Lecture Notes in Computer Science 2057
Edited by G. Goos, J. Hartmanis and J. van Leeuwen

Springer
Berlin
Heidelberg
New York
Barcelona
Hong Kong
London
Milan
Paris
Singapore
Tokyo

Matthew Dwyer (Ed.)

Model Checking
Software

8th International SPIN Workshop
Toronto, Canada, May 19-20, 2001
Proceedings

Springer

Series Editors

Gerhard Goos, Karlsruhe University, Germany
Juris Hartmanis, Cornell University, NY, USA
Jan van Leeuwen, Utrecht University, The Netherlands

Volume Editor

Matthew Dwyer

Kansas State University, Department of Computing and Information Sciences
234 Nichols Hall, Manhattan, KS 66506-2302, USA

E-mail: dwyer@cis.ksu.edu

Cataloging-in-Publication Data applied for

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Model checking software : proceedings / 8th International SPIN
Workshop, Toronto, Canada, May 19 - 20, 2001. Matthew Dwyer (ed.). -
Berlin ; Heidelberg ; New York ; Barcelona ; Hong Kong ; London ;
Milan ; Paris ; Singapore ; Tokyo : Springer, 2001

(Lecture notes in computer science ; Vol. 2057)

ISBN 3-540-42124-6

CR Subject Classification (1998): F.3, D.2.4, D.3.1

ISSN 0302-9743
ISBN 3-540-42124-6 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable for prosecution under the German Copyright Law.

Springer-Verlag Berlin Heidelberg New York
a member of BertelsmannSpringer Science+Business Media GmbH

http://www.springer.de

© Springer-Verlag Berlin Heidelberg 2001
Printed in Germany

Typesetting: Camera-ready by author, data conversion by PTP-Berlin, Stefan Sossna
Printed on acid-free paper SPIN: 10781569 06/3142 543210

Preface

Research on model checking has matured from a purely theoretical topic to en-
compass tool development and applications, in addition to more foundational
topics. This diversity of model checking research is driving the area onward
as foundational developments enable automation, development of robust tool
support enables increasingly sophisticated applications, and feedback from ap-
plications spurs further work on the underlying theory and tools. The program
of the eighth SPIN workshop reflected this diversity; it included three contribu-
tions on foundational topics, eight contributions on model checking tools, and
eight contributions describing applications of model checking.

Continuing a trend begun in the seventh SPIN workshop, the eighth SPIN
workshop emphasized the connections between model checking and program
analysis. Research on static program analysis has a long history in both the
compiler and software engineering communities. In an effort to establish a dia-
log between researchers in model checking and software analysis, this year’s
workshop was co-located with the 23rd International Conference on Software
Engineering in Toronto. The workshop program contained several contributions
that were clearly targeted at analyzing programs. Three contributions addressed
tools for model checking of program source code, implemented in C and Java,
and one contribution described model checking of a popular software component
architecture.

The workshop featured 13 refereed technical papers selected from 26 submis-
sions and two refereed descriptions of model checking tools selected from four
submissions. Each submitted paper was reviewed by at least three members of
the program committee; additional reviewers were used for several papers. The
program committee discussed the merits of the submitted papers to arrive at the
final 15 refereed contributions. In addition to refereed contributions, two leading
experts in model checking technology and three groups that are applying model
checking techniques in an industrial setting were invited to give presentations.
The invited presentations were given by: Doron Peled (Bell Laboratories), Rob
Gerth (Intel Corporation), Leszek Holenderski (Philips Research), Erik Engs-
trom (Honeywell Laboratories), and Bernhard Steffen (Metaframe Technologies).
This proceedings issue contains four contributions detailing the content of the
invited presentations. A panel session on the topic of “Prospects for and impedi-
ments to practical model checking” was organized to generate a dialog between
those working on applying model checking and researchers working on extending
model checking technologies.

Historically, the SPIN workshop has served as a forum for researchers inte-
rested in the subject of automata-based, explicit-state model checking technolo-
gies for the analysis and verification of asynchronous concurrent and distributed
systems. In recent years, the scope of the workshop has broadened to encompass
applications of model checking to software analysis. The workshop is named af-

VI Preface

ter the SPIN model checker, developed by Gerard Holzmann, which is one of the
best known and most widely used model checking tools. The first SPIN works-
hop was held in October 1995 in Montréal. Subsequent workshops were held in
New Brunswick (August 1996), Enschede (April 1997), Paris (November 1998),
Trento (July 1999), Toulouse (September 1999), and at Stanford University (Au-
gust 2000).

Acknowledgments. The editor wishes to thank the program committee mem-
bers, and the referees, for their help in in organizing the workshop. Committee
members volunteered many valuable suggestions as well as a significant amount
of time for refereeing and discussing papers. The workshop organizers wish to
thank the ICSE’2001 organizing committee for facilitating the co-location of the
SPIN workshop and ACM SIGSOFT, Lucent Technologies, Microsoft Research,
and the Office of Naval Research for their sponsorship and support of the SPIN
workshop.

March 2001 Matthew B. Dwyer

Organization

Organizing Committee

General Chair: Moshe Y. Vardi (Rice University, USA)
Program Chair: Matthew B. Dwyer (Kansas State University, USA)
Local Arrangements Chair: Marsha Chechik (University of Toronto, Canada)

Program Committee

George Avrunin (University of Massachusetts, USA)

Thomas Ball (Microsoft Research, USA)

Ed Brinksma (University of Twente, The Netherlands)
Marsha Chechik (University of Toronto, Canada)

Dennis R. Dams (Eindhoven University, The Netherlands)
Klaus Havelund (QSS/Recom at NASA Ames Research Center, USA)
Connie Heitmeyer (Naval Research Laboratory, USA)

Gerard J. Holzmann (Bell Laboratories, USA)

Fabio Somenzi (University of Colorado, USA)

Willem Visser (RTIACS at NASA Ames Research Center, USA)
Pierre Wolper (Université de Liege, Belgium)

Referees

R. Bloem J. Katoen T. Ruys
D. Bosnacki R. Langerak R. de Vries
J. Geldenhuys F. Lerda B. Wolter
D. Giannakopoulou S. Park

H. Hermanns C. Pecheur

L. Holenderski G. Rosu

Sponsoring Organizations

The eighth SPIN Workshop was sponsored by the ACM SIGSOFT (Special
Interest Group on Software Engineering). Additional support was provided by:
Bell Laboratories, Lucent Technologies, USA, Microsoft Research, Microsoft Inc.,
USA, and The Office of Naval Research, USA.

Table of Contents

Invited Keynotes

From Model Checking to a Temporal Proof............................ 1
Doron Peled (Bell Laboratories), Lenore Zuck (New York University)

Model Checking if Your Life Depends on It:
A View from Intel’s Trenches 15
Rob Gerth (Intel corp.)

Technical Papers and Tool Reports

Model-Checking Infinite State-Space Systems with Fine-Grained
Abstractions Using SPIN 16
Marsha Chechik, Benet Devereuz, Arie Gurfinkel (University of Toronto)

Implementing LTL Model Checking with Net Unfoldings 37
Javier Esparza (Technische Universitit Miinchen),
Keijo Heljanko (Helsinki University of Technology)

Directed Explicit Model Checking with HSF-SPIN 57
Stefan Edelkamp, Alberto Lluch Lafuente,
Stefan Leue (Albert-Ludwigs- Universitat)

Addressing Dynamic Issues of Program Model Checking 80
Flavio Lerda, Willem Visser (NASA Ames Research Center)

Automatically Validating Temporal Safety Properties of Interfaces 103
Thomas Ball, Sriram K. Rajamani (Microsoft Research)

Verification Experiments on the MASCARA Protocol 123
Guoping Jia, Susanne Graf (VERIMAG)

Using SPIN for Feature Interaction Analysis — A Case Study 143
Muffy Calder, Alice Miller (University of Glasgow)

Behavioural Analysis of the Enterprise JavaBeans”™ Component

Architecture.o 163
Shin Nakajima (NEC Corporation), Tetsuo Tamai
(University of Tokyo)

p2b: A Translation Utility for Linking Promela and Symbolic Model
Checking (Tool Paper) 183
Michael Baldamus, Jochen Schréder-Babo (University of Karlsruhe)

X Table of Contents

Transformations for Model Checking Distributed Java Programs 192
Scott D. Stoller, Yanhong A. Liu (SUNY at Stony Brook)

Distributed LTL Model-Checking in SPIN....... 200
Jiri Barnat, Lubos Brim (Masaryk University Brno), Jitka Stribrnd
(University of Pennsylvania)

Parallel State Space Construction for Model-Checking 217
Hubert Garavel, Radu Mateescu, Irina Smarandache
(INRIA Rhone-Alpes)

Model Checking Systems of Replicated Processes with Spin 235
Fabrice Derepas (Nortel Networks), Paul Gastin (Université Paris)

A SPIN-Based Model Checker for Telecommunication Protocols.......... 252
Vivek K. Shanbhag, K. Gopinath (Indian Institute of Science)

Modeling and Verifying a Price Model for Congestion Control in Computer
Networks Using Promela/Spin, 272
Clement Yuen, Wei Tjioe (University of Toronto)

Invited Project Summaries

A Model Checking Project at Philips Research......................... 288
Leszek Holenderski (Philips Research,)

Applications of Model Checking at Honeywell Laboratories 296
Darren Cofer, Eric Engstrom, Robert Goldman, David Musliner,
Steve Vestal (Honeywell Laboratories)

Coarse-Granular Model Checking in Practice 304
Bernhard Steffen, Tiziana Margaria, Volker Braun
(METAFrame Technologies, Universitit Dortmund)

Author Index 313

From Model Checking to a Temporal Proof

Doron Peled! and Lenore Zuck?

! Bell Laboratories, 600 Mountain Ave., Murray Hill, NJ 07974
doron@research.bell-labs.com
2 Department of Computer Science, New York University
zuck@cs.nyu.edu

Abstract. Model checking is used to automatically verify temporal
properties of finite state systems. It is usually considered to be ‘suc-
cessful’, when an error, in the form of a counterexample to the checked
property, is found. We present the dual approach, where, in the pres-
ence of no counterexample, we automatically generate a proof that the
checked property is satisfied by the given system. Such a proof can be
used to obtain intuition about the verified system. This approach can be
added as a simple extension to existing model checking tools.

1 Introduction

The automatic verification of finite state systems, often called model checking [1.
4], is highly successful in detecting bugs during software and hardware develop-
ment. It involves modeling the inspected system, specifying its properties using
some logical formalism, and using some graph algorithms to systematically de-
tect whether there are executions of the model of the system that violate the
specification. If such executions exist, (at least) one of them is reported as a
counterexample.

If the search for counterexamples fails, we can conclude that the model of
the system satisfies the specification. This is often considered as a failure of the
model checking attempt. Some even go as far as to say that the goal of model
checking is not ‘verification’, but ‘falsification’. One reason for this is that the
modeling process is itself prone to errors. The model of the checked system is
often an oversimplification of the original system since model checking often
requires that the model has finitely many states.

An alternative to model checking is the deductive verification approach, one of
whose goals is to formally explain why the system satisfies the checked property.
This approach often calls for creativity of the prover. Deductive verification is
usually manual and time consuming.

In this paper, we emphasize the point of view that when no counterexample
is found, model checking can also be used to justify why the verified system
satisfies the checked property. We show that a failed systematic search for coun-
terexamples can be used to generate a deductive proof that the model satisfies

M.B. Dwyer (Ed.): SPIN 2001, LNCS 2057, pp. 1-[I4] 2001.
© Springer-Verlag Berlin Heidelberg 2001

2 D. Peled and L. Zuck

the checked property, by exploiting the information in the graph that is gener-
ated during the search. We apply the automata theoretic view [7J10]. Specifically,
we start with an LTL (linear temporal logic) specification, and transform it into
an automaton. In fact, it is the negation of the specification formula that is
translated. The checked system is also represented as an automaton. We then
construct the intersection of these two automata. If the intersection is nonempty,
it contains a counterexample that can be reported. Otherwise, the model of the
system satisfies the specification. We show how, in the latter case, the intersec-
tion graph can be used to produce a proof.

The main challenge is how to represent the proof, which is implicit in the
intersection graph. We would like to present the proof in a way that would
explain to the user why the property holds for the checked system.

2 Preliminaries

We sketch the model checking procedure for Temporal Logic formulas over finite
state formulas. For more details, see [3].

A Generalized Biichi automaton A is a 6-tuple (S, So, d, F, L, X)), where S is
a finite set of states, Sy C S is a set of initial states, 6 C S x S is a (nondeter-
ministic) transition relation, F C 2°%5 is the set of acceptance sets, X is a set of
labels and L: S — X is a labeling function of the statesl] A run of the automaton
A is an infinite sequence of S-states o = sq, s1,... such that sg € Sp, and for
every ¢ > 0, (8;,8;41) € 0. A run is accepting if for every F € F, (s;,8;41) € F
for infinitely many i’s. The language accepted by an automaton A, denoted by
L(A), is the set of (labeled) sequences that are accepted by the automaton.

Let IT be a set of propositions. We consider here linear time propositional
temporal logic (LTL) formulas over I, using the Boolean connectives V and —,
and the temporal operators nexttime () and until U. Temporal logic formulas
are interpreted over infinite sequences over 27 (see, e.g., [8]). Let 0 = zgz1 ...
be a sequence of states. Denote its suffix x;x;,1... by o’. We denote the fact
that a sequence o satisfies a temporal formula ¢ by o |= . For a propositional
formula o’ = ¢ if ¢ holds in the state z;. o' = Qg if o't = ¢. o' = pUY
holds if there exists j > i such that o7 = v, and for each i < k < j, o = ¢.
The other Boolean connectives and Temporal operators (0, &, V, ete.) can be
defined using the above operators, namely Cp = truelfp, Op = =O—p and
eV ==((-p)U(—0)).

We assume that all the temporal formulas are given in the negation nor-
mal form, i.e., with negation appearing only on propositions. This can be eas-
ily achieved by pushing negation inwards, using the equivalences ——¢ = ¢,

2O p =07 (pVY) = (mp) A=), 2(pA) = (mp)v(=9), ~(pUY) =

! The definition of automata here is a variant of the standard definition for reasons
that will become clear later. In particular, the labeling here is on the states, and
each acceptance set is a set of transitions.

From Model Checking to a Temporal Proof 3

(=) V (—¢) and —(p V) = (mp)U (). The language accepted by a tem-
poral logic formula ¢, denoted by L(ip), is the set of infinite sequences that
satisfy . Given a temporal formula ¢, we sketch how to construct an automa-
ton A, = (X, Xo,04, FA, LA, 22") such that £(A,) = L(¢). The construction
here is essentially the one in [J]. Each state of A, is labeled with a propositional
formula over the variables IT, thus X = 22"

With each state x of A,, we associate a formula 7(z), such that for every

accepting run o = xg, 21, ... of Ay, o' = n(z;). The formula n(x) is of the form
(A w)a (A o) (1)
i=1,...,mg 7j=1,...,ng

Note that each temporal formula can be trivially brought into the form of Equa-
tion (@), when m, = 1 and n, = 0. We denote by present(z) the set of v}
formulas, and by next(z) the set of ¢F formulas. In addition to n(x), we as-
sociate with each state a list of incoming edges from predecessor states. Nodes
(states) are refined and split, according to the formulas in present(zx).

We start the construction with a node = that initially contains the formula to
be translated in present(x). The set next(x) is empty, and there is one incoming
edge to x marked with init. This is a dummy edge, pointing to x, but without
any predecessor node. We repeatedly apply to the nodes refinement and splitting,
as follows:

Refinement: If x1Axa € present(zx), we add x1, x2 to present(z). Similarly, if
X1Ux2 € present(x), we add to present(z) the formula x2V (x1 AQ(x1 Ux2)). If
X1V xz2 € present(z), we add to present(z) the formula x2 A (x1 VO (x1 V x2))-
Finally, if Ox € present(z), we add x to next(z).

Splitting: given a formula of the form x1 V x2 in present(z), which was not
used before for splitting, we split the current node into two nodes x; and xs.
Then we set present(x1) to be present(x) U {x1} and the value of present(zz)
to be present(x) U {x2}. The set of subformulas next(x) are copied to next(xy)
and next(xy). We also copy the list of incoming edges from x to z; and to z5.

We stop refining and splitting a node x when all the formulas in present(x)
were used. We then add node x to the list X of automaton nodes if there exist
no node z’ with present(x) = present(z’) and next(x) = next(z'). Otherwise,
i.e., if there exists such a node z’, we only update the list of incoming edges in
z' by adding the incoming edges of the new node x. After a new node is added
to X, we generate a successor node z’, and set present(z’) to be the next(z)
formulas, and next(z’) to be empty.

The acceptance conditions F4 of A, guarantees that each U/ subformula of
@ is fulfilled. Thus, for every such subformula x; U x2 of ¢ there is an acceptance
condition in F4 that includes all the outgoing edges from nodes x such that
either xo € present(z), or that x1Ux2 Epresent(x). The initial states Xy of
A, consist of the states € X has the incoming edge init. The label L4 (x)
of a node x is the propositional formula prop(x), defined as the conjunction of

4 D. Peled and L. Zuck

the propositions and negated propositions that appear in present(z) after the
construction of x.

Theorem 1 For every temporal formula ¢ and automaton A, constructed as
above, L(A,) = L(p).

For every state x of A, we define p(z) = -n(x), ie.,

pa) =V wHve Voo

1=1,....mg [z

The following lemma follows immediately from the construction:

Lemma 1 If a node x in the constructed Biichi automaton has n immediate suc-
cessors, T ... T, then n(z) — \V,_y,, On(z;). Equivalently, \,_, , Op(xi) —
().

In order to simplify the automatically generated proof, presented in the sequel,
we can remove from 7(x) every formula that causes splitting (e.g., remove x1Vyxa,
once X1 or 2 is added), or refinement. The formula p(z) is changed accordingly.

Example. Consider the case where we want to verify the property ¢ = OCp,
i.e., p happens infinitely often. Then, we translate - = GO-p. We can rewrite
this formula with the ¢ and V operators as trueld (false V —p) or change the
translation algorithm to deal directly with the operator O and <. The automa-
ton obtained in this way appears in Figure [l In this figure, we translated, for
simplicity, the formulas back to the form with O and <¢. We included in each
node z the formula p(z). There is one accepting set for this automaton, which
includes a single transition (xs,x2).

X1)

A=p

Fig.1. An automaton for -p = <O-p

We consider finite state systems P = (V,0, T, FF) consisting of:

V - A set of system variables. A state of the system provides an interpretation
of the system variables V. For a state s and a variable v, we denote by s[v]
the value assigned to v by the state s.

From Model Checking to a Temporal Proof 5

© - The initial condition, which is a propositional formula over the variables
V' characterizing the initial states.

T - A set of transitions formulas of the form 7(V, V'), relating the values V' of
the system’s variables in state s € S to the values V' in a T-successor s'.
Fair” - A set of fair conditions, each element G € Fair® is a formula over V

and V.

A computation of the system P is an infinite sequence of states o = sg, s1, - . .
satisfying:

— o Is initial, i.e., 59 = O

— For each ¢ > 0, the state s;11 is the 7-successor of s; for some 7 € 7. That
is, (84, 8i+1) E 7(V, V') where for each v € V, we interpret v as s;[v] and v’
as s;y1[v].

— For every G € Fair®, (s;,s,41) = G for infinitely many i’s.

It is easy to represent weakly fair transitions system as automata: The set
of interpretations for the system variables is the set of states ST. The initial
states S{ are all the interpretations satisfying ©. The transition relation 6
is generated by the formulas in 7. Each acceptance condition F € F¥ cor-
responds to the transitions that satisfy a fairness condition G € Fairf. The
labeling functions L” maps each state with an assignment over the set of propo-
sitions II. Note that in some cases we have that V' = II. A weakly fair tran-
sitions system is thus represented by an automaton (S¥,SF, 67, FP L¥ 21).
Let succ(s) = {s|(s,s") € 6T}, i.e., the set of successors of node s. Denote by
s — {s1,...,8n} the fact that s has, according to the automaton P, exactly n
SUCCESSOTS, S1,. .., Sn-

For a finite state system P and a temporal formula, we say that ¢ is valid
over P, or that ¢ is P-valid, denoted by P |= ¢, if for every fair computation o
of P, o = o.

We are mainly interested in concurrent systems over a set processes P. Each
edge in 6% corresponds to a transition executed by one or more processes in P.
Under weak process fairness [S], each acceptance condition F in F¥ corresponds
to a process. It contains all the edges that exist from any state in which that
process is disabled and all the edges that correspond to the execution of an
atomic transition by this process.

Example. Consider a system with two processes, competing on getting to a
critical section. Each process in P = {17, T} consists of three transitions. There
is one Boolean variable turn, which arbitrates among the processes, to resolve
the case where both want to enter the critical section. The program counter of
each process pc; can be in one of the following labels:

nt; The process T; is currently not trying to enter its critical section.
tr; The process T; is trying to enter its critical section.
cr; The process T; is in its critical section.

6 D. Peled and L. Zuck

D\ /2

G

\

Fig. 2. A mutual exclusion system

There are three transitions for each process T;:

tl; = pc; = nt; Ape;’ = try Apci—i’ = pci_; Aturn’ = turn
12; = pc; = tr; Ape;’ = cry Aturn =i A pcy_; = pei—; A turn’ = turn
t3; = pc; = cr; Ape’ = nt; Apc|_; = pei—; ANturn’ =1 — turn

The initial condition is @ : pcy = ntyg A pc; = nt;. The state space of this
system is presented in Figure 2 For simplicity of the presentation, we do not
impose any fairness constraint on this system (in fact, in this case, fairness would
not make any difference). For a state s € S and a temporal formula ¢, denote
by (P, s) < n, the fact that there exists a suffix o of a sequence accepted by the
system automaton P, which starts with the state s, such that o |= 7. Denote by
(P, s) = p the fact that for every suffix o of a sequence in P, which starts with
the state s, o = u. We often omit P, when it is known from the context, and
write s |= u instead of (P, s) = p. Note that <— and = are dual relations, since

(P,s) b i (P,s) % .

3 Checking the Validity of a Formula over a Program

Our approach can be used to establish a proof that o |= ¢ for every sequence o
accepted by the automaton P. We denote that by P | .

In order to verify that ¢ is P-valid, we build an intersection automaton that
accepts L(—¢) N L(P), and show it to be empty. Let A, be the automaton

(X, Xo, 84, FA LA, 22H), which accepts L(—). Let P be the system automaton
(SF,SE 6P, FF LY 21). The product automaton, that accepts L£(P) N L(—p),
is Afw = (S, 80,6, F, L,2™), where

From Model Checking to a Temporal Proof 7

1. S=XxSF.

In the intersection graph of Afw, we distinguish two kinds of nodes: success
nodes of the form (z,s), where LT (s) € LA(x), i.e., the propositional as-
signment of s satisfies the propositional formula prop(z), and failed nodes,
otherwise.

. SO = XO X SQ.

3. ((z,8),(2',8") € §iff (z,2") € 64, (s,5') € 6 and LF(s) € LA(z). That
is, the transition relation agrees with transition relations of both the system
and the property automata. Moreover, there is a transition from a state
(z,s) € S only if it is a success node.

4. The accepting condition consists of the acceptance sets of both automata.
Formally, we define an operator < such that for every sets A, B, C C A X A,
and D C B x B,

[\

CxD = U ((a,b), (a',0)).

(a,a’)eC;(b,b")eD

Then, F = {(X x X) = F|F € FP}U{F = (S¥ x SP)|F € FA}.
5. L(z,s) = L¥(s); i.e., the labeling of each state is its labeling in the system
automaton.

In order to check that E(Afg,) = (), it suffices to check that, in the graph
defined by Afw7 there is no path leading from Sy to a strongly connected com-
ponent (SCC) that intersects each of the sets in F. An immediate implication
of the construction is:

Theorem 2 Assume E(Afg,) = (). Then for every initial state (xq,s0) of Afw
(P,s0) = . Thus, P = Aoy aesy 4(0).

Example. Consider the system in Figure[2 We want to prove for it the property
OO (erg V ery). The property automaton construction is similar to the one in
Figure [1l, except that we replace p with crg V ery (hence, we replace —p with
=crg A —erq). The intersection of the property automaton from Figure [l with
the state space in Figure 2lis shown in Figure Bl

4 Constructing a Temporal Logic Proof

In this approach, we transform Af@ into a temporal proof formula. As a prepara-
tory step, we perform Tarjan’s algorithm on the the intersection graph for Af@,
obtaining the strongly connected components.

There is a naturally induced partial order < between the strongly connected
components such that C < C’ if there is an edge from some node in C to
some node in C’. In the proof, we need to complete the proof related to all the
components C’ such that C' < C’, before we start dealing with C.

In this sound and complete proof system there are four kinds of correctness
assertions:

8 D. Peled and L. Zuck

Fig. 3. The intersection of the property automaton in Figure [T and state space in
Figure

Failure axiom FAIL. Let (x,s) be a failed node. Then we can conclude that
s = ().
The justification for this axiom is simple: the node has failed because we
have checked the assignment of the state s against the propositional claim
in z, and the propositional claim has failed to hold. Thus, s &= —prop(z).
But, note that —prop(z) — u(x).

Successors rule Succ. Let (z,s) be a successful node, such that x has n
SUCCEessors Iy, ..., Ty, and s has m successors si, ..., S,. Then we have

s —{s1,-.-,8m}
Foreach 1 <i <m, s; = \;y, #(2;)

s = p(z)
The validity of this proof rule (see Also [2]) stems from the correctness of the

construction. In particular, Lemma [Il Note that in fact, the failure axiom
can be seen as a special case of the successors rule, with no premises.

From Model Checking to a Temporal Proof 9

Induction IND. Let C' be a strongly connected component in Afso. Let Ezit(C)
be the set of nodes not in C, with an incoming arrow from a node in C. As-
sume first that the SCC C' does not satisfy at least one acceptance condition
that stems from the property automaton. That is, there exists at least one
acceptance set I’ € F¥ such that none of the edges in F is in C.

For each (z,s) € Ezit(C), s = p(x)
For each (z,s) € C, s — succ(s)
For each (z,s) € C, s = u(z)

In case that the SCC C satisfies all the acceptance conditions that stem from
the property automaton, it must not satisfy at least one condition that stems
from the system fairness (otherwise, the intersection would not be empty).
In this case, we need to add a premise of the following form:

/\ mioyas
FeFP

where I'r is a formula describing the pairs of adjacent states that belong to
F.

Conjunction rule CoNJ. This rule allows conjoining any pair of conclusions
made on a given state, and making temporal logic interferences (we assume
for the third premise a given sound and complete propositional temporal
logic).

sk @1, s @2, (p1 Apa) =
sk

We can now obtain the formal temporal proof, showing that if E(Ai,) =0,
then each initial state s € S{” satisfies s |= ¢, i.e., P = . This is given according
to the following steps:

1. Translate —¢ into an automaton A-,, according to the above algorithm.
Construct the intersection graph Afw.

2. Apply Tarjan’s DFS to Afw. Find the SCCs.

If all the SCCs are discarded, goto Step 9.

4. Select a strongly connected component C' that is not yet discarded, such that
all the SCCs C” such that C < C" were discarded.

5. If C consists of a single node (z, s) that has no successor (a leaf), then it
must be a failure node. Apply the rule FAIL.

6. If C is a trivial SCC, i.e., contains a single node (z,s) without a self loop,
but with successors, apply Succ(z,).

7. If C is a nontrivial SCC, apply IND. Note that some successors of the nodes
of C are outside of the SCC, namely in Ezit(C). These nodes were handled
previously.

8. Discard C' and goto Step 3.

@

10 D. Peled and L. Zuck

9. Let s be an initial state of P, and x1,.. ., x, be all the states such that (z;, s)
is a node in the intersection. Then apply n — 1 times the rule CONJ to obtain
that s = ¢.

Example. Consider again the property automaton in Figure[ll. We have u(x;) =
OO¢p and p(z2) = pVv OCOp . Consider the simple system P shown in Figure dl

Fig. 4. A simple system

The intersection of the two automata appears in Figure [d. There are three
strongly connected components:

L {(21,51), (x1,52)}
2. {(z2,s2)}.
3. {(z2,s1)}.

The latter two components are trivial. Moreover, the last one consists of a
failed node. We obtain the following proof:

1. Using the FAIL axiom on the failed node (z3, s1), we obtain
s1 EpVOOp.

2. Applying Succ to the node (x4, s2), we obtain
So9 —> {81}
s1EpVOCp
s2 EpVOOp

3. Applying line 1 as a premise to line 2, we obtain
s2 E=pV OOp.

4. We apply the rule IND to the only strongly connected component in the
graph, C = {(x1, s1), (x1, $2)}, where Ezit(C) = {(x2, s2), (2, 51)}. We ob-
tain
s1EpVOOp
s2 = pV OOp
S1 — {82}

So —> {81}
s1 = O0Cp
s2 = OBOp

5. Applying lines 1, 3 as premises to line 4, we obtain
s1 = O0Cp and s2 = OOCp

From Model Checking to a Temporal Proof 11

6. Using the rule CONJ, we obtain
s1EpVOOp
s1 = OBOp
((p vV OOp) AOBOp) = BOp
s1 = 00p
7. Applying lines 1, 5 as premises to line 6, we obtain

s1 E OOp.

. . . P
Fig. 5. The intersection graph A%,

Consider the mutual exclusion system from Figure[J, and the checked prop-
erty OO (erg V erq). The intersection graph appears in Figure Bl It includes a
nontrivial SCC, whose states are encapsulated with a dotted line. These are the
system states that are paired with the property automaton state x1. The rest
of the states are paired with x5. There are four failed nodes, which have no
SUCCESSOTs.

The proof shows how the system progresses towards satisfying <(crg V cry).
Consider first the nodes outside the nontrivial SCC. From each such node, we
progress into a failed node where either crg or c¢r; hold. The proof proceeds
from the failed nodes backwards, showing that for each node that contains an x5
component, we have s = O(erg Very). The nontrivial SCC provides an induction
over the execution of the system, hence obtaining P | OO(erg V erp). Note
that we need only one application of the rule IND here, since there is only one
nontrivial SCC.

12 D. Peled and L. Zuck

5 An Automatic Ranking Function

Together with the proof, we can construct a ranking function p that maps each
strongly connected component in the intersection graph into a natural number.
The ranking of an SCC measures the distance of the component from the bottom
of the induced directed acyclic graph of SCCs. The ranking function provides
additional intuition about the way the checked system progresses towards satis-
fying the checked property. In term of the constructed proof, it shows how the
proof progresses towards the failed nodes. We denote by p(C) the rank of an
SCC C, and further define p(t) = p(C) if t € C.

The ranking function p must satisfy the following condition: if C' < C’ then
p(C) > p(C"). In particular, if C is a trivial SCC consisting of a failed node, it
is often convenient to set p(C) = 0.

Let m be the number of bits in the binary representation of the largest
ranking constructed for a state in Afy,. For any integer r < 2™ — 1, let bit;(r)
be the i*" bit in the m-bit binary representation of r. Let Vaug be the set V' of
system variables, augmented with a new variable whose value ranges over X,
the set of A-,-states. This augmentation is needed since the same system state
may have a different rank when combined with a different property automaton
state.

For every rank r that is constructed, let states, be a (propositional) formula
over the state variables V,,, that describes the set of all (joint) states (z, s) such
that p((z,s)) = r. Note that states, can be obtained automatically from the
above ranking construction.

The following formula,y(Vyug, 71, . . ., 7m) represents the connection between
states and their ranking.

v = \/ (states, A /\(Tz = biti(r)))

r=1,...,2m} i=1

Now, we can express each one of the bits in the binary representation of the
ranking as a formula of the joint automata state.

Gi = 3r,ra, o (YA T)

Thus, §; is true only in joint states for which the ith bit of the ranking function
is 1. Finally, we can automatically obtain a formula j as the ranking function,
mapping a state (z, s) (or more precisely, the corresponding assignments to V)
to its ranking p((z, s)). We assume that we can use in such a formula Boolean
expressions that return the value 0 for false and 1 for true. A ranking formula
P(Vaug) can be obtained as follows:

Note that the formulas (; can be simplified, e.g., using the help of a BDD
package.

From Model Checking to a Temporal Proof 13

Example. Consider for example a ranking for the intersection in Figure [3l

State formula rank r bity(r) bito(r)
cro Very 0 0 0
t’l"() N t’f’l 1 0 1
(tT‘()/\ntl)\/(’rLto/\tT'l) 2 1 0
nto A nty 3 1 1

It is easy to see that the least significant bit of the binary representation, Gy
can be expressed as (tro Atry) V (ntg Anty). The most significant bit 3; can be
expressed as (nty Atrg) V (ntg Atry) V (ntg A nty).

The ranking function formula p requires considerable simplification, before
presenting the resulted expression to the user. For that, we can exploit the
following options:

— We can use some additional conditions, regarding the relationship between
the system variables. For example, in the mutual exclusion system, we can
add the following conditions: (ntg V tro V crg) A (nt1 Vtry V cry) A —=(ntg A
tro) A —(nto A cro) A —(trg Acerg) A —(nty Atrl) A —(nty Aery) A=(trg Acery).

— The definition of the ranking function gives us some freedom in assigning
the actual ranks to SCCs (and their nodes). For example, in the mutual
exclusion system, we decided to give a ranking of 0 to all the failure nodes.
However, we could have decided to give a ranking of 0 to the nodes where
(cro Atry) V (trg A crq), and a ranking of 1 to the nodes where (crg A nty) V
(ntg A cry).

— After finding the expressions for the different bits, we can attempt to
collect together similar terms in order to simplify the ranking formula
p = Zi:l,...,m 21 x ;. Terms that appear in different 3;’s should be
grouped together, with their multiplication constants added together.

6 Conclusions

Model checking is mostly identified with finding errors. We presented an algo-
rithm for the automatic construction of a proof that the checked property holds
in the verified system. The proof is automatically obtained directly from a graph
(of an automaton) that is generated by model checking. Such a proof may help
in gaining more intuition about the verified system. The ability to automatically
form such a proof can be further exploited to conclude new properties of the
verified system.

The algorithm presented here can be added to model checking systems that
are based on automata theory. In particular, the SPIN system [6] contains an
implementation of the LTL translation algorithm in [5].

14

D. Peled and L. Zuck

Acknowledgements. We would like to thank Elsa Gunter and Amir Pnueli
for inspiring discussions about this subject. David Long has provided help with
his OBDD package. It was brought to our attention that, in parallel with our
work, Kedar Namjoshi has developed an algorithm for the automatic generation
of proofs for the p-calculus [9].

References

1.

@

E. M. Clarke, E. A. Emerson, Design and synthesis of synchronization skeletons
using branching time temporal logic. Workshop on Logic of Programs, Yorktown
Heights, NY, 1981, LNCS 131, Springer-Verlag.

G. Bhat, R. Cleaveland, O. Grumberg, Efficient on-the-fly model checking for
CTL". Logic in Computer Science, 1995, San Diego, CA, 388-397

E. M. Clarke, O. Grumberg, D. Peled, Model Checking, MIT Press, 2000.

E. A. Emerson, E. M. Clarke, Characterizing correctness properties of parallel
programs using fixpoints, LNCS 85, Springer Verlag, Automata, Languages and
Programming, July 1980, 169-181.

R. Gerth, D. Peled, M. Y. Vardi,, P. Wolper, Simple on-the-fly automatic veri-
fication of linear temporal logic, Protocol Specification Testing and Verification,
3-18, Warsaw, Poland, 1995. Chapman & Hall.

G. J. Holzmann, Design and Validation of Computer Protocols, Prentice-Hall Soft-
ware Series, 1992.

R.P. Kurshan. Computer-Aided Verification of Coordinating Processes: The
Automata- Theoretic Approach. Princeton University Press, Princeton, New Jer-
sey, 1994.

. Z. Manna, A. Pnueli, The Temporal Logic of Reactive and Concurrent Systems:

Specification, Springer, 1991.

K. Namjoshi, Certifying model checkers, Submitted to CAV 2001.

M. Y. Vardi, P. Wolper, An automata-theoretic approach to automatic program
verification. Proc. 1st Annual Symposium on Logic in Computer Science IEEE,
1986.

Model Checking if Your Life Depends on It:
A View from Intel’s Trenches

Rob Gerth

Strategic CAD Laboratories (SCL), Intel corp., USA
rob.t.gerth@intel.com

Abstract. Hardware design is considered one of the traditional areas for
formal (property) verification (FPV); in particular for symbolic model
checking. Indeed, Intel, SUN, Motorola and IBM all develop and deploy
model checking tools to ensure design correctness. On the other hand,
hardware design is hostile territory because of the huge effort companies
traditionally invest in classical testing and validation techniques which
tend to be much more automated, require less sophistication from users
and which will, in fact, discover many errors when deployed on such a
scale. For these reasons FPV will never fully supplant traditional valida-
tion.

The real challenge lies in convincing processor design teams that divert-
ing some of their validation resources to FPV leads to provably higher
design quality. Complicating factors include the relatively high quality
of traditional validation—at least within Intel—which raises the bar for
FPV; and the fact that in high-performance processors design large parts
of the RTL tends to remain unstable enough throughout the design to
make it very hard to verify suitable micro-architectural abstractions. For
these reasons, FPV within Intel traditionally targets the same RTL from
which the schematics is derived and on which all traditional validation
is performed.

Arguably the biggest (public) FPV success story within Intel is that of
floating point hardware verification and it is illustrative to see how FPV
is deployed in this area and how tool and methodology development is
influenced.

The major challenge that we are now facing is to move formal verification
upstream in the design flow. Not only because ever increasing micro-
architectural complexity creates a strong demand for early verification
on an algorithmic level, but also because the ever shortening design cycle
forces formal verification to start much earlier in the design. It is here
that hardware FPV and software verification start to merge and there
are lessons to be learned for either side.

M.B. Dwyer (Ed.): SPIN 2001, LNCS 2057, p. 15, 2001.
© Springer-Verlag Berlin Heidelberg 2001

Model-Checking Infinite State-Space Systems
with Fine-Grained Abstractions Using SPIN

Marsha Chechik, Benet Devereux, and Arie Gurfinkel

Department of Computer Science, University of Toronto,
Toronto, ON M5S 3G4, Canada.
{chechik,benet,arie}@cs.toronto.edu

Abstract. In analyzing infinite-state systems, it is often useful to de-
fine multiple-valued predicates. Such predicates can determine the (fi-
nite) levels of desirability of the current system state and transitions
between them. We can capture multiple-valued predicates as elements of
a logic defined over finite total orders (FTOs). In this paper we extend
automata-theoretic LTL model-checking to reasoning about a class of
multiple-valued logics. We also show that model-checking over FTOs is
reducible to classical model-checking, and thus can be implemented in
SPIN.

1 Introduction

Currently, model-checking is essentially limited to reasoning about medium-sized
finite-state models. Reasoning about large models, especially if these are not
finite-state, is typically done using abstraction [CGL94]. Abstraction techniques,
such as abstract interpretation |[CC77|, require the user to supply the mapping
between concrete and abstract data types in their models. Predicate abstraction,
introduced by Graf and Saidi [GS97], is a form of abstraction specified as a
number of predicates over the concrete data. For example, if we are interested
in checking whether x is always positive, we can define predicates x > 0 and
x < 0, and use them to compute the abstract system. A number of researchers,
e.g., [CU9SIVPPOOIBDLIG/DDPI9SS99], explored the use of predicate abstrac-
tion.

However, boolean predicates often do not give the desired precision. For
example, consider reasoning about a leader-election protocol, parameterized by
N — the number of processes engaged in it. We can either set N to be a (small)
constant, and define predicates on the exact number of processes that have agreed
on the elected leader; or leave N as is, and define predicates such as “everyone
agreed on the leader”, “no one agreed on the leader”, etc. In this situation
we cannot ask questions about the likelihood of the agreement, whereas such
questions may be desirable.

As an alternative, we propose modeling such systems using multiple-valued
predicates, where their values form a linear order. In the above situation, we
can assign different values to the level of agreement on the leader: “everyone

M.B. Dwyer (Ed.): SPIN 2001, LNCS 2057, pp. 16-36] 2001.
© Springer-Verlag Berlin Heidelberg 2001

Model-Checking Infinite State-Space Systems 17

agreed”, “the agreement is likely” , “no information is available”, “the agreement
is unlikely”, “no one agreed”, obtaining a linear order on the level of agreement.
Furthermore, if we do not limit ourselves to classical logic, our model-checking
procedure will distinguish between different values of agreement, e.g., between
cases where no agreement has been reached and where complete agreement has
not been reached, but the majority have agreed. Taking this reasoning one step
further, we can assign values to transitions. Intuitively, a transition value is the
possibility that it will be taken. Thus, we can potentially distinguish between
paths that can always be taken, paths that can likely be taken, etc.

In fact, giving predicates values from a linear order can be useful in a vari-
ety of situations: (a) consensus-building, where the abstraction is over counting
(e.g., the leader-election protocol mentioned above); (b) explicitly distinguish-
ing between “regular” and “faulty” behaviors, where we may be interested in
properties that hold always, and those that hold “most of the time”, i.e., over
“regular” behaviors; (c) rechecking a partial system after a change to it has been
made, where we are interested in differentiating between possible effects of the
change; (d) any situation where we want to assign “desirability” to a transition.
This can happen in cases where we have varying tolerances, e.g., in analyzing
families of SCR specifications [HJLIG].

Note that using linear order-valued predicates does not increase the expres-
sive power of our modeling language, since they can be encoded using a number
of boolean predicates. However, such encoding results in cluttering the models
with lots of auxiliary variables that bear no natural meaning, and, more im-
portantly, greatly increases the sizes of the models, making model-checking less
feasible [HK93].

Multiple-valued reasoning has been explored in a variety of domains. For ex-
ample, a nine-valued logic is prescribed as a standard [[EE93| for VLSI design,
where the interpretation of values is in terms of voltage thresholds. Other exam-
ples include databases [Gai79], knowledge representation [Gin87], and machine
learning [Mic77]. However, most of the work concentrated on the 3-valued rea-
soning, with values “True”, “Maybe” and “False”. Melvin Fitting [Fit91JFit92)
has done seminal work in studying 3-valued modal logic, and our work on logic in
this paper is somewhat similar to his. Three-valued logic has also been shown to
be useful for analyzing programs using abstract interpretation [CDO0/SRW99],
and for analyzing partial models [BG99IBG00]. Bruns and Godefroid also proved
that automata-theoretic model-checking on 3-valued predicates reduces to clas-
sical model-checking.

In this paper we give semantics to automata-theoretic model-checking over
arbitrary finite linear orders. We define multiple-valued Biichi automata and
multiple-valued LTL and show that such model-checking reduces to a classical
problem, and thus can be implemented on top of SPIN. The rest of this paper is
organized as follows: we review the definition of linear orders and define multiple-
valued sets and relations over them in Section 21 XL.TL, a multiple-valued exten-
sion of LTL, is defined in Section Bl Section [4 defines multiple-valued languages
and Biichi automata. In Section 5] we show how to represent XLTL logic formulas

18 M. Chechik, B. Devereux, and A. Gurfinkel

T (Definitely True, Must)

T (Definitely True) L (Likely, Weakly True, Should, Majority True)
T | |
M (Maybe, Unknown) M (Unknown, Undefined, Maybe, No Consensus)
F | |
F (Definitely False) U (Unlikely, Weakly False, Should Not, Majority False)
F (Definitely False, Must Not)
(a) () ()

Fig. 1. (a) 2, the classical logic FTO; (b) 3, a three-valued logic FTO; (c) 5, a five-
valued logic FTO and possible interpretations of its values.

as multiple-valued Biichi automata. Section [6] defines the model-checking prob-
lem on multiple-valued Biichi automata and shows that it reduces to a number
of queries to a classical model-checker, such as SPIN. We conclude the paper in
Section [7]

2 Preliminaries

In this section we review the definition of logics based on total orders. We also
define multiple-valued sets and relations over them.

2.1 Finite Total Orders

A partial order is a relation which is reflexive, symmetric, and transitive. A
partially ordered set, usually abbreviated poset, is a pair £ = (O,C) where O
is a set and C a partial order defined on it. If, for all a,b € O, either a C b or
b C a, then C is a total order or linear order. We consider, for the purposes of
this paper, only finite totally ordered sets, which we refer to as FTOs.

The operations of maximum and minimum are defined on FTOs as follows:

aMb=a ©aCb (minimum) aeUb=b <alb (maximum)
bMNa=a ©aCb (minimum) bUa=b & alb (maximum)

Lemma 1. Let (O,C) be an FTO. Then for all a,b,c € O,

cCanbe (cCa)A(cCb) (min-A)

cCalbs (cCa)V(cCh) (max-V)

Model-Checking Infinite State-Space Systems 19

We further define L = _Oand T =|]O.

Any FTO of height hlis isomorphic to the integers from 0 to (n — 1) with the
ordinary ordering. We call this isomorphism the canonical isomorphism for the
FTO and denote it by (.. The difference between two elements of an FTO is
their absolute difference:

aob=|Cc(a) — (b))

and negation in the FTO can be defined in terms of difference:

a2 Toa (def. of negation)
FTOs with this definition of negation satisfy the following properties:

=(aMb) = malU-b (De Morgan) -—a = a (= involution)
—(alb) = -aM-b a="b< —a=-b (- bijective)
-1 =T (L negation) -T =1 (T negation)

aCb<s —ad-b (- antimonotonic)

In this paper we use multiple-valued logics whose truth values form an FTO.
Conjunction and disjunction of the logic are defined as M and U (meet and join)
operations of (O, L), respectively, and negation is defined as the — operator of
(0,E). In fact, we will not distinguish between an FTO and a logic it defines,
referring to both as £. We also note that most of the usual laws of logic are
obtained in £, with the exception of the laws of Universality (a M —-a = 1) and
Excluded Middle (a U —a =T).

Figure[l presents several commonly-used FTOs: classical logic, a three-valued
logic with uncertainty, and a five-valued logic with more degrees of uncertainty.

2.2 Multiple-Valued Sets and Relations

Let £ = (O,C) be an FTO and D be some (finite) domain. We consider O, the
set of all total functions from D into O, and refer to elements of OF as multiple-
valued subsets of D, and, when D is clear from the context, just multiple-valued
sets or MV-sets. We introduced this notion in [CDEOTa], and briefly review it
below.

Definition 1. Given multiple-valued sets A, B € OP,

rc, A2 Ax) (MV-set membership)
r €, AU, B2 A(x)U B(x) (MV-set union)
r €. AN, B2 A(x) N B(x) (MV-set intersection)
re, A2 -Ax) (MV-set complement)

Consider the multiple-valued set of Figure 2] In this example, we use the
three-valued FTO 3 to model ambiguity about whether 0 is a positive integer.
The MV-set is Z1” € 3%, where for all n > 1, (n €, Z*?) = T; for all n < —1,
(n€,Z*") = L;and (0 €, Z*") = M.

20 M. Chechik, B. Devereux, and A. Gurfinkel

[1,2,3,...)

0

(...,=3,-2,—1]

Fig. 2. An example of a multiple-valued set over 3.

Theorem 1. [Gol99] Let D be a finite set, and (O,C) be an FTO. Define Cpp
as follows for any f,g € OP:

fEop g&VdeD- f(d) E g(d).

Then (OP Cop) is an FTO, with MV-union and MV-intersection defined as
join and meet, respectively.

The practical use of this result is that all of the properties defined for FTOs,
such as the De Morgan rules and distributivity, carry over to MV-sets.

Given two sets P, @, we can define a multiple-valued relation [CDEO1a] on
them as a multiple-valued subset of P x @, or an element of OF*.

This work is, to our knowledge, the first use of valued subsets in formal
verification; however, such theories are developed elsewhere [Eil78lGol99].

3 XLTL

In this section we extend the semantics of LTL to allow reasoning over a given
FTO £ = (O,C), representing our multiple-valued logic. We refer to the re-
sulting language as XLTL. Just like in classical propositional LTL, formulas in
XLTL are built from a set Prop of values of atomic propositions and are closed
under the application of propositional operators, the unary temporal connective
o (“next”) and the binary temporal connective ¢ (“until”). XLTL is interpreted
over multiple-valued computations. A computation is a function 7 : N — ©@Frer
which assigns values from the logic £ to the elements of Prop at each time instant
(natural number). For a computation 7 and a point ¢ € N, we have:

i p £ p e, 7(i)
T, ':L P £ _‘(7T>i ':L ‘P)
TiE oAV Em il e N mikE Y

il VY EmiE o UmikE Y

Model-Checking Infinite State-Space Systems 21

U =1V (pNo(pU 1))
Y =1hVo(Oy)
Oy =1 Ao(Oy)
YRy =19 A(pVolpR1))

Fig. 3. Properties of XLTL operators.

t0 t1 2

le = U‘U L‘L‘T‘L‘L‘

active[i] = [g ‘T

Fig. 4. A partial execution of the Leader Election protocol.

Now we define the temporal operators:

mikEso0p 2mitllELe
mite Uy | J((miEe9)N(_ 7kl 9)
j>i i<fF
The value of a property on a run is the value that it has in the Oth state of
the run:

TEL P £ m0E: ¢

As usual, Cp =T U p, Dp = =Op, and ¢ R Y = —(—pU —p). XLTL oper-
ators satisfy the expected LTL properties, for example, the fixpoint properties
in Figure B

Consider the example in Figure [dl This figure presents partial execution of
the Leader Election protocol specified using the five-valued logic 5. Let N be
the number of processes (which we assume to be an even number), and K be
the number that have agreed on the leader. We abstract K using the 5-valued
predicate le (“leader elected”) which is true when K = N, weakly true when
(N/2) < K < N, undecided when K = N/2, weakly false when 0 < K < (N/2),
and false when K = 0. Let activeli] indicate that the ith process is currently
active. In this system, 7,0 =, le is U, 7,0 =, le A active[i] is F (1), and
7,0 =, —active[i] is T (T). The value for le indicates that originally there
was no consensus on the leader (U), then consensus started forming (L) and was
reached (T). However, in the next state one of the processes changed its mind,
and thus the consensus went back to L. For this run, the value of ¢le is T,
but the value of &Ole is L. Note that we get this value without the need to
re-annotate our model under a different level of abstraction and rerun the check.

22 M. Chechik, B. Devereux, and A. Gurfinkel
4 Multiple-Valued Languages and Automata

In the task of using multiple-valued logic for system specification and verification,
it is natural to consider multiple-valued formal languages and multiple-valued
automata. We introduce them in this section.

4.1 Multiple-Valued Languages

Let X be a finite alphabet, 2* be the set of all finite words over X, X* be the set
of all infinite words, and X< = ¥*U X“. We can catenate any two finite words,
and consider the empty string A as the identity for catenation: wA = Aw = w.
The empty string is contained in X*, but not in X“.

Definition 2. A multiple-valued language over an alphabet X is a multiple-
valued subset of X*, or an element in OF ; a multiple-valued w-language is an
element in O . A multiple-valued language X is proper if (A €, X) = T.

We shall use the term “MV-language” to refer, indiscriminately, to any multiple-
valued language or w-language, wherever the distinction is not important. An
MV-language is an assignment of values to words. If @ = 2, then an MV-
language is an ordinary formal language, where every word that is assigned
value T is considered to be in the language. The properness criterion assures
that A is contained in the language as the identity for catenation.

MV-languages are just MV-sets of words, so union, intersection, and comple-
ment are already defined on them. The standard language operation of catenation
can be extended to the multiple-valued case, as given below.

Definition 3. Given X,Y € O and w € X*,

we, XY = |_| (ue, X)MN(ve,Y) (MV-language catenation)

{u,v|w=uv}

Transitive closure (Kleene star) and infinite closure (w) can be defined in terms
of multiple-valued catenation.

Consider the two multiple-valued languages X = {a — T,ab — L} and
Y = {bc - M,c — U}, defined on the logic 5. We are interested in the value
that abc has in XY'. It can be formed either by catenating a and be, with value
TMM = M, or by catenating ab and ¢, with value LMU = U. By the definition,
we take the maximum of those two values, making the value of abc €, XY to
be M.

4.2 Multiple-Valued Automata

A multiple-valued finite automaton A takes any word w € X=* and computes
its membership degree, a value in O. Thus, an automaton corresponds to a

Model-Checking Infinite State-Space Systems 23

multiple-valued language L(A). Details about multiple-valued automata on fi-
nite words (in the more general case, of semiring-valued languages) can be found
elsewhere [Eil78]; our treatment of multiple-valued infinite words and their au-
tomata is, so far as we know, new, but it is a natural extension.

A multiple-valued Biichi automaton has transitions between states that take
on some value ranging between T or L of an FTO. This value, intuitively, is a
possibility that a transition will be taken. Thus, we can assign possibilities to
individual transitions and to infinite strings that the automaton receives.

Definition 4. A multiple-valued Biichi automaton, or X Biichi automaton, is a
tuple (L, Q, qo, X, A, F) where:

- L=(0,C) is an FTO;

— @ is a finite set of states;

— qo s the unique initial state;

— X is a finite alphabet;

— A € O9X¥XQ s the multiple-valued transition relation. A(q, o, q') gives the
value of the transition from q to ¢’ on symbol a;

— F is a set of accepting states.

The runs of the automaton are infinite sequences of states, always beginning
with go. We define a projection of @ onto F' as

qifge F
)\ otherwise

mr(q) _{

which we extend to Q¥, and define the accepting runs AR of the automaton to
be the elements of
{o | mr(0) € F*}.

Intuitively, AR is the set of all runs in which some accepting state occurs in-
finitely often.

For a XBiichi automaton A, L(A) € O¥ is the multiple-valued subset of
2% defined by the automaton. The value assigned by the automaton to a word

w = wowiws ... in X¥ is given in terms of the accepting runs:
(’LU S L(A)) = |_|] A(O’i,wi,0'7;+1)
c€AR lEIN

Consider the XBiichi automaton in Figure Bl This automaton assigns values
from 5 to its inputs. In the input sequence abbcd®, the prefix abb takes the au-
tomaton only through T-valued transitions. Then, ¢ follows an L-transition to an
accepting state; after this occurs, the value of the whole sequence cannot exceed
L. The automaton loops through the accepting state on the infinite sequence of
d’s, so this word is accepted with value L.

XBiichi automata are similar in spirit to Markov chains [Fel68]. Markov
chains also assign values, representing probabilities, to nonterminating finite-
state computations, and have been used [VW86] to check probabilistic system
specifications. Our approach is more possibilistic, motivated by the problem of

24 M. Chechik, B. Devereux, and A. Gurfinkel

b/ T d/T

m al/T O ¢/L
U e/U

Fig. 5. An example XBiichi automaton.

requirements analysis. Given two independent events, the probability of the oc-
currence of at least one is the sum of their individual probabilities; but the
possibility or necessity of at least one event occuring is the mazimum of their
individual possibilities.

4.3 Composition

Our definitions of parallel composition, synchronous and asynchronous, are ex-
tensions of the standard construction [Tho90].

We start by defining synchronous parallel composition, or MV-intersection
of languages. Let L; and Lo be multiple-valued w-languages and A; =
(L£,Q1,q¢5, X, A1, F1) and Ay = (£,Q2,q3,%, As, F3) be XBiichi automata
for L1 and Ly, respectively. We construct two classical automata, A; (for
i = 1,2), where A}(q,a,q’) is true exactly if A;(q,,¢') # L. Then we in-
tersect the two classical automata, creating A = (Q1 x Q2 x {0,1,2}, (g},
@2.,0), X, Ay, Fy x Fy x {2}). Finally, we create the multiple-valued intersection
of the two XBiichi automata by transforming A1 into a XBiichi automaton Az
with the new multiple-valued transition relation:

Al(Q? «, q/) r AQ(Tv a, T/)

A12 ((q7 7"7j>, Q, (q/7 7"/,]/)) = ifAlQ ((qa T j)a @, (ql7 Tlvj/))
Lotherwise

for all j € {0,1, 2}.

Theorem 2. The value that Ao gives to a word w is the same as its value in
LN, Ls.

Figure [@ illustrates the intersection construction. The first automaton gives
the value T to ac® and L to ba“; the second gives value T to ba*. Every other
word evaluates to L. In the intersection, ac® becomes L, and ba“ evaluates to
the minimum of L and T, namely L. Note that (g2, 71) is labelled with 2, making
it an accepting state in the intersection automaton, because it is a final state in
both A; and As.

We proceed to define asynchronous composition on two XBiichi automata
with (possibly different) alphabets and the same logic.

Model-Checking Infinite State-Space Systems 25

@ alT alT
al T

-0 —Og —0o0

© oy (90,70,0) (g2,71,2)

q2
(a) (b) (©)

Fig. 6. Intersection of XBiichi automata. (c) shows the intersection of automata in (a)
and (b).

Definition 5. Let Al - (07 Q17 qév 215 A17 Fl); AQ = (Ov Q27 q(%v EQa A27 F2)
be two XBichi automata. The asynchronous composition A; || A2 = (O, Q1 %
Q2, (g}, q3), X1 U X, A, F) of the two automata has the following transition re-
lation:

A((Q17Q2)aa7(q/1a112)) = Al(qlaaaqll) lfQ1 %qll
A (Q17QQ)a047(Q1aQé)) = AQ(qQaaaq/Q) 1f(12 #ql2
A(q1, @), a, (q1,q2)) = A1(q1, o, q1) U Az(ga, v, q2) otherwise

A state (q1, g2) of the asynchronous composition is considered final if either ¢
or qo are final, so

F = (Fl XQQ)U(Ql XFQ)

5 Conversion between XLTL and XBiichi Automata

In this section we describe how to convert between XLTL formulas, defined in
Section [3 and XBiichi automata. Our algorithm is based on the classical LTL to
Biichi automata conversion algorithm presented in [GPVW95]. As in [GPVW95],
we start by defining Generalized X Biichi Automata and Labeled Generalized
X Biichi Automata (LGXBA).

Definition 6. A Generalized XBiichi automaton (GXBA) is a tuple
(L£,Q,q0, X, A, F) where L,Q, qo, X and A are as in ordinary X Bichi automata,
but F = {Fy,Fs,...,Fy} is a set of k sets of accepting states. Each set F; has
the projection g, defined for it, and the accepting runs are those where at least
one element from each F; appears infinitely often:

AR ={o |0 € goQ“ AVi < k-7 (o) € F'}

26 M. Chechik, B. Devereux, and A. Gurfinkel

Definition 7. A Labeled Generalized XBiichi Automaton (LGXBA) is a tuple
(£,Q,q0, X, A, F, Lab) where:

- L=(0,C) is an FTO;

— @ is a finite set of states;

— qo s the unique initial state;

— X = OFror s an alphabet consisting of all multiple-valued sets over the set
Prop of propositional symbols;

— A€ O9%R s a multiple-valued transition relation;

— F={F,F,,...F,} is a set of sets of accepting states;

Lab : Q — 2Fropu=Prop s g labeling function that assigns a subset of PropU

—Prop to every state.

The set of accepting runs (AR) for a LGXBA is defined the same as for a
Generalized XBiichi automaton given in Section €l

Notice that each element o € X' is a total function from Prop to O. We extend
this function to elements of —=Prop by defining a(=p) £ —a(p), Vp € Prop. Let
& : 2FropU=Pror _y 9 he a set-wise extension of «, defined as

a(D) & a(d) (set-wise extension)

For a Labeled Generalized XBiichi automaton A, L(A) € O*" is the multiple-
valued subset of X“ defined by the automaton. The value assigned by the au-
tomaton to a word w = wowiws ... in X*¥ is given in terms of the accepting
runs:

w E, L(A) = I—I] A(O’i,Ui+1) 1 ’UA}Z'(LCLb(O'Z‘Jrl))
cEAR

where 10; is the set-wise extension of w;.

Given an LTL property ¢, the algorithm in [GPVWO95] constructs a Labeled
Generalized Biichi automaton in two major steps. In the first step, it uses the
syntactic structure of the formula to construct a graph G = (V, E) together with
three labeling functions, New, Old, and Next, that assign a subset from a closure
of ¢ to each node of G. In the second step, the algorithm constructs an automa-
ton, using G to define its basic structure, and the labeling functions to define
its accepting states and state labels. The resulting Generalized Labeled Biichi
automaton accepts a word if and only if the word satisfies ¢. This automaton
can be easily converted into a Biichi automaton with a polynomial blowout in
its size.

Since XLTL is syntactically equivalent to LTL, we reuse the graph construc-
tion part of the algorithm in [GPVW95|. Thus, given a XLTL property ¢, our
algorithm starts by constructing a graph G = (V, E) and the node labeling func-
tions New, Old, and Nezt using the procedure in [GPVWO95]. However, we modify
this procedure to ensure the correct handling of p A =p (not necessarily L) and
pV —p (not necessarily T), where p is any propositional formula. The algorithm

Model-Checking Infinite State-Space Systems 27

4o qs3

qz
Fig. 7. A LGXBA corresponding to <p.

then proceeds to construct a LGXBA A = (£, Q, qo, X, A, F, Lab) by letting the
set of states @ of the automaton be the nodes of G, with the root node of G
being the initial state gg. The accepting set F is constructed as in the original
algorithm. The transition relation A is constructed from the edges of the graph
G such that A(q,q’) = T if the edge (¢,¢’) is in G, and A(q,q¢’) = L otherwise.
Finally, the labeling function Lab is constructed as a restriction of the labeling
function Old to the set of all positive and negative propositional symbols of ;
that is, for a given state ¢, Lab(q) = Old(q) N (PropU—Prop). It is easy to show
that the resulting LGXBA can be transformed into a XBiichi automaton via an
extended version of the transformation used in the classical case.

For example, consider the automaton in Figure [which corresponds to a
XLTL property Op. In this figure we show only T transitions. Every accepting
run of this automaton must pass through the state g3. Therefore, the value that
the automaton assigns to a given word w is

|_| (p SV wi)

ieN
which corresponds to the definition of w =, $p from Section Bl

Theorem 3. The automaton A constructed for a property ¢ assigns a value ¢
to an infinite sequence w over OF™P if and only if £ = (w =,).

Proof. The proof is a straightforward extension of the proof of correctness of the
algorithm in [GPVW95], and is omitted here. O

The immediate consequence of Theorem Blis that if £ is 2, the automaton con-
structed by our algorithm is equivalent to the Labeled Generalized Biichi au-
tomaton produced by the original algorithm in [GPVW95].

28 M. Chechik, B. Devereux, and A. Gurfinkel

oy T AT

a1 T ()L
~O—O=0

qo q1 {e}/U q2

Fig. 8. An example Biichi automaton 2.

6 XLTL Model-Checking

In this section we define automata-theoretic multiple-valued model-checking and
describe a decision procedure for it.

6.1 The Model-Checking Problem

Automata-theoretic model-checking procedure can be viewed as a function that
receives a program P and property ¢ and returns a value from the logic £
indicating the possibility that (the degree to which) P satisfies . For example,
in the classical case MC(P, ¢) = T if and only if every computation of P satisfies
. In the remainder of the paper we use MC to indicate the classical model-
checking function. M C' is formally defined as

MC(P,p) £Vw e X -w € L(Ap) — w € L(A,) (M C-definition)

where Ap and A, are the Biichi automata corresponding to the program P and
property ¢, respectively.

We extend this definition to the multiple-valued case and define a multiple-
valued model-checking function XM C' as follows:

Definition 8. Let P be a multiple-valued program, ¢ a XLTL property, and
Ap, A, the corresponding X Biichi automata. Then, the multiple-valued model-
checking function XMC' is defined as

XMCO(P, p) & (we. L(Ap) = w €, L(A,)) (XM C-definition 1)

£~ (we. L(Ap) NMw €, L(A-,)) (XM C-definition 2)
weXw

Intuitively, the possibility of a program satisfying a property is inversely
proportional to the possibility that the program can produce a computation
violating the property. For example, consider a XBiichi automaton in Figure [§]
corresponding to some program P. The set of propositional symbols of this

Model-Checking Infinite State-Space Systems 29

automaton is {a,b,c,d, e}, and as each transition is taken, exactly one of these
symbols becomes T and the rest become 1. Thus all transitions are labeled with
singleton sets. For example, a transition between ¢; and ¢s is labeled with {c}/T
to indicate that the transition is taken with possibility L when ¢ becomes T (and
a, b, d, e become). Any non-_L computation w of this automaton contains a w;
such that (d €, w;) = T; therefore, the result of XM C(P,<d) is T. That is, the
program satisfies the property <d with the value T. On the other hand, the value
of XMC(P,<0d) = L since there exists a computation w = {a}({c}{d}{e})*,
st. (we. L(A)) =U and (w €, L(=00d)) = T.

To establish correctness of our definition we show that it is equivalent to the
classical definition when the logic used is 2, and that it preserves the expected
relationships between programs and XLTL properties.

Theorem 4. Let P be a program, ¢ be a (X)LTL property, and Ap, A, be the
corresponding (X)Biichi automata. Then, if the logic L used to define the X Biichi
automata is 2, then

MC(P,) = XMC(P, ¢)
Proof. Follows directly from the definitions of M C' and XM C. O

Intuitively, the degree to which a program P satisfies a conjunction of two
properties cannot exceed the degree to which it satisfies each of these properties
individually. Similarly, the degree to which a program P satisfies a disjunction
of two properties is higher then the degree to which it satisfies each of the
properties individually. Finally, in the classical case, if two programs satisfy a
property, then so does their independent composition. This implies that in the
multiple-valued case the degree to which a program P; + P, satisfies a given
property ¢ must equal the smallest degree to which each program satisfies the
property individually.

Theorem 5. Let P and P> be programs, and ¢ and ¥ be XLTL properties.
Then,

(1) XMC(P,oNp) =XMC(P,) N XMC(P, 1) (property intersection)
(2) XMC(P,o) UXMC(P,) T XMC(P,o V1) (property union)
(3) XMC(Py+ Py,) = XMC(P1,0) MXMC(Py,) (program composition)

Proof. The proof of (1) and (2) is based on the fact that the language of a
XBiichi automaton Ag,ny (Agpvy) is the multiple-valued intersection (union) of
the languages L(A,) and L(Ay) corresponding to the properties ¢ and 1), re-
spectively. The proof of (3) is based on the fact that the language of a XBiichi
automaton Ap, 1 p, is the multiple-valued union of the languages L(Ap,) and
L(Ap,) corresponding to programs P; and Ps, respectively. O

30 M. Chechik, B. Devereux, and A. Gurfinkel

6.2 Decision Procedure for XLTL Model-Checking

In this section we show that a single XLTL model-checking problem, with an
FTO of size |O|, can be transformed into (|O| — 1) classical model-checking
problems.

Recall the definition of MC(P,¢). The formal definition is equivalent to
the problem of language containment; we must check that L(Ap) C L(Ay).
In practice, this is done via checking for emptiness of L(Ap) N L(A,), where
L(A,) = L(A-,) [VWS86]. A classical w-language, viewed as an element Z €
2% is nonempty if and only if there exists a w € X% such that (w €, Z) = T;
that is,

Nonempty(Z) £ T C (\/ (we€ Z)) (non-emptiness)
we X

We wish to restate XM C (P, ¢) in terms of language intersection and empti-
ness as well, so we start by generalizing the above definition to MV-languages.

Definition 9. Let Z be an MV-language, L = (O,C) be an FTO, and ¢ €
(O\{L}). Then

Nonempty(Z,0) £ (T (|_| (w€. Z)) (£-non-emptiness)
we X

If O =2 and ¢ =T, this definition reduces to the classical definition of empti-
ness. In the multiple-valued case, however, we can have degrees of emptiness,
and this is captured by the generalized definition. For instance, if the maximal
value of any word in an MV-language is M, then it is M-nonempty, but not
L-nonempty or T-nonempty.

We now define a reduction on MV-automata w.r.t. a logic value ¢, known as
an f-cut [CDET01h).

Definition 10. Let £ = (O,C) be an FTO. Then for any XBiichi automaton
A=(L,Q,q0, 5, A F) and £ € O, an f-cut of A, denoted A®, is an automaton
(Q, qo, X, AY, F) where:

TiflC Ag,a,¢)

| otherwise (definition of A®)

Agai) = {

The conversion from any A to A* can be done in O(|Q|?) time. Now we establish
a few properties of ¢-cuts.

Theorem 6. Let Ay and As be arbitrary X Biichi automata. Then

L((A1 N, AQ)Z) = L(A)) N L(AS) (f-cut of language intersection)

Model-Checking Infinite State-Space Systems 31

Proof.

w e L((A M. Az)")
< Definition of cut

L (w €, L((A1 Ng Ag))
& Theorem 2

(C (wes (L(A1) N, L(Az)))
< MV-intersection

(T ((wes L(A) N (w €. L(Az)))
< min-A rule

(0T (wee L(A)) A (LE (w es L(A2)))
< Definition of cut

(we L(A{)) A(w e L(Ag))
< Intersection

w € L(Af) N L(AS))

Theorem 7. Let Ay and As be arbitrary X Biichi automata. Then

L((A1 || A2)") = L(A{ || A}) (t-cut of parallel composition)

Proof. 1t is obvious that all transitions which are not self-loops will be in the
{-cut of the composition if and only if they are in the £-cut of the process which
moves on the transition. Let A be the transition relation of (A; || A2)¢, and A’
be the transition relation of (A% || AS). We show that the existence of a self-loop
in A is equivalent to the existence of a self-loop in A’

A((qh Q2)7 «, (Q17 (ZQ))
& cut of parallel composition

CE Ar(qr, 0, q1) U Az(g2, @, q2)
& max-V

(LT Ai(qi,,q1)) V (LT Asx(ge, a, q2))
& definition of cut

A? (ql7 «, ql)) \ Ag(QQa @, q2)
& classical parallel composition

A ((q1,42), 0 (g1, 2))
O

Cuts can also be used to define the decision procedure for MV-language
emptiness.

32 M. Chechik, B. Devereux, and A. Gurfinkel

Theorem 8. Let L = (O,C) be an FTO. Then for any XBichi automaton
A=(L,Q,q0, Y, A F) and £ € O, the {-nonemptiness of A is decidable.

Proof. Construct A*, the /-cut of A. L(A?) is nonempty if and only if there is
some word w, for which there is an accepting run ¢ € AR with only T-valued
transitions. That is:

w € L(AY)
< Biichi acceptance

Jo € AR -Vi € N- A0, w;, 0441)
& definition of A’

Jo e AR -Vie N- L C Aoy, w;,0441)
< min-A rule

Joc AR- LT _ Aos,wi,0411)
< max-V rule

{C |_| _ Aos,wi, 0441)

cEAR"

< XBiichi acceptance

(C (w e L(A))

In other words, if L(A*) is nonempty, then there is some word w such that £ C
(w €, L(A)), and L(A) is -nonempty. Since A’ is a classical Biichi automaton,
its nonemptiness is decidable [Tho90]. O

We now have an effective decision procedure for finding the f-nonemptiness
of L(Ap) N, L(A-,) for any £ € O. We can iterate this procedure to find the
mazimal ¢ for which this intersection is non-empty. The complement of this
maximal ¢ can be returned as the value of property ¢ in system P. Figure [
describes the model-checking procedure in detail. In order to gain some intuition
for this result, first consider the classical case, where we simply need to check
that the intersection of the system with the negated property automaton is
T-nonempty: if it is T-nonempty, there are 1-valued counterexamples to the

property.

6.3 XLTL Model-Checking in SPIN

In this section we show how to implement a multi-valued automata-theoretic
model-checker, which we call MV-SPIN, using SPIN as a black box. In Section [6.2]
we established that model-checking of a property ¢ over a system P reduces to
computing a series of ¢-cuts over P N, A-,. By Theorem B we can perform
{-cuts of the property and the system automaton individually. We also note that
the system is usually not a monolithic Promela model, corresponding to one

Model-Checking Infinite State-Space Systems 33

Given a system P, and a XLTL property ¢:

Convert —¢ to a XBiichi automaton A-, using the method of Section Bl
Compute C' = PN, A-, according to the construction of Section B3,
For each ¢ € O, construct the cut C'* and check it for nonemptiness.

Let £mas be the maximal ¢ for which C* is nonempty.

Return “4ae.

CU N

Fig. 9. Decision procedure for multi-valued model-checking.

procedure MV-SPIN (P, ¢)
A, = B2Prom(X2B(y))
for { = T downto L
P’ = cut(P, ¢)
Al = Cut(A,, £)
ce = SPIN (P', A7)
if (ce # 0)
return —/ as answer and
ce, if present, as the counter-example

Fig. 10. Algorithm for MV-SPIN.

Biichi automaton, but a collection of processes which are run under asynchronous
parallelism. Furthermore, SPIN does not compute the entire automaton of the
model; instead, it performs model-checking on-the-fly [GPVWO95]. Thus, our goal
is to specify multiple-valued models in some Promela-like language, extended
with MV-semantics and then generate Promela without building the complete
Biichi automata.

Extending Promela with multiple-valued guard commands is not difficult,
as indicated by the work on probabilistic GCL [HSM97|. Asynchronous parallel
composition of XBiichi automata was given in Definition[H. By Theorem [T, £-cuts
of the entire model are equal to f-cuts of each individual process. Assume that
this operation is done by function Cut which takes a model in extended Promela
and a logic value £ and converts it into “regular” Promela while performing the
reduction ¢-cut.

The algorithm for MV-SPIN is given in Figure FunctionsX2B and B2Prom
are the modifications of existing LTL to Biichi automata and Biichi automata
to Promela algorithms, respectively, enriched to handle XBiichi automata. The
result of SPIN is stored in ce. If ce is empty, the classical model-checking pro-
cedure succeeded; else, ce is returned as the counter-example.

Note that the performance penalty of MV-SPIN w.r.t. SPIN manifests itself
in a O(]O|) expansion in the size of the Biichi automaton constructed from
the XLTL property, in executing SPIN up to |O| times and in executing up
to 2 x |O] cuts. Cuts are performed on individual Promela processes and are

34 M. Chechik, B. Devereux, and A. Gurfinkel

proportional to the number of lines in respective text files. Thus, we get an
overall O(|0]?) performance penalty. However, the sizes of resulting models are
smaller than they would have been if we replaced multiple-valued variables by a
collection of boolean variables. In addition, FTOs allow to compactly represent
incompleteness and uncertainty in the system; such situations can be modeled in
classical logic by using additional variables and thus leading to the exponential
growth in the size of the state space [CDE0Ta].

7 Conclusion

In this paper we extended classical automata-theoretic model-checking to reason-
ing over multiple-valued logics, whose values form total linear orders. We gave se-
mantics to a multiple-valued extension of LTL, called XLTL, described notions of
multiple-valued languages and automata, and defined a general model-checking
problem. We also showed that the multiple-valued model-checking problem re-
duces to a set of queries to a classical model-checking procedure, and thus can
be easily implemented on top of SPIN.

We further note that FTOs are a subclass of quasi-boolean logics — logics
based on lattices with specially-defined negation. We used quasi-boolean logics in
our previous work [CDE0Ta)CDE™01b]. In fact, our definitions of XLTL, XBiichi
automata and multiple-valued model-checking can be used verbatim if we replace
FTOs by quasi-boolean logics. Furthermore, Theorem [8 also holds for all join-
irreducible [CDET01b] elements of the lattices. However, we do not yet have an
effective decision procedure for other elements of the logic.

Acknowledgments. We thank members of the University of Toronto formal
methods reading group, and in particular Steve Easterbrook and Albert Lai, for
many useful discussions. This work was financially supported by NSERC and
CITO.

References

[BDLY6] C. Barret, D. Dill, and K. Levitt. “Validity Checking for Combinations of
Theories with Equality”. In Formal Methods in Computer-Aided Design,
volume 1166 of LNCS, pages 187-201, November 1996.

[BG99] G. Bruns and P. Godefroid. “Model Checking Partial State Spaces with
3-Valued Temporal Logics”. In Proceedings of CAV’99, volume 1633 of
LNCS, pages 274-287, 1999.

[BGOO] G. Bruns and P. Godefroid. “Generalized Model Checking: Reasoning
about Partial State Spaces”. In Proceedings of CONCUR’00, volume 877
of LNCS, pages 168-182, August 2000.

[CCT7] P. Cousot and R. Cousot. “Static Determination of Dynamic Properties
of Generalized Type Unions”. SIGPLAN Notices, 12(3), March 1977.
[CDO00] M. Chechik and W. Ding. “Lightweight Reasoning about Program Cor-

rectness”. CSRG Technical Report 396, University of Toronto, March
2000.

[CDEO1a)

[CDE101b]

[CGLY4]

[CU98

[DDP99)

[Eil78]
[Fel68]
[Fit91]
[Fit92]
[Gai79]
[Gin87]

[Gol99]
[GPVWO3]

[GS97]

[HILI6]

[HK93]

[HSM97]

[IEE93]
[Mic77]

Model-Checking Infinite State-Space Systems 35

M. Chechik, B. Devereux, and S. Easterbrook. “Implementing a Multi-
Valued Symbolic Model-Checker”. In Proceedings of TACAS’ 01, April
2001.

M. Chechik, B. Devereux, S. Easterbrook, A. Lai, and V. Petrovykh. “Ef-
ficient Multiple-Valued Model-Checking Using Lattice Representations”.
Submitted for publication, January 2001.

E.M. Clarke, O. Grumberg, and D.E. Long. “Model Checking and Ab-
straction”. IEEE Transactions on Programming Languages and Systems,
19(2), 1994.

M. Colon and T. Uribe. “Generating Finite-State Abstractions of Reac-
tive Systems using Decision Procedures”. In Proceedings of the 10th Con-
ference on Computer-Aided Verification, volume 1427 of LNCS. Springer-
Verlag, July 1998.

S. Das, D. Dill, and S. Park. “Experience with Predicate Abstraction”.
In Proceedings of the 11th International Conference on Computer-Aided
Verification, volume 1633 of LNCS, pages 160—-171. Springer-Verlag, 1999.
S. Eilenberg. Automata, Languages and Machines, volume A. Academic
Press, New York, 1978.

W. Feller. An Introduction to Probability Theory and its Applications,
volume I. John Wiley and Sons, New York, 1968.

M. Fitting. “Many-Valued Modal Logics”. Fundamenta Informaticae,
15(3-4):335-350, 1991.

M. Fitting. “Many-Valued Modal Logics II”. Fundamenta Informaticae,
17:55-73, 1992.

Brian R. Gaines. “Logical Foundations for Database Systems”. Interna-
tional Journal of Man-Machine Studies, 11(4):481-500, 1979.

M. Ginsberg. “Multi-valued logic”. In M. Ginsberg, editor, Readings in
Nonmonotonic Reasoning, pages 251-255. Morgan-Kaufmann Pub., 1987.
J. S. Golan. Power Algebras over Semirings. Kluwer Academic, 1999.
R. Gerth, D. Peled, M. Vardi, and P. Wolper. “Simple On-the-fly Auto-
matic Verification of Linear Temporal Logic”. In In Proceedings of 15th
Workshop on Protocol Specification, Testing, and Verification, Warsaw,
North-Holland, June 1995.

S. Graf and H. Saidi. “Construction of Abstract State Graphs with PVS”.
In Proceedings of the 9th International Conference on Computer-Aided
Verification, volume 1254 of LNCS. Springer-Verlag, 1997.

C. L. Heitmeyer, R. D. Jeffords, and B. G. Labaw. “Automated Consis-
tency Checking of Requirements Specifications”. ACM Transactions on
Software Engineering and Methodology, 5(3):231-261, July 1996.

R. Hahnle and W. Kernig. Verification of switch-level designs with
many-valued logic. In International Conference LPAR ’93, volume 698.
Springer-Verlag, 1993.

J. He, K. Seidel, and A. Mclver. Probabilistic models for the guarded
command language. Science of Computer Programming, 28(2-3):171—
192, April 1997.

IEEE Standard 1164-1993. 1993.

R. S. Michalski. “Variable-Valued Logic and its Applications to Pattern
Recognition and Machine Learning”. In D. C. Rine, editor, Computer
Science and Multiple- Valued Logic: Theory and Applications, pages 506—
534. North-Holland, Amsterdam, 1977.

36 M. Chechik, B. Devereux, and A. Gurfinkel

[SRW99)

[SS99]

[Tho90]

[VPP0O]

[VWS86]

M. Sagiv, T. Reps, and R. Wilhelm. “Parametric Shape Analysis via
3-Valued Logic”. In Proceedings of 26th Annual ACM Symposium on
Principles of Programming Languages, 1999.

H. Saidi and N. Shankar. “Abstract and Model Check while you Prove”.
In Proceedings of the 11th Conference on Computer-Aided Verification,
volume 1633 of LNCS, pages 443—454, July 1999.

W. Thomas. Automata on infinite objects. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, chapter 4, pages 133-191.
Elsevier Science Publishers B. V., 1990.

W. Visser, S. Park, and J. Penix. “Applying Predicate Abstraction to
Model Check Object-Oriented Programs”. In Proceedings of 4th Interna-
tional Workshop on Formal Methods in Software Practice, August 2000.
M. Y. Vardi and P. Wolper. “An Automata-Theoretic Approach to Auto-
matic Program Verification”. In Proceedings of 1st Symposium on Logic
in Computer Science, pages 322—-331, Cambridge MA, 1986.

Implementing LTL Model Checking with
Net Unfoldings*

Javier Esparza! and Keijo Heljanko?

! Institut fiir Informatik, Technische Universitat Miinchen, Germany
esparza@in.tum.de
2 Lab. for Theoretical Computer Science, Helsinki University of Technology, Finland
Keijo.Heljanko®hut.fi

Abstract. We report on an implementation of the unfolding approach
to model-checking LTL-X recently presented by the authors. Contrary to
that work, we consider an state-based version of LTL-X, which is more
used in practice. We improve on the checking algorithm; the new version
allows to reuse code much more efficiently. We present results on a set
of case studies.

1 Introduction

Unfoldings [14J6l5] are a partial-order approach to the automatic verification of
concurrent and distributed systems, in which partial-order semantics is used to
generate a compact representation of the state space. For systems exhibiting
a high degree of concurrency, this representation can be exponentially more
succinct than the explicit enumeration of all states or the symbolic representation
in terms of a BDD, thus providing a very good solution to the state-explosion
problem. Unfolding-based model-checking techniques for LTL without the next
operator (called LTL-X in the sequel) were first proposed in [22]. A new algorithm
with better complexity bounds was introduced in [3], in the shape of a tableau
system. The approach is based on the automata-theoretic approach to model-
checking (see for instance [20]), consisting of the following well-known three steps:
(1) translate the negation of the formula to be checked into a Biichi automaton;
(2) synchronize the system and the Biichi automaton in an adequate way to yield
a composed system, and (3) check emptiness of the language of the composed
system, where language is again defined in a suitable way.

In [3] we used an action-based version of LTL-X having an operator ¢1U% ¢,
for each action a; ¢1U%¢po holds if ¢1 holds until action a occurs, and immedi-
ately after ¢, holds. Step (2) is very simple for this logic, which allowed us to
concentrate on step (3), the most novel contribution of [3]. However, the state-
based version of LTL-X is more used in practice. The first contribution of this
paper is a solution to step (2) for this case, which turns out to be quite delicate.

* Work partially supported by the Teilprojekt A3 SAM of the Sonderforschungsbereich
342 “Werkzeuge und Methoden fiir die Nutzung paralleler Rechnerarchitekturen”,
the Academy of Finland (Projects 47754 and 43963), and the Emil Aaltonen Foun-
dation.

M.B. Dwyer (Ed.): SPIN 2001, LNCS 2057, pp. 37-[56] 2001.
© Springer-Verlag Berlin Heidelberg 2001

38 J. Esparza and K. Heljanko

The second contribution of this paper concerns step (3). In [3] we presented
a two-phase solution; the first phase requires to construct one tableau, while the
second phase requires to construct a possibly large set of tableaux. We propose
here a more elegant solution which, loosely speaking, allows to merge all the
tableaux of [3] into one while keeping the rules for the tableau construction
simple and easy to implement.

The third contribution is an implementation using the smodels NP-solver
[18], and a report on a set of case studies.

The paper is structured as follows. Section 2] contains basic definitions on
Petri nets, which we use as system model. Section [3 describes step (2) above
for the state-based version of LTL-X. Readers wishing to skip this section need
only read (and believe the proof of) Theorem 1. Section Hl presents some basic
definitions about the unfolding method. Section[H describes the new tableau sys-
tem for (3), and shows its correctness. Section [6ldiscusses the tableau generation
together with some optimizations. Section [f]reports on the implementation and
case studies, and Section [§ contains conclusions.

2 Petri Nets

A net is a triple (P, T, F), where P and T are disjoint sets of places and tran-
sitions, respectively, and F' is a function (P x T) U (T x P) — {0,1}. Places
and transitions are generically called nodes. If F(x,y) = 1 then we say that
there is an arc from = to y. The preset of a node z, denoted by ®x, is the
set {y € PUT | F(y,z) = 1}. The postset of =, denoted by z°, is the set
{y € PUT | F(z,y) = 1}. In this paper we consider only nets in which every
transition has a nonempty preset and a nonempty postset. A marking of a net
(P, T, F) is a mapping P — IN (where IN denotes the natural numbers including
0). We identify a marking M with the multiset containing M (p) copies of p for
every p € P. For instance, if P = {p1,p2} and M (p1) = 1, M(p2) = 2, we write
M = {p1,p2, p2}.

A marking M enables a transition ¢t if it marks each place p € *t with a
token, i.e. if M(p) > 0 for each p € *¢t. If ¢ is enabled at M, then it can fire or
occur, and its occurrence leads to a new marking M’, obtained by removing a
token from each place in the preset of ¢, and adding a token to each place in its
postset; formally, M’(p) = M(p) — F(p,t) + F(¢,p) for every place p. For each
transition ¢ the relation —— is defined as follows: M ——s M if ¢ is enabled at
M and its occurrence leads to M’.

A 4-tuple X = (P, T, F, My) is a net system if (P,T,F) is a net and M is a
marking of (P, T, F) (called the initial marking of X). A sequence of transitions
o = tity...t, is an occurrence sequence if there exist markings My, Mo, ...,
M,, such that

My -2 My -2 M,_ - M,

M, is the marking reached by the occurrence of o, which is also denoted by
My —Z— M,,. A marking M is a reachable marking if there exists an occurrence
sequence o such that My —— M. An ezecution is an infinite occurrence se-
quence starting from the initial marking. The reachability graph of a net system

Implementing LTL Model Checking with Net Unfoldings 39

X’ is the labelled graph having the reachable markings of X' as nodes, and the
' relations (more precisely, their restriction to the set of reachable mark-
ings) as edges. In this work we only consider net systems with finite reachability
graphs.

A marking M of a net is n-safe if M(p) < n for every place p. A net system
X is n-safe if all its reachable markings are n-safe. Fig. [Il shows a 1-safe net
system.

Fig. 1. The net system X/

Labelled nets. Let £ be an alphabet. A labelled net is a pair (N,1) (also rep-
resented as a 4-tuple (P, T, F,l)), where N is a net and [: P U T — L is a
labelling function. Notice that different nodes of the net can carry the same
label. We extend [to multisets of P U T in the obvious way.

For each label a € £ we define the relation —— between markings as follows:
M —%—s M’ if M —— M’ for some transition ¢ such that I(t) = a. For a finite se-
quence w = aias...a, € L, M — 5 M’ denotes that for some reachable mark-
ings My, Mo, ..., M,_q the relation M —~— M; —2— M, ... M,,_1 —=— M’
holds. For an infinite sequence w = ajaz... € LY M —~— denotes that
M2 M, —2— M, ... holds for some reachable markings M, Mo,

The reachability graph of a labelled net system (N,l, M) is obtained by
applying [to the reachability graph of (N, Mj). In other words, its nodes are
the set

{{(M) | M is a reachable marking}

and its edges are the set

Q)

{{(My) ———1(M>) | M, is reachable and M; t—>M2} .

40 J. Esparza and K. Heljanko
3 Automata Theoretic Approach to Model Checking LTL

We show how to modify the automata theoretic approach to model checking
LTL [20] to best suit the net unfolding method. We restrict the logic LTL by
removing the next time operator X. We call this stuttering invariant fragment
LTL-X. Given a finite set IT of atomic propositions, the abstract syntax of LTL-X
is given by:

pu=mell | =p1 |1 A w2 | pr1lU s

The semantics is a set of w-words over the alphabet 277, defined as usual.

Given a 1-safe net system X' with initial marking My, we identify the atomic
propositions II with a subset Obs C P of observable places of the net system,
while the rest of the places are called hidden. Each marking M determines a
valuation of IT = Obs in the following way: p € Obs is true at M if M puts

a token in p. Now, an execution M ST M, 2 .. of ¥ satisfies @ iff the
w-word MoM; ... satisfies ¢. The net system X' satisfies ¢, denoted X' = ¢, if
every execution of X' satisfies .

The approach. Let ¢ be a formula of LTL-X. Using well-known algorithms (see
e.g. [8]) we construct a Biichi automaton A-, over the alphabet 277 = 20%
which accepts a word w iff w # ¢.

We define a 1-safe product net system X, from X' and A-,. Y-, can be
seen as the result of placing ¥ in a suitable environment, i.e., X, is constructed
by connecting X' to an environment net system through new arcs.

It is easy to construct a product net system with a distinguished set of
transitions I such that X violates ¢ iff some execution of the product fires
some transition of I infinitely often. We call such an execution an illegal w-
trace. However, this product synchronizes A-, with X on all transitions, which
effectively disables all concurrency present in Y. Since the unfolding approach
exploits the concurrency of X' in order to generate a compact representation of
the state space, this product is not suitable, and so we propose a new one.

We define the set V' of wisible transitions of X' as the set of transitions which
change the marking of some observable place of Y. Only these transitions will
synchronize with the automaton. So, for instance, in order to check a property
of the form O(p — <q), where p and ¢ are places, we will only synchronize with
the transitions removing or adding tokens to p and ¢. This approach is similar
but not identical to Valmari’s tester approach described in [19]. (In fact, a subtle
point in Valmari’s construction makes its direct implementation unsuitable for
checking state based LTL-X.)

The price to pay for this nicer synchronization is the need to check not
only for illegal w-traces, but also for so-called illegal livelocks. The new product
contains a new distinguished set of transitions L (for livelock). An illegal livelock
is an execution of the form oitos such that ¢ € L and o9 does not contain
any visible transition. For convenience we use the notation My ——s M ——
to denote this, and implicitly require that ¢ = o1t with ¢ € L and that 7 is an
infinite sequence which only contains invisible transitions.

Implementing LTL Model Checking with Net Unfoldings 41

In the rest of the section we define X ,. Readers only interested in the defi-
nition of the tableau system for LTL model-checking can safely skip it. Only the
following theorem, which is proved hand in hand with the definition, is necessary
for it. Property (b) is what we win by our new approach: The environment only
interferes with the visible transitions of Y.

Theorem 1. Let X be a 1-safe net system whose reachable markings are pair-
wise incomparable with respect to set inclusion] Let @ be an LTL-X formula
over the observable places of X. It is possible to construct a net system X,
satisfying the following properties:

(a) X \= ¢ iff X, has neither illegal w-traces nor illegal livelocks.
(b) The input and output places of the invisible transitions are the same in X
and X_,.

Construction of X, We describe the synchronization X, of X' and A, in a
semiformal but hopefully precise way. Let us start with two preliminaries. First,
we identify the Biichi automaton A, with a net system having a place for each
state ¢, with only the initial state ¢° having a token, and a net transition for each
transition (g, z,q’); the input and output places of the transition are ¢ and ¢/,
respectively; we keep A-, ¢ and (g, ,¢") as names for the net representation,
the place and the transition. Second, we split the executions of X' that violate ¢
into two classes: executions of type I, which contain infinitely many occurrences
of visible transitions, and ezecutions of type II, which only contain finitely many.
We will deal with these two types separately.
2, is constructed in several steps:

(1) Put X' and (the net representation of) A-, side by side.

(2) For each observable place p add a complementary place (see [17]) D to X.
P is marked iff p is not, and so checking that proposition p does not hold is
equivalent to checking that the place p has a token. A set x C II can now be
seen as a conjunction of literals, where p € x is used to denote p € (II \ z).

(3) Add new arcs to each transition (¢,z,¢") of A-, so that it “observes” the
places in x.
This means that for each literal p (p) in z we add an arc from p (p) to
(¢,2,q') and an arc from (¢, z,q’) to p (p). The transition (¢, z,q’) can only
be enabled by markings of Y satisfying all literals in .

(4) Add a scheduler guaranteeing that:

— Initially A-, can make a move, and all visible moves (i.e., the firings of
visible transitions) of X' are disabled.

— After a move of A, only X can make a move.

— After X makes a visible move, A-, can make a move and until that
happens all visible moves of X are disabled.

! This condition is purely technical. Any 1-safe net system can be easily transformed
into an equivalent one satisfying it by adding some extra places and arcs; moreover,
the condition can be removed at the price of a less nice theory.

42 J. Esparza and K. Heljanko

This is achieved by introducing two scheduler places sy and ss [22]. The
intuition behind these places is that when sf (s5) has a token it is the turn
of the Biichi automaton (the system X') to make a move. In particular, visible
transitions transfer a token from s, to sy, and Biichi transitions from s; to
ss. Because the Biichi automaton needs to observe the initial marking of X,
we initially put one token in sy and no tokens on s,.

(5) Let I be a subset of transitions defined as follows. A transition belongs to I
iff its postset contains a final state of A-.

Observe that since only moves of A-, and visible moves of X' are scheduled,
invisible moves can still be concurrently executed.

Let EQ¢ be the net system we have constructed so far. The following is an
immediate consequence of the definitions:

X has an execution of type I if and only if Z’ﬁw has an illegal w-trace.

We now extend the construction in order to deal with executions of type II.
Let o be a type II execution of X'. Take the sequence of markings reached along
the execution of o, and project it onto the observable places. Since ¢ only con-
tains finitely many occurrences of visible transitions, the result is a sequence of
the form OJO} ... 0001 ...0f0Y ... 0%(0,)*. (The moves from O; to O;11
are caused by the firing of visible transitions.)

We can split ¢ into two parts: a finite prefix o7 ending with the last occurrence
of a visible transition (o; is empty if there are no visible transitions), and an
infinite suffix o9 containing only invisible transitions. Clearly, the projection onto
the observable places of the marking reached by the execution of o7 is O,

Since LTL-X is closed under stuttering, .A-, has an accepting run

Oo o}t On—1 On On
" =4qo q1 e qn n+1 qn+2 - - -

where the notation g AN ¢’ means that a transition (g, x, ¢’) is taken such that

the literals of = are true at the valuation given by O. We split this run into two
. Oo On—l . .
parts: a finite prefix 1 = go ——¢q1 ... gn—1 —— ¢», and an infinite suffix

T2 = (Qn On dn+1 On qn+2 .- -

In the net system representation of A, r; and ry correspond to occurrence
sequences. By construction, the “interleaving” of 1 and oy yields an occurrence
sequence 71 of X7 .

Observe that reachable markings of X7, are of the form (g, s, O, H), meaning
that they consist of a token on a state ¢ of A, a token on one of the places
of the scheduler (i.e., s € {ss,s¢}), a marking O of the observable places, and
a marking H of the hidden places. Let (gn, s, Oy, H) be the marking of X7
reached after executing 7. (We have s = sy because the last transition of o4
is visible.) The following property holds: With ¢, as initial state, the Biichi
automaton A-, accepts the sequence Oy. We call any pair (¢, O) satisfying this
property a checkpoint and define X, as follows:

Implementing LTL Model Checking with Net Unfoldings 43

(6) For each checkpoint (¢, 0) and for each reachable marking (¢, sy, O, H) of
X! 5 add a new transition having all the places marked at (g, ss, O, H) as
preset, and all the places marked at O and H as postset. Let L (for livelocks)
be this set of transitions.

The reader has possibly observed that the set L can be very large, because
there can be many hidden markings H for a given marking O (exponentially
many in the size of X). Apparently, this makes Y., unsuitable for model-
checking. In Sect. [6] we show that this is not the case, because X, need not be
explicitly constructed.

Observe that after firing a L-transition no visible transition can occur any-
more, because all visible transitions need a token on sy for firing. We prove:

X has an execution of type II if and only if X, has an illegal livelock. ‘

For the only if direction, assume first that o is a type II execution of X .
Let 71 be the occurrence sequence of X, defined above (as the “interleaving”
of the prefix oy of o and the prefix ry of r). Further, let (g,,sf, Oy, H) be the
marking reached after the execution of 71, and let ¢ be the transition added in
(6) for this marking. Define p; = 71 and py = o3. It is easy to show that pitps
is an execution of X, and so an illegal livelock. For the if direction, let p1tpo
be an illegal livelock of X, where ¢t is an L-transition. After the firing of ¢
there are no tokens in the places of the scheduler, and so no visible transition
can occur again; hence, no visible transition of X' occurs in ps. Let o7 and o9
be the projections of p; and ps onto the transitions of X. It is easy to see that
0 = 0109 is an execution of Y. Since o2 does not contain any visible transition,
o is an execution of type II.

4 Basic Definitions on Unfoldings

In this section we briefly introduce the definitions we needed to describe the
unfolding approach. More details can be found in [6].

Occurrence nets. Given two nodes x and y of a net, we say that x is causally
related to y, denoted by x < y, if there is a (possibly empty) path of arrows
from x to y. We say that = and y are in conflict, denoted by z#y, if there is a
place z, different from = and y, from which one can reach x and y, exiting z by
different arrows. Finally, we say that = and y are concurrent, denoted by x co y,
if neither < y nor y < = nor x#y hold. A co-set is a set of nodes X such
that = coy for every z,y € X. Occurrence nets are those satisfying the following
three properties: the net, seen as a directed graph, has no cycles; every place has
at most one input transition; and, no node is in self-conflict, i.e., x#x holds for
no x. A place of an occurrence net is minimal if it has no input transitions. The
net of Fig.[2 is an infinite occurrence net with minimal places a,b. The default
initial marking of an occurrence net puts one token on each minimal place an
none in the rest.

44 J. Esparza and K. Heljanko

Branching processes. We associate to X a set of labelled occurrence nets, called
the branching processes of X. To avoid confusions, we call the places and transi-
tions of branching processes conditions and events, respectively. The conditions
and events of branching processes are labelled with places and transitions of X,
respectively. The conditions and events of the branching processes are subsets
from two sets B and &, inductively defined as the smallest sets satisfying the
following conditions:

— 1 € &, where L is an special symbol;
— if e € &, then (p,e) € B for every p € P;
—if) Cc X CB, then (t,X) € £ for every t € T.

In our definitions of branching process (see below) we make consistent use of
these names: The label of a condition (p,e) is p, and its unique input event is
e. Conditions (p, L) have no input event, i.e., the special symbol L is used for
the minimal places of the occurrence net. Similarly, the label of an event (¢, X)
is t, and its set of input conditions is X. The advantage of this scheme is that a
branching process is completely determined by its sets of conditions and events.
We make use of this and represent a branching process as a pair (B, F).

Definition 1. The set of finite branching processes of a net system X with the
ingtial marking Mo = {p1,... ,pn} is inductively defined as follows:

- {(p1, L)y, (Pn, L)}, 0) is a branching process of X.

— If (B, E) is a branching process of X, t € T, and X C B is a co-set labelled
by *t, then (BU{(p,e) |pet*}, EU{e}) is also a branching process of X,
where e = (¢, X). If e ¢ E, then e is called a possible extension of (B, E).

The set of branching processes of X' is obtained by declaring that the union
of any finite or infinite set of branching processes is also a branching process,
where union of branching processes is defined componentwise on conditions and
events. Since branching processes are closed under union, there is a unique max-
imal branching process, called the unfolding of X. The unfolding of our running
example is an infinite occurrence net. Figure 2l shows an initial part. Events and
conditions have been assigned identificators that will be used in the examples.
For instance, the event (t1,{(p1,L)}) is assigned the identificator 1.

We take as partial order semantics of X' its unfolding. This is justified, because
it can be easily shown the reachability graphs of X' and of its unfolding coincide.
(Notice that the unfolding of X' is a labelled net system, and so its reachability
graph is defined as the image under the labelling function of the reachability
graph of the unlabelled system.)

Configurations. A configuration of an occurrence net is a set of events C' sat-
isfying the two following properties: C' is causally closed, i.e., if e € C' and
e < e then ¢ € C, and C is conflict-free, i.e., no two events of C are in
conflict. Given an event e, we call [e] = {e/ € E | ¢/ < e} the local config-
uration of e. Let Min denote the set of minimal places of the branching pro-
cess. A configuration C of the branching process is associated with a marking
of X denoted by Mark(C) = I((Min U C®) \ *C). The corresponding set of

Implementing LTL Model Checking with Net Unfoldings 45

Fig. 2. The unfolding of ¥

conditions associated with a configuration is called a cut, and it is defined as
Cut(C) = (Minu C*)\ *C).

In Fig. 2, {1,3,4,6} is a configuration, and {1,4} (not causally closed) or
{1,2} (not conflict-free) are not. A set of events is a configuration if and only
if there is one or more firing sequences of the occurrence net (from the default
initial marking) containing each event from the set exactly once, and no fur-
ther events. These firing sequences are called linearisations. The configuration
{1,3,4,6} has two linearisations, namely 134 6 and 314 6. All linearisations lead
to the same reachable marking. For example, the two sequences above lead to the
marking {p1, pr}. By applying the labelling function to a linearisation we obtain
a firing sequence of Y. Abusing of language, we also call this firing sequence a
linearisation. In our example we obtain t1t3t4tg and t3tit4tg as linearisations.

Given a configuration C', we denote by 1C' the set of events of the unfolding
{e|e EC N Ve € C:—(e#e)}. Intuitively, 1C corresponds to the behavior of
X from the marking reached after executing any of the linearisations of C'. We
call 7C the continuation after C of the unfolding of Y. If C; and Cs are two finite
configurations leading to the same marking, i.e. Mark(Cy) = M = Mark(C3),
then 1C and 1C5 are isomorphic, i.e., there is a bijection between them which

46 J. Esparza and K. Heljanko

preserves the labelling of events and the causal, conflict, and concurrency rela-
tions (see [6]).

Adequate orders. To implement a net unfolding algorithm we need the notion of
adequate order on configurations [6]. Given a configuration C' of the unfolding
of Y, we denote by C' @ E the set C'U E, under the condition that C U E' is a
configuration satisfying C N E = (). We say that C & E is an extension of C.
Now, let C7 and C5 be two finite configurations leading to the same marking.
Then 1C; and 1C5 are isomorphic. This isomorphism, say f, induces a mapping
from the extensions of C7 onto the extensions of Cy; the image of C; & E under
this mapping is Co & f(E).

Definition 2. A partial order < on the finite configurations of the unfolding of
a net system is an adequate order if:

— < is well-founded,

— Cp C Cy implies C; < Cs, and

— < is preserved by finite extensions; if C1 < Cy and Mark(Ch) = Mark(Cs),
then the isomorphism f from above satisfies C1 & E < Cy @ f(E) for all
finite extensions C1 @ E of C.

Total adequate orders for 1-safe Petri nets and for synchronous products of
transition systems have been presented in [6/5].

5 Tableau System

We showed in Section B] that the model checking problem for LTL-X can be
solved by checking the existence of illegal w-traces and illegal livelocks in X_,.
In [3] these problems are solved using tableau techniques. A branching process
can be seen as a “distributed” tableau, in which conditions are “facts” and events
represent “inferences”. For two conditions b and ', b co b’ models that the facts
represented by b and b’ can be simultaneously true. A tableau is constructed by
adding new events (inferences) one by one following an adequate order; some
events are declared as “terminals”, and the construction of the tableau termi-
nates when no new event can be added having no terminals among its prede-
cessors. The tableau systems of [3] require to construct a possibly large set of
branching processes. Here we present a new tableau system consisting of one
single branching process

An Adequate Order for LTL. We simplify the implementation of the tableau
system by selecting a special adequate order. We use < to denote the total
adequate order defined for 1-safe Petri nets in [6]. We call an event corresponding
to an L-transition an L-event. We define for a set of events C' the function before
L-event as BL(C) = {e € C'| [e] \ {e} contains no L-events}. The function after
L-event is defined correspondingly as AL(C) = (C'\ BL(C)). We can now define
our new adequate order.

% For the reader familiar with [3]: the L-transitions in the net system X_, act as glue
to connect a set of branching processes (the tableau components of [3]) together into
one larger tableau.

Implementing LTL Model Checking with Net Unfoldings 47

Definition 3. Let Cy and Cs be two finite configurations of the unfolding of the
product net system X ,. C1 <prr C2 holds if

— BL(Ol) < BL(CQ), or
— BL(Cl) = BL(CQ) and C7 < Cs.

The adequate order <y, is application specific in the sense that it is not an
adequate order for an arbitrary net system X', but needs some special properties
of the net system X_,,. We have the following result.

Theorem 2. The order <7y, is a total adequate order for finite configurations
of the unfolding of X_,.

See [4] for the proof.

New Tableau System. We first divide the unfolding of X, into two disjoint sets
of events. Intuitively, the first set is used for the w-trace detection part, and the
second for the illegal livelock detection part. We define part-I to be the set of
events e such that [e¢] does not contain an L-event and part-II as the set of events
which are not in part-I.

Definition 4. An event e of the unfolding X, is a terminal, if there exists
another event € such that Mark([e']) = Mark([e]), [€'] <L [€], and one of the
following two mutually exclusive cases holds:

(1) e € part-1, and either
(a) ¢ <e, or
(b) —(e’ < e) and #1le'] > #1le], where #;C denotes the number of I-events
in C.
(II) e € part-1I, and either
(a) BL([e']) <rrr BL([e]), or
(b) BL([¢']) = BL(le]) and —(e'#e), or
(¢c) BL([¢']) = BL([e]), ¢'#e, and |[¢']| > |[¢]].

A tableau T is a branching process (B, E) of X, such that for every possible
extension e of (B, E) at least one of the immediate predecessors of e is a terminal.
A terminal is successful if it is type (I)(a) and [e]\ [¢'] contains an I-event, or it
is of type (II)(b). All other terminals are unsuccessful. A tableau T is successful
if it contains a successful terminal, otherwise it is unsuccessful.

Loosely speaking, a tableau is a branching process which cannot be extended
without adding a causal successor to a terminal.
We have the following result:

Theorem 3. Let T be a tableau for X_,.

— X, has an illegal w-trace iff T has a successful terminal of type I.

— X, has an illegal livelock iff T has a successful terminal of type II.

— T contains at most K2 non-terminal events, where K is the number of reach-
able markings of X_,.

See [4] for the proof.

48 J. Esparza and K. Heljanko

6 Generating the Tableau

We describe an implementation of the tableau system of Sect. Bl The main goal is
to keep the tableau generation as similar as possible to a conventional prefix gen-
eration algorithm [6]. In this way any prefix generation algorithm can be easily
adapted to also perform LTL model checking. The tableau generation algorithm
(Algorithm [I]) is almost identical to the main routine of a prefix generation al-
gorithm. The changes are: an additional block of code devoted to generating
the L-events dynamically; a different but easy to implement adequate order; a
new cut-off detection subroutine. The main feature of the implementation is the
efficient handling of L-transitions, which we discuss next.

Generating the L-transitions Dynamically. Recall that in the synchronization
2., we can for each Biichi state ¢ have as many L-transitions as there are
reachable markings of the form (¢, ss, O, H) in the net system X_,. Clearly we
can not explicitly generate them all due to efficiency reasons. Instead we generate
a net system X° (s stands for static) in which this set of L-transitions (added
by step (6) of the synchronization procedure in Section B]) is replaced by:

(6’) Add for each Biichi transition ¢ = (¢, z,¢) in the net system X’ (i.e., the
synchronization after steps (1)-(5) as defined in Sect.[3) a new transition ¢'.
The preset of ¢’ is equivalent to the preset of ¢t and the postset of ¢’ is empty.
Let L (for livelocks) be this set of transitions.

We can now dynamically generate any of the (enabled) L-transitions of
2-,. Namely, for a transition ¢ corresponding to a reachable marking M =
(g,sf,0,H) to be enabled in X, a transition ¢ (for some (g, z,¢")) must be
enabled in X° and the Biichi automaton must accept O when ¢ is given as
the initial state. Loosely speaking we test the first label of the sequence using
the transition ¢, and if this test succeeds we check whether O can be infinitely
stuttered. (Using this construction it is easy to implement “no-care values” for
selected atomic propositions by leaving them out of the preset of t'.) Now gen-
erating the postset of ¢ from M is trivial.

Optimizations in Dynamic Creation. We can thus dynamically generate L-
transitions for each reachable marking M as required. However, we can do better
by using the net unfolding method. The main idea is to generate the unfolding of
Y. by using X7, to find “candidate” L-events. Assume we have found an event
e® corresponding to a transition ¢ in the unfolding of 2%, and the stuttering
check described above passes for the marking M = Mark([e®]). Then we add an
event e into the unfolding of X, corresponding to the effect of the transition ¢
in the marking M. If we would directly use the construction above we would also
add an event €’ to the unfolding of X, for each marking M’ = (¢,sf,O0,H’)
which is reachable from M using only invisible transitions. We now show that
adding only the event e suffices: Let E be an extension of [e]. If there is an illegal
livelock starting from M’ = Mark([e] ® E) then there is also an illegal livelock
starting from M. This can be easily seen to be the case because all extensions
E contain only invisible events and thus the set of observable places in both M

Implementing LTL Model Checking with Net Unfoldings 49

and M’ is O. Algorithm [[Juses the property described above to add the required
L-events dynamically. Another optimization used is the fact that only the places
in the presets of invisible transitions (denoted InvisPre) need to be added to the
postset of an L-transition.

Algorithm [2 is the cut-off detection subroutine. It handles events in part-I
and part-11 differently. This is one example implementation, and it closely follows
the definition of the tableau. It sets the global boolean variable success to true
and calls the counterexample generation subroutine (Algorithm [3)) if it finds a
counterexample.

The implementation of the check whether A% accepts O in Algorithm M
can be done in linear time in the size of the automaton A-, as follows. First
restrict A-, to transitions satisfying O, and then use a linear time emptiness
checking algorithm (see e.g. [2]) to check whether an accepting loop can be
reached starting from ¢ in this restricted automaton. Because A-, is usually
quite small compared to the size of the model checked system this should not be
a limiting factor. Caching of these check results can also be used if necessary.

The adequate order <y can also be quite efficiently implemented. We can
prove that if a configuration C' contains an L-event e, then BL(C') = [e]. Now
it is also the case that each configuration only includes at most one L-event. By
using these two facts a simple and efficient implementation can be devised.

Each time our algorithm adds a non-terminal L-event, it first finds out
whether a livelock counterexample can be generated from its future. Only if
no counterexample is found, it continues to look for illegal w-traces and further
L-events. Thus we use the adequate order <1y, to force a search order similar
to that used by Valmari in [19] which detects divergence counterexamples in
interleaved state spaces. However, our algorithm is “breadth-first style” and it
also does illegal w-trace detection, a part which is not included in [19].

7 Experimental Results

We have implemented a prototype of the LTL model checking procedure called
unfsmodels. We use the SPIN tool [12] version 3.4.3 to generate the Biichi au-
tomaton A-, and a tool by F. Wallner [22] to generate the synchronization X7,
which is given to the prototype tool as input. The smodels tool [I§] is used to
calculate the set of possible extensions of a branching process. It is a NP-solver
which uses logic programs with stable model semantics as the input language.
Calculating the possible extensions is a quite demanding combinatorial problem.
Actually a decision version of the problem can be show to be NP-complete in
the general case [10]. However if the maximum preset size of the transitions |*¢|
is bounded the problem becomes polynomial [7]. (The problem is closely related
to the clique problem which has a similar characteristic, for a longer discussion
see [7].)

We chose to use smodels to solve this combinatorial problem instead of
implementing a dedicated algorithm. That choice allowed us to concentrate on
other parts of the implementation. The translation employs constructs similar
to those presented for the submarking reachability problem in [IT], however it

50 J. Esparza and K. Heljanko

Algorithm 1 The tableau generation algorithm

input: The product net system X2, = (P, T, F, M), where Mo = {p1, ...

output: true if there is a counterexample, false otherwise.
global variables: success

begin
Fin := {(p17 J—)y cee (pn: J—)}7
cut-off := 0;

pe := PE(Fin); /* Compute the set of possible extensions */
success := false;
while pe # 0 and success = false do
choose an event e = (¢, X) in pe such that [e] is minimal
with respect to <r7r;
Y :=1t*; /* Remember the postset of ¢ */

/* Create the required L-events dynamically */

if ¢ is a L-transition then
M := Mark(le] \ {e}); /* The marking M = (q,sy,O0,H) */
q = M N Q; /* Extract the Biichi state g */
/* (Biichi emptiness checking algorithm can be used here) */
if A2, = (I',Q, ¢, p, F') does not accept O“ then

s Pn

continue; /* Discard e because (¢, O) is not a checkpoint */

endif

X := Cut([e] \ {e}); /* Extend the preset to also remove tokens from H */
e:= (t,X); /* Rename e (i.e., add arcs from all preset conditions to e) */
Y := (M N InvisPre); /* Project M on invisible transition presets */

endif

if [e] N cut-off = 0 then
append to Fin the event e and a condition (p, e)
for every place p € Y
pe := PE(Fin); /* Compute the set of possible extensions */
if is_cutoff (e) then
cut-off := cut-off U {e};
endif
else
pe := pe \ {e};
endif
enddo
return success;
end

Implementing LTL Model Checking with Net Unfoldings 51

Algorithm 2 The is_cutoff subroutine

input: An event e.
output: true if e is a terminal of the tableau, false otherwise.
begin
foreach e’ such that Mark([e']) = Mark([e]) do /* [¢'] <rrL [e] holds */
if e € part-I then /* case (I) */
if e’ < e then
if [e] \ [¢/] contains an I-event then
success = true; /* Counterexample found! */
counterezample(e, €');
endif
return true;
else if #[e’] > #1[e] then
return true;
endif
else /* case (II) */
if BL([¢']) <rrr BL([e]) then
return true;
else if —(e’'#e¢) then /* BL([e']) = BL([e]) holds */
success := true; /* Counterexample found! */
counterexample(e, €');
return true;
else if |[e’]| > |[e]| then /* BL([¢']) = BL([e]) holds */
return true;
endif
endif
enddo
return false;
end

Algorithm 3 The counterezample subroutine

input: A successful event e with the corresponding event ¢’

begin
Cr:=le]N[e];
Ca :=[e]\ Cy;

/* C1 contains the prefix and C> the accepting loop */
print_linearisation(Ch);

print_linearisation(C2);

end

differs in several technical details. The translation is linear in the sizes of both the
net and the prefix, however we will not present it here due to space restrictions.

For benchmarks we used a set of LTL model checking examples collected
by C. Schréter. The experimental results are collected in Fig. Bl The 1-safe net
systems used in the experiments are as follows:

52 J. Esparza and K. Heljanko

— BRUIJN(2), DIJKST(2), and KNUTH(2): Mutex algorithms modeled by
S. Melzer.

— BYZA4_ 0B and BYZA4_0B: Byzantine agreement algorithm versions mod-
eled by S. Merkel [T6].

— RW1WI1R, RW1W3R and RW2W1R: Readers and writers synchronization
modeled by S. Melzer and S. Romer [15].

— PLATE(5): A production cell example from [I3|, modeled by M. Heiner and
P. Deussen [9].

— EBAHN: A train model by K. Schmidt.

— ELEV(3) and ELEV(4): Elevator models by J. C. Corbett [I], converted to

nets by S. Melzer and S. Rémer [15].

RRR(xx): Dining philosophers with xx philosophers, modeled by C. Schréter.

The reported running times only include unfsmodels 0.9 running times, as
the Biichi automata generation and the synchronization with the original net
system took insignificant amount of time. All the running times are reported as
the sum of system and user times as reported by the /usr/bin/time command
when run on a PC with an AMD Athlon 1GHz processor, 512MB RAM, using
gcc 2.95.2 and Linux 2.2.17. The times are all averaged over 5 runs.

The unfsmodels tool in an on-the-fly tool in the sense that it stops the pre-
fix (tableau) generation if it finds a counterexample during the unfolding. The
reported prefix sizes in this case are the partial prefix at the time the counterex-
ample was found. The tool can also be instructed to generate a conventional
prefiz using the prefix generation algorithm described in [fi] for comparison.

lProblem HBLTL[ELTL[#CLTL[CeXH Bpml Epml#cpin[StatesHSecLTL[SecFm‘
BRUIJN(2)|| 2874| 1336 327 N 2676| 1269 318 5183 13.1 11.0
DIJKST(2)|l 1856| 968 230 N || 1700] 921| 228 2724 4.8 3.8
KNUTH(2)|| 2234| 1044 251| N 2117| 1009 251 4483 7.1 6.1
BYZA4 0B || 1642| 590 82| N 1630{ 587 82| >2000000 7.0 6.9
BYZA42A | 401] 125 4| N 396| 124 4| >2500000 0.3 0.3
RW1WI1R 568 296 32| N 563 295 32 2118 0.5 0.5
RWI1W3R ||28143({15402| 5210| N (|28138(15401| 5210 165272|| 1863.4|1862.2
RW2WI1R ||18280| 9242| 1334| N |{18275| 9241| 1334 127132|| 1109.6/1108.2
PLATE(5) 1803| 810 12| N 1619] 768 12 1657242 14.0 11.8
EBAHN 151 62 21| Y || 1419 673| 383 7776 0.0 0.7
ELEV(3) 124 64 10] Y || 7398] 3895 1629 7276 0.1] 91.7
ELEV(4) 154 80 13| Y ||32354|16935| 7337 48217 0.1/1706.2
RRR(10) 88 42 5'Y 85 45 19 14985 0.0 0.0
RRR(20) 167 81 8l'Y 161 81 32(>10000000 0.1 0.0
RRR(30) 240| 114 9| Y 230f 110 41(>10000000 0.2 0.1
RRR(50) 407 201 18| Y 388| 188 70|>10000000 0.7 0.5

Fig. 3. Experimental results.

Implementing LTL Model Checking with Net Unfoldings 53

In Fig. Bl the columns of the table have the following meanings:

— Problem: The name of the problem with the size of the instance.

— Brrp, Errr, and #cprr: The number of conditions, events, and the number
of events which are terminals in the LTL prefix, respectively.

— Cex: N - There was no counterexample, the formula holds. Y - There was a
counterexample, the formula does not hold.

— Brin, Erin, and #cpi,: The size of different parts of the finite complete
prefix as above but for the original net system X using the conventional
prefix generation algorithm described in [6].

— States: The number of states n in the reachability graph of the original net
system X' obtained using the PROD tool [21], or a lower bound > n.

— Secrrr: The time used by unfsmodels in seconds needed to find a coun-
terexample or to show that there is none.

— Secpin: The time used by unfsmodels in seconds needed to generate a finite
complete prefix of the original net system X.

At this point there are a couple of observations to be made. First of all, on
this set of example nets and formulas, the speed of computing a LTL prefix is
almost identical to the speed of computing a conventional prefix (of comparable
size). The main reason for this is that the time needed to compute the possible
extensions dominates the computation time in our prototype. Thus the (slightly)
more complicated algorithm needed for the cut-off detection do not contribute in
a major way to the running time of the tool. Secondly, on all of the experiments,
the size of the LTL prefix is of the same order of magnitude as the conventional
prefix. Thus in this set of examples the quadratic worst-case blow-up (possible
according to Theorem [3]) does not materialize. We expect this to be the case also
in other examples when the used LTL formulas are short and the properties to
be checked are local, in the sense that the product net system preserves most of
the concurrency present in the original net system.

In Fig.[4 a detailed breakdown of the different components of the LTL prefix is
given. The subscripts I and I denote the part of the prefix used for w-trace and
livelock checking, respectively (i.e., events in part-I and part-II). Column Cpt
contains the number of checkpoints, i.e. how many of the L-events are check-
points. Finally Formula type gives the type of the formula being checked.

In Fig. [we can also see that in the cases a counterexample was found it
was found after only a small amount of the prefix was generated. Actually in
all the experiments the counterexample was a livelock counterexample, and the
livelock was found from the first checkpoint found during the prefix generation.
This allowed the LTL model checking procedure to terminate quite early with a
counterexample in many case, see e.g. the ELEV(4) example.

The net systems used in experiments and unfsmodels 0.9 are available at
(http://www.tcs.hut.fi/ kepa/experiments/spin2001/).

8 Conclusions

We have presented an implementation of the tableau system of [3]. We have
been able to merge the possibly large set of tableaux of [3] into a single one.
In this way, the algorithm for model checking LTL with unfoldings remains

54 J. Esparza and K. Heljanko

lProblem [B;[EII #cl[BU[EH[#CUICpt[Formula type
BRULIN(2)[2874] 1336] 327] 0] 0] 0] 0]O-(p1 A po2)
DIJKST(2)| 1856 968| 230] 0] 0] 0] 0[O-(p1 Ap2)
KNUTH(2)| 2234| 1044| 251 0| 0| 0| 0[O~(p1 A p2)
BYZA4 0B 1642] 590 82] 0 0] 0] 0]O(p1 — ©Op2)
BYZA4.2A| 401 125 4| o 0| 0 0[O(p1— <Op2)
RWIWIR | 568] 296] 32] 0] 0] 0] 0|O(p1 — ©Op2)
RWIW3R |28143|15402|5210| 0| 0| 0| 0|O(p1 — <Opo)
RW2WIR [18280| 9242(1334| 0| 0| 0| 0|O(p1 — Opo2)
PLATE(5) | 1803] 810] 12[0| 0] 0