectivity of 60%
that is half the size of the less-reflective target.

TABLE 3.2

Reflectivity Values for Various Diffuse Reflecting
Materials and Surfaces, Natural and Human-Made,
for a Laser Wavelength of 900 nm

Material Reflectivity
White paper Up to 100%
Dimension lumber (pine, clean, dry) 94%
Snow 80%—90%
White masonry 85%
Limestone, clay Up to 75%
Deciduous trees Typically 60%
Coniferous trees Typically 30%
Carbonate sand (dry) 57%
Carbonate sand (wet) 41%
Beach sands, bare areas in dessert Typically 50%
Rough wood pallet (clean) 25%
Concrete, smooth 24%
Asphalt with pebbles 17%
Lava 8%

Source: Adapted from Riegl, U. S. A. (n.d.). http:/ /www
rieglusa.com (retrieved January 16, 2008).
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FIGURE 3.5
Correction factor for maximum laser range based on target reflectivity (normalized for 80% reflectivity).

3.5 Enabling Technologies

In the late 1960s, NASA used lasers to measure the distance from the Earth to reflectors
installed on the Moon by Apollo missions. About 3 decades later, since the mid-1990s, laser
ranging using airborne and terrestrial scanners became accepted as a proven technology
with multiple applications for the surveying and mapping communities. There are no major
differences between the optical and mechanical principles of airborne, spaceborne, and ter-
restrial lidar scanning systems, other than those in the mounting platforms and the com-
plexity of additional technologies for determining sensor position and orientation. These
additional or enabling technologies, along with advances in laser sensor technology, have
defined the developmental stages of scientific and commercial laser scanning systems.

3.5.1 Global Positioning System Unit

Global positioning system (GPS) units have become essential components of navigation
systems and surveying tools. This system is a key component of “direct georeferencing,”
which consists of the direct recording of the position and orientation parameters of a
remote sensing instrument used for registering the acquired data to a geographic coor-
dinates system. Mapping applications of direct georeferencing include aerial photogram-
metry and airborne lidar.

3.5.2 Inertial Measurement Unit

The inertial measurement unit (IMU) is sometimes referred to as a part of the inertial
navigation system (INS), which integrates other components in addition to the IMU, such
as a navigation processor to handle navigational computations, a GPS, an electronic com-
pass, or a barometric system. The IMUs detect motion with respect to a hypothetical sta-
tionary reference system and normally contain three gyroscopes and three accelerometers,
all orthogonal, measuring angular velocities and linear accelerations, respectively. By pro-
cessing the signals from these devices, normally recorded at a frequency of 50-1000 Hz,
it is possible to track the position and orientation of the device, the current rate of accelera-
tion, and changes in rotational attributes, including pitch, roll, and yaw.
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In an airborne lidar application, the IMU is used to measure the orientation of the laser
beam at the exact time of a range measurement. Most commonly, the IMU is mounted rig-
idly to the lidar sensor housing in order to provide orientation parameters with respect to
the laser reference point, which can be the laser scanning mirror or the fiber optic bundle,
depending on the sensor scanning principle. A calibration process known as “boresight
calibration” corrects for the mounting misalignment between the IMU and the lidar refer-
ence frame. Typically, the boresight calibration of a sensor requires airborne calibration
using a reference surface test to correct for pitch, roll, and heading offsets.

The GPS-aided INS provides direct measurement of the position and orientation
parameters and is also referred to as a direct georeferencing system. When used with a
remote sensor, such as a lidar sensor or a digital camera, direct georeferencing provides all
the information needed to register the acquired data in geographic coordinates. Since the
mid-1990s, direct georeferencing has become an alternative to aerial triangulation by either
totally replacing it or complementing it. Aerial triangulation is used to solve for aerial pho-
tography camera exterior orientation parameters, which convey the information necessary
to tie image measurements to ground coordinates for planimetric and topographic map
compilation, orthophoto production, and digital terrain model editing. Direct georeferenc-
ing systems are integral components of airborne remote sensing systems, including lidar,
interferometric synthetic aperture radar, and digital cameras.

3.6 Components of a Lidar System

A lidar system may include different components depending on the mounting platform.
These can be air- or spaceborne components or ground-based components. Ground-based
lidar systems, also referred to as “terrestrial” lidar or laser scanning systems, can be
mounted on mobile and fixed, but portable, platforms. Air- or spaceborne instruments
can fly on rotary or fixed-wing platforms and satellites, respectively. The basic compo-
nents of an airborne lidar system are shown in Figure 3.6. For airborne systems, the three
main components include (1) a laser ranging unit, (2) an orientation unit, most commonly
referred to as the IMU and (3) the GPS unit. Computer hardware and software integrate
data streams coming from all components and provide data storage and a variety of post-
acquisition registration, processing, and export functions. Terrestrial lidar systems vary in
complexity and may include the same components as an airborne system, especially for
mobile units mounted on vehicles or boats, or may have a simpler construction for fixed
units mounted on a tripod. The latter types may include only the laser ranging unit, a
computer, data storage components, and an optional digital camera.

The IMU describes the orientation or the attitude of the unit in terms of roll, pitch, and
yaw (Figure 3.7) and serves the characterization of flight dynamics and the derivation of
accurate ground coordinates for each laser shot. The GPS unit consists of an onboard dif-
ferential GPS receiver, which is commonly assisted by one or more ground stations for
improving the accuracy of laser footprint coordinates after post-processing.

By knowing the location of the sensor platform and the sensor in three-dimensional (3D)
coordinates (GPS-provided data), the trajectory of the laser beam provided by the orienta-
tion of the sensor (IMU data), the angle of the laser pulse relative to the sensor, recorded
by the laser scanning device, and the range to targets on the Earth’s surface as measured
by the laser ranging unit, we can compute accurate 3D coordinates for each laser footprint
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FIGURE 3.6
Basic components of an airborne lidar system. GPS = global positioning system; IMU = inertial measurement unit.
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FIGURE 3.7
Orientation unit (inertial measurement unit) detects changes in roll, pitch, and yaw.

on the ground. All these data sources that allow the calculation of the 3D coordinates in
a post-processing mode are integrated by computer hardware and software and linked
together using a time stamp.

3.6.1 Laser Ranging Unit

The principles of laser ranging are described in Section 3.3. The pulse ranging measurement
principle is employed by most airborne, satellite, and terrestrial systems, and they com-
monly include a laser transmitter and a receiver, each with their associated optics.
The laser ranging unit may be coupled with an optical and mechanical scanning unit that
deflects the laser beams across their flight path to collect a swath of ranging data.
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The transmitter part of the laser ranging unit expands the laser beam to reduce the
area density of the laser-pulse-transmitted energy and controls the divergence of the laser
beam (Fujii and Fukuchi 2005). The receiver part works as a photodiode by converting the
backscattered laser light intensity into electrical impulses. The received laser power of the
backscattered echo is only a small fraction of the transmitted power.

3.7 Types of Laser Sensors

Different lidar sensors may have similar components, but the recorded data may be of
distinct formats. This section categorizes lidar sensors based on their ability to record dis-
crete returns or waveform data and presents the three different platforms used for acquir-
ing lidar data, terrestrial, airborne, and satellite-based.

3.7.1 Discrete-Return Lidar Sensors

The design of the receiver part of the laser ranging unit is particularly important as it may
determine the type of lidar data the receiver records—discrete return measurements or
the full waveform. In the first case, a laser pulse may provide multiple returns depend-
ing on the type of surface it intercepts. When the laser beam hits porous objects, such as
the forest canopy, it may intercept foliage or tree branches over part of the laser footprint,
which may backscatter enough energy to trigger the recording of the travel time by the
laser receiver (Figure 3.8). After hitting the top of the canopy, part of the laser beam may
continue its travel through openings in the canopy until it again hits another layer of foli-
age or branches, or possibly the ground, which may generate secondary returns of the
same pulse. Depending on the complexity of the forest canopy and the settings of the laser
receiver, a laser pulse may generate up to four or five discrete returns, sometimes with less
dependence on the limitations imposed by the receiver.

Ideally, a laser pulse hitting the forest canopy would provide a return from the top of
the canopy—the first return in Figure 3.8—and it would still be able to penetrate to the
ground and record a last return from the forest floor—the third return in Figure 3.8. Such
measurements allow us to accurately characterize vegetation height and the terrain eleva-
tion under the canopy. Some of the laser pulses intercepting the canopy may provide only
one return when foliage, branches, or tree trunks block the entire footprint or when these
pulses hit the bare ground without intercepting tall layers of vegetation. Similarly, when
the laser footprint covers completely nonporous objects, such as roofs, sides of buildings,
or other human-made structures, the laser pulse will provide only one return. Therefore,
discrete-returns lidar data include first returns, intermediate returns, and last returns.

Most discrete-returns lidar sensors use constant fraction discriminators (CFDs) to mini-
mize the “range walk” or systematic variation in range with signal level. Backscattered
laser signals have varying amplitudes depending on the initial pulse energy, size of the
intercepted object, and target reflectance characteristics. In order to handle such varia-
tions, most laser receivers use a constant amplitude ratio to identify a laser return and
record its travel time and power, denoted as amplitude or intensity. The CFD is used to
define the leading edge of the pulse (Figure 3.9), which, as explained in Section 3.3, is not
well defined but generally considered to be a fraction of the signal peak to avoid issues
caused by various pulse amplitudes (Baltsavias 1999).
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FIGURE 3.8
Laser beam interaction with vegetation and variation of the backscattered laser signal.

The CFD-based receivers need to reset their detectors to prepare for the next pulse or the
next echo returned from the same pulse; therefore, there is a time separation between returns
recorded for the same echo. Although the reset time, sometimes referred to as “nominal
dead time,” varies with sensors and manufacturers, it is most commonly around 8-10 nano-
seconds. This reset time translates to a range separation of 1.2-1.5 m between the recorded
returns of the same pulse, when considering to- and from-target travel times.

The reset time and the minimum range separation between multiple returns have
implications for detecting ground covered by vegetation. When the ground is covered
by tall grasses or shrubs with heights less than 1.2-1.5 m, the laser beam may provide a
return from the top of the vegetation cover and may penetrate to the ground and gener-
ate a secondary ground return. This ground return may not be detected due to the fact
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FIGURE 3.9
Conceptual differences between discrete-return and waveform lidar systems.

that no returns are recorded by the receiver within the reset time. This situation does not
mean that characterizing ground elevation is always biased toward higher elevation val-
ues when there is a low layer of vegetation. A significant number of laser pulses will pen-
etrate to the ground, and laser point classification algorithms will identify lower pulses
that most likely hit the ground and use them to generate digital elevation models.

Some airborne lidar sensors manufactured during the mid-1990s (e.g., Optech ALTM
1020, Optech, Inc., Vaughan, Ontario, Canada) could be toggled to record either the
first or the last return, and two flights over the same area were necessary to get the
bare ground terrain model and the top of the canopy surface, when flown over forest
vegetation. Surveys in the U.S. Pacific Northwest carried out using the Optech ALTM
1020 scanning system indicated a minimum 2030% penetration of coniferous canopies
(Flood and Gutelius 1997). In the same region, with conifer-dominated stands and
dense overstory, Means (2000) observed a very low penetration to the ground of only
1-5%, for a small-footprint lidar. Kraus and Pfeifer (1998) estimated a penetration rate
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of less than 25% for their lidar study in the Vienna Woods (Wienerwald), in Austria,
using an Optech ALTM 1020 lidar system.

A study by Popescu, Wynne, and Nelson (2002) conducted in Virginia over forests of
varying age classes including deciduous, coniferous, and mixed stands estimated the pen-
etration rate for the last return laser hits, or first return when there was only one return,
to be approximately 4%. The laser point density on the ground, for one flight line, was
0.47 points per square meter for the first return, and the last return when there was only
one return; 0.20 points per square meter for the second return, less than half compared to
the first return point density; 0.02 points per square meter for the third return; and 0.0001
points per square meter for the fourth return. None of the pulses were able to produce a
fifth return for the given vegetation conditions, although the sensor, an AeroScan system
that later became Leica’s ALS40 sensor (Leica Geosystems, Inc., Heerbrugg, Switzerland),
was configured to receive up to five returns.

Since the early 1990s, discrete-returns lidar sensors have experienced major technologi-
cal advances, reflected mainly in an increased pulse frequency, the recording of multiple
returns for each pulse, the recording of intensity information, and the positional accuracy.
The latest generation of airborne laser scanners has added waveform-recording capability
and the ability to handle multiple pulses in the air. Systems that are able to track echoes
from multiple pulses in the air have the potential to significantly increase the productivity
of airborne lidar data acquisition systems as these systems, do not depend on receiving the
target reflection before starting the next range measurement cycle. More pulses providing
range measurements will enable lidar data users to fly a notably wider swath while main-
taining the same point densities as conventional systems, or acquire significantly increased
point densities for the same swath widths, leading to appreciably reduced flight costs in the
end. Due to such innovative technological achievements developed by commercial laser
systems manufacturers and the increased number of service providers, airborne lidar is
used routinely for topographic mapping, vegetation assessment and forest inventory, 3D
urban modeling, wireless communications planning, corridor mapping of power lines and
oil pipes, and transportation planning, to mention just a few of the applications. Ground-
based laser scanners have been used mainly for surveying and industrial 3D mapping.

Despite the advances in scanning lidar technology, a number of research groups are
using airborne lidar profiling systems to extract elevation profiles along flight lines, mainly
due to the lower cost of the sensor and the reduced data volume acquired during flight
time. Such a system has been developed at NASA for forest research, called a “portable
airborne laser system” (PALS), by Nelson, Short, and Valenti (2003). This system is in fact
based on off-the-shelf components, including a Riegl laser range finder, a Garmin GPS
receiver, and a video camera.

3.7.2 Waveform Lidar Systems

Lidar sensors able to record the entire backscatter amplitude of the laser pulse are referred
to as waveform lidar systems. Such sensors have been used from both airborne and satel-
lite platforms.

3.7.2.1 Airborne Lidar Systems

Whereas discrete-returns lidar systems record, for each laser pulse, the time of travel and
the intensity of every return, waveform lidar systems record the time-varying intensity of
the returned energy from each laser pulse and therefore provide information on the height
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distribution of the returned intensity (Figure 3.9). The shape of the returned intensity offers
a direct description of the vertical distribution of surfaces illuminated by the laser pulse
(Harding et al. 2001; Dubayah et al. 2000) and is useful in characterizing complex targets,
such as forest canopy. The returned energy is digitized at equal time intervals, such as for
every nanosecond.

Terrestrial applications using waveform lidar have been documented from the early
1980s. Aldred and Bonner (1985) were the first to describe an application of waveform lidar
to study forest canopies in Canada. For their study, they used a laser system originally
developed for characterizing bathymetric water depth and measured forest biophysical
properties, such as tree height, canopy cover, and type of tree species—hardwoods, coni-
fers, or mixed. They also studied the effect of different laser beam footprint sizes on stand-
height estimates and found that the footprint diameter was not critical when estimating
stand height. An interesting investigation in their study looked at different methods of
estimating tree height by analyzing waveform start and end points and concluded that the
leading edge threshold, followed by the peak-to-peak and trailing edge values, provided
the best forest height estimates. Another bathymetric lidar system with dual frequency,
532 and 1064 nm, and waveform recording was used by Nilsson (1996) to measure tree
heights and timber volume. The pulse length was 7 nanoseconds, the sampling interval
was 2.5 nanoseconds, and the digitized waveform was a combination of the two, green
and infrared, returns.

It has been proven that waveform lidar systems are most successful for vegetation analy-
sis. NASA has developed experimental sensors that record the complete waveform from
medium- and large-footprint lasers with a ground beam diameter between 5 m and tens
of meters as predecessors of spaceborne lidar systems. Two NASA airborne research lidar
systems have been used to characterize vegetation: the scanning lidar imager of canopies
by echo recovery (SLICER; Blair et al. 1994; Harding et al. 1994) and the laser vegetation
imaging sensor (LVIS; Blair and Hofton 1999). The LVIS sensor emits laser pulses with a
duration of 10 nanoseconds at full width half maximum (FWHM) and digitizes the detected
return energy at 500 megasamples per second or every 0.5 nanoseconds. The LVIS beam
diameter depends on the flying height, with a typical size of 10-25 m for its footprint. This
sensor has a scan angle of about 12° and can cover 2-km swaths from an altitude of 10 km.

3.7.2.2 Commercial Waveform-Recording Small-Footprint Lidar

A discrete-returns lidar system has limitations with respect to the number of echoes it
can record from a single pulse. A waveform-recording lidar overcomes this constraint by
recording the entire laser pulse energy as a function of time. This approach to recording
the laser backscatter amplitude with high frequency affords a better characterization of
the vertical distribution of reflecting surfaces within the laser footprint, which for most
of the commercial airborne sensors is smaller than 1 m in diameter.

As explained in Section 3.7.1, discrete-returns systems are affected by the reset time
between separate returns of the same pulse, which translates to a range separation of
1.2-1.5 m between consecutive echoes, when considering to- and from-target travel times.
This has implications for detecting ground covered by vegetation, such as tall grasses or
shrubs, when the laser beam may provide a return from the top of the vegetation cover and
penetrate to the ground and generate a secondary ground return.

By using adequate modeling of the recorded waveform, it has been shown that full-
waveform analysis enables the extraction of additional information compared to discrete-
return systems, such as the range to the ground peak underneath tall grasses, shrubs,



Lidar Remote Sensing 73

or forest vegetation (Gutierrez, Neuenschwander, and Crawford 2005). Most often, wave-
form analysis extracts range, elevation variation, and reflectance properties from the pulse
width and amplitude. In their study conducted in 2005, Gutierrez, Neuenschwander, and
Crawford compared the elevations derived from a conventional discrete-return system
with waveform data collected using the same sensor, an Optech ALTM instrument, and
found that elevation data agree well between the two datasets. They also concluded that
the waveform data provided increased information about the vertical distribution of
reflecting surfaces. A common approach to extracting information from waveform data is
to model the waveform as a series of Gaussian distribution functions, as demonstrated for
LVIS by Hofton, Minster, and Blair (2000), or Persson et al. (2005).

Some of the commercial airborne lidar systems are able to collect waveforms for small-
footprint laser beams, such as the Riegl LMS-Q680 (Riegl USA, Orlando, FL), TopEye Mark II
(Blom, Sweden), or Optech’s ALTM 3100 (Vaughn, Ontario, Canada). Some sensor manufac-
turers, such as Optech and Leica, provide the option of waveform digitizer modules that
can be integrated with their discrete-return systems to allow full-waveform digitization.

3.7.2.3 Spaceborne Lidar Systems

The lidar waveform-recording technology developed for the NASA airborne systems
made use of prototypes of methods and techniques later used by spaceborne altimeter
systems such as the shuttle laser altimeter (SLA; Garvin et al. 1998), which in 1996-1997
provided the first global-scale laser altimeter dataset. In 1997, the Mars orbiter laser altim-
eter (MOLA), an instrument used aboard the Mars Global Surveyor spacecraft, acquired its
first pass across the surface of Mars. The altimeter obtained measurements of topographic
profiles, surface reflectivity, and backscattered laser pulse width, with surface spot sizes of
70-300 m (Smith et al. 1998). The next space-based system was the geoscience laser altim-
eter system (GLAS) carried on the ice, cloud and land elevation satellite (ICESat), which
was launched on January 13, 2003 from the Vandenberg Air Force Base in California.

An overview of the ICESat mission is provided by Schutz et al. (2005). The ICESat laser
measurements were designed with the primary objective of monitoring ice sheets mass
balance. Measurements are currently distributed in 15 science data products, which have
interdisciplinary applications, including the characterization of land topography and veg-
etation canopy heights. The system operates by sending laser pulses with a frequency of
40 Hz and pulse duration of approximately 5 nanoseconds. The returning laser echo is
sampled every nanosecond, and the digitized pulses are referred to as laser waveforms.
The ICESat platform orbits at an altitude of approximately 600 km, and from that height
above the ground, the laser footprints have approximately a 64-m circular diameter. More
precisely, the footprints are elliptical, with their size and ellipticity varying during the
course of the mission. Along one orbital transect, the footprints are spaced at about 172-m
intervals (Schutz et al. 2005). The GLAS surface elevations are reported with respect to
the TOPEX/Poseidon reference ellipsoid. Among all GLAS standard products, the level-1
altimetry products, GLAO1, contain waveforms digitized in 544 bins with a bin size of
1 nanosecond or equivalently 15 cm; however, beginning with the data acquisition phase
L3A (October 2004), the bin size of BIN 1-151 has been changed to 4 nanoseconds (60 cm) to
reduce the risk of waveform truncation. The level-2 global land-surface products, GLA14,
provide an alternate fitting that locates up to six Gaussian components (mode, amplitude,
and sigma) to characterize the shape of the total waveform. The ICESat spacecraft allows
for off-nadir pointing of the laser, by up to 5 in order to target areas of interest or to com-
pensate for orbit drift (Schutz et al. 2005).
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3.7.3 Flash Lidar

An alternative to scanning the target of interest with pulses of laser light is offered by the
flash lidar technology. Rather than using one receiver to detect echoes from each laser
pulse, flash lidar uses a focal plane array as a detector to acquire a frame of 3D data from a
laser pulse that floods the scene. The concept of the flash lidar detector is similar to that of
the focal plane array of a two-dimensional optical digital camera. Each pixel in the array
configuration can independently measure the travel time for each laser pulse.

The sensor captures an entire frame of range data from a single pulse of laser light with
a certain frequency, such as 60 frames per second. Just like scanning lidar sensors, flash
lidar sensors are capable of capturing both range and intensity data.

At the time of this writing, little information is available about the flash lidar technol-
ogy. Few companies pursue the development of this technology, such as Ball Aerospace &
Technologies Corp., Boulder, CO, and Advanced Scientific Concepts, Inc., Santa Barbara, CA.

3.7.4 Ground-Based Lidar

Over the last 30 years, lasers have been incorporated into surveying instruments such as
simple range finders or more complex total stations. Such uses of lasers have led to the
development of ground-based or terrestrial lidar scanners, which are capable of scanning
the landscape surrounding their location. Most of the time, such sensors are set up on a
tripod or on vehicles, and they are respectively called “static” and “dynamic” or “mobile”
systems. Static systems do not require the integration of supporting technologies or units,
such as GPS and IMUs, whereas mobile systems need direct georeferencing through the
use of GPS and IMUs.

Ground-based lidar systems have developed considerably over the last decade, and the
use of such sensors has resulted in the proliferation of a large number of applications,
from surveying, architecture, accident scene reconstruction, monitoring of buildings and
bridges, measurement of complex industrial facilities, monitoring of quarries and open
mines, and recording of building and monument facades, to geological structures and
vegetation analysis.

Most of the ground-based lidar systems utilize the TOF principle for range measure-
ments, although a few employ the phase measuring technique. Depending on the cover-
age they are capable of illuminating with lidar points, ground-based lidar systems can be
differentiated as panoramic, hybrid, or camera-type scanners (Steiger 2003). Panoramic
scanners cover the surrounding landscape in a systematic pattern with 360° coverage in
the horizontal plane and more than 270° in the vertical plane, practically missing only the
area below the instrument’s tripod in covering a full spherical field of view. Although the
hybrid scanners are capable of scanning a 360° field of view in the horizontal plane, they
may have limited scanning angles toward the zenith, since most such scanners are used
for topographic applications and are not required to scan objects overhead. The camera-
type scanners normally have a limited field of view in both horizontal and vertical planes.
Panoramic scanners are the most versatile for indoor or outdoor applications and can be
set to cover a limited viewing angle, if so desired.

With respect to the range over which ground-based systems can be used, depending on
the manufacturer and the intended application, such systems can record ranges from 100 m
to 1 km. The most common terrestrial sensors are manufactured by the same companies
that build airborne lidar sensors, such as Leica, Optech, and Riegl, although there are
other systems as well, such as Trimble, Topcon, or research systems like Echidna.



Lidar Remote Sensing 75

With the development of dynamic terrestrial laser scanners, mobile mapping literally
takes on new dimensions. The mobile lidar technology has in fact many similarities with
airborne lidar, mainly in requiring continuous georeferencing of the moving vehicle that
carries one or more sensors. As such, the mobile lidar technology integrates GPS and IMU
components. Such systems are mainly used in the urban environment for reproducing
facades of buildings from the ground level, which can be integrated with airborne datasets
for producing accurate and complete 3D urban models.

3.8 Lidar Data Format

Until recently, discrete-return lidar data were provided in text or binary format, which was
usually proprietary, most commonly with geographic coordinates and intensity recordings
for multiple returns and pulses making up the point cloud. The drawback of this approach
was the lack of portability and consistency among software tools used for processing the
datasets from different providers or different sensors. The first version of a standard lidar
file format, the LAS 1.0 (Graham 2005), was released in 2002 with the intention of allowing
different lidar hardware and software tools to output data in a common format. The initial
LAS specification was a relatively compact binary encoding of point location and point
attribute data. The third revision of the LAS format specification was released in July 2009,
and it is owned by the American Society for Photogrammetry & Remote Sensing (ASPRS).
The LAS 1.3 specification includes a noteworthy improvement over previous specifica-
tions, that is, the possibility of encoding lidar waveform data. In addition, the LAS 1.3
includes important information regarding the sensor used to collect lidar data, processing
software, number of lidar points, point coordinates, intensity, classification, and other rel-
evant data. Table 3.3 shows the standard lidar point classes in LAS 1.3.

TABLE 3.3
Standard Lidar Point Classes in the ASPRS LAS 1.3 Data Format
Classification Value (Bits 0:4) Meaning

Created, never classified
Unclassified 1

Ground

Low vegetation

Medium vegetation

High vegetation

Building

Low point (noise)

Model key point (mass point)
Water

O 0 N O U & W N~ O

10 Reserved for ASPRS definition
11 Reserved for ASPRS definition
12 Overlap points 2

13-31 Reserved for ASPRS definition
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3.9 Examples of Environmental Applications of Lidar Remote Sensing

Environmental applications of lidar remote sensing cover a wide spectrum, such as
applications in environmental engineering, mapping geologic faults under the forest can-
opy, monitoring coastal changes, assessing landslide hazards, quantifying the growth and
retreat of ice sheets, and estimating vegetation structural attributes, biophysical param-
eters, and habitat characterization. Developments in lidar remote-sensing applications for
environmental studies are occurring rapidly, and they are driven by intensive research
and increasing availability of lidar data from commercial and governmental sources. Two
general application trends can be observed: (1) characterizing the topographic features
and (2) assessing the 3D structure of vegetation canopies. Topography mapping with lidar
remote sensing is potentially the fastest-growing area of environmental applications.
Most environmental studies need topographic information, and lidar has proven its abil-
ity to acquire highly accurate and detailed elevations, which have a strong influence on
the structure, spatial extent, composition, and function of ecological systems. Most often,
topographic applications use discrete-returns lidar data provided by commercial remote
sensing companies. When deriving topographic information, a substantial number of lidar
points in the point cloud, mainly representing vegetation hits, are discarded in the step
known as “vegetation removal.” On the contrary, for most ecological applications that use
discrete-returns lidar data, the lidar returns from the canopy are of the highest interest. In
addition to the discrete-return airborne systems, waveform lidar data have been used for
characterizing vegetation structure over large areas. Since topographic lidar applications
have been described in great detail in other texts, such as the works of Maune (2007) or
Shan and Toth (2009), Sections 3.9.1 through 3.9.3 provide examples of lidar remote sensing
applications for environmental studies of vegetation and habitat characteristics.

3.9.1 Lidar for Estimating Forest Biophysical Parameters

The use of remote sensing in mapping the spatial distribution of canopy characteristics
allows an accurate and efficient estimation of tree dimensions and canopy properties at
local, regional, and even global scales. In particular, lidar remote sensing has the capabil-
ity to acquire direct 3D measurements of the forest structure that are useful for estimating
a variety of forest biophysical parameters, such as tree height; crown dimensions, canopy
closure, leaf area index, tree density, forest volume, and forest biomass, and in mapping
fire risk by assessing surface and canopy fuels.

During the late 1980s, a number of lidar studies for estimating tree height, forest biomass,
and carbon date were conducted, for example, studies by Maclean and Krabill (1986),
Nelson, Swift, and Krabill (1988), and Nelson, Krabill, and Tonelli (1988). These first stud-
ies used profiling lidar systems and developed models to predict stem volume and dry
biomass based on forest canopy height and closure as measured by airborne lidar. Since
then, numerous researchers have used a variety of lidar systems and sampling techniques
to quantify tree dimensions, standing timber volume, aboveground biomass, and carbon
date, mainly with scanning systems.

Previous lidar studies, whether using waveform or discrete-return lidar data, attempted
to derive measurements, such as tree height and crown dimensions, at stand level (Neesset
and Bjerknes 2001; Hall et al. 2005), plot level (Holmgren, Nilsson, and Olsson 2003; Hyyppa
et al. 2001; Lim and Treitz 2004; Popescu, Wynne, and Scrivani 2004), or individual tree
level (Persson, Holmgren, and S6erman 2002; Coops et al. 2004; Yu et al. 2004; Holmgren
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and Persson 2004; Roberts et al. 2005; Chen et al. 2006; Koch, Heyder, and Weinacker 2006;
Popescu 2007) and then use allometric relationships or statistical analysis to estimate other
characteristics, such as biomass, volume, crown bulk density, and canopy fuel parame-
ters. Figure 3.10 shows a lidar point cloud with a point density of 8 points per square
meter collected by a discrete-return sensor over coniferous forests in the western United
States. Figure 3.11 displays the ground-based lidar data acquired from a tripod system in
Mesquite forests in central Texas.

Forest canopy structure was estimated using data from scanning lasers that provided
lidar data with full-waveform digitization (Harding et al. 1994, 2001; Lefsky et al. 1997,
Means et al. 1999). Small-footprint, discrete-returns systems were used to estimate canopy
characteristics, with many studies focusing on tree height (Neesset 1997; Magnussen and
Boudewyn 1998; Magnussen, Eggermont, and LaRiccia 1999; Neesset and Qkland 2002;
Popescu, Wynne, and Nelson 2002; McCombs, Roberts, and Evans 2003; Maltamo et al.
2004; Popescu and Wynne 2004) or crown dimensions, such as the study conducted by
Popescu, Wynne, and Nelson (2003). Figure 3.12 shows a portion of a canopy height model
of mixed forest conditions in the southern United States. The canopy model has been pro-
cessed automatically with methods described by Popescu and Wynne (2004) in identifying
individual trees, and their heights and crown dimensions have been measured.

After more than two decades of researchin vegetation assessment with lidar, the following
four aspects could be concluded: First, with waveform lidar systems having large foot-
prints, robust regressions can be developed to predict volume and biomass over large area
extents. The R? values for plot-level models range from 0.8 to 0.9 (Lefsky et al. 1999, 2002;

FIGURE 3.10
(See color insert following page 426.) Lidar point cloud over coniferous forests in the western United States.

FIGURE 3.11
(See color insert following page 426.) Ground-based lidar data collected over Mesquite trees in central Texas.
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FIGURE 3.12

(See color insert following page 426.) Automatically measuring individual trees on a lidar-derived canopy
height model. Circles represent computer-measured crown diameters, whereas each cross sign indicates identi-
fied individual trees.

Drake et al. 2002). With discrete-returns systems, that is, scanning lidar systems with small
footprints, usually of submeter range, the strength of the prediction models for volume and
biomass are more variable, with R? values ranging from 0.4 to 0.9 (Nilsson 1996; Naesset
1997, 2002; Nelson, Short, and Valenti 2003; Popescu, Wynne, and Nelson 2003; Popescu,
Wynne, and Scrivani 2004; Zhao, Popescu, and Nelson 2009; Popescu and Zhao, 2009).
Second, conifer attributes can be estimated with higher accuracy than hardwood param-
eters. The evidence for this statement is found scattered throughout the literature and may
be attributed to the more complex canopy structure of deciduous stands and individual
tree growth form, which make height-volume or biomass relationships noisier for hard-
woods (Lefsky et al. 1999; Popescu, Wynne, and Scrivani 2004; Neesset 2004). Third, despite
intense research efforts and few operational uses, there is a lack of lidar processing tools
and, thus, investigators are spending considerable efforts on developing software. Fourth,
airborne lidar data can be used to inventory biomass and carbon at scales from local to
regional and global. With scanning lidar, biomass and carbon can be accurately estimated
at local scales; for examples, see the studies by Popescu et al. (2003, 2004). Using profiling
lidar data, as in the studies of Nelson, Short, and Valenti (2003), biomass and carbon can
be estimated over large areas, whereas satellite lidar (e.g., ICESat/GLAS) can be used for
global estimates of canopy properties (Ranson et al. 2004).

3.9.2 Lidar Applications for Estimating Surface and Canopy Fuels

Few lidar studies focus on assessing canopy structure and characteristics, such as fuel
weight, canopy and crown base height, and crown bulk density (Pyysalo and Hyyppd
2002; Holmgren and Persson 2004; Riafio et al. 2003, 2004; Andersen, McGaughey, and
Reutebuch 2005; Mutlu et al. 2008; Mutlu, Popescu, and Zhao 2008; Popescu and Zhao 2008).
Among these studies, there seems to be a unanimous acceptance that airborne lidar over-
estimates crown base height for individual trees or plot-level canopy base height, which
is an intuitive finding given the fact that airborne lidar portrays crowns from above, and
lower branches have a reduced probability of being intercepted by laser pulses that might
be blocked by higher branches (Holmgren and Persson 2004; Andersen, McGaughey, and
Reutebuch 2005).



Lidar Remote Sensing 79

3.9.3 Lidar Remote Sensing for Characterizing Wildlife Habitat

Ecologists have long recognized the importance of vegetation structure for characterizing
wildlife habitat, but field methods for gathering such information are time consuming and
challenging. Vertical forest structure is related to biodiversity and habitat. “In general, the
more vertically diverse a forest is the more diverse will be its biota ...” (Brokaw and Lent
1999). Remote sensing techniques provide an attractive alternative (e.g., Turner et al. 2003),
especially when 3D data are acquired directly with sensors such as lidar.

Hinsley et al. (2002) and Hill et al. (2003) employed an airborne laser system to assess
bird habitat. They used an airborne laser scanning system to map forest structure across
a 157-hectare deciduous woodland in the eastern United Kingdom. The researchers
related laser-based forest canopy heights to chick mass (i.e., nestling weight), a surrogate
for breeding success, which, in turn, is a function of “territory quality.” They found that
for one species, chick mass increased with increasing forest canopy height, and for a sec-
ond species, chick mass decreased. Hill et al. (2003) concludes that airborne laser scanning
data can be used to predict habitat quality and to map species distributions as a function
of habitat structure.

Nelson, Keller, and Ratnaswamy (2005) mapped and estimated the areal extent of
Delmarva fox squirrel (DFS) habitat using an airborne profiling lidar flown over Delaware.
The study results indicated that (1) systematic airborne lidar data can be used to screen
extensive areas to locate potential DFS habitat; (2) 78% of sites meeting certain minimum
length, height, and canopy closure criteria will support DFS populations, according to a
habitat suitability model; (3) airborne lidar can be used to calculate county and state acre-
age estimates of potential habitat; and (4) the linear transect data can be used to calculate
selected patch statistics.

Hyde et al. (2005) used a large-footprint (12.5 m) scanning lidar to map California spot-
ted owl habitat across a 60,000-hectare study area in the Sierra Nevada, California. They
looked at forest canopy height, canopy cover, and biomass in the mountainous forests.
Their ultimate objective was to produce maps for the U.S. Forest Service for wildlife habi-
tat and forest resource management and to conclude that lidar provides “important met-
rics that have been exceptionally difficult to measure over large areas.”

Recent studies, such as the ones conducted by Clawges et al. (2008) or Vierling et al.
(2008), show the potential of using airborne lidar in studying animal-habitat relationships
and in quantifying the vegetation structural attributes important for wildlife species.
Clawges et al. used lidar to assess avian species diversity, density, and occurrence in a
pine aspen forest in South Dakota. They concluded that lidar data can provide an alterna-
tive to field surveys for some vegetation structure indices, such as total vegetation volume,
shrub density index, and foliage height diversity. They calculated different foliage height
diversity indices using various foliage height categories and found that habitat assessment
may be enhanced by using lidar data in combination with spectral data.

3.10 Lidar Systems for Atmospheric Studies

Although this chapter focuses on lidar remote sensing for environmental applications, laser
remote sensing technologies arealso used efficiently for providing four-dimensional—space
and time—measurements of the atmosphere and its constituents. Range-resolved mea-
surements of the atmosphere have been carried out from the ground, air, and space.
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In fact, Middleton and Spilhaus (1953), who are credited with coining the lidar acronym,
did so in the context of meteorological instruments, but without expressly mentioning what
it could be the acronym of. Fiocco and Smullin described atmospheric measurements with
a ruby laser in 1963. Currently, lidar systems used in atmospheric studies observe spatial
and temporal distribution of atmospheric gases, atmospheric pressure, temperature, tur-
bulence, and wind (Weitkamp, 2005). Physical processes observed with these lidars include
laser backscattering by aerosols and clouds (Mie scattering), laser backscattering by mol-
ecules (Rayleigh scattering), absorption by atoms and molecules (differential absorption
lidar [DIAL]), Raman scattering, fluorescence, and Doppler shift by aerosols and clouds
(Doppler lidar). These lidar systems are not discussed further in this book. Similarly, this
book does not discuss short-distance laser remote sensing technologies used in industrial,
security, and medical applications. Interested readers can find a relatively rich lidar lit-
erature for atmospheric studies both in book and scientific articles formats, for example,
studies by Fujii and Fukuchi (2005).

3.11 Conclusions

Lidar data availability is increasing along with the spectrum of lidar applications in
environmental remote sensing at a multitude of scales and the user’s need for up-to-date
information on sensors, processing algorithms, and applications. As such, the goal of
this chapter is to provide the fundamentals of lidar remote sensing technology and some
examples of environmental applications of this technology for characterizing the 3D struc-
ture of vegetation canopies.

The present widespread use of lidar remote sensing offers an optimistic vision of the
future for environmental applications and research investigations. Intrinsic lidar data
structure allows the integration of data acquired by different platforms, terrestrial, air-
borne, and spaceborne, as complementary or validation tools for applications at multiple
scales from local to regional and global. In addition, the fusion of lidar and optical or radar
data aims at reducing the limitations of each technology and utilizing their synergistic
characteristics for complex environmental assessment. In the context of global climate and
environmental changes, lidar proves to be an important technology that makes possible
the analysis of the 3D structure of vegetation canopies and facilitates operational applica-
tions and scientific discovery. There is no doubt that lidar will continue to be one of the
most important geospatial data acquisition technologies subject to continuous develop-
ments of all its components: acquisitions systems and hardware, data formats, processing
algorithms and software, operational principles, quality, accuracy, and standards.

References

Aldred, A.,and M. Bonner. 1985. Application of Airborne Lasers to Forest Surveys, p. 62. Canadian Forestry
Service, Petawawa National Forestry Centre, Information Report PI-X-51. Ottawa, Canada.

Andersen, H. E., R. ]. McGaughey, and S. E. Reutebuch. 2005. Estimating forest canopy fuel param-
eters using LiDAR data. Remote Sens Environ 94:441-9.



Lidar Remote Sensing 81

Baltsavias, E. 1999. Airborne laser scanning: Basic relations and formulas. ISPRS | Photogramm Remote
Sens 54:199-214.

Blair, J. B., D. B. Coyle, J. L. Bufton, and D. J. Harding. 1994. Optimization of an airborne laser altim-
eter for remote sensing of vegetation and tree canopies. In Proceedings of IGARSS 94, vol. 1I,
939-41. Pasadena, CA: IEEE Geoscience and Remote Sensing Society.

Blair, J. B., and M. A. Hofton. 1999. Modeling laser altimeter return waveforms over complex vegeta-
tion using high-resolution elevation data. Geophys Res Lett 26(16):2509-12.

Brokaw, N., and R. Lent. 1999. Vertical structure. In Maintaining Biodiversity in Forest Ecosystems, ed.
M. L. Hunter Jr., 373-99. New York: Cambridge University Press.

Chen, Q., D. Baldocchi, P. Gong, and M. Kelly. 2006. Isolating individual trees in a savanna woodland
using small footprint LIDAR data. Photogramm Eng Remote Sens 72(8):923-32.

Clawges, R., K. T. Vierling, L. A. Vierling, and E. Rowell. 2008. Use of airborne lidar for assessment
of avian habitat and estimation of select vegetation indices in the Black Hills National Forest,
South Dakota, USA. Remote Sens Environ 112:2065-73.

Coops, N. C., M. A. Wulder, D. S. Culvenor, and B. St-Onge. 2004. Comparison of forest attri-
butes extracted from fine spatial resolution multispectral and lidar data. Can | Remote Sens
30(6):855-66.

Drake, J. B., R. Dubayah, R. Knox, D. B. Clark, and J. B. Blair. 2002. Sensitivity of large-footprint lidar
to canopy structure and biomass in a neotropical rainforest. Remote Sens Environ 81:378-92.

Dubayah, R., R. Knox, M. Hofton, J. B. Blair, and ]J. Drake. 2000. Land surface characterization
using lidar remote sensing. In Spatial Information for Land Use Management, ed. M. J. Hill and
R.J. Aspinall, 25-38. Singapore: International Publishers Direct.

Flood, M., and Gutelius, B. 1997. Commercial implication of topographic terrain mapping using
scanning airborne laser radar. ISPRS Journal of Photogrammetry & Remote Sensing 63(4):
327-66.

Fujii, T., and Fukuchi, T., eds. 2005. Laser Remote Sensing. Boca Raton, FL: Taylor & Francis/CRC
Press.

Graham, L. 2005. The LAS 1.1 data format. Photogramm Eng Remote Sensing 71(7):777-80.

Gutierrez, R., A. Neuenschwander, and M. Crawford. 2005. Development of laser waveform digitiza-
tion for airborne lidar topographic mapping instrumentation. Proc IEEE Int Geosci Remote Sens
Symp 2:1154-7.

Hall, S. A, I. C. Burke, D. O. Box, M. R. Kaufmann, and J. M. Stoker. 2005. Estimating stand structure
using discrete-return LiDAR: An example from low density, fire prone ponderosa pine forests.
For Ecol Manage 208:189-209.

Harding, D. J., J. B. Blair, J. B. Garvin, and W. T. Laurence. 1994. Laser altimetry waveform mea-
surement of vegetation canopy structure. Proceedings of the International Geoscience and Remote
Sensing Symposium—IGARSS '94, pp. 1251-3. Noordwijk, the Netherlands: ESA Scientific and
Technical Publication.

Harding, D. J., M. A. Lefsky, G. G. Parker, and J. B. Blair. 2001. Lidar altimeter measurements of
canopy structure: Methods and validation for closed-canopy, broadleaf forests. Remote Sens
Environ 76:283-97.

Hecht, J. 1992. Understanding Lasers: An Entry Level Guide. New York: IEEE Press.

Hill, R. A, S. A. Hinsley, P. E. Bellamy, and H. Balzter. 2003. Ecological applications of airborne laser
scanner data: Woodland bird habitat modeling. In Proceedings of ScandLaser Scientific Workshop
on Airborne Laser Scanning of Forests, ed. ]. Hyypp4, E. Neesset, H. Olsson, T. Granqvist Pahlén
and H. Reese, 78-87. Sweden: Umea.

Hinsley, S. A., R. A. Hill, D. L. A. Gaveau, and P. E. Bellamy. 2002. Quantifying woodland structure
and habitat quality for birds using airborne laser scanning. Funct Ecol 16:851-7.

Hofton, M. A, J. -B. Minster, and J. B. Blair. 2000. Decomposition of laser altimeter waveforms. [EEE
Trans Geosci Remote Sens 38:1989-96.

Holmgren, J., M. Nilsson, and H. Olsson. 2003. Estimation of tree height and stem volume on plots
using airborne laser scanning. For Sci 49(3):419-28.



82 Advances in Environmental Remote Sensing

Holmgren, J., and A. Persson. 2004. Identifying species of individual trees using airborne laser scan-
ner. Remote Sens Environ 90:415-23.

Hyde, P,, R. Dubayah, B. Peterson, J. B. Blair, M. Hoften, C. Hunsaker, R. Knox, and W. Walker. 2005.
Mapping forest structure for wildlife habitat analysis using waveform lidar: Validation of mon-
tane ecosystems. Remote Sens Environ 96:427-37.

Hyyppa, J., O. Kelle, M. Lehikoinen, and M. Inkinen. 2001. A segmentation-based method to retrieve
stem volume estimates from 3-D tree height models produced by laser scanners. IEEE Trans
Geosci Remote Sens 39(5):969-75.

Koch, B., U. Heyder, and H. Weinacker. 2006. Detection of individual tree crowns in airborne LiDAR
data. Photogramm Eng Remote Sensing 72(4):357-64.

Kraus, K., and N. Pfeifer, 1998. Determination of Terrain Models in Wooded Areas with Airborne
Laser Scanner Data. ISPRS-Journal of Photogrammetry and Remote Sensing 53:193-203.

Lefsky, M. A., W. B. Cohen, S. A. Acker, T. A. Spies, G. G. Parker, and D. Harding. 1997. LiDAR remote
sensing of forest canopy structure and related biophysical parameters at the H. J. Andrews
experimental forest, Oregon, USA. In Natural Resources Management Using Remote Sensing and
GIS, ed. ]. D. Greer, 79-91. Washington, DC: ASPRS.

Lefsky, M. A., W. B. Cohen, D. J. Harding, G. G. Parker, S. A. Acker, and S. T. Gower. 2002. LIDAR
remote sensing of above-ground biomass in three biomes. Glob Ecol Biogeogr 11:393-9.

Lefsky, M. A,, D. J. Harding, W. B. Cohen, G. G. Parker, and H. H. Shugart. 1999. Surface LIDAR
remote sensing of basal area biomass in deciduous forests of eastern Maryland, USA. Remote
Sens Environ 67:83-98.

Lim, K. S., and P. M. Treitz. 2004. Estimation of aboveground forest biomass from airborne dis-
crete return laser scanner data using canopy-based quantile estimators. Scand | For Res 19(6):
558-70.

Maclean, G. A., and W. B. Krabill. 1986. Gross merchantable timber volume estimation using an air-
borne LIDAR system. Can | Remote Sens 12:7-18.

Magnussen, S., and P. Boudewyn. 1998. Derivations of stand heights from airborne laser scanner data
with canopy-based quantile estimators. Can | For Res 28:1016-31.

Magnussen, S., P. Eggermont, and V. N. LaRiccia. 1999. Recovering tree heights from airborne laser
scanner data. For Sci 45(3):407-22.

Maiman, T. 1960. Stimulated optical emission in ruby. Nature 197:493—4.

Maltamo, M., K. Eerikdinen, J. Pitkédnen, J. Hyypp4d, and M. Vehmas. 2004. Estimation of timber vol-
ume and stem density based on scanning laser altimetry and expected tree size distribution
functions. Remote Sensing of Environment 90(3):319-30.

Maune, D. F. 2007. Digital Elevation Model Technologies and Applications: The Dem Users Manual. ASPRS
Publications. Washington, DC: U.S.A.

McCombs, J. W., S. D. Roberts, and D. L. Evans. 2003. Influence of fusing LIDAR and multispectral
imagery on remotely sensed estimates of stand density and mean tree height in a managed
loblolly pine plantation. For Sci 49(3):457-66.

Means, J. E., S. A. Acker, D. J. Harding, J. B. Blair, M. A. Lefsky, W. B. Cohen, M. E. Harmon, and
W. A. McKee. 1999. Use of large-footprint scanning airborne LiDAR to estimate forest stand
characteristics in the Western Cascades of Oregon. Remote Sens Environ 67:298-308.

Means, J. E. 2000. Comparison of large-footprint and small-footprint lidar systems: design, capa-
bilities, and uses. In Proceedings: Second International Conference on Geospatial Information in
Agriculture and Foretry, Lake Buena Vista, Florida, 10-12 January 2000:1-185-92.

Middleton, W. E. K., and A. E Spilhaus, 1953. Meteorological Instruments. Toronto, University of
Toronto Press, 254-63.

Mutlu, M., S. C. Popescu, C. Stripling, and T. Spencer. 2008. Assessing surface fuel models using
LiDAR and multispectral data fusion. Remote Sens Environ 112(1):274-85.

Mutlu, M., S. C. Popescu, and K. Zhao. 2008. Sensitivity analysis of fire behavior modeling with lidar-
derived surface fuel maps. For Ecol Manage 256:289-94.

Neesset, E. 1997. Estimating timber volume of forest stands using airborne laser scanner data. Remote
Sens Environ 61(2):246-53.



Lidar Remote Sensing 83

Neesset, E. 2002. Predicting forest stand characteristics with airborne scanning laser using a practical
two-stage procedure and field data. Remote Sens Environ 80:88-99.

Neesset, E. 2004. Practical large-scale forest stand inventory using small-footprint airborne scanning
laser. Scand | For Res 19:164-79.

Neesset, E., and K. -O. Bjerknes. 2001. Estimating tree heights and number of stems in young forest
stands using airborne laser scanner data. Remote Sens Environ 78:328-40.

Neesset, E., and T. Qkland. 2002. Estimating tree height and tree crown properties using airborne
scanning laser in a boreal nature reserve. Remote Sens Environ 79:105-15.

Nelson, R., C. Keller, and M. Ratnaswamy. 2005. Locating and estimating the extent of Delmarva fox
squirrel habitat using an airborne LiDAR profiler. Remote Sens Environ 96:292-301.

Nelson, R. E,, W. Krabill, and J. Tonelli. 1988. Estimating forest biomass and volume using airborne
laser data. Remote Sens Environ 24:247-67.

Nelson, R. E, E. A. Short, and M. A. Valenti. 2003. A multiple resource inventory of Delaware using
airborne laser data. BioScience 53(10):981-92.

Nelson, R. F,, R. Swift, and W. Krabill. 1988. Using airborne lasers to estimate forest canopy and stand
characteristics. | For 86:31-8.

Nilsson, M. 1996. Estimation of tree heights and stand volume using an airborne LIDAR system.
Remote Sens Environ 56:1-7.

Persson, A., J. Holmgren, and U. S6erman. 2002. Detecting and measuring individual trees using an
airborne laser scanner. Photogramm Eng Remote Sensing 68(9):925-32.

Persson, A., U. Séderman, J. Topel, and S. Ahlberg. 2005. Visualization and analysis of full-waveform
airborne laser scanner data. Int Arch Photogramm Remote Sens Spat Inf Sci ISPRS WG I11/3, 111 /4,
V/3, pp. 103-108.

Popescu, S. C. 2007. Estimating biomass of individual pine trees using airborne lidar. Biomass
Bioenergy 31(9):646-55.

Popescu, S. C.,and R. H. Wynne. 2004. Seeing the trees in the forest: Using lidar and multispectral data
fusion with local filtering and variable windowsize for estimating tree height. Photogrammetric
Engineering and Remote Sensing, 70:589-604.

Popescu, S. C., R. H. Wynne, and R. H. Nelson. 2002. Estimating plot-level tree heights with LIDAR:
Local filtering with a canopy-height based variable window size. Comput Electron Agric
37(1-3):71-95.

Popescu, S. C., R. H. Wynne, and R. H. Nelson. 2003. Measuring individual tree crown diameter with
LIDAR and assessing its influence on estimating forest volume and biomass. Can | Remote Sens
29(5):564-77.

Popescu, S. C., R. H. Wynne, and J. A. Scrivani. 2004. Fusion of small-footprint lidar and multispec-
tral data to estimate plot-level volume and biomass in deciduous and pine forests in Virginia,
USA. For Sci 50(4):551-65.

Popescu, S. C., and K. Zhao. 2008. A voxel-based lidar method for assessing crown base height.
Remote Sens Environ 112(3):767-81.

Pyysalo, U., and H. Hyypp4. 2002. Geometric shape of the tree extracted from laser scanning data.
In International Society for Photogrammetry and Remote Sensing—ISPRS Commission 111 Symposium
(PCV'02), p. 4. Austria: Graz.

Ranson, K.J., G. Sun, K. Kovacs, and V. I. Kharuk. 2004. Landcover attributes from ICESat GLAS data
in Central Siberia. In Proceedings, Geoscience and Remote Sensing Symposium, 753-6. IGARSS "04.
Anchorage, Alaska.

Riafio, D., E. Meier, B. Algower, E. Chuvieco, and S. L. Ustin. 2003. Modeling airborne laser scanning
data for the spatial generation of critical forest parameters in fire behavior modeling. Remote
Sens Environ 86:177-86.

Riafo, D., Valladares, F., Condes, S., and Chuvieco, E. 2004. Estimation of leaf area index and covered
ground from airborne laser scanner (Lidar) in two contrasting forests. Agricultural and Forest
Meteorology, 124:269-275.

Riegl, U. S. A. 2008. http:/ /www.rieglusa.com (retrieved January 16, 2008).



84 Advances in Environmental Remote Sensing

Roberts, S. D., T. J. Dean, D. L. Evans, J. W. McCombs, R. L. Harrington, and P. A. Glass. 2005.
Estimating individual tree leaf area in loblolly pine plantations using LiDAR-derived measure-
ments of height and crown dimensions. For Ecol Manage 213:54-70.

Schutz, B. E., H. J. Zwally, C. A. Shuman, D. Hancock, and J. P. DiMarzio. 2005. Overview of the
ICESat mission. Geophysical Research Letters 32, L.21S01.

Shan, J., and C. K. Toth. 2009. Topographic laser ranging and scanning: Principles and processing. Boca
Raton, FL: Taylor & Francis/CRC Press.

Smith, D. E. Topography of the northern hemisphere of Mars from the Mars Orbiter Laser Altimeter
(MOLA). Science 279:1686—1962.

Steiger, R. 2003. Terrestrial Laser Scanning—Technology, Systems, and Applications, p. 10. Marrakech,
Morocco: Second FIG Regional Conference.

Turner, W., S. Spector, N. Gardeiner, M. Fladeland, E. Sterling, and M. Steininger. 2003. Remote sens-
ing for biodiversity science and conservation. Trends Ecol Evol 18(6):306-14.

Vierling, K. T., L. A. Vierling, S. Martinuzzi, W. Gould, and R. Clawges. 2008. Lidar: Shedding new
light on habitat modeling. Front Ecol Environ 6:90-8.

Wehr, A., and U. Lohr. 1999. Airborne laser scanning—an introduction and overview. ISPRS
] Photogramm Remote Sens 54:68-82.

Weitkamp, C., 2005. In Laser Remote Sensing, ed. T. Fujii and T. Fukuchi. Boca Raton, FL: Taylor and
Francis/CRC Press.

Yu, X., ]. Hyypp4d, H. Kaartinen, and M. Maltamo. 2004. Automatic detection of harvested trees and
determination of forest growth using airborne laser scanning. Remote Sens Environ 90:451-62.

Zhao, K., and S. C. Popescu. 2009. Lidar-based mapping of leaf area index and its use for validating
GLOBCARBON satellite LAI product in a temperate forest of the southern USA. Remote Sens
Environ 113(8):1628-45.

Zhao, K., S. C. Popescu, and R. E Nelson. 2009. Lidar remote sensing of forest biomass: A scale-
invariant estimation approach using airborne lasers. Remote Sens Environ 113(1):182-96.



4

Impulse Synthetic Aperture Radar

Giorgio Franceschetti and James Z. Tatoian

CONTENTS

B T3 T 1 o TR 85
4.2 Timed Array ANalysiS.......ccocoiiiiiiiiiiic 86
4.3 Radiated Pulse.........ccooiiiiiiii e 91
4.4 Polychromatic Synthetic Aperture Radar ...........ccocoovviiiiieiiiiiicc 95
4.5 CONCIUSIONS. ....cuiviiiiniiiiii s a s aeais 98
ACKNOWIEAGMENTS ...t e 99
REfETEIICES. ..o s 99
L]

4.1 Scenario

Synthetic aperture radar (SAR) is one of the key sensors currently positioned on satel-
lites for Earth and planetary exploration. It is also widely used on airplanes for imaging
of Earth’s surface without the time and space constraints imposed by the satellites” pre-
scribed orbits. Additional applications, such as subsurface imaging after earthquakes and
through-the-wall detection and identification of criminals and/or terrorist activities, are
now emerging in the homeland security area (Amin 2010).

A SAR system radiates chirped pulses from different equispaced positions along the
azimuth, which is usually a straight line; a linear array is thus synthesized. After raw
data processing, the (microwave) image of the illuminated area is obtained, where the
range and azimuth resolutions are Ar = [2A/(Af/ f)] and Ax = L/2, respectively. In the above
expressions, A and f are the wavelength and frequency of the pulse carrier, respectively, Af
is the chirp bandwidth, and L is the effective length of the radiating antenna. The azimuth
resolution Ax requires the length of the synthesized array to be equal to Ar/L, where r
is the distance between the sensor and the ground (assumed to be flat), and the spacing
between the synthesized array elements does not exceed L/2. The conventional way to
derive these results is by using the Doppler shift, in which a reference is made to the move-
ment of the antenna platform with constant velocity along the azimuth. Although this
procedure may lead to correct results (Curlander and McDonough 1991), it is essentially
inappropriate from a physical viewpoint. Actually, the platform movement does not play
any significant role in the SAR imaging (see image parameters Ar and Ax: only the array
parameters are relevant and not the platform velocity). Accordingly, the proper way to
trace the SAR system performance is to make a reference to the array, with the synthesiz-
ing procedure being just a technical detail; the subsequent processing procedure corre-
sponds to a near-to-far field transformation (Franceschetti and Lanari 1999) by means of a
proper beam-forming technique. This viewpoint allows for rational and sound extensions
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of the SAR performance in interferometric or tomographic three-dimensional (Fornaro
and Serafino 2006) and forward-looking applications currently being developed. The latter
correspond to end-fire phased array synthesis (instead of broadside, as in the conventional
SAR), and the former correspond to two-dimensional phased array synthesis.

The above-mentioned extensions are simply generalizations of the conventional SAR sys-
tems, easily understandable if the phased array model is adopted in place of the Doppler
shift. This chapter presents a completely new type of SAR system that radiates short car-
rierless pulses, namely the Impulse Synthetic Aperture Radar (ImpSAR). Again, the SAR sys-
tem model is fully adopted, with the only difference being the use of synthezised timed
arrays (Franceschetti, Tatoian, and Gibbs 2005), and not phased arrays. This is done for two
reasons: (1) the term “phase” has no meaning in the time domain, and (2) the use of a fre-
quency approach is convenient and helpful for narrowband signals, but can be misleading
if the waveform bandwidth becomes large, that is, for ultra wideband (UWB) signals. The
latter approach is unreasonably complicated, not transparent from a physical viewpoint,
and also requires essentially inane classifications of the signals with reference to their
relative bandwidth. An extension of ImpSAR to 3D imaging is also presented, where two-
dimensional timed arrays are employed, and no phase unwrapping procedures take place,
because the concept of phase in this context is irrelevant.

Higher range resolution of ImpSAR requires shorter radiated pulses, implying lower
average radiated power, while radiated pulse amplitude is dictated by the currently avail-
able hardware technology. This limitation may be mitigated by employing larger antenna
arraysinmany applications where sensing from large standoff distances is required, includ-
ing homeland security scenarios involving airborne and ground-based SAR systems.

Finally, the raw ImpSAR data may provide additional valuable information. Because
each pulse instantaneously spans a very large bandwidth, it follows that the latter can be
sliced among several subbands. Each subband can be independently processed, generat-
ing a number of conventional narrowband SAR images equal to the number of subbands.
The name of the algorithm, which requires only software assets (the hardware being that
of the ImpSAR), is polychromatic SAR, as it produces microwave images at different micro-
wave frequency bands (different colors). This is particularly attractive in the low-frequency
range, where the use of a conventional SAR usually presents weight- and size-related prob-
lems, especially for the airborne systems.

In this chapter, the full theory of InpSAR and polychromatic SAR is presented, together
with some preliminary experimental data that validate the theory, suggesting a promising
future for these innovative systems.

4.2 Timed Array Analysis

Let us consider an array, composed of 2N+1 elements, as depicted in Figure 4.1. Each
element is excited by the same signal f(t). In the far field, the radiated field is propor-
tional to

F(t,®) = i F(t—nAb) @)

n=—N

where At = asin9/c, and c is the speed of light in vacuum.



Impulse Synthetic Aperture Radar 87

n=-N n=-1|n

FIGURE 4.1
Array composed of 2N+1 identical elements. (From Franceschetti, G., J. Tatoian, and G. Gibbs, Timed arrays in a
nutshell, IEEE Trans Antennas Propagat 53(12):4073-82), © (2005) IEEE.)
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FIGURE 4.2

Timed array excited by a rectangular pulse and the resulting far-field radiated signals: (a) Received and super-
posed pulses along the broadside direction; (b) received pulses along the direction 6; (c) superposed received
pulses along the direction 6. (From Franceschetti, G., J. Tatoian, and G. Gibbs, Timed arrays in a nutshell, [EEE
Trans Antennas Propagat 53(12):4073-82), © (2005) IEEE.)

A definition of the radiation diagram similar to that of sinusoidal field is possible by
substituting its radiated power density with energy density as follows (Franceschetti,
Tatoian, and Gibbs 2005):

sz(t,ﬂ)dt

= 4.2
= Trgoar “2)
As an illustrative example, the case N =2 is depicted in Figure 4.2, where the feeding signal
f(t) is the rectangular pulse, f(t) =rect[t/T ], T being the pulsewidth.

Furthermore, in the far field, that is, in the properly defined Fraunhofer region of
the array in time domain, r>(2I?/2cT), we have 2NAt =(2Na/c)sin® = (L/c)sin®<T,
L= (2N +1)a = 2Nabeing the array length. These equalities are valid for large arrays, which
is the case hereafter.

Computation of the radiation diagram, Equation 4.2, is now in order. From Equation 4.1,
it follows that

[F2(t,0)dt= (2N +1°T (4.3)



88 Advances in Environmental Remote Sensing

and

2N
[F2(t,0)dt = (T - 2NAHQN +1)2 + 24t n*
n=1

2N(2N +1)(4N +1)
6
QN+DMN+D}
3

[CN+1)+1] 4.4
3

= (T —2NAH)(2N +1)% + 2At
=2N+1)*T- ZNAt[(ZN +1)2 -
= (2N + 12T —[(2N +1) - 1]JAt(2N + 1)
=(2N +1)?*T - %(ZN + 1P At+ %At(ZN +1)

— N +12T - L AN + 1y [1—;}
3 (2N +1)?

= (2N+1)2T—%(2N+ 13 At

where the last equality is valid for large arrays. Computation of Equation 4.4 makes refer-
ence to the diagrams depicted in Figure 4.2. The integral is broken down into two parts:
the first is the time interval where the pulses are synchronized; the second part is relative
to the remaining time-interval, and is obtained by the evaluation of a finite summation
(Franceschetti, Tatoian, and Gibbs 2005).

Dividing Equation 4.4 by Equation 4.3 leads to the formal expression of the radiation
diagram; see Equation 4.2, hence

1@N+DAt_, 1(2N+Dasin®_ 1Lsin®

V)=1- 4.5
sW=1-3"7 3 T 3 T )
Letting g(®) = 1/2 and solving for the (conventional) 3-dB beamwidth 260, we obtain
sinoz0="T 93T 4.6)
2L L

The definition in Equation 4.2 for the radiation diagram emphasizes the power content of
the radiated beam. The alternative definition

JIEGO-FeOPdt | 1Lsino

47)
[F2(t,0)dt 6 T

g =1

refers to the shape of the pulse, & being the similarity factor in a quadratic norm (Franceschetti,
Tatoian, and Gibbs 2005). Assuming as convenient value for the similarity factor £@©) =
0.917, and solving for the beamwidth 20, we obtain

sn@=z0="L 29=L 4.8)
oL L
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Examination of the results in Equations 4.6 and 4.8 suggests that a suitable definition of
timed-array 3-dB beamwidth is

=" 4.9)

which is essentially the same as the expression used in the narrowband case where wave-
length A is substituted by 2 cT—twice the spatial extension of the pulse. In passim, this
correspondence 2¢T <> A turns out to be valid for most (for instance, see the previously
quoted Fraunhofer region definition), if not all parameters describing the performance of
pulsed antennas and arrays (Franceschetti, Tatoian, and Gibbs 2005), and was a conjecture
advocated over 30 years ago (Franceschetti and Papas 1974).

Consider the synthesized timed array as depicted in Figure 4.3. The 3-dB beamwidth
of the array element is given by 2cT/I, I being its effective length. The array length for the
best attainable resolution is equal to the illuminated swath dimension, hence L = (2¢T/Il)r,
r being the distance of the array from the ground. Accordingly, the azimuth resolution of
the timed array is given by

Erzirzi (4.10a)
L 2cT/h2r 2

where the additional factor 2 in the denominator of the intermediate expression accounts
for the round-trip propagation: the time delay At between the pulses radiated by nearby
elements of the array doubles, virtually reducing the beamwidth of the synthetic array, as
shown in Equations 4.5 and 4.6. The final result is identical to that of a conventional SAR.
The range resolution is obviously given by

Ar = % (4.10b)

which is the standard expression for a radiated pulse.

All the above derivations, leading to Equations 4.10a and b, are made under the
assumption that the imaged point, P, in Figure 4.3 is in the far field, which is not always
the case. Accordingly, some processing of the raw data is necessary in order to trans-
form the received near-field data to the far-field data; this can be implemented by a

le€ 2cT
r
l

A

FIGURE 4.3
The synthetic timed array. (From Franceschetti, G., J. Tatoian, and G. Gibbs, Timed arrays in a nutshell, IEEE
Trans Antennas Propagat 53(12):4073-82), © (2005) IEEE.)
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simple shift-and-add procedure. If one denotes f, (t), — N <n < N, to be the pulse radiated
by the array element 7, then the received pulse is

) =f, (t—z—WWJ @11)

c

whereas in the far field it is

f(tZM) f(tzM) f(”M) w12

c

the r value being determined by the arrival time of the pulse radiated and received by the
array element nn = 0. Letting

o = M _ P (ay (4.13)

and substituting 2p,/c into Equation 4.11 lead to the conclusion that the azimuthally
compressed image of P is given by

g(P)= i fn(t’—Zp?”) (4.14)

n=—N

which justifies naming the procedure shift-and-add. Note that
2 2 2
o = r2 + (na) _ P (a) = (”2‘1) (4.15)
r r

if (na/ry? << 1. This may somehow simplify the procedure, but not significantly.

An example of an experimentally obtained ImpSAR image of an M16 rifle, along with its
optical image, is shown in Figure 4.4. In the experiment, the width of the radiated pulse is
100 picoseconds, the length of the timed array is 4.5 m, and the distance between the target
and the antenna is 6.0 m.

FIGURE 4.4
Optical (top) and microwave (bottom) images of the M16 rifle.
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These parameters imply that range and azimuth resolutions are 1.3 and 8.0 cm, respectively,
as shown in Equation 4.10. Note that the image not only resolves fine details of the target,
but also has intrinsic peculiarities not present in conventional microwave images. This may
be due to the wide bandwidth of the incident signal, so that the illuminated target cannot be
modeled simply as a collection of point scatterers. Its resonant response should also be taken
into account. This is an open problem worth exploring along two lines: improving the qual-
ity of the processed image and extracting value-added information from it (Franceschetti,
Tatoian, and Gibbs 2009).

4.3 Radiated Pulse

In order to introduce the transmitted pulse, let us assume that the signal applied to the
terminals of the transmitting antenna is

u(t) = [exp(—%) 1+ %]exp(—é) ) 4.16)

with C and T being the design parameters discussed in this section. The radiated signal is
proportional to the derivative of the input signal (Franceschetti 1997), namely

- enl ol Lol o]

=g1(t)— £ (1)

The radiated signal can be viewed as the superposition of two pulses, as detailed in the
following equation. A prepulse

@)=~ CzT [l—exp(—%ﬂexp(—é)ll(t) (4.18a)

T

is the first term in Equation 4.17, which is dominant for ¢ < C.
A postpulse

1t t
& ()= ;EeXp(—E)U(t) (4.18b)

is the second term in Equation 4.17, which is dominant for ¢ > C.

Both pulses start at t =0, and decay to 0 as t — . For the following analysis, it is conve-
nient to introduce the parameter § = T/C and normalize the time to C, thatis, f — t/C. The
graph of g (f) for £ =0.1, ignoring the scaling factor 1/T, is depicted in Figure 4.5.

Figure 4.5 shows that the pulse g(f) is composed of a narrow positive pulse followed
by a wide negative pulse. The total integrated area of the signal is zero, as it should be
(Franceschetti 1997), so that the first pulse is tall in contrast to the second one. The width ¢,
of the first pulse is obtained by solving the relation g, (t,) = g, (t,), leading to the equation
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FIGURE 4.5
Graph of the function g () for & = 0.1 and T = 0.1 in arbitrary time units.

exp(—g): l—ﬁto 419

Equation 4.19 represents the intersection of an exponential and a linear function whose
slopes at the origin are -1/ and —1/(1 + £), respectively. In view of the expected small
value of &, the slope of the exponential is close to 90°, whereas that of the straight line is
close to 45, It follows that the intersection of the two curves takes place where the expo-
nential is close to zero, and thus, the point of the intersection is approximated by

ty=1+& (4.20)

Equation 4.20 also provides the overall zero-to-zero (normalized) pulsewidth, as shown in
Figure 4.5. In nonnormalized units, this pulsewidth is

AT =(1+&)C 4.21)

Again, the design of a short pulse favors small values for the parameter &. This assump-
tion leads to simpler and more understandable expressions for the derived relations.

The maximum value of the first pulse is expected to be close to the maximum of the
function g, (t), because g, (f) is small in the time interval ¢ < 1. This maximum value can be
computed to be

g
1 1+
g1(tv) = ?(%) , hv = F:]ﬂ(Té) 4.22)
For subsequent analysis, it is convenient to note that for & — 0
1+
Eln T —E&E-InE)—>-In& -0 (4.23a)

whereas for § —
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éln(%]:éln(1+%]—>§%=l (4.23b)

It follows that the function £ In [(1 + §)/&] is a steadily increasing function of &, starting
from 0 at § = 0 and approaching 1 for § — . Similarly, the second term in Equation 4.22,

(e ol feoleelete) e

is a steadily decreasing function of £, starting from 1 at £ = 0 and approaching 1/e = 0.368 for
€ — oo. The above results, again, favor the choice of small values for the parameter & Thus,
for = 0.1 we get t,,; = 0.240, which is consistent with the graph in Figure 4.5. Letting T=0.1,
g1(ty) = 7.87, whereas an examination of Figure 4.5 suggests a smaller value g(t,,) = 6.20 due
to the negative contribution of the term g(f) .

Evaluation of the spectrum of the radiated pulse follows. In the normalized Laplace
domain p — pL, the computation is straightforward, leading to

_1]asy__axy 1
G( )_a p+1 (1+%) (p+1) #.25)

G(0) =0, as it should be, because radiated fields cannot contain DC frequency components.
We can show that the equivalent compact expression for the spectrum of the radiated
pulse is

G(p)=(1] P @.26)

: [p+112[p+(1g§)]

In the Fourier domain, p = io, ®C — o being the normalized angular frequency, and the
squared modulus of the spectrum is given by

cor -(¢) e
[02 +1]2 [wz + [(125)} } (4.27)

Equation 4.27 is symmetric with respect to the frequency axis. Considering the positive
branch of the spectrum and equating its derivative, with respect to @?, to zero gives
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whose solution

. 1(1+eY gY L loafreeYy,( e Y.
1 R G 16 o R

determines the maximum value of the spectrum

Guax|” = |Gl =GP

_ (1)4 1 _ [i]2 L. (i)z 4.30)
: [1+1]2[1+[(1£§)H ) 1 A%

A graph of the power spectrum versus the normalized angular frequency is depicted in
Figure 4.6 for the case § = 0.1. In Equation 4.30 the final two results report its limiting
expressions for small values of the parameter &.

A possible estimate of the bandwidth of the power spectrum |G(®) |2 is obtained by enforc-

Gl
2

ing the condition |G(oo)|2 < . Referring to Equations 4.27 and 4.30, the angular-

frequency bounds of the bandwidth are obtained by solving the following equation:

3 —r i
EJ [(Dz + 1]2 |:(1)2 + |:(1-|-E—'):|2] 8 & 4.31)
g

25 T T T T T T T T T

15 k

|G(w) |2

10+ k

0 1 2 3 4 5 6 7 8 9 10

FIGURE 4.6
Graph of the power spectrum of the signal g(f) depicted in Figure 4.5 associated with & = 0.1. The spectrum is
symmetric about y axis; therefore, only positive normalized frequencies are depicted.
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The expected solutions of the equation are on the order of unity due to the small assumed
value of &. Equation 4.31 can be simplified

e e e
2]~ 27\E) [0 +1P
: [0% +1]? w2+|:(1+&’):| : [w2+1]2[(1+§):| :
S g

i1y

=3z
and we immediately obtain the following values for the normalized upper and lower
frequency bounds of the bandwidth and the bandwidth itself:

4.32)

oy =241, o, =041, Av=0y-0, =2 (4.33)

4.4 Polychromatic Synthetic Aperture Radar

In order to implement the polychromatic SAR imaging system, the bandwidth of the scat-
tered pulse must be broken down into subbands, which are processed independently. The
resulting spectrum of the “chopped” signal is obtained by applying a suitable filter func-
tion, H(w — Q), to the spectrum of the radiated pulse G(w) defined in Equation 4.25. Here,
Q is the value of the normalized angular frequency o at the center of the chosen subband,
subject to the constraints

Q+v<241 (4.34a)

and

Q-v2041 (4.34b)

where 27y is the normalized filter bandwidth. These constraints assure that the subdivided
bandwidth falls inside the radiated pulse bandwidth Aw, as shown in Equation 4.33.
The selected bell-shaped filter function

YZ
H(0)=—" - (4.35)

exhibits a maximum at ® = 0, where it attains the value H(0) = 1, and two symmetric
inflection points at ® = +v/+/3, where the function and its square attain the values

H(%):Z -0.75 4.36)
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and

X )9 _ 4.37
H(\/g) T 0.56 @.37)

Equation 4.37 shows that 2y is essentially coincident with the 3-dB bandwidth of the filter.

For the SAR processing design, it is convenient to determine the shape and compute
the parameters of the “chopped” signal. Letting G(w) = G(®w) H(®w — Q) be the bandwidth
of the “chopped” signal, this signal is computed as the (inverse) Fourier Transform of its
spectrum Gg(w), namely

go(t)= % [ Gal@)exp(iot)do = % | G(o)H(o - Q)exp(iot) dw (4.38)

where positive and negative values of Q are used in the positive and negative ranges of ®,
respectively. The signal represented by Equation 4.38 is the same when radiated only by the
bandwidth G, (®), and not by G(w), and coincides with the signal scattered by a point target
located inside the illuminated area, except for a scaling factor and time delay.

To proceed further, let us compute the inverse Fourier transform of H(w — Q), as
follows:

17 )
ho (f) = EiH(m - Q)-exp(iot)do
1 2 . 177 12 .
= ﬂ J m U((D) . exp(z(ot) do + g :[0 m U(—o)) . exp(zo)t) do
+oo 2 haed 2 —
= 1 J Y, U() — -exp(imt) do)+i .[ ¥ ‘U( ®) — -exp(iot)do
2n (0 —-Q+iy)(w-Q-1iy) 2n Y (0 +Q+iy)(0+Q—1iy)
= %eXp(iQt) exp(=y [t + %QXP(—iQf)eXP(—Y |t]) = v exp(—[¢]) cos(€t) (4.39)

where the Fourier integrals have been computed by closing the integration contour in the
upper and lower halves of the complex plane ® + i@’ with half circles of infinite radius for
t>0and t <0, respectively.

Equation 4.39 represents the impulse response of the filter function centered at ® = Q,
whose expression in the phasor domain is

fzg(t) = yexp(—y| t|)exp(i£2 t) (4.40)

In order to be consistent with the usual procedure used in conventional SAR processing
that utilizes I- and Q-channels, we move to the phasor domain for the continuation of our
analysis.

Examination of Equation 4.38 shows that

Zat)=g(t)® iy (t) 4.41)
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where the symbol ® is the convolution operator, and the hat symbol indicates the phasor
quantities. Though this convolution is rather elaborate, it can be computed and examined
(Eureka Aerospace 2008). Only a simplified analysis is reported hereafter in order to pres-
ent and point out the basic features and qualifying parameters of polychromatic SAR.

The design value of y for the filter function is dictated by the usual choices for its rela-
tive bandwidth, 2y/Q. In a conventional SAR system, this relative bandwidth is usually
between 1% and 10% in airborne and spaceborne applications. Raw polychromatic SAR
data is processed, yielding a number of microwave images, which are coincident (or at
least similar) to those obtainable with conventional SAR systems. For the large value of
Q = 2, this normalized bandwidth is at most 0.2, which is much smaller than the signal
bandwidth of 2 given in Equation 4.33. The conclusion is that

G, (0)=G(0)H(m—Q) = G(Q)H(o - Q) (4.42)
so that
Ga(t) o< fig(t) = yexp(~y| ) exp(iQ t) 4.43)

The signal represented by Equation 4.43 is proportional to the signal that would be trans-
mitted if only the subbands around Q were used. The return signal scattered by a point
target at range r is proportional to exp(—y| t — t|) exp[i Q(t — )], where t' = 2r/c. An estimate
of the attainable range resolution is obtained by compressing the raw data, implemented
by removing the exp(iQf) term via heterodyning and evaluating the convolution

5(t) = exp(—y| t—t')exp(-iQt)® exp(—y| t|) (4.44)

For t—t'=m 20, we get

t n
oo J exp(—y[n—thexp(yr)dt+ fexp[_y(n —1)]exp(-yr)d T
j exp(=y[n—1)exp(-y[thdr=1" 0
- + J exp[y(n—1)]exp(—yr)dt
n
(=m) _1+m

+nexp(—1E) + oy =

- %}—(w) exp(—ym) (4.45)

and we get the same result by substituting 1 — [n| when n < 0. We conclude that the pro-
cessed signal is given, except for a multiplicative constant, by

1+7y|t-t
sy = rli=rl

exp (—y |t— t'|) exp(—iQt’) (4.46)

The modulus of the signal attains its maximum value, |§M| =1/y, at t -t = 0, steadily
decreases for |f—t’|>0, and exhibits two inflection points at t — ' =+ 1/y, where its value is
2|8y |exp(=1) = 0.7363yg| = 0.707[Sys| . The latter result provides an estimate of the effective
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FIGURE 4.7

A comparison between impulse synthetic aperture radar (ImpSAR) and polychromatic synthetic aperture radar
(SAR) images. The figure on the top left is the optical image of the target, and the second one is the ImpSAR
image. The other figures are polychromatic SAR images, with the “chopped” bandwidth set to 3 GHz and cen-
tered at the frequencies indicated.

pulsewidth, 2/, centered at t = t’, of the compressed signal, leading to the evaluation of the
attainable range resolution.
Referring to nonnormalized quantities, we get

o2 AR ha/2m 2 ho/2 L, Mo/2

voQy/Q @y/Q meyQ T @yQ 447)

where A, = 2nc/Q is the wavelength of the center (carrier) angular frequency of the
“chopped” bandwidth signal. The result given by Equation 4.47 mirrors that of the range
resolution attainable by a conventional chirped SAR system, namely (A/2)/(Af/ f), where
f— Q2n and A f — 2y are the carrier frequency and chirp bandwidth, respectively. An
example of polychromatic SAR imaging is depicted in Figure 4.7.

The difference between the ImpSAR image, which uses the entire 12-GHz bandwidth of
the radiated signal, and polychromatic SAR images, each limited to a 3-GHz bandwidth
centered at the frequencies indicated, is clearly pronounced. Different responses of the
large target to different frequencies are also observed—a result that is open to further
analysis.

4.5 Conclusions

In this chapter, two novel concepts of SAR imaging, namely impulse SAR and polychro-
matic SAR, were discussed at length. The theoretical foundation of the two systems has
been presented and validated by experimental results. These two sensors exhibit promising
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features and have a wide range of potential applications where they have distinct advan-
tages over conventional microwave imaging systems.

Impulse SAR has a number of attractive features. Its high range resolution is easily
achievable with very short carrierless pulses; the absence of phase infers the absence of the
grating lobes that are convenient for stereometric applications; signal processing is very
fast, because it is directly implemented in time domain using the shift-and-add procedure.
Finally, compared to conventional SAR systems, InpSAR hardware is simple, and the sys-
tem design and integration are straightforward. Moreover, its wide bandwidth allows an
easy extension to polychromatic SAR.

Polychromatic SAR has the useful capability of generating multiple images simultane-
ously, which is of particular importance to the target detection and identification process.
It is implemented purely in software (as it runs on existing ImpSAR hardware), and its
utility can be easily extended to low-frequency ranges. This feature is particularly attrac-
tive as it extends SAR utility to ground-penetrating applications, including detection and
identification of buried mines, unexploded ordnance, improvised explosive devices, pipes,
and underground structures.

There is no doubt that, for the time being, the use of these sensors is limited to ground
and airborne operations. However, this issue is only due to the limits of attainable radiat-
ing power using available solid-state pulsers and is expected to be solved with the increas-
ing demand for impulse imaging technology.

Additional theoretical analysis is required to improve these systems, in particular, a
deeper examination of the scattering of large bodies by very narrow pulses, when the pulse
and the target are on two different spatial scales. This difference has not been explored
on purpose, as it is believed that the problem should be modeled and solved directly in
the time domain, without passing through the frequency domain, which is an ill-suited
approach to the presented problem. This theoretical exploration is in progress.
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5.1 Introduction

Imaging spectroscopy, as a new remote-sensing technique (i.e, “hyperspectral remote
sensing”), is of growing interest to Earth remote sensing. Hyperspectral remote sensing
refers to a special type of imaging technology that collects image data in many narrow
contiguous spectral bands (<10-nm bandwidth) throughout the visible and solar-reflected
infrared portions of the spectrum (Goetz et al. 1985). Since many Earth surface materials
show diagnostic absorption features that are from 20- to 40-nm spectral resolution (Hunt
1980), spectral imaging systems, which acquire spectral data in contiguous narrow bands
at <10-nm resolution, can produce data with sufficient resolution for direct identification
of those materials with diagnostic spectral features. However, traditional remote sensing
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systems, which usually are called “multispectral remote sensing” systems and acquire
data in a few discrete wide bands (usually >50-nm bandwidth), cannot resolve these spec-
tral features (Goetz et al. 1985; Vane and Goetz 1988). Therefore, the value of hyperspectral
remote sensing lies in its ability to acquire a complete reflectance spectrum for each pixel
in an image, and it is developed for improving identification of materials and quantitative
determination of physical and chemical properties of targets of interest, such as minerals,
water, vegetation, soils, and human-made materials.

Imaging spectroscopy was developed for mineral mapping in the early 1980s (Goetz
et al. 1985). The first imaging spectrometer, named the Airborne Imaging Spectrometer
(AIS), was developed by the Jet Propulsion Laboratory (JPL) with a total of 128 spectral
bands covering the spectral range between 0.9 and 2.4 um in late 1982. The data made it
possible to identify the minerals kaolinite and limestone unambiguously, which proved
that direct mineral identification from orbit was possible (Goetz 1995). Funded by the
National Aeronautics and Space Administration (NASA) and proposed by the JPL, the sec-
ond generation of imaging spectrometers, represented by the Airborne Visible/Infrared
Imaging Spectrometer (AVIRIS), came into being in 1987. The AVIRIS was the first imag-
ing spectrometer to cover the solar reflected spectrum from 0.4 to 2.5 um with a swath of
614 pixels. This spectrometer collects upwelling radiance through 224 contiguous spectral
bands at approximately 10-nm bandwidth across the spectrum (Green et al. 1998). The
AVIRIS has acquired and provided a large number of hyperspectral images for scientific
research and applications every year since 1987 (Vane and Goetz 1993; Green et al. 1998).
In parallel, following the AIS system, the fluorescence line imager (FLI; Hollinger et al.
1988), Advanced Solid-State Array Spectrometer (ASAS; Huegel 1988), Compact Airborne
Spectrographic Imager (CASL http://www.itres.com/Home), hyperspectral digital image
collection experiment (HYDICE; Basedow et al. 1993), and Airborne Hyperspectral Scanners
(HyMap; http://www.intspec.com) also provided a large number of hyperspectral images
to researchers and practitioners. In addition to airborne hyperspectral systems, NASA and
the European Space Agency (ESA) started developing the first generation of spaceborne
hyperspectral sensor systems in 2000. Earth Observing-1 (EO-1; http://eol.gsfc.nasa.gov/
technology/) was launched on November 21, 2000. The three primary EO-1 instruments
are the Advanced Land Imager (ALI), Hyperion, and a linear etalon imaging spectrometer
array (LEISA) atmospheric corrector (AC). Among the three sensors, Hyperion and LAC are
both hyperspectral sensors. The Hyperion instrument provides a new class of Earth obser-
vation data for improving Earth surface characterization. It has a high-resolution hyper-
spectral imager capable of resolving 220 spectral bands (from 0.4 to 2.5 um) with a 30-m
spatial resolution (Ungar et al. 2003). The Compact High-Resolution Imaging Spectrometer
(CHRIS) is a new imaging spectrometer used aboard the ESA’s PROBA satellite launched
on October 22, 2001 (http://earth.esa.int/missions/thirdpartymission/proba.html).

All the aforementioned hyperspectral sensor systems have provided a large amount of
valuable hyperspectral image data for various research and applications. The initial moti-
vation for the development of imaging spectrometry was mineral identification, although
early experiments were also conducted in botanical remote sensing (Goetz et al. 1985).
However, since 1988, imaging spectrometry has been successfully applied to a wide range
of disciplines including geology, ecology and vegetation, atmospheric science, hydrology,
and oceanography.

Ecology and the study of terrestrial vegetation are important application fields for
hyperspectral remote sensing (Green et al. 1998). A number of forest ecosystem variables,
including leaf area index (LAI), absorbed fraction of photosynthetically active radiation
(fPAR), canopy temperature, and community type are correlated with remotely sensed
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data or their derivatives (Johnson, Hlavka, and Peterson 1994). However, sensors in com-
mon use, such as the Landsat Multispectral Scanner (MSS) and the Thematic Mapper (TM),
which integrate radiance data over wide bands of the electromagnetic spectrum, have lim-
ited value in studying the dominant canopy reflectance features such as the red spectral
absorption band, near-infrared (NIR) reflectance band, and mid-infrared water absorption
band (Wessman, Aber, and Peterson 1989). Moreover, the extraction of red edge and other
optical parameters (e.g., Miller, Hare, and Wu 1990; Miller et al. 1991; Pu, Foschi, and Gong
2004) that are related to plant stress or senescence is impossible with broadband sensors.

Many minerals found on the Earth’s surface have unique and diagnostic spectral reflec-
tance signatures. Plants, on the other hand, are composed of the same few compounds and
therefore should have similar spectral signatures (Vane and Goetz 1993). Indeed, major fea-
tures of “peaks and valleys” along the spectral reflectance curve of a plant are due to the pres-
ence of pigments (e.g., chlorophyll [Chl]), water, and other chemical constituents. Therefore,
characterization of diagnostic absorption features in plant spectra with hyperspectral data
as done in geological mapping and mineral identification can also be done for extraction of
the biochemical and biophysical parameters of plants (e.g, Wessman, Aber, and Peterson
1989; Johnson, Hlavka, and Peterson 1994; Curran, Windham, and Gholz 1995; Jacquemoud
et al. 1996; Gong et al. 2003; Pu and Gong 2004; Cheng et al. 2006; Asner and Martin 2008).

Hyperspectral sensors aboard different types of platforms have made it possible to
acquire higher spectral resolution data that contain more information on the subtle spec-
tral features of plant canopies. The use of narrow (1-10 nm) instead of broad (50-200 nm)
spectral bands could offer new potentials for remote sensing applied to vegetation (Guyot,
Baret, and Jacquemond 1992). Hyperspectral data have been proven to be more useful in
estimating biochemical content and concentration at both the leaf and canopy levels (e.g.,
Peterson et al. 1988; Johnson, Hlavka, and Peterson 1994; Darvishzadeh, Skidmore et al.
2008; Asner and Martin 2008) and some other ecosystem components such as LAI, plant
species composition, and biomass (e.g., Gong, Pu, and Miller 1995; Gong, Pu, and Yu 1997,
Martin et al. 1998; le Maire et al. 2008) than traditional remotely sensed data. Therefore,
besides classification and identification of vegetation types, in terrestrial ecosystem study,
hyperspectral remote sensing can be applied to the estimation of biochemical and bio-
physical parameters and to the evaluation of ecosystem functions.

In this chapter, we focus on a review of hyperspectral remote sensing techniques for
extraction and assessment of plant biophysical and biochemical parameters. The objectives
of this chapter are

® Provide an overview of the spectral characteristics of typical biophysical and bio-
chemical parameters.

® Review information extraction and assessment techniques and methods specifi-
cally developed for analyzing imaging spectrometer data.

5.2 Spectral Characteristics of Typical Bioparameters

The spectral reflectance properties and characteristics of a list of typical plant bio param-
eters, including the biophysical and biochemical parameters (Table 5.1), have been the sub-
ject of systematic plant spectral reflectance studies. Typical biophysical parameters for their
spectral analysis consist of vegetation canopy LAI, specific leaf area (SLA), crown closure
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Spectral Response and Characteristics

TABLE 5.1

Typical Plant Biophysical and Biochemical Parameters
Biophysical Parameter Definition and Description

LAI The total one-sided area of all leaves in

the canopy per unit area of ground.

SLA Projected leaf area per unit leaf dry
mass (cm?/g).

CcC Percentage of land area covered by the
vertical projection of plants (tree
crowns).

Species Various plant species and species
composition.

Biomass The total of absolute amount of

vegetation present (often considered
in terms of the aboveground biomass)
per unit area of ground.

NPP The net flux of carbon between the
atmosphere and terrestrial vegetation
can be expressed on an annual basis in
terms of net biomass accumulation, or
NPP (Goetz and Prince 1996).

fPAR Effective absorbed fPAR in the visible
region.
Chls (Chl-a, Chl-b) Green pigments Chl-a and Chl-b for

plant photosynthesis processing,
found in green photosynthetic
organisms, (mg/m? or nmol/cm?).

Cars Any of a class of yellow to red
pigments, including carotenes and
xanthophylls (mg/m?).

Anths Any of various water-soluble pigments

that impart to flowers and other plant
parts colors ranging from violet and
blue to most shades of red (mg/m?).

N Plant nutrient element (%).

The absorption spectral features caused
by pigments in the visible region and
by water content and other
biochemicals in the SWIR region are
useful for extracting and mapping LAI
and CC.

Not directly related to water absorption
bands, but SLA is a leaf structural
property linked to the entire
constellation of foliar chemicals and
photosynthetic processes.

Same as that for LAL

Spectral differences due to differences
and variation in phenology/
physiology, internal leaf structure,
biochemicals, and ecosystem type.

Spectral responses to LAL stand /
community structure, species and
species composition, and image
textural information.

Spectra reflect vegetation condition and
changes in LAI or canopy light
absorption through time in visible and
NIR regions.

In the visible spectral region 400-700 nm,
most absorbed by plant pigments, such
as Chl-a and -b, Cars, and Anths; and
leaf water and N contents for
photosynthesis.

Chl-a absorption features are near 430
and 660 nm, and Chl-b absorption
features are near 450 and 650 nm in
vivo (Lichtenthaler 1987; Blackburn
2006). But it is known that in situ
Chl-a absorbs at both 450 and 670 nm.

Cars absorption feature in the blue
region is near 445 nm in vivo
(Lichtenthaler 1987). But it is known
that in situ Cars absorb at 500 nm and
even at a little bit longer wavelength.

Anths absorption feature in the green
region is at 530 nm in vivo, but in
situ Anths absorb around 550 nm
(Gitelson et al. 2001, 2009; Blackburn
2006).

The central wavelengths of N
absorption features are near 1.51, 2.06,
2.18,2.30, and 2.35 pum.
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Biophysical Parameter

Definition and Description

Spectral Response and Characteristics

P

Lignin

Cellulose

Protein

Plant nutrient element (%).

Plant nutrient element (%).

Leaf or canopy water content or
concentration (%).

A complex polymer, the chief
noncarbohydrate constituent of wood,
which binds to cellulose fibers and
hardens and strengthens the cell walls
of plants (%).

A complex carbohydrate, which is
composed of glucose units, and forms
the main constituent of the cell wall in
most plants (%).

Any of a group of complex organic
macromolecules that contain carbon,
hydrogen, oxygen, N, and usually

No direct and significant absorption
features across 0.40-2.50 um, but it
does indirectly affect the spectral
characteristics of other biochemical
compounds.

Foliar K concentration has only a slight
effect on sclerenhyma cell walls, and
thus on NIR reflectance.

The central wavelengths of those
absorption features are near 0.97, 1.20,
1.40, and 1.94 pm.

The central wavelengths of lignin
absorption features are near 1.12, 1.42,
1.69, and 1.94 pm.

The central wavelengths of cellulose
absorption features are near 1.20, 1.49,
1.78,1.82,2.27,2.34, and 2.35 um.

The central wavelengths of protein
absorption features are near 0.91, 1.02,
1.51, 1.98, 2.06, 2.18, 2.24, and 2.30 um.

sulfur, and are composed of one or
more chains of amino acids (%).

(CQ), vegetation species and composition, biomass, effective absorbed fPAR, and net pri-
mary productivity (NPP), which reflect photosynthesis rate. Typical biochemical param-
eters are major pigments (Chls, carotenoids [Cars], and anthocyanins [Anths]), nutrients
(nitrogen [N], phosphorus [P], and potassium [K]), leaf or canopy water content (W), and
other biochemicals (e.g,, lignin, cellulose, and protein). Analysis results are useful for deter-
mining the physicochemical properties of plants derived from spectral data and helpful for
extracting bioparameters in order to assess vegetation and ecosystem conditions. Some
analysis results of spectral characteristics for the list of typical biophysical and biochemical
parameters from hyperspectral data are summarized in Sections 5.2.1 through 5.2.7.

5.2.1 Leaf Area Index, Specific Leaf Area, and Crown Closure

The LAI, SLA, and CC are important structural parameters for quantifying the energy and
mass exchange characteristics of terrestrial ecosystems such as photosynthesis, respiration,
transpiration, the carbon and nutrient cycle, and rainfall interception. The LAI parameter
quantifies the amount of live green leaf material present in the canopy per unit ground area,
whereas SLA describes the amount of leaf dry mass present in the plant canopy. The CC
parameter can only quantify the percentage of area covered by the vertical projection of live
green leaf material present in the canopy. The physiological and structural characteristics
of plant leaves determine their typically low visible-light reflectance, except in green light.
The high NIR reflectance of vegetation allows optical remote sensing to capture detailed
information about the live, photosynthetically active forest canopy structure, and thus help
understand the mass exchange between the atmosphere and the plant ecosystem (Zheng
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and Moskal 2009). As LAI and CC increase, many absorption features become significant
due to changes in their amplitude, width, or location. The absorption features, including
those caused by pigments in the visible region and by water content and other biochemi-
cals in the shortwave infrared (SWIR) region (Curran 1989; Elvidge 1990), are useful in
extracting and mapping LAI and CC. Different from LAI and CC, the spectral properties
of SLA are not directly related to water absorption bands in the full range of a vegetation
spectrum. However, SLA has a leaf structural property linked to the entire constellation
of foliar chemicals and photosynthetic processes (Wright et al. 2004; Niinemets and Sack
2006). It is related to the NIR spectral reflectance that is dominated by the amount of leaf
water content and leaf thickness (Jacquemoud and Baret 1990). Thus, at the leaf level, SLA
is highly correlated with leaf spectral reflectance (Asner and Martin 2008).

Optical remote sensing, especially hyperspectral remote sensing, is aimed at retrieving
the spectral characteristics of leaves, quantified by LAI, SLA, and CC, which are determined
by the internal biochemical structure and pigments content of leaves. Currently, many spec-
tral analysis techniques and methods (see reviews for individual methods and techniques
in Section 5.3) are available for extracting and assessing the biophysical parameters LAI,
SLA, and CC from various hyperspectral sensors, especially imaging spectrometers, such
as spectral derivatives (e.g., Gong, Pu, and Miller 1992; Gong, Pu, and Miller 1995), spectral
position variables (e.g., Miller, Hare, and Wu 1990; Pu, Gong et al. 2003), spectral indices
(e.g., Gong et al. 2003; Delalieux et al. 2008), and physically based models (e.g., Schlerf and
Atzberger 2006; Asner and Martin 2008; Darvishzadeh, Roshanak et al. 2008).

5.2.2 Species and Composition

Foliage spectral variability among individual species, or even within a single crown, is
attributed not only to differences in internal leaf structure and biochemicals (e.g., water,
Chl content, epiphyll cover, and herbivory; Clark, Roberts, and Clark 2005) but also to dif-
ference and variation in the phenology/physiology of plant species. In addition, the rela-
tive importance of these biochemical and structural properties among individual species
is also dependent on measured wavelength, pixel size, and ecosystem type (Asner 1998).
Few studies have been systematically carried out to determine the best wavelengths suit-
able for species recognition in the field. This obviously depends on species-specific bio-
chemical characteristics that are related to foliar chemistry (Martin et al. 1998). Martin and
Aber (1997) used AVIRIS data to estimate the N and lignin content in forest canopy foliage.
Although either of the two by itself is insufficient to identify species, combined informa-
tion can differentiate between species. For example, red pine and hemlock were reported
to have very similar N concentration, but very different levels of lignin (Martin et al. 1998).
Pu (2009) used 30 selected spectral variables evaluated by analysis of variance (ANOVA)
from in situ hyperspectral data to identify 11 broadleaf species in an urban environment.
Among the 30 selected spectral variables, most of the spectral variables are directly related
to leaf chemistry. For example, some selected spectral variables are related to water absorp-
tion bands around 0.97, 1.20, and 1.75 pm, and the others are related to spectral absorption
features of Chls, red-edge optical parameters, simple ratio (SR), vegetation index (VI), and
reflectance at 680 nm, and other biochemicals such as lignin (near 1.20 and 1.42 um), cel-
lulose (near 1.20 and 1.49 um), and N (near 1.51 and 2.18 um; Curran 1989). In identifying
invasive species in Hawaiian forests from native and other introduced species by remote
sensing, Asner et al. (2008) confirmed the viewpoint that the observed differences in can-
opy spectral signatures are linked to relative differences in measured leaf pigments (Chls
and Cars), nutrients (N and P), and structural (SLA) properties, as well as to canopy LAL
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5.2.3 Biomass

Leaf canopy biomass is calculated as the product of the leaf dry mass per area (LMA; unit:
g/m?, or the inverse of SLA) and LAIL Therefore, based on the spectral responses to LAI
and LMA, both biophysical parameters can be estimated from hyperspectral data; thus,
the leaf mass of the entire canopy is estimated (le Maire et al. 2008). Many VIs, such as the
normalized difference VI (NDVI) and the SR constructed with NIR and red bands have
been developed and directly applied to estimate leaf or canopy biomass. It has been rec-
ommended that VIs remove variability caused by canopy geometry, soil background, sun
view angles, and atmospheric conditions when measuring biophysical properties (Elvidge
and Chen 1995; Blackburn and Steele 1999). Broadband VIs use, in principle, average spec-
tral information over a wide range, resulting in the loss of critical spectral information
available in specific narrow (hyperspectral) bands (Hansena and Schjoerring 2003). Since
many narrow bands are available for constructing VIs, selection of the correct wavelengths
and bandwidths is important. When some VIs derived from hyperspectral data are used to
estimate some biophysical parameters, narrow bands (10 nm) perform better than broad-
band (e.g, TM bands) using standard red/NIR and green/NIR NDVIs (NDVL,...; e.g.
Gong et al. 2003; Hansena and Schjoerring 2003). For example, NDVIg,; constructed with
reflectances at wavelengths 1540 and 2160 nm is the best index for leaf mass estimation
(le Maire et al. 2008); many hyperspectral bands in the SWIR region and some in the NIR
region have the greatest potential to form spectral indices for LAI estimation (e.g.,, most
effective band wavelengths centered around 820, 1040, 1200, 1250, 1650, 2100, and 2260 nm
with bandwidths ranging from 10 to 300 nm; Gong et al. 2003).

5.2.4 Pigments: Chlorophylls, Carotenoids, and Anthocyanins

The Chls (Chl-a and Chl-b) are Earth’s most important organic molecules, as they are the
most important pigments necessary for photosynthesis. The second major group of plant
pigments, composed of carotene and xanthophylls, is Cars, whereas Anths are water-
soluble flavonoids, which form the third major group of pigments in leaves, but there
is no unified explanation for their presence and function (Blackburn 2007b). Published
spectral absorption wavelengths of isolated pigments show that Chl-a absorption fea-
tures are around 430 and 660 nm and Chl-b absorption features are around 450 and
650 nm in vivo (Lichtenthaler 1987; Blackburn 2007b). But it is known that in situ Chl-a
absorbs at both 450 and 670 nm. Cars absorption feature in the blue region is at 445 nm
in vivo and B-carotene at 470 nm (Lichtenthaler 1987; Blackburn 2007b) in vivo. But it is
also known that in situ Cars absorb at 500 nm and even at wavelengths that are a little
bit longer. The absorption feature of Anths in the green region is at 530 nm in vivo, but
in situ Anths absorb around 550 nm (Gitelson, Merzlyak, and Chivkunova 2001; Gitelson,
Chivkunova, and Merzlyak 2009; Blackburn 2007b; Ustin et al. 2009).

Based on the spectral properties of the pigments, some researchers have used red edge
(e.g., Curran, Windham, and Gholz 1995; Cho, Skidmore, and Atzberger 2008) optical
parameters to estimate plant leaf and canopy Chls content and concentration. However,
most of them have developed and used various Vls, constructed in either ratios or nor-
malized difference ratios of two narrow bands in the visible and NIR regions, to estimate
the major plant pigments Chls, Cars, and Anths at leaf or canopy levels (e.g., Gitelson
and Merzlyak 1994; Blackburn 1998; Gitelson, Merzlyak, and Chivkunova 2001; Gitelson
et al. 2002; Gitelson, Keydan, and Merzlyak 2006; Richardson, Duigan, and Berlyn 2002;
Rama Rao et al. 2008). In addition, many researchers also employ physically based
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models at leaf or canopy levels to retrieve the pigments (e.g., Asner and Martin 2008;
Feret et al. 2008) and use data transform approaches like wavelet analysis to retrieve
Chl concentration from leaf reflectance spectra (Blackburn and Ferwerda 2008). (For a
more detailed description and review of concrete analysis methods and techniques, see
Section 5.3.)

5.2.5 Nutrients: Nitrogen, Phosphorous, and Potassium

The foliage and canopy N is related to a variety of ecological and biochemical processes
(Martin et al. 2008). It is the most important nutrient element needed by plants for growth.
The second and third most limiting nutrient constituents, P and K, are essential in all
phases of plant growth; they are used in cell division, fat formation, energy transfer, seed
germination, and flowering and fruiting (Milton, Eiswerth, and Ager 1991; Jokela et al.
1997). Among the three basic nutrient elements, N has significant absorption features
that have been found in the visible, NIR, and SWIR regions. According to Curran (1989),
N absorption features in their isolated form are located around 1.51, 2.06, 2.18, 2.30, and
2.35 um. Since many biochemical compounds comprise N, such as Chls and protein, their
spectral properties are also characterized by N concentration in plant leaves. It seems
that P has no direct and significant absorption features across the visible, NIR, and SWIR
regions, but it does indirectly affect the spectral characteristics of other biochemical com-
pounds. The documented spectral changes include a higher reflectance in the green and
yellow portions of the electromagnetic spectrum in P-deficient plants and a difference in
the position of the long-wavelength edge (the red edge) of Chl absorption band centered
around 0.68 pm (Milton, Eiswerth, and Ager 1991). Foliar K concentration has only a slight
effect on needle morphology, thereby affecting NIR reflectance. This is because the scler-
enchyma cell walls are thicker, with a high K concentration, which leads to higher NIR
reflectance of leaves (Jokela et al. 1997).

To estimate nutrient concentrations from hyperspectral data, including in situ spectral
measurements and imaging data, many analysis techniques and methods (see reviews
for such individual methods and techniques in Section 5.3) have been developed. They
include spectral derivatives (Milton, Eiswerth, and Ager 1991; Gong, Pu, and Heald 2002),
spectral indices (Gong, Pu, and Heald 2002; Serrano, Pefiuelas, and Ustin 2002; Hatfield
et al. 2008; Rama Rao et al. 2008), spectral position variables (Gong, Pu, and Heald 2002;
Cho and Skidmore 2006), continuum-removal method (Huber et al. 2008), statistical regres-
sion (LaCapra et al. 1996, Martin and Aber 1997; Martin et al. 2008), and inversion of physi-
cally based models (Asner and Martin 2008; Cho, Skidmore, and Atzberger 2008).

5.2.6 Leaf or Canopy Water Content

The evaluation of water status in vegetation is an important component of hyperspec-
tral remote sensing (Goetz et al. 1985; Curran, Kupiec, and Smith 1997). Previous work on
assessing the plant water status mainly depended on water spectral absorption features
in the 040-2.50 um region. According to Curran (1989), the central wavelengths of the
absorption features are around 0.97, 1.20, 1.40, and 1.94 um. In addition, the reflectance of
dry vegetation shows an absorption feature centered at 1.78 um by other chemicals (cel-
lulose, sugar, and starch; Curran 1989) rather than by water, because pure water does not
cause such an absorption feature (Palmer and Williams 1974). In general, the reflectance
spectra of green and yellow leaves in those absorption bands are quickly saturated and
solely dominated (Elvidge 1990) by changes in the leaf water content.
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To extract these spectral absorption features, one of the most important techniques is
to make use of VIs (Pefiuelas et al. 1993; Peniuelas, Filella, and Sweeano 1996; Pu, Ge et al.
2003; Cheng et al. 2006; Colombo et al. 2008). Other analysis techniques (see reviews of these
individual methods and techniques in Section 5.3) include spectral derivatives (Pu, Ge et al.
2003; Pu, Foschi, and Gong 2004), spectral position variables (Pu, Foschi, and Gong 2004),
continuum-removal method (Pu, Ge et al. 2003; Huber et al. 2008), statistical regression
(Curran, Kupiec, and Smith 1997; Colombo et al. 2008), and inversion of physically based
models (Ustin et al. 1998; Clevers, Kooistra, and Schaepman 2008; Colombo et al. 2008).

5.2.7 Other Biochemicals: Lignin, Cellulose, and Protein

The spectral absorption features of other biochemicals are mostly located in the SWIR
region (1.00-2.50 pm). According to Curran (1989), the central wavelengths of lignin absorp-
tion features are around 1.12, 142, 1.69, and 1.94 um; the central wavelengths of cellulose
absorption features are around 1.20, 149, 1.78, 1.82, 2.27, 2.34, and 2.35 pm; and the central
wavelengths of protein absorption features are around 091, 1.02, 1.51, 1.98, 2.06, 2.18, 2.24,
and 2.30 um. So far, most techniques (see reviews for individual methods and techniques in
Sections 5.3.1 through 5.3.9) for estimating the concentrations of lignin, cellulose, and protein
from hyperspectral data use derivative spectra (Peterson et al. 1988; Wessman, Aber, and
Peterson 1989; Curran, Kupiec, and Smith 1997), logarithm spectra (Card, Peterson, and Matson
1988; Peterson et al. 1988; Zagolski et al. 1996), spectral indices (Gastellu-etchegorry et al. 1995;
Serrano, Pefiuelas, and Ustin 2002), and/or statistical regression (Gastellu-etchegorry et al.
1995; LaCapra et al. 1996; Curran, Kupiec, and Smith 1997; Martin and Aber 1997).

5.3 Analysis Techniques and Methods

There are many analysis techniques and methods that currently are available to be used
for extracting and assessing bioparameters from various hyperspectral data. A total of nine
types or categories of the techniques and methods are reviewed in following Sections 5.3.1
through 5.3.9.

5.3.1 Derivative Analysis

In situ data or imaging hyperspectral data obtained in the field are rarely from a single
object. They are contaminated by illumination variations caused by terrain relief, cloud,
and viewing geometry. The spectral reflectance of a target of interest could also be affected
by radiometric contributions from background materials like soil spectra. Derivative anal-
ysis has been considered a desirable tool in removing or compressing the effect of illu-
mination variations (Demetriades-Shah, Steven, and Clark 1990; Tsai and Philpot 1998).
It has also proven effective in reducing background effects when the spectral pattern of
background materials has a lower frequency of variation (Gong, Pu, and Miller 1992; Li
et al. 1993). For derivative analysis of hyperspectral data, a finite approximation (Tsai and
Philpot 1998) can be applied to calculate the first- and second-order derivative spectra as
follows:

P'(A) = [p(Ais1) —p(Ai1)] /AR G.D
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and

P(A) =[p"(Misy) =" (hiy )] /AN 52)
=[p(Ais1) = 2p(X;) +p(Ai1)] /AA? '
where p’(X;) and p”’(A;) are the first and second derivatives, respectively, p(A) is reflectance
at a wavelength (band) 7, and AL is the wavelength interval between A;,; and A,_; equal to
twice the bandwidth in this case.

Derivative spectra have been successfully employed in hyperspectral data analysis for
biophysical and biochemical parameter extraction (e.g., Gong, Pu, and Heald 2002; Pu, Ge
et al. 2003; Huang et al. 2004; Galvao, Formaggio, and Tisot 2005; Laba et al. 2005; Cho and
Skidmore 2006; Asner et al. 2008; Lucas and Carter 2008). It is believed that the accuracy
of derivative analysis is sensitive to the signal-to-noise ratio of hyperspectral data and
higher-order spectral derivative processing is susceptible to noise (Cloutis 1996). Lower-
order derivatives (e.g., the first-order derivative) are less sensitive to noise and hence more
effective in operational remote sensing. For example, Gong, Pu, and Yu (1997, 2001) report
that the first derivative of tree spectra could considerably improve the accuracy of recog-
nizing six conifer species commonly found in northern California.

5.3.2 Spectral Matching

Researchers van der Meer and Bakker (1997) developed a cross-correlogram spectral
matching (CCSM) technique, taking into consideration the correlation coefficient between
a target spectrum and a reference spectrum, the skewness of the spectra, and criterion of
correlation significance. A cross-correlogram (i.e., CCSM) is constructed by calculating the
cross-correlation at different match positions between a test (target) spectrum and a refer-
ence (a laboratory or pixel spectrum known to characterize a target of interest) spectrum,
and is suitable for processing hyperspectral data. Further, van der Meer (2006) compared
spectral angle mapper (SAM) with the vector CCSM between a known reference and an
unknown target spectrum and the spectral information divergence (SID; Chang 2000) in
differentiating the minerals alunite, kaolinite, montmorillonite, and quartz using both
synthetic and real (i.e., AVIRIS) hyperspectral data of a (artificial or real) hydrothermal
alteration system. The SID measures the discrepancy in probability distributions between
two pixel vectors. His results suggest that SID and CCSM outperform SAM, and that SID
is more effective in mapping the four minerals.

Given two spectral signature curves, p, =(p,, P2, ---, P)t and p, = (P, Pr2s - P)’, these
measures are defined as follows:

nXp,p:— 2P, Xp;

\/[an% ~(Zp,) |[nzpr-(Zp) ]
where the cross-correlation r

. at each match position m, is equivalent to the linear cor-
relation coefficient and is defined as the ratio of covariance to the product of the sum of
standard deviations; # is the effective number of bands when calculating the CCSM; and L
is total number of bands (n < L).

SID is given by

(5.3

Cross-correlation r,, =

SID, ) =D, llp:)+D(p:lip,) (5.4)
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where
D@, lIp,)= > aDp.llp,) =D qlL(p,) = L(p,)] (5.5)
and
Dp,lIp:) =X, 2Di(p, lIp) = 2 pilLi(p) - Li(p,)] (5.6)
1=1 =1

Equations 5.5 and 5.6 are derived from the probability vectors p=(p;, p,, ..., p.)7 and
. L
q9=(91,9,...,q.)" for the spectral signatures of vectors p, and p, where p; =p,; / 2 1 Pris

Tx = Pu / 2; Py, Ii(p;) =—logg, and similarly I,(p,) = —log p;. Measures I,(p,) and I(p,) are
referred to as the “self-information” of p, for band I. Note that Equations 5.5 and 5.6 repre-
sent the relative entropy of p, with respect to p, (indicated by the || symbol).

In the study of the spectroscopic determination of two health levels of the coast live oak
leaves, Pu, Kelly et al. (2008) used the CCSM algorithm to discriminate between healthy
and infected leaves by matching unknown leaf spectra with known infected leaf spectra
in association with water stress. Wang et al. (2009) also classified land-cover types with
the CCRM spectral matching technique. In spectral matching, it should be noted that the
accuracy of spectral matching techniques (e.g., CCSM) is directly affected by geometry of
sensors’ observations and target size. This effect can be minimized by performing spectral
normalization before conducting spectral matching (Pieters 1983). In general, such match-
ing techniques are more useful for change detection of scene components than for identi-
fication of the unknown scene components (Yasuoka et al. 1990).

5.3.3 Spectral Index Analysis

When multispectral data is used to construct various spectral VIs, the advantage of VIs is
their ease of use. When using hyperspectral data to conduct spectral VI analysis, hyper-
spectral remote sensing has the added advantage of increased chance and flexibility to
choose spectral bands. With multispectral data, one may have only the choice to use the
red and NIR bands. However, with hyperspectral data, one can choose many such red
and NIR narrowband combinations (Gong et al. 2003). Accordingly, spectral Vs applied
to hyperspectral data are called “narrowband VIs” (Zarco-Tejada et al. 2001; Eitel et al.
2006; He, Guo, and Wilmshurst 2006). Table 5.2 lists a set of 66 VIs that are developed for
hyperspectral data. These VIs frequently appear in the literature on extracting and evalu-
ating plant biophysical and biochemical parameters from hyperspectral data. The 66 VIs
are grouped into five categories so that readers can conveniently locate a VI (or a group
of VIs), based on the characteristics and functions of the VIs: (1) multiple bioparameters,
(2) pigments (Chls, Cars, and Anths), (3) foliar chemistry, (4) water, and (5) stress. Within
individual categories, the VIs are arranged in alphabetical order. A brief review of these
Vls is given in this section.

Specifically, the use of VIs for extracting and assessing vegetation LAI, SLA, and CC
includes the use of enhanced VI (EVI), two-band enhanced VI (EVI2), greenness index
(GI), LAI determining index (LAIDI), modified Chl absorption ratio index 1 (MCARII),
modified Chl absorption ratio index 2 (MCARI2), modified SR (MSR), modified triangular
VI 1 (MTVI1), modified triangular VI 2 (MTVI2), normalized difference infrared index
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(NDII), normalized difference VI (NDVI), pigment-specific normalized difference (PSND),
hyperspectral perpendicular VI (PV],,), renormalized difference VI (RDVI), hyperspec-
tral ratio VI (RV1,,), standard of LAIDI (sLAIDI), spectral polygon VI (SPVI), SR, and wide
dynamic range VI (WDRVI). For example, Gong et al. (2003) and Weihs et al. (2008) used
PVI,., SR, NDVI, RDV], and RVI,,, constructed from hyperspectral image data Hyperion
and HyMap, to estimate forest LAIL He, Guo, and Wilmshurst (2006) and Darvishzadeh,
Skidmore et al. (2008) estimated LAI of grassland ecosystems with VIs: RDVI, MCARI2,
and NDVI. With LAIDI and sLAIDI VIs, Delalieux et al. (2008) determined LAI in orchards.
And Li et al. (2008) used MTVI2 to map LAI over an agricultural area from CASI hyper-
spectral image data.

Some VIs, including adjusted transformed soil-adjusted VI (ATSAVI), leaf water VI
1(LWVI-]), leaf water VI 2 (LWVI-2), NDV], SR, triangular VI (TVI), and modified SR
(mSRyy5), can be used for identifying and mapping plant species and composition. For
example, Galvao, Formaggio, and Tisot (2005) developed and used VIs, LWVI-1, LWVI-2,
and NDVI to discriminate five sugarcane varieties in southern Brazil with EO-1 Hyperion
data. Hestir et al. (2008) used mSR;;; VI to map invasive species with airborne hyper-
spectral data (HyMap). Further, Lucas and Carter (2008) assessed vascular plant species
richness on Horn Island, Mississippi, with various SR VIs constructed from HyMap hyper-
spectral image data. For estimating biomass from hyperspectral data, some VIs, such as
EVI, modified normalized difference (mND,s), mSR;,;, NDVI, SR, and WDRV], are very
useful. For example, Hansena and Schjoerring (2003) and le Maire et al. (2008) used vari-
ous narrowband NDVIs and SRs to estimate wheat crop and broadleaf forest biomass,
respectively.

With hyperspectral data, many VIs were developed for estimating plant pigments, espe-
cially for Chls (Chl-a and Chl-b). They are blue green pigment index (BGI), blue red pigment
index (BRI), Chl absorption ratio index (CARI), Chl index using green reflectance (Chl,..,),
Chlindex using red edge reflectance (Chl,.4.q,.), modified SR of derivatives (DmSR), leaf Chl
index (LCI), modified Chl absorption in reflectance index (MCARI), mND,y;, mSR;s, nor-
malized total pigment to Chl index (NPCI), normalized phaeophytinization index (NPQI),
plant biochemical index (PBI), photochemical/physiological reflectance index (PRI), PSND,
red edge vegetation stress index (RVSI), structural independent pigment index (SIPI), TVI,
NDVI and SR. The VlIs specifically developed for estimating Cars contents at leaf level
include Car reflectance index (CRI), double difference (DD), eucalyptus pigment indexes
(EPIs), modified Car reflectance index (mCRI), PRI, pigment-specific SR (PSSR), ratio analy-
sis of reflectance spectra (RARS), and SIPL. A few VIs were designed for estimating Anths
contents in foliage. They are anthocyanin reflectance index (ARI), modified ARI (mARI),
and red-green ratio (RGR). These VIs were developed from various hyperspectral data and
have been applied for estimating plant pigments by researchers (e.g., Gitelson and Merzlyak
1994; Blackburn 1998, Gamon and Surfus 1999; Gitelson, Buschmann, and Lichtenthaler
1999; Gitelson, Merzlyak, and Chivkunova 2001; Richardson, Duigan, and Berlyn 2002;
Rama Rao et al. 2008). For instance, Blackburn (1998) used various narrowband SR, PSND,
and SIPI VIs to quantify Chls and Cars of Pteridium aquilinum grass at leaf and canopy
scales. Gitelson et al. (2001, 2006) developed mCRI, ARL and mARI VIs with in situ spectral
measurements taken from tree leaves to estimate Chls, Cars, and Anths contents. Rama Rao
et al. (2008) developed a new VI, named PBI, for improved estimation of plant biochemicals
from spaceborne hyperspectral data. The VI PBl is an SR of reflectances at 810 and 560 nm.
It has the potential to retrieve leaf total Chls and N concentrations of various crops and at
different geographical locations. Hatfield et al. (2008) used PSND and PRI to determine the
pigments of agricultural crops. A study by le Maire et al. (2008) estimated leaf Chls content
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of broadleaf forest with NDVI and SR VIs derived from in situ and Hyperion hyperspec-
tral data. Chappelle, Kim, and McMurtrey (1992) recommended the use of Ry,/Rsy, as a
quantitative measure of Cars. Pefiuelas, Baret, and Filella (1995) proposed the use of SIPI for
estimating Cars. For Anths estimation, Gamon and Surfus (1999) used a ratio of red-green
reflectances Rggo_700/Rspo-s00 and Gitelson, Merzlyak, and Chivkunova (2001), Gitelson,
Keydan, and Merzlyak (2006) used an ARI and an mARI to estimate Anths content at the
plant leaf level. However, Sims and Gamon (2002, page 352) concluded, “estimation of Cars
and Anths contents remains more difficult than estimation of Chls content.”

Many narrowband VIs were designed for estimating water content at the leaf and can-
opy levels. These VIs include disease water stress index (DSWI), LWVI-1, LWVI-2, mois-
ture stress index (MSI), NDII, normalized difference water index (NDWI), PVI, ., 3-band
ratio at 1200 nm (RATIO,,), 3-band ratio at 975 nm (RATIOy;;), RVI,,,, RVSI, SWIR water
stress index (SIWSI), SR water index (SRWI), and water index (WI). For example, Pefiuelas
et al. (1993, 1996) studied the reflectances of gerbera, pepper, bean plants, and wheat in the
950-970 nm region as an indicator of water status. Their results showed that the ratio of
the reflectance at 970 nm, one of the water absorption bands, to the reflectance at 900 nm
as the reference wavelength (Ry;,/Ryg, or WI) closely tracked changes in relative water con-
tent (RWC), leaf water potential, stomatal conductance, and cell wall elasticity. Cheng et al.
(2006) and Clevers, Kooistra, and Schaepman (2008) used NDWI, W1, and SIWSI to esti-
mate vegetation water content for different canopy scenarios with hyperspectral AVIRIS
data. Colombo et al. (2008) estimated leaf and canopy water content in a poplar plantation
using SRWI, NDII, and MSI derived from airborne hyperspectral image data. Pu, Ge et al.
(2003) determined water status in coastal live oak leaves with RATIO,,,, and RATIO;
indices derived from hyperspectral measurements.

A few VIs are designed for estimating nutrient constituents and concentrations of other
biochemicals, such as lignin and cellulose. They are cellulose absorption index (CAI), nor-
malized difference N index (NDNI), normalized difference lignin index (NDLI), NDVI,
PBI, and SR. For example, Serrano, Pefiuelas, and Ustin (2002) proposed NDNI and NDLI
to assess N and lignin concentrations in chaparral vegetation using AVIRIS hyperspectral
image data. Gong, Pu, and Heald (2002) and Hansena and Schjoerring (2003) used narrow-
band NDVI and SR indices to assess nutrient constituent concentrations (N, P, and K) in a
conifer species and N status in wheat crops from hyperspectral data. Further, Rama Rao
et al. (2008) estimated leaf N concentration of cotton and rice crops with PBI derived from
Hyperion hyperspectral data.

5.3.4 Analysis of Absorption Features and Spectral Position Variables

Analysis of spectral absorption features is one step further toward the recognition of
some essential properties of a target of interest. Quantitative characterization of absorp-
tion features allows for abundance estimation from hyperspectral data. Spectral absorp-
tion features are caused by a combination of factors inside and outside the matter surface,
including electronic processes, molecular vibrations, abundance of chemical constituents,
granular size and physical structure, and surface roughness relative to electromagnetic
wavelength. Figure 5.1 shows the major absorption and reflectance features for vegetation.

In order to analyze the absorption features of a spectral reflectance curve, one needs to
normalize the spectral curve so that only the spectral values inside the absorption features
will be less than 1(100%). This can be done using a continuum-removal technique proposed
by Clark and Roush (1984). As shown in Figure 5.2, a continuum is defined for each spec-
tral curve by finding the high points (local maxima) along the curve and fitting straight
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line segments between these points. This can be done either manually or automatically.
The normalized curve is obtained by dividing the original spectral value at each band
location with the value on the straight line segments at the corresponding wavelength
location. Quantitative measures can be determined from each absorption peak after nor-
malization of the raw spectral reflectance curve. An asymmetric term can also be defined
by subtracting area A from area B (Figure 5.2; Kruse, Lefkoff, and Dietz 1993). The quan-
titative measures shown in Figure 5.2 can be used to determine the abundances of certain
compounds in a pixel. For example, Pu, Ge et al. (2003) explored the effectiveness of these
absorption parameters in correlation with the leaf water content of oak trees at various
stages of disease infection. Galvao, Formaggio, and Tisot (2005) successfully used some
absorption features extracted with this technique and other spectral indices from EO-1
Hyperion data to discriminate the five sugarcane varieties in southeastern Brazil. Huber
et al. (2008) also estimated foliar biochemistry (the concentrations of N and carbon, and
the content of water) from hyperspectral HyMap data in mixed forest canopy using such a
continuum-removal technique.

Some absorption features or spectral position variables can also be modeled. For exam-
ple, the red edge of vegetation between 670 and 780 nm has been widely modeled by a
number of researchers. Based on the spectral properties of the pigments, some researchers
have used red edge optical parameters (e.g., Curran, Windham, and Gholz 1995; Belanger,
Miller, and Boyer 1995; Cho, Skidmore, and Atzberger 2008) to estimate plant leaf and can-
opy Chls content and concentration. Guyot, Baret, and Jacquemond (1992) proposed a four-
point interpolation method to find the wavelength position of the inflection point on the
red edge position and the red well position. Other methods include polynomial fitting (Pu,
Gong et al. 2003), Lagrangian interpolation (Dawson and Curran 1998), inverted Gaussian
model fitting (Miller, Hare, and Wu 1990), and linear extrapolation techniques (Cho and
Skidmore 2006). The red edge optical parameters can be used for estimating Chls con-
centrations (Belanger, Miller, and Boyer 1995; Curran, Windham, and Gholz 1995), nutri-
ent constituent concentrations (Gong, Pu, and Heald 2002; Cho, Skidmore, and Atzberger
2008), leaf relative water content (Pu, Ge et al. 2003; Pu, Foschi, and Gong 2004), and forest
LAI (Pu, Gong et al. 2003). In addition, Pu, Foschi, and Gong (2004) proposed to extract
20 spectral variables (10 maximum-first derivatives plus 10 corresponding wavelength-
position variables) from 10 slopes defined across a reflectance curve from 0.4 to 2.5 um
for estimating oak leaf relative water content. All these efforts can help extract absorption
feature measures and other spectral features from original hyperspectral data for estimat-
ing vegetation parameters.

5.3.5 Hyperspectral Transformation

The principal component (PC) analysis (PCA) technique has been applied to reduce the
data dimension and feature extraction from hyperspectral data for assessing leaf or can-
opy biophysical and biochemical parameters (e.g., Gong, Pu, and Heald 2002; Pu and Gong
2004). With a covariance (or correlation) matrix calculated from vegetated pixels only, it is
commonly believed that the eigenvalues and corresponding eigenvectors computed from
the covariance (or correlation) matrix are able to enhance vegetation variation informa-
tion in the first several PCs. Because the PCA does not always produce images that show
steadily decreasing image quality with increasing component number, Green et al. (1988)
developed one transform method called “maximum noise fraction” (MNF) transform to
maximize the signal-to-noise ratio when choosing PCs with increasing component num-
ber. Then, several MNFs to maximize the signal-to-noise ratio are selected for further



Hyperspectral Remote Sensing of Vegetation Bioparameters 121

analysis of hyperspectral data, such as for determining endmember spectra for spectral
mixture analysis (Pu, Gong et al. 2008; Walsh et al. 2008) and hyperspectral mosaic (Hestir
et al. 2008).

“Canonical discriminant analysis” (CDA) also is a dimension-reduction technique
equivalent to canonical correlation analysis that can be used to determine the relation-
ship between the quantitative variables and a set of dummy variables coded from the
class variable in a low-dimensional discriminant space (Khattree and Naik 2000; Zhao
and Maclean 2000). Given a classification variable and several quantitative variables, CDA
derives canonical variables, linear combinations of the quantitative variables that summa-
rize between-class variation in much the same way that PCA summarizes most variation
in the first several PCs. In other words, CDA involves human effort and knowledge derived
from training samples, whereas PCA performs a relatively automatic data transformation
and tries to concentrate the majority of data variance in the first several PCs. However,
unlike PCA, CDA is only occasionally analyzed and tested as a data transformation tech-
nique by researchers in the remote-sensing community for dimensional reduction and
feature extraction (e.g.,, Zhao and Maclean 2000; van Aardt and Wynne 2001, 2007).

The wavelet transform (WT) is a relatively new signal-processing tool that provides
a systematic means for analyzing signals at various scales or resolutions and shifts. In
the past two decades, WT has been successfully applied to image processing, data com-
pression, pattern recognition (Mallat 1998), image texture feature analysis (Fukuda and
Hirosawa 1999), and feature extraction (Simhadri et al. 1998; Pittner and Kamarthi 1999).
Wavelets have proven to be quite powerful in these remote-sensing application areas.
This is attributed to the facts that the WT can decompose a spectral signal into a series
of shifted and scaled versions of the mother wavelet function, and that the local energy
variation (represented as peaks and valleys) of a spectral signal in different bands at
each scale can be detected automatically and provide some useful information for further
analysis of hyperspectral data (Pu and Gong 2004). With continuous WT (CWT), one can
analyze both single-dimensional and multidimensional signals, such as hyperspectral
image cubes, across a continuum of scales. With discrete WT (DWT), signals are analyzed
over a discrete set of scales, typically dyadic (2j,j =1, 2, 3, ...), and the transforms can be
realized using a variety of fast algorithms and customized hardware (Bruce, Morgan, and
Larsen 2001). The WT can decompose signals over dilated (scaled) and translated (shifted)
wavelets (Mallat 1989; Rioul and Vetterli 1991). There are many different types of mother
wavelets and wavelet bases to be selected for use. In practice, researchers need to test most
of the wavelet families to find the most useful wavelet family in a particular project. After
a set of DWT coefficients for each level or scale of a pixel-based spectrum is calculated,
the energy feature of the wavelet decomposition coefficients is computed at each scale for
both approximation and details and is used to form an energy feature vector (Pittner and
Kamarthi 1999; Bruce, Morgan, and Larsen 2001; Li et al. 2001; Pu and Gong 2004). This
can become a feature extraction through a dimension reduction. With hyperspectral data
of vegetation and the WT technique, several studies already demonstrate the benefits of
wavelet analysis. For example, Pu and Gong (2004) used the mother wavelet function db3
in MATLAB® (Misiti et al. 1996) to transform Hyperion data (167 available bands in their
analysis) for extracting features through a dimension reduction for mapping forest LAI
and CC. By using the wavelet analysis method, Blackburn (2007a) and Blackburn and
Ferwerda (2008) retrieved plant pigments (Chls and Cars) concentration from leaf and
canopy spectra, although further work is needed to refine this approach. Hsu and Tseng
(2000) and Henry et al. (2004) used the wavelet analysis method (multiscale transform)
to extract useful spectral features from hyperspectral data (AVIRIS and in situ spectral
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measurements) for plant/crop-type classification. They concluded that using spectral
features extracted with the wavelet analysis method from hyperspectral data resulted
in higher classification accuracy than using features with other methods (e.g., PCA and
multiple VIs).

5.3.6 Spectral Unmixing Analysis

Unlike laboratory and in situ spectral reflectances, which are usually measured from “pure
materials,” a large portion of remotely sensed data is spectrally mixed. In order to iden-
tify various pure materials and to determine their spatial proportions from the remotely
sensed data, the spectral mixing process has to be properly modeled. Once the spectral
mixing process is modeled, the model can be inverted to derive the spatial proportions
and spectral properties of pure materials. There are two types of spectral mixing: (1) lin-
ear spectral mixing and (2) nonlinear spectral mixing. Both linear and nonlinear spectral
mixing models are simple tools used to describe spectral mixing processes. A real spectral
mixing process could be complicated and can be more explicitly dealt with using radiative
transfer (RT) models (e.g., Li and Strahler 1985, 1992); also their solutions are often difficult
to obtain (Liang and Strahler 1993; Gong, Wang, and Liang 1999). Linear spectral mixing
model (LSM) and its inversion have been widely used since the late 1980s. An LSM has
been extensively applied to extract the abundance of various components within mixed
pixels. The nonlinear spectral mixture model can be found detailed in the works of Sasaki
et al. (1984) and Zhang et al. (1998). In addition, an artificial neural network (ANN) algo-
rithm has been tested to unmix mixed pixels into fractional abundances of endmembers
in some studies (Foody 1996; Wang and Zhang 1998; Flanagan and Civco 2001; Pu, Gong
et al. 2008).

In the spectral mixture analysis, a typical LSM at pixel (i, j) can be expressed as follows:

R;=MEF; +¢; (5.7)

where R;;is a K-dimension reflectance (or digital number) vector, F; is an L-dimension frac-
tion vector, M is a Kx L endmember spectral matrix, and g;isa K-dimension error vector
representing residual error. The goal of spectral unmixing is to solve for F;, with R;and M
known. When the number of endmembers in pixel (i, ) are appropriately accounted for, F

should satisfy the following conditions:

i

L
Y E=1and F >0 (5.8)

I=1

It is well known that the inversion of Equation 5.7 (i.e., spectral unmixing) can be achieved
with a least-squares solution (LSS) when K >L (e.g., Adams, Smith, and Gillespie 1989;
Sohn and McCoy 1997; Maselli 1998; Pu, Gong et al. 2008).

A feed-forward ANN algorithm is a nonlinear solution to the LSM, used for unmix-
ing mixed pixels. The network training mechanism is an error-propagation algorithm
(Rumelhart, Hinton, and Williams 1986; Pao 1989). In a layered structure, the input to each
node is the sum of the weighted outputs of the nodes in the prior layer, except for the nodes
in the input layer, which are connected to the feature values. The nodes in the last layer
output a vector that corresponds to similarities in each class, or fractions of endmembers
within a mixed pixel. One layer between the input and output layers is usually sufficient
for most learning purposes. The learning procedure is controlled by a learning rate and
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a momentum coefficient, which need to be specified empirically based on the results of
a limited number of tests. Network training is done by repeatedly presenting training
samples (pixels) with the known fractions of endmembers. Training is terminated when
the network output meets a minimum error criterion or optimal test accuracy is achieved.
The trained network can then be used to estimate the fraction of each endmember in a
mixed pixel.

This simple mixing model (LSM) has an advantage in that it is relatively simple and
provides a physically meaningful measure of abundance in mixed pixels. However, there
are a number of limitations to the simple mixing concept: The endmembers used in LSM
are the same for each pixel, regardless of whether the materials represented by the end-
members are present in the pixel; it fails to account for the fact that the spectral contrast
between those materials is variable; the LSM cannot account for subtle spectral differences
among materials efficiently; and the maximum number of components that an LSM can
map is limited by the number of bands in the image data (Li and Mustard 2003). Therefore,
Roberts et al. (1998) introduced multiple endmember spectral mixture analysis (MESMA),
a technique for identifying materials in a hyperspectral image using endmembers from
a spectral library. The MESMA technique overcomes the limitations of the simple mix-
ing model. Using the MESMA, the number of endmembers and their types are allowed
to vary for each pixel in the image. The general MESMA procedure starts with a series
of two-endmember candidate models, evaluates each model based on selection criteria
and then, if required, constructs candidate models that incorporate more endmembers
(Roberts et al. 1998).

The key to successful spectral mixture analysis is the selection of appropriate endmem-
bers (Gong, Miller, and Spanner 1994; Tompkins et al. 1997). Determination of endmembers
involves identifying the number of endmembers and extracting their corresponding spec-
tral signatures. The pixel purity index (PPI), according to Boardman (1993), can be combined
with the use and interpretation of scatter plots of MNF (Green et al. 1988) to characterize
the relative abundance of endmembers across a scene to help determine endmember spec-
tra. The ability to detect different surface materials in the endmember analysis of remotely
sensed data is a function of spectral contrast among endmembers, noise, and spectral reso-
lution (Shipman and Adams 1987; Sabol, Adams, and Smith 1990). Sufficient spectral infor-
mation from hyperspectral data ensures the successful unmixing of mixed pixels. To select
endmembers during the processing of MESMA, three selection criteria are fraction, root
mean square error (RMSE), and the residuals of contiguous bands (Roberts et al. 1998). The
minimum RMSE model is assigned to each pixel, and it can be used to map materials and
fractions within the image (Painter et al. 1998) with the MESMA approach.

A number of researchers have applied LSM to hyperspectral data to estimate the abun-
dance of general vegetation cover or specific vegetation species (Asner and Heidebrecht
2003; Miao et al. 2006; Judd et al. 2007; Hestir et al. 2008; Walsh et al. 2008; Pignatti et al.
2009). A neural network (NN)-based nonlinear solution also was applied to hyperspectral
data to estimate the abundance of specific vegetation species (Pu, Gong et al. 2008; Walsh
et al. 2008). Several researchers have applied the MESMA approach in a variety of environ-
ments for vegetation mapping. For example, Roberts et al. (1998, 2003) used MESMA and
AVIRIS hyperspectral image data to map vegetation species and land-cover types in south-
ern California chaparral. Using AVIRIS image data and the MESMA approach, Li, Ustin,
and Lay (2005) and Rosso, Ustin, and Hastings (2005) mapped coastal salt marsh vegeta-
tion in China and the marshland vegetation of San Francisco Bay, California, respectively.
In addition, Fitzgerald et al. (2005) successfully mapped multiple shadow fractions in a
cotton canopy with MESMA approach and hyperspectral imagery.
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5.3.7 Hyperspectral Image Classification

Traditional multispectral classifiers can be used, but they may have a less than expected
effect as they face difficulties caused by the high dimensionality of hyperspectral data
and the high correlation of adjacent bands with a limited number of training samples. In
order to overcome these problems, a feature extraction preprocessing before classification
is necessary. Feature extraction schemes such as PCA (or its noise-adjusted version, MNF),
Fisher’s linear discriminant analysis (LDA), or CDA) have been applied in transforming
and reducing the data dimension by maximizing the ordered variance of the whole data
set or the ratio of between-class variance and within-class variance of the training sam-
ples. Jia and Richards (1999) proposed a segmented PC transformation (i.e., segmented
PCA or segPCA) to reduce the computation cost by selecting subsets of the covariance
matrix in a lower segmented dimension. Penalized discriminant analysis (PDA) was sug-
gested to deal with the high correlation among the bands more efficiently by penalizing
the high within-class variance and to improve the performance of LDA (Yu et al. 1999).
Jia and Richards (1994, 2002) first segmented the whole spectral space into several sub-
spaces using a spectral correlation matrix and then used the maximum likelihood clas-
sifier, called “simplified maximum likelihood classification,” to classify an image scene.
Jimenez and Landgrebe (1998) segmented and transformed the whole spectrum into sev-
eral subspectra, estimated training statistics at the subspaces, and iteratively updated an
orthogonal projection matrix until a minimum Bhattacharyya distance (BD) was obtained
among the classes.

Fisher’s LDA and CDA search for successive linear combinations of data to maximize
the ratio of between-class variance and within-class variance of training samples in an
expectation of spreading the means or the cluster centers of different classes as much as
possible while keeping the within-class variation at a similar level for all classes (Yu et al.
1999; Xu and Gong 2007; Pu and Liu 2010). It is based on an assumption of reliable estima-
tion of training statistics. Segmented LDA (segLDA) first divides the whole spectrum into
subblocks, with each block containing a set of continuous highly correlated spectral bands.
Denote the dimension of the kth subblock as I, and I, + --- + I, + --- + I = . For each sub-
block of spectral bands, estimate the between-class covariance matrix and the within-class
covariance matrix in a subspace that has a dimension equal to the number of bands in the
subblock. Then, apply LDA to each subblock to generate new component images (features)
with a number of min(C — 1, I,), where C is the number of classes and k is the kth subblock.
This projection is supposed to spread the means of the classes as much as possible. With the
newly projected images for each subblock, we could either select the first few feature images
from each subblock to generate a combined pool of new features that can be subsequently
used for classification, or select more feature images less than min(C — 1, I;) from the kth
subblock for k=1, ..., K to form a new subspace. The LDA approach can be applied multiple
times to reduce the data dimension in the search for an optimal set of orthogonal subspaces
for use in final classification. The PDA introduces a penalty matrix Q to the within-class
covariance matrix to penalize and limit the effect that a band with high within-class varia-
tion may have in the case of LDA, while reserving the low within-class variation band. The
function of the penalty matrix was geometrically interpreted by Yu et al. (1999). The matrix
unequally smooths within-class variation for all the classes in the hyperspectral space. The
realization of segmented PDA (segPDA) and segmented CDA (segCDA) is similar to that of
segLDA in the sense that segmentation is done before applying PDA, except that PDA adds
a penalty term to the estimation of the within-class covariance matrix. Similar to segPCA,
segLDA, segCDA, and segPDA all save significant computation time.
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Xu and Gong (2007) compared several feature extraction algorithms used for band
reduction of Hyperion data. These include PCA, segPCA, LDA, segLDA, PDA, and seg-
PDA. Feature reductions were all followed by classification of Hyperion images using a
minimum distance (MD) classifier. With segPDA, segLDA, PDA, and LDA, similar accura-
cies were achieved, whereas the segPDA and segLDA newly proposed by Xu and Gong
(2007) greatly improved computation efficiency. They also outperformed segPCA and
PCA in classification accuracy due to the use of specific intra- and interclass covariance
information. Similar to the conclusion drawn by Xu and Gong (2007), Pu and Liu (2010)
also concluded that segCDA outperformed segPCA and segmented stepwise discriminant
analysis (SDA) when 13 tree species were discriminated using in situ hyperspectral data
and segCDA. Based on the study by Pu and Liu (2010), CDA or segCDA (under the condi-
tion of limited training samples) should be applied broadly in mapping forest-cover types,
species identification, and other land use/land-cover classification practices with multi/
hyperspectral remote sensing data, because it is superior to PCA and SDA for selection of
features that are used for image classification.

Support vector machines (SVMs) as a new type of classifiers have been successfully
applied to the classification of hyperspectral remote-sensing data. Traditionally, classifiers
first model the density of various classes and then find a separating surface for classifica-
tion. However, the estimation of density for various classes with hyperspectral data suffers
from the Hughes phenomenon (Hughes 1968): For a limited number of training samples,
the classification rate decreases as the dimension increases. The SVM approach does not
suffer from this limitation because it directly seeks a separating surface through an opti-
mization procedure that finds so-called support vectors that form the boundaries of the
classes. This is an interesting property of hyperspectral image processing because usually
there is only a set of limited training samples available to define the separating surface
for classification. Further, the properties of SVMs make them well suited to hyperspectral
image classification since they can handle data efficiently in high dimensionality, deal with
noisy samples in a robust way, and make use of only those most characteristic samples as
support vectors in the construction of classification models. Melgani and Bruzzone (2004)
provided a detailed introduction of SVMs for the classification of hyperspectral imag-
ery. SVMs are considered to be kernel-based classifiers that are based on mapping data
from the original input feature space to a kernel feature space of higher dimensionality
and then solving a linear problem in that space (Burges 1998). Camps-Valls and Bruzzone
(2005) introduced several other kernel-based classifiers, including kernel Fisher discrimi-
nant analysis, regularized radial basis function NN, and a regularized boosting algorithm.
They compared them with the SVMs and reported comparable accuracies in classifying
the same agricultural AVIRIS scene as used by Melgani and Bruzzone (2004).

The SVM approach can significantly improve classification accuracy with hyperspectral
data. For example, Melgani and Bruzzone (2004) tested four SVM strategies for multiclass
discrimination including the “one against all,” “one against one,” “binary hierarchical tree
balanced branches,” and “binary hierarchical tree one against all” algorithms. They applied
these algorithms to an AVIRIS image acquired over an agricultural area with nine classes
and compared their performances with radial basis function NNs and K-nearest neighbor
(K-NN) algorithms. They reported overall accuracies greater than 90% with an accuracy
improvement of 7-12% over the NN and K-NN algorithms. Pal and Mather (2004) used
a multiclass SVM for land-cover classification of Digital Airborne Imaging Spectrometer
(DAIS) hyperspectral image data. Results showed that SVM outperforms maximum likeli-
hood, univariate decision tree, and back propagation NN classifiers. For classification pur-
poses with hyperspectral HyMap data, Camps-Valls et al. (2004) used SVMs for a six-class
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crop classification and analyzed their performance in terms of efficiency and robustness as
compared to extensively used NNs and fuzzy methods. They concluded that SVMs yield
better outcomes than NNs and fuzzy methods in terms of classification accuracy, simplic-
ity, and robustness.

5.3.8 Empirical/Statistical Analysis Methods

Most researchers have employed statistical analysis methods to correlate biophysical or
biochemical parameters with spectral reflectance, VIs, or derivative spectra in the visible,
NIR, and SWIR wavelengths of hyperspectral data at leaf, canopy, or plant community
level (Peterson et al. 1988; Wessman et al. 1988; Bolstad and Lillesand 1991; Smith et al.
1991; Gong, Pu, and Miller 1992, 1995; Gong, Pu, and Yu 1997; Franklin and McDermind
1993; Banninger, Johnson, and Peterson 1994; Johnson, Hlavka, and Peterson 1994; Matson
et al. 1994; Pinel et al. 1994; Yoder and Waring 1994; Gastellu-Etchegorry et al. 1995; Gamon
et al. 1995; Yoder and Pettigrew-Crosby 1995; Grossman et al. 1996; Zagolski et al. 1996;
LaCapra et al. 1996; Gitelson and Merzlyak 1997; Martin and Aber 1997; Chen, Elvidge,
and Groeneveld 1998; Blackburn 1998; Fourty and Baret 1998; Martin et al. 1998; Datt 1998;
Serrano, Pefiuelas, and Ustin 2002; Galvao, Formaggio, and Tisot 2005; Colombo et al. 2008;
Darvishzadeh, Skidmore et al. 2008; Hestir et al. 2008; Huber et al. 2008). Johnson, Hlavka,
and Peterson (1994) determined predictive relationships for biochemical concentrations
using regressions between the chemical composition of forest canopy and the AVIRIS
reflectance. Using data from AVIRIS and a CASI, Matson et al. (1994) demonstrated that
canopy biochemicals carried information about forest ecosystem processes and suggested
that some of this chemical information might be estimated remotely using hyperspectral
data collected by airborne sensors. They found that the first differences were in the range
of 1525-1564 nm, which figured prominently in all N equations. After correlating VIs of
Ryr/Rygp and Ryr/Rssp with Chl content, Gitelson and Merzlyak (1996, 1997) demonstrated
that the indices for Chl assessment were important for two deciduous species, maple and
chestnut. In spectral feature analysis associated with N, P, and K deficiencies in Eucalyptus
saligna seedling leaves, Ponzoni and Goncalves (1999) proved that spectral reflectance can
be better estimated using a combination of nutrient constituents (N, P, and K) as indepen-
dent variables with the results from simple and multiple regression. Martin et al. (1998)
determined forest species composition using high spectral resolution remote-sensing data
with an approach that combined forest species—specific chemical characteristics and pre-
viously derived relationships between hyperspectral data (AVIRIS) and foliar chemistry.
They classified 11 forest-cover types, including pure and mixed stands of deciduous and
conifer species, with an overall accuracy of 75%. With EO-1 Hyperion hyperspectral image
data, Galvao, Formaggio, and Tisot (2005) successfully discriminated five sugarcane vari-
eties in southeastern Brazil using a multiple discriminant analysis method that produced
a classification accuracy of 87.5%. With multiple linear regression models, continuum-
removal technique, and normalized HyMap spectra, Huber et al. (2008) estimated foliar
concentrations of N and carbon, and content of water in a mixed forest canopy.

Partial least-squares regression (PLSR) is a technique that reduces the large number of
measured collinear spectral variables to a few noncorrelated latent variables or PCs. The
PCs represent the relevant structural information present in the measured reflectance
spectra and are used to predict the dependent variables (i.e., biophysical and biochemical
parameters; Darvishzadeh, Skidmore et al. 2008). The PLSR approach is different from
PC regression (PCR) in the methods used in extracting factors (also called “components,”
“latent vectors,” or “latent variables”). In short, PCR produces the weight (coefficient)
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matrix reflecting the covariance structure between the predictor variables, whereas PLSR
produces the weight (coefficient) matrix reflecting the covariance structure between
the predictor and response variables. In other words, PCR extracts factors to explain as
much predictor sample variation as possible, whereas PLSR balances the two objectives of
explaining both response variation and predictor variation as much as possible. Recently,
there has been increasing interest in applying the PLSR approach to calibrate relationships
between spectral variables, often derived from hyperspectral data and a set of bioparam-
eters (Hansena and Schjoerring 2003; Asner and Martin 2008; Darvishzadeh, Skidmore
et al. 2008; Martin et al. 2008; Weng, Gong, and Zhu 2008; Prieto-Blanco et al. 2009). For
example, using spectral measurements taken from leaves and bioparameter data (Chl-a,
Chl-b, Cars, Anths, water, N, P, and SLA) collected from 162 Australian tropical forest
species, along with PLSR approach and canopy RT modeling, Asner and Martin (2008)
concluded that a suite of leaf properties among tropical forest species can be estimated
using full-range leaf spectra of fresh foliage collected in the field. Hansena and Schjoerring
(2003) used two-band combinations in the normalized difference VIs constructed from in
situ spectral measurements taken from wheat crop canopy and PLSR approach to estimate
canopy green biomass and N status. They concluded that PLSR analysis may be a useful
exploratory and predictive tool when applied to hyperspectral reflectance data analysis.
The optimal number of PCs was determined by the guidelines described by Esbensen
(2000). The basic PLSR algorithm will not be introduced here, but further information on
the PLSR model can be found in the work of Ehsani et al. (1999).

Although univariate and multiple regression analysis methods are relatively simple and
their modeling results frequently have higher estimation accuracy, empirical or statistical
relationships are often site, species, and sensor specific, and thus cannot be directly applied
to other study areas since the plant canopy structure and sensors’ viewing geometry may
vary among different sites and species. Therefore, during the last two decades, physically
based modeling approaches have attracted the attention of many researchers, who have
retrieved biophysical and biochemical parameters by inversing various physically based
models from simulated spectra or real imaging data.

5.3.9 Physically Based Modeling

The theoretical basis of physically based models consists of developing a leaf or canopy
scattering and absorption model that involves biochemistry and biophysics. These models,
including RT and geometric-optical (GO) models, consider the underlying physics and
complexity of the leaf internal structure and therefore are robust and have the potential
to replace statistically based approaches (Zhang et al. 2008a, 2008b). In the context of the
remote sensing of bioparameters, such models have been used in the forward mode to cal-
culate leaf or canopy reflectance and transmittance and in the inversion mode to estimate
leaf or canopy chemical and physical properties. For example, many researchers employ
physically based models at leaf or canopy level to retrieve biochemical parameters, includ-
ing leaf pigments from either simulated spectra or hyperspectral image data (Asner and
Martin 2008; Feret et al. 2008; Zhang et al. 2008a, 2008b).

A number of RT models have been developed at leaf and canopy levels. They mostly
simulate leaf reflectance and transmittance spectra between 0.4 and 2.50 um. Among mod-
els focusing on leaf optical properties, the most important RT models may include the
Propriétés Spectrales (PROSPECT) model (Jacquemoud and Baret 1990; Jacquemoud et al.
1996; Fourty et al. 1996; Demarez et al. 1999; le Maire, Francois, and Dufrene 2004), the leaf
incorporating biochemistry exhibiting reflectance and transmittance yields (LIBERTY)
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model (Dawson, Curran, and Plummer 1998; Coops and Stone 2005), and the leaf experi-
mental absorptivity feasibility model (LEAFMOD; Ganapol et al. 1998). Among those
focusing on canopy optical properties, the most popular RT models are the scattering by
arbitrary inclined leaves (SAIL; Verhoef 1984; Asner 1998) model and its improved versions
that have been adapted to account for some heterogeneity within the vegetation canopy,
for example, GeoSAIL (Verhoef and Bach 2003), 2M-SAIL (Weiss et al. 2001; Le Maire et al.
2008), and 4SAIL2 (Verhoef and Bach 2007). The other important canopy reflectance mod-
els include fast canopy reflectance (FCR; Kuusk 1994), the new advanced discrete model
(NADIM; Jacquemoud et al. 2000; Ceccato et al. 2002), the Markov chain canopy reflectance
model (MCRM; Kuusk 1995) adapted for row crops (Cheng et al. 2006), and the four mod-
els used for simulating discontinuous forest canopies, including discrete anisotropic RT
(DART; Demarez and Gastellu-Etchegorry 2000), spreading of photons for radiation inter-
ception (SPRINT; Zarco-Tejada, Miller, Harron et al. 2004), forest light interaction model
(FLIM; Zarco-Tejada, Miller, Morales et al. 2004), and three-dimensional forest light inter-
action (FLIGHT; Koetz et al. 2004). In addition, during the last two decades, researchers
have developed some leaf-canopy-coupled models, including PROSAIL (Baret et al. 1992;
Broge and Leblance 2000), LEAFMOD +CANMOD (Ganapol et al. 1999), LIBERT Y+FLIGHT
(Dawson et al. 1999), and LIBERTY+SAIL (Dash and Curran 2004). Among the RT models,
based on the literature searched and analyzed by Jacquemoud et al. (2009), the most popu-
lar and important RT models on leaf, canopy, and leaf-canopy-coupled optical properties
are PROSPECT, SAIL, and PROSAIL, as well as their modified versions.

The PROSPECT models, including the latest versions PROSPECT-4 and -5 (Feret et al.
2008), can provide specific absorption and scattering coefficients of leaf components. The
model is widely used and well validated (Fourty et al. 1996). The SAIL model is a four-
stream RT model developed by Verhoef (1984). It was later modified by Kuusk (1991) to take
the hot spot feature into account. Linking the two models into PROSAIL allowed descrip-
tion of both the spectral and directional variation of canopy reflectance as a function of
leaf biochemistry (mainly Chls, water, and dry matter contents) and canopy architecture
(primarily LAI, LAD, and relative leaf size; Jacquemoud et al. 2009). The coupled leaf-canopy
and other RT models are used to understand the way in which leaf reflectance proper-
ties are influenced by the larger number of controlling factors at canopy scale (Demarez
and Gastellu-Etchegorry 2000). Coupled models have enabled the development and refine-
ment of spectral indices that are insensitive to factors such as canopy structure, illumination
geometry, and soil/litter reflectance (Broge and Leblanc 2000; Daughtry et al. 2000). Such
approaches have also been used in defining predictive relationships that have been applied
to hyperspectral imagery to generate maps of Chl (Haboudane et al. 2002; Zarco-Tejada,
Miller, Morales et al. 2004, Zarco-Tejada, Berjon et al. 2005).

The GO models belong to one type of RT models developed to capture the variation of
remote sensing signals on the Earth’s surface with illumination and observation angles.
Since GO models emphasize the effect of canopy architecture, they are very effective in
capturing the angular distribution pattern of the reflected radiance, and are thus used
widely in remote-sensing applications (Chen and Leblanc 2001) as aforementioned RT
models. There are a lot of different types of GO models. For example, a model developed
by Li and Strahler (1985) described the vegetation canopy using opaque geometric shapes
(cones or cylinders), which cast shadows on the ground. Consequently, crown transpar-
ency is assumed to be zero. These GO models are mainly used to describe (sparse) forests
or shrublands, where shadowing plays an important role.

Physically based models must be inverted to retrieve vegetation characteristics from
the observed reflectance data. So far, different inversion techniques for physically based
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models mainly include iterative optimization methods (Goel and Thompson 1984; Liang
and Strahler 1993; Jacquemoud et al. 1995; Jacquemoud et al. 2000; Meroni, Colombo, and
Panigada 2004), lookup table (LUT) approaches (Knyazikhin et al. 1998; Weiss et al. 2000;
Combal, Baret, and Weiss 2002; Combal et al. 2003; Gastellu-Etchegorry, Gascon, and Esteve
2003), and ANNs (Gong, Wang, and Liang 1999; Weiss and Baret 1999; Walthall et al. 2004;
Schlerf and Atzberger 2006). In the iterative optimization approach, a stable and optimum
inversion is not guaranteed. Moreover, the traditional iterative method is time-consuming
and often requires a simplification of the models when processing large datasets. This
may result in a decrease of the inversion accuracy and makes the retrieval of biophysical
and biochemical variables unfeasible for large geographic areas (Houborg, Soegaard, and
Boegh 2007). Methods employing LUTs can partially overcome this drawback. They oper-
ate using a database of simulated canopy reflectance variables in structural and radiomet-
ric properties. However, LUT creation can be complicated and requires an extensive set of
reliable field measurements. The ANN technique, proposed in the forward and inverse
modeling of RT models for retrieving bioparameters, is expected to reduce such complexity
of inversion. For proper training (ANN) and representation (LUT), the techniques basically
rely on a large database of simulated canopy reflectance spectra to achieve a high degree of
accuracy. This increases the computational time for identifying the most appropriate LUT
entry and the time required for training the ANN (Kimes et al. 2000; Liang 2004).

5.4 Summary and Future Directions

Hyperspectral remote sensing, or imaging spectroscopy, is a cutting-edge technology that
can be utilized in ecological studies for extracting and assessing vegetation characteriza-
tion. In this chapter, the spectral characteristics, properties, and/or responses of a set of
plant biophysical and biochemical parameters were reviewed. These bioparameters mainly
include typical biophysical parameters (LAI, SLA, CC, species/composition, biomass, NPP,
and fPAR) and biochemical parameters (plant pigments such as Chl-a and Chl-b, Cars,
and Anths, plant nutrients such as N, P, and K, leaf or canopy water content, and other
chemicals such as lignin and cellulose; and protein concentration). To extract and assess
typical bioparameters from various hyperspectral data, including laboratory and in situ
hyperspectral measurements, spectra synthesized and/or simulated from physically based
models, and airborne and spaceborne hyperspectral image data, relatively speaking, a
wide range of analysis techniques and approaches that have already been developed and
demonstrated are extensively reviewed in this chapter. The spectral analysis techniques
cover spectral derivative analysis, spectral matching, spectral index analysis, spectral
absorption features and spectral position variables, hyperspectral transformation, spec-
tral unmixing analysis, and hyperspectral classifications; and the two general categories
of analysis methods include empirical/statistical methods and physically based models.
Advantages and disadvantages, or merits and drawbacks, for some specific analysis tech-
niques and approaches were also discussed here. Data from imaging spectroscopy have
repeatedly been shown to produce accurate estimates of many biochemical parameters
and physical characteristics related to key ecological processes. Imaging spectroscopy is
the only technology available to measure many important environmental properties over
large regions, particularly canopy water content, dry plant residues, and soil biochemical
properties (Ustin et al. 2004).
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In the future, the richness of information available in the continuous spectral coverage
afforded by both airborne and spaceborne imaging spectrometers will make it possible to
address questions regarding vegetation bioparameters more correctly and accurately. Since
hyperspectral data can provide richer and more delicate spectral information than multi-
spectral data, spectral unmixing and automatic target detection remain important infor-
mation extraction tasks in hyperspectral data analysis, and the use of PCA, mathematical
programming, and factor analysis need to be further assessed in solving the linear mix-
ing problem. Inversion of physically based RT models with hyperspectral data assisted by
analysis of multiangular data will be useful in solving nonlinear spectral mixing problems
because the angular data can be used to retrieve the structural information of vegetation.

When using various spectral VIs to estimate different bioparameters, the use of opti-
mized VIs should be considered because there are many potential narrow bands ready
to be used for developing various VIs from hyperspectral data. Experience has proven
that with some optimized VlIs for estimating some bioparameters, the estimation accu-
racy can be significantly increased (e.g., Gong et al. 2003). When attempting to identify a
robust, generic solution, there is currently only limited evidence available with which one
can rank the performance of the range of existing hyperspectral analysis approaches in
quantifying plant bioparameters. Therefore, it is necessary to conduct intercomparison of
hyperspectral approaches (Blackburn 2007b) across a large number of bioparameters using
a large number of different analysis techniques. A sensitivity study is needed to determine
the set of variables that can be retrieved with a reasonable accuracy for available imaging
spectroscopy systems. Finally, although many analysis techniques have been developed
and are available in some applications for estimating biochemicals from hyperspectral
data at the leaf scale, in order to exploit the opportunities offered by imaging spectrometry
for synoptic, consistent, and spatially continuous information, it is important to develop
suitable methods that can also derive estimates of foliar biochemical concentrations from
canopy-scale reflectance spectra. For this case, several strategies are available for the
analysis of canopy spectra (Zarco-Tejada et al. 2001). This is a scaling issue, a problem
encountered frequently in ecological studies.
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6.1 Introduction

Remote-sensing thermal infrared (TIR) data have been widely used in urban climate and
environmental studies (Weng 2009). A series of satellite and airborne sensors have been
developed to collect TIR data from the Earth’s surface, such as the Heat Capacity Mapping
Mission (HCMM), Landsat Thematic Mapper (ITM)/Enhanced TM (ETM+), Advanced
Very High Resolution Radiometer (AVHRR), Advanced Spaceborne Thermal Emission
and Reflection Radiometer (ASTER), TIR Multispectral Scanner (TIMS), and Moderate
Resolution Imaging Spectroradiometer (MODIS). In addition to land-surface temperature
(LST) measurements, these TIR sensors may be utilized to obtain emissivity data from
different surfaces with varied resolutions and accuracies. Both LST and emissivity data
are used in urban studies mainly for analyzing LST patterns and their relationship with
surface characteristics, assessing the urban heat island (UHI) phenomenon, and relating
LSTs with surface energy fluxes for characterizing landscape properties, patterns, and pro-
cesses (Quattrochi and Luvall 1999).
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By examining the recent literature and providing case studies, this chapter reviews
methods and applications of thermal remote sensing applied to urban areas. The emphasis
is on the summarization of major advances and problems in the LST-vegetation relation-
ship, UHI modeling with remotely sensed TIR data, and the estimation of urban surface
heat fluxes. The last part of the chapter offers the author’s viewpoint on the prospects of
TIR remote sensing systems.

6.2 Relationship between Land-Surface Temperature
and Vegetation Abundance

The LST is an important parameter in urban thermal environment and dynamics stud-
ies. This parameter modulates the air temperature of the lower layer of the urban atmo-
sphere, and is a primary factor in determining surface radiation and energy exchange,
internal climate of buildings, and human comfort in cities (Voogt and Oke 1998). The
physical properties of various types of urban surfaces, their color, the sky view factor,
street geometry, traffic loads, and anthropogenic activities are important factors that
determine LSTs in urban environments (Chudnovsky, Ben-Dor, and Saaroni 2004). The
LST of urban surfaces corresponds closely to the distribution of land use and land-cover
(LULC) characteristics (Lo, Quattrochi, and Luvall 1997, Weng 2001, 2003; Weng, Lu, and
Schubring 2004). To study urban LSTs, some sophisticated numerical and physical models
have been developed, including energy balance models (Oke et al. 1999; Tong et al. 2005),
laboratory models (Cendese and Monti 2003), three-dimensional (3D) simulations (Saitoh,
Shimada, and Hoshi 1996), Gaussian models (Streutker 2002), and other numerical simula-
tions. Among these models and simulations, statistical analysis plays an important role
in linking LST to surface characteristics, especially at larger geographic scales (Bottyan
and Unger 2003). Previous studies have linked LST to biophysical and meteorological fac-
tors, such as built-up area and height (Bottyan and Unger 2003), urban and street geom-
etry (Eliasson 1996), LULC (Dousset and Gourmelon 2003), and vegetation (Weng, Lu, and
Schubring 2004), as well as population distribution (Fan and Sailor 2005; Weng, Lu, and
Liang 2006; Xiao et al. 2008) and the intensity of human activities (Elvidge et al. 1997).
However, it is the relationship between LST and various vegetation indices that has been
the most extensively documented in the literature.

The LST-vegetation index relationship has been used by Carlson, Gillies, and Perry (1994)
to retrieve surface biophysical parameters, by Kustas et al. (2003) to extract subpixel thermal
variations, and by Lambin and Ehrlich (1996) and Sobrino and Raissouni (2000) to analyze
land-cover dynamics. Many studies observe a negative relationship between LST and veg-
etation indices. This finding has pushed research in two major directions: (1) statistical
analysis of LST-vegetation abundance relationship and (2) the thermal-vegetation index
(TVX) approach. The latter by definition is a multispectral method of combining LST and a
vegetation index in a scatter plot to observe their associations (Quattrochi and Ridd 1994).

6.2.1 Statistical Analysis of the Land-Surface Temperature: Vegetation
Abundance Relationship

To understand the statistical relationship between LST and vegetation cover, different veg-
etation indices have been employed in search of a representative index. Goward, Xue, and
Czajkowski (2002) showed that different spectral vegetation indices, such as normalized
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difference vegetation index (NDVI) and simple ratio, were related to leaf area index (LAI)
and green biomass. For a long time now, NDVI has been used to quantify vegetation patterns
and dynamics within cities, and has been incorporated with LST to measure the impacts of
urbanization (Weng and Lu 2008). The relationship between NDVI and fractional vegetation
cover (Fr) is not singular. Small (2001) suggested that NDVI did not provide areal estimates
of the amount of vegetation. The NDVI measurements are a function of the visible and near-
infrared reflectance from the plant canopy, reflectance of the same spectra from the soil, and
atmospheric reflectance, and they are subject to the influence of errors related to observational
and other errors (Yang, Yang, and Merchnat 1997). Plant species, leaf area, soil background,
and shadow can all contribute to NDVI variability (Jasinski 1990). The relationship between
NDVI and other measures of vegetation abundance (e.g., LAI values greater than 3) is well
known to be nonlinear (Asrar et al. 1984). This nonlinearity and the platform dependency
of NDVI suggest that this index may not be a good indicator for quantitative analyses of
vegetation (Small 2001), and the relationship between NDVI and LST needs further calibra-
tion. More quantitative, physically based measures of vegetation abundance are called for,
especially in applications that require biophysical measures (Small 2001). The importance of
spatial resolution for detecting landscape patterns and changes should also be emphasized
(Frohn 1998), and the relationship between NDVI variability and pixel size should be further
investigated (Jasinski 1990).

More recent investigations are directed at finding a surrogate to NDVI. Weng, Lu, and
Schubring (2004) derived the vegetation fraction at different scales (pixel aggregation
levels), made a comparison between NDVI and vegetation fraction in terms of their
effectiveness as an indicator of urban thermal patterns, and found a stronger negative
correlation between vegetation fraction and LST than between NDVI and LST. Yuan and
Bauer (2007) made a similar correlation analysis between impervious surface area (ISA)
and NDVI, suggested that ISA showed higher stability and lower seasonal variability,
and recommended it as a complementary measure to NDVIL Xian and Crane (2006) sup-
ported the aforementioned observations by suggesting that the combined use of ISA,
NDV], and LST can explain temporal thermal dynamics across cities.

6.2.2 Thermal-Vegetation Index Approach to the Land-Surface
Temperature-Vegetation Relationship

The combination of LST and NDVI by a scatter plot results in a triangular shape (Carlson,
Gillies, and Perry 1994; Gillies and Carlson 1995; Gillies et al. 1997). Several methods have
been developed to interpret the LST-NDVI space, including the “triangle” method using
a “soil-vegetation—atmosphere transfer” (SVAT) model (Carlson, Gillies, and Perry 1994;
Gillies and Carlson 1995; Gillies et al. 1997), in situ measurement method (Friedl and
Davis 1994), and remote sensing-based method (Betts et al. 1996). However, difficulties
still exist in interpreting LST for sparse canopies because the measurements combine the
temperature of the soil and that of vegetation, and the combinations are often nonlinear
(Sandholt, Rasmussen, and Andersen 2002). Different versions of the TVX approach have
been developed over the past decades. Price (1990) found that radiant surface tempera-
ture showed more variations in sparsely vegetated areas than in densely vegetated areas.
This behavior results in the atypical triangular shape or, as observed by Moran et al.
(1994), in a trapezoidal shape for large heterogeneous regions under conditions of strong
sunlight (Gillies et al. 1997). In Chapter 19, Carlson and Petropoulos provide a compre-
hensive review of the triangle method for estimating surface evapotranspiration and soil
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moisture. The slope of the LST-NDVI curve has been related to soil moisture conditions
(Carlson, Gillies, and Perry 1994; Gillies and Carlson 1995; Gillies et al. 1997; Goetz 1997;
Goward, Xue, and Czajkowski 2002), the evapotranspiration of the surface (Boegh et al.
1998), and other applications in shaping the TVX concept. Ridd (1995) and Carlson, Gillies,
and Perry (1994) interpreted different sections of the triangle and related them to differ-
ent LULC types. Lambin and Ehrlich (1996) presented a comprehensive interpretation
of the TVX space. Carlson and Arthur (2000) gave a physical meaning to the TVX space.
Further, Goward, Xue, and Czajkowski (2002) provided a detailed analysis of the underly-
ing biophysics of the observed TVX relationship, and suggested that the relationship was
the result of modulation of radiant surface temperature by vegetation cover. The TVX
approach was the subject of studies focusing on the development of new applications, and
the patterns and dynamics of different vegetation types at all scales from local to global.
Researchers used the TVX concept to develop new indices and estimated parameters.
Moran et al. (1994) used the TVX trapezoid to develop a new index called a “water-deficit
index” (WDI) to estimate evapotranspiration in the absence of meteorological data using
the difference between surface and air temperatures. Lambin and Ehrlich (1996) pro-
posed radiant surface temperature—INDVI ratios in the TVX space—and showed its use-
fulness in land-cover mapping. Owen, Carlson, and Gillies (1998) used the same space
and suggested a land-cover index (LCI) for assessing UHI. Carlson and Arthur (2000)
extended the TVX approach to calculate ISA and surface runoff. Jiang and Islam (2001),
by linear decomposition of TVX scatter plot, estimated the “o.” parameter of the Priestly—
Taylor equation in the absence of ground meteorological data. Sandholt, Rasmussen, and
Andersen (2002) proposed a “temperature-vegetation dryness index” (TVDI) based on
the relationship between surface temperature and NDVI, and showed the effectiveness of
TVDI by explaining larger spatial variations better than hydrologic models. Nishida et al.
(2003) estimated evapotranspiration fraction (EF) using a new TVX algorithm to provide
global time-series coverage of EF from MODIS data. Chen et al. (2006) investigated the
relationship between temperature and various newly developed indices, and found that
NDVI presented a limited range.

Apart from the introduction of new indices, much research has been carried out in
the extraction of new TVX metrics. Several studies have focused on the slope of the
LST-NDVI fit line (Nemani and Running 1989; Smith and Choudhury 1991). Variations
in slope and intercept of the TVX space have been interpreted in relation to surface
parameters. Nemani and Running (1989) related the slope of the TVX correlation to the
stomatal resistance and evapotranspiration in a deciduous forest. Sandholt, Rasmussen,
and Andersen (2002) linked TVX correlation slope to the evapotranspiration rate and
used this relationship to estimate air temperature. The TVX concept has further been
used to anaylze pixel trajectories. The idea emerged over the past decade that land-
surface parameters associated with individual pixels can be visualized as vectors trac-
ing out paths in a multiparameter space (Lambin and Ehrlich 1994). Several studies
verified that urbanization is the major cause of the observed migration of pixels within
the TVX space (Owen, Carlson, and Gillies 1998; Carlson and Sanchez-Azofiefa 1999).
Owen, Carlson, and Gillies (1998) found that the initial location of the migrating pix-
els in the TVX triangle determined the magnitude and direction of the path. Carlson
and Sanchez-Azofeifa (1999) used the TVX method to assess how surface climate was
affected by rapid urbanization and deforestation in San Jose, Costa Rica. They found
that urbanization was more effective in causing changes in surface climate than defor-
estation, and that different development styles followed different paths in the space.
Carlson and Arthur (2000) compared average trajectories of different development



Thermal Remote Sensing of Urban Areas 147

styles, and showed that in the advanced stages of development, the paths come closer
and indistinguishable from one another.

Finally, the TVX approach has been used in the so-called triangle inversion method
to derive surface parameters. Carlson, Gillies, and Perry (1994) used an SVAT model
to show the feasibility of extracting surface parameters such as soil moisture content
and Fr from the analysis of the TVX space without ground data. This inversion method
was used to impose physical limits on a solution of the SVAT model parameterized for
a test site to remotely sense variables used in the model to derive surface biophysical
variables. Gillies et al. (1997) verified that the borders of the triangle constrained the
solutions for determining surface energy fluxes. Goward, Xue, and Czajkowski (2002)
used the TVX approach as a means for assessing soil moisture conditions from satel-
lite data. Owen, Carlson, and Gillies (1998) used this method to assess the impacts of
urbanization on surface parameters. Some authors, however, have drawn attention to the
problems presented by the TVX space. Goward, Xue, and Czajkowski (2002) showed that
plant stomatal function confused the interpretation of the TVX space given by experi-
mental studies to use TVX slope to assess soil moisture conditions. Nishida et al. (2003)
discussed four main difficulties of the TVX method used for evapotranspiration (ET)
estimation: (1) the method’s dependency on meteorological data, (2) computational dif-
ficulties encountered in the inversion of numerical models on a global scale, (3) problems
involved in accurate estimation in dense vegetation, and (4) estimation difficulties faced
in complex landscapes. While trying to establish guidelines in order to overcome the
aforementioned problems by a new model, they suggested their model was effective for
urbanization monitoring since EF is able to capture variations in surface energy parti-
tioning (Nishida et al. 2003).

6.2.3 Case Study: TVX Space and Its Temporal Trajectory Analysis
in Tabriz, Iran, Using Landsat TM/ETM+ Images

Anmiri et al. (2009) examined the spatial and temporal dynamics of LST in relation to LULC
change in the TVX space by using Landsat TIR and reflective data. A methodology was
developed to detect and monitor urban expansion and to trace the changes in biophysical
parameters such as NDVI and LST resulting from changes in LULC. The Tabriz metro-
politan area (38°05/, 46°17’) in Iran was selected as the study area. Multitemporal images
acquired by Landsat 4 TM, Landsat 5 TM, and Landsat 7 ETM+ sensors on June 30, 1989,
August 18, 1998, and August 2, 2001, respectively, were processed to extract LULC classes
and LST. The relationship between the temporal dynamics of LST and LULC was then
examined. The TVX space was constructed in order to study the temporal variability of
thermal data and vegetation cover.

Figure 6.1a shows the Fr/T* scatter plot (TVX space) with sample LULC classes based
on the Landsat TM image of August 18, 1998. To create the plot, the cloud-contaminated
pixels were first excluded. The NDVI values were rescaled between bare soil (NDVI]) and
dense vegetation (NDVI), following a method suggested by Owen, Carlson, and Gillies
(1998). The Fr was then calculated as the square of the rescaled value N*. Areas with high
and low temperatures (T,,., and T,) were selected from the bare and wet soils, respectively,
and their data were used to calculate the normalized temperature values of T* (Gillies et al.
1997). The resulting Fr/T* scatter plot showed a typical triangular pattern, with a clear
“warm edge” defined by the right side of the pixel envelope.

The temporal trajectory of pixels in the TVX space made it possible to observe most
changes due to urbanization as the pixels migrated from the low-temperature dense
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FIGURE 6.1

(See color insert following page 426.) Fractional vegetation cover (Fr)/T* scatter plot (thermal-vegetation index
[TVX] space) with sample land use and land-cover (LULC) classes from a Landsat thematic mapper (TM) image
of the city of Tabriz and change trajectory in the TVX space for a specific period: (a) The scatter plot with sample
LULC classes from a Landsat TM image of Tabriz (38°05’, 46°17’) in northwestern Iran, which was acquired on
August 18, 1998; (b) change trajectory in the TVX space for a long (1989-1998) period (June 30, 1989-August 18,
1998). The vectors show the magnitude of change associated with LULC change from green space, cultivation,
and barren pixels to urbanized pixels. (From Amiri, R., Q. Weng, A. Alimohammadi, and S. K. Alavipanah,
Remote Sens Environ, 113, 12, 2009. With permission.)

vegetation condition to the high-temperature sparse vegetation condition in the TVX
space (Figure 6.1b). Our result further showed that in the late stages of urbanization,
affected pixels tend to converge and entirely lose their initial characteristics in the
TVX space. The uncertainty analysis revealed that trajectory analysis in the TVX space
involved a class-dependant noise component. This uncertainty emphasized the need
for multiple LULC control points in the TVX space. In addition, this case study sug-
gests that the use of multitemporal satellite data together with the examination of
changes in the TVX space is effective and useful in urban LULC change monitoring
and analysis of urban surface temperature conditions as long as the uncertainty issue
is addressed.
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6.3 Use of Remotely Sensed Data to Characterize
and Model Urban Heat Islands

6.3.1 Background

Remotely sensed TIR data is a unique source of information in defining surface heat islands,
which are related to canopy layer heat islands. In situ data (in particular, permanent mete-
orological station data) offers a high temporal resolution and long-term coverage but lacks
spatial details. Observations and measurements by moving vehicles overcome this limita-
tion to some extent, but do not provide a synchronized view over a city. Only remotely
sensed TIR data can provide a continuous and simultaneous view of the whole city, which
is of prime importance in the detailed investigation of urban surface climate. Rao (1972)
was the first to assess the possibility of detecting the thermal footprint of urban areas.
Since then, a wide range of TIR sensors have been developed and employed to study LST
and UHI; they offer several improvements over their ancestors. However, in many of the
previous studies, there is confusion between LST patterns and UHIs. A “satellite-derived”
heat island is largely an artifact of the low-spatial-resolution imagery used, and the term
“surface temperature patterns” is more meaningful than surface heat island (Nichol 1996).
It remains a valid scientific issue how satellite-derived LSTs can be utilized to derive UHI
parameters, and to model and simulate the UHI over space and time.

Previous studies of urban thermal landscapes and UHIs have been conducted using
National Oceanic and Atmospheric Administration (NOAA) AVHRR data (Kidder and
Wu 1987; Balling and Brazell 1988; Roth, Oke, and Emery 1989; Gallo et al. 1993; Gallo and
Owen 1998; Streutker 2002). However, for all these studies, the 1.1-km spatial resolution
AVHRR data were found suitable only for large-area urban temperature mapping and
not for establishing accurate and meaningful relationships between image-derived values
and those measured on the ground. The 120-m resolution Landsat TM (and later ETM+
data of 60-m resolution) TIR data have also been extensively utilized to derive LSTs and
to study UHIs. Carnahan and Larson (1990) used the TM TIR data to observe mesoscale
temperature differences between urban and rural areas in Indianapolis, Indiana, whereas
Kim (1992) studied similar phenomena in Washington, DC. Nichol (1994) utilized TM TIR
data to monitor microclimate for housing estates in Singapore, and further calculated
LSTs of building walls based on a 3D geographic information system (GIS) model (Nichol
1998). Weng (2001, 2003) examined LST patterns and their relationships with land cover
in Guangzhou and in the urban clusters in the Pearl River Delta of China. Weng, Lu, and
Schubring (2004) utilized a Landsat ETM+ image to examine the LST-vegetation abun-
dance relationship in Indianapolis. More recently, Lu and Weng (2006) applied spectral
mixture analysis (SMA) to ASTER images in order to derive hot-object and cold-object
fractions from the TIR bands of the sensor and biophysical variables from the nonthermal
bands. Statistical analyses were then conducted to examine the relationship between LST
and the derived fraction variables across the resolution from 15 to 90 m.

The most recent advances include development and utilization of quantitative surface
descriptors for assessing the interplay between urban material fabric and urban thermal
behavior (Weng, Lu, and Schubring 2004; Weng, Lu, and Liang 2006; Lu and Weng 2006;
Weng and Lu 2008). Moreover, the landscape ecology approach was employed to assess
this interplay across various spatial resolutions and to identify the operational scale at
which both LST and LULC processes interacted to generate the urban thermal landscape
patterns (Weng, Liu, and Lu 2007; Liu and Weng 2008). Because an ASTER sensor collects
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both daytime and nighttime TIR images, analysis of LST spatial patterns has also (Xiao
et al. 2008) been conducted for a diurnal contrast (Nichol 2005).

A key issue in the application of TIR remote-sensing data in urban climate studies is the
use of LST measurements at the microscale to characterize and quantify UHIs observed at
the mesoscale. Streutker (2002, 2003) used AVHRR data to quantify the UHI of Houston,
Texas, as a continuously varying two-dimensional (2D) Gaussian surface superimposed
on a planer rural background, and derived the UHI parameters of magnitude (i.e., inten-
sity), spatial extent, orientation, and central location. Rajasekar and Weng (2009) applied
a nonparametric model by applying fast Fourier transformation (FFT) to MODIS imagery
for characterization of the UHI over space, so that UHI magnitude and other parameters
may be derived. Despite these advances, estimation of UHI parameters from multitempo-
ral and multilocation TIR imagery still remains a promising research direction and will
continue to be so in the years to come, given the increased interest of the urban climate
community in using remote-sensing data.

6.3.2 Case Study: Characterizing an Urban Heat Island in Beijing, China, Using
Advanced Spaceborne Thermal Emission and Reflection Radiometer Images

This section briefly introduces a method for characterizing UHIs using remotely sensed
LST data and explains its application in Beijing, China. Higdon (2002) explained the pro-
cess convolution for a one-dimensional (1D) process and made suggestions for its exten-
sion to two or three dimensions. In this case study, the process convolution model was
extended to model the UHI of Beijing as a 2D Gaussian process using ASTER LST data.
The procedure is detailed next.

Let yay -+ Y (Where g is a 2D matrix of (1,1), ..., (ij)) be data recorded over the 2D
spatial locations sy, ..., 8¢ in S. In this research, the spatial method represents data as
the sum of an overall mean 1, a spatial process z = (z 5y, .-+, Z))", and Gaussian white noise
€= (€u1y --- &))" with variance 6%

y=s+z+e 6.1)

Here, the elements of z are the restriction of the spatial process z(s) to the 2D data locations
Sy -+ Sgjy 2(9) is defined to be a mean zero Gaussian process. But rather than specifying
z(s) through its covariance function, it is determined by the latent process x(s) and the
smoothing kernel k(s). The latent process x(s) is restricted to be nonzero at the 2D spatial
sites @y 1), --., Oy, also in S, and x = (x4, ..., X, )" Where xw, = x(®,); p = (1,1), ..., (@,b). Each
x, is then modeled as an independent draw from an N(0,6%,) distribution. The resulting
continuous Gaussian process is then

(ab)
2(8)= Y, Xjk(s-w,) 6.2)

p=(1,1)
where k(s —0,) is a kernel centered at ®,. This gives the following linear model:
y=u;,+Kx+e 6.3)
where [; is the (i,j)th vector of Is; the elements of K are given by

K,, =k(s, —0,)x, 64)
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FIGURE 6.2

(See color insert following page 426.) The results of kernel convolution for two advanced spaceborne thermal
emission and reflection radiometer (ASTER) images of Beijing: (a) A true color composite of Beijing using ASTER
acquired on August 31, 2004; (b) and (c) the results of convoluted images (with a smoothing parameter of 0.6)
showing thermal landscape pattern of Beijing on August 31, 2004 and April 9, 2004, respectively. The temperature
is given in degrees Celsius.

X ~ N(O, szl(a,b)) and (6.5)

€~ N(O, szl(f,j)) (6.6)

The results of convolution modeling can then be analyzed for patterns over space and
time. The results of the kernel convolution can be compared to examine how UHI mag-
nitude, center, and spatial extent change over space and time. In order to determine UHI
magnitude, the mean temperature value within each image is considered as a background
temperature and all values less than the mean are brought to the same level.

Figure 6.2 shows the results of kernel convolution (with a smoothing parameter of 0.6)
for two ASTER images of Beijing acquired on August 31, 2004 and April 9, 2004, respec-
tively. The August image clearly displays a UHI (Figure 6.2a) with a magnitude of 7°C.
The built-up area had a higher temperature than the surrounding rural areas, and there
was a temperature gradient from the urban areas in the southeastern corner to the moun-
tainous area in the northwest. In contrast, the April image shows an urban heat sink in
central Beijing (Figure 6.2b). According to our computation, the intensity of the heat sink
was about 3°C. Higher temperatures corresponded to the three suburban agricultural/
residential areas in the north, northwest, and south. The lowest temperature was detected
in the western mountainous area.

6.4 Estimation of Urban Heat Fluxes Using Remote Sensing Data

Knowledge of urban surface energy balance is fundamental to the understanding of UHIs
and urban thermal behavior (Oke 1982, 1988). Three items of information are needed in order
to estimate land surface energy fluxes: (1) energy driving forces (i.e., incident solar energy,
albedo, and resulting net radiation), (2) soil moisture availability and the vegetation—soil
interaction, and (3) capacity of the atmosphere to absorb the flux, which depends on sur-
face air temperature, vapor pressure gradients, and surface winds (Schmugge, Hook, and
Coll 1998). Previous studies have focused on the methods for estimating variables related
to the first two items from satellite remote sensing data, but little has been done to estimate
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the surface atmospheric parameters (Schmugge, Hook, and Coll 1998). These parameters
are measured in the traditional way in the network of meteorological stations or by in situ
field measurements.

Remote sensing TIR data can be applied to relate LSTs with surface energy fluxes for
characterizing landscape properties, patterns, and processes (Quattrochi and Luvall 1999).
Remotely sensed thermal imagery has the advantage of providing a time-synchronized
dense grid of temperature data over a whole city, whereas optical sensing data have been
used to monitor discrete land-cover types and to estimate biophysical variables (Steininger
1996). Together, remote sensing data can be used to estimate surface parameters related to
the soil-vegetation system and surface soil moisture, radiation forcing components, and
indicators of the surface’s response to them (i.e., LST; Schmugge, Hook, and Coll 1998). If the
advantage of time-sequential observations of satellite sensors (some sensors can even scan
a specific geographic location twice a day—one at daytime and one at nighttime) is con-
sidered, remote-sensing data have great potential for studying the urban surface energy
budget, as well as the spatial pattern and temporal dynamics of urban thermal landscapes.
One of the earliest studies that combined surface energy modeling and remote sensing
approaches was conducted by Carlson et al. (1981). They used satellite temperature mea-
surements in conjunction with a 1D boundary layer model to analyze the spatial patterns
of turbulent heat fluxes, thermal inertia, and ground moisture availability in Los Angeles,
CA, and St. Louis, MO. This method was later applied in Atlanta by using AVHRR data,
in which the net urban effect was determined as the difference between urban and rural
simulations (Hafner and Kidder 1999). Because analyses of surface energy flux are exten-
sively conducted over vegetated and agricultural areas, successful methods have been
applied to urban areas (Zhang, Aono, and Monji 1998; Chrysoulakis 2003). Zhang, Aono,
and Monji (1998) used Landsat TM data, in combination with routine meteorological data
and field measurements, to estimate the urban surface energy fluxes in Osaka, Japan, and
to analyze their spatial variability in both summer and winter. Chrysoulakis (2003) used
ASTER imagery, together with in situ spatial data, to determine the spatial distribution
of all-wave surface net radiation balance in Athens, Greece. Kato and Yamaguchi (2005)
combined ASTER and Landsat ETM+ data with ground meteorological data to investigate
the spatial patterns of surface energy fluxes in Nagoya, Japan, over four distinct seasons.
Furthermore, this study separated anthropogenic heat discharge and natural heat radia-
tion from sensible heat flux.

The seasonal and spatial variability of surface heat fluxes is crucial to the understanding
of UHI phenomenon and dynamics, which has not been thoroughly addressed by previous
studies. In a recent study, based on the two-source energy balance (TSEB) algorithm, we
developed a method to estimate urban heat fluxes by the combined use of multispectral
ASTER images and routine meteorological data, and applied it to the city of Indianapolis, for
understanding the seasonal changes in the heat fluxes. The ASTER images of the four sea-
sons were acquired and processed with atmospheric, radiometric, and geometric corrections
before using them for the analysis. The ASTER data pertaining to surface kinetic tempera-
ture, surface spectral emissivity, and surface reflectance (VNIR and SWIR) was used. All
the images were resampled to a resolution of 90 m. The nonvegetation and vegetation areas
were separated for estimating heat fluxes based on computed NDVI values. The needed
meteorological data was obtained from the Indiana State Climate Office, including data
regarding shortwave radiation, air temperature, relative humidity, air pressure, and wind
speed. Shortwave radiation data was obtained from the National Solar Radiation Database.

Figure 6.3 shows the estimated net radiation, sensible heat flux, latent heat flux, and
ground heat flux on October 13, 2006, recorded in Indianapolis. The mean values and
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standard deviations of the surface heat fluxes by LULC type are displayed in Table 6.1.
This study found that the estimated surface heat fluxes showed a strong seasonality, with
the highest net radiation recorded in summer, followed by spring, fall, and winter. Sensible
heat flux tended to change largely with surface temperature, whereas latent heat was
largely modulated by the change in vegetation abundance and vigor over a year and the
accompanying moisture condition. The fluctuation in all heat fluxes tended to be high in
the summer months and low in the winter months. Sensible and latent heat fluxes showed
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FIGURE 6.3

(See color insert following page 426.) Net radiation, sensible heat flux, latent heat flux, and soil heat flux on
October 13, 2006 in Indianapolis estimated by the combined use of advanced spaceborne thermal emission and
reflection radiometer image and ground meteorological data.

TABLE 6.1
Statistics of Surface Heat Fluxes by LULC Type in Indianapolis on October 13, 2006 (Unit: W/m?)
Urban and
Built-Up Agricultural Forest Bare
Heat Fluxes Land Land Land Grassland Water Ground Overall
Net 377.87 394.98 426.37 378.76 484.40 363.61 396.47
radiation (40.97) (33.30) (20.15) (25.99) (28.61) (56.88) (40.73)
Soil 151.15 118.49 63.96 113.63 169.54 109.08 113.09
heat flux (16.39) (9.99) (3.02) (7.80) (10.01) (17.07) (37.30)
Sensible 293.34 183.35 269.26 243.82 77.49 91.10 242.62
heat flux (41.95) (31.91) (95.34) (73.24) (11.86) (14.51) (100.31)
Latent 0.94 65.99 63.73 39.67 231.50 150.20 39.53

heat flux (8.78) (39.88) (34.70) (37.31) (52.90) (49.28) (52.15)
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a stronger spatial variability than net radiation and ground heat flux. By computing heat
fluxes by LULC type, we further investigated the geographic pattern and spatial vari-
ability of urban surface energy balance. The variations in net radiation among the LULC
types were found to be attributable mainly to surface albedo and temperature, whereas
the within-class variability in turbulent heat fluxes were more associated with changes in
vegetation, water bodies, and other surface factors.

6.5 Future Prospects of Thermal Infrared Sensors

There has been significant progress in the studies focusing on LST-vegetation rela-
tionship, UHI modeling with remotely sensed TIR data, and estimation of urban sur-
face heat fluxes. However, urban climate and environmental studies will be difficult,
if not impossible, without TIR sensors having a global imaging capacity. At present,
there are few sensors that have such TIR capabilities. The TM sensor aboard Landsat
5 has been acquiring images of the Earth nearly continuously from July 1982 to the
present, with a TIR band of 120-m resolution, and is thus long overdue. On April 2,
2007, updates to the radiometric calibration of Landsat 5 TM data processed and dis-
tributed by the U.S. Geological Survey (USGS) Earth Resources Observation System
(EROS) created an improved Landsat 5 TM data product that is now more compa-
rable radiometrically to Landsat 7 ETM+ and provides the basis for continued long-
term studies of the Earth’s land surfaces. Another TIR sensor that has global imaging
capacity is with Landsat 7 ETM+. On May 31, 2003, the ETM+ scan-line corrector
(SLC) failed permanently. Although it is still capable of acquiring useful image data
with the SLC turned off, particularly within the central part of any given scene, the
National Aeronautics and Space Administration (NASA) has teamed up with USGS
to focus on the Landsat Data Continuity Mission (LDCM), which is most likely not
to have a TIR imager. In addition, Terra’s ASTER TIR bands of 90-m resolution have
been increasingly used in urban climate and environmental studies in recent years.
The ASTER is an on-demand instrument, which means that data are acquired only
over requested locations. The Terra satellite, launched in December 1999 as part of
NASA’s Earth Observing System, has a life expectancy of 6 years, and is now also
overdue. The scientific and user community is looking forward to a Landsat ETM-like
TIR sensor. The draft requirements for the LDCM thermal imager indicate that two
thermal bands (10.3-11.3 pm and 11.5-12.5 pm) of 90 m or better spatial resolution are
preferred (for details, readers are referred to the LDCM Web site, http://ldcm.nasa.gov/
procurement/TIRimagereqs051006.pdf). The National Research Council Decadal Survey
indicates the need for such a TIR sensor. The Hyperspectral Infrared Imager (HyspIRI)
is defined as a mission with tier-2 priority to be launched in the next 8-10 years. Because
of its hyperspectral visible and shortwave infrared bandwidths and its multispectral
TIR capabilities, HyspIRI will be well suited for deriving land-cover and other biophysi-
cal attributes for urban climate and environmental studies (for more information, the
readers are referred to the HyspIRI Web site, http://hyspirijpl.nasa.gov/). Its TIR imager
is expected to provide seven bands between 7.5 and 12 um and one band at 4 pm, all
with 60-m spatial resolution. This TIR sensor is intended for the imaging of global land
and shallow water (less than 50 m) with a 5-day revisit at the equator (1 day and 1 night
imaging). These improved capabilities would allow for a more accurate estimation of
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LST and emissivity, and for deriving unprecedented information on biophysical char-
acteristics and even socioeconomic information such as population, quality of life indi-
cators, and human settlements. Such information cannot be obtained from the current
generation of satellites devices in orbit, such as MODIS, Landsat, or ASTER. Two major
areas of application identified by the HyspIRI science team are urbanization and human
health through the combined use of visible to shortwave infrared (VSWIR) and TIR data.
Until then, we may have to bear with Landsat and ASTER for medium-resolution TIR
data, and MODIS and AVHRR for coarse-resolution data. It is from this perspective that
international collaborations on Earth resources satellites become very important.
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The optical part of the electromagnetic spectrum covers wavelengths from 100 nm to
1 mm. However, only a small part of the optical spectrum can be used for remote sens-
ing from airborne and spaceborne platforms, because of the characteristics of the scat-
tering, absorption, and emission of radiation by the terrestrial atmosphere. Figure 7.1
presents a typical atmospheric transmittance curve in those spectral regions that can
be exploited with remote sensing techniques. Basically, there exist three large spectral
intervals: 0.4-2.5 um, 3-5 pm (mid-infrared or MIR), and 8-14 um (thermal infrared or
TIR). For technical reasons, the first region is often split into the visible to near-infrared
(VIS to NIR or VNIR; 0.4-1.0 um; no detector cooling required) and short-wave infrared
(SWIR; 1.0-2.5 um; detector cooling required) regions. The main absorbing gases in the
atmosphere are water vapor, ozone, carbon dioxide, and oxygen; the most variable gas in
space and time is water vapor.

The 0.4-3.0 pm region is often referred to as a “reflective” or “solar” region. The
reflected solar radiation dominates in this region compared to ambient emitted radia-
tion, whereas the emitted TIR radiation dominates in the 8-14 um domain (Figure 7.2).
The reflected solar radiation is plotted for three surface reflectance (p) levels, and the
emitted radiation for a 300-K blackbody. The atmospheric influence is neglected in this
figure.

In the MIR interval, reflected solar and emitted thermal radiations have the same order
of magnitude, and both contributions have to be considered during atmospheric correc-
tion (AC). As the majority of existing high spatial resolution instruments does not possess
MIR channels, we will not discuss this case but refer to the works of Hook et al. (2001) and
Mushkin, Balick, and Gillespie (2005).

Table 7.1 contains an overview of some typical multispectral and hyperspectral instru-
ments covering the reflective region, the TIR region with one channel, and the TIR region
with more than 10 channels. Currently, all high spatial resolution (footprint <100 m)
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TABLE 7.1
Prototypes of Multispectral and Hyperspectral Sensors
Multispectral Hyperspectral
Platform VNIR/SWIR VNIR/TIR VNIR/SWIR VNIR/TIR
Satellite SPOT, Ikonos Landsat TM, Hyperion, CHRIS -
ETM+, ASTER
Aircraft ADS80 Daedalus ATM AVIRIS, APEX MASTER

SPOT: System Pour I'Observation de la Terre, http: //en.wikipedia.org/wiki/SPOT_(satellite)
Ikonos: http://en.wikipedia.org/wiki/ikonos

ADS80: http://www.leica-geosystems.com

Landsat: http://landsat.gsfc.nasa.gov

ASTER: http://asterweb.jpl.nasa.gov

Daedalus ATM: http://www.nasa.gov/centers/dryden/research/Airsci/ER-2/tms.html
Hyperion: http://eol.usgs.gov

CHRIS: http://earth.esa.int/proba

AVIRIS: http://aviris.jpl.nasa.gov

APEX: http://www.apex-esa.org/modules/APEX

MASTER: MODIS ASTER Simulator, http://masterweb.jpl.nasa.gov

Web sites accessed 16,/09/2010.

hyperspectral instruments in orbit are restricted to the VNIR/SWIR region as they lack
thermal channels. Airborne instruments covering the solar region and possessing at least a
few thermal channels are still rare, and this is even more true for hyperspectral systems.

AC methods can be grouped into empirical approaches and physical models describ-
ing radiative transfer (RT) in the Earth’s atmosphere. Here, we will only discuss RT-based
approaches. As AC algorithms necessarily depend on the spectral regions covered by an
instrument and also on the available number of channels, we will present the retrieval
algorithms beginning with hyperspectral systems and terminating with a few channel
multispectral instruments.

7.1 Atmospheric Correction for Hyperspectral

Instruments (Solar Region)
Hyperspectral instruments are characterized by a large number (100 or more) of contigu-
ous channels with a narrow spectral bandwidth (typically, 3-20 nm). A review article on

this subject was published recently (Gao et al. 2009). The RT equation for a homogeneous
surface under clear sky conditions can be formulated as follows:

. TE.p/T
1-ps

L=L

. 71)

where L, L, v E,p, and s are at-sensor radiance, path radiance, ground-to-sensor trans-
mittance, total solar flux on the ground, surface reflectance, and spherical albedo of the
atmosphere, respectively. For brevity, the dependence on wavelength, solar and view-
ing geometry, and atmospheric parameters has been omitted. The at-sensor radiance is
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Schematic sketch of the adjacency effect. Radiation component 1 represents path radiance, component 2 repre-
sents direct plus diffuse flux on the target, component 3 represents volume scattering of adjacency, and compo-
nent 4 represents atmospheric backscattering of adjacency effect.

measured by the sensor, whereas the relevant atmospheric parameters (aerosol type, aero-
sol optical thickness, water vapor column) can be retrieved from the imagery, enabling
the calculation of L, v E, and s. With this knowledge, Equation 7.1 can be solved for p. In
practice, scenes always consist of heterogeneous fields of different reflectance. Then, atmo-
spheric cross talk occurs among such fields (Dave 1980; Richter et al. 2006), and radiation
from the neighboring terrain spills over from the background to the considered target (see
the schematic sketch in Figure 7.3).

In this case, Equation 71 has to be solved iteratively. Frequently used RT codes are
DISORT (Stamnes et al. 1988), 6S (Vermote et al. 1997), MODTRAN (Berk et al. 1998), and
libRadtran (Mayer and Kyling 2005). These codes calculate the at-sensor radiance for speci-
fied sun and observer geometries and atmospheric parameters. AC uses inverse modelling
to retrieve the surface reflectance. Whereas 6S is restricted to the solar spectral region, the
other two codes also cover the thermal domain.

As the recorded image data is digitized and rescaled to fit into an 8 or 16 bit/pixel encod-
ing, a linear equation with an offset (c;) and gain (¢;) has to be applied per channel to con-
vert the scaled digital number (DN) to the corresponding at-sensor radiance, as follows:

L=c,+c,DN (7.2)

The metafile of an image usually contains these radiometric calibration coefficients. Care
has to be taken as different units are frequently used, for example, W - m?2 - sr! - pm-,
mW * cm? - sr! - um™, and others.

For aerosol retrieval over land, different approaches exist depending on the spectral
coverage of the instrument; whereas Kaufman et al. (1997) require SWIR bands, Guanter,
Alonso, and Moreno (2005) suggest VNIR bands. The former method first masks dark
land pixels in a 2.1- or 1.6-pm channel and then uses the following empirical correlation of
SWIR surface reflectance values with reflectances in the blue/red region:

p(red)=0.5p(2.1 um) and p(blue)=0.5p(red) (7.3)
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Several water vapor retrieval techniques have been published, using atmospheric window
channels as a reference and channels in the absorption regions to measure the water vapor
column (Gao and Goetz 1990; Carrere and Conel 1993; Schldpfer et al. 1998).

Another important issue is the removal of the effect of thin cirrus clouds. These can usu-
ally not be detected with channels in the VIS spectrum, but a narrow channel in the 1.38-um
region (for example, those available from Moderate Resolution Imaging Spectroradiometer
[MODIS] and Airborne Visible/Infrared Imaging Spectrometer [AVIRIS] instruments) can
be employed for cirrus detection and removal (Gao et al. 2002).

A typical artifact of pushbroom spectrometers is the spectral smile, an optical aberration
that causes the spectrometer entrance slit, which represents the across-track swath, to be
projected as a curve on the rectilinear detector array (Mouroulis, Green, and Chrien 2000).
Therefore, for accurate water vapor and surface reflectance retrieval, one has to perform
AC on a per-column basis as the channel center wavelength varies with the across-track
position.

7.2 Atmospheric Correction for the Thermal Region

In the thermal spectrum, atmospheric transmittance is mainly influenced by water vapor,
ozone (around 9.6 um), and carbon dioxide (14 um; see Figure 7.1). The aerosol influence
still exists, but it is strongly reduced compared to the solar domain because of the much
larger wavelength. Therefore, an accurate estimate of the water vapor column is required
for retrieving surface properties, that is, spectral emissivity and surface temperature.
Figure 7.4 shows a sketch of the radiation components in the thermal region: path radiance
(L, = L,), emitted surface radiance (L,), and reflected radiance (L;). Thermal path radiance
occurs due to emitted radiation from the atmosphere. The atmosphere also generates a
hemispherical downwelling thermal flux F on the ground. As the surface emissivity € is
smaller than 1, the radiation reflected from the ground is (1 — €)F/n, assuming an opaque
surface, thatis, p=1-¢.

L=cy+c¢,DN

Ly L Ly

e T |

FIGURE 7.4
Radiation components in the thermal region.
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Therefore, the at-sensor radiance can be written as
L=L,+1weB(T)+u1-¢)F/n (74)

where B is Planck’s blackbody function. The problem with this equation is that it contains
two unknowns: the emissivity € and temperature T. So for n thermal channels, we always
have n + 1 unknowns, namely n emissivities and one temperature, which is an underde-
termined set of equations. For most natural surfaces, the emissivity in the 10-12-um region
ranges between 0.95 and 0.99. If only a single thermal band is available (Landsat Thematic
Mapper [TM], Enhanced TM plus [ETM+]), the emissivity is usually fixed at a constant
value, say € = 0.97, and Equation 74 is solved for the surface leaving radiance B(T). The
temperature T is then calculated by inverting Planck’s function with an exponential fit
function for a certain temperature range (Richter and Coll 2002).

If several thermal channels are available, iterative temperature/emissivity separation
(TES) methods can be applied (Gillespie et al. 1998; Dash et al. 2002; Young, Johnson, and
Hackwell 2002). As an example, in the normalized emissivity method (NEM), the surface
temperature is calculated for all channels with a constant user-defined emissivity, and for
each pixel the channel with the highest temperature is finally selected, because it is clos-
est to the kinetic surface temperature. If the assumed start emissivity is correct, the true
kinetic temperature will be obtained; otherwise, the result will have a small absolute tem-
perature error. Afterward, the emissivities are calculated for each channel. In the adjusted
NEM (Coll et al. 2001), the start emissivity is not constant but depends on the surface cover
(vegetation, soil, sand, or water), which is determined by the reflective bands. Therefore, a
closer match with the actual pixel-dependent emissivity can be expected and, as a conse-
quence, a higher temperature accuracy.

Surface and air temperature are among the key parameters of weather and climate.
Together with the factor of water, they determine plant growth, crop yield, carbon uptake
by vegetation, evapotranspiration, and energy balance and influence the hydrological
cycle (Carlson et al. 1981; Friedl 2002). Therefore, even a single thermal channel added
to an instrument with reflective bands will distinctly broaden the range of applications.
Additionally, multispectral or hyperspectral thermal bands allow an evaluation of the
emissivity spectrum, which contains material-specific diagnostic features (Vincent 1975;
Salisbury and D’Aria 1992).

7.3 Atmospheric Correction for Multispectral Instruments (Solar Region)

Typical multispectral instruments have a small number (smaller than 10) of broad bands in
the solar or reflective region. Aerosol retrieval using Equation 7.3 and the radiative trans-
fer in Equation 7.1 requires at least a channel in the red spectrum (around 650 nm) and a
SWIRI1 (1.6 pm) or SWIR2 (2.2 um). Since the channels are placed in atmospheric window
regions, they are only marginally influenced by the atmospheric water vapor column, and
as water vapor cannot be retrieved from those channels, a climatologic average value or
data from nearby weather stations or from other satellites has to be used. For sensors
with only three or four VNIR bands, an empirical aerosol retrieval algorithm has been
published that can be used for scenes containing dark vegetation areas (Richter, Schldpfer,
and Miiller 2006).
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The proposed European Space Agency (ESA) Sentinel-2 instrument (ESA 2007) has 13
bands of different spatial resolutions (10, 20, and 60 m) with AC channels at 60 m (443,
940, and 1375 nm). The swath width is 290 km. Sentinel-2 will provide enhanced-quality
continuity with existing missions of SPOT and Landsat. The launch is planned for 2013.
The blue, red, and SWIR2 bands allow aerosol retrieval and the NIR bands (865, 940 nm)
allow water vapor retrieval. In addition, thin cirrus can be detected with the 1375-nm
band. As this sensor exceeds the typical number of bands of multispectral instruments
and can perform image-based aerosol and water vapor retrieval, it is sometimes called
“superspectral.”

7.4 Combined Atmospheric and Topographic Correction

A large part of the land surface of the Earth is occupied by mountains. In these areas, there
is a strong influence of the topography on the signal recorded by optical remote sensing
instruments, that is, for the same surface cover, slopes oriented away from and toward
the sun will appear darker and brighter, respectively, if compared to a horizontal geom-
etry. This behavior causes problems for subsequent classification and thematic evaluation.
Therefore, a combined atmospheric and topographic correction has to be performed in
rugged terrain. A number of topographic correction techniques have been developed to
eliminate or at least reduce the topographic influence (Teillet, Guindon, and Goodenough
1982; Riano et al. 2003; Richter, Kellenberger, and Kaufmann 2009).

All proposed methods rely on a digital elevation model (DEM) of the scene to describe
the topography. If 0,, 6,, ¢, and ¢, denote solar zenith angle, terrain slope, solar azimuth,
and topographic azimuth, respectively, the local solar illumination angle B can be obtained
from the topographic slope, aspect angles, and the solar geometry

COs B(X, y) =COos es cos en(x/ ]/) +sin es sin en COS{(])S - q)n (.'X', y)} (75)

where x, y indicate the pixel coordinates in an image that depends on the terrain slope
0, and aspect ¢,. If p; and py denote the reflectance of an inclined (terrain) and a hori-
zontal surface, respectively, then the Lambertian method of topographic normalization is
defined as

cos 6,
cosf

Pu =Pr (7.6)

For a low illumination, that is, small values of cosf, the corrected reflectance is too large
and the corresponding parts of an image are overcorrected. In the case of topographic
shadow, cosf} tends to 0 and py; to infinity. All methods can be applied to surface reflectance
(after AC) or the apparent or top-of-atmosphere (TOA) reflectance, that is, p=nL/E cos®,
(L = at-sensor radiance, E = extraterrestrial solar irradiance).

The Minnaert method uses an exponent K for the term (cos 6,/cos B) where K usually
ranges between 0 and 1, which is derived from the image data on a per-channel basis.
The third technique (C normalization) also belongs to a class of non-Lambertian methods.
It uses an additive term c in the numerator and denominator of the cosine functions of
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FIGURE 7.5

(See color insert following page 426.) Example of a combined atmospheric and topographic correction of a
SPOT-5 scene from a part of the Swiss Alps. Left to right: Original SPOT-5 scene (color coding for red, green,
and blue bands is 1650, 840, and 660 nm, respectively), illumination map, and combined atmospheric and topo-
graphic correction. (From Richter, R. et al., Rem Sens Environ, 1, 2009. With permission.)

Equation 7.6 to avoid very high values in the topographic correction. This term ¢ accounts
for the diffuse radiance component, and it is calculated on a per-channel basis, evaluating
a statistical regression of image data (see the study by Riano et al. [2003] for details). The
fourth approach (Shepherd and Dymond 2003) calculates horizontal reflectance as a func-
tion of solar and terrain angles (6,, B) and also depends on the sensor view angles on a flat
terrain (6,) and an inclined terrain (B,). This algorithm includes an additive geometric term
in the denominator of Equation 7.6 to avoid an overcorrection in faintly illuminated areas.

A fifth method (Richter, Kellenberger, and Kaufmann 2009) is a modified Minnaert
approach that differs from the standard Minnaert method by employing a set of empirical
rules for determining the threshold solar illumination angle, and a criterion to prevent
overcorrection. The problem is that no method achieves the best ranking in all situations.

Figure 7.5 presents an example of a combined atmospheric and topographic correction
for a SPOT-5 scene from a part of the Swiss Alps (dated September 21, 2005). Elevations
range between 1200 and 3000 m, and the scene contains steep slopes of up to 58°. The cor-
rected scene was processed according to the fifth method, and most topographic features
are compensated well in the result.

7.5 Nonstandard Atmospheric Conditions (Haze, Cirrus, Cloud Shadow)

Conditions such as haze, cirrus, and cloud shadow comprise situations with bound-
ary layer haze of varying optical thickness, with cirrus and scattered clouds, and with
cloud shadow. These cases pose special scene-dependent problems that are difficult or
impossible to solve with RT codes. Usually, simplifications have to be made, for exam-
ple, single scattering has to be assumed because the cloud geometry is unknown or too
complex. Nevertheless, significant progress has been achieved during the last decade.
Figures 7.6 and 7.7 present two examples of haze removal and deshadowing of satellite
imagery.

In Figure 7.6, haze was removed for an ALOS AVNIR-2 scene (http://www.alos-restec.jp,
accessed 16/09/2010) with the assumption that it is an additive signal component to the
ground-reflected radiance and normal path radiance in the haze-free regions. Multiple
scattering effects were neglected. Haze is subtracted with the so-called haze optimized
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FIGURE 7.6
Haze removal of ALOS AVNIR-2 imagery from northern Germany (dated April 16, 2007; band 1 at 463 nm). Left:
Original subscene. Right: surface reflectance after haze removal.

FIGURE 7.7

(See color insert following page 426.) Deshadowing of SPOT-5 imagery (dated May 22, 2005; color coding of
red, green, and blue bands is 830, 660, and 555 nm, respectively). Left and right: Original and deshadowed scene,
respectively.

transform (HOT; Zhang, Guindon, and Cihlar 2002), followed by an AC to obtain surface
reflectance.

Figure 7.7 (left) shows a SPOT-5 subscene from Romania that contains a large percentage
of scattered clouds. The right part of the figure is the result of applying a deshadowing
algorithm on the original subscene (Richter and Muller 2005). Obviously, a lot of features
that appear hidden in the original scene can be recognized in the deshadowed result.

7.6 Atmospheric Correction Codes for Land

A brief survey on commercially available AC codes for land imagery is included in Gao
et al. (2009). Among the most popular algorithms are ACORN (ImSpec LLC, http://www.
imspec.com, Palmdale, CA), FLAASH (developed by Spectral Sciences, Inc.,, MA; distributed
by ITT Visual Information Solutions, CO, http://www.ittvis.com), ISDAS (Canada Centre
for Remote Sensing, Quebec, Canada, http://www.ccrs.nrcan.gc.ca), and ATCOR (German
Aerospace Center [DLR], Cologne, Germany; distributed by ReSe company, Langeggweg,
Switzerland, http://www.rese.ch). Table 7.2 summarizes the main features of these codes.
In the table, a plus sign indicates that the corresponding feature is supported, whereas a
minus sign marks that the capability is missing. Most features are supported by all codes;
however, processing of thermal band imagery can be done only with ATCOR. In addition,
topographic correction is supported only by ISDAS and ATCOR.
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TABLE 7.2

Comparison of Popular AC Codes

Feature ACORN FLAASH ISDAS ATCOR
Multispectral instruments + + + +
Hyperspectral instruments + + + +
Adjacency correction - + + +
Water vapor retrieval + + + +
Haze removal - - - +
Spectral polishing - + +
Spectral smile correction + - - +
Thermal region: Surface - - - +

temperature, emissivity

Rugged terrain: DEM - - + +
topographic correction

Note: A plus sign indicates that the corresponding feature is supported, whereas a minus sign indicates
the capability is missing.

7.7 Open Challenges

Atmospheric and topographic correction algorithms will continue to be improved in the
future. Enhanced processing of hyperspectral imagery will benefit from an increase in
the accuracy of RT models, particularly concerning scattering in the blue spectral region
and updates of molecular absorption parameters. In addition, the sensor signal-to-noise
ratio, radiometric calibration accuracy, and stability are likely to be improved. An open
concern is the question of the most accurate solar irradiance database. The Committee
on Earth Observation Satellites (CEOS; http://www.ceos.org, accessed 15/09/2010) recom-
mends the Thuillier database, whereas others approve of the new Kurucz (1997) database,
which is the default used in MODTRAN4. Although the solar constant, that is, irradiance
integrated over the whole spectral range, is known with an accuracy of about 1%, much
larger discrepancies exist for the spectral irradiance, depending on the spectral resolu-
tion. Figure 7.8 presents relative differences between the Thuillier (Thuillier et al. 2003)
and the new Kurucz spectra for bandwidths of 3 and 10 nm. There are large differences
between these sources, especially in the blue part of the spectrum. These discrepancies
can probably be resolved within a few years when updated and more accurate measure-
ments become available. Another problem is that the Thuillier database ends at 2.4 pm,
whereas a number of hyperspectral instruments have channels up to 2.5 um.

However, a number of challenges will probably persist for many years, especially for
fully automated processing environments. Examples include the difficult cases of nonstan-
dard atmospheric conditions, that is, removal of boundary layer haze of varying thickness
and deshadowing of cloud shadow regions, especially under geometrically complex situa-
tions with scattered clouds at different altitude layers or a combination of haze, cloud, and
shadow regions. Additionally, topographic correction techniques need to be improved, as
there is no acknowledged method that works best in all mountainous regions of the Earth
under all surface-cover conditions and seasons. This means that AC will remain an excit-
ing research topic for a long time.
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Comparison of the relative differences between new Kurucz and Thuillier irradiance.
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8.1 Introduction

Why orthorectify Earth observation (EO) satellite data? Any EO data, regardless of whether
they are acquired by a scanner or a frame camera aboard a satellite, or by a photographic
system in an aircraft or any other platform/sensor combination, will have various geome-
tric distortions, depending on the manner in which the data are acquired. This problem is
inherent in remote sensing, as we attempt to accurately represent the three-dimensional
(3D) surface of Earth as a two-dimensional (2D) image. Consequently, raw images contain
such significant geometric distortions that they cannot be used directly with geographic
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information system (GIS)-ready products. Thus, multisource data integration (raster and
vector) for geomatics applications requires geometric and radiometric processing adapted
to the nature and characteristics of the data in order to keep the best information from
each image in the composite orthorectified products.

The processing of multisource data can be based on the concept of “terrain-geocoded
images,” a term originally invented in Canada for defining value-added products (Guertin
and Shaw 1981). Photogrammetrists, however, prefer the term “orthoimage” when refer-
ring to the unit of terrain-geocoded data, where all distortions including those of the relief
are corrected. To integrate different data under this concept, each raw image must be sepa-
rately converted to an orthoimage so that each component orthoimage of the data set can
be registered, compared, combined, and so on, not only pixel-by-pixel but also with carto-
graphic vector data in a GIS.

Why does the geometric correction process seem more important today than in the past?
In 1972, the impact of geometric distortions was quite negligible for different reasons:

* The images, such as those from a Landsat multispectral scanner (Landsat-MSS),
were nadir viewing, and the resolution was coarse (around 80-100 m).

® The products resulting from the image processing were analog on paper.

¢ The interpretation of the final products was performed visually.

® The fusion and integration of multisource and multiformat data did not exist at
that time.

Today, the impacts of geometric distortions, although they are similar to the ones in the
past, are less negligible because of the following factors:

¢ The images are off-nadir viewing, and the resolution is fine (submeter level).

* The products resulting from image processing are fully digital products.

* The interpretation of the final products is realized on the computer.

¢ The fusion of multisource images (different platforms and sensors) is in general use.

® The integration of multiformat data (raster/vector) is a general tendency in geomatics.

One must admit that the new EO data, their method and processing, the resulting pro-
cessed data, and their analysis and interpretation introduced new needs and requirements
for geometric corrections, due to a drastic evolution accompanied by large scientific and
technology improvements between the two periods. Even if the literature is quite abun-
dant mainly in terms of books and peer-reviewed articles (an exhaustive list is given in
the references section), it is important to update the problems and the solutions recently
adopted for geometrically correcting remote sensing images with the latest developments
and research studies from around the world. This chapter will then address the following
concepts:

¢ The sources of geometric distortions and deformations with different categoriza-
tions (Section 8.2)

* The modeling of these distortions with different 2D/3D physical/empirical mod-
els and mathematical functions (Section 8.3)

® The 3D geometric correction method and algorithms with their processing steps
and errors (Section 8.4)
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Comparisons between the models and mathematical functions, their applicability, and
their performance on different types of images (frame camera, visible and infrared [VIK]
oscillating or pushbroom scanners, and side-looking antenna radar [SLAR] or synthetic
aperture radar [SAR] sensors at high, medium, or low resolutions) are also addressed. The
errors with their propagation from the input data to the final results are also evaluated
through the full processing steps.

8.2 Sources of Geometric Distortions

Each EO image acquisition system produces unique geometric distortions in its raw images
and consequently the geometry of these images in its own local coordinate system does
not correspond to the terrain and to the user’s specific map projection. Obviously, the geo-
metric distortions vary considerably with different factors, such as the platform (airborne
and satellite), the sensor (VIR and SAR; total field of view [FOV], low to high resolution),
and the associated scanner (whiskbroom, pushbroom, frame, etc.). However, it is possible
to make general categorizations of these distortions.

The sources of distortions (Table 8.1) can be grouped into two broad categories: (1) the
“observer” or the acquisition system (platform, imaging sensor, and other measuring
instruments, such as gyroscope and stellar sensors) and (2) the “observed” (atmosphere
and Earth). In addition to these distortions, deformations related to map projections
have to be taken into account because the terrain and most GIS end-user applications
are generally represented and performed respectively in a topographic map space and
not in a referenced ellipsoid. Figures 8.1 and 8.2 illustrate the geometry of acquisition
and the quasi-polar elliptical orbit approximation of remote sensing satellites around the
Earth, respectively. The map deformations are logically included in the distortions of the
observed.

Previous studies made a second-level categorization into low-, medium-, and high-fre-
quency distortions (Friedmann et al. 1983), where frequency is determined or compared

TABLE 8.1

Description of Error Sources for the Two Categories, the Observer and the Observed,
with Different Subcategories

Category Subcategory Description of Error Sources
The observer or the acquisition ~ Platform (spaceborne or airborne)  Variation of the movement; variation in
system platform attitude (low to high
frequencies)

Sensor (VIR, SAR, or HR images) Variation in sensor mechanics (scan
rate, scanning velocity, etc.); lens
distortions, viewing/look angles;
panoramic effect with the FOV

Measuring instruments Time variations or drift; clock
synchronicity
The observed Atmosphere Refraction and turbulence
Earth Curvature, rotation, topographic effect

Map Geoid to ellipsoid, ellipsoid to map
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FIGURE 8.1
(See color insert following page 426.) Geometry of viewing of a satellite scanner in orbit around the Earth.
(Courtesy and copyright Serge Riazanoff, VisioTerra, 2009.)
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FIGURE 8.2

(See color insert following page 426.) Near-Earth, quasi-circular, quasi-polar, sun-synchronous orbit for EO
satellites. The different revolutions around the poles with a constant illumination angle (top) showing the same
illumination condition all the year (bottom). (Courtesy and copyright Serge Riazanoff, VisioTerra, 2009.)

with the image acquisition time. Examples of low-, medium-, and high-frequency distor-
tions are those arising from orbit variations, Earth rotation, and local topographic effects,
respectively. Although this categorization was suitable in the 1980s when there were very
few remote sensing systems, today, with so many different acquisition systems, it is no
longer acceptable because it differs with each acquisition system. For example, attitude
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variations are a high-frequency distortion for QuickBird or airborne pushbroom scanner,
a medium-frequency distortion for System Pour 1'Observation de la Terre (high resolution
in the visible SPOT-HRV) and Landsat Enhanced Thematic Mapper (Landsat-ETM+), and
a low-frequency distortion for Landsat-MSS, but not a distortion for a medium resolution
imaging spectrometer (MERIS).

The geometric distortions and their error sources given in Table 8.1 are deterministic
and predictable and generally well understood. Some of these distortions, especially those
related to instrumentation, are systematic and generally corrected at ground receiving sta-
tions or by the image vendors. Other distortions are not taken into account and corrected
because they are specific to each acquisition time and location; further, information on the
atmosphere is rarely available. Such distortions are also geometrically negligible for low-
to medium-resolution images.

8.2.1 Distortions Related to the Platform

Some basic information on satellite orbits and celestial mechanics are useful to better
understand platform-related distortions. The EO satellites obey the celestial mechanical
laws defined by Newton and Kepler for an unperturbed trajectory (Keplerian orbit) and
by Gauss and Lagrange for a perturbed trajectory (osculatory orbit; Escobal 1965; Centre
National d’Etudes Spatiales 1980). A number of perturbations (due to Earth gravity and
surface irregularities, atmospheric drag, etc.) slowly change the Keplerian orbit based on
the two-body attraction of Newton’s law into an osculatory orbit (Centre National d'Etudes
Spatiales 1980). Information on orbits is often needed, and different orbital models can be
used depending on their utility and required accuracy (Bakker 2000):

* To calculate the satellite location on its osculatory orbit in order to compute the
Earth coordinates of scanned pixels, requiring high accuracy (submeters) over a
small time frame (seconds)

* To predict when the satellite will pass over a specific area, requiring low accuracy
(kilometers) but over a long time frame (days)

Many orbital models have been developed since 1960 using the same mechanical laws
with Gaussian/Lagrangian equations; the differences between the orbital models are
mainly in the number and types of perturbations and the techniques to integrate them.
As defined and adapted by the North American Aerospace Defense Command, sim-
plified general perturbations (SGPs), SGP4, and the most accurate SGP8 are the orbital
models to be used for low- and near-Earth satellites (orbital period less than 225 minutes
and altitude less than 6000 km). Most, if not all, of the civilian EO spacecrafts have near-
Earth, retrograde, quasi-circular, quasi-polar, geosynchronous, and sun-synchronous
or