
www.sharexxx.net - free books & magazines

Real-Time Digital Signal Processing

Real-Time Digital Signal Processing
Based on the TMS320C6000

by Nasser Kehtarnavaz
University of Texas at Dallas

With laboratory contributions by Namjin Kim

AMSTERDAM • BOSTON • HEIDELBERG • LONDON
NEW YORK • OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

Newnes is an imprint of Elsevier

Newnes is an imprint of Elsevier
200 Wheeler Road, Burlington, MA 01803, USA
Linacre House, Jordan Hill, Oxford OX2 8DP, UK

Copyright © 2005, Elsevier Inc. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior written permission of the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights De-
partment in Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333, e-mail:
permissions@elsevier.com.uk. You may also complete your request on-line via the Elsevier
homepage (http://elsevier.com), by selecting “Customer Support” and then “Obtaining Per-
missions.”

Recognizing the importance of preserving what has been written, Elsevier prints its books on
acid-free paper whenever possible.

 Library of Congress Cataloging-in-Publication Data

Kehtarnavaz, Nasser.
 Real-time digital signal processing based on the TMS320C6000 / by Nasser Kehtarnavaz
 ; with laboratory contributions by Namjin Kim.
 p. cm.
 ISBN 0-7506-7830-5
 1. Signal processing—Digital techniques. 2. Texas Instruments TMS320 series
 microprocessors. I. Title

 TK5102.9.K4524 2004
 621.382’2—dc22
 2004050443

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

For information on all Newnes publications
visit our website at www.newnespress.com

05 06 07 08 09 10 9 8 7 6 5 4 3 2 1

Printed in the United States of America.

Contents

Preface ... ix
Acknowledgments ... x
What’s on the CD-ROM? .. xi

Chapter 1: Introduction .. 1

1.1 Examples of DSP Systems ..4
1.2 Organization of Chapters ...7
1.3 Required Software/Hardware ...8
Bibliography ...9

Chapter 2: Analog-to-Digital Signal Conversion 11

2.1 Sampling ..11
2.2 Quantization ..21
2.3 Signal Reconstruction ...27
Bibliography ...30

Chapter 3: TMS320C6x Architecture 31

3.1 CPU Operation (Dot Product Example) ...36
3.2 Pipelined CPU ...39
3.3 VelociTI ..42
3.4 C64x DSP ..43
Bibliography ...46

Chapter 4: Software Tools .. 47

4.1 C6x DSK/EVM Target Boards ...50
4.2 Assembly File ...52
4.3 Memory Management ..53
4.4 Compiler Utility ..57
4.5 Code Initialization ...60
Bibliography ...66

v

 Lab 1: Getting Familiar with Code Composer Studio 67

L1.1 Creating Projects ...68
L1.2 Debugging Tools ..75
L1.3 EVM Target ...84
L1.4 Simulator ...85
Bibliography ...86

Chapter 5: Interrupt Data Processing 87

Bibliography ...90

 Lab 2: Audio Signal Sampling ... 91

L2.1 Initialization of Codec and Peripherals of C6711 ...93
L2.2 Interrupt Service Routine ..99
L2.3 C6711 DSK without Audio Daughter Card ..104
L2.4 C6416/C6713 DSK ..106
L2.5 C67x EVM ...108
Bibliography ...115

Chapter 6: Fixed-Point vs. Floating-Point 117

6.1 Q-format Number Representation on Fixed-Point DSPs117
6.2 Finite Word Length Effects on Fixed-Point DSPs ...121
6.3 Floating-Point Number Representation ..122
6.4 Overflow and Scaling ...125
6.5 Some Useful Arithmetic Operations ...126
Bibliography ...132

 Lab 3: Integer Arithmetic .. 133

L3.1 Overflow Handling ..133
L3.2 Scaling Approach ..136

Chapter 7: Code Optimization .. 141

7.1 Word-Wide Optimization ..143
7.2 Mixing C and Assembly ..145
7.3 Software Pipelining ..146
7.4 C64x Improvements ..156
Bibliography ...159

vi

Real-Time Digital Signal Processing Based on the TMS320C6000

 Lab 4: Real-Time Filtering ... 161

L4.1 Design of FIR Filter ...161
L4.2 FIR Filter Implementation ..166
L4.3 Floating-Point Implementation ..181
L4.4 EVM Implementation ...182
Bibliography ...184

Chapter 8: Circular Buffering ... 185

 Lab 5: Adaptive Filtering .. 189

L5.1 Design of IIR Filter ..190
L5.2 IIR Filter Implementation ...192
L5.3 Adaptive FIR Filter ..193
Bibliography ...200

Chapter 9: Frame Processing .. 201

9.1 Direct Memory Access ...202
9.2 DSP-Host Communication ...206
Bibliography ...208

 Lab 6: Fast Fourier Transform ... 209

L6.1 DFT Implementation ...215
L6.2 FFT Implementation ...218
L6.3 Real-Time FFT ...220
Bibliography ...222

Chapter 10: Real-Time Analysis and Scheduling 223

10.1 Real-Time Analysis ..226
10.2 Real-Time Scheduling ...229
10.3 Real-Time Data Exchange ..234
Bibliography ...235

 Lab 7: DSP/BIOS .. 237

L7.1 A DSP/BIOS-Based Program ...238
L7.2 DSP/BIOS Analysis and Instrumentation ...239
L7.3 Multithread Scheduling ..243

vii

Contents

 Lab 8: Data Synchronizationand Communication 253

L8.1 Prioritization of Threads ..261
L8.2 RTDX ...265

Chapter 11: Lab Project Examples .. 267

11.1 Sinewave Generation ..267
11.2 Cascade IIR Filter ...270
11.3 Filter Bank ...277
11.4 Pulse Amplitude Modulation (PAM) ..280
Bibliography ...283

Appendix A: Quick Reference Guide 285

A.1 List of C6x Instructions ..285
A.2 List of C67x Floating-Point Instructions ..287
A.3 Registers and Memory Mapped Registers ...288
A.4 Compiler Intrinsics ...296
A.5 Optimization Checklist ..301

About the Author .. 302
Index ... 303

viii

Real-Time Digital Signal Processing Based on the TMS320C6000

Preface

The TMS320C6000 DSP processor family has been introduced by Texas Instruments
to meet high performance demands in signal processing applications. The objective
of this book is to provide the know-how for the implementation and optimization of
computationally intensive signal processing algorithms on the family of TMS320C6x
DSP processors. In the previous version of the book named DSP System Design: Using
the TMS320C6000, the lab exercises were based on the C6x EVM board character-
istics and software. In this version named Real-Time Digital Signal Processing Based on
the TMS320C6000, the lab exercises are redone on the C6x DSK board considering
that DSK provides a more cost-effective learning platform. The migration from EVM
to DSK was not a straightforward task as there were many issues that needed to be
resolved, such as differences in memory maps, peripherals, host programming using
the host-port interface, and issues related to the upgrading of Code Composer Studio.

The book is written so that it can be used as the textbook for real-time DSP labora-
tory courses offered at many schools. The material presented is primarily written for
those who are already familiar with DSP concepts and are interested in designing
DSP systems based on the TI C6x DSP products. Note that a great deal of the infor-
mation in this book appears in the TI manuals on the C6000 DSP family. However,
this information has been restructured, modified, and condensed to be used for
teaching a DSP laboratory course in a semester period. It is recommended that these
manuals are used in conjunction with this book to fully make use of the materials
presented.

Eight lab exercises together with four project examples are discussed and included on
the accompanying CD-ROM to take the reader through the entire process of C6x
code writing. As a result, the book can be used as a self-study guide for implementing
algorithms on the C6x DSPs. The chapters are organized to create a close correlation
between the topics and lab exercises if they are used as lecture materials for a DSP
lab course. Knowledge of the C programming language is required for understanding
and performing the lab exercises.

ix

Acknowledgments

I would like to express my gratitude to Texas Instruments for their permission to use
the materials in their C6x manuals. All the figures marked by † in their captions are
redrawn or modified at Courtesy of Texas Instruments. I extend my appreciation to
Gene Frantz, TI Principal Fellow, who brought to my attention the need for writing
this book. I am deeply indebted to the graduate student Namjin Kim who provided
invaluable help for DSK related code modifications. Finally, I wish to thank Charles
Glaser, Senior Acquisition Editor at Elsevier; Kelly Johnson, Production Editor at
Elsevier; and Cathy Wicks, University Program Manager at Texas Instruments, for
their support of this book.

x

What’s on the CD-ROM?

Included on the accompanying CD-ROM:
• The lab files corresponding to the following DSP platforms:

 o DSK6x11 : DSK 6711/6211 using AD535 on-board codec
 o DSK6x11_ADC : DSK 6711/6211 using PCM3003 audio

 daughter card
 o DSK6416 : DSK 6416
 o DSK6713 : DSK 6713
 o EVM6x01 : EVM 6701/6201
 o SIM6xxx : Simulator

• In each platform folder, subfolders for eight labs and four projects are
contained as follows:
 o Lab01: Source files for getting familiar with Code Composer Studio.
 o Lab02: Source files for audio sampling.
 o Lab03: Source files for Q-format and scaling.
 o Lab04: Source files for FIR filter.
 o Lab05: Source files for adaptive filter.
 o Lab06: Source files for frame processing and DMA operation.
 o Lab07: Source files for real-time analysis.
 o Lab08: Source files for real-time synchronization and communication.
 o Proj01: Source files for sine wave generation.
 o Proj02: Source files for second-order cascade IIR filter.
 o Proj03: Source files for filter bank.
 o Proj04: Source files for PN sequence generation.

• All the subfolders for labs and projects need to be copied into the folder
“C:\ti\myprojects\” where the CCS is installed.

xi

xii

Real-Time Digital Signal Processing Based on the TMS320C6000

1

Introduction

1C H A P T E R

In general, sensors generate analog signals in response to various physical phenomena
that occur in an analog manner (i.e., in continuous time and amplitude). Processing
of signals can be done either in analog or digital domain. To do the processing of an
analog signal in digital domain, it is required that a digital signal is formed by sam-
pling and quantizing (digitizing) the analog signal. Hence, in contrast to an analog
signal, a digital signal is discrete in both time and amplitude. The digitization process
is achieved via an analog-to-digital (A/D) converter.

Digital signal processing (DSP) involves the manipulation of digital signals in order
to extract useful information from them. Although an increasing amount of signal
processing is being done in digital domain, there remains the need for interfacing to
the analog world in which we live. Analog-to-digital (A/D) and digital-to-analog
(D/A) data converters are the devices that make this interfacing possible. Figure 1-1
illustrates the main components of a DSP system, consisting of A/D, DSP, and D/A
devices.

Figure 1-1: Main components of a DSP system.

Analog to
Digital
Converter

Digital Signal
Processor

(DSP)

Digital to
Analog
Converter

Analog
World

2

Real-Time Digital Signal Processing Based on the TMS320C6000

There are many reasons why one would want to process an analog signal in a digital
fashion by converting it into a digital signal. The main reason is that digital process-
ing allows programmability. The same DSP hardware can be used for many different
applications by simply changing the code residing in memory. Another reason is that
digital circuits provide a more stable and tolerant output than analog circuits—for
instance, when subjected to temperature changes. In addition, the advantage of
operating in digital domain may be intrinsic. For example, a linear phase filter or a
steep-cutoff notch filter can only be realized by using digital signal processing tech-
niques, and many adaptive systems are achievable in a practical product only via
digital manipulation of signals. In essence, digital representation (0s and 1s) allows
voice, audio, image, and video data to be treated the same for error-tolerant digital
transmission and storage purposes. As a result, digital processing, and hence digital
signal processors (also called DSPs), are expected to play a major role in the next
generation of telecommunication infrastructure including 3G (third generation)
wireless, cable (cable modems), and telephone lines (digital subscriber line – DSL
modems).

The processing of a digital signal can be implemented on various platforms such as a
DSP processor, a customized very large scale integrated (VLSI) circuit, or a general-
purpose microprocessor. Some of the differences between a DSP and a single function
VLSI implementation are as follows:

1. There is a fair amount of application flexibility associated with DSP imple-
mentation, since the same DSP hardware can be utilized for different
applications. In other words, DSP processors are programmable. This is not
the case for a hardwired digital circuit.

2. DSP processors are cost-effective because they are mass-produced and can be
used for many applications. A customized VLSI chip normally gets built for a
single application and a specific customer.

3. In many situations, new features constitute a software upgrade on a DSP pro-
cessor not requiring new hardware. In addition, bug fixes are generally easier
to make.

4. Often very high sampling rates can be achieved by a customized chip, where-
as there are sampling rate limitations associated with DSP chips due to their
peripheral constraints and architecture design.

DSP processors share some common characteristics that also separate them from gen-
eral-purpose microprocessors. Some of these characteristics include the following:

3

Chapter 1: Introduction

1. They are optimized to cope with repetition or looping of operations common
in signal processing algorithms. Relatively speaking, instruction sets of DSPs
are smaller and optimized for signal processing operations, such as single-cycle
multiplication and accumulation.

2. DSPs allow specialized addressing modes, like indirect and circular address-
ing. These are efficient addressing mechanisms for implementing many signal
processing algorithms.

3. DSPs possess appropriate peripherals that allow efficient input/output (I/O)
interfacing to other devices.

4. In DSP processors, it is possible to perform several accesses to memory in a
single instruction cycle. In other words, these processors have a relatively
high bandwidth between their central processing units (CPUs) and memory.

It should be kept in mind that due to the constant evolving of features being placed
on processors, one needs to be cautious of features dividing DSPs and general-purpose
microprocessors.

Most of the market share of DSPs belong to real-time, cost-effective, embedded
systems, for example, cellular phones, modems, and disk drives. Real-time means com-
pleting the processing within the allowable or available time between samples. This
available time, of course, depends on the application. As illustrated in Figure 1-2, the
number of instructions to have an algorithm running in real-time must be less than
the number of instructions that can be executed between two consecutive samples.
For example, for audio processing operating at 44.1 kHz sampling frequency, or ap-
proximately 22.6 µs sampling time interval, the number of instructions must be fewer
than nearly 4500, assuming an instruction cycle time of 5 ns. There are two aspects
of real-time processing: (a) sampling rate, and (b) system latencies (delays). Typical
sampling rates and latencies for several different applications are shown in Table 1-1.

time

time between samples

x[n] sample at time n x[n+1] sample at time n+1

Figure 1-2: Maximum number of
instructions to meet real-time =
time between samples/instruction
cycle time.

4

Real-Time Digital Signal Processing Based on the TMS320C6000

Table 1-1: Typical sampling rates and latencies for select applications.

Application I/O Sampling Rate Latency

Instrumentation 1 Hz *system dependent

Control > 0.1 kHz *system dependent

Voice 8 kHz < 50 ms

Audio 44.1 kHz *< 50 ms

Video 1–14 MHz *< 50 ms

*In many cases, one may not need to be concerned with latency, for example, a TV
signal is more dependent on synchronization with audio than the latency. In each of
these cases, the latency is dependent on the application.

1.1 Examples of DSP Systems

For the reader to appreciate the usefulness of DSPs, several examples of DSP systems
currently in use are presented here.

During the past few years, there has been a tremendous growth in the wireless mar-
ket. Figure 1-3 illustrates a cellular phone wireless communication DSP system.
As can be seen from this figure, there are two sets of data converters. On the voice
band side, a low sampling rate (for example, 8 kSPS [kilo samples per second]) and a
high resolution (for example, 13 bits) converter is used, whereas on the RF modula-
tion side, a relatively high-speed (for example, 20 MSPS) and a low resolution (for
example, 8 bits) converter is used. System designers prefer to integrate more func-

Figure 1-3: Cellular phone wireless communication DSP system.

D/A

A/D

A/D

D/A

Low Sampling
Rate (8 kSPS)

13 bits

High Sampling
Rate (20 MSPS)

<8 bits

Antenna

Voice
Coding

Channel
Coding &

Interleaving
Encryption Modulation

Demodulation
&

Equalization
Decryption

Channel
Decoding &

Deinterleaving

Voice
Decoding

RF
Modulation

RF
Demodulation RF/IF

Conversion

D
U
P
L
E
X
E
R

PA

DSP

5

Chapter 1: Introduction

tionalities in DSP rather than in analog components in order to lower the number
of components and hence the overall cost. This strategy of more integration in DSP
depends on specifications achievable for low power consumption in portable devices.

In wired communications, various types of modems are used to convert analog/digi-
tal signals to digital signals appropriate for error-tolerant transmission over wires or
cables. Currently, available modem types include: high-speed voiceband (56 kbps
[kilo bits per second]), integrated services digital network (ISDN), DSL, and cable
modems. For example, DSL type modems have data rates in the range of 1–52 Mbps.
DSL makes use of the existing twisted-pair wires between residential homes and
the phone company’s central office. For example, the asymmetric version of DSL
(ADSL) uses the frequency range 25–138 kHz for upstream and 200 kHz–1.1 MHz
for downstream data transmission, without interfering with the existing 0–4 kHz
voiceband range. Figure 1-4 shows an ADSL system based on the TI data converters
and DSP products. The indicated A/D and D/A converters have a high-speed, high-
resolution specification to cope with the multilevel nature of the transmitted signal.
The transceiver is a dedicated DSP performing the ADSL modulation/demodulation.

Figure 1-4: TI chipset for ADSL wired communication DSP system.

ADSL
Transceiver
TNETD4200

Universal
Digital Interface

TNETD4100

ADSL Codec
TNETD4020

Line Driver
THS6062

Line Receiver
THS6032

Tx

Rx

Contains 14 bit
A/D and D/A

Considering that communication networks in use today are digital, an analog signal
reaching the phone company central office must be conditioned and converted to a
digital signal for transmission through the network. Figure 1-5 shows the pulse code
modulation (PCM) voiceband codec used in communications networks. As can be
seen, a fair amount of the signal processing is done in digital domain by the DSP
component.

6

Real-Time Digital Signal Processing Based on the TMS320C6000

Figure 1-6 shows a gigabit Ethernet DSP system. The analog signal is sent through
category-5 twisted-pair wires. Four 8-bit, high-speed A/D converters are used for data
conversion. The dynamic range of the converters must be high enough to overcome
noise, interference, and attenuation through an Ethernet link. A DSP is then used to
do echo cancellation, equalization, and demodulation signal processing.

Figure 1-5: PCM voiceband DSP system.

Anti-
aliasing
 Active –

RC

Second Order
Switched Cap.
Σ∆ Modulator

Sinc
Filter

3rd Order

First
Halfband
Filtert

Second
Halfband
Filtert

Sinc
Droop

Correction

µ /A law
Compressor

Anti-
aliasing
 Active

Second
Order

Switched

Vout

Vin

Transmitter

2 MHz 32 kHz 16 kHz 8 kHz 8 kHz 8 kHz0-4 kHz

0-4 kHz

Second
Halfband
Filtert

First
Halfband
Filtert

Sinc Droop
Correction

Fil ter

µ /A law
Expander

Second
Order

Digital Σ∆

Receiver

2 MHz 32 kHz 16 kHz 8 kHz 8 kHz 8 kHz

Analog DSP

Line
Interface

Figure 1-6: Gigabit Ethernet DSP system.

Output
Binary Data

DSP
+

-

RX Amp

CAT-5 Wire

High Speed
 A/D Converter

N

Data stored on a compact disc (CD) or a computer hard drive is in binary format.
However, the signal generated by a read head is analog and corrupted by noise and
distortion. This demands a fair amount of signal conditioning and filtering after read-
ing data. As shown in Figure 1-7, this is achieved by using a DSP-based hard disk
drive system.

7

Chapter 1: Introduction

Motor control is another area where DSPs are making an impact. For example, as
illustrated in Figure 1-8, DSPs are used to control induction motors via monitoring
feedback signals including current, voltage, and position. Such motors are widely
used because of their low cost, high reliability, and high efficiency.

Figure 1-7: Hard disk drive DSP system.

Switched-
Cap Filter

DSP

A/DLPFAGC
Analog signal
from read head

Clock
Generator

Automatic Gain
Control

Figure 1-8: Motor control DSP system.

 DAC

DSP
- Estimate feedback

parameters
- Control algorithm

123 ADC

Power
Amplifier

Smart sensors or devices are another example of DSP systems. These sensors are
capable of both data acquisition and data processing. An example of such sensors is
the airbag activation system in automobiles. Vehicle acceleration is measured by a
suspension-mass sensor and converted into a digital signal by an A/D converter. This
signal is then processed by a DSP to detect an accident by comparing features of the
signal with those of the accident.

1.2 Organization of Chapters

Chapter 2 provides a discussion of the differences and relationships between analog
and digital signals. In Chapter 3, an overview of the TMS320C6x architecture is pre-
sented. The focus here is placed on the architectural features one needs to be aware
of in order to implement algorithms on the C6x processor. In Chapter 4, the C6x
software tools are presented, and the steps in taking a source file to an executable
file are discussed. Lab 1 in Chapter 4 provides a hands-on approach for becoming
familiar with the Code Composer Studio™ integrated development environment.

8

Real-Time Digital Signal Processing Based on the TMS320C6000

Chapter 5 presents the concept of interrupt data processing. Lab 2 in Chapter 5
shows how to sample an analog signal in real-time on a C6x target board. In Chapter
6, fixed-point and floating-point number representations are discussed and their dif-
ferences are pointed out. Lab 3 in Chapter 6 gives suggestions on how one may cope
with the overflow or scaling problem. Code efficiency issues appear in Chapter 7, in
which optimization techniques, as well as linear assembly and hand-coded pipelined
assembly, are discussed. Lab 4 in Chapter 7 covers Finite Impulse Response (FIR)
filtering while deploying various optimization techniques. Chapter 8 covers circular
buffering. Lab 5 in Chapter 8 shows how circular buffering is used to perform adap-
tive filtering. Frame processing is covered in Chapter 9. Lab 6 in Chapter 9 provides
an example of frame processing involving fast Fourier transform (FFT) implemen-
tation and the use of direct memory access (DMA). Chapter 10 and Labs 7 and 8
address the DSP/BIOS real-time analysis and scheduling features of Code Composer
Studio. Finally, four project examples are presented in Chapter 11.

1.3 Required Software/Hardware

The software tool needed to generate TMS320C6x executable files is called Code
Composer Studio (CCS). CCS incorporates the assembler, linker, compiler, simula-
tor, and debugger utilities. In the absence of a target board, which allows one to run
an executable file on an actual C6x processor, the simulator can be used to verify
code functionality by using data already stored in a datafile. However, when using
the simulator, an Interrupt Service Routine (ISR) cannot be used to read in signal
samples from a signal source. To be able to process signals in real-time on an actual
C6x processor, a DSP Starter Kit (DSK) or an EValuation Module (EVM) board is
needed for code development. The recommended testing equipment are a function
generator, oscilloscope, microphone, boom box, and cables with audio jacks.

A DSK board can easily be connected to a PC host through its parallel or USB port.
The signal interfacing with the DSK board is done through its two standard audio
jacks. An EVM board needs to be installed in a full-length PCI slot inside a PC host.
Refer to the TI TMS320C6x Evaluation Module Reference Guide [1] for the installa-
tion details. The signal interfacing with the EVM board is done through its three
standard audio jacks.

For performing the labs, familiarity with C is assumed. The accompanying CD-ROM
includes the lab codes for the following C6x DSP target boards: C6711 DSK, C6416/
C6713 DSK, and C6701/C6201 EVM.

9

Chapter 1: Introduction

Bibliography

[1] Texas Instruments, TMS320C6201/6701 Evaluation Module Reference Guide,
Literature ID# SPRU 269F, 2002.

11

Analog-to-Digital
Signal Conversion

2C H A P T E R

The process of analog-to-digital signal conversion consists of converting a continu-
ous time and amplitude signal into discrete time and amplitude values. Sampling
and quantization constitute the steps needed to achieve analog-to-digital signal
conversion. To minimize any loss of information that may occur as a result of this
conversion, it is important to understand the underlying principles behind sampling
and quantization.

2.1 Sampling

Sampling is the process of generating discrete time samples from an analog signal.
First, it is helpful to see the relationship between analog and digital frequencies. Let
us consider an analog sinusoidal signal () ()cosx t A t= ω + φ . Sampling this signal at
t = nTs, with the sampling time interval of Ts , generates the discrete time signal

 [] () ()cos cossx n A nT A n= ω + φ = θ + φ , n = 0,1,2,..., (2.1)

where
2

s
s

fT
f
πθ = ω = denotes digital frequency with units radians (as compared to

analog frequency ω with units radians/sec).

The difference between analog and digital frequencies is more evident by observing
that the same discrete time signal is obtained for different continuous time signals if
the product ωTs remains the same. (An example is shown in Figure 2-1.) Likewise,
different discrete time signals are obtained for the same analog or continuous time
signal when the sampling frequency is changed. (An example is shown in Figure
2-2.) In other words, both the frequency of an analog signal and the sampling fre-
quency define the frequency of the corresponding digital signal.

12

Real-Time Digital Signal Processing Based on the TMS320C6000

Figure 2-1: Different sampling of two different
analog signals leading to the same digital signal.

Figure 2-2: Different sampling of the same
analog signal leading to two different digital signals.

1 1.5 2
-1

-0.5

0

0.5

1
x(t)=cos(2*pi*t)

0 5 10 15 20
-1

-0.5

0

0.5

1
Ts=0.05s

1 1.5 2
-1

-0.5

0

0.5

1
x(t)=cos(4*pi*t)

0 5 10 15 20
-1

-0.5

0

0.5

1
Ts=0.025s

1 1.5 2
-1

-0.5

0

0.5

1
x(t)=cos(2*pi*t)

0 5 10 15 20
-1

-0.5

0

0.5

1
Ts=0.05s

1 1.5 2
-1

-0.5

0

0.5

1
x(t)=cos(2*pi*t)

0 5 10 15 20
-1

-0.5

0

0.5

1
Ts=0.025s

13

Chapter 2: Analog-to-Digital Signal Conversion

It helps to understand the constraints associated with the above sampling process by
examining signals in frequency domain. The Fourier transform pairs in analog and
digital domains are given by

Fourier transform pair for

analog signals

X j x t e dt

x t X j e d

j t

j t

ω

π
ω ω

ω

ω

() = ()

() = ()

−

−∞

∞

−∞

∞

∫

∫1

2
 (2.2)

Fourier transform pair for

discrete signals

XX e x n e T

x n X e e d

j jn

n
s

j jn

θ θ

θ θ

π

π

θ ω

π
θ

() = [] =

[] = ()

−

=−∞

∞

−

∑

∫

,

1

2

 (2.3)

Figure 2-3: (a) Fourier transform of a continuous-time signal,
and (b) its discrete time version.

Analog Waveform
x(t)

tt1 t2 t3 t4

Discrete Signal
y(t)

tt1 t2 t3 t4

Spectrum
X(f)

fW–W

Spectrum
Y(f)

fs=1/TsW–W f

14

Real-Time Digital Signal Processing Based on the TMS320C6000

As illustrated in Figure 2-3, when an analog signal with a maximum frequency of fmax

(or bandwidth of W) is sampled at a rate of
1

s
s

T
f

= , its corresponding frequency re-

sponse is repeated every 2π radians, or fs. In other words, Fourier transform in digital
domain becomes a periodic version of Fourier transform in analog domain. That is
why, for discrete signals, we are only interested in the frequency range 0 – fs /2.

Therefore, in order to avoid any aliasing or distortion of the frequency content of the
discrete signal, and hence to be able to recover or reconstruct the frequency content
of the original analog signal, we must have max2sf f≥ . This is known as the Nyquist
rate; that is, the sampling frequency should be at least twice the highest frequency in
the signal. Normally, before any digital manipulation, a frontend antialiasing analog
lowpass filter is used to limit the highest frequency of the analog signal.

Figure 2-4 shows the Fourier transform of a sampled sinusoid with a frequency of fo.
As can be seen, there is only one frequency component at fo. The aliasing problem
can be further illustrated by considering an undersampled sinusoid as depicted in
Figure 2-5. In this figure, a 1 kHz sinusoid is sampled at fs = 0.8 kHz, which is less
than the Nyquist rate. The dashed-line signal is a 200 Hz sinusoid passing through
the same sample points. Thus, at this sampling frequency, the output of an A/D
converter would be the same if either of the sinusoids were the input signal. On the
other hand, oversampling a signal provides a richer description than that of the same
signal sampled at the Nyquist rate.

Figure 2-4: Fourier transform of a sampled sinusoidal signal.

t

A
x[n]

0

............

To=1/fo

X(f)

fsfs /2fo fs-fo fs+fo

.............

f

15

Chapter 2: Analog-to-Digital Signal Conversion

2.1.1 Fast Fourier Transform

Fourier transform of discrete signals is continuous over the frequency range 0 – fs/2.
Thus, from a computational standpoint, this transform is not suitable to use. In prac-
tice, discrete Fourier transform (DFT) is used in place of Fourier transform. DFT is
the equivalent of Fourier series in analog domain. However, it should be remembered
that DFT and Fourier series pairs are defined for periodic signals. These transform
pairs are expressed as

Fourier series for periodic analog signals

X
T

x t ek
j kt

= () −1
0ω ddt

x t X e

where T denotes period and

fundam

T

T

k
j kt

k

−

=−∞

∞

∫

∑() =

2

2

0

0ω

ω eental frequency.

 (2.4)

Discrete Fourier Transform DFT

for periodic discrete signals

X k
()

[]] = [] = −

[] = []

−

=

−

∑ x n e k N

x n
N

X k e

j
N

nk

n

N

s

S

j
N

n

S

S

S

2

0

1

2

0 1 1

1

π

π

, , ,...,

kk

k

N

s

S

n N
=

−

∑ = −

0

1

0 1 1, , ,...,

 (2.5)

Figure 2-5: Ambiguity caused by aliasing.

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10-3

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Time

A
m

pl
itu

de

16

Real-Time Digital Signal Processing Based on the TMS320C6000

Hence, when computing DFT, it is required to assume periodicity with a period of
Ns samples. Figure 2-6 illustrates a sampled sinusoid which is no longer periodic. In
order to make sure that the sampled version remains periodic, the analog frequency
should satisfy this condition [1]

 o s
s

mf f
N

= , (2.6)

where m denotes number of cycles over which DFT is computed.

Figure 2-6: Periodicity condition of sampling.

..........

t

NsTs

..........

t

The computational complexity (number of additions and multiplications) of DFT
is reduced from Ns

2 to NslogNs by using fast Fourier transform (FFT) algorithms. In
these algorithms, Ns is considered to be a power of two. Figure 2-7 shows the effect
of the periodicity constraint on the FFT computation. In this figure, the FFTs of two
sinusoids with frequencies of 250 Hz and 251 Hz are shown. The amplitudes of the
sinusoids are unity. Although there is only a 1 Hz difference between the sinusoids,
the FFT outcomes are significantly different due to improper sampling.

17

Chapter 2: Analog-to-Digital Signal Conversion

2.1.2 Amplitude Statistics

An important property used in signal analysis is amplitude statistics. This statistics
reflects the probability density function (pdf) associated with amplitudes of a ran-
domly sampled signal. In other words, this pdf shows the histogram of sample points
if the signal is sampled with infinitesimal sampling period. For example, for a sin-
ewave () sin(2)ox t a f t= π , its amplitude pdf is given by

Figure 2-7: FFTs of a 250 and a 251 Hz sinusoids.

0 0.1 0.2 0.3 0.4 0.5
-350

-300

-250

-200

-150

-100

-50

0

Freq. (kHz)

A
m

pl
itu

de
 (d

B
)

Due to limited resolution
of numerical calculation

(a)

0 0.1 0.2 0.3 0.4 0.5
-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

Freq. (kHz)

A
m

pl
itu

de
 (d

B
)

Due to improper
sampling

(b)

18

Real-Time Digital Signal Processing Based on the TMS320C6000

2 2

1() , f x x a
a x

= <
π − (2.7)

This PDF is illustrated in Figure 2-8.

Figure 2-8: Amplitude PDF of sinewave.

-a a x

f(x)

Consider a sinewave with fo = 1 kHz, Ns = 80, and m = 10. As shown in Figure 2-9,
the amplitude histogram is not correct due to improper sampling or by repeatedly
sampling the same level. In order to avoid this sampling outcome and obtain a proper
amplitude statistics, the number of cycles m and the number of samples Ns must be
mutually prime. Figure 2-10 shows the amplitude histogram for m = 13.

Figure 2-9: Histogram of amplitude levels when m = 10 and Ns = 80 are not
mutually prime: (a) sampled signal, and (b) histogram of sample points.

0 2 4 6 8 10
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

A
m

pl
itu

de

t(ms)
-1 -0.5 0 0.5 1

0

2

4

6

8

10

12

14

16

18

20

Amplitude

oc
cu

rr
en

ce

(a) (b)

19

Chapter 2: Analog-to-Digital Signal Conversion

2.1.3 Harmonics of Distorted Sinewaves

Linear circuits, in general, are not perfectly linear, leading to distortion of output sig-
nals. Circuit designers measure this distortion by using a sinewave input. A distorted
sinewave, as indicated by Fourier series, contains harmonics. In analog domain, the
locations of harmonics on the frequency axis are easy to predict. These locations are
at kfo where k denotes harmonic index. However, as a result of sampling, the loca-
tions of harmonics are not so easy to predict because of aliasing. The Nyquist rate
condition is usually held for the fundamental frequency. Consequently, the sampling
frequency may not be sufficient for higher harmonics. Knowledge of the locations of
harmonics is of great importance in the interpretation of FFT results, especially for
diagnostic purposes. Fig. 2-11 shows the effect of sampling on harmonics index. It is
seen that the sampling of a distorted sinewave results in consecutive folding of har-
monics between 0 and fs/2. Figure 2-12 shows the FFT result of a distorted sinewave
with fo = 1.5 kHz and fs = 10 kHz.

Figure 2-10: Histogram of amplitude levels when m = 13 and Ns = 80 are
mutually prime: (a) sampled signal, and (b) histogram of sample points.

0 2 4 6 8 10
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

A
m

pl
itu

de

t(ms)
-1 -0.5 0 0.5 1

0

2

4

6

8

10

12

14

oc
cu

rr
en

ce

Amplitude

(a) (b)

20

Real-Time Digital Signal Processing Based on the TMS320C6000

Figure 2-11: Effect of sampling on harmonic index; fo = 1.5 kHz with 10 harmonics
and fs = 10 kHz: (a) before sampling, and (b) after sampling.

0 2 4 6 8 10 12 14 16
0

1

2

3

4

5

6

7

8

9

10

11

freq (kHz)

Harmonics Harmonics

Fundamental

0 1 2 3 4 5
0

1

2

3

4

5

6

7

8

9

10

11

freq (kHz)

H
ar

m
on

ic
 In

de
x

k

H
ar

m
on

ic
 In

de
x

k

Fundamental

(a) (b)

Figure 2-12: Sampling a distorted sinewave with fo =1.5 kHz and fs = 10 kHz.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

Freq. (kHz)

A
m

pl
itu

d
e

(d
B

)

a
1a0 a

2

a
3

a
4

a
5

a
8

a
6

a
7

Fundamental

a9

DC

21

Chapter 2: Analog-to-Digital Signal Conversion

2.2 Quantization

An A/D converter has a finite number of bits (or resolution). As a result, continuous
amplitude values get represented or approximated by discrete amplitude levels. The
process of converting continuous into discrete amplitude levels is called quantization.
This approximation leads to an error called quantization noise. The input/output
characteristic of a 3-bit A/D converter is shown in Figure 2-13 to see how analog
voltage values get approximated by discrete voltage levels.

Figure 2-13: Characteristic of a 3-bit A/D converter:
(a) input/output static transfer function, and (b) additive quantization noise.

Analog Input 0 1 2 3

(a) (b)

4 65 7
000

001

010

011

100

101

010

111

Digital Output

Analog Input 0 1 2 3 4 65 7

Quantization Error

½ LSB

-½ LSB

The quantization interval depends on the number of quantization or resolution level,
as illustrated in Figure 2-14. Clearly the amount of quantization noise generated by
an A/D converter depends on the size of quantization interval. More quantization
bits translate into a narrower quantization interval and hence into a lower amount of
quantization noise.

Figure 2-14:
Quantization levels.

∆

t

()t x

22

Real-Time Digital Signal Processing Based on the TMS320C6000

To avoid saturation or out-of-range distortion, the input voltage must be between
Vref– and Vref+. The full-scale (FS) voltage or Vref is defined as

 FS ref ref refV V V V+ −= = − (2.8)

and 1 least significant bit (LSB) is given by

 1 LSB
2

ref
N

V
= ∆ = , (2.9)

where N is the number of bits of the A/D converter. Table 2-1 lists 1 LSB in volts for
different numbers of bits and reference voltages. It is interesting to note that a couple
of microvolts, which is 1 LSB in a high-resolution A/D converter, can be generated
by a dozen electrons in a 1 pF capacitor!

Table 2-1: LSB of A/D converter.

N 8 10 12 14 16 20

Vref = 5 V 19.5 mV 4.9 mV 1.2 mV 305 µV 76 µV 4.8 µV

Vref = 3 V 11.7 mV 2.9 mV 732 µV 183 µV 45.8 µV 2.8 µV

Vref = 1.8 V 7.0 mV 1.7 mV 439 µV 110 µV 27.5 µV 1.7 µV

Usually, it is assumed that quantization noise is signal independent and is uniformly
distributed over –0.5 LSB and 0.5 LSB. Figure 2-15 shows the quantization noise
of an analog signal quantized by a 3-bit A/D converter. It is seen that, although the
histogram of the quantization noise is not exactly uniform, it is reasonable to accept
the uniformity assumption.

Figure 2.16 shows the FFT of a sinewave before and after the digitization process.
The input sinewave is at 250 Hz, with unity amplitude, fs = 1 kHz, and Ns = 512. It is
seen that the quantization error raises the noise level.

23

Chapter 2: Analog-to-Digital Signal Conversion

Figure 2-15: Quantization of an analog
signal by a 3-bit A/D converter:

(a) output signal and quantization error,
(b) histogram of quantization error, and
(c) bit stream.

0 0.5 1 1.5 2 2.5 3
0

2

4

6

8

time (ms)

In
pu

t/O
ut

pu
t

0 0.5 1 1.5 2 2.5 3
-0.5

0

0.5

time (ms)

q(
t)

 (
LS

B
)

A/D Input/Output

(a)

-0.5 0 0.5
0

10

20

30

40

50

60

q (LSB)

oc
cu

rr
en

ce

(b)

0 100 200 300 400 500
Vr-

 Vm

Vr+

b1

b2

b3

sample number

D
at

a

Logic Analyzer

(c)

24

Real-Time Digital Signal Processing Based on the TMS320C6000

Figure 2-16: Sinewave before and after digitization, fo = 250 Hz, fs = 1 kHz,
Ns = 512, N = 8-bit: (a) FFT before digitization, and (b) FFT after digitization.

0 0.1 0.2 0.3 0.4 0.5
-350

-300

-250

-200

-150

-100

-50

0

Freq. (kHz)

A
m

pl
itu

de
 (

dB
)

Due to limited resolution
of numerical calculation

(a)

0 0.1 0.2 0.3 0.4 0.5
-350

-300

-250

-200

-150

-100

-50

0

Freq. (kHz)

A
m

pl
itu

de
 (

dB
)

FFT with Quantization

FFT without Quantization

Quantization noise

(b)

25

Chapter 2: Analog-to-Digital Signal Conversion

2.2.1 Signal-to-Noise Ratio

Resolution is the term used to describe the minimum resolvable signal level by an
A/D converter. The fundamental limit of an A/D converter is governed by quanti-
zation noise, which is caused by the A/D converter’s finite resolution. If the output
digital word consists of N bits, the minimum step that the converter can resolve is 1
LSB. If we assume quantization error, nq, is a random variable uniformly distributed
and independent of the input signal, then we have

2

2 2 22

2

1
12q q q qE n n dn

∆

∆−

∆ = = = ∆ ∫δ , (2.10)

where δq
2 indicates quantization noise variance. For a sinusoidal input signal having

an amplitude of Am, an ideal A/D converter has a Signal-to-Noise Ratio (SNR) of

 10 10
2

1
12

2

2

2
log log

P

P

A

V

S

n

m

ref
N

= ()
()

, (2.11)

where PS and Pn denote signal and noise power, respectively. It is observed that the
quantization SNR is a function of amplitude. The maximum SNR can thus be writ-
ten as

SNR max =
()

()
= = +10

2 2

1
12

2
10

3

2
2 6 02 1 76

2

2

2log log . .
V

V
N

ref

ref

N

N ((dB)

 (2.12)

For instance, an ideal 16-bit A/D converter has a maximum SNR of about 97.8 dB.
Quantization noise decreases by 6 dB for each additional bit.

Figure 2-17 shows the SNR of an 8-bit A/D converter as a function of the input
amplitude. The maximum occurs when the input sinewave amplitude is equal to one
half of the full-scale voltage (scaled to 0 dB).

26

Real-Time Digital Signal Processing Based on the TMS320C6000

To better understand the quantization effect, let us assume that the signal is zero
mean Gaussian with ref xV K= σ , where σx denotes standard deviation of the signal.
By substituting for Vref and σx in (2.11), we obtain

2

102SNR 10log 6 10.8 20logx

q

N Kσ= ≅ + −
σ

 (2.13)

 As an example, consider K = 4. The probability of signal samples falling in the 4σx
range is 0.954. This means that out of 1,000 samples, 954 samples fall in this range
on average. In other words, 46 out of 1,000 samples fall outside the indicated range
and hence get represented by the maximum or minimum allowable value.

If the signal is scaled by α, the corresponding signal variance changes to 2 2
xα σ .

Hence, the SNR changes to

 10 10SNR 6 10.8 20log 20logN K≅ + − + α (2.14)

It is important to note that when we perform fractional arithmetic (discussed later
in Chapter 6), α is scaled to be less than 1, leading to a lower signal-to-noise ratio.
This indicates that quantization noise should be kept in mind when scaling down the
input signal. In other words, scaling down to achieve fractional representation can-
not be done indefinitely, since, as a result, the signal would get buried in quantization
noise.

Figure 2-17: Signal-to-noise ratio of an ideal 8-bit A/D converter.

-50 -40 -30 -20 -10 0 10
0

10

20

30

40

50

60

Am(dB)

S
N

R

SNRmax = 6.02N + 1.76

27

Chapter 2: Analog-to-Digital Signal Conversion

The interested reader is referred to [2] for more elaborate analysis of quantization
noise. For example, for a linear time-invariant system such as a FIR or an IIR filter, it
can be shown that the noise variance 2

oσ at the output of the system, caused by the
input quantization noise, is given by

 []2 2 2
o q

n

h nσ = σ ∑ (2.15)

where h denotes the unit sample response.

2.3 Signal Reconstruction

So far, we have examined the forward process of sampling. It is also important to un-
derstand the inverse process of signal reconstruction from samples. According to the
Nyquist theorem, an analog signal va can be reconstructed from its samples by using
the following formula:

 () () sinc s
a a s

k s

t kTv t v kT
T

∞

=−∞

 −=
∑ (2.16)

One can see that the reconstruction is based on the interpolation of shifted sinc
functions. Figure 2-18 illustrates the reconstruction of a sinewave from its samples.

Figure 2-18: Reconstruction of an analog sinewave based on its samples
Am = 1, fs = 2 Hz, and fs = 10 kHz.

-4 -2 0 2 4 6 8 10 12 14
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Time (ms)

W
ei

gh
te

d
S

in
cs

Sinc Interpolation

Samples

Interpolated curve

Sinc function

28

Real-Time Digital Signal Processing Based on the TMS320C6000

It is very difficult to generate sinc functions by electronic circuitry. That is why, in
practice, an approximation of sinc function is used. Figure 2-19 shows an approxima-
tion of a sinc function by a pulse, which is easy to realize in electronic circuitry. In
fact, the well-known sample and hold circuit performs this approximation. The final
stage of a D/A converter is the sample and hold circuit. The transfer function of a
D/A converter is

H j

j j
e

T

T
e f f ej T S

S

j T
S

j f fS S Sω
ω ω

ω
ω

ω ω π() = − = () = ()− − −1 1 2

2
2sin

sinc
 (2.17)

Both the time and frequency domain response of a D/A converter are shown in
Figure 2-20.

Figure 2-19: Approximation of a sinc function by a pulse.

-5 -4 -3 -2 -1 0 1 2 3 4 5
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

T

Pulse approximation

Sinc function

s

Ts /2-Ts /2

-Ts

29

Chapter 2: Analog-to-Digital Signal Conversion

Sample and hold circuits in D/A converters have two inherent non-idealities. First,
as illustrated in Figure 2-21, the gain in the desired central band is not constant. It
is possible to compensate for this non-ideality by using an inverse filter as part of the
DSP component. Another solution is to increase sampling frequency, which results
in a narrower relative signal bandwidth. The second non-ideality is caused by the
presence of high-frequency replica of the signal spectrum, which can be removed by
using a lowpass filter. These solutions are illustrated in Figure 2-22.

Figure 2-20: D/A converter: (a) time-domain, and (b) frequency response.

H(jw)

DAC

Vin

0

Vout

1

t t0 Ts

(a)

|)(| fH

f /fs12 3-1-2

(b)

Figure 2-21: Non-idealities of a D/A converter.

|)(| fH

f /fs12 3-1-2

H(jw)

DAC

Vin

0

Vou t

fs/2 f

Vin(f)

ffs 2fs-fs-2fs

ffs 2fs-fs-2fs

Vout(f)
distorted

signal

30

Real-Time Digital Signal Processing Based on the TMS320C6000

Bibliography

[1] J. Proakis and D. Manolakis, Digital Signal Processing:Principles, Algorithms,
and Applications, Prentice-Hall, 1996.

[2] S. Mitra, Digital Signal Processing: A Computer-Based Approach, McGraw Hill,
1998.

[3] B. Razavi, Principles of Data Conversion System Design, IEEE Press, 1995.

Figure 2-22: Reduction of frequency distortion of a D/A
converter by increasing sampling frequency.

Vout

ffs 2fs-fs-2fs

ffs 2fs-fs-2fs

Vout(f) Less
distorted

signal

Can be easily
filtered

31

TMS320C6x Architecture

3C H A P T E R

The choice of a DSP processor to implement an algorithm in real-time is application
dependent. There are many factors that influence this choice. These factors include
cost, performance, power consumption, ease-of-use, time-to-market, and integration/
interfacing capabilities.

The family of TMS320C6x processors, manufactured by Texas Instruments™, are
built to deliver speed. They are designed for million instructions per second (MIPS)
intensive applications such as 3G wireless, DSL/cable modems, and digital imaging.
Table 3-1 provides a list of currently available fixed-point and floating-point C6x
processors at the time of this writing. As can be seen from this table, instruction
cycle time, speed, power consumption, memory, peripherals, packaging, and cost
specifications vary for different products in this family. For example, the fixed-point
C6416-600 version operates at 600 MHz (1.67 ns cycle time), delivering a peak
performance of 4800 MIPS. The floating-point C6713-225 version operates at 225
MHz (10 ns cycle time), delivering a peak performance of 1350 MIPS. Figure 3-1 il-
lustrates the processing power of C6x by showing a speed benchmarking comparison
with some other common DSP processors.

32

Real-Time Digital Signal Processing Based on the TMS320C6000

Table 3-1: Sample C6x DSP product specifications (year 2003).†

Device
RAM(Bytes)
Data / Prog

McBSP (E)DMA COM Timers MHz
Cycles
(ns)

MIPS

Typical Activity-
Total Internal

Power (W) (Full
Device Speed)

Voltage (V)
Core, I/O

Packaging

TMS320C6711-100 4K/4K/64K 2 16 HPI/16 2 100 10 600 1.1 1.8, 3.3 256 BGA, 27 mm

TMS320C6711-150 4K/4K/64K 2 16 HPI/16 2 150 6.7 900 1.1 1.8, 3.3 256 BGA, 27 mm

TMS320C6713-200 4K/4K/256K 2 16 HPI/16 2 200 5 1200 1.0 1.2, 3.3 208 TQFP, 28 mm

TMS320C6713-225 4K/4K/256K 2 16 HPI/16 2 225 4.4 1350 1.2 1.26, 3.3 272 BGA, 27 mm

TMS320C6701-150 64K/64K 2 4 HPI/16 2 150 6.7 900 1.3 1.8, 3.3 352 BGA, 35 mm

TMS320C6701-167 64K/64K 2 4 HPI/16 2 167 6 1000 1.4 1.9, 3.3 352 BGA, 35 mm

TMS320C6416-500 16K/16K/1M 2+UTOPIA* 64 PCI/HPI 32/16 3 500 2 4000 0.64 1.2, 3.3 532 BGA, 23 mm

TMS320C6416-600 16K/16K/1M 2+UTOPIA* 64 PCI/HPI 32/16 3 600 1.67 4800 1.06 1.4, 3.3 532 BGA, 23 mm

* UTOPIA pins muxed with a third McBSP.

Figure 3-1: BDTImark™ DSP Speed Metric benchmark
by Berkeley Design Technology, Inc.1

0 20 40 60 80 100 120 140 160

Fixed-Point

Floating -Point

ARM ARM7T DMI(80MHz)

ARM ARM7TDMI/ Piccolo(70MHz)

Analog DevicesADSP-21xx(75MIPS)

DSP Group OakDSP Core(80MIPS)

Hitachi SH-DSP(66MHz)

IDT R4650(200MHz)

Intel MMX Pentium(266MHz)

LSI Logic LSI401Z(200MHz)

Lucent TechnologiesDSP16xx(120MIPS)

Lucent TechnologiesDSP16xxx(120MIPS)

Motorola DSP560xx(48MIPS)

Motorola DSP563xx(150MIPS)

Motorola DSP566xx(60MIPS)

Motorola DSP568xx(35MIPS)

NEC uPD7701x(75MIPS)

PhilipsRD1602x(R.E.A.L.) (60MIPS)

Texas InstrumentsTMS320C2xx(40MIPS)

Texas Instruments TMS320C27xx(50MIPS)

Texas Instruments TMS320C5x(50MIPS)

Texas Instruments TMS320C54x(120MIPS)

Texas Instruments TMS320C62x(300MHz)
Texas Instruments TMS320C8x(60MIPS)

 (for one of four on-chip processors)
Zoran ZR38xxx(40MIPS)

Analog DevicesADSP-2106x(60MIPS)

Intel Pentium(200MHz)

Motorola/IBM PowerPC604e(333MHz)

Texas Instruments TMS320C3x(40MIPS)

Texas Instruments TMS320C4x(30MIPS)

Texas Instruments TMS320C67xx(167MHz)

1 The BDTImark is a summary measure of DSP speed, distilled from a suite of DSP benchmarks developed and indepen-
dently verified by Berkeley Design Technology, Inc. A higher BDTImark score indicates a faster processor. For a complete
description of the BDTImark and underlying benchmarking methodology, as well as additional BDTImark scores, refer to
http://www.bdti.com. © 2000 Berkeley Design Technology, Inc.

33

Chapter 3: TMS320C6x Architecture

Figure 3-2 shows the block diagrams of the generic C6x, C64x, and C6211/C6711
architectures. The C6x CPU consists of eight functional units divided into two sides:
(A) and (B). Each side has a so-called .M unit (used for multiplication operation),
a .L unit (used for logical and arithmetic operations), a .S unit (used for branch, bit
manipulation and arithmetic operations), and a .D unit (used for loading, storing
and arithmetic operations). Some instructions such as ADD can be done by more
than one unit. There are sixteen 32-bit registers associated with each side. Inter-
action with the CPU must be done through these registers. A listing of the C6x
instructions, as divided by the four functional units, appears in Appendix A (Quick
Reference Guide). These instructions are fully discussed in the TI TMS320C6000
CPU and Instruction Set Reference Guide [1].

Ext'l
Memory

-Sync

-Async

Program
RAM

Data
Ram

DMA

Serial Port

Host port

Boot Load

Timers

Pwr Down

Addr

D(32)

Internal Buses

.D1 .D2

.M1 .M2

.L1 .L2

.S1 .S2R
eg

s
(A

0-
A

15
)

R
eg

s
(B

0-B
15)

Control Regs

EMIF

(a)

34

Real-Time Digital Signal Processing Based on the TMS320C6000

Figure 3-2:
(a) Generic C6x architecture,
(b) C64x architecture, and
(c) C6211/C6711 architecture.†

A Register File
Data Path A

L1 S1 M1 D1

Data Path B
B Register File

D2 L2S2M2

Instruction Decode

Instruction Dispatch

Instruction Fetch Control
Registers

Control
Logic

Test

In–Circuit
Emulation

Interrupt
Control

C64x DSP Core

L1P Cache

L1D Cache

L2
Memory

PLL

Enhanced
DMA

Controller
64

Channels

Power
Down Logic

EMIFA
64

16
EMIFB

Timers (3)

McBSP0

McBSP1Utopia or

McBSP2

PCI or
HPI

GPIO(8)

GPIO(8)

Interrupt
Selector

C64x Digital Signal Processor

Boot
Configuration

(b)

L1P Cache
Direct Mapped
4K Bytes Tota l

L2 Memory
4 Way/Banks

64k Bytes
Total

JTA G Tes t/
Emulation
Control

External
Memory
Interface

Timer Timer

Multichanne l
(T1/E1)

Buffered Serial Port

PLL Clock Generator
L1D Cache

2 Way Set Associative
4K Bytes Total

C62xTM/C67xTM CPUCore

Program Fetch Control
RegistersInstruction Dispatch

Instruction Decode Control
LogicData Path1

ARegister File
� � � �
L1 S1 M1 D1

Data Path2

B Register File
� � � �
D2 M2 S2 L2

Test

Emulation

Interrupts

Enchanced
DMAController

16 Channels

69 Additional
Transfers

Host Port Interface
16-bit

Power Down Modes

Multichanne l
(T1/E1)

Buffered Serial Port

A

D

(c)

35

Chapter 3: TMS320C6x Architecture

As shown in Figure 3-3, the internal buses consist of a 32-bit program address bus, a
256-bit program data bus accommodating eight 32-bit instructions, two 32-bit data
address buses (DA1 and DA2), two 32-bit (64-bit for C64 version) load data buses
(LD1 and LD2), and two 32-bit (64-bit for the floating-point version) store data
buses (ST1 and ST2). In addition, there are a 32-bit DMA data and a 32-bit DMA
address bus. The off-chip, or external, memory is accessed through a 20-bit address
bus and a 32-bit data bus.

Figure 3-3: C6x internal buses.

Program Addr

Program Data

x32

x256

Data Addr - A (DA1)

Load Data - A (LD1)

x32

x32/64

Data Addr - B (DA2)

Load Data - B (LD2)

x32

x32/64

DMA Addr - Read

DMA Data - Read

x32

x32

DMA Addr - Write

DMA Data - Write

x32

x32

DMA

Internal
Memory

Store Data - A (ST1) x32/64

.D1

Store Data - B (ST2) x32/64

.D2

External
Memory

Peripherals

Addr x 32

Data x 32

Addr

Data x 32

Addr x 32

Data x 32

The peripherals on a typical C6x processor include External Memory Interface
(EMIF), DMA, Boot Loader, Multichannel Buffered Serial Port (McBSP), Host Port
Interface (HPI), Timer, and Power Down unit. EMIF provides the necessary timing
for accessing external memory. DMA allows the movement of data from one place in
memory to another place without interfering with the CPU operation. Boot Loader
boots the loading of code from off-chip memory or HPI to internal memory. McBSP
provides a high-speed multichannel serial communication link. HPI allows a host
to access internal memory. Timer provides two 32-bit counters. Power Down unit is
used to save power for durations when the CPU is inactive.

36

Real-Time Digital Signal Processing Based on the TMS320C6000

3.1 CPU Operation (Dot Product Example)

As shown in Figure 3-2, the C6x CPU is divided into two data paths, data path A
(or 1), and data path B (or 2). An effective way to understand the CPU operation is
by going through an example. Figure 3-4 shows the assembly code for a 40-point dot

product y between two vectors a and x,
40

1
n n

n

y a x
=

= ∗∑ . This code appears in the

TI Technical Training Notes on TMS320C6x DSP [2]. At this point, it is worth men-
tioning that the assembler is not case sensitive (i.e., instructions and registers can be
written in lower or uppercase).

Figure 3-4: Dot product assembly code.

Label Instruction Operands Comment

functional unit data path : 1 indicates A side and 2, B side

 MVK .S1 a,A5 ;move address of a
 MVKH .S1 a,A5 ;into register A5
 MVK .S1 x,A6 ;move address of x
 MVKH .S1 x,A6 ;into register A6
 MVK .S1 y,A7 ;move address of y
 MVKH .S1 y,A7 ;into register A7
 MVK .S1 40,A2 ;A2=40, loop counter
loop: LDH .D1 *A5++,A0 ;A0=an
 LDH .D1 *A6++,A1 ;A1=xn
 MPY .M1 A0,A1,A3 ;A3=an*xn, product
 ADD .L1 A3,A4,A4 ;y=y+A3
 SUB .L1 A2,1,A2 ;decrement loop counter
 [A2] B .S1 loop ;if A2≠0, branch to loop
 STH .D1 A4,*A7 ;*A7=y

The registers assigned to an, xn, loop counter, product, y, &a[n] (address of
an), &x[n] (address of xn), and &y[n] (address of yn) are shown in Figure 3-5. In
this example, only the A side functional units and registers are used.

A loop is created by the instructions indicated by •’s. First, a loop counter is set up
by using the move constant instruction MVK. This instruction uses the .S1 unit to
place the constant 40 in register A2. The beginning of the loop is indicated by the
label loop and the end by a subtract instruction SUB to decrement the loop counter
followed by a branch instruction B to return to loop.

37

Chapter 3: TMS320C6x Architecture

The subtraction is performed by the .L1 unit and branching by the .S1 unit. The
brackets as part of the branch instruction indicate that this is a conditional instruc-
tion. All the C6x’s instructions can be made conditional based on a zero or nonzero
value in one of the registers: A1, A2, B0, B1, and B2. The syntax [A2] means “ex-
ecute the instruction if A2 ≠ 0”, and [!A2] means “execute the instruction if A2 =
0”. As a result of these instructions, the loop is repeated 40 times.

Considering that the interaction with the functional units is done through the
A-side registers, these registers must be set up in order to start the loop. The instruc-
tions labeled by ’s indicate the necessary instructions for doing so. MVK and MVKH
are used to load the address of an, xn, and y into the registers A5, A6, and A7,
respectively. These instructions must be done in the order indicated to load the lower
16 bits of the full 32-bit address first, followed by the upper 16 bits. These registers
are used as pointers to load an, xn into the A0, A1 registers and store y from the A4
register (instructions labeled by ∆). The C programming language notation * is used
to indicate a register is being used as a pointer. Depending on the datatype, any of
the following loading instructions can be used: bytes (8-bit) LDB, halfwords (16-bit)
LDH, or words (32-bit) LDW. Here, the data is assumed to be halfwords. The loading/
storing is done by the .D1 unit, since .D units are the only units capable of interact-
ing with data memory.

Note that the pointers A5 and A6 need to be post-incremented (C notation), so that
they point to the next values for the next iteration of the loop. When registers are
used as pointers, there are several ways to perform pointer arithmetic. These include
pre- and post-increment/decrement options by some displacement amount, where
the pointer is modified before or after it is used (for example, *++A1[disp] and

Figure 3-5: A-side registers.

a

x

loop counter

product

y

&a[n]

&x[n]

&y

..

.

32-BITS

A0
A1
A2
A3
A4
A5
A6
A7

A15

38

Real-Time Digital Signal Processing Based on the TMS320C6000

*A1++[disp]). In addition, a pre-offset option can be performed with no modi-
fication of the pointer (for example, *+A1[disp]). Displacement within brackets
specifies the number of data elements (depending on the datatype), whereas displace-
ment in parentheses specifies the number of bytes. These pointer offset options are
listed in Figure 3-6 together with some examples.

Figure 3-6: (a) Pointer offsets, (b) pointer examples
(note: instructions are independent, not sequential).†

Syntax Description Pointer Modified
*R Pointer No

*+R[disp] +Pre-offset No
*-R[disp] – Pre-offset No
*++R[disp] Pre-increment Yes
*--R[disp] Pre-decrement Yes
*R++[disp] Post-increment Yes
*R--[disp] Post-decrement Yes
[disp] specifies # elements - size in W, H, or B
(disp) specifies # bytes

(a)

(b)

Examples ResultsA0 8

A3 4

0 FEED
2 00B1
4 002E
6 0033
8 0004
A 0095
C 006C
E 0070
10 FF7A

1. LDH *A0--[A3],A5

2. LDH *++A3(3),A5

3. LDB *+A0[A0],A5

4. LDH *--A3[0],A5

5. LDB *-A0[3],A5

;A0=0 A5=0004

;A3=6 A5=0033

;A0=8 A5=7A

;A3=4 A5=002E

;A0=8 A5=00

Finally, the instructions MPY and ADD within the loop perform the dot product
operation. The instruction MPY is done by the .M1 unit and ADD by the .L1 unit.
It should be mentioned that the above code as is will not run properly on the C6x
because of its pipelined CPU, which is discussed next.

39

Chapter 3: TMS320C6x Architecture

3.2 Pipelined CPU

In general, it takes several steps to perform an instruction. Basically, these steps are
fetching, decoding, and execution. If these steps are done serially, not all of the re-
sources on the processor, such as multiple buses or functional units, are fully utilized.
In order to increase throughput, DSP CPUs are designed to be pipelined. This means
that the foregoing steps are carried out simultaneously. Figure 3-7 illustrates the
difference in processing time for three instructions executed on a serial or non-pipe-
lined and a pipelined CPU. As can be seen, a pipelined CPU requires fewer clock
cycles to complete the same number of instructions.

Figure 3-7: Pipelined vs. non-pipelined CPU.†

Clock Cycles

CPU Type 1 2 3 4 5 6 7 8 9

Non-Pipelined F1 D1 E1 F2 D2 E2 F3 D3 E3

Pipelined F1 D1 E1

F2 D2 E2

F3 D3 E3

Fx = fetching of instruction x
Dx = decoding of instruction x
Ex = execution of instruction x

On the C6x processor, fetching consists of four phases, each requiring a clock cycle.
These include generate fetch address (denoted by F1), send address to memory (F2),
wait for data (F3), and read opcode from memory (F4). Decoding consists of two
phases, each requiring a clock cycle. These are dispatching to appropriate functional
units (denoted by D1), and decoding (D2). Due to the delays associated with the
instructions multiply (MPY − 1 delay), load (LDx − 4 delays), and branch (B − 5 de-
lays), the execution step may consist of up to six phases (denoted by E1 through E6),
accommodating a maximum of 5 delays. Hence, as shown in Figure 3-8, the F step
consists of four, the D step of two, and the E step of six possible substeps, or phases.

Figure 3-8: Stages of the pipeline.

Program
Fetch

F1 F2 F3 F4 D1 D2 E1 E2 E3 E4 E5 E6
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Decode Execute

40

Real-Time Digital Signal Processing Based on the TMS320C6000

When the outcome of an instruction is used by the next instruction, an appropriate
number of NOPs (no operation or delay) must be added after multiply (one NOP),
load (four NOPs/or NOP 4), and branch (five NOPs/or NOP 5) instructions in order
to allow the pipeline to operate properly. Therefore, for the above example to run on
the C6x processor, appropriate NOPs, as shown in Figure 3-9, should be added after
the instructions MPY, LDH, and B.

Figure 3-9: Pipelined code with NOPs inserted.

Figure 3-10 illustrates an example of a pipeline situation that requires adding an NOP.
The plus signs indicate the number of substeps or latencies required for the instruc-
tion to be completed. In this example, it is assumed that the addition operation is
done before one of its operands is made available from the previous multiply opera-
tion, hence the need for adding a NOP after the MPY. Later on, it will be seen that as
part of code optimization, NOPs can be reduced or removed leading to an improve-
ment in efficiency.

 MVK .S1 40,A2
loop: LDH .D1 *A5++,A0
 LDH .D1 *A6++,A1
 NOP 4
 MPY .M1 A0,A1,A3
 NOP
 ADD .L1 A3,A4,A4
 SUB .L1 A2,1,A2
 [A2] B .S1 loop
 NOP 5
 STH .D1 A4,*A7

41

Chapter 3: TMS320C6x Architecture

Figure 3-10: (a) Multiply then add, and (b) need for NOP insertion.

Prog
Fetch

Decode Execute Done

F1-F4 D1-D2 E1 E2 E3 E4 E5 E6
MPY

MPY is fetched.

MPY
ADD

MPY is decoded and ADD is fetched.

MPY +
ADD

MPY is executed and ADD is decoded.

MPY
ADD

MPY is still being executed while ADD is also executed.

MPY
ADD

Both instructions finish at the same time, the result from the MPY is not used in the ADD instruction.

(a)

Prog
Fetch Decode Execute Done

F1-F4 D1-D2 E1 E2 E3 E4 E5 E6
MPY

MPY is fetched.

MPY
NOP

MPY is decoded and NOP is fetched.

MPY +
NOP

ADD
MPY is executed, NOP is decoded and ADD is fetched.

MPY
NOP

ADD
MPY is still being executed while NOP stalls the pipeline and ADD is decoded.

MPY
ADD

MPY completes, ADD is executed while using the result from the MPY.

ADD
ADD completes.

(b)

42

Real-Time Digital Signal Processing Based on the TMS320C6000

3.3 VelociTI

The C6x architecture is based on the very long instruction word (VLIW) archi-
tecture. In such an architecture, several instructions are captured and processed
simultaneously. This is referred to as a fetch packet (FP). (See Figure 3-11.)

Figure 3-11: C6x fetch packet: C6x fetches eight 32-bit instructions every cycle.

I1 .unit
I2 .unit
I3 .unit
I4 .unit
I5 .unit
I6 .unit
I7 .unit
I8 .unit

8 consecutive
instructions

I1 I2 I3 I4 I5 I6 I7 I8

256 bits

Fetch Packet (8 × 32-bit)

The C6x uses VLIW, allowing eight instructions to be captured simultaneously from
on-chip memory onto its 256-bit wide program data bus. The original VLIW archi-
tecture has been modified by TI to allow several so-called execute packets (EP) to be
included within the same Fetch Packet, as shown in Figure 3-12. An EP constitutes
a group of parallel instructions. Parallel instructions are indicated by double pipe
symbols (||), and, as the name implies, they are executed together, or in parallel.
Instructions within an EP move together through every stage of the pipeline. This
VLIW modification is called VelociTI. Compared with VLIW, VelociTI reduces code
size and increases performance when instructions reside off-chip.

Figure 3-12: A fetch packet containing three execute packets.

Code example

 LDH .D1
 || LDH .D2
 ADD .L1
 || MPY .M1
 || MPY .M2
 SHR .S1
 || SUB .L2
 || B .S2

LDH LDH ADD MPY MPY SHR SUB B

Fetch Packet (VLIW instrunctions)

EP EP EP

43

Chapter 3: TMS320C6x Architecture

3.4 C64x DSP

The C64x is a more recently released DSP core, as part of the C6x family, with
higher MIPS power operating at higher clock rates. This core can operate in the
range of 300–1000 MHz clock rates, giving a processing power of 2400–8000 MIPS.
The clock rate is expected to increase to 1.1 GHz and higher, leading to a processing
rate of 8800+ MIPS. The TI website http://www.ti.com/ provides the C64x speed-
ups obtained over the C62x for various wireless communication and digital imaging
algorithms. Such speedups are achieved due to many enhancements, some of which
are mentioned here.

Per CPU data path, the number of registers is increased from 16 to 32, A0–A31 and
B0–B31. These registers support packed datatypes, allowing storage and manipulation
of four 8-bit or two 16-bit values within a single 32-bit register.

Although the C64x is code compatible with the C62x, (i.e., all the C62x instruc-
tions run on the C64x), the C64x can run additional instructions on packed
datatypes, boosting parallelism. For example, the new instruction MPYU4 performs
four, or quad, 8-bit multiplications, or the instruction MPY2 performs two, or dual,
16-bit multiplications in a single instruction cycle on a .M unit. This packed data
processing capability is illustrated in Figure 3-13. Table 3-2 provides a listing of the
C64x packed data instructions.

Figure 3-13: C64x packed data processing capability.†

32 32

8 bit

8x88x8 8x8 8x8

16 16 16 16

OR

16 bit

32 32

16x16 16x16

32 32

44

Real-Time Digital Signal Processing Based on the TMS320C6000

Table 3-2: A listing of C64x packed data instructions.†

Operations Quad 8-bit Quad 16-bit

Multiply X X
Multiply with Saturation X

Addition/Subtraction X X
Addition with Saturation X X

Absolute Value X
Subtract with Absolute Value X

Compare X X
Shift X

Data pack/Unpack X X
Data pack with Saturation X X

Dot Product with optional negate X X
Min/Max/Average X X

Bit-expansion (Mask generation) X X

Additional hardware has been added to each functional unit on the C64x for per-
forming ten special purpose instructions to accelerate key functions encountered in
wireless and digital imaging applications. For example, the instruction GMPY4 allows
four 8-bit Galois-field multiplications in a single instruction as part of the Reed-Solo-
mon decoding. Table 3-3 provides a list of these special purpose instructions.

Table 3-3: C64x special purpose instructions.†

Instruction Description Example Application
BITC4 Bit count Machine vision
GMPY4 Galois Field MPY Reed-Solomon support
SHFL Bit interleaving Convolution encoder
DEAL Bit deinterleaving Cable modem
SWAP4 Byte swap Mixed Multiprocessor support
XPNDx Bit expansion Graphics
MPYHIx,MPYLIx Extended precision 16x32 MPYs Audio
AVGx Quad 8-bit,Dual 16-bit average Motion compensation
SUBABS4 Quad 8-bit Absolute of differences Motion estimation
SSHVL, SSHVR Signed variable shift GSM

45

Chapter 3: TMS320C6x Architecture

In addition, the functionality of each functional unit on the C64x has been im-
proved leading to a greater orthogonality, or generality, of operations. For example,
the .D unit can perform 32-bit logical operation just as the .S and .L units, or the
.M unit can perform shift and rotate operations just as the .S unit. The C64x .S unit
is capable of performing additional branching instructions, such as branch positive
BPOS. Furthermore, the C64x allows multiple units on one side to read the same
crosspath source from the other side.

The C64x supports 64-bit loads and stores with a single instruction. There are four
32-bit paths for loading data to the registers. LD1a and LD2a are the load paths for
32 LSBs (least significant bits) on side A and B, respectively, and LD1b and LD2b for
32 MSBs (most significant bits). Similarly, ST1a, ST1b, ST2a, ST2b are the 32-bit
store paths for storing data from memory. The C64x also allows nonaligned loads
and stores, meaning that loading and storing of words and double words can be done
on any byte boundary by using nonaligned load and store instructions. Figure 3-14
provides a comparison between the data paths of the C62x and C64x CPUs.

Finally, similar to the C6211, the C64x contains a 2-level cache, allowing it to make
a better use of the CPU speed when interacting with off-chip memory that has a
lower speed.

46

Real-Time Digital Signal Processing Based on the TMS320C6000

Bibliography

[1] Texas Instruments, TMS320C6000 CPU and Instruction Set Reference Guide,
Literature ID# SPRU 189F, 2000.

[2] Texas Instruments, Technical Training Notes on TMS320C6x, TI DSP Fest,
Houston, 1998.

S1 S2 D S2D

L1 S1
S1D

M1
S2 D S1 S2

D1

DA1

S1

Register A0–A15 2X

1X

(address) (address)
DA2

Register B0–B151X

S2 S1 D

D2
S2 S1

M2 S2 L2
S2 S1 D D S2 S1

2X

C62x/C67x CPU – VelociTI

DL SL SL DL

LD1
(load data)

32 MSBs

ST1
(store data)

LD1
(load data)
32 LSBs

DL SL SL DLD

(load data)
32 LSBs

LD2

C67x only

LD2
(load data)
32 MSBs
C67x only

ST2
(store data)

S1 S2 D S2D

L1 S1
S1D

M1
S2 D S1 S2

D1

DA1

S1

Register A0–A31

1X

(address) (address)
DA2

Register B0–B31

S2 S1 D

D2
S2 S1 DL

M2 S2 L2
S2 S1 D D S2 S1

2X

C64x CPU – VelociTI.2

DL SL SL DL

LD1b
(load data)

32 MSBs
ST1a

(store data)
32 LSBs

ST1b
(store data)
32 MSBs

LD1a
(load data)
32 LSBs

DL DL SL SL DL

LD2b
(load data)
32 MSBs

ST2b
(store data)

32 MSBs
ST2a

(store data)
32 LSBs

D

(load data)
32 LSBs

LD2a

40–bit write paths (8 MSBs, DL; 32 LSBs, D)
40–bit read paths (8 MSBs, SL; 32 LSBs, S2)

New cross path

32 bits 32 bits

Figure 3-14: Data paths of C62x/67x and C64x
(S1=source1, S2=source2, D=destination, SL=source long, DL=destination long).†

47

Software Tools

4C H A P T E R

Programming most DSP processors can be done either in C or assembly. Although
writing programs in C would require less effort, the efficiency achieved is normally
less than that of programs written in assembly. Efficiency means having as few in-
structions or as few instruction cycles as possible by making maximum use of the
resources on the chip.

In practice, one starts with C coding to analyze the behavior and functionality of an
algorithm. Then, if the required processing rate is not met by using the C compiler
optimizer, the time-consuming portions of the C code are identified and converted
into assembly, or the entire code is rewritten in assembly. In addition to C and as-
sembly, the C6x allows writing code in linear assembly. Figure 4-1 illustrates the code
efficiency versus coding effort for three types of source files on the C6x: C, linear
assembly, and hand-optimized assembly. As can be seen, linear assembly provides a
good compromise between code efficiency and coding effort.

Figure 4-1:
Code efficiency vs. coding

effort.†

C

Linear
ASM

Compiler
Optimizer

Assembly
Optimizer

Hand
Optimized

Typical
Efficiency

50-80% Low

Med

High

Coding
Effort

ASM

80-100%

100%

48

Real-Time Digital Signal Processing Based on the TMS320C6000

Figure 4-2 shows the steps involved for going from a source file (.c extension for C,
.asm for assembly, and .sa for linear assembly) to an executable file (.out extension).
Figure 4-3 lists the .c and .sa versions of the dot-product example to see what they
look like. The assembler is used to convert an assembly file into an object file (.obj
extension). The assembly optimizer and the compiler are used to convert, respec-
tively, a linear assembly file and a C file into an object file. The linker is used to
combine object files, as instructed by the linker command file (.cmd extension), into
an executable file. All the assembling, linking, compiling, and debugging steps have
been incorporated into an integrated development environment (IDE) called Code
Composer Studio (CCS or CCStudio). CCS provides an easy-to-use graphical user
environment for building and debugging C and assembly codes on various target
DSPs.

Figure 4-2: C6x software tools.

.c

.asm

Link.cmd

.sa

.c = C source file

.sa = linear assembly source file

.asm = assembly source file

.obj = object file

.out = executable file

.cmd = linker command file

Compiler

Text
Editor

Assembly
Optimizer

Assembler Linker Debugging
.obj .out

Code Composer Studio

49

Chapter 4: Software Tools

void main()
{
 y = DotP((int *) a, (int *) x, 40);
}

int DotP(int *m, int *n, short count)
{
 int sum, i;
 sum = 0;

 for(i=0;i<count;i++)
 sum += m[i] * n[i];

 return(sum);
}

(a)

.title "dot product"
 .def dotp
 .sect code

dotp: .proc A4,B4,A6,B6,A8,B3
 .reg a, ai, b,bi,r,prod,sum,c,ci,i;
 MV A4,c
 MV B4,b
 MV A6,a
 MV B6,r
 MV A8,i

loop: .trip 40
 LDH *a++, ai
 LDH *b++,bi
 MPY ai,bi,prod
 SHR prod,15,sum
 ADD ai,sum,ci
 STH ci, *c++
 [i] SUB i,1,i
 [i] B loop
 .endproc B3

(b)

Figure 4-3: (a) .c (b) .sa version of dot-product example.

50

Real-Time Digital Signal Processing Based on the TMS320C6000

4.1 C6x DSK/EVM Target Boards

Upon the availability of either a DSK or an EVM board, an executable file can be
run on an actual C6x processor. In the absence of such boards, CCS can be config-
ured to simulate the execution process. As shown in Figure 4-4, the C6713 DSK
board is a DSP system which includes a C6713 DSP chip operating at 225 MHz with
4/4/256 Kbytes memory for L1D data cache/L1P program cache/L2 memory, respec-
tively, 8 Mbytes of onboard SDRAM (synchronous dynamic RAM), 512 Kbytes of
flash memory, and a 16-bit stereo codec AIC23 with sampling frequency of 8 kHz
to 96 kHz. The C6416 DSK board includes a C6416 DSP chip operating at 600 MHz
with 16/16/1024 Kbytes memory for L1D data cache/L1P program cache/L2 cache,
respectively, 16 Mbytes of onboard SDRAM, 512 Kbytes of flash memory, and AIC23
codec. The C6711 DSK board includes a C6711 DSP chip operating at 150 MHz
with 4/4/64 Kbytes of memory for L1D data cache/L1P program cache/L2 cache, 16
Mbytes of onboard SDRAM, 128 Kbytes flash memory, a 16-bit codec AD535 hav-
ing a fixed sampling frequency of 8 kHz, and a daughter card interface to which a
PCM3003 audio daughter card can be connected for changing sampling frequency.

Figure 4-4: C6713 DSK board.†

As shown in Figure 4-5(a), the C6701/C6201 EVM board is a DSP system which
includes a C6701 (or C6201) chip, external memory, A/D capabilities, and PC host
interfacing components. The functional diagram of the EVM board appears in Figure
4-5(b). The board has a 16-bit codec CS4231A whose sampling frequency can be
changed from 5.5 kHz to 48 kHz.

51

Chapter 4: Software Tools

Figure 4-5: (a) C6201/C6701 EVM board, (b) its functional diagram.†

PCI
bus

PCI target
JTAG emulation

PCI target
HPI

PCI master
EMIF interface

Dual clocks
(33.25/50 MHz)External JTAG

header

Voltage
regulators

Stereo 16-bit
audio codec

64K × 32
SBSRAM

4M × 32
SDRAM
(bank 0)

Expansion
memory interface

Expansion
peripheral interface

MIC and LINE IN/OUT
audio jacks

External power
connector

Voltage
supervisor

JTAG

HPI

VDD

RST McBSP0

EMIF

CLKIN

TMS320C6201
/6701

DSP

(133/200 MHz)

(12)
User-option

DIP switches

LED indicators
Programmable

logic

Miscellaneous control

4M × 32
SDRAM
(bank 1)

McBSP1/
timers

CE0

CE2

CE3

CE1

CE1

CE1

CE1

BAR1

BAR3/
BAR4

BAR2

FIFOs

CPLD
ISP header

5/12 V

(a)

52

Real-Time Digital Signal Processing Based on the TMS320C6000

The memory residing on the EVM board consists of 32 Mbytes SDRAM running
at 100 MHz and 256 Kbytes SBSRAM (synchronous burst static RAM) running at
133 MHz, a faster, but more expensive, memory as compared to SDRAM. A voltage
regulator on the board is used to provide 1.8V or 2.5V for the C6x core and 3.3V for
its memory and peripherals, and 5V for audio components.

4.2 Assembly File

Similar to other assembly languages, the C6x assembly consists of four fields: label,
instruction, operands, and comment. (See Figure 3-4.) The first field is the label field.
Labels must start in the first column and must begin with a letter. A label, if present,
indicates an assigned name to a specific memory location that contains an instruc-
tion or data. Either a mnemonic or a directive constitutes the instruction field. It is
optional for the instruction field to include the functional unit which performs that
particular instruction. However, to make codes more understandable, the assign-
ment of functional units is recommended. If a functional unit is specified, the data
path must be indexed by 1 for the A side and 2 for the B side. A parallel instruction
is indicated by a double pipe symbol (||), and a conditional instruction by a regis-
ter appearing in brackets in the instruction field. As the name operand implies, the
operand field contains arguments of an instruction. Instructions require two or three
operands. Except for store instructions, the destination operand must be a register.
One of the source operands must be a register, the other a register or a constant. Af-
ter the operand field, there is an optional comment field that, if stated, should begin
with a semicolon (;).

4.2.1 Directives

Directives are used to indicate assembly code sections and to declare data structures.
It should be noted that assembly statements appearing as directives do not produce
any executable code. They merely control the assembling process by the assembler.
Some of the widely used assembler directives are:

.sect “name” directive, which defines a section of code or data named “name”.

.int, .long, or .word directive, which reserves 32 bits of memory initialized
to a value.

.short or .half directive, which reserves 16 bits of memory initialized to a
value.

.byte directive, which reserves 8 bits of memory initialized to a value.

53

Chapter 4: Software Tools

Note that in the TI common object file format (COFF), the directives .text,
.data, .bss are used to indicate code, initialized constant data, and uninitialized
variables, respectively. Other directives often used include .set directive, for assign-
ing a value to a symbol, .global or .def directive, to declare a symbol or module
as global so that it may be recognized externally by other modules, and .end direc-
tive, to signal the termination of assembly code. The directive .global acts as a
.def directive for defined symbols and as a .ref directive for undefined symbols.

At this point, it should be mentioned that the C compiler creates various sections
indicated by the directives .text, .switch, .const, .cinit, .bss, .far,
.stack, .sysmem, .cio. Figure 4-6 lists some common compiler sections. For a
complete listing of directives, refer to the TI TMS320C6x Assembly Language Tools
User’s Guide [1].

Figure 4-6: Common compiler sections.

Section Name Description

.text Code

.switch Tables for switch instructions

.const Global and static string literals

.cinit Initial values for global/static vars

.bss Global and static variables

.far Global and statics declared far

.stack Stack (local variables)

.sysmem Memory for malloc fcns (heap)

.cio Buffers for stdio functions

4.3 Memory Management

The external memory used by a DSP processor can be either static or dynamic. Static
memory (SRAM) is faster than dynamic memory (DRAM), but it is more expensive,
since it takes more space on silicon. DRAMs also need to be refreshed periodically.
A good compromise between cost and performance is achieved by using SDRAM
(Synchronous DRAM). Synchronous memory requires clocking, as compared to
asynchronous memory, which does not.

54

Real-Time Digital Signal Processing Based on the TMS320C6000

Given that the address bus is 32 bits wide, the total memory space consists of 232 =
4 Gbytes. On the EVM, this space is divided, according to a memory map, into the
internal program memory (PMEM), internal data memory (DMEM), internal pe-
ripherals, and external memory spaces named CE0, CE1, CE2, and CE3. There are
two memory map configurations: memory map 0 and memory map 1. Figures 4-7(a)
and 4-7(b) illustrate these two memory maps. On the DSK, there is no separation
between internal program and data memory. For the lab exercises in this book, the
EVM board is configured based on its memory map 1 as shown in Figure 4-7(c), and
the DSK board based on its memory map 1 as shown in Figure 4-7(d).

55

Chapter 4: Software Tools

Internal Program RAM

Reserved

0000 0000

0001 0000

SBSRAM

Unused

0040 0000

0044 0000

Asynchronous Expansion
Memory

PCI add-on registers

0140 0000

0170 0000

Unavailable

PCI FIFO

0170 0040

0171 0000

Unavailable

Audio Codec Registers

0171 0004

0172 0000

Unavailable

Reserved

0172 0010

0173 0000

DSP control/status registers

Unavailable

0178 0000

0178 0020

Reserved

Internal Peripheral Space

0179 0000

0180 0000

Reserved

SDRAM (Bank 0)

01C0 0000

0200 0000

Reserved

SDRAM (Bank 1)

0240 0000

0300 0000

Reserved

Reserved

0340 0000

0400 0000

Internal Data RAM

Reserved

8000 0000

8001 0000

Reserved8040 0000

10000 0000

Memory Map 1
Block Size

(Bytes)Address

4M
64K

256K

Unused

3M

64

320K

448K

4M

4M

4M

12M

4M

12M

1984M

64K

2044M

64K

4
64K

16
64K

32
64K

16M

16M

4M

Internal RAM (L2)
Reserved

0000 0000
0001 0000

EMIF control regs
Cache Configuration regs

0180 0000

0184 0000
L2 base addr & count regs

L1 base addr & count regs0184 4020

0184 5000 L2 flush & clean regs

CE0 mem attribute regs0184 8200

0184 8240 CE1 mem attribute regs
CE2 mem attribute regs0184 8280

0184 82C0 CE3 mem attribute regs
HPI control regs0188 0000

018C 0000 McBSP0 regs
McBSP1 regs0190 0000

0194 0000 Timer0 regs

Timer1 regs0198 0000
019C 0000 Interrupt selector regs

EDMA parameter RAM01A0 0000

01A0 FFE0 EDMA control regs

QDMA regs0200 0000

0200 0020 QDMA pseudo-regs

McBSP0 data3000 0000
3400 0000 McBSP1 data

CE0, SDRAM8000 0000

9000 0000 CE1, 8-bit ROM

9008 0000

Memory Map 1
Block Size

(Bytes)Address

64K

32

4
32

32

4

12

16

16

40

32

16

16

40

12
12

2M

32
20

20

64M
64M

16M

128K

24M

CE1, 8-bit I/O port

A000 0000

4

CE2-Daughtercard
B000 0000

256M

CE3-Daughtercard 256M

0184 4000

10000 0000

(c) (d)

Figure 4-7: (a) C6x memory map 0, (b) map 1, (c) EVM map 1, and (d) DSK map 1.†

56

Real-Time Digital Signal Processing Based on the TMS320C6000

The external memory ranges CE0, CE1, CE2, and CE3 support synchronous (SB-
SRAM, SDRAM) or asynchronous (SRAM, ROM, and so forth) memory, accessible
as bytes (8 bits), halfwords (16 bits), or words (32 bits). The on-chip peripherals and
control registers are mapped into the memory space. A listing of the memory-mapped
registers is provided in Appendix A (Quick Reference Guide).

The internal data memory is organized into memory banks so that two loads or stores
can be done simultaneously. As long as data are accessed from different banks, no
conflict occurs. However, if data are accessed from the same bank in one instruction,
a memory conflict occurs and the CPU is stalled by one cycle.

If a program fits into the on-chip or internal memory, it should be run from there to
avoid delays associated with accessing off-chip or external memory. If a program is
too big to be fitted into the internal memory, most of its time-consuming portions
should be placed into the internal memory for efficient execution. For repetitive
codes, it is recommended that the internal memory is configured as cache memory.
This allows accessing external memory as seldom as possible and hence avoiding
delays associated with such accesses.

4.3.1 Linking

Linking places code, constant, and variable sections into appropriate locations in
memory as specified in the .cmd linker command file. Also, it combines several .obj
object files into the final executable .out output file. A typical command file corre-
sponding to the DSK memory map 1 is shown below in Figure 4-8.

The first part, MEMORY, provides a description of the type of physical memory, its ori-
gin and its length. The second part, SECTIONS, specifies the assignment of various
code sections to the available physical memory.

57

Chapter 4: Software Tools

MEMORY
{
 VECS: o=00000000h l=00000200h /* interrupt vectors */
 PMEM: o=00000200h l=0000FE00h /* Internal RAM (L2) mem */
 BMEM: o=80000000h l=01000000h /* CE0, SDRAM, 16 Mbytes */
}

SECTIONS
{
 .intvecs > 0h
 .text > PMEM
 .far > PMEM
 .stack > PMEM
 .bss > PMEM
 .cinit > PMEM
 .pinit > PMEM
 .cio > PMEM
 .const > PMEM
 .data > PMEM
 .switch > PMEM
 .sysmem > PMEM
}

Figure 4-8: A typical linker command file.

4.4 Compiler Utility

The build feature of CCS can be used to perform the entire process of compiling,
assembling, and linking in one step via the activation of the utility cl6x and stating
the right options for it. The following command shows how this utility is used within
CCS for building the source files file1.c, file2.asm, and file3.sa:

The option -g adds debugger specific information to the object file for debugging
purposes. The option -s provides an interlisting of C and assembly. For file1.c, the C
compiler, for file2.asm the assembler, and for file3.sa, the assembly optimizer (linear
assembler) are invoked. The option –z invokes the linker, placing the executable
code in file.out if the -o option is used. Otherwise, the default file a.out is created.
The option -m provides a map file (file.map), which includes a listing of all the
addresses of sections, symbols and labels. The option -l specifies the run-time sup-
port library rts6700.lib for linking files on the C6713 processor. Table 4-1 lists some
frequently used options. Refer to the TI Optimizing C Compiler manual [2] for a com-
plete list of available options.

cl6x -gs file1.c file2.asm file3.sa -z -o file.out -m fi le.map -l rts6700.lib

58

Real-Time Digital Signal Processing Based on the TMS320C6000

The compiler allows four levels of optimizations to be invoked by using -o0, -o1,
-o2, -o3. Debugging and full-scale optimization cannot be done together, since
they are in conflict; that is, in debugging, information is added to enhance the debug-
ging process, while in optimizing, information is minimized or removed to enhance
code efficiency. In essence, the optimizer changes the flow of C code, making pro-
gram debugging very difficult.

As shown in Figure 4-9, a good programming approach would be first to verify that
the code is properly functioning by using the compiler with no optimization (-gs
option). Then, use full optimization to generate an efficient code (-o3 option). It is
recommended that an intermediary step be taken in which some optimization is done
without interfering with source level debugging (-go option). This intermediary
step can reverify code functionality before performing full optimization. It should be
pointed out that full optimization may change memory locations outside the scope of
the C code. Such memory locations must be declared as ‘volatile’ to prevent compil-
ing errors.

Table 4-1: Common compile options.†

Options Description Tool

-mv6700 Generate 'C67x code ('C62x is default) Comp/Asm

-g Enables src-level symbolic debugging Comp/Asm

-mg Enables minimum debug to allow profiling Compiler

-s Interlist C statements into assembly listing Compiler

-o Invoke optimizer (-o0, -o1, -o2/ -o, -o3) Compiler

-pm Combine all C source files before compile Compiler

-mt No aliasing used Compiler

-ms Minimize code size (-ms0/ -ms, -ms1, -ms2) Compiler

-z Invokes linker Linker

-o Output file name Linker

-m Map file name Linker

-c Auto -Init C variables (-cs turns off autoinit) Linker

-l Link -in libraries (small -L) Linker

59

Chapter 4: Software Tools

As a step to further optimize C codes, it is recommended that intrinsics be used wher-
ever possible. Intrinsics are functions similar to math functions as part of the runtime
support library. Intrinsics allow the C compiler to directly access the hardware while
preserving the C environment. As an example, instead of using the multiply operator
* in C, the intrinsic _mpy() can be used to tell the compiler to use the C6x instruc-
tion MPY. Figure 4-10 shows the intrinsic version of the dot-product C code. A list of
the C6x intrinsics is provided in Appendix A (Quick Reference Quide).

Figure 4-9: Programming approach.

1. Compile without optimization.
(Get the code functioning!)
cl6x –g –s file.c –z

2. Compile with some optimization.
(Verify code functionality, again)
cl6x –g –o file.c –z

3. Compile with all optimizations.
(Generate efficient code)
cl6x –o3 –pm file.c –z

Figure 4-10: Intrinsic version of dot-product C code.

short DotP(int *m, int *n, short count)
{
 short i, productl, producth, suml = 0, sumh = 0;

 for(i=0; i<count; i++)
 {
 productl = _mpy(m[i],n[i]); // _mpy intrinsic
 producth = _mpyh(m[i],n[i]); // _mpyh intrinsic
 suml += productl;
 sumh += producth;
 }
 suml += sumh;
 return(suml);
}

60

Real-Time Digital Signal Processing Based on the TMS320C6000

4.5 Code Initialization

All programs start by going through a reset initialization code. Figure 4-11 illustrates
both the C and assembly version of a typical reset initialization code. This initializa-
tion is for the purpose of starting at a previously defined initial location. Upon power
up, the system always goes to the reset location in memory, which normally includes
a branch instruction to the beginning of the code to be executed. The reset code
shown in Figure 4-11 takes the program counter to a globally defined location in
memory named init or _c_int00.

Figure 4-11: Reset code.

vectors.asm

.ref init

.sect “vectors”
rst MVK .s2 init,B0

MVKH .s2 init,B0
B .s2 B0
NOP
NOP
NOP
NOP
NOP

cvectors.asm

.global _c_int00

.sect “vectors”
rst B _c_int00

NOP ;additional NOP’s
NOP ;to create a
NOP ;fetch packet
NOP
NOP
NOP
NOP

“ASM” “C”

As indicated in Figure 4-12, when writing in assembly, an initialization code is
needed to create initialized data and variables, and to copy initialized data into cor-
responding variables. Initialized values are specified by using .byte, .short, or
.int directives. Uninitialized variables are specified by using .usect directive.
The first, second, and third arguments of this directive
denote section name, size in bytes, and data alignment in
bytes, respectively. Before calling the main function or
subroutine, another initialization code portion is usually
needed to set up registers and pointers, and to move data
to appropriate places in memory.

Initialization

Reset
Vector

Assembly
Initialization

Routine

Assembly
Program

reset

Figure 4-12: Assembly initialization.†

61

Chapter 4: Software Tools

(a)

 .def init
 .ref dotp

;Data initialization
;Initialize tables

 .sect "init_tables"

table_a .short 40,39,38,37,36,35,34,33,32,31,30,29,28,27 ;Initialize table_a array with values
 .short 26,25,24,23,22,21,20,19,18,17
 .short 16,15,14,13,12,14,10,9,8,7,6,5,4,3,2,1
table_x .short 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 ;Initialize table_x array with values
 .short 16,17,18,19,20,21,22,23,24,25,26,27,28,29
 .short 30,31,32,33,34,35,36,37,38,39,40
table_y .short 0 ;table_y = 0

;Variable declaration
a .usect "var", 80, 2 ;define variables
x .usect "var", 80, 2
y .usect "var", 2, 2

;Initialization to copy data into variables
 .sect "init_code"
init mvk .s1 table_a, A0 ;move address of table_a to register A0
 mvkh .s1 table_a, A0
 mvk .s2 a,B0 ;move address of a to register B0
 mvkh .s2 a,B0
 mvk .s2 40,B1 ;create a counter in register B1, B1=40
loop_a ldh .d1 *A0++,A1 ;load an element from the address pointed by A0 into A1
 sub .l2 B1,1,B1 ;decrement counter
 nop 3
 sth .d2 A1,*B0++ ;store the element to address pointed by B0
 [B1] b .s2 loop_a ;branch back to loop_a
 nop 5 ;required latency
init_x mvk .s1 table_x, A0 ;move address of table_x into register A0
 mvkh .s1 table_x, A0
 mvk .s2 x, B0 ;move address of x into register A0
 mvkh .s2 x, B0
 mvk .s2 40, B1 ;create a counter
loop_x ldh .d1 *A0++,A1 ;load an element from the address pointed by A0 into A1
 sub .l2 B1,1,B1 ;decrement counter
 nop 3
 sth .d2 A1,*B0++ ;store element to address pointed by B0
 [B1] b .s2 loop_x ;branch back to loop_x
 nop 5
init_y mvk .s1 table_y, A0 ;repeat above procedure for table_y
 mvkh .s1 table_y, A0
 mvk .s2 y, B0
 mvkh .s2 y, B0
 ldh .d1 *A0, A1
 nop 4
 sth .d2 A1, *B0

Figure 4-13 provides the initialization code for the dot-product example in which
initialized data values appear for three initialized data arrays labeled table_a,
table_x, and table_y. In addition, three variable sections called a, x, and y are
declared. The second part of the initialization code copies the initialized data into
the corresponding variables. The setup code for calling the dot-product routine is
also shown in this figure.

62

Real-Time Digital Signal Processing Based on the TMS320C6000

Figure 4-13: (a) Initialization code for dot-product example,
(b) setup code for calling dot product routine, and (c) dot product routine.†

;Setup for calling dotp

start mvk .s1 a,A4 ;move a into register A4
mvkh .s1 a,A4

 mvk .s2 x,B4 ;move x into register B4
mvkh .s2 x,B4

 mvk .s1 40,A6 ;create a counter in A6, A6=40
b .s1 dotp ;branch to routine dotp

 mvk .s2 return, B3 ;store return address in B3
mvkh .s2 return, B3
nop 3

;return from dotp here
return mvk .s1 y, A0 ;move y into register A0

mvkh .s1 y, A0
 sth .d1 A4, *A0 ;store the result of dotp (returned in A4) to y

;infinite loop
end b .s1 end ;infinite loop

nop 5

(b)

(c)

;dotp
 .def dotp

;A4 = &a, B4 = &x, A6 = 40 (iteration count) , B3 = return address

dotp mv A6,B0 ;move A6 to B0 (third argument passed from calling function)
 zero A2 ;zero the sum register A2

loop ldh .d1 *A4++,A5 ;load an element from the location pointed by A4 into A5
 ldh .d2 *B4++,B5 ;load an element from the location pointed by B4 into B5
 nop 4
 mpy .m1x A5,B5,A5 ;A5=B5*A5
 nop
 add .l1 A2,A5,A2 ;A2 += A5
 [B0] sub .l2 B0,1,B0 ;decrement counter B0
 [B0] b .s1 loop ;branch back to loop
 nop 5

 mv A2,A4 ;move result in A2 to return register A4
 b .s2 B3 ;branch back to calling address stored in B3
 nop 5

As far as C coding is concerned, the C compiler uses boot.c in the run-time support
library to perform the initialization before calling main(). The –c option activates
boot.c to autoinitialize variables. This is illustrated in Figure 4-14.

63

Chapter 4: Software Tools

4.5.1 Data Alignment

The C6x allows byte, half-word, or word addressing. Consider a word-format rep-
resentation of memory as shown in Figure 4-15. There are four byte boundaries,
two half-word (or short) boundaries, and one word boundary per word. The C6x
always accesses data on these boundaries depending on the datatype specified; that
is, it always accesses aligned data. When specifying an uninitialized variable section
.usect, it is required to specify the alignment as well as the total number of bytes.
The examples appearing in Figure 4-16 show data alignment for both constants and
variables.

Figure 4-14: C initialization.†
Initialize
System

short m=10;
short b=2;
short y=0;

main()
{
 short x =0;
 scanf(x);
 malloc (y);
 y=m+x;
 y=y+b;
}

Reset
Vector

_main

boot.c

Initializes pointers

Initializes global and
static variables

Calls _main

1.

2.

3.

reset

pin

Figure 4-15: Data boundaries.

byte boundaries word boundaries

half-word
boundaries

x32

64

Real-Time Digital Signal Processing Based on the TMS320C6000

Data in memory can be arranged either in little- or big-endian format. Little-endian
(le) means that the least significant byte is stored first. Figure 4-17(a) shows stor-
ing .int 40302010h in little-endian format for byte, half-word, and word access
addressing. In big-endian (be) format, shown in Figure 4-17(b), the most significant
byte is stored first. Little-endian is the format normally used in most applications.
Additional data alignment examples are shown in Figure 4-17(c), based on the little-
endian data format appearing in Figure 4-17(a).

Figure 4-16: Constant and variable alignment examples.†

Constants are automatically aligned

 .sect "my_const"
A .byte 11h
B .short 2222h
C .int 33333333h

22 22 -- 11

33 33 33 33

-- e e d

g1 g0

Note 1: vars and my_const
sections are assumed contiguous.

Note 2: First declare words, then
shorts and bytes to save memory
space.

ff ff ff ff

g3 g2Variables need an alignment field

;label .usect "section", #bytes, alignment
d .usect "vars", 1, 1
ee .usect "vars", 2 ;byte alignment by default
ffff .usect "vars", 4, 4
g_array .usect "vars", 8, 2

Little endian (default -LSB first)

10h800

20h801

30h802

40h803

×8 (le)

10h800 20h

30h802 40h

×16 (le

(a)

)

1 0

23

10h800 20h30h40h

×32 (le)

1 023

Big endian (MSB first)

40h800

30h801

20h802

10h803

×8 (be)

10h800 20h

30h802 40h

×16 (be

(b)

)

0 1

32

10h800 20h30h40h

×32 (be)

2 310

To use big endian: cl6x -me -l rts6700e.lib

65

Chapter 4: Software Tools

Figure 4-17: (a) Little endian, (b) big endian, and (c) more data alignment examples.†

Example code

0000 2010h800h

0000 0010h800h

0000 2010h801h

4030 2010h801h

A0 A1

8070 6050h805h

LDH *A0,A1

LDB *A0++,A1

LDH *A0,A1

LDW *A0,A1

LDW *++A0,A1

Yes

Yes

No

No

Pointer aligned on
datatype boundary?

No

66

Real-Time Digital Signal Processing Based on the TMS320C6000

Bibliography

[1] Texas Instruments, TMS320C6000 Assembly Language Tools User’s Guide,
Literature ID# SPRU 186M, 2003.

[2] Texas Instruments, TMS320C6000 Optimizing Compiler User’s Guide,
Literature ID# SPRU 187K, 2002.

67

Lab 1: Getting Familiar
with Code Composer Studio

Code Composer Studio™ (CCStudio or CCS) is a useful integrated development
environment (IDE) that provides an easy-to-use software tool to build and debug
programs. In addition, it allows real-time analysis of application programs. Figure
4-18 shows the phases associated with the CCS code development process. During its
set-up, CCS can be configured for different target DSP boards (for example, C6711
DSK, C6416 DSK, C6701 EVM, C6xxx Simulator). The version used throughout
the book is based on CCS 2.2, the latest version at the time of this writing.

Figure 4-18: CCS code development process.†

Design

conceptual
planning

Code & build

create project
with source code
configuration file

Debug

syntax checking,
probe points,
logging, etc.

Analyze

real-time
debugging,

statistics, tracing

CCS provides a file management environment for building application programs. It
includes an integrated editor for editing C and assembly files. For debugging purposes,
it provides breakpoints, data monitoring and graphing capabilities, profiler for bench-
marking, and probe points to stream data to and from the target DSP. This tutorial
lab introduces the basic features of CCS that are needed in order to build and debug
an application program. To become familiar with all of its features, one should go
through the TI CCS Tutorial and TI CCS User’s Guide manuals [1-2] . The real-time
analysis and scheduling features of CCS will be covered later, in Labs 7 and 8.

This lab demonstrates how a simple multifile algorithm can be compiled, assembled
and linked by using CCS. First, several data values are consecutively written to
memory. Then, a pointer is assigned to the beginning of the data so that they can
be treated as an array. Finally, simple functions are added in both C and assembly
to illustrate how function calling works. This method of placing data in memory
is simple to use and can be used in applications in which constants need to be in
memory, such as filter coefficients and FFT twiddle factors. Issues related to debug-
ging and benchmarking are also covered in this lab.

68

Real-Time Digital Signal Processing Based on the TMS320C6000

The lab programs can be downloaded from the accompanying CD-ROM for different
DSP target boards. Six versions of the lab programs appear on the CD. These ver-
sions correspond to (a) C6713 DSK, (b) C6416 DSK, (c) C6711 DSK together with
a daughter card, (d) C6711 DSK without a daughter card, (e) C6701/C6201 EVM,
and (f) simulator.

L1.1 Creating Projects

Let us consider all the files required to create an executable file; that is, .c (c),
.asm (assembly), .sa (linear assembly) source files, a .cmd linker command file,
a .h header file, and appropriate .lib library files. The CCS code development
process begins with the creation of a so-called Project to easily integrate and man-
age all these required files for generating and running an executable file. The Project
View panel on the left-hand side of the CCS window provides an easy mechanism
for doing so. In this panel, a project file (.prj extension) can be created or opened
to contain not only the source and library files but also the compiler, assembler, and
linker options for generating an executable file. As a result, one need not type com-
mand lines for compilation, assembling and linking, as was the case with the original
software development tools.

To create a project, choose the menu item Project → New from the CCS menu bar.
This brings up the dialog box Project Creation, as shown in Figure 4-19. In the dialog
box, navigate to the working folder, throughout the book assumed to be C:\ti\

Figure 4-19: Creating a new project.

69

Lab 1: Getting Familiar with Code Composer Studio

myprojects, and type a project name in the field Project Name. Then, click the
button Finish for CCS to create a project file named lab1.prj. All the files necessary to
build an application should be added to the project.

CCS provides an integrated editor which allows the creation of source files. Some
of the features of the editor are color syntax highlighting, C blocks marking in
parentheses and braces, parenthesis/brace matching, control indentions, and find/re-
place/search capabilities. It is also possible to add files to the project from Windows
Explorer using the drag-and-drop approach. An editor window is brought up by
choosing the menu item File → New → Source File. For this lab, let’s type the follow-
ing assembly code into the editor window:
.sect ".mydata"
.short 0
.short 7
.short 10
.short 7
.short 0
.short -7
.short -10
.short -7
.short 0
.short 7

This code consists of the declaration of 10 values using .short directives. Note
that any of the data to memory allocation directives can be used to do the same. As-
sign a section named .mydata to the values by using a .sect directive. Save the
created source file by choosing the menu item File → Save. This brings up the dialog
box Save As, as shown in Figure 4-20. In the dialog box, go to the field Save as type
and select Assembly Source Files (*.asm) from the pull-down list. Then, go to the field
File name, and type initmem.asm. Finally, click Save so that the code can be saved
into an assembly source file named initmem.asm.

In addition to source files, a linker command file must be specified to create an
executable file and to conform to memory specifics of the target DSP on which the
executable file is going to run. A linker command file can be created by choosing File
→ New → Source File. For this lab, let’s type the command file shown in Figure 4-21.
This file can also be downloaded from the accompanying CD-ROM. This linker
command file is configured based on the DSK memory map. Since our intention is
to place the array of values defined in initmem.asm into the memory, a space that will
not be overwritten by the compiler should be selected. The external memory space
CE0 can be used for this purpose. Let us assemble the data at the memory address

70

Real-Time Digital Signal Processing Based on the TMS320C6000

0x80000000 (0x denotes hex) located at the beginning of CE0. This is done by
assigning the section named .mydata to MYDATA via adding .mydata > MYDA-
TA to the SECTIONS part of the linker command file, as shown in Figure 4-21. Save
the editor window into a linker command file by choosing File → Save or by pressing
Ctrl + S. This brings up the dialog box Save As. Go to the field Save as type and select
TI Command Language Files (*.cmd) from the pull-down list. Then, type lab1.cmd in
the field File name and click Save.

Now that the source file initmem.asm and the linker command file lab1.cmd are
created, they should be added to the project for assembling and linking. To do this,
choose the menu item Project → Add Files to Project. This brings up the dialog box
Add Files to Project. In the dialog box, select initmem.asm and click the button Open.
This adds initmem.asm to the project. In order to add lab1.cmd, choose Project → Add
Files to Project. Then, in the dialog box Add Files to Project, set Files of type to Linker
Command File (*.cmd), so that lab1.cmd appears in the dialog box. Now, select lab1.cmd
and click the button Open. In addition to initmem.asm and lab1.cmd files, the run-
time support library file should be added to the project. To do so, choose Project →

Figure 4-20: Creating a source file.

71

Lab 1: Getting Familiar with Code Composer Studio

Add Files to Project, go to the compiler library folder, here assumed to be the default
option C:\ti\c6000\cgtools\lib, select Object and Library Files (*.o*,*.l*) in
the box Files of type, then select rts6700.lib and click Open. If running on the fixed-
point DSP TMS320C6211, select rts6200.lib instead. For debugging purposes, let us
use the following empty shell C program. Create a C source file main.c, enter the
following lines and add main.c to the project in the same way as just described.
#include <stdio.h>

void main()
{
 printf("BEGIN\n");

 printf("END\n");
}

After adding all the source files, the command file and the library file to the project,
it is time to either build the project or to create an executable file for the target DSP.
To do this, choose the Project → Build menu item. CCS compiles, assembles, and
links all of the files in the project. Messages about this process are shown in a panel
at the bottom of the CCS window. When the building process is completed without
any errors, the executable lab1.out file is generated. It is also possible to do incremen-

MEMORY
{
 IRAM: o = 00000000h l = 00100000h
 MYDATA: o = 80000000h l = 00000100h
 CE0: o = 80000100h l = 000FFF00h
}

SECTIONS
{
 .cinit > IRAM
 .text > IRAM
 .stack > IRAM
 .bss > IRAM
 .const > IRAM
 .data > IRAM
 .far > IRAM
 .switch > IRAM
 .sysmem > IRAM
 .tables > IRAM
 .cio > IRAM
 .mydata > MYDATA
}

Figure 4-21: Linker command file for Lab 1.

72

Real-Time Digital Signal Processing Based on the TMS320C6000

tal builds – that is rebuilding only those files changed since last build, by choosing
the menu item Project → Rebuild. The CCS window provides shortcut buttons for

frequently used menu options, such as build and rebuild all .

Although CCS provides default build options, these options can be changed by
choosing Project → Build Options. For instance, to change the executable filename to
test.out, choose Project → Build Options, click the Linker tab of the Build Options win-
dow, and type test.out in the field Output Filename (-o), as shown in Figure 4-22a.
Notice that the linker command file will include test.out as you click on this window.

All the compiler, assembler, and linker options are set through the menu item Project
→ Build Options. Among many compiler options shown in 4-22b, pay particular at-
tention to the optimization level options. There are four levels of optimization
(0, 1, 2, 3), which control the type and degree of optimization. Level 0 optimization
option performs control-flow-graph simplification, allocates variables to registers,
eliminates unused code, and simplifies expressions and statements. Level 1 optimiza-
tion performs all Level 0 optimizations, removes unused assignments, and eliminates
local common expressions. Level 2 optimization performs all Level 1 optimizations,
plus software pipelining, loop optimizations, and loop unrolling. It also eliminates
global common subexpressions and unused assignments. Finally, Level 3 optimiza-
tion performs all Level 2 optimizations, removes all functions that are never called,
and simplifies functions with return values that are never used. It also inlines calls to
small functions and reorders function declarations.

Note that in some cases, debugging is not possible due to optimization. Thus, it
is recommended to first debug your program to make sure that it is logically cor-
rect before performing any optimization. Another important compiler option is the
Target Version option. When the application is for the floating-point target DSP
TMS320C6711/6713 DSK, go to the Target Version field and select 671x (–mV 6710)
from the pull-down list. For the fixed-point target DSP TMS320C6416 DSK, select
C64xx (–mv 6400). For the EVM target TMS320C6701, select C670x.

73

Lab 1: Getting Familiar with Code Composer Studio

(a)

74

Real-Time Digital Signal Processing Based on the TMS320C6000

One common mistake in writing initmem.asm is to type directives .sect and
.short in the first column. Because only labels can start in the first column, this
will result in an assembler error. When a message stating a compilation error appears,
click Stop Build and scroll up in the Build area to see the syntax error message. Double-
click on the red text that describes the location of the syntax error. Notice that the
initmem.asm file opens, and your cursor appears on the line that has caused the error,
see Figure 4-23. After correcting the syntax error, the file should be saved and the
project rebuilt.

Figure 4-22: (a) Build options, and (b) compiler options.

(b)

75

Lab 1: Getting Familiar with Code Composer Studio

L1.2 Debugging Tools

Once the build process is completed without any errors, the program can be loaded
and executed on the target DSP. To load the program, choose File → Load Program,
select the program lab1.out just rebuilt, and click Open. To run the program, choose
the menu item Debug → Run. You should be able to see BEGIN and END appearing in
the Stdout window.

Figure 4-23: Build Error.

76

Real-Time Digital Signal Processing Based on the TMS320C6000

Now, let us verify if the array of values is assembled into the specified memory lo-
cation. CCS allows one to view the content of memory at a specific location. To
view the content of memory at 0x80000000, select View → Memory from the menu.
The dialog box Memory Window Options will appear. This dialog box allows one to
specify various attributes of the Memory window. Go to the Address field and enter
0x80000000. Then, select 16-bit Signed Int from the pull-down list in the Format
field and click OK. A Memory window appears as shown in Figure 4-24. The contents
of CPU, peripheral, DMA, and serial port registers can also be viewed by selecting
View → Registers → Core Registers, for example.

Figure 4-24: Memory Window Options dialog box and Memory window.

There is another way to load data from a PC file to the DSP memory. CCS provides
a probe point capability, so that a stream of data can be moved from the PC host file
to the DSP or vice versa. In order to use this capability, a Probe Point should be set
within the program by placing the mouse cursor at the line where a stream of data

needs to be transferred and clicking the button Probe Point . Then, choose File
→ File I/O to invoke the dialog box File I/O. Click the button Add File and select the
data file to load. Now the file should be connected to the probe point by clicking
the button Add Probe Point. In the Probe Point field, select the probe point to make it
active, then connect the probe point to the PC file through File In:… in the field Con-
nect To. Click the button Replace and then the button OK. Finally, enter the memory
location in the Address field and the number of data in the Length field. Note that a

77

Lab 1: Getting Familiar with Code Composer Studio

global variable name can be used in the Address field. The probe point capability is
frequently used to simulate the execution of an application program in the absence
of any live signals. A valid PC file should have the correct file header and extension.
The file header should conform to the following format:

MagicNumber Format StartingAddress PageNum Length

MagicNumber is fixed at 1651. Format indicates the format of samples in the
file: 1 for hexadecimal, 2 for integer, 3 for long, and 4 for float. StartingAd-
dress and PageNum are determined by CCS when a stream of data is saved into
a PC file. Length indicates the number of samples in the memory. A valid data file
should have the extension .dat.

A graphical display of data often provides better feedback about the behavior of a
program. CCS provides a signal analysis interface to monitor a signal or data. Let
us display the array of values at 0x80000000 as a signal or a time graph. To do so,
select View → Graph → Time/Frequency to view the Graph Property Dialog box. Field
names appear in the left column. Go to the Start Address field, click it and type
0x80000000. Then, go to the Acquisition Buffer Size field, click it and enter 10.
Finally, click on DSP Data Type, select 16-bit signed integer from the pull-down list,
and click OK. A graph window appears with the properties selected. This is illustrated
in Figure 4-25. You can change any of these parameters from the graph window by
right-clicking the mouse, selecting Properties, and adjusting the properties as needed.
The properties can be updated at any time during the debugging process.

Figure 4-25: Graph Property Dialog box and Graphical Display window.

To assign a pointer to the beginning of the assembled memory space, the memory
address can be typed in directly to a pointer. It is necessary to typecast the pointer
to short since the values are of that type. The following code can be used to assign a
pointer to the beginning of the values and loop through them to print each onto the
Stdout window:

78

Real-Time Digital Signal Processing Based on the TMS320C6000

#include <stdio.h>

void main()
{
 int i;
 short *point;
 point = (short *) 0x80000000;

 printf("BEGIN\n");

 for(i=0;i<10;i++)
 { printf("[%d] %d\n",i, point[i]); }

 printf("END\n");
}

Instead of creating a new source file, we can modify the existing main.c by double-
clicking on the main.c file in the Project View panel, as shown in Figure 4-26. This
action will bring up the main.c source file in the right-half part of the CCS window.
Then, enter the code and rebuild it. Before running the executable file, make sure
you reload the file lab1.out. By running this file, you should be able to see the values
in the Stdout window. Double-clicking in the Project View panel provides an easy way
to bring up any source or command file for reviewing or modifying purposes.

When developing and testing programs, one often needs to check the value of a vari-
able during program execution. This can be achieved by using breakpoints and watch
windows. To view the values of the pointer in main.c before and after the pointer
assignment, choose File → Reload Program to reload the program. Then, double-click
on main.c in the Project View panel. You may wish to make the window larger so that
you can see more of the file in one place. Next, put your cursor on the line that says
point = (short *) 0x80000000 and press F9 to set a breakpoint. To open
a watch window, choose View → Watch Window from the menu bar. This will bring
up a Watch Window with local variables listed in the Watch Locals tab. To add a new
expression to the Watch Window, select the Watch 1 tab, then type point (or any
expression you desire to examine) in the Name column. Then, choose Debug → Run
or press F5. The program stops at the breakpoint and the Watch Window displays the
value of the pointer. This is the value before the pointer is set to 0x80000000. By

pressing F10 to step over the line, or the shortcut button , you should be able to
see the value 0x80000000 in the Watch Window.

79

Lab 1: Getting Familiar with Code Composer Studio

To add a simple C function that sums the values, we can simply pass the pointer to
the array and have a return type of integer. For the time being, what is of concern is
not how the variables are passed, but rather how much time it takes to perform the
operation.

The following simple function can be used to sum the values and return the result:

Figure 4-26: Project View panel.

#include <stdio.h>

void main()
{
 int i,ret;
 short *point;

 point = (short *) 0x80000000;

 printf("BEGIN\n");

 for(i=0;i<10;i++)
 { printf("[%d] %d\n",i, point[i]); }

 ret = ret_sum(point,10);

 printf("Sum = %d\n",ret);
 printf("END\n");
}

int ret_sum(const short* array,int N)
{
 int count,sum;
 sum = 0;

 for(count=0 ; count < N ; count++)
 sum += array[count];

 return(sum);
}

80

Real-Time Digital Signal Processing Based on the TMS320C6000

As part of the debugging process, it is normally required to benchmark or time the
application program. In this lab, let us determine how much time it takes for the
function ret_sum() to run. To achieve this benchmarking, reload the program and
choose Profiler → Start New Session. This will bring up Profile Session Name. Type a
session name, MySession by default, then click OK. The Profile window showing
code size and statistics about the number of cycles will be docked at the bottom of
CCS. Resize this window by dragging its edges or undock it so that you can see all
the columns. Now right-click on the code inside the function to be benchmarked,
then choose Profile Function → in … Session. The name of the function will be added
to the list in the Profile window. Finally, press F5 to run the program. Examine the
number of cycles shown in Figure 4-27 for ret_sum(). It should be about 732
cycles (the exact number may slightly vary). This is the number of cycles it takes to
execute the function ret_sum().

Figure 4-27: Profile window.

#include <stdio.h>

void main()
{
 int i,ret;
 short *point;

 point = (short *) 0x80000000;

 printf("BEGIN\n");

 for(i=0;i<10;i++)
 { printf("[%d] %d\n",i, point[i]); }

 ret = ret_sum(point,10);

 printf("Sum = %d\n",ret);
 printf("END\n");
}

int ret_sum(const short* array,int N)
{
 int count,sum;
 sum = 0;

 for(count=0 ; count < N ; count++)
 sum += array[count];

 return(sum);
}

There is another way to benchmark codes using breakpoints. Double-click on the
file main.c in the Project View panel and choose View → Mixed Source/ASM to list the
assembled instructions corresponding to C code lines. Set a breakpoint at the calling
line by placing the cursor on the line that reads ret = ret_sum(point,10),
then press F9 or double-click Selection Margin located on the left-hand side of the
editor. Set another breakpoint at the next line as indicated in Figure 4-28. Once the
breakpoints are set, choose Profiler → Enable Clock to enable the profile clock. Then,

81

Lab 1: Getting Familiar with Code Composer Studio

choose Profiler → View Clock to bring up a window displaying Profile Clock. Now, press
F5 to run the program. When the program is stopped at the first breakpoint, reset the
clock by double-clicking the inner area of the Profile Clock window. Finally, click Step
Out or Run in the Debug menu to execute and stop at the second breakpoint. Examine
the number of clocks in the Profile Clock window. It should read 752. The discrep-
ancy between the breakpoint and the profile approaches is originated from the extra
procedures for calling functions, for example, passing arguments to function, storing
return address, branching back from function, and so forth.

Figure 4-28: Profiling code execution time with breakpoint.

A workspace containing breakpoints, probe points, graphs, and watch windows, can
be stored for recalling purposes. To do so, choose File → Workspace → Save Workspace
As. This will bring up the Save Work window. Type the workspace name in the File
name field, then click Save.

The file shown next is an assembly program for calculating the sum of the values.
Here, the two arguments of the sum function are passed in registers A4 and B4. The
return value gets stored in A4 and the return address in B3. The order in which the
registers are chosen is governed by the passing argument convention discussed later.
The name of the function should be preceded by an underscore as .global _sum.
Create a new source file sum.asm, as shown next, and add it to the project so that
main() can call the function sum().

82

Real-Time Digital Signal Processing Based on the TMS320C6000

To save the file, go to the Save as type field and select Assembly Source Files (*.asm)
from the pull-down list.

The program main() must also be modified by adding a function call to the assem-
bly function sum(). This program is shown in Figure 4-29. Build the program and
run it. You should be able to see the same return value.

 .global _sum

_sum:

ZERO .L1 A9 ;Sum register
 MV .L1 B4,A2 ;initialize counter with passed argument

loop: LDH .D1 *A4++, A7 ;load value pointed by A4 into reg. A7
 NOP 4
 ADD .L1 A7,A9,A9 ;A9 += A7
 [A2] SUB .L1 A2,1,A2 ;decrement counter
 [A2] B .S1 loop ;branch back to loop
 NOP 5

MV .L1 A9,A4 ;move result into return register A4
 B .S2 B3 ;branch back to address stored in B3
 NOP 5

#include <stdio.h>

void main()
{
 int i,ret;
 short *point;

 point = (short *) 0x80000000;

 printf("BEGIN\n");

 for(i=0;i<10;i++)
 { printf("[%d] %d\n",i, point[i]); }

 ret = ret_sum(point,10);
 printf("C program Sum = %d\n",ret);

 ret = sum(point,10);
 printf("Assembly program Sum = %d\n", ret);
 printf("END\n");
}

int ret_sum(const short* array,int N)
{
 int count,sum;
 sum = 0;

 for(count=0 ; count < N ; count++)
 sum += array[count];

 return(sum);
}

83

Lab 1: Getting Familiar with Code Composer Studio

Table 4-2 provides the number of cycles it takes to run the sum function using sev-
eral different builds. When a program is too big to fit into the internal memory, it
has to be placed into the external memory. Although the program in this lab is small
enough to fit in the internal memory, it is placed in the external memory to study
the change in the number of cycles. To move the program into the external memory,
open the lab1.cmd file and replace the line .text > IRAM with .text > CE0.
As seen in Table 4-2, this build slows down the execution to 2535 cycles. In the
second build, the program resides in the internal memory and the number of cycles is
hence reduced to 732. By increasing the optimization level, the number of cycles can
be further decreased to 281. The assembly version of the program gives 472 cycles.
This is slower than the fully optimized C program because it is not yet optimized. Op-
timization of assembly codes will be discussed later. At this point, it is worth pointing
out that, throughout the labs, the stated numbers of cycles indicate timings on the
C6711 DSK with CCS version 2.2. The numbers of cycles will vary slightly depend-
ing on the DSK target and CCS version used.

Table 4-2: Number of cycles for different builds (on C6711 DSK with CCS2.2).

Type of Build Code size
Number of Cycles

Data in
external memory

Data in
internal memory

C program in external memory 148 2535 2075
C program in internal memory 148 732 382

–o0 64 464 113
–o1 64 463 111
–o2 100 404 57
–o3 84 281 33

Assembly program 64 472 150

#include <stdio.h>

void main()
{
 int i,ret;
 short *point;

 point = (short *) 0x80000000;

 printf("BEGIN\n");

 for(i=0;i<10;i++)
 { printf("[%d] %d\n",i, point[i]); }

 ret = ret_sum(point,10);
 printf("C program Sum = %d\n",ret);

 ret = sum(point,10);
 printf("Assembly program Sum = %d\n", ret);
 printf("END\n");
}

int ret_sum(const short* array,int N)
{
 int count,sum;
 sum = 0;

 for(count=0 ; count < N ; count++)
 sum += array[count];

 return(sum);
}

Figure 4-29: Lab1 complete program.

84

Real-Time Digital Signal Processing Based on the TMS320C6000

L1.3 EVM Target

As described in Section 4.1 and illustrated in Figure 4-7, the memory map of EVM
possesses more internal/external memory space than that of DSK, thus allowing more
flexibility in loading code into the program/data section. Figure 4-30 shows an ex-
ample using the EVM target where data located at EXT3, say 0x03000000, is placed
at the beginning of EXT3.

Figure 4-30: Command file for Lab 1.

MEMORY
{
 PMEM : origin = 0x00000000, length = 0x00010000
 EXT2 : origin = 0x02000000, length = 0x01000000
 EXT3 : origin = 0x03000000, length = 0x01000000
 DMEM : origin = 0x80000000, length = 0x00010000
}

SECTIONS
{
 .vectors > PMEM
 .text > PMEM
 .bss > DMEM
 .cinit > DMEM
 .const > DMEM
 .stack > DMEM
 .cio > DMEM
 .sysmem > DMEM
 .far > EXT2
 .mydata > EXT3
}

In order to place the program code into the external memory, replace the line
.text > PMEM with .text > EXT2. The number of cycles on the EVM target
is shown in Table 4-3. To build the project, the library rts6701.lib for C6701 EVM
or rts6201.lib for C6201 EVM needs to be added into the project. The Target Version
field of the Build option should be selected as C670x (–mv 6700) for the floating-point
target DSP TMS320C6701 EVM or C620x (–mv 6200) for the fixed-point target DSP
TMS320C6201 EVM.

As a final note, it is worthwhile to mention a remark about the EVM board resetting.
Sometimes you may notice that your program cannot be loaded into the DSP even
though there is nothing wrong with it. Under such circumstances, you need to reset
the EVM board to fix the problem. However, you have to close CCS before you reset
the board. Otherwise, the problem will not be resolved.

85

Lab 1: Getting Familiar with Code Composer Studio

Table 4-3: Number of cycles for different builds (on C6701 EVM with CCS2.2).

Type of Build Code size
Number of Cycles

Data in
external memory

Data in
internal memory

C program in external memory 148 1185 955
C program in internal memory 148 541 355

-o0 64 282 97
-o1 64 281 95
-o2 100 213 36
-o3 84 129 21

Assembly program 64 139 133

L1.4 Simulator

When no DSP board is available, the CCS simulator can be used to run the lab pro-
grams. To configure CCS as a simulator, simply select simulator in the field Platform
during the installation process of CCS, as shown in Figure 4-31. In the Import Config-
urations window, select the simulator option for one of the specified DSP boards. By
clicking the button Import, then the button Save and Quit, the simulator gets config-
ured and becomes ready to use. Note that although the simulator supports DMA and
EMIF operations, operations related to McBSP, HPI and Timer are not supported.
The files for running the labs via the simulator are provided under the simulator
folder on the accompanying CD-ROM.

Figure 4-31:
Simulator installation.

86

Real-Time Digital Signal Processing Based on the TMS320C6000

Bibliography

[1] Texas Instruments, TMS320C6000 Code Composer Studio Tutorial, Literature
ID# SPRU 301C, 2000.

[2] Texas Instruments, Code Composer Studio User’s Guide, Literature ID# SPRU
328B, 2000.

@Spy

87

Interrupt Data Processing

5C H A P T E R

On a DSP processor, the processing of samples can be done within an ISR (inter-
rupt service routine). Let us first discuss interrupts. As the name implies, an interrupt
causes the processor to halt whatever it is processing in order to execute an ISR. An
interrupt can be issued externally or internally. Twelve CPU interrupts are available
on the C6x processor. The priorities of these interrupts are shown in Table 5-1. RE-
SET is the highest priority interrupt. It halts the CPU and initializes all the registers
to their default values. Non-maskable interrupt (NMI) is used for non-maskable or
uninterruptible processing provided that the NMIE bit of the control register CSR
(control status register) is set to zero. As indicated in Figure 5-1, there are a total of
16 interrupt sources while there are only 12 CPU interrupts. As a result, an interrupt
source must be mapped to a CPU interrupt. This is done by setting appropriate bits of
the two memory mapped Interrupt Multiplex registers.

Table 5-1:
Priorities of CPU interrupts.

RESET

NMI
INT4
INT5
INT6
INT7
INT8
INT9
INT10
INT11
INT12
INT13
INT14
INT15

Interrupt Name Priority

Highest

Lowest

@Spy

88

Real-Time Digital Signal Processing Based on the TMS320C6000

Interrupts can be enabled or disabled by setting or clearing appropriate bits in in-
terrupt enable register (IER). There is a master switch, the global interrupt enable
(GIE) bit as part of CSR, which can be used to turn all interrupts on or off. For
example, the assembly code shown in Figure 5-2 indicates how to enable INT4 and
the GIE bit. Here the instruction MVC (move to and from a control register) is used
to transfer a control register to a CPU register for bit manipulation. Another regis-
ter called interrupt flag register (IFR) allows one to check if or what interrupt has
occurred. (Refer to the TI TMS320C6x CPU manual [1] for more details on the
interrupt registers.)

Figure 5-1: Interrupt mapping and operation.

Host processor to DSP interrupt (DSPINT)

Timer 0 interrupt (TINT0)

Timer 1 interrupt (TINT1)

EMIF SDRAM timer interrupt (SD_INT)

External interrupt pin 4 (EXT_INT4)

External interrupt pin 5 (EXT_INT5)

External interrupt pin 6 (EXT_INT6)

External interrupt pin 7 (EXT_INT7)

DMA channel 0 interrupt (DMA_INT0)

DMA channel 1 interrupt (DMA_INT1)

DMA channel 2 interrupt (DMA_INT2)

DMA channel 3 interrupt (DMA_INT3)

McBSP 0 transmit interrupt (XINT0)

McBSP 0 receive interrupt (RINT0)

McBSP 1 transmit interrupt (XINT1)

McBSP 1 receive interrupt (RINT1)

INT4

INT5

INT6

INT7

INT8

INT9

INT10

INT11

INT12

INT13

INT14

INT15
In

te
rr

up
tM

ul
tip

le
xe

rs

080h
0A0h
0C0h

0E0h
100h

120h
140h
160h
180h
1A0h

1C0h
1E0h

Inter

Process Process

Interrupt

Save registers/control registers
interrupt service function
Restore registers/control registers

rupt Sources (Acronym)
CPU
Interrupt

Program
MemoryAddress

ISTB+1E0h

B ISR
NOP 5
NOP
NOP
NOP
NOP
NOP
NOP

Interrupt Mapping

ISR

B IRP
NOP 5

One
Fetch
Packet

@Spy

89

Chapter 5: Interrupt Data Processing

The location where the processor will go to after an interrupt occurs is specified by a
predefined offset for that interrupt added to the interrupt service table base (ISTB)
bits as part of the interrupt service table pointer (ISTP) register. As an example, for
the CPU INT15, the processor goes to the location ISTB + 1E0h. At this location,
there is normally a branch instruction that would take the processor to a receive ISR
somewhere in memory, as shown in Figure 5-1.

In general, an ISR includes three parts. The first and last part incorporate saving and
restoring registers, respectively. The actual interrupt routine makes up the second
part. If needed, saving and restoring are done to bring the status of the processor back
to the time when the interrupt was issued.

MVK .S2 0010h, B3 ; bit4="1"
MVC .S2 IER, B4 ; get IER
OR .L2 B3, B4, B4 ; set bit4
MVC .S2 B4, IER ; write IER
MVC .S2 CSR, B5 ; get CSRGIE
OR .L2 1, B5, B5 ; bit0="1"
MVC .S2 B5, CSR ; set GIE

Figure 5-2: Setup code to turn on INT4 and GIE.

@Spy

90

Real-Time Digital Signal Processing Based on the TMS320C6000

Bibliography

[1] Texas Instruments, TMS320C6000 CPU and Instruction Set Reference Guide,
Literature ID# SPRU 189F, 2000.

@Spy

91

Lab 2: Audio Signal Sampling

The purpose of this lab is to use a C6x DSK or EVM to sample an analog audio signal
in real-time. A common approach to processing live signals, which is the use of an
interrupt service routine, is utilized here.

The AD535 codec on the C6711 DSK board provides a fixed sampling rate of 8 kHz.
As done here, the audio daughter card PCM3003, shown in Figure 5-3, can be
added to the C6711 DSK board in order to alter the sampling rate. PCM3003 has
two stereo 3.5 mm audio jacks for a line-in and a line-out signal, plus two on-board
microphones. The sampling rate can be varied from 4 kHz to 48 kHz via its timer. On
the C6701 EVM board, there exists a 16-bit stereo audio codec CS4231A which can
handle sampling rates from 5.5 kHz to 48 kHz. There are three 3.5 mm audio jack
inputs on the back of the EVM board for a microphone-in, a line-in and a line-out
signal. Each audio jack has its own amplifying and filtering capabilities. The block
diagrams of the DSK and EVM stereo interface are shown in Figure 5-3. The codecs
on both boards are connected to the C6x DSP through the multichannel buffered
serial port (McBSP).

The configuration and control of the peripherals are done via application program-
ming interface (API) functions of the chip support library (CSL) library for C6711
DSK, the board support library (BSL) for C6713 and C6416 DSK, and DSP sup-
port software for EVM. In this lab, CSL without DSP/BIOS is used to perform audio
signal sampling. In Chapters 9 and 10, CSL is used with DSP/BIOS for real-time
analysis and scheduling.

Considering that the peripherals and thus the libraries for the DSK and the EVM
boards are different, the hardware and software configurations for these boards are
presented in separate sections.

@Spy

92

Real-Time Digital Signal Processing Based on the TMS320C6000

Figure 5-3: (a) PCM3003 audio daughter card†,(b) DSK stereo audio
daughter card interface, (c) EVM stereo audio interface†.

TL V2772
audio opampLine In

LineOut

PCM3003

stereo
audio
codec

(16/20bit, 4-48kHz)

12.2880
MHz TOUT

Master clock

3.5-mmstereo
audio jacks

C6711
DSP

McBSP1TL V2772
audio op amp

(b)

(c)

MIC IN

LINE IN

LINE OUT

TI TLC2272A
audio op amp

Passive filter/
AC coupling

Passive filter/
AC coupling

CS4231A

stereo
audio
codec

(16-bit, 5.5-48 kHz)
PDWN

'CBT3257
voltage
Xlat/
MUX

Expansion peripheral
interface connector

7

16.9344
MHz

24.576
MHz

McBSP0
MUX control
(from CPLD)

'C6201
DSP

McBSP7

'LVTH162245

8
Parallel control interface

7

McBSP0
serial
data/
clocks

Mic preamp
biasing, & filtering

3.5-mm stereo
audio jacks

Sample rate
crystals

(a)

@Spy

93

Lab 2: Audio Signal Sampling

L2.1 Initialization of Codec and Peripherals of C6711

In writing a program that uses the codec to sample an incoming analog signal, several
initializations have to be performed. Among these are the initialization of the CSL
library, McBSP, and timer. To achieve these initializations or adjustments, the API
functions are used. Once the required initializations are made, an interrupt needs to
be assigned to the receive register of the serial port to halt the processor and jump
to a defined interrupt service routine. The final program will output the same input
sample back to the codec. The following program includes an order of API functions
that achieves all of the foregoing mentioned initializations (Figure 5-4 shows the
flowchart of the steps involved):

#define CHIP_6711 // Chip Symbol

#include <stdio.h>
#include <c6x.h>
#include <csl.h>
#include <csl_mcbsp.h>
#include <csl_irq.h>

MCBSP_Handle hMcbsp;

void hookint(void);
void interrupt serialPortRcvISR(void);

int main()
{
 MCBSP_Config MyConfig = {
 0x00010001, // (SPCR) Enable serial port tx & rx
 0x000000A0, // (RCR) 1-phase 32 bits receive
 0x000000A0, // (XCR) 1-phase 32 bits transmit
 0x00000000, // (SRGR)
 0x00000000, // (MCR)
 0x00000000, // (RCER)
 0x00000000, // (XCER)
 0x00000000 // (PCR)
 };

 TIMER_Config timerCfg = {
 0x000003C1, // (CTL) Internal clock src & TOUT is timer output
 0x00000000, // (PRD) Fs = 73,242 Hz
 0x00000000 // (CNT)
 };

 TIMER_Handle hTimer;

 CSL_init(); // Initialize the library

 hMcbsp = MCBSP_open(MCBSP_DEV1,MCBSP_OPEN_RESET);
 if (hMcbsp == INV) {
 printf("Error opening MCBSP 1\n");
 return(-1);
 }

@Spy

94

Real-Time Digital Signal Processing Based on the TMS320C6000

Let us explain this program in a step-by-step fashion. Here, CSL is used without
DSP/BIOS. This requires defining the chip identification symbol either in the source
code or build option. The first line in the code specifies the chip identification
symbol CHIP_6711 for the C6711 DSK. One can also define this symbol by stating
CHIP_6711 in the field Compiler tab → Preprocessor category → Define Symbols in
the menu Project → Build Options.

The first step consists of initializing the CSL library. This is done by using the func-
tion csl_init(), which must be called at the beginning of the program before
calling any other CSL API functions.

Next step involves opening a handle to the McBSP in order to send and receive data.
The McBSP API functions are used for this purpose. The API function MCBSP_
open() opens the McBSP, and returns the device handle hMcbsp for controlling
the McBSP. The first argument of this function represents the port to be opened.
Since the audio daughter card is connected to port 1, the port number is specified as

 MCBSP_config(hMcbsp,&MyConfig);

 hTimer = TIMER_open(TIMER_DEV0, TIMER_OPEN_RESET);
 if (hTimer == INV) {
 printf("Error opening TIMER\n");
 return(-1);
 }
 TIMER_config(hTimer, &timerCfg);

 hookint();

 while(1)
 {
 }
}

void hookint()
{
 IRQ_globalDisable(); // Globally disables interrupts
 IRQ_nmiEnable(); // Enables the NMI interrupt
 IRQ_map(IRQ_EVT_RINT1,15); // Maps an event to intr 15
 IRQ_enable(IRQ_EVT_RINT1); // Enables the event
 IRQ_globalEnable(); // Globally enables intrs
}

interrupt void serialPortRcvISR()
{
 int temp;

 temp = MCBSP_read(hMcbsp);
 MCBSP_write(hMcbsp,temp);
}

@Spy

95

Lab 2: Audio Signal Sampling

MCBSP_DEV1. The second argument, MCBSP_OPEN_RESET, specifies the initial-
ization of the port register based on the power-on defaults. It also disables and clears
any associated interrupts. If this opening fails, the symbolic constant INV is returned
(for more details, refer to the TMS320C6000 Chip Support Library API Reference
Guide [1]).

Next, it is required to adjust the parameters of the McBSP. In the serial port control
register (SPCR), the RRST and XRST fields are set to 1, so that the serial port re-
ceiving and transmitting capabilities are enabled. The RINTM field is configured in
order to generate receive interrupts (RINT1), i.e. data gets in the data receive regis-
ter (DRR) as a result of the codec sampling. The frame and word lengths are set to 0
and 32 bit in the receive control register (RCR) and transmit control register (XCR),
respectively. The sample rate generator register (SRGR) controls frame period, frame
length, and sample rate clock divider. The multichannel control register (MCR), re-
ceive channel enable register (RCER), and transmit channel enable register (XCER)
are used to configure subframe data receive and transmit modes. And the pin control
register (PCR) is used for general-purpose I/O configuration.

@Spy

96

Real-Time Digital Signal Processing Based on the TMS320C6000

Figure 5-4: Flowchart of sampling program on C6711 DSK with audio daughter card.

 Main () hookint() Interrupt Service routine

DisaStart

Initialize CSL

Succeeded?

Adjust the behavior of McBSP

Adjust the behavior of TIMER

hookint()

Keep the program running;
wait for interrupt

Enable codec to generate
interrupts as data is received in
the data receive register (DRR)

End
No

Yes

Succeeded? End
No

Yes

Open a handle to McBSP for
data transfer

Open a handle to TIMER for
codec configuration

ble interrupt globally

Enable non-maskable interrupt

Map the DRR interrupt
to CPU interrupt 15

Enable the interrupts

Read samples from
the DRR (Data

Receive Register)

Put your DSP codes here.

Write data to the
DXR (Data

Transmit Register)

@Spy

97

Lab 2: Audio Signal Sampling

The following lines of code perform the above configurations:
/**/

 /* configure McBSP */
/**/

 MCBSP_Config MyConfig = {
 0x00010001, // (SPCR) Enable serial port tx & rx
 0x000000A0, // (RCR) 1-phase 32 bits receive
 0x000000A0, // (XCR) 1-phase 32 bits transmit
 0x00000000, // (SRGR)
 0x00000000, // (MCR)
 0x00000000, // (RCER)
 0x00000000, // (XCER)
 0x00000000 // (PCR)
 };

 hMcbsp = MCBSP_open(MCBSP_DEV1,MCBSP_OPEN_RESET);

if (hMcbsp == INV)
 {
 printf("Error opening MCBSP 1\n");
 return(-1);
 }

MCBSP_config(hMcbsp,&MyConfig);

Next, we need to adjust the codec parameters. Considering that the sampling rate
of the audio daughter card is set to 48 kHz by default, its jumper setting needs to be
changed in order to change the sampling rate by software. There are twelve jumpers
on the daughter card for configuring data format, bit rate, data rate, enable/disable
on-board microphone inputs, and master clock source. JP5 jumper connects pins 3
and 4 by default generating the master clock (MCLK) from the 12.288 MHz ADC
clock. This jumper needs to be moved to connect pins 1 and 2 so that MCLK can be
provided by the DSK timer.

The timer needs to be configured to set the sampling rate. The steps involved to
open and configure the timer is similar to the McBSP. First, the timer is opened with
the TIMER_open() API to get a handle, similar to the procedure to get a handle
to McBSP. The first argument is used to select the timer device. Here, TIMER_DEV0
is used to specify timer 0. The second argument, TIMER_OPEN_RESET, initilaizes
the timer device register with the power-on defaults, and any associated interrupts is
disabled or cleared. If this opening fails, INV is returned.

The timer parameters need to be specified. In the timer control register (CTL), the
CLKSRC field selects clock source, and the CP field selects pulse/clock mode. The
HLD and GO fields are set to 1 in order to enable and start counting. If the FUNC

98

Real-Time Digital Signal Processing Based on the TMS320C6000

field is set to 1, the timer output pin TOUT is configured as timer output, otherwise
it serves as a general-purpose output. For this lab, the FUNC field is set to 1. The
value in the timer period register (PRD) indicates the number of clock cycles to
count before sending out the output clock signal. The PRD values and corresponding
sampling rates are listed in Table 5-2. The listed values correspond to default posi-
tions of the jumpers except for JP5. The timer counter register (CNT) is incremented
when it is enabled to count. The following lines of code are used to initialize the
codec as just described.

Table 5-2: Examples of sampling rates
using PCM3003 stereo audio codec.

PRD value fs (Hz)
0 73242.19
1 36621.09
2 18310.55
3 12207.03
4 9155.27
5 7324.22
6 6103.52
7 5231.58
8 4577.64
9 4069.01

 TIMER_Config timerCfg = {
 0x000003C1, // (CTL) Internal clock src & TOUT is timer output
 0x00000000, // (PRD) Fs = 73242 Hz
 0x00000000 // (CNT)
 };

 TIMER_Handle hTimer;

 hTimer = TIMER_open(TIMER_DEV0, TIMER_OPEN_RESET);

if (hTimer == INV)
 {
 printf("Error opening TIMER\n");
 return(-1);
 }

TIMER_config(hTimer, &timerCfg);

The initializations of the CSL, McBSP and timer are now complete. Next, let us turn
our attention to setting up an interrupt to branch to a simple ISR in order to process
an incoming signal.

99

Lab 2: Audio Signal Sampling

L2.2 Interrupt Service Routine

The idea of using interrupts is commonly used for real-time data processing. This
approach is widely used, since it eliminates the need for complicated synchroniza-
tion schemes. In our case, the interrupt occurs when a new data sample arrives in the
DRR of the serial port. The generated interrupt will branch to an ISR, which is then
used to process the sample and send it back out. To do this, the interrupt capabilities
of the DSK must be enabled and adjusted so that an unused interrupt is assigned to
the DRR event of the serial port.

The first task at hand is to initialize the interrupt service table pointer (ISTP) reg-
ister with the base address of the interrupt service table (IST). Upon resetting the
board, address 0 is assigned as the base address of the vector table. In this lab, we use
this default value for ISTP, noting that the address can be relocated by changing the
ISTB field value in the ISTP register.

Next, we need to select an interrupt source and map it to a CPU interrupt, in our
case the McBSP1 receive interrupt (RINT1). Here, the CPU interrupt 15 is used and
mapped to the RINT1 interrupt by using the function IRQ_map(). To connect the
ISR to this interrupt, the IST needs to be modified. Let us define the ISR to be se-
rialPortRcvISR(). The following assembly code defines the IST which hooks
the CPU interrupt 15 to the ISR serialPortRcvISR().

; vectors.asm
.ref _c_int00
.ref _serialPortRcvISR ; refer the addr of ISR defined in C code
.sect "vectors"

RESET_RST: MVKL .S2 _c_int00, B0
 MVKH .S2 _c_int00, B0
 B .S2 B0
 NOP
 NOP
 NOP
 NOP
 NOP
NMI_RST: .loop 8
 NOP
 .endloop
RESV1: .loop 8
 NOP
 .endloop
RESV2: .loop 8
 NOP
 .endloop
INT4: .loop 8

100

Real-Time Digital Signal Processing Based on the TMS320C6000

The last item to take care of is to enable interrupts by using the IRQ_enable and
IRQ_globalEnable APIs. The following lines of code maps the CPU interrupt
15 to the RINT1 interrupt.

Figure 5-5: Assembly code defining interrupt service table.

 NOP
 .endloop
INT5: .loop 8
 NOP
 .endloop
INT6: .loop 8
 NOP
 .endloop
INT7: .loop 8
 NOP
 .endloop
INT8: .loop 8
 NOP
 .endloop
INT9: .loop 8
 NOP
 .endloop
INT10: .loop 8
 NOP
 .endloop
INT11: .loop 8
 NOP
 .endloop
INT12: .loop 8
 NOP
 .endloop
INT13: .loop 8
 NOP
 .endloop
INT14: .loop 8
 NOP
 .endloop
INT15: MVKL .S2 _serialPortRcvISR, B0
 MVKH .S2 _serialPortRcvISR, B0
 B .S2 B0 ;branch to ISR
 NOP
 NOP
 NOP
 NOP
 NOP

void hookint()
{

IRQ_globalDisable(); // Globally disables interrupts
 IRQ_nmiEnable(); // Enables the NMI interrupt
 IRQ_map(IRQ_EVT_RINT1,15); // Maps an event to intr 15
 IRQ_enable(IRQ_EVT_RINT1); // Enables the event
 IRQ_globalEnable(); // Globally enables interrupts
}

101

Lab 2: Audio Signal Sampling

A simple ISR can now be written to receive samples from the McBSP and send them
back out, unprocessed for the time being. To write such an ISR, we need to state an
interrupt declaration with no arguments. The MCBSP_read and MCBSP_write
APIs are used to read samples from the DRR and write them to the DXR (data trans-
mit register) of the McBSP. The device handler acquired during the configuration of
the McBSP should be specified as an argument in both MCBSP_read and MCBSP_
write. The ISR is presented below.

interrupt void serialPortRcvISR()
{
 int temp;

 temp = MCBSP_read(hMcbsp);
 MCBSP_write(hMcbsp,temp);
}

Considering that the CPU is not actually doing anything as it waits for a new data
sample, an infinite loop is set up inside the main program to keep it running. As an
interrupt occurs, the program branches to the ISR, performs it and then returns to its
wait state. This is accomplished via a while(1){} statement.

Now the complete program for sampling an analog signal is ready for use. Basically,
this program services interrupts to read in samples of an analog signal, such as the
output from a CD player connected to the line-in of the DSK.

To build this program in CCS, the project should include two libraries: rts6700.lib
and csl6711.lib. The library rts6700.lib is the runtime-support library containing the
run-time support functions such as math functions. The chip support library csl6711.
lib is a collection of the API modules for programming the registers and peripherals.
This library allows the programmer to control interrupt functionality, CPU opera-
tional modes, and internal peripherals including McBSPs and timers. In addition
to these library files, a linker command file needs to be added into the project. The
following command file is used in this lab:

MEMORY
{
 vecs: o = 00000000h l = 00000200h
 IRAM: o = 00000200h l = 0000FE00h
 CE0: o = 80000000h l = 01000000h
}

102

Real-Time Digital Signal Processing Based on the TMS320C6000

Figure 5-6 shows the Project View panel after the necessary files are added into the

project. To build an executable file from these files, the button Rebuild All needs
to be clicked. The executable file can then get loaded by choosing the menu item
File → Load Program. By running the executable and connecting the output of a CD
player to the line-in and a pair of powered speakers to the line-out, CD quality sound
should be heard. Figure 5-7 shows the block diagram of this setup.

SECTIONS
{

"vectors" > vecs
 .cinit > IRAM
 .text > IRAM
 .stack > IRAM
 .bss > IRAM
 .const > IRAM
 .data > IRAM
 .far > IRAM
 .switch > IRAM
 .sysmem > IRAM
 .tables > IRAM
 .cio > IRAM
}

Figure 5-6: Project view for Lab 2.

103

Lab 2: Audio Signal Sampling

The effect of the sampling rate on the sound quality can be studied by modifying the
value in the PRD register as part of the main program codec.c as indicated below:

int main()
{
 . . .
 TIMER_Config timerCfg = {
 0x000003C1, // (CTL) Internal clock src & TOUT is a timer output
 0x00000009, // (PRD) Fs = 4069 Hz
 0x00000000 // (CNT)
 };
}

This will change the sampling rate to 4 kHz. By rebuilding, reloading, and running
the executable code, degradation in the sound quality can be heard due to the devia-
tion from the Nyquist rate.

It is possible to manipulate or process the audio signal. For example, the sound vol-
ume can be controlled by multiplying a volume gain factor with the sound samples.
The code for doing so is as follows:

Figure 5-7: Block diagram of Lab 2 setup.

PC

CD Player

Sound Card

Line out

Line out Line in Line out

DSK or EVM

Codec
Powered
Speaker

OR

int volumeGain;

int main()
{

...
volumeGain = 1; /* Initialize */
...

}

interrupt void serialPortRcvISR()
{

int temp;

temp = MCBSP_read(hMcbsp);
temp = temp * volumeGain;
MCBSP_write(hMcbsp, temp);

}

104

Real-Time Digital Signal Processing Based on the TMS320C6000

The variable volumeGain is declared as a global variable in order to be accessed
at run-time. To change the volume at run-time, the option Edit → Variable should be
chosen, which brings up an Edit Variable dialog box. As shown in Figure 5-8, by en-
tering volumeGain in the Variable field and a desired gain value in the Value field
of this dialog box, the sound volume can be altered.

Figure 5-8: Editing value of a variable.

L2.3 C6711 DSK without Audio Daughter Card

If the codec AD535 on the DSK board is used instead of the daughter card, the
McBSP, codec, interrupt configurations need to be modified, considering that the co-
dec sampling rate is fixed at 8 kHz. The timer configuration is no longer needed. The
McBSP configuration stays the same as before with one difference in the register
value corresponding to the codec data format. The codec configuration is done based
on the secondary communication mode of AD535 via McBSP0. That is, the LSB of
the data must be first set to 1 to get the codec ready for configuration. Then, during
the primary communication mode, the LSB needs to remain 0 for general purpose
I/O. This is done by performing a masking operation with 0xFFFE. The AD535
codec is configured to select TAPI & microphone preamps for ADC input, set voice
ADC input & DAC output PGA gain as 0 dB, and set 60-ohm speaker L/R buffer
gain as 0 dB. The interrupt configuration is the same as before except for the inter-
rupt source being IRQ_EVT_RINT0, since the codec AD535 is accessed via the
McBSP channel 0.

The source code of the foregoing configurations is shown below.

#define CHIP_6711

#include <stdio.h>
#include <c6x.h>
#include <csl.h>
#include <csl_mcbsp.h>
#include <csl_irq.h>

105

Lab 2: Audio Signal Sampling

/***
 * Declarations
 ***/

MCBSP_Handle hMcbsp;
int volumeGain;

interrupt void serialPortRcvISR(void);
void AD535_Init(int data);

void main()
{
 MCBSP_Config MyConfig = {
 0x00012001, // (SPCR) Serial port tx & rx are enabled.
 0x00010040, // (RCR) one 16 bit data/frame
 0x00010040, // (XCR) one 16 bit data/frame
 0x00000000, // (SRGR)
 0x00000000, // (MCR)
 0x00000000, // (RCER)
 0x00000000, // (XCER)
 0x00000000 // (PCR)
 };

 CSL_init(); // Initialize the library

 hMcbsp = MCBSP_open(MCBSP_DEV0, MCBSP_OPEN_RESET);
 MCBSP_config(hMcbsp,&MyConfig);

 AD535_Init(0x0306); // Reg 3, Voice channel software reset not asserted
 // TAPI & Microphone preamps selected for ADC input

 AD535_Init(0x0400); // Reg 4, Voice ADC input PGA gain = 0 dB
 AD535_Init(0x0502); // Reg 5, Voice DAC output PGA gain = 0 dB

 // 60-Ohm Spkr_L/R buffer gain = 0 dB

 volumeGain = 1;

 IRQ_globalDisable(); // Globally disables interrupts
 IRQ_nmiEnable(); // Enables the NMI interrupt
 IRQ_map(IRQ_EVT_RINT0,15); // Maps an event to a physical interrupt
 IRQ_enable(IRQ_EVT_RINT0); // Enables the event
 IRQ_globalEnable(); // Globally enables interrupts

 while(1)
 {
 }
}

void AD535_Init(int data)
{
 while(!MCBSP_xrdy(hMcbsp)); // Secondary serial communication request
 MCBSP_write(hMcbsp, 1);

 while(!MCBSP_rrdy(hMcbsp)); // Read
 MCBSP_read(hMcbsp);

106

Real-Time Digital Signal Processing Based on the TMS320C6000

L2.4 C6416/C6713 DSK

The codec AIC23 on the C6416/C6713 DSK is different than the codec AD535 on
the C6711 DSK. The configuration of this codec is achieved by using the C6416/
C6713 Board Support Library (BSL) as part of CCS. Two serial channels, McBSP1
and McBSP2 (McBSP0 and McBSP1 for C6713), are used for the configuration. The
McBSP1 (McBSP0 for C6713) is used to control the codec internal configuration
registers. The McBSP2 (McBSP1 for C6713) is used for audio data communication.
Consequently, the interrupt source should be stated as IRQ_EVT_RINT2 (IRQ_
EVT_RINT1 for C6713).

The sampling rates supported by the AIC23 codec are listed in Table 5-3. The
sampling rate is configured using the DSK6416_AIC23_setFreq() (DSK6713_
AIC23_setFreq() for C6713) API. Using the default configuration of AIC23,
the sampled data is stored in a frame consisting of 16-bit left channel data followed
by 16-bit right channel data. In order to have code consistency across different DSP
platforms, the default configuration of McBSP defined in the DSK6416_AIC23
library needs to be customized. This is achieved by modifying the transmit/receive in-
terrupt mode (TINTM/RINTM) field of SPCR so that the transmit/receive interrupt
(XINT/RINT) is generated by a new frame synchronization. Also, the transmit/re-
ceive word length should be set to 32 bits to process data from left and right together.
A more detailed description of the codec internal registers is provided in [3].

 while(!MCBSP_xrdy(hMcbsp)); // Write to Control Register of AD535
 MCBSP_write(hMcbsp, data);

 while(!MCBSP_rrdy(hMcbsp)); // Read
 MCBSP_read(hMcbsp);
}

interrupt void serialPortRcvISR()
{
 int temp;

 temp = MCBSP_read(hMcbsp);
 temp = (temp * volumeGain) & 0xFFFE;

 MCBSP_write(hMcbsp,temp);
}

107

Lab 2: Audio Signal Sampling

To build the project, the Board Support Library, dsk6416bsl.lib (dsk6713bsl.lib for
C6713), needs to be added to the project. The source code of the foregoing configu-
rations for C6416 is shown below.

Table 5-3: Sampling rates allowed by AIC23 stereo audio codec.

Sampling rate (kHz)

8.000 44.000

16.000 48.000

24.000 96.000

32.000

#define CHIP_6416

#include <stdio.h>
#include <c6x.h>
#include <csl.h>
#include <csl_mcbsp.h>
#include <csl_irq.h>

#include "dsk6416.h"
#include "dsk6416_aic23.h"

DSK6416_AIC23_CodecHandle hCodec;
DSK6416_AIC23_Config config = DSK6416_AIC23_DEFAULTCONFIG;
 // Codec configuration with default settings

interrupt void serialPortRcvISR(void);
void hook_int();
int volumeGain;

void main()
{
 DSK6416_init(); // Initialize the board support library

hCodec = DSK6416_AIC23_openCodec(0, &config);

 MCBSP_FSETS(SPCR2, RINTM, FRM);
 MCBSP_FSETS(SPCR2, XINTM, FRM);
 MCBSP_FSETS(RCR2, RWDLEN1, 32BIT);
 MCBSP_FSETS(XCR2, XWDLEN1, 32BIT);

 DSK6416_AIC23_setFreq(hCodec, DSK6416_AIC23_FREQ_48KHZ);

 volumeGain = 1;

 hook_int();

while(1)
 {

108

Real-Time Digital Signal Processing Based on the TMS320C6000

L2.5 C67x EVM

All the configurations stated for the DSK can be done in a similar way for the C67x
EVM through the DSP support software provided by Texas Instruments. The DSP
support software contains C functions for accessing and setting up the EVM board,
McBSP, and codec. The codec library is supplied in the archived object library file
drv6x.lib (drv6xe.lib is the big-endian version of this library). The corresponding
source file is drv6x.src. The codec library contains API functions that can be used
to configure and control the operation of the codec. The functional descriptions of
these functions can be found in the EVM Reference Guide [2] under TMS320C6x
EVM DSP Support Software. These functions are utilized here to write a sampling
program for the C67x EVM.

Since the main structure of the code for EVM is exactly the same as that for DSK,
this section includes only the parts that differ with DSK. The EVM version of the
program is shown below.

 }
}

void hook_int()
{
 IRQ_globalDisable(); // Globally disables interrupts
 IRQ_nmiEnable(); // Enables the NMI interrupt
 IRQ_map(IRQ_EVT_RINT2,15); // Maps an event to a physical interrupt
 IRQ_enable(IRQ_EVT_RINT2); // Enables the event
 IRQ_globalEnable(); // Globally enables interrupts
}

interrupt void serialPortRcvISR()
{
 Uint32 temp;

 temp = MCBSP_read(DSK6416_AIC23_DATAHANDLE);
 temp = temp * volumeGain;
 MCBSP_write(DSK6416_AIC23_DATAHANDLE, temp);
}

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <common.h>
#include <mcbspdrv.h>
#include <intr.h>
#include <board.h>
#include <codec.h>
#include <mcbsp.h>

109

Lab 2: Audio Signal Sampling

#include <mathf.h>

void hookint(void);
interrupt void serialPortRcvISR(void);

int main()
{
 Mcbsp_dev dev;
 Mcbsp_config mcbspConfig;
 int sampleRate, status;

 /**/
 /* Initialize EVM */
 /**/
 status = evm_init();
 if(status == ERROR)
 return (ERROR);

/**/
 /* Open MCBSP for subsequent Examples */
 /**/
 mcbsp_drv_init();
 dev= mcbsp_open(0);
 if (dev == NULL)
 {
 printf("Error opening MCBSP 0\n");
 return(ERROR);
 }

 /**/
/* configure McBSP */

 /**/
 memset(&mcbspConfig,0,sizeof(mcbspConfig));
 mcbspConfig.loopback = FALSE;
 mcbspConfig.tx.update = TRUE;
 mcbspConfig.tx.clock_mode = CLK_MODE_EXT;
 mcbspConfig.tx.frame_length1 = 0;
 mcbspConfig.tx.word_length1 = WORD_LENGTH_32;
 mcbspConfig.rx.update = TRUE;
 mcbspConfig.rx.clock_mode = CLK_MODE_EXT;
 mcbspConfig.rx.frame_length1 = 0;
 mcbspConfig.rx.word_length1 = WORD_LENGTH_32;
 mcbsp_config(dev,&mcbspConfig);
 MCBSP_ENABLE(0, MCBSP_BOTH);

/**/
/* configure CODEC */

 /**/
 codec_init();

/* A/D 0.0 dB gain, turn off 20dB mic gain, sel (L/R)LINE input */
 codec_adc_control(LEFT,0.0,FALSE,LINE_SEL);
 codec_adc_control(RIGHT,0.0,FALSE,LINE_SEL);

 /* mute (L/R)LINE input to mixer */
 codec_line_in_control(LEFT,MIN_AUX_LINE_GAIN,TRUE);
 codec_line_in_control(RIGHT,MIN_AUX_LINE_GAIN,TRUE);

110

Real-Time Digital Signal Processing Based on the TMS320C6000

Similar to DSK, the first part of the program involves initialization. Since we are
using the DSP support software instead of CSL, the EVM initialization is done by
stating the function evm_init() before calling any other support functions. This
function configures the EVM base address variables, and initializes the external mem-
ory interface (EMIF). The return value of this function indicates success or failure of
the EVM initialization.

Once EVM has been successfully initialized, next step is to open a handle to the
McBSP in order to send and receive data. The McBSP API functions are used for
this purpose. The API function mcbsp_drv_init() initializes the McBSP
driver and allocates memory for the device handles. The return value of this func-
tion also indicates success or failure. After the initialization of the McBSP driver,
the data structure elements that control the behavior of the McBSP are set to their

 /* D/A 0.0 dB atten, do not mute DAC outputs */
 codec_dac_control(LEFT, 0.0, FALSE);
 codec_dac_control(RIGHT, 0.0, FALSE);

 sampleRate = 44100;
 codec_change_sample_rate(sampleRate, TRUE);
 codec_interrupt_enable();
 hookint();

/**/
/* Main Loop, wait for Interrupt */

 /**/

 while (1)
 {
 }
}

void hookint()
{

intr_init();
intr_map(CPU_INT15, ISN_RINT0);
intr_hook(serialPortRcvISR, CPU_INT15);
INTR_ENABLE(15);
INTR_GLOBAL_ENABLE();
return;

}

interrupt void serialPortRcvISR(void)
{

int temp;
temp = MCBSP_READ(0);
MCBSP_WRITE(0, temp);

}

111

Lab 2: Audio Signal Sampling

default values (for more details, refer to the EVM Reference Guide [2]). Then, the
McBSP needs to be actually opened to get a handle to it. The API function mcbsp_
open() is used to return the handle dev for controlling the McBSP.

Next step is to adjust the parameters of the McBSP. The data structure of the McBSP
gets initialized to its default values as a result of using the initialization functions,
so all that is required is the adjustment of several parameters to suit our needs. The
loopback property of the McBSP is turned off or set to FALSE in order to disable the
serial port test mode, in which the receive pins get connected internally to the trans-
mit pins. The update property is set to TRUE for setting properties. The source signal
for clocking the serial port transfers is made external by setting the clock mode to
CLK_MODE_EXT. The frame and word lengths are set to 0 and WORD_LENGTH_32,
respectively. The adjustments to the McBSP are made by allocating memory to the
structure mcbsp_Config using the function memset(). The address of this struc-
ture is passed as an argument to the function mcbsp_config(), which performs the
required adjustments.

Finally, the McBSP needs to be activated. This is done by using the macro MCBSP_
ENABLE(), which is defined in the header file mcbsp.h. A macro is a collection of
instructions that gets substituted for the macro in the program by the assembler. In
this lab, the macro MCBSP_ENABLE(0) places the selected port 0 in the general
purpose I/O mode. The following lines of code are used to do these adjustments:

 memset(&mcbspConfig,0,sizeof(mcbspConfig));
 mcbspConfig.loopback = FALSE;
 mcbspConfig.tx.update = TRUE;
 mcbspConfig.tx.clock_mode = CLK_MODE_EXT;
 mcbspConfig.tx.frame_length1 = 0;
 mcbspConfig.tx.word_length1 = WORD_LENGTH_32;
 mcbspConfig.rx.update = TRUE;
 mcbspConfig.rx.clock_mode = CLK_MODE_EXT;
 mcbspConfig.rx.frame_length1 = 0;
 mcbspConfig.rx.word_length1 = WORD_LENGTH_32;
 mcbsp_config(dev,&mcbspConfig);
 MCBSP_ENABLE(0, MCBSP_BOTH);

Next, we need to adjust the parameters of the codec. The codec is initialized by using
the codec API function codec_init(). This function sets the codec to its default
parameters. The main item to adjust here is sampling rate. This is done by using the
API function codec_change_sample_rate(). This function sets the sampling
rate of the codec to the closest allowed sampling rate of the passed argument. The
return value from this function will be the actual sampling rate. Table 5-4 lists the
sampling rates supported by the codec. The other required adjustments are the selec-

112

Real-Time Digital Signal Processing Based on the TMS320C6000

tion of line-in or mic-in and the adjustment of their gain settings. To have stereo
input, both channels should be selected and their gains adjusted to 0dB settings. The
API functions that accomplish these tasks are codec_adc_control(), codec_
line_in_control(), and codec_dac_control(). It is also required for the
codec to generate interrupts as data is received in the DRR. Hence, the interrupt
processing capability of the codec must be enabled. This is accomplished by using the
API function codec_interrupt_enable(). The following lines of code are
used for the purpose of initializing the codec as just described:

Table 5-4: Sampling rates allowed by CS4231A stereo audio codec.

Sampling rate (kHz)

5.5125 22.0500

6.6150 27.4286

8.0000 32.0000

9.6000 33.0750

11.0250 37.8000

16.0000 44.1000

18.9000 48.0000

 codec_init();

 // ADC 0.0 dB gain, turn off 20dB mic gain, sel (L/R)LINE input
 codec_adc_control(LEFT,0.0,FALSE,LINE_SEL);
 codec_adc_control(RIGHT,0.0,FALSE,LINE_SEL);

 // (L/R) LINE input to mixer
 codec_line_in_control(LEFT,MIN_AUX_LINE_GAIN,FALSE);
 codec_line_in_control(RIGHT,MIN_AUX_LINE_GAIN,FALSE);

 // DAC 0.0 dB atten, do not mute DAC outputs
 codec_dac_control(LEFT, 0.0, FALSE);
 codec_dac_control(RIGHT, 0.0, FALSE);

 sampleRate = 44100;
 actualrate = codec_change_sample_rate(sampleRate, TRUE);
 codec_interrupt_enable();

Now, in order to set up an interrupt, the first task involves the initialization of the
interrupt service table pointer (ISTP) register with the address of the global vec_
table, which is resolved at the link time. This is done by placing the base address
of the vector table in the ISTP register. The function intr_init() is used for this

113

Lab 2: Audio Signal Sampling

purpose. Next, we need to select an interrupt number and map it to a CPU interrupt,
in our case the RINT0 interrupt. Here, the CPU interrupt 15 is used and mapped to
the RINT0 interrupt by using the function intr_map(). To connect an ISR to this
interrupt, the function intr_hook() is called, to which the name of the function
that we wish to use is passed. The last task is to enable the interrupts via the macros
INTR_ENABLE and INTR_GLOBAL_ENABLE. The following lines of code map the
CPU interrupt 15 to the RINT0 interrupt and then hook it to an ISR named seri-
alPortRcvISR:

intr_init();
 intr_map(CPU_INT15, ISN_RINT0);
 intr_hook(serialPortRcvISR, CPU_INT15);

INTR_ENABLE(15);
 INTR_GLOBAL_ENABLE();

To build this program in CCS, the project should include three libraries: rts6701.lib,
drv6x.lib and dev6x.lib. The library rts6701.lib is the runtime-support library contain-
ing the runtime-support functions such as math functions. The library dev6x.lib is a
collection of macros and functions for programming the C6x registers and periph-
erals. This library allows the programmer to control interrupt functionality, CPU
operational modes, and internal peripherals including McBSPs. The linker command
file for EVM is shown below.
MEMORY
{
 INT_PROG_MEM (RX) : origin = 0x00000000 length = 0x00010000
 SBSRAM_PROG_MEM (RX) : origin = 0x00400000 length = 0x00014000
 SBSRAM_DATA_MEM (RW) : origin = 0x00414000 length = 0x0002C000
 SDRAM0_DATA_MEM (RW) : origin = 0x02000000 length = 0x00400000
 SDRAM1_DATA_MEM (RW) : origin = 0x03000000 length = 0x00400000
 INT_DATA_MEM (RW) : origin = 0x80000000 length = 0x00010000
}

SECTIONS
{
 .vec: load = 0x00000000
 .text: load = SBSRAM_PROG_MEM
 .const: load = INT_DATA_MEM
 .bss: load = INT_DATA_MEM
 .data: load = INT_DATA_MEM
 .cinit load = INT_DATA_MEM
 .pinit load = INT_DATA_MEM
 .stack load = INT_DATA_MEM
 .far load = INT_DATA_MEM
 .sysmem load = SDRAM0_DATA_MEM
 .cio load = INT_DATA_MEM
 sbsbuf load = SBSRAM_DATA_MEM
 { _SbsramDataAddr = .; _SbsramDataSize = 0x0002C000; }
}

114

Real-Time Digital Signal Processing Based on the TMS320C6000

Figure 5-9: Flowchart of sampling program for EVM.

Main() hookint() Interrupt service routine

Initialize interrupt
service table pointer

Map the DRR interrupt
to CPU interrupt 15

Connect CPU interrupt
15 to an interrupt
service routine

Enable the interrupts

Read samples
from the DRR
(Data Receive
Register)

Put your DSP codes
here

Write data to
the DXR (Data

Transmit
Register)

Start

Initialize EVM

Initialize McBSP: set
default parameters

Succeeded?

Open a handle to McBSP for
data transfer

Succeeded?

Adjust the behavior of
McBSP

Initialize codec: set
default parameters

Adjust the behavior of
codec

Enable codec to generate
interrupts as data is
received in the data
receive register (DRR)

Keep the program running;
wait for interrupt

End

End

No

Yes

No

Yes

Call hookint(): Set
the interrupt to an

ISR

115

Lab 2: Audio Signal Sampling

Bibliography

[1] Texas Instruments, TMS320C6000 Chip Support Library API Reference Guide,
Literature ID# SPRU 401G, 2003.

[2] Texas Instruments, TMS320C6201/6701 Evaluation Module User’s Guide,
Literature ID# SPRU 269F, 2002.

[3] Texas Instruments, Stereo Audio D/A Converter, 8-to 96-KHz, With Integrated
Headphone Amplifier, Literature ID# SLWS 106G, 2003.

[4] Spectrum Digital Inc., TMS320C6416 DSK Technical Reference, 2003.

117

Fixed-Point vs. Floating-Point

6C H A P T E R

One important feature that distinguishes different DSP processors is whether their
CPUs perform fixed-point or floating-point arithmetic. In a fixed-point proces-
sor, numbers are represented and manipulated in integer format. In a floating-point
processor, in addition to integer arithmetic, floating-point arithmetic can be handled.
This means that numbers are represented by the combination of a mantissa (or a
fractional part) and an exponent part, and the CPU possesses the necessary hardware
for manipulating both of these parts. As a result, in general, floating-point processors
are more expensive and slower than fixed-point ones.

In a fixed-point processor, one needs to be concerned with the dynamic range of
numbers, since a much narrower range of numbers can be represented in integer for-
mat as compared to floating-point format. For most applications, such a concern can
be virtually ignored when using a floating-point processor. Consequently, fixed-point
processors usually demand more coding effort than do their floating-point counter-
parts.

6.1 Q-format Number Representation on Fixed-Point DSPs

The decimal value of a 2’s-complement number { }1 2 1 0... , 0,1N N iB b b b b b− −= ∈ , is given
by

 () 1 2 1 0
1 2 1 02 2 ... 2 2N N

N ND B b b b b− −
− −= − + + + + (6.1)

2’s-complement representation allows a processor to perform integer addition and
subtraction by using the same hardware. When using unsigned integer representa-
tion, the sign bit is treated as an extra bit. This way only positive numbers can be
represented.

118

Real-Time Digital Signal Processing Based on the TMS320C6000

There is a limitation to the dynamic range of the foregoing integer representation
scheme. For example, in a 16-bit system, it is not possible to represent numbers larger
than +215 – 1 = 32767 and smaller than –215 = 32768. To cope with this limitation,
numbers are normalized between –1 and 1. In other words, they are represented as
fractions. This normalization is achieved by the programmer moving the implied
or imaginary binary point (note that there is no physical memory allocated to this
point) as indicated in Figure 6-1. This way, the fractional value is given by

 () () ()2 10 1
1 2 1 02 2 ... 2 2N N

N NF B b b b b− − − −−
− −= − + + + + (6.2)

Figure 6-1: Number representations.

Implied binary point

Integer Representation

bN–1 bN–2 b0

Fractional Representation

bN–1 bN–2 b0

Implied binary point

This representation scheme is referred to as Q-format or fractional representation.
The programmer needs to keep track of the implied binary point when manipulat-
ing Q-format numbers. For instance, let us consider two Q-15 format numbers,
given that we have a 16-bit wide memory. Each number consists of 1 sign bit plus 15
fractional bits. When these numbers are multiplied, a Q-30 format number is ob-
tained (the product of two fractions is still a fraction), with bit 31 being the sign bit
and bit 32 another sign bit (called extended sign bit). If not enough bits are available
to store all 32 bits, and only 16 bits can be stored, it makes sense to store the most
significant bits. This translates into storing the upper portion of the 32-bit product
register by doing a 15-bit right shift (SHR). In this manner, the product would be
stored in Q-15 format. (See Figure 6-2.)

119

Chapter 6: Fixed-Point vs. Floating-Point

Based on 2’s-complement representation, a dynamic range of –(2N–1) ≤ D(B)<2N–1 –1
can be achieved, where N denotes the number of bits. For illustration purposes, let us
consider a 4-bit system where the most negative number is –8 and the most positive
number 7. The decimal representations of the numbers are shown in Figure 6-3. No-
tice how the numbers change from most positive to most negative with the sign bit.
Since only the integer numbers falling within the limits –8 and 7 can be represented,
it is easy to see that any multiplication or addition resulting in a number larger than
7 or smaller than –8 will cause overflow. For example, when 6 is multiplied by 2, we
get 12. Hence, the result is greater than the representation limits and will be wrapped
around the circle to 1100, which is –4.

Figure 6-2: Multiplying and storing Q-15 numbers.†

Q30

MPY A3, A4, A6

NOP

Store to
Data Memory

Add 1 to ? bit then truncate

If ? = 0, no effect (i.e. rounded down)
If ? = 1, result rounded up

×
S x x x x x x x x x x x x x x x x

S S z

Q15

Q15 S y y y y y y y y y y y y y y y y

Q15 S z z z z z z z z z z z z z z ?

ADDK 4000h, A6
SHR A6, 15, A6
STH A6, *A7

Figure 6-3: 4-bit binary representation.

0000

1000

0

-8

1111

0111

-1

7

0011

1011

3

-5

0010

1010

2

-6

0001

1001

1

-7

1100 0100-4 4

1101

0101

-3

5

1110

0110

-2

6

120

Real-Time Digital Signal Processing Based on the TMS320C6000

Q-format representation solves this problem by normalizing the dynamic range
between –1 and 1. Any resulting multiplication will be within the limits of this
dynamic range. Using Q-format representation, the dynamic range is divided into 2N
sections, where 2–(N–1) is the size of a section. The most negative number is always –1
and the most positive number is 1 – 2–(N–1).

The following example helps one to see the difference in the two representation
schemes. As shown in Figure 6-4, the multiplication of 0110 by 1110 in binary is the
equivalent of multiplying 6 by –2 in decimal, giving an outcome of –12, a number
exceeding the dynamic range of the 4-bit system. Based on the Q-3 representation,
these numbers correspond to 0.75 and –0.25, respectively. The result is –0.1875,
which falls within the fractional range. Notice that the hardware generates the same
1’s and 0’s, what is different is the interpretation of the bits.

Figure 6-4: Binary and fractional multiplication.

11110100

sign bit extended
sign bit

sign bit best approximation
in 4-bit memory

-0.25

1.110

Note that since the
MSB is a sign bit,
the corresponding
partial product is
the 2's complement
of the multiplicand

 0110
 * 1110

 6
* -2

 0000
 0110
 0110
 1010

-12 11.110 100

 0.110
 * 1.110

 0.75
* -0.25

 0 000
 01 10
 011 0
 1010

-0.1875

Q3
Q3

Q6

When multiplying Q-N numbers, it should be remembered that the result will con-
sist of 2N fractional bits, one sign bit, and one or more extended sign bits. Based on
the datatype used, the result has to be shifted accordingly. If two Q-15 numbers are
multiplied, the result will be 32-bits wide, with the MSB being the extended sign
bit followed by the sign bit. The imaginary decimal point will be after the 30th bit.
So a right shift of 15 is required to store the result in a 16-bit memory location as a
Q-15 number. It should be realized that some precision is lost, of course, as a result of
discarding the smaller fractional bits. Since only 16 bits can be stored, the shifting al-
lows one to retain the higher precision fractional bits. If a 32-bit storage capability is
available, a left shift of 1 can be done to remove the extended sign bit and store the
result as a Q-31 number.

121

Chapter 6: Fixed-Point vs. Floating-Point

To further understand a possible precision loss when manipulating Q-format num-
bers, let us consider another example where two Q12 numbers corresponding to 7.5
and 7.25 are multiplied. As can be seen from Figure 6-5, the resulting product must
be left shifted by 4 bits to store all the fractional bits corresponding to Q12 format.
However, doing so results in a product value of 6.375, which is different than the cor-
rect value of 54.375. If the product is stored in a lower precision Q-format—say, in
Q8 format—then the correct product value can be stored.

Figure 6-5: Q-format precision loss example.

Q12 7.5 0111. 1000 0000 0000
Q12 7.25 * 0111. 0100 0000 0000
Q24 54.375 0011 0110. 0110 0000 0000 0000

Q12 6.375

Q8 54.375

Although Q-format solves the problem of overflow in multiplication, addition and
subtraction still pose a problem. When adding two Q15 numbers, the sum exceeds
the range of Q15 representation. To solve this problem, the scaling approach, dis-
cussed later in this chapter, needs to be employed.

6.2 Finite Word Length Effects on Fixed-Point DSPs

Due to the fact that memory or registers have finite number of bits, there could be a
noticeable error between desired and actual outcomes on a fixed-point processor. The
so-called finite word length quantization effect is similar to input data quantization
effect introduced by an A/D converter.

Consider fractional numbers quantized by a b + 1 bit converter. When these numbers
are manipulated and stored in an M + 1 bit memory, with M < b, there is going to
be an error (simply because b – M of the least significant fractional bits are discarded
or truncated). This finite word length error could alter the behavior of a system to
an unacceptable degree. The range of the magnitude of truncation error εt is given
by 0 2 2M b

t≤ ε ≤ − . The lowest level of truncation error corresponds to the situation
when all the thrown-away bits are zeros, and the highest level to the situation when
all the thrown-away bits are ones.

122

Real-Time Digital Signal Processing Based on the TMS320C6000

This effect has been extensively studied for FIR and IIR filters. (For example see [1].)
Since the coefficients of such filters are represented by a finite number of bits, the
roots of their transfer function polynomials, or the positions of their zeros and poles,
shift in the complex plane. The amount of shift in the positions of poles and zeros
can be related to the amount of quantization error in the coefficients. For example,
for an Nth-order IIR filter, the sensitivity of the ith pole pi with respect to the kth
coefficient Ak can be derived to be (see [1]),

∂
∂

= −

−()

−

=
≠

∏
p

A

p

p p

i

k

i
k

i l
l
l i

N

N

1

 (6.3)

This means that the change in the position of a pole is influenced by the positions of
all the other poles. That is the reason the implementation of an Nth order IIR filter
is normally achieved by having a number of second-order IIR filters in series in order
to decouple this dependency of poles.

Also, note that as a result of coefficient quantization, the actual frequency response
()ˆ jH e θ would become different than the desired frequency response ()jH e θ . For ex-

ample, for a FIR filter having N coefficients, it can be easily shown that the amount
of error in the magnitude of the frequency response, ∆H e jθ() , is bounded by

∆H e H e ej j j bθ θ θ() = () − () ≤ −Ĥ N2 (6.4)

In addition to the above effects, coefficient quantization can lead to limit cycles. This
means that in the absence of an input, the response of a supposedly stable system
(poles inside the unit circle) to a unit sample is oscillatory instead of diminishing in
magnitude.

6.3 Floating-Point Number Representation

Due to relatively limited dynamic ranges of fixed-point processors, when using such
processors, one should be concerned with the scaling issue, or how big the numbers
get in the manipulation of a signal. Scaling is not an issue when using floating-point
processors, since the floating-point hardware provides a much wider dynamic range.
The C67x processor is the floating-point version of the C6x family with many addi-
tional floating-point instructions. [Appendix A (Quick Reference Guide) includes a
listing of the C67x floating-point instructions.]

123

Chapter 6: Fixed-Point vs. Floating-Point

There are two floating-point data representations on the C67x processor: single-
precision (SP) and double-precision (DP). In the single precision format, a value is
expressed as

 –1s * 2(exp–127) * 1.frac (6.5)

where s denotes the sign bit (bit 31), exp the exponent bits (bits 23 through 30), and
frac the fractional or mantissa bits (bits 0 through 22). (See Figure 6-6.)

Consequently, numbers as big as 3.4*1038 and as small as 1.175*10-38 can be pro-
cessed.

In the double-precision format, more fractional and exponent bits are used as indi-
cated below

 –1s * 2(exp–1023) * 1.frac (6.6)

where the exponent bits are from bits 20 through 30 and the fractional bits are all
the bits of one word and bits 0 through 19 of the other word. (See Figure 6-7.) In
this manner, numbers as big as 1.7*10308 and as small as 2.2 * 10-308 can be handled.

Figure 6-6: Floating point data representation.

31 30

s exp

23 22

frac

0

Figure 6-7: Double precision floating point representation.

frac

31 30

s exp

0 31

frac

01920

Even registerOdd register

When using a floating-point processor, all the steps needed to perform floating-point
arithmetic are done by the CPU floating-point hardware. For example, consider add-
ing two floating-point numbers represented by

exp

exp

*2

*2

a
frac

b
frac

a a

b b

=

=
 (6.7)

124

Real-Time Digital Signal Processing Based on the TMS320C6000

The floating-point sum c has the following exponent and fractional parts:

c a b

a b if a b

a

frac frac

a b a

frac

= +

= + ()() ≥

=

− −()* *exp exp exp

exp exp2 2

** *exp exp exp

exp exp2 2
− −()() +() <b a

frac

b
b if a b (6.8)

These parts are computed by the floating-point hardware. This shows that, though
possible, it is inefficient to perform floating-point arithmetic on fixed-point proces-
sors, since all the operations involved, such as those in Eq.(6.8), must be done in
software.

The instructions ending in SP denote single-precision data format and in DP double-
precision data format (for example, MPYSP and MPYDP). It should be noted that
some of these instructions require additional execute (E) cycles or latencies com-
pared with fixed-point instructions. (See Figure 3-8.) For example, MPYSP requires
three delays or NOPs and MPYDP nine delays or NOPs compared with one delay or
NOP for fixed-point multiplication MPY.

As illustrated in Figure 6-8, the C62x can support 40-bit and the C67x 64-bit op-
erations by concatenating two registers. Table 6-1 shows a listing of all the C6x
datatypes.

Figure 6-8: 40-bit operations.†

<src>

instr .unit <src>, <src>, <dst>

32-bit Reg

;40-bit examples
Add .L1 A2, A3, A5:A4
Add .L1 A2, A5:A4, A5:A4
Add .L2 3, B9:B8, B9:B8

5-bit Const 32-bit Reg 40-bit Reg

<src>

32-bit Reg 40-bit Reg

<dst>

ALU

40-bit Reg

odd even:

8 32

125

Chapter 6: Fixed-Point vs. Floating-Point

6.4 Overflow and Scaling

As stated before, fixed-point processors have a much smaller dynamic range than
their floating-point counterparts. Even though the C62 is considered to be a 32-bit
device, its multiplier can only multiply 16-bit numbers. It is due to this limitation
that the Q-15 representation of numbers is normally considered. The 16-bit multipli-
er can multiply two Q-15 numbers and produce a 32-bit product. Then the product
can be stored in 32 bits or shifted back to 16 bits for storage or further processing.

When multiplying two Q-15 numbers, which are in the range of –1 and 1, it is clear
that the resulting number will always be in the same range. However, when two Q-
15 numbers are added, the sum may fall outside this range, leading to an overflow.
Overflows can cause major problems by generating erroneous results. When using a
fixed-point processor, the range of numbers must be closely examined and adjusted to
compensate for overflows. The simplest correction method for overflows is scaling.

The idea of scaling can be applied to most filtering and transform operations, where
the input is scaled down for processing and the output is then scaled back up to the
original size. An easy way to do scaling is by shifting. Since a right shift of 1 is equiv-
alent to a division by 2, we can scale the input repeatedly by 0.5 until all overflows
disappear. The output can then be rescaled back to the total scaling amount.

Table 6-1: C6x datatypes.†

Type Size Representation
char, signed char 8 bits ASCII

unsigned char 8 bits ASCII

short 16 bits 2’s complement
unsigned short 16 bits binary
int, signed int 32 bits 2’s complement

unsigned int 32 bits binary
long, signed long 40 bits 2’s complement

unsigned long 40 bits binary
enum 32 bits 2’s complement
float 32 bits IEEE 32-bit

double 64 bits IEEE 64-bit
long double 64 bits IEEE 64-bit

Pointers 32 bits binary

126

Real-Time Digital Signal Processing Based on the TMS320C6000

As far as FIR and IIR filters are concerned, it is possible to scale coefficients to avoid

overflows. Let us consider the output of a filter
N 1

0

[] []* []
k

y n h k x n k
−

=

= −∑ , where the h’s

denote coefficients or unit sample response terms and the x’s input samples. In case
of IIR filters, for a large enough N, the terms of the unit sample response become
so small that they can be ignored. Let us suppose that x’s are in Q-15 format (i.e.,

| [] | 1x n k− ≤). Therefore, we can write
N 1

0

| [] | | [] |
k

y n h k
−

=

≤ ∑ . This means that, to ensure

no output overflow (i.e., | [] | 1y n ≤), the condition
N 1

0

| [] | 1
k

h k
−

=

≤∑ must be satisfied.

This condition can be satisfied by repeatedly scaling (dividing by 2) coefficients or
unit sample response terms.

The C62 provides a saturation flag bit, which is bit 9 of the CSR register. To cope
with addition overflows, the saturated add instruction SADD can be used to see
whether the saturation bit SAT is set to unity, indicating an overflow. Assuming
Q-15 format values, the following function can be used to check the status of the
SAT bit after using the _sadd() intrinsic:
short safe_add(short A, short B,int *status)
{
 int X,Y,result, SAT_BIT;
 X = A << 16;
 Y = B << 16;

result = _sadd(X,Y);
 SAT_BIT=(CSR & 0x00000200) >> 9;
 if(SAT_BIT==1){
 //Overflow Occured
 CSR = CSR & 0xFFFFFDFF; //Reset Sat Bit
 *status = 1;
 }

else
 *status = 0;

 return (result >> 16);
}

This function adds two 16-bit numbers and reports any occurring overflow. If an
overflow occurs, it also clears the SAT bit in the CSR.

6.5 Some Useful Arithmetic Operations

The C6x provides useful instructions, such as SUBC, ABS, CMPLT, and NORM, that
facilitate efficient implementation of arithmetic operations not available by the

127

Chapter 6: Fixed-Point vs. Floating-Point

CPU. There are many such operations, including division, trigonometric operations,
and square-root. In this section, we provide a number of techniques for implement-
ing these operations. Clearly, it takes many instructions for such operations to get
computed. It should also be noted that, in some applications, it is more efficient to
implement special purpose arithmetic operations by using lookup tables.

6.5.1 Division

The floating-point C67x DSP provides a reciprocal instruction RCPSP, which gives
a good estimate consisting of the correct exponent part and an accurate fractional
part up to the eighth binary position. It is possible to extend the accuracy by using
this instruction as the seed point v[0] for the iterative Newton-Raphson algorithm
expressed by the equation

 v[n + 1] = v[n] * (2.0 – x * v[n]), (6.9)

where x is the value whose reciprocal is to be found. Accuracy is increased by each
iteration of this equation. Hence, on the floating-point C67x DSP, division can be
achieved by taking reciprocal of the denominator and then by multiplying the recip-
rocal with the numerator.

On the fixed-point C6x DSP, however, no reciprocal instruction is available. One
way to compute reciprocal on the fixed-point C6x is to use the iterative New-
ton-Raphson equation. However, representing “2” as part of the equation poses a
difficulty when values are in Q15 format. This difficulty can be overcome by repre-
senting “2” in Q13 instead of Q15 format, noting that the overall accuracy of the
reciprocal is reduced to Q13. It is important to choose an initial seed that will allow
convergence in as few steps as possible. The code to implement reciprocal with an
initial seed of “1” for three iterations is as follows:

mvk 16384,temp2
 shr x,2,temp1
 sub temp2,temp1,recip ; 1st iteration

 mpy x,recip,temp1
 shr temp1,13,temp1
 sub temp2,temp1,temp1
 mpy recip,temp1,temp1
 shr temp1,13,recip ; 2nd iteration

 mpy x,recip,temp1
 shr temp1,13,temp1
 sub temp2,temp1,temp1
 mpy recip,temp1,temp1
 shr temp1,13,recip ; 3rd iteration

128

Real-Time Digital Signal Processing Based on the TMS320C6000

Another way to implement division is by using the conditional subtraction instruc-
tion SUBC. Table 6-2 shows four possible situations, given a 16-bit positive dividend
x and a 16-bit positive divisor y. If a dividend or divisor is negative, the absolute
instruction ABS should be used to convert them into positive values. The sign of
the quotient, of course, will be the same as the sign of the product x * y, which is
resolved by using the compare instruction CMPLT. The sign of the remainder will be
the same as the sign of the dividend. As shown in Table 6-2, all the situations lead
to two cases: integer division and fractional division. If x > y, the quotient will be in
integer format, and if x < y, it will be in Q15 format.

Table 6-2: Division types for different datatypes.

Datatypes Division type

x y> integers or fractions integer

x y< integers or fractions fractional

To do integer division, the SUBC instruction is repeated 16 times. As illustrated
in Figure 6-9, the dividend is shifted until subtracting the divisor no longer gives a
negative result. Then, for each subtraction that generates a positive result, the result
is shifted and a 1 is placed in LSB. After 16 such subtractions, the quotient appears
in the low, and the remainder in the high, portion of the dividend register. Such a
binary division is obtained in the same manner as long-division.

129

Chapter 6: Fixed-Point vs. Floating-Point

To do fractional division, the same long-division procedure is used. However, this
time the SUBC instruction is repeated only 15 times, due to Q15 format repre-
sentations of the dividend and divisor. The code below shows the division for the
fractional case, x and y are assumed to be in Q15 formats and x < y:

Figure 6-9: SUBC division example 33 by 5.†

Long Division:

0000000000000101

000000000000110

000000000100001 Quotient

Remainder

Comment

Dividend is loaded into register. The divisor is left-
shifted 15 and subtracted from register.
The subtraction is negative, so discard the result
and shift the register left one bit.

0000000000000000 0000000001000010
1000000000000000

SUBC Method:

(1)

2nd subtract produces negative answer, so
discard result and shift register (dividend) left.

(2)

14th SUBC command. The result is positive. Shift
result left and replace LSB with 1.

(14)

Result is again positive. Shift result left and
replace LSB with 1.

(15)

Last subtract. negative answer, so discard
result and shift register left.

(16)

Answer reached after 16 SUBC instructions.

0111111110111110

-10

-10

0000000000000100 0010000000000000
1000000000000000

1010000000000000

-10

0000000000000001

0000000000000011 0100000000000001
1000000000000000

1100000000000001

-10

0000000000000000

0000000000000001 1000000000000011
1000000000000000

1111111111111101

-10

00000000000001100000000000000011

Remainder Quotient

0000000000000000 0000000000100001
1000000000000000

0111111111011111

-10

-10

...

31 0HIGH register LOW register
...

-101

 110
-101

 11

 .global _divfra
 .title "_divfra.sa"
_divfra: .proc A4, B4, B3 ; x<y
 .reg x, y, count, prod, quot, sign

130

Real-Time Digital Signal Processing Based on the TMS320C6000

6.5.2 Sine and Cosine

Trigonometric functions such as sine and cosine can be approximated by using the
Taylor series expansion. For sine, we can write the expansion as:

3 5 7 9

() higher order
3! 5! 7! 9!
x x x xsin x x= − + − + + (6.10)

for the first five terms. Adding higher order terms leads to more precision. For imple-
mentation purposes, this expansion can be rewritten as follows:

2 2 2 2

() * 1 1 1 1
2*3 4*5 6*7 8*9
x x x xsin x x

≅ − − − −

 (6.11)

Similarly, for cosine, we can write:

2 4 6 8 2 2 2 2

() 1 1 1 1 1
2 4! 6! 8! 2 3*4 5*6 7*8
x x x x x x x xcos x

≅ − + − + = − − − −

(6.12)

 .global _divfra
 .title "_divfra.sa"
_divfra: .proc A4, B4, B3 ; x<y
 .reg x, y, count, prod, quot, sign

 MV A4, x
 MV B4, y
 MVK 15, count
 ZERO sign

 MPY x, y, prod
 CMPLT prod, 0x0000, sign ;find quotient sign
 ABS x, x ;make x and y positive
 ABS y, y
 SHL x, 15, x ;not required for integer division
 SH y, 15, y

loop: .trip 15 ;16 for integer division
 SUBC x, y, x
 [count] SUB count, 1, count
 [count] B loop

 MV x, quot
 [sign] NEG quot, quot ;incorporate quotient sign
 MV quot, A4

 .endproc A4, B3

 B B3
 NOP 5

131

Chapter 6: Fixed-Point vs. Floating-Point

Furthermore, to generate sine and cosine waves, the following recursive formulas can
be used:

2cos * (1) (2)
2cos * (1) (2)

sin nx x sin n x sin n x
cos nx x cos n x cos n x

= − − −
= − − − (6.13)

6.5.3 Square-Root

Square-root sqrt(y) can be approximated by the following Taylor series expansion
considering that y0.5 = (x+1)0.5:

2 3 4 5

2 3 4 5

5 7() 1
2 8 16 128 256

 1 0.5 0.5 0.625 0.875
2 2 2 2 2

x x x x xsqrt y

x x x x x

≅ + − + − +

 = + − + − +
 (6.14)

Here, it is assumed that x is in Q15 format. In this equation, the estimation error
would be small for x values near unity. Hence, to improve accuracy in applications
where the range of x is known, x can be scaled by a2 to bring it close to 1
(i.e., sqrt(a2x) where a2x ≅ 1). The result should then be scaled back by 1/a.

It is also possible to compute square-root by using the following recursive equation:

 v n v n x v n v n+[] = [] () [] []()1 1 5 2 * . - / * * (6.15)

6.5.4 Lookup Table

A lookup table approach can be adopted to achieve function computation. An ex-
ample of a lookup table is given next to show how this approach works.
 shr x,5,index
 ldh *+p_arctan[index],arctan

In this example, the arctangent function arctan(x) is computed based on a previously
stored table of length 1024. Since arctan(–x) = π/2 – arctan(x), the table only needs
to include the entries for positive x values. Arctangent values vary from –π/2 to π/2
for x values from –1 to 1.

132

Real-Time Digital Signal Processing Based on the TMS320C6000

Bibliography

[1] J. Proakis and D. Manolakis, Digital Signal Processing: Principles, Algorithms,
and Applications, Prentice-Hall, 1996.

133

Lab 3: Integer Arithmetic

Implementing algorithms on a fixed-point DSP requires that the range of numbers
be closely examined in order to make necessary adjustments to avoid overflows. The
simplest approach to correct for overflow is by scaling the input. This lab demon-
strates the scaling approach to correct for overflows.

L3.1 Overflow Handling

An overflow occurs when the result of an operation is too large or too small for the
CPU to handle. In a 16-bit system, when manipulating integer numbers, they must
remain in the range of –32768 to 32767. Otherwise, any operation resulting in a
number smaller than –32768 or larger than 32767 will cause overflow. For example,
when 32767 is multiplied by 2, we get 65534, which is beyond the representation
limit of a 16-bit system.

Consider the following program:
#include <stdio.h>

#define SIZE 16

short SIGNAL[SIZE] = {
11474, 21204, 27709, 29999, 27727, 21238, 11519, 47,
-11430, -21170, -27691, -29999, -27746, -21272, -11563, -95
}; // Original data

short NEWSIGNAL[SIZE]; // Data after multiplication

main()
{
 int i;

for(i = 0; i < SIZE; i++)
{
 NEWSIGNAL[i] = SIGNAL[i] * 2; // multiply by 2

 }
}

In this program, the array SIGNAL contains samples of a sinusoidal signal. These
sample values are multiplied by 2, and the results are placed into the array
NEWSIGNAL. Let us examine whether any overflow is caused by these multiplica-

134

Real-Time Digital Signal Processing Based on the TMS320C6000

tions. In order to monitor the values, it is possible to use either the Watch Window or
View Memory feature of CCS. Let us use the View Memory feature by choosing View →
Memory from the menu bar. As a result, the dialog box as shown in Figure 6-10 will
appear. In the dialog box, enter SIGNAL in the Address field, select 16-Bit Signed Int
from the pop-down list of the Format field, and then click OK. A memory window dis-
playing the values of SIGNAL will appear, as shown in Figure 6-11(a). Repeat these
steps to see the values of NEWSIGNAL, as shown in Figure 6-11(b). From Figure
6-11, it can be seen that the array NEWSIGNAL includes wrong values due to over-
flows. For example, –23128 is indicated to be the result of the multiplication of
21204 by 2, which is incorrect.

Figure 6-10: Memory Window Options dialog box.

135

Lab 3: Integer Arithmetic

As shown in Figure 6-12, the CCS View Graph feature can be used to display
SIGNAL and NEWSIGNAL. The multiplication of SIGNAL by 2 is expected to
generate another sinusoidal signal with twice the amplitude. However, as seen from
Figure 6-12(b), NEWSIGNAL is distorted and clipped when the multiplication results
are beyond the 16-bit (short datatype) range.

(a) (b)

Figure 6-11: Memory windows showing array values.

(a) (b)

Figure 6-12: Signal distorted by overflow: (a) original, and (b) distorted.

136

Real-Time Digital Signal Processing Based on the TMS320C6000

L3.2 Scaling Approach

Scaling samples is the most widely used approach to overcome the overflow problem.
In order to see how scaling works, let’s consider a simple multiply/accumulate opera-
tion. Suppose there are four constants or coefficients that need to be multiplied with
samples of an input analog signal. The worst possible overflow case would be the one
where all the multiplicants (Ck’s and x[n]’s) are 1. For this case, the result y[n]

will be 4, given that y n C x n kkk
[] = ∗ −[]=∑ 1

4
. Assuming that we have control only

over the input, the input samples should be scaled so that the result y[n] will fall in
the allowed range. A single right shift reduces the input by one half, and a double
shift reduces it further by one quarter. Of course, this leads to less precision, but it is
better than getting erroneous results.

A simple method to implement the scaling approach is to create a function that
returns the necessary amount of scaling on the input. For any multiply/accumulate
type of operations, such as filtering or transform, the worst case is the multiplication
and addition of all 1’s. Then the required amount of scaling would be dependent on
the number of additions in the summation. To examine the worst case, it is required
to obtain the required number of scaling so that all overflows disappear. This can be
achieved by writing a function to compute the required number of scalings or shift-
ings of input samples. For the example in this lab, such a function is as follows and is
named getNumberOfScaling():

#include <stdio.h>
#include <c6x.h>
#define SIZE 16

float Coeff[SIZE] = {0, 0.8311, -0.2977, 0.4961, 0.6488, -0.3401,
 -0.0341, -0.2336, -0.3801, -0.3984, -0.2568, 0.4884,
 0.1113, 0.2495, 0.9999, -0.4088}; /* coefficient */

short safe_add(short A, short B, int *status);
void rescale(short g[]);

void main()
{

int n;
 n = GetNumberOfScaling(Coeff);

switch (n)
{
case 0: { printf("No scaling is required.\n"); break; }

case 1: { printf("1 scaling is required to avoid overflow.\n"); break; }

137

Lab 3: Integer Arithmetic

default: { printf("%d scalings are required to avoid overflow.\n", n); }

}
}

int GetNumberOfScaling(float *Coeff)
{
 short sum, g[SIZE];
 int i,bOverFlow, numberOfScaling;

 // Convert to Q-15, good approximate
 for(i=0;i<SIZE;i++)
 {
 g[i]=0x7fff*Coeff[i];
 }
 numberOfScaling = 0;
start:
 sum = 0;
 // Add all values to see if OVERFLOW occurs
 for(i=0;i<SIZE;i++)
 {
 sum = safe_add(sum,g[i],&bOverFlow);
 if(bOverFlow == 1) // Overflow occurred.
 { rescale(g);
 numberOfScaling++;
 printf("Overflow occurred at summation %d\n", i+1);
 goto start;
 }
 }
 return numberOfScaling;
}

void rescale(short g[])
{
 int k, temp;
 //Rescale Input since it Overflows
 for(k = 0; k < SIZE; k++)
 {
 temp = (0x4000 * g[k]) << 1; // Half it
 g[k] = temp >> 16;
 }
}

short safe_add(short A, short B, int *status)
{
 int AA,BB,result,SAT_BIT;
 AA = A << 16;
 BB = B << 16;
 result = _sadd(AA,BB);
 SAT_BIT = (CSR & 0x00000200) >> 9;
 if(SAT_BIT == 1) // Overflow Occured
 {
 CSR = CSR & 0xFFFFFDFF; // Reset Sat Bit
 *status = 1;
 }
 else
 {

138

Real-Time Digital Signal Processing Based on the TMS320C6000

The function GetNumerOfScaling() first produces a good approximation to
Q-15 format by multiplying the input float values by 0x7FFF (effectively scaling by
215). The summation is then obtained by using the function safe_add(), which
sets the saturation bit of CSR if an overflow occurs. The value of the CSR register
is accessible with the pre-defined variable CSR in the header file c6x.h. In order to
get bit 9, or the saturation bit, a bitwise AND operation is carried out between CSR
and 0x00000200, then the result is right-shifted by 9 bits.The overflow status
is checked after every call to safe_add(). If it is 1, indicating an overflow, the
function rescale() is called to scale down the input. The number of scalings is
also counted. After scaling the input, the summation is repeated. If another overflow
occurs, the input sample is scaled down further. This process is continued until no
overflow occurs. The final number of scalings is then returned. Care must be taken
not to scale the input too many times; otherwise, the input signal gets buried in
quantization noise.

It should be noted that, in addition to scaling the input, it is also possible to scale the
coefficients or constants in a summation (such as filter coefficients or FFT twiddle
factors) to force the outcome to stay within the dynamic range. Depending on the
values of constants or coefficients, it may not be necessary to do the maximum shift
for each value. As far as the preceding program is concerned, it can be seen that an
overflow occurs at the fourth summation, and one scaling is required to avoid it.
The execution result is displayed in Figure 6-13, and Table 6-3 shows the sum of the
coefficients Ck’s. Notice that in the worst case, the inputs are all 1’s, so the sum of
the Ck’s overflows at the fourth summation, which is highlighted in the table. If the
coefficients are scaled down by one-half, this is equivalent to scaling down the input
samples by one-half, the overflows disappear.

 *status = 0;
 }
 return (result >> 16);
}

Figure 6-13: Overflow program execution result.

139

Lab 3: Integer Arithmetic

Table 6-3: Scaling example.

kC kC∑
2

kC
2

kC∑
0 0 0 0
0.8311 0.8311 0.41555 0.41555
–0.2977 0.5334 –0.14885 0.2667
0.4961 1.0295 0.24805 0.51475
0.6488 1.6783 0.3244 0.83915
–0.3401 1.3382 –0.17005 0.6691
–0.0341 1.3041 –0.01705 0.65205
–0.2336 1.0705 –0.1168 0.53525
–0.3801 0.6904 –0.19005 0.3452
–0.3984 0.292 –0.1992 0.146
–0.2568 0.0352 –0.1284 0.0176
0.4884 0.5236 0.2442 0.2618
–0.1113 0.4123 –0.05565 0.20615
0.2495 0.6618 0.12475 0.3309
0.9999 1.6617 0.49995 0.83085
–0.4088 1.2529 –0.2044 0.62645

141

Code Optimization

7C H A P T E R

Four relatively simple modifications of assembly code can be done to generate a more
efficient code. These modifications make use of the available C6x resources such as
multiple buses, functional units, pipelined CPU, and memory organization. They
include (a) using parallel instructions, (b) eliminating delays or NOPs, (c) unrolling
loops, and (d) using word-wide data.

Wherever possible, parallel instructions should be used to make maximum use of idle
functional units. It should be noted that, whenever the order in which instructions
appear is important, care must be taken not to have any dependency in the operands
of the instructions within a parallel instruction.

It may become necessary to have cross paths when making instructions parallel.
There are two types of cross paths: data and address. As illustrated in Figure 7-1(a),
in data cross paths, one source part of an instruction on the A or B side comes from
the other side. A cross path is indicated by x as part of functional unit assignment.
The destination is determined by the unit index 1 or 2. As an example, we might
have:

 MPY .M1x A2,B3,A4

 MPY .M2x A2,B3,B4

In address cross paths, a .D unit gets its data address from the address bus on the
other side. There are two address buses: DA1 and DA2, also known as T1 and T2,
respectively. Figure 7-1(b) illustrates an example where a load and a store are done in
parallel via the address cross paths.

142

Real-Time Digital Signal Processing Based on the TMS320C6000

Wherever possible, branches should be placed five places ahead of where they are
intended to appear. This would create a delayed branch, minimizing the number of
NOPs. This approach should also be applied to load and multiply instructions that
involve four delays and one delay, respectively. If the code size is of no concern,
loops should be repeated or copied. By copying or unrolling a loop, fewer clock cycles
would be needed, primarily due to deleting branches. Figure 7-2 shows the optimized
version of the dot-product loop incorporating the preceding steps.

Figure 7-1: (a) Data cross-path, and (b) address cross-path.†

A

B

(a) (b)

.L1
.M1
.S1 2x

1x

<src>

<src>

<dst>
.D1

.D2

A

B
 LDW .D1T2 *A0,B5
|| STW .D2T1 A5,*B0

A5

*A0

*B0

B5

Data1

DA1

DA2

T1

T2

Figure 7-2: Optimized dot-product example.

Loop:
 LDH .D1 *A8++,A2 ;load input 1 into A2
 || LDH .D2 *B9++,B3 ;load input 2 into B3
 [B0] SUB .L2 B0,1,B0 ;decrement counter
 [B0] B .S1 Loop ;branch to Loop
 NOP 2 ;5 latency slots required

 MPY .M1X A2,B3,A4 ;A4=A2*B3, crosspath
 NOP
 ADD .L1 A4,A6,A6 ;A6 += A4

Considering that there exists a delay associated with getting information from
off-chip memory, program codes should be run from the on-chip RAM whenever pos-
sible. In situations where program codes would not fit into the on-chip RAM, faster
execution can be achieved by placing the most time-consuming routine or function
in the on-chip memory. The C6x has a cache feature which can be enabled to turn
the program RAM into cache memory. This is done by setting the program cache
control (PCC) bits of the CSR to 010. For repetitive operations or loops, it is rec-
ommended that this feature is enabled, since there is then a good chance the cache

143

Chapter 7: Code Optimization

will contain the needed fetch packet and the EMIF will be unused, speeding up code
execution. Figure 7-3 shows the code for enabling the cache feature. The instruction
CLR and SET are used to clear and set bits from the second argument position to the
third argument position. For more detailed operation of cache and its options, refer
to the CPU Reference Guide [1].

Figure 7-3: Enabling cache feature.

 .def _enable_cache

_enable_cache:
 b .s2 B3
 mvc .s2 CSR, B0
 clr .s2 B0, 5, 7, B0
 set .s2 B0, 6, 6, B0
 mcv .s2 B0, CSR
 nop

7.1 Word-Wide Optimization

If data are in halfwords (16 bits), it is possible to perform two loads in one instruc-
tion, since the CPU registers are 32 bits wide. In other words, as shown in Figure 7-4,
one data can get loaded into the lower part of a register and another one into the
upper part.

This way, to do multiplication, two multiplication instructions MPY and MPYH,
should be used, one taking care of the lower part and the other of the upper part,
as shown in Figure 7-5. Note that A5 and B5 appear as arguments in both MPY and
MPYH instructions. This does not pose any conflict, since, on the C6x, up to four
reads of a register in one cycle are allowed.

Figure 7-4: Use of LDW to load data.

a0

a1

:

x0

x1

:

a1 a0

x1 x0

16 bit Memory Registers

A5

B5

LDW...

LDW...

144

Real-Time Digital Signal Processing Based on the TMS320C6000

Figure 7-6 provides the word-wide optimized version of the dot-product function
DotP(). When the looping is finished, register A2 would contain the sum of even
terms and register B2 the sum of odd terms. To obtain the total sum, these registers
are added outside the loop.

Figure 7-5: Word-wide optimization.†

×

=

 LDW .D1 *A4++, A5a1 a0

x1 x0

A5

B5

a1*x1

B5

a0*x0

A5

+

a2*x2 + a0*x0

a3*x3 + a1*x1

A2

B2

 LDW .D2 *B4++, B5

 MPY .M1 A5, B5, A5
|| MPYH .M2 A5, B5, B5

 ADD .L1 A2, A5, A2

|| ADD .L2 B2, B5, B2

Figure 7-6: Word-wide optimized version of dot product code.

 .def DotP

;A4 = &a, B4 = &x, A6 = 20, B3 = return address

DotP: zero A2 ;A2=0
 || zero B2 ;B2=0
 mv A6,B0 ;set B0 to argument passed in A6
loop:
 ldw .d1 *A4++,A5 ;input word
 || ldw .d2 *B4++,B5 ;input word
 [B0] sub .l2 B0,1,B0 ;decrement loop counter
 [B0] b .s1 loop ;branch to loop (5 delay slots filled below)
 nop 2
 mpy .m1 A5,B5,A5 ;A5=A5(low)*B5(low)
 || mpyh .m2 A5,B5,B5 ;B5=A5(high)*B5(high)
 nop

add .l1 A2,A5,A2 ;A2 += A5
 || add .l2 B2,B5,B2 ;B2 += B5

rtn: b .s2 B3 ;branch back to calling address
 add .l1x A2,B2,A4 ;A4 = A2 + B2 return value
 nop 4

145

Chapter 7: Code Optimization

Out of the preceding modifications, it is possible to do the last one, word-wide opti-
mization, in C. This demands using an appropriate datatype in C. Figure 7-7 shows
the word-wide optimized C code by using the _mpy() and _mpyh() intrinsics.

7.2 Mixing C and Assembly

To mix C and assembly, it is necessary to know the register convention used by the
compiler to pass arguments. This convention is illustrated in Figure 7-8. DP, the base
pointer, points to the beginning of the .bss section, containing all global and static
variables. SP, the stack pointer, points to local variables. The stack grows from higher
memory to lower memory, as indicated in Figure 7-8. The space between even regis-
ters (odd registers) is used when passing 40-bit or 64-bit values.

Figure 7-7: Word-wide optimized code in C.

//Prototype
short DotP(int *m, int *n, short count);

//Declarations
short a[40] = {40,39,…1};
short x[40] = {1,2,…40};
short y = 0;
main()
{
 y = DotP((int *)a, (int *)x, 20);
}

short DotP(int *m, int *n, short count)
{
 short i;
 short productl;
 short producth;
 short suml = 0;
 short sumh = 0;

 for(i=0, i<count; i++)
{
 productl = _mpy(m[i],n[i]);
 producth = _mpyh(m[i],n[i]);
 suml += productl;
 sumh += producth;
}
suml += sumh;
return(suml);

}

146

Real-Time Digital Signal Processing Based on the TMS320C6000

7.3 Software Pipelining

Software pipelining is a technique for writing highly efficient assembly loop codes
on the C6x processor. Using this technique, all functional units on the processor
are fully utilized within one cycle. However, to write hand-coded software pipelined
assembly code, a fair amount of coding effort is required, due to the complexity and
number of steps involved in writing such code. In particular, for complex algorithms
encountered in many communications, and signal/image processing applications,
hand-coded software pipelining considerably increases coding time. The C compiler
at the optimization levels 2 and 3 (–o2 and –o3) performs software pipelining to
some degree. (See Figure 4-1.) Compared with linear assembly, the increase in code
efficiency when writing hand-coded software pipelining is relatively slight.

7.3.1 Linear Assembly

Linear assembly is a coding scheme that allows one to write efficient codes (com-
pared with C) with less coding effort (compared with hand-coded software pipelined
assembly). The assembly optimizer is the software tool that parallelizes linear assem-
bly code across the eight functional units. It attempts to achieve a good compromise
between code efficiency and coding effort.

Figure 7-8: Passing arguments convention.†

arg1

arg3

arg5

arg7

arg9

ret addr

arg2

arg4

arg6

arg8

arg10

DP

SP

Prior

Stack

Contents

A B
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Stack

.bss section

save
on

entry

save
on
call

higher memory

lower memory

147

Chapter 7: Code Optimization

In a linear assembly code, it is not required to specify any functional units, registers,
and NOP’s. Figure 7-9 shows the linear assembly code version of the dot-product
function. The directives .proc and .endproc define the beginning and end,
respectively, of the linear assembly procedure. The symbolic names p_m, p_n, m, n,
count, prod, and sum are defined by the .reg directive. The names p_m, p_n,
and count are associated with the registers A4, B4, and A6 by using the assignment
MV instruction.

Table 7-1: Linear assembly directives.†

Directive Description Restrictions
.call Calls a function Valid only within procedures

.cproc Start a C/C++ callable procedure Must use with .endproc

.endproc End a C/C++ callable procedure Must use with .cproc

.endproc End a procedure Must use with .proc; cannot use variables in the
register parameter

.mdep Indicates a memory dependence Valid only within procedures

.mptr Avoid memory bank conflicts Valid only within procedures; can use variables in the
register parameter

.no_mdep No memory aliases in the function Valid only within procedures

.proc Start a procedure Must use with .endproc; cannot use variables in the
register parameter

.reg Declare variables Valid only within procedures

.reserve Reserve register use

.return Return value to procedure Valid only within .cproc procedures

.trip Specify trip count value Valid only within procedures

 .title "dotp.sa"
 .def dotp
 .sect "code"

dotp: .proc A4, B4, A6, B3
 .reg p_m, m, p_n, n, prod, sum, count

 mv A4, p_m ;p_m now has the address of m
 mv B4, p_n ;p_n now has the address of n
 mv A6, count ;count = the number of iterations
 mvk 0, sum ;sum=0

loop: .trip 40 ;minimum 40 iterations through loop
 ldh *p_m++, m ;load element of m, postincrement pointer
 ldh *p_n++, n ;load element of n, postincrement pointer
 mpy m, n, prod ;prod=m*n
 add prod, sum, sum ;sum += prod
 [count] sub count, 1, count ;decrement counter
 [count] b loop ;branch back to loop
 mv sum, A4 ;store result in return register A4

 .endproc A4, B3

148

Real-Time Digital Signal Processing Based on the TMS320C6000

As per the register convention, the arguments are passed into and out of the pro-
cedure via registers A4, B4, A6, and B3. A4 is used to pass the address of m (arg1),
B4 the address of n (arg2), and A6 the address of sum (arg3). Register B3, referred
to as a preserved register, is passed in and out with no modification. This is done to
prevent it from being used by the procedure. Here, this register is used to contain the
return address reached by the branch instruction outside of the procedure. Preserved
registers must be specified in both input and output arguments while not being used
within the procedure. Table 7-1 provides a list of linear assembly directives.

If the number of iterations is known, a .trip directive should be used for the as-
sembler optimizer to generate the pipelined code. For n iterations of a loop, in a
pipelined code, the loop is repeated n’ times, where n’ = n – prolog length (prolog
will be explained later in the chapter). The number of iterations, n’, is known as the
minimum trip count. If .trip is greater than or equal to n’, only the pipelined code
is created. Otherwise, both the pipelined and the non-pipelined code are created. If
.trip is not specified, only the non-pipelined code is created. In C, the function
_n_assert() is used to provide the same information as .trip.

To further optimize a linear assembly code, partitioning information can be added.
Such information consist of the assignment of data paths to instructions.

7.3.2 Hand-Coded Software Pipelining

First let us review the pipeline concept. Figures 7-10(b) and 7-10(c) show a non-
pipelined and a pipelined version of the loop code shown in Figure 7-10(a). As can
be seen from this figure, the functional units in the non-pipelined version are not
fully utilized, leading to more cycles compared with the pipelined version. There are
three stages to a pipelined code, named prolog, loop kernel, and epilog. Prolog cor-
responds to instructions that are needed to build up a loop kernel or loop cycle, and
epilog to instructions that are needed to complete all loop iterations. When a loop
kernel is established, the entire loop is done in one cycle via one parallel instruction
using the maximum number of functional units. This parallelism is what causes a
reduction in the number of cycles.

Figure 7-9: Linear assembly code for dot product example.

 .title "dotp.sa"
 .def dotp
 .sect "code"

dotp: .proc A4, B4, A6, B3
 .reg p_m, m, p_n, n, prod, sum, count

 mv A4, p_m ;p_m now has the address of m
 mv B4, p_n ;p_n now has the address of n
 mv A6, count ;count = the number of iterations
 mvk 0, sum ;sum=0

loop: .trip 40 ;minimum 40 iterations through loop
 ldh *p_m++, m ;load element of m, postincrement pointer
 ldh *p_n++, n ;load element of n, postincrement pointer
 mpy m, n, prod ;prod=m*n
 add prod, sum, sum ;sum += prod
 [count] sub count, 1, count ;decrement counter
 [count] b loop ;branch back to loop
 mv sum, A4 ;store result in return register A4

 .endproc A4, B3

149

Chapter 7: Code Optimization

Three steps are needed to produce a hand-coded software pipelined code from a lin-
ear assembly loop code: (a) drawing a dependency graph, (b) setting up a scheduling
table, and (c) deriving the pipelined code from the scheduling table.

In a dependency graph (see Figure 7-11 for the terminology), the nodes denote
instructions and symbolic variable names. The paths show the flow of data and are
annotated with the latencies of their parent nodes. To draw a dependency graph for
the loop part of the dot-product code, we start by drawing nodes for the instructions
and symbolic variable names.

Figure 7-10: (a) A loop example, (b) non-pipelined code, and (c) pipelined code.†

(a)

cycle\unit .D1 .D2 .M1 .M2 .L1 .L2 .S1 .S2

1 ldh ldh

2 mpy

3 add

4 ldh ldh

5 mpy

6 add

7 ldh ldh

8 mpy

9 add

(b)

cycle\unit .D1 .D2 .M1 .L1

Prolog 1 ldh ldh

loop buildup 2 ldh ldh mpy

Loop Kernel
3 ldh ldh mpy add

4 ldh ldh mpy add

5 ldh ldh mpy add

Epilog 6 mpy add

Completing final operations 7 add

(c)

loop: ldh
 || ldh
 mpy
 add

150

Real-Time Digital Signal Processing Based on the TMS320C6000

After the basic dependency graph is drawn, a functional unit is assigned to each node
or instruction. Then, a line is drawn to split the workload between the A- and B-side
data paths as equally as possible. It is apparent that one load should be done on each
side, so this provides a good starting point. From there, the rest of the instructions
need to be assigned in such a way that the workload is equally divided between the
A- and B-side functional units. The dependency graph for the dot-product example
is shown in Figure 7-12.

Figure 7-11: Dependency graph terminology.

Instruction

Source
Parent
node

Child
node Destination

total number of cycles
or latencies

.Functional unit &
data path number

Figure 7-12: Dot-product dependency graph.†

m

prod

n

sum

count

loop

LDH LDH

.D2

.L2

.S2
1

ADD

2

5

.D1

SUB

B

MPY

.M1x
1

5

1

6

A
Side

B
Side

(Dotted line for
conditional instructions)

 .L1

151

Chapter 7: Code Optimization

The next step for handwriting a pipelined code is to set up a scheduling table. To
do so, the longest path must be identified in order to determine how long the table
should be. Counting the latencies of each side, we see that the longest path is 8. This
means that 7 prolog columns are required before entering the loop kernel. Thus, as
shown in Table 7-1, the scheduling table consists of 15 columns (7 for prolog, 1 for
loop kernel, 7 for epilog) and eight rows (one row for each functional unit). Epilog
and prolog are of the same length.

The scheduling is started by placing the load instructions in parallel in cycle 1. These
instructions are repeated at every cycle thereafter. The multiply instruction must
appear five cycles after the loads (1 cycle for loads + 4 load delays), so it is scheduled
into slot or cycle 6. The addition must appear two cycles after the multiply (1 cycle
for multiply + 1 multiply delay), requiring it to be placed in slot or cycle 8, which is
the loop kernel part of the code. The branch instruction is scheduled in slot or cycle
3 by reverse counting 5 cycles back from the loop kernel. The subtraction must occur
before the branch, so it is scheduled in slot or cycle 2. The completed scheduling
table appears in Table 7-2.

Table 7-2: Dot-product scheduling table.†

LDH

LDH

LDH

LDH

LDH

LDH

LDH

LDH

1 2 3 4 5 6 7 8 9 10 11 12

MPY

LDH

LDH

LDH

LDH

LDH

LDH

LDH

LDH

SUB SUB SUB SUB SUB SUB

ADD

SUB

13 14 15

ADD ADD ADD ADD ADD ADD ADD

BB B B B B

MPYMPY MPY MPY MPY MPY MPY

PROLOG LOOP EPILOG

.D1

.D2

.L1

.L2

.S2

.S1

.M2

.M1

Cycle
Unit

2

3
4

5

6

1

Next, the code is handwritten directly from the scheduling table as 7 prolog parallel
instructions, 40 – 7=33 loop kernel parallel instructions, and 7 epilog parallel in-
structions. This hand-coded software pipelined code is shown in Figure 7-13. It can
be seen that this pipelined code requires only 47 cycles to perform the dot-product
40 times. Note that, as shown in Figure 7-14, it is possible to eliminate the epilog
instructions by performing the loop kernel instruction 40 instead of 33 times, leading
to a lower code size and a higher number of loads.

152

Real-Time Digital Signal Processing Based on the TMS320C6000

Figures 7-15(b) and 7-15(c) show the dependency graph and the scheduling table, re-
spectively, of the word-wide optimized dot-product code appearing in Figure 7-15(a).
The corresponding hand-coded pipelined code is shown in Figure 7-16. This time,
28 cycles are required: 7 prolog instructions, 40/(2 word datatype) = 20 loop kernel

Figure 7-13: Hand-coded software pipelined dot-product code.

Figure 7-14: Elimination of epilog instructions.†

cycle 1:
 ldh .D1 *A1++,A2
 || ldh .D1 *B1++,B2

cycle 2:
 ldh .D1 *A1++,A2
 || ldh .D1 *B1++,B2
 || [B0] sub .L2 B0,1,B0

cycle 3,4 and 5:
 ldh .D1 *A1++,A2
 || ldh .D1 *B1++,B2
 || [B0] sub .L2 B0,1,B0
 || [B0] B .S2 loop

cycle 6 and 7:
 ldh .D1 *A1++,A2
 || ldh .D1 *B1++,B2
 || [B0] sub .L2 B0,1,B0
 || [B0] B .S2 loop
 || mpy .M1x A2,B2,A3

cycle 8 to n: Single-cycle loop

 loop: ldh .D1 *A1++,A2
 || ldh .D1 *B1++,B2
 || [B0] sub .L2 B0,1,B0
 || [B0] B .S2 loop
 || mpy .M1x A2,B2,A3
 || add .L1 A4,A3,A4

cycle n+1 to n+5:
 mpy .M1x A2,B2,A3
 || add .L1 A4,A3,A4

cycle n+6 to n+7:
 add .L1 A4,A3,A4

hdl
hdl
hdl
hdl
hdl
hdl
hdl
hdl

dd a
hdl

dd a
hdl

dd a hdl
dda

hdl
dda

...

1 2 3 4 5 6 7 8 ... 40 Loads 47 Cycles
 1 2 3 ... 32 33 Loops 40 Adds

dda
dda

dda
dda
dda
dda
dda

Prolog Loop Epilog

hd l
hdl
hdl
hd l
hdl
hdl
hdl
hd l

dda
hdl

dda
hdl

dda hdl
dda

hdl
dda

...

1 2 3 4 5 6 7 8 ... 47 Loads and Cycles
 1 2 3 ... 32 40 Adds and Loops

Prolog Loop

of Adds: 40
Loop count: 33
Cycle count: 47
Code Size: 46w
Extra Loads: 0

of Adds: 40
Loop count: 40
Cycle count: 47
Code Size: 33w
Extra Loads: 7

153

Chapter 7: Code Optimization

instructions, and one extra add to sum the even and odd parts. Table 7-3 provides
the number of cycles for different optimizations of the dot-product example discussed
throughout the book. The interested reader is referred to the TI TMS320C6x Pro-
grammer’s Guide [2] for more details on how to handwrite software pipelined assembly
code.

Figure 7-15: (a) Linear assembly dot-product code,
(b) corresponding dependency graph, and (c) scheduling table.†

A Side B Side

LDW LDW

.D1 .D2m n

5 5
MPY MPYH
.M1x .M2xprod prodh

2 2

sum sum ADDADD
.L1 .L21 1

SUB

count
.S2

1

B

loop .S1

6

; for (i=0;i < count;i++)
; prod = m[i] * n[i];
;sum += prod; count becomes 20

 ldw *p_m++, m
 ldw *p_n++, n
 mpy m, n, prod
 mpyh m, n, prodh
 add prod, sum, sum
 add prodh, sumh, sumh

 [count] sub count, 1, count
 [count] b loop

; Outside of Loop
 add sum, sumh, sum

loop:

(a) (b)

(c)

ldw m

ldw n

ldw

ldw

ldw

ldw

ldw

ldw

1 2 3 4 5 6 7 8

mpy

ldw

ldw

ldw

ldw

ldw

ldw

ldw

ldw

add

add

B

sub

B

subsub sub sub sub sub

BB BB

mpympy

mpyh mpyh mpyh

PROLOG LOOP

.D1

.D2

.L1

.L2

.S2

.S1

.M2

.M1

Cycle
Unit

2

3
4

5

6

1

7
8

154

Real-Time Digital Signal Processing Based on the TMS320C6000

Multicycle loops − Let us now examine an example denoting a weighted vector sum
c = a + r * b, where a and b indicate two arrays or vectors of size 40 and r a con-
stant or scalar. Figure 7-17 shows the linear assembly code and the corresponding
dependency graph to compute c. A problem observed in this dependency graph is
that there are more than two loads/stores operations (i.e., the .D1 unit is assigned to
two nodes). This, of course, is not possible in a single-cycle loop. Consequently, we
must have two instead of one cycle loop. In other words, two parallel instructions are
needed to compute the vector sum c per iteration.

Figure 7-16: Hand-coded pipelined code for word-wide dot-product loop.

cycle 1:
 ldw .D1 *A4++,A5
 || ldw .D1 *B4++,B5

cycle 2:
 ldw .D1 *A4++,A5
 || ldw .D1 *B4++,B5
 || [B0] sub .S2 B0,1,B0

cycle 3,4 and 5:
 ldw .D1 *A4++,A5
 || ldw .D1 *B4++,B5
 || [B0] sub .S2 B0,1,B0
 || [B0] B .S1 loop

cycle 6 and 7:
 ldw .D1 *A4++,A5
 || ldw .D1 *B4++,B5
 || [B0] sub .S2 B0,1,B0
 || [B0] B .S1 loop
 || mpy .M1x A5,B5,A6
 || mpyh .M2x A5,B5,B6

cycle 8 to n+7: Single-cycle loop

 loop: ldw .D1 *A4++,A5
 || ldw .D1 *B4++,B5
 || [B0] sub .S2 B0,1,B0
 || [B0] B .S1 loop
 || mpy .M1x A5,B5,A6
 || mpyh .M2x A5,B5,B6
 || add .L1 A7,A6,A7
 || add .L2 B7,B6,B7

Table 7-3: Optimization methods cycles.

No optimization 16 cycles * 40 iterations = 640

Parallel optimization 15 cycles * 40 iterations = 600

Filling delay slots 8 cycles * 40 iterations = 320

Word wide optimizations 8 cycles * 20 iterations = 160

Software pipelined -LDH 1 cycle * 40 loops + 7 prolog = 47

Software pipelined -LDW 1 cycle * 20 loops + 7 prolog + 1 epilog = 28

155

Chapter 7: Code Optimization

This time, the scheduling table consists of two sets of functional units arranged as
shown in Figure 7-17. In this example, the length of the longest path is 10, which
corresponds to the load-multiply-shift-add-store path. This means that there should
be 10 cycle columns. However, this time the cycle number is set up by alternating
between the two sets of functional units. The scheduling is started by entering the

Figure 7-17: Multicycle loop: (a) loop code, (b) dependency graph,
and (c) scheduling table.†

(a) (b)

Unit\cycle 1 3 5 7 9

.L1 ADDci

.L2

.S1 B + +

.S2

.M1

.M2

.D1 LDHai + + +

.D2 LDHbi + + + +

Unit\cycle 2 4 6 8 10

.L1

.L2 SUB i + + +

.S1

.S2 SHR sum +

.M1

.M2 MPYbi + +

.D1 LDHai STHci

.D2 LDHai

conflict
(c)

LDH

ai .D1 A
Side

B
Side

5

ADD

ci .L1

STH
1

1
*c++ .D1

r

15

SHR

sum .s2

1

loop
B
.S1

6

2

prod .M2

MPY

bi .D2

5

i
1

.L2

SUB

LDH

1

loop: LDH *a++, ai
 LDH *b++, bi
 MPY r, bi, prod
 SHR prod, 15, sum
 ADD ai, sum, ci
 STH ci, *c++

 [i] SUB i, 1, i
 [i] B loop

156

Real-Time Digital Signal Processing Based on the TMS320C6000

instructions for the longest path. The load LDH bi is placed in slot 1. MPY is placed
in slot 6, five slots after slot 1 to accommodate for the load latencies. SHR is placed
in slot 8, two slots after slot 6 to accommodate for the multiply latency. ADD is placed
in slot 9, one slot after slot 8, and STH ci in the last slot 10. The other path is then
scheduled. The loading LDH ai for this path must be done 5 slots or cycles before
the ADD instruction. This would place LDH ai in slot 4. However, notice that the
.D1 unit as part of the second loop cycle has already been used for STH ci and can-
not be used at the same time. Hence, this creates a conflict which must be resolved.
As indicated by the shaded boxes in Figure 7-17, the conflict is resolved either by using
the .D2 unit in the second cycle loop or by using the .D1 unit in the first cycle loop.

7.4 C64x Improvements

This section shows how the additional features of the C64x DSP can be used to
further optimize the dot-product example. Figure 7-18(b) shows the C64x version of
the dot-product loop kernel for multiplying two 16-bit values. The equivalent C code
appears in Figure 7-18(a).

Figure 7-18: C64x pipelined code: (a) C, and (b) assembly.†

main()
{
 y = DotP(a,x,40);
}
int DotP(short *m, short *n, int count)
{
 int i;
 int product;
 int sum = 0;
 for(i=0;i<count;i++)
 {
 product = m[i] * n[i];
 sum += product;
 }
 return(sum);
}

(a)

;PIPED LOOP KERNEL
LOOP:

[A0] SUB .L1 A0,1,A0
 || [!A0] ADD .S1 A6,A5,A5 ;keep running sum
 || MPY .M1X B4,A4,A6 ;multiply two 16-bit values
 || [B0] BDEC .S2 LOOP, B0 ;decrement loop counter and branch if > 0
 || LDH .D1T1 *A3++,A4 ;load 16-bit value
 || LDH .D2T2 *B5++,B4 ;load 16-bit value

(b)

157

Chapter 7: Code Optimization

Now, by using the DOTP2 instruction of the C64x, we can perform two 16*16 mul-
tiplications, reducing the number of cycles by one-half. This requires accessing two
32-bit values every cycle. As shown in Figure 7-19(a), in C, these can be achieved by
using the intrinsic _dotp2() and by casting shorts as integers. The equivalent loop
kernel code generated by the compiler is shown in Figure 7-19(b), which is a double-
cycle loop containing four 16 * 16 multiplications. The instruction LDW is used to
bring in the required 32-bit values.

Figure 7-19: C64x packed datatype code: (a) C, and (b) assembly.†

main()
{
 y = DotP((int)a, (int *)x,20);
}

int DotP(int *m, int *n, int count)
{
 int i,
 int product;
 int sum = 0;
 for(i=0;i<count;i++)
 {
 product = _dotp2(m[i], n[i]);
 sum = product + sum;
 }
 return(sum);
}

(a)

;PIPED LOOP KERNEL
LOOP:
 [!A1] ADD .L2 B8,B4,B4 ;running sum 0
 || DOTP2 .M2X B7,A6,B8 ;2 16x16 multiplies + add ; prod 0
 || [A0] BDEC .S1 LOOP, A0 ;decrement loop counter and branch if > 0
 || LDW .D1T1 *+A4(4),A3 ;load a 32-bit value
 || LDW .D2T2 *+B5(4),B6 ;load a 32-bit value
 [A1] SUB .L1 A1,1,A1
 || [!A1] ADD .S1 A7,A5,A5 ;running sum1
 || DOTP2 .M1X B6,A3,A7 ;2 16x16 multiplies + add; prod 1
 || LDW .D1T1 *++A4(8), A6 ;load a 32-bit value
 || LDW .D2T2 *++B5(8), B7 ;load a 32-bit value

(b)

Considering that the C64x can bring in 64-bit data values by using the double-word
loading instruction LDDW, the foregoing code can be further improved by perform-
ing four 16 * 16 multiplications via two DOTP2 instructions within a single-cycle
loop, as shown in Figure 7-20(b). This way the number of operations is reduced by
four-fold, since four 16 * 16 multiplications are done per cycle. To do this in C, we

158

Real-Time Digital Signal Processing Based on the TMS320C6000

need to cast short datatypes as doubles, and to specify which 32 bits of 64-bit data a
DOTP2 is supposed to operate on. This is done by using the _lo() and _hi() in-
trinsics to specify the lower and the upper 32 bits of 64-bit data, respectively. Figure
7-20(a) shows the equivalent C code.

Figure 7-20: C64x double-word packed datatype code: (a) C, and (b) assembly.†

(a)

(b)

int DotP(const short * restrict m, const short * restrict n, int count)
{
 int i;
 int sum = 0;
 const double * restrict m_dbl = (const double *) m;
 const double * restrict n_dbl = (const double *) n;

 count /= 2; // count is divided by two if using same
 // main function to call this subroutine

 for(i=0;i<count;i++)
 {
 sum += _dotp2(_lo(m_dbl[i]), _lo(n_dbl[i])) +
 _dotp2(_hi(m_dbl[i]), _hi(n_dbl[i]));

 }
 return sum ;
}

;PIPED LOOP KERNEL
LOOP:
 [B0] SUB .L2 B0,1,B0 ;decrement running sum counter
 || [!B0] ADD .S2 B8,B6,B6 ; running sum 0
 || [!B0] ADD .L1 A7,A6,A6 ; running sum 1
 || DOTP2 .M2X B4,A4,B8 ; 2 16x16 multiplies + add; prod 0
 || DOTP2 .M1X B5,A5,A7 ; 2 16x16 multiplies + add; prod 1
 || [A0] BDEC .S1 LOOP,A0 ;branch to loop & decrement loop count
 || LDDW .D1T1 *A3++,A5:A4 ;load a 64-bit value
 || LDDW .D2T2 *B7++,B5:B4 ;load a 64-bit value

159

Chapter 7: Code Optimization

Bibliography

[1] Texas Instruments, TMS320C6000 CPU and Instruction Set Reference Guide,
Literature ID# SPRU 189F, 2000.

[2] Texas Instruments, TMS320C62x/C67x Programmer’s Guide,
Literature ID# SPRU 198B, 1998.

161

Lab 4: Real-Time Filtering

The purpose of this lab is to design and implement a finite impulse response filter on
the C6x. The design of the filter is done by using MATLAB™. Once the design is
completed, the filtering code is inserted into the sampling shell program as an ISR to
process live signals in real-time.

L4.1 Design of FIR Filter

MATLAB or filter design packages can be used to obtain the coefficients for a desired
FIR filter. To have a more realistic simulation, a composite signal may be created and
filtered in MATLAB. A composite signal consisting of three sinusoids, as shown in
Figure 7-21, can be created by the following MATLAB code:

Fs=8e3;
Ts=1/Fs;
Ns=512;

t=[0:Ts:Ts*(Ns-1)];

f1=750;
f2=2500;
f3=3000;

x1=sin(2*pi*f1*t);
x2=sin(2*pi*f2*t);
x3=sin(2*pi*f3*t);

x=x1+x2+x3;

162

Real-Time Digital Signal Processing Based on the TMS320C6000

The signal frequency content can be plotted by using the MATLAB ‘fft’ function.
Three spikes should be observed, at 750 Hz, 2500 Hz, and 3000 Hz. The frequency
leakage observed on the plot is due to windowing caused by the finite observation
period. A lowpass filter is designed here to filter out frequencies greater than 750 Hz
and retain the lower components. The sampling frequency is chosen to be 8 kHz,
which is common in voice processing. The following code is used to get the frequen-
cy plot shown in Figure 7-22:

Figure 7-21: Two cycles of composite signal.

0 1 2 3 4 5 6 7 8

x 10
-3

-3

-2

-1

0

1

2

3

time (s)

edutilp
m

A

X=(abs(fft(x,Ns)));
y=X(1:length(X)/2);
f=[1:1:length(y)];
plot(f*Fs/Ns,y);
grid on;

163

Lab 4: Real-Time Filtering

To design a FIR filter with passband frequency = 1600 Hz, stopband frequency = 2400
Hz, passband gain = 0.1 dB, stopband attenuation = 20 dB, sampling rate = 8000
Hz, the Parks-McClellan method is used via the ‘remez’ function of MATLAB [1].
The magnitude and phase response are shown in Figure 7-23, and the coefficients are
given in Table 7-3. The MATLAB code is as follows:

Figure 7-22: Frequency components of composite signal.

0 500 1000 1500 2000 2500 3000 3500 4000
0

50

100

150

200

250

300

Frequency(Hz)

e
dutinga

M

rp = 0.1; % Passband ripple
rs = 20; % Stopband ripple
fs = 8000; % Sampling frequency
f = [1600 2400]; % Cutoff frequencies
a = [1 0]; % Desired amplitudes
% Compute deviations
dev = [(10^(rp/20)-1)/(10^(rp/20)+1) 10^(-rs/20)];
[n,fo,ao,w] = remezord(f,a,dev,fs);
B = remez(n,fo,ao,w);
A=1;
freqz(B,A);

164

Real-Time Digital Signal Processing Based on the TMS320C6000

With these coefficients, the 'filter' function of MATLAB is used to verify that the
FIR filter is actually able to filter out the 2.5 kHz and 3 kHz signals. The following
MATLAB code allows one to visually inspect the filtering operation:

Figure 7-23: Filter magnitude and phase response.

Table 7-3: FIR filter coefficients.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-800

-600

-400

-200

0

Normalized Frequency (×π rad/sample)

)seerged(es ah
P

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-100

-80

-60

-40

-20

0

20

Normalized Frequency (×π rad/sample)
)

Bd(edutinga
M

Coefficient Values Q-15 Representation

B0 0.0537 0x06DF
B1 0.0000 0x0000
B2 –0.0916 0xF447
B3 –0.0001 0xFFFD
B4 0.3131 0x2813
B5 0.4999 0x3FFC
B6 0.3131 0x2813
B7 –0.0001 0xFFFD
B8 –0.0916 0xF447
B9 0.0000 0x0000
B10 0.0537 0x06DF

(Note: Do not confuse B coefficients with B registers!)

% Figure 7-24
subplot(3,1,1);
va_fft(x,1024,8000);
subplot(3,1,2);
[h,w]=freqz(B,A,512);
plot(w/(2*pi),10*log(abs(h)));
grid on;

165

Lab 4: Real-Time Filtering

Looking at the plots appearing in Figures 7-24 and 7-25, we see that the filter is able
to remove the desired frequency components of the composite signal. Observe that
the time response has an initial setup time causing the first few data samples to be
inaccurate. Now that the filter design is complete, let us consider the implementa-
tion of the filter.

subplot(3,1,3);
y = filter(B,A,x);
va_fft(y,1024,8000);

function va_fft(x,N,Fs)

X=fft(x,N);
XX=(abs(X));
XXX=XX(1:length(XX)/2);
y=XXX;
f=[1:1:length(y)];
plot(f*Fs/N,y);
grid on;

% Figure 7-25
n=128
subplot(2,1,1);
plot(t(1:n),x(1:n));
grid on;
xlabel('Time(s)');
ylabel('Amplitude');
title('Original and Filtered Signals');
subplot(2,1,2);
plot(t(1:n),y(1:n));
grid on;
xlabel('Time(s)');
ylabel('Amplitude');

166

Real-Time Digital Signal Processing Based on the TMS320C6000

L4.2 FIR Filter Implementation

An FIR filter can be implemented in C or assembly. The goal of the implementation
is to have a minimum cycle time algorithm. This means that to do the filtering as fast

Figure 7-24: Frequency representation of filtering operation.

Figure 7-25: Time domain representation of filtering operation.

0 500 1000 1500 2000 2500 3000 3500 4000
0

100

200

300

Frequency (Hz)
edutinga

M

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-100

-50

0

50

Freqeuency (Hz)

edutinga
M

0 500 1000 1500 2000 2500 3000 3500 4000
0

100

200

300

Frequency (Hz)

edutinga
M

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016
-3

-2

-1

0

1

2

3

time (s)

edutilp
m

A

Original and Filtered Signals

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016
-1

-0.5

0

0.5

1

time (s)

edutilp
m

A

167

Lab 4: Real-Time Filtering

as possible in order to achieve the highest sampling frequency (the smallest sampling
time interval). Initially, the filter is implemented in C, since this demands the least
coding effort. Once a working algorithm in C is obtained, the compiler optimization
levels (i.e., –o2, –o3) are activated to reduce the number of cycles. An implemen-
tation of the filter is then done in hand-coded assembly, which can be software
pipelined for optimum performance. A final implementation of the filter is performed
in linear assembly, and the timing results are compared.

The difference equation y n B x n kkk

N[] = ∗ −[]=

−∑ 0

1
is implemented to realize the filter.

Since the filter is implemented on the DSK, the coding is done by modifying the
sampling program in Lab 2, which uses an ISR that is able to receive a sample from
the serial port and send it back out without any modification.

When using the C6711 DSK together with the audio daughter card, the received
data from McBSP1 is 32-bit wide with the most significant 16 bits coming from the
right channel, and the least significant 16 bits coming from the left channel. The FIR
filter implementation on the EVM is discussed in Section L4.4.

Considering Q-15 representation here, the MPY instruction is utilized to multiply the
lower part of a 32-bit sample (left channel) by a 16-bit coefficient. In order to store
the product in 32 bits, it has to be left shifted by one to get rid of the extended sign
bit. Now, to export the product to the codec output, it must be right shifted by 16
to place it in the lower 16 bits. Alternatively, the product may be right shifted by 15
without removing the sign bit.

To implement the algorithm in C, the _mpy() intrinsic and the shift operators ‘<<’
and ‘>>’ should be used as follows:

result = (_mpy(sample,coefficient)) << 1;
result = result >> 16;

or
result = (_mpy(sample,coefficient)) >> 15;

Here, result and sample are 32 bits wide, while coefficient is 16 bits wide.
The intrinsic _mpy() multiplies the lower 16 bits of the first argument by the lower
16 bits of the second argument. Therefore, the lower 16 bits of sample is used in
the multiplication.

For the proper operation of the FIR filter, it is required that the current sample and
N-1 previous samples be processed at the same time, where N is the number of coef-

168

Real-Time Digital Signal Processing Based on the TMS320C6000

ficients. Hence, the N most current samples have to be stored and updated with each
incoming sample. This can be done easily via the following code:
void interrupt serialPortRcvISR()
{
 int i, temp, result= 0;
 temp = MCBSP_read(hMcbsp);

 // Update array samples
 for(i=N-1;i>=0;i--)
 samples[i+1] = samples[i];

 samples[0] = temp;

 MCBSP_write(hMcbsp, result);
}

Here, as a new sample comes in, each of the previous samples is moved into the next
location in the array. As a result, the oldest sample sample[N], is discarded, and
the newest sample, temp, is put into sample[0].

This approach adds some overhead to the ISR, but for now it is acceptable, since at
a sampling frequency of 8 kHz, there is a total of 18,750 cycles are available, [1/(8 kHz
/150 MHz) = 18,750], between consecutive samples, considering that the DSK runs
at 150 MHz. The total overhead for this manipulation is 358 cycles without any op-
timization. It should be noted that the proper way of doing this type of filtering is by
using circular buffering. The circular buffering approach will be discussed in Lab 5.

Now that the N most current samples are in the array, the filtering operation may get
started. All that needs to be done, according to the difference equation, is to multiply
each sample by the corresponding coefficient and sum the products. This is achieved
by the following code:
interrupt void serialPortRcvISR()
{
 int i, temp, result = 0;
 temp = MCBSP_read(hMcbsp);

 // Update array samples
 for(i = N-1 ; i >= 0 ; i--)
 samples[i+1] = samples[i];

 samples[0] = temp;

 // Filtering
 for(i = 0 ; i <= N ; i++)
 result += (_mpy(samples[i], coefficients[i])) << 1;

 result = result >> 16;
 MCBSP_write(hMcbsp, result);
}

169

Lab 4: Real-Time Filtering

To complete the FIR filter implementation, we need to incorporate the filter coef-
ficients previously designed into the C program. This is accomplished by modifying
the sampling program in Lab 2 as follows:

.

.

#define N 10

// FIR filter coefficients
short coefficients[N+1] = { 0x6DF, 0x0, 0xF447, 0xFFFD, 0x2813, 0x3FFC,
0x2813, 0xFFFD, 0xF447, 0x0, 0x6DF};

int samples[N];
.
.

int main()
{

.

.

 for(i = 0; i <= N; i++)
 samples[i]=0;
 .
 .
}

The filtering program can now be built and run. Using a function generator and an
oscilloscope, it is possible to verify that the filter is working as expected. The out-
put of the function generator should be connected to the line-in jack of the audio
daughter card, and the line-out jack of the daughter card to the input of the oscillo-
scope. As the input frequency is increased, it is seen that the signal attenuation starts
at 1.6 kHz and dies out at 2.4 kHz. Note that the nearest sampling frequency should
be selected, since the sampling frequencies of the audio daughter card are limited. As
a result, the frequencies for passband and stopband are considered to be 1.46 kHz and
2.20 kHz with the sampling frequency of 7324.22 Hz.

Given that a working design is reached, it is time to start the optimization of the
filtering algorithm. The first step in optimization is to use the compiler optimizer.
The optimizer can be invoked by choosing Project → Options from the CCS menu
bar. This option will invoke a dialog box, as shown in Figure 7-26. In this dialog box,
select Basic in the Category field, and then choose the desired optimization level from
the pull-down list in the Opt Level field. Table 7-4 summarizes the timing results for
different optimization levels.

170

Real-Time Digital Signal Processing Based on the TMS320C6000

Table 7-4: Timing cycles for different builds.

As can be seen from Table 7-4, the number of cycles diminishes as the optimization
level is increased. It is important to remember that because the compiler optimizer
changes the flow of a program, the debugger may not work in some cases. Therefore,
it is advised that one make sure a program works correctly before performing any
compiler optimization.

Figure 7-26: Selection of different optimization levels.

Build Type Number of Cycles
Compile without optimization 670

Compile with –o0 396

Compile with –o1 327

Compile with –o2/–o3 159

171

Lab 4: Real-Time Filtering

Before doing the linear assembly implementation, the code is written in assembly to
see how basic optimization methods such as placing instructions in parallel, filling
delay slots, loop unrolling, and word-wide optimization affect the timing cycle of the
code.

To perform the operation of multiplying and adding N coefficients, a loop needs
be set up. This can be done by using a branch instruction. A counter is required to
exit the loop once N iterations have been performed. For this purpose, one of the
conditional registers (A1, A2, B0, B1 or B2) is used. No other register allows for
conditional testing. Adding [A2] in front of an instruction permits the processor to
execute the instruction if the value in A2 does not equal zero. If A2 contains zero,
the instruction is skipped, noting that an instruction cycle is still consumed. The .S1
unit may be used to perform the move constant and branch operations. The value in
the conditional register A2 decreases by using a subtract instruction. Since the sub-
tract operation should stop if the value drops below zero, this conditional register is
mentioned in the SUB instruction to execute it only if the value is not equal to zero.
The programmer should remember to add five delay slots for the branch instruction.
The code for this loop is as follows:

 MVK .S1 11, A2 ;move 11 into A2 count register
Loop1:
 .
 .

 [A2] SUB .L1 A2,1,A2 ;decrement counter
 [A2] B .S1 Loop1 ;branch back to Loop1
 NOP 5

We can now start adding instructions to perform the multiplication and accumula-
tion of the values. First, those values that are to be multiplied need to be loaded
from their memory locations into the CPU registers. This is done by using load word
(LDW) and load half-word (LDH) instructions. Upon executing the load instructions,
the pointer is post-incremented so that it is pointed to the next memory location.
Once the values have appeared in the registers (four cycles after the load instruc-
tion), the MPY instruction is used to multiply them and store the product in another
register. Then, the summation is performed by using the ADD instruction. The com-
pleted assembly program is as follows:
 .global _fir_simple

.sect .fir_simple
_fir_simple:
 MV .S1 A6,A2 ;Count register
 ZERO .S1 A9 ;Sum register

172

Real-Time Digital Signal Processing Based on the TMS320C6000

The preceding code is a C callable assembly function. To call this function from C,
a function declaration must be added as external (extern) without any arguments.
The arguments to the function are passed via registers A4, B4 and A6. The return
value is stored in A4. Here, the pointers to the arrays are passed in A4 and B4 as the
first two arguments and the number of iterations in A6 as the third argument. The
return address from the function is stored in B3. Therefore, a final branch to B3 is
required to return from the function. For a complete explanation of calling assembly
functions from C, see the TI TMS320C6x Optimizing C Compiler User’s Guide [2].

The directive .sect is used to place the code in the appropriate memory location.
Running the code from the external SDRAM memory takes a total of 1578 cycles
for the assembly function to complete. To move the code into the internal memory
so that it runs faster, the linker command file should be modified by replacing
.fir_simple > CE0 with .fir_simple > IRAM. Running the code from the
internal memory results in 313 cycles. Notice that only the assembly function is run-
ning in the internal program memory; the rest of the ISR is located in the external
memory and still runs slow, taking a total of 2938 cycles. It is possible to move the
entire ISR into the internal memory to obtain a faster execution. The CODE_SEC-
TION pragma can be used for this purpose. By adding the following line to the code,
the entire ISR is placed in the internal memory, leading to a total of 754 cycles:

#pragma CODE_SECTION(serialPortRcvISR,".isr")

To optimize the foregoing function, basic optimization methods, such as placing
instructions in parallel, filling delay slots, and loop unrolling, are applied. Examining
the code, one sees that some of the instructions can be placed in parallel. Because of
operand dependencies, care must be taken not to schedule parallel instructions that

loop: LDW .D1 *A4++,A7 ;Load data from samples
 LDH .D2 *B4++,B7 ;Load data from coefficients
 NOP 4
 MPY .M1x A7,B7,A8 ;A7 is 32 bit sample

 ;B7 is Q-15 representation coefficient
 NOP
 SHL A8,1,A8 ;Eliminate sign extension bit
 ADD .S1 A8,A9,A9 ;Accumulate result
 [A2] SUB .S1 A2,1,A2 ;Decrement counter
 [A2] B .S1 loop
 NOP 5

MV .S1 A9,A4 ;Move result to return register
 B .S2 B3 ;Branch back to calling address
 NOP 5

173

Lab 4: Real-Time Filtering

use previous operands as their operands. The two initial load instructions are inde-
pendent and can be made to run in parallel. Looking at the rest of the program, we
can see that the operands are dependent on the previous operands; hence, no other
instructions are placed in parallel.

To reduce the cycles taken by the NOP instructions, we can use the delay slot filling
technique. For example, as the load instructions are executed in parallel, it is possible
to schedule the subtraction of the loop counter in place of their NOPs. The branch
instruction takes five cycles to execute. It is therefore possible to slide the branch
instruction four slots up to get rid of its NOPs. Incorporating these optimizations, we
can rewrite the function as follows:

 .global _fir_filled
 .sect ?.fir_filled? ;used to load into internal program memory

_fir_filled:
 MV .S1 A6,A2 ;Count register
 ZERO .S1 A9 ;Sum register

loop: LDW .D1 *A4++,A7 ;Load data from samples
 || LDH .D2 *B4++,B7 ;Load data from coefficients
 NOP
 [A2] SUB .S1 A2,1,A2 ;Decrement counter
 [A2] B .S1 loop ;branch back to loop

NOP
 MPYHL .M1x A7,B7,A8 ;A7 is 32 bit sample,

 ;B7 is Q-15 representation coefficient

 NOP
 SHL A8,1,A8 ;Eliminate sign extension bit
 ADD .S1 A8,A9,A9 ;Accumulate result

MV .S1 A9,A4 ;Move result to return register

 B .S2 B3 ;Branch back to calling address
 NOP 5

By filling delay slots, the number of cycles is reduced. In repetitive loops such as this
one, it is seen that the branch instruction takes up extra cycles that can be elimi-
nated. As just mentioned, one method to do this elimination is to fill the delay slots
by sliding the branch instruction higher in the execution phase, thus filling the
latencies associated with branching. Another method for reducing the latencies is to
unroll the loop. However, notice that loop unrolling eliminates only the last latency
of the branch. Since, in the preceding delay filled version, the branch latency has no
effect on the number of cycles, loop unrolling does not achieve any further improve-
ment in timing.

174

Real-Time Digital Signal Processing Based on the TMS320C6000

To perform word-wide optimization, the ISR has to be modified to store a sample into
16 bits rather than 32 bits. This can be simply achieved by using a variable of type
short. The following code stores a sample into a short variable, temp, assuming that
the result is 32 bits.
interrupt void serialPortRcvISR (void)
{
 int i,result = 0;
 short temp;
 temp = MCBSP_read(hMcbsp); // Takes lower 16 bits only
 //Filtering
 MCBSP_write(hMcbsp, result);
}

Using word-wide optimization, one needs to load two consecutive 16 bit values in
memory with a single load-word instruction. This way, the input register contains
two values, one in the lower and the other in the upper part. The instructions MPYH
and MPY can be used to multiply the upper and lower parts, respectively. The follow-
ing assembly code shows how this is done for the FIR filtering program:
 .global _fir_wordoptimized

_fir_wordoptimized:
 MV .S1 A6,A2 ;Count register
 ZERO .S1 A9 ;Sum register
 || ZERO .S2 B9

loop: LDW .D1 *A4++,A7 ;Load data from samples
 ;(here the input data is in 16 bit format)

 || LDW .D2 *B4++,B7 ;Load data from coefficients

 [A2] SUB .S1 A2,1,A2 ;Decrement counter
 [A2] B .S1 loop

NOP 2
 MPY .M2 A7,B7,B8 ;B8 is the lower part product
 || MPYH .M1 A7,B7,A8 ;A8 is the higher part product
 NOP
 ADD .S1 A8,A9,A9 ;Accumulate result
 || ADD .S2 B8,B9,B9 ;Accumulate result

 LDH .D1 *A4++,A7 ;Load the final elements
 || LDH .D2 *B4++,B7 ;Load the final elements
 NOP 4
 MPY .M1 A7,B7,A8 ;Final multiply
 NOP
 ADD .L1 A8,A9,A9 ;Final add

 ADD .S1 A9,B9,A4 ;Move result to return register
SHL A4,1,A4 ;Eliminate sign extension bit

 B .S2 B3 ;Branch back to calling address
 NOP 5

175

Lab 4: Real-Time Filtering

Notice that since two loads are done consecutively, it takes half the amount of time
to loop through the program. When calling this function, the value passed in A6
must be the truncated N/2, where N is the number of coefficients of the FIR filter. In
our case, we have 11 coefficients requiring five iterations plus an additional multiply
and accumulate. With this code, it is possible to bring down the number of cycles to
101. The timing cycles for the aforementioned optimizations are listed in Table 7-5.

Table 7-5: Timing cycles for different optimizations.

Optimization Number of Cycles

Un-optimized assembly 313
Delay slot filled assembly 141
Word optimized assembly 101

L4.2.1 Handwritten Software-pipelined Assembly

To produce a software-pipelined version of the code, it is required to first write it in
symbolic form without any latency or register assignment. The following code shows
how to write the FIR program in a symbolic form:

LDW *p_sample++,sample ;load sample word
LDH *p_coef++,coef ;load coef half-word
 MPYHL sample,coef,temp ;temp = sample(high)*coef
SHL temp,1,temp ;shift left to remove sign extended bit
 ADD sum,temp,sum ;sum += temp

 [count] SUB count,1 ;decrement counter
 [count] B loop ;branch back to loop

To handwrite software-pipelined code, a dependency graph of the loop must be
drawn and a scheduling table be created from it. The software-pipelined code is then
derived from the scheduling table. To draw a dependency graph, we start by drawing
nodes for the instructions and symbolic variable names. Then we draw lines or paths
that show the flow of data between nodes. The paths are marked by the latencies of
the instructions of their parent nodes.

After the basic dependency graph is drawn, functional units have to be assigned.
Then, a line is drawn between the two sides of the CPU so that the workload is split
as equally as possible. In the preceding FIR program, the loads should be done one
on each side, so that they run in parallel. It is up to the programmer on which side to
place the rest of the instructions to divide the workload equally between the A-side
and B-side functional units. The completed dependency graph for the FIR program is
shown in Figure 7-27.

176

Real-Time Digital Signal Processing Based on the TMS320C6000

The next step for handwriting a pipelined code is to set up a scheduling table. To do
so, the longest path must be identified to determine how long the table should be.
Counting the latencies of each side, one sees that the longest path located on the
left side is 9. Thus, eight prolog columns are required in the table before entering
the main loop. There need to be eight rows (one for each functional unit) and nine
columns in the table. The scheduling is started by placing the parallel load instruc-
tions in slot 1. The instructions are repeated at every loop thereafter. The multiply
instruction must appear five slots after the loads, so it is scheduled into slot 6. The
shift must appear two slots after the multiply, and the add must appear after the shift
instruction, placing it in slot 9, which is the loop kernel part of the code. The branch
instruction is scheduled in slot 4 by reverse counting five cycles back from the loop
kernel. The subtraction must occur before the branch, so it is scheduled in slot 3.
The completed scheduling table appears in Table 7-6.

Figure 7-27: FIR dependency graph.†

sample Coef

temp

temp

sum

count

loop

LDW LDH

MPYHL

SHL

ADD

SUB

B

6

1 (Dotted line for
conditional instructions)

1

1

2

5 5

1

A
Side

B
Side

.D2

.L2

.S2

.S1

.L1

.M1x

.D1

177

Lab 4: Real-Time Filtering

The software-pipelined code is handwritten directly from the scheduling table as
eight parallel instructions before entering a loop that completes all the adds. The
resulting code, with which the number of cycles is reduced to 72, is as follows:

Table 7-6: FIR scheduling table.†

PROLOG LOOP
 1 2 3 4 5 6 7 8 9

.L1 ADD

.L2 SUB SUB SUB SUB SUB SUB SUB

.S1 SHL SHL

.S2 B B B B B B
.M1 MPYHLMPYHL MPYHL MPYHL
.M2
.D1 LDW LDW LDW LDW LDW LDW LDW LDW LDW
.D2 LDH LDH LDH LDH LDH LDH LDH LDH LDH

 .global _fir_pipelined

_fir_pipelined:
 ZERO A10
 MV A6,B2

 LDW .D1 *A4++,A7
 || LDH .D2 *B4++,B7

 LDW .D1 *A4++,A7
 || LDH .D2 *B4++,B7

 LDW .D1 *A4++,A7
|| LDH .D2 *B4++,B7
|| [B2] SUB .L2 B2,1,B2

 LDW .D1 *A4++,A7
 || LDH .D2 *B4++,B7
 || [B2] SUB .L2 B2,1,B2

|| [B2] B .S2 loop10

 LDW .D1 *A4++,A7
|| LDH .D2 *B4++,B7
|| [B2] SUB .L2 B2,1,B2
|| [B2] B .S2 loop10

 LDW .D1 *A4++,A7
|| LDH .D2 *B4++,B7
|| [B2] SUB .L2 B2,1,B2
|| [B2] B .S2 loop10
|| MPY .M1 A7,B7,A8

178

Real-Time Digital Signal Processing Based on the TMS320C6000

L4.2.2 Assembly Optimizer Software-Pipelined Assembly

Since handwritten pipelined codes are time-consuming to write, linear assembly is
usually used to generate pipelined codes. In linear assembly, latencies, functional
units and register allocations do not need to be specified. Instead, symbolic vari-
able names are used to write a sequential code with no delay slots (NOPs). The file
extension for a linear assembly file is .sa. The assembly optimizer is automatically
invoked if a file in a CCS project has a .sa extension. The assembly optimizer turns
a linear assembly code into a pipelined code. Notice that the optimization level op-
tion in C also affects the optimization of linear assembly.

A code line in linear assembly consists of five fields: label, mnemonic, unit specifier,
operand list, and comment. The general syntax of a linear assembly code line is:
[label[:]] [[register]] mnemonic [unit specifier] [operand list] [;comment]

Fields in square brackets are optional. A label must begin in column 1 and can in-
clude a colon. A mnemonic is an instruction such as MPY or an assembly optimizer
directive such as .proc. Notice that a mnemonic will be interpreted as a label if
it begins in column 1. At least one blank space should be placed in front of a mne-
monic when there is no label. A mnemonic becomes a conditional instruction when

 LDW .D1 *A4++,A7
|| LDH .D2 *B4++,B7
|| [B2] SUB .L2 B2,1,B2
|| [B2] B .S2 loop10
|| MPY .M1 A7,B7,A8

 LDW .D1 *A4++,A7
 || LDH .D2 *B4++,B7
 || [B2] SUB .L2 B2,1,B2
 || [B2] B .S2 loop10
|| MPY .M1 A7,B7,A8
 || SHL .S1 A8,1,A9

loop10: LDW .D1 *A4++,A7
 || LDH .D2 *B4++,B7
|| [B2] SUB .L2 B2,1,B2
 || [B2] B .S2 loop10
|| MPY .M1 A7,B7,A8
|| SHL .S1 A8,1,A9
|| ADD .L1 A9,A10,A10

 MV .L1 A10,A4
 B .S2 B3
 NOP 5

179

Lab 4: Real-Time Filtering

it is preceded by a register or a symbolic variable within two square brackets. A unit
specifier specifies the functional unit performing the mnemonic. Operands can be
symbols, constants, or expressions and should be separated by commas. Comments
begin with a semicolon. Comments beginning in column 1 can begin with either an
asterisk or a semicolon.

In writing code in linear assembly, the assembly optimizer must be supplied with the
right kind of optimization information. The first such piece of information is which
parts should be optimized. The optimizer considers only code between the directives
.proc and .endproc. Symbolic variable names are used to allow the optimizer to
select which registers to use. This is done by using the .reg directive together with
the names of the variables. Also, registers that contain input arguments, such as vari-
ables passed to a function, must be specified. The registers declared to contain input
arguments cannot be modified and have to be declared as operands of the .proc
statement. To connect the input register arguments to the symbolic variable names,
the move instruction, mv, is used. Registers that contain output values upon exiting
the procedure must be declared as arguments to the .endproc directive.

To write the FIR code in linear assembly, we start by creating the main loop and then
add the load, multiply, and add instructions. Since two pointers to two arrays and an
integer are passed to the function, we must declare registers A4, B4 and A6 as part
of the .proc directive. Also, register A4 is used for returning values, so it needs to
appear as part of the .endproc directive. The preserved register B3 is indicated as
an argument in both of these directives. To connect the symbolic variable names to
the input registers, the mv instruction is used. And finally, the optimizer is told that
the loop is to be performed a minimum of 11 times by inserting the .trip directive.
The final code is as follows:

 .global _fir_la
 .sect .fir_la

_fir_la: .proc A4,B4,A6,B3
.reg p_m,m,p_n,n,prod,sum,cnt

mv A4, p_m ;move argument in A4 to p_m
mv B4, p_n ;move argument in B4 to p_n
mv A6, cnt ;set up counter (third argument)

 zero sum ;sum=0

loop8: .trip 11 ;minimum 11 times through loop
 ldw *p_m++, m ;load m
 ldh *p_n++, n ;load n
 mpy m,n,prod ;prod = m * n
 shl prod,1,prod ;prod << 1

180

Real-Time Digital Signal Processing Based on the TMS320C6000

Using this code, we obtain a timing outcome of 72 cycles, which is the same as the
timing obtained by the handwritten software-pipelined assembly.

To summarize the programming approach, start writing your code in C, and then use
the optimizer to achieve a faster code. If the code is not as fast as expected, you may
write it in assembly and incorporate the aforementioned simple optimization tech-
niques. However, it is usually easier and more efficient to rewrite your code in linear
assembly, since the assembly optimizer attempts to create pipelined code for you.
Figure 7-28 illustrates the code development flow to get an optimum performance on
the C6x. If, at the end, none of these approaches provide a satisfactory timing cycle,
you are left no choice but to rewrite your code in hand-coded pipelined assembly.
Appendix A (Quick Reference Guide) includes an optimization checklist for writing
DSP application programs.

 add prod,sum,sum ;sum += prod

[cnt] sub cnt,1,cnt ;decrement counter
[cnt] b loop8 ;branch back to loop8

 mv sum,A4 ;move result into return register A4
.endproc A4,B3

 B B3 ;branch back to address stored in B3
 NOP 5

181

Lab 4: Real-Time Filtering

L4.3 Floating-Point Implementation

Implementing the FIR filter on the floating-point C67x takes relatively less effort.
Since the hardware is capable of multiplying and adding floating point numbers,
Q-format number manipulation is not required. However, in general, the floating-
point code is slower, because floating-point operations have more latencies than their
fixed-point counterparts. As is shown shortly, the FIR filter interrupt and function
are modified for the floating-point execution. The code written in C is fairly simple.
The coefficients are entered directly as float. The data buffer is declared as float, and
a sample is initially read as an integer and then typecast to a float. Reversely, the
outcome is typecasted into integer.

Figure 7-28: Code development flow.†

Write C code

Compile

Profile

Efficient enough?

Refine C code

Compile

Profile

Write linear assembly

Assembly optimize

Profile

More C optimization?

Efficient enough?

Efficient enough?

Complete

Complete

Yes

Yes

Complete

Yes

No

Yes

No

No

No

Develop C code

Refine C code

Write linear
assembly

182

Real-Time Digital Signal Processing Based on the TMS320C6000

You can view your C source code interleaved with disassembled code in CCS. To
view this mixed mode, after loading the program into the DSP, open the source file
by double-clicking on it from the Project View panel. Select View → Mixed Source/ASM
from the menu. Using this mixed mode, it can be verified that the compiler is actu-
ally using the MPYSP and ADDSP instructions to perform the floating-point multiply
and add rather than calling a separate function to do them in software. The code is as
follows:
float dotp1(const float a[], const float b[])
{
 int i;
 float sum = 0.0;
 for(i = 0 ; i < 11 ; i++)
 sum += a[i] * b[i];
 return sum;
}

void interrupt serialPortRcvISR (void)
{

int i,sample;
 float temp, sum;
 sample = MCBSP_read(hMcbsp);

 temp = (float)sample;
 for(i = 10 ; i >= 0 ; i--)
 x[i] = x[i-1];
 x[0] = temp;
 sum = dotp1(coef, x);
 MCBSP_write(hMcbsp, (int)sum);
}

All the programs associated with this lab can be loaded from the accompanying CD.

L4.4 EVM Implementation

Since, on EVM, data are acquired from the codec through McBSP0, different than
that of DSK, appropriate changes need to be made. As discussed in the preceding
section, data samples from the left channel are stored in the higher 16-bit of integer
variable. In order to maintain compatibility with the DSK code, the intrinsic_
MPYHL is used instead of _MPY for the multiplication of 32-bit samples with 16-bit
coefficients.
interrupt void serialPortRcvISR(void)
{

int i,temp,result;

result = 0;

temp = MCBSP_READ(0);

183

Lab 4: Real-Time Filtering

Alternatively, the sample in the DRR can be right shifted by 16 and stored in the
lower 16-bit, followed by the MPY instruction, as shown in the code that follows:

// Update array samples
for(i = N-1 ; i >= 0 ; i--)

 samples[i+1] = samples[i];

samples[0] = temp;

// Filtering
for(i = 0 ; i <= N ; i++)

 result += (_mpyhl(samples[i],b[i])) << 1;

MCBSP_WRITE(0, result);
}

interrupt void serialPortRcvISR(void)
{

.
 .

temp = MCBSP_READ(0);
temp = temp >> 16;

.

.

// Filtering
for(i=0;i<=N;i++)

 result += (_mpy(samples[i],b[i])) << 1;

MCBSP_WRITE(0, result);
}

The output value stored in result contains Q-31 format data with the extra bit at
the least significant bit. Data in the higher 16-bit are considered as Q-15 format and
exported to the left channel, thus no alignment of data is necessary.

184

Real-Time Digital Signal Processing Based on the TMS320C6000

Bibliography

[1] The Mathworks, MATLAB Reference Guide, 1999.

[2] Texas Instruments, TMS320C6000 Optimizing C Compiler User’s Guide,
Literature ID# SPRU 187E, 1998.

185

Circular Buffering

8C H A P T E R

In many DSP algorithms, such as filtering, adaptive filtering, or spectral analysis, we
need to shift data or update samples (i.e., we need to deal with a moving window).
The direct method of shifting data is inefficient and uses many cycles. Circular buff-
ering is an addressing mode by which a moving-window effect can be created without
the overhead associated with data shifting. In a circular buffer, if a pointer pointing
to the last element of the buffer is incremented, it is automatically wrapped around
and pointed back to the first element of the buffer. This provides an easy mechanism
to exclude the oldest sample while including the newest sample, creating a moving-
window effect as illustrated in Figure 8-1.

Figure 8-1: Moving-window effect.

x(n-(N-1))

x(n-(N-2))

.

.

.

x(n-1)

x(n)

A4

Circular buffer of size N

....

n-(N-1) n-(N-2) n-1 n

Window of size N

x(n-(N-1))

x(n-(N-2))

.

.

.

x(n-1)

x(n)

A4

Circular buffer a fter
N+1advancements of the

pointer

x(n+1)

x(n-(N-2))

.

.

.

x(n-1)

x(n)

A4

Read newest sample over
oldest sample

x(n-(N-2))

x(n-(N-3))

.

.

.

x(n)

x(n+1)

....

n-(N-1) n-(N-2) n n+1

oldest
sample

newest
sample

Equivalent

Moving Window Effect

A4

186

Real-Time Digital Signal Processing Based on the TMS320C6000

Some DSPs have dedicated hardware for doing this type of addressing. On the C6x
processor, the arithmetic logic unit has the circular addressing mode capability built
into it. To use circular buffering, first the circular buffer sizes need to be written into
the BK0 and BK1 block size fields of the Address Mode Register (AMR), as shown
in Figure 8-2. The C6x allows two independent circular buffers of powers of 2 in size.
Buffer size is specified as 2(N+1) bytes, where N indicates the value written to the BK0
and BK1 block size fields.

Figure 8-2: AMR (Address Mode Register).†

BK1 BK0 B7 B6 B5 B4 A7 A6 A5 A4
31 26 25 21 20 16 15 7 6 5 4 3 2 1 0

mode

 Mode
 00: linear (default)

 01: circular (using BK0)
 10: circular (using BK1)
 11: reserved

BK0/BK1 = N

Block size
(bytes) = 2 N+1

Then, the register to be used as the circular buffer pointer needs to be specified by
setting appropriate bits of AMR to 1. For example, as shown in Figure 8-2, for using
A4 as a circular buffer pointer, bit 0 or 1 is set to 1. Of the 32 registers on the C6x, 8
can be used as circular buffer pointers: A4 through A7 and B4 through B7. Note that
linear addressing is the default mode of addressing for these registers.

Figure 8-3 shows the code to set up the AMR register for a circular buffer of size 8,
together with a load example. To set up such a circular buffer in C, one must use so-
called in-line assembly as follows:

asm ("MVK.S2 0001h,B2");

asm ("MVKLH.S2 0002h,B2");

asm ("MVC.S2 B2,AMR");

187

Chapter 8: Circular Buffering

When using circular buffers, care must be taken to align data on the buffer size
boundary. In C, this can be achieved by using pragma directives. Pragma directives
indicate what kinds of preprocessing are done by the compiler. The DATA_ALIGN
pragma can be used to align symbol to a power of 2 alignment boundary con-
stant (in bytes) as follows:

#pragma DATA_ALIGN (symbol,constant)

Figure 8-3: AMR setup example.†

; Blk size = 8, use A4/BK0

MVK.S2 0001H , B2
MVKLH.S2 0002H , B2
MVC.S2 B2, AMR

LDH.D1 * A4++[2], A1 ; A1 = 0, A4=&s[2]
LDH.D1 * A4++[3], A1 ; A1 = 2, A4=&s[1]

0

1

2

3

4

5

x16 (le)

A4 &s[0]

circular
buffer

s[0]
s[1]
s[2]
s[3]
s[4]
s[5]

189

Lab 5: Adaptive Filtering

Adaptive filtering is used in many applications ranging from noise cancellation to
system identification. In most cases, the coefficients of an FIR filter are modified
according to an error signal in order to adapt to a desired signal. In this lab, a sys-
tem identification example is implemented wherein an adaptive FIR filter is used to
adapt to the output of a seventh-order IIR bandpass filter. The IIR filter is designed
in MATLAB and implemented in C. The adaptive FIR is first implemented in C and
later in assembly using circular buffering.

In system identification, the behavior of an unknown system is modeled by accessing
its input and output. An adaptive FIR filter can be used to adapt to the output of the
system based on the same input. The difference in the output of the system, d[n], and
the output of the adaptive filter, y[n], constitutes the error term e[n], which is used to
update the coefficients of the FIR filter. Figure 8-4 illustrates this process.

Figure 8-4: Adaptive filtering.

Unknown
System

Adaptive
FIR filter

+

d[n]

y[n]

input x[n]

e[n]

+

–

The error term calculated from the difference of the outputs of the two systems is
used to update each coefficient of the FIR filter according to the formula (least mean
square (LMS) algorithm [1]):

 1[] [] [] []−= + ∗ ∗ −n nh k h k e n x n kδ (8.1)

where the h’s denote the unit sample response or FIR filter coefficients. The output
y[n] is required to approach d[n]. The term δ indicates step size. A small step size will
ensure convergence, but results in a slow adaptation rate. A large step size, though
faster, may lead to skipping over the solution.

190

Real-Time Digital Signal Processing Based on the TMS320C6000

L5.1 Design of IIR Filter

A seventh-order bandpass IIR filter is used to act as the unknown system. The
adaptive FIR is designed to adapt to the response of the IIR system. Considering
a sampling frequency of 8 kHz, let the IIR filter have a passband from π/3 to 2π/3
(radians), with a stopband attenuation of 20dB. The design of the filter can be easily
achieved with the MATLAB function 'yulewalk' [2]. The following MATLAB code
may be used to obtain the coefficients of the filter:

Nc=7;
f=[0 0.32 0.33 0.66 0.67 1];
m=[0 0 1 1 0 0];
[B,A]=yulewalk(Nc,f,m);
freqz(B,A);

%Create A sample signal
Fs=8000;
Ts=1/Fs;
Ns=128;
t=[0:Ts:Ts*(Ns-1)];
f1=750;
f2=2000;%The one to keep
f3=3000;

x1=sin(2*pi*f1*t);
x2=sin(2*pi*f2*t);
x3=sin(2*pi*f3*t);

x=x1+x2+x3;
%Filter it
y=filter(B,A,x);

It can be verified that the filter is working by deploying a simple composite signal.
Using the MATLAB function ‘filter’, verify the design by observing that the frequen-
cy components of the composite signal falling in the stopband are removed. (See
Figure 8-5 and Table 8-1.)

191

Lab 5: Adaptive Filtering

Figure 8-5: IIR filter response.

Table 8-1: IIR filter coefficients.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-600

-400

-200

0

200

Normalized frequency (Nyquist == 1)

esah
P

)seerg ed(

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-100

-50

0

50

Normalized frequency (Nyquist == 1)

edutinga
M

)
Bd(esnopse

R

0 500 1000 1500 2000 2500 3000 3500 4000
0

20

40

60

80
Frequency Response of y

0 500 1000 1500 2000 2500 3000 3500 4000
0

20

40

60

80
Frequency Response of x

A's B's
1.0000 0.1191
0.0179 0.0123
0.9409 −0.1813
0.0104 −0.0251
0.6601 0.1815
0.0342 0.0307
0.1129 −0.1194
0.0058 −0.0178

Note: Do not confuse A&B coefficients with the CPU A&B registers!

192

Real-Time Digital Signal Processing Based on the TMS320C6000

L5.2 IIR Filter Implementation

The implementation of the IIR filter is first done in C, using the following difference
equation

N N

1 0

[] * [] * []k k
k k

y n a y n k b x n k
= =

= − − + −∑ ∑ , (8.2)

where ak’s and bk’s denote the IIR filter coefficients. Two arrays are required, one for the
input samples x[n] and the other for the output samples y[n]. Given that the filter is of
the order 7, an input array of size 8 and an output array of size 7 are considered. The
arrays are used to simulate a circular buffer, since in C this property of the CPU cannot
be accessed. As a new sample comes in, all elements in the input array are shifted down
by one. In this manner, the last element is lost and the last eight samples are always
kept. The input array is used to calculate the resulting output, and then the output is
used to modify the output array. A simple implementation of this scheme is shown in
the following code, which is a modification of the sampling program in Lab 2:
interrupt void serialPortRcvISR (void)
{
 int temp,n,ASUM,BSUM;
 short input,IIR_OUT;

temp = MCBSP_read(hMcbsp);
 input = temp >> S; //Scaling factor

for(n=7;n>0;n--) //Input buffer
 IIRwindow[n] = IIRwindow[n-1];

 IIRwindow[0] = input;

 BSUM = 0;

 for(n=0;n<=7;n++)
 { //Multiplication of Q-15 with Q-15
 BSUM += ((BS[n]*IIRwindow[n]) << 1); //Results in Q-30.Shift by one to
 } //Eliminate Sign Extension bit

 ASUM = 0;
 for(n=0;n<=6;n++)
 {
 ASUM += ((AS[n] * y_prev[n]) << 1);
 }

 IIR_OUT = (BSUM - ASUM) >> 16;

for(n=6;n>0;n--) //Output buffer
 y_prev[n] = y_prev[n-1];

 y_prev[0] = IIR_OUT;

 MCBSP_write(hMcbsp, IIR_OUT << S); // Scaling factor S
}

193

Lab 5: Adaptive Filtering

By running this program while connecting a function generator and an oscilloscope
to the line-in and line-out of the audio daughter card, the functionality of the IIR
filter can be verified. Whenever the DRR receives a new incoming sample from the
function generator, the ISR is invoked. Then, the new sample is right shifted by the
scaling factor S. This factor is included for the correction of any possible overflow. In
this lab, there is no need for shifting. Once the new sample is scaled, the last eight
samples are kept by discarding the oldest sample and adding the new sample to the
input buffer IIRwindow. This operation is done by shifting the data in the input
array. Note that this array is global and is initialized to zero in the main function.

Now that the last eight samples are ready to be used, it is time to compute BSUM (b
coefficient terms) and ASUM (a coefficient terms). Attention needs to be paid to the
datatype of BSUM, ASUM, the coefficient arrays, and the input array. The datatype
of the coefficient arrays is short, so the coefficients are converted to Q-15 format
by multiplying them by 0x7FFF in the main function. The datatype of the input
array IIRwindow is also short. However, the datatype of ASUM or BSUM is int
(32 bits). Therefore, ASUM and BSUM need to be left shifted by 1 to eliminate the
extended sign bit, since the multiplication of Q-15 by Q-15 results in Q-30 repre-
sentation. In order to obtain the IIR output IIR_OUT, the partial output ASUM is
subtracted from BSUM. Note that the difference (BSUM - ASUM) is right shifted by
16 to convert it to a short datatype. The IIR output is then used to compute ASUM
in the next iteration. Finally, the IIR output is scaled back and sent to the data trans-
mit register (DXR).

L5.3 Adaptive FIR Filter

By replacing the following piece of code with MCBSP_write(hMcbsp,IIR_
OUT<<S) in the previous IIR function, we can make a FIR filter to adapt to the
output of the IIR filter:

//Simulate Circular buffer for FIR
 for(n=31;n>0;n--)
 FIRwindow[n] = FIRwindow[n-1];

FIRwindow[0] = input;

 //Perform Filtering with current coefficients
 temp = 0;
 for(n=0;n<32;n++)
 {
 temp += ((h[n]*FIRwindow[n]) << 1);
 }

194

Real-Time Digital Signal Processing Based on the TMS320C6000

In this program, a 32-coefficient FIR filter is used to adapt to the output of the IIR
filter. To do this in C, an additional buffer of length 32 is needed: one for the input
buffer FIRwindow and the other for the coefficients h of the FIR filter. Initially
all the data in both arrays are zero. The order of processing is as follows: First, the
last 32 samples are shifted. The shift discards the oldest sample and adds the newly
read sample into the input buffer. Next, the FIR filtering is done by performing a
dot-product between the coefficients h and the input buffer. The dot- product is con-
verted to Q-15 format by left shifting it by 1. Then, the error term between the IIR
and the FIR filter output is computed. The coefficients of the FIR filter are updated
to match the IIR and FIR filter outputs. Finally, the FIR filter output is sent to the
DXR. By using a function generator and an oscilloscope, the adaptation process can
be observed by scanning through different frequencies.

It is worth mentioning a point about the step size δ. In a floating-point processor, δ
is usually chosen to be in the range of e–7. However, the precision on the fixed-point
C6x does not allow for such a small number. We can at most use 0x0001, which is
1/(215) ≈ 0.0000305. When a multiplication is done with this number, any positive
number will be defaulted to 0 and any negative number to –1. This is due to the na-
ture of multiplication of Q-15 format numbers, where the product is right shifted by
15. However, the contribution of negative numbers to the coefficients is sufficient for
the LMS algorithm to converge. Using a larger δ for this adaptive filtering example
results in faster adaptation, but convergence is not guaranteed. Satisfactory results
can be observed with δ in the range of 0x0100 to 0x0001.

 y = temp >> 16;

 //Calculate Error Term

 e = IIR_OUT - y;

 //Update Coefficients

 stemp = (DELTA*e)>>15;

 for(n=0;n<32;n++)
 {
 stemp2 = (stemp*FIRwindow[n])>>15;
 h[n] = h[n] + stemp2;
 }
 MCBSP_write(hMcbsp,y<<S);

195

Lab 5: Adaptive Filtering

The reason for implementing the LMS algorithm in assembly is to make use of the
circular buffering capability of the C6x. Of the 32 registers on the C6x, 8 can per-
form circular addressing. These registers are A4 through A7 and B4 through B7.
Since linear addressing is the default mode of addressing, each of these registers must
be specified as circular using the AMR register. The lower 16 bits of the AMR reg-
ister are used to select the mode for each of the 8 registers. The upper 10 bits (6 are
reserved) are used to set the length of the circular buffer. Buffer size is determined
by 2(N+1) bytes, where N is the value appearing in the block size fields of the AMR
register.

Since we are using both C and assembly, we have to initialize the circular buffer
when we enter the assembly part of the program. During the execution of the assem-
bly code, the register used in the circular mode allows a certain location in memory
to always contain the newest sample. As the assembly code is completed and returns
to the calling C program, the location of the pointer to the buffer must be saved and
the AMR register must be returned to the linear mode, since leaving it in the circular
mode disrupts the flow of the program.

To do such a task, a section of memory not used by the compiler must be set aside for
the buffer, and the coefficients. A simple way to do this is to reserve 64 bytes for the
coefficients, 64 bytes for the buffer, and 4 bytes for the pointer. Since the data and
coefficients are short formatted here, 64 bytes are used to provide 32 locations. The
following memory representation is employed for this purpose:

 0x00000200 64 Bytes, Circular Buffer
 0x00000240 64 Bytes, Coefficients
 0x00000280 4 Bytes, Pointer

The command file must also be modified. A simple assembly file is needed to ini-
tialize the memory locations with zeros. The following command file defines a new
memory section called MMEM in the internal memory and uses it for the code section
.mydata:

MEMORY
{

vecs: o = 00000000h l = 00000200h
MMEM: o = 00000200h l = 00000100h
IRAM: o = 00000300h l = 0000FD00h
CE0: o = 80000000h l = 01000000h

196

Real-Time Digital Signal Processing Based on the TMS320C6000

The file initmem.asm appearing next is used to initialize the memory locations with
zeros and set the pointer to the first free location, which is 0x00000200:

SECTIONS
{
 "vectors" > vecs
 .cinit > IRAM
 .text > IRAM
 .stack > IRAM
 .bss > IRAM
 .const > IRAM
 .data > IRAM
 .far > IRAM
 .switch > IRAM
 .tables > IRAM
 .cio > IRAM

.sysmem > CE0

.mydata > MMEM
}

; initmem.asm

.sect ".mydata"
 .short 0,0
 .short 0,0
 .field 0x00000200, 32

With the command file and the brief assembly code just shown, it is ensured that 132
bytes of space starting at 0x00000200, will not be used for anything other than the
adaptive filter. Now, as mentioned before, the circular buffer must be initialized upon
entering the assembly part. To do this, it is necessary to modify the AMR register.
Since a buffer of length 32 is needed, one must have 5 in the block fields (block
size = 2(5+1) = 64). With register A5 as the circular buffer pointer, the value to set
the AMR register becomes 0x00050004. Entering the assembly function, the last
pointer location is read from 0x00000280. The last free location of the buffer is
saved to the same location upon exit. The following code shows how this is achieved:

;Initialize the Circular buffer for the FIR filter
 MVK .S2 0x0004,B10 ;A5 is selected as circular
 MVKLH .S2 0x0005,B10 ;2^(5+1)=64
 MVC .S2 B10,AMR

 ;Load the pointer to A0
 ;Assume that the current location of the circular buffer is pointed to

 MVK .S1 0x0280,A0
 MVKLH .S1 0x0000,A0 ;A0=0x00000280 (has last pointer)

197

Lab 5: Adaptive Filtering

Upon entering the assembly function, the AMR register is loaded with 0x00050004
for the desired circular buffer operation. Then, the memory location (or address) to
which register A5 was last pointing is loaded into A5. Hence, A5 points to the first
free location of the circular buffer, and the content of register A4 (the newest sample
passed from the C program) is stored in this location. After adaptive filtering, the
address pointed to by A5 is stored at the location 0x00000280. Note that here a
dummy load is performed to increment the pointer so that it points to the last ele-
ment (the next free location). This is needed because only a load or store operation
increments the pointer in a circular fashion.

The following adaptive FIR filter assembly code resides in the section of the forego-
ing code labeled ‘FIR FILTERING HERE’:

 LDW .D1 *A0,A5 ;A5 now points to the first free
 ;Location of the circular buffer
 NOP 4

 ;Load the current sample to the Circular buffer
 STH .D1 A4,*A5 ;A4 has sample passed from calling

 //FIR FILTERING HERE

 ;Now save the Last location of A0 to memory

 MVK .S1 0x0280,A0
 MVKLH .S1 0x0000,A0 ;This address has the pointer to x

 LDH .D1 *A5++,A13 ;Dummy Load
 STW .D1 A5,*A0 ;Saved last
 ;Restore Linear Addressing
 MVK .S2 0x0000,B10
 MVKLH .S2 0x0004,B10
 MVC .S2 B10,AMR

 ;return the result y

 MV .S1 A9,A4
 B .S2 B3
 NOP 5

 ;Do the filtering
 MVK .S2 0x0240,B1
 MVKLH .S2 0x0000,B1 ;This is the address of h[n]

 MVK .S2 32,B2 ;Set up a counter
 ZERO .S1 A9 ;Accumulator

loop:
 LDH .D2 *B1++,B7 ;load hk
 LDH .D1 *A5--,A7

198

Real-Time Digital Signal Processing Based on the TMS320C6000

In this code, the adaptive filtering process is done via two separate loops. The first
loop calculates a dot-product between the coefficients and the samples. The error
term is then calculated and used in the second loop for updating the coefficients,
based on the input samples. Notice that a circular buffer is not used for the coef-
ficients, since they do not change in a time-windowed manner, as do the input
samples.

 NOP 4
 MPY .M1x A7,B7,A7 ;A7 is Q-30
 NOP
 SHL .S1 A7,1,A7
 ADD .S1 A7,A9,A9
 [B2] SUB .S2 B2,1,B2 ;Decrement Counter
 [B2] B .S2 loop
 NOP 5

 SHR .S1 A9,16,A9 ;Make Short, Eliminate Sign extension bit
 ;A9 is now short Y
 ;Calculate Error Term
 MV .S1 B4,A13
 SUB .S1 A13,A9,A8 ;A13=d(IIR_OUT),A9=y,A8=e

 ;Update Coefficients
 MVK .S1 0x0001,A10 ;A10=DELTA
 MPY .M1 A8,A10,A10 ;A10=DELTA*e this is actually ineffective
 NOP
 SHR .S1 A10,15,A10 ;A10=DELTA*e is now short Q-15

 MVK .S2 32,B2 ;Loop Counter
 MVK .S2 0x0240,B1
 MVKLH .S2 0x0000,B1 ;This is the address of h[n]

loop2:
 LDH .D1 *A5--,A8 ;Load x[n-k]
 LDH .D2 *B1,A12 ;Load h[n]
 NOP 4
 MPY .M1 A10,A8,A8 ;A10 = DELTA*e*x in Q-31
 NOP
 SHR .S1 A8,15,A8 ;A10 is now Q-15
 ADD .S1 A8,A12,A8 ;Updated h
 STH .D2 A8,*B1++ ;Update the coefficient
 [B2] SUB .S2 B2,1,B2 ;Decrement Counter
 [B2] B .S2 loop2
 NOP 5

199

Lab 5: Adaptive Filtering

We now have two versions of the adaptive filter. One is written entirely in C, and
the other is a mix of C and assembly. When the entire C program runs in the exter-
nal memory, the output does not adapt to the IIR filter output. Only when the entire
C program runs in the internal memory does the output adapt to the IIR filter output.
Also, when the assembly part of the mixed C/assembly program runs in the external
memory, the output adapts to the IIR filter output. Of course, the assembly part of
the program can be configured to run in the internal memory space, where the num-
ber of cycles is noticeably reduced. The main reason for running the C code from
the internal memory space is that running it from the external memory is too slow
and samples get missed. Table 8-2 gives a summary of the timing cycles for different
memory options of the adaptive filtering program. All the programs associated with
this lab are placed on the accompanying CD-ROM.

Table 8-2: Timing cycles for different memory options.

Type of build Number of cycles

C program in external memory 22480

C program in internal memory 3083

Non-optimized assembly in external memory 10009

Non-optimized assembly in internal memory 1200

200

Real-Time Digital Signal Processing Based on the TMS320C6000

Bibliography

[1] S. Haykin, Adaptive Filter Theory, Prentice-Hall, 1996.

[2] The Mathworks, MATLAB Reference Guide, 1999.

201

Frame Processing

9C H A P T E R

When it comes to processing frames of data (for example, in doing FFT and block
convolution), triple buffering is an efficient data frame handling mechanism. While
samples of the current frame are being collected by the CPU in an input array via
an ISR, samples of the previous frame in an intermediate array can get processed
during the time left between samples. At the same time, the DMA can be used to
send out samples of a previously processed frame available in an output array. In
this manner, the CPU is used to set up the input array and process the inter-
mediate array while the DMA is used to move processed data from the output
array. At the end of each frame or the start of a new frame, the roles of these arrays
are interchanged. The input array is reassigned as the intermediate array to
be processed, the processed intermediate array is reassigned as the output ar-
ray to be sent out, and the output array is reassigned as the input array to collect
incoming samples for the current frame. This process is illustrated in Figure 9-1.

Figure 9-1: Triple buffering technique.

frame N-2 frame N-1 frame N

-Time available to CPU for
setting up INPUT array for Nth frame and
processing INTERMEDIATE array for
(N-1)th frame.
-Time available to DMA for sending out
OUTPUT array for (N-2)th frame

Array roles are interchanged
INPUT OUTPUT
INTERMEDIATE INPUT
OUTPUT INTERMEDIATE

202

Real-Time Digital Signal Processing Based on the TMS320C6000

9.1 Direct Memory Access

Many DSP chips are equipped with a Direct Memory Access resource acting as a
co-processor to move data from one part of memory into another without interfering
with the CPU operation. As a result, the chip throughput is increased since, in this
manner, the CPU can process and the DMA can move data without interfering with
each other.

Depending upon the DSP platform used, there are two different DMAs called DMA
and EDMA (enhanced DMA). The differences between them and their configura-
tions are stated in the following subsections.

9.1.1 DMA

The C6x01 DSP provides four DMA channels. Each DMA channel has its own
memory-mapped control registers which can be set up to move data from one place
to another place in memory. Figure 9-2 shows the DMA control registers consisting
of the Primary Control, Secondary Control, Source Address, Destination Address,
and Transfer Counter registers. These registers contain the information regard-
ing source and destination locations in memory, number of transfers, and format of
transfers. As shown in Figure 9-2, in addition to the DMA control registers, there are
several global registers shared by all DMA channels.

Figure 9-2: DMA channels control registers.†

Channel 2

Channel 3

Channel 1
Channel 0

Primary Ctrl

Secondary Ctrl

Source

Destination

Xfr Count

Count Reload A

Count Reload B

index A

Index B

Address A

Address B

Address C

Address D

Global Registers

203

Chapter 9: Frame Processing

An example is presented here to show how some of the fields of the DMA registers
are set for block or frame processing. More details on all the fields are available in
the TI TMS320C6x Peripherals Reference Guide [1]. It is possible to transfer a block of
data consisting of a number of frames, which in turn consist of a number of elements.
Elements here mean the smallest piece of data. The example shown in Figure 9-3
illustrates the DMA register setup for transferring a block of data (this can be viewed
as image data) consisting of four frames (rows), while each frame consists of four
elements (16-bit pixels). Figure 9-3 also provides the options for some of the fields of
the Primary Control Register, Transfer Counter Register, and Global Index Register.
Source/destination address fields can be incremented or decremented by an element
size or by an index as specified in the global register. The element size field is used to
indicate the datatype. The Transfer Counter Register contains the number of frames
and elements. In this example, the element size field of the Primary Control Regis-
ter is set to 01 (halfwords), the source address field to 11 (index option for accessing
next value), and the destination to 01 (increment option for writing consecutively).
As specified in the Transfer Counter Register, the data transfer in this example con-
sists of four frames, and each frame consists of four elements. The global register A
(chosen by the index field) contains the element as well as the frame index. In this
example, the element index is set to 2 to increase addresses by 2 bytes or element
size, and the frame index to 6 bytes to get to the next frame, since at the end of a
frame the pointer points to the beginning of the last element of that frame.

204

Real-Time Digital Signal Processing Based on the TMS320C6000

9.1.2 EDMA

C6711/C6713/C6416 DSKs possess EDMA. The number of EDMA channels are 16
on C671X, and 64 on C64x. As compared with DMA, EDMA provides program-
mable priority, and the ability to link data transfers. By using the EDMA controller,
data can be transferred from/to internal memory (L2 SRAM), or peripherals, to/from
external memory spaces efficiently without interfering with the CPU operation.
Typically, block data transfers and transfer requests from peripherals are performed
via EDMA. Figure 9-4 illustrates the EDMA registers used for its configuration.

Figure 9-3: DMA data transfer example.†

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

8

9

.

.

29

primary Ctrl

Secondary Ctrl

Src=mem _8

Dest=block

Xfr Count
Frames = 4 # Elements = 4

0 0 1 0 1 1 1 0 1 0 1

DMA

31 16 15 0

01457 689

16-bit Pixes

(Src: mem_8)

block:

ESIZE SRC/DST DIR STATUS START

00 32-bits 00 no modifications 00 Stopped 00 Stop

01 16-bits 01 inc by element size 01 Running (without auto-init) 01 Start without auto-init

10 8-bits 10 dec by element size 10 Paused 10 Pause

11 reserved 11 index 11 Running (with auto- init) 11 Start with auto-init

ESIZE DSTDIR SRCDIR

16 BITS

23

STATUS START

13

INDEX

frame index = 6 elem index = 2
31 16 15 0

Global Index Register A

205

Chapter 9: Frame Processing

Also, EDMA has a feature called quick DMA (QDMA), which provides a fast and
efficient way to transfer data for applications such as data requests in tight loop
algorithms. QDMA allows single, independent transfers for quick data movement,
rather than periodic or repetitive transfers, as done by EDMA channels. Figure 9-5
illustrates an example of 2-D to 1-D data transfer. A 16 × 12 subframe of a 640 × 480
video data (16-bit pixels), stored in the external memory, is transferred to the inter-
nal L2 RAM by using QDMA. Similar to the DMA example, the array index denotes
the space between the subframe arrays. Thus, the array index is 2 * (640 – 16) =
1248 (4E0h). In the QDMA Options register, the priority level is set to be low, ele-
ment size to 16-bit half-word. The source is specified as two-dimensional with address
increment, and the destination is specified as one-dimensional with address incre-
ment. The transfer complete interrupt (TCINT) field is disabled and the channel is
synchronized by setting the frame synchronization field (FS) to 1. For a more detailed
description of EDMA and QDMA, refer to Applications Using the TMS320C6000
Enhanced DMA [2].

Figure 9-4: EDMA registers.†

31 16 15 0

Options (OPT) Word 0

Source Address (SRC) Word 1

Array/frame count (FRMCNT) Element count (ELECNT) Word 2

Destination address (DST) Word 3

Array/frame index (FRMIDX) Element index (ELEIDX) Word 4

Element count reload (ELERLD) Link address (LINK) Word 5

206

Real-Time Digital Signal Processing Based on the TMS320C6000

9.2 DSP-Host Communication

9.2.1 Host-Port Interface (HPI) on C6711 DSK

The HPI on C6711 DSK is a 16-bit-wide parallel port through which a PC host can
directly access the DSP memory and peripherals. No specific configuration is required
for the HPI communication on the DSP side since the host program acts as master.

Figure 9-5: Subframe transfer example with QDMA.†

0_100_1 0_2 0_3 0_4 0_5 0_6 0_7 0_8 0_9 0_A 0_B 0_C 0_D 0_E 0_F

1_101_1 1_2 1_3 1_4 1_5 1_6 1_7 1_8 1_9 1_A 1_B 1_C 1_D 1_E 1_F

2_102_1 2_2 2_3 2_4 2_5 2_6 2_7 2_8 2_9 2_A 2_B 2_C 2_D 2_E 2_F

3_103_1 3_2 3_3 3_4 3_5 3_6 3_7 3_8 3_9 3_A 3_B 3_C 3_D 3_E 3_F

4_104_1 4_2 4_3 4_4 4_5 4_6 4_7 4_8 4_9 4_A 4_B 4_C 4_D 4_E 4_F

5_105_1 5_2 5_3 5_4 5_5 5_6 5_7 5_8 5_9 5_A 5_B 5_C 5_D 5_E 5_F

6_106_1 6_2 6_3 6_4 6_5 6_6 6_7 6_8 6_9 6_A 6_B 6_C 6_D 6_E 6_F

7_107_1 7_2 7_3 7_4 7_5 7_6 7_7 7_8 7_9 7_A 7_B 7_C 7_D 7_E 7_F

8_108_1 8_2 8_3 8_4 8_5 8_6 8_7 8_8 8_9 8_A 8_B 8_C 8_D 8_E 8_F

9_109_1 9_2 9_3 9_4 9_5 9_6 9_7 9_8 9_9 9_A 9_B 9_C 9_D 9_E 9_F

A_10A_1 A_2 A_3 A_4 A_5 A_6 A_7 A_8 A_9 A_A A_B A_C A_D A_E A_F

B_10B_1 B_2 B_3 B_4 B_5 B_6 B_7 B_8 B_9 B_A B_B B_C B_D B_E B_F

0

479
0 6

3
9

A000 0788h

A000 0000h

A002 5580h

0x00002000

Register Content s Register

A000 0788h QDMA Source Address Register

000Bh 0010h QDMA (Array/Element) Transfer Count Register

0000 2000h QDMA Destination Address Register

04E0h Don’t care QDMA (Array/Element) Index Register

4D20 0001h QDMA Options Register

31 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 1 0

010 0 1 1 01 0 01 0 0000 0 00 0 000 1

PRI ESIZE 2DS SUM 2DD DUM TCINT TCC — TCCM‡ reserved FS

†Program to 011 on C64x devices.
‡ Availableonly on C64x devices.

207

Chapter 9: Frame Processing

A program on the PC host is written here in Microsoft® Visual C++® using the
library dsk6x11hpi.lib, which is a part of CCS. In this program, a sample configuration
file, ti_ppdsk.cfg, is accessed to open the device handle. After opening the DSK and
the HPI with the dsk6x_open() and dsk6x_hpi_open()APIs, respectively,
the memory of the DSP is read by the dsk6x_hpi_read() API based on the
length and starting address parameters. This program appears below.

char *pfname = "c:\\ti\\c6000\\dsk6x11\\doc\\ti_ppdsk.cfg";

dsk6x_open(pfname, &handle);
dsk6x_hpi_open(handle);
dsk6x_hpi_read(handle, temp, &len, StrtAddr);
dsk6x_hpi_close(handle);
dsk6x_close(handle);

In order to build this program, the library dsk6x11hpi.lib should be included in the
project and the Win32 DLL dsk6x11hpi.dll should be placed in the same folder where
the program is located.

Bearing in mind that CCS already uses the HPI to load and run the program, the ac-
cess should be returned before the host program runs on the PC. Thus, CCS should
be closed before the host program is executed. The DSP target program is then
loaded and run by the host program instead of CCS.

9.2.2 HPI on C6701 EVM

On the C6701 EVM, there are two 32-bit FIFO (first in, first out) registers, called
FIFO-read and FIFO-write, in the PCI controller of the EVM board through which
the PC host and the C6x can communicate. The FIFO-read is used for data transfer
from the host to the DSP and the FIFO-write for data transfer from the DSP to the
host. The initialization of the FIFO is done through the memory mapped FIFO status
register. The communication can be simply achieved by using the supplied Write-
FIFO_DMA() function as part of Lab6.

9.2.3 Real-Time Data Exchange (RTDX)

Since the HPI on the C6713/C6416 DSKs requires an external interface through the
PCI/HPI port, RTDX is used here as an alternative way to communicate between the
host and the DSP. On these platforms, CCS communicates with the DSK through an
embedded JTAG emulator with a USB host interface.

208

Real-Time Digital Signal Processing Based on the TMS320C6000

RTDX details are discussed in Chapter 10. To use RTDX, first a channel needs to be
created by calling the function RTDX_CreateOutputChannel(). Then, data
can get transferred to the host in real-time by calling the RTDX_write() API, as
shown below.
RTDX_CreateOutputChannel(ochan);
RTDX_enableOutput(&ochan);

// Send the data to the host
if (!RTDX_write(&ochan, data, sizeof(data))) {
 fprintf(stderr, "\nError: RTDX_write() failed!\n");
 abort();
}

// Wait for Target-to-Host transfer to complete
while (RTDX_writing != NULL) {
 #if RTDX_POLLING_IMPLEMENTATION
 RTDX_Poll();
 #endif
}

RTDX_disableOutput(&ochan);

Bibliography

[1] Texas Instruments, TMS320C6201/6701 Peripherals Reference Guide,
Literature ID# SPRU 190B, 1998.

[2] Texas Instruments, Applications Using the TMS320C6000 Enhanced DMA,
Literature ID# SPRA636A, 2001.

209

Lab 6: Fast Fourier Transform

Operations such as DFT or FFT require that a frame of data be present at the time of
processing. Unlike filtering, where operations are done on every incoming sample, in
frame processing N samples are captured first and then operations are performed on
all N samples.

To perform frame processing, a proper method of gathering data and of processing
and sending data out is required. The processing of a frame of data is not usually
completed within the sampling time interval, rather it is spread over the duration of
a frame before the next frame of data is gathered. Hence, incoming samples must be
stored into a separate buffer other than the one being processed. Also, another buffer
is needed to send out a previously processed frame of data. As explained earlier, this
can be achieved by triple buffering involving three buffers: input, intermedi-
ate, and output.

To do triple buffering on the C6x, the sampling shell program in Lab 2 is modified to
incorporate an endless loop revolving around the rotation of three buffers. The buf-
fers rotate every time the input buffer is full so that a new frame of N sampled data
is passed to the intermediate buffer for processing and a previously processed
frame is passed to the output buffer for transmission. The following modifications
of the shell program achieve this:

short *output; /* POINTER TO DATA ARRAY FOR OUTPUT */
short *input; /* POINTER TO DATA ARRAY FOR INPUT */
short *intermediate; /* POINTER TO DATA ARRAY FOR DMA ACCESS */
static short index=0;

main()
{
 CSL_init(); // Initialize the library

 hMcbsp = MCBSP_open(MCBSP_DEV1,MCBSP_OPEN_RESET);
 MCBSP_config(hMcbsp,&MyConfig);

 hTimer = TIMER_open(TIMER_DEV0, TIMER_OPEN_RESET);
 TIMER_config(hTimer, &timerCfg);

 init_arrays();

 IRQ_globalDisable();
 IRQ_nmiEnable();

210

Real-Time Digital Signal Processing Based on the TMS320C6000

The preceding code shows how an endless loop is added to the shell program. Here,
most of the initializations for the codec and McBSP have not been shown to make
the code easier to follow. Once the serial port is initialized, the three arrays are allo-
cated in memory and initialized to zero. The program then goes into an endless loop
where the function wait_buffer(), shown next, is executed endlessly:

 IRQ_map(IRQ_EVT_RINT1,15);
 IRQ_enable(IRQ_EVT_RINT1);
 IRQ_globalEnable();

 /* Main Loop, wait for Interrupt */

 for(; ;)
 {
 wait_buffer(); /* WAIT FOR A NEW BUFFER OF DATA */
 }
}

void wait_buffer(void)
{
 short *p;
 /* WAIT FOR ARRAY INDEX TO BE RESET TO ZERO BY ISR */

while(index);

/* ROTATE DATA ARRAYS */
p = input;

 input = output;
 output = intermediate;

 //Function call here...

 intermediate = p;
 HostTargetComm();
 while(!index);
}

This function checks on the global variable index to do the rotation of the arrays
and to start processing. When the input array becomes full (indicated by index),
the arrays are rotated and the intermediate array gets set for processing. The
comment //Function call here… indicates where the processing function
such as FFT should be placed.

The ISR is also modified as shown in the next code block. In the ISR, EDMA is used
to transfer a sample from DRR to DXR without using the MCBSP_write()API.
Note that index is incremented within the ISR.

EDMA_Handle hEdma;

EDMA_Config myConfig = {
 0x28000000, // opt

211

Lab 6: Fast Fourier Transform

To configure EDMA for reading from DRR and writing back to DXR, the source
and destination address should refer to DRR1 and DXR1, respectively. In the Op-
tions Parameter register, the priority level is set to high, element size to 32-bit,
with one-dimensional source and destination. No incrementing of address for
source or destination is necessary since the source and destination are fixed-address
memory mapped registers. Similar to the other CSL peripherals, EDMA is opened
and configured with the EDMA_open() and EDMA_config()APIs. The EDMA_
setChannel() API triggers the EDMA channel. After transmitting data, the
opened channel should be closed with EDMA_close().

For FFT processing purposes, the data read from DRR are left-shifted by 16 bits to get
rid of the data portion corresponding to the right channel. To store in Q-15 format,
it is shifted back right by 16 bits. The input samples are then placed into the input
array to build a frame of length BUFFLENGTH. The variable index is incremented
every time a new input sample is read. This variable is reset to zero when the input
buffer becomes full, that is, index reaches BUFFLENGTH. This reset causes the
program to go out of the while(index) loop in the function wait_buffer().
Then, the rest of the program in wait_buffer() gets executed.

Now, let us go back to wait_buffer(). After index is reset to zero, the in-
put buffer is reassigned to a pointer named p. This reassignment is necessary for the

 0x01900000, // src: DRR 1
 0x00000001, // cnt
 0x01900004, // dst: DXR 1
 0x00000000, // idx
 0x00000000 // rld
};

interrupt void serialPortRcvISR (void)
{
 int temp;
 temp = MCBSP_read(hMcbsp);
 input[index] = temp;

 myConfig.src = EDMA_SRC_RMK(&temp); // Update EDMA source

 hEdma = EDMA_open(EDMA_CHA_XEVT1, EDMA_OPEN_RESET);
 EDMA_config(hEdma,&myConfig);
 EDMA_enableChannel(hEdma);
 EDMA_setChannel(hEdma);
 EDMA_disableChannel(hEdma);
 EDMA_close(hEdma);

if (++index == BUFFLENGTH)
 index = 0;
}

212

Real-Time Digital Signal Processing Based on the TMS320C6000

//Function call here… part to avoid any conflict with the ISR. Note that the
ISR uses the input buffer to receive new samples. If say the FFT function processes
the data in the input buffer, wrong results may be produced, because the ISR may
change the content of the input buffer anytime. This malfunction may occur because
the ISR runs on a higher priority basis, while the FFT function runs on a lower prior-
ity basis. Following the p=input statement, the output buffer is reassigned to the
input buffer. This reassignment allows the ISR to use the output buffer to receive
and store new incoming samples. Notice that the data in the output buffer is sent out
by the DMA. The next reassignment output = intermediate is necessary in
order to send the processed data in the intermediate buffer to the DXR.

After the data is processed in //Function call here…, the pointer p is re-
assigned to the intermediate buffer for it to point to the processed samples.
The data in the intermediate buffer is sent out by the function Host-
TargetComm() as part of the wait_buffer() function. The while loop
while(!index) at the end of wait_buffer() ensures that a frame is processed
only once. In the absence of a new sample in the DRR, index remains zero and the
program waits at while(!index) because !index is TRUE. When a new sample
arrives in the DRR, index is incremented and the program gets out of wait_buf-
fer() and falls into the loop in main(). There it waits for a new frame.

For communication with a PC host, two different methods are mentioned here
depending on the target platform (DSK or EVM) used. When using EVM, the
communication is done through the memory mapped I/O address, PCI FIFO, cor-
responding to the PC PCI channel. There are two 32-bit FIFO (first in first out)
registers, called FIFO-read and FIFO-write, in the PCI controller of the EVM board
through which the PC host and the C6x may communicate. The FIFO-read is used
for data transfer from the PC host to the DSP and the FIFO-write for data transfer
from the DSP to the PC host. The initialization of the FIFO is done through the
memory mapped FIFO status register. The communication is achieved by using the
HostTargetComm() function. This function utilizes the C6x’s DMA capability to
send the intermediate array to the host through the FIFO registers. The follow-
ing provides the code for doing so:

void HostTargetComm(void)

213

Lab 6: Fast Fourier Transform

The two DMA API functions dma_reset() and dma_init() are used to initial-
ize the DMA for data transfer between the intermediate array and the FIFO.
A single frame of samples of length 128 is transferred as indicated by the content
of the Transfer Counter Register (TCR). The dma_reset() API resets all the
DMA registers to their power-on reset states. The dma_init() API initializes a
selected DMA channel by assigning appropriate values to its control registers. Here,
the first argument of the dma_init() API is used to select the DMA channel
2. The second argument sets the Primary Control Register to 0x0A000110u, as
shown in Figure 9-6. This value is specified based upon the following: EMOD bit is
set to 1 to pause the DMA channel during an emulation halt. TCINT bit is set to 1
to enable the transfer controller interrupt. The element size is 16 bits, so ESIZE bits
are set to 01. SRC DIR bits are set to 01 to increment the source address by ele-
ment size in bytes. The third argument of the dma_init() API sets the Secondary
Control Register. SX IE and FRAME IE bits of this register are set to 1 to enable
the DMA channel interrupt. The fourth argument of the dma_init() API as-
signs the intermediate array as the source address. The fifth argument is set to
0x01710000u, which is the address of the EVM PCI interface, through which the
host program reads the output. The last argument sets the Transfer Counter Register
to 0x00010080u. The upper 16 bits specify the number of frames. Here, these bits
are set to 0x0001u in order to send out one frame at a time. The lower 16 bits are
set to 0x0080u for having 128 elements in a frame. Finally, the function Host-
TargetComm() calls the macro DMA_START() to activate the DMA channel 2.
This macro sets the START field of the Primary Control Register to 01.

{
 dma_reset();
 dma_init(2, //Channel
 0x0A000110u, //Primary Control Register (Peripherals pp4-9)
 0x0000000Au, //Secondary Control Register
(unsigned int) intermediate, //Source Address
 0x01710000u, //Destination Address
 0x00010080u); //Transfer Counter Register
 DMA_START(DMA_CH2);
}

214

Real-Time Digital Signal Processing Based on the TMS320C6000

When using C6711 DSK, the communication is done through the parallel port. In
order to implement a function equivalent to HostTargetComm, the host-port
interface (HPI) is utilized instead of DMA. HPI is a 16-bit wide parallel port through
which a PC host can directly access the C6x memory and peripherals. No specific
configuration is required for the HPI communication on the DSP side, since the host
program acts as master. However, the intermediate pointer should be passed
to the host for having a proper memory access, because the triple buffering scheme
keeps changing the address of the physical memory where the array of intermediate
values is stored. Also, a variable should be used as a flag for data synchronization. A
fixed physical memory address, say 0x00000200, is allocated as a separate section,
.hpi, to allow access from the host. This way the processed data can always be read
by referring to its address stored in this section. Thus, the linker command file and
the function HostTargetComm need to be changed as follows:

Figure 9-6: Primary Control Register.

DST RELOAD SRC RELOAD EMOD FS TCINT PRI WSYNC RSYNC

 31 30 29 28 27 26 25 24 23 19 18 16

RSYNC INDEX CNT
RELOAD SPLIT ESIZE DSTDIR SRCDIR STATUS START

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0

0 A 0 0

 0 1 1 0

Binary

Hex

Binary

Hex

MEMORY
{
 VECS: o = 00000000h l = 00000200h
 HPI: o = 00000200h l = 00000008h
 IRAM: o = 00000208h l = 0000FDF8h
 CE0: o = 80000000h l = 01000000h
}

SECTIONS
{
 ...

215

Lab 6: Fast Fourier Transform

By using a function generator and an oscilloscope, the operation of the modified
sampling program can be verified. When using EVM, to get data from the FIFO on
the host side and display them on the PC monitor, a program called Host.exe running
on the PC host is provided on the accompanying CD-ROM. This program utilizes
the evm6x_read() API from the EVM host support library. When using DSK, the
API function dsk6x_hpi_read()is used instead. This program, which is written
in Microsoft™ Visual C++ using a Dialog wizard, starts a thread that continuously
reads data from the pointer in the .hpi section and plots it on the monitor. The
APIs used in the program are part of CCS.

The communication between the PC host and the DSP is achieved via RTDX for
C6416/C6713. The accompanying CD-ROM contains the corresponding source
codes with the RTDX APIs. A detailed description of RTDX appears in Chapter 10.
The host application program for displaying and analyzing data via RTDX is also on
the accompanying CD-ROM. Descriptions and examples of developing host applica-
tion programs with Visual Basic, Visual C++, MATLAB, or Microsoft® Excel can be
found at the TI website.

L6.1 DFT Implementation

DFT can be simply calculated from the equation

 X k x n W k NN
nk

n

N

[] = []∗ = −
=
∑ , , ,..., ,

-

0

1

0 1 1 (9.1)

 .hpi > HPI
}

#pragma DATA_SECTION(hpi_access, ".hpi")

int hpi_access[2]; // pointer of intermediate data array

...

void HostTargetComm(void)
{
 hpi_access[0] = (int) intermediate;
 hpi_access[1] = 0xffffffff; // Data is ready to be read

 // Wait until the flag is reset to 0 by Host after data transmission
 while(hpi_access[1] != 0x00000000);
}

216

Real-Time Digital Signal Processing Based on the TMS320C6000

where 2 /−= j N
NW e π . This equation requires N complex multiplications and N – 1

complex additions for each term. For all N terms, N2 complex multiplications and
N2 – N complex additions are needed. As is well known, this method is not efficient
since the symmetry properties of the transform are not utilized. However, it is useful
to implement the equation on the C6x as a comparison to the FFT implementation.
The graphing capability of CCS is used here for this purpose. This is carried out in an
offline manner because the amount of time required to do the DFT exceeds the dura-
tion of a frame capture.

First, a simple composite signal is generated in MATLAB with the frequency compo-
nents at 750 Hz, 2500 Hz, and 3000 Hz. Saving two periods of this signal sampled at
8000 Hz results in a 64-point signal. Figure 9-7 shows the signal read into CCS and
plotted using its graphing capability. The frequency content of the signal is also plot-
ted based on a built-in FFT option.

Figure 9-7: Input signal in time and frequency domains.

The DFT code used is the one appearing in the TI Application Report SPRA291 [1].
Here is the code:
#include <math.h>

217

Lab 6: Fast Fourier Transform

In order to use this code, the input has to be represented as complex numbers. This
is done using a structure definition to create a complex variable with components
real and imag. The main program used to perform DFT is as follows:

#include <math.h>
#include "params.h"

void dft(int N, COMPLEX *X){

int n, k;
double arg;
int Xr[1024];
int Xi[1024];
short Wr, Wi;
for(k=0; k<N; k++){
 Xr[k] = 0;
 Xi[k] = 0;
 for(n=0; n<N; n++){
 arg =(2*PI*k*n)/N;
 Wr = (short)((double)32767.0 * cos(arg));
 Wi = (short)((double)32767.0 * sin(arg));
 Xr[k] = Xr[k] + X[n].real * Wr + X[n].imag * Wi;
 Xi[k] = Xi[k] + X[n].imag * Wr - X[n].real * Wi;
 }
}

for (k=0;k<N;k++){
 X[k].real = (short)(Xr[k]>>15);
 X[k].imag = (short)(Xi[k]>>15);
}

}

main()
{
 int i,j;
 COMPLEX x[128];
 int mag[128];

 /*Change input to Q-15*/
 for(i=0;i<128;i++)
 {
 x[i].real=0x7FFF * input_data[i];
 x[i].imag=0;
 }
 dft(128, x);

 for(i=0;i<128;i++)
 mag[i]=(x[i].real*x[i].real + x[i].imag*x[i].imag) << 1;
 return(0);
}

In this program, the input is converted to Q-15 format and stored in the complex
structure, which is then used to call the DFT function. The magnitude of the DFT
outcome is shown in Figure 9-8. As expected, there are three spikes, at 750Hz,

218

Real-Time Digital Signal Processing Based on the TMS320C6000

2500Hz, and 3000Hz. Notice that this code is quite inefficient, as it calculates each
twiddle factor using the math library at every iteration. Running this code from the
external SDRAM results in an execution time of about 1.6 × 109 cycles for a 128-
point frame. As a result, the preceding DFT code cannot be run in real-time on the
DSK, since only 18,750 × 128 = 2.4 × 106 cycles are available to perform a 128-point
transform.

L6.2 FFT Implementation

To allow real-time processing, FFT is used which utilizes the symmetry properties of
DFT. The approach of computing a 2N-point FFT as mentioned in the TI Application
Report SPRA291 [1] is adopted here. This approach involves forming two new N-
point signals x1[n] and x2[n] from the original 2N-point signal g[n] by splitting it into
even and odd parts as follows:

x n g n n N

x n g n

1

2

2 0 1

2 1

[] = [] ≤ ≤ −

[] = +[]
, ;

.
 (9.2)

From the two sequences x1[n] and x2[n], a new complex sequence is defined as

 x n x n jx n n N[] = [] + [] ≤ ≤ −1 2 0 1, . (9.3)

Figure 9-8: Magnitude response of DFT.

219

Lab 6: Fast Fourier Transform

To get G[k], DFT of g[n], the equation

G k X k A k X N k B k

k N X N X

[] = [] [] + −[] []
= − [] = []

* ,

, ,..., , ,0 1 1 0 with
 (9.4)

is used, where

 A k jW N
k[] = −()1

2
1 2 (9.5)

and

 B k jW N
k[] = +()1

2
1 2 (9.6)

Only N points of G[k] are computed from Eq. (9.4). The remaining points are
found by using the complex conjugate property of G[k], G[2N – k] = G*[k]. As a
result, a 2N-point transform is calculated based on an N-point transform, lead-
ing to a reduction in the number of cycles. The codes for the functions (split1,
R4DigitRevIndexTableGen, digit_reverse, and radix4) implementing
this approach are provided in the TI Application Report [1].

Figure 9-9 shows the FFT outcome where the signal has been scaled down 0, 2, 4, and
5 times, respectively. The scaling is done to get rid of overflows, which are present
for the scale factors 0, 2, and 4. As revealed by these figures, the input signal has to
be scaled down five times to eliminate overflows. When the signal is scaled down five
times, the expected peaks appear. The total number of cycles for this FFT is 56,383.
Since this is less than the capture time available for a 128-point data frame at a sam-
pling frequency of 8 kHz, it is expected that this algorithm would run in real-time on
the DSK.

220

Real-Time Digital Signal Processing Based on the TMS320C6000

L6.3 Real-Time FFT

To perform FFT in real-time, the triple buffering program is used. A frame length
of 128 is considered here. The output is observed by halting the processor through
CCS. The animate feature of CCS cannot be used here since it slows down the pro-
cessing and causes frames to overlap.

The following modifications are made to the triple buffering program to run the
aforementioned FFT algorithm in real-time:

Figure 9-9: Scaling to get correct FFT magnitude response.

void wait_buffer(void)
{
 int n,k;
 short *p;

 while(index);

p = input;
 input = output;
 output = intermediate;

 for (n=0; n<NUMPOINTS; n++)
 {
 x[n].imag = p[2*n + 1]; // x2(n) = g(2n + 1)
 x[n].real = p[2*n]; // x1(n) = g(2n)
 }

 radix4(NUMPOINTS, (short *)x, (short *)W4);
 digit_reverse((int *)x, IIndex, JIndex, count);
 x[NUMPOINTS].real = x[0].real;
 x[NUMPOINTS].imag = x[0].imag;

 split1(NUMPOINTS, x, A, B, G);
 G[NUMPOINTS].real = x[0].real - x[0].imag;
 G[NUMPOINTS].imag = 0;

221

Lab 6: Fast Fourier Transform

The wait_buffer() function is modified with the appropriate function calls so
that when the input buffer is full, the transform is calculated and sent out to the
host through the FIFO.

The functionality of the program can be verified by connecting a function generator
to the line-in. The graphing capability of CCS can be used to plot the FFT outcome.
By changing the frequency of the input, the spikes in the frequency response would
move to left or right accordingly. Figure 9-10 illustrates the output for a 1 kHz and a
2 kHz sinusoidal signal. These snap shots are captured by halting the processor. The
input here is scaled by shifting it right 4 bits.

 for (k=1; k<NUMPOINTS; k++){
 G[2*NUMPOINTS-k].real = G[k].real;
 G[2*NUMPOINTS-k].imag = -G[k].imag;
 }
 for (k=0; k<NUMDATA; k++){
 mag1[k] = (G[k].real*G[k].real) << 1;
 mag2[k] = (G[k].imag*G[k].imag) << 1;
 mag[k] = mag1[k] + mag2[k];
 }
 intermediate = p;
 HostTargetComm();
 while(!index);
}

222

Real-Time Digital Signal Processing Based on the TMS320C6000

Bibliography

[1] Texas Instruments, Application Report SPRA 291, 1997.

Figure 9-10: Real-time FFT magnitude response (a) f = 1 kHz (b) f = 2 kHz.

223

Real-Time Analysis
and Scheduling

10C H A P T E R

Figure 10-1 provides an overview of the conventional CCS debugging techniques
based on breakpoints, probe points, and profiler. Although these debugging tools are
very useful to see whether an application program is logically correct or not, when it
comes to making sure that real-time deadlines are met, they have limitations. The
so-called DSP/BIOS feature of CCS complements the traditional debugging tech-
niques by providing mechanisms to analyze an application program as it runs on the
target DSP without stopping the processor. In traditional debugging, the target DSP
is normally stopped and a snap shot of the DSP state is examined. This is not an ef-
fective way to test for real-time glitches.

Figure 10-1: Code Composer Studio IDE.†

File Edit View Project Debug Profiler

C source

ASM source

Header and
Include files

Compiler
and

Assembler
Linker

Options

Libraries

Command
file

.map

.out

Load .out
executable

*Run/Animate
*Step In/Over/Out
*Break Points

Output
Window

Probe Points

File I/O

*Monitor CPU
cycles

*Optimize code

CPU registers

Watch Windows

Memory Displays

WorkspaceCode Generation Debug

Graphical
Displays

0

10

20

30

40

50

60

70

80

90

100

1st Qtr 2nd Qtr 3rd Qtr 4th Qtr

Line 1

224

Real-Time Digital Signal Processing Based on the TMS320C6000

DSP/BIOS consists of a number of software modules that get glued to an applica-
tion program to provide real-time analysis and scheduling capabilities. A listing of
all available modules is provided in Figure 10-2. CCS provides an easy-to-use way
to glue these modules to the application program. Figure 10-3 shows a sample C file
with a BIOS object, a BIOS function, and its corresponding section names. The size
of the DSP/BIOS portion of an application program is limited to a maximum of 2K
words and is proportional to the number of modules and objects used.

Figure 10-2: DSP/BIOS API modules.†

Instrumentation/Real-Time Analysis

LOG Message log manager

STS Statistics accumulator manager

TRC Trace manager

RTDX Real-Time DataeXchange Manager

Thread Types

HWI Hardware interrupt manager

SWI Software interrupt manager

TSK Multi-tasking manager

IDL Idle function & process loop manager

Clock and Periodic Functions

CLK System clock manager

PRD Periodic function manager

Comm/Synch Between Threads

SEM Semaphores manager

MBX Mailboxes manager

LCK Resource lock manager

Input/Output

PIP Data pipe manager

HST Host Input/Output manager

SIO Stream I/O manager

DEV Device driver interface

Memory and Low-level Primitives

MEM Memory manager

SYS System service manager

QUE Queue manager

ATM Atomic function

GBL Global setting manager

(a) (b)

BIOS Init

Code

OBJs

Vectors

Code

Data

BIOS .sysinit

.bios

.log, .sts, etc.

choice

.text

.log1, .log2, etc.

short m = 10;
short b = 2;

extern LOG _Obj trace ;
main()
{
 short x = 0;
 scanf(x);
 LOG_printf(&trace…
 malloc (y);
 y = m * x;
 y = y + b;
}

Global
Variables

Dynamic
Variables

BIOS func

Code

Initial Values

BIOS Object

Local
Variables

.text

.bss, .far

.cinit

.sysmem

.stack

Buffers

Code

Data

Program
System Init

C Code

Variables

Init Values

Heap

Stack

Figure 10-3: BIOS sections.†

225

Chapter 10: Real-Time Analysis and Scheduling

Figure 10-4 shows a listing of the DSP/BIOS modules accessed by the Configuration
Tool feature of CCS. This figure also shows the files generated by the Configuration
Tool. The Configuration Tool is a visual editor which allows one to create module
objects and set their properties. An application program can interact with objects by
using DSP/BIOS API functions. In addition, DSP/BIOS plug-ins can be activated
from the CCS environment, providing real-time instrumentation including log and
statistics displays.

Figure 10-4: Files generated by the Configuration Tool.

program.cdb

programcfg.h ##

programcfg.s ##

programcfg.cmd

header (e.g. 62 for target 'C62)

assembly

command

Configuration database files
Save

Figure 10-5 illustrates all the files created within the CCS environment when using
DSP/BIOS; the files with white background are created by the user and the ones with
grey background by CCS. The naming convention used by the modules is shown in
Figure 10-6. The datatypes associated with a module are defined in its header file.
Header files of those modules which are used in real-time analysis of an application
program must be included in the program.

226

Real-Time Digital Signal Processing Based on the TMS320C6000

In essence, DSP/BIOS provides real-time analysis, real-time scheduling, and real-
time data exchange capabilities for debugging application programs. As a result, one
can make sure that an application program is meeting its real-time deadlines in addi-
tion to being logically correct.

10.1 Real-Time Analysis

There are two types of real-time constraints: (a) hard real-time, denoting critical
real-time needs (i.e., timing needs that should be met to avoid system failure), and
(b) soft real-time, denoting not-so-critical real-time needs that can be done as time
becomes available. For example, as shown in Figure 10-7, the response to incoming
samples must be done in a hard real-time manner in order not to lose any infor-
mation, whereas data transfer from the target DSP to the host can be done in soft
real-time.

Figure 10-5: Files indicated in white created by user and in grey by CCS.†

program.h program.c program.asm program.cdb
program.cmd

(optional)

programcfg.s## programcfg.h## programcfg.cmd

mod.h

Compiler/
Assembler

programcfg.obj

program.obj

Linker

*.lib

program.out

CATEGORY CONVENTION EXAMPLE

Function Calls MOD_lowercase LOG_printf

Data Types MOD_Titlecase LOG_Obj

Constants MOD_UPPERCASE HWI_INT3

Internal Calls MOD_F_lowercase FXN_F_nop

Figure 10-6: Three letter prefix module naming conventions,
capitalization convention distinguishes functions, types, and constants.

227

Chapter 10: Real-Time Analysis and Scheduling

To monitor the status of a program in real-time, it is possible to use the C function
printf() as defined in the real-time support library. However, this function takes
too many cycles to run, an undesirable property as far as real-time performance is
concerned. On the other hand, LOG_printf() is a LOG module API that cre-
ates a buffer. The buffer is then sent to the host in soft real-time. The buffer size n is
specified as part of a LOG object. A LOG object can be configured in fixed or circu-
lar mode. The fixed mode captures the first n occurrences, while the circular mode
captures the last n occurrences. LOG_printf() runs in much fewer clock cycles as
compared with print(). Figures 10-8(a), 10-8(b), and 10-8(c) illustrate the differ-
ence between printf() and LOG_printf().

Figure 10-7: Hard and soft real-time: data buffered in hard real-time,
and sent to host in soft real-time.

Host

CCS
Debugger

User
Display

Target

Real-time
Application

"hard real-time"

Buffer

"Soft real-time"

(a)

#include <log.h>
extern LOG _Obj logTrace ;

func()
{
 ...
 LOG_printf (&logTrace ,...);
 ...
}

1. Include log.h
2. Create a LOG_Obj (logTrace)
3. Call LOG_printf()

logTrace

#include <stdio.h>

func()
{
 ...
 x = sub();
 printf ("x = %d",x);
 ...
}

using printf() using LOG_printf()

228

Real-Time Digital Signal Processing Based on the TMS320C6000

Statistics on a value can be captured by using the STS_add() API. Two other sta-
tistics API, STS_set() and STS_delta(), can be used to time a piece of code.
The plug-in Statistics View window can be activated on the host as part of CCS to
monitor the statistics associated with a variable. These statistics are reconfigured on
the host as shown in Figure 10-9.

Figure 10-8: printf() vs. LOG_printf().†

printf() LOG_printf()

Contained in RTS Libraries DSP/BIOS

Formats data with Target Host

Runs in the context of Calling Function Soft real-time

Written in C ASM

Optimization No Yes

(b)

Get data
Format data
Transfer to host

LOG_printf()
record data

IDL (Background)
transfer to host

Host
format data

printf()

LOG_printf()

hard real-time

soft real-time

(c)

Figure 10-9: Reconfiguration of statistics on host.†

Count

(A x total + B) /C

(A x max + B) /C

(A x total + B) /
(C x count)

Count

Total

0 Max

Count

Total

Maximum

Average

Previous

Count

Total

Max

TargetHost

AccumulateFilter=(A*x+B)/CDisplay
3264

229

Chapter 10: Real-Time Analysis and Scheduling

The trace module through the RTA Control Panel of DSP/BIOS allows various modules to
be enabled or turned on so that only a specific or needed portion of the DSP/BIOS
kernel is glued to the application program. The RTA Control Panel properties can be
set to decide how often the host should poll the target DSP for various logging and
statistics data. The CPU Load Graph is another plug-in instrumentation which shows
the monitoring of the CPU active time as a program runs on the target DSP.

10.2 Real-Time Scheduling

This is done by breaking down the application program into threads each doing a
specific function or task. Some of the threads may occur more often than others.
Some of them may be subject to hard real-time and some to soft real-time con-
straints. The real-time need of the entire application program or system is met by
appropriately prioritizing threads. This multithreaded real-time scheduling approach
is what makes it possible to meet real-time timing deadlines.

Threads can be scheduled using hardware interrupts (ISRs) in a non-preemptive
fashion by disabling hardware interrupts. The scheduling can be done in a preemp-
tive fashion by prioritizing hardware interrupts. Considering that not all real-time
situations can be handled by preemptive hardware interrupts, a more robust sched-
uling mechanism based on software interrupts is adopted in DSP/BIOS. Software
interrupts automatically perform context switching (i.e., storage/retrieval of the DSP
status to the time the interrupt occurred).

DSP/BIOS uses a background/foreground scheduling approach where the background
consists of non-critical housekeeping threads such as transferring information to the
host and instrumentation. These threads or functions are done in a round-robin fash-
ion as part of idle or background loop IDL. The foreground consists of more critical
threads. These threads are implemented via hardware (HWI module) and software
(SWI module) interrupts. Hardware interrupts have higher priority than software
interrupts. As indicated in Figure 10-10, normally software interrupts are used for
deadlines of 100 microsec or more, and hardware interrupts for more restrictive dead-
lines of 2 microsec or more. The priority of software interrupts can easily be changed
through SWI objects. Software interrupts can be posted unconditionally or condi-
tionally via mailboxes. In essence, the DSP/BIOS scheduling is based on preemptive
software interrupts. Figure 10-11 shows an example of how a single-thread ISR is
converted to a hardware, software, and idle multithread program. In addition to
hardware and software threads, the upgraded version of DSP/BIOS provides a task TSK
module which can be used for posting threads capable of yielding to other threads.

230

Real-Time Digital Signal Processing Based on the TMS320C6000

Figure 10-10: Thread priorites.†

Hardware
Interrupts

(HWI)

Software
Interrupts

(SWI)

Background
threads

(IDL)

real-time
deadlines

>= 2
microseconds

>=100
microseconds

lower priority

higher priority

ISR
 get buffer
 flag = 1

main()
{

init
 while(1)
 if(flag ==1)
 process

printf()
}

HWI
 get buffer
 flag = 1

main()
{

init
 return
}

Proc_If_Rdy()
{
 if(flag == 1)
 process
 LOG_printf()
}

IDL...

|Proc_If_Rdy()|

Single thread Multithread

Figure 10-11: Multithread programming.†

231

Chapter 10: Real-Time Analysis and Scheduling

There are basically two thread scheduling rules. The first rule is that if a higher prior-
ity thread becomes ready, the running thread is preempted. The second rule is that
threads having the same priority are scheduled in a first-in first-out fashion. Three
examples are shown in Figure 10-12 to illustrate how various threads run based on
the scheduling rules. In this figure, a running thread is shown by shaded blocks and
a thread in ready state by white blocks per time tick. The Execution Graph window
feature of DSP/BIOS provides a visual display of execution of threads. It shows which
thread is running and which threads are in ready state. It also provides useful feed-
back information on errors. Errors are generated when real-time deadlines are missed
or when the system log is corrupted. An example of the Execution Graph window is
shown in Figure 10-13. It should be noted that in the Execution Graph window, al-
though time intervals between time ticks are the same, they may not be displayed as
equal. This provides a more compact way to show all events between two successive
time ticks.

HWI 2

HWI 1

SWI 3

SWI 2

SWI 1

MAIN

IDLE

rtn

int1

post2 rtn

int2

post3 rtn

post1 rtn

rtn

rtn

(a)

232

Real-Time Digital Signal Processing Based on the TMS320C6000

Figure 10-12: Examples of threads running based on scheduling rules,
gray blocks indicate running status and white blocks ready status.†

HWI 1

SWI 3

SWI 2

SWI 1

MAIN

IDLE

rtn

post1

post2

rtn

rtn

rtn

rtn

post3

int1

(priority=2)

(priority=1)

(priority=1)

(b)

HWI 1

HWI 2

SWI 1

TASK 2

TASK 1

MAIN

IDLE

rtn

int2

create2 rtn

yield1(resource blocked)

block condition removed

rtn

rtn

delete1

create1

post1

delete2

int1

(c)

233

Chapter 10: Real-Time Analysis and Scheduling

There are two timers on the C6x, each is controlled by three memory-mapped reg-
isters: the Timer Control Register for setting the operating mode, the Timer Period
Register for holding the number of clock cycles to count, and the Timer Counter
Register for holding the current clock cycle count. As illustrated in Figure 10-14, the
clock module CLK is used to set the on-chip timer registers for low (determined by
the Timer Period Register) or high resolution (the CPU clock divided by 4) ticks.
The clock APIs run as hardware functions. The PRD module is used to run threads
that are to be executed periodically. The period is specified as part of a PRD object.
The period APIs run as software functions. The CLK manager is used to drive the
PRD module.

Figure 10-13: Execution Graph window.

Figure 10-14: Low and high resolution clock ticks.†

On-Chip
CPU clock

Divide on-chip CPU
clock by 4

(result=high-resolution time)

Divide by on-chip timer
period register

(result=low-resolution time)

Property:

Example: 200 MHz

Period Register

49999

Interrupt period

1 millisecond

234

Real-Time Digital Signal Processing Based on the TMS320C6000

Data frame synchronization and communication can be achieved by using the PIP
module. A pipe consists of a specified number of frames having a specified size. It has
two ends, a writer end and a reader end. The sequence of operations on the writer
side consists of getting a free frame from the pipe via PIP_alloc(), writing to it,
and putting it back in the pipe via PIP_put(), which runs the notifyRead-
er() function. The sequence of operations on the reader side consists of getting a
full frame from the pipe via PIP_get(), reading it, and putting the empty frame
in the pipe via PIP_free(), which runs the notifyWriter() function. Figure
10-15 illustrates this process.

Figure 10-15: Data pipe.

Writer Reader

1. PIP_alloc
2. Puts data into frame
3. PIP_put (runs notifyReader)

1. PIP_get
2. Uses data from frame
3. PIP_free (runs notifyWriter)

pipe

data frames

10.3 Real-Time Data Exchange

The RTDX (Real-Time Data Exchange) module can be used to exchange data
between the DSP and the host without stopping the DSP. Similar to other modules,
this exchange of information between the host and the DSP is done via the JTAG
(Joint Test Action Group) connection, an industry-standard connection. The RTDX
module provides a useful tool when values need to be modified on the fly as the DSP
is running. As shown in Figure 10-16, RTDX consists of both target and host com-
ponents, each running its own library. On the host side, various displays and analysis
OLE (object linking and embedding) automation clients, such as LabVIEW, Visual
Basic, Visual C++, can be used to display and send data to the application program.
RTDX can be configured in two modes: non-continuous and continuous. In non-
continuous mode, data is written to a log file on the host. This mode is normally used
for recording purposes. In continuous mode, the data is buffered by the RTDX host
library. This mode is normally used for continuously displaying data.

235

Chapter 10: Real-Time Analysis and Scheduling

Labs 7 and 8 that follow provide a hands-on experience with the DSP/BIOS features
of CCS. Lab 7 covers its real-time analysis and scheduling and Lab 8 its data syn-
chronization and communication aspects. More details on the DSP/BIOS modules
can be found in the TMS320C6000 DSP/BIOS User’s Guide manual [1].

Bibliography

[1] Texas Instruments, TMS320C6000 DSP/BIOS User’s Guide,
Literature ID# SPRU 303B, 2000.

Figure 10-16: RTDX target/host dataflow.†

Host

OLE
automation

client

Code
Composer

RTDX host
library

Target

RTDXTarget
Library

TargetDSP
application

(Optional)
log file

OLE
interface

JTAG
interface

User
interface

237

Lab 7: DSP/BIOS

The objective of this lab is to become familiar with the DSP/BIOS feature of CCS.
DSP/BIOS includes a real-time library which allows one to interact with an applica-
tion program in real-time as it runs on the target DSP. To build a program based on
DSP/BIOS, the Configuration Tool feature of CCS needs to be used to create objects
and set their properties. The Configuration Tool is opened by choosing the menu item
File → New → DSP/BIOS Configuration. The configuration of a program can be saved
via File → Save, and Configuration Files (*.cdb) in the Save as type drop-down box. A
saved configuration file includes all the necessary files for generating an executable
file.

A DSP/BIOS object can be created by right-clicking on a module displayed in the
Configuration Tool window and by selecting Insert. For example, as shown in Figure 10-17,
to create a PRD object, right-click on PRD – Periodic Function Manager and select
Insert PRD. This adds a new object for the PRD module. An object can be renamed
by right-clicking on its name and choosing Rename from the pop-up menu. Proper-
ties of an object can be displayed by right-clicking on the object icon and selecting
Properties from the pop-up menu. From the property sheet, property settings can be
readily changed.

Figure 10-17: Configuration Tool.

238

Real-Time Digital Signal Processing Based on the TMS320C6000

L7.1 A DSP/BIOS-Based Program

The following C code is an example of a simple DSP/BIOS-based program. This
program compares the performance of the DSP/BIOS API LOG_printf() to the
function printf(), which is a part of the run-time support library:

#include <stdio.h> // For printf();
#include <std.h> // Header files needed for DSP BIOS
#include <log.h>
#include <sts.h> // Header files added to support statistics
#include <clk.h>

void fun1(); // functions
void fun2();
extern LOG_Obj logTrace1; // Objects created by the Configuration Tool
extern STS_Obj stsPrintf;
extern STS_Obj stsLogprintf;

void main() // ======== main ========
{
 return; // fall into DSP/BIOS idle loop
}

void fun1()
{
 static int i=0;
 i=CLK_gethtime();
 STS_set(&stsPrintf, CLK_gethtime());
 printf("loop: %d\n" , i); // write a sting to stdio using printf
 STS_delta(&stsPrintf, CLK_gethtime());
 return;
}

void fun2()
{
 static int j=0;
 j=CLK_gethtime();
 STS_set(&stsLogprintf, CLK_gethtime());
 LOG_printf(&logTrace1, "loop: %d\n", j);
 // write a string using BIOS LOG_printf object trace1
 STS_delta(&stsLogprintf, CLK_gethtime());
 return;
}

Two functions are declared in this program: fun1() and fun2(), one using
printf() and the other LOG_printf(). These functions obtain the process-
ing time and print them on the screen. Printing is the most widely used way to view
results of a program. As shown in Figure 10-8, LOG_printf() is optimized to take
much fewer instruction cycles than printf(). It sends buffered data to the host in
soft real-time to avoid missing real-time deadlines. On the other hand, printf()

239

Lab 7: DSP/BIOS

does not use the background scheduling approach for transferring data to the host
and, hence, may cause the program to miss its real-time deadlines. At this point, it is
worth mentioning that although it is possible to use Watch Window, this option inter-
rupts the DSP in order to transfer data and does not meet the real-time requirement.

Note that appropriate header files should be included to build a DSP/BIOS-based
program. Foremost, the header file std.h should be included whenever using any
DSP/BIOS API. The header files, log.h, sts.h, and clk.h, corresponding to the three
modules LOG, STS, and CLK, respectively, are included in the aforementioned
program. Any created DSP/BIOS objects should also be declared. There are three
declared objects here: logTrace1, stsPrintf, and stsLogprintf. The
LOG object logTrace1 managed by the LOG module allows real-time logging.
The STS objects managed by the STS module store key statistics in real-time. The
STS_set() and STS_delta() APIs use the information stored in the STS
objects to compute the required number of instruction cycles to run printf()or
LOG_printf().

Now let us create the objects declared in the program. First, a configuration file is
created by choosing File → New → DSP/BIOS Configurations. If a configuration file al-
ready exists, it can be activated by double-clicking on it in the Project View panel. To
add a LOG object as part of the LOG_printf() API, right-click on LOG-Event Log
manager in the Configuration Tool and select the option Insert LOG from the pop-up
menu. This causes LOG0 to be inserted. Since the name logTrace1 is used here,
rename this object by right-clicking on it and then by selecting Rename. Change the
name to logTrace1. Right-click on logTrace1 to change its properties. Select
Cancel noting that the default settings are fine for this lab. Next, create two STS
objects in a similar manner and rename them as stsPrintf and stsLogprintf.
The properties of these objects will be discussed in the next section. Use File → Save
to save the configuration file.

L7.2 DSP/BIOS Analysis and Instrumentation

Real-time analysis allows one to determine whether an application program is operat-
ing within its real-time deadlines and whether its timing can be improved. DSP/BIOS
instrumentation APIs and DSP/BIOS plug-ins enable real-time data gathering and
monitoring as an application program is running. For example, when using the instru-
mentation API LOG_printf(), the communication between the DSP and the host
is performed during the idle state or in the background. The idle thread has the lowest
priority. As a result, the real-time behavior of an application program is not affected.

240

Real-Time Digital Signal Processing Based on the TMS320C6000

In the preceding program, the instrumentation APIs STS_set() and STS_delta()
are used to benchmark the functions printf() and LOG_printf(). STS_set()
saves the value specified by CLK_gethtime() as the previous value in the STS
object. STS_delta() subtracts this saved value from the value it is passed. Con-
sequently, STS_delta() in conjunction with STS_set() provide the difference
between the start and completion of the function in between. However, to obtain an
accurate benchmarking outcome, the overhead associated with the instrumentation
APIs should be subtracted. To calculate this overhead, the program should be run
again by leaving out LOG_printf()and printf().

Before calculating the overhead, let us examine how the STS objects should be used
during benchmarking. Since the STS objects count system ticks, they do not pro-
vide the actual CPU instruction cycles. A filtering operation on the host is normally
performed to show the actual CPU instruction cycles. This is done by changing the
properties of the STS objects via right-clicking and selecting Properties from the pop-
up menu. In the properties box, go to the unit type field and choose High resolution
time based from the drop-down menu. This changes the host operation field to A*x and
the value in the A field to 4, as shown in Figure 10-18.

Figure 10-18: stsPrintf object properties.

241

Lab 7: DSP/BIOS

One mechanism to come out of the idle state in main()is to use PRD objects to call
fun1() and fun2(). In this lab, such an approach is adopted by activating PRD
objects every 50msec. These objects are created by right-clicking on PRD – Periodic
Function Manager and selecting Insert PRD. The objects need to be renamed as prd-
Printf and prdLogprintf. For the object prdPrintf, change the properties
as illustrated in Figure 10-19. Since the property period(ticks) is set to 50, this object
calls the function mentioned in the property field function every 50 msec. This is be-
cause 1 tick (or timer interrupt) is set to 1000 microsec (or 1 msec) in the CLK – Clock
Manager module. The property of this module is changed by right-clicking on CLK
– Clock Manager and selecting Property, as shown in Figure 10-20. Notice that when
specifying the function fun1() in the property field function, an underscore should
be added before it. This rule holds for a C function to be run by DSP/BIOS objects.
The underscore prefix is necessary because the Configuration Tool creates assembly
source, and the C calling convention requires the underscore when calling C from
assembly. For the prdLogprintf object, similarly enter _fun2 in the property
field function.

Figure 10-19: Property of prdPrintf object.

242

Real-Time Digital Signal Processing Based on the TMS320C6000

After building the program, in order to view the statistics information captured by
the STS objects, choose the menu item DSP/BIOS → Statistics View. Then, right-click
in this window and select Property Page. In the Statistics View Dialog Box, click on
the objects stsPrintf and stsLogprintf, then click OK. You may wish to re-
size the window so that all of the statistics can be viewed. Run the program. Without
printf() or LOG_printf(), the average number of instruction cycles captured
by the STS objects are 86 and 92, respectively, which correspond to the overhead for
calling STS_set() and STS_delta(). Next, rebuild with printf() and LOG_
printf(). In order to eliminate the overhead, change the properties of the STS
objects as follows: host operation = (A * x + B), A = 4 and B = –86 for stsPrintf and
B = –92 for stsLogprintf. Run the program again. The Statistics View window
displays 220790 instruction cycles for printf() and 56 for LOG_printf(), as
shown in Figure 10-21.

Figure 10-20:
Property of CLK module.

Figure 10-21: Statistics View.

243

Lab 7: DSP/BIOS

The output of LOG_printf() can be seen via a message log window. Select the
menu item DSP/BIOS → Message Log. A new window will appear. This window
should then be linked to the LOG object. In the drop-down box Log Name of the
Message Log window, select logTrace1.

L7.3 Multithread Scheduling

Real-time scheduling involves breaking a program into multiple threads in order to
meet a specified real-time throughput. The Lab 4 program is used here to study the
real-time scheduling issues. First, the ISR in Lab 4 is modified as follows:

int cnt=0;

interrupt void serialPortRcvISR(void)
{

...
if(cnt++ == 3)
{

 otherProcessing(400);
 cnt = 0;

}
...

}

The function otherProcessing() does no specific processing and merely con-
sumes CPU time. This function is shown next:

 .def _otherProcessing
 .sect ".otherProcessing"
 N .set 1000

; void otherProcessing(int loopCount)
_otherProcessing:
 mv a4, b0 ; use b0 as loop counter
 mvk N,b1
 mpy b1,b0,b0
 nop
 shru b0,3,b0 ; (loop counter)= (# loops)/8
loop:
 sub b0,1,b0
 nop
 [b0] b loop
 nop 5
 b b3
 nop 5 ; return
 .end

244

Real-Time Digital Signal Processing Based on the TMS320C6000

This function sets up a counter using the value passed to it. Let this value be 400.
The counter is decreased one at a time in a loop, thus consuming CPU time. This
function, of course, can be replaced with an actual processing code.

After building the project, connect the function generator and oscilloscope to
the DSK board. Then, run the program. It is observed that the ISR does not meet
real-time deadlines due to the extra processing required by the function otherPro-
cessing(). In other words, the ISR misses input samples and fails to produce the
desired output signal.

Now, let us perform real-time scheduling by breaking up the ISR into three functions
or threads, dataIO(), fir(), and otherProcessing(), as follows:

/* Include header files here */
...

#define N 10
/* Declare global variables here */
...

Void main()
{
 index = 0;
 return; /* fall into DSP/BIOS idle loop */
}

Void dataIO()
{
 temp = inputBuffer[index++]; /* read a sample */
 index = (index == N) ? 0: index; /* Restart */
}

void fir()
{
 int i,result;
 result = 0;

 for(i=N-1;i>=0;i--) /* Update array samples */
 samples[i+1] = samples[i];
 samples[0] = temp;

 for(i=0;i<=N;i++) /* Filtering */
 result += (_mpyhl(samples[i],b[i])) << 1;
}

245

Lab 7: DSP/BIOS

The thread dataIO() reads one sample from inputBuffer whenever it is called.
This thread simulates the operation of the MCBSP_read() API. The thread fir()
performs FIR filtering. Let us now use three PRD objects to run these threads. Since
otherProcessing() is called after every three input samples, it is not necessary
to run all three threads or functions at the same period tick. The prdDataIO object
runs the function dataIO(), and prdFir object runs the function fir() every
1 msec. The prdOther object runs the function otherProcessing() every 4
msec. The property settings of these PRD objects are shown in Figure 10-22.

(a)

(b)

246

Real-Time Digital Signal Processing Based on the TMS320C6000

After building the project, to see whether the threads meet their real-time deadlines,
choose DSP/BIOS → RTA Control Panel and place check marks in the boxes as indicated
in Figure 10-23. Also, enable the global tracing option. Then, invoke the Execution
Graph by choosing DSP/BIOS → Execution Graph. Right-click on the RTA Control Panel
and choose Property Page from the pop-up menu. Run the program. The Execution
Graph should look like the one shown in Figure 10-24.

Figure 10-22: PRD objects for real-time analysis.

(c)

Figure 10-23: RTA Control Panel.

247

Lab 7: DSP/BIOS

Any missed deadline error appears in the Assertions row of the Execution Graph. From
Figure 10-24, it can be seen that there are such errors in the preceding multithread
program. Another way to see the same information is via the message log window
Execution Graph Details, by choosing DSP/BIOS → Message Log. In the Log Name field
of the window, choose Execution Graph Details and click OK. An Execution Graph Details
window should appear as shown in Figure 10-25. The information in this window
indicates that prdFir() is missing its real-time deadlines. Figure 10-26 shows the
CPU load when the program is running. To invoke this window, choose the menu
item DSP/BIOS → CPU Load Graph.

Figure 10-24: Execution Graph.

Figure 10-25: Execution Graph Details.

248

Real-Time Digital Signal Processing Based on the TMS320C6000

To overcome real-time errors, the scheduling of threads need to be changed by as-
signing different priorities to them. As shown in Figure 10-25, prdFir() is missing
its real-time deadlines. This is due to the fact that periodic functions execute at the
same priority level, since they run as part of the same software interrupt PRD_swi.
This scheduling problem is overcome by allowing each periodic object to post a soft-
ware interrupt (SWI) object, which then calls the appropriate thread or function.

A SWI object has five properties: priority, function, arg0, arg1, and mailbox. The prop-
erty function causes a specified function to be called when the SWI object is posted.
The arguments arg0 and arg1 are passed to the function. The property priority stores
the priority level assigned to the SWI object. The mailbox property will be covered in
Lab 8. In this lab, three SWI objects are created: swiIO, swiFir, and swiOther.
Instead of the PRD objects, the SWI objects are used to run the threads dataIO(),
fir(), and otherProcessing(). The swiIO object runs dataIO(), the
swiFir object runs fir(), and the swiOther object runs otherProcess-
ing(). Assuming that the real-time constraint of otherProcessing() is not
as demanding as dataIO(), the priority of swiIO is set to 3 and the priority of
swiOther to 1. The property settings of the SWI objects are shown in Figure 10-
27.

Figure 10-26: CPU Load Graph.

249

Lab 7: DSP/BIOS

(a)

Figure 10-27: Properties of SWI objects.

(b)

(c)

250

Real-Time Digital Signal Processing Based on the TMS320C6000

Now that the SWI objects are ready to call the threads or functions, three PRD
objects need to be set up to post the software interrupts. This is achieved by changing
the properties of the original PRD objects, as shown in Figure 10-28. The PRD_swi
thread runs the PRD functions associated with prdDataIO and prdFir every 1
msec and those associated with prdOther every 4 msec. In other words, the PRD
functions post the software interrupts associated with the SWI objects. For instance,
the prdDataIO object runs the function SWI_post(swiIO), which posts the
software interrupt that in turn runs the function dataIO(). Although the software
interrupts for both swiIO and swiFir are posted every 1 msec, the function da-
taIO() runs first because the associated swiIO has a higher priority than swiFir.
After the dataIO() function completes, the fir() function runs. The software
interrupt for swiOther is posted every 4 msec, causing its associated function,
otherProcession(), to run. However, when a higher priority thread becomes
ready, otherProcessing() is preempted. Figure 10-29 shows the scheduling of
the periodic and software threads.

(a)

(b)

251

Lab 7: DSP/BIOS

As illustrated in Figure 10-29, no real-time error is observed in the Assertions row
because the threads are scheduled in such a way that they all meet their real-time
deadlines. In general, critical and frequent events such as sampling should be as-
signed a higher priority. Next, let us go back to the ISR in the FIR filtering program.
Based on the aforementioned real-time scheduling, the otherProcessing()
thread can be moved into the while loop in main(), since the while loop runs
on a lower priority (or in the background). The following piece of code shows this
modification:

Figure 10-28: Properties of PRD objects for real-time scheduling.

(c)

Figure 10-29: Execution Graph after real-time scheduling.

252

Real-Time Digital Signal Processing Based on the TMS320C6000

It can be observed that this program yields the correct FIR filtering output by con-
necting a function generator and an oscilloscope to the DSK board.

...
main()
{

...
 while (1)
 {
 if(cnt == 0)
 otherProcessing(400);
 }
}

interrupt void serialPortRcvISR(void)
{
 ...

if(cnt++ == 3) // Run every four samples.
 {
 cnt=0;
 }

 result = result >> 16;
 MCBSP_write(hMcbsp, result);
}

253

Lab 8: Data Synchronization
and Communication

The objective of this lab is to become familiar with the data synchronization and
communication capabilities of DSP/BIOS by using the FFT program discussed in Lab
6. This program uses hardware interrupts to read and process input samples entering
the serial port 1 of the DSK, or serial port 0 of the EVM.

In the DSP/BIOS-based version of this program, the hardware module HWI is used
to manage hardware interrupts. Let us use the interrupt INT11 to read input samples
from the serial port 1 considering the DSK target. This requires that the properties
of the HWI_INT11 object are appropriately set. First, create a new configuration by
choosing File → New → DSP/BIOS Configuration. Then, click the + sign next to the
HWI – Hardware Interrupt Service Routine manager menu under Instrumentation cat-
egory, and right-click on HWI_INT11 and select Properties from the pop-up menu. The
window HWI INT11 Properties will appear. Select MCSP_1_Receive in the property
field interrupt source so that the multichannel buffered serial port 1 is used as the in-
terrupt source. Next, specify the function by entering _codec_isr in the property
field function. This function reads a 32-bit input sample from the DRR and stores it
into the location indicated by the global pointer rxPtr, which is explained shortly.
The source codes of codec_isr() are provided on the accompanying CD-ROM.

Figure 10-30: HWI object property setting.

254

Real-Time Digital Signal Processing Based on the TMS320C6000

Figure 10-30 shows the properties of the HWI_INT11 object. This object is config-
ured to run codec_isr() whenever the hardware interrupt occurs.

The FFT program processes a frame of data when a specified number of samples are
collected into an input frame buffer. This program also uses an output frame buf-
fer to send out processed data frames. Since the FFT function should be performed
only when the input frame is full and the output frame is empty, the execution of the
FFT function needs to be synchronized with the status of the frames. In other words,
the FFT function should be aware of whether or not the input frame is full and the
output frame is empty. The mailbox property of SWI objects is used here for this
purpose.

The mailbox property provides a conditional posting of software interrupts. Only
when the mailbox in a SWI object becomes zero is the software interrupt posted by
the SWI object. In this lab, a SWI object swiFFT is created and configured to run
the FFT function when the mailbox value becomes zero. Initially, the mailbox is set
to have a nonzero value of 3 (or 11 in binary). In order to run the FFT function, all
the bits in the mailbox should be reset to zero. One possibility is to reset bit 0 to zero
when the output frame is empty and reset bit 1 to zero when the input frame is full.
The swiFFT object is therefore configured as shown in Figure 10-31. In order to
create this object, right-click on SWI - Software Interrupt Manager under the Scheduling
category inside the Configuration Tool window and select Insert SWI from the pop-up
menu. A SWI0 object will be generated. Rename it swiFFT. Change the properties
by right-clicking on the swiFFT object and selecting Properties. Inside the dialog
box, change the properties as shown in Figure 10-31. The fft() function is assigned to
the property function so that it is executed when the mailbox value becomes zero.

Figure 10-31:
Properties of swiFFT object.

255

Lab 8: Data Synchronization and Communication

The property settings in Figure 10-31 show that the function fft() takes two argu-
ments: pipReceive and pipTransmit. These are PIP objects, which are used
as the input frame and the output frame for the fft() function. The PIP module
manages these frames. The interrupt service routine codec_isr() copies data
from the DRR to the input frame via the pipRecevice object and from the output
frame to the DXR via the pipTransmit object. The PIP objects need to be cre-
ated and configured so that they can reset appropriate bits in the swiFFT’s mailbox
to zero, causing the fft()function to run with a full input frame and an empty
output frame. To create the pipReceive object, right-click on PIP – Buffered Pipe
Manager under Input/Output category inside the Configuration Tool window, and choose
Insert PIP from the pop-up menu. A PIP0 object will be created. Rename it pipRe-
ceive by right-clicking on it and selecting Rename. The pipTransmit object is
created in the same manner. The properties are then modified to meet the synchro-
nization between the swiFFT and PIP objects. Figure 10-32 shows the properties of
the pipReceive object, which is configured to clear bit 1 in the swiFFT’s mail-
box when the input frame is full and ready to be processed. To change the properties
of the pipReceive object, right-click on it and select Properties from the pop-up
menu. A dialog box will appear in which new property values can be entered. The
properties of the pipTransmit object are changed in a similar manner.

Figure 10-32: Properties of pipReceive object.

As shown in Figure 10-32, the function _SWI_andn is specified in the property field
notifyReader. This property assigns the function to run when the input frame buffer
is full and ready to be processed. As a result, whenever the input frame is full, the
_SWI_andn function is executed. The _SWI_andn function clears the bits in the
mailbox and posts a software interrupt. Its first argument, nrarg0, specifies the SWI
object to be applied, and its second argument, nrarg1, denotes the mask. The mailbox

256

Real-Time Digital Signal Processing Based on the TMS320C6000

value is reset by the bitwise logical AND NOT operator: mailbox = mailbox
AND (NOT mask). Because the pipReceive object has the mask value of 2
(or 10 in binary), it resets bit 1 in the mailbox to zero. Consequently, since swiFFT
is the first argument of _SWI_andn, the pipReceive object resets bit 1 of the
swiFFT’s mailbox whenever the input frame is full and ready to be processed.

Now that bit 1 of the swiFFT’s mailbox is reset to zero by the pipReceive object,
the only condition to run the FFT function is to reset bit 0 considering that 3 (or
11) was the initial value in the mailbox. The pipTransmit object completes the
synchronization process. Figure 10-33 shows the properties of the pipTransmit
object, which is configured to clear bit 0 of the swiFFT’s mailbox when an empty
frame is available. Note that the property field notifyWriter is set to _SWI_
andn. This property specifies the function to run when an empty frame is available.
Under such a condition, the _SWI_andn function runs with the mask value of 1 (or
01 in binary) and resets bit 0 of the swiFFT’s mailbox to zero. Hence, when the in-
put frame is full and the output frame is empty, pipReceive and pipTransmit
reset the swiFFT’s mailbox to zero, causing the FFT function to run.

Figure 10-33: Properties of pipTransmit object.

Next, let us see how the FFT function makes use of data frames in the PIP objects.
The following piece of code shows the sequence of events:

257

Lab 8: Data Synchronization and Communication

The first argument of the FFT function, in, is the pipReceive object and the
second argument, out, is the pipTransmit object, as indicated in Figure 10-31.
In order to use the frames in the PIP objects, first the PIP_get() and PIP_al-
loc() API functions should be called. The PIP_get() API gets a full frame from
the pipRecevie object and the PIP_alloc() API allocates an empty frame
from the pipTransmit object. Normally, the PIP_get() API is followed by the
PIP_getReaderAddr() API, which returns the address for the reading process.
Similarly, the PIP_alloc() API is followed by the PIP_getWriterAddr()
API, which returns the address for the writing process. A pointer src is therefore
used to read from the input frame and a pointer dst to write to the output frame. In
this program, the FFT function processes the data stored in src. Before leaving the
fft() function, the PIP_put() API is called to put the full frame into the pi-
pTransmit object. Normally, this API is used together with the PIP_alloc()
API because PIP_put() puts a frame allocated by PIP_alloc() into a PIP ob-
ject after the frame is full. Similarly, the PIP_free() API is used together with the
PIP_get() API because PIP_free() releases the frame for PIP_get() after
it is read. The released frame is recycled so that it can be reused by the PIP_al-
loc() API.

Void fft(PIP_Obj *in, PIP_Obj *out)
{
 int *src, *dst;
 ...

 PIP_get(in);
 PIP_alloc(out);
 src = PIP_getReaderAddr(in);
 dst = PIP_getWriterAddr(out);
 size = PIP_getReaderSize(in);
 PIP_setWriterSize(out,size);

 /* FFT */
 for (n=0; n<NUMPOINTS; n++)
 {
 x[n].imag = src[2*n + 1];
 x[n].real = src[2*n];
 ...
 }
 ...
 for (; size > 0; size--) //---------Copy input data into output
 *dst++ = *src++;
 PIP_put(out);
 PIP_free(in);
}

258

Real-Time Digital Signal Processing Based on the TMS320C6000

Note that the value of the property notifyWriter in the pipReceive object is set
to _rxPrime, as shown in Figure 10-32. Therefore, the function rxPrime() is
called when a frame of free space is available in the pipReceive object. The fol-
lowing piece of code shows the relevant part in the rxPrime() function:

void rxPrime(void)
{
 PIP_Obj *rxPipe = &pipReceive;
 ...
 if (rxCount == 0 && PIP_getWriterNumFrames(rxPipe) > 0) {
 PIP_alloc(rxPipe);
 rxPtr = PIP_getWriterAddr(rxPipe);
 rxCount = PIP_getWriterSize(rxPipe);
 }
 ...
}

The global variable rxCount keeps track of the remaining number of words for
filling up the current rxPipe (or pipReceive) frame. In the codec_isr()
function, rxCount is decreased by one whenever a sample is read from the DRR
and copied into the rxPipe frame. When this frame becomes full and ready to be
put into rxPipe, rxCount becomes zero. Then, this function allocates the next
empty frame from rxPipe by calling PIP_alloc(rxPipe). The address of the
frame is set to the global variable rxPtr so that codec_isr() can copy the con-
tent of the DRR into rxPtr by calling PIP_getWriterAddr(rxPipe). In the
codec_isr() function, rxPtr is increased by one to point to the next location
whenever the DRR content is copied.

As shown in Figure 10-33, _txPrime is written in the property field notifyReader.
Therefore, the function txPrime() runs when a frame is full and ready to be used. The
following piece of code shows the relevant part in the txPrime() function:

void txPrime(void)
{

PIP_Obj *txPipe = &pipTransmit;
 ...

if (txCount == 0 && PIP_getReaderNumFrames(txPipe) > 0) {
 PIP_get(txPipe);
 txPtr = PIP_getReaderAddr(txPipe);
 txCount = PIP_getReaderSize(txPipe);

}
...

}

259

Lab 8: Data Synchronization and Communication

The global variable txCount keeps track of the remaining number of words for
transmitting the current txPipe (or pipTransmit) frame. In the function
codec_isr(), txCount is decreased by one whenever a sample is copied from
the txPipe frame and written to the DXR. When all the samples in this frame
are written, txCount becomes zero. Then, this function gets the next full frame
from txPipe by calling PIP_get(txPipe). The address of the frame is set to
the global variable txPtr by calling PIP_getReaderAddr(txPipe) so that
codec_isr() can copy the content of txPtr into the DRR. The pointer txPtr
is increased by one to point to the next location whenever a sample is written to the
DXR.

After properly configuring the PIP and SWI objects, the program is built. The entire
DSP/BIOS version of the FFT files are provided on the accpompanying CD-ROM. In
order to verify the operation of the DSP/BIOS-based FFT program, connect a func-
tion generator to the DSK board and run the program. Figure 10-34 shows a snapshot
of the CCS animation feature. This is done by setting a breakpoint at the end of the
FFT function and by opening a graphical display window via the menu item View →
Graph → Time/Frequency. Place the global variable mag in the field Start Address to
display the FFT magnitude values. Then, select the menu item Debug → Animate to
start the animation. As the input frequency from the function generator is changed,
the peaks in the graphical display window should move accordingly.

Figure 10-34: FFT magnitude.

The FFT magnitude can be sent to the PC host by using the DMA as discussed in
Lab 6.

260

Real-Time Digital Signal Processing Based on the TMS320C6000

When using DSK, the host-target data transfer is achieved by RTDX via the JTAG
interface. Since the magnitude of the FFT is always stored into the variable mag,
there is no need to deploy circular buffering as done in Lab 6. To configure RTDX, a
RTDX object for output, ochan, is inserted at Input/Output category of the DSP/BIOS
configuration. After the initialization via the RTDX_enableOutput() API, the
RTDX_write() API is used to write a new mag to the output channel.

As shown next, the function HostTargetComm() can be used to perform the
same operation when using EVM:

void HostTargetComm()
{
 dma_reset();
 dma_init(2, //Channel
 0x0A000010u, //Primary Control Register
 0x0000000Au, //Secondary Control Register
 (unsigned int) mag, //Source Address
 0x01710000u, //Destination Address
 0x00010080u); //Transfer Counter Register

 DMA_START(2);
}

The DMA uses the global variable mag as the source address and the memory lo-
cation 0x0171000, which is dedicated for FIFO access in PCI bus transfers, as the
destination address. The program Host.exe, provided on the accompanying CD-
ROM, is written to display the FFT magnitude on the PC monitor. This program
makes use of the EVM API evm6x_read(). This API transfers data from the DSP
to the host. In this lab, a PRD object prdComm is created and configured to run the
host-target communication function HostTargetComm() every 8 msec, as shown
in Figure 10-35. After adding the HostTargetComm() function to the FFT pro-
gram, build the program and run it. To observe the FFT magnitude in real-time, also
run Host.exe. The CPU load Graph plug-in can be used to verify that the DMA trans-
fers the contents of mag independently of the CPU. As shown in Figure 10-36, the
CPU load remains almost the same while the DMA transfer is running. To invoke
the CPU load Graph plug-in, choose the menu item DSP/BIOS → CPU Load Graph.

261

Lab 8: Data Synchronization and Communication

Figure 10-35: Properties of prdComm.

(a) (b)

Figure 10-36: CPU Load Graph; (a) CPU load before DMA transfer,
b) CPU load while DMA transfer is running.

L8.1 Prioritization of Threads

Instead of using the function generator to generate input samples, a CD player can
be connected to the input jack of the audio daughter card. Of course, a pair of ampli-
fied speakers should be connected to the output jack of the daughter card to hear the
sound. Now, let us examine the effect on the sound quality by changing the CPU
load. To change the CPU load, a PRD object prdLoad is created and configured to
run the function changeload() every 8 msec, as illustrated in Figure 10-37. The
function changeload() calls the otherProcessing() function. The CPU

262

Real-Time Digital Signal Processing Based on the TMS320C6000

Void changeload(Int prd_ms)
{
 ...
 if (loadVal)
 otherProcessing(loadVal);
}

The global variable loadVal can be set by choosing Edit → Edit Variable to invoke
the Edit Variable dialog box. In this dialog box, write loadVal in the field vari-
able and the desired number in the field value. The prdLoad object will run the
changeload() function every 8 msec.

Figure 10-37: CPU load with loadVal = 900.

To observe the impact of the CPU load, let us build the program and run it while
playing a CD. When the loadVal is changed to 900, the CPU load increases to
about 87%, as shown in Figure 10-37, and the sound quality is degraded. The reason
for this degradation can be seen by activating the Execution Graph Details window.
As shown in Figure 10-38(a), when loadVal is zero, the swiFFT and PRD_swi
threads complete their tasks without any problem. However, when loadVal is 900,
these threads cannot complete their tasks and frequently go into the ready state, as
shown in Figure 10-38(b). The Execution Graph in Figure 10-39 provides a graphical
display of this situation. Since the swiFFT thread is competing with the PRD_swi
thread, for large load values, the fft() function sits waiting to be executed. The
PRD_swi thread executes all the PRD objects, so it eventually runs the CPU load
function otherProcessing(). Consequently, since the audio from the CD
player is copied into the output frame by the fft() function as part of the swiFFT
thread, the sound quality suffers.

load is determined by the global variable loadVal, which is passed to the other-
Processing() function. The function changeload()is shown next:

263

Lab 8: Data Synchronization and Communication

Figure 10-38: Execution Graph Details: (a) for loadVal = 0, (b) for loadVal = 900.

(a) (b)

(a)

Figure 10-39: Execution Graph: (a) for loadVal = 0, (b) for loadVal = 900.

(b)

264

Real-Time Digital Signal Processing Based on the TMS320C6000

To solve this problem, the threads need to be properly prioritized. Let us assign a
higher priority to the swiFFT thread. One simple way to do this is via the drag-and-
drop method. Click on SWI – Software Interrupt Manager under Scheduling category in
the Configuration Tool. On the right side of the window, click and hold the left mouse
button on the PRD_swi icon, drag it to Priority 1, and release the button to
drop it. This way the priority of the PRD_swi thread becomes 1. Similarly, move
the swiFFT icon to Priority 2 so that it gets a higher priority than PRD_swi.
Now build the program and run it. The sound quality remains unaffected even
though loadVal = 900. The DSP/BIOS plug-ins in Figure 10-40 illustrate that the
swiFFT thread no longer waits to be executed. Notice that the CPU load is now
about 87%.

(a)

(b)

265

Lab 8: Data Synchronization and Communication

(c)

Figure 10-40: DSP/BIOS plug-ins with loadVal = 900 after the prioritization:
(a) Execution Graph Details, (b) CPU Load, and (c) Execution Graph.

L8.2 RTDX

The CPU load can be changed by using the RTDX module. This module allows
loadVal to be transferred from the host to the DSP while the program is running.
The following piece of code shows the parts to be added to the original program to
access the RTDX module (the entire program is provided on the accompanying CD):

#include <rtdx.h>

RTDX_CreateInputChannel(writeload);
RTDX_CreateOutputChannel(readload);

main()
{
 ...
 RTDX_enableInput(&writeload);
 RTDX_enableOutput(&readload);

return;
}

Void changeload(Int prd_ms)
{

...
 if (!RTDX_channelBusy(&writeload)) {

 // Reads new loadVal sent from the PC host.
 RTDX_readNB(&writeload, &loadVal, sizeof(loadVal));

 if (oldLoad != loadVal) {
 oldLoad = loadVal;
 RTDX_write(&readload, &loadVal, sizeof(loadVal));
 LOG_printf(&logTrace, "CPU load: new load = %d000
instructions every %d ms", loadVal, prd_ms);
 }

266

Real-Time Digital Signal Processing Based on the TMS320C6000

In order to use the indicated RTDX APIs, the program should include the header file
rtdx.h. The RTDX input channel structure is declared and initialized by the macro
RTDX_CreateInputChannel. Since it is declared as a global variable, it can be
accessed anywhere in the program. Similarly, the RTDX_CreateOutputChan-
nel macro defines and initializes the RTDX output channel structure. Because these
channels are disabled during the initialization, they need to be enabled in main()
by using the RTDX_enableInput() and RTDX_enableOutput() APIs. The
input channel is examined by the RTDX_channelBusy() API to see whether
it is busy or not. If it is not busy, data is read from the input channel by using the
RTDX_readNB() API. This API posts a request to the RTDX host library that the
DSP application program is ready to receive data. The DSP program keeps running
at this point. When the RTDX_read() API is used, the DSP program stops until it
receives data from the input channel. The RTDX_write() API is used to write a
new loadVal to the output channel in order to notify the host that such a value is
received and used.

On the PC host side, an OLE application is written in Visual Basic to receive and
send data. Build the program and run it. Then, run the OLE application embedded
in rtdx.doc (provided on the accompanying CD-ROM). The CCS should be running
when using RTDX. In addition the readload and writeload channels must be
enabled by toggling the checkbox from the menu Tools → RTDX → Channel Viewer
Control. It can be observed that the CPU load changes as a new loadVal is sent
from the host OLE program to the DSP.

 }

 if (loadVal)
 otherProcessing(loadVal);
}

267

Lab Project Examples

11C H A P T E R

Four project examples including sinewave generation, IIR filter, filter bank, and pulse
amplitude modulation, are presented in this chapter for further exposure to the C6x
code writing and optimization. All the files associated with these project examples
are placed on the accompanying CD-ROM. The source codes shown in this chapter
are for C6713 DSK.

11.1 Sinewave Generation

This project involves generating sinusoidal waveforms based on a difference
equation. An oscillatory output, y[n], can be obtained from the following difference
equation:

 y n B x n A y n A y n[] = −[]+ −[]+ −[]1 1 01 1 2* * * (11.1)

if B1 = 1, A0 = –1, A1 = 2cos(θ) and x[n] is a delta function. Here, this equation is
implemented on the DSK board and the generated signal is observed on an oscillo-
scope. The output frequency is measured and compared with the expected frequency
indicated below [1],

 F
F

As= ()
2

21π
arccos (11.2)

The coefficient A1 can be changed to produce different frequencies. Also, the gain
B1 can be altered to see the effect on the generated sinusoid. The interested reader is
referred to [1] for theoretical details of sinewave generation.

268

Real-Time Digital Signal Processing Based on the TMS320C6000

Project 1: Sinewave Generation

Both the sampling frequency and signal frequency should be defined in order to
calculate the angular frequency θ, or the coefficient A1. Let’s consider Fs = 8000 Hz
and F = 500 Hz. A delta function input is obtained by initially setting x[n] to 1, and
then to 0 after the second iteration. The difference equation is implemented within
the ISR, transmit_ISR, where a new sample is generated and exported through the
multichannel serial port at every 1/8000 second. The C program for sinewave genera-
tion is shown below:

#define CHIP_6713 1

#include <stdio.h>
#include <c6x.h>
#include <csl.h>
#include <csl_mcbsp.h>
#include <csl_irq.h>
#include <math.h>

#include "dsk6713.h"
#include "dsk6713_aic23.h"

#define SCALE 1000
#define PI 3.141592

interrupt void transmit_ISR(void);

float y[3], a[2], b1, x;

DSK6713_AIC23_CodecHandle hCodec;
DSK6713_AIC23_Config config = DSK6713_AIC23_DEFAULTCONFIG;

 // Codec configuration with default settings

main()
{
 float F, Fs, theta;

 DSK6713_init(); // Initialize the board support library

hCodec = DSK6713_AIC23_openCodec(0, &config);

 MCBSP_FSETS(SPCR1, RINTM, FRM);
 MCBSP_FSETS(SPCR1, XINTM, FRM);
 MCBSP_FSETS(RCR1, RWDLEN1, 32BIT);
 MCBSP_FSETS(XCR1, XWDLEN1, 32BIT);

 DSK6713_AIC23_setFreq(hCodec, DSK6713_AIC23_FREQ_8KHZ);

 // Coefficient Initialization

 F = 500; // Signal frequency
 Fs = 8000; // Sampling frequency
 theta = (2*PI*F)/Fs;

 a[0] = -1;
 a[1] = 2 * cos(theta);
 b1 = 1;

 // Initial Conditions

269

Chapter 11: Lab Project Examples

 y[1] = y[2] = 0;
 x = 1;

 IRQ_globalDisable(); // Globally disables interrupts
 IRQ_nmiEnable(); // Enables the NMI interrupt
 IRQ_map(IRQ_EVT_XINT1,15); // Maps an event to a physical intr number
 IRQ_enable(IRQ_EVT_XINT1); // Enables the event
 IRQ_globalEnable(); // Globally enables interrupts

 while(1)
 {
 }
}

interrupt void transmit_ISR(void)
{
 int temp;

 y[0] = b1 * x + a[1]*y[1] + a[0]*y[2];

 y[2] = y[1];
 y[1] = y[0];

 x = 0;

 temp = (short) (y[0] * SCALE);

 MCBSP_write(DSK6713_AIC23_DATAHANDLE, temp << 16);
}

270

Real-Time Digital Signal Processing Based on the TMS320C6000

11.2 Cascade IIR Filter

This project example involves designing and implementing IIR filters in their 2nd
order cascade form. Let’s consider an 8th order Chebyshev lowpass IIR filter in both
a direct and a cascade form with the following specifications: a passband from 0 to
1 kHz, a stopband of 1.4–4 kHz, a passband ripple of 1dB, a stopband attenuation of
50 dB, and a sampling frequency of 8 kHz. A C program is first written to implement
this filter in both direct and cascade forms. The operation of the program is verified
by using a function generator and an oscilloscope. In addition to C, an assembly, a
hand-optimized assembly, and a linear assembly code are written to implement the
cascade form of the filter. By lowering the Q-format representation of the coeffi-
cients, it is shown that the cascade form is less sensitive to quantization as compared
with the direct form.

Project 2: Cascade IIR Filter Implementation

Here, we have used the FDATool of MATLAB to obtain the coefficients of the
filter. The quantization of the coefficients alters the frequency response, as shown
in Figure 11-1. With the second-order cascade filter implementation, the sensitivity
to coefficient quantization is significantly reduced. The interested reader is referred
to [1] for theoretical details. The frequency response of the second-order cascade
implementation is shown in Figure 11-2, and the quantized filter coefficients in
Q-15 and single-precision formats are listed in Table 11-1 for each section.

Figure 11-1: Effect of quantization for a single section on
(a) magnitude response (b) pole/zero plot.

0 0.5 1 1.5 2 2.5 3 3.5
-160

-140

-120

-100

-80

-60

-40

-20

Frequency (kHz)

)
Bd(edutin

ga
M

Magnitude Response in dB

Filter #1: Reference
Filter #1: Quantized

-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Real Part

tra
P yrani ga

mI

Pole/Zero Plot

Filter #1: Quantized Zeros
Filter #1: Reference Zeros
Filter #1: Quantized Poles
Filter #1: Reference Zeros

(a) (b)

271

Chapter 11: Lab Project Examples

Figure 11-2: Effect of quantization for second-order cascade filter on
(a) magnitude response (b) pole/zero plot.

0 0.5 1 1.5 2 2.5 3 3.5
-160

-140

-120

-100

-80

-60

-40

-20

Frequency (kHz)

)
Bd(eduti n

ga
M

Magnitude Response in dB

Filter #1: Reference
Filter #1: Quantized

-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Real Part

tra
P yraniga

mI

Pole/Zero Plot

Filter #1: Quantized Zeros
Filter #1: Reference Zeros
Filter #1: Quantized Poles
Filter #1: Reference Zeros

(a) (b)

272

Real-Time Digital Signal Processing Based on the TMS320C6000

The quantized coefficients are first stated in floating-point format, and then converted
into Q-15 format. This conversion needs to be done before enabling the interrupt
service routine. In the interrupt service routine, serialPortRcvISR, the gain
factor is multiplied with the input to avoid possible overflows followed by four sections
of the IIR filter. Each section of the IIR filter simply consists of dot-products and
buffering. The output from a previous section becomes the input of a following section.
The accuracy of the Q-format representation, Qnum in the code, and the maximum

Table 11-1: Coefficients of cascaded second-order filters.

Quantized Coefficients in Q-15 format Designed Coefficients
------- Section 1 -------
Numerator
 0x7FFF (0.999969482421875)
 0x7FFF (0.999969482421875)
 0x7FFF (0.999969482421875)

 1.000000000000000000
 1.631899318476804000
 1.000000000000000400

Denominator
0x7FFF (0.999969482421875)
0xCC01 (-0.406250000000000)
0x07CA (0.060852050781250)

 1.000000000000000000
-0.406240975551636410
 0.060839816716921374

------- Section 2 -------
Numerator
0x7FFF (0.999969482421875)
0x1905 (0.195465087890625)
0x7FFF (0.999969482421875)

 1.000000000000000000
 0.195463825774149170
 1.000000000000001800

Denominator
0x7FFF (0.999969482421875)
0xB177 (-0.613586425781250)
0x1E9C (0.239135742187500)

 1.000000000000000000
-0.613596465553117860
 0.239148166557621610

------- Section 3 -------
Numerator
0x7FFF (0.999969482421875)
0xB439 (-0.592041015625000)
0x7FFF (0.999969482421875)

 1.000000000000000000
-0.592045778337563780
 0.999999999999997780

Denominator
0x7FFF (0.999969482421875)
0x8C7E (-0.902435302734375)
0x4104 (0.507934570312500)

 1.000000000000000000
-0.902432041178152230
 0.507920458903674770

------- Section 4 -------
Numerator
0x7FFF (0.999969482421875)
0x8FC3 (-0.876892089843750)
0x7FFF (0.999969482421875)

 1.000000000000000000
-0.876905411177924200
 0.999999999999998780

Denominator
0x7FFF (0.999969482421875)
0x8000 (-1.000000000000000)
0x68B4 (0.817993164062500)

 1.000000000000000000
-1.180266034077308100
 0.818001830217691680

Scale Value = 0x019A (0.0125407)

273

Chapter 11: Lab Project Examples

positive number corresponding to the current representation, MAX_POS, for example,
0x7FFF for Q-15 format, should be changed for other Q-format representations.

#define CHIP_6713 1

#include <stdio.h>
#include <c6x.h>
#include <csl.h>
#include <csl_mcbsp.h>
#include <csl_irq.h>

#include "dsk6713.h"
#include "dsk6713_aic23.h"

#define N 3 // Number of coefficients
#define SCALE 2 // Scale factor
#define Q 15
#define MAX_POS 0x7FFF

DSK6713_AIC23_CodecHandle hCodec;
DSK6713_AIC23_Config config = DSK6713_AIC23_DEFAULTCONFIG;

 // Codec configuration with default settings

// Coefficients of second order IIR filter
float b1_f[N] = {0.999969482421875, 0.999969482421875, 0.999969482421875 };
float a1_f[N] = {0.999969482421875, -0.406250000000000, 0.060852050781250 };
float b2_f[N] = {0.999969482421875, 0.195465087890625, 0.999969482421875 };
float a2_f[N] = {0.999969482421875, -0.613586425781250, 0.239135742187500 };
float b3_f[N] = {0.999969482421875, -0.592041015625000, 0.999969482421875 };
float a3_f[N] = {0.999969482421875, -0.902435302734375, 0.507934570312500 };
float b4_f[N] = {0.999969482421875, -0.876892089843750, 0.999969482421875 };
float a4_f[N] = {0.999969482421875, -1.000000000000000, 0.817993164062500 };
float G_f = 0.0125407;
short b1[N], a1[N], b2[N], a2[N], b3[N], a3[N], b4[N], a4[N], G;
int x[N], y1[N], y2[N], y3[N], y4[N];

void main()
{
 int i;

 DSK6713_init(); // Initialize the board support library

hCodec = DSK6713_AIC23_openCodec(0, &config);

 MCBSP_FSETS(SPCR1, RINTM, FRM);
 MCBSP_FSETS(SPCR1, XINTM, FRM);
 MCBSP_FSETS(RCR1, RWDLEN1, 32BIT);
 MCBSP_FSETS(XCR1, XWDLEN1, 32BIT);

 DSK6713_AIC23_setFreq(hCodec, DSK6713_AIC23_FREQ_8KHZ);

 // Initial conditions
 for(i = 0; i < N; i++)
 {
 x[i] = 0;
 y1[i] = y2[i] = y3[i] = y4[i] = 0;
 }

274

Real-Time Digital Signal Processing Based on the TMS320C6000

 // Convert coefficients to Q format
 G = MAX_POS * G_f;
 for(i = 0; i < N; i++)
 {
 b1[i]= MAX_POS * b1_f[i];
 a1[i]= MAX_POS * a1_f[i];
 b2[i]= MAX_POS * b2_f[i];
 a2[i]= MAX_POS * a2_f[i];
 b3[i]= MAX_POS * b3_f[i];
 a3[i]= MAX_POS * a3_f[i];
 b4[i]= MAX_POS * b4_f[i];
 a4[i]= MAX_POS * a4_f[i];
 }

 // Interrupt Configuration
 IRQ_globalDisable(); // Globally disables interrupts
 IRQ_nmiEnable(); // Enables the NMI interrupt
 IRQ_map(IRQ_EVT_RINT1,15); // Maps an event to a physical intr
 IRQ_enable(IRQ_EVT_RINT1); // Enables the event
 IRQ_globalEnable(); // Globally enables interrupts

 while(1)
 {
 }
}

interrupt void serialPortRcvISR(void)
{
 int temp;

 temp = MCBSP_read(DSK6713_AIC23_DATAHANDLE); // Read sample
 temp = temp >> (31- Q);

 x[2] = x[1]; // Circulate input
 x[1] = x[0];
 x[0] = _mpy(temp,G) >> Q; // Multiply gain factor

 // IIR filter : Section 1
 y1[2] = y1[1]; // Circulate output(input for following section)
 y1[1] = y1[0];
 y1[0] = (_mpy(b1[0],x[0]) >> Q) + (_mpy(b1[1],x[1]) >> Q)
 + (_mpy(b1[2],x[2]) >> Q) - (_mpy(a1[1],y1[1]) >> Q)
 - (_mpy(a1[2],y1[2]) >> Q);

 // IIR filter : Section 2
 y2[2] = y2[1]; // Circulate output(input for following section)
 y2[1] = y2[0];
 y2[0] = (_mpy(b2[0],y1[0]) >> Q) + (_mpy(b2[1],y1[1]) >> Q)
 + (_mpy(b2[2],y1[2]) >> Q) - (_mpy(a2[1],y2[1]) >> Q)
 - (_mpy(a2[2],y2[2]) >> Q);

 // IIR filter : Section 3
 y3[2] = y3[1]; // Circulate output(input for following section)
 y3[1] = y3[0];
 y3[0] = (_mpy(b3[0],y2[0]) >> Q) + (_mpy(b3[1],y2[1]) >> Q)

275

Chapter 11: Lab Project Examples

The code is rewritten in assembly. Each IIR filter section is replaced with an assembly
function, which is called by the following code line:

 + (_mpy(b3[2],y2[2]) >> Q) - (_mpy(a3[1],y3[1]) >> Q)
 - (_mpy(a3[2],y3[2]) >> Q);

 // IIR filter : Section 4
 y4[2] = y4[1]; // Circulate output
 y4[1] = y4[0];
 y4[0] = (_mpy(b4[0],y3[0]) >> Q) + (_mpy(b4[1],y3[1]) >> Q)
 + (_mpy(b4[2],y3[2]) >> Q) - (_mpy(a4[1],y4[1]) >> Q)
 - (_mpy(a4[2],y4[2]) >> Q);

 temp = y4[0] * SCALE; // Amplify the output
 temp = temp << (31-Q);

 MCBSP_write(DSK6713_AIC23_DATAHANDLE, temp);
}

y1[0] = iir(x, b1, y1, a1); // Call IIR filter written in assembly

The above function call loads the current input, previous outputs, and filter
coefficients, and calculates the dot-products corresponding to the numerator and
denominator. The numerator sum is subtracted from the denominator sum for the
final output. The assembly code for doing so is given below:

 .global _iir ; Simple iir filter implementation
 .sect ".iir"
_iir:
 MVK .S1 3, A2 ; counter
 ZERO .S1 A9 ; BSUM

loop1:
 LDW .D1 *A4++,A5 ; Load input sample
 LDH .D2 *B4++,B5 ; Load b coefficient
 NOP 4
 MPY .M1x A5, B5, A8 ; b * input
 NOP

276

Real-Time Digital Signal Processing Based on the TMS320C6000

The number of cycles corresponding to one section of the IIR filter is shown in
Table 11-2 for different builds. As can be seen from this table, the C implementation
provides a faster outcome as compared with the assembly version, and the linear
assembly version provides a slower outcome as compared with the assembly version.
The main reason for this is that there are too few repetitions, 3 at most, of the loop.
The C code is already fully optimized by using assembly intrinsics and not using any
loop structure, while the linear assembly and the assembly are implemented with
loop structures. The difference between optimized C and hand-optimized assembly
is due to the fact that calling assembly function in C incorporates several procedures
such as passing arguments from C to assembly, storing return address, branching to
assembly routine, returning output value, and branching back from assembly routine.
As the number of repetition increases, the efficiency of the linear assembly and hand-
optimized assembly as compared with the C version becomes more noticeable.

 SHR .S1 A8, 15, A8
 ADD .S1 A8, A9, A9

 [A2] SUB .S1 A2, 1, A2
 [A2] B .S2 loop1
 NOP 5

 MVK .S1 2, A2 ; counter
 ZERO .S2 B9 ; ASUM

loop2:
 LDW .D1 *++A6,A7 ; Load output sample
 LDH .D2 *++B6,B7 ; Load a coefficient
 NOP 4

MPY .M2x A7, B7, B8 ; a * output
 NOP
 SHR .S2 B8, 15, B8
 ADD .S2 B8, B9, B9

 [A2] SUB .S1 A2, 1, A2
 [A2] B .S2 loop2
 NOP 5

SUB .L1 A9, B9, A4 ; BSUM - ASUM

B .S2 B3
 NOP 5

277

Chapter 11: Lab Project Examples

11.3 Filter Bank

This project involves the implementation of a 2-channel filter bank system, as
shown in Figure 11-3. Such a system is used to lower the bit rate for speech coding
applications. Consider an 8 kHz sampling rate for the input signal, i.e. the input
signal having a 4 kHz bandwidth (speech signal). The interested reader is referred to
[1] for theoretical details of filter banks.

Table 11-2: Number of cycles for different builds.

Build type Number of cycles
C without optimization (none/-o3) 38 / 27

Linear assembly (none/-o3) 152 / 183
Simple assembly 132

Hand-optimized assembly 51

Figure 11-3: 2-channel Filter bank.

hLP[n]

hHP[n]

x[n]
2

2

Q

Q

X 1[n]
2

2
X 2[n]

+
x [n]

X1[n]

X2[n]

hLP[n]

hHP[n]

By reducing the number of quantization bits in each channel, one can hear the effect
on the reconstructed signal. Recorded speech signals can be used for testing. The fil-
ter bank implementation is done by writing a C, an optimized assembly, and a linear
assembly code. The number of cycles and code size associated with each coding
approach are then compared.

Project 3: Filter Bank Implementation

We have considered a 32-coefficient lowpass filter here. If the size of the input file
is too large for the available internal memory, it should be loaded to the external
memory. The following line allocates space for the specified variable in the user
designated section “my_sect”, which is defined as part of the external memory in
the linker command file,
#pragma DATA_SECTION(f_input, "my_sect")

278

Real-Time Digital Signal Processing Based on the TMS320C6000

The data file is then loaded by choosing File → Data → Load, selecting Float(*.dat)
in the Files of type field, and then selecting signal.dat. By clicking open, the Load-
ing File into Memory window is brought up. Type 0x80000000 in the Address and
0x00000100 in the Length field, respectively.

The code shown below includes the analysis filter, down-sampler, quantizer, up-sam-
pler, and synthesis filter. The coefficients of the highpass filter are obtained simply by
changing the sign of the odd coefficients of the lowpass filter.

#include <stdio.h>

#define N 32
#define SIG_LEN 0x0100 // 256
#define Qbit 0

float f_coef[N]={ -0.017824925492008, -0.035774695205120, 0.022767212078393,
 0.009949352454172, -0.014276325762842, -0.018785999870724, 0.020967756230837,
 0.023573942319073, -0.027510480213313, -0.032452910146451, 0.039131601497448,
 0.048479743981073, -0.063129344823646, -0.089156565459054, 0.149537214887298,
 0.449964294508326, 0.449964294508326, 0.149537214887298, -0.089156565459054,
-0.063129344823646, 0.048479743981073, 0.039131601497448, -0.032452910146451,
-0.027510480213313, 0.023573942319073, 0.020967756230837, -0.018785999870724,
-0.014276325762842, 0.009949352454172, 0.022767212078393, -0.035774695205120,
-0.017824925492008};

#pragma DATA_SECTION(f_input, "my_sect")
#pragma DATA_SECTION(input, "my_sect")
#pragma DATA_SECTION(L_intermediate, "my_sect")
#pragma DATA_SECTION(H_intermediate, "my_sect")
#pragma DATA_SECTION(output, "my_sect")
float f_input[SIG_LEN];
int input[SIG_LEN], output[SIG_LEN],

L_intermediate[SIG_LEN], H_intermediate[SIG_LEN];

void main()
{
 int L_temp, H_temp;
 short i, k;
 short L_coef[N], H_coef[N];
 short samples[N];
 short L_samples[N], H_samples[N];

 // Convert input data into Q-15 format
 for(i = 0 ; i < SIG_LEN; i++)
 input[i] = 0x7FFF * f_input[i];

 // Convert coefficients of filter into Q-15 format
 for(i = 0 ; i < N; i++)
 {
 L_coef[i] = 0x7FFF * f_coef[i]; // Lowpass filter
 H_coef[i] = i%2 ? -L_coef[i] : L_coef[i]; // Highpass filter
 }

279

Chapter 11: Lab Project Examples

// Initial condition
 for(i = 0 ; i < N; i++)
 samples[i] = 0;

 // Analysis filters
 for(k = 0; k < SIG_LEN ; k++)
 {
 for(i = N-1 ; i > 0 ; i--)
 {
 samples[i] = samples[i-1];
 }
 samples[0] = input[k];

 L_temp = H_temp = 0;
 for(i = 0 ; i < N ; i++)
 {
 L_temp += (_mpy(samples[i], L_coef[i]) >> 15);
 H_temp += (_mpy(samples[i], H_coef[i]) >> 15);
 }

 // Quantizer
 L_intermediate[k] = L_temp >> Qbit;
 H_intermediate[k] = H_temp >> Qbit;
 }

 // Decimation & Interpolation
 for(k = 1; k < SIG_LEN ; k = k + 2)
 {
 L_intermediate[k] = 0;
 H_intermediate[k] = 0;
 }

 // --

 // Initial condition
 for(i = 0 ; i < N ; i++)
 {
 L_samples[i] = 0;
 H_samples[i] = 0;
 }

 // Synthesis filters
 for(k = 0; k < SIG_LEN ; k++)
 {
 for(i = N-1 ; i > 0; i--) // Circulate buffer
 {
 L_samples[i] = L_samples[i-1];
 H_samples[i] = H_samples[i-1];
 }
 L_samples[0] = L_intermediate[k];
 H_samples[0] = H_intermediate[k];

 L_temp = H_temp = 0;
 for(i = 0 ; i < N ; i++) // FIR filter
 {
 L_temp += (_mpy(L_samples[i], L_coef[i]) >> 15);
 H_temp += (_mpy(H_samples[i], H_coef[i]) >> 15);

280

Real-Time Digital Signal Processing Based on the TMS320C6000

Both the lowpass and highpass filters are implemented as FIR filters. One can study
the effect of quantization by changing the value of Qbit in the code. The code size
and number of cycles for different builds are shown in Table 11-3. From this table, it
can be seen that there is a trade-off between the code size and number of cycles.

 }

 output[k] = L_temp + H_temp; // Add outputs from both filter
 }
}

Table 11-3: Code size and number of cycles of analysis filter for different builds.

Build type Code size Number of cycles
C without optimization (none/-o3) 136 / 336 1284 / 87

Linear assembly (none/-o3) 60 / 296 731 / 124
Simple assembly 64 608

Hand-optimized assembly 256 95

11.4 Pulse Amplitude Modulation (PAM)

In this project, a C program is written to generate pseudo-random sequences (PN)
using a linear feedback shift register sequence generator, shown in Figure 11-4. The
connection polynomial is given by

 () 2 51= + +h D D D (11.3)

where the summation represents modulo 2 additions. For pulse shaping, a raised-
cosine FIR filter can be designed by using the MATLAB function ‘rcosfir’ with
the parameters roll-off factor set to 0.125, extent of the filter to 4, and oversampling
rate to 4. The PN sequence is taken as the input of the raised cosine filter, and the
polyphase filter bank approach is used for code efficiency. Refer to [2] for theoretical
details.

Figure 11-4: Pseudo Noise generation.

D D D

+ +

D D

+ + +

()x n
1h

()1y n ()2y n ()3y n ()4y n

2h 3h 4h

+

5h

()5y n

()y n

281

Chapter 11: Lab Project Examples

Lab 12: PAM Implementation

The pulse amplitude modulation is achieved by a PN sequence followed by the
raised cosine filter for pulse shaping. The PN sequence is implemented by the
linear feedback shift registers, and the raised cosine filter is implemented by using
appropriate coefficients. For demonstration purposes, a 5 stage shift register structure
generating random sequences with period 31(= 25 – 1) is chosen. The array g[]
contains the coefficients of the raised cosine filter designed by using MATLAB. All
the polyphase filters take the same PN sample as their input, and then calculate dot-
products based on their own coefficients. In the code, the switch-case statement
is used for the polyphase implementation. The code is shown below:
#define CHIP_6713 1

#include <stdio.h>
#include <math.h>

#include <c6x.h>
#include <csl.h>
#include <csl_mcbsp.h>
#include <csl_irq.h>

#include "dsk6713.h"
#include "dsk6713_aic23.h"

#define AMP 0x2fff

#define RATE 4
#define N_T 4
#define BUF_LEN 33 // (2*N_T*RATE+1)

#define N 5 // length of shift register
short y[N+1] = { 1, 0, 0, 0, 0, 0 };

short a[9];
float g[BUF_LEN]={ -0.0000, -0.0234, -0.0407, -0.0351, 0.0000, 0.0511, 0.0866,
0.0735, -0.0000, -0.1071, -0.1856, -0.1642, 0.0000, 0.2904, 0.6274, 0.8970,
1.0000, 0.8970, 0.6274, 0.2904, 0.0000, -0.1642, -0.1856, -0.1071, -0.0000,
0.0735, 0.0866, 0.0511, 0.0000, -0.0351, -0.0407, -0.0234, -0.0000 };

static short j = RATE;

DSK6713_AIC23_CodecHandle hCodec;
DSK6713_AIC23_Config config = DSK6713_AIC23_DEFAULTCONFIG;

interrupt void serialPortRcvISR(void);

void main()
{
 int i;

 DSK6713_init(); // Initialize the board support library
 hCodec = DSK6713_AIC23_openCodec(0, &config);

282

Real-Time Digital Signal Processing Based on the TMS320C6000

 MCBSP_FSETS(SPCR1, RINTM, FRM);
 MCBSP_FSETS(SPCR1, XINTM, FRM);
 MCBSP_FSETS(RCR1, RWDLEN1, 32BIT);
 MCBSP_FSETS(XCR1, XWDLEN1, 32BIT);

 DSK6713_AIC23_setFreq(hCodec, DSK6713_AIC23_FREQ_8KHZ);

 // Inintialize PN sequence;
 for (i = 0; i < 9; i++)
 { a[i] = 0; }

 IRQ_globalDisable(); // Globally disables interrupts
 IRQ_nmiEnable(); // Enables the NMI interrupt
 IRQ_map(IRQ_EVT_XINT1,15); // Maps an event to a physical interrupt
 IRQ_enable(IRQ_EVT_XINT1); // Enables the event
 IRQ_globalEnable(); // Globally enables interrupts

 while(1)
 {
 }

}

interrupt void serialPortRcvISR()
{
 int temp;
 float ftemp;
 short i, a0;

 // PN-sequence generation

 if (j >= RATE) // If one period is over, generate next PN value.
 {
 j = 0;

 for(i = N ; i > 0 ; i--)
 {
 y[i] = y[i-1];
 }

 y[0] = 0 ^ y[2] ^ y[5]; // h(D)= 1 + D^2 + D^5,
 // input is assumed as 0.
 a0 = 2 * y[0] - 1;

 for (i = 8 ; i > 0; i--)
 {
 a[i] = a[i-1];
 }
 a[0] = a0;
 }

 // Raised cosine FIR filter

283

Chapter 11: Lab Project Examples

The effect of roll-off factor, which determines the bandwidth of the pulse shape, can
be verified by deploying different coefficient sets corresponding to various roll-off
factors between 0 and 1. The DSK output can be connected to an oscilloscope to see
the eye diagram on the oscilloscope.

Bibliography

[1] J. Proakis and D. Manolakis, Digital Signal Processing: Principles, Algorithms,
and Applications, Prentice-Hall, 1996.

[2] S. Tretter, Communication System Design Using DSP Algorithms: With Laboratory
Experiments for the TMS320C6701 and TMS320C6711, Kluwer Academic
Publishers, 2003.

 switch (j)
 {
 case 0 : { ftemp = a[0]*g[0] + a[1]*g[4] + a[2]*g[8] + a[3]*g[12]

 + a[4]*g[16] + a[5]*g[20] + a[6]*g[24] + a[7]*g[28] + a[8]*g[32];
 break; }

 case 1 : { ftemp = a[0]*g[1] + a[1]*g[5] + a[2]*g[9] + a[3]*g[13]
 + a[4]*g[17] + a[5]*g[21] + a[6]*g[25] + a[7]*g[29]; break; }

 case 2 : { ftemp = a[0]*g[2] + a[1]*g[6] + a[2]*g[10] + a[3]*g[14]
 + a[4]*g[18] + a[5]*g[22] + a[6]*g[26] + a[7]*g[30]; break; }

 case 3 : { ftemp = a[0]*g[3] + a[1]*g[7] + a[2]*g[11] + a[3]*g[15]
 + a[4]*g[19] + a[5]*g[23] + a[6]*g[27] + a[7]*g[31]; break; }

 }

 temp = (int) (AMP * ftemp); // Scale

 j++;

 MCBSP_write(DSK6713_AIC23_DATAHANDLE, temp << 16);
}

285

Appendix A:
Quick Reference Guide

.L Unit
Instruction Description
ABS Integer absolute value with saturation
ADD(U) Signed(unsigned) addition without saturation
AND Bitwise AND
CMPEQ Integer compare for equality
CMPGT Signed integer compare for greater than
CMPGTU Unsigned integer compare for greater than
CMPLT Signed integer compare for less than
CMPLTU Unsigned integer compare for less than
LMBD Leftmost bit detection
MV Move from register to register
NEG Negate
NORM Normalize integer
NOT Bitwise NOT
OR Bitwise OR
SADD Integer addition with saturation to result size
SAT Saturate a 40-bit Integer to a 32-bit Integer
SSUB Integer subtraction with saturation to result size
SUB(U) Signed (unsigned) integer subtraction without saturation
SUBC Conditional integer subtract and shift – used for division
XOR Exclusive OR
ZERO Zero a register

.M Unit
MPY Signed integer multiply 16lsb × 16 lsb
MPYU Unsigned integer multiply 16lsb × 16lsb
MPYUS Integer multiply (unsigned) 16lsb × (signed) 16lsb
MPYSU Integer multiply (signed) 16lsb × (unsigned) 16lsb
MPYH Signed integer multiply 16msb × 16msb
MPYHU Unsigned integer multiply 16msb × 16msb
MPYHUS Integer multiply (unsigned) 16msb × (signed) 16msb
MPYHSU Integer multiply (signed) 16msb × (unsigned) 16msb
MPYHL Signed multiply high low 16msb × 16lsb
MPYHLU Unsigned multiply high low 16msb × 16lsb
MPYHULS Multiply high unsigned low signed (unsigned) 16msb × (signed) 16lsb
MPYHSLU Multiply high signed low unsigned (signed) 16msb × (unsigned) 16lsb
MPYLH Signed multiply low high 16lsb × 16msb
MPYLHU Unsigned multiply low high 16lsb × 16msb
MPYLUHS Multiply low unsigned high signed (unsigned) 16lsb × (signed) 16msb
MPYLSHU Multiply low signed high unsigned (signed) 16lsb × (unsigned) 16msb

A.1 List of C6x Instructions

286

Real-Time Digital Signal Processing Based on the TMS320C6000

SMPY Integer multiply with left shift and saturation

SMPYHL Integer multiply high low with left shift and saturation

SMPYLH Integer multiply low high with left shift and saturation

SMPYH Integer multiply high with left shift and saturation

.S Unit

ADD Signed integer addition without saturation

ADDK Integer addition using signed 16-bit constant

ADD2 Two 16-bit integer adds on upper and lower register halves

AND Bitwise AND

B disp Branch using a displacement

B IRP Branch using an Interrupt return pointer

B NRP Branch using a NMI return pointer

B reg Branch using a register
CLR Clear a bit field

EXT(U) Extract and sign-extend(zero-extend) a bit field

MV Move from register to register

MVC Move between the control file and register file

MVK Move a 16-bit signed constant into a register and sign extend

MVKH Move 16-bit constant into the upper bits of a register

MVKLH Move 16-bit constant into the upper bits of a register

NEG Negate
NOT Bitwise NOT

OR Bitwise OR

SET Set a bit field

SHL Arithmetic shift left

SHR Arithmetic shift right

SHRU Logical shift right

SHRL Logical shift left

SUB(U) Signed (Unsigned) integer subtraction without saturation
SUB2 Two 16-bit Integer subtracts on upper and lower register halves

XOR Exclusive OR

ZERO Zero a register

.D Unit

ADD Signed integer addition without saturation

ADDAB/ADDAH/ADDAW Integer addition using addressing mode

LDB(U)/LDH(U)/ LDW Load from memory with a 5-bit unsigned constant offset or register offset

LDB(U)/LDH(U)/ LDW
(15-bit offset)

Load from memory with a 15-bit constant offset

MV Move from register to register

STB/STH/STW Store to memory with a register offset or 5-bit unsigned constant offset

STB/STH/STW (15-bit offset) Store to memory with a 15-bit offset

SUB Signed integer subtraction without saturation

SUBAB/SUBAH/ SUBAW Integer subtraction using addressing mode

ZERO Zero a register

287

Appendix A: Quick Reference Guide

.L Unit

Instruction Description

ADDDP Double-precision floating-point addition

ADDSP Single-precision floating-point absolute value

DPINT Convert double-precision floating-point value to integer

DPSP Convert double-precision floating-point value to single-precision floating-point

value

DPTRUNC Convert double-precision floating-point value to integer with truncation
INTDP Convert integer to double-precision floating-point value

INTDPU Convert integer to double-precision floating-point value (unsigned)

INTSP Convert integer to single-precision floating-point value

INTSPU Convert integer to single-precision floating-point value (unsigned)

SPINT Convert single-precision floating-point value to integer

SPTRUNC Convert single-precision floating-point value to integer with truncation

SUBSP Single-precision floating-point subtract

SUBDP Double-precision floating-point subtract

.M Unit

MPYSP Single-precision floating-point multiply

MPYDP Double-precision floating-point multiply

MPYI 32-bit integer multiply - result in lower 32 bits

MPYID 32-bit integer multiply - 64-bit result

.S Unit

ABSSP Single-precision floating-point absolute value

ABSDP Double-precision floating-point absolute value

CMPGTSP Single-precision floating-point compare for greater than

CMPEQSP Single-precision floating-point compare for equality

CMPLTSP Single-precision floating-point compare for less than

CMPGTDP Double-precision floating-point compare for greater than

CMPEQDP Double-precision floating-point compare for equality
CMPLTDP Double-precision floating-point compare for less than

RCPSP Single-precision floating-point reciprocal approximation

RCPDP Double-precision floating-point reciprocal approximation

RSQRSP Single-precision floating-point square-root reciprocal approximation

RSQRDP Double-precision floating-point square-root reciprocal approximation

SPDP Convert Single precision floating-point value to double-precision floating-point

value

.D Unit

ADDAD Integer addition using doubleword addressing mode

LDDW Load doubleword from memory with an offset

A.2 List of C67x Floating-Point Instructions

288

Real-Time Digital Signal Processing Based on the TMS320C6000

Reserved BK1 BK0

31 26 25 21 20 16

15 0

R, +0 R, W, +0 R, W, +0

14 13 12 11 10

A4 modeA5 modeA6 modeA7 modeB4 modeB5 modeB6 modeB7 mode

9 8 7 6 5 4 3 2 1

Addressing Mode Register (AMR)

CPU ID Revision ID

31 24 23 16

15 0

R R, W, +0

10

GIEPGIEDCCPCCENSATPWRD

9 8 7 5 4 2 1

Control Status Register (CSR)

R, W, +0

R, W, +0 R,C,+0 R,+x R, W, +0

Interrupt Flag Register (IFR)

15 10

IF8IF9

9 8

IF10IF11IF12IF13IF14IF15

11121314 7 2

0NMIF

1 0

rsvrsvIF4IF5IF6IF7

3456

R, +0

Interrupt Set Register (ISR)

15 10

IS8IS9

9 8

IS10IS11IS12IS13IS14IS15

11121314 7 2

rsvrsv

1 0

rsvrsvIS4IS5IS6IS7

3456

W

Interrupt Clear Register (ICR)

15 10

IC8IC9

9 8

IC10IC11IC12IC13IC14IC15

11121314 7 2

rsvrsv

1 0

rsvrsvIC4IC5IC6IC7

3456

W

Interrupt Enable Register (IER)

15 10

IE8IE9

9 8

IE10IE11IE12IE13IE14IE15

11121314 7 2

1NMIE

1 0

rsvrsvIE4IE5IE6IE7

3456

R, W, +0 R,1

Interrupt Service Table Pointer (ISTP)

31

ISTB

5

0

0

HPEINT

910

R, +0R, W, +0

0000

4 3 2 1

NMI Return Pointer (NRP)

31

NRP

0

R, W, +x

Interrupt Return Pointer (IRP)

31

IRP

0

R, W, +x

Note: Bits not shown are reserved.

A.3 Registers and Memory Mapped Registers†

289

Appendix A: Quick Reference Guide

EMIF

Global Control 1800000

CE0 Space Control 1800008

CE1 Space Control 1800004

CE2 Space Control 1800010

CE3 Space Control 1800014

SDRAM Control 1800018

SDRAM Refresh Period 180001C
SDRAM extension 1800020

HPI

Control Register 1880000

Interrupts

Multiplexer High 19C0000

Multiplexer Low 19C0004
External Interrupt Polarity 19C0008

Cache

Cache Configuration 1840000

L2 Flush Base Address 1844000

L2 Flush Word Count 1844004

L2 Clean Base Address 1844010

L2 Clean Word Count 1844014

L1P Flush Base Address 1844020

L1P Flush Word Count 1844024
L1D Flush Base Address 1844030

L1D Flush Word Count 1844034

L2 Flush 1845000

L2 Clean 1845004

Memory Attribute 1848200-18482CC

EDMA

Options 1A00000

Source Address 1A00004
Count 1A00008

Destination Address 1A0000C

Index 1A00010

Count Reload./Link Address 1A00014

Priority Queue Status 1A0FFE0

Channel Interrupt Pending 1A0FFE4

Channel Interrupt Enable 1A0FFE8

Channel Chain Enable 1A0FFEC
Event 1A0FFF0

Event Enable 1A0FFF4

Event Clear 1A0FFF8

Event Set 1A0FFFC

QDMA

Options 2000000

Source Address 2000004

Transfer Count 2000008

Destination Address 200000C

Index 2000010

Options Pseudo 2000020

Source Address Pseudo 2000024

Transfer Count Pseudo 2000028
Destination Address Pseudo 200002C

C6x11 DSK MMR

290

Real-Time Digital Signal Processing Based on the TMS320C6000

Index Pseudo 2000030

McBSP 0 1

DRR 18C0000 1900000

DXR 18C0004 1900004

Control Register 18C0008 1900008

Receive Control Register 18C000C 190000C

Transmit Control Register 18C0010 1900010

Sample Rate Generator Register 18C0014 1900014

Multichannel Register 18C0018 1900018
Receive Channel Enable Register 18C001C 190001C

Transmit Channel Enable Register 18C0020 1900020

Pin Control Register 18C0024 1900024

Timers 0 1

Control 1940000 1980000
Period 1940004 1980004

Counter 1940008 1980008

291

Appendix A: Quick Reference Guide

EMIF A B
Global Control 1800000 1A80000
CE1 Space Control 1800008 1A80008
CE0 Space Control 1800004 1A80004
CE2 Space Control 1800010 1A80010
CE3 Space Control 1800014 1A80014
SDRAM Control 1800018 1A80018
SDRAM Refresh Period 180001C 1A8001C
SDRAM extension 1800020 1A80020
CE1 Space Secondary Control 1800044 1A80044
CE0 Space Secondary Control 1800048 1A80048
CE2 Space Secondary Control 1800050 1A80050
CE3 Space Secondary Control 1800054 1A80054

HPI
Control Register 1880000
Address Write 1880004
Address Read 1880008

Interrupts
Multiplexer High 19C0000
Multiplexer Low 19C0004
External Interrupt Polarity 19C0008

Cache
Cache Configuration 1840000
L2 Allocation 0 1842000
L2 Allocation 1 1842004
L2 Allocation 2 1842008
L2 Allocation 3 184200C
L2 Flush Base Address 1844000
L2 Flush Word Count 1844004
L2 Clean Base Address 1844010
L2 Clean Word Count 1844014
L1P Flush Base Address 1844020
L1P Flush Word Count 1844024
L1D Flush Base Address 1844030
L1D Flush Word Count 1844034
L2 Flush 1845000
L2 Clean 1845004
Memory Attribute 1848180-18481BC

1848200-18482FC

EDMA
Options 1A00000
Source Address 1A00004
Count 1A00008
Destination Address 1A0000C
Index 1A00010
Count Reload./Link Address 1A00014
Priority Queue Status 1A0FFE0
Priority Queue Allocation 0 1A0FFC0
Priority Queue Allocation 1 1A0FFC4
Priority Queue Allocation 2 1A0FFC8
Priority Queue Allocation 3 1A0FFCC
Channel Interrupt Pending Low 1A0FFE4
Channel Interrupt Pending High 1A0FFA4
Channel Interrupt Enable Low 1A0FFE8
Channel Interrupt Enable High 1A0FFA8

C64x DSK MMR

292

Real-Time Digital Signal Processing Based on the TMS320C6000

Channel Chain Enable Low 1A0FFEC

Channel Chain Enable High 1A0FFAC

Event Low 1A0FFF0

Event High 1A0FFB0
Event Enable Low 1A0FFF4

Event Enable High 1A0FFB4

Event Polarity Low 1A0FFDC

Event Polarity High 1A0FF9C

Event Clear Low 1A0FFF8

Event Clear High 1A0FFB8

Event Set Low 1A0FFFC

Event Set High 1A0FFBC

QDMA

Options 2000000

Source Address 2000004

Transfer Count 2000008

Destination Address 200000C
Index 2000010

Options Pseudo 2000020

Source Address Pseudo 2000024

Transfer Count Pseudo 2000028

Destination Address Pseudo 200002C

Index Pseudo 2000030

McBSP 0 1 2

DRR 18C0000 1900000 1A40000

DXR 18C0004 1900004 1A40004

Control Register 18C0008 1900008 1A40008

Receive Control Register 18C000C 190000C 1A4000C

Transmit Control Register 18C0010 1900010 1A40010

Sample Rate Generator Register 18C0014 1900014 1A40014
Multichannel Register 18C0018 1900018 1A40018

Receive Channel Enable Register 18C001C 190001C 1A4001C

Transmit Channel Enable Register 18C0020 1900020 1A40020

Pin Control Register 18C0024 1900024 1A40024

Timers 0 1 2

Control 1940000 1980000 1AC0000

Period 1940004 1980004 1AC0004

Counter 1940008 1980008 1AC0008

CPLD

User 60000000
Daughter Card 60000004

Version 60000010

Miscellaneous 60000018

293

Appendix A: Quick Reference Guide

EMIF

Global Control 1800000

CE0 Space Control 1800008

CE1 Space Control 1800004

CE2 Space Control 1800010
CE3 Space Control 1800014

SDRAM Control 1800018

SDRAM Refresh Period 180001C

SDRAM extension 1800020

HPI

Control Register 1880000

Interrupts

Multiplexer High 19C0000

Multiplexer Low 19C0004

External Interrupt Polarity 19C0008

DMA Ch. 0 Ch. 1 Ch. 2 Ch. 3

Primary Control 1840000 1840040 1840004 1840044

Secondary Control 1840008 1840048 184000C 184004C

Source Address 1840010 1840050 1840014 1840054
Destination Address 1840018 1840058 184001C 184005C

Transfer Counter 1840020 1840060 1840024 1840064

Global Reload A 1840028

Global Reload B 184002C

Global Index A 1840030

Global Index B 184003C

Global Index C 1840068

Global Index D 184006C
Auxiliary Control 1840070

McBSP 0 1

DRR 18C0000 1900000

DXR 18C0004 1900004

Control Register 18C0008 1900008

Receive Control Register 18C000C 190000C

Transmit Control Register 18C0010 1900010

Sample Rate Generator Register 18C0014 1900014

Multichannel Register 18C0018 1900018

Receive Channel Enable Register 18C001C 190001C
Transmit Channel Enable Register 18C0020 1900020

Pin Control Register 18C0024 1900024

Timers 0 1

Control 1940000 1980000

Period 1940004 1980004
Counter 1940008 1980008

C6x01 EVM MMR

294

Real-Time Digital Signal Processing Based on the TMS320C6000

Memory Mapped Registers

 This file must be included in each .asm referencing

 mmr register names. It can be included by adding

 this line to the top of .asm file:

 .include c6x_mmr.asm

 Using the names below simplifies access to peripheral mmr registers.

 Here is an example to write all F’s into the CE1 and CE2 EMIF

 space control registers:

 MVK .S1 0FFFFh, A0
 MVKLH .S1 0FFFFh, A0
 MVK .S1 EMIF, A1
 MVKH .S1 EMIF, A1
 STW .D1 A0, *+A1[CE1]
 STW .D1 A0, *+A1[CE2]

;Peripheral Addr/Offset Register

EMIF .equ 01800000h ; EMIF global control

CE1 .equ 1 ; EMIF CE1 space control

CE0 .equ 2 ; EMIF CE0 space control

CE2 .equ 4 ; EMIF CE2 space control

CE3 .equ 5 ; EMIF CE3 space control

SDRAM .equ 6 ; EMIF SDRAM control

REFRESH .equ 7 ; EMIF SDRAM refresh period

DMA .equ 01840000h ; Top of DMA registers

DMA0pc .equ 0 ; DMA0 primary control

DMA2pc .equ 1 ; DMA2 primary control

DMA0sc .equ 2 ; DMA0 secondary control

DMA2sc .equ 3 ; DMA2 secondary control

DMA0src .equ 4 ; DMA0 source address

DMA2src .equ 5 ; DMA2 source address
DMA0dst .equ 6 ; DMA0 destination address

DMA2dst .equ 7 ; DMA2 destination address

DMA0tc .equ 8 ; DMA0 transfer counter

DMA2tc .equ 9 ; DMA2 transfer counter

DMAcountA .equ 10 ; DMA global count reload register A

DMAcountB .equ 11 ; DMA global count reload register B

DMAindexA .equ 12 ; DMA global index register A

DMAindexB .equ 13 ; DMA global index register B
DMAaddrA .equ 14 ; DMA global address register A

DMAaddrB .equ 15 ; DMA global address register B

DMA1pc .equ 16 ; DMA1 primary control

DMA3pc .equ 17 ; DMA3 primary control

DMA1sc .equ 18 ; DMA1 secondary control

DMA3sc .equ 19 ; DMA3 secondary control

DMA1src .equ 20 ; DMA1 source address

DMA3src .equ 21 ; DMA3 source address

C6x_MMR.ASM †

295

Appendix A: Quick Reference Guide

DMA1dst .equ 22 ; DMA1 destination address
DMA3dst .equ 23 ; DMA3 destination address
DMA1tc .equ 24 ; DMA1 transfer counter
DMA3tc .equ 25 ; DMA3 transfer counter
DMAaddrC .equ 26 ; DMA global address register C
DMAaddrD .equ 27 ; DMA global address register D
DMAaux .equ 28 ; DMA auxiliary control register

HPI .equ 01880000h ; HPI control register

McBSP0 .equ 018C0000h ; McBSP0 DRR
McBSP1 .equ 01900000h ; McBSP1 DRR
DRR .equ 0 ; McBSP DRR
DXR .equ 1 ; McBSP DXR
SPCR .equ 2 ; McBSP control register
RCR .equ 3 ; McBSP receive control register
XCR .equ 4 ; McBSP transmit control register
SRGR .equ 5 ; McBSP sample rate generator register
MCR .equ 6 ; McBSP multichannel register
RCER .equ 7 ; McBSP receive channel enable register
CER .equ 8 ; McBSP transmit channel enable register
PCR .equ 9 ; McBSP pin control register

Timer0 .equ 01940000h ; Timer 0
Timer 1 .equ 01980000h ; Timer 1
TimCR .equ 0 : Timer control register
TimTP .equ 1 ; Timer period
TimTC .equ 2 ; Timer counter

Interrupts .equ 019C0000h ; Interrupts
IMH .equ 0 ; Interrupt multiplexer high
IML .equ 1 ; Interrupt multiplexer low
IP .equ 2 ; External interrupt polarity

296

Real-Time Digital Signal Processing Based on the TMS320C6000

C Compiler Intrinsic
Assembly

Instruction
Description Device

int _abs(int src2);
int _labs(long src2);

ABS Returns the saturated absolute value

of src2
int _add2(int src1, int src2); ADD2 Adds the upper and lower halves of

src1 to the upper and lower halves of

src2 and returns the result.
uint _clr(uint src2, uint csta, uint cstb); CLR Clears the specified field in src2.

The beginning and ending bits of the

field to be cleared are specified by

csta and cstb respectively.
unsigned _clrr(uint src1, int src2); CLR Clears the specified field in src2.

The beginning and ending bits of the

field to be cleared are specified by

the lower 10 bits of the source

register.
int _dpint(double); DPINT Converts 64-bit double to 32-bit

signed integer, using the rounding

mode set by the CSR register

‘C67x

int _ext(uint src2, uint csta, int cstb); EXT Extracts the specified field in src2,
sign-extended to 32 bits. The extract

is performed by a signed shift right;

csta and cstb are the shift left and

shift right amounts, respectively.
int _extr(int src2, int src1); EXT Exctracts the specified field in src2,

sign-extended to 32 bits.
uint _extu(uint src2, uint csta, uint
cstb);

EXTU Extracts the specified field in src2,
zero-extended to 32 bits.

uint _extur(uint src2, int src1); EXTU Extracts the specified field in src2,
zero-extended to 32 bits.

uint _ftoi(float); Reinterprets the bits in the float as an

unsigned integer.

‘C67x

uint _hi(double); Returns the high 32 bits of a double

as an integer.

‘C67x

double _itod(uint, uint); Creates a new double register pair

from two unsigned integers

‘C67x

float _itof(uint); Reinterprets the bits in the unsigned

integer as a float.

‘C67x

uint _lmbd(uint src1, uint src2); LMBD Searches for a leftmost 1 or 0 of src2
determined by the LSB of src1.
Returns the number of bits up to the

bit change.
uint _lo(double); Returns the low (even) register of a

double register pair as an integer

‘C67x

int _mpy(int src1, int src2);
int _mpyus(uint src1, int src2);
int _mpysu(int src1, uint src2);
uint _mpyu(uint src1, uint src2);

MPY

MPYUS

MPYSU

MPYU

Multiplies the 16 LSBs of src1 by the

16 MSBs of src2 and returns the

result. Values can be signed or

unsigned.
int _mpyhl(int src1, int src2);
int _mpyhuls(uint src1, int src2);
int _mpyhslu(int src1, uint src2);
uint _mpyhlu(uint src1, uint src2);

MPYHL

MPYHULS

MPYHSLU

MPYHLU

Multiplies the 16 MSBs of src1 by

the 16 LSBs of src2 and returns the

result. Values can be signed or

unsigned,
int _mpylh(int src1, int src2);
int _mpyluhs(uint src1, int src2);

MPYLH Multiplies the 16 LSBs of src1 by the

A.4 Compiler Intrinsics†

297

Appendix A: Quick Reference Guide

int _mpylshu(int src1, uint src2);
int _mpylhu(uint src1, uint src2);

MPYLUHS

MPYLSHU

MPYLHU

16 MSBs of src2 and returns the

result. Values can be signed or

unsigned.
void _nassert(int); Generates no code. Tells the

optimizer that the expression

declared with the assert function is

true; this gives a hint to the optimizer

as to what optimizations might be

valid.
uint _norm(int src2);
uint _lnorm(long src2);

NORM Returns the number of bits up to the

first nonredundant sign bit of src2.
double _rcpdp(double); RCPDP Computes the approximate 64-bit

double reciprocal.
‘C67x

float _rcpsp(float); RCPSP Computes the approximate 32-bit

float reciprocal.

‘C67x

double _rsqrdp(float); RSQRDP Computes the approximate 64-bit

double reciprocal square root.

‘C67x

float _rsqrsp(float); RSQRSP Computes the approximate 32-bit

float reciprocal square root.

‘C67x

int _sadd(int src1, int src2);
long _lsadd(int src1, long src2);

SADD Adds src1 to src2 and saturates the
results.

int _sat(long src2); SAT Converts a 40-bit value to an 32-bit

value and saturates if necessary.
uint _set(uint src2, uint csta, uint cstb); SET Sets the specified field in src2 to all

1s and returns the src2 value. The

beginning and ending bits of the field

to be set are specified by csta and

cstb respectively.
unsigned _setr(unsigned, int); SET Sets the specified field in src2 to all

1s and returns the src2 value. The

beginning and ending bits of the field

to be set are specified by the lower

ten bits of the source register.
int _smpy(int src1, int src2);
int _smpyh(int src1, int src2);
int _smpyhl(int src1, int src2);
int _smpylh(int src1, int src2);

SMPY

SMPYH

SMPYHL

SMPYLH

Multiplies src1 by src2, left shifts the

result by one, and returns the result.

If the result is 0x8000 0000, saturates
the result to 0x7FFF FFFF.

int _spint(float); SPINT Converts 32-bit float to 32-bit signed

integer, using the rounding mode set

by the CSR register.

‘C67x

uint _sshl(uint src2, uint src1); SSHL Shifts src2 left by the contents of

src1, saturates the result to 32-bits,

and returns the result.
int _ssub(int src1, uint src2);
long _lssub(int src1, long src2);

SSUB Subtracts src2 from src1, saturates
the result size, and returns the result.

uint _subc(uint src1, uint src2); SUBC Conditional subtract divide step.
int _sub2(int src1, int src2); SUB2 Subtracts the upper and lower halves

of src2 from the upper and lower

halves of src1, and returns the result.

Any borrowing from the lower half

subtract does not affect the upper half

subtract.

Note: instructions not specified with a device apply to all ‘C6x devices.

298

Real-Time Digital Signal Processing Based on the TMS320C6000

C Compiler Intrinsic
Assembly

instruction
Description

int _add4(int src1, int src2); ADD4 Performs 2s-complement addition to pairs of

packed 8-bit numbers
ushort & _amem2(void *ptr); LDHU

STHU

Allows aligned loads of 2 bytes to memory

uint & _amem4(void *ptr); LDW

STW

Allows aligned loads of 4 bytes to memory

double & _amemd8(void *ptr); LDDW

STDW

or

LDW/LDW

STW/STW

Allows aligned loads of 8 bytes to memory

const ushort & _amem2_const(const void
*ptr);

LDHU Allows aligned loads of 2 bytes to memory

const uint & _amem4_const(const void
*ptr);

LDW Allows aligned loads of 4 bytes to memory

const double & _amemd8_const(const void
*ptr);

LDDW

or

LDW/LDW

Allows aligned loads of 8 bytes to memory

int _avg2(int src1, int src2); AVG2 Calculates the average for each pair of signed 16-

bit values
uint _avgu4(uint, uint); AVGU4 Calculates the average for each pair of unsigned 8-

bit values
uint _bitc4(uint src); BITC4 For each of the 8-bit quantities in src, the number

of 1 bits is written to the corresponding position in

the return value.
uint _bitr(uint src); BITR Reverses the order of the bits.
int _cmpeq2(int src1, int src2); CMPEQ2 Performs equality comparisons on each pair of 16-

bit values. Equality results are packed into the two

least-significant bits of the return value.
int _cmpeq4(int src1, int src2); CMPEQ4 Performs equality comparisons on each pair of 8-bit

values. Equality results are packed into the four

least-significant bits of the return value.
int _cmpgt2(int src1, int src2); CMPGT2 Compares each pair of 8-bit values. Results are

packed into the four least-significant bits of the

return value.
uint _cmpgtu4(uint src1, uint src2); CMPGTU4 Compares each pair of unsigned 8-bit values.

Results are packed into the four least-significant

bits of the return value.
uint _deal(uint src); DEAL The odd and even bits of src are extracted into two

separate 16-bit values.
int _dotp2(int src1, int src2);
double _ldotp2(int src1, int src2);

DOTP2

LDOTP2

The product of the signed lower 16-bit values in

src1 and src2 is added to the product of the signed
16-bit values in src1 and src2.

Note: The low and high intrinsics are needed to

access each half of the 64-bit integer result.
int _dotpn2(int src1, int src2); DOTPN2 The product of the signed lower 16-bit values in

src1 and src2 is subtracted from the product of the

signed upper 16-bit values in src1 and src2.
int _dotpnrsu2(int src1, uint src2); DOTPNRSU2 The product of the unsigned lower 16-bit values in

src1 and src2 is subtracted from the product of

signed 16-bit values in src1 and src2. 2 to the 15th

C64x Specific Intrinsics

299

Appendix A: Quick Reference Guide

is added and the result is sign shifted right by 16.
int _dotprsu2(int src1, uint src2); DOTPRSU2 The product of the signed first pair of 16-bit values

is added to the product of the unsigned second pair

of 16-bit values. 2 to the 15th is added and the

result is sign shifted right by 16.
int _dotpsu4(int src1, uint src2);
uint _dotpu4(uint src1, uint src2);

DOTPSU4

DOTPU4

For each pair of 8-bit values in src1 and src2, the 8-
bit value from src1 is multiplied with the 8-bit

value from src2. The four products are summed

together.
int _gmpy4(int src1, int src2); GMPY4 Performs the galois field multiply on four values in

src1 with four parallel values in src2. The four

products are packed into the return value.
int _max2(int src1, int src2);
uint _maxu4(uint src1, uint src2);
int _min2(int src1, int src2);
uint _minu4(uint src1, uint src2);

MAX2

MAX4

MIN2

MINU4

Places the larger/smaller of each pair of values in

the corresponding position in the return value.

Values can be 16-bit signed or 8-bit unsigned.

ushort & _mem2(void *ptr); LDB/LDB

STB/STB

Allows unaligned loads of 2 bytes to memory

uint & _mem4(void *ptr); LDNW

STNW

Allows unaligned loads of 4 bytes to memory

double & _memd8(void *ptr); LDNDW

STNDW

Allows unaligned loads of 8 bytes to memory

const ushort & _mem2_const(const void
*ptr);

LDB/LDB Allows unaligned loads of 2 bytes to memory

const uint & _mem4_const(const void
*ptr);

LDNW Allows unaligned loads of 4 bytes to memory

const double & _memd8_const(const void
*ptr);

LDNDW Allows unaligned loads of 8 bytes to memory

double _mpy2(int src1, int src2); MPY2 Returns the products of the lower and higher 16-bit

values in src1 and src2
double _mpyhi(int src1, int src2);
double _mpyli(int src1, int src2);

MPYHI

MPYLI

Produces a 16 by 32 multiply. The result is placed
into the lower 48 bits of the returned double. Can

use the upper or lower 16 bits of src1.
int _mpyhir(int src1, int src2);
int _mpylir(int src1, int src2);

MPYHIR

MPYLIR

Produces a signed 16 by 32 multiply. The result is

shifted right by 15 bits. Can use the upper or lower

16 bits of src1.
double _mpysu4(int src1, uint src2);
double _mpyu4(uint src1, uint src2);

MPYSU4

MPYU4

For each 8-bit quantity in src1 and src2, performs

an 8-bit by 8-bit multiply. The four 16-bit results

are packed into a double. The results can be signed

or unsigned.
int _mvd(int src); MVD Moves the data from the src to the return value over

four cycles using the multipler pipeline
uint _pack2(uint src1, uint src2);
uint _packh2(uint src1, uint src2);

PACK2

PACKH2

The lower/upper half-words of src1 and src2 are

placed in the return value.
uint _packh4(uint src1, uint src2);
uint _packl4(uint src1, uint src2);

PACKH4

PACKL4

Packs alternate bytes into return value. Can pack

high or low bytes.
uint _packhl2(uint src1, uint src2);
uint _packlh2(uint src1, uint src2);

PACKHL2

PACKLH2

The upper/lower halfword of src1 is placed in the

upper halfword the return value. The lower/upper

halfword of src2 is placed in the lower halfword the

return value.
uint _rotl(uint src2, unint src1); ROTL Rotates src2 to the left by the amount in src1
int _sadd2(int src1, int src2);
int _saddus2(uint src1, int src2);

SADD2

SADDUS2

Performs saturated addition between pairs of 16-bit

values in src1 and src2. Src1 values can be signed
or unsigned.

uint _saddu4(uint src1, uint src2); SADDU4 Performs saturated addition between pairs of 8-bit

unsigned values in src1 and src2.

300

Real-Time Digital Signal Processing Based on the TMS320C6000

uint _shfl(uint src); SHFL The lower 16 bits of src are placed in the even bit

positions, and the upper 16 bits of src are placed in

the odd bit positions.
Uint _shlmb(uint src1, uint src2);
uint _shrmb(uint src1, uint src2);

SHLMB

SHRMB

Shifts src2 left/right by one byte, and the most/least

significant byte of src1 is merged into the
least/most significant byte position.

int _shr2(int src1, uint src2);
uint _shru2(uint src1, uint src2);

SHR2

SHRU2

For each 16-bit quantity in src2, the quantity is

arithmetically or logically shifted right by src1

number of bits. src2 can contain signed or unsigned

values.
double _smpy2(int src1, int src2); SMPY2 Performs 16-bit multiplication between pairs of

signed packed 16-bit values, with an additional 1

bit left-shift and saturate into a double result.
int _spack2(int src1, int src2); SPACK2 Two signed 32-bit values are saturated to 16-bit

values and packed into the return value
uint _spacku4(int src1, int src2); SPACKU4 Four signed 16-bit values are saturated to 8-bit

values and packed into the return value.
int _sshvl(int src2, int src1);
int _sshvr(int src2, int src1);

SSHVL

SSHVR

Shifts src2 to the left/right src1 bits. Saturates the

result if the shifted value is greater than MAX_INT

or less than MIN_INT.
int _sub4(int src1, int src2); SUB4 Performs 2s-complement subtraction between pairs

of packed 8-bit values
int _subabs4(int src1, int src2); SUBABS4 Calculates the absolute value of the differences for

each pair of packed 8-bit values.
uint _swap4(uint src); SWAP4 Exchanges pairs of bytes (an endian swap) within

each 16-bit value
uint _unpkhu4(uint src); UNPKHU4 Unpacks the two high unsigned 8-bit values into

unsigned packed 16-bit values
uint _unpklu4(uint src); UNPKLU4 Unpacks the two low unsigned 8-bit values into

unsigned packed 16-bit values
uint _xpnd2(uint src); XPND2 Bits 1 and 0 of src are replicated to the upper and

lower halfwords of the result, respectively.
uint _xpnd4(uint src); XPND4 Bits 3 through 0 are replicated to bytes 3 through 0

of the result.

301

Appendix A: Quick Reference Guide

Phase Description

1 Compile and profile native C code

• Validates original C code

• Determines which loops are most important in terms of MIPS requirements

2 Add constant declarations and loop count information

• Reduces potential pointer aliasing problems

• Allows loops with indeterminate iteration counts to execute epilogs

3 Optimize C code using intrinsics and other methods

• Facilitates use of certain C6x instructions to be used

• Optimizes data flow bandwidth

4
Write linear assembly

• Allows control in determining exact C6x instructions to be used

• Provides flexibility of hand-coded assembly without pipelining, parallelism, or

register allocation

5 Add partitioning information to the linear assembly

• Can improve partitioning of loops when necessary

• Can avoid bottlenecks of certain hardware resources

A.5 Optimization Checklist†

About the Author

Nasser Kehtarnavaz received his Ph.D. degree in Electrical and Computer Engi-
neering from Rice University in 1987. He joined the Department of Electrical
Engineering at Texas A&M University in 1986 as an Assistant Professor where he
later became an Associate Professor, and a Professor. He has been a Professor of Elec-
trical Engineering at the University of Texas at Dallas since 2002. Dr. Kehtarnavaz’s
research areas include signal and image processing, real-time imaging, DSP-based sys-
tem design, biomedical image analysis, and pattern recognition. He has authored or
co-authored three books and numerous journal and conference papers in these areas.
Among his many professional activities, he is currently serving as the Editor-in-Chief
of Journal of Real-Time Imaging, and Chair of the Dallas Chapter of the IEEE Signal
Processing Society. Dr. Kehtarnavaz is a Fellow of SPIE, a Senior Member of IEEE,
and a Professional Engineer.

302

303

Index

Numbers
2’s complement 117

A
AD535 codec 91
adaptive filtering 185
adaptive FIR filter 193
adaptive FIR filter assembly code 197
address bus 35
address cross paths 141
address mode register (AMR) 186
aliasing 14
amplitude statistics 17
analog-to-digital signal conversion 11
analog-to-digital (A/D) 1
analog-to-digital (A/D) converter 1
analog frequency 11
analog signal 1
application programming interface (API) 91
architecture 34
arithmetic operations 126

cosine 130
division 127
fractional division 129
integer division 128
lookup table 131
sine 130
square-root 131
trigonometric functions 130

assembly 52
assembly code sections 52
assembly file 52
assembly initialization 60

assembly optimizer software-pipelined assembly 178
audio codec CS4231A 91
audio daughter card PCM3003 91

B
benchmarking 80
big endian (be) 64
BIOS sections 224
board support library (BSL) 91, 106
branches 142
build error 75

build options 72, 74
buses 35

C
C64x double-word packed datatype code 158
C64x DSP 43
C64x packed datatype code 157
C64x packed data instructions 44
C64x packed data processing capability 43
C64x special purpose instructions 44
C64x specific intrinsics 298
C67x 122
C67x floating-point instructions 287
C6x datatypes 125
C6x DSP product specifications 32
C6x instructions 285
C6x internal buses 35
C6x memory map 55
C6x software tools 48
cascade IIR filter 270
CCS code development process 67
chip identification symbol 94
chip support library (CSL) 91
circular buffering 185
CLK manager 233
codec AD535 104
codec AIC23 106
Code Composer Studio (CCS) 8
code development flow 181
code efficiency 146
code efficiency vs. coding effort 47
code initialization 60
code optimization 141
coding effort 146
coding time 146
command file 56
common object file format (COFF) 53
compiler 57

optimizer 47
sections 53

compiler intrinsics 296
compiler options 72, 74
compiler sections 53
compile options 58

304

Real-Time Digital Signal Processing Based on the TMS320C6000

configuration tool 237
constant and variable alignment examples 64
control status register (CSR) 87
cosine 130
CPU 33, 36
CPU load graph 248
creating a source file 70
creating projects 68
cross paths 141

D
data alignment 63
data bus 35
data cross paths 141
data receive register (DRR) 95
data synchronizationand communication 253
data transmit register (dxr) 101
debugging tools 75
decoding 39
delayed branch 142
delays 39, 141
dependency graph 149, 153, 175

terminology 150
example 150

dependency graph terminology 150
design of FIR filter 161
design of IIR filter 190
DFT 215

DFT implementation 215
digital-to-analog (D/A) data converters 1
digital frequency 11
digital signal processing (DSP) 1
digitizing 1
directives 52
direct memory access 202
discrete Fourier transform for periodic discrete signals 15
division 127
DMA 35

DMA API functions 213
DMA channels control registers 202
DMA control registers 202
DMA data transfer example 204

dot-product code 153
dot-product C code 59
dot-product dependency graph 150
dot-product scheduling table 151
dot product 36, 142
dot product assembly code 36
double-precision (DP) 123
down-sampler 278
DSK board 50
DSP-host communication 206
DSP/BIOS 223

DSP/BIOS analysis and instrumentation 239
DSP/BIOS API modules 224

DSP processors 2
DSP Starter Kit (DSK) 8
DSP support software 108

DSP system 1
dynamic memory (DRAM) 53
dynamic range 122

E
EDMA (enhanced DMA) 202
effect of quantization 270
enabling cache 143
epilog 149, 152
evaluation module (EVM) 8
EVM board 50,51
EVM initialization 110
execute packet 42
execute packets (ep) 42
execution 39
execution graph 247
execution graph details 247
external memory interface (EMIF) 35, 110
external memory ranges 56

F
fast Fourier transform 209
fetching 39
fetch packet (FP) 42
FFT 209, 218

FFT Implementation 218
filling delay slots 173
filter bank 277

filter bank implementation 277
filter coefficients 138
filter design 161
filter implementation 166
finite word length 121

finite word length effects on fixed-point DSPs 121
FIR 122, 161

FIR code in linear assembly 179
FIR dependency graph 176
FIR filter coefficients 164
FIR filter implementation 166
FIR scheduling table 177

first in, first out (FIFO) 207
fixed-point 117

fixed-point vs. floating-point 117
floating-point 122

floating-point number representation 122
Fourier series for periodic analog signals 15
Fourier transform 14
Fourier transform pair for analog signals 11
Fourier transform pair for discrete signals 11
fractional division 129
fractional multiplication 120
fractional representation 118
frame processing 201
functional units 33, 36

G
generic C6x architecture 34
global index register 203

305

Index

global interrupt enable (GIE) bit 88
graphical display window 77
graph property dialog box 77

H
hand-coded software pipelined code 149

hand-coded software pipelined dot-product code 152
hand-coded software pipelining 148

handwritten software-pipelined assembly 175
hand coded pipelined assembly 180
hard real-time 226
harmonics of distorted sinewaves 19
host-port interface (HPI) 35, 206
HWI object property setting 253

I
IIR filters 122

IIR filter coefficients 191
IIR filter implementation 192

initialization 60
initialization code for dot-product 62
initialization of codec and peripherals 93
initialize the interrupt service table pointer (ISTP) 99
initializing the codec 112
integer arithmetic 133
integer division 128
interrupt 87

priorities of interrupts 87
interrupt data processing 87
interrupt enable register (IER) 88
interrupt flag register (IFR) 88
interrupt mapping 88
interrupt service routine (ISR) 8, 99
interrupt service table 100
interrupt service table base (ISTB) 89
interrupt service table pointer (ISTP) 89

ISR (interrupt service routine) 87

L
label 178
latency 40
least mean square (LMS) 189
least significant bit (LSB) 22
linear assembly 47, 146

procedure 147
linear assembly code for dot product example 148
linear assembly code line 178
linear assembly directives 147
linear assembly fields 178
linker command file 57
linker options 72
linking 56
little endian (le) 64
lookup table 131
loop 152

loop kernel 149
loop unrolling 173
lowpass filter 162

M
mailbox property 254
map file 57
McBSP API functions 94
memory management 53
memory map 55
memory windows 135
million instructions per second (MIPS) 31
mixing C and assembly 145
moving-window effect 185
multichannel buffered serial port (McBSP) 35
multichannel control register (MCR) 95
multicycle loops 154

multicycle loop dependency graph 155
multicycle loop scheduling table 155

multithreaded real-time scheduling approach 229
multithread programming 230
multithread scheduling 243

N
noise cancellation 189
non-pipelined code 149
NOPs 40, 141, 142
normalized frequency 164
Nyquist rate 14, 19

O
on-chip memory 142
optimization 172

levels 167
optimization checklist 301
optimized dot-product example 142
options 58
overflow 133,135
overflow handling 133

P
parallel instruction 52, 141
passing arguments convention 146
periodicity condition of sampling 16
peripherals 35
pin control register (PCR) 95
pipelined code 149
pipelined CPU 39

decoding 39
execution 39
fetching 39

PIP module 234
polyphase implementation 281
PRD module 233

PRD objects for real-time analysis 246
primary control register 203
printf() vs. LOG_printf() 228
prioritization of threads 261
profile window 80
programming approach 58, 59
program cache control (pcc) 142
prolog 149, 152

306

Real-Time Digital Signal Processing Based on the TMS320C6000

properties of pipReceive object 255
properties of pipTransmit object 256
properties of prdComm 261
properties of PRD objects 251
properties of swiFFT object 254
properties of SWI objects 249
property of CLK module 242
property of prdPrintf object 241
pulse amplitude modulation (PAM) 280

Q
Q-format 118

Q-format number representation on fixed-point DSPs 117
Q-format precision loss example 121

quantization 21
quantization noise 21

quantizing 1
quick DMA (QDMA) 205

R
raised-cosine FIR filter 280
real-time 3

FFT 218
filtering 161

real-time analysis 226
real-time constraints 226

hard real-time 226
soft real-time 226

real-time data exchange (RTDX) 207, 226, 234
real-time errors 248
real-time FFT 220
real-time filtering 161
real-time scheduling 226, 229
receive channel enable register (RCER) 95
receive control register (RCR) 95
registers and memory mapped registers 288

addressing mode register (AMR) 288
control status register (CSR) 288
Interrupt clear register (ICR) 288
Interrupt enable register (IER) 288
Interrupt flag register (IFR) 288
interrupt return pointer (IRP) 288
interrupt service table pointer (ISTP) 288
Interrupt set register (ISR) 288
NMI return pointer (NRP) 288

reset code 60
RTDX 265

RTDX target/host dataflow 235

S
sample rate generator register (SRGR) 95
sampling 1, 11

sampling rates 4
saturation 126
scaling 126, 136

scaling example 139

scheduling table 151, 153, 176
second-order cascade implementation 270
selection of optimization levels 170
serial port control register (SPCR) 95
setup code for calling the dot-product routine 61
shifting data 185
signal-to-noise ratio (SNR) 25
signal reconstruction 27
simulator 8, 85
simulator installation 85
sine 130
sinewave generation 267
single-precision (SP) 123
software interrupt (SWI) object 248
software pipelining 145, 146, 157, 175
software tools 47
soft real-time 226
source files 57
square-root 131
static memory (SRAM) 53
statistics view 242
step size 194
system identification 189

T
thread priorites 230
thread scheduling rules 231
timer control register (CTL) 97, 233
timer counter register (CNT) 98
timer period register (PRD) 98, 233
Timing cycles for different builds 170
Timing cycles for different memory options 199
Timing cycles for different optimizations 175
TMS320C6x architecture 31
TMS320C6x processor 31
transfer complete interrupt (TCINT) 205
transfer counter registers 202
transmit channel enable register (XCER) 95
transmit control register (XCR) 95
trigonometric functions 130
triple buffering 201
triple buffering program 220
truncation 121
twiddle factor 218

U
unrolling loops 141
up-sampler 278

V
VelociTI 42
very long instruction word (VLIW) 42

W
word-wide optimization 143, 174
word-wide optimized dot product code 144

ELSEVIER SCIENCE CD-ROM LICENSE AGREEMENT

PLEASE READ THE FOLLOWING AGREEMENT CAREFULLY BEFORE USING THIS CD-ROM PRODUCT. THIS
CD-ROM PRODUCT IS LICENSED UNDER THE TERMS CONTAINED IN THIS CD-ROM LICENSE AGREEMENT
(“Agreement”). BY USING THIS CD-ROM PRODUCT, YOU, AN INDIVIDUAL OR ENTITY INCLUDING
EMPLOYEES, AGENTS AND REPRESENTATIVES (“You” or “Your”), ACKNOWLEDGE THAT YOU HAVE READ
THIS AGREEMENT, THAT YOU UNDERSTAND IT, AND THAT YOU AGREE TO BE BOUND BY THE TERMS
AND CONDITIONS OF THIS AGREEMENT. ELSEVIER SCIENCE INC. (“Elsevier Science”) EXPRESSLY DOES
NOT AGREE TO LICENSE THIS CD-ROM PRODUCT TO YOU UNLESS YOU ASSENT TO THIS AGREEMENT.
IF YOU DO NOT AGREE WITH ANY OF THE FOLLOWING TERMS, YOU MAY, WITHIN THIRTY (30) DAYS
AFTER YOUR RECEIPT OF THIS CD-ROM PRODUCT RETURN THE UNUSED CD-ROM PRODUCT AND ALL
ACCOMPANYING DOCUMENTATION TO ELSEVIER SCIENCE FOR A FULL REFUND.

DEFINITIONS

As used in this Agreement, these terms shall have the following meanings:

“Proprietary Material” means the valuable and proprietary information content of this CD-ROM Product including all
indexes and graphic materials and software used to access, index, search and retrieve the information content from this CD-
ROM Product developed or licensed by Elsevier Science and/or its affiliates, suppliers and licensors.

“CD-ROM Product” means the copy of the Proprietary Material and any other material delivered on CD-ROM and any other
human-readable or machine-readable materials enclosed with this Agreement, including without limitation documentation
relating to the same.

OWNERSHIP

This CD-ROM Product has been supplied by and is proprietary to Elsevier Science and/or its affiliates, suppliers and
licensors. The copyright in the CD-ROM Product belongs to Elsevier Science and/or its affiliates, suppliers and licensors and
is protected by the national and state copyright, trademark, trade secret and other intellectual property laws of the United
States and international treaty provisions, including without limitation the Universal Copyright Convention and the Berne
Copyright Convention. You have no ownership rights in this CD-ROM Product. Except as expressly set forth herein, no part
of this CD-ROM Product, including without limitation the Proprietary Material, may be modified, copied or distributed in
hardcopy or machine-readable form without prior written consent from Elsevier Science. All rights not expressly granted to
You herein are expressly reserved. Any other use of this CD-ROM Product by any person or entity is strictly prohibited and
a violation of this Agreement.

SCOPE OF RIGHTS LICENSED (PERMITTED USES)

Elsevier Science is granting to You a limited, non-exclusive, non-transferable license to use this CD-ROM Product in
accordance with the terms of this Agreement. You may use or provide access to this CD-ROM Product on a single computer
or terminal physically located at Your premises and in a secure network or move this CD-ROM Product to and use it on
another single computer or terminal at the same location for personal use only, but under no circumstances may You use or
provide access to any part or parts of this CD-ROM Product on more than one computer or terminal simultaneously.

You shall not (a) copy, download, or otherwise reproduce the CD-ROM Product in any medium, including, without
limitation, online transmissions, local area networks, wide area networks, intranets, extranets and the Internet, or in any
way, in whole or in part, except that You may print or download limited portions of the Proprietary Material that are the
results of discrete searches; (b) alter, modify, or adapt the CD-ROM Product, including but not limited to decompiling,
disassembling, reverse engineering, or creating derivative works, without the prior written approval of Elsevier Science; (c)
sell, license or otherwise distribute to third parties the CD-ROM Product or any part or parts thereof; or (d) alter, remove,
obscure or obstruct the display of any copyright, trademark or other proprietary notice on or in the CD-ROM Product or on
any printout or download of portions of the Proprietary Materials.

RESTRICTIONS ON TRANSFER

This License is personal to You, and neither Your rights hereunder nor the tangible embodiments of this CD-ROM Product,
including without limitation the Proprietary Material, may be sold, assigned, transferred or sub-licensed to any other person,
including without limitation by operation of law, without the prior written consent of Elsevier Science. Any purported sale,
assignment, transfer or sublicense without the prior written consent of Elsevier Science will be void and will automatically
terminate the License granted hereunder.

TERM

This Agreement will remain in effect until terminated pursuant to the terms of this Agreement. You may terminate this
Agreement at any time by removing from Your system and destroying the CD-ROM Product. Unauthorized copying of
the CD-ROM Product, including without limitation, the Proprietary Material and documentation, or otherwise failing to
comply with the terms and conditions of this Agreement shall result in automatic termination of this license and will make
available to Elsevier Science legal remedies. Upon termination of this Agreement, the license granted herein will terminate
and You must immediately destroy the CD-ROM Product and accompanying documentation. All provisions relating to
proprietary rights shall survive termination of this Agreement.

LIMITED WARRANTY AND LIMITATION OF LIABILITY

NEITHER ELSEVIER SCIENCE NOR ITS LICENSORS REPRESENT OR WARRANT THAT THE INFORMATION
CONTAINED IN THE PROPRIETARY MATERIALS IS COMPLETE OR FREE FROM ERROR, AND NEITHER
ASSUMES, AND BOTH EXPRESSLY DISCLAIM, ANY LIABILITY TO ANY PERSON FOR ANY LOSS OR DAMAGE
CAUSED BY ERRORS OR OMISSIONS IN THE PROPRIETARY MATERIAL, WHETHER SUCH ERRORS OR
OMISSIONS RESULT FROM NEGLIGENCE, ACCIDENT, OR ANY OTHER CAUSE. IN ADDITION, NEITHER
ELSEVIER SCIENCE NOR ITS LICENSORS MAKE ANY REPRESENTATIONS OR WARRANTIES, EITHER
EXPRESS OR IMPLIED, REGARDING THE PERFORMANCE OF YOUR NETWORK OR COMPUTER SYSTEM
WHEN USED IN CONJUNCTION WITH THE CD-ROM PRODUCT.

If this CD-ROM Product is defective, Elsevier Science will replace it at no charge if the defective CD-ROM Product is
returned to Elsevier Science within sixty (60) days (or the greatest period allowable by applicable law) from the date of
shipment.

Elsevier Science warrants that the software embodied in this CD-ROM Product will perform in substantial compliance with
the documentation supplied in this CD-ROM Product. If You report significant defect in performance in writing to Elsevier
Science, and Elsevier Science is not able to correct same within sixty (60) days after its receipt of Your notification, You may
return this CD-ROM Product, including all copies and documentation, to Elsevier Science and Elsevier Science will refund
Your money.

YOU UNDERSTAND THAT, EXCEPT FOR THE 60-DAY LIMITED WARRANTY RECITED ABOVE, ELSEVIER
SCIENCE, ITS AFFILIATES, LICENSORS, SUPPLIERS AND AGENTS, MAKE NO WARRANTIES, EXPRESSED
OR IMPLIED, WITH RESPECT TO THE CD-ROM PRODUCT, INCLUDING, WITHOUT LIMITATION THE
PROPRIETARY MATERIAL, AN SPECIFICALLY DISCLAIM ANY WARRANTY OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE.

If the information provided on this CD-ROM contains medical or health sciences information, it is intended for professional
use within the medical field. Information about medical treatment or drug dosages is intended strictly for professional use, and
because of rapid advances in the medical sciences, independent verification f diagnosis and drug dosages should be made.

IN NO EVENT WILL ELSEVIER SCIENCE, ITS AFFILIATES, LICENSORS, SUPPLIERS OR AGENTS, BE LIABLE
TO YOU FOR ANY DAMAGES, INCLUDING, WITHOUT LIMITATION, ANY LOST PROFITS, LOST SAVINGS
OR OTHER INCIDENTAL OR CONSEQUENTIAL DAMAGES, ARISING OUT OF YOUR USE OR INABILITY
TO USE THE CD-ROM PRODUCT REGARDLESS OF WHETHER SUCH DAMAGES ARE FORESEEABLE OR
WHETHER SUCH DAMAGES ARE DEEMED TO RESULT FROM THE FAILURE OR INADEQUACY OF ANY
EXCLUSIVE OR OTHER REMEDY.

U.S. GOVERNMENT RESTRICTED RIGHTS

The CD-ROM Product and documentation are provided with restricted rights. Use, duplication or disclosure by the U.S.
Government is subject to restrictions as set forth in subparagraphs (a) through (d) of the Commercial Computer Restricted
Rights clause at FAR 52.22719 or in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause
at DFARS 252.2277013, or at 252.2117015, as applicable. Contractor/Manufacturer is Elsevier Science Inc., 655 Avenue of
the Americas, New York, NY 10010-5107 USA.

GOVERNING LAW

This Agreement shall be governed by the laws of the State of New York, USA. In any dispute arising out of this Agreement,
you and Elsevier Science each consent to the exclusive personal jurisdiction and venue in the state and federal courts within
New York County, New York, USA.

	Cover
	Contents
	Chapter 1: Introduction
	Chapter 2: Analog-to-Digital Signal Conversion
	Chapter 3: TMS320C6x Architecture
	Chapter 4: Software Tools
	Chapter 5: Interrupt Data Processing
	Chapter 6: Fixed-Point vs. Floating-Point
	Chapter 7: Code Optimization
	Chapter 8: Circular Buffering
	Chapter 9: Frame Processing
	Chapter 10: Real-Time Analysis and Scheduling
	Chapter 11: Lab Project Examples
	Appendix A: Quick Reference Guide
	Index

