
Lecture Notes in Computer Science 2057
Edited by G. Goos, J. Hartmanis and J. van Leeuwen

3
Berlin
Heidelberg
New York
Barcelona
Hong Kong
London
Milan
Paris
Singapore
Tokyo

Matthew Dwyer (Ed.)

Model Checking
Software

8th International SPINWorkshop
Toronto, Canada, May 19–20, 2001
Proceedings

1 3

Series Editors

Gerhard Goos, Karlsruhe University, Germany
Juris Hartmanis, Cornell University, NY, USA
Jan van Leeuwen, Utrecht University, The Netherlands

Volume Editor

Matthew Dwyer
Kansas State University, Department of Computing and Information Sciences
234 Nichols Hall, Manhattan, KS 66506-2302, USA
E-mail: dwyer@cis.ksu.edu

Cataloging-in-Publication Data applied for

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Model checking software : proceedings / 8th International SPIN
Workshop, Toronto, Canada, May 19 - 20, 2001. Matthew Dwyer (ed.). -
Berlin ; Heidelberg ; NewYork ; Barcelona ; Hong Kong ; London ;
Milan ; Paris ; Singapore ; Tokyo : Springer, 2001
(Lecture notes in computer science ; Vol. 2057)
ISBN 3-540-42124-6

CR Subject Classification (1998): F.3, D.2.4, D.3.1

ISSN 0302-9743
ISBN 3-540-42124-6 Springer-Verlag Berlin Heidelberg NewYork

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable for prosecution under the German Copyright Law.

Springer-Verlag Berlin Heidelberg NewYork
a member of BertelsmannSpringer Science+Business Media GmbH

http://www.springer.de

© Springer-Verlag Berlin Heidelberg 2001
Printed in Germany

Typesetting: Camera-ready by author, data conversion by PTP-Berlin, Stefan Sossna
Printed on acid-free paper SPIN: 10781569 06/3142 5 4 3 2 1 0

Preface

Research on model checking has matured from a purely theoretical topic to en-
compass tool development and applications, in addition to more foundational
topics. This diversity of model checking research is driving the area onward
as foundational developments enable automation, development of robust tool
support enables increasingly sophisticated applications, and feedback from ap-
plications spurs further work on the underlying theory and tools. The program
of the eighth SPIN workshop reflected this diversity; it included three contribu-
tions on foundational topics, eight contributions on model checking tools, and
eight contributions describing applications of model checking.

Continuing a trend begun in the seventh SPIN workshop, the eighth SPIN
workshop emphasized the connections between model checking and program
analysis. Research on static program analysis has a long history in both the
compiler and software engineering communities. In an effort to establish a dia-
log between researchers in model checking and software analysis, this year’s
workshop was co-located with the 23rd International Conference on Software
Engineering in Toronto. The workshop program contained several contributions
that were clearly targeted at analyzing programs. Three contributions addressed
tools for model checking of program source code, implemented in C and Java,
and one contribution described model checking of a popular software component
architecture.

The workshop featured 13 refereed technical papers selected from 26 submis-
sions and two refereed descriptions of model checking tools selected from four
submissions. Each submitted paper was reviewed by at least three members of
the program committee; additional reviewers were used for several papers. The
program committee discussed the merits of the submitted papers to arrive at the
final 15 refereed contributions. In addition to refereed contributions, two leading
experts in model checking technology and three groups that are applying model
checking techniques in an industrial setting were invited to give presentations.
The invited presentations were given by: Doron Peled (Bell Laboratories), Rob
Gerth (Intel Corporation), Leszek Holenderski (Philips Research), Erik Engs-
trom (Honeywell Laboratories), and Bernhard Steffen (Metaframe Technologies).
This proceedings issue contains four contributions detailing the content of the
invited presentations. A panel session on the topic of “Prospects for and impedi-
ments to practical model checking” was organized to generate a dialog between
those working on applying model checking and researchers working on extending
model checking technologies.

Historically, the SPIN workshop has served as a forum for researchers inte-
rested in the subject of automata-based, explicit-state model checking technolo-
gies for the analysis and verification of asynchronous concurrent and distributed
systems. In recent years, the scope of the workshop has broadened to encompass
applications of model checking to software analysis. The workshop is named af-

VI Preface

ter the SPIN model checker, developed by Gerard Holzmann, which is one of the
best known and most widely used model checking tools. The first SPIN works-
hop was held in October 1995 in Montréal. Subsequent workshops were held in
New Brunswick (August 1996), Enschede (April 1997), Paris (November 1998),
Trento (July 1999), Toulouse (September 1999), and at Stanford University (Au-
gust 2000).

Acknowledgments. The editor wishes to thank the program committee mem-
bers, and the referees, for their help in in organizing the workshop. Committee
members volunteered many valuable suggestions as well as a significant amount
of time for refereeing and discussing papers. The workshop organizers wish to
thank the ICSE’2001 organizing committee for facilitating the co-location of the
SPIN workshop and ACM SIGSOFT, Lucent Technologies, Microsoft Research,
and the Office of Naval Research for their sponsorship and support of the SPIN
workshop.

March 2001 Matthew B. Dwyer

Organization

Organizing Committee

General Chair: Moshe Y. Vardi (Rice University, USA)
Program Chair: Matthew B. Dwyer (Kansas State University, USA)
Local Arrangements Chair: Marsha Chechik (University of Toronto, Canada)

Program Committee

George Avrunin (University of Massachusetts, USA)
Thomas Ball (Microsoft Research, USA)
Ed Brinksma (University of Twente, The Netherlands)
Marsha Chechik (University of Toronto, Canada)
Dennis R. Dams (Eindhoven University, The Netherlands)
Klaus Havelund (QSS/Recom at NASA Ames Research Center, USA)
Connie Heitmeyer (Naval Research Laboratory, USA)
Gerard J. Holzmann (Bell Laboratories, USA)
Fabio Somenzi (University of Colorado, USA)
Willem Visser (RIACS at NASA Ames Research Center, USA)
Pierre Wolper (Université de Liege, Belgium)

Referees

R. Bloem
D. Bosnacki
J. Geldenhuys
D. Giannakopoulou
H. Hermanns
L. Holenderski

J. Katoen
R. Langerak
F. Lerda
S. Park
C. Pecheur
G. Rosu

T. Ruys
R. de Vries
B. Wolter

Sponsoring Organizations

The eighth SPIN Workshop was sponsored by the ACM SIGSOFT (Special
Interest Group on Software Engineering). Additional support was provided by:
Bell Laboratories, Lucent Technologies, USA, Microsoft Research, Microsoft Inc.,
USA, and The Office of Naval Research, USA.

Table of Contents

Invited Keynotes

From Model Checking to a Temporal Proof . 1
Doron Peled (Bell Laboratories), Lenore Zuck (New York University)

Model Checking if Your Life Depends on It:
A View from Intel’s Trenches . 15

Rob Gerth (Intel corp.)

Technical Papers and Tool Reports

Model-Checking Infinite State-Space Systems with Fine-Grained
Abstractions Using SPIN . 16

Marsha Chechik, Benet Devereux, Arie Gurfinkel (University of Toronto)

Implementing LTL Model Checking with Net Unfoldings 37
Javier Esparza (Technische Universität München),
Keijo Heljanko (Helsinki University of Technology)

Directed Explicit Model Checking with HSF-SPIN . 57
Stefan Edelkamp, Alberto Lluch Lafuente,
Stefan Leue (Albert-Ludwigs-Universität)

Addressing Dynamic Issues of Program Model Checking 80
Flavio Lerda, Willem Visser (NASA Ames Research Center)

Automatically Validating Temporal Safety Properties of Interfaces 103
Thomas Ball, Sriram K. Rajamani (Microsoft Research)

Verification Experiments on the MASCARA Protocol 123
Guoping Jia, Susanne Graf (VERIMAG)

Using SPIN for Feature Interaction Analysis – A Case Study 143
Muffy Calder, Alice Miller (University of Glasgow)

Behavioural Analysis of the Enterprise JavaBeansTM Component
Architecture . 163

Shin Nakajima (NEC Corporation), Tetsuo Tamai
(University of Tokyo)

p2b: A Translation Utility for Linking Promela and Symbolic Model
Checking (Tool Paper) . 183

Michael Baldamus, Jochen Schröder-Babo (University of Karlsruhe)

X Table of Contents

Transformations for Model Checking Distributed Java Programs 192
Scott D. Stoller, Yanhong A. Liu (SUNY at Stony Brook)

Distributed LTL Model-Checking in SPIN . 200
Jiri Barnat, Lubos Brim (Masaryk University Brno), Jitka Stř́ıbrná
(University of Pennsylvania)

Parallel State Space Construction for Model-Checking 217
Hubert Garavel, Radu Mateescu, Irina Smarandache
(INRIA Rhône-Alpes)

Model Checking Systems of Replicated Processes with Spin 235
Fabrice Derepas (Nortel Networks), Paul Gastin (Université Paris)

A SPIN-Based Model Checker for Telecommunication Protocols 252
Vivek K. Shanbhag, K. Gopinath (Indian Institute of Science)

Modeling and Verifying a Price Model for Congestion Control in Computer
Networks Using Promela/Spin . 272

Clement Yuen, Wei Tjioe (University of Toronto)

Invited Project Summaries

A Model Checking Project at Philips Research . 288
Leszek Holenderski (Philips Research)

Applications of Model Checking at Honeywell Laboratories 296
Darren Cofer, Eric Engstrom, Robert Goldman, David Musliner,
Steve Vestal (Honeywell Laboratories)

Coarse-Granular Model Checking in Practice . 304
Bernhard Steffen, Tiziana Margaria, Volker Braun
(MetaFrame Technologies, Universität Dortmund)

Author Index . 313

From Model Checking to a Temporal Proof

Doron Peled1 and Lenore Zuck2

1 Bell Laboratories, 600 Mountain Ave., Murray Hill, NJ 07974
doron@research.bell-labs.com

2 Department of Computer Science, New York University
zuck@cs.nyu.edu

Abstract. Model checking is used to automatically verify temporal
properties of finite state systems. It is usually considered to be ‘suc-
cessful’, when an error, in the form of a counterexample to the checked
property, is found. We present the dual approach, where, in the pres-
ence of no counterexample, we automatically generate a proof that the
checked property is satisfied by the given system. Such a proof can be
used to obtain intuition about the verified system. This approach can be
added as a simple extension to existing model checking tools.

1 Introduction

The automatic verification of finite state systems, often called model checking [1,
4], is highly successful in detecting bugs during software and hardware develop-
ment. It involves modeling the inspected system, specifying its properties using
some logical formalism, and using some graph algorithms to systematically de-
tect whether there are executions of the model of the system that violate the
specification. If such executions exist, (at least) one of them is reported as a
counterexample.

If the search for counterexamples fails, we can conclude that the model of
the system satisfies the specification. This is often considered as a failure of the
model checking attempt. Some even go as far as to say that the goal of model
checking is not ‘verification’, but ‘falsification’. One reason for this is that the
modeling process is itself prone to errors. The model of the checked system is
often an oversimplification of the original system since model checking often
requires that the model has finitely many states.

An alternative to model checking is the deductive verification approach, one of
whose goals is to formally explain why the system satisfies the checked property.
This approach often calls for creativity of the prover. Deductive verification is
usually manual and time consuming.

In this paper, we emphasize the point of view that when no counterexample
is found, model checking can also be used to justify why the verified system
satisfies the checked property. We show that a failed systematic search for coun-
terexamples can be used to generate a deductive proof that the model satisfies

M.B. Dwyer (Ed.): SPIN 2001, LNCS 2057, pp. 1–14, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

2 D. Peled and L. Zuck

the checked property, by exploiting the information in the graph that is gener-
ated during the search. We apply the automata theoretic view [7,10]. Specifically,
we start with an LTL (linear temporal logic) specification, and transform it into
an automaton. In fact, it is the negation of the specification formula that is
translated. The checked system is also represented as an automaton. We then
construct the intersection of these two automata. If the intersection is nonempty,
it contains a counterexample that can be reported. Otherwise, the model of the
system satisfies the specification. We show how, in the latter case, the intersec-
tion graph can be used to produce a proof.

The main challenge is how to represent the proof, which is implicit in the
intersection graph. We would like to present the proof in a way that would
explain to the user why the property holds for the checked system.

2 Preliminaries

We sketch the model checking procedure for Temporal Logic formulas over finite
state formulas. For more details, see [3].

A Generalized Büchi automaton A is a 6-tuple (S, S0, δ,F , L,Σ), where S is
a finite set of states, S0 ⊆ S is a set of initial states, δ ⊆ S × S is a (nondeter-
ministic) transition relation, F ⊆ 2S×S is the set of acceptance sets, Σ is a set of
labels and L:S → Σ is a labeling function of the states.1 A run of the automaton
A is an infinite sequence of S-states α = s0, s1, . . . such that s0 ∈ S0, and for
every i ≥ 0, (si, si+1) ∈ δ. A run is accepting if for every F ∈ F , (si, si+1) ∈ F
for infinitely many i’s. The language accepted by an automaton A, denoted by
L(A), is the set of (labeled) sequences that are accepted by the automaton.

Let Π be a set of propositions. We consider here linear time propositional
temporal logic (LTL) formulas over Π, using the Boolean connectives ∨ and ¬,
and the temporal operators nexttime © and until U . Temporal logic formulas
are interpreted over infinite sequences over 2Π (see, e.g., [8]). Let σ = x0x1 . . .
be a sequence of states. Denote its suffix xixi+1 . . . by σi. We denote the fact
that a sequence σ satisfies a temporal formula ϕ by σ |= ϕ. For a propositional
formula σi |= ϕ if ϕ holds in the state xi. σi |= ©ϕ if σi+1 |= ϕ. σi |= ϕUψ
holds if there exists j ≥ i such that σj |= ψ, and for each i ≤ k < j, σk |= ϕ.
The other Boolean connectives and Temporal operators (2, 3, V , etc.) can be
defined using the above operators, namely 3ϕ = trueUϕ, 2ϕ = ¬3¬ϕ and
ϕ V ψ = ¬((¬ϕ)U (¬ψ)).

We assume that all the temporal formulas are given in the negation nor-
mal form, i.e., with negation appearing only on propositions. This can be eas-
ily achieved by pushing negation inwards, using the equivalences ¬¬ϕ = ϕ,
¬ © ϕ = ©¬ϕ, ¬(ϕ ∨ ψ) = (¬ϕ) ∧ (¬ψ), ¬(ϕ ∧ ψ) = (¬ϕ)∨(¬ψ), ¬(ϕUψ) =
1 The definition of automata here is a variant of the standard definition for reasons

that will become clear later. In particular, the labeling here is on the states, and
each acceptance set is a set of transitions.

From Model Checking to a Temporal Proof 3

(¬ϕ) V (¬ψ) and ¬(ϕ V ψ) = (¬ϕ)U (¬ψ). The language accepted by a tem-
poral logic formula ϕ, denoted by L(ϕ), is the set of infinite sequences that
satisfy ϕ. Given a temporal formula ϕ, we sketch how to construct an automa-
ton Aϕ = (X,X0, δ

A,FA, LA, 22Π

) such that L(Aϕ) = L(ϕ). The construction
here is essentially the one in [5]. Each state of Aϕ is labeled with a propositional
formula over the variables Π, thus Σ = 22Π

.
With each state x of Aϕ, we associate a formula η(x), such that for every

accepting run σ = x0, x1, . . . of Aϕ, σi |= η(xi). The formula η(x) is of the form

(∧
i=1,...,mx

νx
i

)
∧

(∧
j=1,...,nx

©ψx
j

)
. (1)

Note that each temporal formula can be trivially brought into the form of Equa-
tion (1), when mx = 1 and nx = 0. We denote by present(x) the set of νs

i

formulas, and by next(x) the set of ψx
i formulas. In addition to η(x), we as-

sociate with each state a list of incoming edges from predecessor states. Nodes
(states) are refined and split, according to the formulas in present(x).

We start the construction with a node x that initially contains the formula to
be translated in present(x). The set next(x) is empty, and there is one incoming
edge to x marked with init. This is a dummy edge, pointing to x, but without
any predecessor node. We repeatedly apply to the nodes refinement and splitting,
as follows:

Refinement: If χ1∧χ2 ∈ present(x), we add χ1, χ2 to present(x). Similarly, if
χ1 Uχ2 ∈ present(x), we add to present(x) the formula χ2∨(χ1∧©(χ1 Uχ2)). If
χ1 V χ2 ∈ present(x), we add to present(x) the formula χ2 ∧ (χ1 ∨©(χ1 V χ2)).
Finally, if ©χ ∈ present(x), we add χ to next(x).

Splitting: given a formula of the form χ1 ∨ χ2 in present(x), which was not
used before for splitting, we split the current node into two nodes x1 and x2.
Then we set present(x1) to be present(x) ∪ {χ1} and the value of present(x2)
to be present(x) ∪ {χ2}. The set of subformulas next(x) are copied to next(x1)
and next(x2). We also copy the list of incoming edges from x to x1 and to x2.

We stop refining and splitting a node x when all the formulas in present(x)
were used. We then add node x to the list X of automaton nodes if there exist
no node x′ with present(x) = present(x′) and next(x) = next(x′). Otherwise,
i.e., if there exists such a node x′, we only update the list of incoming edges in
x′ by adding the incoming edges of the new node x. After a new node is added
to X, we generate a successor node x′, and set present(x′) to be the next(x)
formulas, and next(x′) to be empty.

The acceptance conditions FA of Aϕ guarantees that each U subformula of
ϕ is fulfilled. Thus, for every such subformula χ1 Uχ2 of ϕ there is an acceptance
condition in FA that includes all the outgoing edges from nodes x such that
either χ2 ∈ present(x), or that χ1 Uχ2 6∈present(x). The initial states X0 of
Aϕ consist of the states x ∈ X has the incoming edge init. The label LA(x)
of a node x is the propositional formula prop(x), defined as the conjunction of

4 D. Peled and L. Zuck

the propositions and negated propositions that appear in present(x) after the
construction of x.

Theorem 1 For every temporal formula ϕ and automaton Aϕ constructed as
above, L(Aϕ) = L(ϕ).

For every state x of Aϕ, we define µ(x) = ¬η(x), i.e.,

µ(x) = (
∨

i=1,...,mx

¬νx
i) ∨ (

∨
i=1,...,nx

©¬ψx
i)

The following lemma follows immediately from the construction:

Lemma 1 If a node x in the constructed Büchi automaton has n immediate suc-
cessors, x1 . . . xn, then η(x) → ∨

i=1,n ©η(xi). Equivalently,
∧

i=1,n ©µ(xi) →
µ(x).

In order to simplify the automatically generated proof, presented in the sequel,
we can remove from η(x) every formula that causes splitting (e.g., remove χ1∨χ2,
once χ1 or χ2 is added), or refinement. The formula µ(x) is changed accordingly.
Example. Consider the case where we want to verify the property ϕ = 23p,
i.e., p happens infinitely often. Then, we translate ¬ϕ = 32¬p. We can rewrite
this formula with the U and V operators as true U (false V ¬p) or change the
translation algorithm to deal directly with the operator 2 and 3. The automa-
ton obtained in this way appears in Figure 1. In this figure, we translated, for
simplicity, the formulas back to the form with 2 and 3. We included in each
node x the formula µ(x). There is one accepting set for this automaton, which
includes a single transition (x2, x2).

©32¬p ©2¬p
∧¬p

x2x1

Fig. 1. An automaton for ¬ϕ = 32¬p

We consider finite state systems P = 〈V,Θ, T ,FP 〉 consisting of:

V - A set of system variables. A state of the system provides an interpretation
of the system variables V . For a state s and a variable v, we denote by s[v]
the value assigned to v by the state s.

From Model Checking to a Temporal Proof 5

Θ - The initial condition, which is a propositional formula over the variables
V characterizing the initial states.

T - A set of transitions formulas of the form τ(V, V ′), relating the values V of
the system’s variables in state s ∈ S to the values V ′ in a τ -successor s′.

FairP - A set of fair conditions, each element G ∈ FairP is a formula over V
and V ′.

A computation of the system P is an infinite sequence of states σ = s0, s1, . . .
satisfying:

– s0 is initial, i.e., s0 |= Θ
– For each i ≥ 0, the state si+1 is the τ -successor of si for some τ ∈ T . That

is, (si, si+1) |= τ(V, V ′) where for each v ∈ V , we interpret v as si[v] and v′

as si+1[v].
– For every G ∈ FairP , (si, si+1) |= G for infinitely many i’s.

It is easy to represent weakly fair transitions system as automata: The set
of interpretations for the system variables is the set of states SP . The initial
states SP

0 are all the interpretations satisfying Θ. The transition relation δP

is generated by the formulas in T . Each acceptance condition F ∈ FP cor-
responds to the transitions that satisfy a fairness condition G ∈ FairP . The
labeling functions LP maps each state with an assignment over the set of propo-
sitions Π. Note that in some cases we have that V = Π. A weakly fair tran-
sitions system is thus represented by an automaton (SP , SP

0 , δ
P ,FP , LP , 2Π).

Let succ(s) = {s′|(s, s′) ∈ δP }, i.e., the set of successors of node s. Denote by
s −→ {s1, . . . , sn} the fact that s has, according to the automaton P , exactly n
successors, s1, . . . , sn.

For a finite state system P and a temporal formula, we say that ϕ is valid
over P , or that ϕ is P -valid, denoted by P |= ϕ, if for every fair computation σ
of P , σ |= ϕ.

We are mainly interested in concurrent systems over a set processes P. Each
edge in δP corresponds to a transition executed by one or more processes in P .
Under weak process fairness [8], each acceptance condition F in FP corresponds
to a process. It contains all the edges that exist from any state in which that
process is disabled and all the edges that correspond to the execution of an
atomic transition by this process.
Example. Consider a system with two processes, competing on getting to a
critical section. Each process in P = {T1, T2} consists of three transitions. There
is one Boolean variable turn, which arbitrates among the processes, to resolve
the case where both want to enter the critical section. The program counter of
each process pci can be in one of the following labels:

nti The process Ti is currently not trying to enter its critical section.
tri The process Ti is trying to enter its critical section.
cri The process Ti is in its critical section.

6 D. Peled and L. Zuck

turn = 0

turn = 0

turn = 1

turn = 1 turn = 1

turn = 1turn = 0

turn = 0

turn = 0 turn = 0

turn = 1

nt0, nt1

nt0, tr1

nt0, cr1

tr0, nt1

tr0, tr1

tr0, cr1

cr0, nt1

turn = 1

nt0, nt1

nt0, tr1 tr0, nt1

tr0, tr1

cr0, tr1

Fig. 2. A mutual exclusion system

There are three transitions for each process Ti:

t1i = pci = nti ∧ pci′ = tri ∧ pc1−i
′ = pc1−i ∧ turn′ = turn

t2i = pci = tri ∧ pci′ = cri ∧ turn = i ∧ pc′1−i = pc1−i ∧ turn′ = turn
t3i = pci = cri ∧ pci′ = nti ∧ pc′1−i = pc1−i ∧ turn′ = 1 − turn

The initial condition is Θ : pc0 = nt0 ∧ pc1 = nt1. The state space of this
system is presented in Figure 2. For simplicity of the presentation, we do not
impose any fairness constraint on this system (in fact, in this case, fairness would
not make any difference). For a state s ∈ S and a temporal formula ϕ, denote
by (P, s) ↪→ η, the fact that there exists a suffix σ of a sequence accepted by the
system automaton P , which starts with the state s, such that σ |= η. Denote by
(P, s) |= µ the fact that for every suffix σ of a sequence in P , which starts with
the state s, σ |= µ. We often omit P , when it is known from the context, and
write s |= µ instead of (P, s) |= µ. Note that ↪→ and |= are dual relations, since
(P, s) |= µ iff (P, s) 6↪→ ¬µ.

3 Checking the Validity of a Formula over a Program

Our approach can be used to establish a proof that σ |= ϕ for every sequence σ
accepted by the automaton P . We denote that by P |= ϕ.

In order to verify that ϕ is P -valid, we build an intersection automaton that
accepts L(¬ϕ) ∩ L(P), and show it to be empty. Let A¬ϕ be the automaton
(X,X0, δ

A,FA, LA, 22Π

), which accepts L(¬ϕ). Let P be the system automaton
(SP , SP

0 , δ
P ,FP , LP , 2Π). The product automaton, that accepts L(P) ∩ L(¬ϕ),

is AP
¬ϕ = (S, S0, δ,F , L, 2Π), where

From Model Checking to a Temporal Proof 7

1. S = X × SP .
In the intersection graph of AP

¬ϕ, we distinguish two kinds of nodes: success
nodes of the form (x, s), where LP (s) ∈ LA(x), i.e., the propositional as-
signment of s satisfies the propositional formula prop(x), and failed nodes,
otherwise.

2. S0 = X0 × S0.
3. ((x, s), (x′, s′)) ∈ δ iff (x, x′) ∈ δA, (s, s′) ∈ δP and LP (s) ∈ LA(x). That

is, the transition relation agrees with transition relations of both the system
and the property automata. Moreover, there is a transition from a state
(x, s) ∈ S only if it is a success node.

4. The accepting condition consists of the acceptance sets of both automata.
Formally, we define an operator ./ such that for every sets A, B, C ⊆ A×A,
and D ⊆ B ×B,

C ./ D =
⋃

(a,a′)∈C;(b,b′)∈D

(
(a, b), (a′, b′)

)
.

Then, F = {(X ×X) ./ F |F ∈ FP } ∪ {F ./ (SP × SP)|F ∈ FA}.
5. L(x, s) = LP (s); i.e., the labeling of each state is its labeling in the system

automaton.

In order to check that L(AP
¬ϕ) = ∅, it suffices to check that, in the graph

defined by AP
¬ϕ, there is no path leading from S0 to a strongly connected com-

ponent (SCC) that intersects each of the sets in F . An immediate implication
of the construction is:

Theorem 2 Assume L(AP
¬ϕ) = ∅. Then for every initial state (x0, s0) of AP

¬ϕ,
(P, s0) |= ¬ϕ. Thus, P |= ∧

(x0,s0)∈S0
µ(x0).

Example. Consider the system in Figure 2. We want to prove for it the property
23(cr0 ∨ cr1). The property automaton construction is similar to the one in
Figure 1, except that we replace p with cr0 ∨ cr1 (hence, we replace ¬p with
¬cr0 ∧ ¬cr1). The intersection of the property automaton from Figure 1 with
the state space in Figure 2 is shown in Figure 3.

4 Constructing a Temporal Logic Proof

In this approach, we transform AP
¬ϕ into a temporal proof formula. As a prepara-

tory step, we perform Tarjan’s algorithm on the the intersection graph for AP
¬ϕ,

obtaining the strongly connected components.
There is a naturally induced partial order ≺ between the strongly connected

components such that C ≺ C ′ if there is an edge from some node in C to
some node in C ′. In the proof, we need to complete the proof related to all the
components C ′ such that C ≺ C ′, before we start dealing with C.

In this sound and complete proof system there are four kinds of correctness
assertions:

8 D. Peled and L. Zuck

Fig. 3. The intersection of the property automaton in Figure 1 and state space in
Figure 2

Failure axiom Fail. Let (x, s) be a failed node. Then we can conclude that
s |= µ(x).
The justification for this axiom is simple: the node has failed because we
have checked the assignment of the state s against the propositional claim
in x, and the propositional claim has failed to hold. Thus, s |= ¬prop(x).
But, note that ¬prop(x) → µ(x).

Successors rule Succ. Let (x, s) be a successful node, such that x has n
successors x1, . . . , xn, and s has m successors s1, . . . , sm. Then we have

s −→ {s1, . . . , sm}
For each 1 ≤ i ≤ m, si |= ∧

j=1,n µ(xj)
s |= µ(x)

The validity of this proof rule (see Also [2]) stems from the correctness of the
construction. In particular, Lemma 1. Note that in fact, the failure axiom
can be seen as a special case of the successors rule, with no premises.

From Model Checking to a Temporal Proof 9

Induction Ind. Let C be a strongly connected component in AP
¬ϕ. Let Exit(C)

be the set of nodes not in C, with an incoming arrow from a node in C. As-
sume first that the SCC C does not satisfy at least one acceptance condition
that stems from the property automaton. That is, there exists at least one
acceptance set F ∈ FP such that none of the edges in F is in C.

For each (x, s) ∈ Exit(C), s |= µ(x)
For each (x, s) ∈ C, s −→ succ(s)

For each (x, s) ∈ C, s |= µ(x)

In case that the SCC C satisfies all the acceptance conditions that stem from
the property automaton, it must not satisfy at least one condition that stems
from the system fairness (otherwise, the intersection would not be empty).
In this case, we need to add a premise of the following form:

∧
F∈FP

23ΓF

where ΓF is a formula describing the pairs of adjacent states that belong to
F .

Conjunction rule Conj. This rule allows conjoining any pair of conclusions
made on a given state, and making temporal logic interferences (we assume
for the third premise a given sound and complete propositional temporal
logic).

s |= ϕ1, s |= ϕ2, (ϕ1 ∧ ϕ2) → ϕ
s |= ϕ

We can now obtain the formal temporal proof, showing that if L(AP
¬ϕ) = ∅,

then each initial state s ∈ SP
0 satisfies s |= ϕ, i.e., P |= ϕ. This is given according

to the following steps:

1. Translate ¬ϕ into an automaton A¬ϕ, according to the above algorithm.
Construct the intersection graph AP

¬ϕ.
2. Apply Tarjan’s DFS to AP

¬ϕ. Find the SCCs.
3. If all the SCCs are discarded, goto Step 9.
4. Select a strongly connected component C that is not yet discarded, such that

all the SCCs C ′ such that C ≺ C ′ were discarded.
5. If C consists of a single node (x, s) that has no successor (a leaf), then it

must be a failure node. Apply the rule Fail.
6. If C is a trivial SCC, i.e., contains a single node (x, s) without a self loop,

but with successors, apply Succ(x, s).
7. If C is a nontrivial SCC, apply Ind. Note that some successors of the nodes

of C are outside of the SCC, namely in Exit(C). These nodes were handled
previously.

8. Discard C and goto Step 3.

10 D. Peled and L. Zuck

9. Let s be an initial state of P , and x1, . . . , xn be all the states such that (xi, s)
is a node in the intersection. Then apply n−1 times the rule Conj to obtain
that s |= ϕ.

Example. Consider again the property automaton in Figure 1. We have µ(x1) =
©23p and µ(x2) = p∨©3p . Consider the simple system P shown in Figure 4.

s1 s2

¬pp

Fig. 4. A simple system

The intersection of the two automata appears in Figure 5. There are three
strongly connected components:

1. {(x1, s1), (x1, s2)}.
2. {(x2, s2)}.
3. {(x2, s1)}.

The latter two components are trivial. Moreover, the last one consists of a
failed node. We obtain the following proof:

1. Using the Fail axiom on the failed node (x2, s1), we obtain
s1 |= p ∨ ©3p.

2. Applying Succ to the node (x2, s2), we obtain
s2 −→ {s1}
s1 |= p ∨ ©3p
s2 |= p ∨ ©3p

3. Applying line 1 as a premise to line 2, we obtain
s2 |= p ∨ ©3p.

4. We apply the rule Ind to the only strongly connected component in the
graph, C = {(x1, s1), (x1, s2)}, where Exit(C) = {(x2, s2), (x2, s1)}. We ob-
tain
s1 |= p ∨ ©3p
s2 |= p ∨ ©3p
s1 −→ {s2}
s2 −→ {s1}
s1 |= ©23p
s2 |= ©23p

5. Applying lines 1, 3 as premises to line 4, we obtain
s1 |= ©23p and s2 |= ©23p

From Model Checking to a Temporal Proof 11

6. Using the rule Conj, we obtain
s1 |= p ∨ ©3p
s1 |= ©23p
((p ∨ ©3p) ∧ ©23p) → 23p
s1 |= 23p

7. Applying lines 1, 5 as premises to line 6, we obtain
s1 |= 23p.

©2¬p
∧¬p

x2

x1

©32¬p

x2

x1

s1s2

s2s1

©2¬p
∧¬p

©32¬p

Fig. 5. The intersection graph AP
¬ϕ

Consider the mutual exclusion system from Figure 2, and the checked prop-
erty 23(cr0 ∨ cr1). The intersection graph appears in Figure 3. It includes a
nontrivial SCC, whose states are encapsulated with a dotted line. These are the
system states that are paired with the property automaton state x1. The rest
of the states are paired with x2. There are four failed nodes, which have no
successors.

The proof shows how the system progresses towards satisfying 3(cr0 ∨ cr1).
Consider first the nodes outside the nontrivial SCC. From each such node, we
progress into a failed node where either cr0 or cr1 hold. The proof proceeds
from the failed nodes backwards, showing that for each node that contains an x2
component, we have s |= 3(cr0 ∨cr1). The nontrivial SCC provides an induction
over the execution of the system, hence obtaining P |= 23(cr0 ∨ cr1). Note
that we need only one application of the rule Ind here, since there is only one
nontrivial SCC.

12 D. Peled and L. Zuck

5 An Automatic Ranking Function

Together with the proof, we can construct a ranking function ρ that maps each
strongly connected component in the intersection graph into a natural number.
The ranking of an SCC measures the distance of the component from the bottom
of the induced directed acyclic graph of SCCs. The ranking function provides
additional intuition about the way the checked system progresses towards satis-
fying the checked property. In term of the constructed proof, it shows how the
proof progresses towards the failed nodes. We denote by ρ(C) the rank of an
SCC C, and further define ρ(t) = ρ(C) if t ∈ C.

The ranking function ρ must satisfy the following condition: if C ≺ C ′ then
ρ(C) > ρ(C ′). In particular, if C is a trivial SCC consisting of a failed node, it
is often convenient to set ρ(C) = 0.

Let m be the number of bits in the binary representation of the largest
ranking constructed for a state in AP

¬ϕ. For any integer r ≤ 2m − 1, let bit i(r)
be the ith bit in the m-bit binary representation of r. Let Vaug be the set V of
system variables, augmented with a new variable whose value ranges over X,
the set of A¬ϕ-states. This augmentation is needed since the same system state
may have a different rank when combined with a different property automaton
state.

For every rank r that is constructed, let statesr be a (propositional) formula
over the state variables Vaug that describes the set of all (joint) states (x, s) such
that ρ((x, s)) = r. Note that statesr can be obtained automatically from the
above ranking construction.

The following formula,γ(Vaug , r1, . . . , rm) represents the connection between
states and their ranking.

γ =
∨

r=1,...,2m}
(statesr ∧

m∧
i=1

(ri = bit i(r)))

Now, we can express each one of the bits in the binary representation of the
ranking as a formula of the joint automata state.

βi = ∃r1, r2, . . . , rm (γ ∧ ri)
Thus, βi is true only in joint states for which the ith bit of the ranking function
is 1. Finally, we can automatically obtain a formula ρ̂ as the ranking function,
mapping a state (x, s) (or more precisely, the corresponding assignments to Vaug)
to its ranking ρ((x, s)). We assume that we can use in such a formula Boolean
expressions that return the value 0 for false and 1 for true. A ranking formula
ρ̂(Vaug) can be obtained as follows:

ρ̂ =
∑

i=1,...,m

2i−1 × βi.

Note that the formulas βi can be simplified, e.g., using the help of a BDD
package.

From Model Checking to a Temporal Proof 13

Example. Consider for example a ranking for the intersection in Figure 3.

State formula rank r bit1(r) bit0(r)
cr0 ∨ cr1 0 0 0
tr0 ∧ tr1 1 0 1
(tr0 ∧ nt1) ∨ (nt0 ∧ tr1) 2 1 0
nt0 ∧ nt1 3 1 1

It is easy to see that the least significant bit of the binary representation, β0
can be expressed as (tr0 ∧ tr1) ∨ (nt0 ∧ nt1). The most significant bit β1 can be
expressed as (nt1 ∧ tr0) ∨ (nt0 ∧ tr1) ∨ (nt0 ∧ nt1).

The ranking function formula ρ̂ requires considerable simplification, before
presenting the resulted expression to the user. For that, we can exploit the
following options:

– We can use some additional conditions, regarding the relationship between
the system variables. For example, in the mutual exclusion system, we can
add the following conditions: (nt0 ∨ tr0 ∨ cr0) ∧ (nt1 ∨ tr1 ∨ cr1) ∧ ¬(nt0 ∧
tr0) ∧ ¬(nt0 ∧ cr0) ∧ ¬(tr0 ∧ cr0) ∧ ¬(nt1 ∧ tr1) ∧ ¬(nt1 ∧ cr1) ∧ ¬(tr1 ∧ cr1).

– The definition of the ranking function gives us some freedom in assigning
the actual ranks to SCCs (and their nodes). For example, in the mutual
exclusion system, we decided to give a ranking of 0 to all the failure nodes.
However, we could have decided to give a ranking of 0 to the nodes where
(cr0 ∧ tr1) ∨ (tr0 ∧ cr1), and a ranking of 1 to the nodes where (cr0 ∧ nt1) ∨
(nt0 ∧ cr1).

– After finding the expressions for the different bits, we can attempt to
collect together similar terms in order to simplify the ranking formula
ρ̂ =

∑
i=1,...,m 2i−1 × βi. Terms that appear in different βi’s should be

grouped together, with their multiplication constants added together.

6 Conclusions

Model checking is mostly identified with finding errors. We presented an algo-
rithm for the automatic construction of a proof that the checked property holds
in the verified system. The proof is automatically obtained directly from a graph
(of an automaton) that is generated by model checking. Such a proof may help
in gaining more intuition about the verified system. The ability to automatically
form such a proof can be further exploited to conclude new properties of the
verified system.

The algorithm presented here can be added to model checking systems that
are based on automata theory. In particular, the SPIN system [6] contains an
implementation of the LTL translation algorithm in [5].

14 D. Peled and L. Zuck

Acknowledgements. We would like to thank Elsa Gunter and Amir Pnueli
for inspiring discussions about this subject. David Long has provided help with
his OBDD package. It was brought to our attention that, in parallel with our
work, Kedar Namjoshi has developed an algorithm for the automatic generation
of proofs for the µ-calculus [9].

References

1. E. M. Clarke, E. A. Emerson, Design and synthesis of synchronization skeletons
using branching time temporal logic. Workshop on Logic of Programs, Yorktown
Heights, NY, 1981, LNCS 131, Springer-Verlag.

2. G. Bhat, R. Cleaveland, O. Grumberg, Efficient on-the-fly model checking for
CTL∗. Logic in Computer Science, 1995, San Diego, CA, 388-397

3. E. M. Clarke, O. Grumberg, D. Peled, Model Checking, MIT Press, 2000.
4. E. A. Emerson, E. M. Clarke, Characterizing correctness properties of parallel

programs using fixpoints, LNCS 85, Springer Verlag, Automata, Languages and
Programming, July 1980, 169–181.

5. R. Gerth, D. Peled, M. Y. Vardi,, P. Wolper, Simple on-the-fly automatic veri-
fication of linear temporal logic, Protocol Specification Testing and Verification,
3–18, Warsaw, Poland, 1995. Chapman & Hall.

6. G. J. Holzmann, Design and Validation of Computer Protocols, Prentice-Hall Soft-
ware Series, 1992.

7. R.P. Kurshan. Computer-Aided Verification of Coordinating Processes: The
Automata-Theoretic Approach. Princeton University Press, Princeton, New Jer-
sey, 1994.

8. Z. Manna, A. Pnueli, The Temporal Logic of Reactive and Concurrent Systems:
Specification, Springer, 1991.

9. K. Namjoshi, Certifying model checkers, Submitted to CAV 2001.
10. M. Y. Vardi, P. Wolper, An automata-theoretic approach to automatic program

verification. Proc. 1st Annual Symposium on Logic in Computer Science IEEE,
1986.

Model Checking if Your Life Depends on It:
A View from Intel’s Trenches

Rob Gerth

Strategic CAD Laboratories (SCL), Intel corp., USA
rob.t.gerth@intel.com

Abstract. Hardware design is considered one of the traditional areas for
formal (property) verification (FPV); in particular for symbolic model
checking. Indeed, Intel, SUN, Motorola and IBM all develop and deploy
model checking tools to ensure design correctness. On the other hand,
hardware design is hostile territory because of the huge effort companies
traditionally invest in classical testing and validation techniques which
tend to be much more automated, require less sophistication from users
and which will, in fact, discover many errors when deployed on such a
scale. For these reasons FPV will never fully supplant traditional valida-
tion.
The real challenge lies in convincing processor design teams that divert-
ing some of their validation resources to FPV leads to provably higher
design quality. Complicating factors include the relatively high quality
of traditional validation—at least within Intel—which raises the bar for
FPV; and the fact that in high-performance processors design large parts
of the RTL tends to remain unstable enough throughout the design to
make it very hard to verify suitable micro-architectural abstractions. For
these reasons, FPV within Intel traditionally targets the same RTL from
which the schematics is derived and on which all traditional validation
is performed.
Arguably the biggest (public) FPV success story within Intel is that of
floating point hardware verification and it is illustrative to see how FPV
is deployed in this area and how tool and methodology development is
influenced.
The major challenge that we are now facing is to move formal verification
upstream in the design flow. Not only because ever increasing micro-
architectural complexity creates a strong demand for early verification
on an algorithmic level, but also because the ever shortening design cycle
forces formal verification to start much earlier in the design. It is here
that hardware FPV and software verification start to merge and there
are lessons to be learned for either side.

M.B. Dwyer (Ed.): SPIN 2001, LNCS 2057, p. 15, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Model-Checking Infinite State-Space Systems
with Fine-Grained Abstractions Using SPIN

Marsha Chechik, Benet Devereux, and Arie Gurfinkel

Department of Computer Science, University of Toronto,
Toronto, ON M5S 3G4, Canada.

{chechik,benet,arie}@cs.toronto.edu

Abstract. In analyzing infinite-state systems, it is often useful to de-
fine multiple-valued predicates. Such predicates can determine the (fi-
nite) levels of desirability of the current system state and transitions
between them. We can capture multiple-valued predicates as elements of
a logic defined over finite total orders (FTOs). In this paper we extend
automata-theoretic LTL model-checking to reasoning about a class of
multiple-valued logics. We also show that model-checking over FTOs is
reducible to classical model-checking, and thus can be implemented in
SPIN.

1 Introduction

Currently, model-checking is essentially limited to reasoning about medium-sized
finite-state models. Reasoning about large models, especially if these are not
finite-state, is typically done using abstraction [CGL94]. Abstraction techniques,
such as abstract interpretation [CC77], require the user to supply the mapping
between concrete and abstract data types in their models. Predicate abstraction,
introduced by Graf and Saidi [GS97], is a form of abstraction specified as a
number of predicates over the concrete data. For example, if we are interested
in checking whether x is always positive, we can define predicates x > 0 and
x ≤ 0, and use them to compute the abstract system. A number of researchers,
e.g., [CU98,VPP00,BDL96,DDP99,SS99], explored the use of predicate abstrac-
tion.

However, boolean predicates often do not give the desired precision. For
example, consider reasoning about a leader-election protocol, parameterized by
N – the number of processes engaged in it. We can either set N to be a (small)
constant, and define predicates on the exact number of processes that have agreed
on the elected leader; or leave N as is, and define predicates such as “everyone
agreed on the leader”, “no one agreed on the leader”, etc. In this situation
we cannot ask questions about the likelihood of the agreement, whereas such
questions may be desirable.

As an alternative, we propose modeling such systems using multiple-valued
predicates, where their values form a linear order. In the above situation, we
can assign different values to the level of agreement on the leader: “everyone

M.B. Dwyer (Ed.): SPIN 2001, LNCS 2057, pp. 16–36, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Model-Checking Infinite State-Space Systems 17

agreed”, “the agreement is likely”, “no information is available”, “the agreement
is unlikely”, “no one agreed”, obtaining a linear order on the level of agreement.
Furthermore, if we do not limit ourselves to classical logic, our model-checking
procedure will distinguish between different values of agreement, e.g., between
cases where no agreement has been reached and where complete agreement has
not been reached, but the majority have agreed. Taking this reasoning one step
further, we can assign values to transitions. Intuitively, a transition value is the
possibility that it will be taken. Thus, we can potentially distinguish between
paths that can always be taken, paths that can likely be taken, etc.

In fact, giving predicates values from a linear order can be useful in a vari-
ety of situations: (a) consensus-building, where the abstraction is over counting
(e.g., the leader-election protocol mentioned above); (b) explicitly distinguish-
ing between “regular” and “faulty” behaviors, where we may be interested in
properties that hold always, and those that hold “most of the time”, i.e., over
“regular” behaviors; (c) rechecking a partial system after a change to it has been
made, where we are interested in differentiating between possible effects of the
change; (d) any situation where we want to assign “desirability” to a transition.
This can happen in cases where we have varying tolerances, e.g., in analyzing
families of SCR specifications [HJL96].

Note that using linear order-valued predicates does not increase the expres-
sive power of our modeling language, since they can be encoded using a number
of boolean predicates. However, such encoding results in cluttering the models
with lots of auxiliary variables that bear no natural meaning, and, more im-
portantly, greatly increases the sizes of the models, making model-checking less
feasible [HK93].

Multiple-valued reasoning has been explored in a variety of domains. For ex-
ample, a nine-valued logic is prescribed as a standard [IEE93] for VLSI design,
where the interpretation of values is in terms of voltage thresholds. Other exam-
ples include databases [Gai79], knowledge representation [Gin87], and machine
learning [Mic77]. However, most of the work concentrated on the 3-valued rea-
soning, with values “True”, “Maybe” and “False”. Melvin Fitting [Fit91,Fit92]
has done seminal work in studying 3-valued modal logic, and our work on logic in
this paper is somewhat similar to his. Three-valued logic has also been shown to
be useful for analyzing programs using abstract interpretation [CD00,SRW99],
and for analyzing partial models [BG99,BG00]. Bruns and Godefroid also proved
that automata-theoretic model-checking on 3-valued predicates reduces to clas-
sical model-checking.

In this paper we give semantics to automata-theoretic model-checking over
arbitrary finite linear orders. We define multiple-valued Büchi automata and
multiple-valued LTL and show that such model-checking reduces to a classical
problem, and thus can be implemented on top of SPIN. The rest of this paper is
organized as follows: we review the definition of linear orders and define multiple-
valued sets and relations over them in Section 2. χLTL, a multiple-valued exten-
sion of LTL, is defined in Section 3. Section 4 defines multiple-valued languages
and Büchi automata. In Section 5 we show how to represent χLTL logic formulas

18 M. Chechik, B. Devereux, and A. Gurfinkel

T

F

T

M

F

(Definitely True)

(Maybe, Unknown)

(Definitely False)

T

L

M

U

F

(Definitely True, Must)

(Likely, Weakly True, Should, Majority True)

(Unknown, Undefined, Maybe, No Consensus)

(Unlikely, Weakly False, Should Not, Majority False)

(Definitely False, Must Not)

(a) (b) (c)

Fig. 1. (a) 2, the classical logic FTO; (b) 3, a three-valued logic FTO; (c) 5, a five-
valued logic FTO and possible interpretations of its values.

as multiple-valued Büchi automata. Section 6 defines the model-checking prob-
lem on multiple-valued Büchi automata and shows that it reduces to a number
of queries to a classical model-checker, such as SPIN. We conclude the paper in
Section 7.

2 Preliminaries

In this section we review the definition of logics based on total orders. We also
define multiple-valued sets and relations over them.

2.1 Finite Total Orders

A partial order is a relation which is reflexive, symmetric, and transitive. A
partially ordered set, usually abbreviated poset, is a pair L = (O,v) where O
is a set and v a partial order defined on it. If, for all a, b ∈ O, either a v b or
b v a, then v is a total order or linear order. We consider, for the purposes of
this paper, only finite totally ordered sets, which we refer to as FTOs.

The operations of maximum and minimum are defined on FTOs as follows:

a u b = a ⇔ a v b (minimum) a t b = b ⇔ a v b (maximum)
b u a = a ⇔ a v b (minimum) b t a = b ⇔ a v b (maximum)

Lemma 1. Let (O,v) be an FTO. Then for all a, b, c ∈ O,

c v a u b ⇔ (c v a) ∧ (c v b) (min-∧)
c v a t b ⇔ (c v a) ∨ (c v b) (max-∨)

Model-Checking Infinite State-Space Systems 19

We further define ⊥ = d O and > =
⊔ O.

Any FTO of height n is isomorphic to the integers from 0 to (n−1) with the
ordinary ordering. We call this isomorphism the canonical isomorphism for the
FTO and denote it by ζL. The difference between two elements of an FTO is
their absolute difference:

a	 b = |ζL(a) − ζL(b)|
and negation in the FTO can be defined in terms of difference:

¬a , > 	 a (def. of negation)

FTOs with this definition of negation satisfy the following properties:

¬(a u b) = ¬a t ¬b (De Morgan) ¬¬a = a (¬ involution)
¬(a t b) = ¬a u ¬b a = b ⇔ ¬a = ¬b (¬ bijective)

¬⊥ = > (⊥ negation) ¬> = ⊥ (> negation)
a v b ⇔ ¬a w ¬b (¬ antimonotonic)

In this paper we use multiple-valued logics whose truth values form an FTO.
Conjunction and disjunction of the logic are defined as u and t (meet and join)
operations of (O,v), respectively, and negation is defined as the ¬ operator of
(O,v). In fact, we will not distinguish between an FTO and a logic it defines,
referring to both as L. We also note that most of the usual laws of logic are
obtained in L, with the exception of the laws of Universality (a u ¬a = ⊥) and
Excluded Middle (a t ¬a = >).

Figure 1 presents several commonly-used FTOs: classical logic, a three-valued
logic with uncertainty, and a five-valued logic with more degrees of uncertainty.

2.2 Multiple-Valued Sets and Relations

Let L = (O,v) be an FTO and D be some (finite) domain. We consider OD, the
set of all total functions from D into O, and refer to elements of OD as multiple-
valued subsets of D, and, when D is clear from the context, just multiple-valued
sets or MV-sets. We introduced this notion in [CDE01a], and briefly review it
below.

Definition 1. Given multiple-valued sets A,B ∈ OD,

x ∈L A , A(x) (MV-set membership)
x ∈L A ∪L B , A(x) tB(x) (MV-set union)
x ∈L A ∩L B , A(x) uB(x) (MV-set intersection)

x ∈L A , ¬A(x) (MV-set complement)

Consider the multiple-valued set of Figure 2. In this example, we use the
three-valued FTO 3 to model ambiguity about whether 0 is a positive integer.
The MV-set is Z

+? ∈ 3Z, where for all n ≥ 1, (n ∈L Z
+?) = >; for all n ≤ −1,

(n ∈L Z
+?) = ⊥; and (0 ∈L Z

+?) = M.

20 M. Chechik, B. Devereux, and A. Gurfinkel

[1; 2; 3; : : :)

0

(: : : ;�3;�2;�1]

Fig. 2. An example of a multiple-valued set over 3.

Theorem 1. [Gol99] Let D be a finite set, and (O,v) be an FTO. Define vOD

as follows for any f, g ∈ OD:

f vOD g ⇔ ∀d ∈ D · f(d) v g(d).

Then (OD,vOD) is an FTO, with MV-union and MV-intersection defined as
join and meet, respectively.

The practical use of this result is that all of the properties defined for FTOs,
such as the De Morgan rules and distributivity, carry over to MV-sets.

Given two sets P,Q, we can define a multiple-valued relation [CDE01a] on
them as a multiple-valued subset of P ×Q, or an element of OP×Q.

This work is, to our knowledge, the first use of valued subsets in formal
verification; however, such theories are developed elsewhere [Eil78,Gol99].

3 χLTL

In this section we extend the semantics of LTL to allow reasoning over a given
FTO L = (O,v), representing our multiple-valued logic. We refer to the re-
sulting language as χLTL. Just like in classical propositional LTL, formulas in
χLTL are built from a set Prop of values of atomic propositions and are closed
under the application of propositional operators, the unary temporal connective
◦ (“next”) and the binary temporal connective U (“until”). χLTL is interpreted
over multiple-valued computations. A computation is a function π : N → OProp

which assigns values from the logic L to the elements of Prop at each time instant
(natural number). For a computation π and a point i ∈ N, we have:

π, i |=L p , p ∈L π(i)
π, i |=L ¬ϕ , ¬(π, i |=L ϕ)
π, i |=L ϕ ∧ ψ , π, i |=L ϕ u π, i |=L ψ

π, i |=L ϕ ∨ ψ , π, i |=L ϕ t π, i |=L ψ

Model-Checking Infinite State-Space Systems 21

ϕ U ψ = ψ ∨ (ϕ ∧ ◦(ϕ U ψ))
3ψ = ψ ∨ ◦(3ψ)
2ψ = ψ ∧ ◦(2ψ)
ϕR ψ = ψ ∧ (ϕ ∨ ◦(ϕR ψ))

Fig. 3. Properties of χLTL operators.

L L T L L

t0 t1 t2

F T

U U

active[i] =

le =

Fig. 4. A partial execution of the Leader Election protocol.

Now we define the temporal operators:

π, i |=L ◦ϕ , π, i+ 1 |=L ϕ

π, i |=L ϕ U ψ ,
⊔
j≥i

(
(π, j |=L ψ) u (d

i≤k<j
π, k |=L ϕ)

)

The value of a property on a run is the value that it has in the 0th state of
the run:

π |=L ϕ , π, 0 |=L ϕ

As usual, 3ϕ = > U ϕ, 2ϕ = ¬3¬ϕ, and ϕR ψ = ¬(¬ϕ U ¬ψ). χLTL oper-
ators satisfy the expected LTL properties, for example, the fixpoint properties
in Figure 3.

Consider the example in Figure 4. This figure presents partial execution of
the Leader Election protocol specified using the five-valued logic 5. Let N be
the number of processes (which we assume to be an even number), and K be
the number that have agreed on the leader. We abstract K using the 5-valued
predicate le (“leader elected”) which is true when K = N , weakly true when
(N/2) < K < N , undecided when K = N/2, weakly false when 0 < K < (N/2),
and false when K = 0. Let active[i] indicate that the ith process is currently
active. In this system, π, 0 |=L le is U, π, 0 |=L le ∧ active[i] is F (⊥), and
π, 0 |=L ¬active[i] is T (>). The value for le indicates that originally there
was no consensus on the leader (U), then consensus started forming (L) and was
reached (T). However, in the next state one of the processes changed its mind,
and thus the consensus went back to L. For this run, the value of 3le is T,
but the value of 32le is L. Note that we get this value without the need to
re-annotate our model under a different level of abstraction and rerun the check.

22 M. Chechik, B. Devereux, and A. Gurfinkel

4 Multiple-Valued Languages and Automata

In the task of using multiple-valued logic for system specification and verification,
it is natural to consider multiple-valued formal languages and multiple-valued
automata. We introduce them in this section.

4.1 Multiple-Valued Languages

Let Σ be a finite alphabet, Σ∗ be the set of all finite words over Σ, Σω be the set
of all infinite words, and Σ≤ω = Σ∗ ∪Σω. We can catenate any two finite words,
and consider the empty string λ as the identity for catenation: wλ = λw = w.
The empty string is contained in Σ∗, but not in Σω.

Definition 2. A multiple-valued language over an alphabet Σ is a multiple-
valued subset of Σ∗, or an element in OΣ∗

; a multiple-valued ω-language is an
element in OΣω

. A multiple-valued language X is proper if (λ ∈L X) = >.

We shall use the term “MV-language” to refer, indiscriminately, to any multiple-
valued language or ω-language, wherever the distinction is not important. An
MV-language is an assignment of values to words. If O = 2, then an MV-
language is an ordinary formal language, where every word that is assigned
value > is considered to be in the language. The properness criterion assures
that λ is contained in the language as the identity for catenation.

MV-languages are just MV-sets of words, so union, intersection, and comple-
ment are already defined on them. The standard language operation of catenation
can be extended to the multiple-valued case, as given below.

Definition 3. Given X,Y ∈ OΣ∗
and w ∈ Σ∗,

w ∈L XY ,
⊔

{u,v|w=uv}
(u ∈L X) u (v ∈L Y) (MV-language catenation)

Transitive closure (Kleene star) and infinite closure (ω) can be defined in terms
of multiple-valued catenation.

Consider the two multiple-valued languages X = {a → T, ab → L} and
Y = {bc → M, c → U}, defined on the logic 5. We are interested in the value
that abc has in XY . It can be formed either by catenating a and bc, with value
T uM = M , or by catenating ab and c, with value LuU = U . By the definition,
we take the maximum of those two values, making the value of abc ∈L XY to
be M .

4.2 Multiple-Valued Automata

A multiple-valued finite automaton A takes any word w ∈ Σ≤ω and computes
its membership degree, a value in O. Thus, an automaton corresponds to a

Model-Checking Infinite State-Space Systems 23

multiple-valued language L(A). Details about multiple-valued automata on fi-
nite words (in the more general case, of semiring-valued languages) can be found
elsewhere [Eil78]; our treatment of multiple-valued infinite words and their au-
tomata is, so far as we know, new, but it is a natural extension.

A multiple-valued Büchi automaton has transitions between states that take
on some value ranging between > or ⊥ of an FTO. This value, intuitively, is a
possibility that a transition will be taken. Thus, we can assign possibilities to
individual transitions and to infinite strings that the automaton receives.

Definition 4. A multiple-valued Büchi automaton, or χBüchi automaton, is a
tuple (L, Q, q0, Σ,∆, F) where:

– L = (O,v) is an FTO;
– Q is a finite set of states;
– q0 is the unique initial state;
– Σ is a finite alphabet;
– ∆ ∈ OQ×Σ×Q is the multiple-valued transition relation. ∆(q, α, q′) gives the

value of the transition from q to q′ on symbol α;
– F is a set of accepting states.

The runs of the automaton are infinite sequences of states, always beginning
with q0. We define a projection of Q onto F as

πF (q) =
{
q if q ∈ F
λ otherwise

which we extend to Qω, and define the accepting runs AR of the automaton to
be the elements of

{σ | πF (σ) ∈ Fω}.
Intuitively, AR is the set of all runs in which some accepting state occurs in-
finitely often.

For a χBüchi automaton A, L(A) ∈ OΣω

is the multiple-valued subset of
Σω defined by the automaton. The value assigned by the automaton to a word
w = w0w1w2 . . . in Σω is given in terms of the accepting runs:

(
w ∈L L(A)

)
=

⊔
σ∈AR

d
i∈N

∆(σi, wi, σi+1)

Consider the χBüchi automaton in Figure 5. This automaton assigns values
from 5 to its inputs. In the input sequence abbcdω, the prefix abb takes the au-
tomaton only through >-valued transitions. Then, c follows an L-transition to an
accepting state; after this occurs, the value of the whole sequence cannot exceed
L. The automaton loops through the accepting state on the infinite sequence of
d’s, so this word is accepted with value L.

χBüchi automata are similar in spirit to Markov chains [Fel68]. Markov
chains also assign values, representing probabilities, to nonterminating finite-
state computations, and have been used [VW86] to check probabilistic system
specifications. Our approach is more possibilistic, motivated by the problem of

24 M. Chechik, B. Devereux, and A. Gurfinkel

a / > c / L

e / U

b / > d / >

Fig. 5. An example χBüchi automaton.

requirements analysis. Given two independent events, the probability of the oc-
currence of at least one is the sum of their individual probabilities; but the
possibility or necessity of at least one event occuring is the maximum of their
individual possibilities.

4.3 Composition

Our definitions of parallel composition, synchronous and asynchronous, are ex-
tensions of the standard construction [Tho90].

We start by defining synchronous parallel composition, or MV-intersection
of languages. Let L1 and L2 be multiple-valued ω-languages and A1 =
(L, Q1, q

1
0 , Σ,∆1, F1) and A2 = (L, Q2, q

2
0 , Σ,∆2, F2) be χBüchi automata

for L1 and L2, respectively. We construct two classical automata, Âi (for
i = 1, 2), where ∆̂i(q, α, q′) is true exactly if ∆i(q, α, q′) 6= ⊥. Then we in-
tersect the two classical automata, creating Â12 = (Q1 × Q2 × {0, 1, 2}, (q10 ,
q20 , 0), Σ, ∆̂12, F1 ×F2 × {2}). Finally, we create the multiple-valued intersection
of the two χBüchi automata by transforming Â12 into a χBüchi automaton A12
with the new multiple-valued transition relation:

∆12
(
(q, r, j), α, (q′, r′, j′)

)
=

∆1(q, α, q′) u∆2(r, α, r′)
if ∆̂12

(
(q, r, j), α, (q′, r′, j′)

)
⊥otherwise

for all j ∈ {0, 1, 2}.

Theorem 2. The value that A12 gives to a word w is the same as its value in
L1 ∩L L2.

Figure 6 illustrates the intersection construction. The first automaton gives
the value > to acω and L to baω; the second gives value > to baω. Every other
word evaluates to ⊥. In the intersection, acω becomes ⊥, and baω evaluates to
the minimum of L and >, namely L. Note that (q2, r1) is labelled with 2, making
it an accepting state in the intersection automaton, because it is a final state in
both A1 and A2.

We proceed to define asynchronous composition on two χBüchi automata
with (possibly different) alphabets and the same logic.

Model-Checking Infinite State-Space Systems 25

a / >

b / L

c / >

a / >

q0

q1

q2

b / >

a / >

r0 r1

b / L

a / >

(q0; r0; 0) (q2; r1; 2)

(a) (b) (c)

Fig. 6. Intersection of χBüchi automata. (c) shows the intersection of automata in (a)
and (b).

Definition 5. Let A1 = (O, Q1, q
1
0 , Σ1, ∆1, F1), A2 = (O, Q2, q

2
0 , Σ2, ∆2, F2)

be two χBüchi automata. The asynchronous composition A1 || A2 = (O, Q1 ×
Q2, (q10 , q

2
0), Σ1 ∪Σ2, ∆, F) of the two automata has the following transition re-

lation:

∆
(
(q1, q2), α, (q′

1, q2)
)

= ∆1(q1, α, q′
1) if q1 6= q′

1
∆

(
(q1, q2), α, (q1, q′

2)
)

= ∆2(q2, α, q′
2) if q2 6= q′

2
∆

(
(q1, q2), α, (q1, q2)

)
= ∆1(q1, α, q1) t∆2(q2, α, q2) otherwise

A state (q1, q2) of the asynchronous composition is considered final if either q1
or q2 are final, so

F = (F1 ×Q2) ∪ (Q1 × F2)

5 Conversion between χLTL and χBüchi Automata

In this section we describe how to convert between χLTL formulas, defined in
Section 3 and χBüchi automata. Our algorithm is based on the classical LTL to
Büchi automata conversion algorithm presented in [GPVW95]. As in [GPVW95],
we start by defining Generalized χBüchi Automata and Labeled Generalized
χBüchi Automata (LGχBA).

Definition 6. A Generalized χBüchi automaton (GχBA) is a tuple
(L, Q, q0, Σ,∆,F) where L, Q, q0, Σ and ∆ are as in ordinary χBüchi automata,
but F = {F1, F2, . . . , Fk} is a set of k sets of accepting states. Each set Fi has
the projection πFi defined for it, and the accepting runs are those where at least
one element from each Fi appears infinitely often:

AR = {σ | σ ∈ q0Q
ω ∧ ∀i ≤ k · πFi(σ) ∈ Fωi }

26 M. Chechik, B. Devereux, and A. Gurfinkel

Definition 7. A Labeled Generalized χBüchi Automaton (LGχBA) is a tuple
(L, Q, q0, Σ,∆,F , Lab) where:

– L = (O,v) is an FTO;
– Q is a finite set of states;
– q0 is the unique initial state;
– Σ = OProp is an alphabet consisting of all multiple-valued sets over the set
Prop of propositional symbols;

– ∆ ∈ OQ×Q is a multiple-valued transition relation;
– F = {F1, F2, . . . Fn} is a set of sets of accepting states;
– Lab : Q → 2Prop∪¬Prop is a labeling function that assigns a subset of Prop∪

¬Prop to every state.

The set of accepting runs (AR) for a LGχBA is defined the same as for a
Generalized χBüchi automaton given in Section 4.

Notice that each element α ∈ Σ is a total function from Prop to O. We extend
this function to elements of ¬Prop by defining α(¬p) , ¬α(p), ∀p ∈ Prop. Let
α̂ : 2Prop∪¬Prop → O be a set-wise extension of α, defined as

α̂(D) , d
d∈D

α(d) (set-wise extension)

For a Labeled Generalized χBüchi automaton A, L(A) ∈ OΣω

is the multiple-
valued subset of Σω defined by the automaton. The value assigned by the au-
tomaton to a word w = w0w1w2 . . . in Σω is given in terms of the accepting
runs:

w ∈L L(A) =
⊔

σ∈AR
d
i∈N

∆(σi, σi+1) u ŵi
(
Lab(σi+1)

)

where ŵi is the set-wise extension of wi.
Given an LTL property ϕ, the algorithm in [GPVW95] constructs a Labeled

Generalized Büchi automaton in two major steps. In the first step, it uses the
syntactic structure of the formula to construct a graph G = (V,E) together with
three labeling functions, New, Old, and Next, that assign a subset from a closure
of ϕ to each node of G. In the second step, the algorithm constructs an automa-
ton, using G to define its basic structure, and the labeling functions to define
its accepting states and state labels. The resulting Generalized Labeled Büchi
automaton accepts a word if and only if the word satisfies ϕ. This automaton
can be easily converted into a Büchi automaton with a polynomial blowout in
its size.

Since χLTL is syntactically equivalent to LTL, we reuse the graph construc-
tion part of the algorithm in [GPVW95]. Thus, given a χLTL property ϕ, our
algorithm starts by constructing a graph G = (V,E) and the node labeling func-
tions New, Old, and Next using the procedure in [GPVW95]. However, we modify
this procedure to ensure the correct handling of p ∧ ¬p (not necessarily ⊥) and
p∨ ¬p (not necessarily >), where p is any propositional formula. The algorithm

Model-Checking Infinite State-Space Systems 27

f g

fpg

f g

q0

q1

q2

q3

Fig. 7. A LGχBA corresponding to 3p.

then proceeds to construct a LGχBA A = (L, Q, q0, Σ,∆,F , Lab) by letting the
set of states Q of the automaton be the nodes of G, with the root node of G
being the initial state q0. The accepting set F is constructed as in the original
algorithm. The transition relation ∆ is constructed from the edges of the graph
G such that ∆(q, q′) = > if the edge (q, q′) is in G, and ∆(q, q′) = ⊥ otherwise.
Finally, the labeling function Lab is constructed as a restriction of the labeling
function Old to the set of all positive and negative propositional symbols of ϕ;
that is, for a given state q, Lab(q) = Old(q)∩ (Prop∪¬Prop). It is easy to show
that the resulting LGχBA can be transformed into a χBüchi automaton via an
extended version of the transformation used in the classical case.

For example, consider the automaton in Figure 7 which corresponds to a
χLTL property 3p. In this figure we show only > transitions. Every accepting
run of this automaton must pass through the state q2. Therefore, the value that
the automaton assigns to a given word w is

⊔
i∈N

(p ∈L wi)

which corresponds to the definition of w |=L 3p from Section 3.

Theorem 3. The automaton A constructed for a property ϕ assigns a value `
to an infinite sequence w over OProp if and only if ` = (w |=L ϕ).

Proof. The proof is a straightforward extension of the proof of correctness of the
algorithm in [GPVW95], and is omitted here. ut

The immediate consequence of Theorem 3 is that if L is 2, the automaton con-
structed by our algorithm is equivalent to the Labeled Generalized Büchi au-
tomaton produced by the original algorithm in [GPVW95].

28 M. Chechik, B. Devereux, and A. Gurfinkel

fag / > fcg / L

feg / U

fbg / > fdg / >

q0 q1 q2

Fig. 8. An example Büchi automaton 2.

6 χLTL Model-Checking

In this section we define automata-theoretic multiple-valued model-checking and
describe a decision procedure for it.

6.1 The Model-Checking Problem

Automata-theoretic model-checking procedure can be viewed as a function that
receives a program P and property ϕ and returns a value from the logic L
indicating the possibility that (the degree to which) P satisfies ϕ. For example,
in the classical case MC(P,ϕ) = > if and only if every computation of P satisfies
ϕ. In the remainder of the paper we use MC to indicate the classical model-
checking function. MC is formally defined as

MC(P,ϕ) , ∀w ∈ Σω · w ∈ L(AP) → w ∈ L(Aϕ) (MC-definition)

where AP and Aϕ are the Büchi automata corresponding to the program P and
property ϕ, respectively.

We extend this definition to the multiple-valued case and define a multiple-
valued model-checking function χMC as follows:

Definition 8. Let P be a multiple-valued program, ϕ a χLTL property, and
AP , Aϕ the corresponding χBüchi automata. Then, the multiple-valued model-
checking function χMC is defined as

χMC(P,ϕ) , d
w∈Σω

(
w ∈L L(AP) → w ∈L L(Aϕ)

)
(χMC-definition 1)

, ¬
⊔

w∈Σω

(
w ∈L L(AP) u w ∈L L(A¬ϕ)

)
(χMC-definition 2)

Intuitively, the possibility of a program satisfying a property is inversely
proportional to the possibility that the program can produce a computation
violating the property. For example, consider a χBüchi automaton in Figure 8,
corresponding to some program P . The set of propositional symbols of this

Model-Checking Infinite State-Space Systems 29

automaton is {a, b, c, d, e}, and as each transition is taken, exactly one of these
symbols becomes > and the rest become ⊥. Thus all transitions are labeled with
singleton sets. For example, a transition between q1 and q2 is labeled with {c}/>
to indicate that the transition is taken with possibility L when c becomes > (and
a, b, d, e become ⊥). Any non-⊥ computation w of this automaton contains a wi
such that (d ∈L wi) = >; therefore, the result of χMC(P,3d) is >. That is, the
program satisfies the property 3d with the value >. On the other hand, the value
of χMC(P,32d) = L since there exists a computation w = {a}({c}{d}{e})ω,
s.t.

(
w ∈L L(A)

)
= U and

(
w ∈L L(¬32d)

)
= >.

To establish correctness of our definition we show that it is equivalent to the
classical definition when the logic used is 2, and that it preserves the expected
relationships between programs and χLTL properties.

Theorem 4. Let P be a program, ϕ be a (χ)LTL property, and AP , Aϕ be the
corresponding (χ)Büchi automata. Then, if the logic L used to define the χBüchi
automata is 2, then

MC(P,ϕ) = χMC(P,ϕ)

Proof. Follows directly from the definitions of MC and χMC. ut

Intuitively, the degree to which a program P satisfies a conjunction of two
properties cannot exceed the degree to which it satisfies each of these properties
individually. Similarly, the degree to which a program P satisfies a disjunction
of two properties is higher then the degree to which it satisfies each of the
properties individually. Finally, in the classical case, if two programs satisfy a
property, then so does their independent composition. This implies that in the
multiple-valued case the degree to which a program P1 + P2 satisfies a given
property ϕ must equal the smallest degree to which each program satisfies the
property individually.

Theorem 5. Let P1 and P2 be programs, and ϕ and ψ be χLTL properties.
Then,

(1) χMC(P,ϕ ∧ ψ) = χMC(P,ϕ) u χMC(P, ψ) (property intersection)
(2) χMC(P,ϕ) t χMC(P, ψ) v χMC(P,ϕ ∨ ψ) (property union)
(3) χMC(P1 + P2, ϕ) = χMC(P1, ϕ) u χMC(P2, ϕ) (program composition)

Proof. The proof of (1) and (2) is based on the fact that the language of a
χBüchi automaton Aϕ∧ψ (Aϕ∨ψ) is the multiple-valued intersection (union) of
the languages L(Aϕ) and L(Aψ) corresponding to the properties ϕ and ψ, re-
spectively. The proof of (3) is based on the fact that the language of a χBüchi
automaton AP1+P2 is the multiple-valued union of the languages L(AP1) and
L(AP2) corresponding to programs P1 and P2, respectively. ut

30 M. Chechik, B. Devereux, and A. Gurfinkel

6.2 Decision Procedure for χLTL Model-Checking

In this section we show that a single χLTL model-checking problem, with an
FTO of size |O|, can be transformed into (|O| − 1) classical model-checking
problems.

Recall the definition of MC(P,ϕ). The formal definition is equivalent to
the problem of language containment ; we must check that L(AP) ⊆ L(Aϕ).
In practice, this is done via checking for emptiness of L(AP) ∩ L(Aϕ), where
L(Aϕ) = L(A¬ϕ) [VW86]. A classical ω-language, viewed as an element Z ∈
2Σ

ω

, is nonempty if and only if there exists a w ∈ Σω such that (w ∈L Z) = >;
that is,

Nonempty(Z) , > v (∨
w∈Σω

(w ∈ Z)
)

(non-emptiness)

We wish to restate χMC (P, ϕ) in terms of language intersection and empti-
ness as well, so we start by generalizing the above definition to MV-languages.

Definition 9. Let Z be an MV-language, L = (O,v) be an FTO, and ` ∈
(O \ {⊥}). Then

Nonempty(Z, `) , ` v (⊔
w∈Σω

(w ∈L Z)
)

(`-non-emptiness)

If O = 2 and ` = >, this definition reduces to the classical definition of empti-
ness. In the multiple-valued case, however, we can have degrees of emptiness,
and this is captured by the generalized definition. For instance, if the maximal
value of any word in an MV-language is M, then it is M-nonempty, but not
L-nonempty or >-nonempty.

We now define a reduction on MV-automata w.r.t. a logic value `, known as
an `-cut [CDE+01b].

Definition 10. Let L = (O,v) be an FTO. Then for any χBüchi automaton
A = (L, Q, q0, Σ,∆, F) and ` ∈ O, an `-cut of A, denoted A`, is an automaton
(Q, q0, Σ,∆`, F) where:

∆`(q, α, q′) =
{> if ` v ∆(q, α, q′)

⊥ otherwise (definition of ∆`)

The conversion from any A to A` can be done in O(|Q|2) time. Now we establish
a few properties of `-cuts.

Theorem 6. Let A1 and A2 be arbitrary χBüchi automata. Then

L
(
(A1 ∩L A2)`

)
= L(A`1) ∩ L(A`2) (`-cut of language intersection)

Model-Checking Infinite State-Space Systems 31

Proof.

w ∈ L
(
(A1 ∩L A2)`

)
⇔ Definition of cut
` v (w ∈L L

(
(A1 ∩L A2)

)
⇔ Theorem 2
` v (

w ∈L (L(A1) ∩L L(A2))
)

⇔ MV-intersection
` v (

(w ∈L L(A1)) u (w ∈L L(A2))
)

⇔ min-∧ rule(
` v (w ∈L L(A1))

) ∧ (
` v (w ∈L L(A2))

)
⇔ Definition of cut(

w ∈ L(A`1)
) ∧ (

w ∈ L(A`2)
)

⇔ Intersection
w ∈ L(A`1) ∩ L(A`2)

)
ut

Theorem 7. Let A1 and A2 be arbitrary χBüchi automata. Then

L
(
(A1 ||A2)`

)
= L

(
A`1 ||A`2

)
(`-cut of parallel composition)

Proof. It is obvious that all transitions which are not self-loops will be in the
`-cut of the composition if and only if they are in the `-cut of the process which
moves on the transition. Let ∆ be the transition relation of (A1 || A2)`, and ∆′

be the transition relation of (A`1 ||A`2). We show that the existence of a self-loop
in ∆ is equivalent to the existence of a self-loop in ∆′:

∆
(
(q1, q2), α, (q1, q2)

)
⇔ cut of parallel composition
` v ∆1(q1, α, q1) t∆2(q2, α, q2)

⇔ max-∨
(` v ∆1(q1, α, q1)) ∨ (` v ∆2(q2, α, q2))

⇔ definition of cut
∆`

1(q1, α, q1)) ∨∆`
2(q2, α, q2)

⇔ classical parallel composition
∆′((q1, q2), α, (q1, q2))

ut
Cuts can also be used to define the decision procedure for MV-language

emptiness.

32 M. Chechik, B. Devereux, and A. Gurfinkel

Theorem 8. Let L = (O,v) be an FTO. Then for any χBüchi automaton
A = (L, Q, q0, Σ,∆, F) and ` ∈ O, the `-nonemptiness of A is decidable.

Proof. Construct A`, the `-cut of A. L(A`) is nonempty if and only if there is
some word w, for which there is an accepting run σ ∈ AR with only >-valued
transitions. That is:

w ∈ L(A`)
⇔ Büchi acceptance

∃σ ∈ AR · ∀i ∈ N ·∆`(σi, wi, σi+1)
⇔ definition of ∆`

∃σ ∈ AR · ∀i ∈ N · ` v ∆(σi, wi, σi+1)
⇔ min-∧ rule

∃σ ∈ AR · ` v d
i∈N

∆(σi, wi, σi+1)

⇔ max-∨ rule
` v

⊔
σ∈AR

d
i∈N

∆(σi, wi, σi+1)

⇔ χBüchi acceptance
` v (

w ∈ L(A)
)

In other words, if L(A`) is nonempty, then there is some word w such that ` v
(w ∈L L(A)), and L(A) is `-nonempty. Since A` is a classical Büchi automaton,
its nonemptiness is decidable [Tho90]. ut

We now have an effective decision procedure for finding the `-nonemptiness
of L(AP) ∩L L(A¬ϕ) for any ` ∈ O. We can iterate this procedure to find the
maximal ` for which this intersection is non-empty. The complement of this
maximal ` can be returned as the value of property ϕ in system P . Figure 9
describes the model-checking procedure in detail. In order to gain some intuition
for this result, first consider the classical case, where we simply need to check
that the intersection of the system with the negated property automaton is
>-nonempty: if it is >-nonempty, there are ⊥-valued counterexamples to the
property.

6.3 χLTL Model-Checking in SPIN

In this section we show how to implement a multi-valued automata-theoretic
model-checker, which we call MV-SPIN, using SPIN as a black box. In Section 6.2
we established that model-checking of a property ϕ over a system P reduces to
computing a series of `-cuts over P ∩L A¬ϕ. By Theorem 6, we can perform
`-cuts of the property and the system automaton individually. We also note that
the system is usually not a monolithic Promela model, corresponding to one

Model-Checking Infinite State-Space Systems 33

Given a system P , and a χLTL property ϕ:

1. Convert ¬ϕ to a χBüchi automaton A¬ϕ using the method of Section 5.
2. Compute C = P ∩L A¬ϕ according to the construction of Section 4.3.
3. For each ` ∈ O, construct the cut C` and check it for nonemptiness.
4. Let `max be the maximal ` for which C` is nonempty.
5. Return ¬`max.

Fig. 9. Decision procedure for multi-valued model-checking.

procedure MV-SPIN (P , ϕ)
Aϕ = B2Prom(χ2B(ϕ))
for ` = > downto ⊥

P ′ = Cut(P , `)
A′

ϕ = Cut(Aϕ, `)
ce = SPIN (P ′, A′

ϕ)
if (ce 6= ∅)

return ¬` as answer and
ce, if present, as the counter-example

Fig. 10. Algorithm for MV-SPIN.

Büchi automaton, but a collection of processes which are run under asynchronous
parallelism. Furthermore, SPIN does not compute the entire automaton of the
model; instead, it performs model-checking on-the-fly [GPVW95]. Thus, our goal
is to specify multiple-valued models in some Promela-like language, extended
with MV-semantics and then generate Promela without building the complete
Büchi automata.

Extending Promela with multiple-valued guard commands is not difficult,
as indicated by the work on probabilistic GCL [HSM97]. Asynchronous parallel
composition of χBüchi automata was given in Definition 5. By Theorem 7, `-cuts
of the entire model are equal to `-cuts of each individual process. Assume that
this operation is done by function Cut which takes a model in extended Promela
and a logic value ` and converts it into “regular” Promela while performing the
reduction `-cut.

The algorithm for MV-SPIN is given in Figure 10. Functionsχ2B and B2Prom
are the modifications of existing LTL to Büchi automata and Büchi automata
to Promela algorithms, respectively, enriched to handle χBüchi automata. The
result of SPIN is stored in ce. If ce is empty, the classical model-checking pro-
cedure succeeded; else, ce is returned as the counter-example.

Note that the performance penalty of MV-SPIN w.r.t. SPIN manifests itself
in a O(|O|) expansion in the size of the Büchi automaton constructed from
the χLTL property, in executing SPIN up to |O| times and in executing up
to 2 × |O| cuts. Cuts are performed on individual Promela processes and are

34 M. Chechik, B. Devereux, and A. Gurfinkel

proportional to the number of lines in respective text files. Thus, we get an
overall O(|O|2) performance penalty. However, the sizes of resulting models are
smaller than they would have been if we replaced multiple-valued variables by a
collection of boolean variables. In addition, FTOs allow to compactly represent
incompleteness and uncertainty in the system; such situations can be modeled in
classical logic by using additional variables and thus leading to the exponential
growth in the size of the state space [CDE01a].

7 Conclusion

In this paper we extended classical automata-theoretic model-checking to reason-
ing over multiple-valued logics, whose values form total linear orders. We gave se-
mantics to a multiple-valued extension of LTL, called χLTL, described notions of
multiple-valued languages and automata, and defined a general model-checking
problem. We also showed that the multiple-valued model-checking problem re-
duces to a set of queries to a classical model-checking procedure, and thus can
be easily implemented on top of SPIN.

We further note that FTOs are a subclass of quasi-boolean logics – logics
based on lattices with specially-defined negation. We used quasi-boolean logics in
our previous work [CDE01a,CDE+01b]. In fact, our definitions of χLTL, χBüchi
automata and multiple-valued model-checking can be used verbatim if we replace
FTOs by quasi-boolean logics. Furthermore, Theorem 8 also holds for all join-
irreducible [CDE+01b] elements of the lattices. However, we do not yet have an
effective decision procedure for other elements of the logic.

Acknowledgments. We thank members of the University of Toronto formal
methods reading group, and in particular Steve Easterbrook and Albert Lai, for
many useful discussions. This work was financially supported by NSERC and
CITO.

References

[BDL96] C. Barret, D. Dill, and K. Levitt. “Validity Checking for Combinations of
Theories with Equality”. In Formal Methods in Computer-Aided Design,
volume 1166 of LNCS, pages 187–201, November 1996.

[BG99] G. Bruns and P. Godefroid. “Model Checking Partial State Spaces with
3-Valued Temporal Logics”. In Proceedings of CAV’99, volume 1633 of
LNCS, pages 274–287, 1999.

[BG00] G. Bruns and P. Godefroid. “Generalized Model Checking: Reasoning
about Partial State Spaces”. In Proceedings of CONCUR’00, volume 877
of LNCS, pages 168–182, August 2000.

[CC77] P. Cousot and R. Cousot. “Static Determination of Dynamic Properties
of Generalized Type Unions”. SIGPLAN Notices, 12(3), March 1977.

[CD00] M. Chechik and W. Ding. “Lightweight Reasoning about Program Cor-
rectness”. CSRG Technical Report 396, University of Toronto, March
2000.

Model-Checking Infinite State-Space Systems 35

[CDE01a] M. Chechik, B. Devereux, and S. Easterbrook. “Implementing a Multi-
Valued Symbolic Model-Checker”. In Proceedings of TACAS’01, April
2001.

[CDE+01b] M. Chechik, B. Devereux, S. Easterbrook, A. Lai, and V. Petrovykh. “Ef-
ficient Multiple-Valued Model-Checking Using Lattice Representations”.
Submitted for publication, January 2001.

[CGL94] E.M. Clarke, O. Grumberg, and D.E. Long. “Model Checking and Ab-
straction”. IEEE Transactions on Programming Languages and Systems,
19(2), 1994.

[CU98] M. Colon and T. Uribe. “Generating Finite-State Abstractions of Reac-
tive Systems using Decision Procedures”. In Proceedings of the 10th Con-
ference on Computer-Aided Verification, volume 1427 of LNCS. Springer-
Verlag, July 1998.

[DDP99] S. Das, D. Dill, and S. Park. “Experience with Predicate Abstraction”.
In Proceedings of the 11th International Conference on Computer-Aided
Verification, volume 1633 of LNCS, pages 160–171. Springer-Verlag, 1999.

[Eil78] S. Eilenberg. Automata, Languages and Machines, volume A. Academic
Press, New York, 1978.

[Fel68] W. Feller. An Introduction to Probability Theory and its Applications,
volume I. John Wiley and Sons, New York, 1968.

[Fit91] M. Fitting. “Many-Valued Modal Logics”. Fundamenta Informaticae,
15(3–4):335–350, 1991.

[Fit92] M. Fitting. “Many-Valued Modal Logics II”. Fundamenta Informaticae,
17:55–73, 1992.

[Gai79] Brian R. Gaines. “Logical Foundations for Database Systems”. Interna-
tional Journal of Man-Machine Studies, 11(4):481–500, 1979.

[Gin87] M. Ginsberg. “Multi-valued logic”. In M. Ginsberg, editor, Readings in
Nonmonotonic Reasoning, pages 251–255. Morgan-Kaufmann Pub., 1987.

[Gol99] J. S. Golan. Power Algebras over Semirings. Kluwer Academic, 1999.
[GPVW95] R. Gerth, D. Peled, M. Vardi, and P. Wolper. “Simple On-the-fly Auto-

matic Verification of Linear Temporal Logic”. In In Proceedings of 15th
Workshop on Protocol Specification, Testing, and Verification, Warsaw,
North-Holland, June 1995.

[GS97] S. Graf and H. Saidi. “Construction of Abstract State Graphs with PVS”.
In Proceedings of the 9th International Conference on Computer-Aided
Verification, volume 1254 of LNCS. Springer-Verlag, 1997.

[HJL96] C. L. Heitmeyer, R. D. Jeffords, and B. G. Labaw. “Automated Consis-
tency Checking of Requirements Specifications”. ACM Transactions on
Software Engineering and Methodology, 5(3):231–261, July 1996.

[HK93] R. Hähnle and W. Kernig. Verification of switch-level designs with
many-valued logic. In International Conference LPAR ’93, volume 698.
Springer-Verlag, 1993.

[HSM97] J. He, K. Seidel, and A. McIver. Probabilistic models for the guarded
command language. Science of Computer Programming, 28(2–3):171–
192, April 1997.

[IEE93] IEEE Standard 1164–1993. 1993.
[Mic77] R. S. Michalski. “Variable-Valued Logic and its Applications to Pattern

Recognition and Machine Learning”. In D. C. Rine, editor, Computer
Science and Multiple-Valued Logic: Theory and Applications, pages 506–
534. North-Holland, Amsterdam, 1977.

36 M. Chechik, B. Devereux, and A. Gurfinkel

[SRW99] M. Sagiv, T. Reps, and R. Wilhelm. “Parametric Shape Analysis via
3-Valued Logic”. In Proceedings of 26th Annual ACM Symposium on
Principles of Programming Languages, 1999.

[SS99] H. Saidi and N. Shankar. “Abstract and Model Check while you Prove”.
In Proceedings of the 11th Conference on Computer-Aided Verification,
volume 1633 of LNCS, pages 443–454, July 1999.

[Tho90] W. Thomas. Automata on infinite objects. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, chapter 4, pages 133–191.
Elsevier Science Publishers B. V., 1990.

[VPP00] W. Visser, S. Park, and J. Penix. “Applying Predicate Abstraction to
Model Check Object-Oriented Programs”. In Proceedings of 4th Interna-
tional Workshop on Formal Methods in Software Practice, August 2000.

[VW86] M. Y. Vardi and P. Wolper. “An Automata-Theoretic Approach to Auto-
matic Program Verification”. In Proceedings of 1st Symposium on Logic
in Computer Science, pages 322–331, Cambridge MA, 1986.

Implementing LTL Model Checking with
Net Unfoldings?

Javier Esparza1 and Keijo Heljanko2

1 Institut für Informatik, Technische Universität München, Germany
esparza@in.tum.de

2 Lab. for Theoretical Computer Science, Helsinki University of Technology, Finland
Keijo.Heljanko@hut.fi

Abstract. We report on an implementation of the unfolding approach
to model-checking LTL-X recently presented by the authors. Contrary to
that work, we consider an state-based version of LTL-X, which is more
used in practice. We improve on the checking algorithm; the new version
allows to reuse code much more efficiently. We present results on a set
of case studies.

1 Introduction

Unfoldings [14,6,5] are a partial-order approach to the automatic verification of
concurrent and distributed systems, in which partial-order semantics is used to
generate a compact representation of the state space. For systems exhibiting
a high degree of concurrency, this representation can be exponentially more
succinct than the explicit enumeration of all states or the symbolic representation
in terms of a BDD, thus providing a very good solution to the state-explosion
problem. Unfolding-based model-checking techniques for LTL without the next
operator (called LTL-X in the sequel) were first proposed in [22]. A new algorithm
with better complexity bounds was introduced in [3], in the shape of a tableau
system. The approach is based on the automata-theoretic approach to model-
checking (see for instance [20]), consisting of the following well-known three steps:
(1) translate the negation of the formula to be checked into a Büchi automaton;
(2) synchronize the system and the Büchi automaton in an adequate way to yield
a composed system, and (3) check emptiness of the language of the composed
system, where language is again defined in a suitable way.

In [3] we used an action-based version of LTL-X having an operator φ1Uaφ2
for each action a; φ1Uaφ2 holds if φ1 holds until action a occurs, and immedi-
ately after φ2 holds. Step (2) is very simple for this logic, which allowed us to
concentrate on step (3), the most novel contribution of [3]. However, the state-
based version of LTL-X is more used in practice. The first contribution of this
paper is a solution to step (2) for this case, which turns out to be quite delicate.
? Work partially supported by the Teilprojekt A3 SAM of the Sonderforschungsbereich

342 “Werkzeuge und Methoden für die Nutzung paralleler Rechnerarchitekturen”,
the Academy of Finland (Projects 47754 and 43963), and the Emil Aaltonen Foun-
dation.

M.B. Dwyer (Ed.): SPIN 2001, LNCS 2057, pp. 37–56, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

38 J. Esparza and K. Heljanko

The second contribution of this paper concerns step (3). In [3] we presented
a two-phase solution; the first phase requires to construct one tableau, while the
second phase requires to construct a possibly large set of tableaux. We propose
here a more elegant solution which, loosely speaking, allows to merge all the
tableaux of [3] into one while keeping the rules for the tableau construction
simple and easy to implement.

The third contribution is an implementation using the smodels NP-solver
[18], and a report on a set of case studies.

The paper is structured as follows. Section 2 contains basic definitions on
Petri nets, which we use as system model. Section 3 describes step (2) above
for the state-based version of LTL-X. Readers wishing to skip this section need
only read (and believe the proof of) Theorem 1. Section 4 presents some basic
definitions about the unfolding method. Section 5 describes the new tableau sys-
tem for (3), and shows its correctness. Section 6 discusses the tableau generation
together with some optimizations. Section 7 reports on the implementation and
case studies, and Section 8 contains conclusions.

2 Petri Nets

A net is a triple (P, T, F), where P and T are disjoint sets of places and tran-
sitions, respectively, and F is a function (P × T) ∪ (T × P) → {0, 1}. Places
and transitions are generically called nodes. If F (x, y) = 1 then we say that
there is an arc from x to y. The preset of a node x, denoted by •x, is the
set {y ∈ P ∪ T | F (y, x) = 1}. The postset of x, denoted by x•, is the set
{y ∈ P ∪ T | F (x, y) = 1}. In this paper we consider only nets in which every
transition has a nonempty preset and a nonempty postset. A marking of a net
(P, T, F) is a mapping P → IN (where IN denotes the natural numbers including
0). We identify a marking M with the multiset containing M(p) copies of p for
every p ∈ P . For instance, if P = {p1, p2} and M(p1) = 1, M(p2) = 2, we write
M = {p1, p2, p2}.

A marking M enables a transition t if it marks each place p ∈ •t with a
token, i.e. if M(p) > 0 for each p ∈ •t. If t is enabled at M , then it can fire or
occur, and its occurrence leads to a new marking M ′, obtained by removing a
token from each place in the preset of t, and adding a token to each place in its
postset; formally, M ′(p) = M(p) − F (p, t) + F (t, p) for every place p. For each
transition t the relation t−−−→ is defined as follows: M

t−−−→ M ′ if t is enabled at
M and its occurrence leads to M ′.

A 4-tuple Σ = (P, T, F, M0) is a net system if (P, T, F) is a net and M0 is a
marking of (P, T, F) (called the initial marking of Σ). A sequence of transitions
σ = t1t2 . . . tn is an occurrence sequence if there exist markings M1, M2, . . . ,
Mn such that

M0
t1−−−−→M1

t2−−−−→ . . . Mn−1
tn−−−−→Mn

Mn is the marking reached by the occurrence of σ, which is also denoted by
M0

σ−−−→Mn. A marking M is a reachable marking if there exists an occurrence
sequence σ such that M0

σ−−−→M . An execution is an infinite occurrence se-
quence starting from the initial marking. The reachability graph of a net system

Implementing LTL Model Checking with Net Unfoldings 39

Σ is the labelled graph having the reachable markings of Σ as nodes, and the
t−−−→ relations (more precisely, their restriction to the set of reachable mark-

ings) as edges. In this work we only consider net systems with finite reachability
graphs.

A marking M of a net is n-safe if M(p) ≤ n for every place p. A net system
Σ is n-safe if all its reachable markings are n-safe. Fig. 1 shows a 1-safe net
system.

p1 p2

p3 p4 p5

p6

t1 t2 t3

t4 t5

t6

p7

t7

Fig. 1. The net system Σ

Labelled nets. Let L be an alphabet. A labelled net is a pair (N, l) (also rep-
resented as a 4-tuple (P, T, F, l)), where N is a net and l : P ∪ T → L is a
labelling function. Notice that different nodes of the net can carry the same
label. We extend l to multisets of P ∪ T in the obvious way.

For each label a ∈ L we define the relation a−−−→ between markings as follows:
M

a−−−→M ′ if M
t−−−→M ′ for some transition t such that l(t) = a. For a finite se-

quence w = a1a2 . . . an ∈ L∗, M
w−−−→M ′ denotes that for some reachable mark-

ings M1, M2, . . . , Mn−1 the relation M
a1−−−−→M1

a2−−−−→M2 . . . Mn−1
an−−−−→ M ′

holds. For an infinite sequence w = a1a2 . . . ∈ Lω, M
w−−−→ denotes that

M
a1−−−−→M1

a2−−−−→ M2 . . . holds for some reachable markings M1, M2,
The reachability graph of a labelled net system (N, l, M0) is obtained by

applying l to the reachability graph of (N, M0). In other words, its nodes are
the set

{l(M) | M is a reachable marking}
and its edges are the set

{l(M1)
l(t)−−−−→ l(M2) | M1 is reachable and M1

t−−−→ M2} .

40 J. Esparza and K. Heljanko

3 Automata Theoretic Approach to Model Checking LTL

We show how to modify the automata theoretic approach to model checking
LTL [20] to best suit the net unfolding method. We restrict the logic LTL by
removing the next time operator X. We call this stuttering invariant fragment
LTL-X. Given a finite set Π of atomic propositions, the abstract syntax of LTL-X
is given by:

ϕ ::= π ∈ Π | ¬ϕ1 | ϕ1 ∧ ϕ2 | ϕ1 U ϕ2

The semantics is a set of ω-words over the alphabet 2Π , defined as usual.
Given a 1-safe net system Σ with initial marking M0, we identify the atomic

propositions Π with a subset Obs ⊆ P of observable places of the net system,
while the rest of the places are called hidden. Each marking M determines a
valuation of Π = Obs in the following way: p ∈ Obs is true at M if M puts
a token in p. Now, an execution M0

t1−−−−→ M1
t2−−−−→ . . . of Σ satisfies ϕ iff the

ω-word M0M1 . . . satisfies ϕ. The net system Σ satisfies ϕ, denoted Σ |= ϕ, if
every execution of Σ satisfies ϕ.

The approach. Let ϕ be a formula of LTL-X. Using well-known algorithms (see
e.g. [8]) we construct a Büchi automaton A¬ϕ over the alphabet 2Π = 2Obs

which accepts a word w iff w 6|= ϕ.
We define a 1-safe product net system Σ¬ϕ from Σ and A¬ϕ. Σ¬ϕ can be

seen as the result of placing Σ in a suitable environment, i.e., Σ¬ϕ is constructed
by connecting Σ to an environment net system through new arcs.

It is easy to construct a product net system with a distinguished set of
transitions I such that Σ violates ϕ iff some execution of the product fires
some transition of I infinitely often. We call such an execution an illegal ω-
trace. However, this product synchronizes A¬ϕ with Σ on all transitions, which
effectively disables all concurrency present in Σ. Since the unfolding approach
exploits the concurrency of Σ in order to generate a compact representation of
the state space, this product is not suitable, and so we propose a new one.

We define the set V of visible transitions of Σ as the set of transitions which
change the marking of some observable place of Σ. Only these transitions will
synchronize with the automaton. So, for instance, in order to check a property
of the form 2(p → 3q), where p and q are places, we will only synchronize with
the transitions removing or adding tokens to p and q. This approach is similar
but not identical to Valmari’s tester approach described in [19]. (In fact, a subtle
point in Valmari’s construction makes its direct implementation unsuitable for
checking state based LTL-X.)

The price to pay for this nicer synchronization is the need to check not
only for illegal ω-traces, but also for so-called illegal livelocks. The new product
contains a new distinguished set of transitions L (for livelock). An illegal livelock
is an execution of the form σ1tσ2 such that t ∈ L and σ2 does not contain
any visible transition. For convenience we use the notation M0

σ−−−→ M
τ−−−→

to denote this, and implicitly require that σ = σ1t with t ∈ L and that τ is an
infinite sequence which only contains invisible transitions.

Implementing LTL Model Checking with Net Unfoldings 41

In the rest of the section we define Σ¬ϕ. Readers only interested in the defi-
nition of the tableau system for LTL model-checking can safely skip it. Only the
following theorem, which is proved hand in hand with the definition, is necessary
for it. Property (b) is what we win by our new approach: The environment only
interferes with the visible transitions of Σ.

Theorem 1. Let Σ be a 1-safe net system whose reachable markings are pair-
wise incomparable with respect to set inclusion.1 Let ϕ be an LTL-X formula
over the observable places of Σ. It is possible to construct a net system Σ¬ϕ

satisfying the following properties:

(a) Σ |= ϕ iff Σ¬ϕ has neither illegal ω-traces nor illegal livelocks.
(b) The input and output places of the invisible transitions are the same in Σ

and Σ¬ϕ.

Construction of Σ¬ϕ We describe the synchronization Σ¬ϕ of Σ and A¬ϕ in a
semiformal but hopefully precise way. Let us start with two preliminaries. First,
we identify the Büchi automaton A¬ϕ with a net system having a place for each
state q, with only the initial state q0 having a token, and a net transition for each
transition (q, x, q′); the input and output places of the transition are q and q′,
respectively; we keep A¬ϕ, q and (q, x, q′) as names for the net representation,
the place and the transition. Second, we split the executions of Σ that violate ϕ
into two classes: executions of type I, which contain infinitely many occurrences
of visible transitions, and executions of type II, which only contain finitely many.
We will deal with these two types separately.

Σ¬ϕ is constructed in several steps:

(1) Put Σ and (the net representation of) A¬ϕ side by side.
(2) For each observable place p add a complementary place (see [17]) p to Σ.

p is marked iff p is not, and so checking that proposition p does not hold is
equivalent to checking that the place p̄ has a token. A set x ⊆ Π can now be
seen as a conjunction of literals, where p ∈ x is used to denote p ∈ (Π \ x).

(3) Add new arcs to each transition (q, x, q′) of A¬ϕ so that it “observes” the
places in x.
This means that for each literal p (p) in x we add an arc from p (p) to
(q, x, q′) and an arc from (q, x, q′) to p (p). The transition (q, x, q′) can only
be enabled by markings of Σ satisfying all literals in x.

(4) Add a scheduler guaranteeing that:
– Initially A¬ϕ can make a move, and all visible moves (i.e., the firings of

visible transitions) of Σ are disabled.
– After a move of A¬ϕ, only Σ can make a move.
– After Σ makes a visible move, A¬ϕ can make a move and until that

happens all visible moves of Σ are disabled.

1 This condition is purely technical. Any 1-safe net system can be easily transformed
into an equivalent one satisfying it by adding some extra places and arcs; moreover,
the condition can be removed at the price of a less nice theory.

42 J. Esparza and K. Heljanko

This is achieved by introducing two scheduler places sf and ss [22]. The
intuition behind these places is that when sf (ss) has a token it is the turn
of the Büchi automaton (the system Σ) to make a move. In particular, visible
transitions transfer a token from ss to sf , and Büchi transitions from sf to
ss. Because the Büchi automaton needs to observe the initial marking of Σ,
we initially put one token in sf and no tokens on ss.

(5) Let I be a subset of transitions defined as follows. A transition belongs to I
iff its postset contains a final state of A¬ϕ.

Observe that since only moves of A¬ϕ and visible moves of Σ are scheduled,
invisible moves can still be concurrently executed.

Let Σ′
¬ϕ be the net system we have constructed so far. The following is an

immediate consequence of the definitions:

Σ has an execution of type I if and only if Σ′
¬ϕ has an illegal ω-trace.

We now extend the construction in order to deal with executions of type II.
Let σ be a type II execution of Σ. Take the sequence of markings reached along
the execution of σ, and project it onto the observable places. Since σ only con-
tains finitely many occurrences of visible transitions, the result is a sequence of
the form O0

0O
1
0 . . . Oj

0O
0
1O

1
1 . . . Ok

1O0
2 . . . O0

n(On)ω. (The moves from Oi to Oi+1
are caused by the firing of visible transitions.)

We can split σ into two parts: a finite prefix σ1 ending with the last occurrence
of a visible transition (σ1 is empty if there are no visible transitions), and an
infinite suffix σ2 containing only invisible transitions. Clearly, the projection onto
the observable places of the marking reached by the execution of σ1 is On

Since LTL-X is closed under stuttering, A¬ϕ has an accepting run

r = q0
O0−−−−→ q1

O1−−−−→ . . .
On−1−−−−−−→ qn

On−−−−→ qn+1
On−−−−→ qn+2 . . .

where the notation q
O−−−→ q′ means that a transition (q, x, q′) is taken such that

the literals of x are true at the valuation given by O. We split this run into two

parts: a finite prefix r1 = q0
O0−−−−→ q1 . . . qn−1

On−1−−−−−−→ qn and an infinite suffix
r2 = qn

On−−−−→ qn+1
On−−−−→ qn+2

In the net system representation of A¬ϕ, r1 and r2 correspond to occurrence
sequences. By construction, the “interleaving” of r1 and σ1 yields an occurrence
sequence τ1 of Σ′

¬ϕ.
Observe that reachable markings of Σ′

¬ϕ are of the form (q, s, O, H), meaning
that they consist of a token on a state q of A¬ϕ, a token on one of the places
of the scheduler (i.e., s ∈ {ss, sf}), a marking O of the observable places, and
a marking H of the hidden places. Let (qn, sf , On, H) be the marking of Σ′

¬ϕ

reached after executing τ1. (We have s = sf because the last transition of σ1
is visible.) The following property holds: With qn as initial state, the Büchi
automaton A¬ϕ accepts the sequence Oω

n . We call any pair (q, O) satisfying this
property a checkpoint and define Σ¬ϕ as follows:

Implementing LTL Model Checking with Net Unfoldings 43

(6) For each checkpoint (q, O) and for each reachable marking (q, sf , O, H) of
Σ′

¬ϕ, add a new transition having all the places marked at (q, sf , O, H) as
preset, and all the places marked at O and H as postset. Let L (for livelocks)
be this set of transitions.

The reader has possibly observed that the set L can be very large, because
there can be many hidden markings H for a given marking O (exponentially
many in the size of Σ). Apparently, this makes Σ¬ϕ unsuitable for model-
checking. In Sect. 6 we show that this is not the case, because Σ¬ϕ need not be
explicitly constructed.

Observe that after firing a L-transition no visible transition can occur any-
more, because all visible transitions need a token on ss for firing. We prove:

Σ has an execution of type II if and only if Σ¬ϕ has an illegal livelock.

For the only if direction, assume first that σ is a type II execution of Σ.
Let τ1 be the occurrence sequence of Σ¬ϕ defined above (as the “interleaving”
of the prefix σ1 of σ and the prefix r1 of r). Further, let (qn, sf , On, H) be the
marking reached after the execution of τ1, and let t be the transition added in
(6) for this marking. Define ρ1 = τ1 and ρ2 = σ2. It is easy to show that ρ1tρ2
is an execution of Σ¬ϕ and so an illegal livelock. For the if direction, let ρ1tρ2
be an illegal livelock of Σ¬ϕ, where t is an L-transition. After the firing of t
there are no tokens in the places of the scheduler, and so no visible transition
can occur again; hence, no visible transition of Σ occurs in ρ2. Let σ1 and σ2
be the projections of ρ1 and ρ2 onto the transitions of Σ. It is easy to see that
σ = σ1σ2 is an execution of Σ. Since σ2 does not contain any visible transition,
σ is an execution of type II.

4 Basic Definitions on Unfoldings

In this section we briefly introduce the definitions we needed to describe the
unfolding approach. More details can be found in [6].

Occurrence nets. Given two nodes x and y of a net, we say that x is causally
related to y, denoted by x ≤ y, if there is a (possibly empty) path of arrows
from x to y. We say that x and y are in conflict, denoted by x#y, if there is a
place z, different from x and y, from which one can reach x and y, exiting z by
different arrows. Finally, we say that x and y are concurrent, denoted by x co y,
if neither x < y nor y < x nor x#y hold. A co-set is a set of nodes X such
that x co y for every x, y ∈ X. Occurrence nets are those satisfying the following
three properties: the net, seen as a directed graph, has no cycles; every place has
at most one input transition; and, no node is in self-conflict, i.e., x#x holds for
no x. A place of an occurrence net is minimal if it has no input transitions. The
net of Fig. 2 is an infinite occurrence net with minimal places a, b. The default
initial marking of an occurrence net puts one token on each minimal place an
none in the rest.

44 J. Esparza and K. Heljanko

Branching processes. We associate to Σ a set of labelled occurrence nets, called
the branching processes of Σ. To avoid confusions, we call the places and transi-
tions of branching processes conditions and events, respectively. The conditions
and events of branching processes are labelled with places and transitions of Σ,
respectively. The conditions and events of the branching processes are subsets
from two sets B and E , inductively defined as the smallest sets satisfying the
following conditions:

– ⊥ ∈ E , where ⊥ is an special symbol;
– if e ∈ E , then (p, e) ∈ B for every p ∈ P ;
– if ∅ ⊂ X ⊆ B, then (t, X) ∈ E for every t ∈ T .

In our definitions of branching process (see below) we make consistent use of
these names: The label of a condition (p, e) is p, and its unique input event is
e. Conditions (p, ⊥) have no input event, i.e., the special symbol ⊥ is used for
the minimal places of the occurrence net. Similarly, the label of an event (t, X)
is t, and its set of input conditions is X. The advantage of this scheme is that a
branching process is completely determined by its sets of conditions and events.
We make use of this and represent a branching process as a pair (B, E).

Definition 1. The set of finite branching processes of a net system Σ with the
initial marking M0 = {p1, . . . , pn} is inductively defined as follows:

– ({(p1, ⊥), . . . , (pn, ⊥)}, ∅) is a branching process of Σ.
– If (B, E) is a branching process of Σ, t ∈ T , and X ⊆ B is a co-set labelled

by •t, then (B ∪{(p, e) | p ∈ t•} , E ∪{e}) is also a branching process of Σ,
where e = (t, X). If e /∈ E, then e is called a possible extension of (B, E).

The set of branching processes of Σ is obtained by declaring that the union
of any finite or infinite set of branching processes is also a branching process,
where union of branching processes is defined componentwise on conditions and
events. Since branching processes are closed under union, there is a unique max-
imal branching process, called the unfolding of Σ. The unfolding of our running
example is an infinite occurrence net. Figure 2 shows an initial part. Events and
conditions have been assigned identificators that will be used in the examples.
For instance, the event (t1, {(p1,⊥)}) is assigned the identificator 1.

We take as partial order semantics of Σ its unfolding. This is justified, because
it can be easily shown the reachability graphs of Σ and of its unfolding coincide.
(Notice that the unfolding of Σ is a labelled net system, and so its reachability
graph is defined as the image under the labelling function of the reachability
graph of the unlabelled system.)

Configurations. A configuration of an occurrence net is a set of events C sat-
isfying the two following properties: C is causally closed, i.e., if e ∈ C and
e′ < e then e′ ∈ C, and C is conflict-free, i.e., no two events of C are in
conflict. Given an event e, we call [e] = {e′ ∈ E | e′ ≤ e} the local config-
uration of e. Let Min denote the set of minimal places of the branching pro-
cess. A configuration C of the branching process is associated with a marking
of Σ denoted by Mark(C) = l((Min ∪ C•) \ •C). The corresponding set of

Implementing LTL Model Checking with Net Unfoldings 45

p1

p1 p1

p2

p2 p2

p3

p3 p3

p4

p4 p4

p5

p5 p5

p6 p6

p6 p6p6 p6

t1

t1 t1

t2

t2 t2

t3

t3 t3

t4

t4 t4

t5

t5 t5

t6 t6

p7 p7

p7 p7p7 p7

t7 t7

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

1 2 3

4 5

6 7 8 9

10 11 12 13 14 15

16 17 18 19

c d e

f g h i

j k l m

n o p q r s

t u v w x y z a’

a b

Fig. 2. The unfolding of Σ

conditions associated with a configuration is called a cut, and it is defined as
Cut(C) = ((Min ∪ C•) \ •C).

In Fig. 2, {1, 3, 4, 6} is a configuration, and {1, 4} (not causally closed) or
{1, 2} (not conflict-free) are not. A set of events is a configuration if and only
if there is one or more firing sequences of the occurrence net (from the default
initial marking) containing each event from the set exactly once, and no fur-
ther events. These firing sequences are called linearisations. The configuration
{1, 3, 4, 6} has two linearisations, namely 1 3 4 6 and 3 1 4 6. All linearisations lead
to the same reachable marking. For example, the two sequences above lead to the
marking {p1, p7}. By applying the labelling function to a linearisation we obtain
a firing sequence of Σ. Abusing of language, we also call this firing sequence a
linearisation. In our example we obtain t1t3t4t6 and t3t1t4t6 as linearisations.

Given a configuration C, we denote by ↑C the set of events of the unfolding
{e | e 6∈C ∧ ∀e′ ∈ C : ¬(e#e′)}. Intuitively, ↑C corresponds to the behavior of
Σ from the marking reached after executing any of the linearisations of C. We
call ↑C the continuation after C of the unfolding of Σ. If C1 and C2 are two finite
configurations leading to the same marking, i.e. Mark(C1) = M = Mark(C2),
then ↑C1 and ↑C2 are isomorphic, i.e., there is a bijection between them which

46 J. Esparza and K. Heljanko

preserves the labelling of events and the causal, conflict, and concurrency rela-
tions (see [6]).

Adequate orders. To implement a net unfolding algorithm we need the notion of
adequate order on configurations [6]. Given a configuration C of the unfolding
of Σ, we denote by C ⊕ E the set C ∪ E, under the condition that C ∪ E is a
configuration satisfying C ∩ E = ∅. We say that C ⊕ E is an extension of C.
Now, let C1 and C2 be two finite configurations leading to the same marking.
Then ↑C1 and ↑C2 are isomorphic. This isomorphism, say f , induces a mapping
from the extensions of C1 onto the extensions of C2; the image of C1 ⊕ E under
this mapping is C2 ⊕ f(E).

Definition 2. A partial order ≺ on the finite configurations of the unfolding of
a net system is an adequate order if:

– ≺ is well-founded,
– C1 ⊂ C2 implies C1 ≺ C2, and
– ≺ is preserved by finite extensions; if C1 ≺ C2 and Mark(C1) = Mark(C2),

then the isomorphism f from above satisfies C1 ⊕ E ≺ C2 ⊕ f(E) for all
finite extensions C1 ⊕ E of C1.

Total adequate orders for 1-safe Petri nets and for synchronous products of
transition systems have been presented in [6,5].

5 Tableau System

We showed in Section 3 that the model checking problem for LTL-X can be
solved by checking the existence of illegal ω-traces and illegal livelocks in Σ¬ϕ.
In [3] these problems are solved using tableau techniques. A branching process
can be seen as a “distributed” tableau, in which conditions are “facts” and events
represent “inferences”. For two conditions b and b′, b co b′ models that the facts
represented by b and b′ can be simultaneously true. A tableau is constructed by
adding new events (inferences) one by one following an adequate order; some
events are declared as “terminals”, and the construction of the tableau termi-
nates when no new event can be added having no terminals among its prede-
cessors. The tableau systems of [3] require to construct a possibly large set of
branching processes. Here we present a new tableau system consisting of one
single branching process.2

An Adequate Order for LTL. We simplify the implementation of the tableau
system by selecting a special adequate order. We use ≺ to denote the total
adequate order defined for 1-safe Petri nets in [6]. We call an event corresponding
to an L-transition an L-event. We define for a set of events C the function before
L-event as BL(C) = {e ∈ C | [e] \ {e} contains no L-events}. The function after
L-event is defined correspondingly as AL(C) = (C \BL(C)). We can now define
our new adequate order.
2 For the reader familiar with [3]: the L-transitions in the net system Σ¬ϕ act as glue

to connect a set of branching processes (the tableau components of [3]) together into
one larger tableau.

Implementing LTL Model Checking with Net Unfoldings 47

Definition 3. Let C1 and C2 be two finite configurations of the unfolding of the
product net system Σ¬ϕ. C1 ≺LTL C2 holds if

– BL(C1) ≺ BL(C2), or
– BL(C1) = BL(C2) and C1 ≺ C2.

The adequate order ≺LTL is application specific in the sense that it is not an
adequate order for an arbitrary net system Σ, but needs some special properties
of the net system Σ¬ϕ. We have the following result.

Theorem 2. The order ≺LTL is a total adequate order for finite configurations
of the unfolding of Σ¬ϕ.

See [4] for the proof.

New Tableau System. We first divide the unfolding of Σ¬ϕ into two disjoint sets
of events. Intuitively, the first set is used for the ω-trace detection part, and the
second for the illegal livelock detection part. We define part-I to be the set of
events e such that [e] does not contain an L-event and part-II as the set of events
which are not in part-I.

Definition 4. An event e of the unfolding Σ¬ϕ is a terminal, if there exists
another event e′ such that Mark([e′]) = Mark([e]), [e′] ≺LTL [e], and one of the
following two mutually exclusive cases holds:

(I) e ∈ part-I, and either
(a) e′ < e, or
(b) ¬(e′ < e) and #I [e′] ≥ #I [e], where #IC denotes the number of I-events

in C.
(II) e ∈ part-II, and either

(a) BL([e′]) ≺LTL BL([e]), or
(b) BL([e′]) = BL([e]) and ¬(e′#e), or
(c) BL([e′]) = BL([e]), e′#e, and |[e′]| ≥ |[e]|.

A tableau T is a branching process (B, E) of Σ¬ϕ such that for every possible
extension e of (B, E) at least one of the immediate predecessors of e is a terminal.
A terminal is successful if it is type (I)(a) and [e]\ [e′] contains an I-event, or it
is of type (II)(b). All other terminals are unsuccessful. A tableau T is successful
if it contains a successful terminal, otherwise it is unsuccessful.

Loosely speaking, a tableau is a branching process which cannot be extended
without adding a causal successor to a terminal.

We have the following result:

Theorem 3. Let T be a tableau for Σ¬ϕ.

– Σ¬ϕ has an illegal ω-trace iff T has a successful terminal of type I.
– Σ¬ϕ has an illegal livelock iff T has a successful terminal of type II.
– T contains at most K2 non-terminal events, where K is the number of reach-

able markings of Σ¬ϕ.

See [4] for the proof.

48 J. Esparza and K. Heljanko

6 Generating the Tableau

We describe an implementation of the tableau system of Sect. 5. The main goal is
to keep the tableau generation as similar as possible to a conventional prefix gen-
eration algorithm [6]. In this way any prefix generation algorithm can be easily
adapted to also perform LTL model checking. The tableau generation algorithm
(Algorithm 1) is almost identical to the main routine of a prefix generation al-
gorithm. The changes are: an additional block of code devoted to generating
the L-events dynamically; a different but easy to implement adequate order; a
new cut-off detection subroutine. The main feature of the implementation is the
efficient handling of L-transitions, which we discuss next.

Generating the L-transitions Dynamically. Recall that in the synchronization
Σ¬ϕ we can for each Büchi state q have as many L-transitions as there are
reachable markings of the form (q, sf , O, H) in the net system Σ¬ϕ. Clearly we
can not explicitly generate them all due to efficiency reasons. Instead we generate
a net system Σs

¬ϕ (s stands for static) in which this set of L-transitions (added
by step (6) of the synchronization procedure in Section 3) is replaced by:

(6’) Add for each Büchi transition t = (q, x, q′) in the net system Σ′
¬ϕ (i.e., the

synchronization after steps (1)-(5) as defined in Sect. 3) a new transition t′.
The preset of t′ is equivalent to the preset of t and the postset of t′ is empty.
Let L (for livelocks) be this set of transitions.

We can now dynamically generate any of the (enabled) L-transitions of
Σ¬ϕ. Namely, for a transition t corresponding to a reachable marking M =
(q, sf , O, H) to be enabled in Σ¬ϕ, a transition t′ (for some (q, x, q′)) must be
enabled in Σs

¬ϕ and the Büchi automaton must accept Oω when q is given as
the initial state. Loosely speaking we test the first label of the sequence using
the transition t′, and if this test succeeds we check whether O can be infinitely
stuttered. (Using this construction it is easy to implement “no-care values” for
selected atomic propositions by leaving them out of the preset of t′.) Now gen-
erating the postset of t from M is trivial.

Optimizations in Dynamic Creation. We can thus dynamically generate L-
transitions for each reachable marking M as required. However, we can do better
by using the net unfolding method. The main idea is to generate the unfolding of
Σ¬ϕ by using Σs

¬ϕ to find “candidate” L-events. Assume we have found an event
es corresponding to a transition t′ in the unfolding of Σs

¬ϕ and the stuttering
check described above passes for the marking M = Mark([es]). Then we add an
event e into the unfolding of Σ¬ϕ corresponding to the effect of the transition t
in the marking M . If we would directly use the construction above we would also
add an event e′ to the unfolding of Σ¬ϕ for each marking M ′ = (q, sf , O, H ′)
which is reachable from M using only invisible transitions. We now show that
adding only the event e suffices: Let E be an extension of [e]. If there is an illegal
livelock starting from M ′ = Mark([e] ⊕ E) then there is also an illegal livelock
starting from M . This can be easily seen to be the case because all extensions
E contain only invisible events and thus the set of observable places in both M

Implementing LTL Model Checking with Net Unfoldings 49

and M ′ is O. Algorithm 1 uses the property described above to add the required
L-events dynamically. Another optimization used is the fact that only the places
in the presets of invisible transitions (denoted InvisPre) need to be added to the
postset of an L-transition.

Algorithm 2 is the cut-off detection subroutine. It handles events in part-I
and part-II differently. This is one example implementation, and it closely follows
the definition of the tableau. It sets the global boolean variable success to true
and calls the counterexample generation subroutine (Algorithm 3) if it finds a
counterexample.

The implementation of the check whether Aq
¬ϕ accepts Oω in Algorithm 1

can be done in linear time in the size of the automaton A¬ϕ as follows. First
restrict A¬ϕ to transitions satisfying O, and then use a linear time emptiness
checking algorithm (see e.g. [2]) to check whether an accepting loop can be
reached starting from q in this restricted automaton. Because A¬ϕ is usually
quite small compared to the size of the model checked system this should not be
a limiting factor. Caching of these check results can also be used if necessary.

The adequate order ≺LTL can also be quite efficiently implemented. We can
prove that if a configuration C contains an L-event e, then BL(C) = [e]. Now
it is also the case that each configuration only includes at most one L-event. By
using these two facts a simple and efficient implementation can be devised.

Each time our algorithm adds a non-terminal L-event, it first finds out
whether a livelock counterexample can be generated from its future. Only if
no counterexample is found, it continues to look for illegal ω-traces and further
L-events. Thus we use the adequate order ≺LTL to force a search order similar
to that used by Valmari in [19] which detects divergence counterexamples in
interleaved state spaces. However, our algorithm is “breadth-first style” and it
also does illegal ω-trace detection, a part which is not included in [19].

7 Experimental Results

We have implemented a prototype of the LTL model checking procedure called
unfsmodels. We use the Spin tool [12] version 3.4.3 to generate the Büchi au-
tomaton A¬ϕ and a tool by F. Wallner [22] to generate the synchronization Σ′

¬ϕ

which is given to the prototype tool as input. The smodels tool [18] is used to
calculate the set of possible extensions of a branching process. It is a NP-solver
which uses logic programs with stable model semantics as the input language.
Calculating the possible extensions is a quite demanding combinatorial problem.
Actually a decision version of the problem can be show to be NP-complete in
the general case [10]. However if the maximum preset size of the transitions |•t|
is bounded the problem becomes polynomial [7]. (The problem is closely related
to the clique problem which has a similar characteristic, for a longer discussion
see [7].)

We chose to use smodels to solve this combinatorial problem instead of
implementing a dedicated algorithm. That choice allowed us to concentrate on
other parts of the implementation. The translation employs constructs similar
to those presented for the submarking reachability problem in [11], however it

50 J. Esparza and K. Heljanko

Algorithm 1 The tableau generation algorithm

input: The product net system Σs
¬ϕ = (P, T, F, M0), where M0 = {p1, . . . , pn}.

output: true if there is a counterexample, false otherwise.
global variables: success
begin
Fin := {(p1, ⊥), . . . , (pn, ⊥)};
cut-off := ∅;
pe := PE(Fin); /* Compute the set of possible extensions */
success := false;
while pe 6= ∅ and success = false do

choose an event e = (t, X) in pe such that [e] is minimal
with respect to ≺LTL;
Y := t•; /* Remember the postset of t */

/* Create the required L-events dynamically */
if t is a L-transition then

M := Mark([e] \ {e}); /* The marking M = (q, sf , O, H) */
q := M ∩ Q; /* Extract the Büchi state q */
/* (Büchi emptiness checking algorithm can be used here) */
if Aq

¬ϕ = (Γ, Q, q, ρ, F) does not accept Oω then
continue; /* Discard e because (q, O) is not a checkpoint */

endif
X := Cut([e] \ {e}); /* Extend the preset to also remove tokens from H */
e := (t, X); /* Rename e (i.e., add arcs from all preset conditions to e) */
Y := (M ∩ InvisPre); /* Project M on invisible transition presets */

endif

if [e] ∩ cut-off = ∅ then
append to Fin the event e and a condition (p, e)

for every place p ∈ Y ;
pe := PE(Fin); /* Compute the set of possible extensions */
if is cutoff (e) then

cut-off := cut-off ∪ {e};
endif

else
pe := pe \ {e};

endif
enddo
return success;
end

Implementing LTL Model Checking with Net Unfoldings 51

Algorithm 2 The is cutoff subroutine

input: An event e.
output: true if e is a terminal of the tableau, false otherwise.
begin
foreach e′ such that Mark([e′]) = Mark([e]) do /* [e′] ≺LTL [e] holds */

if e ∈ part-I then /* case (I) */
if e′ < e then

if [e] \ [e′] contains an I-event then
success := true; /* Counterexample found! */
counterexample(e, e′);

endif
return true;

else if #I [e′] ≥ #I [e] then
return true;

endif
else /* case (II) */

if BL([e′]) ≺LTL BL([e]) then
return true;

else if ¬(e′#e) then /* BL([e′]) = BL([e]) holds */
success := true; /* Counterexample found! */
counterexample(e, e′);
return true;

else if |[e′]| ≥ |[e]| then /* BL([e′]) = BL([e]) holds */
return true;

endif
endif

enddo
return false;
end

Algorithm 3 The counterexample subroutine

input: A successful event e with the corresponding event e′.
begin
C1 := [e] ∩ [e′];
C2 := [e] \ C1;
/* C1 contains the prefix and C2 the accepting loop */
print linearisation(C1);
print linearisation(C2);
end

differs in several technical details. The translation is linear in the sizes of both the
net and the prefix, however we will not present it here due to space restrictions.

For benchmarks we used a set of LTL model checking examples collected
by C. Schröter. The experimental results are collected in Fig. 3. The 1-safe net
systems used in the experiments are as follows:

52 J. Esparza and K. Heljanko

– BRUIJN(2), DIJKST(2), and KNUTH(2): Mutex algorithms modeled by
S. Melzer.

– BYZA4 0B and BYZA4 0B: Byzantine agreement algorithm versions mod-
eled by S. Merkel [16].

– RW1W1R, RW1W3R and RW2W1R: Readers and writers synchronization
modeled by S. Melzer and S. Römer [15].

– PLATE(5): A production cell example from [13], modeled by M. Heiner and
P. Deussen [9].

– EBAHN: A train model by K. Schmidt.
– ELEV(3) and ELEV(4): Elevator models by J. C. Corbett [1], converted to

nets by S. Melzer and S. Römer [15].
– RRR(xx): Dining philosophers with xx philosophers, modeled by C. Schröter.

The reported running times only include unfsmodels 0.9 running times, as
the Büchi automata generation and the synchronization with the original net
system took insignificant amount of time. All the running times are reported as
the sum of system and user times as reported by the /usr/bin/time command
when run on a PC with an AMD Athlon 1GHz processor, 512MB RAM, using
gcc 2.95.2 and Linux 2.2.17. The times are all averaged over 5 runs.

The unfsmodels tool in an on-the-fly tool in the sense that it stops the pre-
fix (tableau) generation if it finds a counterexample during the unfolding. The
reported prefix sizes in this case are the partial prefix at the time the counterex-
ample was found. The tool can also be instructed to generate a conventional
prefix using the prefix generation algorithm described in [6] for comparison.

Problem BLTL ELTL #cLTL Cex BFin EFin #cFin States SecLTL SecFin

BRUIJN(2) 2874 1336 327 N 2676 1269 318 5183 13.1 11.0
DIJKST(2) 1856 968 230 N 1700 921 228 2724 4.8 3.8
KNUTH(2) 2234 1044 251 N 2117 1009 251 4483 7.1 6.1
BYZA4 0B 1642 590 82 N 1630 587 82 >2000000 7.0 6.9
BYZA4 2A 401 125 4 N 396 124 4 >2500000 0.3 0.3
RW1W1R 568 296 32 N 563 295 32 2118 0.5 0.5
RW1W3R 28143 15402 5210 N 28138 15401 5210 165272 1863.4 1862.2
RW2W1R 18280 9242 1334 N 18275 9241 1334 127132 1109.6 1108.2
PLATE(5) 1803 810 12 N 1619 768 12 1657242 14.0 11.8
EBAHN 151 62 21 Y 1419 673 383 7776 0.0 0.7
ELEV(3) 124 64 10 Y 7398 3895 1629 7276 0.1 91.7
ELEV(4) 154 80 13 Y 32354 16935 7337 48217 0.1 1706.2
RRR(10) 88 42 5 Y 85 45 19 14985 0.0 0.0
RRR(20) 167 81 8 Y 161 81 32 >10000000 0.1 0.0
RRR(30) 240 114 9 Y 230 110 41 >10000000 0.2 0.1
RRR(50) 407 201 18 Y 388 188 70 >10000000 0.7 0.5

Fig. 3. Experimental results.

Implementing LTL Model Checking with Net Unfoldings 53

In Fig. 3 the columns of the table have the following meanings:

– Problem: The name of the problem with the size of the instance.
– BLTL, ELTL, and #cLTL: The number of conditions, events, and the number

of events which are terminals in the LTL prefix, respectively.
– Cex: N - There was no counterexample, the formula holds. Y - There was a

counterexample, the formula does not hold.
– BFin, EFin, and #cFin: The size of different parts of the finite complete

prefix as above but for the original net system Σ using the conventional
prefix generation algorithm described in [6].

– States: The number of states n in the reachability graph of the original net
system Σ obtained using the PROD tool [21], or a lower bound > n.

– SecLTL: The time used by unfsmodels in seconds needed to find a coun-
terexample or to show that there is none.

– SecFin: The time used by unfsmodels in seconds needed to generate a finite
complete prefix of the original net system Σ.

At this point there are a couple of observations to be made. First of all, on
this set of example nets and formulas, the speed of computing a LTL prefix is
almost identical to the speed of computing a conventional prefix (of comparable
size). The main reason for this is that the time needed to compute the possible
extensions dominates the computation time in our prototype. Thus the (slightly)
more complicated algorithm needed for the cut-off detection do not contribute in
a major way to the running time of the tool. Secondly, on all of the experiments,
the size of the LTL prefix is of the same order of magnitude as the conventional
prefix. Thus in this set of examples the quadratic worst-case blow-up (possible
according to Theorem 3) does not materialize. We expect this to be the case also
in other examples when the used LTL formulas are short and the properties to
be checked are local, in the sense that the product net system preserves most of
the concurrency present in the original net system.

In Fig. 4 a detailed breakdown of the different components of the LTL prefix is
given. The subscripts I and II denote the part of the prefix used for ω-trace and
livelock checking, respectively (i.e., events in part-I and part-II). Column Cpt
contains the number of checkpoints, i.e. how many of the L-events are check-
points. Finally Formula type gives the type of the formula being checked.

In Fig. 4 we can also see that in the cases a counterexample was found it
was found after only a small amount of the prefix was generated. Actually in
all the experiments the counterexample was a livelock counterexample, and the
livelock was found from the first checkpoint found during the prefix generation.
This allowed the LTL model checking procedure to terminate quite early with a
counterexample in many case, see e.g. the ELEV(4) example.

The net systems used in experiments and unfsmodels 0.9 are available at
〈http://www.tcs.hut.fi/˜kepa/experiments/spin2001/〉.

8 Conclusions

We have presented an implementation of the tableau system of [3]. We have
been able to merge the possibly large set of tableaux of [3] into a single one.
In this way, the algorithm for model checking LTL with unfoldings remains

54 J. Esparza and K. Heljanko

Problem BI EI #cI BII EII #cII Cpt Formula type
BRUIJN(2) 2874 1336 327 0 0 0 0 2¬(p1 ∧ p2)
DIJKST(2) 1856 968 230 0 0 0 0 2¬(p1 ∧ p2)
KNUTH(2) 2234 1044 251 0 0 0 0 2¬(p1 ∧ p2)
BYZA4 0B 1642 590 82 0 0 0 0 2(p1 → 3p2)
BYZA4 2A 401 125 4 0 0 0 0 2(p1 → 3p2)
RW1W1R 568 296 32 0 0 0 0 2(p1 → 3p2)
RW1W3R 28143 15402 5210 0 0 0 0 2(p1 → 3p2)
RW2W1R 18280 9242 1334 0 0 0 0 2(p1 → 3p2)
PLATE(5) 1803 810 12 0 0 0 0 2((p1 ∧ ¬p2 ∧ ¬p3)∨

(¬p1 ∧ p2 ∧ ¬p3)∨
(¬p1 ∧ ¬p2 ∧ p3))

EBAHN 113 48 20 38 14 1 1 2¬(p1 ∧ p2)
ELEV(3) 22 10 0 102 54 10 1 2(p1 → 3p2)
ELEV(4) 25 12 0 129 68 13 1 2(p1 → 3p2)
RRR(10) 40 14 0 48 28 5 1 2(p1 → 3p2)
RRR(20) 73 27 0 94 54 8 1 2(p1 → 3p2)
RRR(30) 104 38 0 136 76 9 1 2(p1 → 3p2)
RRR(50) 173 67 0 234 134 18 1 2(p1 → 3p2)

Fig. 4. Detailed LTL tableau statistics.

conceptually similar to the algorithms used to generate prefixes of the unfolding
containing all reachable states [6,5]: We just need more sophisticated adequate
orders and cut-off events. The division of the tableau into part-I and part-II
events is the price to pay for a partial-order approach to model checking. Other
partial-order techniques, like the one introduced by Valmari [19], also require a
special treatment of divergences or livelocks. 3 We have shown that the conditions
for checking if part-I or part-II events are terminals remain very simple.

In our tableau system the size of a tableau may grow quadratically in the
number of reachable states of the system. We have not been able to construct an
example showing that this bound can be reached, although it probably exists. In
all experiments conducted so far the number of events of the tableau is always
smaller than the number of reachable states. In examples with a high degree of
concurrency we obtain exponential compression factors.

The prototype implementation was created mainly for investigating the sizes
of the generated tableau. Implementing this procedure in a high performance
prefix generator such as the one described in [5] is left for further work.

Acknowledgements. We would like to thank Claus Schröter for collecting the
set of LTL model checking benchmarks used in this work.

3 The idea of dynamically checking which L-transitions are checkpoints could also be
used with the approach of [19] to implement state based LTL-X model checking.

Implementing LTL Model Checking with Net Unfoldings 55

References

1. J. C. Corbett. Evaluating deadlock detection methods for concurrent software.
Technical report, Department of Information and Computer Science, University of
Hawaii at Manoa, 1995.

2. C. Courcoubetis, M. Y. Vardi, P. Wolper, and M. Yannakakis. Memory-efficient
algorithms for the verification of temporal properties. Formal Methods in System
Design, 1:275–288, 1992.

3. J. Esparza and K. Heljanko. A new unfolding approach to LTL model check-
ing. In Proceedings of 27th International Colloquium on Automata, Languages and
Programming (ICALP’2000), pages 475–486, July 2000. LNCS 1853.

4. J. Esparza and K. Heljanko. Implementing LTL model checking with net un-
foldings. Research Report A68, Helsinki University of Technology, Laboratory for
Theoretical Computer Science, Espoo, Finland, March 2001. Available at
〈http://www.tcs.hut.fi/Publications/reports/A68abstract.html〉.

5. J. Esparza and S. Römer. An unfolding algorithm for synchronous products of
transition systems. In Proceedings of the 10th International Conference on Con-
currency Theory (Concur’99), pages 2–20, 1999. LNCS 1664.

6. J. Esparza, S. Römer, and W. Vogler. An improvement of McMillan’s unfolding
algorithm. In Proceedings of 2nd International Workshop on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS’96), pages 87–106, 1996.
LNCS 1055.

7. J. Esparza and C. Schröter. Reachability analysis using net unfoldings. In Proceed-
ing of the Workshop Concurrency, Specification & Programming 2000, volume II
of Informatik-Bericht 140, pages 255–270. Humboldt-Universität zu Berlin, 2000.

8. R. Gerth, D. Peled, M. Y. Vardi, and P. Wolper. Simple on-the-fly automatic
verification of linear temporal logic. In Proceedings of 15th Workshop Protocol
Specification, Testing, and Verification, pages 3–18, 1995.

9. M. Heiner and P. Deussen. Petri net based qualitative analysis - A case study.
Technical Report Technical Report I-08/1995, Brandenburg Technische Universität
Cottbus, Cottbus, Germany, December 1995.

10. K. Heljanko. Deadlock and reachability checking with finite complete prefixes. Re-
search Report A56, Helsinki University of Technology, Laboratory for Theoretical
Computer Science, Espoo, Finland, December 1999. Licentiate’s Thesis. Available
at 〈http://www.tcs.hut.fi/Publications/reports/A56abstract.html〉.

11. K. Heljanko. Using logic programs with stable model semantics to solve dead-
lock and reachability problems for 1-safe Petri nets. Fundamenta Informaticae,
37(3):247–268, 1999.

12. G. Holzmann. The model checker SPIN. IEEE Transactions on Software Engi-
neering, 23(5):279–295, 1997.

13. C. Lewerentz and T. Lindner. Formal Development of Reactive Systems: Case
Study Production Cell. Springer-Verlag, 1995. LNCS 891.

14. K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.
15. S. Melzer and S. Römer. Deadlock checking using net unfoldings. In Proceedings

of 9th International Conference on Computer-Aided Verification (CAV ’97), pages
352–363, 1997. LNCS 1254.

16. S. Merkel. Verification of fault tolerant algorithms using PEP. Technical Re-
port TUM-19734, SFB-Bericht Nr. 342/23/97 A, Technische Universität München,
München, Germany, 1997.

17. W. Reisig. Petri Nets, An Introduction. Springer-Verlag, 1985.

56 J. Esparza and K. Heljanko

18. P. Simons. Extending and Implementing the Stable Model Semantics. PhD thesis,
Helsinki University of Technology, Laboratory for Theoretical Computer Science,
April 2000. Also available on the Internet at
〈http://www.tcs.hut.fi/Publications/reports/A58abstract.html〉.

19. A. Valmari. On-the-fly verification with stubborn sets. In Proceeding of 5th In-
ternational Conference on Computer Aided Verification (CAV’93), pages 397–408,
1993. LNCS 697.

20. M. Y. Vardi. An automata-theoretic approach to linear temporal logic. In Logics
for Concurrency: Structure versus Automata, pages 238–265, 1996. LNCS 1043.

21. K. Varpaaniemi, K. Heljanko, and J. Lilius. PROD 3.2 - An advanced tool for
efficient reachability analysis. In Proceedings of the 9th International Conference
on Computer Aided Verification (CAV’97), pages 472–475, 1997. LNCS 1254.

22. F. Wallner. Model checking LTL using net unfoldings. In Proceeding of 10th
International Conference on Computer Aided Verification (CAV’98), pages 207–
218, 1998. LNCS 1427.

Directed Explicit Model Checking with
HSF-SPIN

Stefan Edelkamp, Alberto Lluch Lafuente, and Stefan Leue

Institut für Informatik
Albert-Ludwigs-Universität

Georges-Köhler-Allee
D-79110 Freiburg

{edelkamp,lafuente,leue}@informatik.uni-freiburg.de

Abstract. We present the explicit state model checker HSF-SPIN which
is based on the model checker SPIN and its Promela modeling language.
HSF-SPIN incorporates directed search algorithms for checking safety
and a large class of LTL-specified liveness properties. We start off from
the A* algorithm and define heuristics to accelerate the search into the
direction of a specified failure situation. Next we propose an improved
nested depth-first search algorithm that exploits the structure of Promela
Never-Claims. As a result of both improvements, counterexamples will
be shorter and the explored part of the state space will be smaller than
with classical approaches, allowing to analyze larger state spaces. We
evaluate the impact of the new heuristics and algorithms on a set of
protocol models, some of which are real-world industrial protocols.

1 Introduction

Model Checking [3] is a formal analysis technique that has been developed to
automatically validate functional properties for software or hardware systems.
The properties are usually specified using some sort of a temporal logic or using
automata. There are two primary approaches to model checking. First, Symbolic
Model Checking [21] uses binary decision diagrams to represent the state set. The
second formalization uses an explicit representation of the system’s global state
graph. An explicit state model checker evaluates the validity of the temporal
properties over the model by interpreting its global state transition graph as
a Kripke structure. In this paper we focus on explicit state model checking
and its application to the validation of communication protocols. The protocol
model we consider is that of collections of extended communicating finite state
machines as described, for instance, in [2] and [12]. Communication between two
processes is either realized via synchronous or asynchronous message passing on
communication channels (queues) or via global variables. Sending or receiving a
message is an event that causes a state transition. The system’s global state space
is generated by the asynchronous cross product of the individual communicating
finite state machines (CFSMs). For the description of the state machine model

M.B. Dwyer (Ed.): SPIN 2001, LNCS 2057, pp. 57–79, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

58 S. Edelkamp, A. Lluch Lafuente, and S. Leue

we use the language Promela [17], and for the validation of Promela models we
use the model checker SPIN1 [16].

The use of model checking in system design has the great advantage over the
use of deductive formal verification techniques that once the requirements are
specified and the model has been programmed, model checking validation can
be implemented as a push-button process that either yields a positive result, or
returns an error trail. Two primary strategies for the use of model checking in
the system design process can be observed.

– Complete validation is used to certify the quality of the product or design
model by establishing its absolute correctness. However, due to the large size
of the search space for realistic systems it is hardly ever possible to explore
the full state space in order to decide about the correctness of the system. In
these cases, it either takes too long to explore all states in order to give an
answer within a useful time span, or the size of the state space is too large
to store it within the bounds of available main memory.

– The second strategy, which also appears to the more commonly one used,
is to employ the model checker as a debugging aid to find residual design
and code faults. In this setting, one uses the model checker as a search tool
for finding violations of desired properties. Since complete validation is not
intended, it suffices to use hashing-based partial exploration methods that
allow for covering a much larger portion of the system’s state space than if
complete exploration is needed.

When pursuing debugging, there are some more objectives that need to be
addressed. First, it is desirable to make sure that the length of a search until
a property violation is found is short, so that error trails are easy to interpret.
Second, it is desirable to guide the search process to quickly find a property
violation so that the number of explored states is small, which means that larger
systems can be debugged this way. To support these objectives we present an
approach to Directed Model Checking in our paper.

Our model-checker HSF-SPIN extends the SPIN framework with various
heuristic search algorithms to support directed model checking. Experimental
results show that in many cases the number of expanded nodes and the length
of the counter-examples are significantly reduced. HSF-SPIN has been applied
to the detection of deadlocks, invariant and assertion violations, and to the val-
idation of LTL properties. In most instances the estimates used in the search
are derived from the properties to be validated, but HSF-SPIN also allows some
designer intervention so that targets for the state space search can be specified
explicitly in the Promela code.

We propose an improvement of the depth-first search algorithm that exploits
the structure of never claims. For a broad subset of the specification patterns
described in [8], such as Response and Absence, the proposed algorithm performs
less transitions during state space search and finds shorter counterexamples com-
pared to classical nested-depth first search. Given a Promela Never Claim A the
algorithm automatically computes a partitioning of A in linear time with respect
1 Available from netlib.bell-labs.com/netlib/spin.

Directed Explicit Model Checking with HSF-SPIN 59

to the number of states in A. The obtained partitioning into non-, fully and par-
tially accepting strongly connected components will be exploited during state
space exploration. We improve the heuristic estimate by taking the structure of
the temporal property into account.

Related Work. In earlier work on the use of directed search in model checking
the authors apply best-first exploration to protocol validation [20]. They are in-
terested in typical safety properties of protocols, namely unspecified reception,
absence of deadlock and absence of channel overflow. In the heuristics they there-
fore use an estimate determined by identifying send and receive operations. In
the analysis of the X.21 protocol they obtained savings in the number of expan-
sion steps of about a factor of 30 in comparison with a typical depth first search
strategy. We have incorporated this strategy in HSF-SPIN. While the approach
in [20] is limited to the detection of deadlocks, channel overflows and unspecified
reception in protocols with asynchronous communication, the approach in this
paper is more general and handles a larger range of errors and communication
types. While the labelings used in [20] are merely stochastic measures that will
not yield optimal solutions, the heuristics we propose are lower bound estimators
and hence allow us to find optimal solutions.

The authors of [30] use BDD-based symbolic search within the Murφ vali-
dation tool. The best first search procedure they propose incorporates symbolic
information based on the Hamming distance of two states. This approach has
been improved in [26], where a BDD-based version of the A* algorithm [11] for
the µcke model checker [1] is presented. The algorithm outperforms symbolic
breadth-first search exploration for two scalable hardware circuits. The heuristic
is determined in a static analysis prior to the search taking the actual circuit lay-
out and the failure formula into account. The approach to symbolic guided search
in CTL model checking documented in [25] applies ‘hints’ to avoid sections of the
search space that are difficult to represent for BDDs. This permits splitting the
fix-point iteration process used in symbolic exploration into two parts yielding
under- and overapproximation of the transition relation, respectively. Benefits
of this approach are simplification of the transition relation, avoidance of BDD
blowup and a reduced amount of exploration for complicated systems. However,
in contrast to our approach providing ‘hints’ requires user intervention. Also,
this approach is not directly applicable to explicit state model checking, which
is our focus.

Exploiting structural properties of the Büchi Automaton in explicit state
mode checking has been considered in the literature in the context of weak al-
ternating automata (WAA) [5]. WAA were invented to reason about temporal
logics, generalize the transition function with boolean expressions of the succes-
sor set, and partition the automaton structure. The classification of the states of
a WAA differs from ours, since the partitioning into disjoint sets of states that
are either all accepting or all rejecting does not imply our partitioning.

The simplification of Büchi automata proposed in [27] is inferred from an
LTL property, whereas we work on the basis of Büchi automata. This work also
considers a partitioning according to WAA-type weakness conditions and hence
differs from the approach taken in our paper.

60 S. Edelkamp, A. Lluch Lafuente, and S. Leue

The approach taken in [29] addresses explicit CTL* model checking in SPIN
using hesistant alternating automata (HAAs). The paper shows that the perfor-
mance of the proposed ‘LTL nonemptiness game’ is in fact a reformulation and
improvement of nested depth-first search. Both the partitioning and the context
of HAA model checking are significanty different from our setting.

In our paper we will use a number of protocols as benchmarks. These include
Lynch’s protocol, the alternating bit protocol, Barlett’s protocol, an erroneous
solution for mutual exclusion (mutex)2, the optical telegraph protocol [17], an
elevator model3, a deadlock solution to Dijkstra’s dining philosopher problem,
and a model of a concurrent program that solves the stable marriage prob-
lem [22]. Real-World examples that we use include the Basic Call processing
protocol [23], a model of a relay circuit [28], the Group Address Registration
Protocol GARP [24], the CORBA GIOP protocol [18], and the telephony model
POTS [19]4.

Precursory Work. The precursor [10] to this paper considers safety property
analysis for simple protocols. In the current paper we extend on this work by re-
fining the safety heuristics, by providing an approach to validating LTL-specified
safety properties, and by experimenting with a larger set of protocols.

Structure of Paper. In Section 2 we review automata-based model checking. Sec-
tion 3 discusses the analysis of safety properties in directed model checking and
describes the use of the A* algorithm for this purpose. In Section 4 we discuss
liveness property analysis. We present approaches to improve search strategies
for validation of LTL properties. In Section 5 we discuss how to devise informa-
tive heuristic estimates in communication protocols. The new protocol validator
HSF-SPIN is presented in Section 6. Experimental results for various protocols
are discussed in Section 7. We conclude in Section 8.

2 Automata-Based Model Checking

In this Section we review the automata theoretic framework for explicit state
model checking. Since we model infinite behaviors the appropriate formalization
for words on the alphabet of transitions sequences are Büchi-Automata. They
inherit the structure of finite state automata but with a different acceptance
condition. A run (infinite path) in a Büchi-Automaton is accepting if the set of
states that appear infinitely often in the run has a non-empty intersection with
the set of accepting states. The language L(A) of a Büchi-Automaton A consists
of all accepting runs. The expressiveness of Büchi-Automata includes LTL.

Formally, LTL specification F (M) according to a Kripke Model M are defined
as follows: All predicates a are in F (M) and if f and g are in F (M), so are

2 Available from netlib.bell-labs.com/netlib/spin
3 Available from www.inf.ethz.ch/personal/biere/teaching/mctools/elsim.html
4 The Promela sources and further information about these models can be obtained

from www.informatik.uni-freiburg.de/˜lafuente/models/models.html

Directed Explicit Model Checking with HSF-SPIN 61

¬f, f ∨ g, f ∧ g, X f, F f, G f , and f U g. In LTL, temporal modalities are
expressed through the operators 2 for globally (G) and 3 for eventually (F).

In automata-based Model Checking we construct the Büchi-Automaton A
and the automaton B that represents the system M . A is sometimes obtained
by translating an LTL formula into a Büchi Automaton. While this translation
is exponential in the size of the formula, typical property specifications result
in small LTL formulae so that this complexity is not a practical problem. The
system B satisfies A when L(B) ⊆ L(A). This is equivalent to L(B) ∩ L(A) =
∅, where L(A) denotes the complement of L(A). Note that Büchi-Automata
are closed under complementation. In practice, L(A) can be computed more
efficiently by deriving a Büchi-Automaton from the negated formula. Therefore,
in the SPIN validation tool LTL formulae are first negated, and then translated
into a Never Claim (automaton) that represent the negated formula. As an
example we consider the commonly used response property which states that
whenever a certain request event p occurs a response event q will eventually
occur. Response properties are specified in LTL as 2(p → 3q) and the negation
is 3(p ∧ 2¬ q). The Büchi-Automaton and the corresponding Promela Never-
Claim for the negated response property are illustrated in Figure 1.

Fig. 1. Büchi-Automaton for response property (left) and for its negation (right).

The emptiness of L(B) ∩ L(A) is determined using an on-the-fly algorithm
based on the synchronous product of A and B: Assume that A is in state s and
B is in state t. B can perform a transition out of t if A has a successor state s′ of
s such that the label of the edge from s to s′ represents a proposition satisfied in
t. A run of the synchronous product is accepting if it contains a cycle through at
least one accepting state of A. L(B)∩L(A) is empty if the synchronous product
does not have an accepting run. We use the standard distinction of safety and
liveness properties. Safety properties refer to states, whereas liveness properties
refer to paths in the state transition diagram. Safety properties can be validated
through a simple depth-first search on the system’s state space, while liveness
properties require a two-fold nested depth-first search. When property violations
are detected, the model checker will return a witness (counterexample) which
consists of a trace of events or states encountered.

62 S. Edelkamp, A. Lluch Lafuente, and S. Leue

3 Searching for Safety Property Violations

The detection of a safety error consists of finding a state in which some property
is violated. Typically, the algorithms used for this purpose are depth-first and
breadth-first searches. Depth-first search is memory efficient, but not very fast
in finding target states. We describe how heuristic search algorithms can be used
instead in order to accelerate the exploration.

Heuristic search algorithms take additional search information in form of a
evaluation function into account that returns a number purporting to describe
the desirability of expanding a node. When the nodes are ordered so that the
one with the best evaluation is expanded first and if the evaluation function
estimates the cost of the cheapest path from the current state to a desired one,
the resulting greedy best-first search (BF) often finds solutions fast. However, it
may suffers from the same defects as depth-first search – it is not optimal and
may be stuck in dead-ends or local minima.

Breadth-first search (BFS), on the other hand, is complete and optimal
but very inefficient. Therefore, A* [13] combines both approaches for a new
evaluation function by summing the generating path length g(u) and the esti-
mated cost of the cheapest path h(u) to the goal yielding the estimated cost
f(u) = g(u) + h(u) of the cheapest solution through u. If h(u) is a lower bound
then A* is optimal. Table 1 depicts the implementation of A* to search safety
violations, where g(u) is the length of the traversed path to u and h(u) is the
estimate from u to a failure state.

Table 1. The A* Algorithm Searching for Violations of Safety Properties.

A*(s)
Open ← {(s, h(s))}; Closed← {}
while (Open 6= ∅)

u← Deletemin(Open); Insert(Closed,u)
if (failure(u)) exit Safety Property Violated
for all v in Γ (u)

f ′(v)← f(u) + 1 + h(v)− h(u)
if (Search(Open, v))

if (f ′(v) < f(v))
DecreaseKey(Open, (v, f ′(v))

else if (Search(Closed , v))
if (f ′(v) < f(v))

Delete(Closed , v); Insert(Open, (v, f ′(v))
else Insert(Open, (v, f ′(v))

Similar to Dijkstra’s single source shortest path exploration [7], starting with
the initial state, A* extracts states from the priority queue Open until a failure

Directed Explicit Model Checking with HSF-SPIN 63

state is found. In a uniform-cost graph with integral lower-bound estimate the f -
values are integer and bounded by a constant, such that the states can be kept in
doubly-linked lists stored in buckets according to their priorities [6]. Therefore,
given a node reference Insert and Close can be executed in constant time while
the operation DeleteMin increases the bucket index for the next node to be
expanded. If the differences of the priorities of successive nodes are bounded by
a constant, DeleteMin runs in O(1). Nodes that have already been expanded
might be encountered on a shorter path. Contrary to Dijkstra’s algorithm, A*
deals with them by possibly re-inserting nodes from the set of already expanded
nodes into the set of priority queue nodes (re-opening).

Figure 2 depicts the impact of heuristic search in a grid graph with all edge
costs being 1. If h ≡ 0, A* reduces to Dijkstra’s algorithm, which in case of
uniform graphs further collapses to BFS. Therefore, starting with s all nodes
shown are added to the (priority) queue until the goal node t is expanded. If we
use h(u) as the Euclidian distance ‖u− t‖2 to state t, then only the nodes in the
hatched region are ever removed from the priority queue.

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

s

t

Fig. 2. The Effect of Heuristic Search in a Grid Graph.

Weightening scales the influence of the heuristic estimate such that the com-
bined merit function f of the generating path length g and the heuristic estimate
h is given by f(u) = αg(u) + (1 − α)h(u) for all states u and α ∈ [0, 1]. In case
α < 0.5, optimality of the search algorithms is affected, for α = 0 we exibit BF,
and for α = 1 we simulate BFS.

4 Searching for Liveness Property Violations

Liveness properties refer to paths of the state transition graph and the detection
of liveness property violations entails searching for cycles in the state graph.
This is typically achieved by a nested depth-first search (Nested-DFS) that can
be implemented with two stacks as shown in Figure 3 (cf. [3]).

One feature of this algorithm is that a state, once flagged will not be consid-
ered further on. For the correctness of the algorithm the post-order traversal of

64 S. Edelkamp, A. Lluch Lafuente, and S. Leue

Nested-DFS(s)
hash(s)
for all successors s′ of s do

if s′ not in the hash table then Nested-DFS(s′)
if accept(s) then Detect-Cycle(s)

Detect-Cycle(s)
flag(s)
for all successors s′ of s do

if s′ on Nested-DFS -Stack then exit LTL-Property violated
else if s′ not flagged then Detect-Cycle(s′)

Fig. 3. Nested-Depth-First-Search.

the search tree is crucial, such that the secondary depth-first traversal only en-
counters nodes that have already been visited in the main search routine. There-
fore in the application of heuristic methods for the first traversal of Nested-DFS,
we are restricted to move ordering techniques: using a heuristic function for es-
tablishing the order in which the successors of a state will be explored. However,
the second search can be improved by directed cycle detection search. Since we
are aiming for those states in the first stack we can use heuristics to perform a
directed search for the cycle-closing states. The disadvantage of a pre-ordered
nested search approach (search the acceptance state in the Never-Claim and,
once encountered, search for a cycle) is its quadratic worst-case time and linear
memory overhead, since the second search has to be invoked with a newly ini-
tialized visited list. To address this drawback we developed a single pass DFS
algorithm applicable to a large set of practical property specifications.

4.1 Classification of Never Claims

Strongly connected components (SCC) partition a directed graph into groups
such that there is no cycle combining two components. A subset of nodes in
a directed graph is strongly connected if for all nodes u and v there is a path
from u to v and a path from v to u. SCCs are maximal in this sense and can
be computed in linear time [4]. In the Never-Claim of the example in Figure 1
we find two strongly connected components: the first is formed by n0 and the
second by na. Furthermore, there is no path from the second SCC to the first.
Therefore, accepting cycles in the Never-Claim exist only in the second SCC.
Accepting cycles in the synchronous product automaton are composed of states
in which the Never-Claim is always in state na (second SCC). A cycle is found
if a state is encounterd on the stack. Moreover, if the local state of the never
claim in the found global state belongs to the first SCC, the established cycle is
not accepting, and if it belongs to the second SCC it is an accepting one.

In order to generalize the observation suppose that we have pre-computed
all SCCs of a given Never-Claim. Due to the synchronicity of the product of

Directed Explicit Model Checking with HSF-SPIN 65

the model automaton and the Never-Claim a cycle in the synchronous product
is generated by a cycle in exactly one SCC. Moreover, if the cycle is accepting,
so is the corresponding cycle in the SCC of the never claim. Suppose that each
SCC is either composed only of non-accepting states or only of accepting states.
Then global accepting cycles only contain accepting states, while non-accepting
cycles only contain non-accepting states. Therefore, a single depth-first search
can be used to detect accepting cycles: if a state s is found in the stack, then
the established cycle is accepting if and only if s itself is accepting.

The restriction on the SCC partitioning given by the above rules can be
relaxed according to the following classification of the SCCs.

– We call an SCC accepting if at least one of its states is accepting, and non-
accepting (N-SCC) otherwise.

– We call an accepting SCC fully accepting (F-SCC) if all of its cycles contain
at least one accepting state.

– We call an accepting SCC partially accepting (P-SCC) if there is at least one
cycle that does not contain an accepting state.

If the Never-Claim contains no partially accepting SCC, then acceptance cycle
detection for the global state space can be performed by a single depth-first
search: if a state is found in the stack, then it is accepting, if the never state
belong to an accepting SCC. A special case occurs if the never claim has an
endstate. If this state is reached the never claim is said to be violated; a bad
sequence is found. We indicate the presence of endstates with the letter S. Bad
sequences are tackled similarily to safety properties by standard heuristic search.

The classification of patterns in property specifications [8] reveals that a
database of 555 LTL properties partitions into Absence (85/555), Universality
(119/555), Existence (27/555), Response (245/555), Precedence(26/555), and
Others (53/555). Using this pattern scheme and the modifiers Globally, Before,
After, Between, and Until we obtain a partitioning into SSCs according to Ta-
ble 2.

Table 2. SCC Classification for LTL-Specification Patterns. S indicates the presence of
endstates in the never claim, while N, P, F indicate the presenc of at least one N-SCC,
P-SCC and F-SCC respectively.

Pattern Globally Before After Between Until
Absence S+N S+N S+N S+N S+N+P
Universality S+N S+N S+N S+N+P+F S+N+P
Existence F S+P+N N+F S+N+P S+N+F
Response N+F S+N+P+F N+F S+N+P+F S+N+P+F
Precedence S+N+P S+N N+P S+N S+N+P

66 S. Edelkamp, A. Lluch Lafuente, and S. Leue

4.2 Improved Nested Depth-First-Search

In this section we present an improvement of the Nested-DFS algorithm called
Improved-Nested-DFS. It finds acceptance cycles without nested search for all
problems which partition into N- or F-components. The algorithm reduces the
number of transitions required for full validation of liveness properties. Except
for P-SCCs it avoids the post-order traversal. For P-SCCs we guarantee that the
second cycle detection traversal is restricted to the strongly connected compo-
nent of the seed. The Improved-Nested-DFS algorithm is given in Fig. 5. In this
Figure, SCC(s) is the SCC of state s, F-SCC(s) determines if the SCC of state
s is of type F (fully accepting), P-SCC(s) determines if the SCC of the state is
of type P (partially accepting) and neverstate(s) denotes the local state of the
Never Claim in the global state s. The algorithms considers the successors of a
node in depth-first manner and marks all visited nodes with the label hash. If a
successor s′ is already contained in the stack, a cycle C is found. If C corresponds
to a cycle in a F-SCC of the neverstate of s′, it is an accepting one. Cycles for the
P-SCCs parts in the never claim are found as in Nested-DFS, with the excep-
tion that the successors of a node are pruned which neverstates are outside the
component. If a endstate in the Never Claim is reached the algorithm terminates
inmediately. Figure 4 depicts the different cases of cycles detected in the search.
The correctness of Improved-Nested-DFS follows from the fact that all cycles in
the state-transition graphs correspond to cycles in the Never-Claim. Therefore,
if there is no cycle combining two components in the Never-Claim, so there is
none in the overall search space.

Fig. 4. Visualization of the Different Cases in Improved-Nested-DFS.

As mentioned above, the strongly connected components can be computed
in time linear to the size of the Never Claim, a number which is very small in
practice. Partitioning the SCCs in non-accepting, partially accepting and fully
accepting can also be achieved in linear time by a variant of Nested-DFS in the

Directed Explicit Model Checking with HSF-SPIN 67

Improved-Nested-DFS(s)
hash(s)
for all successors s′ of s do

if s′ in Improved-Nested-DFS -Stack and F-SCC (neverstate(s′)) then
exitLTL-Property violated

if s′ not in the hash table then Nested-DFS(s′)
if accept(s) and P-SCC (neverstate(s)) then Improved-Detect-Cycle(s)

Improved-Detect-Cycle(s)
flag(s)
for all successors s′ of s do

if s′ on Improved−Nested−DFS-Stack then exit LTL-Property violated
else if s′ not flagged and SCC(neverstate(s)) = SCC(neverstate(s′)) then

Improved-Detect-Cycle(s′)

Fig. 5. Improved Nested Depth-First Search.

Never Claim. In contrast to the heuristic directed search the improved nested
depth-first search algorithm accelerates the search for full validation. The ease of
implementation suggests to Improved-Nested-DFS to the SPIN validation tool.

4.3 A* and Improved-Nested-DFS

So far we have not considered heuristic search for Improved-Nested-DFS. Once
more, we consider the example of Response properties to be validated. In a
first phase, states are explored by A*. The evaluation function to focus the
search can easily be designed to reach the accepting cycles in the SCCs faster,
since all states that we are aiming at are accepting. This approach generalizes
to a hybrid algorithm A* and Improved-Nested-DFS, A*+DFS for short, that
alternates between heuristic search in N-SCCs, single-pass searches in F-SCCs,
and Nested-Search in P-SCCs. If a P- or S-component is encounterd, Improved
Nested-DFS is invoked and searches for cycles. The heuristic estimate respects
the combination of all F-SCCs and P-SCCs, since accepting cycles are present in
either of the two components. The nodes at the horizon of a F- and P-component
lead to pruning of the sub-searches and are inserted back into the Open-List
(priority queue) of A*, which contains all horizon nodes with a neverstate in the
corresponding N-SCCs. Therefore A* + Improved-Nested-DFS continues with
directed search, if cycle detection in the F- and P-component components fails.
As in the naive approach, cycle detection search itself might be accelerated with
an evaluation function heading back to the states where it was started.

Figure 6 visualizes this strategy for our simple example. The Never Claim
corresponds to a response property. It has the following SCCs: SCC0 which is a
N-SCC, and SCCa which is F-SCC. The state space can be seen as divided in
two partitions, each one composed of states where the Never Claim is a state
belonging to one of the SCCs. In a first phase, A* is used for directing the search

68 S. Edelkamp, A. Lluch Lafuente, and S. Leue

to states of the partition corresponding to SCCa. Once a goal state is found,
the second phase begins, where the search for accepting cycles is performed by
Improved-Nested-DFS.

Fig. 6. Visualization of A* and Improved-Nested-DFS for a response property.

5 Heuristics for Errors in Protocols

In this section we introduce search heuristics to be used in the detection of errors
in models written in Promela. We start off with precompiling techniques that
help to efficiently compute different heuristic estimates.

5.1 Precompiling State Distance Tables

We now discuss how to calculate heuristic estimates through a precompilation
step. We assume that a transition system T = (T1, . . . , Tk) is given with Ti being
the set of transitions within the process Pi. We use S to denote global system
states. In S we have a set P of currently active processes P1, . . . , Pk. We write
pci to denote the current control state for process Pi. The information we infer
is the Local State Distance Table D that is defined for each process type. The
value Di(u, v) fixes the minimal number of transitions necessary to reach the
local state u ∈ Si starting from the local state v ∈ Si in the finite state machine

Directed Explicit Model Checking with HSF-SPIN 69

Table 3. The formula-based heuristics: a denotes a Boolean variable and g and h
are logical predicates, t is a transition, q a queue. The symbol ⊗ represents relational
operators (=, 6=,≤,≤,≥,≥).

f Hf (S)
true 0
false ∞
a if a then 0 else 1
¬g Hg(S)
g ∨ h min{Hg(S), Hh(S)}
g ∧ h Hg(S) + Hh(S)
full(q) capacity(q)− length(q)
empty(q) length(q)
q?[t] minimal prefix of q without t (+1 if q

contains no message tagged with t)
a⊗ b if a⊗ b then 0, else 1
i@s Di(pci, s)

representation for Pi. The matrix Di is determined cubic time [4] with respect
to the size of the number of states in the finite state representation of Pi.

5.2 The Formula-Based Heuristics

The formula-based heuristics assumes a logical description f of the failure to be
searched. Given f and starting from S, Hf (S) is the estimation of the number
of transitions necessary until a state S′ is reached where f(S′) holds. Similarly,
Hf (S) is the minimum number of transitions that have to be taken until f is
violated. Table 3 depicts the distance measure Hf (S) of the failure formula that
we used. The estimator Hf (S) is defined analogously.

We allow formulae to contain other terms such as relational operators and
Boolean functions over queues, since they often appear in failure specifications of
safety properties: The function q?[t] is read as message at head of queue q tagged
with t. Another statement is the i@s predicate which denotes that a process with
a process id i of a given proctype is in its local control state s.

In the definition of Hg∧h and Hg∨h, we can replace plus (+) with max if we
want a lower bound. In some cases the proposed definition is not optimistic, e.g.,
when repeated terms appear in g and h. The estimate can be improved based
on a refined analysis of the domain. For example suppose that variables are only
decremented or incremented, then Ha=b can be fixed as a − b.

Heuristics for Safety Properties

Invariants. System invariants are state predicates that are required to hold over
every reachable system state S. To obtain a heuristics it is necessary to estimate
the number of system transitions until a state is reached where the invariant does
not hold. Therefore, the formula for the heuristics is derived from invariant.

70 S. Edelkamp, A. Lluch Lafuente, and S. Leue

Assertions. Promela allows to specify logical assertions. Given that an assertion
a labels a transition (u, v), with u, v ∈ Si, then we say a is violated if the formula
f = (i@u)∧¬a is satisfied. According to f the estimate Hf for assertion violation
can now be derived.

Deadlocks. S is a deadlock state if there is no transition starting from S and at
least one of the processes of the system is not in a valid endstate, i.e., no process
has a statement that is executable. In Promela, there are statements that are
always executable: assignments, else statements, run statements (used to start
processes), etc. For other statements such as send or receive operations or
statements that involve the evaluation of a guard, executability depends on the
current state of the system. For example, a send operation q!m is only executable
if the queue q is not full. A naive approach to the derivation of an estimator
function is is to count the number of active (or non-blocked) processes in the
current state S. We call this estimator Hap. It turns out that best-first search
using this estimator is quite effective in practice. For the formula based heuristics
Hf we can devise conditions for executability for a significant portion of Promela
statements:

1. Untagged receive operation (q?x, with x variable) are not executable if the
queue is empty. The corresponding formula is ¬ empty(q).

2. Tagged receive operations (q?t, with t tag) are not executable if the head
of the queue is a message tagged with a different tag than t yielding the
formula ¬ q?[t].

3. Send operations (q!m) are not executable if q is full indicated by the predicate
¬full(q).

4. Conditions (boolean expressions) are not executable if the value of the con-
dition is false corresponding to the term c.

We now turn to the problem of estimating the number of transitions necessary
to reach a deadlock state. The deadlock in state S′ can be formalized as the
conjunct

deadlock ≡
∧

Pi∈P

blocked(i, pci(S′), S′)

where the predicate blocked(i, pci(S′), S′) is defined as

blocked(i, u, S) ≡ (i@u) ∧
∧

t=(u,v)∈Ti

¬ executable(t, S).

Unfortunately, we do not know the set of states in which the system deadlocks
such that we cannot compute the formula at exploration time. A possible solution
to this problem is to approximate the deadlock formula. First we determine in
which states a process can block and call such states dangerous. Therefore, we
consider a process Pi to be blocked if blocked(i, u, S) is valid for some u ∈ Ci,
with Ci being the set of dangerous states of Pi. We define blocked(i, S) as a
predicate for process Pi to be blocked in system state S,i.e., blocked(i, S) =∨

u∈Ci
blocked(i, S, u) and approximate the deadlock formula with deadlock’ =∧

Pi∈P blocked(i, S).

Directed Explicit Model Checking with HSF-SPIN 71

Heuristics for the Violation of Liveness Properties. For the validation
of LTL specifications we need a heuristics for accelerating the search into the
direction of the accepting state in the Never Claim. This can be achieved by
declaring all accepting states as dangerous and use the local distance table to
derive an estimate. An alternative is to collect all incoming transition labels for
the accepting states and build a formula-based heuristics on the disjunction of
that labeling. For the example of the response property we devise the heuristics
Hp∧¬q.

During the second phase of the nested depth-first search we need cycle-
detection search algorithms. Since we know which accepting state to search for
we can refine Hf (S) for the given state S as

f =
∧

Pi∈P

i@pci(S)

Designer Devised Heuristics. The designer of the protocol can support the
search for failures by devising a more accurate heuristics than the automatically
inferred one. In HSF-SPIN, there are several options. First of all, the designer can
alter the recursive tabularized definition of the heuristics estimate to improve the
inference mechanism. Another possibility is to concretize deadlock occurences in
the Promela code. Without designer intervention, all reads, sends and conditions
are considered dangerous. Additionally, the designer can explicitly define which
states of the processes are dangerous by including Promela labels with prefix
danger into the protocol specification.

6 The Model Checker HSF-SPIN

We chose SPIN as a basis for HSF-SPIN. It inherits most of the efficiency and
functionality of Holzmann’s original source of SPIN as well as the sophisticated
search capabilities of the Heuristic Search Framework (HSF) [9]. HSF-SPIN uses
Promela as its modeling language. We refined the state description of SPIN to
incorporate solution length information, transition labels and predecessors for
solution extraction. We newly implemented universal hashing, and provided an
interface consisting of a node expansion function, initial and goal specification.
In order to direct the search, we realized different heuristic estimates. HSF-SPIN
also writes trail information to be visualized in the XSPIN interface. As when
working with SPIN, the validation of a model with HSF-SPIN is done in two
phases: first the generation of an analyzer of the model, and second the validation
run. The protocol analyzer is generated with the program hsf-spin which is
basically a modification of the SPIN analyzer generator. By executing hsf-spin
-a <model> several c++ files are generated. These files are part of the source
of the model checker for the given model. They have to be compiled and linked
with the rest of the implementation, incorporating, for example, data structures,
search algorithms, heuristic estimates, statistics and solution generation. HSF-
SPIN also supports partial search by implementing sequential bit-state hashing
[14]. Especially for the IDA* algorithm, bit-state hashing supports the search

72 S. Edelkamp, A. Lluch Lafuente, and S. Leue

for various beams in the search trees. Although the hash function does not
disambiguate all synonyms and the length of a witness is often minimal [10].

The result is an model checker that can be invoked with different parameters:
kind of error to be detected, property to be validated, algorithm to be applied,
heuristic function to be used, weightening of the heuristic estimator. HSF-SPIN
allows textual simulation to interactively traverse the state space which greatly
facilitates in explaining witnesses that have been found.

7 Experimental Results

All experimental results were produced on a SUN workstation, UltraSPARC-II
CPU with 248 Mhz. If nothing else is stated, the parameters while experimenting
with SPIN (3.3.10) and HSF-SPIN are a depth bound of 10,000 and a memory
limit of 512 MB. Supertrace is not used, but partial order reduction is used in
SPIN. We list our experimental results in terms of expanded states and witness
path length, i.e., the length of the counterexample. SPIN does not give the num-
ber of expanded states. We calculate it as the number of stored states plus one;
in SPIN all stored states except the error state are expanded due to the depth
first search traversal. Note that we apply SPIN with partial order reduction,
while HSF-SPIN does not yet include this feature.

7.1 Experiments on Detecting Deadlocks

This section is dedicated to experiments with protocols that contain deadlocks.
Table 4 depicts experimental results with these protocols. For parametrized pro-
tocols, we have used the largest configuration that a breadth-first search (BFS)
can solve. We experimented with two heuristics for deadlock detection: Hap and
Hf +U : Hap is the weak heuristics, counting the number of active processes; and
Hf + U is the formula based heuristics, where the deadlock formula is inferred
from the user designated dangerous states. In A*, Hf +U seem to perform better
than Hap. On the other hand, with best-first search the results achieved for both
heuristics are similar. Therefore, we give the results with Hap for BF only.

BFS and A* find optimal solutions, while BF finds optimal or near to optimal
solutions in most cases. To the contratry, the depth-first search (DFS) traversal
in HSF-SPIN and in SPIN generally provide solutions far from the optimum.
The most significant cases are the Dining Philosophers and the Snoopy proto-
col. SPIN finds counterexamples of length larger than 1,000, while the optimal
solution is about 30 times smaller. In some cases, A* expands almost as many
nodes as BFS, which indicates a less-informed heuristic estimate. This weakness
is compensated in best-first searches, in which the number of expanded nodes is
smaller than in other search strategies for most cases.

In [10] we analyzed the scalability of the search strategies. Evidently, BFS
does not scale. A* and DFS also tend to struggle when the protocols are
parametrized with higher values. However, best-first search seems to be very
stable: in most cases it scales linearly with the parameter tuned, offering near-to
optimal solutions. Table 5 depicts some experimental results with the deadlock

Directed Explicit Model Checking with HSF-SPIN 73

solution to the dining philosophers problem. These results show that directed
search can find errors in protocols, where undirected search techniques are not
able to find them. In the presented case SPIN fails to find a deadlock for large
configurations of the philosophers problem.

Table 4. Detection of Deadlocks in Various Protocols.

HSF-SPIN SPIN
GARP BFS DFS A*,Hap A*,Hf + U Best-First,Hap DFS
Expanded States 834 62 1,145 53 33 56
Generated States 2,799 70 3,417 194 60 64
Witness Length 16 50 16 18 28 58
Philosophers (p = 8)
Expanded States 1,801 1,365 41 69 249 1,365
Generated States 10,336 1,797 97 69 646 1,797
Witness Length 34 1,362 34 34 66 1,362
Snoopy
Expanded States 37,191 5,823 32,341 6,872 152 1,243
Generated States 131,475 7,406 110,156 24,766 299 1,646
Witness Length 40 4,676 40 40 40 1,113
Telegraph (p = 6)
Expanded States 75,759 44 38 366 38 44
Generated States 445,434 45 108 1,897 108 45
Witness Length 38 44 38 38 38 44
Marriers (p = 4)
Expanded States 403,311 294,549 333,529 284,856 6,281 36,340
Generated States 1,429,380 1,088,364 1,176,336 996,603 16,595 47,221
Witness Length 62 112 62 62 112 112
GIOP (u = 1, s = 2)
Expanded States 49,679 247 38,834 27,753 315 338
Generated States 168,833 357 126,789 89,491 504 377
Witness Length 61 136 61 61 83 136
Basic Call (p = 2)
Expanded States 80,137 115 4,170 36 57 117
Generated States 199,117 136 8,785 60 89 140
Witness Length 30 96 30 30 42 96

7.2 Experiments on Detecting Violation of System Invariants

This Section is dedicated to experiments of models with system invariants. In
the following table we summarize the models and the invariant that they violate.
Note that we simplified the denotation of invariant for better understanding.

Model Invariant
Elevator 2(¬opened ∨ stopped)
POTS ¬3(P1@s1 ∧ P2@s2 ∧ P3@s3 ∧ P4@s4)

The search for the violation is performed with H¬i as heuristic estimate,
where i is the system invariant. Table 6 depicts the results of experiments with
two models: an Elevator model, and the model of a Public Old Telephon System
(POTS). The latter is not scalable, and the former has been configurated with
3 floors. For the Elevator model, the meaning of the invariant is self explaining.
For the POTS model, the invariant describes the fact that not all processes are
in a conversation state. As explained in [19], we use this invariant to test whether
a given POTS model is capable of establishing a phone conversation at all.

74 S. Edelkamp, A. Lluch Lafuente, and S. Leue

Table 5. Number of expanded states and solution lengths achieved by A* in the dining
philosophers protocol (p=number of philosophers).

HSF-SPIN SPIN
p BFS DFS A*,Hap A*,Hf + U Best-First,Hap DFS
2 Expanded States 10 12 10 10 10 12

Generated States 12 14 12 12 12 14
Witness Length 10 10 10 10 10 10

3 Expanded States 18 19 16 14 32 19
Generated States 30 22 22 19 52 22
Witness Length 14 14 14 14 14 18

4 Expanded States 33 57 21 21 69 57
Generated States 77 75 33 27 155 75
Witness Length 18 54 18 18 26 54

8 Expanded States 1,801 1,365 41 69 249 1,365
Generated States 10,336 1,797 97 69 646 1,797
Witness Length 34 1,362 34 34 66 1,362

12 Expanded States - - 61 50 539 278,097
Generated States - - 193 127 1,468 46,435
Witness Length - - 50 50 98 9,998

16 Expanded States - - 81 66 941 -
Generated States - - 321 201 2,626 -
Witness Length - - 66 66 130 -

Table 6. Detection of Invariant Violations.

HSF-SPIN SPIN
Elevator BFS DFS A* Best-First DFS
Expanded States 228,479 310 227,868 16,955 305
Generated States 1,046,983 388 1,045,061 53,871 363
Witness Length 205 521 205 493 521
POTS
Expanded States 49,143 1,465,103 409 68 2,012,345
Generated States 154,874 4,460,586 1,287 185 2,962,232
Witness Length 66 1,055 66 66 872

As the Elevator model violates a very simple invariant, the results show that
A* performs like breadth-first search; an optimal solution is found, but the num-
ber of expanded nodes are almost the same. SPIN and our depth-first search al-
gorithm (DFS) yield about same results. The number of expanded nodes is small
compared to breadth-first search and best-first search expands more nodes than
DFS for a better solution quality. However, best-first search does not approxi-
mate the solution quality. The cause of these unexpected bad performances of
the heuristic search algorithms is the restricted range of the heuristic estimate:
the integer range [0..2]. The quality of the estimate and the efficiency of the
heuristic search procedures for system invariants correlates with the amount of
information that can be extracted from the invariant.

The POTS protocol violates a more complicated invariant. The formula f
used for the heuristic estimate Hf is the negation of the invariant. The function
f is a conjunction of four statements about the local state of four different pro-

Directed Explicit Model Checking with HSF-SPIN 75

cesses. The heuristic estimate exploits the information of the transition graph
corresponding to each process. While SPIN has serious problems to find the vio-
lation of the invariant, A*’s performance is superior. It finds an optimal solution
with a relatively small number of expanded nodes. Best-First search achieves
even better results, since it still finds optimal solutions expanding less nodes.

7.3 Experiments on Detecting Assertion Violations

We have a small group of models containing errors such as violation of assertions
summarize as follows.

Model Assertion
Lynch’s Protocol i = lasti + 1
Barlett mr = (lmr + 1)% max
Mutex in = 1
Relay (k141 = (s11 ∧ ¬k121)) ∧

(k121 = (dienstv ∧ (¬s11 ∨ k121)))∧
(k142 = (s12 ∧ ¬k122)) ∧

(k|122 = (dienstv ∧ (¬s12 ∨ k122))) ∧
(dienstv = (k|141 ∨ k142))) <= ¬(k141 ∧ k142)

GARP false

Table 7 depicts experimental results with these protocols. The results show
that directed search strategies in HSF-SPIN offer shorter counterexamples for
assertion violations than SPIN. For the GARP Protocol the number of expanded
states is considerably high, since the heuristic according to the assertion false is
very weak. In all other cases, the number of expansions for heuristic search is by
far smaller smaller than the corresponding number of expanded states in SPIN
or exceeds it by at most three times.

7.4 Experiments on Detecting Violation of LTL Properties

In the following table we summarize test cases for the detection of LTL property
violations. Note that the error in the GIOP protocol has been seeded by explicit
source code annotation.

Model LTL formula
Alternating Bit 2(p → ((3q) ∨ (3q))
Elevator 2(p → 3(q ∧ r))
GIOP 2(p → 3(q ∧ r))

The LTL properties of the Elevator and GIOP protocols correspond to the
Response (Globally) pattern, the structure of the property in the alternating bit
is similar such that the A*+DFS algorithm for response properties can be used.

Table 8 shows experimental results on detecting the violation of LTL formu-
lae. We used a variant of the elevator model that includes a controller satisfying
the previously discussed invariant but violates a response property. This protocol
has been configurated with 4 floors, while the GIOP protocol is configured with
1 server and 3 clients. Comparing the results of the new proposed Improved-
Nested-DFS with those of the classical Nested-DFS, the new algorithm finds

76 S. Edelkamp, A. Lluch Lafuente, and S. Leue

Table 7. Detection of Assertion Violations in Various Protocols.

HSF-SPIN SPIN
Lynch BFS DFS A* Best-First DFS
Expanded States 79 50 72 63 47
Generated States 96 52 89 79 50
Witness Length 29 46 29 29 46
Barlett
Expanded States 82 348 61 26 262
Generated States 99 383 76 33 289
Witness Length 20 246 20 20 251
Mutex
Expanded States 349 202 150 24 202
Generated States 699 363 300 48 363
Witness Length 15 54 15 15 54
Relay
Expanded States 707 342 665 151 341
Generated States 2,701 719 2,292 1,069 870
Witness Length 12 190 12 120 190
GARP
Expanded States 17,798 1,040 18,968 4,727 150
Generated States 53,001 2,818 56,406 13,107 187
Witness Length 29 54 29 39 55

shorter solutions expanding a few states less. On the other side, the ad-hoc algo-
rithm for response properties (A*+DFS) finds the shortest solution in all cases.
In the Elevator protocol it expands about 1,000 times more states than the
other algorithms, and in the GIOP example it expands about 1,000 times less
states. In the elevator case we trace the anomaly back to the heuristic estimate
which gave a poor range of values: [0..1]. Heuristic estimates can only improve
a search strategy if they have very specific knowledge of the system. A small
ranged heurisitc function cannot achieve this. In the GIOP case the range of
values was somewhat larger ([0..6]), and obviously this improves the effective-
ness of the heuristic search. This observation calls for further refinements of the
heuristic functions.

We also performed full validation experiments with a version of the elevator
protocol that satisfies the response property and observed that Improved-Nested-
DFS executes less transitions (716,715) than classical Nested-DFS (979,336).

7.5 Performance of HSF-SPIN

HSF-SPIN is still a prototype. Therefore, its performance in terms of time and
space cannot compete with SPIN. For example, an exhaustive exploration of the
state space generated by the GIOP protocol parametrized with 2 clients and 2
servers is performed by SPIN (without partial order reduction) in 226 seconds
with a memory consumption of 236 MB, while our tool requires 341 seconds and
about 441 MB of space. Further experiments show that SPIN achieves a speedup
of about 3 in comparison with HSF-SPIN.

Directed Explicit Model Checking with HSF-SPIN 77

Table 8. Detection of Violation of Liveness Properties in Various Protocols.

HSF-SPIN SPIN
Alternating Bit Nested-DFS Improved-Nested-DFS A*+DFS DFS
Expanded States 33 32 11 24
Generated States 37 36 12 32
Witness Length 64 64 22 46
Elevator
Expanded States 309 251 217,810 253
Generated States 381 288 1,276,391 401
Witness Length 405 391 377 405
GIOP
Expanded States 404,799 404,619 113 53,812
Generated States 1,957,563 1,957,390 1,158 107,987
Witness Length 430 158 158 430

8 Conclusion

In this paper we commenced by arguing that there is a need for improving the
efficiency of model checking. It is desirable to obtain shorter error witnesses in or-
der to more easily understand errors that the model checker reports. A reduction
in the number of visited states during state space search is also desirable since
this renders larger models executable. While in previous work the improvements
were limited to safety properties, we now present an approach to improving the
validation of a large class of non-safety properties. We view this as a step of
developing HSF-SPIN into a full-fledged model checker.

The work centers around an algorithm for LTL property checking that is an
improvement to nested depth first search. The algorithm exploits the structure of
the Never Claim and heuristic estimates in order to find cycles faster. We argued
that based on the translation of LTL formulae to Büchi Automata implemented
in SPIN we can improve LTL property checking for a large class of specification
patterns used in practice. Next we presented heuristics to be used in search
algorithms for different classes of properties. We then presented HSF-SPIN, and
illustrated its application to a number of protocol examples.

As future work we plan to analyze the proposed improvement of the nested
depth-first search algorithm. We plan to perform further experiments to verify
the reduction in the number of performed transitions by the new algorithm as
well as refinements of the heuristic estimates. It has been shown that nested-
depth first search and partial order reductions can coexist [15]. Therefore, we
currently investigate how to reconcile partial order reduction and directed search.

Acknowledgements. The authors would like to thank the anonymous referees
for helpful references to related work.

78 S. Edelkamp, A. Lluch Lafuente, and S. Leue

References

1. A. Biere. µcke - efficient µ-calculus model checking. In Computer Aided Verifica-
tion, pages 468–471, 1997.

2. D. Brand and P. Zafiropulo. On communicating finite-state machines. Journal of
the ACM, 30(2):323–342, Apr 1983.

3. E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 2000.
4. T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. The

MIT Press, 1990.
5. A. D. E. Muller and P. Schnupp. Alternating automata. the weak monadic theory

of the tree and its complexity. In International Colloquim on Automata, Languages
and Programming.

6. R. Dial. Shortest path forest with topological ordering. Communications of the
ACM, pages 632–633, 1969.

7. E. W. Dijkstra. A note on two problems in connection with graphs. Numerische
Mathematik, 1:269–271, 1959.

8. M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Patterns in property specifications
for finite-state verification. In International Conference on Software Engineering,
1999.

9. S. Edelkamp. Data Structures and Learning Algorithms in State Space Search.
PhD thesis, University of Freiburg, 1999. Infix.

10. S. Edelkamp, A. L. Lafuente, and S. Leue. Protocol verification with heuristic
search. In AAAI Symposium on Model-based Validation of Intelligence, 2001.

11. S. Edelkamp and F. Reffel. OBDDs in heuristic search. In German Conference on
Artificial Intelligence (KI), pages 81–92, 1998.

12. M. G. Gouda. Protocol verification made simple: a tutorial. Computer Networks
and ISDN Systems, 25(9):969–980, 1993.

13. P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for heuristic determination
of minimum path cost. IEEE Trans. on SSC, 4:100, 1968.

14. G. Holzmann. An analysis of bitstate hashing. Formal Methods in System Design,
13(3):287–305, November 1998. extended and revised version of Proc. PSTV95,
pp. 301-314.

15. G. Holzmann, D. Peled, and M. Yannakakis. On nested depth first search. In The
Spin Verification System, pages 23–32. American Mathematical Society, 1996.

16. G. J. Holzmann. On limits and possibilities of automated protocol analysis. In
Protocol Specification, Testing, and Verification, 1987.

17. G. J. Holzmann. Design and Validation of Computer Protocols. Prentice Hall,
1990.

18. M. Kamel and S. Leue. Formalization and validation of the general inter-orb pro-
tocol (GIOP) using Promela and SPIN. In Software Tools for Technology Transfer,
volume 2, pages 394–409, 2000.

19. M. Kamel and S. Leue. Vip: A visual editor and compiler for v-promela. In 6th
International Conference, TACAS 2000, volume 1785 of Lecture Notes in Computer
Science, pages 471–486. Springer, 2000.

20. F. J. Lin, P. M. Chu, and M. Liu. Protocol verification using reachability analysis:
the state space explosion problem and relief strategies. ACM, pages 126–135, 1988.

21. K. McMillan. Symbolic Model Checking. Kluwer Academic Press, 1993.
22. D. McVitie and L. Wilson. The stable marriage problem. Communications of the

ACM, 1971.

Directed Explicit Model Checking with HSF-SPIN 79

23. A. Miller and M. Calder. Analysing a basic call protocol using promela/xspin. In
International SPIN Workshop, 1998.

24. T. Nakatani. Verification of group address registration protocol using promela and
spin. In International SPIN Workshop, 1997.

25. K. R. Bloem and F.Somenzi. Symbolic guided search for ctl model checking. In
Conference on Design Automation (DAC-00).

26. F. Reffel and S. Edelkamp. Error detection with directed symbolic model checking.
In World Congress on Formal Methods, pages 195–211. Springer, 1999.

27. F. Somenzi and R. Bloem. Efficient buchi automata from ltl formulae. In Computer
Aided Verification.

28. P. van Eijk. Verifying relay circuits using state machines. In International SPIN
Workshop.

29. W. Visser and H. Barringer. Ctl* model checking for spin. Software Tools for
Technology Transfer, 2000.

30. C. H. Yang and D. L. Dill. Validation with guided search of the state space. In
DAC, pages 599–604, 1998.

Addressing Dynamic Issues of Program Model
Checking

Flavio Lerda and Willem Visser

RIACS/NASA M/S 269-2
Ames Research Center

Moffett Field, CA 94035-1000
USA

{flerda, wvisser}@riacs.edu

Abstract. Model checking real programs has recently become an active
research area. Programs however exhibit two characteristics that make
model checking difficult: the complexity of their state and the dynamic
nature of many programs. Here we address both these issues within the
context of the Java PathFinder (JPF) model checker. Firstly, we will
show how the state of a Java program can be encoded efficiently and
how this encoding can be exploited to improve model checking. Next we
show how to use symmetry reductions to alleviate some of the problems
introduced by the dynamic nature of Java programs. Lastly, we show
how distributed model checking of a dynamic program can be achieved,
and furthermore, how dynamic partitions of the state space can improve
model checking. We support all our findings with results from applying
these techniques within the JPF model checker.

1 Introduction

Software is playing an increasingly important role in our everyday lives, but
sadly, so does software failure. At NASA this point was made painfully clear in
1999 when the Mars Polar Lander was lost due to a software related problem
(estimated cost was $165 million) [Spa00]. Although most agree that many soft-
ware failures can, and must, be caught during the design phase, it is however
often the case that a design phase is either missing by itself, or the tools and
techniques to analyze the designs are missing. Hence, testing an implementation
is still the number one way of finding errors in software systems. Testing, howe-
ver, can be very expensive, but more importantly, it is often incapable of finding
subtle errors - e.g. timing errors in a concurrent system.

Model checking has been used extensively to find subtle errors in hardware
and protocol designs [BLPV95,CW96,Hol91]. However, until recently, model
checking has been deemed inadequate to analyze software code, due to the high
level of detail often found in code. Now there are many groups, from both in-
dustry and academia, that are analyzing source code by model checking. Many
of these source code model checkers are based on a translation from source code

M.B. Dwyer (Ed.): SPIN 2001, LNCS 2057, pp. 80–102, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Addressing Dynamic Issues of Program Model Checking 81

to the input notation of a model checker: Bandera [CDH+00], Java PathFin-
der 1 [HP98], JCAT [DIS99] are Java model checkers, and, AX [Hol00] and
SLAM [BR00] are C model checkers. A drawback of the translation approach
is that certain language constructs are difficult to translate and hence two of
these tools, JCAT (dSPIN [IS99]) and AX have extended their back-end model
checker (SPIN in both cases [Hol97a]) to improve efficiency.

We adopted a different approach by creating a custom-made model checker
for Java. We call this tool Java PathFinder 2, henceforth referred to as JPF. JPF
is an explicit state model checker that takes as input Java bytecode. It is structu-
red as a search algorithm that uses a special Java virtual machine (JV MJPF) to
execute the bytecode instructions one at a time. In order to implement a depth
first algorithm the JV MJPF needs also to have a backtracking capability. The
tool itself is written is Java and it’s executed by the Java virtual machine (just
JVM from now on). By executing the bytecode we can not only analyze all of
Java, but we can also analyze programs without source code (e.g. libraries and
code down-loaded over the web), and other languages for which bytecode trans-
lations exist [BKR98,Taf96,CD98]. Recently JPF has been integrated with the
Bandera system [CDH+00]: in this case Bandera doesn’t need to do any transla-
tion because our tool is able to handle Java directly, but Bandera’s functionality
of slicing and abstraction are available to improve the model checking.

If one looks at the history of model checking input notations, then it is clear
that there has been an evolution from simple guarded command style notations,
to ones where more complex data-structures are used. We believe this trend will
continue and soon complex dynamic data-structures as well as other features
from typical programming languages will be common place. The purpose of this
paper will be to highlight some of the difficulties and possible solutions we have
encountered in developing an efficient model checker that can handle dynamically
evolving software systems. We hope this will help others when developing similar
systems.

Although it is clear that static analysis of a system before model checking
can greatly benefit the verification, e.g. slicing a system with respect to a certain
property to be checked, or finding independent statements to allow partial-order
reductions, here we will focus mostly on purely dynamic optimizations for which
no prior information is required. The interested reader is referred to [VHBP00]
where we discuss static analysis for partial-order reductions and other techniques,
such as abstraction, that JPF employs before doing model checking.

Model checking software is often considered hard due to the complexity of
the state of the system (this is the premise of state-less model checking [God97,
Sto00]). We address this problem in section 2, by first showing how a “large”
state can be collapsed to a smaller one, how this can be exploited to improve
explicit-state model checking, how a novel form of symmetry reductions on the
state can reduce the size of the state space, and lastly, how garbage collection
improves model checking. The state-space explosion problem can be reduced,
but it almost never goes away. Hence, the more memory one has the larger the
programs that can be checked. In section 3 we extend the distributed model

82 F. Lerda and W. Visser

checking algorithm first used for SPIN [LS99], that exploits the memory of a
number of workstations, to work in the dynamic context of Java. Section 4
contains conclusions and directions for future work.

2 Complexity of the State

One of the first issues we had to address was the complexity of the state. A
limitation of the current model checking tools is that they cannot handle dyna-
mic structures. In fact dSPIN [IS99], an extension of the model checking SPIN
[Hol97a] used as a back-end in the Java model checker tool JCAT [DIS99], in-
troduces direct support for dynamic allocation.

2.1 The Representation of the State

In creating our own model checker, we were free to choose the representation
of the state. Our aim was to be able to handle dynamic allocation efficiently
and maintain our representation as close as possible to the one suggested by the
programming language. The state is composed of three main components:

static area: is an array of entries, one for each class loaded. Each entry contains
the values of the static fields of the class and the monitor associated with it.
The monitor contains information on the lock for the class: which thread is
holding the lock, which threads are waiting for the lock etc. When a new class
needs to be loaded a new entry in the static area is created and its fields and
monitor are initialized. Once loaded a class will never be unloaded during
the execution of an instruction – but it can be unloaded by a backtracking
step.

dynamic area: is an array of entries, one for each object. Each entry contains
the values of the fields and the monitor1 associated with it. Objects are crea-
ted explicitly by specific bytecode instructions. When an object is created an
entry is added in the dynamic area and its fields and monitor are initialized.
Objects are not destroyed explicitly in Java, but they can be removed if not
referenced anymore (see Section 2.5).

thread list: is a list containing the information relative to each thread. It con-
tains the status of the thread together with other information used by the
scheduler, and the stack frames created by the method calls. A new entry is
created when a new thread is created, and modified each time the execution
of a bytecode instruction changes the state of the thread or one of its stack
frames.

These three components are dynamic and they can grow and shrink freely
during the execution of the program, not imposing any limit on the size of the
state. This is a novel feature, since in both SPIN, where process are allocated
dynamically, and dSPIN, where also data can be allocated dynamically, there is
still a limit imposed on the size of each state.
1 The fields and monitor structures are the same used in the static area.

Addressing Dynamic Issues of Program Model Checking 83

2.2 Collapsing the State

The dynamic features of the Java language, namely, class loading, object crea-
tion and method invocation, require a complex data-structure to record the
state of the system (see for example our state structure in the previous section).
Furthermore, in order to do efficient explicit-state model checking one needs to
record the states that have been visited (often using a hash-table). From the
examples2 in Table 1 one can clearly see that it is very inefficient to store the
states in their original complex form: for both relatively simple Java programs
more than 2kB/state are required. Unlike in a tool such as SPIN where state
compression is an option, it is clear that for systems that require a more complex
state description, compression should be a requirement.

The “collapse” algorithm has been very successful for state compression in
SPIN [Hol97b] and hence we decided to extend it for use within JPF. The ratio-
nale behind the collapse method is that when a new state is generated large parts
of the state are unchanged. This would seem to call for the state to be stored
as the difference from the predecessor, but since states need to be compared to
determine if a state has been visited before, this would be inefficient. What the
collapse does is to associate to a particular part of the state an index. The state
can then be collapsed to a list of indexes indicating which components compose
the state itself. The decomposition must be unique so that by comparing the
indexes it is possible to determine state equality.

In order to generate the indexes we created a set of pools. Each pool is an
ordered set without repetitions. Every time a state needs to be stored it is first
collapsed: each component is inserted into a pool, the pool returns the index
that corresponds to the position of that component in the pool. If the element
was not present in the pool it is added at the end, otherwise the index of the
copy already present in the pool is returned. The assumption is that the size
of the pool is small enough because each single component appears the same in
many states.

In SPIN there are pools for the following state components: global variables,
processes and asynchronous channels. Asynchronous channels has no counterpart
in Java, but one can think of global variables and static fields, and SPIN processes
and JAVA threads to be similar. This would seem to imply that a good first try
for our state compression should include a pool for the static area, the dynamic
area and the threads. This, however, would be inefficient, since each of these
three components has further structure that can be exploited. For example, an
assignment to a field of an object would make the dynamic area and one thread
change, and hence create two large new pool entries. If we rather use a pool for
each stack frame in each thread, one for each monitor and one for each fields data
entry then the above field assignment would only change one stack frame entry
(the one for the method with the assignment, while leaving all other frames in
the thread to collapse to their old values) and one fields entry. When deciding on
which components to compress one should always pick components that would
2 The examples used in this and the following tables are available from the JPF web-

page http://ase.arc.nasa.gov/jpf

84 F. Lerda and W. Visser

not change too often, in order to get maximum benefit. We therefore choose a
pool for each of the following: fields data (from both the static and dynamic
area), monitor data (again shared between static and dynamic area), method
stack frames and lastly one for other thread information (such as the thread
status, that seldom changes).

As can be seen in Table 1, when the compression algorithm is used the
number of different elements in the pools is quite small and the reduction of the
memory requirements is impressive. Note that the execution time is reduced as
well. When a new state is stored it is compared to other states to see if it has
already been visited. This operation is highly inefficient when two uncompressed
states are compared because of the complexity of the states themselves, but
it is quite efficient when the compressed states (namely arrays of integers) are
compared.

Table 1. Comparison of JPF using no compression, collapse, and optimized backtrack

States Transitions Pools Entries
RemoteAgent 66,425 148,825 1,373

Memory Time State Size
(MB) (sec) (bytes)

No Compression 180.79 227.83 2854
Collapse 12.08 138.65 191

Optimized Backtrack 12.08 54.39 191

States Transitions Pools Entries
BoundedBuffer 105682 275988 583

Memory Time State Size
(MB) (sec) (bytes)

No Compression 504.82 665.90 5009
Collapse 28.17 297.40 445

Optimized Backtrack 28.16 76.82 445

2.3 Optimizing the Backtrack

Although compression made JPF usable, it was clearly still too slow and used
too much memory at run-time to handle large examples. Profiling the system
revealed that the problem was the way we handled backtracking. Unlike SPIN
we decided to store a copy of each state on the depth-first stack for backtracking
purposes — SPIN uses a backwards transition to unwind moves when back-
tracking, and only if the state change is too large a copy of the previous state
is used. The reason for this is that we work on the bytecode level and often one

Addressing Dynamic Issues of Program Model Checking 85

Java statement3 can correspond to many bytecode instructions, hence unwin-
ding each bytecode instruction seemed too complicated. The graph in Figure 1
shows how the memory usage before optimizing the backtracking varies during
the visit as new states are reached. In the same graph (with a different scale)
the depth of the stack is shown. It is evident how the memory usage is strictly
related to the depth of the stack because the uncompressed state is stored on
the stack.

0

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

3e+07

3.5e+07

0 10000 20000 30000 40000 50000 60000 70000

Memory Usage Before
Memory Usage After

Stack Depth

Fig. 1. Memory usage in bytes during execution with and without optimized back-
tracking. Stack depth is also represented in a different scale

A very simple, and above all novel solution presented itself: store the com-
pressed state on the stack and use the reverse of the collapse operation to re-
create the original state when backtracking. In fact, only store a reference to
the compressed state on the stack and leave the state itself in the hash-table.
Reconstructing the state is quite straight-forward because the collapsed infor-
mation contains the indexes of the different components of the state that just
need to be put back together again via a reverse lookup in the pools (i.e. the
original component corresponding to an index must be retrieved). For efficiency
only the components that are actually changed are restored. Figure 1 also shows
the memory usage after introducing the optimization of the backtrack. A slight

3 Although JPF executes bytecode instructions, we typically don’t use that level of
atomicity during model checking, rather we use one JAVA statement or one line of
JAVA code as being one transition.

86 F. Lerda and W. Visser

dependency between memory used and stack depth is still present, but now most
of the memory is used to store the states. It is interesting to see that the memory
usage before and after the optimization intersect where the stack depth comes
down to zero – or very close to it.

Table 1 contains the results obtained using this more optimized backtracking
technique. It is not evident how the memory usage is optimized (see Figure 1)
because the same amount of memory is used when the search is finished. But
the execution time is considerably reduced, because it is not necessary to put a
copy of the state on the stack anymore.

2.4 Exploiting Symmetries

Symmetries have been used in model checking to reduce the size of the state
space [EJ93,ID96,CEJS98,CFJ93,BDH00]. The basic idea is to visit a subset of
the state space that is representative of the whole state space based on a sym-
metry relation that does not influence the properties being checked. Typically
symmetry reductions exploit the structure of the system being analyzed, e.g.
identical processes, scalar sets etc. [BDH00,ID96]. In keeping with the focus of
the paper we exploit symmetries that will be inherent to dynamic systems, and
hence we address symmetry issues on the underlying state representation rather
than symmetry within the state itself.

class A {
public static int value = 0;

}

class B {
public static int value = 1;

}

Symmetry States Transitions
no 82 152
yes 70 132

class Main extends Thread {
public static void

main(String[] args) {
new Main(true).start();
new Main(false).start();

}
public int x;
private boolean a;
public Main(boolean a) {

this.a = a;
}
public void run() {

if(a) {
x = A.value;

} else {
x = B.value;

} } }

Fig. 2. Static area symmetry reduction

Addressing Dynamic Issues of Program Model Checking 87

Specifically we want to exploit the symmetry when classes are loaded into
the static area and when objects are created in the dynamic area. Recall from
section 2.1 that both the static and dynamic area are implemented as arrays, but
the exact position of a class or object in these arrays should not be relevant when
comparing states. Nondeterminism, either from concurrency or the environment,
can cause classes to be loaded or objects to be created in different orders along
different execution paths.

Comparing all possible permutations of the array entries when comparing
states is however computationally very expensive, and hence we decided to rat-
her use a canonization function to achieve efficient symmetry reductions. The
idea is the following: whenever a state is generated we calculate a canonical re-
presentation of the state and use this representation for state comparisons. The
use of a canonization function is a well-known technique for achieving symmetry
reductions [BDH00,ID96], but calculating this function can be very expensive
[CEJS98] in itself. However, since we are only interested in a limited form of
symmetry reduction, we can calculate the canonical state representation very
efficiently by imposing an order on the entries in the static and dynamic areas.
Due to the dynamic nature of Java programs, this ordering must be calculated
during model checking. Also, since we use the position of classes and objects as
references, an ordering that would require positions to change would be ineffi-
cient. The idea is to dynamically map each class (object) to a position in the
static (dynamic) array when the class (object) is first loaded (created). When
backtracking, this mapping is preserved, and reused when executing down a
different path.

Figure 2 shows a piece of code where two classes – A and B – are loaded
when one of their static fields is accessed. Two threads are executing each one
accessing a different class. Depending on the scheduling class A can be loaded
before class B or vice-versa. Without symmetry reduction, if classes are allocated
in the static area in the order they are loaded, the two interleavings above would
lead to two different states, one where A occupies the position before B and the
other where B is in front of A. With symmetry reduction we keep a mapping of
class names to positions with respect to which class got loaded first, and hence
we see a reduction in the number of states (see table in Figure 2). Note that for
classes we could have chosen an alphabetical ordering, but this would violate the
condition that positions must not change due to the ordering.

Since class names are unique this simple mapping of names to positions is
sufficient to achieve a canonical representation for the static area. The dynamic
area is not quite as straight-forward, since objects do not have names and hence
the different objects created cannot be so easily identified. Our first guess was
to use the bytecode instruction that created the object to identify it: this works
fine (see results in Figure 3) as long as each instruction is executed at most once
during each execution path. However allocation instructions can be executed
more than once and create more than one object (e.g. an allocation within a
loop). To deal with that we added to the identifier of an object the occurrences
of the instruction, i.e. the number of times that instruction has been executed

88 F. Lerda and W. Visser

class ThreadOne extends Thread {
public Object o;
public void run() {
o = new Object();

} }

class ThreadTwo extends Thread {
public Object o;
public void run() {
o = new Object();

} }

class Main {
public static void

main(String[] args) {
new ThreadOne().start();
new ThreadTwo().start();

} }

Symmetry States Transitions
no 54 89
yes 30 51

Fig. 3. Dynamic area symmetry reduction

before. Note that this occurrence number is incremented for an allocation, and
also decremented whenever the allocation is backtracked.

class ThreadOne extends Thread {
public Object o;
public void run() {
o = Main.newObject();

} }

class ThreadTwo extends Thread {
public Object o;
public void run() {
o = Main.newObject();

} }

class Main {
public static void

main(String[] args) {
new ThreadOne().start();
new ThreadTwo().start();

}
public static Object newObject() {
return new Object();

} }

Symmetry States Transitions
no 122 237
yes 86 168

thread 68 135

Fig. 4. One instruction can be called by different threads

Addressing Dynamic Issues of Program Model Checking 89

This is sufficient to identify an object, but it might not lead to the most
efficient symmetry reduction results. In Figure 4 the same bytecode instruction
is executed by two different threads. The number of occurrences with which
each thread executes the instruction depends on the interleaving and therefore
so does the position of the object in the dynamic area. One way to address
this problem is to add to the identifier of an object the thread that created the
objects and count the number of occurrences of the same instruction in each
thread separately (see last row in the table in Figure 4).

The same basic approach has been applied to the static and dynamic areas.
For the dynamic area – since there is no unique identifier for an object other
then the position in the dynamic area itself – it is necessary to use some other
information (the bytecode instruction that created the object, the number of
occurrences that instruction had before, the thread that created the object)
in order to create a dynamic ordering. Although we showed results on small
examples in this section, the difference symmetry reductions can make on more
realistic examples is quite good: e.g. without symmetry reductions the Bounded-
Buffer example from Table 1 has 2502761 states and only 105682 with symmetry
reduction (i.e. a 25 fold reduction). Furthermore, the time overhead is almost
non-existent: when applying symmetry reduction to an example that have no
such reductions we see a 1% increase in the execution time.

The symmetry reduction presented in this paper is orthogonal to other kind
of symmetries based on the structure of the system, and therefore they could
be used together. Note, that unlike [ID96,BDH00] we don’t require an exten-
sion of the model checker input language in order to achieve efficient symmetry
reductions. Lastly, some of the symmetries that are exploited here are due to dif-
ferent interleavings of some thread execution. Partial order reduction techniques
avoid exploring some of those interleavings, and therefore it can mitigate the
effect of our symmetry reduction. However our method can reduce symmetries
that cannot be avoided by partial order reductions, but more importantly, can
be applied without requiring expensive static analysis to determine transition
independence.

2.5 Garbage Collection

Java does not offer any primitive to deallocate an object. Once created an object
will continue to exist until it is garbage collected. An object can be garbage
collected when no more references to it are available.

If we want to model check software written in Java we need to take into
account garbage collection. Many Java programs rely on its presence, and even
very simple examples – see Figure 5 – would have an infinite number of sta-
tes without garbage collection (each allocation increases the size of the state,
hence causing an infinite state-space). Garbage collection during model checking
was first introduced in [IS00] and we implemented the same two algorithms,
namely reference counting and mark and sweep, in JPF. The results presented
in Table 2 show how reference counting and mark and sweep perform in our
implementation. Three examples are analyzed:

90 F. Lerda and W. Visser

public class Main {
public static void main(String[] args) {
Object o;
while(true) {
o = new Object();

} } }

Fig. 5. Even a simple example can have infinite states

– TempObj creates many temporary objects;
– NoGarbage adds elements to a list but never removes them, creating no

objects to be collected; and
– DoubleLinked creates a double linked list and then loses the only pointer

to it.

All these examples include concurrency (two or more threads are executing
the same operations concurrently). In the table the following have been reported:
the number of states, the number of transitions, the memory usage (at the end of
the verification), the execution time, and the number of objects collected (with
the number of times the algorithm has been activated for mark and sweep).

Table 2. Results obtained with GC

Memory Time GC
TempObj States Transitions (MB) (sec) objects(runs)

no GC 609173 1276971 168.26 508.24 -(-)
Mark and Sweep 2923 7110 1.1 5.73 2750(4286)
Reference Count 2923 7110 1.1 6.48 2750(-)

Memory Time GC
NoGarbage States Transitions (MB) (sec) objects(runs)

no GC 833766 1812626 216.88 520.26 -(-)
Mark and Sweep 833766 1812626 216.95 646.43 0(1241203)
Reference Count 833766 1812626 216.95 621.90 0(-)

Memory Time GC
DoubleLinked States Transitions (MB) (sec) objects(runs)

no GC 124503 310006 71.31 99.18 -(-)
Mark and Sweep 124503 310006 33.45 101.98 35928(231163)
Reference Count 124503 310006 71.37 120.01 0(-)

The first example – TempObj – is heavily affected by garbage collection.
The fact that temporary objects are created – which is quite common in Java –
adds extra information to the state that makes equivalent states seem different

Addressing Dynamic Issues of Program Model Checking 91

if garbage collection is not active. The memory requirement are the same for
both algorithms, but mark and sweep is slightly faster, since the ratio of objects
collected per run is quite high (this is not the case for the other two examples).

The second example – NoGarbage – shows the overhead introduced by the
two algorithms, since this example does not produce any object to be collected.
The extra memory is about the same for both algorithms, but that’s not true for
the execution time. The mark and sweet algorithm is activated many times and
that is reflected in the higher execution time: almost 70% of the transitions cause
the algorithm to be executed. The algorithm is activated only after an instruction
that can produce garbage: unfortunately many of the bytecode instructions can.

The last example – DoubleLinked – leads to two considerations. First, the
reference count algorithm is not able to detect cycles of garbage. As a conse-
quence no garbage is detected by this algorithm. Secondly, even when garbage
is found with the mark and sweep algorithm, the state space is not reduced:
the reason is that states with their garbage removed are still different because
of other variables in the program. However, there is a reduction in the memory
since states from which garbage was collected are now smaller.

Note, unlike the case for dSPIN[IS00], where it was necessary to store the
complete state on the stack before garbage collection – because the state was
changed in an irreversible way – we do not need to do so because the collapsed
version of the state is already stored on the stack.

3 Distributed Memory

Explicit state model checking suffers from the state explosion problem, and when
analyzing software programs this problem is more severe due to the higher-level
of detail present in such programs. In order to deal with this issue, many different
solutions have been tried, distributed model checking being one of them [LS99,
SD97]. In this section we present how we improved this technique and adapted
it to the dynamic nature of the systems that can be checked with our tool. Our
work is based on [LS99], that presents a distributed memory implementation of
SPIN. Our goal was to analyze the issues of implementing a distributed model
checker when the input model is a dynamic system, in order to guide us in the
development of a parallel model checker.

The algorithm presented in [LS99] extends the standard depth-first visit al-
gorithm into a distributed visit algorithm. This new algorithm is no longer depth
first but it still visits all the states and paths of the system. The only real is-
sue with this algorithm is that it does not allow LTL model-checking, but this
limitation had been overcome in [BBS00].

The basic idea is to divide the state space in partitions. Each node – work-
station – will store the states that belong to one of the partitions. Every time
a new state is reached a partition function is used to determine which node is
the owner of the state and the state is sent there for storage and analysis of
the state’s successors. If the state has to be visited in the same node then the
visit continues depth first from that node. The node the starting state belongs

92 F. Lerda and W. Visser

to will start the visit while the others are waiting for incoming messages. The
search is completed when all nodes are waiting and all messages sent have been
received. The major issue with this algorithm is picking a partition function that
minimizes the memory required by each node, but at the same time limits the
number of messages required between the nodes.

3.1 Improvements

The algorithm from [LS99] has been adapted to our system, at first without any
modification. After making the tool operational we worked on some extensions,
mainly aiming to reduce the communication overhead. In [LS99] a modification
of the algorithm, called sibling storing, is presented, which reduces the number
of messages sent. Each time a new state that needs to be sent to another node
– sibling – is reached, a local copy of the state sent is kept in the local hash
table. If encountered again, no messages need to be sent, since we know that
it has been received by that node before. One issue with this technique is that
the number of siblings can grow quickly and consume too much of the memory,
taking space that could be allocated to store actual (local) states.

We developed a modified version of this technique, that we called sibling
caching, that stores the siblings in a cache. When no empty space is left in the
cache, the least recently used element is discarded and the new sibling is added.
This technique proved to be quite effective – see Table 3 – because a very limited
size cache performs, in terms of messages avoided, almost as good as complete
sibling storing. Table 3 shows the traditional partition algorithm (that uses a
hash function over the complete system state for partitioning) augmented with a
number of optimizations techniques and compares these with respect to memory
usage, percentage of transitions that generates messages, and lastly the time
taken.

Table 3. Results using different optimizations with the RemoteAgent example

RemoteAgent Memory MB Messages % Time (sec)
Normal Distributed 40.69 38 525.16
Sibling Storing 45.70 27 504.65
Sibling Caching (50) 40.10 34 518.52
Sibling Caching (200) 39.60 31 515.26
Sibling Caching (500) 39.19 28 511.77
Children Lookahead 29.67 31 320.75
Children Lookahead + Sibling Storing 33.83 23 296.87
Children Lookahead + Sibling Caching (50) 29.19 28 316.11
Children Lookahead + Sibling Caching (200) 29.14 28 314.61
Children Lookahead + Sibling Caching (500) 28.86 26 319.06

Another extension we developed is called children lookahead. This technique
tries to avoid sending messages due to short paths that fall into another node’s
state-space. As can be seen in Figure 6, state s

(0)
i−1 is followed by state s

(1)
i . This

generates a message from node 0 to node 1. When node 1 receives the new state

Addressing Dynamic Issues of Program Model Checking 93

it generates its successor s
(0)
i+1. This node needs to be stored by node 0 and so

a second message is generated. This last message could have been avoided if
node 0 had checked the successors of s

(1)
i for any state belonging to itself – this

operation being not very expensive because state s
(1)
i has already been generated

by node 0.

successor

generates
all the

S

S

S

S

S

(1)(1)

(0)

(0) (0)

i-1

i i

i+1i+1

Node 0 Node 1

avoided message

Fig. 6. Example of children lookahead

In order for this technique to work it is necessary to clearly specify who is
going to take care of each state. When a message is sent the sender will check
for its own states among the successors of the sent state. On the other hand
the receiver will skip every state belonging to the sender that falls in the first
generation starting from the received state. This algorithm works also if there
are more than two parties involved, because the sender will just ignore states
belonging to a third party, while the receiver will send the state to the correct
node – therefore avoiding duplication. It is important however for the node to
check for possible states belonging to itself in the first generation of the state
sent to the third node.

This technique avoids messages for runs that last only one state in another
node’s part of the state space, but the technique can be generalized to an ar-
bitrary number of steps, corresponding to the number of generations that need to
be checked. There exists a trade off between the number of generations checked –
and therefore the number of possible messages avoided – and the time overhead
necessary to generate all the successors – which grows exponentially with respect
to the number of generations.

Some results can be seen in Table 3 where the same example has been exe-
cuted with different combinations of the presented techniques: sibling storing
reduces the number of messages more consistently than sibling caching, but in-

94 F. Lerda and W. Visser

creasing the size of the cache – 50, 200, and 500 in the table – the percentage of
messages gets closer to the results obtained using storing. Children lookahead ap-
pers to be very effective and is orthogonal to the other techniques. The results in
terms of message reduction are mirrored by the reduction in execution time. The
memory usage should be higher with sibling storing, decrease with the caching
and be minimum without any sibling algorithm. Nevertheless the experimental
results give an anomalous behavior that we were not able to explain.

State Transfer. A difference between SPIN and JPF is where most of the
execution time is spent: in SPIN storing the state uses most of the time, while
in JPF execution of the bytecode instructions is the most expensive operation.
This is due, in part, to the fact that in JPF transitions are more complex than
in SPIN. This difference can affect the design of the distributed version of the
two tools. In [LS99] the communication protocol between the nodes had been
designed so that a path is sent to identify the state that needs to be visited. This
is consistent with the assumption that steps can be executed very efficiently in
SPIN. On the other hand, in JPF an execution step is very time consuming
so it would sound efficient to send the state, without any need for the path.
In JPF however the state is a very complex structure that includes references.
At the early stages of the development we tried to send states, but the time
necessary to translate the states into something that can be sent on a socket was
too high. Therefore our choice was to send the path and use that information to
reconstruct the state on the destination node. Although we are sending a path
at the moment we believe that when doing the implementation on a parallel
architecture sending states would become viable.

Another possibility that we are currently exploring is to send across a com-
pressed version of the state. Since the state is very efficiently compressed by
the tool for storing, it would be effective to send the compressed state over the
network. This is not at the moment possible because the pools used for the
compression are local to each node and therefore it would be impossible to cor-
rectly reconstruct the state on the receiving node. One possible approach – that
is particularly interesting in a parallel environment, but it’s still applicable in
a distributed one – would be to centralize the pools used for the compression.
This way indexes for components of the state would be global and the com-
pressed state could be easily and quickly transferred between nodes. In order
to reduce the communication each node could keep a copy of the entries that it
accessed from the centralized pool and only when a new entry has to be added,
communication is necessary.

3.2 Partitioning

Partitioning is a crucial point in the distributed algorithm [LS99]. Partitioning
aims to achieve two contrasting goals, with an obvious trade off:

– reduce the number of message that need to be transmitted; and
– maintain a fair partitioning of the memory required on each node.

Addressing Dynamic Issues of Program Model Checking 95

In [LS99] a few heuristics to determine a partition function are suggested.
In [Ler00] a more complete approach to the problem is given, and a tool to
automatically generate a partition function from static analysis of the input
model is presented. However, because of the dynamic nature of the systems we
address, these kind of tools are more difficult to implement due to the complexity
of the static analysis required. We will therefore focus on partition functions that
can be calculated dynamically and compare them to static partitioning functions
that do not require any static analysis. In [Ler00] partition functions are classified
as:
static: the partitioning is made before the verification is run and no changes

are possible once at run-time; or
dynamic: the partition function is adapted at run-time using the information

gathered during execution to better suit the system that is being model
checked.
These two kinds of partition functions have their advantages and disadvan-

tages: static partitioning does not require further communication to determine
which node a state belongs to but it is hard to come up with a good func-
tion, i.e. one that achieves both equal partitions and low communication. On
the other hand, dynamic partitioning requires a higher level of communication
and complexity, but allows more versatility (it is not model dependent) and
equal partition size. All the partition functions used in [LS99] are static but the
algorithm presented does not rely on that assumption. Static partitioning is espe-
cially problematic for a dynamic system, because it is hard to extrapolate what
the behavior and structure of the system will be. Therefore a dynamic approach,
since it is not dependent on the system structure, seems more appropriate when
analyzing dynamic systems.

3.3 Static Partitioning

First we present some examples using static partitioning – Table 4 – that can be
used as a reference for the results presented further on. They are also important
because – as we will see in Section 3.4 – these partition functions are used as a
basis for the dynamic ones.

The results in the table are for the RemoteAgent example using two worksta-
tions. The different partition functions are reported in the first column, followed
by the percentage of the total memory used by each workstation, the percentage
of transitions that cause messages to be sent, and lastly the time taken.

The Global Hash Code partition function uses a hash function to determine
the partition: the function is applied to the whole state and the partition is the
result modulo the number of partitions. This solution gives a fair division of the
state space between the nodes, but at the same time, the number of messages
generated is pretty high.

A possible approach is to use the locality principle [LS99]: if the partition
function relies only on the information of a particular thread, only when that
thread is scheduled is it possible to reach a state that generates a message. As a
first step we created a partition function – Local Hash Code – that applies the

96 F. Lerda and W. Visser

Table 4. Different static partition functions on the RemoteAgent example

RemoteAgent Memory % Messages % Time (sec)
Global Hash Code 50/50 38 525.16
Local Hash Code 50/50 46 551.28
Local Hash Code (1) 44/56 11 241.46
Local Hash Code (2) 47/53 13 263.57
Program Counter (1) 54/46 17 342.34
Program Counter (2) 48/52 25 487.43
Program Counters (1) 54/46 17 339.46
Program Counters (2) 43/57 14 326.66

hash function to the thread list only. This implies that the value of the objects are
not included in the hashing process – only the stack frames and thread status
of all threads. As a further step we limited this process to a specific thread
(indicated by a number in the table). The results, in terms of message ratio, are
still not very good for the function if applied to the whole thread list because at
each step at least one of the program counters will change, but if applied to a
single thread, messages are reduced. The choice of the thread is also important:
the first thread – zero – is usually a bad choice (hence it was not included in
the table), since it is the main thread that often is simply used to create the
threads that compose the real system. In general a reduction of the messages is
obtained, with a sacrifice in the fairness of the partition.

As said before, in [Ler00] a tool to generate a partition function using static
analysis has been presented. Unfortunately, this tool cannot be applied, as is,
here because it uses the flow control graph of a thread, that is not as accessible as
in SPIN. The idea behind it is to use the current state of a process to determine
the partition the state belongs to: on a similar path we tried to use the program
counter of threads to do this. Since the static analysis approach cannot be used,
we just hashed the program counter. At first sight the program counter seems to
be the equivalent of the current state of a Promela process, but because of the
stack based approach, each thread has more than one program counter. At first
we tried to use the program counter from the topmost stack frame (rows saying
Program Counter as partition function), then we tried the same approach using
a function of all the program counters from every stack frame (rows marked
as Program Counters). The result is a reduction of the percentage of messages,
which is higher when the function is applied to a specific thread. Note again,
that the main thread (thread zero) is not shown, since as before it is only used to
start the rest of the system and hence leads to a very unbalanced partitioning.

An interesting observation is that one can either use too much information
to calculate the partitioning, in which case the partition is fair but creates too
many messages (see Global Hash Code and Local Hash Code) or one can use too
little information (see Program Counter 1 and 2) with similar problems. Using
just enough information seemed to give the best results: Local Hash Code for a
thread and Program Counters per thread.

Addressing Dynamic Issues of Program Model Checking 97

3.4 Dynamic Partitioning

The great advantage of dynamic partitioning is that no prior knowledge or static
analysis of the system are necessary: run-time information is used to keep the
partitioning fair. Dynamic partitioning just means that states can be stored in
one node at a certain moment and in another one later on. In general a dynamic
partition function will initially assign a subset of the state space to each node
and when a certain condition arises – for instance lack of main memory – it will
reassign some states to a different node.

In our work we assume that at any given time each node knows where each
state is supposed to be stored. This means that a node does not need to interro-
gate every other node to know if a state has already been visited, but can send it
to the legitimate owner. This assumption can be dropped a for limited time after
a reassignment with the condition that nodes relay the incoming states that do
not belong – anymore – to them to the correct designated node.

One issue that arises at this point is how to represent a partition function that
can change with time. It is necessary for some sort of table to specify which state
is stored where. It is obvious that the granularity of this table cannot be the single
state, otherwise the size of the table would be of the same order of magnitude
of the size of the whole state space. States can be grouped together: we called
these groups of states classes. It is clear that the classification is equivalent to the
partitioning. The assumption we made here is that the same techniques used for
determining static partition functions can be used to determine a classification
function. What is important is that classes do not need to be the exact same size.
In fact the number of classes is greater then the number of partitions, and each
partition consists of a set of classes: at run-time classes will be grouped together
into partitions and when a partition’s size is too big, part of it – a class – can be
assigned to another node. Still important is to minimize the number of potential
messages between two classes, but we do not have a strong trade off like we used
to. This solves the problem of having an excellent partition function, since an
average classification function can give optimal results.

When a reassignment is issued the states that have already been visited but
now belong to a different partition have to be discarded. It is not efficient –
at least in a distributed environment – to transfer that information across the
network. The node those states are assigned to will rediscover those states –
if they will ever be met again – without actually influencing the result of the
computation, just extending the search – since some states may be visited more
than once.

Table 5 show the results obtained using different dynamic partition functions
based on the static ones presented in the previous section. Half of the classes
are initially assigned to each node and, if necessary, they will be reassigned.
When comparing these results with the static partition results from Table 4 it is
clear that in every case the dynamic partition achieves either a similar or better
memory distribution and runtime.

An important issue is to decide when a reassignment is necessary: an option
would be to start it when the number of states stored in one partition is too

98 F. Lerda and W. Visser

Table 5. Results from dynamic partition with classes split equally

RemoteAgent Memory % Messages % Time (sec)
Global Hash Code 50/50 38 524.02
Local Hash Code 50/50 46 531.17
Local Hash Code (1) 48/53 11 216.56
Local Hash Code (2) 48/52 13 281.25
Program Counter (1) 52/48 17 340.97
Program Counter (2) 48/52 25 487.46
Program Counters (1) 52/48 17 311.22
Program Counters (2) 49/51 13 333.78

big compared to what is currently stored in the others. However this is not a
good idea, since having a greater amount of states stored in one partition is not
necessarily a problem until memory comes to exhaustion. It is better to wait
until the memory become an issue than keep the two partition at the same size
during the whole visit – also because a class’ size can change, for instance if most
of its states will be visited close to the end of the verification.

Another issue is that, even when the memory is abundant, the two nodes
have to communicate intensively since the beginning, because the states have
been divided as equally as possible before starting. One possible optimization
would be to store all the states – at least initially – on the same node and
let the reassignment and the dynamic algorithm do the work of obtaining a
better partitioning. This last approach leaves all but one node completely useless
from the beginning up to the time the first node exhausts its memory resources
and starts splitting the state space – and the work – with the others. One
disadvantage is that a lot of work might need to be redone, because every time
a class is reassigned a part of the state space that has already been visited is
lost. Table 6 show the results of doing this form of dynamic partitioning — the
fairness of the partitioning is still very good, but now the messages and hence
the time is much reduced.

Table 6. Results from having one node start with all the classes

RemoteAgent Memory Messages % Time (sec)
Global Hash Code 47/53 16 251.74
Local Hash Code 47/54 13 150.09
Local Hash Code (1) 45/55 5 97.57
Local Hash Code (2) 53/47 7 125.09
Program Counter (1) 45/55 11 141.38
Program Counter (2) 44/56 11 134.14
Program Counters (1) 39/61 10 145.38
Program Counters (2) 48/52 14 182.00

Addressing Dynamic Issues of Program Model Checking 99

One possible way to avoid having idle workstations is to assign to each node
a set of states that belong to it, but let them, at the beginning, visit and store
also other states. This way all nodes will start visiting the state space at the
same time without any need to send messages, because states can be stored in
their own hash table. When memory becomes an issue, those states that belong
to others can be discarded to make space for local states, but after that messages
needs to be sent for those nodes falling in that part of the state space. At first
this technique seems very similar to sibling storing but the difference is that
states are stored without sending a message. In fact if the successors of a given
state are fully visited by one node, the search will be correct even if later on this
state will be discarded.

To clarify this technique let’s suppose we have only two nodes. Initially both
the workstations start the visit until they reach a moment in time when memory
becomes scarce. At this point each node will have to discard a part of the state
space. Let’s assume for simplicity that only two classes were defined: each node
will keep one of them and reject the other. With a minimum amount of coordi-
nation – to avoid that both reject the same class – both nodes now have only
one class stored in their hash table. If we suppose for simplicity again that both
nodes got to the exact same point in the visit when they decided to reassign one
of their classes, no state would be lost, because each node is keeping what the
other rejected – see Figure 7.

Node 0 Node 1

Node 0 Node 1

Reassignment

Fig. 7. How states are visited and discarded

This was a simplification: in a more realistic scenario there would be a num-
ber of states that are lost, but surely quite limited compared to the same situa-
tion where only one node had been running until the first reassignment started.
Moreover if more classes than partitions exist the same dynamic techniques ap-
plied before can be used. At any time each class can be either stored by a specific
node or shared among a set of them. When memory is scarce a shared class can
be discarded – making sure ahead of time that not everybody else discard it at

100 F. Lerda and W. Visser

the same time – or a non-shared class can be transfered to another node. Table 7
shows results from this form of dynamic partitioning — note how the messages
and time is even further reduced from Table 6.

Table 7. Results from having two nodes start together

RemoteAgent Memory % Messages % Time (sec)
Global Hash Code 50/50 9 251.17
Local Hash Code 48/52 7 120.92
Local Hash Code (1) 52/48 3 74.46
Local Hash Code (2) 48/52 2 80.65
Program Counter (1) 38/62 4 113.21
Program Counter (2) 49/51 4 122.66
Program Counters (1) 48/52 5 112.46
Program Counters (2) 52/48 3 113.84

4 Conclusions

Program model checking is an area of active research since the importance of
software and its failures is increasing. Model checking of software presents spe-
cific issues that are due to the complexity and the dynamic nature of programs.
Translation-based approaches cannot adequately deal with these since they rely
on underlying tools that are not designed to exploit programs specific characteri-
stics. We developed our own model checking tool using a programming language,
Java, as our input notation in order to be able to overcome this limitation.

We first introduced a representation for the state that respects the paradigm
underlying the input notation. In order to be able to explore the state space
of a reasonable size we developed a compression algorithm that exploits the
structure of the system state. A novel approach to efficient backtracking has
been presented, that reconstructs the state from the compressed version present
on the stack. A novel approach to symmetry has been introduced, that exploits
symmetries inherent to the state representation. Garbage collection is discussed
as a further way to reduce the state space.

Even after applying state space reduction techniques programs are often still
too large for the memory of a single workstation: a distributed memory algo-
rithm can overcome this. We show how an existing distributed model checking
algorithm can be extended to reduce communication overhead and do dynamic
memory balancing. We show results supporting our claim that dynamic parti-
tioning of the state space over multiple workstations is well suited to analyze
dynamic (Java) programs. Although we did not show that the dynamic partition
functions presented here allow the verification to converge, we believe this is the
case. We intend to address this issue formally for more complicated functions
that we are currently developing.

Addressing Dynamic Issues of Program Model Checking 101

This paper focussed on techniques that can be applied without any prior
knowledge of system structure. We do however believe that many reduction
techniques based on a-priori static analysis of the system, such as slicing, partial
order reductions, abstractions, etc., can improve the model checking process and
should be applied whenever possible.

In the future, we intend to further investigate the combination of static and
dynamic reduction techniques to combat the state explosion. Furthermore, we
believe that parallel model checking will become more popular in the future
due to the use of such machines becoming more widespread. To this end we are
currently extending our distributed model checking algorithm to be used on a
parallel shared-memory architecture (SGI Origin 2000).

References

[BBS00] J. Barnat, L. Brim, and J. Stribrna. Distributed LTL model-checking in
SPIN. Technical Report FIMU-RS-2000-10, Faculty of Informatics, Mas-
aryk University, 2000. Available in this LNCS volume.

[BDH00] D. Bosnacki, D. Dams, and L. Holenderski. Symmetric SPIN. In Proc.
of the 7th International SPIN Workshop, volume 1885 of LNCS. Springer-
Verlag, September 2000.

[BKR98] Nick Benton, Andrew Kennedy, and George Russell. Compiling standard
ML to Java bytecodes. SIGPLAN Notices, 34(1):129–140, September 1998.

[BLPV95] J. Bormann, J. Lohse, M. Payer, and G. Venzl. Model checking in industrial
hardware design. In Proc. of the 32nd Design Automation Conference,
1995.

[BR00] Thomas Ball and Sriram K. Rajamani. Bebop: A symbolic model checker
for boolean programs. In Proc. of the 7th International SPIN Workshop,
volume 1885 of LNCS, pages 113–130. Springer-Verlag, September 2000.

[CD98] L.R. Clausen and O. Danvy. Compiling proper tail recursion and first-
class continuations: Scheme on the Java Virtual Machine. The Journal of
C Language Translation, 6(1):20–32, April 1998.

[CDH+00] J. Corbett, M. Dwyer, J. Hatcliff, S. Laubach, C. Pasareanu, and R. Zheng.
Bandera: Extracting finite-state models from Java source code. In Proc.
of the 22nd International Conference on Software Engineering, June 2000.

[CEJS98] Edmund M. Clarke, E. Allen Emerson, Somesh Jha, and A. Prasad Sistla.
Symmetry reductions in model checking. In Proc. of the 10th International
Conference on Computer Aided Verification, volume 1427 of LNCS, pages
147–158. Springer-Verlag, 1998.

[CFJ93] Edmund M. Clarke, T. Filkorn, and S. Jha. Exploiting symmetries in
temporal logic model checking. In Proc. of the 5th International Conference
on Computer Aided Verification, volume 697 of LNCS. Springer-Verlag,
1993.

[CW96] Edmund M. Clarke and J. M. Wing. Formal methods: State of the art
and future directions. Technical Report CMU-CS-96-178, Carnegie Mellon
University, 1996.

[DIS99] Claudio Demartini, Radu Iosif, and Riccardo Sisto. A deadlock detection
tool for concurrent Java programs. Software - Practice and Experience,
29(7):577–603, 1999.

102 F. Lerda and W. Visser

[EJ93] E. Emerson and C. Jutla. Symmetry and model checking. In Proc. 5th
International Conference on Computer Aided Verification, volume 697 of
LNCS. Springer-Verlag, 1993.

[God97] Patrice Godefroid. VeriSoft: A tool for the automatic analysis of concurrent
reactive software. In Proc of the 9th International Conference on Computer
Aided Verification, volume 1254 of LNCS, pages 476–479. Springer-Verlag,
June 1997.

[Hol91] Gerard J. Holzmann. Design and Validation of Computer Protocols. Pren-
tice Hall, 1991.

[Hol97a] Gerard J. Holzmann. The SPIN model checker. IEEE Transactions on
Software Engineering, 23(5):279–295, May 1997.

[Hol97b] Gerard J. Holzmann. State compression in SPIN: Recursive indexing and
compression training runs. In Proc. of the 3th International SPIN Works-
hop, April 1997.

[Hol00] Gerard J. Holzmann. Logic verification of ANSI-C code with SPIN. In
Proc. of the 7th International SPIN Workshop, volume 1885 of LNCS.
Springer-Verlag, September 2000.

[HP98] Klaus Havelund and Thomas Pressburger. Model checking Java programs
using Java PathFinder. International Journal on Software Tools for Tech-
nology Transfer, 2(4), April 1998.

[ID96] C. Norris Ip and David L. Dill. Better verification through symmetry.
Formal Methods in System Design, 9(1/2):47–75, August 1996.

[IS99] Radu Iosif and Riccardo Sisto. dSPIN: A dynamic extension of SPIN.
In Proc. of the 6th International SPIN Workshop, volume 1680 of LNCS,
pages 261–276. Springer-Verlag, September 1999.

[IS00] Radu Iosif and Riccardo Sisto. Using garbage collection in model checking.
In Proc. of the 7th International SPIN Workshop, volume 1885 of LNCS,
pages 20–33. Springer-Verlag, September 2000.

[Ler00] Flavio Lerda. Model checking: Tecniche di verifica formale in ambiente
distributo. Master’s thesis, Politecnico di Torino, May 2000.

[LS99] Flavio Lerda and Riccardo Sisto. Distributed-memory model checking with
SPIN. In Proc. of the 5th International SPIN Workshop, volume 1680 of
LNCS. Springer-Verlag, 1999.

[SD97] Ulrich Stern and David L. Dill. Parallelizing the Murphi verifier. In Proc. of
the 9th International Conference on Computer Aided Verification, volume
1254 of LNCS, pages 256–278. Springer-Verlag, June 1997.

[Spa00] SpaceViews. Premature engine cutoff likely cause of Mars Polar Lander
failure. http://www.spaceviews.com/2000/03/28b.html, March 2000.

[Sto00] Scott D. Stoller. Model-checking multi-threaded distributed Java pro-
grams. In Proc. of the 7th International SPIN Workshop, volume 1885
of LNCS, pages 224–244. Springer-Verlag, September 2000.

[Taf96] S. Tucker Taft. Programming the Internet in Ada 95. In Ada-Europe
International Conference on Reliable Software Technologies, volume 1088
of LNCS, pages 1–16. Springer-Verlag, June 1996.

[VHBP00] Willem Visser, Klaus Havelund, Guillaume Brat, and Seung-Joon Park.
Model checking programs. In Proc. of the 15th IEEE International Con-
ference on Automated Software Engineering, September 2000.

Automatically Validating Temporal Safety
Properties of Interfaces

Thomas Ball and Sriram K. Rajamani

Software Productivity Tools
Microsoft Research

http://www.research.microsoft.com/slam/

Abstract. We present a process for validating temporal safety proper-
ties of software that uses a well-defined interface. The process requires
only that the user state the property of interest. It then automatically
creates abstractions of C code using iterative refinement, based on the
given property. The process is realized in the SLAM toolkit, which con-
sists of a model checker, predicate abstraction tool and predicate discov-
ery tool. We have applied the SLAM toolkit to a number of Windows
NT device drivers to validate critical safety properties such as correct
locking behavior. We have found that the process converges on a set of
predicates powerful enough to validate properties in just a few iterations.

1 Introduction

Large-scale software has many components built by many programmers. Inte-
gration testing of these components is impossible or ineffective at best. Property
checking of interface usage provides a way to partially validate such software. In
this approach, an interface is augmented with a set of properties that all clients
of the interface should respect. An automatic analysis of the client code then
validates that it meets the properties, or provides examples of execution paths
that violate the properties. The benefit of such an analysis is that errors can be
caught early in the coding process.

We are interested in checking that a program respects a set of temporal safety
properties of the interfaces it uses. Safety properties are the class of properties
that state that “something bad does not happen”. An example is requiring that
a lock is never released without first being acquired (see [24] for a formal defi-
nition). Given a program and a safety property, we wish to either validate that
the code respects the property, or find an execution path that shows how the
code violates the property.

In this paper, we show that safety properties of system software can be
validated/invalidated using model checking, without the need for user-supplied
annotations (invariants) or user-supplied abstractions. The user only needs to
state the safety properties of interest (in our specification language Slic, de-
scribed later). As no annotations are required, we use model checking to com-
pute fixpoints automatically over an abstraction of the C code. We construct an

M.B. Dwyer (Ed.): SPIN 2001, LNCS 2057, pp. 103–122, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

104 T. Ball and S.K. Rajamani

appropriate abstraction by (1) obtaining an initial abstraction from the property
that needs to be checked, and (2) refining this abstraction using an automatic
refinement algorithm.

We model abstractions of C programs using boolean programs [3]. Boolean
programs are C programs in which all variables have boolean type. Each boolean
variable in a boolean program has an interpretation as a predicate over the
infinite state space of the C program. Our experience shows that our refinement
algorithm finds boolean program abstractions that are precise enough to validate
properties. Furthermore, if the property is violated, the process of searching for
a suitable boolean program abstraction leads to a manifestation of the violation.

We present the SLAM toolkit for checking safety properties of system soft-
ware, and report on our experience in using the toolkit to check properties of
Windows NT device drivers. Given a safety property to check on a C program,
the SLAM process has the following phases: (1) abstraction, (2) model checking,
and (3) predicate discovery. We have developed tools to support each of these
phases:

– C2bp, a tool that transforms a C program P into a boolean program
BP(P, E) with respect to a set of predicates E over the state space of P [1,
2];

– Bebop, a tool for model checking boolean programs [3], and
– Newton, a tool that discovers additional predicates to refine the boolean

program, by analyzing the feasibility of paths in the C program.

The SLAM toolkit provides a fully automatic way of checking temporal safety
properties of system software. Violations are reported by the SLAM toolkit as
paths over the program P . It never reports spurious error paths. Instead, it de-
tects spurious error paths and uses them to automatically refine the abstraction
(to eliminate these paths from consideration). Since property checking is un-
decidable, the SLAM refinement algorithm may not converge. However, in our
experience, it usually converges in a few iterations. Furthermore, whenever it
converges, it gives a definite “yes” or “no” answer.

The worst-case run-time complexity of the SLAM tools Bebop and C2bp
is linear in the size of the program’s control flow graph, and exponential in
the number of predicates used in the abstraction. We have implemented several
optimizations to make Bebop and C2bp scale gracefully in practice, even with
a large number of predicates. The Newton tool scales linearly with path length
and number of predicates.

We applied the SLAM toolkit to check the use of the Windows NT I/O
manager interface by device driver clients. There are on the order of a hundred
rules that the clients of the I/O manager interface should satisfy. We have auto-
matically checked properties on device drivers taken from the Microsoft Driver
Development Kit1. While checking for correct use of locks, we found that the
SLAM process converges in one or two iterations to a boolean program that is
1 The code of the device drivers we analyzed is freely available from
http://www.microsoft.com/ddk/W2kDDK.htm

Automatically Validating Temporal Safety Properties of Interfaces 105

sufficiently precise to validate/invalidate the property. We also checked a data-
dependent property, which requires keeping track of value-flow and aliasing,
using four iterations of the SLAM tools.

The remainder of this paper is organized as follows. Section 2 gives an
overview of the SLAM approach by applying the tools to verify part of an NT
device driver. Sections 3, 4 and 5 give brief descriptions of the three tools that
compose the SLAM toolkit and explain how they work in the context of the run-
ning example. Section 6 describes our experience applying the tools to various
NT device drivers. Section 7 discusses related work and Section 8 concludes the
paper.

2 Overview

This section introduces the SLAM refinement algorithm and then applies this
algorithm to a small code example, extracted from a PCI device driver. The
SLAM toolkit handles a significant subset of the C language, including pointers,
structures, and procedures (with recursion and mutual recursion). A limitation
of our tools is that they assume a logical model of memory when analyzing C
programs. Under this model, the expression p + i, where p is a pointer and i
is an integer, yields a pointer value that points to the same object pointed to
by p. That is, we treat pointers as references rather than as memory addresses.
Note that this is the same basic assumption underlying most points-to analysis,
including the one that our tools use [11].

2.1 Property Specification

We have created a low-level specification language called Slic (Specification
Language for Interface Checking) in which the user states safety properties. A
Slic specification describes a state machine and has two components: (1) a static
set of state variables, described as a C structure, and (2) a set of events and state
transitions on the events. The state variables can be of any C type, including
integers and pointers.

Figure 1(a) shows a Slic specification that specifies proper usage of spin
locks. There is one state variable locked that is initialized to 0. There are two
events on which state transitions happen —returns of calls to the functions
KeAcquireSpinLock and KeReleaseSpinLock. Erroneous sequences of calls to
these functions results in the execution of the abort statement.

We wish to check if a temporal safety property ϕ specified using Slic is
satisfied by a program P . We have built a Slic instrumentation tool that au-
tomatically instruments the given program P with property ϕ to result in a
program P ′ such that P satisfies ϕ iff the label SLIC ERROR is not reachable
in P ′. In particular, the tool first creates C code from the Slic specification,
as shown in Figure 1(b). The label SLIC ERROR in the procedure slic abort
reflects the finite state machine executing an abort statement and moving into
a reject state. The tool then inserts calls to the appropriate Slic C functions

106 T. Ball and S.K. Rajamani

state {
enum { Unlocked=0, Locked=1 }

state = Unlocked;
}

KeAcquireSpinLock.return {
if (state == Locked)
abort;

else
state = Locked;

}

KeReleaseSpinLock.return {
if (state == Unlocked)
abort;

else
state = Unlocked;

}

enum { Unlocked=0, Locked=1 }
state = Unlocked;

void slic_abort() {
SLIC_ERROR: ;

}

void KeAcquireSpinLock_return() {
if (state == Locked)

slic_abort();
else

state = Locked;
}

void KeReleaseSpinLock_return {
if (state == Unlocked)

slic_abort();
else

state = Unlocked;
}

(a) (b)

Fig. 1. (a) A Slic specification for proper usage of spin locks, and (b) its compilation
into C code.

in the program P to result in the instrumented program P ′. This is known in
the model checking community as a “product automaton construction” and is a
fairly standard way to encode safety properties. Due to want of space, the formal
syntax and semantics of Slic, and details of the automatic instrumentation tool
will be the topic of a future paper.

2.2 Refinement Algorithm

We wish to check if the instrumented program P ′ can ever reach the label
SLIC ERROR. Let i be a metavariable that records the SLAM iteration count. In
the first iteration (i = 0), we start with a set of predicates E0 that are present
in the conditionals of the Slic specification. Let Ei be some set of predicates
over the state of P ′. Then iteration i of SLAM is carried out using the following
steps:

1. Apply C2bp to construct the boolean program BP(P ′, Ei).
2. Apply Bebop to check if there is a path pi in BP(P ′, Ei) that reaches the

SLIC ERROR label. If Bebop determines that SLIC ERROR is not reachable,
then the property ϕ is valid in P , and the algorithm terminates.

3. If there is such a path p, then we use Newton to check if p is feasible in P .
There are two outcomes:

Automatically Validating Temporal Safety Properties of Interfaces 107

void example() {
do {
KeAcquireSpinLock();

nPacketsOld = nPackets;
req = devExt->WLHV;
if(req && req->status){

devExt->WLHV = req->Next;
KeReleaseSpinLock();

irp = req->irp;
if(req->status > 0){

irp->IoS.Status = SUCCESS;
irp->IoS.Info = req->Status;

} else {
irp->IoS.Status = FAIL;
irp->IoS.Info = req->Status;

}
SmartDevFreeBlock(req);
IoCompleteRequest(irp);
nPackets++;

}
} while(nPackets!=nPacketsOld);
KeReleaseSpinLock();

}

void example() {
do {
KeAcquireSpinLock();

A: KeAcquireSpinLock_return();
nPacketsOld = nPackets;
req = devExt->WLHV;
if(req && req->status){

devExt->WLHV = req->Next;
KeReleaseSpinLock();

B: KeReleaseSpinLock_return();
irp = req->irp;
if(req->status > 0){

irp->IoS.Status = SUCCESS;
irp->IoS.Info = req->Status;

} else {
irp->IoS.Status = FAIL;
irp->IoS.Info = req->Status;

}
SmartDevFreeBlock(req);
IoCompleteRequest(irp);
nPackets++;

}
} while(nPackets!=nPacketsOld);
KeReleaseSpinLock();

C: KeReleaseSpinLock_return();
}

(a) Program P (b) Instrumented Program P ′

Fig. 2. (a) A snippet of device driver code P , and (b) instrumented code P ′ that checks
proper use of spin locks.

– “yes”: the property ϕ has been invalidated in P , and the algorithm ter-
minates with an error path pi (a witness to the violation of ϕ).

– “no”: Newton finds a set of predicates Fi that explain the infeasibility
of path pi in P .

4. Let Ei+1 := Ei ∪ Fi, and i := i + 1, and proceed to the next iteration.

As stated before, this algorithm is potentially non-terminating. However, when
it does terminate, it provides a definitive answer.

2.3 Example

Figure 2(a) presents a snippet of (simplified) C code from a PCI device driver
that processes interrupt request packets (IRPs). Of interest here are the calls
the code makes to acquire and release spin locks (KeAcquireSpinLock and
KeReleaseSpinLock). Figure 2(b) shows the program automatically instru-
mented by the Slic tool with respect to the property specification in Figure 1(a).
Note that calls to the appropriate Slic C functions (Figure 1(b)) are introduced
(at labels A, B, and C).

The question we wish to answer is: is the label SLIC ERROR reachable in
the program P ′ comprised of the code from Figure 1(b) and Figure 2(b)? The
following sections apply the algorithm given above to show that SLIC ERROR is
unreachable in this program.

108 T. Ball and S.K. Rajamani

decl {state==Locked}, {state==Unlocked};

void slic_abort() begin SLIC_ERROR: skip; end

void KeAcquireSpinLock_return()
begin

if ({state==Locked})
slic_abort();

else
{state==Locked},{state==Unlocked} := T,F;

end

void KeReleaseSpinLock_return()
begin

if ({state == Unlocked})
slic_abort();

else
{state==Locked},{state==Unlocked} := F,T;

end

Fig. 3. The C code of the Slic specification from Figure 1(b) compiled by C2bp into
a boolean program.

2.4 Initial Boolean Program

The first step of the algorithm is to generate a boolean program from the C
program and the set of predicates E0 that define the states of the finite state
machine. We represent our abstractions as boolean programs. The syntax and
semantics of boolean programs was defined in [3]. Boolean programs are essen-
tially C programs in which the only allowed types are bool, with values T (true)
and F (false), and void. Boolean programs also allow control non-determinism,
through the conditional expression “∗”, as shown later on.

For our example, the set E0 consists of two global predicates (state = Locked)
and (state = Unlocked) that appear in the conditionals of the Slic specification.
These two predicates and the program P ′ are input to the C2bp (C to Boolean
Program) tool. The translation of the Slic C code from Figure 1(b) to the
boolean program is shown in Figure 3. The translation of the example procedure
is shown in Figure 4(a). Together, these two pieces of code comprise the boolean
program BP(P ′, E0) output by C2bp.

As shown in Figure 3, the translation of the Slic C code results in the global
variables, {state==Locked} and {state==Unlocked}.2 For every statement s in
the C program and predicate e ∈ E0, the C2bp tool determines the effect of state-
2 Boolean programs permit a variable identifier to be an arbitrary string enclosed

between “{” and “}”. This is helpful for giving boolean variables names to directly
represent the predicates in the C program that they represent.

Automatically Validating Temporal Safety Properties of Interfaces 109

void example()
begin
do
skip;

A: KeAcquireSpinLock_return();
skip;
skip;
if (*) then
skip;
skip;

B: KeReleaseSpinLock_return();
skip;
if (*) then
skip;
skip;

else
skip;
skip;

fi
skip;
skip;
skip;

fi
while (*);
skip;

C: KeReleaseSpinLock_return();
end

void example()
begin
do
skip;

A: KeAcquireSpinLock_return();
b := T;
skip;
if (*) then
skip;
skip;

B: KeReleaseSpinLock_return();
skip;
if (*) then
skip;
skip;

else
skip;
skip;

fi
skip;
skip;
b := choose(F,b);

fi
while (!b);
skip;

C: KeReleaseSpinLock_return();
end

(a) Boolean program BP(P ′, E0) (b) Boolean program BP(P ′, E1)

Fig. 4. The two boolean programs created while checking the code from Figure 2(b).
See text for the definition of the choose function.

ment s on predicate e. For example, consider the assignment statement “state =
Locked; ” in Figure 1(b). This statement makes the predicate (state = Locked)
true and the predicate (state = Unlocked) false. This is reflected in the boolean
program by the parallel assignment statement

{state==Locked}, {state==Unlocked} := T,F;

in Figure 3. The translation of the boolean expressions in the conditional state-
ments of the C program results in the obvious corresponding boolean expressions
in the boolean program. Control non-determinism is used to conservatively model
the conditions in the C program that cannot be abstracted precisely using the
predicates in E0, as shown in Figure 4(a).

Many of the assignment statements in the example procedure are abstracted
to the skip statement (no-op) in the boolean program. The C2bp tool uses Das’s

110 T. Ball and S.K. Rajamani

points-to analysis [11] to determine whether or not an assignment statement
through a pointer dereference can affect a predicate e. In our example, the points-
to analysis shows that no variable in the C program can alias the address of the
global state variable.3

We say that the boolean program BP(P ′, E0) abstracts the program P ′, since
every feasible execution path p of the program P ′ also is a feasible execution path
of BP(P ′, E0).

2.5 Model Checking the Boolean Program

The second step of our process is to determine whether or not the label
SLIC ERROR is reachable in the boolean program BP(P ′, E0). We use the Bebop
model checker to determine the answer to this query. In this case, the answer
is “yes”. Like most model checkers, the Bebop tool produces a (shortest) path
leading to the error state. In this case, the shortest path to the error state is
the path that goes around the loop twice, acquiring the lock twice without an
intermediate release, as given by the error path p0 of labels [A, A, SLIC ERROR].

2.6 Predicate Discovery over Error Path

Because the C program and the boolean program abstractions have identical
control-flow graphs, the error path p0 in BP(P ′, E0) produced by Bebop is also
a path of program P . The question then is: does p0 represent a feasible execution
path of P? That is, is there some execution of program P that follows the path
p0? If so, we have found a real error in P . If not, path p0 is a spurious error
path.

The Newton tool takes a C program and a (potential) error path as an
input. It then uses verification condition generation (VCGen) to determine if
the path is feasible. The answer may be “yes” or “no”. 4

If the answer is “yes”, then an error path has been found, and we report it to
the user. If the answer is “no” then Newton uses a new algorithm to identify
a small set of predicates that “explain” why the path is infeasible.

In the running example, Newton detects that the path p is infeasible, and
returns a single predicate (nPackets = npacketsOld) as the explanation for
the infeasibility. This is because the predicate (nPackets = nPacketsOld) is
required to be both true and false by path p. The assignment of nPacketsOld
to nPackets makes the predicate true, and the loop test requires it to be false
at the end of the do-while loop for the loop to iterate, as specified by the path
p.
3 We had to write stubs for the procedures SmartDevFreeBlock, and kernel procedures
IoCompleteRequest, KeAcquireSpinLock, and KeReleaseSpinLock. The analysis de-
termines that these procedures cannot affect state variables so the calls to them are
removed.

4 Since underlying decision procedures in the theorem prover and our axiomatization
of C are incomplete, “don’t know” is also a possible answer. In practice, the theorem
provers we use [27,13,4] have been able to give a “yes” or “no” answer in every
example we have seen so far.

Automatically Validating Temporal Safety Properties of Interfaces 111

2.7 The Second Boolean Program

In the second iteration of the process, the predicate (nPackets = nPacketsOld)
is added to the set of predicates E0 to result in a new set of predicates
E1. Figure 4(b) shows the boolean program BP(P ′, E1) that C2bp produces.
This program has one additional boolean variable (b) that represents the
predicate (nPackets = nPacketsOld). The assignment statement nPackets =
nPacketsOld; makes this condition true, so in the boolean program the assign-
ment b := T; represents this assignment. Using a theorem prover, C2bp deter-
mines that if the predicate is true before the statement nPackets++, then it is
false afterwards. This is captured by the assignment statement in the boolean
program b := choose(F,b);. The choose function is defined as follows:

bool choose(pos, neg)
begin

if (pos) then return T; elsif (neg) then return F;
elsif (*) then return T; else return F; fi

end

The pos parameter represents positive information about a predicate while the
neg parameter represents negative information about a predicate. The choose
function is never called with both parameters evaluating to true. If both pa-
rameters are false then there is not enough information to determine whether
the predicate is definitely true or definitely false, so F or T is returned, non-
deterministically.

Applying Bebop to the new boolean program shows that the label
SLIC ERROR is not reachable. In performing its fixpoint computation, Bebop
discovers that the following loop invariant holds at the end of the do-while
loop:

(state = Locked ∧ nPackets = nPacketsOld)
∨ (state = Unlocked ∧ nPackets 6= nPacketsOld)

That is, either the lock is held and the loop will terminate (and thus the lock
needs to be released after the loop), or the lock is free and the loop will it-
erate. The combination of the predicate abstraction of C2bp and the fixpoint
computation of Bebop has found this loop-invariant over the predicates in E1.
This loop-invariant is strong enough to show that the label SLIC ERROR is not
reachable.

3 C2BP: A Predicate Abstractor for C

C2bp takes a C program P and a set E = {e1, e2, . . . , en} of predicates on the
variables of P , and automatically constructs a boolean program BP(P, E)[1,
2]. The set of predicates E are pure C boolean expressions with no func-
tion calls. The boolean program BP(P, E) contains n boolean variables V =
{b1, b2, . . . , bn}, where each boolean variable bi represents a predicate ei. Each

112 T. Ball and S.K. Rajamani

variable in V has a three-valued domain: false, true, and ∗.5 The program
BP(P, E) is a sound abstraction of P because every possible execution trace t
of P has a corresponding execution trace t′ in B. Furthermore, BP(P, E0) is
a precise abstraction of P with respect to the set of predicates E0, in a sense
stated and shown elsewhere [2]. Since BP(P, E) is an abstraction of P , it is
guaranteed that an invariant I discovered (by Bebop) in BP(P, E), as boolean
combinations of the bi variables, is also an invariant in the C code, where each bi

is replaced by its corresponding predicate ei. C2bp determines, for every state-
ment s in P and every predicate ei ∈ E, how the execution of s can affect the
truth value of ei. This is captured in the boolean program by a statement sB

that conservatively updates each bi to reflect the change. C2bp computes sB by
(1) first computing the weakest precondition of ei, and its negation with respect
to s, and (2) strengthening the weakest precondition in terms of predicates from
E, using a theorem prover.

We highlight the technical issues in building a tool like C2bp:

– Pointers: We use an alias analysis of the C program to determine whether
or not an update through a pointer dereference can potentially affect an
expression. This greatly increases the precision of the C2bp tool. Without
alias analysis, we would have to make very conservative assumptions about
aliasing, which would lead to invalidating many predicates.

– Procedure calls: Since boolean programs support procedure calls, we are
able to abstract procedures modularly. The abstraction process for procedure
calls is challenging, particularly in the presence of pointers. After a call, the
caller must conservatively update local state that may have been modified by
the callee. We provide a sound and precise approach to abstracting procedure
calls that takes such side-effects into account.

– Precision-efficiency tradeoff. C2bp uses a theorem prover to strengthen
weakest pre-conditions in terms of the given predicate set E. Doing this
strengthening precisely requires O(2|E|) calls to the theorem prover. We
have explored a number of optimization techniques to reduce the number
of calls made to the theorem prover. Some of these techniques result in an
equivalent boolean program, while others trade off precision for computation
speed. We currently use two automatic theorem provers Simplify [27,13] and
Vampyre [4]. We are also investigating using other decision procedures, such
as those embodied in the Omega test [30] and PVS [28].

Complexity. The runtime of C2bp is dominated by calls to the theorem prover.
In the worst-case, the number of calls made to the theorem prover for computing
BP(P, E) is linear in the size of P and exponential in the size of E. We can com-
pute sound but imprecise abstractions by considering only k-tuples of predicates
in the strengthening step. In all examples we have seen so far we find that we
lose no precision for k = 3. Thus, in practice the complexity is cubic in the size
of E.
5 The use of the third value ∗, is encoded using control-nondeterminism as shown in

the choose function of Section 2. That is, “∗” is equivalent to “choose(F,F)”.

Automatically Validating Temporal Safety Properties of Interfaces 113

4 BEBOP: A Model Checker for Boolean Programs

The Bebop tool [3] computes the set of reachable states for each statement of
a boolean program using an interprocedural dataflow analysis algorithm in the
spirit of Sharir/Pnueli and Reps/Horwitz/Sagiv [34,31]. A state of a boolean
program at a statement s is simply a valuation to the boolean variables that
are in scope at statement s (in other words, a bit vector, with one bit for each
variable in scope). The set of reachable states (or invariant) of a boolean program
at s is thus a set of bit vectors (equivalently, a boolean function over the set of
variables in scope at s).

Bebop differs from typical implementations of dataflow algorithms in two
crucial ways. First, it computes over sets of bit vectors at each statement rather
than single bit vectors. This is necessary to capture correlations between vari-
ables. Second, it uses binary decision diagrams [5] (BDDs) to implicitly repre-
sent the set of reachable states of a program, as well as the transfer functions for
each statement in a boolean program. Bebop also differs from previous model
checking algorithms for finite state machines, in that it does not inline proce-
dure calls, and exploits locality of variable scopes for better scaling. Unlike most
model checkers for finite state machines, Bebop handles recursive and mutually
recursive procedures. Bebop uses an explicit control-flow graph representation,
as in a compiler, rather than encoding the control-flow with BDDs, as done in
most symbolic model checkers. It computes a fixpoint by iterating over the set
of facts associated with each statement, which are represented with BDDs.
Complexity. The worst-case complexity of Bebop is linear in the size of the
program control-flow graph, and exponential in the maximum number of boolean
variables in scope at any program point. We have implemented a number of
optimizations to reduce the number of variables needed in support of BDDs. For
example, we use live variable analysis to find program points where a variable
becomes dead and then eliminate the variable from the BDD representation. We
also use a global MOD/REF analysis of the boolean program in order to perform
similar variable eliminations.

5 NEWTON: A Predicate Discoverer

Newton takes a C program P and an error path p as inputs. For the purposes of
describing Newton, we can identify the path p as a sequence of assignments and
assume statements (every conditional is translated into an assume statement).
The assume statement is the dual of assert: assume(e) never fails. Executions
on which e does not hold at the point of the assume are simply ignored [15].

The internal state of Newton has three components: (1) store, which is
a mapping from locations to symbolic expressions, (2) conditions, which is a
set of predicates, and (3) a history which is a set of past associations between
locations and symbolic expressions. The high-level description of Newton is
given in Figure 5. The functions LEval and REval evaluate the l-value and r-
value of a given expression respectively. Newton maintains the dependencies

114 T. Ball and S.K. Rajamani

Input: A sequence of statements p = s1, s2, ..., sm.
store := null map;
history := null set;
conditions := null set;
/* start of Phase 1 */
for i = 1 to m do {

switch(si) {
“e1 := e2” :

let lval = LEval (store, e1) and
let rval = REval(store, e2) in {

if(store[lval] is defined)
history := history ∪ {(lval , store[lval])}

store[lval] := rval
}

“assume(e)” :
let rval = REval(store, e) in {

conditions := conditions ∪ {rval}
if(conditions is inconsistent){

/*Phase 2 */
Minimize size of conditions while maintaining inconsistency
/*Phase 3 */
predicates := all dependencies of conditions using store and
history
Say “Path p is infeasible”
return(predicates)

}
}

}
}
Say “Path p is feasible”
return

Fig. 5. The high-level algorithm used by Newton.

of each symbolic expression on the elements in store, to be used in Phase 3. It
also uses symbolic constants for unknown values. We illustrate these using an
example. Consider a path with the following four statements:

s1: nPacketsOld = nPackets;
s2: req = devExt->WLHV;
s3: assume(!req);
s4: assume(nPackets != nPacketsOld);

This path is a projection of the error path from Bebop in Section 2.
Figure 6 shows four states of Newton, one after processing each statement

in the path. The assignment nPacketsOld = nPackets is processed by first in-
troducing a symbolic constant α for the variable nPackets, and then assigning
it to nPacketsOld. The assignment req = devExt->WLHV is processed by first
introducing a symbolic constant β for the value of devExt, then introducing a

Automatically Validating Temporal Safety Properties of Interfaces 115

s1: nPacketsOld = nPackets;
s2: req = devExt->WLHV;
s3: assume(!req);
s4: assume(nPackets != nPacketsOld);

loc. value deps. conds. deps.
1. nPackets: α ()
2. nPacketsOld: α (1)

loc. value deps. conds. deps.
1. nPackets: α ()
2. nPacketsOld: α (1)
3. devExt: β ()
4. β → WLHV : γ (3)
5. req: γ (3,4)

after s1 after s2

loc. value deps. conds. deps.
1. nPackets: α () !(γ) (5)
2. nPacketsOld: α (1)
3. devExt: β ()
4. β → WLHV : γ (3)
5. req: γ (3,4)

loc. value deps. conds deps.
1. nPackets: α () !(γ) (5)
2. nPacketsOld: α (1) (α!= α) (1,2)
3. devExt: β ()
4. β → WLHV : γ (3)
5. req: γ (3,4)

after s3 after s4

Fig. 6. A path of four statements and four tables showing the state of Newton after
simulating each of the four statements.

second symbolic constant γ for the value of β->WLHV, and finally assigning γ to
req. The conditional assume(!req) is processed by adding the predicate !(γ)
to the condition-set. The dependency list for this predicate is (5) since its evalua-
tion depended on entry 5 in the store. Finally, the conditional assume(nPackets
!= nPacketsOld) is processed by adding the (inconsistent) predicate (α != α)
to the condition-set, with a dependency list (1,2). At this point, the theorem
prover determines that the condition-set is inconsistent, and Newton proceeds
to Phase 2.

Phase 2 removes the predicate !(γ) from the condition store, since the re-
maining predicate (α!= α) is inconsistent by itself. Phase 3 traverses store
entries 1 and 2 from the dependency list. A post processing step then de-
termines that the symbolic constant α can be unified with the variable
nPackets, and Newton produces two predicates: (nPacketsOld = nPackets)
and (nPacketsOld 6= nPackets). Since one is a negation of the other, only one
of the two predicates needs to be added in order for the path to be ruled out
in the boolean program. Though no symbolic constants are present in the final
set of predicates in our example, there are other examples where the final list
of predicates have symbolic constants. C2bp is able to handle predicates with
symbolic constants. We do not discuss these details here due to want of space.
The history is used when a location is overwritten with a new value. Since no
location was written more than once in our example, we did not see the use of
history . Newton also handles error paths where each element of the path is
also provided with values to the boolean variables from Bebop, and checks for
their consistency with the concrete states along the path.

116 T. Ball and S.K. Rajamani

VOID
SerialDebugLogEntry(IN ULONG Mask, IN ULONG Sig,
IN ULONG_PTR Info1, IN ULONG_PTR Info2, IN ULONG_PTR Info3)

{
KIRQL irql;
irql = KeGetCurrentIrql();
if (irql < DISPATCH_LEVEL) {

KeAcquireSpinLock(&LogSpinLock, &irql);
} else {

KeAcquireSpinLockAtDpcLevel(&LogSpinLock);
}
// other code (deleted)
if (irql < DISPATCH_LEVEL) {

KeReleaseSpinLock(&LogSpinLock, irql);
} else {

KeReleaseSpinLockFromDpcLevel(&LogSpinLock);
}
return;

}

Fig. 7. Code snippet from serial-port driver.

Complexity. The number of theorem-prover calls made by Newton on a path
p is O(| p |), where | p | is the length of the path.

6 NT Device Drivers: Case Study

This section describes our experience applying the SLAM toolkit to check prop-
erties of Windows NT device drivers. We checked two kinds of properties: (1)
Locking-unlocking sequences for locks should conform to allowable sequences (2)
Dispatch functions should either complete a request, or make a request pending
for later processing. In either case, a particular sequence of Windows NT specific
actions should be taken.

The two properties have different characteristics from a property-checking
perspective.

– The first property depends mainly on the program’s control flow. We checked
this property for a particular lock (called the “Cancel” spin lock) on three
kernel mode drivers in the Windows NT device driver tool kit. We found
two situations where spurious error paths led our process to iterate. With its
inter-procedural analysis and detection of variable correlations, the SLAM
tools were able to eliminate all the spurious error paths with at most one iter-
ation of the process. In all the drivers, we started with 2 predicates from the
property specification and added at most one predicate to rule out spurious
error paths.

Automatically Validating Temporal Safety Properties of Interfaces 117

– The second property is data-dependent, requiring the tracking of value flow
and alias relationships. We checked this property on a serial port device
driver. It took 4 iterations through the SLAM tools and a total of 33 predi-
cates to validate the property.

The drivers we analyzed were on the order of a thousand lines of C code
each. In each of the drivers we checked for the first property, the SLAM tools
ran in under a minute on an 800MHz Pentium PC with 512MB RAM. For the
second property on the serial driver, the total run time for all the SLAM tools
was about three minutes to complete all the four iterations.

We should note that we did not expect to find errors in these device drivers,
as they are supposed to be examplars for others to use. Thus, the fact that the
SLAM tools did not find errors in these program is not too surprising. We will
report on the defect detection capabilities of the tools in a future paper.

6.1 Property 1

We checked for correct lock acquisition/release sequences on three kernel mode
drivers: MCA-bus, serial-port and parallel-port. The SLAM tools validated the
property on MCA-bus and parallel-port drivers without iteration. However, in-
terprocedural analysis was required for checking the property, as calls to the ac-
quire and release routines were spread across multiple procedures in the drivers.
Furthermore, in the serial-port driver, the SLAM tools found one false error
path in the first iteration, which resulted in the addition of a single predicate.
Then the property was validated in the second iteration. The code-snippet that
required the addition of the predicate is shown in Figure 7. The snippet shows
that the code has a dependence on the interrupt request level variable (irql)
that must be tracked in order to eliminate the false error paths. At most three
predicates were required to check this property.

6.2 Property 2

A dispatch routine to a Windows NT device driver is a routine that the I/O
manager calls when it wants the driver to perform a specific operation (e.g,
read, write etc.) The dispatch routine is “registered” by the driver when it is
initialized. A dispatch routine has the following prototype:

NTSTATUS DispatchX(IN PDEVICE_OBJECT DeviceObject, IN PIRP irp)

The first parameter is a pointer to a so called “device object” that represents
the device, and the second parameter is a pointer to a so called “I/O request
packet”, or “IRP” that contains information about the current request.

All dispatch routines must either process the IRP immediately (call this
option A), or queue the IRP for processing later (call this option B). Every IRP
must be processed under one of these two options. If the driver chooses option
A, then it has to do the following actions in sequence:

1. Set the irp->IoS.status to some return code other than STATUS PENDING
(such as STATUS SUCCESS, STATUS CANCELLED etc.)

118 T. Ball and S.K. Rajamani

state {
enum {Init, Complete, Pending}
s = Init;
PIRP gIrp = 0;

}

Dispatch.entry {
s, gIrp = Init, $2;

}

IoCompleteRequest.call{
if(gIrp == $1) {
if(s != Init) abort;
else s = Complete;

}
}

IoMarkIrpPending.call{
if(gIrp == $1) {
if(s != Init) abort;
else s = Pending;

}
}

Dispatch.exit{
if (s == Complete) {
if($return == STATUS_PENDING)

abort;
} else if (s == Pending) {
if($return != STATUS_PENDING)

abort;
}

}

Fig. 8. Slic specification for completing an IRP or marking it as pending.

2. Call IoCompleteRequest(irp)
3. Return the same status code as in step 1.

If the driver chooses option B, then it has do the following actions in sequence:

1. Set irp->IoS.status to STATUS PENDING
2. Call the kernel function IoMarkIrpPending(irp)
3. Queue the IRP into the driver’s internal queue using the kernel function

IoStartPacket(irp)
4. Return STATUS PENDING

Note that this is a partial specification for a dispatch routine —just one of
several properties that the dispatch routine must obey. Figure 8 shows a Slic
specification for this property. The variable $1 is used by Slic to denote the first
parameter of the function, and the variable $return is used to denote the return
value. Note that we first store the IRP at the entry of the dispatch routine in a
state variable gIrp and then later check if the calls to IoCompleteRequest and
IoMarkIrpPending refer to the same IRP.
Checking the instrumented driver. We started the first iteration of SLAM
with 7 predicates from the Slic specification. It took 4 iterations of the SLAM
tools and a total of 33 predicates to discover the right abstraction to validate
this property. The discovered predicates kept track of the value of the flow of
the irp pointer and the status value through several levels of function calls. We
found one bug in the fourth iteration, which turned out to be due to an error in
the Slic specification. After fixing it, the property passed.

Automatically Validating Temporal Safety Properties of Interfaces 119

7 Related Work

SLAM seeks a sweet spot between tools based on verification condition gener-
ation(VCGen) [14,25,26,6] that operate directly on the concrete semantics, and
model checking or data flow-analysis based tools [8,21,18,16] that operate on ab-
stractions of the program. We use VCGen-based approach on finite (potentially
interprocedural) paths of the program, and use the knowledge gained to con-
struct abstract models of the program. Newton uses VCGen on the concrete
program, but as it operates on a single finite interprocedural path at a time, it
does not require loop-invariants, or pre-conditions and post-conditions for proce-
dures. C2bp also reasons about the statements of the C program using decision
procedures, but does so only locally, one statement at a time. Global analysis is
done only on the boolean program abstractions, using the model checker Bebop.
Thus, our hope is to scale without losing precision, as long as the property of
interest allows us to do so, by inherently requiring a small abstraction for its
validation or invalidation.

SLAM generalizes Engler et al.’s approach [18] in three ways: (1) it is sound
(modulo the assumptions about memory safety); (2) it permits interprocedural
analysis; (3) it avoids spurious examples through iterative refinement (in some
of the code Engler et al. report on, their techniques generated three times as
many spurious error paths as true error paths, a miss rate of 75%.6) In fact,
with a suitable definition of abstraction, and choice of initial predicates, the
first iteration of the SLAM process is equivalent to performing Engler et al.’s
approach interprocedurally.

Constructing abstract models of programs has been studied in several con-
texts. Abstractions constructed by [18] and [22] are based on specifying transi-
tions in the abstract system using a pattern language, or as a table of rules. Au-
tomatic abstraction support has been built into the Bandera tool set [17]. They
require the user to provides finite domain abstractions of data types. Predicate
abstraction, as implemented in C2bp is more general, and can capture relation-
ships between variables. The predicate abstraction in SLAM was inspired by
the work of Graf and Saidi [20] in the model checking community. Efforts have
been made to integrate predicate abstraction with theorem proving and model
checking [32]. Though our use of predicate abstraction is related to these efforts,
our goal is to analyze software written in common programming languages.

The SLAM tools C2bp and Bebop can be used in combination to find loop-
invariants expressible as boolean functions over a given set of predicates. The
loop-invariant is computed by the model checker Bebop using a fixpoint com-
putation on the abstraction computed by C2bp. Prior work for generating loop
invariants has used symbolic execution on the concrete semantics, augmented
with widening heuristics [35,36]. The Houdini tool guesses a candidate set of
annotations (invariants,preconditions, postconditions) and uses the ESC/Java
checker to refute inconsistent annotations until convergence [19].

6 Jon Pincus, who led the development of an industrial-strength error detection tool
for C called PREfix [6], observes that users of PREfix will tolerate a false alarm rate
in the range 25-50% depending on the application [29].

120 T. Ball and S.K. Rajamani

Boolean programs can be viewed as abstract interpretations of the underlying
program [9]. The connections between model checking, dataflow analysis and
abstract interpretation have been explored before [33] [10]. The model checker
Bebop is based on earlier work on interprocedural dataflow analysis [34,31].
Automatic iterative refinement based on error paths first appeared in [23], and
more recently in [7]. Both efforts deal with finite state systems.

An alternative approach to static validation of safety properties, is to provide
a rich type system that allows users to encode both safety properties and program
annotations as types, and reduce property validation to type checking [12].

8 Conclusions

We have presented a fully automated methodology to validate/invalidate tem-
poral safety properties of software interfaces. Our process does not require user
supplied annotations, or user supplied abstractions. When our process converges,
it always give a definitive “yes” or “no” answer.

The ideas behind the SLAM tools are novel. The use of boolean programs
to represent program abstractions is new. To the best of our knowledge, C2bp
is the first automatic predicate abstraction tool to handle a full-scale program-
ming language, and perform a sound and precise abstraction. Bebop is the first
model checker to handle procedure calls using an interprocedural dataflow anal-
ysis algorithm, augmented with representation tricks from the symbolic model
checking community. Newton uses a path simulation algorithm in a novel way,
to generate predicates for refinement.

We have demonstrated that the SLAM tools converge in a few iterations on
device drivers from the Microsoft DDK.

The SLAM toolkit has a number of limitations that we plan to address. The
logical model of memory is a limitation, since it is not the actual model used by
C programs. We plan to investigate using a physical model of memory. We also
are exploring what theoretical guarantees we can give about the termination of
our iterative refinement. Finally, we plan to evolve the SLAM tools by applying
them to more code bases, both inside and outside Microsoft.

Acknowledgements. We thank Rupak Majumdar and Todd Millstein for their
hard work in making the C2bp tool come to life. Thanks to Andreas Podelski for
helping us describe the C2bp tool in terms of abstract interpretation. Thanks
also to the members of the Software Productivity Tools research group at Mi-
crosoft Research for many enlightening discussions on program analysis, pro-
gramming languages and device drivers, as well as their numerous contributions
to the SLAM toolkit.

References

1. T. Ball, R. Majumdar, T. Millstein, and S. K. Rajamani. Automatic predicate
abstraction of C programs. In PLDI 01: Programming Language Design and Im-
plementation(to appear). ACM, 2001.

Automatically Validating Temporal Safety Properties of Interfaces 121

2. T. Ball, A. Podelski, and S. K. Rajamani. Boolean and cartesian abstractions for
model checking C programs. In TACAS 01: Tools and Algorithms for Construction
and Analysis of Systems(to appear). Springer-Verlag, 2001.

3. T. Ball and S. K. Rajamani. Bebop: A symbolic model checker for Boolean pro-
grams. In SPIN 00: SPIN Workshop, LNCS 1885, pages 113–130. Springer-Verlag,
2000.

4. D. Blei and et al. Vampyre: A proof generating theorem prover —
http://www.eecs.berkeley.edu/ rupak/vampyre.

5. R. Bryant. Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers, C-35(8):677–691, 1986.

6. W. R. Bush, J. D. Pincus, and D. J. Sielaff. A static analyzer for finding dynamic
programming errors. Software-Practice and Experience, 30(7):775–802, June 2000.

7. E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided
abstraction refinement. In CAV 00: Computer Aided Verification, LNCS 1855,
pages 154–169. Springer-Verlag, 2000.

8. J. Corbett, M. Dwyer, J. Hatcliff, C. Pasareanu, Robby, S. Laubach, and H. Zheng.
Bandera: Extracting finite-state models from Java source code. In ICSE 2000:
International Conference on Software Engineering, pages 439–448. ACM, 2000.

9. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for the
static analysis of programs by construction or approximation of fixpoints. In POPL
77: Principles of Programming Languages, pages 238–252. ACM, 1977.

10. P. Cousot and R. Cousot. Temporal abstract interpretation. In POPL 00: Princi-
ples of Programming Languages, pages 12–25. ACM, 2000.

11. M. Das. Unification-based pointer analysis with directional assignments. In PLDI
00: Programming Language Design and Implementation, pages 35–46. ACM, 2000.

12. R. DeLine and M. Fähndrich. Enforcing high-level protocols in low-level software.
In PLDI 01: Programming Language Design and Implementation(to appear). ACM,
2001.

13. D. Detlefs, G. Nelson, and J. Saxe. Simplify theorem prover –
http://research.compaq.com/src/esc/simplify.html.

14. D. L. Detlefs, K. R. M. Leino, G. Nelson, and J. B. Saxe. Extended static check-
ing. Technical Report Research Report 159, Compaq Systems Research Center,
December 1998.

15. E. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.
16. M. Dwyer and L. Clarke. Data flow analysis for verifying properties of concurrent

programs. In FSE 94: Foundations of Software Engineering, pages 62–75. ACM,
1994.

17. M. Dwyer, J. Hatcliff, R. Joehanes, S. Laubach, C. Pasareanu, Robby, W. Visser,
and H. Zheng. Tool-supported program abstraction for finite-state verification. In
ICSE 01: Software Engineering (to appear), 2001.

18. D. Engler, B. Chelf, A. Chou, and S. Hallem. Checking system rules using system-
specific, programmer-written compiler extensions. In OSDI 00: Operating System
Design and Implementation. Usenix Association, 2000.

19. C. Flanagan, R. Joshi, and K. R. M. Leino. Annotation inference for modular
checkers. Information Processing Letters (to appear), 2001.

20. S. Graf and H. Saidi. Construction of abstract state graphs with PVS. In CAV
97: Computer Aided Verification, LNCS 1254, pages 72–83. Springer-Verlag, 1997.

21. G. Holzmann. The Spin model checker. IEEE Transactions on Software Engineer-
ing, 23(5):279–295, May 1997.

22. G. Holzmann. Logic verification of ANSI-C code with Spin. In SPIN 00: SPIN
Workshop, LNCS 1885, pages 131–147. Springer-Verlag, 2000.

122 T. Ball and S.K. Rajamani

23. R. Kurshan. Computer-aided Verification of Coordinating Processes. Princeton
University Press, 1994.

24. L. Lamport. Proving the correctness of multiprocess programs. IEEE Transactions
on Software Engineering, SE-3(2):125–143, 1977.

25. K. R. M. Leino and G. Nelson. An extended static checker for Modula-3. In CC
98: Compiler Construction, LNCS 1383, pages 302–305. Springer-Verlag, 1998.

26. G. Necula. Proof carrying code. In POPL 97: Principles of Programming Lan-
guages, pages 106–119. ACM, 1997.

27. G. Nelson. Techniques for program verification. Technical Report CSL81-10, Xerox
Palo Alto Research Center, 1981.

28. S. Owre, S. Rajan, J. Rushby, N. Shankar, and M. Srivas. PVS: Combining speci-
fication, proof checking, and model checking. In CAV 96: Computer-Aided Verifi-
cation, LNCS 1102, pages 411–414. Springer-Verlag, 1996.

29. J. Pincus. personal communication, October 2000.
30. W. Pugh. A practical algorithm for exact array dependence analysis. Communi-

cations of the ACM, 35(8):102–114, August 1992.
31. T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow analysis via

graph reachability. In POPL 95: Principles of Programming Languages, pages
49–61. ACM, 1995.

32. H. Saidi and N. Shankar. Abstract and model check while you prove. In CAV 99:
Computer-aided Verification, LNCS 1633, pages 443–454. Springer-Verlag, 1999.

33. D. Schmidt. Data flow analysis is model checking of abstract interpretation. In
POPL 98: Principles of Programming Languages, pages 38–48. ACM, 1998.

34. M. Sharir and A. Pnueli. Two approaches to interprocedural data dalow analysis.
In Program Flow Analysis: Theory and Applications, pages 189–233. Prentice-Hall,
1981.

35. N. Suzuki and K. Ishihata. Implementation of an array bound checker. In POPL
77: Principles of Programming Languages, pages 132–143. ACM, 1977.

36. Z. Xu, B. P. Miller, and T. Reps. Safety checking of machine code. In PLDI 00:
Programming Language Design and Implementation, pages 70–82. ACM, 2000.

Verification Experiments on the MASCARA
Protocol?

Guoping Jia and Susanne Graf

VERIMAG?? – Centre Equation – 2, avenue de Vignate – F-38610 Gières – France
Guoping.Jia@imag.fr, Susanne.Graf@imag.fr
http://www-verimag.imag.fr/PEOPLE/graf

Abstract. In this paper, we describe a case study on the verification
of a real industrial protocol for wireless atm, called mascara. Several
tools have been used: sdl has been chosen as the specification language
and the commercial tool Objectgeode has been used for creating and
maintaining sdl descriptions. The if tool-set has been used for gener-
ation, minimization and comparison of system models and verification
of expected properties. All specification and verification tools are con-
nected via the if language, which has been defined as an intermediate
representation for timed asynchronous systems as well as an open valida-
tion environment. Due to the complexity of the protocol, static analysis
techniques, such as live variable analysis and program slicing, were the
key to the success of this case study. The results obtained give some hints
concerning a methodology for the formal verification of real systems.

1 Introduction

Model checking [CE81,QS82] is by now a well established method for verifying
properties of reactive systems. The main reason for its success is the fact that it
works fully automatically and it is able to reveal subtle defects in the design of
complex concurrent systems. Different academic tools have been developed for
supporting these techniques. Not only hardware but also telecommunication in-
dustries are beginning to incorporate them as a component of their development
process. For example, the commercial SDL design tools Objectgeode [Ver96]
and TAU [TA99] provide some verification facilities going beyond interactive or
random simulation. A major challenge in model checking is dealing with the well-
known state explosion problem. This limits its large scale use in practice. In order
to limit this problem, different techniques have been developed, such as on-the-
fly model-checking [JJ89a,Hol90], symbolic model-checking [BCM+90,McM93],
partial order reduction [God96,GKPP94], abstraction [CGL94,LGS+95], compo-
sitional minimization [GS90,KM00] and more recently static analysis reduction
? This work was supported by the VIRES project (Verifying Industrial REactive Sy-

stems, Esprit Long Term Research Project No.23498)
?? VERIMAG is a research laboratory associated with CNRS, Université Joseph Fourier

and Institut Nationale Polytechnique de Grenoble

M.B. Dwyer (Ed.): SPIN 2001, LNCS 2057, pp. 123–142, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

124 G. Jia and S. Graf

[BFG00a]. We try to show here that the right combination of these techniques
allows to tackle the verification of large software systems.

We present a detailed report on the verification of an industrial protocol,
called Mascara (Mobile Access Scheme based on Contention And Reservation
for ATM) [DPea98]. The protocol is a specific medium access control (mac) pro-
tocol, which has been designed for wireless atm communication and has been
developed within the wand (Wireless ATM Network Demonstrator) consortium
[WAN96]. sdl [IT94] has been chosen as the specification language by the de-
signers and we have used the commercial tool Objectgeode for maintaining the
sdl description of the protocol. The if tool-set [BFG+99b,BFG+99a] has been
used for analysis of the protocol. All specification and verification tools of this
tool-set have been connected via the if language, which is an intermediate rep-
resentation for timed asynchronous systems in an open validation environment.
In order to deal with the complexity of the protocol, all the available reduction
techniques of the tool have been used in combination to reduce the state graphs
of the protocol. The results obtained give some hints on a methodology for the
formal verification of large systems.

The paper is organized as follows. Section 2 gives an overview on the
mascara protocol and a brief description of the if language and its validation
environment. In Section 3, we describe in detail the verification of the protocol.
The results are compared and discussed.

2 The Context

2.1 The IF Language and Validation Environment

The IF language. [BFG+99a,BFG+99b] has been defined as an intermediate
representation for timed asynchronous systems. In if, a system is described by
a set of parallel processes communicating either asynchronously through a set
of buffers, or by rendez-vous via a set of gates. Buffers can have various queu-
ing policies (fifo, bag, etc.), can be bounded or unbounded, reliable or lossy,
and delayable or with zero delay. Processes are timed automata with urgencies
[BST97], extended with discrete variables. Process transitions are triggered by
inputs and/or guards and perform variable assignments, and clock settings and
signal outputs. An urgency out of eager, delayable, lazy is associated with each
transition, defining its priority with respect to time progress. This makes if
very flexible and appropriate on one hand as underlying semantics for high level
specification formalisms such as sdl[BKM+01] or estelle used in commercial
design tools and on the other hand as an intermediate representation for tool in-
terconnections as it is powerful enough to express the concepts of the languages
used in the main verification tools of the domain, such as Lotos [BB88] and
Promela [Hol91].

The IF validation environment. provides a complete validation tool chain
allowing to transform high level sdl descriptions through the intermediate rep-
resentation into the input formats of several verification tools (see Figure 1)
[BFG+00b]:

Verification Experiments on the MASCARA Protocol 125

model checking

IF2C
simulationIF LTSSDL SDL2IF

translation to IF

translation to PROMELA

PROMELA

KRONOS

test generation
TGV

ObjectGEODE

specification design
CADP

static analysis

IF2IF

SPIN

IF2PML

Fig. 1. The IF validation environment

– The specification level tools. if does not itself provide facilities to edit
sdl specifications. For this it relies on the commercial tool-set Objectgeode
developed by Telelogic and supporting sdl, msc and ttcn. It includes
graphical editors and compilers for each of these formalisms and provides
step-by-step and random-walk simulation, but also a model-checking facil-
ity using observers to help the user to debug an sdl specification. In the
verification experiment, Objectgeode has mainly been used for maintaining
the sdl description of the mascara protocol, for visualizing mscs generated
from diagnostic sequences generated by verification tools and for replaying
these MSC on the sdl specification to ease error identification.

– The intermediate level tools. Based on an api provided by Objectgeode,
a translator, sdl2if, generates operationally equivalent if specification from
sdl [BFG+99b]. At the if level, a tool called if2if implements various static
analysis techniques such as dead variable analysis(live), slicing(slice), con-
stant propagation and clock reduction. if2if transforms with a small cost a
given if description into a semantically equivalent one (with respect to a
set of properties) with a reduced model, where a typical factor of reduction
observed in many examples is between 1 and 3 orders of magnitude. Any
back-end tool connected to if can profit from these reductions. For exam-
ple, the spin tool [Hol91] which has been connected via a translator if2pml
[BDHS00].

– The verification tools. cadp [FGK+96] has been designed as a tool-set
for the verification of lotos specifications. Its model generation and anal-
ysis tools, such as Aldebaran and Evaluator, have been adapted for
if-specifications and can be used for generation, minimization, comparison
of state graphs and verification of properties specified as alternation-free
µ-calculus formulas either on-the-fly or on an already generated model. Di-
agnostic sequences are computed and can be translated into mscs to be dis-
played in a user friendly manner. Other tools, such as Kronos [Yov97] for
the verification of real-time properties described in Tctl and tgv [FJJV97]
for automatic test generation, can work directly on if specifications.

126 G. Jia and S. Graf

if is presently used in several projects of different nature concerned with
verification, test case generation, performance analysis and UML modeling;
several significant case studies in the domain of verification have already
been carried out using if [BFG+98,BML00]

2.2 The MASCARA Protocol

The mascara (Mobile Access Scheme based on Contention And Reservation
for atm) protocol [DPea98] is a special medium access control (mac) proto-
col designed for wireless atm (Asynchronous Transfer Mode) communication
and developed by the wand (Wireless atm Network Demonstrator) consortium
[WAN96]. A wireless atm network extends transparently services to mobile ter-
minals (mt) via a number of geographically distributed access points (ap). The
task of the mascara protocol is to mediate between aps and mts via a wireless
link. The protocol has a layered structure, where we consider only the highest
layer, the mascara control layer.

The Purpose of the MASCARA Control Layer (MCL). is to ensure that
mobile terminals can initially establish and then maintain an association with
an access point with good quality and minimal interruptions as long as the atm
connection is valid. It carries out a periodical monitoring of the current radio link
quality (gathering the information about radio link qualities of its neighboring
aps to hand-over to in the case of deterioration of the current association link
quality) and switching from one ap to another in the hand-over procedure. Since
several mts communicate through a single ap with the atm core network, mcl
is different on the ap and the mt side.

mcl consists of two main parts: dynamic control and static control. We de-
scribe in detail the dynamic control part, which we have concentrated on in this
case study.

Dynamic Control (DC). The main task of the dynamic control is to set up
and release associations and virtual connections. It consists of the following en-
tities: dynamic generic agent, association agent and mac virtual channel agent.

The dynamic generic agent is the top-level entity of the dynamic control and
its task is association management. It dispatches upper layer requests concerning
existing associations and connections to the right association agent, manages
mac-layer addresses for the associations, and informs the upper layer about lost
associations.

The association agent of an mt and its peer entity in the (to be) associated
ap are responsible for managing and supervising a single association. Each as-
sociation can carry a variable number of connections via virtual channels. The
task of the association agent peers is to create the virtual channel agents, map
the addresses between the atm-layer and the mac-layer connection identifiers
and forward requests. Since each mt is at any time associated with at most one
ap, there exists one association agent per mt. While, whereas each ap has one
association agent for every associated mt.

Verification Experiments on the MASCARA Protocol 127

An mvc agent of an mt and its peer entity in the ap manage a single con-
nection on a virtual channel. Beside address mapping from the atm-layer to
the mac-layer connection identifiers, the mvc agents are in charge of resource
allocation for the connection they manage over the wireless channels.

3 Verification of the MASCARA Protocol

The overall description of the mascara protocol which we got is 300 pages of
sdl textual code. This makes it impossible to envisage to push the “verify”
button on the protocol as a whole. That fact that the descriptions of the lower
layers of the protocol were very incomplete made that the protocol was even
not simulatable as a whole. We concentrate on the verification of the mascara
control layer, for which the sdl description could be made reasonably complete.
Here we report on the verification of the dynamic control. Another verification
experiment has been carried out on static control [BDHS00]. In this section,
we first present the experiment system and the assumptions and simplifications
we made. Then, we list some of the correctness properties to be verified and
describe in detail the approaches to perform the verification. Finally, we present
the verification results and discuss some problems encountered.

3.1 The Experimental System

Architecture. Dynamic control has an interface to the mascara management
layer (called upper layer here), and exchanges control signals with lower layer en-
tities of the mascara protocol. For verification, we abstract all lower mascara
layers to a pair of buffered communication channels. We have considered these
channels as non-lossy, but with a transmission delay that is possibly longer than
expected by the timers, so that these channels represent all relevant behaviours
of the lower levels of the protocol. The architecture of the sdl model used for
verification can be seen in Figure 2 and consists of the following parts:

• ap Dynamic Control has itself a hierarchical structure: all signals from out-
side are received by the Generic Dynamic Control process, and either treated
directly or forwarded to the relevant Association Agent, which on turn, ei-
ther treats the signal itself or forwards it to the relevant Virtual Channel
(mvc) Agent.

• mt Dynamic Control has the same architecture as ap Dynamic Control,
but the implemented protocols are of an asymmetric nature: association is
always initiated by mt, whereas channel opening can be initiated on both
sides, in such a way that mt will always “win” in case of concurrent opening
of the same channel on both sides.

• An “Environment” process which consists of abstract versions of the upper
layer and of the other mascara Control entities, in particular steady state
control.

We assume that only one mt can be associated and only one connection can
be opened, i.e., only one pair of association agents (aaa/maa) and one pair of

128 G. Jia and S. Graf

Environment

(encompassing upper layers and other Control parts)

Architectural view of the experiment system

Association

Agent

Generic
Dynamic
Control

Virtual
Channel
Agent

MT Dynamic Control

Association

Agent

Generic
Dynamic
Control

Virtual
Channel
Agent

AP Dynamic Control

Fig. 2. Architectural view of the experimental system

mvc agents (ama/mma) are considered, which is sufficient for the correctness
properties we have verified.

Environment. Verification should be carried out under a general environment
with realistic restrictions. As we have not obtained information on the mascara
upper layer, we considered initially an open system with an unconstrained upper
layer, which would allow us to obtain the “most general” verification results. But
communication is via unbounded channels as in sdl, leads to infinitely growing
channel contents and thus an infinite state model in case that the environment
sends requests too often, which is typically the case in “reactive” systems always
ready to to treat requests from the environment.

Object geode offers a facility for avoiding this problem which however leads
to a drastic restriction of the possible behaviours, allowing a new request from
the environment only when no system transition is enabled any more, that is, the
previous request has been completely treated. This is not an adequate approach
for the mascara Protocol which is precisely designed for dealing with several,
even conflicting, requests in parallel.

The approach we have chosen to provide a more restricted, but still realistic
environment consists in restricting the number of requests it can make per time
unit. We assume that within one time unit, no more than “N” requests can be
sent by the environment. Considering system transitions as eager – that means
that time can only progress when no system transition is enabled – this provides
an environment suitable for our purpose. The system has never to deal with more
than “N” requests “simultaneously” which leads, in the mascara protocol, to

Verification Experiments on the MASCARA Protocol 129

bounded channel contents. The success of the method depends on the use of a
realistic bound. We use N = 4.

Simultaneously means here in the “same time slice”, meaning that the
environment can send a new request even if there are previous ones still to be
treated. Using Rendez-vous or bounded and blocking channels like in Lotos or
Promela leads to similar restrictions as the environment is blocked as soon as
all buffers are full. Our solution makes it however easier to exactly qualify the
applied restriction.

The role of time. This protocol makes use timeouts, essentially to avoid in-
definite waiting for a response that will never come. This type of systems can
usually be verified as an untimed system, where the occurrence of a timeout is
treated as a non-deterministic event. As we use time as a convenient means to
slow down the environment, we cannot adopt exactly this solution. We consider

– the transmission delay through the channels between ap and mt as 1 (the
value is arbitrary) and all other transmission delays as zero and

– the maximal waiting time for response as 2
– all system transitions as “eager” so that the system is forced to progress

until standstill before time can pass.
This has as consequence that responses and corresponding timeouts occur in the
same “time slice” and thus can occur in any order, and still time can be used
to slow down the environment as it can send in each time slice only a limited
number of requests.

3.2 Properties

As it is often the case, the designers of the system did not provide us with re-
quirements that the system must satisfy. Therefore, we considered generic prop-
erties such as deadlocks. And for each request from the environment (such as
association, deassociation, connection opening, connection release,...) a set of
“response properties”, where in a first time we verified very weak properties,
such as “potential response”, and the more the system became debugged, the
more we strengthened them. As an example, we show the strongest response
property considered for “association request”.

Association Establishment. This property refers to association es-
tablishment between an mt and an ap which is obtained by a four-way
handshake protocol initiated by mt. The signals between the system and
the upper layer are:
– the request for association establishment (“a req”) from the upper

layer to mt.
– the response to association request (“a cnf (rc)”)1 by mt to the up-

per layer.
1 A return code is attached with the response signal which indicates positive (e.g.

success) or negative (e.g. failed, already associated or no response) result of the
corresponding association request.

130 G. Jia and S. Graf

– the indication of association establishment (“a ind”) ap to the upper
layer.

the response property we considered for checking the correctness of the
association establishment, is the following one:

“Any association request received by the mt is eventually fol-
lowed by an association confirmation with either a negative or a
positive result. In the second case, an association indication has
already been or will eventually be emitted by the ap.”

Expression of Properties. We have used several formalisms for the expression
of properties:

1. We expressed some properties by sets of temporal logic formulas. Temporal
logics such as Computational Tree Logic (ctl)[CGP99] and Linear Tempo-
ral Logic (ltl)[MP92] are widely used. The model-checker evaluator is
based on the use of the alternation-free µ-calculus[Koz83] which is more ex-
pressive, but more difficult to use. However, there exist macros going beyond
the modalities of ctl or ltl, such that most properties can be expressed
conveniently at least by an expert. For verification (see Section 3.3), we de-
composed the above correctness criterion into simpler properties (Table 2).
The following formula expresses the requirement Req1 of this table, where
“all”, “inev” and “TRUE” are macros which should be intuitive enough.

all[a req](inev < a cnf ∗ > TRUE)

0 a_cnf_*

1

a_req a_cnf_*

a_req

0

1

a_req a_cnf_fail a_cnf_nr

2

a_req

3

a_cnf_succa_cnf_ala

tau

4

a_req a_cnf_ala

Fig. 3. Req1 and a refinement of Req1 expressed as Lts

2. ctl and ltl are not powerful enough to express all useful properties. More-
over, they are difficult to use by a non expert for the expression of complex
state and event sequencing properties often required for protocols, especially

Verification Experiments on the MASCARA Protocol 131

if they are not covered by the set of macros. Finite automata are another
formalism for the expression of properties which is powerful yet relatively
easy to use. In our tools we use labeled transition systems (lts), where the
transition labels are a set of observable events, which are in our case a sub-
set of the signal input and output events, possibly with their parameters.
Figure 3 shows on the left side an Lts expressing Req1 of Table 2 and on the
right side a refinement of it. This refined version, which corresponds more
to the really expected behaviour, is easier to express by an Lts than by a
temporal logic formula.

3. We have tried to apply so called “visual verification” which gives often very
satisfactory results. It consists in “computing” the exact property of the sys-
tem with respect to a set of observable events: the (completely constructed)
state-graph is minimized with respect to an appropriate equivalence relation,
such as observational[Mil80] or safety[BFG+91] equivalence. In this partic-
ular protocol, the obtained minimal state-graphs were most of the time still
too complicated to be inspected visually. The reason for this seems to be the
counting effect introduced by limiting the number of simultaneous requests
(to 4).

4. We have used Message Sequence Charts (MSC). Nevertheless, we have not
written them ourselves in order to express negations of safety properties, but
our tools generated them from diagnostic sequences, showing the violation
of some property formulated in another formalism. In Figure 5 an example
of such a “diagnostic MSC” can be found.

3.3 Verification Methodology

Given a property ϕ and a system S, described as a parallel composition of
a number of subsystems Si, the goal of model checking is to verify whether
S1 ‖ · · · ‖ Sn |= ϕ holds.

It is well-known that the size of the state graph grows exponentially with the
number of components Si (and also the number of variables). For the mascara
protocol, even if only a single association and a single connection is considered,
the state space is too large to be analyzed without application of any reduction
technique.

We combined the use of all reduction techniques available in our tools and
applied them in the order depicted in Figure 4. We explain the results observed
using the different techniques in the following paragraphs.

Static Analysis Reduction Techniques: static analysis techniques is applied
at the program level to reduce the number of states and transitions of the model
associated with the specification and thus make model checking feasible:
1. Dead variable analysis transforms an if specification into an equivalent one

by adding systematic reset statements of “dead” variables. A variable is
“dead” at some control point if its value is not used before it is assigned again.
This transformation preserves all event-oriented properties of the original
specification while the global state space and consequently the exploration
time are reduced.

132 G. Jia and S. Graf

SDL SDL2IF IF IFstatic analysis
IF2IF

Compositional Verification Compositional Verification

into a set of local properties
Decomposition of properties

(for local properties)

+

Partial-order

On-the-Fly
Model Checking

(debug phase)

Minimization
(for global properties)

Explicit Generation

Reduction

Debug

(LIVE and SLICE)

Fig. 4. Overview of the verification methodology

2. Program slicing automatically extracts portions of a program relevant for a
specific property, called slicing criterion: for example, a set of variables or
signals at program points of interest for the given correctness property. The
reduction is obtained by eliminating program parts which do not influence
the slicing criterion. There is a different model for each property (or a set of
properties). This transformation preserves safety properties depending only
on the slicing criterion, while it results smaller if-program.

These reductions are performed on the structural program level description of the
system, before model generation and their complexity is completely unproblem-
atic. They can, and should, be always applied, independently of the verification
method or tool being used later on.

Partial Order Reduction. [God96,GKPP94] is a method which consists in
verifying properties of a concurrent system without exploring all interleavings
of concurrent executions of independent transitions. It preserves properties on
orderings of events as long as they are considered dependent. A simple version
of this method has been implemented in the if tool-set. In order to use partial
order reduction jointly with compositional techniques, we need to consider all
signal input from the “environment” as dependent, no matter the property to
be verified. It is well-known that partial order reduction allows a significant
reduction of the size of the state-graph, and should therefore always be applied
during generation or traversal of the model.

Atomicity Reduction. A well-known reduction method consists in considering
sequences of internal steps as “model steps”. This is correct as long as each
sequence contains at most one read or write action of a global variable and at
most one modification of observable variables.

sdl greatly facilitates the use of this method: all transitions start by reading
a signal from the process’s message buffer, and then execute a set of actions
consisting in local assignments and signal outputs to buffers of other processes.

Verification Experiments on the MASCARA Protocol 133

All properties we consider are expressed in terms of signal inputs and outputs
and in mascara there are never two observable outputs sent within a single
sdl transition; thus we can consider complete sdl transitions as atomic steps.
The reduction obtained by atomicity reduction is in general tremendous. As it
is applied by default in the step-function of the if tool-set, we can however not
show its effect.

On-the-Fly Model Checking: In “on-the-fly” model checking [JJ89b,FM91,
Hol91] verification is performed during a possibly exhaustive traversal of the
model. This method is very helpful, in particular at the first stage of verification
for the debugging of the initial specification, as it exposes fast many errors
and omissions, even of systems which cannot be verified completely. It should
be noted, however, that only for very simple safety properties, the underlying
model of the on-the-fly analysis has the same size as the system model alone. For
more complex properties, on-the-fly verification explores a model which can be
significantly bigger than the system model alone, and some of the advantage of
not storing transitions vanishes. In the particular case of the mascara protocol,
there was no verification of a non-trivial property that we could do on-the-fly,
but for which we could not generate the state graph.

Compositional Verification: We have applied two different types of compo-
sitional verification. The first one is based on property decomposition [Kur94],
and the second one is based on compositional generation of a state graph min-
imized with respect to a behavioral equivalence [GS90]. For the application of
both methods, we split the system into smaller functional parts, namely, ap
dynamic control and mt dynamic control.

1. a) decompose a global property of a system into a set of local properties of
the considered subsystems;

b) verify each local property on the corresponding subsystem — using a
particular environment representing an abstraction of the remaining sub-
systems.

All safety properties which hold on a small configuration hold also on the
complete system. This method is very convenient to use, under the condition
that the global properties can be decomposed and that it is sufficient to
include a very abstract view of the neglected subsystems. For example,
Req1 Req2, Req3a and Req3b of Table 2 below, are such local properties of
mt which can be verified on a state graph, generated by abstracting the ap
part almost as the Chaos process (making sure however that it is not too
active). see Table 1.

2. a) generate the state graph of each subsystem (ap and mt) separately,
considering the same weak abstraction of the other subsystem as in the
first method, and reduce it with respect to weak bisimulation using the
Aldebaran tool;

b) apply parallel composition on the reduced models (as communication
between ap and mt is via a pair of buffers, these buffers are the global

134 G. Jia and S. Graf

variables of the system and need to be considered as such for parallel
composition [KM00])

c) verify the global correctness properties on the generated global model.
This method preserves all safety properties on observable events. Req3 of
Table 2 below, for example, can be evaluated on the state graph DC1 men-
tioned in Table 1.

The first method allows to work with smaller models than the second one as
no abstraction of the global state graph need to be constructed. Unfortunately,
it can sometimes be quite difficult to find an appropriate decomposition of prop-
erties and to provide a useful abstraction of the “non-considered parts” of the
system. For example, the decomposition of Req3 into Req3a and Req3b is only
correct if the communication channels between ap and mt can be considered as
reliable. Notice that the second method does not necessarily rely on a correct
environment abstraction [GS90], but this variant is not implemented in our tool
for systems communicating through asynchronous buffers.

3.4 Complexity

Table 1 gives an overview of a subset of the state graphs we have generated
using different reduction techniques and allows to compare their sizes.

Execution Time. With respect to execution time, the following observation
can be made: execution times are roughly proportional to the size of the
generated graphs, which means that the different reduction methods do not
introduce any significant overhead. For static analysis reduction this result
is not surprising. For partial order reduction it is the case because we use a
simple static dependency relation. Table 1 shows only minimization results
for relatively small graphs (ap4a and mt4a) so that minimization time is
small anyway. Nevertheless, it can be seen that minimization for observational
equivalence is more expensive than for safety equivalence, as the computation
of the transitive closure transition relation “τ ∗ aτ∗” is required (where τ
represents a non-observable and a an observable transition).

State Graph Size. We can see that application of dead variable analysis (Live)
and partial order reduction (po) alone reduces the original state graph by 1 to
2 orders of magnitude. The combination of Live and po gives more than the
combined reduction of each of these techniques applied in isolation. Notice that
for ap, the efficiency of po and Live are about the same, whereas for mt,
Live performs better; in other case studies we also had the situation where po
performed better, so that one can say that with a negligible cost, applying them
together, most of time, one obtains good reduction (here 3 orders of magnitude).

Obviously the reduction obtained by the application of slicing depends
heavily on the considered properties, and it is impossible to make general
statements. For the considered system, we get similar reductions when slicing
according to the 4 main sub-protocols (1 to 2 additional orders of magnitude),
where connection opening is slightly more complicated than the others (it

Verification Experiments on the MASCARA Protocol 135

Table 1. State graphs of the dynamic control

involves more signal exchanges than the others), and thus we get a bit less
reduction.

It was impossible to generate the state graph of the global system as a whole,
thus we started to consider ap and mt in isolation (see first two parts of the
Table 1). Finally, we were able to compositionally generate a reduced model of
the global system using compositional generation, under the condition to use
both Live and partial order reduction for the generation of the subsystems.

136 G. Jia and S. Graf

3.5 Verification Results

We did a large number of verification experiments with increasing complexity.
Initially, many deadlocks were found which were mainly due to the interaction
the different “request/response” sub-protocols. It should also be mentioned that
the feature of implicit (that is silent) discarding unexpected signals in sdl made
the analysis of the generated diagnostic sequences of deadlock traces more diffi-
cult. Using a different translation from sdl to if, this problem has disappeared.

As we had obtained almost no information on the environment of the
mascara layer, we considered initially the case where the request from the
environment can be sent in any order. This lead to a number of error traces
which we considered to be “probably because of too loose assumptions on the
environment” and we added corresponding restrictions for subsequent verifica-
tions. The state graphs mentioned in Table 1 have been obtained using the most
restrictive environment.

Table 2. Properties and Verification results for Association Establishment

Property: Association Establishment
Req1. After reception of an association request by mt, an association

confirmation with either positive or negative return value will be
eventually sent by mt to the upper layer.

TRUE

Req2. After reception of an association request by mt, there exists an
execution path where an association confirmation with positive
return value is sent by mt to the upper layer.

TRUE

Req3. Whenever the association confirmation with positive return value
is sent by mt, an association indication will be or has already been
sent by ap to the upper layer.

FALSE

Req3a. Whenever ap receives the third handshake message
(MPDU MT AP addr received), it will eventually send the
fourth handshake message (MPDU AP MT Assoc ack) to mt,
and an indication of the association (a ind) to the upper layer.

TRUE

Req3b. Whenever mt receives the fourth handshake message
(MPDU AP MT Assoc ack) from ap, it will eventually send
a successful confirmation (a cnf succ) to the upper layer.

FALSE

Table 2 lists the verification results for the properties concerning association
establishment. We performed the verification in an incremental manner, starting
with weak properties, weaker than those mentioned in the table, for each subsys-
tem (ap and mt), and finally ending up with the strong properties of the table
which we verified either on the relevant subsystem or on the reduced version of
the global system.

The local property Req3b (as well as the global property Req3) does not
hold. A diagnostic was produced by the tool Evaluator. Figure 5 gives an msc
scenario of such a trace. Its analysis shows that this violation occurs when a
deassociation request is sent before the association has been confirmed. In case
of a deassociation request, a negative association confirmation is sent to the
environment independently of the success of the handshake protocol with ap;
and this is a correct behaviour. Thus, Req3a should be replaced by the following
weaker requirement (which holds):

Verification Experiments on the MASCARA Protocol 137

Fig. 5. MSC showing the non satisfaction of Req3b

When mt receives an MPDU AP MT Assoc ack from ap, it will even-
tually a successful confirmation (a cnf succ) to the upper layer, except
if it has already received or meanwhile receives a deassociation request
from the upper layer.

4 Conclusion and Perspectives

In this paper, we have presented an experiment report on the verification of
an industrial atm protocol. The aim of this verification was much more the
experimentation and improvement of the verification facilities of the if tool-
set and the analyze of the difficulties occurring with such a big protocol and
their solution rather than the actual verification of the protocol. We believe that
we have at least partially succeeded. The main difficulties that we encountered
together with some responses or some to-do list are the following ones, in the
order in which they appeared:

1. How to extract a subsystem from a large sdl description? (such as
a single layer from a whole protocol stack) The fact that we did not enlarge
verification from the initially considered sub-system to a larger subsystem is
partially due to the fact that it is such a time consuming hand-work to cut
large sdl descriptions in pieces, or to recombine separately modified subsys-
tems at a later stage. Hopefully, the integration of on one hand UML oriented

138 G. Jia and S. Graf

features in sdl design tools, which allow to trace interface changes, and on
the other hand static analysis methods allowing to “cut out” subsystems in
a clean manner, will eliminate this problem.

2. How to get reasonable abstraction of the neglected parts of the
system? In a protocol stack,
– the lower layers can often easily be abstracted by communication chan-

nels with particular properties: they may be reliable or lossy, ordered or
unordered, delayable or immediate.

– The upper layers can often be considered as unconstraint or only weak
order constraints are necessary, a part from the fact that the flooding of
the system with infinitely fast sequences of requests must be avoided in
order to make state space exploration tractable. Fortunately, for the ver-
ification of safety properties it is always reasonable to limit the number
of requests of the upper layer per time unit.

For other subsystems which are not related in such a simple way with the
subsystem under study, slicing is one way to get a simplified description,
but in our example this was not sufficient. General abstraction techniques
as those implemented in the InVest tool [BLO98] will be connected with if.

3. How to get requirements? A part from “deadlock-freedom”, there exist
only few “generic” properties which must hold for any system. Communi-
cation protocols, can often be viewed as reactive systems which must react
“in an appropriate way” to a number of “requests” from the environment;
moreover this is true for every sub-layer of the protocol. In an ideal case,
the designer should be able to help in expressing the appropriate “response
properties”. In absence of help we used the following strategy, which turned
out to work quite well: we started with very weak response properties and
strengthened them as long as they hold. When we found a violated property,
we analyzed a number of diagnostic sequences (or graphs) produced by the
model-checkers in order to find out if it was likely to be
– a real problem of the system,
– a too loose environment
– or a too strong property

and we made corresponding changes.
4. How to express properties? For simple properties, temporal logic is very

convenient, but for more complicated ones, for example taking into account
a number of exceptions under which the desired response need not to oc-
cur, temporal logic is cumbersome. Labeled transition systems allow to ex-
press more complicated properties on message exchanges. mscs express the
existence of sequences with certain characteristics, and are therefore more
appropriate for the representation of “bad scenarios” or “never claims”. We
believe that a generalization of mscs, such as Live Sequence Charts [DH99],
could be very useful.

5. How to analyze negative verification results? In the case where the
violation of a property is due to (a set of) execution sequences, we translated
these sequences into message sequence charts which we than replayed on the
sdl specification using a facility of Objectgeode. This was convenient as

Verification Experiments on the MASCARA Protocol 139

long the sequences were not too long. Using an abstraction criterion makes
the sequences shorter, but introduces non-determinism, which is another
source of complexity, and hides sometimes away the problematic point. We
found that only once we had a good understanding of the protocol (which
should be the case for the designers), we could detect subtle errors with a
reasonable effort.

6. How far can we go with system verification? We hope that we have
demonstrated that using an appropriate strategy, we can verify automati-
cally reasonably small subsystems or components of large systems. For the
verification of global properties of large systems, automatic verification us-
ing state space enumeration, combined with whatever reduction strategies,
seems out of reach. To go a step further we applied two approaches — out
of the large number of compositional approaches proposed in the literature
— which could be applied using the facilities of our tool-set.
– compositional construction of a state-graph reduced with respect to some

equivalence relation. Our results show that this method will probably not
scale, unless the interfaces between the subsystems are very concise, or
we can provide automatic means for getting precise enough abstractions
of large parts of a system.

– compositional verification based on property decomposition. We believe
that this method can scale, even if there are at least two problems which
can make its application difficult:

- the decomposition of a global system with a large number of sub-
systems can be very hard (we applied it to a system with only two
subsystem and a very simple communication structure)

- as for the first method an abstraction of the environment of the
considered subsystem is needed, even if one can hope that less concise
abstractions are enough.

Acknowledgments. We would like to thank Marius Bozga, Lucian Ghirvu and
Laurent Mounier for fruitful discussion and kind help during the verification
experiment.

References

[BB88] T. Bolognesi and E. Brinksma. Introduction to the ISO Specification
Language LOTOS. Computer Networks and ISDN Systems, 14(1):25–29,
January 1988.

[BCM+90] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and J. Hwang. Sym-
bolic model checking: 1020 states and beyond. In Proceedings of the In-
ternational Conference on Logic in Computer Science’90, 1990.

[BDHS00] D. Bosnacki, D. Dams, L. Holenderski, and N. Sidorova. Model Checking
SDL with SPIN. In Proceedings of TACAS’2000, Berlin, Germany, LNCS,
2000.

[BFG+91] A. Bouajjani, J.Cl. Fernandez, S. Graf, C. Rodriguez, and J. Sifakis.
Safety for Branching Time Semantics. In 18th ICALP, number 510 in
LNCS, July 1991.

140 G. Jia and S. Graf

[BFG+98] M. Bozga, J.-C. Fernandez, L. Ghirvu, C. Jard, T. Jéron, A. Kerbrat,
P. Morel, and L. Mounier. Verification and Test Generation for the SS-
COP Protocol. SCP, 1998.

[BFG+99a] M. Bozga, J.-C. Fernandez, L. Ghirvu, S. Graf, J.P. Krimm, and
L. Mounier. IF: An Intermediate Representation and Validation Envi-
ronment for Timed Asynchronous Systems. In Proceedings of FM’99,
Toulouse, France, LNCS, 1999.

[BFG+99b] M. Bozga, J.-C. Fernandez, L. Ghirvu, S. Graf, J.P. Krimm, L. Mounier,
and J. Sifakis. IF: An Intermediate Representation for SDL and its Ap-
plications. In Proceedings of SDL-FORUM’99, Montreal, Canada, June
1999.

[BFG00a] M. Bozga, J-C. Fernandez, and L. Ghirvu. Using Static Analysis to
Improve Automatic Test Generation. In Proceedings of TACAS’2000,
Berlin, Germany, LNCS, 2000.

[BFG+00b] M. Bozga, J.Cl. Fernandez, L. Ghirvu, S. Graf, J.P. Krimm, and
L. Mounier. IF: A Validation Environment for Timed Asynchronous Sys-
tems. In E.A. Emerson and A.P. Sistla, editors, Proceedings of CAV’00
(Chicago, USA), LNCS. Springer, July 2000.

[BKM+01] Marius Bozga, Susanne Graf Alain Kerbrat, Laurent Mounier, Iulian
Ober, and Daniel Vincent. Timed extensions for sdl. In Proceedings,
SDL Forum 2001, June 2001.

[BLO98] S. Bensalem, Y. Lakhnech, and S. Owre. Computing Abstractions of
Infinite State Systems Compositionally and Automatically. In A. Hu and
M. Vardi, editors, Proceedings of CAV’98 (Vancouver, Canada), volume
1427 of LNCS, pages 319–331, June 1998.

[BML00] M. Bozga, L. Mounier, and D. Lesens. Model Checking Ariane-5 Flight
Program. Technical report, Verimag, Grenoble, France, December 2000.

[BST97] S. Bornot, J. Sifakis, and S. Tripakis. Modeling Urgency in Timed Sys-
tems. In International Symposium: Compositionality - The Significant
Difference (Holstein, Germany), volume 1536 of LNCS. Springer, Septem-
ber 1997.

[CE81] E.M. Clarke and E.A. Emerson. Design and Synthesis of Synchronisation
Skeletons using Branching Time Temporal Logic. In Proceedings of IBM
Workshop on Logics of Programs, volume 131 of LNCS, 1981.

[CGL94] E.M. Clarke, O. Grumberg, and D.E. Long. Model checking and ab-
straction. ACM Transactions on Programming Languages and Systems,
16(5):1512–1542, September 1994.

[CGP99] E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. The MIT
Press, 1999.

[DH99] W. Damm and D. Harel. Lscs: Breathing live into message sequence
charts. In FMOODS’99 IFIP TC6/WG6.1 Third International Con-
ference on Formal Methods for Open Object-Based Distributed Systems,
1999.

[DPea98] I. Dravapoulos, N. Pronios, and S. Denazis et al. The Magic WAND,
Deliverable 3D5, Wireless ATM MAC, Final Report, August 1998.

[ES94] E. A. Emerson and A. P. Sistla. Utilizing symmetrie when model checking
under fairness assumptions. submitted to POPL95, 1994.

[FGK+96] J.-C. Fernandez, H. Garavel, A. Kerbrat, R. Mateescu, L. Mounier, and
M. Sighireanu. CADP: A Protocol Validation and Verification Toolbox.
In Proceedings of CAV’96, New Brunswick, USA, volume 1102 of LNCS,
July 1996.

Verification Experiments on the MASCARA Protocol 141

[FJJV97] J.C. Fernandez, C. Jard, T. Jéron, and C. Viho. An Experiment in Au-
tomatic Generation of Test Suites for Protocols with Verification Tech-
nology. Science of Computer Programming, 29, 1997.

[FM91] J.-C. Fernandez and L. Mounier. “On the fly” Verification of Behavioural
Equivalences and Preorders. In Workshop on Computer-Aided Verifica-
tion, Aalborg University, Denmark, LNCS, July 1991.

[GKPP94] R. Gerth, R. Kuiper, D. Peled, and W. Penczek. A partial order approach
to branching time logic model checking, April 1994.

[God96] P. Godefroid. Partial-Order Methods for the Verification of Concurrent
Systems - An Approach to the State Explosion Problem, volume 1032 of
LNCS. Springer, January 1996.

[GS90] S. Graf and B. Steffen. Compositional Minimisation of Finite State Pro-
cesses. In Proceedings of CAV’90, Rutgers, number 531 in LNCS, 1990.

[Hol90] G.J. Holzmann. Algorithms for automated protocol validation. AT&T
technical Journal, 60(1):32–44, January 1990.

[Hol91] G.J. Holzmann. Design and Validation of Computer Protocols. Prentice
Hall Software Series, 1991.

[IT94] ITU-T. Recommendation Z.100. Specification and Description Language
(SDL). 1994.

[JJ89a] C. Jard and T. Jeron. On-Line Model Checking for Finite Linear Tempo-
ral Logic Specifications. In Workshop on Automatic Verification Methods
for Finite State Systems, Grenoble. LNCS 407, Springer Verlag, 1989.

[JJ89b] C. Jard and T. Jeron. On-Line Model-Checking for Finite Linear Tem-
poral Logic Specifications. In J. Sifakis, editor, Proceedings of the 1st
Workshop on Automatic Verification Methods for Finite State Systems
(Grenoble, France), volume 407 of LNCS, pages 189–196. Springer Ver-
lag, Juin 1989.

[KM00] J.P. Krimm and L. Mounier. Compositional State Space Generation with
Partial Order Reductions for Asynchronous Communicating Systems. In
Proceedings of TACAS’2000, Berlin, Germany, LNCS, 2000.

[Koz83] D. Kozen. Results on the Propositional µ-Calculus. In Theoretical Com-
puter Science. North-Holland, 1983.

[Kur94] R.P. Kurshan. Computer-Aided Verification of Coordinating Processes:
The Automata-Theoretic Approach. Princeton University Press, Prince-
ton, New Jersey, 1994.

[LGS+95] C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and S. Bensalem. Property
preserving abstractions for the verification of concurrent systems. Formal
Methods in System Design, 6, Issue 1:11–44, jan 1995. first published in
CAV’92, LNCS 663.

[McM93] K.L. McMillan. Symbolic Model Checking: an Approach to the State Ex-
plosion Problem. Kluwer Academic Publisher, 1993.

[Mil80] R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture
Notes in Computer Science. Springer-Verlag, 1980.

[MP92] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent
Systems. Springer-Verlag, 1992.

[QS82] J.P. Queille and J. Sifakis. Specification and Verification of Concurrent
Programs in CESAR. In International Symposium on Programming, vol-
ume 137 of LNCS, 1982.

[TA99] Sweden Telelogic A.B., Malmö. Telelogic TAU SDL suite Reference Man-
uals. http://www.telelogic.se, 1999.

142 G. Jia and S. Graf

[Ver96] Verilog. ObjectGEODE SDL Simulator - Reference Manual.
http://www.verilogusa.com/products/geode.htm, 1996.

[WAN96] WAND. Magic WAND - Wireless ATM Network Demonstrator.
http://www.tik.ee.ethz.ch/wand, 1996.

[Yov97] S. Yovine. KRONOS: A Verification Tool for Real-Time Systems. Soft-
ware Tools for Technology Transfer, 1(1+2):123–133, December 1997.

Using SPIN for Feature Interaction Analysis –
A Case Study

Muffy Calder and Alice Miller

Department of Computing Science
University of Glasgow
Glasgow, Scotland.

Abstract. We show how SPIN is applied to analyse the behaviour
of a real software artifact – feature interaction in telecommunications
services. We demonstrate how minimal abstraction techniques can
greatly reduce the cost of model-checking, and how analysis can be
performed automatically using scripts.

Keywords: telecommunications services; Promela/SPIN; communicat-
ing processes; distributed systems; formal modelling; analysis and rea-
soning techniques; feature interaction

1 Introduction

In software development a feature is a component of additional functionality –
additional to the main body of code. Typically, features are added incrementally,
often by different developers. A consequence of adding features in this way is
feature interaction, when one feature affects, or modifies, the behaviour of an-
other feature. Although in many cases feature interaction is quite acceptable,
even desirable, in other cases interactions lead to unpredictable and undesirable
results. The problem is well known within the telecommunications (telecomms)
services domain (for example, see [2]), though it exhibits in many other domains
such as email and electronic point of sales.

Techniques to deal with feature interactions can be characterised as design
time or run time, interaction detection and/or resolution. Here, we concentrate
on detection at design time, resolution will be achieved through re-design.

When there is a proliferation of features, as in telecomms services, then au-
tomated detection techniques are essential. In this paper, we investigate the
feasibility of using Promela and SPIN [16].

Our approach involves considering a given service (and features) at two dif-
ferent levels of abstraction: communicating finite state automata and temporal
logic formulae, represented by Promela specifications, labelled transition systems
and Büchi automata. We make contributions at several levels, including

– a low level call service model in Promela that permits truly independent call
control processes with asynchronous communication, asymmetric call control
and a facility for adding features in a structured way,

M.B. Dwyer (Ed.): SPIN 2001, LNCS 2057, pp. 143–162, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

144 M. Calder and A. Miller

– state-space reduction techniques for Promela which result in tractable state-
spaces, thus overcoming classic state-explosion problems,

– interaction analysis of a basic call service with six features, involving four
users with full functionality. There are two types of analysis, static and
dynamic, the latter is completely automated, making extensive use of Perl
scripts to generate the model-checking runs.

Related work is discussed below. The overall approach to interaction detection,
and the role of SPIN, is given in section 2; section 3 contains an introduction
to feature interaction analysis. Sections 4, 5 and 6 give an overview of the finite
state automata, temporal properties, the Promela implementation of the basic
call service, and state-space reduction techniques. Sections 7, 8and 9 contain an
overview of the features and their implementations. The interaction analysis is
described in sections 10 and 11 and in section 12 we discuss how the Promela
models and SPIN model-checking runs required for the analysis are automated.
We conclude in section 13.

1.1 Related Work

Model-checking for feature interaction analysis has been investigated using SMV
[22], Caesar [23], COSPAN [10] and SPIN [18]. In the last, the Promela model
is extracted mechanically from call processing software code; no details of the
model are given and so it is difficult to compare results. In the SMV work, the
authors are restricted to two subscribers of the service with full functionality
(plus two users with half functionality), due to state-explosion problems. For
similar reasons, call control is not independent. Nevertheless, we regard this as
a benchmark paper and aim at least to demonstrate a similar set of properties
within our context. In the COSPAN work, features and the basic service are
described only at an abstract level by temporal descriptions. State-explosion is
avoided, but interactions arising from implementation detail, such as race condi-
tions, cannot be detected. Our layered approach permits detection of interactions
at this level, building on earlier work by the first author (of this paper), [23],
using process algebra. This too suffered from limitations of state-explosion and
the lack of (explicit) asynchronous communication; these limitations motivated
the current investigation using Promela and SPIN. Initial attempts to model the
basic call service using Promela and SPIN are described in [4].

2 Approach

Our approach has two phases; in the first phase we consider only the basic call
service, as depicted in figure 1(a). The aim of the first phase is to develop the
right level of abstraction of the basic service and to ensure that we have effective
reasoning techniques, before proceeding to add features.

Our starting point is the top and left hand side of figure 1(a): the automata
and properties. Neither need be complete specifications; this is a virtue of the

Using SPIN for Feature Interaction Analysis – A Case Study 145

State−space State−space

implement by

BC:

[]<>(x==on)

communicating finite state automata:
 basic call

validate

idle: ...
 ...

tclose : ...
 ...

optimise

denote

develop
together

Properties Promela

...

(a) Basic Service

implement by

BC:

[]<>(x==on)

communicating finite state automata:

validate

idle: ...
 ...

tclose : ...
 ...

optimise

denote

develop
together

Properties Promela

...

basic call +features

dynamic

analysis
inline:...

static analysis
[](p −>(rPq))

(b) Basic Service + Features

CFU:

Fig. 1. Overall Approach

approach and, for example, allows us to avoid the frame problem. The Promela
description on the rhs of figure 1(a) is regarded as the implementation; a crucial
step therefore is validation of the implementation, i.e. checking satisfaction of
the properties, using SPIN. Initial attempts fail, due to state-explosion, however,
an examination of the underlying state-space (bottom of figure 1(a)) leads us to
discover simple, but very effective state-reduction strategies (via code “optimi-
sation”).

The second phase, when we add features, is depicted in figure 1(b). Again,
the starting point is finite state automata and properties. The Promela imple-
mentation is augmented with the new feature behaviour, primarily through the
use of an inline function (see Section 9.1), and then validated. Interaction de-
tection analysis takes two forms: static analysis, (syntactic) inspection of the
Promela code, and dynamic analysis, reasoning over combinations of sets of log-
ical formulae and configurations of the feature subscribers, using SPIN. The
results of (either) analysis is interaction detection. The distinction between the
two analyses is discussed in more detail in Section 11.

146 M. Calder and A. Miller

3 Background – Features and Interactions

Control of the progress of calls is provided by a service at an exchange (a stored
program control exchange). This software must respond to events such as handset
on or off hook, as well as sending control signals to devices and lines such as
ringing tone or line engaged. A service is a collection of functionality that is
usually self-sustaining. A feature is additional functionality, for example, a call
forwarding capability, or ring back when free; a user is said to subscribe to a
feature. When features are added to a basic service, there may be interactions
(i.e. behavioural modifications) between both the features offered within that
service, as well as with features offered in another service.

For example, if a user who subscribes to call waiting (CW) and call forward
when busy (CFB) is engaged in a call, then what happens when there is a further
incoming call? (Full details of all features mentioned here are given in section 7.)
If the call is forwarded, then the CW feature is clearly compromised, and vice
versa. In either case, the subscriber will not have his/her expectations met. This
is an example of a single user, single component (SUSC) [5] interaction – the
conflicting features are subscribed to by a single user. More subtle interactions
can occur when more than one user/subscriber are involved, these are referred to
as multiple user, multiple component (MUMC) interactions. Consider when user
A subscribes to originating call screening (OCS), with user C on the screening
list, and user B subscribes to CFB to user C. If A calls B, and the call is
forwarded to C, as prescribed by B’s CFB, then A’s OCS is compromised. If
the call is not forwarded, then we have the converse. These kind of interactions
can be particularly difficult to detect (and resolve), since different features are
activated at different stages of a the call.

Ideally, interactions are detected and resolved at service creation time, though
this may not always be possible when third-party or legacy services are involved
(for example, see [3]).

4 Basic Call Service

Figure 2 gives a diagrammatic representation of the automaton for the basic call
service (following the IN (Intelligent Networks) model, distributed functional
plane [19]).

States to the left of the idle state represent terminating behaviour, states
to the right represent originating behaviour. Events observable by service sub-
scribers label transitions: user-initiated events at the terminal device, such as
(handset) on and (handset) off, are given in plain font, network-initiated events
such as unobt and engaged are given in italics. Note that there are two “ring”
events, oring and tring, for originating and terminating ring tone, respectively;
call behaviour is asymmetric. Not all transitions are labelled.

The automata must communicate, in order to coordinate call set up and
clear down. To implement communication, we associate a channel with each call
process. Each channel has capacity for at most one message: a pair consisting of

Using SPIN for Feature Interaction Analysis – A Case Study 147

oringout

idle

calling oalert

oconnected

off
on

dial

on

oring

oring

connect

disconnect

dial

terminating originating

unobt

off dial on

tconnected

tpickup

off

tring talert

tring

disconnect

on

busy
on

dial

engaged

unobt

dial
dial

on

dialling

Fig. 2. Basic Call - States and Events

a channel name (the other party in the call) and a status bit (the status of the
connection). Figure 3 describes how messages are interpreted.

5 Basic Call Service Properties in LTL

Below, we give a set of temporal properties describing the behaviour of the basic
call service. Before doing so, we make a few comments about our use of LTL in
SPIN.

When using SPIN’s LTL converter (or otherwise – we use the conversion
tool of Etessami, [9]) it is possible to check whether a given property holds for
All Executions or for No Executions. A universal quantifier is implicit at the
beginning of all LTL formulas and so, to check an LTL property, it is natural
to choose the All Executions option. However, we sometimes wish to check that

Contents of Channel InterpretationA

A is free

A is engaged, but not connected

B is attempting connection

If channel B contains (A,1) then A and

empty

(B,1)

(A,0)

A is engaged, but not connected(B,0)

B are connected

B is terminating party

Fig. 3. States of a Communication Channel in the Protocol

148 M. Calder and A. Miller

a given property (p say) holds for some state along some execution path (or “p
is possible”), we can do so by showing that “〈〉p holds for No Executions” is
not true (via a never-claim violation), which is equivalent. In Property 1 below,
we use the notation E to mean for some path in place of the usual implicit
for all paths. Additionally, we can use SPIN to prove properties of the form
“p is true in the next state relative to process i”. (That is p is true after the
next time that process i is active.) This is done via judicious use of SPIN’s last
operator, details are omitted here. We use the shorthand ◦proci to mean the next
global state in which process proci has made a local transition. In addition the
operators W (weak until) and P (precedes) are defined by fWg = []f ∨ (fUg)
and fPg = ¬(¬fUg).

The LTL is given here alongside each property. This involves referring to
variables (eg. dialled and connect) contained within the Promela code (an ex-
tract of which is given in section 6.1). We use symbols to denote predicates, for
example “[]p where p is dialled[i] == i”. This provides a neater representation,
and the LTL converter requires properties to be given in this way.

Property 1. A connection between two users is possible.
That is: E3p, where p is connect[i].to[j] == 1, for i 6= j.

Property 2. If you dial yourself, then you receive the engaged tone before re-
turning to the idle state.
That is: [](p → ((¬r)Wq)) where p is dialled[i] == i, q is network event[i] ==
engaged and r is user[proci]@idle.

Property 3. Busy tone or ringing tone will directly (that is, the next time that
the process is active) follow calling.
That is: [](p → ◦prociq) where p is event[i] == call and q is
((network event[i] == engaged) ∨ (network event[i] == oring)).

Property 4. The dialled number is the same as the number of the connection
attempt.
That is: [](p → q) where p is dialled[i] == j and q is partner[i] ==
chan name[j].

Property 5. If you dial a busy number then either the busy line clears before a
call is attempted, or you will hear the engaged tone before returning to the idle
state.
That is: []((p ∧ v ∧ t) → (((¬s)W(w)) ∨ ((¬r)Wq))) where p is dialled[i] ==
j, v is event[i] == dial, t is full(chan name[j]), s is event[i] == call, w is
len(chan name[i]) == 0, r is user[proci]@idle and q is network event[i] ==
engaged, for i 6= j.

Note that the operator len is used to define w in preference to the function
empty (or nfull). This is because SPIN disallows the use of the negation of these
functions (and ¬w arises within the never-claim).

Property 6. You can not make a call without having just (that is, the last time
that the process was active,) dialled a number.
That is: [](p → q) where p is user[proci]@calling and q is event[i] == dial.

Using SPIN for Feature Interaction Analysis – A Case Study 149

6 Basic Call Service in Promela

6.1 Unoptimised Code

Each call process (see figure 2) is described in Promela as an instantiation of the
(parameterised) proctype User declared thus:

proctype User (byte selfid;chan self)

Promela is a state-based formalism, rather than event-based. Therefore, we
represent events by (their effect on) variables, and states (e.g. calling, dialling,
etc.) by labels. Since each transition is implemented by several compound state-
ments, we group these together as an atomic statement, concluding with a goto.

An example of the original (unoptimised) Promela code (as described in
[4]) associated with the idle, dialling, calling and oconnected states and their
outgoing transitions is given below. (For the full optimised code, contact the
authors.) The global/local variables and parameters should be self-explanatory.
We note in passing that any variable about which we intend to reason should
not be updated more than once within any atomic statement; also d steps, while
more efficient than atomic steps, are not suitable here because they do not allow
a process to jump to a label out of scope. There are numerous assertions within
the code, particularly at points when entering a new (call) state, and when
reading and writing to communication channels.

idle:
atomic{

assert(dev == on);
assert(partner[selfid]==null);

/* either attempt a call, or receive one */
if

:: empty(self)->event[selfid]=off;
dev[selfid]=off;
self!self,0;goto dialling

/* no connection is being attempted, go offhook */
/* and become originating party */

:: full(self)-> self?<partner[selfid],messbit>;
/* an incoming call */

if
::full(partner[selfid])->

partner[selfid]?<messchan,messbit>;
if

:: messchan == self /* call attempt still there */
->messchan=null;messbit=0;goto talert

:: else -> self?messchan,messbit;
/* call attempt cancelled */

partner[selfid]=null;partnerid=6;
messchan=null;messbit=0;goto idle

fi
::empty(partner[selfid])->

self?messchan,messbit;
/* call attempt cancelled */

partner[selfid]=null;partnerid=6;
messchan=null; messbit=0; goto idle

fi
fi};

dialling:
atomic{

150 M. Calder and A. Miller

assert(dev == off);assert(full(self));
assert(partner[selfid]==null);

/* dial or go onhook */
if

:: event[selfid]=dial;
/* dial and then nondeterministic choice of called party */

if
:: partner[selfid] = zero;dialled[selfid] = 0;

partnerid=0
:: partner[selfid] = one;dialled[selfid] = 1;

partnerid=1
:: partner[selfid] = two;dialled[selfid] = 2;

partnerid=2
:: partner[selfid] = three;dialled[selfid] = 3;

partnerid=3
:: partnerid= 7;
fi

:: event[selfid]=on; dev[selfid]=on;
self?messchan,messbit;assert(messchan==self);

messchan=null;messbit=0;goto idle
/*go onhook, without dialling */

fi};

calling:/* check number called and process */
atomic{

event[selfid]=call;
assert(dev == off);assert(full(self));
if

:: partnerid==7->goto unobtainable
:: partner[selfid] == self -> goto busy

/* invalid partner */
:: ((partner[selfid]!=self)&&(partnerid!=7)) ->

if
:: empty(partner[selfid])->partner[selfid]!self,0;

self?messchan,messbit;
self!partner[selfid],0;goto oalert

/* valid partner, write token to partner’s channel*/
:: full(partner[selfid]) -> goto busy

/* valid partner but engaged */
fi

fi};

oconnected:
atomic{

assert(full(self));assert(full(partner[selfid]));
/* connection established */

connect[selfid].to[partnerid] = 1;
goto oclose};

Any number of call processes can be run concurrently. For example, assum-
ing the global communication channels zero, one, etc. a network of four call
processes is given by:

atomic{run User(0,zero);run User(1,one); run User(2,two);run User(3,three)}

6.2 Options and State-Space Reduction Techniques

Initial attempts to validate the properties against a network of four call processes
fail because of state-explosion. In this section we examine the causes, the ap-
plicability of standard solutions and how the Promela code can be transformed
(optimised) to reduce the size of the state-space.

Using SPIN for Feature Interaction Analysis – A Case Study 151

SPIN Options. The default Partial order reduction (POR) option was applied
throughout, but did not reduce the size of the state-space sufficiently. This is
due to the scarcity of statically defined “safe” operations (see [17]) in our model.
Any assignments to local variables are embedded in large atomic statements that
are not safe. Furthermore the use of non-destructive read operations (to test the
contents of a channel) prevents the assignment of exclusive read/send status to
channels. Such a test is crucial: often behaviour depends on the exact contents
of a channel.

States can be compressed using minimised automaton encoding (MA) or com-
pression (COM). When using the former, it is necessary to define the maximum
size of the state-vector, which of course implies that one has searched the en-
tire space. However one can often find a reasonable value by choosing the (un-
compressed) value reported from a preliminary verification with a deliberate
assertion violation. While MA and COM together give a significant memory
reduction, the trade-off in terms of time was simply unacceptable.

Other State-space Reduction Strategies. A simple but stunningly effective
way to reduce the state-space is to ensure that each visit to a call state is indeed
a visit to the same underlying Promela state. This means that as many variables
as possible should be initialised and then reset to their initial value (reinitialised)
within Promela loops. For example, in virtually every call state it is possible to
return to idle. An admirable reduction is made if variables such as messchan
and messbit are initialised before the first visit to this label (call state), and
then reinitialised before subsequent visits. This is so that global states that were
previously distinguished (due to different values of these variables at different
visits to the idle call state) are now identified.

The largest reduction is to be found when such variables are routinely reset
before progressing to the next call state. Unfortunately, this is not always possi-
ble, as it would result in variables about which we wish to reason being updated
more than once within an atomic statement (as discussed in section 6.1). How-
ever, there is a solution: add a further state where variables are reinitialised. For
example, we have added a new state preidle, where the variables network event
and event are reinitialised, before progression to idle. Therefore every occurrence
of goto idle becomes goto preidle.

We note that although the (default) data-flow optimisation option available
with SPIN attempts to reinitialise variables automatically, we have found that
this option actually increases the size of the state-space of our model. This is
due to the initial values of our variables often being non-zero (when they are of
type mtype for example). SPIN’s data-flow optimisation always resets variables
to zero. Therefore we must switch this option off, and reinitialise our variables
manually.

The size of the state-space can be greatly reduced if any reference to (update
of) a global variable which is not needed for verification, is commented out.
Furthermore, by including all references to all of the event variables (say) when
any such variable is needed for verification (see for example Property 3), the
size of the state-space can be increased by an unnecessarily large amount. For

152 M. Calder and A. Miller

example, to prove that Property 3 holds for user[i], we are only interested in
the value of event[i], not of event[j] where i 6= j. The latter do not need to be
updated. Thus an inline function, event action(eventq) has been introduced to
enable the update of specific variables. That is, it allows us to update the value
of event[i] to the value eventq, and leave the other event variables set to their
default value. So, for example, if i = 0, the event action inline becomes:

inline event_action (eventq)
{
if
::selfid==0->event[selfid]=eventq
::selfid!=0->skip
fi

}

Any reference to this inline definition is merely commented out when no
event variables are needed for verification. (Another inline function is included
to handle the network event variables in the same way.)

We note that this reduction is not implemented in SPIN. SPIN does, however,
issue a warning “variable never used” in situations where such a reduction would
be beneficial.

These transformations (which we refer to as code optimisation) not only lead
to a dramatic reduction of the underlying state-space, the search depth required
was reduced to 10 percent of the initial value, but they do not involve abstraction
away from the original model. On the contrary, if anything, they could be said
to reduce the level of abstraction.

Unlike other abstraction methods (see for example [6], [11] and [13]) our tech-
niques are simple, and merely involve making simple checks that unneccessary
states have not been unintentionally introduced. We believe that these kinds of
state-space explosions are not uncommon. All SPIN users should be aware that
they may be introducing spurious states when coding their problem in Promela.

6.3 Basic Call Service Validation

It was possible to verify all six properties listed in section 5 well within our 1.5
Gbyte memory limit. State compression was used throughout. The verification of
property 3 took the longest (21 mins) and a greater search-depth was reached in
this case. This is partially due to the fact that both the event and network event
variables for the process under consideration had to be included for this property.
In addition, the use of the last operator precludes the use of partial order
reduction, which could have helped to reduce the complexity in this case.

7 Features

Now that the state-space is tractable, we can commence the second phase: adding
a number of features to the basic service.

Using SPIN for Feature Interaction Analysis – A Case Study 153

7.1 Features

The set of features that we have added include:

– CFU – call forward unconditional. All calls to the subscriber’s phone
are diverted to another phone.

– CFB – call forward when busy. All calls to the subscriber’s phone are
diverted to another phone, if and when the subscriber is busy.

– OCS – originating call screening. All calls by the subscriber to numbers
on a predefined list are inhibited. Assume that the list for user x does not
contain x.

– ODS – originating dial screening. The dialling of numbers on a prede-
fined list by the subscriber is inhibited. Assume that the list for user x does
not contain x.

– TCS – terminating call screening. Calls to the subscriber from any
number on a predefined list are inhibited. Assume that the list for user x
does not contain x.

– RBWF – ring back when free. The subscriber has the option to call the
last recorded caller to his/her phone.

Two further features that are straightforward to implement are originating call
behaviour (e.g. a pay phone) and terminating call behaviour (e.g. a teen line).
However we give no details of such features here.

We do not give automata for all the features, but in figure 4 we give the
additional behaviour prescribed by the RBWF feature. While the automaton
appears to be non-deterministic, it is not because the dial event is associated
with data. The data determines the choice (e.g. 7 will result in the transition to
ringback). Notice that this feature introduces a new call state (namely ringback);
it is the only feature to do so.

idle

dialing calling

ringback
on

dial

callbackdial

on

off

Fig. 4. Part of the Finite State Automaton for RBWF

8 Temporal Properties for Features

The properties for features are more difficult to express than those for the basic
service. In order to accurately reflect the behaviour of each feature great atten-
tion must be paid to the scope of each property (within the corresponding LTL

154 M. Calder and A. Miller

formula). For example, in property 8 (see below), it is essential that (for the CFB
feature to be invoked) the forwarding party has a full communication channel
whilst the dialling party is in the dialling state. This can only be expressed by
stating that the forwarding party must have a full channel continuously between
two states, the first of which must occur before the dialling party enters the
dialling state, and the second after the dialling party emerges from the dialling
state.

The values of the variables i, j and k depend on the particular pair of features
and the corresponding property that is being analysed. These variables are there-
fore updated prior to each verification either manually (by editing the Promela
code directly), or automatically during the running of a model-generating script
(see section 12).

Property 7 – CFU. Assume that user j forwards to k.
If user i rings user j then a connection between i and k will be attempted before
user i hangs up.
That is: [](p → (rPq)), where p is dialled[i] == j, r is partner[i] ==
chan name[k], and q is dev[i] == on.

Property 8 – CFB. Assume that user j forwards to k.
If user i rings user j when j is busy then a connection between i and k will be
attempted before user i hangs up.
That is: [](((u ∧ t) ∧ ((u ∧ t)U((¬u) ∧ t ∧ p))) → (rPq)), where p is
dialled[i] == j, t is full(chan name[j]), r is partner[i] == chan name[k], u
is user[proci]@dialling and q is dev[i] == on.

Property 9 – OCS. Assume that user i has user j on its screening list.
No connection from user i to user j is possible.
That is: [](¬p), where p is connect[i].to[j] == 1.

Property 10 – ODS. Assume that user i has user j on its screening list.
User i may not dial user j .
That is: [](¬p), where p is dialled[i] == j.

Property 11 – TCS. Assume that user i has user j on its screening list.
No connection from user j to user i is possible.
That is: [](¬p), where p is connect[j].to[i] == 1.

Property 12 – RBWF. Assume that user j has automatic call back.
It is possible for an attempted call from i to j to eventually result in a successful
call from j to i (without j ever dialling i) .

That is: E(�((p∧ t∧�q)∧ (rPq)), where p is dialled[i] = j, q is dialled[j] = i,
r is connect[j].to[i] == 1 and t is event[i] == call.

9 The Features in Promela

Relevant changes that need to be made to the Promela model are given below.
Before this, we make a few observations:

Using SPIN for Feature Interaction Analysis – A Case Study 155

– To implement the features we have included a “feature lookup” function (see
below) that implements the features and computes the transitive closure of
the forwarding relations (when such features apply to the same call state).

– We distinguish between call and dial screening; the former means a call
between user A and B is prohibited, regardless of whether or not A actually
dialled B, the latter means that if A dials B, then the call cannot proceed,
but they might become connected by some other means. The latter case
might be desirable if screening is motivated by billing. For example, if user
A dials C (a local leg) and C forwards calls to B (a trunk leg) then A would
only pay for the local leg.

– Currently we restrict the size of the lists of screened callers (relating to the
OCS, ODS and TCS features) to one. That is, we assume that it is impossible
for a single user to subscribe to two of the same screening feature. This is
sufficient to demonstrate some feature interactions, and limits the size of the
state-space.

– The addition of RBWF, while straightforward, increases the complexity of
the underlying state-space greatly. This is due both to the addition of the
new ringback state and to the fact that it involves recording (in a structure
indexed by call processes) the last connection attempt. The issue is not just
that there is a new global variable, but that call states that were previously
identified are now distinguished by the contents of that record (see discussion
about variable reinitialisation in section 6.2).

– To ensure that all variables are initialised, we use 6 as a default value. This
is particularly useful when a user does not subscribe to a particular feature.
The value 7 is used to denote both an unobtainable number (e.g. an incorrect
number) and to denote the “button press” in RBWF. We do not use an
additional value for the latter, so as not to increase the state space.

9.1 Implementation of Features: The Feature lookup Inline

In order to enable us to add features easily, all of the code relating to feature
behaviour is now included within an inline definition. The feature lookup inline
is defined as follows:

inline feature_lookup(part_chan,part_id,st)
{
do
::((st==st_dial)&&(ODS[selfid]==part_id))->st=st_unobt
::((st==st_dial)&&(RBWF[selfid]==1)&&(part_id==7))->st=st_rback
::((part_id!=7)&&(st==st_dial)&&(CFU[part_id]!=6))

->part_id=CFU[part_id];part_chan=chan_name[part_id]
::((part_id!=7)&&(st==st_dial)&&(CFB[part_id]!=6)&&(len(part_chan)>0))

->part_id=CFB[part_id];part_chan=chan_name[part_id]
::((st==st_call)&&(OCS[selfid]==part_id))->st=st_unobt
::((st==st_call)&&(TCS[part_id]==selfid))->st=st_unobt
::else->break
od
}

The parameters part chan, part id, and st take the values of the current partner,
partnerid and state of a user when a call to the feature lookup inline is made.

156 M. Calder and A. Miller

Statements within feature lookup pertaining to features that are not currently
active are automatically commented out (see section 12).

We note that in some sense feature lookup encapsulates centralised intelli-
gence in the switch, as it has “knowledge” of the status of processes and data con-
cerning feature configuration. While on the one hand one might argue that this
is against the spirit of an IN switch, on the other hand we maintain that MUMC
feature interactions simply cannot be detected in a completely distributed ar-
chitecture.

9.2 Feature Validation

Each feature was validated (via SPIN verification) against the appropriate set
of properties (1–12). Each verification took place within 30 minutes and took
place well within our our 1.5 Gbyte memory limit. For brevity, however, we do
not give details here.

10 Static Analysis

Static analysis is an analysis of the structure of the feature descriptions, i.e. an
examination of the syntax. Specifically, we look for overlapping guards (two or
more guards which evaluate to true, under an assignment to variables) with di-
verging consequences. A more operational explanation is the detection of shared
triggers of features. Because we have collected additional feature behaviour
together within the inline feature lookup, we need only consider overlapping
guards within this function. If there is an overlap, and the consequences diverge,
then we have non-determinism and hence a potential interaction.

For example, consider the following overlap between CFU and CFB:

::((part_id!=7)&&(st==st_dial)&&(CFU[part_id]!=6))
->part_id=CFU[part_id]; part_chan=chan_name[part_id]

::((part_id!=7)&&(st==st_dial)&&(CFB[part_id]!=6)&&(len(part_chan)>0))
->part_id=CFB[part_id];part_chan=chan_name[part_id]

The overlap occurs under the assignment st = st dial, CFU [part id] = x,
len(part chan) > 0, and CFB[part id] = y where x, y 6= 6. When x 6= y, the
first consequent assigns x to part id, the second assigns y to part id. These are
clearly divergent, and so we have found an interaction.

SUSC and MUMC interactions are distinguished by considering the roles of
part id and selfid as indices. If the same index is used for the feature sub-
scription, e.g. CFU [part id] and CFB[part id], then the interaction is SUSC, if
different indices are used, it is MUMC. In this example, the interaction is clearly
SUSC.

An overlap is not always possible. For example, consider the first two choices:

::((st==st_dial)&&(ODS[selfid]==part_id))
->st=st_unobt

::((st==st_dial)&&(RBWF[selfid]==1)&&(part_id==7))
->st=st_rback

Using SPIN for Feature Interaction Analysis – A Case Study 157

As 7 is not a valid number to be in a screening list there is no overlap and
hence no interaction.

In all, there are 7 pairs to consider (4 clauses for st dial, leading to 6 pairs,
and two clauses for st call, leading to one pair). Results of the static analysis
are given in the tables of figure 5. A

√
indicates an interaction whereas a ×

indicates none. The tables are symmetric.

RBWFCFU CFB OCS ODS TCS

CFU

CFB

ODS

OCS

TCS

RBWF

RBWFCFU CFB OCS ODS TCS

CFU

CFB

ODS

OCS

TCS

RBWF

(a) SUSC (b) MUMC

Fig. 5. Feature Interaction Results - Static Analysis

Static analysis is a very simple yet very effective mechanism for finding some
interactions – those which arise from new non-determinism. It is based on equa-
tional reasoning techniques and the process of finding overlapping guards (known
as superposition) can be automated. The process of considering whether the con-
sequent statements are divergent is more difficult and a complete solution would
require a thorough axiomatic description of the Promela language. However, it
would be possible to automate a relatively effective approach based on simple
assignment. For the purposes of this paper, we rely on manual inspection of the
function feature lookup. In any case, we note that the ease and contribution of
static analysis depends very much on the structure of the specification.

We now turn our attention to a dynamic form of analysis.

11 Dynamic Analysis

Dynamic analysis depends upon logical properties that are satisfied (or not) by
pairs of users subscribing to combinations of features.

Consider two users, u1 and u2. Then u1fi ∪ u2fj is the configuration, or
scenario, in which u1 subscribes to feature fi and u2 subscribe to feature fj .
Two features fi and fj interact if a property that holds for fi alone, no longer
holds in the presence of another feature fj . More formally stated: for a property
φ, we have u1fi |= φ but u1fi ∪ u2fj 6|= φ. When u1 == u2, then the interaction
is SUSC, otherwise it is MUMC. Note that there are no constraints on i and j,
ie. i = j or 6= j.

Note that the analysis is pairwise, known as 2-way interactions. While at first
sight this may be limiting, empirical evidence suggests there is little motivation

158 M. Calder and A. Miller

to generalise, 3-way interactions that are not detectable as a 2-way interaction
are exceedingly rare [21].

An initial approach is to consider any property above as a candidate for φ.
However, it is easy to see that in this case all features interact. A more selective
approach is required: we consider only the properties associated with the features
under examination, i.e. for features fi and fj , consider only properties φi and
φj . An SUSC (MUMC) interaction between fi and fj , resulting from a violation
of property φi is written (fi, fj)S ((fi, fj)M).

11.1 Dynamic Analysis – Feature Interaction Results

The tables in figure 6 gives the interactions found for pairs of features in both
the SUSC case and the MUMC case. A

√
in the row labelled by feature fi means

that the property φi is violated whereas a × indicates that no such violation has
occurred. Two features fi and fj interact if and only if there is a

√
in position

(fi, fj) and/or a
√

in position (fj , fi). BC is excluded as every feature interacts
with it in some way.

(a) SUSC (b) MUMC

RBWFCFU CFB OCS ODS TCS

CFU

CFB

ODS

OCS

TCS

RBWF

RBWFCFU CFB OCS ODS TCS

CFU

CFB

ODS

OCS

TCS

RBWF

Fig. 6. Feature Interaction Results - Dynamic Analysis

New SUSC interactions are detected by the dynamic analysis, namely those
associated with the RBWF feature. For example, there is an (RBWF, CFU)S

interaction because the CFU feature prevents the record variable pertaining to
the subscriber being set to a non-default value. Therefore the subscriber is unable
to perform a ring-back.

The tables are not symmetric. For example, there is an (ODS, CFU)M inter-
action, but not a (CFU, ODS)M interaction. To understand why, observe that
static analysis detects an MUMC interaction under the assignment ODS[0] = 1,
and CFU [1] = 2. Dynamic analysis also detects an interaction violation – in-
deed our analysis script (see section 12) generates exactly this scenario: an
(ODS, CFU)M interaction with i = 0 and j = 1 (i.e. user 0 rings user 1). Con-
sider those computations where feature lookup takes the ODS branch. One
could understand this as ODS having precedence. There is no interaction in this
case: both property 7 and property 10 are satisfied. However, there is a compu-
tation where the CFU branch is taken; in this case CFU has precedence and

Using SPIN for Feature Interaction Analysis – A Case Study 159

property 10 is violated because user 0 has dialled user 1 – before the call is for-
warded to user 2 (although clearly property 7 is satisfied). Often, understanding
why and how a property is violated will give the designer strong hints as to how
to resolve an interaction.

The interactions uncovered by dynamic analysis depend very much on the
properties and how the features are modelled. When the properties are adequate,
we would expect every statically detected interaction to be detected dynami-
cally, but not vice versa. This is borne out by our case-study. We may regard the
static analysis step as a cheap method of uncovering some interactions, as well
as providing an indication of whether or not we have a good set of behavioural
properties. But, note that the properties are not complete descriptions, in par-
ticular they do not state what should not happen (i.e. the frame problem). For
example, one might expect a (CFU, TCS)M interaction but this is not the case
because although TCS will block the forwarded call, the partner variable will
be set appropriately, thus satisfying property 7. Perhaps one should strengthen
the property for CFU, to insist that the connection is made (rather than just
setting partner appropriately). But it is not that simple, the forwarded party
may be engaged, or have a forwarded feature (or any other kind of feature); the
possibilities are endless. Therefore, we consider the CFU property to be quite
adequate.

12 Automatic Model Generation and Feature Interaction

Originally, before features were added to the basic call model, global variables
were manually “turned off” (ie. commented out) or replaced by local variables
when they are not needed for verification. The addition of features has led to
even more variables requiring to be selectively turned on and off, and set to
different values. For example if an originating call screening feature is selected the
orig call sreen array has to be included and its elements set to the appropriate
values. In addition the feature lookup inline must be amended to include those
lines pertaining to the originating call screening feature. If no ring back when
free feature is chosen, the entire ringback call state must be commented out.

Making all of the necessary changes before every SPIN run was extremely
time-consuming and error prone. Therefore, we now use a Perl script to enable us
to perform these changes automatically. Specifically this enables us to generate,
for any combination of features and properties, a model from a template file.
Each generated model also includes a header containing information about which
features and properties have been chosen in that particular case, which makes
it easier to monitor model-checking runs.

Dynamic feature interaction analysis is combinatorially explosive: we must
consider all pairs of features and combinations of suitable instantiations of the
free variables i,j and k occurring in the properties. For example, for the SUSC
case alone this gives 36 different scenarios (though not all are valid). To ease
this burden and to speed up the process, a further Perl script is used to enable

160 M. Calder and A. Miller

– systematic selection of pairs of features and parameters i,j and k, and gen-
eration of corresponding model,

– automatic SPIN verification of model and recording of feature interaction
results.

Note that scenarios leading to feature interactions are recorded. Depending
on the property concerned, a report of 1 error (properties 7–11) or 0 errors
(property 12) from the SPIN verification indicates an interaction. Once (if) an
SUSC interaction is found the search for MUMC interactions commences. If an
MUMC interaction is found the next pair of features is considered. The following
example of output demonstrates the complete results for CFU and CFB with
property 7.

/*The features are 1 and 2 */

/*New combination of features:CFU[0]=1 and CFB[0]=0 */
feature 2 is meaningless

/*New combination of features:CFU[0]=1 and CFB[0]=1 */
with property 7
with parameters 0,0 and 1 errors: 0

with parameters 1,0 and 1 errors: 0

with parameters 2,0 and 1 errors: 0

with parameters 3,0 and 1 errors: 0

/*New combination of features:CFU[0]=1 and CFB[0]=2 */
with property 7
with parameters 0,0 and 1 errors: 1 FEATURE INTERACTION: SUSC

/*New combination of features:CFU[0]=1 and CFB[1]=0 */
potential loop, test seperately

/*New combination of features:CFU[0]=1 and CFB[1]=1 */
feature 2 is meaningless

/*New combination of features:CFU[0]=1 and CFB[1]=2 */
with property 7
with parameters 0,0 and 1 errors: 1 FEATURE INTERACTION: MUMC

13 Conclusions and Future Directions

We have used Promela and SPIN to analyse the behaviour of a software artifact
– feature interaction in a telecomms service. Our approach involves two different
levels of abstraction: communicating finite state automata and temporal logic
formulae, represented by Promela specifications, labelled transition systems and
Büchi automata.

We have demonstrated the approach with an analysis of a basic call service
with six features, involving four users with full functionality. There are two types
of analysis, static and dynamic; the latter is completely automated, making
extensive use of Perl scripts to generate the SPIN runs.

Using SPIN for Feature Interaction Analysis – A Case Study 161

The distinction between static and dynamic analysis is important; the latter
is more comprehensive, but the former provides a simple yet effective initial step,
and a check for the temporal properties upon which the latter depends.

State-explosion is a major concern in feature interaction analysis: under-
standing how a Promela model can be optimised, in order to generate tractable
state-spaces, is important. We have outlined a simple but effective state-space
reduction technique for Promela that does not abstract away from the system
being modelled, on the contrary, it may be understood as reducing the gap
between the Promela representation and the system under investigation. The
technique involves reinitialising variables and results in a reduction of 90 per
cent of the state-space. Thus, we overcome classic state-explosion problems and
our interaction analysis results are considerably more extensive than those in
[22]. We believe that both our reduction technique and the use of Perl scripts
could be useful to the SPIN community in general.

Finally, we note that understanding why an interaction occurs can help the
redesign process. For example, static analysis indicates shared triggers and dy-
namic analysis indicates in-built precedences between features, when the results
of the analysis are not symmetric. Both can indicate how to alter precedences
between features, in order to resolve interactions. How to do so in a structured
way is a topic for further work.

Acknowledgements. The authors thank Gerard Holzmann for his help and
advice, and the Revelation project at Glasgow for computing resources. The
second author was supported by a Daphne Jackson Fellowship from the EPSRC.

References

1. L. G. Bouma and H. Velthuijsen, editors. Feature Interactions in Telecommunica-
tions Systems. IOS Press (Amsterdam), May 1994.

2. M. Calder and E. Magill, editors. Feature Interactions in Telecommunications and
Software Systems, volume VI. IOS Press, Amsterdam, 2000.

3. M. Calder, E. Magill, and D. Marples. A hybrid approach to software interworking
problems: Managing interactions between legacy and evolving telecommunications
software. IEE Proceedings - Software, 146(3):167–180, June 1999.

4. Muffy Calder and Alice Miller. Analysing a basic call protocol using Promela/
XSpin. In [15], pages 169–181, 1998.

5. E. J. Cameron, N. Griffeth, Y.-J. Lin, M. E. Nilson, and W. K. Schnure. A feature
interaction benchmark for IN and beyond. In [1], pages 1–23, May 1994.

6. E.M. Clarke, O. Gumberg, and D Long. Model checking and abstraction. ACM
Transactions on Programming Languages and Systems, 16(5):1512–1542, Septem-
ber 1994.

7. Costas Courcoubetis, editor. Proceedings of the Fifth International Conference on
Computer Aided Verification (CAV ‘93), volume 697 of Lecture Notes in Computer
Science, Elounda,Greece, June/July 1993. Springer-Verlag.

8. P. Dini, R. Boutaba, and L. Logrippo, editors. Feature Interactions in Telecom-
munication Networks IV. IOS Press (Amsterdam), June 1997.

162 M. Calder and A. Miller

9. K. Etessami. Stutter-invariant languages, ω-automata, and temporal logic. In [12],
pages 236–248, 1999.

10. A. Felty and K. Namjoshi. Feature specification and automatic conflict detection.
In [2], pages 179–192, May 2000.

11. Susanne Graf and Claire Loiseaux. A tool for symbolic program verificaion and
abstration. In [7], pages = 71–84, year = 1993,.

12. Nicolas Halbwachs and Doron Peled, editors. Proceedings of the eleventh Inter-
national Conference on Computer-aided Verification (CAV ‘99), volume 1633 of
Lecture Notes in Computer Science, Trento, Italy, July 1999. Springer-Verlag.

13. Constance L. Heitmeyer, James Jr. Kirby, Bruce Labaw, Myla Archer, and Ramesh
Bharadwaj. Using abstraction and model checking to detect safety violations in
requirements specifications. IEEE Transactions on Software Engineering, 24(11),
November 1998.

14. D. Hogrefe and S. Leue, editors. Proceedings of the Seventh International Confer-
ence on Formal Description Techniques (FORTE ‘94), volume 6 of International
Federation For Information Processing, Berne, Switzerland, October 1994. Kluwer
Academic Publishers.

15. Gerard Holzmann, Elie Najm, and Ahmed Serhrouchni, editors. Proceedings of the
4th Workshop on Automata Theoretic Verification with the Spin Model Checker
(SPIN ‘98), Paris, France, November 1998.

16. Gerard J. Holzmann. The model checker Spin. IEEE Transactions on Software
Engineering, 23(5):279–295, May 1997.

17. Gerard J. Holzmann and Doron Peled. An improvement in formal verification. In
[14], pages 197–211, 1994.

18. G.J. Holzmann and Margaret H. Smith. A practical method for the verification
of event-driven software. In Proceedings of the 1999 international conference on
Software engineering (ICSE99), pages 597–607, Los Angeles, CA, USA, May 1999.
ACM Press.

19. IN Distributed Functional Plane Architecture, recommmendation q.1204, ITU-T
edition, March 1992.

20. K. Kimbler and L.G. Bouma, editors. Feature Interactions in Telecommunications
and Software Systems V. IOS Press (Amsterdam), September 1998.

21. M. Kolberg, E. H. Magill, D. Marples, and S. Reiff. Results of the second feature
interaction contest. In [2], pages 311–325, May 2000.

22. M. Plath and M. Ryan. Plug-and-play features. In [20], pages 150–164, 1998.
23. M. Thomas. Modelling and analysing user views of telecommunications services.

In [8], pages 168–182, 1997.

Behavioural Analysis of the Enterprise
JavaBeansTM Component Architecture

Shin Nakajima1 and Tetsuo Tamai2

1 NEC Corporation, Kawasaki, Japan
2 Graduate School of the University of Tokyo, Tokyo, Japan

Abstract. Rigorous description of protocols (a sequence of events) be-
tween components is mandatory for specifications of distributed compo-
nent frameworks. This paper reports an experience in formalizing and
verifying behavioural aspects of the Enterprise JavaBeansTM specifica-
tion with the SPIN model checker. As a result, some potential flaws are
identified in the EJB 1.1 specification document. The case study also
demonstrates that the SPIN model checker is an effective tool for be-
havioural analysis of distributed software architecture.

1 Introduction

Software component technology is gaining importance in constructing large-scale
distributed applications such as E-Commerce systems, and has also been widely
accepted in the industry as a new technology for object-oriented software reuse
[21]. Notable examples are COM/DCOM, JavaBeans/Enterprise JavaBeans, and
a new component model of CORBA proposed by OMG. Systems can be con-
structed by implementing a component that encapsulates application logic and
making it run with existing components in a pre-defined execution environment.

A component is a constituent of a system, and is a reusable unit that has a
definite interface for exchanging information with other constituents. The main
feature of the technology is an integration framework that is based on a spe-
cific computational model for components and supports the basic information
exchange protocols among them. User-defined components can only be run suc-
cessfully if they conform to the specification that the framework assumes. This
implies that the integration framework specification should be described in an
unambiguous manner [10].

Current component frameworks, however, have not been successful in pro-
viding precise specifications in their documents. Specification documents use a
natural language (English) and informal diagrams for illustrative purposes. It
is not uncommon to find ambiguities, inconsistencies or even bugs in the in-
formal documents. Thus, the application of formal techniques is necessary for
creating rigorous specification documents for component frameworks. Actually,
Sullivan et al. [19] have identified some ambiguities in the description of the
COM aggregation and interface negotiation specification by using a precise de-
scription written in the Z notation. Sousa et al. [18] have shown that modeling

M.B. Dwyer (Ed.): SPIN 2001, LNCS 2057, pp. 163–182, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

164 S. Nakajima and T. Tamai

with Wright [1], an Architecture Description Language (ADL), is effective for
behavioural analysis of the EJB 1.0 specification.

This paper reports an experience using the SPIN model checker [5] for be-
havioural analysis of the Enterprise JavaBeans component architecture. The
main contributions of the present work can be summarized as follows. (1) Re-
sults show that the SPIN model checker is an adequate tool for behavioural
analysis of distributed software architecture as compared with other tools such
as Wright [1] or Darwin [12]. (2) The case identifies there are some potential
flaws in the EJB 1.1 document [20] in terms of behavioural specification.

2 Enterprise JavaBeans

Enterprise JavaBeansTM is a component architecture for distributed business ap-
plications. This section briefly describes the Enterprise JavaBeans (EJB) com-
ponent architecture and presents some of its behavioural specifications. The
material in this section is based on the EJB 1.1 specification document [20].

2.1 The Component Architecture

Figure 1 illustrates an overview of the EJB component architecture, and intro-
duces several principal participants. Client is a client Java application. First it
uses a JNDI Naming Server to look up an object reference of a Home interface.
Home is responsible for creating a new Bean instance, and returns an object ref-
erence of a Remote. The Remote acts as a proxy to the Bean. The Remote accepts
requests from the Client and delegates them to the Bean. Bean, then, executes
these requests under the control of the Container.

The underlying EJB Server provides Bean with several runtime-services such
as passivation, persistency, and garbage collection. All client requests to the Bean
are made through the Home or Remote object. The Container may intercept
the original requests and then control invocations on the Bean, while making it
possible for the runtime-services to interleave between client request invocations.

Home

Remote
Client

Bean

EJB Server

Container

Bean

Runtime
Services

Naming Server
(JNDI)

Fig. 1. The EJB Architecture

Behavioural Analysis 165

Client

Session
Bean

Entity
Bean

Entity
Bean

EJB Server Integration Framework

Persistent
Storage

Fig. 2. Session and Entity Beans

There are two types of Enterprise JavaBeans : Session Beans and Entity
Beans (Figure 2). An Entity Bean represents data stored in persistent storage
and is a shared resource. The internal values of an Entity Bean are synchronized
with the contents of persistent storage through the runtime service. A Session
Bean, on the other hand, executes on behalf of a single client, and may implement
long-lived transaction style application logic to access several Entity Beans.

EJBHome

remove
...

<XXX>Home

create
find
...

EJBObject

remove
...

<XXX>

<BM>

EntityBean

ejbLoad
ejbStore
ejbActivate
ejbPassivate
ejbRemove
setEntityContext
unsetEntityContext

<XXX>Bean

ejbCreate
ejbFind
<BM>

EnterpriseBean

implements

<interface> <interface>

<interface> <interface>

<interface>

<interface>

Fig. 3. Class Diagram

Figure 3 presents a fragment of the class diagram for Entity Beans. In the
figure, EJBHome, EJBObject, EnterpriseBean, and EntityBean are the four Java
interfaces that the EJB component framework provides. The EJBHome interface
describes the client’s view of the Home shown in Figure 1, while EJBObject

166 S. Nakajima and T. Tamai

corresponds to the Remote. The EntityBean interface specifies the basic APIs
that should be implemented by every Entity Bean. The EnterpriseBean is a
common super-interface for both EntityBean and SessionBean1.

In order to develop a new Entity Bean, three Java constructs must be defined:
(1) <XXX>Home as a sub-interface of EJBHome, (2) <XXX> as a sub-interface of
EJBObject, and (3) <XXX>Bean as an application class for implementing the
EntityBean. The interface <XXX>Home adds application-specific create and find
methods. The interface <XXX> should have application-specific business methods,
which are denoted here by <BM>.

The class <XXX>Bean is a concrete bean definition that implements all of the
methods specified by the EntityBean interface, as well as provides application-
specific methods: ejbCreate and ejbFind are the counterparts of create and
find of <XXX>Home, respectively. <BM> directly corresponds to <BM> of <XXX>.
When a client invokes, for example, create method of <XXX>Home, the Container
intercepts the request and then delegates it to <XXX>Bean instance in the form of
an ejbCreate method invocation. Most of the methods defined in EntityBean
are APIs for runtime-services. The passivation service uses ejbPassivate and
ejbActivate, while the persistency service invokes ejbLoad and ejbStore.

The EJB 1.1 specification document describes the roles of the participants
and all of the APIs in the form of Java interface descriptions. It is important
to note that most of the methods are accompanied by exceptions in addition to
normal functionalities. All explanations are written in a natural language.

2.2 Behavioural Specifications

Behavioural specifications show an external view of component architecture in
terms of event sequences. With the EJB architecture, an event corresponds
to a method invocation. Thus, the behavioural specifications consist of traces
of method invocations. What follows shows some example descriptions of be-
havioural aspects adapted from the EJB 1.1 specification document.

Figure 4 is a lifecycle model of an Entity Bean (adapted from Figure 23 on
page 102 [20]). The lifecycle consists of three states, and each method contributes
to a transition between the states. For example, a business method invoked by a
client can only be executed when the Entity Bean is in its ready state. In view
of the lifecycle model, the passivation service is an event initiator that makes the
Entity Bean move between the ready and pooled states by using ejbPassivate
and ejbActivate.

In addition, the document employs Object Interaction Diagrams (OIDs) to
illustrate typical event sequences. Figure 5 is an example of an OID for the
Entity Beans (simplified and adapted from Figure 29 on page 139 [20])2. The
diagram depicts various portions of event sequences that relate to a passivation
service and business method invocation by a client.
1 It is not shown in the figure.
2 Division of labour between the two participants in a rectangle, +EJBObject+ and

+Container+, is dependent on a particular implementation, and thus the rectangle
may sometimes be treated as one entity (on page 62 [20]).

Behavioural Analysis 167

does not
exist

pooled

ready

1. newInstance()
2. setEntityContext(ec)

1. unsetEntityContext()

ejbFind<METHOD>()

ejbPassivate()ejbActivate()
ejbRemove()

ejbLoad()

ejbCreate(args)
ejbPostCreate(args)

ejbStore()

business method

system exception

Fig. 4. Lifecycle of Entity Beans

A client request is directly delegated to the Entity Bean when the bean
is in the ready state (see top of the diagram). The passivation service may
spontaneously decide that the bean should be swapped out. This is accomplished
through a sequence of method invocations; ejbStore followed by ejbPassivate.
In Figure 4, it can be seen that the bean moves to the pooled state. At this point,
a client may invoke another business method (see middle of the diagram). Since
the bean is not in the ready state, the business method cannot be executed, and
is thus suspended. The EJB server is then responsible for returning the bean to
the ready state by issueing ejbActivate and ejbLoad. Finally, the suspended
request is executed by the bean.

In addition to lifecycle models, the EJB 1.1 specification document describes
behavioural aspects such as those described through OIDs. An OID, however, is
just an example trace and is not a complete specification. One must infer from
OIDs the intention of the original designer, as well as obtain precise specification
descriptions from them. Furthermore, the document uses a natural language to
describe temporal constraints related to particular runtime-service methods. For
example, it says on p. 113 that the Container3 invokes at least one ejbLoad
between ejbActivate and the first business method in the instance. These con-
straints are used as sources for behavioural properties to be verified.

3 It is identified here with the entity represented by the rectangle in Figure 5.

168 S. Nakajima and T. Tamai

client EJB Object Container bean database

business method

business method

ejbStore()

ejbPassivate()

business method

business method

business method

ejbActivate()

ejbLoad()

business method

extract container-managed fields

update entity state in DB

read entity state from DB

set container-managed fields

Fig. 5. Object Interaction Diagram

3 Formalization

This section focuses on the issues and approach related to formalizing the com-
ponent architecture in Promela as compared with other specificands such as
communication protocol and distributed algorithm [5] or program verification
[6] for which Promela has been used successfully.

3.1 Issues and Approach

Since the specificand, the EJB framework, has different characteristics from those
that have been formalized and analyzed in Promela/SPIN, there are several is-
sues that must be considered before formalization. First, the original specifica-
tion is centered around APIs, and an API defines exceptional cases as well as

Behavioural Analysis 169

a normal functionality4. Each API is a Java method accompanied by possible
application-specific and system exceptions.

Second, one cannot predetermine the behaviour of clients that access bean
instances. The EJB framework must show valid behaviour regardless of the client.
In particular, some clients may terminate, while others may not.

Third, since behavioural specification is based on event sequences, Linear-
time Temporal Logic (LTL) formulae to represent properties should involve
atomic propositions that describe the occurrence of particular events, method
invocations. In contrast, validity of atomic propositions in LTL is determined by
states. This makes it necessary to devise a way to encode an event occurrence.

Client

Client

EJBHome

EJBObject Container

Entity Bean

EJB Server

StartUp

Fig. 6. Promela Processes

Figure 6 shows the overall configuration of the Promela processes. Three
processes with a cyclic arrow are event initiators. The Client process issues
a request such as create or business method, and is thus considered to be an
event initiator. The role of Container is dual. It accepts events from other
processes as well as generates events that implement runtime services such as
passivation or persistency. The StartUp process needs further explanation. The
StartUp process is responsible for setting up the initial environment necessary
for a Client and a Bean to be executed properly. For example, Entity Beans are
not required to be created by a client, but are created in advance. The StartUp
process for such a case is responsible for creating and initializing the Entity
Beans. Thus, introducing the Client and StartUp processes as event initiators
is an approach that can be used to deal with the second issue above. This ap-
proach also contributes to creating a well-structured formal model because the
4 The Wright group has observed similar characteristics in the cases [2][18].

170 S. Nakajima and T. Tamai

functionality of the EJB server and processes for setting up verification environ-
ment are clearly separated. With respect to the first and third issues, one can
make use of the Promela language constructs, which will be discussed in detail
using actual Promela code in Section 3.2.

3.2 Promela Model

In order to describe method invocation on an object and return from the method,
one first introduces two communication channels between the caller and calleé
processes. And an extra channel is defined for transporting possible exceptions
from the object.

#define NBUF 1
chan mthd = [NBUF] of { short };
chan retv = [NBUF] of { short };
chan excp = [NBUF] of { short };

The chan mthd is used for invoking method and messages flow from the
Container to the EntityBean. The other two, retv and excp, are for mes-
sages going in the opposite direction. The channel definitions assume that the
method name and the values are short and properly #defined.

The EntityBean in Figure 6 is represented by a simple Promela process that
waits for method invocation from the mthd channel. The fact that any method
can be invoked at any time is expressed using a do...od statement with an
endLoop label. Each entry in do...od corresponds to a method, and its body
is just an if...fi statement, which in turn has more than one branch. Each
branch corresponds to either an exception or a normal termination. Since the
if...fi has channel send statements in its guard positions, any of the branches
can be executed at any time, which simulates a non-deterministic choice between
exceptions and normal terminations. Therefore, one can encode exceptions in the
Promela model, which resolves the first issue in Section 3.1 in a compact manner.

#define ejbActivate 106
#define ejbPassivate 110
#define BM 120
...

proctype EntityBean ()
{
endLoop:
do
:: mthd?ejbActivate -> if :: retv!Void :: excp!SysError fi
:: mthd?ejbPassivate -> if :: retv!Void :: excp!SysError fi
:: mthd?BM -> if :: retv!Value :: excp!AppError :: excp!SysError fi
...

od
}

Behavioural Analysis 171

The EJBObject in Figure 6 is an example process that terminates. It is a
proxy object for accepting requests from the client, and delegating them to the
Container, and it ends its lifecycle after handling of remove method by the
client. Since an EJBObject is capable of accepting requests from more than one
client5, it must distinguish between each of the clients’ requests. In the Promela
description below, the remote channel carries two channels as well as a method
name as its formal parameters. By sending different channel parameter values
each time, it is possible to simulate a situation in which each message sent
corresponds to a different method invocation event.

chan remote = [NBUF] of { short, chan, chan };
chan retval[NC] = [NBUF] of { short };
chan except[NC] = [NBUF] of { short };

proctype EJBObject()
{

chan returnValue; chan exceptionValue; short value;

progressLoop:
endLoop:
do
:: remote?remove,returnValue,exceptionValue
-> { request!reqRemove; retvalFC?value

-> returnValue!value; goto endTerminate }
unless { exceptFC?value -> exceptionValue!Error; goto endTerminate }

:: remote?BusinessMethod,returnValue,exceptionValue
-> { request!reqBM; retvalFC?value -> returnValue!value }
unless { exceptFC?value -> exceptionValue!Error }

od;

endTerminate:
skip

}

The Client in Figure 6 is a Promela process that accepts two channel pa-
rameters when it runs. Since it invokes a request either on a Home or Remote,
the Client is an event initiator that always sends messages via, for example,
the remote channel, and waits for completion of the invoked method execution.

proctype Client(chan ret; chan exc)
{

...
MainLoop:

do
:: remote!BusinessMethod,ret,exc ->

5 More precisely, the +EJBObject+ for Session Bean should be ready for multiple
requests while the one for Entity Bean need not.

172 S. Nakajima and T. Tamai

if :: ret?value -> skip :: exc?value -> goto endClient fi
:: remote!remove,ret,exc ->

if :: ret?value -> goto wrapUp :: exc?value -> goto endClient fi
:: home!remove,ret,exc;

if :: ret?value -> goto wrapUp :: exc?value -> goto endClient fi
od;

...
}

pooled

reqFind/ejbFind

load enabled store enabled

reqCreate/
ejbCreate;
ejbPostCreate (*1)

(*1) reqCreate/ejbCreate; ejbPostCreate,
 reqFind/ejbFind; ejbActivate; ejbLoad,
 reqBM/ejbActivate; ejbLoad; BM

reqRemove
/ejbLoad; ejbRemove

reqRemove
/ejbRemove

reqPassivate/
ejbStore; ejbPassivate

reqStore/ejbStore

reqLoad/ejbLoad

reqBM/BM

reqBM/BM
reqBM/BM

reqBM/BM

ready

Fig. 7. Container for Entity Beans

As for the Container process, Figure 7 shows only the main behaviour in
terms of the state transition diagram a lá Statechart [14] because the Promela
code is too lengthy to be shown here6. The diagram is mainly derived from
the lifecycle model in Figure 4, and appropriately augmented by studying the
descriptions in other parts of the original document. The ready and pooled
states in the diagram correspond to the states with the same labels in Figure 4;
however, the ready state is modeled as a super-state with two sub-states. Such
elaboration is needed for a proper interpretation of potential interference related
to the persistency service, which was found necessary during the formalization
process.
6 It is some 250 lines of Promela codes.

Behavioural Analysis 173

The diagram shows all of the necessary transitions for implementing the
main behaviour of the Container. For example, a transition from pooled to
load enabled is notated as

reqCreate / ejbCreate;ejbPostCreate,

which indicates the following behaviour: when the Container receives a
reqCreate from the EJBHome, the Container invokes two consecutive methods,
ejbCreate and ejbPostCreate, on the EntityBean7.

Finally, one goes back to the third issue in Section 3.1, which is related to
describing the occurrence of a particular event as an atomic proposition in LTL
formulae. In the above description of EntityBean, one can observe that the
process is, at a certain time, in a state in which it is ready to receive a partic-
ular event. When, for example, an ejbActivate message is at the head of the
mthd channel, the EntityBean process can be considered to be in a state where
mthd?ejbActivate is executable. The condition can be checked by an expres-
sion mthd?[ejbActivate] because it becomes true if a message ejbActivate
is at the head of the chanel mthd. Therefore, one may use the square brackets
notation as a required atomic proposition representing an occurence of a partic-
ular event. One should also be very careful in stating formulae to be checked in
order to ensure that an executable event cocincide with the next event occurred.
For the formulae defined for events occurring on the same EntityBean, this is
automatically satisfied because the corresponding messages are queued in the
buffered channel mthd in an FIFO manner.

The SPIN feature for automatic translation of LTL formulae can also be
used. For example, as described in the last paragraph of Section 2.2, the EJB
specification requires that the Container invokes at least one ejbLoad between
ejbActivate and the first business method in the instance. To verify the prop-
erty, the SPIN can be used to generate a never automaton, where the process
description needs appropriate #defines.

spin -f "! []((q8 && <>q2) -> (! q2 U q12))"

#define q2 mthd?[BusinessMethod]
#define q8 mthd?[ejbActivate]
#define q12 mthd?[ejbLoad]

Note that the LTL formula is negated because the SPIN model checker handles
negative claims in the form of never automaton for verification.

4 Behavioural Analysis

This section presents some concrete examples of behavioural properties and the
results of analysis.
7 As can also be seen in Figure 4.

174 S. Nakajima and T. Tamai

4.1 Entity Beans

As discussed in Section 3.1, an appropriate client process is necessary for ana-
lyzing the behaviour of the EJB server. Three varieties of clients are formulated.
Their behaviour can be compactly expressed in terms of event sequences gener-
ated by the client. (1) client-1 is a standard client that generates {create, find};
BM∗; remove, (2) client-2 starts with a find method (find; BM∗; remove),
and (3) client-3 does not end with remove ({create, find}; BM∗). The individ-
ual client uses a somewhat different StartUp process because each run needs a
different event sequence for setting up the environment to successfully start the
client. A standard checking command for deadlock freedom (run -q) is executed
on each client model, and all succeed.

Next, various properties, formulated in terms of LTL formulae, are verified
against the standard client-1. The first property of interest is the behaviour of in-
voking a business method (BM) on a passivated Entity Bean (Figure 4), and can
be validated by the following two LTL formulae. When an Entity Bean instance
is in the pooled state and a client requests a BM on the instance, ejbActivate
is eventually executed (E1). The formula (E2) states that an ejbLoad is invoked
between the ejbActivate and the BM on the instance.

(E1) 2(pooled ∧ BM Client → 3ejbActivate)

(E2) 2(ejbActivate ∧ 3BM → (¬BM U ejbLoad))

In a similar fashion, the EJB server invokes ejbStore between the last business
method (BM) and ejbPassivate. (E3) is also satisfied.

(E3) 2(BM ∧ 3ejbPassivate → (¬ejbPassivate U ejbStore))

The EJB server must obey a set of “trivial progress” properties. The proper-
ties can be compactly expressed as (E4), showing that a client request M leads
to an actual method invoked on an instance.

(E4) 2(M Client → 3M Bean)

At first, this seems to be of no interest at all because such properties are trivially
satisfied. However, they actually reveal several interesting characteristics of the
EJB server.

In the case of the client’s create request, in which M Client is create and
M Bean is ejbCreate, the expected formula is satisfied. The ejbCreate method,
however, should be accompanied by an ejbPostCreate (Figure 4), and thus the
property to be checked should be (E5).

(E5) 2(create → 3(ejbCreate ∧ 3ejbPostCreate))

The formula becomes false because there are situations in which ejbCreate
raises a system exception and thus ejbPostCreate is not executed. This shows
that there is some complexity in taking into account the possible occurrence of
exceptions, which is mandatory for behavioural analysis of the EJB server.

Behavioural Analysis 175

The next property has to do with “spontaneous allocation” of a fresh bean
instance. The EJB server has the liberty of keeping more than one behaviourally
equivalent Entity Beans and allocating them for client requests. (E6) is a prop-
erty to represent one such behaviour, which is found to be true.

(E6) 2(ejbRemove → 3(BM Client → 3BM))

Behaviour relating to a remove request is of particular interest because the
trivial progress property (E7) does not hold.

(E7) 2(remove → 3ejbRemove)

Analyzing the output trace reveals that a possible livelock caused by an infi-
nite iteration of ejbStore and ejbLoad prevents the EJB server from the ex-
pected progress. In addition, (E7) can be checked by setting the weak-fairness
flag (run -f -a). This filters out situations that has the previous livelock. The
formula, however, still fails because of potential interference between ejbRemove
and ejbPassivate. To study the situation, please refer to Figures 4 and 7. The
state-diagrams show that two transitions, ejbRemove and ejbPassivate, are
possible from the ready to the pooled state. Also ejbRemove is initiated by
a client remove, while ejbPassivate is an event from the runtime passivation
service that is generated in an asynchronous way independent of any client re-
quests. The identified situation is that the bean instance moves to the pooled
state by ejbPassivate while a client explicitly requests a remove. And thus it
does not lead to an occurence of ejbRemove. The interference is a potential flaw
in the EJB 1.1 specification document [20] that can be seen only by a careful
examination of (E7).

It is also possible to try a trivial progress for the case of business method
(BM).

(E8) 2(BM Client → 3BM Bean)

The formula proves to be false because of a possible livelock of the ejbStore
and ejbLoad as discussed in relation to (E7). Analysis under the weak-fairness
condition also leads to a failure. This is because an internal exception occurs in
the EJB server. For example, when a client issues a BM request on an instance
in the pooled state, it involves more than one method execution (see E1 and
E2). It is possible that one of the methods, for example ejbActivate, raises
an exception. If this is the case, the EJB server cannot continue the service on
the instance, and thus the property does not hold. If the property (E9), which
takes into account the exception, is used, it is found to be successful under the
weak-fairness condition.

(E9) 2(BM Client → 3(BM Bean ∨ Exception))

As mentioned above, several trivial progress properties are not satisfied due
to either possible exceptions or some other anomalous situation. However, it is
easy to confirm that there exists at least one desirable sequence for satisfying
each property. One may try a negation of a property that corresponds to a

176 S. Nakajima and T. Tamai

desirable behaviour expressed in a deterministic manner. (E10) is an example
case for a business method (BM).

(E10) ¬(3(BM Client ∧ 3BM Bean))

The SPIN protocol analyzer (pan) fails to show the correctness of the property
and generates a sequence that leads to a failure. The sequence is exactly what
one would expect. What is shown below is an edited output of the trace.

q\p Container EJBObject Bean Client
--
13 . . . remote!BM,6,8
13 . remote?BM,6,8
1 . req!BM
1 req?BM
3 mthd!BM
3 . . mthd?BM

Therefore, it is true that at least one event sequence fulfills the trivial progress
property for BM.

4.2 Session Beans

Session Beans have two options that can be specified at the time of deployment:
STATEFUL or STATELESS. The two options are not very different to the bean
developer; however, they exhibit quite different runtime behaviour. Thus, for-
malization and analysis of Session Beans are actually conducted to model two
independent behaviours, although some common behaviours are effective for
both models. As in the case of Entity Beans, one introduces a variety of clients
with an adequate StartUp process for each client case.

Common Behaviour. One important property in terms of behavioural specifi-
cation is in relation to concurrency control. According to the document, if a client
request arrives at an instance while the instance is executing another request,
the container must throw an exception for the second request. Session Beans
must satisfy such a “non-reentrant” property. The property can be formulated
in an LTL formula such as (S1).

(S1) 2(Invoked 1 ∧ 3BM 2
∧ (¬(Return 1 ∨ Exception 1) U Exception 2)

→ 3(Return 1 ∨ Exception 1))

Some remarks on the formula are in order: (a) the server is in a state in which it
has already accepted the first BM (Invoked 1), (b) the second BM is requested
afterward (3BM 2), (c) the first BM is not completed before the second BM
request ends with an exception (¬(Return 1 ∨ Exception 1) U Exception 2),
and then (d) the first BM request results either in a normal termination or in
an exception (3(Return 1 ∨ Exception 1)).

Behavioural Analysis 177

As for the concurrency control, two varieties of clients are used to examine the
behaviour: (1) client-s1 is a simple process for invoking only one BM , (2) client-
s2 is an infinite process that generates BMs iteratively (BM+). In addition, the
standard check for deadlock freedom is executed on the following three runs:
(a) two client-s1’s are involved, (b) two client-s2’s are involved, and (c) three
clients-s2’s are involved. All are found to be deadlock-free; however, the size of
the searched state space is different for each run (Table 1)8.

Table 1. Analysis of Non-reentrant Property

Run]States]Transitions Depth
(a) 3,742 8,217 66
(b) 6,161 12,225 295
(c) 75,769 167,884 986

Although the state space for the present EJB server model is not large in com-
parison to other published cases of practical interest, reducing the size by an
appropriate abstraction is still important for an efficient checking since the sizes
drastically increase as in Table 1. To prove the property (S1), the case (a) was
used because of the simplicity.

STATEFUL Session Beans. In addition to the three client models explained
above, two other models are used: (1) create; BM∗; remove, and (2) create;
BM∗. The first client model is a standard one used in most analyses. The sec-
ond one, however, is mandatory for properties involving timeout. The EJB server
must generate a timeout event for garbage-collecting of possibly unused STATE-
FUL Session Bean instances either in the method_ready or in the passive state.
In the case of the method_ready state, the timeout event must be followed by an
ejbRemove on the instance. From the passive state, on the contrary, instances
just disappear without any further events.

The timeout makes the situation somewhat complicated for a STATEFUL
Session Bean. For example, the trivial progress property for business method
(BM) is not satisfied. This is because an instance is forced to leave the ready
state due to a possible timeout event. The only alternative is to verify the prop-
erty (S2) that takes into account the timeout situation.

(S2) 2(BM Client → 3(BM Bean ∨ timeout))

STATELESS Session Beans. For a client model of STATELESS Session
Beans, the simplest one capable of generating BM∗ is sufficient. This is because
8 The metrics are the case for a STATELESS Session Bean.

178 S. Nakajima and T. Tamai

the EJB server is responsible for the creation and deletion of STATELESS Ses-
sion Beans. A create request by a client becomes no-op for STATELESS Session
Beans.

STATELESS Session Beans do not have any conversational state, and all
bean instances are equivalent when they do not serve a client-invoked method.
STATELESS Session Beans are similar to Entity Beans in that the EJB server
will allocate a suitable bean instance even if one has already been removed. This
is because a STATELESS Session Bean has a “spontaneous allocation” property
that an Entity Bean has. This property can be confirmed by checking the LTL
formula (E6) mentioned above.

A property specific to STATELESS Session Beans is “spontaneous removal
or automatic garbage collection.” STATELESS Session Beans do not allow an
explicit remove operation by clients. The EJB server is responsible for deciding
whether an instance is no longer necessary and invoking an ejbRemove method
on it. In the present Promela model, the Container invokes ejbRemove in a
non-deterministic manner. The LTL formula for the property is (S3), which says
that ejbRemove is eventually invoked when the instance is in the ready state.

(S3) 2(ready → 3ejbRemove)

The result is false due to a livelock of continuous BMs. The counter example
sequence (livelock of BMs) is exactly the case in which the client accesses the
bean heavily and thus the EJB server does not issue any ejbRemove on the bean.
This confirms that timeout is generated only when the client is in a think time
and does not invoke any BM at all. This is in accordance with the EJB 1.1
specification.

4.3 Discussion

The EJB 1.1 document [20] describes specifications from various viewpoints,
thereby making it necessary to have a consistent model incorporating all of the
viewpoints scattered throughout the document. As most of the descriptions are
written in a natural language, the document uses many ambiguous “words.” One
specific example is related to the persistence service; invocations of the ejbLoad
and ejbStore can be arbitrarily mixed with invocations of business methods.
The intention of the author of the document is understandable, but, the word
“arbitrarily” needs a concrete interpretation. The model in Section 3.2 adapts
an interpretation that can be seen in the state-model in Figure 7. The model
still leads to a livelock situation, which is revealed in the analysis.

Although the lifecycle model such as the one in Figure 4, can be used as
a basis for formalizing the behavioural aspect, the model in the document is
too simple. Reaching the final model in Figure 7 requires a thorough reading
of the document and feedback from the analysis. This could be made easier if
the EJB document had chapter(s) that concentrated on precise descriptions of
behavioural aspects.

After obtaining a formal model, it is possible to conduct behavioural analysis
in which properties are expressed in terms of LTL formulae. Thanks to numerous

Behavioural Analysis 179

literature on the use of LTL formulae [3][8][13], one finds it not hard (though
not easy either) to formulate properties using LTL formulae. It, however, still
requires a trial-and-error in formulating and checking the LTL formulae. This is
partly because a naive leads-to property such as (E4) does not hold in nearly
all cases. It was a surprise at first, but was found immediately from the fault
traces that many interesting situations, either possible exceptions or other run-
time anomalies, were not considered in the formulae. The trial-and-error process
was a great help in understanding the behaviour of the EJB server. The SPIN
model checker could be described as a light-weight design caclulator [16] used in
iterative processes for refining the formal models.

Some LTL formulae were deemed to be false because of a possible livelock in
the EJB server, some of which could be avoided by setting a weak-fairness flag.
One must be very careful about properties proved under the fairness condition
because a real system may incorporate a scheduler that behaves differently from
what was assumed at the time of the analysis [4]. In the present study, however,
the source of livelock is where the actual implementation should be taken care
of. For example, a livelock with ejbLoad and ejbStore can be attributed to
the present design artifact written in Promela, which is believed to be a faith-
ful model in accordance with the presentation of the original document. This
is understandable because the document does not mention anything about the
implementation. As in proving (E7) and (E9), analysis under the fairness con-
dition revealed other interesting situations, which are important to the present
study. As shown in Section 4.1, proving (E7) results in a failure, which indicates
that the bean instance moves to the pooled state by ejbPassivate even when
a client explicitly requests a remove. The analyses have revealed potential flaws
in the EJB 1.1 document.

In summary, most of the problems are identified in the formalization pro-
cess in which a consistent model to integrate various aspects is obtained. Early
stages of behavioural analysis can contribute to debugging the model as well
as being a great help in understanding the specificand. Finally, note that the
EJB 1.1 specification document [20] is not a design document. It is more or less
abstract and lacks information detailed enough for use in software development.
However, because the document is used as a reference for those involved in the
EJB technology, more detailed description is mandatory. As the present study
revealed with the formalization and analysis, improvements must be made in the
EJB 1.1 specification document.

5 Comparisons

Behavioural analysis has been most successful in software architecture. Wright [1]
and Darwin [12] are the two practical tools that have been applied to distributed
software infrastructure of non-trivial complexities [2][11]. Comparing Wright and
Darwin with the approach using the SPIN model checker in some degrees of detail
is mandatory for discussing whether the SPIN model checker is an adequate tool
for behavioural analysis of distributed software architecture.

180 S. Nakajima and T. Tamai

Wright [1] follows the Component-Connector model of software architecture
[17], which provides a general framework for describing various architecture
styles from a unified viewpoint. To explain briefly, a component is a compu-
tational entity while a connector is an abstract infrastructure that connects the
participating components. Connector is responsible for how the components ex-
change information, which basically describes the behavioural specification of
the specificand architecture. In particular, Wright adopts Communicating Se-
quential Process (CSP) as a rigorous notation for describing the behavioural
specifications of connectors. The concrete syntax of Wright can be considered as
a syntax-sugaring of a large CSP process description in a structured manner.

CSP is the essence of Wright in terms of behavioural specification, and its
formal analysis can be conducted by means of FDR (Failures/Divergences Re-
finement) [15], a model-checker for CSP. Since FDR is based on failure-divergence
semantics, various properties such as deadlock freedom are checked through a
refinement test (v). Wright formulates several verification problems using its
surface syntax. Using FDR to analyze behavioural aspects of software archi-
tecture requires some familiarity with failure-divergence semantics and how to
express various properties in terms of the refinement relationship, thus making
it less accessible for a wide audience. It is also not certain from the published
works whether Wright can do behavioural analysis of systems with more than
one connector. All examples in the papers use only one connector to model and
analyze systems [1][2][18].

Sousa et al. [18] apply Wright to formalizing and analyzing the EJB compo-
nent integration framework as defined in the EJB 1.0 specification. The entire
specification of the EJB server, including the Container and two client-accessible
proxies, is modeled as a single large connector. Thus, traceability between the
original specification and the resultant formal model is weak. The present formal
model written in Promela (Section 3.2) shows a more intuitive mapping between
the two; an object in the original document is modeled as a Promela process.

Additionally, Sousa et al. identify a potential flaw relating to an interference
between delegation of business method and ejbPassivate, as well as provide a
remedy. They also discuss that the flaw may be due to their modeling but not
to the EJB 1.0 specification. The same flaw, however, did not manifest itself in
the present case study with Promela. On the contrary, the study in Section 4.1
identifies other flaws such as one relating to a potential interference between an
execution of remove request and ejbPassivate.

Darwin [12] uses diagram notation for the structural aspects and FSP (Finite
State Processes), a variant of CSP, to describe behavioural specifications, which
can be analyzed by the LTSA (Labeled Transition System Analyzer) model
checker. The basic model of Darwin is the Component-Port model, and does
not have explicit notion of connector. The model is basically equivalent to the
Promela model; a component and a port can be mapped to a Promela process
and a channel respectively. Darwin, however, allows hierarchical models and
components, which Promela does not support.

LTSA is a well-designed model-checker that can be used even by a novice.
LTSA is easy to use, but restricts itself in terms of the power of verification.
For safety analysis, a deterministic FSP process (property automaton) is used to

Behavioural Analysis 181

show correct behavior. LTSA model checks a product of the target and the prop-
erty automaton. For liveness analysis, FSP provides a declarative way to specify
a set of progress labels, which is equivalent to checking 23q and 2(p → 3q) if
expressed as LTL formulae, and is less expressive than the full LTL used in the
SPIN model checker.

Sullivan et al. [19] formalize structural aspects of the COM model in the Z
notation, and point out that there is a conflict between aggregation and interface
negotiation in the original specification. This is a successful non-trivial result
of applying formal methods to component architectures. Jackson and Sullivan
[7] employ Alloy to formalize the model, which was originally formulated in
the Z notation, and uses Alcoa, an automatic analysis tool, to show that the
same flaws manifest themselves in the specification. Thus, they demonstrate the
effectiveness of the automatic analysis tool. The present case study deals with
the behavioural aspects of the EJB framework, and it does not deal with the
structural ones. The use of both approaches may be necessary for analyzing
advanced component architectures.

Kobryn [9] uses a UML Collaboration diagram to model component archi-
tectures. First, a pattern for component frameworks is introduced, and then
the pattern is instantiated to the two important frameworks, EJB and COM+.
Since the approach makes use of UML Collaboration diagram, the main concern
is to illustrate the participant roles and structural relationships between the
participants. Behavioural analysis is not conducted. The present case study con-
centrates on behavioural analysis using the SPIN model checker, but was limited
to the EJB framework. However, it can be easily applied to other component
frameworks such as COM+ because COM+ and EJB can be instantiated from
a general pattern, as illustrated by Kobryn in his paper. Finally, the configura-
tion of the Promela processes in Figure 6 is almost identical to that of Kobryn’s
pattern9. This ensures that the model in the present case study is natural, and
thus shows a sufficient traceability with the original document.

6 Conclusion

This paper describes how the SPIN model checker was used for behavioural anal-
ysis of the Enterprise JavaBeans component architecture. This is a case study
on applying a model-checking technique to a non-trivial real-world software arti-
fact. Using concrete examples, the present work was able to demonstrate that the
SPIN model checker can be used as an effective tool for behavioural analysis of
distributed software architecture. Further, the case was also able to successfully
identify several potential flaws in the EJB 1.1 specification document.

Finally, further work is needed on integration of the UML-based approach,
for example, in [9] and the SPIN-based model that is amenable to automatic
behavioural analysis. This is inevitable for the model-checking technology to
gain a wide acceptance from software engineers.

9 The authors did not know about the work in [9] before writing this paper.

182 S. Nakajima and T. Tamai

References

1. Allen, R. and Garlan, D.: Formalizing Architectural Connection, Proc. ACM/IEEE
ICSE’94 (1994).

2. Allen, R., Garlan, D., and Ivers, J.: Formal Modeling and Analysis of the HLA
Component Integration Standard, Proc. ACM SIGSOFT FSE’98, pp.70-79 (1998).

3. Dwyer, M.B., Avrunin, G.S., and Corbett, J.C.: Patterns in Property Specifications
for Finite-State Verification, Proc. ACM/IEEE ICSE’99 (1999).

4. Godefroid, P. and Holzmann, G.J.: On the Verification of Temporal Properties, in
Proc. PSTV’93, pp.109-124 (1993).

5. Holzmann, G.J.: The Model Checker SPIN, IEEE trans. SE, vol.23, no.5, pp.279-
295 (1997).

6. Holzmann, G.J. and Smith, M.H.: Software Model Checking: Extracting Verifica-
tion Models from Source Code, Proc. FORTE/PSTV’99 (1999).

7. Jackson, D. and Sullivan, K.: COM Revisited: Tool-Assisted Modelling and Anal-
ysis of Complex Software Structures, Proc. ACM SIGSOFT FSE’00 (2000).

8. Janssen, W., Mateescu,R., Mauw, S., Frennema, P., and van der Stappen, P.: Model
Checking for Managers, Proc. 6th SPIN Workshop (1999).

9. Kobryn, C.: Modeling Components and Frameworks with UML, Comm. ACM,
vol.43 no.10, pp.31-38 (2000).

10. Leavens, G. and Sitaraman, M. (ed.): Foundations of Component-based Systems,
Cambridge University Press 2000.

11. Magee, J., Kramer, J., and Giannakopoulou, D.: Analysing the Behaviour of Dis-
tributed Software Architectures: a Case Study, Proc. IEEE FTDCS’97 (1997).

12. Magee, J., Kramer, J., and Giannakopoulou, D.: Software Architecture Directed
Behavior Analysis, Proc. IEEE IWSSD’98, pp.144-146 (1998).

13. Manna, Z. and Pnueli, A.: The Temporal Logic of Reactive and Concurrent Sys-
tems: Specification, Springer-Verlag 1991.

14. OMG: OMG Unified Modeling Language Specification v1.3 (2000).
15. Roscoe, A.W.: The Theory and Practice of Concurrency, Prentice Hall 1998.
16. Rushby, J.: Mechanized Formal Methods: Where Next?, Proc. FM’99, pp.48-51

(1999).
17. Shaw, M. and Garlan, D.: Software Architecture, Prentice Hall 1996.
18. Sousa, J. and Garlan, D.: Formal Modeling of the Enterprise JavaBeansTM Com-

ponent Integration Framework, Proc. FM’99, pp.1281-1300 (1999).
19. Sullivan, K., Marchukov, M., and Socha, J.: Analysis of a Conflict Between Aggre-

gation and Interface Negotiation in Microsoft’s Component Object Model, IEEE
trans. SE, vol.25, no.4, pp.584-599 (1999).

20. Sun Microsystems, Inc.: Enterprise JavaBeansTM Specification, v1.1 (1999).
21. Szyperski, C.: Components and the Way Ahead, in [10], pp.1-20 (2000).

p2b: A Translation Utility for Linking Promela
and Symbolic Model Checking (Tool Paper)

Michael Baldamus1 and Jochen Schröder–Babo

University of Karlsruhe
Institute for Computer Design and Fault Tolerance

Formal Methods Group
http://goethe.ira.uka.de/fmg

Abstract. p2b is a research tool that translates Promela programs to
boolean representations of the automata associated with them. These
representations conform to the input syntax of the widely–used sym-
bolic model checker SMV; it is then possible to verify the automata with
SMV, as opposed to enumerative model checking with SPIN, the classical
Promela verifier. SMV and SPIN are focussed on verifying branching or
linear time temporal properties, respectively, and often exhibit different
performance on problems that are expressible within both frameworks.
Hence we envisage that p2b will provide the missing link in establishing a
verification scenario that is based on Promela as modeling language, and
where one chooses different logics and verification methods as needed.
The present paper provides an introduction to p2b, a description of how
it works and two benchmark examples.

1 Introduction

An important ingredient of model checking is an expressive language that can be
used for model description. Such a language must have a precise semantics, yet
it must also be suitable for its application domain and easy to use. Promela [7],
the input language of the SPIN model checker [8], is an asynchronous concurrent
modeling language. It naturally does have a precise semantics and it arguably
fulfills the other criteria too. SPIN then performs enumerative model checking
of linear time temporal properties (LTL) over Promela programs. Two major
optimizations realized by SPIN are on–thy–fly state space traversal and partial
order reduction; they shorten runtime often dramatically. Murϕ [5] is another
well–known enumerative model checker that contains several optimizations of the
basic procedure. Successful applications in various practical fields have shown
how powerful enumerative model checking can be.

That success, however, does not come in all cases. A property may hold, for
instance, meaning that it does a priori not help that on–the–fly traversals often
find counterexamples without visiting every state that is relevant. Moreover,
1 Michael Baldamus’s work is supported by the Deutsche Forschungsgemeinschaft

within the Project Design and Design Methodology of Embedded Systems.

M.B. Dwyer (Ed.): SPIN 2001, LNCS 2057, pp. 183–191, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

184 M. Baldamus and J. Schröder–Babo

partial order reduction may greatly reduce the number of relevant states, but
the method requires specific preconditions with regard to the way processes
communicate with each other: the efficiency gain suffers the more communication
relationships violate those conditions.

Another method besides the enumerative one is symbolic model checking [4,
10]. Its basic idea consists of working with reduced ordered binary decision dia-
grams (BDDs, [3]) to represent finite automata and sets of states. The “secret” is
partly that many systems with large state spaces can be represented with com-
paratively small BDDs; besides that, most algorithms on BDDs have moderate
complexity. Hence it has been possible to verify practical examples whose state
sets are astronomically large. The main applications of symbolic model checking
have to date been in verifying synchronous digital hardware. There are, however,
encouraging results on verifying also asynchronous and interleaved processes [6,
1,9,2], as they are typical for software–like systems. This situation was the reason
for us to develop p2b. The objective was to perform symbolic model checking
on such systems and, at the same time, to profit from Promela’s versatility as a
modeling language.

Efficient symbolic model checkers are readily available. The easiest way to
achieve the objective of p2b is therefore to translate Promela programs to
boolean representations of the automata associated with them, as symbolic
model checkers usually understand this kind of input. More specifically, p2b gen-
erates code that conforms to the input syntax of the well–known and widely–used
symbolic model checker SMV [10].

With SPIN, p2b and SMV, we have carried out various experiments. They in-
dicate that enumerative and symbolic model checking may indeed exhibit rather
different efficiency when applied to the automaton of one and the same Promela
program. Sometimes SPIN is significantly faster, sometimes SMV. (cf. Section 3).
Another possible benefit from p2b consists of the fact that symbolic model check-
ing can be used to verify both branching and linear time properties, as opposed to
the LTL world to which SPIN belongs. Hence we envisage that p2b will provide
the missing link in establishing a verification scenario that is based on Promela
as modeling language, and where one chooses different logics and verification
methods as needed.

We have to mention that SMV starts the actual model checking procedure
strictly after it has built the BDD that represents the automaton of the model
under consideration. For this reason, it may be somewhat difficult to represent a
dynamically evolving system of concurrent processes. Such systems, on the other
hand, can easily be modeled with Promela with the help of the keyword run,
which spawns a new process instance. p2b supports this feature only in so far as
all process instances of a model — proctype instances in Promela terminology
— can easily be determined before verification or simulation takes place. More
specifically, every instantiation must refer to a proctype that is defined earlier in
the program text and there must be no run within a loop or in the vicinity of a
goto. To our experience, these restrictions still allow one to model many practical

p2b: A Translation Utility 185

systems, notably within the realms of embedded systems and communication
protocols.

The remainder of the present paper is structured as follows: Section 2 de-
scribes the basics of how p2b works; Section 3 presents two benchmark ex-
amples, the dining philosophers problem and a mutual exclusion protocol over
asynchronous channels; Section 4 briefly concludes the paper.

The p2b homepage is located at
http://goethe.ira.uka.de/∼baldamus/p2b.

The package can be downloaded from a subpage there.

2 How p2b Works

p2b is a command line utility. It works in batch mode in the sense that a run con-
sists of parsing a Promela program and generating ASCII output that conforms
to the input syntax of the SMV model checker. The basic idea is to identify every
proctype instance of the program. The automaton of each individual instance is
described in isolation; by putting together these descriptions, the automaton of
the program as a whole is described.

2.1 SMV Code Generated by p2b

Then the raw structure of the output will in general be as follows:

MODULE main

VAR
� declarations of current state variables �

INIT
� initialization of current state variables �

DEFINE
� boolean equations �

TRANS
� top expression �

SPEC
� temporal formula �

Only the SPEC part may be missing (see Section 2.1). In the sequel of this
subsection, we briefly discuss each individual part.

Variables and Variable Initialization. If P is the program, then the output
represents the automaton of P employing current state variables and next state
variables to encode automaton states. First of all there are boolean variables that
mostly correspond to control flow locations of the proctype instances of P but
may also have auxiliary roles. Besides that, there may be data variables, which

186 M. Baldamus and J. Schröder–Babo

correspond to data variables and channel entries in P. The ordinary, explicitly
declared SMV variables of both kinds are the current state variables. For every
such variable, say x, there is a unique next state variable, which appears in the
SMV code as next(x). p2b does not have to allocate any next state variable
since SMV does that automatically. The current state variables are declared in
the VAR part; their initial values are assigned in the INIT part. This assignment
encodes the initial state of the automaton of P.

Boolean Equations. The variable declarations and initializations are followed
by a DEFINE part. This part contains a collection of equations of the form
identifier := boolean expression. Every right hand side may contain state vari-
ables or identifiers defined by other expressions. The collection of equations is
essentially a bottom-up description of the automata of the proctype instances
of P. To give an impression of that, let A be an active proctype in P that has
k instances, k ≥ 1, and let l1, . . . , ln be the control flow locations in A, n ≥ 1.
Then there are equations of the form A i-lj enabled- := boolean expression
for all i ∈ {1, . . . , k} and all j ∈ {1, . . . , n}; they become true iff the corre-
sponding control flow location is enabled. There are also equations of the form
A i-at-lj := boolean expression for all i ∈ {1, . . . , k} and all j ∈ {1, . . . , n}; these
ones describe the local and global effects of a transition of A that starts at the
respective lj , referring to A i-lj enabled- on the right hand side. Furthermore,
there are equations of the form

A i- :=
n∨

j=1

A i-at-lj

for all i ∈ {1, . . . , k}, describing the entire automaton of the respective instance of
A. Besides that, there are equations of the form A i-idle- := boolean expression
for all i ∈ {1, . . . , k}; their role is to describe the idling of the corresponding
instance of A if another proctype instance is active.

Top Expression. Apart from the equation system, there is a top expression,
which puts all proctype instance automata together. This expression makes up
the content of the TRANS part. To see what it basically looks like, let pre1, . . . ,
prem be the identifier prefixes that correspond to proctype instances of P, m ≥ 1.
— An example of such a prefix is A i, i ∈ {1, . . . , k}. — Then the top expression
has the form

m∨
i=1

prei-

∧
j∈{1,...,m}\{i}

prej-idle-

 ∨ Term,

where Term is an expression that describes the idling of the entire system once
every proctype instance has terminated. The idea is that a transition of the
automaton of P, as long as it has not terminated, involves a transition of the

p2b: A Translation Utility 187

automaton of some proctype instance of P and, at the same time, leaves all other
instances idle. This scheme works under the assumption that all channels have a
capacity of at least one, meaning that there is no synchronization via channels.
At the moment, p2b does indeed not support channels of capacity zero. To our
experience, this restriction is not too severe in terms of what Promela models of
practical systems can still be translated with p2b.

Optional Temporal Specification. SMV can read temporal formulas that are
to be verified, so p2b also allows the user to include such a temporal specification
in the Promela code as a specific pragma ignored by SPIN. The pragma must
appear at the end of the input file, and it must be of the form

/*p2b: SPEC � temporal formula � */.

The formula contained in it will appear at the end of the output file behind the
keyword SPEC. Non–trivial temporal properties will usually be formulated with
the help of the variables from the VAR part.

Complexity of the Translation. The complexity of the translation is
quadratic in the number of proctype instances; the reason of that is the syntactic
structure of the top expression in the TRANS part. The complexity of generat-
ing the output up to and including the DEFINE part is linear in the number of
proctype instances.

2.2 Supported Constructs

p2b rejects every input rejected by SPIN. The current version of p2b does not
accept every input accepted by SPIN either, since it does not support all Promela
constructs. This situation is mostly due to the limited manpower that could be
allocated to the p2b project; it is only to a small extent due to any principal dif-
ficulty in translating Promela in the way adopted for p2b, that is, by generating
a boolean representation of the program automaton over current and next state
variables. The constructs supported by the current version are as follows:

– Data Types. The supported data types are bit, bool, byte, short and
int.

– Channels and Variables. Channels must have a capacity of at least 1 and
must be global. Variables may be either global or local. The –variable is
supported.

– Expressions. p2b supports numeric constants, the usual boolean and arith-
metic operators, bracketing, variable access and the empty, nempty, full,
nfull and ?[..]–operators for channel polling including the eval constraint
in the case of ?[..].

– Elementary Statements. p2b supports skip, assignments, expressions
that appear as statements, standard send and receive operations on channels

188 M. Baldamus and J. Schröder–Babo

including eval, goto, the xs, xw and xu declarations, printf and assert.
Among these statements, xs, xw and xu declarations and printf do not af-
fect symbolic model checking, so they are treated like skip. assert is also
treated like skip, as this statement runs somewhat contrary to the paradigm
of breadth–first search used in symbolic model checking. If the functionality
of assert is desired, then it should mostly be possible to use a temporal
specification instead (see Section 2.1).

– Statement Constructors. p2b supports sequential composition, if..fi,
if..::else..fi, do..od, do..::else..od, atomic, unless and {..}.

– Labeling. p2b supports labels wherever SPIN permits labels in Promela
code.

– Proctypes, init and run. p2b supports parameterized proctypes, param-
eterized active proctypes with and without numeric instantiators, init and
run. Active proctypes must not have channel parameters.
Apart from the restrictions mentioned in the introduction, actual channel
parameters occurring within run statements must be global channels; in
other words, p2b does not support passing on formal channel parameters of
an enclosing proctype.

– never–Claims, trace and notrace. p2b ignores any never–claim as well
as trace and notrace. Temporal properties to be verified by SMV should
be specified using the pragma described in Section 2.1.

– #define. p2b supports C–style macros.

2.3 Specifying Variable Ranges

Symbolic model checking is sometimes affected by the fact that the represen-
tation of data operations may lead to large BDD sizes. A prime example is
multiplication, since in its case every BDD representation must be exponential
in the width of the data path. For this reason, symbolic model checking may be
greatly helped if it is known to what extent the data variables of the program
are utilized. p2b allows the user to supply such information by means of pragmas
that are ignored by SPIN. Such a construct has the form

/*p2b: � smallest possible value � .. � highest possible value � */

and may occur behind the types byte, short and int. Its effect is that p2b
generates syntax that instructs SMV to allocate just enough BDD variables to
accommodate the specified range.

3 Benchmark Examples

We have studied several examples with p2b. In each case we have verified a
Promela program or a class of such programs with SPIN and — after translation
— with SMV. This section reports on our results with regard to two scalable
examples, the dining philosophers problem and a mutual exclusion protocol over
asynchronous channels. We used SPIN V. 3.4.3 and Cadence Berkeley SMV
V. 08-08-00p3 on an 800 MHz Pentium III processor under Linux with 700 MB
of available RAM.

p2b: A Translation Utility 189

3.1 The Dining Philosophers Problem

The model of the dining philosophers problem represents philosophers as proc-
types and chop sticks as channels of capacity one. As chop sticks can be consid-
ered passive items, we contend that this kind of model is natural. Due to the ring
topology of the problem, every channel is then shared by two proctypes, which
both read from and sent to the channel. Figure 1 shows measurements obtained
from a solution without deadlock; the deadlock–preventing component is a dic-
tionary, which is also represented as a channel of capacity one. All proctypes
initially try to read from that channel or from a channel representing a chop
stick. Only one proctype can succeed in reading from the channel representing
the dictionary and it will write back to this channel before trying to read from
any other one. Furthermore, the initial read from a channel representing a chop
stick is guarded by the condition that the channel representing the dictionary
be empty.

0

500

execution
time in
seconds
◦ SPIN
+ SMV

2 10number of processes
◦ ◦ ◦ ◦ ◦ ◦

◦

◦

+ + + + + + + +

+

Fig. 1. Execution time measurements from verifying a deadlock–free solution to the
dining philosophers problem. SMV was used via its graphical interface and the following
options were set: Use heuristic variable ordering, Use modified search order, Restrict
model checking to reachable states, Turn off transition relation clustering, Turn off
conjunctively partitioned relations, Turn off partitioned relations. The other options of
the graphical interface were not set.

The result of this experiment was that SMV was significantly faster than
SPIN from seven philosophers onwards. Moreover, SPIN ran out of memory from
ten philosophers onwards even when compression was turned on. This situation
was probably due to the combination of two facts: first, the on–the–fly strategy
could not bear fruit since the property to be verified always held; second, the
exclusive send and the exclusive read condition with regard to channels are
violated in all cases, so partial order reduction was less effective than usual.

190 M. Baldamus and J. Schröder–Babo

3.2 A Mutual Exclusion Protocol over Asynchronous Channels

We have observed converse tendencies in the case of a mutual exclusion protocol
over asynchronous channels (Figure 2). That protocol consists of n processes
that communicate with an arbiter via channels ai, bi and c, 1 ≤ i ≤ n, where
each channel is of capacity one. A process Pi sends its request for entering a
critical section to the arbiter via ai; the arbiters elects one such process, say Pj ,
and sends it a grant for entering the critical section via bj . That process sends
a notification via c to the arbiter once it has left the critical section.

0

15execution
time in
seconds
◦ SPIN
+ SMV

2 10number of processes

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

+ + + + + + +
+

+

Fig. 2. Execution time measurements from verifying a mutual exclusion protocol over
asynchronous channels.

As shown by the figure, SPIN’s execution time remained virtually constant
over the scaling range considered in the experiment. SMV’s execution time, by
contrast, was significantly higher for ten processes and showed a clear tendency
to staying so for larger numbers of processes. This situation was probably due
to the fact that nearly all communication relationships in the model satisfy
the exclusive send or the exclusive read condition, meaning that partial order
reduction could be effective.

4 Conclusion

The preceding sections have given an introduction to the objective of p2b, which
consists of linking Promela and symbolic model checking. It was also described
how p2b works and two scalable benchmark examples were presented. From the
first example, we conclude that it indeed makes sense to supplement enumerative
model checking of Promela programs with symbolic model checking; from the
second example, however, we conclude that p2b will not entail that enumerative
model checking is replaced by symbolic model checking.

As for future work, it would of course be desirable to extend the range of
Promela constructs supported by p2b. Another topic might consist of incorpo-
rating results on the combination of partial order reduction and symbolic model
checking [1,9].

p2b: A Translation Utility 191

References

1. R. Alur, R. Brayton, T. Henzinger, S. Qadeer, and S. Rajmani. Partial–Order
Reduction in Symbolic State Space Exploration. In Computer–Aided Verification,
pages 340–351. Springer–Verlag, 1997. Proceedings CAV ’97.

2. M. Baldamus and K Schneider. The BDD Space Complexity of Different Forms of
Concurrency, 2001. Accepted for ICACSD ’01.

3. R. Bryant. Graph–Based Algorithms for Boolean Function Manipulation. IEEE
Transactions on Computers, C–35(8):677–691, 1986.

4. J. Burch, E. Clarke, K. McMillan, D. Dill, and L. Hwang. Symbolic Model Check-
ing: 1020 States and Beyond. In Logic in Computer Science, pages 1–33. IEEE
Computer Society Press, 1990. Proceedings LICS ’90 symposium.

5. D. Dill, A. Drexler, A. Hu, and C. Han Yang. Protocol Verification as a Hardware
Design Aid. In Computer Design: VLSI in Computers and Processors, pages 522–
525, 1992. IEEE Conference Proceedings.

6. R. Enders, T. Filkorn, and D. Taubner. Generating BDDs for Symbolic Model
Checking in CCS. In Computer–Aided Verification, LNCS 575, pages 203–213.
Springer–Verlag, 1991. Proceedings CAV ’91 conference.

7. G. Holzmann. Design and Validation of Computer Protocols. Prentice Hall, 1991.
8. G. Holzmann. The Model Checker SPIN. IEEE Transactions on Computer Engi-

neering, 23:279–295, 1997.
9. Kurshan, R. and Levin, V. and Peled, D. and Yenigün, H. Static Partial Order

Reduction. In Tools and Algorithms for the Construction and Analysis of Sys-
tems, LNCS 1384, pages 345–357. Springer–Verlag, 1998. Proceedings TACAS ’98
conference.

10. K. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.

Transformations for Model Checking Distributed
Java Programs?

Scott D. Stoller and Yanhong A. Liu

Computer Science Dept., SUNY at Stony Brook, Stony Brook, NY 11794-4400

Abstract. This paper describes three program transformations that ex-
tend the scope of model checkers for Java programs to include distributed
programs, i.e., multi-process programs. The transformations combine
multiple processes into a single process, replace remote method invo-
cations (RMIs) with local method invocations that simulate RMIs, and
replace cryptographic operations with symbolic counterparts.

1 Introduction

There is growing interest in model checking of programs written in standard pro-
gramming languages. Java’s support for remote method invocation (RMI), an
object-oriented version of remote procedure call (RPC) [BN84], makes writing
distributed programs relatively painless. The current generation of model check-
ers for Java programs, e.g., [BHPV00,PSSD00,Sto00,CDH+00], work for multi-
threaded single-process programs but not distributed programs. This paper de-
scribes three program transformations that extend the scope of these model
checkers to include distributed programs, i.e., programs that involve communi-
cation among multiple processes.

Centralization: merge all processes into a single process. This yields a non-
distributed program.

RMI removal: replace RMIs with ordinary method invocations that simulate
RMIs.

Pseudo-crypto: replace cryptographic operations with symbolic counterparts,
which we call pseudo-cryptographic operations.

All three transformations improve performance of model checking. Central-
ization avoids the overhead of initializing multiple processes and Java Virtual
Machines (JVMs). RMI removal replaces genuine RMIs with faster simulated
RMIs. Pseudo-crypto replaces computationally expensive cryptographic opera-
tions, such as generation of public-private key pairs and verification of digital
signatures, with symbolic counterparts that are at least an order of magnitude
faster.
? This work is supported in part by NSF under Grant CCR-9876058 and by

ONR under grants N00014-99-1-0132, N00014-99-1-0358, and N00014-01-1-0109.
{stoller,liu}@cs.sunysb.edu http://www.cs.sunysb.edu/˜{stoller,liu}

M.B. Dwyer (Ed.): SPIN 2001, LNCS 2057, pp. 192–199, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Transformations for Model Checking Distributed Java Programs 193

RMI removal and pseudo-crypto eliminate calls to native methods. Standard
implementations of RMI invoke native methods for serialization (i.e., conversion
of data into a format suitable for network transmission) and network communica-
tion. Cryptographic operations are typically implemented using native methods
for efficiency. The simulated RMIs and pseudo-cryptographic operations intro-
duced by RMI removal and pseudo-crypto, respectively, do not invoke native
methods. This is significant, because supporting native methods in a model
checker is a non-trivial task. Furthermore, native methods for network com-
munication maintain state outside the JVM. Supporting such native methods in
a model checker is extremely problematic, because there is no general way for
the model checker to save and restore their state.

Centralization enables current model checkers for Java to be used to system-
atically test and verify distributed programs. It also suggests that there may
be little incentive to extend those model checkers to directly handle distributed
programs. Centralization can be used without RMI removal, because a single
process may be both the client and the server in a RMI.

Centralization by itself does not attempt to control non-determinism from
scheduling or other sources. Centralization is particularly useful in conjunction
with tools that do provide some control. This includes debuggers as well as
model checkers. For example, consider using the Java debugger jdb to debug a
distributed program. jdb supports breakpoints, but a breakpoint halts only a sin-
gle process. If jdb is used to debug the centralized program, then the breakpoint
halts the entire system, which is often what the user wants.

Many distributed programs are designed to work over an insecure network,
such as the Internet, and therefore use cryptography. During model checking,
such programs are usually executed together with a program that simulates an
adversary that controls communication over the insecure network. Cryptography
causes a special problem for model checking, in addition to the issues of perfor-
mance and native methods mentioned above. Specifically, if the program sends
actual ciphertexts and does not help the adversary program determine their con-
tents, then the adversary program would be extremely inefficient. For example,
to determine whether it can decrypt an intercepted ciphertext, it would have to
attempt the decryption with every key it knows. This problem arises in testing,
as well as model checking. Pseudo-cryptographic operations enable the adversary
program to efficiently determine the contents of intercepted ciphertexts.

All three transformations rely on the assumption that the original program
is not real-time and does not use reflection in a way that would detect the
transformation’s effects.

2 Centralization

We refer to programs produced by the centralization transformation as central-
ized programs. The transformed program is equivalent to the original program
in the sense that it has essentially the same possible executions as the original
program. More precisely, (1) there exists a refinement mapping f such that,

194 S.D. Stoller and Y.A. Liu

for each execution of the original program, there exists a stuttering-equivalent
[Lam94] execution of the transformed program relative to f , and (2) vice versa.

The basic idea underlying centralization is simple. Suppose the original sys-
tem consists of a process P1 with three threads and a process P2 with two
threads. Then the centralized program creates five threads, three of which cor-
respond to threads of P1, and two of which correspond to threads of P2. We
assume that the original program does not count the total number of instances
of Thread or ThreadGroup in the process, because this would detect the effect
of the transformation.

Centralization involves four steps. The first step generates a driver class
whose main method starts up the system. The driver is generated from a startup
file supplied by the user, which contains (roughly) a list of command lines of the
form “java optionsi classi argsi” used to start the processes of the original sys-
tem. We refer to the process created by the i’th line of this file as process i. We
assume that these processes can run on a single host, i.e., different hostnames
are not hardwired in the code. We currently do not support dynamic creation
of processes, though it would not be difficult. The main method of the driver
class creates, for each i, a thread that executes the main method of classi with
arguments argsi.

The second step deals with static fields (i.e., fields that are associated with
a class rather than an instance of a class). In the original system, each process
has its own copy of each class (the copy is created when the class is loaded by
the JVM) and therefore its own copy of each static field. In the transformed
system, there is only one copy of each class. The transformation introduces
arrays to simulate the effect of having multiple copies of the class. For example,
suppose the program uses a class C that contains a static field x of type T . The
transformed version of class C declares a static field of type T[], for an array
whose elements have type T . Threads that correspond to threads of the i’th
process access only C.x[i]. To allocate and initialize the arrays, we transform
class initialization code—<clinit> and methods invoked directly or indirectly
from <clinit>—appropriately.

Instructions that access static fields are transformed to access the appropri-
ate element of the array. The index into the array is the number of the “pro-
cess” to which the thread belongs. This value cannot easily be maintained in
a global variable, because the JVM does not provide hooks that would invoke
user-supplied code at every context switch. To determine this value efficiently,
the transformation replaces all uses of Thread in non-library classes (i.e., classes
not in the Java 2 API) with CentralizedThread.1 Class CentralizedThread
extends (i.e., inherits from) Thread, declares an instance field int procNum, and
overrides the constructors of Thread with constructors that initialize procNum
appropriately. When transforming an access to a static field, the index into the
array is the value of the procNum field of the current thread; specifically, it is
((CentralizedThread)Thread.currentThread()).procNum.

1 Recall that, in Java, each thread is associated with an instance of class Thread or a
subclass of Thread.

Transformations for Model Checking Distributed Java Programs 195

The third step deals with static synchronized methods, i.e., methods that
are associated with a class rather than an instance of a class and whose bod-
ies implicitly start with an acquire operation on the lock associated with the
class and end with a release operation on that lock.2 In the original system,
each process has its own copy of each class and the associated lock. To simulate
this, for each class C that declares static synchronized methods, the transfor-
mation introduces a static variable C.locks that points to an array of new
objects, and, for each static synchronized method C.m, it inserts an acquire on
C.locks[((CentralizedThread)Thread.currentThread()).procNum] at the
beginning of C.m, inserts a matching release at the end of C.m, and marks C.m
as not synchronized.

The fourth step deals with the method System.exit, which terminates
the process. In the transformed program, System.exit should terminate only
threads with the same value of procNum as the invoker. Java does not directly
provide a mechanism for one thread to terminate another thread. Transforming
the program to incorporate such a mechanism is non-trivial. Currently, we trans-
form calls to System.exit so that they throw java.lang.ThreadDeath, which
should terminate the calling thread. This is correct if all other threads with the
same value of procNum have terminated; this condition could easily be checked
dynamically.

The current implementation does not transform static fields of library classes.
Centralization is independent of the communication mechanisms used in the

program. It could be used in conjunction with a socket removal transformation
as well as RMI removal.

3 RMI Removal

Java RMI works roughly as follows. A process, called a server, makes an object
available to other processes, called clients, by registering the object in the RMI
registry, which is a simple database that maps strings (names of services) to
objects. A client locates a remote object by looking up a service name in the RMI
registry. A successful lookup creates a new object ostub in the client. ostub is called
a stub and contains the address of a server S and a reference to an object o in S.
The stub is an instance of an automatically generated class, called a stub class.
The stub class for class C is named C Stub. A remote reference is a reference to
a stub. For each remotely invokable method m of C, the automatically generated
method C Stub.m on the client serializes its arguments args and sends them
to server S; S unserializes the arguments, executes o.m(args) in a new thread,
serializes the return value (or exception), and sends it to ostub on the client;
the client unserializes the return value (or exception) and uses it as the result
of the RMI. As an optimization, the JVM may maintain a pool of re-usable
threads, rather than creating a new thread for each RMI. We do not describe
here how interfaces are used to indicate which methods are remotely invokable;
our transformation handles this aspect easily.
2 Recall that, in Java, each class and each object implicitly contains a unique lock.

196 S.D. Stoller and Y.A. Liu

RMI removal replaces a RMI with an ordinary method invocation that sim-
ulates the RMI. The semantics of method invocation in Java is call-by-value
for primitive data, and call-by-reference for remote references and ordinary ref-
erences. The semantics of RMI is different, because serialization followed by
unserialization effectively performs copying. Specifically, the semantics of RMI
is call-by-value for primitive data, call-by-reference for remote references (al-
though the stub object is copied, the copy refers to the same remote object,
not to a copy of the remote object), and call-by-deep-copy for local references.
“Deep copy” means that the entire subgraph of the heap reachable from the ar-
guments is copied; the copy is isomorphic to the original subgraph. In all cases,
the semantics for passing return values is the same as for passing arguments.

The transformed program uses a simulated RMI registry. Currently, the sim-
ulated RMI registry expects to find stub classes in the CLASSPATH.

Which thread should execute a remote invocation? To ensure a faithful sim-
ulation of RMI, the transformed code could create a new thread to execute each
RMI. This is easy to implement but inefficient and typically unnecessary, in the
sense that most applications are insensitive to the identity of the thread that
handles the RMI. Maintaining a pool of re-usable threads is not as easy to imple-
ment. In our current implementation, the calling thread executes the “remote”
invocation; we assume that the application does not detect this difference. While
the calling thread is executing a remote invocation of a method of an object o,
the thread’s procNum should be set to the number of the server that created
o, because that is the number of the process on which the method would be
executed in the original system. This requires an efficient mechanism for deter-
mining which process created each instance of each class with remotely-invokable
methods. Accordingly, we insert a field procNum in each such class C and modify
each constructor for C to initialize that field with the current thread’s procNum.

Implementing copying using reflection is tempting, but reflection uses native
methods, and we want to eliminate uses of native methods, so copying is imple-
mented as follows. The transformation identifies classes whose instances might
appear in arguments or return values of RMIs. For each such class C, it gener-
ates a method named C.copyRMI. Method C.copyRMI has a parameter h that
indicates which objects have already been copied; it is used to ensure that the
original subgraph and the copy are isomorphic. C.copyRMI(h) returns this if
this is a remote reference,3 and returns a deep copy of this if this is a local
reference. In the latter case, C.copyRMI(h) starts by checking whether this is in
the hash map h. If so, this has already been copied, so C.copyRMI(h) finds the
copy using h and returns it. Otherwise, C.copyRMI(h) creates a new instance o
of C, adds the mapping this 7→ o to h, copies from this to o the value of each
field of C with primitive type, recursively invokes copyRMI on the value of each
field of C with non-primitive type and stores the result in the corresponding
field of o, and returns o. Creation and initialization of o require special treat-

3 A more faithful alternative would be to clone (i.e., create a shallow copy of) the
stub, but the identity of a stub should not be significant to a normal application, so
this cloning would be unnecessary overhead.

Transformations for Model Checking Distributed Java Programs 197

ment when C has a non-serializable superclass other than java.lang.Object;
we omit details of how the transformation handles this.

The transformation also generates stub classes. The standard stub classes
produced by the compiler are not used by the transformed program, so we re-
use their names for our stub classes. Thus, the stub class generated for class C is
named C Stub and declares an instance field target with type C, which refers to
the object registered by the server. We still say that a reference to an instance of
a stub class is a “remote reference”. The generated method C Stub.m(args) cre-
ates new hashmaps hArgs and hRet, invokes copyRMI(hArgs) on arguments that
are local references, sets the current thread’s procNum to this.target.procNum,
and invokes this.target.m on a combination of original arguments (that are
not local references) and copies of arguments (that are local references); when
the invocation of m returns, C Stub.m(args) restores the previous value of
the current thread’s procNum, invokes copyRMI(hRet) on the return value v
of this.target.m if v is a local reference, and returns v (if v is not a local
reference) or the copy of v (if v is a local reference) to the caller.

To efficiently check whether a reference is remote, the transformation intro-
duces an interface StubInterface. All stub classes implement StubInterface.
Thus, (r instanceof StubInterface) is true iff r is a remote reference.

Java RMI allows the user to specify a security policy that controls which
remote methods may be invoked by which clients. Currently, we do not simulate
checking of security policies; in effect, we assume that all RMIs performed by
the original program are permitted by the security policy.

4 Pseudo-Cryptography

java.security provides a standard API for cryptography libraries. We
assume that the original program uses this API. The original pro-
gram is transformed by replacing all occurrences of java.security with
PseudoCrypto; for example, java.security.Signature.sign is replaced with
PseudoCrypto.Signature.sign.

The central issue in designing PseudoCrypto is the representation of cipher-
texts. To solve the problem discussed in Section 1, the obvious approach is to
use a symbolic representation. For example, the result of encrypting a plaintext
t with a key k would be an object containing t and k. Given such a symbolic
“ciphertext”, the adversary program can trivially determine the key used to cre-
ate it. This approach is standard in model checking of security protocols with
traditional model checkers such as FDR and Murφ [Low96,MMS97].

However, in the java.security API, ciphertexts are not an abstract data
type. Ciphertexts are byte arrays, and this representation is visible to the ap-
plication. Transforming the application to accommodate a different representa-
tion of ciphertexts would be difficult. Our approach is to maintain byte arrays
and a symbolic representation. The symbolic representation is used only within
PseudoCrypto and the adversary program; it is not visible to the application.
A hash map is used to map the byte array representation of a ciphertext to its

198 S.D. Stoller and Y.A. Liu

symbolic representation. A mapping is inserted in the hash map every time a
ciphertext is created. The adversary program looks up intercepted ciphertexts
in the hash map.

It is the responsibility of the author of the adversary program to simulate
an adversary that controls an insecure network. For example, the author must
determine which cryptographic keys stored in the hash table are known to the
adversary.

If the original cryptographic operations are computed in the transformed
program, then this transformation does not affect the contents of the byte arrays
seen by the application and hence does not affect the behavior of the application.

Computing cryptographic operations during state-space exploration is often
impractical, because of performance and native methods, as discussed in Section
1. Therefore, PseudoCrypto computes “pseudo-cryptographic” operations that
maintain the byte array and symbolic representations, as above, except the byte
arrays are filled with pseudo-random data, not genuine ciphertexts. This change
in the contents of the byte arrays could affect the behavior of the application,
e.g., if the application does not trust its cryptography library and therefore
checks whether ciphertexts have the expected format. Typical applications treat
the byte arrays as “atomic values”, merely passing them around and then using
them as arguments to other cryptographic operations. Such applications are
not affected by this transformation. Currently, manual inspection of the original
program is used to check whether this could happen. A conservative automatic
check based on static analysis could be developed.

Currently, we assume that all operations that produce ciphertexts involve
pseudo-random initialization, so invoking an operation twice on the same ar-
guments produces different ciphertexts. Operations that are “functional” (i.e.,
whose return value depends only on the arguments) could easily be accommo-
dated using memoization [CLR90].

A separate issue is that the adversary program needs to efficiently deter-
mine which parts of intercepted “messages” might be ciphertexts. Currently,
the author of the adversary program must deal with this. We are working on a
static program analysis, based on points-to escape analysis [WR99], that aims
to automate this and some other aspects of producing the adversary program.

Package PseudoCrypto currently supports commonly used methods for gen-
eration of public-private key pairs and generation and verification of digital sig-
natures. Support for symmetric-key cryptography can easily be added.

5 Implementation and Case Study

The implementation of all three transformations is mostly complete. The im-
plementation transforms bytecode using the Byte Code Engineering Library
(BCEL), formerly called JavaClass [Dah99]. We hope to incorporate these trans-
formations into Bandera [CDH+00], which provides an excellent framework for
model checking and the associated program analyses. The first public release of
Bandera is expected soon.

Transformations for Model Checking Distributed Java Programs 199

The first major case study will be a secure and scalable distributed voting
system, whose design is described in [MR98]. Students implemented that design
in Java as a course project. We plan to model check it using the above transfor-
mations and Java PathFinder [BHPV00]. Java PathFinder is not yet available
to us, but its first public release is imminent. We anticipate completion of this
case study before SPIN 2001 and expect to present the results there.

Acknowledgments. Ziyi Zhou and Dezhuang Zhang implemented centraliza-
tion. Srikant Sharma and Kartik Gopalan implemented RMI removal.

References

[BHPV00] Guillaume Brat, Klaus Havelund, Seung-Joon Park, and Willem Visser.
Model checking programs. In IEEE International Conference on Auto-
mated Software Engineering (ASE), September 2000.

[BN84] A. D. Birrell and B. J. Nelson. Implementing remote procedure calls. ACM
Transactions on Computer Systems, 2:39–59, February 1984.

[CDH+00] James C. Corbett, Matthew Dwyer, John Hatcliff, Corina Pasareanu,
Robby, Shawn Laubach, and Hongjun Zheng. Bandera: Extracting finite-
state models from Java source code. In Proc. 22nd International Confer-
ence on Software Engineering (ICSE), June 2000.

[CLR90] Thomas Cormen, Charles Leiserson, and Ronald Rivest. Introduction to
Algorithms. MIT Press and McGraw-Hill, 1990.

[Dah99] Markus Dahm. Byte code engineering with the JavaClass API. Technical
Report B-17-98, Institut für Informatik, Freie Universität Berlin, 1999.
Available via http://www.inf.fu-berlin.de/˜dahm/JavaClass/.

[Lam94] Leslie Lamport. The temporal logic of actions. ACM Transactions on
Programming Languages and Systems, 16(3):872–923, May 1994.

[Low96] Gavin Lowe. Breaking and fixing the Needham-Schroeder public-key pro-
tocol using FDR. In Proc. Workshop on Tools and Algorithms for The
Construction and Analysis of Systems (TACAS), volume 1055 of Lecture
Notes in Computer Science, pages 147–166. Springer-Verlag, 1996.

[MMS97] John C. Mitchell, Mark Mitchell, and Ulrich Stern. Automated analysis of
cryptographic protocols using Murφ. In Proc. 18th IEEE Symposium on
Research in Security and Privacy, pages 141–153. IEEE Computer Society
Press, 1997.

[MR98] Dahlia Malkhi and Michael Reiter. Secure and scalable replication in pha-
lanx. In 17th IEEE Symposium on Reliable Distributed Systems (SRDS),
pages 51–60, October 1998.

[PSSD00] David Y.W. Park, Ulrich Stern, Jens U. Skakkebaek, and David L. Dill.
Java model checking. In Proc. First International Workshop on Automated
Program Analysis, Testing, and Verification, 2000.

[Sto00] Scott D. Stoller. Model-checking multi-threaded distributed Java pro-
grams. In Proc. 7th Int’l. SPIN Workshop on Model Checking of Soft-
ware, volume 1885 of Lecture Notes in Computer Science, pages 224–243.
Springer-Verlag, August 2000.

[WR99] John Whaley and Martin Rinard. Compositional pointer and escape anal-
ysis for Java programs. In Proc. ACM Conference on Object-Oriented
Systems, Languages and Applications (OOPSLA), pages 187–206. ACM
Press, October 1999. Appeared in ACM SIGPLAN Notices 34(10).

Distributed LTL Model-Checking in SPIN?

Jiri Barnat1, Lubos Brim1, and Jitka Stř́ıbrná2

1 Faculty of Informatics, Masaryk University Brno,
Botanická 68a, Brno, Czech Republic

{xbarnat,brim}@fi.muni.cz
2 Department of Computer and Information Science, University of Pennsylvania

200 South 33rd Street, Philadelphia, PA 19104, USA
jitkas@saul.cis.upenn.edu

Abstract. In this paper we propose a distributed algorithm for model-
checking LTL. In particular, we explore the possibility of performing
nested depth-first search algorithm in distributed SPIN. A distributed
version of the algorithm is presented, and its complexity is discussed.

1 Introduction

Verification of complex concurrent systems requires techniques to avoid the state-
explosion problem. Several methods to overcome this barrier have been proposed
and successfully implemented in automatic verification tools. As a matter of fact,
in application of such tools to practical verification problems the computational
power available (memory and time) is the main limiting factor. Recently, some
attempts to use multiprocessors and networks of workstations have been under-
taken.

In [UD97] the authors described a parallel version of the verifier Murϕ. In
their approach, the table of all reached states is partitioned over the nodes of the
parallel machine, which allows the table to be larger than on a single node. The
explicit state enumeration is then performed in parallel. For the model-checker
SPIN [Hol97], a similar approach towards distributed reachability analysis was
proposed in [LS99]. This distributed version of SPIN uses different ways to par-
tition the state space than Parallel Murϕ. Yet another distributed reachability
algorithm was proposed in [AAC87], but has not been implemented. Other re-
cent attempts to use distributed environment of workstations for parallel model-
checking are [HGGS00,BDHGS00].

Unlike the original SPIN, the distributed algorithm proposed in [LS99] per-
forms a non-nested, depth-first search of the state space. It carries out reacha-
bility analysis, however, it does not implement model-checking of LTL formulas.
In this paper, we propose a distributed algorithm based on nested depth-first
search, that model-checks LTL formulas. The basic idea is as follows. The al-
gorithm starts to explore the state space in (not necessarily nested) distributed
? This work has been supported in part by the Grant Agency of Czech Republic grants

No. 201/00/1023, and 201/99/D026.

M.B. Dwyer (Ed.): SPIN 2001, LNCS 2057, pp. 200–216, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Distributed LTL Model-Checking in SPIN 201

depth-first manner, similarly to the distributed SPIN of [LS99]. When an ac-
cepting state of the Büchi automaton (called a seed) is visited, it is stored in a
special data structure (dependency structure). Nested DFS procedures for seeds
are initialised separately in an appropriate order determined by the dependency
structure. Only one nested DFS procedure can be started at a time. The al-
gorithm thus performs a limited nested depth-first search which requires some
synchronisation during its execution. Our aim was to experimentally explore how
much will synchronisation influence the overall behaviour of the tool. To our sur-
prise, even using this very simple method we were able to deal with verification
problems larger that those that could be analysed with a single workstation
running the standard (non-distributed) version of SPIN.

An experimental version of the algorithm has been implemented and a series
of preliminary experiments has been performed on a cluster of nine PC based
Linux workstations interconnected with a 100Mbps Ethernet, using the MPI
library.

The rest of the paper is organised as follows. We start with a section which
briefly describes the already existing distributed version of SPIN. The following
section explores specific difficulties in direct extention of the distributed SPIN
for the purposes of checking LTL formulas, and also proposes a possible solu-
tion. Then we describe the additional data structures required by our algorithm
and present the pseudo-code. Finally, the complexity and effectiveness of the
algorithm are discussed.

2 Distributed SPIN

In this section we briefly summarise the main idea of the distributed version
of SPIN as presented in [LS99]. The algorithm partitions the state space into
subsets according to the number of network nodes (computers). Each node is
responsible for its own part of the state space. When a node computes a new
state s, it runs the procedure Partition(s) to find out whether or not the
state belongs to its own state subset. If the state is local, the node continues
locally, otherwise a message containing the state is sent to its owner node. Local
computations proceed in the depth-first search manner using the procedure DFV
(a slight modification of SPIN’s DFS procedure). However, due to distribution of
work, the global searching does not follow the depth-first order, which is one of
the reasons for the algorithm’s inadequacy for LTL model-checking. An auxiliary
data structure U[i] is constructed to hold information about pending requests
on a node i. The distributed algorithm terminates when all U[i] queues are
empty and all nodes are idle. A manager process is used to detect termination.
Each node may send two kinds of messages to the manager. One message will
be sent whenever a node becomes idle, a different message will dispatched when
it becomes busy. Correct termination requires each node to reconfirm, and the
overall number of messages sent and received be equal.

The pseudo-code bellow illustrates the original algorithm used in the dis-
tributed version of SPIN.

202 J. Barnat, L. Brim, and J. Stř́ıbrná

procedure START(i, start_state);
begin

V[i] := {}; { already visited states }
U[i] := {}; { pending queue }
j := Partition(start_state);
if i = j then
begin
U[i] := U[i] + start_state;

end;
VISIT(i);

end;

procedure VISIT(i);
begin

while true do
begin
while U[i] = {} do begin end;
S := extract(U[i]);
DFV(i,S);

end;
end;

procedure DFV(i, state);
begin

if not state in V then
begin
V[i] := V[i] + state;
for each sequential process P do
begin

nxt = all transitions of P enabled in state;
for each st in nxt do
begin
j = Partition(st);
if j = i then
begin

DFV(i, st);
end
else
begin

U[j] := U[j] + st;
end;

end;
end;

end;
end;

Distributed LTL Model-Checking in SPIN 203

3 Problems with Extending the Distributed SPIN

When we want to adopt directly the technique of nested DFS approach to dis-
tributed computing we encounter two main problems. By simply allowing more
nested DFS procedures for different seeds we may obtain an incorrect result,
which can be demonstrated by the following example:

?>=<89:;76540123B
2 // ?>=<89:;C

3 // ?>=<89:;D

4

xx

?>=<89:;76540123A

1
99ssssssss

If two nested DFS procedures were run simultaneously on both seeds A and
B then the cycle through the state B might not be detected. The outcome de-
pends on the relative speeds of both nested DFS procedures. If the nested DFS
procedure initialised from A visits the state C first, the nested DFS procedure
starting in B will not be allowed to continue through C and, as a result, the
cycle B, C, D, B will not get detected.

In general, whenever the subgraphs generated by two different seeds do not
have an empty intersection, there is a possibility that some cycle may not be
detected. A simple criterion to determine whether it is possible to run two or
more nested DFS procedures in parallel is to find out whether or not the corre-
sponding intersections are empty. However, verifying this condition could result
in searching the entire state space.

An obvious solution to this problem is to store for each state the informa-
tion in which nested DFS procedure it was visited. This would mean to store a
nontrivial amount of information because each state might be a seed, in which
case the space complexity of the additional storage may turn out to be quadratic
with respect to the number of states. This is the reason why we do not allow to
run several nested DFS procedures simultaneously.

Another problem is the following. The original distributed version of SPIN
does not preserve the depth-first-search order of visited nodes. This is not a
problem in case of reachability analysis because the only relevant information
is whether or not a given state was visited. However, this may pose a threat
to the correctness of the full model-checking procedure, which is shown on the
following example:

?>=<89:;76540123A
1 // ?>=<89:;B

2 // ?>=<89:;76540123C
3 // ?>=<89:;D

4

yy

A correct run through this graph (when DFS procedure goes back we put a dash
over the name of the edge, runs of nested DFS are put into brackets), in which
the cycle through C is detected, is:

1, 2, 3, 4, 4, 3, [3, 4, 2, ◦]C

204 J. Barnat, L. Brim, and J. Stř́ıbrná

An incorrect run, in which the correct order of seeds is not preserved, is for
instance

1, 2, 3, 4, 4, 3, 2, 1, [1, 2, 3, 4, 4, 3, 2, 1]A, [3, 3]C

A possible solution to this problem was proposed in [LS99]. It is based on
the original distributed SPIN procedure for reachability analysis and consists
of adding synchronisation to the distributed algorithm. The synchronisation is
done by sending suitable acknowledgements that will exclude the possibility of a
seed being processed before another seed that is “below”, thus avoiding incorrect
runs where cycles may not be detected. This solution cuts off any parallelism
and so in fact does not perform better than the plain sequential algorithm.

What we propose here is an attempt to provide a more subtle solution that
makes it possible to effectively tackle larger tasks than standard SPIN within
reasonable space limits. The idea is to reduce the necessary synchronisation by
using additional data structures with limited space requirements.

Yet another important issue that must be taken into consideration is that
any distributed extention of SPIN should incorporate the main memory and
complexity reduction techniques available in SPIN, such as state compression,
partial order reduction, and bit state hashing. The approach that we present
here is compatible with such mechanisms as much as possible.

4 Distributed Model-Checking Algorithm

From the discussion in the previous section it is clear that it is crucial to take
care about the order in which individual nested DFS procedures are performed.
We need to make sure that the following invariant will always hold for each
distributed computation:

A nested DFS procedure is allowed to begin from a seed S if and only if
all seeds below S have already been tested for cycle detection.

Different states, hence also seeds, of the state space are processed on different
nodes in accordance with the partition function. Hence, it may occur that for
a seed S, a computation of the subgraph generated by S is interrupted and
continues on a different node. We need to keep track of such situations.

In order to represent dependencies between states (corresponding to compu-
tations transferred to other nodes) we shall build a dynamic structure that will
keep this essential information. We need to remember the states which caused
the computation to be transferred to other nodes. We call these states transfer
states. Two border states are involved in the transfer of computation and we need
to remember only one of them. A border state of node m is a state belonging to
the node m whose incoming or outgoing edge crosses to another node. We shall
also include all the seeds that appear during the computation in order to ensure
the correct order of performed nested DFS procedures. Each node maintains its
own structure and we call it DepS (Dependency Structure).

Distributed LTL Model-Checking in SPIN 205

4.1 Dependency Structure

Dependency structure (DepS) for node n is a graph whose vertices are either
seeds of the local state space of node n or transfer states for node n. Vertices
can be indexed by a set of node names. A transfer state for node n is either a
border state of node n whose predecessor is a border state of another node, or a
border state of another node whose predecessor is a border state of node n (see
Figure 1 for graphical explanation). The starting state of the entire state space
is also a vertex in DepS for the node running manager process. Note that a seed
(or the starting state) can be a transfer state. In this case it will occur only once
in the structure (as a seed and and a transfer state at the same time). Indexes
in vertices corresponding to transfer states represent the nodes from which the
computation was transferred to the transfer state.

L K J I H G
E

C
A

>
=

?>=<89:;S

 A
AAA

����
��

��
��

��
S is the starting state

?>=<89:;X

%%KK
KKK

K X is a transfer state for node II and I

?>=<89:;76540123A

!!C
CC

CC
CC

CC
C

?>=<89:;76540123B

zztttttttttttt A is a seed and a transfer state for I and II

Node I B is a seed

Node II ?>=<89:;C

II�����������
C is a transfer state for node I and II

Fig. 1. Transfer States and Seeds

The edges in DepS for node n represent the reachability relation between
states (and provide crucial information to perform nested DFS procedures in
a “correct order”). The dependency structure is a forest-like structure and is
built dynamically during the computation of the DFS procedure. All vertices in
the structure are the states actually visited by the algorithm during depth-first
search. For each vertex its immediate successors contain the states (seeds or
transfer states) which the vertex is “waiting for”, in the sense that the states
must be processed (checked for nested DFS in case of seeds) before the state
corresponding to the vertex can be processed.

The structure DepS is changing dynamically as the computation continues.
Whenever the DFS procedure reaches an unvisited seed or a transfer state, a
new vertex corresponding to the state is added to the structure as an immediate
successor of the last visited state which is present in the structure. Moreover, in
the case of a transfer state a request to continue with DFS procedure is sent to
the owner node of the transfer state (if not already sent before).

During the computation each node receives requests from other nodes to
continue a walk through the state space. These requests are remembered in

206 J. Barnat, L. Brim, and J. Stř́ıbrná

a local queue of pending requests and the queue is processed in the standard
FIFO manner. For each request it is first checked whether the state is in the set
of visited states. If it is, then it is checked whether there is any vertex in the
(local) DepS structure containing the same state. If yes, then the “name” of the
node who sent the request is added to its index. If the request is not in the DepS
structure and it is in the set of visited states, then an acknowledgement of the
request is sent back. If the request is not in the set of visited states (hence not
in DepS) a new root vertex is added to DepS with “name” of the sender node
as its index.

B
?

<
9

6
4

2

?>=<89:;S

!!B
BB

B
~~|||

|
I I : S //

''NNN
NNN X

•
}}{{{

{
•
��

B{II,III} // V

II ?>=<89:;X

����
��

��

•
��

Y{III}

•

��0
00

00
00

0
?>=<89:;76540123B

��

?>=<89:;Y II : X{I} // B

• // •

66mmmmmmmm e _ Y

~
z

v
s

pmk

Z{III}

77ppppp

?>=<89:;Z

OO

•
��~~

~~

FF ?>=<89:;Voo // •

OO

III : V{I}

��>
>>

>>
>>

>>
//

&&MMMMMM Y

?>=<89:;76540123C

``AAAA
III C // Z

B

Fig. 2. Example of dependency structures

Removing a vertex from the dependency structure is possible only after the
DFS procedure has gone up through the respective state. The removal procedure
first checks whether the state associated with the vertex is a seed, in which case
the state is added to the global queue of seeds waiting for the nested DFS
procedure. For any state all acknowledgements are generated according to the
(vertexes) index. Then the vertex is taken out of the structure. Removing any
vertex may make its parents’ successor list empty and thus cause elimination of
the parent and parent’s parent, and so on.

Whenever the DFS procedure goes up through a state with a vertex in DepS,
it is checked whether the vertex is a leaf of the tree. If it is the case the removal
procedure is initiated. Removal procedure can also be initiated by incoming
acknowledgements.

In Figure 2, the dependency structures for nodes I, II and III are shown
before any vertex has been removed.

Distributed LTL Model-Checking in SPIN 207

4.2 Manager Process

Distributed SPIN uses a manager process that starts the verification program
on a predetermined set of network nodes. After it has detected termination, the
manager process stops the program, and collects the results. In our version of
distributed SPIN we will in addition require that the manager process is in charge
of initiating nested DFS procedures, in accordance with the method described
in previous sections.

All nodes involved in the computation communicate with the manager pro-
cess by sending information about their status. The status of each node is de-
termined by: DFS status, nDFS status, numbers of sent and received requests
(DFS and nDFS packets). DFS status can be busy, idle-empty-DepS and idle-
nonempty-DepS, whereas nDFS status can be only busy or idle. In this way, the
manager process has a local representation of the current state of all the nodes.

Nested DFS Procedures

As we have mentioned before, our approach relies on the requirement that only
one nested DFS procedure is allowed at a time. This is the reason for sending
the seed to the manager process instead of starting a nested DFS procedure
immediately during the DFS procedure. The manager process maintains a global
queue of seeds waiting for their nested DFS procedures. It starts a nested DFS
procedure for the first seed in the queue only if no other nested DFS procedure
is running. This will be determined by checking that the nDFS status of all
nodes is equal to idle and the overall number of all sent nDFS packets equals
the overall number of all received nDFS packets, as it was already implemented
in [LS99]. After the manager process has started a nested DFS procedure for a
seed, it will be removed from the queue.

Termination Detection

The distributed algorithm must terminate when there is no waiting seed in the
global queue, no nested DFS procedure is running, the overall numbers of sent
and received DFS packets are equal, and all nodes have an idle-empty-DepS DFS
status.

Termination detection can be handled in a similar way as it is done by dis-
tributed SPIN. The only exception is the situation when the overall numbers
of sent and received DFS packets are equal, no computer has busy DFS status,
but some node has idle-nonempty-DepS DFS status. In this case the manager
process asks all the nodes with idle-nonempty-DepS DFS status for information
about their DepS structures. The nodes reply by sending the following elements
of their DepS structures: XZ

u→ Y , where X is a node from the DepS structure
which has a nonempty index Z, and Y is the node representing the transfer state
for which X is waiting. The edge has a label u that represents the presence of
a seed on the path from X to Y , including X and excluding Y , in the original
DepS structure. So u can be either 1 = with a seed or 0 = without a seed.

208 J. Barnat, L. Brim, and J. Stř́ıbrná

The manager process constructs a temporary graph out of the received
elements, and using standard Tarjan’s algorithm [Tar72], it finds a maximal
strongly connected component with no outgoing edges in the graph. Note that
such a strongly connected component must exist. The manager process checks
for the presence of an edge with label 1 in the strongly connected component.
If there is no such edge then an acknowledgement is generated for an arbitrary
node from the found component, and distributed computation continues in the
standard way. In the other case, i.e. when there is a cycle labelled by 1 in the
temporary graph, it is clear that a cycle through an accepting state must exist
in the original state space and therefore the verified property does not hold. In
this case the algorithm terminates immediately. The whole situation is shown in
Figure 3.

B
?

=
:

8

6

4

?>=<89:;S

����
��

��
��

��
�

��:
::

::
::

::
::

I I : S //

##H
HHHH A

B{II} // C

?>=<89:;76540123A

��:
::

::
::

::
::

?>=<89:;76540123B

��

II : A{I} // B

C{I}

;;vvvvv

II ?>=<89:;C

LL

Elements sent to the manager process are: B{II}
1→ C, A{I}

1→ B, C{I}
0→ B

The constructed graph is: A{I}
1 // B{II}

1 ++
C{I}

0
ll

A strongly connected component without outgoing edges is: B{II}
1 ++

C{I}
0

ll

A cycle through an accepting state has been found.

Fig. 3. Example

4.3 The Algorithm

Our algorithm extends the distributed algorithm from [LS99] in the sense that it
employs the same distributed method for reachability analysis. This ensures that
we do not exclude use of the main memory and complexity reduction techniques
available in SPIN.

The underlying idea behind our distributed model-checking algorithm is the
following. The whole reachable graph is partitioned into as many regions as the

Distributed LTL Model-Checking in SPIN 209

number of network nodes. Each node performs the computation on the states
that belong to its own region. When a successor belonging to another region
is generated, a message containing the new state is sent to its owner. Received
messages are stored in a (remote) queue and processed sequentially. For both
DFS and nested DFS procedures, only the yet unvisited states are explored. In
contrast with the original algorithm, not all visited states are permanently stored
in the set of visited states, only transfer states and seeds. Each node keeps the
set of permanently stored states in array PV[i]. To prevent cycling through not
permanently stored states, the algorithm keeps track of all visited states within
the processing of each received request. This temporary set is kept in array V[i],
which is initialised to ∅ before processing another request (state) from the queue
of pending requests U[i].

To ensure the right order of nested DFS procedure calls, an additional data
structure DepS is maintained (see subsection 4.1). This structure is built by
procedures CREATE IN DepS(s) and ADD TO DepS(s1,s2), using a temporary
pointer Last visited. A root vertex in the dependency structure, which cor-
responds to state s, is created by procedure CREATE IN DepS(s). Procedure
ADD TO DepS(s1,s2) creates a vertex corresponding to state s2, if it does not
exist yet, and adds an edge between the vertices corresponding to states s1 and
s2. A vertex representing state s, written as 〈s in DepS〉 in the pseudo-code,
is composed of several components (fields): parent, successors, state, DFS gone
and index. The field parent points to the vertex for which this vertex has been
created as a successor. The field index is a set of node names. The field DFS gone
is a flag indicating whether the DFS procedure has already walked through the
state up. The meaning of the fields successors and state is obvious.

Some additional local variables are used in the algorithm. The meaning of
Seed, state, came from and tmp is obvious. Variable toplevel is used to dis-
tinguish whether procedure DFV was called recursively from DFV or whether it
was called from procedure VISIT. Variable Seed queue is a global variable which
is maintained by MANAGER PROCESS. It represents the queue of seeds waiting for
their nested DFS procedures to be started.

All nodes execute the same code. For simplicity we assume that the master
node runs the manager process only. The DFS procedure is started by calling
procedure START(i,starting state). The value of i is the name of the node
(integer). The procedure puts starting state into the queue of pending re-
quests U[i] at the proper node i. Procedure VISIT(i) is called for all nodes
except the master node at the end. Procedure MANAGER PROCESS is called at
the master node. The task of procedure MANAGER PROCESS was explained in the
subsection 4.2.

Procedure PROCESS INCOMING PACKETS is actually a boolean function which
returns false if the computation should be stopped for some reason, and returns
true otherwise. This function plays the role of the client side of the manager
process. It updates the numbers of locally received and sent packets and sends
this numbers and information about the node status to the manager process. It
also processes all incoming packets. The requests are stored in U[i] queue, the

210 J. Barnat, L. Brim, and J. Stř́ıbrná

acknowledgements are collected and procedure REMOVE is called for them. Also
all control packets are handled by it.

Procedure VISIT waits for queue U[i] to be nonempty. It collects a request
from the queue, and resets variables toplevel and V[i]. In case that the request
is a new one (it is not in the set PV[i]), procedure DFV is called. It is necessary
to distinguish between the first DFS procedure and the nested DFS procedure.
In the case of nested DFS procedure variable Seed must be set, on the other
hand in the case of DFS procedure appropriate actions on the DepS structure are
performed. The states already processed, which are requested again, are checked
for presence in the DepS structure. If the corresponding vertex exists, only its
index is updated, otherwise the acknowledgement is generated.

The DFV procedure checks whether the state belongs to the same node. If
not, the message containing the state is sent to the node owning the state and
the DepS structure is updated. (Note: In the case of nested DFS procedure the
seed, for which the nested search is running, is included in the message as well.)
When the DFV procedure is called from the VISIT procedure, a new root vertex
must be added to the DepS structure, and the state must be stored in the set of
permanently visited states PV[i]. In case that state is a seed it is necessary to
update the DepS structure. Note that the DepS structure is maintained only for
the first DFS procedure and not for the nested DFS procedure. Conversely, the
check whether the reached state is Seed is done only in the nested DFS proce-
dure. The CYCLE FOUND procedure informs the manager process about the fact
that a cycle has been found. Before all the successors of state are generated,
state is added to the set of actually visited states (V[i]). The unvisited succes-
sors are handled by recursive calling of procedure DFV. If a successor is a seed or
a transfer state which is already contained in the DepS structure (hence it must
appear in PV[i]), the appropriate edge is added to the DepS structure. After
all successors of state have been processed and if state is a seed, the check
whether there are any more successors of the corresponding vertex in the DepS
structure is performed. In case there are no successors, the vertex is removed
from DepS by procedure REMOVE.

Procedure REMOVE(vertex) is crucial with respect to maintaining the DepS
structure. It is responsible not only for (recursive) deleting of the vertices from
the memory but also for sending the seeds to the global queue (Seed queue),
and for sending all appropriate acknowledgements, which is done by procedure
ACK(vertex) (see the pseudo–code for details).

Note that the same state can be visited twice, in the DFS procedure and in
the nested DFS procedure. To store the information about the fact that the state
has or has not been visited in one or both DFS procedures only one additional
bit is required (see [Hol91]). We assume that this one additional bit is included
in the bit vector representing the state. That is why the bit vectors representing
the same state differ in the case of DFS procedure and nested DFS procedure.

The Partition function is used for partitioning of the state space. The choice
of a “good” partition function is crucial in the distributed algorithm since a
“bad” partition of states among the nodes may cause communication overhead.

Distributed LTL Model-Checking in SPIN 211

This issue was addressed in [LS99], where several partition functions were pro-
posed and tested.

The pseudo-code of our proposed algorithm follows:

procedure START(i,start_state)
begin

DepS := {};
U[i] := {};
PV[i] := {};
Last_visited := nil;
Seed := nil;
if (i = Partition(start_state)) then
begin
U[i] := U[i] + {start_state};

end;
if (i = 0) then
begin
MANAGER_PROCESS();

end
else
begin
VISIT(i);

end;
end.

procedure VISIT(i)
begin

while (PROCESS_INCOMING_PACKETS()) do
begin
if (U[i] <> {}) then
begin

get (state, came_from) from U[i];
toplevel := true;
V[i] := {};
if (state not in PV[i])) then
begin
if (Nested(state)) then
begin

Seed := state.seed;
DFV(i,state);

end
else
begin

DFV(i,state);
if (<state in DepS>.successors = {}) then
begin
REMOVE(<state in DepS>);

end;
end;

end

212 J. Barnat, L. Brim, and J. Stř́ıbrná

else
begin
if (state in DepS) then
begin

<state in DepS>.index := <state in DepS>.index
+ {came_from};

end
else
begin

ACK(<state in DepS>);
end;

end;
end;

end;
end.

procedure REMOVE(vertex)
begin

if Accepting(vertex.state) then
begin
Seed_queue := Seed_queue + {vertex.state};

end;
ACK(vertex);
tmp := vertex.predecessors;
for (i in tmp) do
begin
i.successors := i.successors - {vertex};

end;
free(vertex);
for (i in tmp) do
begin
if ((i.successors = {}) and (i <> nil)

and (i.DFS_gone)) then
begin

REMOVE(i);
end;

end;
end.

procedure DFV(i,state)
begin

if (PARTITION(state) <> i) then
begin
U[PARTITION(state)] := U[PARTITION(state)] + {state};
if (not Nested(state)) then
begin

ADD_TO_DepS (Last_visited, state);
end;
return;

end;

Distributed LTL Model-Checking in SPIN 213

if (toplevel) then
begin

PV[i] := PV[i] + state;
if (not Nested(state)) then
begin
CREATE_IN_DepS(state);
Last_visited := state;

end;
end;
if (Accepting(state)) then
begin

if (not(toplevel) and (not Nested(state))) then
begin
ADD_TO_DepS(Last_visited,state);
Last_visited := state;
PV[i] := PV[i] + state;

end;
end;
toplevel := false;
V[i] := V[i] + {state};
for (newstate in successors of state) do
begin

if (Nested(state) and (Seed=newstate)) then
begin
CYCLE_FOUND();

end;
if (newstate not in (V + DepS + PV[i])) then
begin
DFV(i,newstate);

end
else
begin
if ((newstate in DepS) and (not in 1stDFS stack)) then
begin

ADD_TO_DepS (Last_visited,newstate);
end;

end;
if (Accepting(state) and (not Nested(state))) then
begin
Last_visited := <Last_visited in DepS>.parent;
<state in DepS>.DFS_gone := true;
if (<state in DepS>.successors = {}) then
begin

REMOVE(<state in DepS>);
end;

end;
end;

end.

214 J. Barnat, L. Brim, and J. Stř́ıbrná

5 Complexity and Effectiveness

We shall try to estimate the overall size of dependency structures constructed
during distributed computations. For any node, there are two kinds of states
stored in the structure – all seeds that are visited by this node, and all states
that arise in the computation but are transferred to another node in accordance
with the partition function (transfer states). The number of the latter is crucial
because this can be in the worst case quadratic wrt the overall number of states.

The partition function we employ was originally proposed in [LS99] where
it was also shown that with this function, the fraction of transfer states in the
global state space is at most 2

P , where P is the number of processes. The number
of transfer states T is bounded by the expression S × R, where S is the number
of states and R is the maximum of out-going degrees over all states. R is at
most P × ND, where ND is the maximal number of nondeterministic choices
of a process. Thus we get that T ≤ (S × P × ND) and the average number of
transfer states is 2

P × S × P × ND = 2S × ND. Hence, the number of states
stored in the dynamic structure is on average S + 2(2S × ND) which works
out to be O(S × ND). In most real systems the amount of non-determinism
(represented by ND) is limited and small. We may conclude that the memory
complexity of the distributed algorithm is on average linear in the size of the
state space and the factor given by non-determinism.

We will compare our approach with the simple method of synchronisation
proposed in [LS99]. We will look in detail at how the first and nested depth-
first-search procedures work. The first DFS searches through the state space and
marks accepting states (seeds) with a particular kind of flag. The computation
of first DFS is completely asynchronous and never stops before the whole state
space is searched trough. The nested DFS searches in a similar, i.e. distributed,
way the subgraph rooted in the currently processed seed. If there are seeds
ready to be processed, the nested DFS is running in parallel with the first DFS.
Therefore our method allows parallel computations which are almost disabled in
the simple synchronisation technique.

We conclude the complexity analysis by a brief remark on the time complexity
of the algorithm. As we do not permanently store all the visited states, we have
to recompute some of them if required. This could in the worst case result in
the theoretically not very significant increase of time complexity from quadratic
to cubic in the size of the state space. Moreover, for SPIN with its very fast
time performance the space (memory) is the real critical resource limitation in
practice.

6 Conclusions and Future Research

We have proposed an extension to the existing distributed algorithm used in
the verification checker SPIN, which allows to model-check LTL formulas. This
problem was suggested in [LS99] and left unsolved. The method used is very
simple and requires some synchronisation between nodes.

Distributed LTL Model-Checking in SPIN 215

The experimental version of the algorithm has been implemented and a series
of preliminary experiments has been performed on a cluster of nine 366 MHz
Pentium PC Linux workstations with 128 Mbytes of RAM each interconnected
with a fast 100Mbps Ethernet and using MPI library.

We have compared the performance of our algorithm with the standard se-
quential version of SPIN running on a single computer. Although the implemen-
tation of the Dependency structure was far from being optimal, we were able to
receive some promising results. Our results show that it is possible to increase
the capability of SPIN to check LTL formulas in a distributed manner. For test-
ing we have used some of the scalable problems from the SPIN distribution. The
experimental version was mainly used to get a fast feedback on applicability of
the method. We intend to perform an extensive testing on a variety of different
examples using the new and more sophisticated implementation currently under
development.

There are several problems we intend to consider in the future. Firstly, we
have used MPI library to get a fast prototype implementation. However, the
overhead caused by this communication infrastructure is quite high. We assume
that using another communication infrastructure (like TCP/IP) will certainly
lead to better performance. Secondly, our algorithm utilises a partition function
which is based on the function used by distributed SPIN. We realize that par-
tition function plays a crucial role in the effectiveness of the algorithm and so
we want to investigate other techniques that might be better suited to model-
checking LTL formulas. Finally, for simplicity reasons we allow only one nested
DFS procedure to be performed at a time. Under certain circumstances, which
can be effectively recognised from the dependency structure, it is possible to
start more than one nested DFS procedure at a time and we want to extend our
distributed algorithm by partial parallelisation of nested DFS procedures.

References

[AAC87] S. Aggarwal, R. Alonso, and C. Courcoubetis. Distributed reachabil-
ity analysis for protocol verification environments. In P. Varaiya and
H. Kurzhanski, editors, Discrete Event Systems: Models and Applica-
tion, volume 103 of LNCIS, pages 40–56, Berlin, Germany, August 1987.
Springer-Verlag.

[BBS00] J. Barnat, L. Brim, and J. Stř́ıbrná. Distributed LTL Model-Checking in
SPIN. Technical Report FI-MU-10/00, Masaryk Univeristy Brno, 2000.

[BDHGS00] S. Ben-David, T. Heyman, O. Grumberg, and A. Schuster. Scalable
distributed on-the-fly symbolic model checking. In third International
Conference on Formal methods in Computer-Aided Design (FMCAD’00),
Austin, Texas, November 2000.

[Dil96] David L. Dill. The murϕ verification system. In Conference on Computer-
Aided Verification (CAV ’96), Lecture Notes in Computer Science, pages
390–393. Springer-Verlag, July 1996.

216 J. Barnat, L. Brim, and J. Stř́ıbrná

[HGGS00] Tamir Heyman, Danny Geist, Orna Grumberg, and Assaf Schuster.
Achieving scalability in parallel reachability analysis of very large cir-
cuits. In Orna Grumberg, editor, Computer Aided Verification, 12th
International Conference, volume 1855 of Lecture Notes in Computer
Science, pages 20–35. Springer-Verlag, June 2000.

[Hol91] G.J. Holzmann. Design and Validation of Computer Protocols. Prentice-
Hall, Englewood Cliffs, New Jersey, 1991.

[Hol97] Gerard J. Holzmann. The model checker SPIN. IEEE Transactions on
Software Engineering, 23(5):279–295, May 1997. Special Issue: Formal
Methods in Software Practice.

[LS99] F. Lerda and R. Sisto. Distributed-memory model checking with SPIN.
In SPIN workshop, number 1680 in LNCS, Berlin, 1999. Springer.

[Tar72] Robert Tarjan. Depth first search and linear graph algorithms. SIAM
journal on computing, pages 146–160, Januar 1972.

[UD97] U.Stern and D. L. Dill. Parallelizing the murϕ verifier. In O. Grumberg,
editor, Proceedings of Computer Aided Verification (CAV ’97), volume
1254 of LNCS, pages 256–267, Berlin, Germany, 1997. Springer.

[WL93] P. Wopler and D. Leroy. Reliable hashing without collision detection. In
Conference on Computer-Aided Verification (CAV ’93), Lecture Notes in
Computer Science, pages 59–70. Springer-Verlag, 1993.

Parallel State Space Construction
for Model-Checking

Hubert Garavel, Radu Mateescu, and Irina Smarandache

Inria Rhône-Alpes / Vasy, 655, avenue de l’Europe
F-38330 Montbonnot Saint Martin, France

Hubert.Garavel@inria.fr, Radu.Mateescu@inria.fr, Irina.Sturm@st.com

Abstract. The verification of concurrent finite-state systems by model-
checking often requires to generate (a large part of) the state space
of the system under analysis. Because of the state explosion problem,
this may be a resource-consuming operation, both in terms of memory
and Cpu time. In this paper, we aim at improving the performances of
state space construction by using parallelization techniques. We present
parallel algorithms for constructing state spaces (or Labeled Transition
Systems) on a network or a cluster of workstations. Each node in the
network builds a part of the state space, all parts being merged to form
the whole state space upon termination of the parallel computation.
These algorithms have been implemented within the Cadp verification
tool set and experimented on various concurrent applications specified
in Lotos. The results obtained show close to ideal speedups and a good
load balancing between network nodes.

Keywords: distributed algorithms, labeled transition system, Lotos,
model-checking, state space construction, verification

1 Introduction

As formal verification becomes increasingly used in the industry as a part of the
design process, there is a constant need for efficient tool support to deal with
real-size applications. Model-checking [20,10] is a successful verification method
based on reachability analysis (state space exploration) and allows an automatic
detection of early design errors in finite-state systems. Model-checking works by
constructing a model (state space) of the system under design, on which the
desired correctness properties are verified.

There are essentially two approaches to model-checking: symbolic verifica-
tion [9,10] represents the state space in comprehension, by using various encod-
ing techniques (e.g., Bdds), and enumerative verification [32,11,12,19] represents
the state space in extension, by enumerating all reachable states. Enumerative
model-checking techniques can be further divided in global techniques, which
require to entirely construct the state space before performing the verification,
and local (or on-the-fly) techniques, which allow to construct the state space
simultaneously with the verification.

M.B. Dwyer (Ed.): SPIN 2001, LNCS 2057, pp. 217–234, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

218 H. Garavel, R. Mateescu, and I. Smarandache

In this paper, we focus on enumerative model-checking, which is well-
adapted to asynchronous, non-deterministic systems containing complex data
types (records, sets, lists, trees, etc.). More precisely, we consider the problem of
constructing a Labeled Transition System (Lts), which is the natural model for
high-level, action-based specification languages, especially process algebras such
as Ccs [30], Csp [18], Acp [4], or Lotos [21]. An Lts is constructed by explor-
ing the transition relation starting from the initial state (forward reachability).
During this operation, all explored states must be kept in memory in order to
avoid multiple exploration of a same state. Once the Lts is constructed, it can be
used as input for various verification procedures, such as bisimulation/preorder
checking and temporal logic model-checking. Moreover, when the verification
requires to explore the entire Lts (e.g., when verifying invariant temporal prop-
erties or checking bisimulation), since the state contents is abstracted away in
a constructed Lts, the memory consumed is generally much smaller than for
on-the-fly verification on the initial specification.

State space construction may be very consuming both in terms of memory
and execution time: this is the so-called state explosion problem. During the
last decade, different techniques for handling state explosion have been pro-
posed, among which partial orders and symmetries; however, for industrial-scale
systems, these optimizations are not always sufficient. Moreover, most of the
currently available verification tools work on sequential machines, which limits
the amount of memory (between 0.5 and 2 GBytes on usual configurations), and
therefore the use of clusters or networks of workstations is desirable.

In this paper, we investigate an approach to parallelize state space construc-
tion on several machines, in order to benefit from all the local memories and Cpu
resources of each machine. This allows to reduce both the amount of memory
needed on each machine and the overall execution time. We propose algorithms
for parallel construction of Ltss, developed using the generic environments Bcg
and Open/Cæsar [13] for Lts manipulation provided by the Cadp verification
tool set [12]. Since these environments are language independent, our algorithms
can be directly used not only for Lotos, but also for every language connected
to the Open/Cæsar application programming interface, such as Uml [22].

The implementation is based on standard sockets, available everywhere, and
was experimented on two different configurations: a typical network of work-
stations (Sparc workstations running Solaris and Pcs running Linux, connected
using 100 Mb/s Ethernet), and a cluster of Pcs (with 450 MHz processor and
512 MBytes main memory) connected using Sci (Scalable Coherent Interface).
Each machine in the network is responsible for constructing a part of the Lts,
this part being determined using a static partition function. Upon termination
of the parallel computation, which is detected by means of a virtual ring-based
distributed algorithm, all parts are merged to form the complete Lts.

We experimented with our algorithms on three non-trivial protocols specified
in Lotos: the home audio-video (Havi) protocol of Philips [33], the TokenRing
leader election protocol [14], and the Scsi-2 bus arbitration protocol [3].

Parallel State Space Construction for Model-Checking 219

Related work. Distributed state space construction has been studied in various
contexts, mostly for the analysis of low-level formalisms. such as Petri nets,
stochastic Petri nets, discrete-time and continuous-time Markov chains [5,6,2,1,
8,31,27,16,23].

All these approaches share a common idea: each machine in the network ex-
plores a subset of the state space. However, they differ on a number of design
principles and implementation choices such as: the choice between a shared mem-
ory architecture and a message-passing one, the use of hash tables or B-trees to
store states on each machine, the way of partitioning the state space using either
static hash functions or dynamic ones that allow dynamic load balancing, etc.

As regards high-level languages for asynchronous concurrency, a distributed
state space exploration algorithm [26] derived from the Spin model-checker [19]
has been implemented for the Promela language. The algorithm performs well
on homogeneous networks of machines, but it does not outperform the standard,
sequential implementation of Spin, except for problems that do not fit into
the main memory of a single machine. Several Spin-specific partition functions
are experimented, the most advantageous one being a function that takes into
account only a fraction of the state vector.

Another distributed state enumeration algorithm has been implemented in
the Murϕ verifier [34]. The speedups obtained are close to linear and the hash
function used for state space partition provides a good load balancing. However,
experimental data reported concerns relatively small state spaces (approxima-
tively 1.5 M states) on a 32-node UltraSparc Myrinet network of workstations.

There also exist approaches, such as [24], in which parallelization is applied
to “partial” verification, i.e., state enumeration in which some states can be
omitted with a low probability. In the present paper, we only address exact,
exhaustive verification issues.

For completeness, we can also mention an alternative approach [17] in which
symbolic reachability analysis is distributed over a network of workstations: this
approach does not handle states individually, but sets of states encoded using
Bdds.

Paper outline. Section 2 gives some preliminary definitions and specifies the
context of our work. Section 3 describes the proposed algorithms for parallel
construction of Ltss. Section 4 discusses implementation issues and presents
various experimental results. Finally, Section 5 gives some concluding remarks
and directions for future work.

2 Definitions

A (monolithic) Labeled Transition System (Lts) is a tuple M = (S, A, T, s0),
where S is the set of states, A is the set of actions, T ⊆ S×A×S is the transition
relation, and s0 ∈ S is the initial state. A transition (s, a, s′) ∈ T indicates that
the system can move from state s to state s′ by performing action a. All states
in S are assumed to be reachable from s0 via (sequences of) transitions in T .

220 H. Garavel, R. Mateescu, and I. Smarandache

In the model-checking approach by state enumeration, there are essentially
two ways to represent an Lts:

explicitly, by enumerating all its states and transitions. In this case, the con-
tents of states becomes irrelevant, since the essential information is given by
actions (transition labels). Therefore, when storing an Lts as a computer file,
it is sufficient to encode states as natural numbers. An explicit representa-
tion of Ltss is provided by the Bcg (Binary Coded Graph) file format of the
Cadp verification tool set [12]. The Bcg format is based upon specialized
compression algorithms, allowing compact encodings of Ltss.

implicitly, by giving its initial state s0 and its successor function succ : S → 2T

defined by succ(s) = {(s, a, s′) | (s, a, s′) ∈ T}. An implicit representa-
tion of Ltss is provided by the generic, language independent environment
Open/Cæsar [13] of Cadp. Open/Cæsar offers primitives for accessing
the initial state of an Lts and for enumerating the successors of a given
state, as well as various data structures (state tables, stacks, etc.), allowing
straightforward implementations of on-the-fly verification algorithms.

Our objective is to translate Ltss from an implicit to an explicit representation
by using parallelization techniques.

In order to represent a monolithic Lts M = (S, A, T, s0) on N machines
(numbered from 0 to N − 1), we introduce the notion of partitioned Lts D =
(M0, . . . , MN−1, s0), where: S = ∪N−1

i=0 Si and Si ∩ Sj = ∅ for all 0 ≤ i, j < N
(the state set is partitioned into N classes, one class per machine), A = ∪N−1

i=0 Ai,
T = ∪N−1

i=0 Ti and (s, a, s′) ∈ Ti ⇒ s′ ∈ Si for all 0 ≤ i < N (transitions between
two states belonging to different classes are part of the transition relation of
the component Lts containing the target state). Note that initial states of the
component Ltss Mi are irrelevant, since the corresponding subgraphs may be
not connected (i.e., not reachable from a single state). A partitioned Lts can be
represented as a collection of Bcg files encoding the components M0, . . . , MN−1.

3 Parallel Generation of LTSs

In this section we present two complementary algorithms allowing to convert
an implicit Lts (defined using the Open/Cæsar interface) to an explicit one
(represented as a Bcg file) using N machines connected by a network. These
algorithms operate in two steps:

– Construction of a partitioned Lts represented as a collection of Bcg files.
This is done by using an algorithm called Distributor, which is executed
on every machine in order to generate a Bcg file encoding a component of
the partitioned Lts.

– Conversion to a monolithic Lts represented as a single Bcg file. This is done
using an algorithm called BcgMerge, which is executed on a sequential
machine in order to generate a single Bcg file containing all the states and
transitions of the partitioned Lts.

Parallel State Space Construction for Model-Checking 221

Once the Bcg file encoding the initial Lts has been constructed, it can be
used as input for the Evaluator 3.0 model-checker [28] of Cadp, which allows
linear-time verification of temporal formulas expressed in regular alternation-free
µ-calculus.

3.1 Construction of Partitioned LTSs

We consider a network of N machines numbered from 0 to N − 1 and an Lts
M = (S, A, T, s0) given implicitly by its initial state s0 and its successor func-
tion succ. Machine i can send a message m to machine j by invoking a primitive
named Send (j, m), and can receive a message by invoking another primitive
Receive (m). There are four kinds of messages: Arc, Rec, Snd, and Trm, the first
one being used for sending Lts transitions and the others being related to termi-
nation detection. Send and Receive are assumed to be non-blocking. Receive
returns a boolean answer indicating whether a message has been received or not.

The parallel generation algorithm Distributor that we propose is shown
on Figure 1. Each machine executes an instance of Distributor and explores a
part of the state space S. The states explored by each machine are determined
using a static partition function h : S → [0, N − 1]. Machine i explores all states
s such that h(s) = i and produces a Bcg file Bi = (Si, Ai, Ti). The computation
is started by the machine called initiator, having the index h(s0), which explores
the initial state of the Lts.

The states visited and explored by machine i during the forward traversal of
the Lts are stored in two sets Vi (“visited”) and Ei (“explored”), respectively.
Vi and Ei are implemented using the state table handling primitives provided
by the Open/Cæsar environment. The transitions to be written to the local
Bcg file Bi are temporarily kept in a work list Li. It is worth noticing that
the Distributor algorithm only keeps in memory the state set Si of the corre-
sponding component of the partitioned Lts, whilst the transition relation Ti is
stored in the Bcg file Bi. The Distributor algorithm consists of a main loop,
which performs three actions:

(a) A state s ∈ Vi is explored by enumerating all its successor transitions
(s, a, s′) ∈ succ(s). If a target state s′ belongs to machine i (i.e., h(s′) = i),
the corresponding transition is kept in the list Li and will be processed
later. Otherwise, the transition is sent to machine h(s′) as a message
Arc(ni(s), a, s′), where ni(s) is the number associated by machine i to s.
Machine h(s′) is responsible for writing the transition to its local Bcg file
and for exploring state s′. Note that there is no need to send the contents
of state s itself, but only its number ni(s).

(b) A transition is taken from Li and is written to the Bcg file Bi by computing
appropriate numbers for the source and target states. In order to obtain
a bijective numbering of Lts states across the N Bcg files, each state s
explored by machine i is assigned a number ni(s) such that ni(s) mod N = i.
This is done using a counter ci, which is initialized to i and incremented by
N every time a new state is visited.

222 H. Garavel, R. Mateescu, and I. Smarandache

procedure Distributor (i, s0, succ, h, N) is
initiator i := (h(s0) = i); Li := ∅; Ei := ∅; Ai := ∅; Ti := ∅; ci := i;
if initiator i then

terminit := false; ni(s0) := ci; Vi := {s0}; Si := {ni(s0)}
else

Vi := ∅; Si := ∅
endif;
terminated i := false; nbsent i := 0; nbrecd i := 0;
while ¬terminated i do

(a) if Vi 6= ∅ then
let s ∈ Vi; Vi := Vi \ {s}; Ei := Ei ∪ {s};
forall (s, a, s′) ∈ succ(s) do

if h(s′) = i then
Li := Li ∪ {(ni(s), a, s′)}

else
Send (h(s′), Arc(ni(s), a, s′)); nbsent i := nbsent i + 1

endif
endfor

(b) elsif Li 6= ∅ then
let (n, a, s) ∈ Li; Li := Li \ {(n, a, s)};
if s 6∈Ei ∪ Vi then

ci := ci + N ; ni(s) := ci; Vi := Vi ∪ {s}; Si := Si ∪ {ni(s)};
endif;
Ai := Ai ∪ {a}; Ti := Ti ∪ {(n, a, ni(s))}

endif;
(c) if Receive (m) then

case m is
Arc(n, a, s) → Li := Li ∪ {(n, a, s)}; nbrecd i := nbrecd i + 1
Rec(k) → if ¬initiator i then

Send ((i + 1) mod N , Rec(k + nbrecd i))
elsif terminit then

totalrecd := k; Send ((i + 1) mod N , Snd(nbsent i))
endif

Snd(k) → if ¬initiator i then
Send ((i + 1) mod N , Snd(k + nbsent i))

elsif terminit ∧ totalrecd = k then
Send ((i + 1) mod N , Trm)

else
terminit := false

endif
Trm → if ¬initiator i then

Send ((i + 1) mod N , Trm)
endif;
terminated i := true

endcase
endif;
if Li = ∅ ∧ Vi = ∅ ∧ initiator i ∧ ¬terminit then

terminit := true; Send ((i + 1) mod N , Rec(nbrecd i))
endif

endwhile
end

Fig. 1. Parallel generation of an Lts as a collection of Bcg files

Parallel State Space Construction for Model-Checking 223

(c) An attempt is made to receive a message m from another machine. If m has
the form Arc(n, a, s), it denotes a transition (s′, a, s), where n is the source
state number nj(s′) assigned by the sender machine of index j = n mod N .
In this case, the contents of m is stored in the list Li; otherwise, m is related
to termination detection (see below). Thus, the Bcg file Bi will contain all
Lts transitions whose target states are explored by machine i.

In order to detect the termination of the parallel Lts generation, we use a vir-
tual ring-based algorithm inspired by [29]. According to the general definition,
(global) termination is reached when all local computations are finished (i.e.,
each machine i has neither remaining states to explore, nor transitions to write
in its Bcg file Bi) and all communication channels are empty (i.e., all sent
transitions have been received).

The principle of the termination detection algorithm used in Distributor is
the following. All machines are supposed to be on an unidirectional virtual ring
that connects every machine i to its successor machine (i + 1) mod N . Every
time the initiator machine finishes its local computations, it checks whether
global termination has been reached by generating two successive waves of Rec
and Snd messages on the virtual ring to collect the number of messages received
and sent by all machines, respectively. A message Rec(k) (resp. Snd(k)) received
by machine i indicates that k messages have been received (resp. sent) by the
machines from the initiator up to (i − 1) mod N . Each machine i counts the
messages it has received and sent using two integer variables nbrecd i and nbsent i,
and adds their values to the numbers carried by Rec and Snd messages. Upon
receipt of the Snd(k) message ending the second wave, the initiator machine
checks whether the total number k of messages sent is equal to the total number
totalrecd of messages received (the result of the Rec wave). If this is the case, it
will inform the other machines that termination has been reached, by sending
a Trm message on the ring. Otherwise, the initiator concludes that termination
has not been reached yet and will generate a new termination detection wave
later.

In practice, to reduce the number of termination detection messages, each
machine propagates the current wave only when its local computations are fin-
ished (for simplicity, we did not specify this in Figure 1). Experimental results
have shown that in this case there is almost no termination detection overhead,
two waves being always sufficient. This distributed termination detection scheme
seems to use less messages than the centralized termination detection schemes
used in the parallel versions of Spin [26] and Murϕ [34], which in all cases re-
quire several broadcast message exchanges between a coordinator machine and
all other machines.

3.2 Merging of Partitioned LTSs into Monolithic LTSs

After constructing a collection of N Bcg files representing a partitioned Lts
by using the Distributor algorithm, the next step is to convert them into a
unique Bcg file in order to make it usable by the verification tools of Cadp.

224 H. Garavel, R. Mateescu, and I. Smarandache

Since the states contained in different Bcg files have been given unique numbers
by the Distributor algorithm (i.e., every state belonging to the Bcg file Bi

has an index k such that k mod N = i and two states belonging to the same
Bcg file have different numbers), this could simply be done by concatenating
all transitions of the N Bcg files.

However, since the partition function h is not perfect, a simple concatenation
may result in a Bcg file with an initial state number different from 0 (when
h(s0) 6= 0) and with “holes” in the numbering of states (when |Si| 6= |Sj | for
two Bcg files Bi and Bj). For example, for an Lts with 7 states and N = 2,
Distributor could produce S0 = {0, 2, 4, 6, 8}, S1 = {1, 3}, and h(s0) = 1,
which would lead by concatenation to a Bcg file with S = {0, 1, 2, 3, 4, 6, 8}
instead of S = {0, 1, 2, 3, 4, 5, 6}. A contiguous renumbering of the states would
be more suitable for achieving a better compaction of the final Bcg file.

The conversion algorithm BcgMerge that we propose (see Figure 2) takes
as inputs a partitioned Lts represented as a collection of Bcg files B0, . . . , BN−1
generated using Distributor from an Lts M = (S, A, T, s0), and the index i0
(= h(s0)) of the Bcg file containing s0. BcgMerge constructs a Bcg file that
encodes M by numbering the states contiguously from 0 to |S| − 1.

procedure BcgMerge (B0, ..., BN−1, i0) is
c := 0;
forall k = 0 to N − 1 do

i := (i0 + k) mod N ;
ci := c;
c := c + |{q ∈ Si | q mod N = i}|
c := c + |{q ∈ Si | q mod N = i}|

end;
Q := ∅; A := ∅; R := ∅; q0 := 0;
forall k = 0 to N − 1 do

i := (i0 + k) mod N ;
forall (q, a, q′) ∈ Ti do

Q := Q ∪ {cq mod N + (q div N), ci + (q′ div N)};
A := A ∪ {a};
R := R ∪ {(cq mod N + (q div N), a, ci + (q′ div N))}

end
end

end

Fig. 2. Merging of a collection of Bcg files into a single one

Let Ni = |{q ∈ Si | q mod N = i}| be the number of states belonging to
file Bi, i.e., the states s ∈ S of the original Lts having h(s) = i. The idea is
to assign to each Bcg file Bi (for i going from i0 to (i0 + N − 1) mod N) a
new range [ci, ci + Ni − 1] of contiguous state numbers such that ci0 = 0 and

Parallel State Space Construction for Model-Checking 225

c(i+1) mod N = ci + Ni. The final Bcg file B = (Q, A, R, q0) is then obtained
by concatenating the transitions of all Bcg files Bi, each state number q ∈ Si

corresponding to a state s ∈ S with h(s) = i being replaced by ci + (q div N)
(where div denotes integer division). Thus, the initial state s0 will get number
q0 = ci0 + (i0 div N) = 0 and all states will be numbered contiguously.

It is worth noticing that the BcgMerge algorithm processes only one Bcg
file Bi at a time and does not require to load in memory the transition relation
of Bi. State renumbering is performed on-the-fly, resulting in a low memory
consumption, independent from the size of the input Bcg files.

4 Experimental Results

We implemented the Distributor and BcgMerge algorithms within the
Cadp verification tool set [12] by using the Open/Cæsar [13] and Bcg en-
vironments. To ensure maximal portability, the communication primitives of
Distributor are built on top of Tcp/Ip using standard Unix sockets. An alter-
native implementation using the Mpi (Message Passing Interface) standard [15]
would have been possible; we chose sockets because they are built-in in most
operating systems and because the Distributor algorithm was simple enough
not to require the higher-level functionalities provided by Mpi.

We experimented Distributor and BcgMerge on three industrial-sized
protocols specified in Lotos:

(a) The Havi protocol [33], standardized by several companies, among which
Philips, in order to solve interoperability problems for home audio-video
networks. Havi provides a distributed platform for developing applications
on top of home networks containing heterogeneous electronic devices and
allowing dynamic plug-and-play changes in the network configuration. We
considered a configuration of the Havi protocol with 2 device control man-
agers (1,039,017 states and 3,371,039 transitions, state size of 80 bytes).

(b) The correct TokenRing leader election protocol [14] for unidirectional ring
networks, which is an enhanced version of the protocols proposed by Le
Lann [25] and by Chang & Roberts [7]. This TokenRing protocol corrects
an error in Le Lann’s and Chang & Roberts’ protocols, by allowing to des-
ignate a unique leader station in presence of various faults of the system,
such as message losses and station crashes. We considered a configuration of
the TokenRing protocol with 3 stations (12,362,489 states and 45,291,166
transitions, state size of 6 bytes).

(c) The arbitration protocol for the Scsi-2 bus [3], which is designed to provide
an efficient peer-to-peer I/O bus for interconnecting computers and periph-
eral devices (magnetic and optical disks, tapes, printers, etc.). We consid-
ered Scsi-2 configurations consisting of a controller device and several disks
that accept data transfer requests from the controller. Two versions of the
specification have been used: v1, with 5 disks (961,546 states and 5,997,701
transitions, state size of 13 bytes) and v2, with 6 disks (1,202,208 states and
13,817,802 transitions, state size of 15 bytes).

226 H. Garavel, R. Mateescu, and I. Smarandache

The experiments have been performed on a cluster of 450 MHz, 512 MBytes Pcs
connected via Sci (the Distributor and BcgMerge have been developed and
debugged on an Ethernet network of three Sun workstations; however, using
a dedicated Sci network with more machines was more appropriate for perfor-
mance measurement). Our performance measurements concern three aspects:
speedup, partition function, and use of communication buffers.

4.1 Speedup

Figure 3 shows the speedups obtained by generating the Ltss of the aforemen-
tioned Lotos specifications in parallel on a cluster with up to 10 Pcs. For the
TokenRing and Havi protocols, the speedups observed on N machines are
given approximately by the formulas SN = t1/tN = 0.4N and SN = 0.3N (tk
being the execution time on k machines). For the v1 and v2 versions of the
Scsi-2 protocol, the speedups obtained are close to ideal.

0

2

4

6

8

10

12

3 4 5 6 7 8 9 10

S
pe

ed
up

Number of processors

Ideal speedup
SCSI v1
SCSI v2

TOKEN-RING
HAVi

Fig. 3. Speedup measurements for the Havi, TokenRing, and Scsi-2 protocols

These results can be explained by examining the implementation of the
Distributor algorithm. The state sets explored by each machine in the net-
work are stored locally using generic hash tables provided by the Open/Cæsar
library. Since these hash tables use open hashing (with a fixed number of hash
entries), the number of states contained in each table is not bounded (except
by the amount of available memory on each machine) and the search time in
the hash table grows linearly with the number of states already inserted in the
table. Therefore, splitting the state set among N machines is likely to reduce
by N the overall search time. Also, parallelization becomes efficient when the
time spent in generating state successors is important, which happens for Lotos

Parallel State Space Construction for Model-Checking 227

specifications having many parallel processes and complex synchronization pat-
terns. This explains why the speedup obtained for the Scsi-2 is better than
for the TokenRing: the Scsi-2 example involves complex data computations
(handling of disk buffers and of device status kept by the controller) and syn-
chronizations (multiple rendezvous between 6 or 7 devices to gain bus access),
whereas the TokenRing example has very simple computations and only binary
synchronizations between stations and communication links.

The speedups obtained show a good overlapping between computations and
communications during the execution of Distributor. This is partly due to
a buffered communication scheme with well-chosen dimensions of transmission
buffers (see Section 4.3).

4.2 Choosing a Good Partition Function

In order to increase the performance of the parallel generation algorithm, it is
essential to achieve a good load balancing between the N machines, meaning that
the N parts of the distributed Lts should contain (nearly) the same number
of states. As indicated in Section 3.1, we adopted a static partition scheme,
which avoids the potential communication overhead occurring in dynamic load
balancing schemes. Then, the problem is to choose an appropriate partition
function h : S → [0, N − 1] associating to each state a machine index.

Because we target at language independent state space construction, we can-
not assume that state contents exhibit structural properties (e.g., constant fields,
repeated patterns, etc.) particular to a given language. All that we can assume
is that state contents are uniformly distributed bit strings.

The Open/Cæsar environment [13] of Cadp offers several hashing func-
tions f(s, P) that compute, for a state s and a prime number P , a hash-code
between 0 and P − 1. The function we chose1 performs very well, i.e., it uni-
formly distributes the states of S into P chunks, each one containing |S| div P
states. To distribute these P chunks on N machines, the simplest way is to take
the remainder of the hash-code modulo N , yielding a partition function of the
form h(s) = f(s, P) mod N . In order to guarantee that h also distributes states
uniformly among the N machines, we must choose an appropriate value for P .

Still assuming that state contents are uniformly distributed, the parti-
tion function h will allocate (P div N) + 1 chunks on each machine j ∈
{0, . . . , (P mod N) − 1} and P div N chunks on each other. If N is prime,
the obvious choice for P is P = N , leading to a distribution of a single chunk
on each machine. If N is not prime, a choice of P such that P mod N = 1
ensures that only machine 0 has one chunk more than the others. In this case,
P should be sufficiently big, in order to reduce the size |S| div P of a chunk. For
the experiments presented in this paper, we chose P around 1,600,000 (which
gives a limit of 10 states per chunk).
1 This hashing function, called CAESAR STATE 3 HASH() in the Open/Cæsar library,

calculates the remainder modulo a prime number of the state vector (seen as an
arbitrarily long integer number).

228 H. Garavel, R. Mateescu, and I. Smarandache

Figures 4 and 5 show the distribution of the states on 10 machines for the
main protocols described above. In order to evaluate the quality of the distri-

bution, we calculated the standard deviation σ =
√

(
∑N−1

i=0 (|Si| − |S|/N)2)/N
between the sizes |Si| of the state sets explored by each machine i in the net-
work. For all examples considered, the values obtained for σ are very small (less
than 1% of the mean value |S|/N), which indicates a good performance of the
partition function h.

96000

96050

96100

96150

96200

96250

1 2 3 4 5 6 7 8 9 10

N
um

be
r

of
 s

ta
te

s

Indexes of the processors

SCSI v1
MEAN

119300

120100

120900

1 2 3 4 5 6 7 8 9 10

N
um

be
r

of
 s

ta
te

s

Indexes of the processors

SCSI v2
MEAN

Fig. 4. State distributions for the Scsi-2 protocol on 10 machines

1.234e+06

1.2345e+06

1.235e+06

1.2355e+06

1.236e+06

1.2365e+06

1.237e+06

1.2375e+06

1.238e+06

1 2 3 4 5 6 7 8 9 10

N
um

be
r

of
 s

ta
te

s

Indexes of the processors

TOKEN-RING
MEAN

100000

101000

102000

103000

104000

105000

106000

107000

108000

1 2 3 4 5 6 7 8 9 10

N
um

be
r

of
 s

ta
te

s

Indexes of the processors

HAVi
MEAN

Fig. 5. State distribution for the TokenRing and Havi protocols on 10 machines

The quality of a partition function could also be estimated according to the
number of “cross-border” transitions of the partitioned Lts (i.e., transitions hav-

Parallel State Space Construction for Model-Checking 229

ing the source state in a component and the target state in another component).
This number should be as small as possible, since it is equal to the number of Arc
messages sent over the network during the execution of Distributor. However,
in practice, reducing the number of cross-border transitions would require ad-
ditional information about the structure of the program, and therefore must be
language dependent. Since Distributor is built using the language indepen-
dent Open/Cæsar environment, we did not focused on developing language
dependent (e.g., Lotos-specific) partition functions. This might be done in the
future, by extending the Open/Cæsar application programming interface to
provide more information about the internal structure of program states.

4.3 Using Communication Buffers

To reduce the overhead of message transmission and to increase the overlap-
ping between communications and computations, we chose an asynchronous,
non-blocking implementation of the Send and Receive primitives used in the
Distributor algorithm. Also, to reduce communication latency, these primi-
tives actually perform a buffering of messages (Lts transitions) instead of sending
them one by one as indicated in Figure 1.

The implementation is based on Tcp/Ip and standard Unix communication
primitives (sockets). In practice, for each machine 0 ≤ i ≤ N−1, there is a virtual
channel (i, j) to every other machine j 6= i with a corresponding logical buffer of
size L used for storing messages transmitted on the channel. The N − 1 virtual
channels associated with each machine share the same physical channel (socket),
which has an associated buffer of size Lp. For a given size d of messages (which
depends on the application), we observed that the optimal length of the logical
transmission buffer is given by the formula Lopt = Lp/d(N − 1). Experiments
show that for this value, all transitions accumulated in the logical transmission
buffers can be sent at the physical level by the next call to Send. Figure 6
illustrates the effect of buffering on Distributor’s speedup for the Scsi-2 and
the TokenRing protocols. A uniform increase of speedup is observed between
the variants L = 1 (no buffering) and L = Lopt . The difference in speedup is
greater for the TokenRing protocol because the percentage of communication
time w.r.t. computation time is more important than for the Scsi-2 protocol.
Therefore, the value Lopt seems a good choice for ensuring a maximal overlapping
of communications and computations.

5 Conclusion and Future Work

We presented a solution for constructing an Lts in parallel using N ma-
chines connected by a network. Each machine constructs a part of the Lts
using the Distributor algorithm, all resulting parts being combined using
the BcgMerge algorithm to form the complete Lts. These algorithms have
been implemented within the Cadp tool set [12] using the generic environments
Open/Cæsar [13] and Bcg for implicit and explicit manipulation of Ltss.

230 H. Garavel, R. Mateescu, and I. Smarandache

0

2

4

6

8

10

3 4 5 6 7 8 9 10

S
pe

ed
up

Number of processors

Ideal speedup
SCSI v1

SCSI v1 (1)

0

2

4

6

8

10

3 4 5 6 7 8 9 10

S
pe

ed
up

Number of processors

Ideal speedup
SCSI v2

SCSI v2 (1)

0

2

4

6

8

10

3 4 5 6 7 8 9 10

S
pe

ed
up

Number of processors

Ideal speedup
TOKEN-RING

TOKEN-RING (1)

Fig. 6. Speedup measurements for the Scsi-2 and TokenRing protocols for transmis-
sion buffers of size 1 and Lopt

Parallel State Space Construction for Model-Checking 231

Being independent from any specification language is a difference between
our approach and other related work. To our knowledge, all published algo-
rithms but [8] are dedicated to a specific low-level formalism (Petri nets, Markov
chains, etc.) or high-level language (Murϕ, Promela, etc.). On the contrary,
as the Open/Cæsar and Bcg environments are language independent, the
Distributor and BcgMerge tools can be used not only for Lotos, but also
for every language having a connection to the Open/Cæsar interface, such as
the Umlaut compiler for Uml [22].

Another distinctive feature of our approach relies in the scheme used by
Distributor and BcgMerge to assign unique numbers to states. Although
the Distributor algorithm is similar to the ExploreDistributed algorithm of
[8], we manage to number states with mere integers, whereas [8] uses pairs of
the form 〈processor number , local state number〉.

We experimented our approach on several real-size Lotos specifications, for
which we generated large Ltss (up to 12 million states and 45 million transi-
tions). Compared to the data reported for other high-level languages such as
Murϕ [34] and Promela [26], respectively, we were able to generate larger
(11 times and 4.2 times, respectively) state spaces.

We believe that the memory overhead required by distribution (i.e., hash
table auxiliary data structures, communication buffers, etc.) is negligible. More-
over, our experimental results show that parallel construction of Ltss provides
linear speedups. This is due both to the good quality of the partition func-
tion used to distribute the state space among different machines, and to well-
dimensioned communication buffers. The speedups obtained are more important
for the specifications involving complex data computations and synchronizations,
because in this case the traversal of Lts transitions becomes time expensive and
can be distributed profitably across different machines.

In this paper, we focused on the problem of constructing Ltss in parallel,
with a special emphasis on resource management issues such as state storage
in distributed memories and transition storage in distributed filesystems. For a
proper separation of concerns, we deliberately avoided to mix parallel state space
constructions with other issues such as on-the-fly verification. Obviously, it would
be straightforward to enhance the parallel algorithms with on-the-fly verification
capabilities such as deadlock detection, invariant checking, or more complex
properties. However, this was not suitable to obtain meaningful experimental
results (especially, the sizes of the largest state spaces that can be constructed
using the parallel approach), because on-the-fly verification may either terminate
early without exploring the entire state space, or explore a larger state space
when relying on automata product techniques.

This work can be continued in several directions. Firstly, we plan to pursue
our experiments on new examples and assess the scalability of the approach
using a more powerful parallel machine, a cluster of 200 Pcs that is currently
under construction at Inria Rhône-Alpes.

Secondly, we plan to extend the Distributor tool in order to handle spec-
ifications containing dynamic data structures, such as linked lists, trees, etc.

232 H. Garavel, R. Mateescu, and I. Smarandache

This will require the transmission of variable length, typed data values over a
network, contrary to the current implementation of Distributor, which uses
messages of fixed length.

Finally, we will seek to determine at which point the sequential verification
algorithms available in Cadp (for model-checking of temporal logic formulas on
Ltss, comparison and minimization of Ltss according to equivalence/preorder
relations) will give up. As the sizes of Ltss constructed by Distributor will
increase, it will be necessary to parallelize the verification algorithms themselves.
Two approaches can be foreseen: parallel algorithms operating on-the-fly dur-
ing the exploration of the Lts, or sequential algorithms working on (already
constructed) partitioned Ltss.

Acknowledgements. We are grateful to Xavier Rousset de Pina and to Em-
manuel Cecchet for interesting discussions and for providing valuable assistance
in using the Pc cluster of the Sirac project of Inria Rhône-Alpes. We also
thank Adrian Curic and Frédéric Lang for their careful reading and comments
on this paper.

References

1. S. Allmaier, S. Dalibor, and D. Kreische. Parallel Graph Generation Algorithms
for Shared and Distributed Memory Machines. In Proceedings of the Parallel Com-
puting Conference PARCO’97 (Bonn, Germany). Springer-Verlag, 1997.

2. S. Allmaier, M. Kowarschik, and G. Horton. State Space Construction and Steady-
State Solution of GSPNs on a Shared-Memory Multiprocessor. In Proceedings
of the 7th IEEE International Workshop on Petri Nets and Performance Models
PNPM’97 (Saint Malo, France), pages 112–121. IEEE CS-Press, 1997.

3. ANSI. Small Computer System Interface-2. Standard X3.131-1994, American
National Standards Institute, January 1994.

4. J. A. Bergstra and J. W. Klop. Process Algebra for Synchronous Communication.
Information and Computation, 60:109–137, 1984.

5. S. Caselli, G. Conte, F. Bonardi, and M. Fontanesi. Experiences on SIMD Mas-
sively Parallel GSPN Analysis. In G. Haring and G. Kotsis, editors, Computer
Performance Evaluation: Modelling Techniques and Tools, volume 794. Lecture
Notes in Computer Science, Springer-Verlag, 1994.

6. S. Caselli, G. Conte, and P. Marenzoni. Parallel State Space Exploration for GSPN
Models. In G. De Michelis and M. Diaz, editors, Applications and Theory of
Petri Nets 1995, volume 935, pages 181–200. Lecture Notes in Computer Science,
Springer-Verlag, 1995.

7. Ernest Chang and Rosemary Roberts. An Improved Algorithm for Decentralized
Extrema-Finding in Circular Configurations of Processes. Communications of the
ACM, 22(5):281–283, may 1979.

8. G. Ciardo, J. Gluckman, and D. Nicol. Distributed State Space Generation of
Discrete-State Stochastic Models. INFORMS Journal of Computing, 1997.

9. A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri. NUSMV: a New Symbolic
Model Checker. Springer International Journal on Software Tools for Technology
Transfer (STTT), 2(4):410–425, April 2000.

10. E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 2000.

Parallel State Space Construction for Model-Checking 233

11. D. Dill. The Murϕ Verification System. In R. Alur and T. Henzinger, edi-
tors, Proceedings of the 8th International Conference on Computer-Aided Verifica-
tion CAV’96, volume 1102 of Lecture Notes in Computer Science, pages 390–393.
Springer Verlag, July 1996.

12. Jean-Claude Fernandez, Hubert Garavel, Alain Kerbrat, Radu Mateescu, Laurent
Mounier, and Mihaela Sighireanu. CADP (CÆSAR/ALDEBARAN Development
Package): A Protocol Validation and Verification Toolbox. In Rajeev Alur and
Thomas A. Henzinger, editors, Proceedings of the 8th Conference on Computer-
Aided Verification (New Brunswick, New Jersey, USA), volume 1102 of Lecture
Notes in Computer Science, pages 437–440. Springer Verlag, August 1996.

13. Hubert Garavel. OPEN/CÆSAR: An Open Software Architecture for Verifica-
tion, Simulation, and Testing. In Bernhard Steffen, editor, Proceedings of the First
International Conference on Tools and Algorithms for the Construction and Anal-
ysis of Systems TACAS’98 (Lisbon, Portugal), volume 1384 of Lecture Notes in
Computer Science, pages 68–84, Berlin, March 1998. Springer Verlag. Full version
available as INRIA Research Report RR-3352.

14. Hubert Garavel and Laurent Mounier. Specification and Verification of Various
Distributed Leader Election Algorithms for Unidirectional Ring Networks. Science
of Computer Programming, 29(1–2):171–197, July 1997. Special issue on Industri-
ally Relevant Applications of Formal Analysis Techniques. Full version available
as INRIA Research Report RR-2986.

15. W. Gropp, S. Huss-Lederman, A. Lumsdaine, E. Lusk, B. Nitzberg, W. Saphir,
and M. Snir. MPI: The Complete Reference, Vol. 2 — The MPI-2 Extensions.
MIT Press, 1998.

16. B. Haverkort, H. Bohnenkamp, and A. Bell. On the Efficient Sequential and Dis-
tributed Evaluation of Very Large Stochastic Petri Nets. In Proceedings PNPM’99
(Petri Nets and Performance Models). IEEE CS-Press, 1999.

17. T. Heyman, D. Geist, O. Grumberg, and A. Schuster. Achieving Scalability in
Parallel Reachability Analysis of Very Large Circuits. In E. A. Emerson and
A. P. Sistla, editors, Proceedings of the 12th International Conference on Computer-
Aided Verification CAV’2000 (Chicago, IL, USA), volume 1855 of Lecture Notes
in Computer Science, pages 20–35. Springer Verlag, July 2000.

18. C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.
19. G. Holzmann. The Model Checker SPIN. IEEE Transactions on Software Engi-

neering, 23(5):279–295, May 1997.
20. Gerard J. Holzmann. Design and Validation of Computer Protocols. Software

Series. Prentice Hall, 1991.
21. ISO/IEC. LOTOS — A Formal Description Technique Based on the Temporal

Ordering of Observational Behaviour. International Standard 8807, International
Organization for Standardization — Information Processing Systems — Open Sys-
tems Interconnection, Genève, September 1988.

22. J-M. Jézéquel, W.M. Ho, A. Le Guennec, and F. Pennaneac’h. UMLAUT: an
Extendible UML Transformation Framework. In R.J. Hall and E. Tyugu, editors,
Proceedings of the 14th IEEE International Conference on Automated Software
Engineering ASE’99. IEEE, 1999. Also available as INRIA Technical Report RR-
3775.

23. W. J. Knottenbelt and P. G. Harrison. Distributed Disk-Based Solution Techniques
for Large Markov Models. In Proceedings of the 3rd International Meeting on the
Numerical Solution of Markov Chains NSMC’99, Zaragoza, Spain, September 1999.

234 H. Garavel, R. Mateescu, and I. Smarandache

24. W. J. Knottenbelt, M. A. Mestern, P. G. Harrison, and P. Kritzinger. Probability,
Parallelism and the State Space Exploration Problem. In Proceedings of the 10th
International Conference on Modelling, Techniques and Tools (TOOLS ’98), pages
165–179. LNCS 1469, September 1998.

25. Gérard Le Lann. Distributed Systems — Towards a Formal Approach. In
B. Gilchrist, editor, Information Processing 77, pages 155–160. IFIP, North-
Holland, 1977.

26. F. Lerda and R. Sista. Distributed-Memory Model Checking with SPIN. In
D. Dams, R. Gerth, S. Leue, and M. Massink, editors, Proceedings of the 5th and
6th International SPIN Workshops on Theoretical and Practical Aspects of SPIN
Model Checking SPIN’99, volume 1680 of Lecture Notes in Computer Science, pages
22–39. Springer Verlag, July 1999.

27. P. Marenzoni, S. Caselli, and G. Conte. Analysis of Large GSPN Models: a Dis-
tributed Solution Tool. In Proceedings of the 7th International Workshop on Petri
Nets and Performance Models, pages 122–131. IEEE Computer Society Press, 1997.

28. Radu Mateescu and Mihaela Sighireanu. Efficient On-the-Fly Model-Checking for
Regular Alternation-Free Mu-Calculus. In Stefania Gnesi, Ina Schieferdecker, and
Axel Rennoch, editors, Proceedings of the 5th International Workshop on Formal
Methods for Industrial Critical Systems FMICS’2000 (Berlin, Germany), GMD
Report 91, pages 65–86, Berlin, April 2000. Also available as INRIA Research
Report RR-3899.

29. F. Mattern. Algorithms for Distributed Termination Detection. Distributed Com-
puting, 2:161–175, 1987.

30. Robin Milner. Communication and Concurrency. Prentice-Hall, 1989.
31. D. Nicol and G. Ciardo. Automated Parallelization of Discrete State-Space Gen-

eration. Journal of Parallel and Distributed Computing, 47:153–167, 1997.
32. Y.S. Ramakrishna and S.A. Smolka. Partial-Order Reduction in the Weak Modal

Mu-Calculus. In A. Mazurkiewicz and J. Winkowski, editors, Proceedings of the
8th International Conference on Concurrency Theory CONCUR’97, volume 1243
of Lecture Notes in Computer Science, pages 5–24. Springer Verlag, 1997.

33. Judi Romijn. Model Checking the HAVi Leader Election Protocol. Technical
Report SEN-R9915, CWI, Amsterdam, The Netherlands, June 1999. submitted to
Formal Methods in System Design.

34. U. Stern and D. Dill. Parallelizing the Murϕ Verifier. In Computer Aided Verifica-
tion, volume 1254, pages 256–267. Lecture Notes in Computer Science, Springer-
Verlag, 1997.

Model Checking Systems of Replicated
Processes with Spin

Fabrice Derepas1 and Paul Gastin2

1 Nortel Networks, 1, Place des frères Montgolfier,
78928 Yvelines Cedex 09, France.
fderepas@nortelnetworks.com

2 LIAFA, UMR 7089 Université Paris 7, 2 place Jussieu,
F-75251 Paris Cedex 05, France.
Paul.Gastin@liafa.jussieu.fr

Abstract. This paper describes a reduction technique which is very
useful against the state explosion problem which occurs when model
checking distributed systems with several instances of the same process.
Our technique uses symmetry which appears in the system. Exchanging
those instances is not as simple as it seems, because there can be a lot of
references to process locations in the system. We implemented a solution
using the Spin model checker, and added two keywords to the Promela
language to handle these new concepts.

1 Introduction

When a new protocol for a distributed system is designed, the behavior of each
actor is known, but there is a need to validate the overall system behavior. Dis-
tributed systems are difficult to verify using model checkers due to the state
explosion problem. For n independent components, with S states and T transi-
tions the number of states and transitions of the system may be as large as Sn

and nTSn−1.
Very often in a distributed system several actors have similar roles, such as

several clients regarding a server for instance. This is implemented as several
processes running the same code. We say these actors are replicated processes.
In this case, the system presents some symmetry that should be exploited dur-
ing its verification. This has already been studied and implemented, e.g. in the
Murϕ model checker, where a special data structure with a restricted usage is
introduced and used to describe the symmetric part of the system [1,2,3]. An
implementation of scalarsets has been done under the Spin model Checker [4],
in the Symmetric Spin package [5].

But in a distributed system with communicating processes, a process often
keeps addresses of other processes in some variables, e.g. in order to send (or
receive from) them messages. For instance we have several copies of a variable
representing the process identifier in our system. This kind of variables does not
fulfill the above requirements, hence, in this case, one cannot use the aforemen-
tioned techniques and tools.

M.B. Dwyer (Ed.): SPIN 2001, LNCS 2057, pp. 235–251, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

236 F. Derepas and P. Gastin

The aim of this paper is to present an abstraction through symmetry which
works also when using variables holding references to other processes. We give
the theoretical background of our method and we describe an implementation for
the Spin model Checker. We have introduced two new constructs to the Promela
input language of Spin in order to allow the automatic reduction through sym-
metry. Our implementation translates the extended Promela description into a
classical one and stores some extra information that is used later by the model
checker. We have changed the next-state function of Spin so that it calls a reduc-
tion function after each newly generated state. The reduction function basically
maps each state to a state which is equivalent up to the symmetry of the system.
This reduction uses the extra information which was stored above.

We give some experimental results which show that our abstraction may in-
duce a huge reduction of the number of states visited during the model checking.

A more theoretic approach to reduction using symmetry has been given in [6].
There, it is shown that one can reduce a system M to its quotient by a subgroup
of auto(M) ∩ auto(ϕ) where auto(M) is the group of automorphisms of M and
auto(ϕ) is a similar group for the specification formula ϕ. For an automatic
implementation, the difficulty is to compute a suitable subgroup. Our paper
may be seen as a particular heuristic for this problem. By introducing the new
constructs to the Promela Language and reducing the kind of formula one may
write, we are able to compute a suitable subgroup that is contained in auto(M)∩
auto(ϕ). Actually, we do not use the formalism introduced in [6] and we give a
direct proof of our result.

Part 2 presents the generic notions we are adding to Promela [4] to implement
our abstractions. Soundness of the abstraction requires some constraints, verified
by the model checker. These constraints are described.

Part 3 presents a formal approach to justify our abstraction. This is similar
to proofs in [6], but it also allows to understand the former constraints.

Then part 4 gives some experimental results, and some heuristics for other
systems.

2 Permutation of Processes

This section details the need we have to permute processes. Notions required for
this operation: references and public variables, are presented. Modifications to
the Promela language follow.

2.1 Our Goal

We are interested in systems where there are several processes running the same
source code. This corresponds to several instances of the same procedure. Two
instances of the same procedure are considered to be relatively equivalent, that
is, for two such processes A1 and A2, we consider that the system state where
A1 is in state s1 and A2 in state s2, is equivalent to the system state where A1
is in state s2 and A2 in state s1.

Model Checking Systems of Replicated Processes with Spin 237

A1

Part of the state vector
which holds contents
of first instance

State vector
of the system

A2 A3

A1 ≤lex A2 ≤lex A3

Fig. 1. Ordered instances in state vector

A simple idea, regarding all instances A1, . . . , An of the same procedure, is
to sort them in - for instance - lexicographic order in the state vector. This is
shown in Figure 1. We have to apply this sorting procedure after each transition
of the system in order to have only states where all instances of a same procedure
are ordered. There can be two problems with this method:

– some global variables of the system are sometimes used as public variables
attached to the processes. For instance, if there are N instances of process
User one can imagine that each process has a boolean flag which may be
used by other processes and hence must be declared as a global array. When
exchanging two instances i and j of type User one should swap the global
variables flag[i] and flag[j]. Instead of defining such a flag as a global vari-
able, a much better solution would be to declare it inside each process as a
public variable.

– some variables in the system explicitly refer to the position of the process
in the state vector. This is the case for the pid variable. We should pay
attention to the fact that if two processes are exchanged, then those variables
should be updated since the positions in the state vector have changed. This
is the notion of reference. If a byte variable n is a reference to the position
of some process, then the value of n must be updated when two processes
are exchanged.

The discussion above explains the reduction that can be obtained by sorting
the state vector. Actually, we are considering an equivalence relation on the sys-
tem states and we are taking a representative for each equivalence class. Sorting
is just one possible algorithm to get such a representative but the technique
extends indeed to other algorithms giving a representative.

2.2 New Keywords for Promela

In order to use the two notions previously described we add two keywords to
the Promela language, ref to declare reference variables, and public to declare
local variables with a public scope. A reference variable of proctype P is used
to access the public variables of a process of proctype P . A complete example is
given in Figure 9.

For instance let us imagine a server with its own channel of messages. A
regular declaration in Promela would be:

238 F. Derepas and P. Gastin

chan q[2] = [4] of {mtype};

active [2] proctype server () {
q[_pid]?req;
...

}

active [3] proctype client () {
if
:: q[0]!req;
:: q[1]!req;
fi

}

The channel array q has to be a global variable since any process should be able
to send messages to these channels. When two processes are exchanged, mailbox
contents should also be exchanged. We propose to declare such a mailbox variable
as a public element of the process:

active [2] proctype server () {
public chan q = [4] of {mtype};
q?req;
...

}

active [3] proctype client () {
server[anyRef(server)].q!req

}

Actually the second declaration does not change the way the array is imple-
mented in the model checker. The keyword public implicitly declares a global
array. The size of the array is the number of instances of the proctype. We use
a short cut anyRef which allows to choose a random reference in the servers.

Now if we want the client to send its identifier in the request. A local variable
named _lid - for local identifier - is also defined. Its value is the number of the
instance in the type, starting at 0. This enables to easily index array using the
_lid variable. We get the following code:

active [2] proctype server () {
public chan q = [4] of {mtype, ref client};
ref client cli;
q?req,cli;
...

}

active [3] proctype client () {
server[anyRef(server)].q!req,_lid

}

Model Checking Systems of Replicated Processes with Spin 239

2.3 Requirements

In order to use this abstraction some precise requirements must be fulfilled.

– One can only assign to a reference variable r of proctype P the values
_undef_ref, or anyRef(P), or _lid if we are inside the proctype P , or s if
s is also a reference variable of proctype P . In particular, it is not allowed
to assign a constant such as 1 to a reference variable.

– One can only test whether a reference variable r of proctype P is equal
to _undef_ref, or to _lid if we are inside the proctype P , or to s if s is
also a reference variable of proctype P . It is neither allowed to use another
comparison such as < or ≤, nor to test whether r equals some constant such
as 1. Some examples are presented below.

ref client cli;
int n;
chan q = [2] of {ref client};
ref server ser;

Allowed in client Not allowed in client
cli== lid cli==n
cli= lid cli=1
cli= undef ref cli<_lid
q!_lid q!3
q!anyRef(client) q!ser
ser=anyRef(server) ser==cli

The anyRef function used in previous listings returns a reference of the spec-
ified type. From the Promela writer point of view this can be considered as a
function which returns a random reference. From the model checker writer this
is expanded as n transitions where n is the number of instances of the considered
proctype. For instance the following code from a previous example:

q[anyRef(server)]!req

is expanded as:

if
:: q[0]!req
:: q[1]!req
fi

3 Abstraction Based on Process Permutations

This section gives a formal framework for the abstraction we are performing.

240 F. Derepas and P. Gastin

3.1 Syntactic Definition

Our aim is to study a system consisting of an asynchronous product of n au-
tomata Ai = (Q, V ∪ W, P ∪ R ∪ S, Ii, Ti) where Q is a finite set of states. The
sets V and W contain the public and the global (non-reference) variables of
Ai. The private (non-reference) variables of Ai can be encoded into its states,
hence we do not need to keep them explicitly. Our reduction will permute the
automata Ai and since the values of the reference variables must be updated, we
need to keep them explicitly even if they are private variables. The sets P , R, S
contains respectively the private, the public and the global reference variables of
the system. Without loss of generality, we have assumed the same sets of states
and of variables for all automata.

The set of initial states is Ii ⊆ Q. The set Ti consists of transitions which are
tuples of the form (q, g, a, q′) where q, q′ ∈ Q are the source and target states of
the transition, g is the guard which must evaluate to true in order to enable the
transition, and a is the action which modifies the variables of the system.

We define the set of visible references without indirection by X0 = P ∪R∪S.
We define the set of visible references with k indirection by Xk = R × Xk−1.

For instance, in the following code the level of indirection is k = 2.

ref server servid;
clientRef[serverRef[servid]]=lid;

We define the set X of visible references by

X =
⋃

0≤k≤kmax

Xk

where kmax is the maximum level of indirection which can be found in the code.
We also define Y = W ∪ V ∪ (V × X) to be the set of visible (non-reference)
variables.

A guard g of a transition is a boolean function with domain

N
Y × {0, 1}X×X × {0, 1}X×{undef} × {0, 1}X×{lid}.

Intuitively, the truth of the guard g depends only on the values of the vis-
ible non-reference variables (NY) and on whether a visible reference variable
from X equals another visible reference variable ({0, 1}X×X), or is undefined
({0, 1}X×{undef}), or is the local identifier ({0, 1}X×{lid}).

An action a is a (possibly empty) sequence of assignments to visible variables
from X∪Y . An assignment is either a pair (v, f) where v ∈ Y and f is a mapping
from N

Y to N (the new value of a visible non-reference variable depends only
on the old values of the visible variables); or a pair (r, h) where r ∈ X and
h ∈ X ∪{undef, lid, anyRef(A)} for some A ⊆ {1, . . . , n}. The intuition is that
one can only assign to a reference variable the value of another reference variable
or one of the values undef, lid, anyRef(A).

Model Checking Systems of Replicated Processes with Spin 241

3.2 Semantic Definition

In the asynchronous product M =
∏ Ai = (S, I, T), each automaton Ai must

use a separate copy of the local variables V , P and R. Hence, the actual non-
reference variables of the system are V = W ∪ (V × {1, . . . , n}) and the actual
reference variables of the system are R = S∪(P ×{1, . . . , n})∪(R×{1, . . . , n}).

The set of concrete states of M is S = Qn × N
V × {0, . . . , n}R and the set

of concrete initial states of M is I = (
∏

1≤i≤n Ii) × {0}V × {0}R.
Since we are considering an asynchronous product, the set of transitions is

defined by T = T1 ∪ · · · ∪ Tn ⊆ S × S where (q, ν, ρ, q′, ν′, ρ′) ∈ Ti if there exists
some transition (p, g, a, p′) ∈ Ti such that qi = p and the guard g evaluates to
true in state (i, ν, ρ) and the new state q′ is defined by q′

i = p′ and q′
j = qj for all

j 6= i and (ν′, ρ′) is obtained by executing the sequence of assignments defined
by the action a.

In order to give a formal definition, we first define the actual variables asso-
ciated with the visible variables from X ∪ Y in state (i, ρ).

– For r ∈ X, the actual variable ri,ρ associated with r in state (i, ρ) is defined
by ri,ρ = r if r ∈ S, ri,ρ = (r, i) if r ∈ P ∪ R, and ri,ρ = (s, ρ(ti,ρ)) if
r = (s, t) ∈ R × Xk for some k ≥ 0.

– For v ∈ Y , the actual variable vi,ρ associated with v in state (i, ρ) is defined
by vi,ρ = v if v ∈ W , vi,ρ = (v, i) if v ∈ V , and vi,ρ = (w, ρ(ri,ρ)) if
w = (w, r) ∈ V × X.

Now the evaluation of the guard g in state (i, ν, ρ) is

g(ν(vi,ρ)v∈Y , (ρ(ri,ρ) = ρ(si,ρ))r,s∈X , (ρ(ri,ρ) = 0)r∈X , (ρ(ri,ρ) = i)r∈X)

which must be true for the transition to be enabled.
An assignment (v, f) to a visible non-reference variable v ∈ Y changes the

current value of the variable vi,ρ to f((ν(ui,ρ))u∈Y).
An assignment (r, h) to a visible reference variable r ∈ X changes the current

value of the variable ri,ρ to ρ(hi,ρ) if h ∈ X, or to 0 if h = undef, or to i if
h = lid, or to any value from A if h = anyRef(A) (this anyRef(A) assignment
creates several transitions, to different states).

3.3 Permutations of States

Here is a definition which specifies what happens to a concrete state of the system
M when we permute the processes.

Definition 1. Let π be a permutation over {1, . . . , n} which is extended to
{0, . . . , n} by setting π(0) = 0.

We first extend π to V ∪ R: for v ∈ W ∪ S we set π(v) = v, and for v ∈
V ∪ P ∪ R and 1 ≤ i ≤ n, we set π((v, i)) = (v, π(i)).

Next, for a concrete state s = (q, ν, ρ) ∈ S of M, we define

π(s) = (q ◦ π, ν ◦ π, π−1 ◦ ρ ◦ π).

Intuitively, applying the permutation π to the state s results in a new state π(s)
where the process at position i in π(s) is the process at position π(i) in s.

242 F. Derepas and P. Gastin

Our system consists of instances of a few proctypes. For instance, we may
have only two proctypes, e.g. client and server. Then we can write {1, . . . , n}
as a disjoint union A∪̇B where A and B correspond to the indices of the client
and server instances. Since all clients (resp. servers) share the same code, they
are modeled with the same initial states and the same transitions: Ii = IA and
Ti = TA for all i ∈ A and similarly for the servers. Also, we restrict the anyRef
assignment to use sets of indices corresponding to some proctype. In the example
above, only anyRef(A) and anyRef(B) are allowed.

It is only meaningful to permute processes of the same type, hence we will
only consider permutations that preserve proctypes. Formally, we say that a
permutation π of {1, . . . , n} preserves proctypes if for any proctype, the set of
indices corresponding to the instances of this proctype is invariant under the
permutation π. In the example above, this means that π(A) = A and π(B) = B.
Note that, if the permutation π preserves proctypes then we have Iπ(i) = Ii and
Tπ(i) = Ti for all i ∈ {1, . . . , n}. We are going to show that such permutations
do not have any effect on the transitions which can be triggered.

Lemma 1. Let s, s′ ∈ S be two concrete states of M and let π be a permutation
of {1, . . . , n} which preserves proctypes. If (s, s′) ∈ T then (π(s), π(s′)) ∈ T .

Proof. Let s = (q, ν, ρ) and s′ = (q′, ν′, ρ′) be such that (s, s′) ∈ T . Let i ∈
{1, . . . , n} be such that (s, s′) ∈ Ti and let (p, g, a, p′) ∈ Ti be the associated
transition. Let π be a permutation of {1, . . . , n} preserving proctypes.

We want to prove that (π(s), π(s′)) ∈ Tj with j = π−1(i) and the same
associated transition (p, g, a, p′) ∈ Tj = Tπ(j) = Ti. We let π(s) = (q̃, ν̃, ρ̃) and
π(s′) = (q̃′, ν̃′, ρ̃′).

Claim.
(1) For all r ∈ X, we have π(rj,ρ̃) = ri,ρ.
(2) For all v ∈ Y , we have π(vj,ρ̃) = vi,ρ.

Proof of (1). Let r ∈ X =
⋃

k Xk. We proceed by induction on k.
– If r ∈ S, then rj,ρ̃ = r = ri,ρ = π(r).
– If r ∈ P ∪ R, then π(rj,ρ̃) = π((r, j)) = (r, i) = ri,ρ.
– Assume the result holds for some k ≥ 0 and let r = (s, t) ∈ R × Xk. We have

π(rj,ρ̃) = π((s, ρ̃(tj,ρ̃))) = π((s, π−1 ◦ ρ ◦ π(tj,ρ̃))) = (s, ρ(ti,ρ)) = ri,ρ.

Proof of (2).
– If v ∈ W , then vj,ρ̃ = v = vi,ρ = π(v).

Model Checking Systems of Replicated Processes with Spin 243

– If v = (w, t) ∈ V × X. We have

π(vj,ρ̃) = π((w, ρ̃(tj,ρ̃))) = π((w, π−1 ◦ ρ ◦ π(tj,ρ̃))) = (w, ρ(ti,ρ)) = vi,ρ.

We deduce first that the evaluation of the guard g at (j, ν̃, ρ̃) equals the
evaluation of the guard g at (i, ν, ρ). Indeed, the arguments are the same since
for all u ∈ Y we have ν̃(uj,ρ̃) = ν ◦ π(uj,ρ̃) = ν(ui,ρ); and for all r ∈ X we have
ρ̃(rj,ρ̃) = π−1 ◦ ρ ◦ π(rj,ρ̃) = π−1 ◦ ρ(ri,ρ). Hence,

– ρ̃(rj,ρ̃) = ρ̃(sj,ρ̃) if and only if ρ(ri,ρ) = ρ(si,ρ),
– ρ̃(rj,ρ̃) = 0 if and only if ρ(ri,ρ) = 0, and
– ρ̃(rj,ρ̃) = j if and only if ρ(ri,ρ) = i.

It remains to show that executing from π(s) the transition associated with
(p, g, a, p′) ∈ Ti = Tj in the j-th automaton yields the state π(s′). We give the
proof when the action a consists of a single assignment. The generalization to a
sequence of assignments is easy.

– q̃′
j = q′

π(j) = q′
i = p′ and for k 6= j, we have π(k) 6= i and therefore q̃′

k =
q′
π(k) = qπ(k) = q̃k.

– If the assignment is (v, f) with v ∈ Y then we have ν̃′(vj,ρ̃) = ν′ ◦ π(vj,ρ̃) =
ν′(vi,ρ) = f((ν(ui,ρ))u∈Y) = f((ν ◦ π ◦ π−1(ui,ρ))u∈Y) = f((ν̃(uj,ρ̃))u∈Y).

– If the assignment is (r, h) with r ∈ X then we have
– If h ∈ X then ρ̃′(rj,ρ̃) = π−1◦ρ′◦π(rj,ρ̃) = π−1◦ρ′(ri,ρ) = π−1◦ρ(hi,ρ) =

π−1 ◦ ρ ◦ π(hj,ρ̃) = ρ̃(hj,ρ̃).
– If h = undef then ρ̃′(rj,ρ̃) = π−1 ◦ ρ′(ri,ρ) = π−1(0) = 0.
– If h = lid then ρ̃′(rj,ρ̃) = π−1 ◦ ρ′(ri,ρ) = π−1(i) = j.
– If h = anyRef(A) then ρ̃′(rj,ρ̃) = π−1 ◦ ρ′(ri,ρ) ∈ A since ρ′(ri,ρ) ∈ A

and π is a permutation preserving proctypes.

Therefore, we have shown that (π(s), π(s′)) ∈ Tj .

3.4 Abstraction

An abstraction consists of representing several states by a single state. We will
be using an equivalence relation R. Then an element will be chosen in each
equivalence class to represent all the class.

Using the permutations on M we can define the equivalence relation R be-
tween concrete states of M: we say that two concrete states s and s′ of M are
R-equivalent if π(s) = s′ for some permutation π of {1, . . . , n}.

Here is now the main property which validates our abstraction.

Theorem 1. The equivalence relation R is a bisimulation on M.

Proof. Let s, s′, s1 be three states of M such that (s, s′) ∈ T and s R s1. We
have to prove that there exists s′

1 such that (s1, s
′
1) ∈ T and s′ R s′

1. Note that
since R is an equivalence relation, we do not have to prove the converse.

By definition of R, there exists a permutation π of {1, . . . , n} such that
π(s) = s1. Let s′

1 = π(s′), hence we have s′ R s′
1. By Lemma 1, we know that

(s1, s
′
1) ∈ T , which proves the theorem.

244 F. Derepas and P. Gastin

The quotient of M by the equivalence R is the transition system M̄ =
(S̄, T̄ , Ī) where: S̄ = {s̄ | s ∈ S}, Ī = {s̄ | s ∈ I} and T̄ = {(s̄, s̄′)|(s, s′) ∈ T }.
Now it is well known that when an equivalence relation R on a transition system
M is a bisimulation, then the quotient M̄ is bisimilar to M.

3.5 Pragmatic Abstraction

In order to apply the above reduction, one has to compute the quotient M̄.
A possibility is to choose a canonical representative in each class and to use a
function f : S → S mapping each state to its canonical representative. Such a
mapping f satisfies the two properties

1. for all s ∈ S, f(s) R s,
2. for all s, s′ ∈ S, s R s′ implies f(s) = f(s′) (canonical representative).

Actually, our mapping f is given by the pseudo-sorting algorithm presented in
Section 4.1. It maps each state s to a permuted state f(s) hence it satisfies (1)
but it does not necessarily satisfy (2). Therefore, our reduced system may not
be isomorphic to the quotient M̄ and we need to prove that it is still bisimilar
to the original system.

Proposition 1. Let M = (S, I, T) be a transition system and let R be an
equivalence relation on S which is a bisimulation. Let f : S → S be a mapping
satisfying f(s) R s for all s ∈ S. We define the reduced system M′ = (S, I, T ′)
by T ′ = {(s, f(s′)) | (s, s′) ∈ T }.

The relation R defines a bisimulation between M and M′.

Proof. let s, s′, s1 ∈ S be such that (s, s′) ∈ T and s R s1. There exists s′
1 ∈

S such that (s1, s
′
1) ∈ T and s′ R s′

1. We deduce that (s1, f(s′
1)) ∈ T ′ and

s′ R s′
1 R f(s′

1).
Let s1, s

′
1 ∈ S be such that (s1, s

′
1) ∈ T ′. There exists s′′

1 such that (s1, s
′′
1) ∈

T and s′
1 = f(s′′

1). Now let s be such that s R s1. There exists s′ ∈ S such that
(s, s′) ∈ T and s′ R s′′

1 . We are done since s′ R s′′
1 R s′

1.

3.6 Permutable Specification

Now the question is to determine which properties can be verified on the reduced
system M′ (or M̄). Since the original system is bisimilar to the reduced one, we
can verify any CTL∗ property provided the state formulas are invariant under
permutation. This includes a lot of interesting properties. For instance, in a
mutual exclusion algorithm we want to check whether there exists an accessible
state such that two processes are in the critical section. Such a property is
invariant under permutation.

On the contrary, consider the following response property: “whenever process
1 requests a resource, process 1 will eventually be granted the resource”. Such a
property cannot be checked directly on our reduced system. If we write literraly
this property, then Spin may erroneously detect that it holds or that it does not
hold. For instance, if the process at position 1 requests the resource and only gets

Model Checking Systems of Replicated Processes with Spin 245

the resource when being in some other position, Spin may erroneously say that
the property does not hold. Also, if whenever some process at position 1 requests
the resource then in the next step some other process that has the resource takes
position 1, then Spin may erroneously say that the property holds.

Therefore, in order to use our reduction method, one has to be careful in
writing the specification to be checked. Explicit references to process positions
should be avoided. It would be very interesting to define a specification language
which guarantees that the specifications are invariant under permutations. An-
other interesting direction is to permute the specification when permuting the
state vector after each step of the computation.

4 Computation of the Reduced System

The state vector consists of a tuple giving for each variable of the system its
present value. This state vector has however some structure. The global variables
occur only once and the local variables declared in each proctype are replicated
for each instance of this proctype. Hence, each process running in the system
has an associated tuple of variables in the state vector. Permuting the processes
of some proctype A means permuting the associated tuples of variables in the
state vector and modifying accordingly the values of the reference variables to
this proctype as explained in Section 2.

4.1 The Pseudo-Sorting Algorithm

The mapping f transforming each state into an equivalent one is implemented
by a sorting algorithm. More precisely, we consider the lexicographic order on
the tuples of variables associated with the processes of some proctype A and we
sort these tuples according to this lexicographic order. Indeed, we perform this
sorting operation for each proctype. We use a classical sorting algorithm, like
quick sort [7] for instance. We consider the sort procedure as a procedure which
takes three arguments: the list to sort, the procedure to exchange two arguments
in the list, the function to compare two arguments. The algorithm is presented
in Figure 2.

Actually this algorithm can lead to state vectors that are still not sorted. This
is why we call it pseudo-sorting. The final vector might not be sorted because
when we exchange two processes we change reference values afterwards, and this
might change the relative ordering. For instance, consider a system with only 3
processes of some proctype A defined by

active [3] proctype A ()
{ ref A r;

public byte v;
/* A body */

}

Note that there is always an implicit _state variable that is declared last. Hence
the tuple of variables associated with a process is (r,v,_state). A possible state

246 F. Derepas and P. Gastin

procedure Exchi(k,l)
exchanges data in state vector at the positions of

k-th and l-th processes of type i.
For all references in the state vector to processes of type i

if the reference is k change it to l
else if the reference is l change it to k

Function Comparei(k,l)
returns if k-th process of type i

is smaller or equal to l-th process of type i.
procedure pseudoSortStateV ector()

For each type of process i
Let li be the list of processes of type i.
Sort(li,Exchi,Comparei)

Fig. 2. Pseudo sorting algorithm

vector is 3, 1, 1|0, 3, 4|1, 2, 1. It is not sorted. Swapping the first two processes
gives the state 0, 3, 4|3, 1, 1|2, 2, 1. Note that the reference value of the third
process has changed. This state vector is still not sorted. Now swapping the
last two processes yields the state 0, 3, 4|3, 2, 1|2, 1, 1 which again is not sorted.
Therefore no permutations of the processes yield a sorted state vector.

4.2 Efficiency Depends on the Variable Declaration Order

In the tuple of variables associated with some proctype A, the order of the
variables is the declaration order. If we change the declaration order then the
lexicographic order is changed accordingly and the reduction that we get may
be completely different.

Let us consider a very simple example where our system consists only of 3
clients and 3 servers where each server can be connected with a single client.
We assume that each client (respectively server) keeps a reference to the server
(respectively client) it is connected to. In addition, clients and servers have a
public variable.

active [3] proctype Client () active [3] proctype Server ()
{ ref Server r; { ref Client r;
public byte v; public byte v;
/* Client body */ /* Server body */

} }

Note that there is always an implicit _state variable that is declared last. Hence
the tuple of variables associated with a client or a server is (r,v,_state). An
example is shown on Figure 3 for the first value r of each instance in the state
vector.

In this example, the state vector is 2, 1, 2|3, 2, 3|1, 3, 4||3, 4, 3|1, 5, 2|2, 6, 1
where the vertical bars separate the process tuples and the double bar sepa-
rates the clients from the servers. Applying the sorting algorithm on the clients

Model Checking Systems of Replicated Processes with Spin 247

Client Server

2 3 1 3 1 2

client number 2

is connected to

server number 3

3

2

1

3

2

1

Client part

Server part

Server number 1

is connected to

client number 3

Corresponding state vector part for r:

Fig. 3. An example of configuration

gives the state vector 1, 3, 4|2, 1, 2|3, 2, 3||1, 4, 3|2, 5, 2|3, 6, 1. Note that the client
references in the server tuples have been changed accordingly. Now the state
vector is also sorted according to the server tuples. As shown on Figure 4, from
any initial connection graph we get the most simple configuration possible. Of
course this dramatically reduces the state space.

Client Server

Any possible state
After reduction

3

2

1

3

2

1

Fig. 4. Before and after a reduction

Now, assume that the declaration order between r and v is reversed as in

active [3] proctype Client () active [3] proctype Server ()
{ public byte v; { public byte v;
ref Server r; ref Client r;
/* Client body */ /* Server body */

} }

Then the state vector associated with the same configuration is
1, 2, 2|2, 3, 3|3, 1, 4 ||4, 3, 3|5, 1, 2|6, 2, 1. Since this vector is already sorted,
no reduction will occur.

248 F. Derepas and P. Gastin

This very simple example illustrates why the order in which variables are
declared has a great influence on the reduction obtained. As stated above, there
is always an implicit variable _state which is declared last. If we want to change
the position in the tuple of this variable we could declare it explicitly as in

active [3] proctype Client ()
{ byte _state;

public byte v;
ref Server r;
/* Client body */

}

The results of a more realistic experiment is shown in Figure 5. Here we
consider a Client-Server system whose complete description is given in the ap-
pendix (Figure 9). We denote by n the number of clients in the system, n is also
the number of servers. A client can be idle or can try to connect to a server.
The connection will be granted if the server is not busy. The first (respectively
second) column of Figure 5 corresponds to the reduced system when the vari-
able serv_id of proctype client is declared first (respectively last). The third
column corresponds to the system without reduction. This experiment shows
that our reduction is quite efficient and that it depends noticeably on the order
in which the variables are declared. Hence, in order to get the best benefit from
our method, one must have an intuition of which order will be good. This is dif-
ficult to guess, and one need to have a good understanding of the system being
modeled.

n ref. first ref. last no reduction
2 27 40 63
3 108 227 918
4 405 928 16 929
5 1 458 3 518 375 678

Fig. 5. Number of states for different orders and different sizes

4.3 Layered Model

The pseudo sorting method will work well on layered models. Here is an informal
description of a layered model. We have ` type of processes (like client, server . . .
), named t1, . . . , t`. Each process of type ti has references to some other process
of type ti+1 or has an undefined reference. We assume all defined references to
process of type ti are different. This is shown on Figure 6 We assume that the
reference to layer i + 1 comes first in the lexicographic order for an instance of
type ti. If we sort according to proctype t`−1, then t`−2 until t1, then from any
element of the equivalence class of R we will get the same element.

Figure 7 shows the result for a three tier model [8] (client/server/data base).

Model Checking Systems of Replicated Processes with Spin 249

t`t2t1

Fig. 6. A layered model

After refuction
1 state

6 × 6 states
before reduction

Fig. 7. Three tier model

5 Conclusions

We have introduced two notions which enables abstraction for distributed sys-
tems: references to other processes, and a “public” scope for local variables.

These notions need to be used carefully, in a way that all processes of the
same type can be exchanged. We have clearly stated in Section 2.3 what are those
constraints. They can be easily checked when the Promela model is compiled.

In the future we should specify how to easily write LTL formula which are
unchanged by permutations. It would also be interesting to write pluggable mod-
ules, to implement other heuristics than the pseudo sorting algorithm to get
canonical representatives of equivalence classes of R.

Appendix

This appendix shows a practical implementation on Figure 9. Figure 8 shows
how our abstraction has been implemented.

C program to be compiled
with pan.c

SPINCode with extend
Features

Regular Spin Code (pan.c)

Fig. 8. Software architecture

250 F. Derepas and P. Gastin

Code with extented features

mtype = {ack,nack,rel,req};

active [3] proctype client () {
ref server serv_id;
public chan cliChan =

[4] of {mtype};
idle :

serv_id=anyRef(server);
server[serv_id].serChan!req(_lid);
if
:: cliChan?ack; goto work
:: cliChan?nack; goto idle
fi;

work:
server[serv_id].serChan!rel,0;
goto idle

}

active [2] proctype server () {
public chan serChan =

[4] of {mtype,ref server};
byte inUse;
ref client cli;

do
:: serChan?req(cli) ->
if
:: inUse==0 -> inUse=1;

client[cli].cliChan!ack,_lid
:: inUse==1 ->

client[cli].cliChan!nack,0
fi;

:: serChan?rel,_ -> inUse=0
od

}

Generated Promela code

mtype = {ack,nack,rel,req};

chan cliChan[3]=
[4] of {mtype};

chan serChan[3]=
[4] of {mtype,byte};

#define _lid _pid-0
active [3] proctype client () {
byte serv_id;

idle :
if
:: serv_id=0
:: serv_id=1
fi;
serChan[serv_id]!req(_lid);
if
:: cliChan[_lid]?ack; goto work
:: cliChan[_lid]?nack; goto idle
fi;

work:
serChan[serv_id]!rel,0;
goto idle

}
#undef _lid

#define _lid _pid-3
active [2] proctype server () {
byte inUse;
byte cli;
do
:: serChan[_lid]?req(cli) ->
if
:: inUse==0 -> inUse=1;

cliChan[cli]!ack,_lid
:: inUse==1 ->

cliChan[cli]!nack,0
fi

:: serChan[_lid]?rel,_ ->
inUse=0

od
}
#undef _lid

Fig. 9. Example of new keywords

We start from the Promela code with our extended features. Then our mod-
ified version of Spin generates a regular model checking code (pan.c), together
with a file which will be compiled with pan.c.

Model Checking Systems of Replicated Processes with Spin 251

References

1. C. N. Ip and D. L. Dill. Better Verification through Symmetry. International Con-
ference on Computer Hardware Description Languages, pages 87–100, April 1993.

2. C. N. Ip and D. L. Dill. Efficient Verification of Symmetric Concurrent Systems.
In IEEE International Conference on Computer Design: VLSI in Computers and
Processors, pages 230–234. IEEE Computer Society, 1993.

3. C. Norris Ip and D. L. Dill. Verifying Systems with Replicated Components in
Murϕ. Formal Methods in System Design, 1997.

4. G. J. Holzmann. The Spin Model Checker. IEEE Trans. on Software Engineering,
23(5):279–295, May 1997.

5. D. Bošnački, D. Dams, and L. Holenderski. Symmetric spin. In Proceedings of
the 7th SPIN Workshop, volume 1885 of Lecture Notes in Computer Science, pages
1–19. Springer Verlag, 2000.

6. E. A. Emerson and A. P. Sistla. Symmetry and Modelchecking. Formal Methods in
System Design, 9(1):105–130, 1996.

7. D. E. Knuth. The Art of Computer Programming, volume 3, chapter 5, pages 114–
123. Addison Wesley, 1973.

8. N. G. Depledge, W. A. Turner, and A. Woog. An open, distributable, three-tier
client-server architecture with transaction semantics. Digital Technical Journal,
7(1), 1995.

A SPIN-Based Model Checker for
Telecommunication Protocols?

Vivek K. Shanbhag and K. Gopinath

CSA Dept, Indian Institute of Science, Bangalore, 560 012 INDIA
{vivek, gopi}@csa.iisc.ernet.in

Abstract. Telecommunication protocol standards have in the past and
typically still use both an English description of the protocol (sometimes
also followed with a behavioural SDL model) and an ASN.1 specifica-
tion of the data-model, thus likely making the specification incomplete.
ASN.1 is an ITU/ISO data definition language which has been devel-
oped to describe abstractly the values protocol data units can assume;
this is of considerable interest for model checking as subtyping in ASN.1
can be used to constrain/construct the state space of the protocol accu-
rately. However, with current practice, any change to the English descrip-
tion cannot easily be checked for consistency while protocols are being
developed. In this work, we have developed a SPIN-based tool called
EASN (Enhanced ASN.1) where the behaviour can be formally specified
through a language based upon Promela for control structures but with
data models from ASN.1. An attempt is also made to use international
standards (X/Open std on ASN.1/C++ translation) as available so that
the tool can be realised with pluggable components. One major design
criterion is to enable incremental computation wherever possible (for
example: hash values, consistency between alternate representations of
state). We have used EASN to validate a simplified model of RLC (Ra-
dio Link Control) in the W-CDMA stack that imports datatypes from
its associated ASN.1 model. In this paper, we discuss the motivation and
design of the EASN language, the architecture and implementation of the
verification tool for EASN and some preliminary performance indicators.

1 Introduction

Next generation protocols for mobile devices have become very complex and it is
becoming increasingly difficult for standards bodies to be sure of the correctness
of protocols during the standardization process. This has become an impediment
in defining new standards. What one needs is a way of specifying a protocol
and have some confidence that, at a certain level of abstraction, the protocol is
consistent in spite of modifications.
? Thanks are due to Nokia Research Center, Helsinki for funding this work under

SID project 99033. We thank Ari Ahtiainen and Markku Turunen of NRC for their
initial project formulation and some key ideas in the software engineering aspects,
Dinesh Shanbhag for helping us understand the ASN.1/C++ standard, and Matti
Luukkainen, University of Helsinki, for many suggestions and criticisms.

M.B. Dwyer (Ed.): SPIN 2001, LNCS 2057, pp. 252–271, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

A SPIN-Based Model Checker for Telecommunication Protocols 253

There are languages like Promela that can be used, but their data structuring
capabilities do not match those that are used in telecommunication protocols.
ASN.1[6] (Abstract Syntax Notation One) is a widely used data definition lan-
guage in telecommunication protocol specification. It will help the standardiza-
tion process if a model checker could be augmented with ASN.1 data modelling
capabilities to check correctness of interim versions of a protocol before establish-
ing a standard. Inspite of prototypes that are built, they often cannot exercise
all aspects of a protocol, especially those that are evolving.

In addition, due to the presence of the subtyping mechanism in ASN.1, model
checking can be more effective as unreachable parts of the state space that could
be introduced in simpler data models in other languages need not be considered.

Hence, we have designed an Enhanced ASN.1 language, EASN, that combines
the control structures of Promela with the data definition capabilities of ASN.1.
We present our verification tool for EASN and its architecture. We derive our
implementation from SPIN, to benefit from its many capabilities.

1.1 Why ASN.1?

ASN.1 separates data modelling into abstract and transfer syntax. The abstract
syntax only specifies the universe of abstract values that can be assumed by vari-
ables in the model without any concern for how they are mapped to a particular
machine, compiler, OS, etc. Hence from the point of view of model checking,
an abstract syntax constrains the state space as much as possible if there is a
mechanism by which a system state vector can be encoded with exactly only
the possible values of its constituent substates. The latter is a chief feature of
the state compaction infrastructure that has been developed for EASN. This is
equivalent to model checking with abstract data models that does not require
examining unreachable parts of the system state space introduced due to lack
of subtyping, etc. We primarily exploit ASN.1’s subtyping feature which is a
well developed notation for expressing constraints. Note that data here actually
means the control data in the protocols and hence our concerns are different from
those approaches that exploit symmetry, etc. While TTCN, the test language in
ISO/ITU communities, uses ASN.1, our attempt is to marry ASN.1 with a well
known model checker such as SPIN.

1.2 Why SPIN?

SPIN is an effective model checking tool for asynchronous systems, especially de-
signed for communication protocols. The design of control constructs in Promela
has been based upon those in SDL, a language that has been used to specify
communication protocols since ’70s. Nondeterminism and guarded commands
in Promela makes it convenient to express behavior of communicating protocol
entities. The model checking system SPIN[1], which uses Promela, has many
capabilities like deadlock detection, validating invariants or assertions, detecting
non-progress cycles and livelocks, and establishing LTL properties. Algorithms
that effect substantial space and time savings, like bit-state hashing, on-the-fly

254 V.K. Shanbhag and K. Gopinath

model-checking and partial-order reduction have been incorporated into SPIN.
Hence, modifying the SPIN system to handle ASN.1 has been a design goal.

SPIN has a simulator that randomly checks only a portion of the state
space and also a (generated) validator that can attempt to exhaustively check
the state space of the system or can use techniques like bit-state hashing to check
a substantial portion of the state space with a fairly high level of assurance. Our
EASN system also has these components.

One major design criterion for EASN is to enable incremental computation
wherever possible (for example: hash values, consistency between alternate rep-
resentations of state). SPIN, however, does not do such incremental computation
but is still faster for other reasons (see section 5).

1.3 EASN Language

ASN.1 can be used to define the datatypes and constant values in an applica-
tion. Promela, however, is a complete language with a set of basic data types
and typedef construct to help users compose datatypes, and a set of control
constructs that can be used to define the behaviour of protocol entities.

The EASN Language replaces all the datatyping capabilities of Promela
with ASN.1. Hence, none of the data types of Promela are retained in EASN,
except the chan construct. Thus basic datatypes of Promela, namely, bit, bool,
char, short and int, as well as related constructs, unsigned, bitfields, typedef and
the mtype declaration are not part of EASN. Channel definition syntax and
the capability of defining arrays of channels is retained as there is no similar
construct in ASN.1. Defining arrays of other types through the same syntax is,
however, disallowed in EASN (as the sequence-of construct in ASN.1 can be
used). The subset of the ASN.1 Language that is incorporated into EASN is
detailed in [12].

As ASN.1 has richer and more expressive datatypes compared to Promela,
EASN needs to overload the semantics of many of the operators of Promela,
so as to support a natural set of operations on data. In addition, we have also
augmented the set of operators as necessary. In the first version of the language
and implementation, only such operator overloadings and new operators have
been included as are necessary for functional completeness. Briefly[12], therefore,

EASN = Promela - {mtype, typedef, bit, byte, bool, short, int, unsigned}
+ ASN.1 + appropriately overloaded semantics of the existing operators
+ few new operators.

1.4 Related Work

One interesting work relating to language design and protocol verification using
the SPIN infrastructure is that of Promela++ at Cornell University[10]. Addi-
tions to the Promela language were made to make the resulting language suitable
for expressing user level network protocols for high performance computing. If
Promela++ is compiled with the verification option, it can do model checking. If

A SPIN-Based Model Checker for Telecommunication Protocols 255

compiled with the code option, just like YACC, it produces protocol code using
‘actions’. However, the ‘actions’ are not subject to verification through the SPIN
system as they are in C.

SPIN does various kinds of state compaction and, in EASN, we have a com-
parable mechanism for most of them that perform at least as well in space. But
some are unnecessary in EASN. Geldenhuys and Villiers[9] also attempt state
compression in SPIN along similar lines as ours but by adding a simple construct
to the Promela Language in an ad hoc fashion with restrictions. For example,
different orders of process activation along different execution paths are forbid-
den in their approach. Also, their variable’s ranges must start at zero. We do
not have such restrictions.

1.5 Outline of Paper

In section 2, we give a brief overview of our EASN system. Later sections present
more details of each subsystem. The section 4 discusses the relevant aspects of
the SPIN implementation necessary to understand our modifications and then
discusses the EASN implementation in some detail. The last section presents
example runs in both EASN and SPIN and performance indicators. Finally, we
end with conclusions and future work.

2 EASN, the Verification Tool

2.1 Encoding State Efficiently

SPIN represents state quite efficiently but, for reasons of alignment, etc, allows
padding and other extraneous matter in the state vector. Since our system uses
ASN.1 data models, we can require that all variables be as constrained as possible
in the space of values that they can take through the use of subtyping. For
example, if an integer variable takes values from 8..15 only, we can represent the
state of that variable in 3 bits. Further, if there are only two variables that are
constrained to be between, say, 5..7 and 3..7, there are only 15 possibilities and
both can be represented in only 4 bits instead of either 2+3 (5 bits) or worse
3+3 (6 bits)1. Similarly, if an ASN.1 datatype assumes only integer values 5, 7,
11 and 13, only 2 bits of space is needed in the linearised state-vector for objects
of this type.

Our design for EASN, therefore, has a critical facility called the state com-
paction infrastructure that views the state space of the system as a multi-
dimensional array (with one dimension for every component of the state of
EASN), and consequently, every state of the system, as a point in this multi-
dimensional space. We use a column-major linearisation that additionally enables
incremental computation of state hash values (see section 4.4). Note that a row-
major linearisation is not helpful in this regard as the number of components
that comprise the system keeps going up and down as the system evolves.
1 Experienced ASN.1 users may note that such an encoding is even better than the

often very compact PER encoding.

256 V.K. Shanbhag and K. Gopinath

2.2 Outline of EASN System Design

Given the EASN language, one can now specify all the aspects of a protocol for-
mally (instead of a mixture of English and ASN.1): the structure of the protocol
data units (PDUs) and the behavior of the protocol entities. This enables us to
to identify inconsistencies and incorrect, unintended and unwanted behaviors in
the system if we have a verification tool for EASN with capabilities similar to
that in SPIN.

Given that the EASN language is derived from Promela, can one realise a
verification tool for EASN through modifications to the SPIN system? However,
we need then to worry about modifiability, maintainability, upgradability, or just
even maturing over a period of time, given that ASN.1, Promela and SPIN are
all live, evolving pieces of work, and have matured over long periods of time.

We see three main issues: how to avoid the cost of processing of a very large
language like ASN.1, current non-availability of a complete toolset for ASN.1
and how to insulate oneself from the evolution of SPIN. We discuss them below.
Processing ASN.1: SPIN is open source. We intend EASN to be open source
too. Parsing ASN.1 is not easy and we wanted to avoid doing it ourselves, if we
could. Nokia Research Center (NRC) has a translator, BEX, conformant with
the ASN.1/C++ draft standard[11] that we could use. We wanted to use BEX
while not compromising the open source goal. We have, therefore, used the NMF
std[7] to architect the tool so as to enable other users besides us and NRC to
realise it by plugging in any compliant ASN.1/C++ translator into the system
(Figure 1).Since BEX is not completely conformant to the accepted standard,
there is a need to adapt the BEX-generated C++ to requirements of the parser
and simulator modules. This requirement is encapsulated into a thin layer of
software that enables these modules to use BEX generated C++ source.

Specific
Data Interface

Compaction
Information

pan.c
pan.h
pan.t

pan.m
pan.b

State-Vector
Component

EASN-pan

cEASN
Spec.Spec.

dEASN ASN.1/C++
Translator

Compaction
Information

Generator

Generic
Data Interface

Parser

Simulator

pan-Generator

Parse
-tree
Symbol

-Table
&

SPIN

Metadata
Interface

EASN

Rectangles in this figure refer ro executables.
Elipses refer to source code, either manually developed,
or automatically generated.
Imperfect Rectangles refer to s/w modules at a coarse
grain level of abstraction.
The Hexagon contains data-structures, internal to an application

dEASN: The ASN.1 Data modules for a EASN Spec.
cEASN: The control aspect, behaviour of protocol entities.

SPIN: contains three main modules, the Parser, Simulator &
the pan-Generator. LTL-translation & GUI, are the other two
modules of SPIN, that we inherit into EASN without modification.

EASN: Given an EASN spec., the ASN.1/C++ translator is first
invoked to generate the C++ Sources that are compiled into & with
the rest of the (appropriately modified versions of) SPIN Sources,
to fetch the EASN executable, that can then parse the cEASN Spec.

EASN-pan: The (modified) SPIN-generated pan.[thmcb] files should
be compiled & linked with the Sources generated by the Translator,
and the generated Compaction-Information, and one additional
State-Vector Compnent module, to fetch the Protocol-ANalyser.

Fig. 1. The EASN system

A SPIN-Based Model Checker for Telecommunication Protocols 257

Changes in SPIN: All our modifications to the SPIN sources are encapsulated
in pre-processor conditional compilation flags. This enables us to incorporate
any incremental change / bug-fix to SPIN quite easily and fast into EASN.

2.3 EASN Modules

An EASN system specification (to be simulated/verified) consists of two com-
pilation units. One contains all the ASN.1 modules (the dEASN spec.) that is
parsed by the translator to generate the C++ source. The other compilation
unit contains the behavioural specification of the protocol entities (the cEASN
spec.) that is parsed by the EASN parser (a modified Promela parser, derived
from SPIN). It is the variable declarations in the cEASN spec that ties it to
the dEASN spec as their types are defined in the ASN.1 modules. The EASN
parser imports all the relevant information regarding a type, from the generated
C++ source, by querying its meta-data interface into the internal symbol-tables
of EASN.

The EASN Simulator: The EASN simulator (a modified Promela simulator,
derived from SPIN, section 1.2), besides requiring the information generated by
the parser, requires to access data values and modify them through permitted
operations. However, since the simulator engine has no knowledge of the specific
ASN.1 types that might be used in different EASN specifications, these data
operations must be carried out using the ASN.1/C++ generic data interface
that supports operations on objects of types a priori unknown. The ASN.1/C++
translator exports such a complete functional interface to access the values held
in objects of ASN.1 types.

The EASN Validator: SPIN, and EASN too, generates a set of files
pan.[chmtb] that are compiled together into a model checking executable (sec-
tion 1.2). Some of these files, for example .h file, define structures corresponding
to the various proctypes and queues that comprise the system, and the state
structure. Components of these structures, together, form the state of the sys-
tem being analysed. We shall refer to the state of the system as the state of
SPIN to differentiate it from what we shall later call the state of EASN.

The state of SPIN is kept in one place in memory, but two sections of code
in the generated pan files view it differently. The code in pan.[mb] corresponds
to the transitions that take the system from one state to another, in the forward
and backward directions respectively. This code views groups of components in
a structured manner, either as some process or queue structure, or some global-
variable. However, the code in pan.c that has to do with constructing, modifying,
maintaining, storing state (into the hash table / or on stack) and comparing for
equality views the very same state of SPIN as a block of memory without any
further structure. This makes for a highly optimised implementation of the SPIN
validator but, in the context of EASN, where most of the components of the state
of EASN are C++ objects, this two-views-of-the-same-memory is problematic.

258 V.K. Shanbhag and K. Gopinath

The state of EASN, therefore, is organised differently. We encapsulate ev-
ery actual component of the state inside an object of type MSVComponent
(Minimal-State-Vector-Component, a C++ template type). The state of EASN,
then, is simply an array of such encapsulated objects. This representation of
the state of EASN is useful for code in pan.[mb]. Since the state manipulating
code in pan.c needs to view the state as a contiguous chunk of memory, we
also maintain a consistent, linearised representation of the state of EASN. The
consistency is guaranteed by the functionality of the encapsulating class.

In order to play its role, the encapsulating class needs to know some informa-
tion regarding the type of the object that it encapsulates. This information, for
every type, is made available through a function call interface in the state com-
paction information module that is automatically generated by a compaction
information generator (figure 1). Further details are available in Section 4.3.

2.4 EASN System from an User Perspective

The user first uses an available ASN.1/C++ translator that conforms to the
NMF standards to generate C++ source corresponding to all the ASN.1 modules
that together form the dEASN spec. This generated C++ source, containing
both the generic/specific data interfaces and the metadata interface, is then
compiled to create (say) asn1 link modules. This C++ source comprises of header
(include) files, their implementation, and some tool-provided run-time support.
The header files are included in the EASN source which is compiled to generate
its set of link modules. These link modules are then linked with the asn1 link
modules to generate the EASN (executable) tool.

Generated C++ source is compiled into the executable that processes the
cEASN spec corresponding to the dEASN spec used to generate it. The EASN
system then parses the cEASN spec and uses the metadata interface to validate
the types of variables instantiated, their usage in expressions, their compatibil-
ity with various operators, and such, to ultimately generate the parse tree and
symbol table data structures. This completes the role of the parser. The GUI
can be used to choose to either simulate the system or to generate pan (the
protocol-analyser).

The simulator module makes calls to the generic interface and some compo-
nents of the specific interface (only those that export the data access services
corresponding to the basic data types of ASN.1). If the user chooses to generate
the validator instead, the validator-generator takes control and generates C++
source in the pan.[hcmbt] files, similar to SPIN. An additional intermediate
step requires that another program called the Compaction Information Genera-
tor (cigen, for short), using the metadata interface generated by the ASN.1/C++
translator, generates the Compaction Information that has to be linked with the
pan files. Finally, all this generated source has to be compiled and linked with
the asn1 link modules, and with the new (l)svcomp ((light-) State Vector Com-
ponent) module, to generate the pan.

A SPIN-Based Model Checker for Telecommunication Protocols 259

3 ASN.1 to C++ Translation

NMF (Network Management Forum 1998) has an “ASN.1/C++ Application
Programming Interface”[7] set of standards that give C++ bindings to ASN.1
types. The standard is briefly discussed here. It has two parts, namely, Part 1:
Base Classes and Specific Interface and Part 2: Generic Interface.

The C++ Data Model for ASN.1

Corresponding to every ASN.1 module definition, a C++ namespace is instanti-
ated containing a C++ class definition generated for every type in that module.
The public interface for the predefined C++ Classes corresponding to all the ba-
sic types of ASN.1 is defined to be in the ‘ASN1’ namespace. All predefined and
generated C++ classes are derived from a fundamental Abstract Class called
ASN1::AbstractData. Also, for each ASN.1 constant, a C++ object of that
type is instantiated. The syntactic name-mangling rules to generate the appro-
priate C++ names for the corresponding ASN.1 names are simple.

In addition, for each ASN.1 type, a C++ class is also created to export
(though its public interface) meta-data regarding the properties of that type.
Such class definitions corresponding to the basic types already exist in the ASN1
namespace. These classes and all classes that are defined corresponding to the
various user-defined ASN.1 types are public subclasses of an abstract class called
ASN1::AbstractType.

Part 1: Base Classes and Specific Interface

This part defines the C++ classes corresponding to all the basic datatypes in
ASN.1 and also the rules followed to generate C++ code for user-defined types
in the ASN.1 module(s) using compositional constructs of ASN.1 and the sub-
typing mechanism. In the generated C++ code, public access methods for ev-
ery component of the SEQUENCE, CHOICE, and SET type are included. The
names of these methods are chosen by name mangling those of the corresponding
components in the ASN.1 module specification. This interface, called the spe-
cific data interface, is exported by the generated classes for the corresponding
SEQUENCE, SET and CHOICE type definitions given in the ASN.1 module.

Part 2: Generic Interface

This part defines the metadata interface as well as the generic data interface. For
instance, a C++ interface for querying the metadata of ASN.1 types, methods
to get the (names of the) enumerators of an ENUMERATED type or those to
get the (names of) components of a SEQUENCE type. Querying through this
interface could retrieve all the necessary information to enable parsing EASN
code that defines variables of ASN.1 types and operates upon them.

The definition of the Generic Data Interface involves exporting a function-
ally complete interface that can be used to access the values held in objects of

260 V.K. Shanbhag and K. Gopinath

arbitrary type confirming to the data model. This interface, for instance, defines
C++ classes like CHOICE and StructuredData which provide generic methods
to access the components of a CHOICE, SEQUENCE or SET object. These
methods take the component name as the (string) parameter to provide access
to the corresponding component. The EASN Simulator module uses this generic
data interface, along with the metadata interface, to discover the structure of
datatypes and operate on objects of these types.

4 EASN System: Implementation

We shall now move over to discussing the implementation of the EASN Sys-
tem. We shall begin by discussing the implementation of the SPIN System as
a set of sub-systems: here we use the word sub-system to identify either a set
of C-modules, or sometimes a single C-module, or even just a set of functions /
functionality within a C-module. We then talk about the details of our imple-
mentation, with respect to the SPIN description below.

4.1 SPIN and Its Subsystems[8]

SPIN is implemented, mostly, in ANSI C. It, therefore, comprises of various
include files and link modules. Apart from C, there is (only) the GUI module that
is entirely implemented in the Tcl/Tk scripting language. One of our primary
tasks, before attempting any modifications to SPIN, was to come up with an
abstract view of the SPIN sources that would make it possible to break down
our implementation effort into a set of well-defined subtasks, that we could
then attempt systematically. Recall from section 2.2, that our implementation
of EASN from SPIN was to retain all the good features of SPIN, and also be
able to upgrade to future releases of SPIN, with minimal effort2. Below, we list
the main components of the SPIN system, from the perspective of a designer
wishing to modify SPIN.
GUI: This module is implemented in Tcl/Tk entirely, and requires only cosmetic
changes when having to function in the context of EASN.
Parser: This module comprises of a handcrafted lexer and a YACC-generated
Promela parser, along with the necessary supporting functionality in associated
link modules. Like for all languages, the parser parses the input specification,
checks for syntactic correctness, and creates internal data structures that capture
all the relevant information from the specification to enable either simulation of
the system specified, or generation of a validator for it. This was the starting
point for our modifications, since we had a clear set of requirements in the form
of an EASN language spec, drawn out as a set of modifications to Promela.
2 A good indication that we have met this design goal is that while we began making

our modifications to SPIN version 2.5.4, by the time we could get EASN to its
current state, we had gone through 4 ’upgrading’s and at the time of making this
release, we are in sync with its version 3.4.1.

A SPIN-Based Model Checker for Telecommunication Protocols 261

Parse tree and symbol table: This module includes the various data struc-
tures defined in the spin.h file, and the supporting functionality provided in
various other link modules. The definitions for some of the data structures in-
volved were slightly modified to reflect the change in the data model of EASN
with respect to that of Promela.
Simulator: This module includes all the code that operates upon the fully
constructed parse tree and the completely populated symbol table. Its role is to
effect a random walk on the reachable state space of the specified system, starting
at the initial state. One of the key functions is the recursive eval function. Given
a node of the parse tree, it returns an integer value on evaluating the expression
tree rooted at it, since any basic type in Promela is representable in a 32-bit
integer, a key design decision in the SPIN implementation. (Similarly, all objects
of higher-order types are also represented, passed as parameters to processes (at
their initialisation), or passed into and out of message channels, as a collection
of the required number of integer objects). In EASN, our major modification to
this module stems from our need to change the function call interface of eval.
Validator-Generator: The starting point for this subsystem, similar to the
simulator described above, is the information in the parse-tree and the associated
symbol-table. It comprises of all the files that begin with the pangen prefix. This
module generates the pan (protocol analyser) files in ANSI C. The generated files
(described below) are then compiled together to form the executable protocol-
analyser that actually analyses the Promela spec.
Protocol-Analyser: This program conducts a search over the reachable state
space of the system described in the Promela spec, using a user-configured com-
bination of algorithmic components. The basic state space search algorithmic
framework remains broadly the same; however, intermediate steps, like whether
to use partial-order reduction methods, whether to use complete state storage or
bit-state hashing, whether to incorporate fairness, safety properties, acceptance
cycles, etc. are user provided inputs that are used to select the code fragments
that compose the complete search loop. The entire program is one single C
compilation-unit, with the rest of the files mentioned below, being #included
into the pan.c file.
pan.h: This file declares forward prototypes of certain functions that are defined
in the pan.c files, but may be used before they are defined. More importantly,
the structures corresponding to the state of the system (including those of var-
ious proctypes and channels defined in the Promela spec) are also defined. For
instance, when the Promela spec has a (system-) global or a (proctype-)local
variable declaration, the generated pan.h file has a member variable (with the
same name) of the corresponding C type in the state structure, or in the proc-
type structure. In EASN, the structure corresponding to these various proctypes,
channels, and the state of the system are defined differently. Also, the prototypes
of certain functionality had to be changed.
pan.m: This file contains, as a single list of case options, C statements corre-
sponding to every state transition (move) in the input Promela spec. Transitions
in this file take the system forward in its search. All of this file is #included

262 V.K. Shanbhag and K. Gopinath

as the body of a C switch statement. For instance, an original Promela state-
ment that, say, increments a certain (proctype-)local variable is translated into
a case entry in this file that is a C expression incrementing the value of the
corresponding proctype member variable. However, just before incrementing,
the value of the variable is copied into a stack trace. (The next item illustrates
the use of the stack-trace). In EASN, the contents of this generated file continue
to remain the same. However, since we import the support for operating with
ASN.1/C++ Objects from the C++ bindings, where any access to some compo-
nent of a structured object requires us to make a function call, it looks slightly
different.
pan.b: Similar to the pan.m file, this file is also a single list of case options with
one case listed here for every case in the file above. Each case body expects, at
the top of the stack trace, the information that it needs to restore the state of
the system to the point earlier, before the corresponding case took it forward.
This file, therefore, contains all the code that takes the system backward from
where it is to where it was, before it chose any particular forward move from
the pan.m file. The stack trace, then, is the information that is generated by
the cases in the pan.m file, and consumed by the code in the pan.b file. In
EASN, just like for the previous file, the corresponding pan.b file needs to work
with C++ objects imported from the ASN.1/C++ translation and is therefore
different to that extent.
pan.t: The code in this file contains the functionality that generates the transi-
tion matrix that encodes the behavioral semantics of the system. These transi-
tion objects refer to the case labels that identify the cases in the pan.[mb] files
above. The various members of the transition structure are used by the policy
code (below). EASN does not modify either the definition of the transition or
the way transition objects are created and populated by this pan.t code.
State-of-SPIN: We refer to the now object of type State (whose structure is
defined in the pan.h file), with all the process and queue objects overlaid onto
it, as the State-of-SPIN. Some members of the State structure are book keeping
information that is used by the policy code in pan.c to make decisions when
conducting the search. As and when processes and queues are created in the
system, space is allocated for them so as to overlay them on the unused trailing
portion of now. Also, as and when queues become inaccessible or processes reach
the end of their computation and therefore can be flushed out of the system, the
space that they occupy is recovered but in a strict last-in-first-out fashion. The
various functions defined in the pan.c file that compress (or compact) now, put it
into the hash-table (or stack), check for it in the hash-table (or stack), compute
various kinds of hash values for it, compare two representations (whether com-
pressed or hash-compacted, or hashed, ...) of now for equality, etc. are termed
as mechanisms, below. The code that makes calls to these mechanism functions
and uses the information returned to make decisions, such as whether to move
up the search tree or down, is referred to as the policy code.
pan.c–Policy: The main loop of the generated protocol-analyser (or validator)
is the policy-code. This main loop requires a hash-store, where reached states are

A SPIN-Based Model Checker for Telecommunication Protocols 263

stored. It also maintains a stack, that contains some representation of the various
states that have been visited along the path from the initial state of the system
up until the current state. This stack is used to detect acceptance cycles, or non-
progress cycles. The information in the hash-store is used to avoid re-exploring
previously explored states. This policy code encapsulates the core of the SPIN-
algorithms, including partial-order reduction, and LTL-property conformance.
To inherit all these facilities offered by SPIN into EASN, therefore, requires us
to carefully avoid tampering with this policy code.
pan.c–Mechanisms: This code includes the functionality that actually stores
the reached-state into the hash-store and/or the stack and checks to see if a
particular reached-state has been visited in the past. Based upon various op-
tions selectable when generating the validator, and some additional options se-
lectable when compiling and executing it, SPIN offers many choices for com-
paction / compression algorithms including bit-state hashing. All these functions
are tightly tied to the particular linearised representation of the State-of-SPIN.
In EASN, where we have a different representation for the State-of-EASN, we
have to reimplement this functionality. The correctness of our implementation,
therefore, hinges upon the correctness of our management of the various repre-
sentations of the state of the system.

4.2 EASN and Its Subsystems

EASN has all the modules of SPIN listed above and a few more (see figure 1).
Those SPIN modules that are modified in EASN are described only to the extent
to which they differ. Sub-systems of SPIN that are not modified in EASN are
not included below, for example, the GUI part, and the pan.t file.

Except for our choice to change the representation of the state of the gen-
erated validator, the major change in EASN from SPIN is the type system.
Hence, in the implementation of EASN, this should translate into modifications
to SPIN wherever it deals with variables (and expressions involving variables).
Therefore, entire pieces of code that have to do with the handling the semantics
of the control constructs of Promela need not be modified at all.
Parser: The lexer has been modified to modify the set of keywords in the lan-
guage, to recognise the ASN.1 value-notation for constant values and to identify
ASN.1 type-references and value-references. On encountering an ASN.1 type-
name, the parser queries the ASN.1 metadata interface for the complete set of
attributes associated with that type and updates its symbol table accordingly.
Notice, therefore, that only those types from the ASN.1 module that are actually
referred in the cEASN spec, are actually imported into the symbol table.
Parse tree and symbol table: The definitions of the structures of some of the
types that build the symbol table and the expression tree in the parse tree have
been modified. For instance, the optionality and the default value attributes
of the component of structured types need to be represented in the Symbol
structure. Similarly, in order to enable the compatibility check for operators and
operands, the Lextok structure has been enhanced.

264 V.K. Shanbhag and K. Gopinath

Simulator: One of our modifications to this subsystem is to the eval function
that evaluates an expression in the given state of the system. In EASN, this func-
tion returns a dynamically allocated object of type AbstractData. This makes it
convenient to implement the operand type upgrade associated with some of the
overloaded operators. Another modification has to do with passing parameters
to process invocations, or passing messages through channels using send and
recv operators. In EASN, since the C++ types that are referred through their
ASN.1 names are already compiled into the (simulator) application, entire C++
objects can be handled without, as in SPIN, having to compute the number of
integer objects required to represent types, whose objects need to be passed as
parameters (while invoking process instances), or through channels.
Validator-Generator: EASN also generates all the files that SPIN does, and
at the level of abstraction in the previous section, the contents of the EASN
generated pan files are similar too. We discuss the details below.
Protocol-Analyser: The SPIN generated pan files are complete in so far as
they do not need to link with anything more than the standard C Library.
EASN generated files, however, need to link with run time support, ASN.1 sup-
port, state vector component support, GNU multi-precision arithmetic, and the
compaction information. All of these are linked together to produce pan.
State-of-EASN: The now object in SPIN generated validators encapsulates the
State-of-SPIN. As presented in the section on SPIN, the code in the pan.[mb]
files deals with the structured objects that overlay onto now (and the other mem-
bers of the State structure that correspond to global variables in the Promela
spec). Whereas the policy code from pan.c uses the book-keeping information
to store the state of the search, the mechanisms code views now merely as a
sequence of contiguous bytes. This ‘multiple-views-of-a-single-chunk-of-memory’
tends to become unmanageable in the context of EASN, where the objects that
comprise the state of the system are C++ objects that can have virtual-table
pointers, RTTI, and other inaccessible private components. The State-of-EASN,
therefore has two representations: one which lends itself to be used by structured
users such as the code in the pan.[mb] files and the policy code, and the other,
the linearised version, which is intended for use by the mechanisms code. By en-
suring that these two representations are mutually consistent but only at points
where the control changes from the structured-view code to the linearised-view
code, we benefit by implementing incrementally both the consistency updates
as well as the computation of the hash-values for the linearised versions. Conse-
quently, the mechanisms code in the EASN generated analysers is simpler than
for SPIN.
svcomp-Module: In EASN, the consistency between the two representations
discussed above is achieved by encapsulating every component of the State-of-
EASN into (a publicly derived subclass of) the MSVComponent (Minimal-State-
Vector-Component) template class whose functionality incrementally ensures
consistency. We call this facility the compaction infrastructure. In order for the
MSVComponent class to execute its responsibility, it requires to know, for ev-
ery type that it encapsulates: the cardinality c of the value-set represented by

A SPIN-Based Model Checker for Telecommunication Protocols 265

the type, and a mapping from this value-set onto integers in the range: 0..c.
This information is required to be available through a function-call interface.
If the value of c for every type that is imported from ASN.1 is representable
using 32-bit integers, then a more efficient implementation of this module called
lsvcomp (light-svcomp) can be used instead. The call interface is: MP INT *
EASN GetCardinality (Type *), that returns the cardinality, and MP INT *
EASN GetIndex (Type * object), that returns the index of the value in the
value-set. This module uses the GNU Multi-Precision (GMP) package. The
MP INT type in the prototypes above is exported by this GMP library. In case of
the lsvcomp module, the return types for the above functions is mp limb t.
cigen: This sub-system generates the implementation for the two functions de-
scribed above for every type in the ASN.1 module. In our current implemen-
tation, it has been implemented as a stand-alone tool that uses the metadata
interface to generate these functions for all the types in the ASN.1 module def-
inition, but it could also be implemented as an additional link module of the
EASN system, thereby generating the compaction information only for those
types from the ASN.1 module that are imported into the cEASN Spec.
Compaction-information: This is the set of functions that are generated by
the cigen utility above needs to link into pan.
panrts-module: This module is required because of the automatic type upgrad-
ing semantics of some of the operands of EASN. Also, there is a gap between
the set of operations that are supported by the C++ classes corresponding to
the basic datatypes of ASN.1 and the operators that we support on them in our
EASN Language definition. This module bridges the gap.
pan.h: The structures defined in this file are similar to those of SPIN, except that
members of the structures that actually correspond to variables in the cEASN
spec are encapsulated into the MSVComponent class (or one of its subclasses).
For instance, if the finite state automaton corresponding to a proctype has 19
local states, in the SPIN generated pan.h file, the corresponding structure has
a member, which identifies the state a particular process, of type char to store
this information. EASN generates, for the same purpose, a member with type
iSVComponent<20>. Similarly, an cEASN variable of type asn::Integer causes
the generated pan.h file to have the type of the corresponding member variable
to be SVComponent<asn::Integer>.
pan.c-mechanisms: The entire set of these mechanisms that work with the
linearised view of the state of the system have been re-implemented in EASN.
For instance, the default compression algorithm used in SPIN pan is unnecessary
for linearised versions of the State-of-EASN. As another example, consider the
implementation of the hash compact version of the compression routine in SPIN
pan. It computes the compressed version of every process and queue state in the
system separately from the global state of the system and individually hashes
these to generate much smaller id’s which are then used to compose a new (far
shorter) representation of the reached-state, which is stored into the hash table.
This two-level hashing is implemented incrementally by recording the necessary
book-keeping information in the compaction infrastructure, when installing and

266 V.K. Shanbhag and K. Gopinath

uninstalling components of the State-of-EASN. Contiguous subsets of these sys-
tem components are demarcated as belonging to either the global state, or of a
particular process or queue and separate linearisations for these sets of compo-
nents are also maintained, incrementally and consistently. These representations
are then used to directly compose the next level representation of the reached
state that is put into the hash-table.

4.3 Ensuring Consistency - Incrementally

The compaction infrastructure, equipped with the necessary compaction infor-
mation, views the state space of the system as a multi-dimensional array (with
one dimension for every component of the system), and consequently, every
state as a point in this multi-dimensional space. Another representation used is
a column-major linearisation of this multi-dimensional array.

Since, as also is the case with the State-of-SPIN, the number of compo-
nents that compose the system-state can increase (if new processes or queues
are added) and decrease (if the last process reaches the end of its computa-
tion), the compaction infrastructure has to also recompute its mapping from the
multi-dimensional array to a linearised representation. Only the column-major
linearisation is useful as the row-major linearisation cannot handle varying num-
bers of processes. The compaction algorithm, therefore, associates a weight along
with every component of the state-of-EASN at the point of installing it and uses
this weight to appropriately increase or decrease the impact of the change in the
value of this component on the linearised representation. We assume here that
the system comprises of components numbered from 0 through n, and we use
the prime notation to denote the new value of any entity.

cj: cardinality of value-set associated with the type of system component j.
ij: index of current value of system component j into its associated value-set.
w0 = 1: The weight of the first component of the system is 1.
wj =

∏j−1
k=0 ck: weight of system component j is the product of the cardinalities

of the previous j − 1 system components.
L =

∑n
j=0 wjij: The column-major linearisation is the sum of the products of

the weight of the component and its index, over all the system components.
δL = wj(ij́ − ij): The impact of a change in the value of system component j

is the product of its weight and the difference between its new & old index.

Whenever the system moves from one state to another, only those few state
components that are responsible for the change determine the update on the
linearised representation. The compaction infrastructure updates the represen-
tation incrementally which is then stored into the hash-store when an exhaustive
search is conducted.

4.4 Incremental Hashing

There are functions in SPIN-generated pan.c, called d hash, r hash and s hash,
that generate (1 or 2) 32-bit hash values by using the complete octet-string (rep-
resenting a part or the full state) that has been passed to them. SPIN generated

A SPIN-Based Model Checker for Telecommunication Protocols 267

validators use these functions to compute hash values corresponding to reached
states represented by now. The user can specify any of a set of 32 hash constants
to be used by these algorithms. Typically, only a few of the components of the
system are responsible for its change in state at any given point in its evolution.
Hence, an incremental computation of the hash value can improve performance
which is done through our compaction infrastructure.

SPIN uses polynomial arithmetic to compute a 32-bit intermediate quantity
(that is further used to generate the hash-values), by performing a fast division
operation on the now state vector using the chosen (32-bit) hash constant as the
divisor. In EASN, we use integer division on the linearised representation of the
reached state, again using the 32-bit hash constant. The 32-bit remainder, thus
generated, is used to generate the hash values, just as they are in SPIN.

We introduce another attribute maintained for every system component:
rj = wj mod H: remainder after dividing its weight by the hash constant, H.

Below, we discuss the incremental computation to generate this hash-value
Ŕ for a new state that resulted with a change in the system component j, given
that the hash-value for the old system state was R.

Ŕ
= Ĺ mod H
= (L + δL) mod H
= ((L mod H) + (δL mod H)) mod H
= (R + wj(ij́ − ij) mod H)) mod H
= (R + rjδij) mod H
Notice that in the context of the lsvcomp implementation, all the four quan-

tities on the RHS of the equation above, namely, R, rj , δij , and H, are all 32-bit
operands. This allows for an efficient implementation of this incremental hash-
value computation.

More interestingly, under certain combination of SPIN options (-
DBITSTATE & -DSAFETY) while compiling the validator, it turns out that
the linearised version of the state is neither stored on the stack nor in the hash-
table, which reduces the burden of generating, computing and maintaining it,
since we can generate the hash values corresponding to the reached state incre-
mentally, directly available from the compaction infrastructure.

However, this incremental hash-value computation scheme requires the value
H to be identified at compile time itself, since it is used by the constructors
in the compaction infrastructure, which could be called before main. This is in
contrast with SPIN generated validators, which can be compiled once and then
executed many times for various values of H.

4.5 Correctness of Implementation vis-a-vis SPIN

In deriving an EASN implementation from SPIN sources (given the above indi-
cated modifications), we identified the following invariant that could be a neces-
sary and sufficient condition to convince oneself that neither the simulator engine
of EASN, nor the state-space exploration engine of the generated validator gives
different results than SPIN:

268 V.K. Shanbhag and K. Gopinath

Given a Promela spec. s and a cEASN spec. e, derived from s by changing
all its variable types to equivalent ASN.1 types (defined in an associated
ASN.1 module, appropriately imported into EASN): A. Simulation runs
of SPIN over s and of EASN over e should show identical selection
sequence of state-transitions, for the same seed value; B. The sequence
in which the reachable states of the system are visited by the generated
validators (by SPIN for s and by EASN for e) must be identical (for
exhaustive state-space searches), with/without partial-order reduction,
never-claims, and irrespective of other switches like safety, fairness, state-
compaction mechanisms, etc.

EASN preserves this invariant for all the test cases we have tried (as per
Test/README.tests). This gives us reason to believe that in the process of
crafting an EASN system from SPIN, the most critical components of it are
reasonably sane and stable. To that extent we do well in inheriting the time-
tested aspect of SPIN.

3

1 /* mtype = { msg0, msg1, ack0, ack1 }; */
2
3 chan sender = [1] of { asn::MtypeAbp };
4 chan receiver = [1] of { asn::MtypeAbp };
5
6 inline recv(cur_msg, cur_ack, lst_msg, lst_ack) {
7 do
8 :: receiver?cur_msg -> sender!cur_ack; break
9 :: receiver?lst_msg -> sender!lst_ack
10 od;
11 }
12

13 inline phase(msg, good_ack, bad_ack) {
14 do
15 :: sender?good_ack -> break
16 :: sender?bad_ack
17 :: timeout ->
18 if
19 :: receiver!msg;
20 :: skip /* lose message */
21 fi;
22 od
23 }
24

1

25 active proctype Sender() {
26 do
27 :: phase(msg1, ack1, ack0);
28 phase(msg0, ack0, ack1)
29 od
30 }
31 active proctype Receiver() {
32 do
33 :: recv(msg1, ack1, msg0, ack0);
34 recv(msg0, ack0, msg1, ack1)
35 od
36 }

1 Easn DEFINITIONS ::=
2 BEGIN
3
4 ...
5 MtypeAbp ::= ENUMERATED {
6 msg0, msg1, ack0, ack1
7 }
8
9 END

...
State-vector 24 byte, depth reached 9, errors: 0
 12 states, stored
 3 states, matched
 15 transitions (= stored+matched)
 0 atomic steps
hash conflicts: 0 (resolved)
(max size 2^18 states)
...

...
State-vector 12 byte, depth reached 9, errors: 0
 12 states, stored
 3 states, matched
 15 transitions (= stored+matched)
 0 atomic steps
hash conflicts: 0 (resolved)
(max size 2^18 states)
...

42

The original Promela Spec. can be recovered from
the cEASN Spec, by uncommenting line # 1.

1: The cEASN Spec.
3: The SPIN-pan output. 4: The EASN-pan output.

2: The dEASN Spec.

Fig. 2. ABP in SPIN and EASN

5 Results and Conclusions

We have used EASN to validate a simplified RLC protocol in the W-CDMA
stack. It has a smaller state than SPIN due to the use of the subtyping informa-
tion by the state compaction infrastructure. Further details of the performance of
EASN will be submitted to the FMICS workshop. Due to its length, we present
a much simpler ABP protocol in figure 2. Note that the state vector for EASN
is half the size of SPIN’s.

A SPIN-Based Model Checker for Telecommunication Protocols 269

5.1 Performance of EASN vs SPIN

We present some preliminary performance comparisons of EASN-generated val-
idators for specs derived from some Promela specs (snoopy and leader election)
in the SPIN/Test database, with those generated by SPIN (table 1). We compare
the runs of the validators generated by both SPIN and EASN, under compilations
with three sets of options, SAFETY, SAFETY and NOREDUCE, SAFETY,
NOREDUCE and BITSTATE. Time is in seconds, memory in megabytes, the
State(-vector) size in bytes and the last column lists the size of pan in Kilobytes.

Table 1. EASN vs SPIN: time and memory performance

M Options Validator Time Mem. States Transitions State Depth Size
S SAFETY SPIN 0.33 3.065 13380 18550 112 2380 89
N EASN 0.85 2.758 13380 18550 64 2380 4046
O (plus) SPIN 2.85 9.334 81013 273782 112 11080 79
O NOREDUCE EASN 8.35 7.388 81013 273782 64 11080 4040
P (plus) SPIN 1.74 1.129 80264 271302 112 10580 77
Y BITSTATE EASN 4.87 1.129 80983 273679 0 11114 4038
L SAFETY SPIN 0.04 1.493 97 97 196 108 54
E EASN 0.06 1.493 97 97 112 108 3998
A (plus) SPIN 0.93 4.014 15779 58181 196 108 47
D NOREDUCE EASN 2.09 3.279 15779 58181 112 108 3995
E (plus) SPIN 0.40 0.929 15779 58181 196 108 46
R BITSTATE EASN 1.17 0.929 15778 58177 0 108 3993

Since we have made only the minimal modifications to a Promela spec to
derive the corresponding cEASN spec, we expect to see (except for the bitstate
runs) the number of states detected and the number of transitions explored must
be the same for both the SPIN generated validator and the EASN-generated
ones. Note that this is indeed true.

Bytes required to store the linearised State representation are lesser for
EASN, than for SPIN, also as expected, thereby reducing run-time memory
usage, again except for the bitstate runs, where both the validators use the same
number of bits to store a single state. (The reduction in memory is much lower
than expected, since, we believe we still have some unplugged memory leaks in
our generated validators). The Table reads 0 for EASN bitstate runs indicating
incremental hash-value computation, as described in section 4.4.

Also as expected, our run-time is higher than for SPIN-generated validators.
However, the increase is many-fold, being much higher than what we anticipated.
Profiling has revealed the following major contributing factors.
C++: In SPIN, an integer variable in the Promela spec translates to an integer
member of a C structure, and access to it is not protected, unlike in EASN,
where that compares to an asn::Integer object, that (typically) encapsulates
the actual integer (that holds the value of interest), as a private/protected mem-
ber. Therefore, any Promela expression that involves use of this integer object,
translates into a C++ member function call (that may or may not be inlined).

270 V.K. Shanbhag and K. Gopinath

C++ Constructors and Destructors: We observe a substantial portion of
run-time spent initialising and destroying temporary C++ objects on the stack.
Since we wanted to prevent having to incur time penalties related to allocating
and deallocating objects on the heap, our generated code uses compiler tempo-
raries, but even then one cannot avoid the constructor/destructor cost that is
implied by the ASN.1/C++ run-time support system.
Integer Arithmetic, instead of Polynomial Arithmetic: Time is also con-
sumed in routines that have to do multi-precision arithmetic operations, like
addition, multiplication and modulus. SPIN scores a big plus on this aspect
since it uses cheaper polynomial division operations in its hash functions. Al-
though our choice of the integer arithmetic enables us to implement the hashing
algorithm incrementally, it would be much faster if we could find another lower
cost mapping from our full-blown C++ version of the State-of-EASN to some
linearised representation that also enables us to compute the latter from the
former incrementally, like we can now.
Huge Executables: The generated validators usually make very few system
calls, but due to the very large (compared to the size of the SPIN-generated
validators) size of our validators, we see much higher system activity in our
runs, as compared to that in the case of SPIN validators.

We have also attempted to see how EASN compares with SPIN with a change
in the problem size (Table 2).Note that as the size of the system being validated
is increased, the memory benefit of EASN’s more compact state-vector begins to
show, and also, as the SPIN state-vector size grows larger, the run-time cost of
handling the same begins to reduce the gap between the two validators’ perfor-
mance. The sort program from the Test database has N instances of the middle
proctype in the system, each reading from and writing into its left and right
channels respectively. The system also has N channels. Increasing N, therefore,
increases the size of the system being analysed.

Table 2. EASN vs SPIN: Scaling

Model Options Comparison Factor N=5 N=6 N=7 N=8 N=93

Sort SAFETY Mem (EASN / SPIN) 1 0.88 0.825 0.821 0.937
NOREDUCE Time (EASN / SPIN) 3.05 3.18 2.86 2.81 2.42
(plus) BITSTATE Time (EASN / SPIN) 3.36 3.57 3.35 2.95 2.55

5.2 Future Work

There are mainly two lines of activity, we believe, that can be pursued to get
better results than are possible by further cleaning up our implementation of any
wasteful handling of either memory and/or time, when executing the validator.
3 In this case neither SPIN-pan nor EASN-pan completed the exhaustive search for

want of memory (we used a 500MHz, 256MB Linux for all the tests in this paper).
However, in the memory that they used, the EASN-pan stored 15.6% more states,
and explored 18% more transitions than the SPIN-pan.

A SPIN-Based Model Checker for Telecommunication Protocols 271

– Since only the simulator requires the generic interface capability, generating
C-source for the validator would better its performance. Since the ASN.1/C
binding is lighter, we would still get the benefit of having type information
available from ASN.1, while reducing of our run-time cost. The subtype
information would continue to be available. The EASN language definition
would still be the starting point for the tool which continues to work with
the ASN.1/C++ bindings, but uses the ASN.1/C binding for the validator.

– Study ways of reducing the cost of multi-precision arithmetic.

References

1. Holzmann, Gerald J., Doron Peled, “The state of SPIN”, CAV ’96.
2. Rob Gerth, Eindhoven University, “Concise Promela Reference”, August 1997,

Soft-copy available with SPIN.
3. G. Gerth, D. Peled, M. Y. Vardi, P. Wolper, “Simple On-the-fly Automatic Veri-

fication of Linear Temporal Logic”, PSTV94.
4. Holzmann, G.J., Design and Validation of Computer Protocols, Prentice Hall, 1992.
5. Patrice Godefroid, “Partial-Order Methods for the Verification of Concurrent Sys-

tems - An Approach to the State-Explosion Problem”, PhD Thesis, University of
Liege, Computer Science Department, Nov. ’94.

6. Information Technology - Abstract Syntax Notation One (ASN.1): Specification of
Basic Notation, (Technical Corr. 1, Amd. 1:Rules of extensibility), ITU-T Rec.
X.680 (1994), Corr.1 (1995), Amd. 1 (1995); Information Object Specification
(Amd. 1: Rules of Extensibility), ITU-T Rec. X.681 (1994), Amd. 1 (1995); Con-
straint Specification, ITU-T Rec. X.682 (1994); Parameterization of ASN.1 speci-
fications, ITU-T Rec. X.683 (1994)

7. ASN.1/C++ Application Programming Interface, Part 1: Base Classes & Specific
Interface, & Part 2: Generic Interface, NMF 040- 1 & 2, Issue 1.0, Feb. 1998

8. Holzmann, G.J., SPIN Sources, Version 3.4.1, 15th August 2000; “Basic Spin Man-
ual”, available with SPIN.

9. J.Geldenhuys, PJA de Villiers, ‘Runtime Efficient State Compaction in SPIN,’ The
5th Intl SPIN Workshop on Theoretical Aspects of Model Checking.

10. Anindya Basu, ‘A Language-based Approach to Protocol Construction’, PhD Dis-
sertation, Cornell Univ., Aug. ’97

11. ASN.1/C++ Application Programming Interface, Issue 1.0 Draft 10a - Submission
to X/Open August 21, 1996

12. Appendix A: The ASN.1 language, and Appendix B:The EASN Language, are only
in the full paper; available at http://144.16.67.13/˜ gopi/spin01/easn.ps.gz.

M.B. Dwyer (Ed.): SPIN 2001, LNCS 2057, pp. 272-287, 2001.
© Springer-Verlag Berlin Heidelberg 2001

Modeling and Verifying a Price Model for Congestion
Control in Computer Networks Using Promela/Spin

Clement Yuen and Wei Tjioe

Department of Computer Science
University of Toronto

10 King’s College Road,
Toronto, Ontario M5H 3G4, Canada

{clhyuen,wtjioe}@cs.toronto.edu
http://www.cs.toronto.edu/~wtjioe/pricing/index.html

Abstract. Congestion control is an important research area in computer net-
works. Using PROMELA/SPIN, we verified that priority pricing schemes can
be used to effectively control congestion. Under the simulation/verification
framework provided by SPIN, we verified the propositions that the enforcement
of priority pricing on a network link (i) results in an equilibrium state in packet
allocation, and (ii) effectively controls congestion level when pricing is being
dynamically adjusted. Furthermore, we have extended these propositions to
demonstrate the convergence property of equilibrium in packet allocation. This
particular result would be difficult to verify with existing network analysis
tools.

1 Introduction

PROMELA/SPIN is a versatile tool in simulation and verification of software systems
[5]. A common application of PROMELA/SPIN is in modeling and verifying com-
munication protocols [6]. In the area of mobile communication, part of the MCNet
architecture has been simulated and verified in SPIN [7]. With Java PathFinder [8], it
is now possible to translate programs written in JAVA version 1.0 to PROMELA. In
addition, PROMELA/SPIN has been shown to be useful in modeling business rules
[9]. Inspired by these novel applications, we examine the applicability of SPIN for a
nontrivial pricing model in relation to congestion control in computer networks.

As demand for Internet services increases, so does the importance of congestion
control in computer networks. Conventionally, congestion control can be accom-
plished by (i) sending control packets from an overloaded node to some or all of its
sources, (ii) providing delay information to influence network routing decisions, or
(iii) making use of end-to-end probe packets and timestamps to measure the delay
between two end nodes. One drawback of these approaches is that more control pack-
ets must be added to the network before congestion can be relieved.

Putting network users in a more active decision-making position is a novel idea
emerged from recent congestion control researches [2,3]. Priority pricing scheme is
one realization of this idea. The quality of packet transmissions is associated with the
price a user is willing to pay. The establishment of prioritized service classes coupled

Modeling and Verifying a Price Model 273

with pricing enables network providers to adjust network volume through pricing.
However, ideas based on priority pricing remain difficult to verify due to the com-
plexity of their scopes. We discuss two such ideas below.

Gupta [4] presented a robust model using priority pricing in the dynamic manage-
ment of network bandwidth. In this model, a network node may return an estimated
price and waiting time to a user in response to the quality of service requested. After
collecting the current pricing and predicted waiting times from all servers, the user
calculates the total expected cost in using the network. If the estimated cost is higher
than the benefit of using the network, the user may decide to delay transmission until
a more agreeable price becomes available. Otherwise, the user may begin releasing
packets into the network. Note that the cost and waiting time can increase when traffic
volume becomes high. In response to increased cost, the user will reduce the volume
of packets released into the network. However, network delays are common and ran-
dom enough that updated pricing information may not reach the user in time to be-
come useful. Therefore, this pricing scheme can be difficult to implement and verify.

Marbach [1] described a simpler model that may become more effective in prac-
tice. In this model, each priority transmission level is associated with a “fixed” price
(on a fast time-scale). Among this hierarchy of pricing choices, two consecutive price
levels are of great significance. In this paper, we refer to the higher price as the “pre-
mium price”, and the lower one the “best effort price”. When packets are released into
the network with premium priority, they are guaranteed to transmit successfully.
Packets released with best effort priority are always associated with a certain non-zero
probability of packet drop. All submissions at a price higher than the premium are
guaranteed to transmit, while submissions at a price below the best effort priority are
bound to be dropped. Users are expected to dynamically adjust the quantity of sub-
mission (on a fast time-scale) to maximize their economic benefits. Marbach’s
mathematical model showed that an equilibrium in packet allocation from network
users can be established under priority pricing scheme. This equilibrium can poten-
tially be manipulated to control congestion.

While there are many excellent tools available for network simulation [10-13], they
do not provide any verification capability. When a model is introduced, its correctness
must be analytically proven before it can be used as the basis for further discussion.
Simulation is an alternative to a formal proof when analytical verification becomes
too difficult. However, simulation cannot provide as strong an assertion on any im-
portant results. In this regard, PROMELA/SPIN is a valuable alternative in asserting
properties that may otherwise be difficult to verify.

In this work, we examine the applicability of PROMELA/SPIN as a simula-
tion/verification tool for nontrivial congestion control modeling, based on Marbach’s
priority pricing model [1]. Our objective is to explore whether SPIN can be used to
provide effective assertion to important properties of the underlying model. In par-
ticular, we apply SPIN to simulate the correctness properties of Marbach’s priority
pricing model and provide verification of the convergence property in LTL. This
result has not been analytically proven and would be very hard to verify with existing
tools for network simulation. We extend this model to show that allocation equilib-
rium can be maintained and manipulated under the dynamic pricing scheme suggested
by Gupta [4]. We have chosen SPIN for this work due to its inherent power and flexi-
bility in modeling complex software systems. We hope this work will expand the
scope of SPIN to areas relating to computer networks, economics or mathematical
modeling.

274 C. Yuen and W. Tjioe

The remainder of this paper is organized as follows. Section 2 provides an over-
view of Marbach’s priority pricing model. Section 3 presents the design and archi-
tecture of two proposed models for verification. Section 4 discusses details of simula-
tion and verification in PROMELA/SPIN. Section 5 discusses results and limitations.
We conclude this paper in Section 6.

2 Overall Design of the Pricing Model

This section introduces Marbach’s priority pricing model with highlights on the perti-
nent details and terminologies that are fundamental to discussions throughout the
paper. Propositions of Marbach’s model are then presented. We designed two models
in PROMELA/SPIN to verify his propositions. Model 1 verifies the proposition that
an equilibrium in packet allocation exists. Furthermore, it verifies the convergence of
this equilibrium. Model 2 is a natural extension to Model 1. It consists of an addi-
tional process for manipulating transmission prices. In effect, this process allows us to
verify whether congestion control can be achieved through dynamic priority pricing.

2.1 The Mathematical Priority Pricing Model

A computer network that implements priority pricing is modeled in [1] based on the
following framework:

• A discrete-time, single-link bufferless channel with a fixed capacity C.
• There are R users sharing the channel, R = {1, … , R}.
• Network services are provided in N different priority classes, N = {1, … , N}. Class

i is at a higher priority than class j if i > j, i, j ˛ N. Packet traffic from a higher pri-
ority class receives preferential treatment over that from a lower priority class.

• Associated with each user r ˛ R are:
- allocation quantities denoted by dr(i) which are the amount of packets allocated

by the user at priority i ˛ N in each time slot; and
- a private utility function Ur known to the user. A utility function is a well-known

concept from economics that in this context reflects a user’s economic benefit as
a result of using the network. It is assumed to be a strictly increasing function of
the perceived throughput, denoted by xr.

• Associated with each priority class i ˛ N are:
- a transmission probability Ptr(i) defined as

ï
ï

î

ï
ï

í

ì

>‡å

>

= å å

å

= +=

-

=

+=

otherwise0

)()(if

)(if1

)(
1)(

)(
1

N

ik

N

ikid

kd

N

ik

tr kdkd

kd

iP
N

ik C

C

C
 , (1)

Modeling and Verifying a Price Model 275

where å=
r

r idid)()(is the aggregated allocation of packets over all users at

priority i. This is the probability that packets allocated (submitted) at priority i
are successfully transmitted; and

- a price ui . In a priority pricing scheme, 0 < ui < uj whenever i < j, i, j ˛ N.
Submitting packets at a higher priority is more expensive.

It can be seen from the definition of transmission probability (1) that a best effort
class i0 exists such that (a) 0 < Ptr(i0) £ 1, (b) Ptr(i) = 1 for all i > i0 and (c) Ptr(i) = 0 for
all i < i0. In other words, packets in best effort class are transmitted with a non-zero
probability; packets from higher priority classes are guaranteed to be transmitted;
packets from lower priority classes are all dropped. In this paper the class i0+1 is re-
ferred to as the premium class.

0i
u is referred to as the best effort price, and 10 +iu the

premium price.
In a discrete-time formulation, the following interactions take place in every time

slot. The network channel provides priority services according to the probability dis-
tribution in (1). Network user determines an optimal allocation of packets (i.e. dr(i))
for the next time slot according to the same transmission probabilities. The optimality
arises from the fact that the quantity of packets allocated to the network should
maximize the net economic gain of the user. In mathematical terms, the determined
allocation of user r is the solution of the maximization problem

å ×-
‡

i
irrr

id
uidxU

r

)()(max
0)(

, representing the tradeoff between a high utility and the

associated cost. If we let Gr(xr) (the marginal utility function) be the derivative of

Ur(xr), and 1-
rG its inverse function, it can be shown analytically that when best effort

cost is lower than premium cost, allocation is optimal with

0)(),)(()(0
1

)(
1

0 00
== - idiPuGid rtririPr

tr
 for all i „ i0. This means all packets should be

submitted to the best effort class to perceive the best benefit. When best effort cost is

higher than premium cost, allocation is optimal with 0)(),()1(1
1

0 0
==+ +

- iduGid rirr

for all i „ i0+1. This means all packets should be submitted to the premium class to
perceive the best benefit. Finally, when best effort cost equals premium cost, user
receives identical benefit from submitting packets to either class. Hence both alloca-
tion strategies are optimal. A network user generally makes use of the above strategy
to determine their allocation of packets for the next time slot.

Under this model, Marbach [1] provided an analytically proof for the following
two propositions.

At equilibrium, each user’s allocation maximizes its own net benefit. Therefore, no
user has an incentive to change its allocation. Equilibrium is thus defined to be the

Propositions:

 I. Under a fixed pricing scheme, an equilibrium condition exists in packet
allocations of channel users.

 II. Priority pricing is effective in congestion control.

276 C. Yuen and W. Tjioe

state where no user allocation will deviate from its current value. In the model, this
condition can be inferred when all users’ allocations remain unchanged over any two
consecutive time slots.

Note that congestion level of the network channel can be reflected in the total (ag-
gregate) number of packets allocated by all users. With a fixed transmission capacity,
the channel is considered congested when packet submission exceeds its capacity.
This in reality will result in packet drops and poor quality of service. Congestion
control is observed through proposition II.

In order to verify proposition I and II, we formulate the following models in
PROMELA/SPIN and show their relationships with Marbach’s analytical model [1]
in terms of the main components and the objectives of their propositions.

2.2 Model 1 (Demand Equilibrium Model)

Model 1 is designed to capture the major ingredients of the mathematical model. It is
readily translated into PROMELA and verified in SPIN. It also serves as the basis for
Model 2 where congestion control is verified. Model 1 is made up of the following
main constituents.

• A channel process with a fixed capacity
• R user processes running in parallel with the channel process (sharing the channel)

A user process probes the channel for the transmission probabilities on a frequent
but fair basis. It derives an optimal allocation of packets for the next time slot using
the strategy described in Section 2.1. A channel process computes the transmission
probabilities of the network according to (1). These values are made available to all
users of the network.

The objective of Model 1 is to examine the validity of proposition I through the
simulation and verification framework provided by PROMELA/SPIN. In addition
proposition I is enhanced to a stronger postulation, which we now restate as proposi-
tion 1.

Since PROMELA/SPIN only work with discrete values, an equilibrium condition
in Model 1 is considered attained when the differences between consecutive alloca-
tions for all users are bounded by a small integer. In this model we choose the bound
to be 1.

It should be noted that in general convergence properties are difficult to prove
analytically. In particular an analytical proof of the convergence property in proposi-
tion 1 has not been given in [1]. However with an automated verification tool such as
SPIN, we have the capability to mechanically verify the correctness of such proposi-
tion.

Proposition 1

Under a fixed pricing scheme, an equilibrium condition in packet alloca-
tions of channel users exists and converges from some initial allocations.

Modeling and Verifying a Price Model 277

2.3 Model 2 (Dynamic Priority Pricing Model)

In order to explore the effect of dynamic price adjustments and verify proposition II,
we extend Model 1 to Model 2 by adding an administrator process to the system.

The channel and user processes operate and interact in the same manner as in
Model 1. The administrator process monitors the aggregated packet allocation at
regular intervals and adjusts the best effort price. In response to a price change, user
processes adopt the same allocation strategy as described in Section 2.1 based on the
new price given by the administrator.

The objective of Model 2 is to examine the validity of proposition II using
PROMELA/SPIN. Proposition II is restated as proposition 2 to more specifically
reveal the mechanism in which priority pricing controls congestion.

3 Design and Architecture

This section describes the requirements, overall architecture, implementation deci-
sions and the various core components of the two aforementioned models.

The following requirements apply to both Models:

• Users are expected to closely monitor the level of congestion as reflected by the
transmission probabilities of the network, and react promptly by computing new
quantities of packets to submit for the next time slot.

• The channel process is expected to return up-to-date transmission statistics to its
users in an equally timely fashion. As a result, both user and channel processes
should proceed on a fast time-scale.

• Pricing for each priority class should be maintained at a steady level to allow suffi-
cient time for the system to reach equilibrium (if exists). Since this falls under the
administrator’s responsibility, the administrator process should proceed on a slow
time-scale.

The main implementation choices applicable to both Models are:

• The time-scale would be of discrete-value.
• The channel process should be invoked following every change in user allocation.

This models timely transmission probabilities updates.
• A user process should proceed immediately after each update of the network

transmission probabilities. This models prompt reaction of user to congestion and
changes in price levels.

• In order to guarantee that users submit packets at a constant and deterministic rate,
a particular user is required to wait (block) until all other users have updated their

Proposition 2

Priority pricing can effectively change the aggregated equilibrium level of
packet allocation.

278 C. Yuen and W. Tjioe

allocations for the next time slot. This mechanism is necessary to enforce strong
fairness.
An additional implementation choice for Model 2 is:

• just the
state of

r proc-
es ly. The
su to the
ch obabili-
tie el 1.

te
ad
re
co
de
ch

pl
•
•

•
•
The administrator process should be invoked on occasion to dynamically ad
best effort transmission price if the network channel is currently in the
equilibrium.

The overall architecture of Model 1 comprises of a channel process and use
ses, which form the environment and interact with the channel dynamical
ccessful operation of Model 1 requires user processes to submit packets
annel process, and the channel process to return the current transmission pr
s of the network to all users. Figure 1 depicts the overall architecture of Mod

User 1

User 2

Channel
packet allocations

transmission probabilities
Fig. 1. Overview of Model 1 Architecture

Model 2 consists of a channel, an administrator, and user processes. In this archi-
cture, the users communicate dynamically with both the network channel and the
ministrator. Given the quantities of packets submitted by users, the channel process
turns the current transmission probabilities to users. The administrator process
mmunicates new pricing information to users at regular time intervals. Figure 2
scribes the overall architecture of Model 2 containing the user, administrator and
annel processes.
To effectively model the priority pricing scheme, we require the corresponding im-

ementation of data structures:
A parameter N representing the number of priority classes.
Parameters associated with each user process:
- a data structure of allocation quantities, representing packet allocations to each

class; and
- a utility function defined for the user. This should be a simple function with the

desired (strictly increasing) property.
A data structure representing rational transmission probabilities.
A data structure representing prices associated with priority classes.

User R

Environment

Modeling and Verifying a Price Model 279

Fig. 2. Overview of Model 2 Architecture

The condition whereby equilibrium is detected is also of great importance. It was
not clear whether the limitation of PROMELA/SPIN as a discrete-value modeling tool
would adversely impact the outcome of simulation. In particular, it is unlikely to
observe convergence of packet allocation to a single value in every case. On the other
hand, packet allocation may also diverge. Through experimentation, we found in
general that the model did converge to a very confined range, although the actual
behavior depended on scalable parameters such as the number of users. To facilitate
verification of convergence, we need to effectively express such confinement by
means of a bound condition “#define BOUND(A,B,C) (A - B <= C) &&
(A - B >= -C)”. It can be used to maintain the previous (B) and current (A) val-
ues of interest and compare their distance with the bound (C).

Another area requiring special attention is the representation of rational numbers,
or fractions in PROMELA. It is obvious that fractions such as transmission probabili-
ties cannot be stored in integer variables, as they will be truncated. As a result, a
fraction data type is devised to represent fractions as pairs of integers (numerator,
denominator). In this way, fraction multiplications can be translated to integer multi-
plications and divisions.

We outline in the following two sections the strategies associated with the different
process types in accordance with the cited requirements. These were translated into
PROMELA codes of the processes during implementation. Interested readers may
refer to our web site for the complete PROMELA codes.

3.1 Channel, User Processes, and Strategies

The channel process reviews the transmission probabilities of the network link in a
timely fashion. It also coordinates the execution of user processes and administrator
process. Since a communication channel usually assumes full capacity when it first

280 C. Yuen and W. Tjioe

becomes available, the transmission probabilities of all classes are initialized to one.
The channel process is also the first to be instantiated. This ensures that a communi-
cation infrastructure is available before user processes can possibly interact. For each
priority class, starting from the highest priority, the channel process proceeds by
computing the available transmission capacity of the network link and determining
the total demands from users of the network. If the network capacity exceeds the total
user demands, then the transmission probability of the class is set to one. Otherwise, it
is set to be equal to the available capacity of the link divided by the total user de-
mands. Note that transmission probabilities updates are interleaved between user
process executions, and stored as global variables. This arrangement effectively
simulates the situation where users of a network probe the channel for current con-
gestion information.

A user process computes its next allocation of packets according to the current
congestion information. The quantity of packet allocation is determined according to
the net benefit each individual user receives from using the network. User benefit can

be represented by a utility function, chosen to be rrrr xAxU =)(in this implemen-

tation. This definition satisfies the general requirement that a utility function increases
with strictly decreasing marginal values. The scaling constant Ar is assumed to be
uniquely related to a user’s utility characterization. For simplicity, we assume a ho-
mogeneous user population, adopting the same scaling constant Ar = A.

In general, user strategy in packet allocation follows the description in Section 2.1.
A user process is enabled only after the channel process has updated the transmission
probabilities. All users in the network are guaranteed a fair chance to allocate their
packets. In this implementation, zero packets are allocated to all low priority classes
up to but not including the best effort class. If the condition

(premiumeffortbesteffortbest uPu ‡--) is true, user submits 22 4 premiumuA packets to the pre-

mium class. When condition (premiumeffortbesteffortbest uPu £--) becomes true, user sub-

mits 22 4 effortbesteffortbest uPA -- packets to the best effort class for transmission. Here ubest-

effort refers to the best effort price, upremium refers to the premium price, and Pbest-effort refers
to the transmission probability of the best effort class. Zero packets are allotted to all
remaining high priority classes. Note that when equality holds in the above governing
condition, the user process non-deterministically selects either class to allot.

3.2 Administrator Process and Strategy

The objective of administrator process is to introduce pricing perturbations into the
system at designated time intervals. It first calculates the aggregated user demand and
determines if equilibrium has been established under the bound condition. It also
asserts an inversely proportional relationship between the total demand and the best
effort price at equilibrium point. When equilibrium is reached, the administrator proc-
ess non-deterministically picks the new best effort price from the set { uinit – 1, uinit, uinit

+ 1 } where uinit represents the initial price of the best effort class. Users are forced to
adapt their packet allocations in order to optimize their economic benefits under the
new price. As a result, the transmission probabilities of the network can be dynami-
cally influenced at run time.

Modeling and Verifying a Price Model 281

4 Simulation and Verification

Simulations and verifications were performed in order to observe convergence of
packet allocations, and its stability thereafter. Since Model 1 and 2 are supposed to
mimic the continuous operation of a network channel, their simulations do not nor-
mally terminate. There is no final state in both Model 1 and 2. Data was therefore
collected through simulations of 5-second duration. Approximately 1500 data points
can be obtained from each trial. Simulation and data collection for both Model 1 and
2 followed the same procedure, however, each simulation was conducted independ-
ently of the others. For data analysis, simulation of Model 1 was performed three
times, and the averaged data set was taken in the construction of Figure 3. Simulation
of Model 2 was performed numerous times, however only data from one trial is
shown in Figure 4. Each simulation of Model 2 mimics a self-contained network
system, with an administrator process arbitrarily adjusting prices. Therefore, there is
little coherence between different executions of the model to justify averaging of the
data.

In this implementation we adopt 5 priority classes and 10 network users. All simu-
lations and verifications were performed using SPIN Version 3.4.3 on a Sun UltraS-
PARC server with 4 400MHz processors and 4GB of physical memory.

4.1 Simulation of Channel, User, and Administrator Processes

Table 1 tabulates the simulation results of Model 1. It shows the data values from the
first 20 cycles of the interaction between the user processes and the channel process.
In particular, rows 1 to 10 show user packet allocations for the first ten cycles. Rows
11 to 20 show subsequent packet allocations for the same users. At Time 1, User 7
allocates 2500 packets under priority class 1. The aggregated demand for the entire
channel at this time is only 2500 packets. Other users have not yet allotted their pack-
ets. At Time 2, User 0 allots 2000 packets to the network. The aggregated demand at
this instance becomes the sum of allotments of both User 7 and User 0. Before User 3
releases its packets to the network at Time 3, it has computed that submitting to pri-
ority class 2 carries more advantage than to a lower class. Therefore, a shift in allot-
ment to higher priority classes can be observed in subsequent cycles. After all 10
users have released their packets to the network, the allocation cycle repeats again.
The order in which users release their packets to the network in the new cycle is de-
termined randomly. This feature is important in simulating a working network where
the arrivals of packets are commonly considered as random and independent events.

The aggregated demand represents the current allocation of all users of the net-
work. For example, at Time 1, User 7 allocates 2500 packets for the first time slot. At
Time 13, User 7 updates its allocation to 277 packets. Hence, at Time 13, aggre-
gated demand = aggregated demand + 227 – 2500.

The aggregated allocation (demand) from all network users is presented over time
in Figure 3. The data was averaged over three simulation runs. Before network be-
comes saturated, all users upload as many packets as desired under the assumption
that transmission probabilities equal one. Guided by the results from benefit maximi-
zation, users realize that submitting as desired is not economically optimal. Total
demand from users therefore begins to shift towards a value that would optimize

282 C. Yuen and W. Tjioe

everyone’s economic benefit. It settles over a plateau around iteration (time) 20 and
remains relatively stable thereafter. This remarkable result indicates that the system
has reached an equilibrium condition in packet allocation. Each user, in optimizing its
own economic benefit, participates in a non-cooperative game with the outcome of
effectively drifting the network traffic to a steady level. This essentially supports
Proposition I that an equilibrium is indeed possible under priority pricing scheme.

To simulate Model 2, an administrator process is added. Data values between every
price change follow the trend observed in the simulation of Model 1. Model 2 can
thus be considered as a sequence of Model 1 simulations, each with a different best
effort price maintained by the network administrator. Figure 4 illustrates the simula-
tion of Model 2.

Table 1. Aggregated User Demand

The upper curve in Figure 4 represents the current best effort price determined by
the network administrator. The lower curve is the aggregated allocation for all users
in the network along simulation time. To illustrate the effect of dynamic price adjust-
ment, we focus on the interval between Time 100 and Time 200. The best effort price
at Time 100 starts with a value of 5. The aggregated allocation stabilizes to an equi-
librium of about 2800 packets at Time 114 and remains stable at this level. Note that
the network capacity is only 2000 packets per time units. The probability of transmis-
sion is clearly below 1 at the current best effort price. Having observed that network
traffic is maintained at a steady level, the administrator process increases the best
effort price to 7. Facing a new higher cost in using the network, users begin to reduce
the amount of packet allocation, resulting in a downward incline in the aggregated
allocation curve. This phenomenon continues up to Time 148, where the total alloca-
tion drops to 1975 packets, which is below the total link capacity. As a result, a
transmission probability of one is returned to the next user. This user allocates as
many packets as desired under the false assumption that transmission for all packets

Modeling and Verifying a Price Model 283

submitted would be successful. Subsequent results from benefit maximization remind
users that network bandwidth is not as abundant as anticipated. Each user then re-
duces its allocation to maximize the economical benefit under the new price. As a
result, a new equilibrium at a lower aggregated allocation level is observed.

Fig. 3. Equilibrium in Pricing Model

Fig. 4. Change of equilibrium with price

Average Aggregated Demand Equilibrium

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57

Time

A
g

g
re

g
at

ed
 A

llo
ca

ti
o

n

Dynamic Equilibrium

0

1

2

3

4

5

6

7

8

1 21 41 61 81 101 121 141 161 181 201 221 241 261 281 301

Time

P
ri

ce

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

A
g

g
re

g
at

ed
 A

llo
ca

ti
o

n

284 C. Yuen and W. Tjioe

4.2 Verification of Convergence to Equilibrium (Proposition 1)

To verify that an equilibrium exists and converges, we formulate Proposition 1 as an
LTL property and search for an acceptance cycle in the intersection of the Büchi
automata for the corresponding never claim and Model 1. With fixed price levels in
the absence of the administrator process, the stability nature of convergence could be
verified.

We have specified the following LTL property for one user (user 0) and submitted
to SPIN:

¹ () () ()1)_()_(1)_()_(__ 0000 -‡-Ù£-Ù= clprevdclcurrdclprevdclcurrdclprevclcurr

This property reads “eventually user 0 will allocate all its packets to a single prior-
ity class and that allocation will remain constant. Alternatively, user 0 has reached an
equilibrium in its packet allocation”. For R number of users in the network, there will
be R such LTL properties one for each user. Due to homogeneity, we can anticipate

consistent results from all users. The combined effect of the LTL “always” () and
“eventually” (¹) operators verifies the existence and convergence of equilibrium in
packet allocation.

We configured SPIN to use the maximum amount of available memory, 4096MB,
and allowed a maximum search depth of up to 30,000,000. We also adopted bit-state
hashing1 with 26 bits in our verification. A typical run resulted in a 668-byte state
vector, with 3.87348 · 107 states and 8.25047 · 107 transitions. In general verification
of proposition 1 lasts for four hours with the given search depth.

4.3 Verification of Dynamic Priority Pricing (Proposition 2)

With the addition of an administrator process, Proposition 2 can be verified using
Model 2 by means of an assertion statement embedded into the PROMELA code. To
verify this proposition, the administrator process is introduced to perform pricing
adjustments on the best effort class. Specifically we would like to verify an inverse
relationship between price and allocation at equilibrium. The following assert state-
ment is embedded into the administrator process where equilibrium is detected:

assert(BOUND()_(clcurrdall * Price(clcurr _),K,20));

This statement asserts “the product of total demand (allocation) and price of the
current allocated class of any user is equal to K”, modeled using the bound condition.

We configured SPIN to use the same resources as in the case of proposition 1. A
typical run resulted in a 692-byte state vector, with 3.93016 · 107 states and 8.03291
· 107 transitions. In general verification of proposition 2 lasts for two and a half hours
with the given maximum search depth.

1 Exhaustive searches were also performed in both verifications and no counterexample was

generated in either case for the given search depth.

Modeling and Verifying a Price Model 285

5 Discussion

This section briefly discusses the role of PROMELA/SPIN in achieving the objectives
of Model 1 and 2. It also discusses some limitations that we have experienced during
the course of design and simulation.

5.1 Contribution of PROMELA/SPIN in Model 1

Model 1 was constructed based on the mathematical framework of Marbach’s Model
[1]. It is, however, distinguished from Marbach’s model by the additional verification
of the convergence property of equilibrium in packet allocations. This provision con-
siderably strengthens the result of equilibrium existence and facilitates simulation and
verification of congestion control in Model 2.

5.2 Contribution of PROMELA/SPIN in Model 2

With the addition of an administrator process, PROMELA/SPIN provide an important
means to simulate runtime dynamic price adjustments in the priority pricing scheme.
Model 2 distinguishes itself from earlier work on dynamic price adjustments [4] in
two important ways. Using the simulation/verification capability of PROMELA/SPIN
and the results obtained from Model 1, individual price-change intervals in Figure 4
can be considered as cascaded simulations of Model 1. Therefore, the existence of an
equilibrium within each interval and its convergence can be formally verified. In
addition, data collected from the simulation of Model 2 also indicates inverse propor-
tionality between price and total packets allotted by network users. As illustrated in
Figure 4, when price is high, the aggregated demand rests on a lower volume in equi-
librium. This result obtained from PROMELA/SPIN is arguably stronger than similar
results based on simulation alone. Further investigation and verification of this in-
verse price-volume relationship can be readily supported by PROMELA/SPIN. In this
regard, congestion control studies based on priority pricing modeled by
PROMELA/SPIN clearly present a unique advantage over other simulation tools.

5.3 Limitations

In Model 1 we have performed verification using only one set of initial conditions,
namely all user processes begin with a zero allocation to all priority classes. Given
another set of non-zero initial allocations, it would be desirable to observe an identical
equilibrium condition. The ultimate goal is to verify the more general case where
proposition 1 and 2 remain affirmative for all sets of initial conditions. Though little
evidence is observed in this respect to suggest inherent limitations in
PROMELA/SPIN, it is considered impractical, if not impossible, to model this situa-
tion by non-deterministic selection over all possible initial allocations. In spite of this,
the simulation and verification framework provided by PROMELA/SPIN is still more
powerful and convincing than merely simulation based on currently available network
tools.

286 C. Yuen and W. Tjioe

We observe that there are cases in which the approximating bound condition could
pose a false detection of an equilibrium state during verification. This may happen in
ill-behaved models where the system exhibits a steady drift in the perceived output
value and never ends up in an equilibrium state. However such a change in output
value over any two consecutive time slots (current – previous) can be so small (in
particular, smaller than the bound) that the system is considered by the bound condi-
tion to have reached an equilibrium state, which of course is untrue. Further efforts
are therefore needed to either enhance the bound condition to deal with this situation
or devise different mechanism to detect equilibrium conditions.

We have compared the applicability of SPIN versus SMV in modeling priority
pricing. In SMV, it is possible to model all users updating packet allocations in one
single time slot. With modeling in SPIN, we are forced to simulate the interaction
between users and the network asynchronously. In each time slot, only one process
operates. In this regard, SMV’s ability to model synchronous systems seems to make
it a more logical choice for this work. After experimenting with both automated veri-
fication tools, we have however chosen PROMELA/SPIN for PROMELA’s expres-
siveness and SPIN’s verification capability. We are especially impressed with the rich
language constructs and programming flexibility provided by PROMELA.

6 Conclusion

Throughout this work, we have been impressed with the expressiveness of
PROMELA and interpretative strength of SPIN as a simulation/verification tool. We
have been equally impressed with the strength of automated verification tools in gen-
eral in providing modeling and verifying capability to complicated scenarios. By
following the assumptions made in [1], we successfully developed three process types
in SPIN, interacting with one another asynchronously in simulating a network link in
action. Not only have we verified in SPIN that the postulated equilibrium indeed
existed, we have shown in Model 1 that convergence to equilibrium can be achieved.
Furthermore, we demonstrated in Model 2 the unique result that effective congestion
control can be achieved through dynamic price adjustments. The choice of using
PROMELA/SPIN for this work had arisen through necessity. The strength of the
combined simulation and verification framework provided by PROMELA/SPIN
would be difficult to replicate using another tool.

Acknowledgement. We would like to express our gratitude to Professor Marsha
Chechik for her invaluable suggestions and patient guidance throughout this work.
We are especially indebted to her tireless effort that had led us through numerous
revisions of this manuscript. We would like to thank Professor Peter Marbach for his
guidance in the understanding of the priority pricing model for congestion control.

References

1. P. Marbach, “Pricing Priority Classes in Differentiated Services Networks,” 37th Annual
Allerton Conference on Communication, Control, and Computing, Monticello, IL, Sep-
tember 1999

Modeling and Verifying a Price Model 287

2. A. Gupta, D. O. Stahl, and A. B. Whinston, “A Priority Pricing Approach to Manage
Multi-Service Class Networks in Real-Time,”. Presented at MIT Workshop on Internet
Economics, March 1995

3. A. Gupta, D. O. Stahl, and A. B. Whinston, “The Economics of Network Management,”
Communications of the ACM, 42(9): 57-63, September 1999

4. A. Gupta, D. O. Stahl, and A. B. Whinston, “A Stochastic Equilibrium Model of Internet
Pricing,”, Journal of Economics Dynamics and Control, 21:697-722, 1997

5. G.J. Holzmann, “The Model Checker SPIN,” IEEE Transactions on Software Engineering,
23(5): 1-17, May 1997

6. E. Fersman and B. Jonsson, “Abstraction of Communication Channels in PROMELA: A
Case Study,” In SPIN Model Checking and Software Verification: Proc. 7th Int. SPIN
Workshop, volume 1885 of Lecture Notes in Computer Science, pages 187-204, Stanford,
CA, 2000. Springer Verlag

7. Theo C. Ruys and Rom Langerak, “Validation of Bosch’ Mobile Communication Network
Architecture with SPIN,” In Proceedings of SPIN97, the Third International Workshop on
SPIN, University of Twente, Enschede, The Netherlands, April 1997

8. Klaus Havelund, Thomas Pressburger, “Model Checking JAVA Programs using JAVA
PathFinder,” STTT 2(4): 366-381 (2000)

9. Wil Janssen, Radu Mateescu, Sjouke Mauw, Peter Fennema, Petra van der Stappen,
“Model Checking for Managers,” SPIN 1999: 92-107

10. Lee Breslau, Deborah Estrin, Kevin Fall, Sally Floyd, John Heidemann, Ahmed Helmy,
Polly Huang, Steven McCanne, Kannan Varadhan, Ya Xu, and Haobo Yu, “Advances in
Network Simulation,” IEEE Computer, 33 (5), pp. 59-67, May, 2000

11. Sandeep Bajaj, Lee Breslau, Deborah Estrin, Kevin Fall, Sally Floyd, Padma Haldar, Mark
Handley, Ahmed Helmy, John Heidemann, Polly Huang, Satish Kumar, Steven McCanne,
Reza Rejaie, Puneet Sharma, Kannan Varadhan, Ya Xu, Haobo Yu, and Daniel Zappala,
“Improving Simulation for Network Research,” Technical Report 99-702, University of
Southern California, March, 1999

12. Deborah Estrin, Mark Handley, John Heidemann, Steven McCanne, Ya Xu, and Haobo
Yu, “Network Visualization with the VINT Network Animator Nam,” Technical Report 99-
703, University of Southern California, March, 1999

13. “The Network Simulator – ns-2,” http://www.isi.edu/nsnam/ns/

A Model Checking Project at Philips Research

Leszek Holenderski

Philips Research, Eindhoven, The Netherlands
leszek.holenderski@philips.com

Abstract. A new verification project has recently started at Philips
Research. It concerns verification of C-like concurrent programs used to
specify functionality of hardware-software systems. The problem is to
make the verification practical, in the sense that it must be mechanized,
and applicable to thousands of lines of C-like code. We present the goals
of the project and some combination of existing solutions we want to try.

1 Introduction

In what follows, we are only concerned with functional verification of hardware-
software systems (as opposed to manufacture testing, for example). We distin-
guish between formal verification, as understood in academia, and verification in
general, as practised in industry. In other words, we use the term verification in
its broader sense, including testing of final products and simulation of models.

Verification of hardware-software systems is a serious effort consuming non-
negligible part of the time devoted to their design and implementation. Due to
the ever increasing complexity of the systems, the time needed to verify them will
increase even more, finally reaching unacceptable levels. In addition, more and
more high-tech products become part of safety-critical systems and thus must
be extremely reliable, making the verification effort even more time consuming.
These potential problems have caused some industries involved in the design and
manufacturing of high-tech products to turn their attention to more systematic
methods of verification (say, formal verification via model checking) which are
promised by their proponents to shorten the verification time and/or increase
reliability of final products.

Philips is far from facing any verification crises on the scale of several spec-
tacular hardware/software failures well publicized in recent years. This is due
to the fact that Philips is not that often involved in the production of safety-
critical devices.1 However, in anticipation of the potential problem of how the
increased time spent on verification can affect time-to-market, Philips Research
has already been experimenting for several years with incorporating some formal
verification methods into design flows.
1 For example, how much damage could be caused by a remote TV set controller

that would deadlock after a very unusual combination of 10 buttons was pressed
accidentally? Especially, if it is enough to switch the TV set off and on again, in
order to resolve the problem?

M.B. Dwyer (Ed.): SPIN 2001, LNCS 2057, pp. 288–295, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

A Model Checking Project at Philips Research 289

Historically, formal verification started at Philips with hardware (i.e., cir-
cuits) since most devices produced by Philips were not software-intensive in the
past.2 Currently, formal equivalence checks between various levels of hardware
descriptions are performed routinely, in most production projects. As far as for-
mal verification of functional properties (say, via symbolic model checking) is
concerned, the available tools still do not scale up well enough to apply them to
anything bigger than designs with several hundred latches. For this reason, the
only viable option is to apply model checking to relatively simple sub-components
only. However, even in this restricted setting formal verification of properties is
considered useful, since it is supposed to play some role in a bigger effort of
making reusability of components easier.

Formal verification of software via model checking is currently not consid-
ered a serious option, due to the very limited usability of available tools. The
main obstacle is a relatively small size of models/programs that can be analyzed
automatically. Decomposition cannot help much here, for at least two reasons.
First, it takes a substantial effort to isolate those software components of a final
hardware-software system for which the properties expected by the rest of the
system could easily be formalized. Second, the software components that could
be isolated are usually orders of magnitude bigger than what current tools can
cope with. On the other hand, software model checking has found its niche at
Philips, but only in the area where it has already proven to be successful from
the early beginnings, namely protocol verification. Several control-intensive pro-
tocols have been verified, mostly with SPIN. However, tricky protocols are not
that common in daily practice, so this kind of application is not considered to
be important enough to justify the substantial effort of incorporating model
checking into design flows.

In what follows we present a new project that aims to change this negative
perception of model checking, and formal methods in general.

2 Relevance of the Project

In many design flows currently used in Philips, the first precise descriptions of the
functionality of a hardware-software system are given as programs in languages
close to RTL (Register Transfer Level). For this reason, most of the verification
time is currently spent on RTL specifications. However, more recent design flows,
such as COSY [1], start at a much higher level.

In COSY, one starts with describing the functionality of a design in the
YAPI language [10]. In short, YAPI is just concurrent C++ based on a version
of Kahn networks: processes communicate via bounded FIFOs (using read and
write primitives) and can non-deterministically choose between several possi-
ble communications (using select primitive). This fairly standard model of dis-
tributed concurrent systems has a relatively simple formal semantics, and this
opens possibilities of some formal analysis of YAPI programs.
2 With the exception of Philips Medical Systems. Their various scanning devices rely

heavily on complex software, like image processing.

290 L. Holenderski

A design is specified as a YAPI program, in the form of a process network.
This network is accompanied with a description of a final hardware architec-
ture consisting of programmable circuits (microprocessors) and custom designed
circuits (ASICs). The YAPI network is mapped on the hardware architecture.
The processes mapped on microprocessors are called software components while
those implemented as ASICs are called hardware components. The main goal of
the COSY design flow is to start performance analysis as early as possible. To
this end various models are prepared, and then simulated in order to gather some
performance metrics. If the initial design does not satisfy assumed performance
requirements it is modified by either repartitioning the required functionality
into a new process network or changing the hardware architecture, or both. Af-
ter a new re-mapping, the performance of a modified design is re-evaluated. The
cycle may be repeated several times.

Since YAPI specifications can be simulated, functional verification can al-
ready start during a system design phase in order to expose some errors as
early as possible, and thus making them easier/cheaper to correct. So far, such
functional errors were exposed much later, usually during a system integration
phase.

Currently, functional verification is done via simulation only, and there is
no much support for the automation of the verification effort (the simulation
scenarios must be prepared manually). The COSY design flow could be improved
if some aspects of the verification of YAPI programs were mechanized. In this
setting new verification challenges arise, which we will address in this project.

We distinguish between two kinds of verification tasks: property checking,
where a design is verified to satisfy some kind of behavioral constraint, and
equivalence checking, where two models of a design are checked to be equivalent
(for instance, YAPI versus RTL, RTL versus gate, or gate versus gate).

Several verification tasks can be identified in the COSY flow:

(1) Property checking of YAPI networks. Here we can distinguish between
generic properties (such as absence of deadlocks) and specific properties
(such as invariants or assertion violations).

(2) Equivalence checking of two YAPI networks. Often, a YAPI process has
to be split up into a network of processes, in order to facilitate a better
software/hardware repartitioning. This is done manually. The question is
whether the original YAPI process is equivalent to the resulting decomposed
network.

(3) Equivalence checking of a YAPI process against its RTL implementation (in
case of hardware components).

(4) Equivalence checking of a YAPI process against its software implementation
(in case of software components). Often, the C++ code that works fine
when simulated, will not suffice as DSP code, for instance. It has to be
tweaked manually. Thus, it becomes important to check equivalence (at some
abstraction level) of the original against the specialized code.

In order to simplify our job, we have decided to concentrate initially on
verification tasks (1) and (2). The goal is to investigate methods that would

A Model Checking Project at Philips Research 291

make a verification effort easier. The methods must be practical, in the sense
that they must be mechanized and applicable to thousands of lines of YAPI
code. We propose to investigate both model checking and directed testing.

3 Proposed Solutions

Formal verification will be used to find errors, and not to establish correctness.
This makes an important difference since methods for finding errors usually scale
up much better than those for establishing correctness, as far as the size of YAPI
programs is concerned. The reason is quite obvious, and has to do with reliability
of tools. A tool for establishing correctness is expected to be very reliable: it
should be both sound and complete. First, the answer ”yes” should always mean
”correct” (soundness). Second, for every correct property the answer should be
”yes” (completeness). A tool for finding errors does not need to be that exact. In
fact, it needs to be neither sound nor complete. First, the ”error” answer need
not necessarily mean a real error (unsoundness) since a user can make his own
judgement relatively easily, by simulating an erroneous trace. Second, it is not
expected to find all errors (incompleteness).

We will investigate two approaches:

– How to use the model checker SPIN [8] to find errors in YAPI programs.
– How to use the testing tool TorX [12] for directed testing of YAPI programs.

There is a link between our project and the CdR (Côte-de-Resyste) project [2]
which Philips Research is involved in. We want to use their TorX tool to auto-
mate both property checking and equivalence checking, by directed testing. In
the CdR approach to testing, two objects are compared, using TorX. The first
object (called an implementation) is checked to conform with the other object
(called specification). Both implementation and specification are perceived by
TorX as input-output state transition systems, i.e., labelled state transition sys-
tems whose labels are of two kinds: input and output actions. TorX explores
the specification and chooses some input actions offered by the specification,
to stimulate the implementation. The implementation performs a chosen in-
put action and after some computation produces an output action in return,
and afterwards waits for another input action. The output action produced by
the implementation is then checked to conform with the specification, and if it
conforms, another input action is chosen for the next stimulation. The testing
process is supported by a formal theory, in the sense that the ioco (input-output
conformance) relation between the implementation and specification is formally
defined.

TorX has a very flexible architecture, and is rather a framework than a con-
crete tool. It consists of several modules that can relatively easily be changed
to adapt TorX to various testing scenarios. First, both specification and imple-
mentation can be given in any language, by providing wrappers that allow TorX
to perceive the two objects as input-output state transition systems. Second, a
specific exploration strategy can relatively easily be programmed as one of the

292 L. Holenderski

modules. For example, in order to test YAPI process networks for deadlocks, the
exploration strategy can consistently prefer YAPI read operations over YAPI
write operations (or vice versa), trying to make FIFOs empty (or full), since
these are the typical situations that cause deadlocks in YAPI networks. In this
way, the generation of test cases is driven by a property being tested and thus
the name ”directed testing”.

It seems worthwhile to try both SPIN and TorX to verify YAPI programs
since they lead to different tradeoffs as far as the exactness in finding errors versus
scalability is concerned. SPIN allows for exhaustive testing (in the expense of
the limitations imposed on the size of the verification model) while TorX should
in principle scale up better (in the expense of being non-exhaustive). Another
reason for investigating TorX is given in Section 4.

Successful application of both tools relies on solving two fundamental prob-
lems:

– How to obtain a verification model from a YAPI program (the assumption
here is that YAPI programs are too complex/informal to be analyzed di-
rectly).

– How to make the model small enough (to cope with the inherent limitations
of most fully automated verification tools).

There are essentially two techniques to cope with the ”size” problem: decom-
position and abstraction. Compositional verification is hard to mechanize so we
prefer to tackle the ”size” problem by aggressive abstractions. We are going to
try abstraction via omission and abstraction via projection, as realized in two
existing tools. Details are given below.

3.1 Extracting a Promela Program from a YAPI Program

We are going to solve both the ”model” and ”size” problems simultaneously,
by creating a tool similar to the AX tool [9]. AX extracts a Promela program
from a C program. The extracted program can then be fed to both SPIN and
TorX (it happens that Promela is one of many input languages of TorX). The
term ”extracts” is used instead of ”translates to” since the translation from C to
Promela is combined with abstracting, so the Promela program is not necessarily
equivalent to the C program. (Note that this does not pose theoretical problems
since we are only finding errors and not establishing correctness.) The abstracting
process is driven by a table that specifies what to do with some basic statements
(i.e., declarations, assignments, guards and procedure calls) that appear in the
C program. The table must be prepared by a user, and this is (hopefully) the
only place where a human intervention is needed in extracting the model.

The table driven extraction is very flexible. On one hand, it allows for fully
automated abstractions (via built-in general abstraction rules). On the other
hand, it allows to fine tune abstractions as much as needed (via more specific
rules provided by a user). The flexibility is crucial for the successful usage of
SPIN and TorX on real-life complex YAPI programs since it allows to fine tune

A Model Checking Project at Philips Research 293

a verification effort relatively easily (to trade the exactness of results for the time
that can be spent on verification).

Since YAPI is based on C++, and not on C, extracting a Promela model
from YAPI seems unfeasible (manipulations on objects, including the memory
management for object allocation and deallocation, would have to be simulated
in Promela and this would lead to explosion of state space). Fortunately, C++
classes are only used in YAPI to describe the structure of a YAPI process net-
work. The behaviour of processes is specified in C, to avoid potential problems
with mapping them later as hardware components.

As far as the specification of properties is concerned, the generic properties
(like deadlock) don’t need to be specified. The specification of behavioral prop-
erties poses some problems, but only if we want to be very general. In principle,
behavioral properties can be grouped into safety and liveness properties. The
safety properties pose no problems since they can easily be specified as observers
or assertion violations, either in YAPI (from which Promela is then extracted)
or directly in Promela. For the liveness properties, one can either revert to LTL
(linear temporal logic) or, in case this is perceived as too difficult for a user, one
can design a less general yet simpler language on top of LTL.

3.2 Extracting a Verification Model Directly from a YAPI Program,
on-the-Fly

In order to avoid the potentially tedious task of preparing an abstraction table
for the AX tool, we will also try the approach used in the VeriSoft tool [5]. In this
approach, the whole state space of a C program (which is large, due to the very
fine granularity of C statements) is projected on a much smaller space consisting
of so-called observable states. The observable states are defined by break points,
as in debugging, and the transitions are the computations between break points.

As in the first solution, the ”model” and ”size” problems are solved simulta-
neously, but this time a relatively small verification model is obtained directly,
just by executing a concurrent C program. The observable states are extracted
on-the-fly, by executing a program in parallel with the VeriSoft model checker:
whenever the program reaches a break point, the model checker gets control
and analyzes the current observable state. In fact, the VeriSoft model checker
is provided as a library, and the parallel composition of the program and the
model checker is realized simply by linking the program with the library. Since
the observable states visited during model checking are too big to be stored, the
stateless model checking technique [5] is used to overcome this problem.

Gluing YAPI with VeriSoft is easy. First, break points are naturally defined
by the YAPI communication primitives (read, write and select). Second, YAPI
is not implemented as an extension to C++, in the sense that no special ver-
sion of C++ compiler is needed. Instead, it is implemented as several C++
libraries that implement the YAPI communication primitives on a particular
platform (one library for each combination of a processor and an operating sys-
tem that YAPI supports). Since VeriSoft library already provides implementa-
tion of bounded queues, in order to glue YAPI with VeriSoft it is enough to write

294 L. Holenderski

yet another YAPI library that simply delegates the YAPI communication prim-
itives to VeriSoft communication primitives. A verification experiment consists
in linking an unmodified YAPI program with two libraries (YAPI and VeriSoft)
and executing it.

Gluing YAPI with TorX does not pose fundamental problems as well, due to
the very modular architecture of the TorX toolset. Again, yet another version of
YAPI library will do the automatic projection on observable states.

4 Another Reason to Investigate TorX

When verifying complex system (say, specified by thousands of lines of YAPI
code), the only hope of successfully using the model checking technology together
with abstractions (as advocated in Section 3.1 and 3.2) is to verify relatively
simple properties. By a relatively simple property we mean a property that de-
pends on a small part of the system only (in other words, that only concerns
a particular aspect of a system). Only in this way one will be able to abstract
the whole system to a model small enough to be analyzed. Observe that equiv-
alence checking is not a relatively simple property in this sense since it involves
the whole system (in fact, two of them). Thus, SPIN seems to be hopeless for
equivalence checking of complex YAPI programs.

Since one of the goals of our project is to support equivalence checking,
we have decided to use TorX for this purpose. TorX establishes a kind of con-
tainment relation between implementation and specification (formally defined
in [12]). To check equivalence of a pair of YAPI programs, TorX can be run
twice. In the first run, the first program plays the role of specification while the
other is treated as implementation. In the second run, the roles are reversed.
Such a reversal of roles is possible since both the implementation and specifica-
tion are perceived by TorX as objects of the same kind (namely, input-output
state transition systems).

5 Related Work

There has been a significant amount of research in the past years to adapt model
checking to program checking. Beside AX and VeriSoft, tools like JCAT [4], Java
PathFinder [7] and Bandera [3] also caught our attention. In our opinion, the
approach taken in JCAT and early versions of Java PathFinder (i.e., a direct
translation of Java to Promela) is unlikely to enable tractable model checking for
non-trivial programs. Although a newer version of Java PathFinder [11] employs
a dedicated model checker that works directly on Java bytecode, it remains to be
seen how well this new approach scales up. On the other hand, Bandera seems
to be quite a promising tool for our purpose of verifying JAPI programs, due
to its support for slicing and abstraction. We have not yet considered it in our
project since we envision much bigger problem in adapting Bandera to YAPI
than the AX and VeriSoft tools.

A Model Checking Project at Philips Research 295

Another promising approach to bridge the gap between model checking and
program checking may emerge from a relatively recent research on runtime ver-
ification. In runtime verification, a program is executed once, and various kinds
of information is gathered during this particular run. This information can then
be used to predict whether other different runs may violate some properties of
interest. Of particular interest to us is the deadlock detection algorithm proposed
in [6] which we hope to adapt to YAPI in the future.

6 Conclusions

In order to make the verification of YAPI programs practical, we propose to use
model checking and directed testing combined with abstraction via omission and
projection. The combination can be obtained relatively easy, by combining four
existing tools: SPIN, TorX, AX and VeriSoft. This will allow to asses relatively
quickly how well the proposed methods perform.

References

1. J.-Y. Brunel et al, COSY: a Methodology for System Design Based on Reusable
Hardware & Software IP’s, EMMSEC’98, 709–716, Bordeaux France, Sept. 1998.

2. Côte de Resyste, http://fmt.cs.utwente.nl/projects/CdR-html
3. J. Corbett et al, Bandera: Extracting Finite-state Models from Java Source Code,

The 22nd Int. Conference on Software Engineering, Limerich, Ireland, June 2000,
ACM Press.

4. C. Demartini, R. Iosif and R. Sisto, A deadlock detection tool for concurrent Java
programs, Software Practice and Experience, 29(7):577–603, July 1999.

5. P. Godefroid, Model Checking for Programming Languages using VeriSoft,
POPL’1997 (The 24th ACM Symposium on Principles of Programming Lan-
guages), 174–186, Paris, Jan. 1997.

6. K. Havelund, Using Runtime Analysis to Guide Model Checking of Java Programs,
SPIN’2000 (The 7th SPIN Workshop), Stanford University, USA, LNCS 1885,
Springer Verlag, 245–264, Sept. 2000.

7. K. Havelund and T. Pressburger, Model Checking Java Programs Using Java
PathFinder, STTT (Int. Journal on Software Tools for Technology Transfer),
2(4):366–381, April 2000.

8. G. Holzmann, The Model Checker Spin, IEEE Trans. on Software Engineering,
23(5):279–295, May 1997.

9. G. Holzmann, Logic Verification of ANSI-C code with SPIN, SPIN’2000 (The 7th
SPIN Workshop), Stanford University, USA, LNCS 1885, Springer Verlag, 131–147,
Sept. 2000.

10. E.A. de Kock et al, YAPI: Application Modelling for Signal Processing Systems,
DAC’2000 (The 37th Design Automation Conference), Los Angeles, 2000.

11. W. Visser et al, Java PathFinder - Second Generation of a Java Model Checker,
Post-CAV Workshop on Advances in Verification, Chicago, July 2000.

12. R. de Vries et al, Côte de Resyste in PROGRESS, PROGRESS’2000 Workshop on
Embedded Systems, Utrecht, The Netherlands, 141–148, Oct. 2000.
http://fmt.cs.utwente.nl/publications/cdr.pap.html

Applications of Model Checking at Honeywell
Laboratories?

Darren Cofer, Eric Engstrom, Robert Goldman,
David Musliner, and Steve Vestal

Honeywell Laboratories, Minneapolis MN 55418, USA
darren.cofer@honeywell.com

Abstract. This paper provides a brief overview of five projects in which
Honeywell has successfully used or developed model checking methods
in the verification and synthesis of safety-critical systems.

1 Introduction

Embedded software in control and communication systems is becoming increas-
ingly complex. Verification of important safety or mission-critical properties by
traditional methods of test and design review will soon be impossible or pro-
hibitively expensive. The only way developers of complex systems will be able
to manage life cycle costs and yet still field systems with the functionality that
the market demands is to rely on mathematical models and analyses as the basis
for our designs.

For several years Honeywell has been investigating the use of model checking
techniques to analyze the behavior and correctness of a variety of safety and
mission-critical systems. This paper provides a brief overview of five projects in
which we have successfully used or developed model checking tools and methods.

2 Automatic Synthesis of Real-Time Controllers

Unmanned Aerial Vehicles (UAVs) under development by the military and deep
space probes being developed by NASA require autonomous, flexible control
systems to support mission-critical functions. These applications require hybrid
real-time control systems, capable of effectively managing both discrete and con-
tinuous controllable parameters to maintain system safety and achieve system
goals.

We have developed a novel technique for automatically synthesizing hard
real-time reactive controllers for these and other similar applications that is
based on model-checking verification. Our algorithm builds a controller incre-
mentally, using a timed automaton model to check each partial controller for
? This material is based in part upon work supported by Rome Labs (contract F30602-

00-C-0017), AFOSR (contract F49620-97-C-0008), and NASA (cooperative agree-
ment NCC-1-399)

M.B. Dwyer (Ed.): SPIN 2001, LNCS 2057, pp. 296–303, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Applications of Model Checking at Honeywell Laboratories 297

correctness. The verification model captures both the controller design and the
semantics of its execution environment. If the controller is found to be incor-
rect, information from the verification system is used to direct the search for
improvements. Using the CIRCA architecture for adaptive real-time control
systems [6], these controllers are synthesized automatically and dynamically,
on-line, while the platform is operating. Unlike many other intelligent control
systems, CIRCA’s automatically-generated control plans have strong temporal
semantics and provide safety guarantees, ensuring that the controlled system
will avoid all forms of mission-critical failure.

CIRCA uses model-checking techniques for timed automata [11] as an in-
tegral part of its controller synthesis algorithm. CIRCA’s Controller Synthesis
Module (CSM) incrementally builds a hard real time reactive controller from a
description of the processes in its environment, the control actions available, and
a set of goal states. To do this, the CSM must build a model of the controller it
is constructing that is faithful to its execution semantics and use this model to
verify that the controller will function safely in its environment.

CIRCA employs two strategies to manage this complex task. First, its mis-
sion planner decomposes the mission into more manageable subtasks that can
be planned in detail. Second, CIRCA itself is decomposed into two concurrently-
operating subsystems (see Figure 1): an AI Subsystem including the CSM rea-
sons about high-level problems that require powerful but potentially unbounded
computation, while a separate real-time subsystem (RTS) reactively executes the
generated plans and enforces guaranteed response times.

Environment
Adaptive Mission

Planner

Subsystem
Real-Time

Module
Controller Synthesis

AI Subsystem

Fig. 1. Basic CIRCA architecture.

The CIRCA CSM builds reactive discrete controllers that observe the sys-
tem state and some features of its environment and take appropriate control
actions. In constructing such a controller, the CSM takes a description of the
processes in the system’s environment, represented as a set of transitions that
modify world features and that have worst case time characteristics. From this
description, CIRCA incrementally constructs a set of reactions and checks them
for correctness using a timed automaton verifier.

The real-time controllers that CIRCA builds sense features of the system’s
state (both internal and external), and execute reactions based on the current
state. That is, the CIRCA RTS runs a memoryless reactive controller.

Given the above limitation on the form of the controller, the controller syn-
thesis problem can be posed as choosing a control action for each reachable

298 D. Cofer et al.

state (feature-value assignment) of the system. This problem is not as simple as
it sounds, because the set of reachable states is not a given — by the choice of
control actions, the CSM can render some states (un)reachable.

Indeed, since the CSM focuses on generating safe controllers, a critical issue
is making failure states unreachable. In controller synthesis, this is done by the
process we refer to as preemption. A transition t is preempted in a state s iff
some other transition t′ from s must occur before t could possibly occur.

Note that the question of whether a transition is preempted is not a question
that can be answered based on local information: preemption of a transition t in
a state s is a property of the controller as a whole, not of the individual state.
It is this non-local aspect of the controller synthesis problem that has led us to
use automatic verification.

3 Real-Time Scheduler of the MetaH Executive

MetaH is an emerging SAE standard language for specifying real-time fault-
tolerant high assurance software and hardware architectures[8]. Users specify
how software and hardware components are combined to form an overall system
architecture. This specification includes information about one or more config-
urations of tasks, their message and event connections, information about how
these objects are mapped onto a specified hardware architecture, and informa-
tion about timing behaviors and requirements, fault and error behaviors and
requirements, and partitioning and safety behaviors and requirements.

The MetaH executive supports a reasonably complex tasking model using
preemptive fixed priority scheduling theory [1,2]. It includes features such as
period-enforced aperiodic tasks, real-time semaphores, mechanisms for tasks to
initialize themselves and to recover from internal faults, and the ability to enforce
execution time limits on all these features (time partitioning).

Traditional real-time task models cannot easily handle variability and un-
certainty in clock and computation and communication times, synchronizations
(rendezvous) between tasks, remote procedure calls, anomalous scheduling in
distributed systems, dynamic reconfiguration and reallocation, end-to-end dead-
lines, and timeouts and other error handling behaviors. One of the goals of this
project was to use dense time linear hybrid automata models to analyze the
schedulability of real-time systems that cannot be easily modeled using tradi-
tional scheduling theory.

Figure 2 shows an example of a simple hybrid automata model for a pre-
emptively scheduled, periodically dispatched task. A task is initially waiting for
dispatch but may at various times also be executing or preempted. The variable
t is used as a timer to control dispatching and to measure deadlines. The variable
t is set to 0 at each dispatch (each transition out of the waiting state), and a
subsequent dispatch will occur when t reaches 1000. The assertion t ≤ 750 each
time a task transitions from executing to waiting (each time a task completes)
models a task deadline of 750 time units. The variable c records accumulated
compute time, it is reset at each dispatch and increases only when the task is

Applications of Model Checking at Honeywell Laboratories 299

executingpreempted

t 1000<_

t := 0
c := 0

c 100<_
waiting

c = 1
.
t = 1
.

if c 75>_

c = 0
.
t = 1
.

if unselected

if selected

if t = 1000
and selected

t := 0
c := 0 if t = 1000

and unselected

c = 0.
t = 1
.

 t 750<_assert

Fig. 2. Hybrid Automata Model of a Preemptively Scheduled Task.

in the computing state. The invariant c ≤ 100 in the computing state means
the task must complete before it receives more than 100 time units of processor
service, the guard c ≥ 75 on the completion transition means the task may com-
plete after it has received 75 time units of processor service (i.e. the task compute
time is uncertain and/or variable but always falls in the interval [75, 100]).

In this example the edge guards selected and unselected represent schedul-
ing decisions made at scheduling events (called scheduling points in the real-time
literature). These decisions depend on the available resources (processors, busses,
etc.) being shared by the tasks.

We began our work using an existing linear hybrid automata analysis tool,
HyTech [4], but found ourselves limited to very small models. We developed
and implemented a new reachability method that was significantly faster, more
numerically robust, and used less memory. However, our prototype tool allows
only constant rates (not rate ranges) and does not provide parametric analysis.

Using this new reachability procedure we were able to accomplish one of
our goals: the modeling and verification of a piece of real-time software. We
developed a hybrid automata model for that portion of the MetaH real-time
executive that implements uniprocessor task scheduling, time partitioning and
error handling. Results of this work are presented in [9].

Our hybrid automata model was not developed using a separate modeling
language. Instead, statements were added to the code to generate pieces of the
model as subprograms were unit tested. When unit testing of all subprograms
was completed, the complete system model was then subjected to reachability
analysis. This provided a high degree of traceability between code and model.

The conditions we checked during reachability analysis were that all deadlines
were met whenever the schedulability analyzer said an application was schedu-
lable; no accessed variables were unconstrained (undefined) and no invariants
were violated on entry to a region; and no two tasks were ever in a semaphore
locking state simultaneously. Assertion checks appearing in the code were also
captured and verified in the model.

We discovered nine defects in the course of our verification exercise. In our
judgement, three of these would have been almost impossible to detect by test-
ing due to the multiple carefully timed events required to produce erroneous
behavior.

300 D. Cofer et al.

There are limits on the degree of assurance that can be provided, but in our
judgement the approach may be significantly more thorough and significantly less
expensive that traditional testing methods. This result suggests the technology
has reached the threshold of practical utility for the verification of small amounts
of software of a particular type.

4 Fault-Tolerant Ethernet Protocol

Large industrial control systems require highly reliable communcation services,
especially in chemical processing applications. We have developed a Fault-
Tolerant Ethernet (FTE) communication network for industrial control appli-
cations. The network is composed of dual redundant LANs implemented with
standard commercially available hardware and software drivers. It is transparent
to control applications, both in terms of application coding and communication
latency.

The original FTE protocols performed failure detection and recovery for sin-
gle point of network failure. We used the Spin model checker [5] to produce a
simple model of the dual LAN fault detection algorithm and verify the correct-
ness of the initial version of the protocols. We found one significant error and
some minor ambiguities and potential design errors that were addressed in the
final design and implementation of the system.

We first constructed a single node model to verify that faults are correctly
detected by the fault detection algorithm, and that single message losses are
tolerated. The model consisted of four processes: the two LANs, a state broad-
cast process (sends pairs “I’m alive” messages on the two LANs), and the fault
detection algorithm.

Faults were injected by permitting single message losses in each of the two
LANs. Messages could be lost at any time, as long as two consecutive messages
on a LAN were never lost. In this situation, the fault detection algorithm should
never enter its error state.

Verification of this model identified an execution in which the error state
could be (incorrectly) entered, thus exposing an error in the algorithm. The
problem occured because the algorithm assumed that a lost message always
results in the arrival of two consecutive messages from the same LAN. However,
message ordering is not sufficient to detect a missing message.

The fault detection algorithm was revised to add a short sequence number to
each “I’m alive” message. The maximum sequence number must be larger than
the number of consecutive lost messages that are to be tolerated, so 2 or 3 bits
is sufficient. Each message in a pair is given the same sequence number so pairs
of messages can be identified by matching sequence numbers. However, Spin
identified an further counterexample for the revised design in which alternating
messages are lost on each LAN. There are never two messages lost in a row on
either LAN, but a complete pair of messages is never received.

Two possibilities were considered to deal with this situation:

1. Revise the robustness requirement to exclude the message loss scenario iden-
tified above.

Applications of Model Checking at Honeywell Laboratories 301

2. Relax the fault detection algorithm to tolerate the message loss scenario.
This could be done by clearing the missing message counters upon receipt
of the missing message, even if its sequence number does not match.

The second approach was selected. This is reasonable since messages are in
fact being received from both LANs, so there is no reason to declare a LAN
failure.

5 Time Partitioning in Integrated Modular Avionics

The Digital Engine Operation System (DEOS) was developed by Honeywell for
use in our Primus Epic avionics product line. DEOS supports flexible Integrated
Modular Avionics applications by providing both space partitioning at the pro-
cess level and time partitioning at the thread level. Space partitioning ensures
that no process can modify the memory of another process without authoriza-
tion, while time partitioning ensures that a thread’s access to its CPU time
budget cannot be impaired by the actions of any other thread.

The DEOS scheduler enforces time partitioning using a Rate Monotonic
Analysis (RMA) scheduling policy. Using this policy, threads run periodically
at specified periods and they are given per-period CPU time budgets which are
constrained so that the system cannot be overutilized [3].

Honeywell engineers and researchers at NASA Ames collaborated to produce
a model for use with the Spin model checker [7]. The model was translated from
a core “slice” of the DEOS scheduler. This model was then checked for violations
of a global time partitioning invariant using Spin’s automated state space explo-
ration techniques. We successfully verified the time partitioning invariant over
a restricted range of thread types. We also introduced into the model a subtle
scheduling error; the model checker quickly detected that the error produced a
violation of the time partitioning invariant.

We attempted to verify the following liveness property, which is necessary
(but not sufficient) for time partitioning to hold: If the CPU is not scheduled at
100% utilization, then the idle thread should run during every longest period.
When verification was attempted with two user threads and dynamic thread
creation and deletion enabled, Spin reported a violation. The error scenario
results when one of the user threads deletes itself and its unused budget is
immediately returned to the main thread (instead of waiting until the next
period). This bug was, in fact, one which had been previously discovered by
Honeywell during code inspections (but intentionally not disclosed to the NASA
researchers performing the verification). Therefore, it would seem that model
checking can provide a systematic and automated method for discovering subtle
design errors.

Our current time partitioning model does not incorporate several important
time-related features of DEOS. These include:

– The existence of multiple processes, which serve as (among other things)
budget pools for dynamically creating and deleting threads. Time partition-
ing must be verified at a process level as well as a thread level.

302 D. Cofer et al.

– Several types of thread synchronization primitives provided by DEOS, in-
cluding counting semaphores, events, and mutexes. These allow threads to
suspend themselves or be suspended in ways not accounted for by the current
model.

– The existence of aperiodically running threads, used to service aperiodic
hardware interrupts.

We plan to integrate these features into the model and verify that time par-
titioning still holds with these features present. The principal challenge here will
be keeping the state space size manageable while increasing the complexity of
the model by incorporating these new features. The current model has already
approached the bounds of exhaustive verifiability on currently available com-
puter systems, although subsequent optimizations have reduced the size of the
model somewhat. Furthermore, the current model has only been tested on a
small range of possible thread budgets and periods.

6 Synchronization Protocol for Avionics Communication
Bus

ASCB-D (Avionics Standard Communications Bus, rev. D) is a bus structure
designed for real-time, fault-tolerant periodic communications between Honey-
well avionics modules. The algorithm we modeled is used to synchronize the
clocks of communicating modules to allow periodic transmission. The algorithm
is sufficiently complex to test the limits of currently available modeling tools.
Working from its specification, we modeled the synchronization algorithm and
verified its main correctness property using Spin [10].

The ASCB-D synchronization algorithm is run by each of a number of NICs
(Network Interface Cards) which communicate via a set of buses. For each side
of the aircraft there are two buses, a primary and a backup bus. Each NIC can
listen to, and transmit messages on, both of the buses on its own side. It can
also listen to, but not transmit on, the primary bus on the other side.

The operating system running on the NICs produces frame ticks every 12.5
msec which trigger threads to run. In order for periodic communication to oper-
ate, all NICs’ frame ticks must be synchronized within a certain tolerance. The
purpose of the synchronization algorithm is to enable that synchronization to
occur and to be maintained, within certain performance bounds, over a wide
range of faulty and non-faulty system conditions.

The synchronization algorithm works by transmitting special timing mes-
sages between the NICs. Upon initial startup, these messages are used to desig-
nate the clock of one NIC as a “reference” to which the other NICs synchronize;
after synchronization is achieved, the messages are used to maintain synchroniza-
tion by correcting for the NICs’ clock drift relative to each other. The algorithm
is required to achieve synchronization within 200 msec of initial startup regard-
less of the order in which the NICs start.

The synchronization algorithm must also meet the 200 msec deadline in the
presence of malfunctioning NICs or buses. For example, any one of the NICs
might be unable to transmit on, or unable to listen to, one or more of the buses;

Applications of Model Checking at Honeywell Laboratories 303

or it might babble on one of the buses, sending gibberish which prevents other
messages from being transmitted; or one of the buses might fail completely at
startup, or fail intermittently during operation.

The introduction of an explicit numerical time model, and the combination
of that time-modeling capability and the message-transmission capability in the
same “environment” process, allowed us to produce a tractable four-NIC model
that includes most of the important features of the synchronization algorithm.

The environment process encapsulates all those parts of the system that pro-
vide input to the algorithm we wish to model (frame ticks, buffers, and buses),
while the NIC process encapsulates the algorithm itself. The interface between
the two is simple and localized. It allows faults to be injected and complicated
hardware interactions to be added with no change required to the NIC code.
Complicated tick orderings produced by frames of different lengths are explicitly
and accurately represented in the model. Because the interface between environ-
ment and NIC includes all the data that must be shared between them, there is
no need for global data structures. This allows Spin’s compression techniques to
reduce the memory required to store each state.

With this model we were able to verify the key system property as an as-
sertion in the environment process that states that all NICs should be in sync
within 200 msec of the startup time.

References

1. P. Binns. Scheduling Slack in MetaH. Real-Time Systems Symposium, December
1996.

2. P. Binns. Incremental Rate Monotonic Scheduling for Improved Control System
Performance. Real-Time Applications Symposium, 1997.

3. P. Binns. Design Document for Slack Scheduling in DEOS. Honeywell Technology
Center Technical Report SST-R98-009, September 1998.

4. T. Henzinger, P. Ho, H. Wong-Toi. A User Guide to HyTech. University of Cali-
fornia at Berkeley, www.eecs.berkeley.edu/˜tah/HyTech).

5. G. Holzmann. The SPIN Model Checker. IEEE Transactions on Software Engi-
neering, vol. 23, no. 5, May 1997, pp. 279-295.

6. D. Musliner, E. Durfee, and K. Shin. CIRCA: a cooperative intelligent real-
time control architecture. IEEE Transactions on Systems, Man and Cybernetics
23(6):1561-1574.

7. J. Penix, W. Visser, E. Engstrom, A. Larson, and N. Weininger. Verification of
time partitioning in the DEOS scheduler kernel. ICSE 2000.

8. S. Vestal. An architectural approach for integrating real-time systems. Workshop
on Languages, Compilers and Tools for Real-Time Systems, June 1997.

9. S. Vestal. Modeling and verification of real-time software using extended linear
hybrid automata. Fifth NASA Langley Formal Methods Workshop, June 2000 (see
http://atb-www.larc.nasa.gov/fm/Lfm2000/).

10. N. Weininger, D. Cofer. Modeling the ASCB-D Synchronization Algorithm with
Spin: A Case Study. 7th International Spin Workshop, September 2000.

11. S. Yovine. Kronos: A verification tool for real-time systems. International Journal
of Software Tools for Technology Transfer, vol. 1, no. 1/2, Oct. 1997.

Coarse-Granular Model Checking in Practice

Bernhard Steffen, Tiziana Margaria, and Volker Braun

LS V, Universität Dortmund, Baroper Str. 301, D-44221 Dortmund (Germany),
{steffen,tiziana,braun}@ls5.cs.uni-dortmund.de

MetaFrame Technologies, Borussia Str. 112, D-44149 Dortmund (Germany),
{bsteffen,tmargaria,vbraun}@metaframe.de

Abstract. In this paper, we illustrate the power of ‘classical’ iterative
model checking for verifying quality of service requirements at the coarse
granular level. Characteristic for our approach is the library-based mod-
elling of applications in terms of service logic graphs, the incremental
formalization of the underlying application domain in terms of temporal
quality of service constraints, and the library-based consistency check-
ing allowing continuous verification of application- and purpose-specific
properties by means of model checking. This enables application experts
to safely configure their own applications without requiring any specific
knowledge about the underlying technology. The impact of this approach
will be demonstrated in three orthogonal industrial application scenarios.

1 Motivation

Moving large portions of the needed application programming load from pro-
gramming experts to application experts or even to end users is today a major
economic challenge. For application experts, this requires freeing activities intrin-
sic to the development of applications from their current need of programming
expertise. For end users to take over advanced reshapings of applications, little
expertise in the particular application domain must suffice.

In this paper, we present our experience with the Agent Building Center,
a tool for formal methods-based, application-specific software design, which is
designed for directly supporting the described division of labour by means of a
model-checking-based consistency mechanism. In particular, it supports appli-
cation experts during their combination of application-specific business objects
to service logic graphs (SLG), which explicitly model the intended workflows of
the application under development. These graphs are sufficient to automatically
generate the application code for the considered platforms.

We will illustrate the impact of our method along the following three appli-
cation scenarios:

– The Integrated Test Environment (ITE), designed to steer the system-level
test of computer telephony integrated (CTI) applications (Sect. 3).

– An E-commerce shop with personalization and online adminstration
(Sect. 4).

M.B. Dwyer (Ed.): SPIN 2001, LNCS 2057, pp. 304–311, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Coarse-Granular Model Checking in Practice 305

– A role-based editorial system supporting the whole evaluation process for
international conferences (Sect. 5).

This paper sketches the Agent Building Center in Section 2, before describing
the above-mentioned three application scenarios and finally drawing some con-
clusions in Section 6.

2 The Agent Building Center

Here we provide an overview of the Agent Building Center in the light of the an-
nounced programming-free programming paradigm of application development.

In the ABC, application development consists of the behaviour-oriented com-
bination of Building Blocks (BBs)[2] on a coarse granular level. BBs are here
identified on a functional basis, understandable to application experts, and usu-
ally encompass a number of ‘classical’ programming units (be they procedures,
classes, modules, or functions). They are organized in application-specific col-
lections. In contrast to (other) component-based approaches, e.g., for object-
oriented program development, the ABC focusses on the dynamic behaviour:
(complex) functionalities are graphically stuck together to yield flow graph-like
structures embodying the application behaviour in terms of control.

Throughout the behaviour-oriented development process, the ABC offers ac-
cess to mechanisms for the verification of libraries of constraints by means of
model checking. The model checker individually checks hundreds of typically
very small and application- and purpose-specific constraints over the flow graph
structure. This allows concise and comprehensible diagnostic information in the
case of a constraint violation, in particular since the feedback is provided at the
application rather than at the programming level. These characteristics are the
key towards distributing labour according to the various levels of expertise.

Programming Experts: They are responsible for the software infrastructure,
the runtime-environment for the compiled services, as well as for programming
the BBs.

Constraint Modelling Experts: They classify the BBs, typically according to
technical criteria like their version or specific hardware or software requirements,
their origin (where they were developed) and, here, most importantly, according
to their intent for a given application area. The resulting classification scheme
is the basis for the constraint definition in terms of modal formulas.

Application Experts: They develop concrete applications, by graphically com-
bining BBs into coarse-granular flow graphs. These graphs can be immediately
executed by means of an interpreter, in order to validate the intended behaviour
(rapid prototyping). Model checking ([2]) guarantees the consistency of the con-
structed graph with respect to the constraint library.

306 B. Steffen, T. Margaria, and V. Braun

Hipermon

S0

UPN

V.24

LANTest Coordinator

Call Center Clients

Call Center Server

HUSIM

Fig. 1. Example of an Integrated CTI Platform

3 System-Level Testing of Telephony Systems

Traditional approaches fail to enter practice in the scenario we are considering
here, because they do not fit the current test design practice. The main obstacle
is the absence of any fine granular formal model of the involved systems.

In the approach described in [1] we present a component-based test design
on top of a library of elementary but intuitively understandable test case frag-
ments, supported by formal methods-based validation. Together, this establishes
a coarse-granular ‘meta-level’ on which

– test engineers are used to think,
– test cases and test suites can be easily composed,
– test scenarios can be configured and initialized,
– critical consistency requirements including version compatibility and frame

conditions for executability are easily formulated, and
– consistency is fully automatically enforced via model checking and error di-

agnosis.

As a typical example of an integrated CTI platform, Fig. 1 shows a midrange
telephone switch and its environment. The switch is connected to the ISDN
telephone network or, more generally, to the public service telephone network
(PSTN), and acts as a “normal” telephone switch to the phones. Additionally,
it communicates directly via a LAN or indirectly via an application server with
CTI applications that are executed on PCs. Like the phones, CTI applications

Coarse-Granular Model Checking in Practice 307

Fig. 2. Test Case Checking in the ITE Environment

are active components: they may stimulate the switch (e.g. initiate calls), and
they react to stimuli sent by the switch (e.g. notify incoming calls). In a system
level test it is therefore necessary to investigate the interaction between such
subsystems. Typically, each participating subsystem requires an individual test
tool. Thus in order to test systems composed of several independent subsystems
that communicate with each other, one must be able to coordinate a heteroge-
neous set of test tools in a context of heterogeneous platforms. This task exceeds
the capabilities of today’s commercial test management tools, which typically
cover the needs of specific subsystems and of their immediate periphery.

The effort for instantiating the ABC as required for the CTI application
consists of designing some application-specific building blocks, and formulating
frame conditions which must be enforced during test case design and test suite
design. The building blocks are used by test designers to graphically construct
test cases by drag-and-drop on the Test Coordinator canvas. The resulting test

308 B. Steffen, T. Margaria, and V. Braun

graphs are directly executable for test purposes, and, at the same time, they
constitute the models for our verification machinery by means of model checking.
Figure 2 shows a typical test graph for illustration.

We distinguish classes of constraints according to the application domains:
it depends on the test purpose, which constraints are bound to the test case.

Legal Test Cases define the characteristics of a correct test case, independently
of any particular system under test and test purpose. Specifically, testing im-
plies an evaluation of the runs wrt. expected observations done through verdicts,
represented through the predicates passed and failed. For example, to enable an
automated evaluation of results, verdict points should be disposed in a nonam-
biguous and noncontradictory way along each path, which is expressed as follows:

(passed ∨ failed) ⇒ next(generally ¬(passed ∨ failed))

POTS Test Cases define the characteristics of correct functioning of Plain
Old Telephone Services (POTS), which build the basis of any CTI application
behaviour. Specific constraints of this class concern the different signalling and
communication channels of a modern phone with an end user: signalling via
tones, messaging via display, optic signalling via LEDs, vibration alarm. They
must e.g. all convey correct and consistent information.

System Under Test-Specific Test Cases define the correct initialization
and functioning of the single units of the system under test (e.g. single CTI
applications, or the switch), of the corresponding test tools, and of their interplay.

Our evolutionary approach turned out to be a central feature here: by discovery
of a mismatch users strengthened the model and the constraints.

4 A Personalized E-Commerce Shop

In [3] we presented a component-based approach to internet service construction
based on the ABC that supports a user friendly, flexible, and reliable development
of personalizable and self-adapting online services. Personalizing modification,
extension, and global adaption of the service potential are based on a usage
analysis and/or on new requirements by the users.

Our servlet-based system environment enforces a strict separation between
data (the content) and control (the service functionality). Together with an
integrated caching mechanism and an offline execution of the adaption, this
guarantees a fast response time also in the presence of high system load. These
features, which are currently being commercially used as development platform
for online shops and workflow management services, are here illustrated along the
example of the METACatalogue Online Kiosk1, an online magazine shop, whose
customers are individually supported via personalized offers [3]. Fig. 3 shows the
initial portion of the Service Logic Graph and a snapshot of the online service.
1 The METACatalogue Service was presented at the CeBIT in Hannover.

Coarse-Granular Model Checking in Practice 309

Fig. 3. Personalized Offers in the Magazine Search (r) and Service Logic Graph(l)

A (personalizable) internet service organizes therefore the complete potential
of information and of service that a service provider wishes to make available to
the users over the World Wide Web, and this provides each user with a person-
specifically tailored selection of content and support. The navigation through
this selection is supported via a personal agent that adapts itself to the partic-
ular user’s behaviour. This adaptation process is steered on the one hand via
information provided explicitely by the user, and on the other hand implicitly,
through observation (behaviour tracking).

Personalizability and administrability can well be designed and realized to-
gether, and best with the help of a development environment for the efficient
and structured internet organization offering both

– a largely programming-free, building block oriented, and high-level service
development, and

– transparent adaption mechanisms and their steering for a controlled evolu-
tion (the learning process) of agent personalization.

This way, not only the concrete content, but also the service workflow can be
structured, organized, and personalized.

The basic service logic components of the internet service application do-
main offer navigation, search, and browsing facilities, and menu-driven selection
of content categories and personal profile. On top of that, the individualization
functionality includes tracking, profile update, profile dependent advertisement

310 B. Steffen, T. Margaria, and V. Braun

Fig. 4. The SPIN and LNCS Online Conference Services

and offer selection. The administration portion of the service also offers rule ad-
ministration, including rule parsers and an individualization interface. Of central
importance for a shop application is the shopping cart management, which gives
rise to several constraints of the kind “Shopping cart items do not get lost”,
expressed as

add-item ⇒ ¬exit until (pay ∨ empty-cart)

5 A Role-Based Editorial System

This online service customizes a strongly workflow oriented application built
with the ABC. It proactively helps authors, Program Committee chairs, Pro-
gram Committee members, and reviewers to cooperate efficiently during their
collaborative handling of the composition of a conference program.

The service provides a timely, transparent, and secure handling of the papers
and of the related submission, review, report and decision management tasks.

Coarse-Granular Model Checking in Practice 311

Several security and confidentiality precautions have been taken, in order to
ensure proper handling of privacy and intellectual property sensitive information.
In particular,
– the service can be accessed only by registered users,
– users can freely register only for the role Author,
– the roles Reviewer, PC Member, PC Chair are sensitive, and conferred to

users by the administrator only,
– users in sensitive roles are granted well-defined access rights to paper infor-

mation,
– users in sensitive roles agree to treat all data they access within the service

as confidential.

These policies inherently define a loose specification of the service at the ser-
vice logic level, and can be directly formulated in our model checking logic.
For example, the access control policy is a primary source of constraints like
“A user can modify the defined roles only after having successfully registered as
Administrator”, expressed as

¬(modify-roles) unless user-login [Role=Admin]

The service has been successfully used for several beta-test conferences, including
this SPIN Workshop (see Fig. 4), TACAS 2001, and CHARME 2001. The prod-
uct version, customized for the LNCS proceedings serie, is going to be launched
by Springer Verlag in Autumn 2001.

6 Conclusions

We have illustrated the power of ‘classical’ iterative model checking for verifying
quality of service requirements at the coarse granular level on the basis of three
rather different application scenarios. In all these scenarios the library-based mod-
elling of applications in terms of so-called service logic graphs, the incremental
formalization of the underlying application domain in terms of temporal quality
of service constraints, and the library-based consistency checking allowing con-
tinuous verification of application- and purpose-specific properties by means of
model checking, guaranteed a new level of flexibility without sacrificing reliabil-
ity. We are convinced that this will also lead to a new level of efficiency, a fact,
which can only (and will be) be proved in everyday’s practice.

References

1. O. Niese, B. Steffen, T. Margaria, A. Hagerer, G. Brune, H.-D. Ide: Library-based
Design and Consistency Checking of System-level Industrial Test Cases, Proc.
FASE 2001, Genova (Italy), April 2001, LNCS 2029, Springer Verlag, 2001.

2. B. Steffen, T. Margaria: MetaFrame in Practice: Design of Intelligent Network
Services, Lecture Notes in Computer Science 1710, pp. 390-416, 1999.

3. B. Steffen, T. Margaria, V. Braun: Personalized Electronic Commerce Services,
IFIP WG 7.3 8th Int. Conference on Telecommunication Systems Modeling and
Analysis, March 9-12, 2000, Nashville, Tennessee, USA.

Author Index

Baldamus, Michael 183
Ball, Thomas 103
Barnat, Jiri 200
Braun, Volker 304
Brim, Lubos 200

Calder, Muffy 143
Chechik, Marsha 16
Cofer, Darren 296

Derepas, Fabrice 235
Devereux, Benet 16

Edelkamp, Stefan 57
Engstrom, Eric 296
Esparza, Javier 37

Garavel, Hubert 217
Gastin, Paul 235
Gerth, Rob 15
Goldman, Robert 296
Gopinath, K. 252
Graf, Susanne 123
Gurfinkel, Arie 16

Heljanko, Keijo 37
Holenderski, Leszek 288

Jia, Guoping 123

Lerda, Flavio 80
Leue, Stefan 57
Liu, Yanhong A. 192
Lluch Lafuente, Alberto 57

Margaria, Tiziana 304
Mateescu, Radu 217
Miller, Alice 143
Musliner, David 296

Nakajima, Shin 163

Peled, Doron 1

Rajamani, Sriram K. 103

Schröder-Babo, Jochen 183
Shanbhag, Vivek K. 252
Smarandache, Irina 217
Steffen, Bernhard 304
Stoller, Scott D. 192
Stř́ıbrná, Jitka 200

Tamai, Tetsuo 163
Tjioe, Wei 272

Vestal, Steve 296
Visser, Willem 80

Yuen, Clement 272

Zuck, Lenore 1

	Front matter
	Model Checking Model Checking
	Preface
	Organization
	Table of Contents

	Chapter 1
	Introduction
	Preliminaries
	Checking the Validity of a Formula over a Program
	Constructing a Temporal Logic Proof
	An Automatic Ranking Function
	Conclusions

	Chapter 2
	Chapter 3
	Introduction
	Preliminaries
	Finite Total Orders
	Multiple-Valued Sets and Relations

	Chi LTL
	Multiple-Valued Languages and Automata
	Multiple-Valued Languages
	Multiple-Valued Automata
	Composition

	Conversion between Chi LTL and Chi B{accent 127 u}chi Automata
	Chi LTL Model-Checking
	The Model-Checking Problem
	Decision Procedure for Chi LTL Model-Checking
	Chi LTL Model-Checking in SPIN

	Conclusion

	Chapter 4
	Introduction
	Petri Nets
	Automata Theoretic Approach to Model Checking LTL
	Basic Definitions on Unfoldings
	Tableau System
	Generating the Tableau
	Experimental Results
	Conclusions

	Chapter 5
	Introduction
	Automata-Based Model Checking
	Searching for Safety Property Violations
	Searching for Liveness Property Violations
	Classification of Never Claims
	Improved Nested Depth-First-Search
	A* and Improved-Nested-DFS

	Heuristics for Errors in Protocols
	Precompiling State Distance Tables
	The Formula-Based Heuristics

	The Model Checker HSF-SPIN
	Experimental Results
	Experiments on Detecting Deadlocks
	Experiments on Detecting Violation of System Invariants
	Experiments on Detecting Assertion Violations
	Experiments on Detecting Violation of LTL Properties
	Performance of HSF-SPIN

	Conclusion

	Chapter 6
	Introduction
	Complexity of the State
	The Representation of the State
	Collapsing the State
	Optimizing the Backtrack
	Exploiting Symmetries
	Garbage Collection

	Distributed Memory
	Improvements
	Partitioning
	Static Partitioning
	Dynamic Partitioning

	Conclusions

	Chapter 7
	Introduction
	Overview
	Property Specification
	Refinement Algorithm
	Example
	Initial Boolean Program
	Model Checking the Boolean Program
	Predicate Discovery over Error Path
	The Second Boolean Program

	C2BP: A Predicate Abstractor for C
	BEBOP: A Model Checker for Boolean Programs
	NEWTON: A Predicate Discoverer
	NT Device Drivers: Case Study
	Property 1
	Property 2

	Related Work
	Conclusions

	Chapter 8
	Introduction
	The Context
	The IF Language and Validation Environment
	The MASCARA Protocol

	Verification of the MASCARA Protocol
	The Experimental System
	Properties
	 Verification Methodology
	Complexity
	Verification Results

	Conclusion and Perspectives

	Chapter 9
	Introduction
	Related Work

	Approach
	Background -- Features and Interactions
	Basic Call Service
	Basic Call Service Properties in LTL
	Basic Call Service in Promela
	Unoptimised Code
	Options and State-Space Reduction Techniques
	Basic Call Service Validation

	Features
	Features

	Temporal Properties for Features
	The Features in Promela
	Implementation of Features: The $Feature_lookup$ Inline
	Feature Validation

	Static Analysis
	Dynamic Analysis
	Dynamic Analysis -- Feature Interaction Results

	Automatic Model Generation and Feature Interaction
	Conclusions and Future Directions

	Chapter 10
	Introduction
	Enterprise {JavaBeans}
	The Component Architecture
	Behavioural Specifications

	Formalization
	Issues and Approach
	Promela Model

	Behavioural Analysis
	Entity Beans
	Session Beans
	Discussion

	Comparisons
	Conclusion

	Chapter 11
	Introduction
	How p2bfuturelet next Works
	SMV Code Generated by p2bfuturelet next
	Supported Constructs
	Specifying Variable Ranges

	Benchmark Examples
	The Dining Philosophers Problem
	A Mutual Exclusion Protocol over Asynchronous Channels

	Conclusion

	Chapter 12
	Introduction
	Centralization
	RMI Removal
	Pseudo-Cryptography
	Implementation and Case Study

	Chapter 13
	Introduction
	Distributed SPIN
	Problems with Extending the Distributed SPIN
	Distributed Model-Checking Algorithm
	Dependency Structure
	Manager Process
	The Algorithm

	Complexity and Effectiveness
	Conclusions and Future Research

	Chapter 14
	Introduction
	Definitions
	Parallel Generation of LTSs
	Construction of Partitioned LTSs
	Merging of Partitioned LTSs into Monolithic LTSs

	Experimental Results
	Speedup
	Choosing a Good Partition Function
	Using Communication Buffers

	Conclusion and Future Work

	Chapter 15
	Introduction
	Permutation of Processes
	Our Goal
	New Keywords for Promela
	Requirements

	Abstraction Based on Process Permutations
	Syntactic Definition
	Semantic Definition
	Permutations of States
	Abstraction
	Pragmatic Abstraction
	Permutable Specification

	Computation of the Reduced System
	The Pseudo-Sorting Algorithm
	Efficiency Depends on the Variable Declaration Order
	Layered Model

	Conclusions

	Chapter 16
	Introduction
	Why ASN.1?
	Why SPIN?
	EASN Language
	Related Work
	Outline of Paper

	EASN, the Verification Tool
	Encoding State Efficiently
	Outline of EASN System Design
	EASN Modules
	EASN System from an User Perspective

	ASN.1 to C++ Translation
	EASN System: Implementation
	SPIN and Its Subsystemscite {8}
	EASN and Its Subsystems
	Ensuring Consistency - Incrementally
	Incremental Hashing
	Correctness of Implementation {it vis-a-vis} SPIN

	Results and Conclusions
	Performance of EASN vs SPIN
	Future Work

	Chapter 17
	1	Introduction
	2	Overall Design of the Pricing Model
	2.1	The Mathematical Priority Pricing Model
	2.2	Model 1 (Demand Equilibrium Model)
	2.3	Model 2 (Dynamic Priority Pricing Model)

	3	Design and Architecture
	Channel, User Processes, and Strategies
	3.2	Administrator Process and Strategy

	4	Simulation and Verification
	4.1	Simulation of Channel, User, and Administrator Processes
	4.2	Verification of Convergence to Equilibrium (Proposition 1)
	4.3	Verification of Dynamic Priority Pricing (Proposition 2)

	5	Discussion
	5.1	Contribution of PROMELA/SPIN in Model 1
	5.2	Contribution of PROMELA/SPIN in Model 2
	5.3	Limitations

	6	Conclusion
	References

	Chapter 18
	Introduction
	Relevance of the Project
	Proposed Solutions
	Extracting a Promela Program from a YAPI Program
	Extracting a Verification Model Directly from a YAPI Program, on-the-Fly

	Another Reason to Investigate TorX
	Related Work
	Conclusions

	Chapter 19
	Introduction
	Automatic Synthesis of Real-Time Controllers
	Real-Time Scheduler of the MetaH Executive
	Fault-Tolerant Ethernet Protocol
	Time Partitioning in Integrated Modular Avionics
	Synchronization Protocol for Avionics Communication Bus

	Chapter 20
	Motivation
	The Agent Building Center
	System-Level Testing of Telephony Systems
	A Personalized E-Commerce Shop
	A Role-Based Editorial System
	Conclusions

	Back matter
	Author Index

