
Lecture Notes in Computer Science 7747
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Sven Jörges

Construction and Evolution
of Code Generators

A Model-Driven and Service-Oriented Approach

13

Author

Sven Jörges
Technische Universität Dortmund
Department of Computer Science
Otto-Hahn-Straße 14
44227 Dortmund, Germany
E-mail: sven.joerges@tu-dortmund.de

This monograph constitutes a revised version of the author’s doctoral dissertation,
which was submitted to TU Dortmund, Department of Computer Science,
Chair of Programming Systems, Otto-Hahn-Straße 14, 44227 Dortmund, Germany,
under the original title "Genesys: A Model-Driven and Service-Oriented Approach
to the Construction and Evolution of Code Generators," and which was accepted in
December 2011.

Lots of figures in this book use icons from the excellent Tango Desktop Project
(http://tango.freedesktop.org/).

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-36126-5 e-ISBN 978-3-642-36127-2
DOI 10.1007/978-3-642-36127-2
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012955656

CR Subject Classification (1998): D.3.4, D.2.11, D.2.1-4, D.2.13, D.3.2-3, J.1

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer-Verlag Berlin Heidelberg 2013

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Foreword

Domain-specific languages are key for canalizing the steadily growing demand
for tailored applications. They help strengthen the role of application experts
during the development process, sometimes to the extent that they can adapt
or even develop special applications themselves. At the same time, tailored
user-oriented hardware allows software applications to slowly conquer ev-
eryone’s lives. Think of the iPhone, for example, whose immense portfolio of
applications (train schedules including delay information, route planning, cin-
ema programs, calendar, compass, camera, Internet browsing, and thousands
more) makes clear that the phone itself is no longer the dominant part. Code
generators are required to bridge the gap between these two independently
growing dimensions. Although code generation is a well-developed discipline,
the support to efficiently keep these two dimensions in synchrony is small.
In essence, even though there are code generator workbenches that help the
programming expert to design dedicated code generators, more high-level ac-
tivities like process support, variability management, or product lining are
not foreseen.

Sven Jörges’s thesis is unique in addressing this important niche:

• It develops a code generation framework (Genesys) on the basis of the
jABC framework with its underlying eXtreme Model-Driven Develop-
ment (XMDD) style, which combines ideas from extreme programming,
model-driven design, and service orientation. This allows one to man-
age product lines at the model level, and to control their features via
constraint solving, e.g., via model checking.

• It illustrates its impact not only by sketching numerous case studies, but
also by showing how arbitrary domain-specific languages can be captured
as long as they have an Ecore-based meta-model. This part of the thesis
is particularly elegant, as it exploits the reflexivity of Ecore for radical
bootstrapping of code generator functionality, and the ease of Genesys to
be integrated, e.g., into the Eclipse framework.

VI Foreword

• It shows how to overcome typical problems of round-trip engineering by
employing full code generation. In the corresponding case study this is
achieved by integrating AndroMDA, a code generation framework aiming
at the translation of static aspects of a programming language.

Each of these three parts has been realized with great care and a mature look at
adequate design, practicality, and quality assurance. Particularly outstanding,
however, is the way all this is composed: things fit together nicely, and there
is a very careful discussion of related work that puts the contributions of the
thesis into perspective. It addresses topics as diverse as model-driven architec-
tures, meta-modeling, domain-specific languages, computer-aided software en-
gineering, round-trip engineering, code generation, generative programming,
extremeprogramming, aspect orientation, product line management, and qual-
ity assurance. This way the reader obtains a competent goal-oriented entry into
all of these areas, which is not just conceptual, but profits from experience Sven
Jörges gained while realizing Genesys as a robust and flexible framework. In-
deed, Genesys has been used and extended by numerous students, and it has
been applied in various industrial projects.

Characteristic of the thesis is the sovereign handling of models at different
(meta) levels for varying purposes. Models are used for modeling applications,
but, continuously following the underlying XMDD approach, also the code
generators, temporal formulae, and the test cases are modeled graphically,
all in a similar fashion. In addition there is the hierarchy of meta-models
specified in Ecore. This elegant, homogeneous structuring is an entry hurdle
for "newcomers" to orient themselves, but Sven Jörges takes great care to
clarify the context in the various scenarios. On the other hand, the continuous
use of models opens the door for bootstrapping, as impressively demonstrated
in various settings: e.g., a just-modeled code generator can be applied to
itself, now seen as the application to be translated, in order to obtain a
code generator in native code. This technique, which is later also applied to
generate the required functionality for the code generation for Ecore, simply
exploits the homogeneous notion of models and the fact that in jABC, models
are executable via interpretation.

Sven Jörges proposes a change from viewing the construction of code gen-
erators merely as a technical low-level activity to a truly building-block-
oriented construction paradigm exploiting model-driven and service-oriented
approaches at higher abstraction levels. This paves the way for "mass
construction/customization" of code generators in a growing landscape of
domain-specific languages running on increasingly diverse hardware. I am
convinced that the proposed model-based construction, validation, mainte-
nance, evolution, and migration significantly reduces cost, increases reliabil-
ity, and helps master the management of immensely growing sets of code
generators.

Bernhard Steffen

Acknowledgments

I am grateful to many people for supporting, inspiring, and encouraging me
during the last six years.

First, I would like to express gratitude to my PhD supervisor Prof. Dr.
Bernhard Steffen for enabling me to write this book as a member of his re-
search group. His advice and enthusiastic support have always been a great
source of inspiration and motivation for me. In particular, I am very thank-
ful that he had confidence in me when he allowed me to gather valuable
experience in numerous interesting projects.

Furthermore, thanks are due to Prof. Dr. Jens Knoop and Prof. Dr. Rainer
Hähnle for reviewing the monograph. I am also much obliged to the other
members of my committee, Prof. Dr. Jakob Rehof and Dr. Oliver Rüthing.

Special thanks go to my colleagues Markus Doedt, Maik Merten, and
Johannes Neubauer, who sacrificed a significant amount of their time to
proofread the text. I am happy about each and every mistake you spotted!
Likewise, “Diolch!” to Julia Rehder for lending me her English vocabulary
and grammar intuition where mine reached their limits.

I would like to thank Christian Wagner for the constant exchange of ideas,
literature findings, for the confusing discussions that heavily featured the
“meta” prefix, and for introducing me to the delightful world of Bodum-
brewed coffee. Furthermore, I am grateful to Prof. Tiziana Margaria for al-
lowing me to benefit from her manifold contacts and for showing me how to
be “context-sensitive,” Dunja Rauh for supporting me with her advice and her
inexhaustible collection of wise sayings, Ralf Nagel for being my interceder
and for keeping me close to pragmatism, Christian Kubczak for the humor
and the music, as well as Marco Bakera and Clemens Renner for patiently
answering my questions on model checking. Thanks to all the colleagues from
the LS5 for the great working atmosphere – I will surely miss the bad Friday
puns.

Moreover, I would like to thank all the students who contributed to the
Genesys project, in particular my former student assistants Benjamin Bent-
mann and Akif Köse, and the authors of all related diploma, bachelor, and
master’s theses.

VIII Acknowledgments

Last but not least, I am deeply grateful to my family for their unlimited
support that always keeps me going.

August 2011 Sven Jörges

Abstract

Automatic code generation is an essential cornerstone of model-driven
approaches to software development. It closes the gap that emerges when
models are used to abstract from a concrete software system, and thus is to
models what compilers are to high-level languages. Consequently, the simple
and fast development of code generators is a key requirement of today’s ap-
proaches to model-driven development, which are increasingly characterized
by a strong focus on agility and domain-specificity. Currently, many tech-
niques are available that support the specification and implementation of
code generators, such as engines based on templates or rule-based transfor-
mations. All these techniques have in common that code generators are either
directly programmed or described by means of textual specifications.

This monograph presents Genesys, a general approach, which advocates
the graphical development of code generators for arbitrary source and target
languages, on the basis of models and services. In particular, it is designed to
support incremental language development on arbitrary metalevels. The use
of models allows building of code generators in a truly platform-independent
and domain-specific way. Furthermore, models are amenable to formal veri-
fication methods such as model checking, which increase the reliability and
robustness of the code generators. Services enable the reuse and integration of
existing code generation frameworks and tools regardless of their complexity,
and at the same time manifest as easy-to-use building blocks that facilitate
agile development through quick interchangeability. Both models and ser-
vices are reusable and thus form a growing repository for the fast creation
and evolution of code generators.

This book shows these and further advantages arising from the Genesys
approach by means of a full-fledged reference implementation, which has been
field-tested in a large number of case studies.

List of Abbreviations

ABS Abstract Behavioral Specification
AO aspect orientation
ASL Action Specification Language
ASSL Autonomic System Specification Language
API Application Programming Interface
ASP.NET Active Server Pages .NET
ATL Atlas Transformation Language
BiBiServ Bielefeld University Bioinformatics Server
BNF Backus-Naur Form
BPEL Business Process Execution Language
BPM Business Process Modeling
BPMN Business Model & Notation
CASE Computer-Aided Software Engineering
CDR Common Data Representation
CIM Computation-Independent Model
CLDC Connected Limited Device Configuration
CORBA Common Object Request Broker Architecture
CTL Computation Tree Logic
CWM Common Warehouse Metamodel
DBC design by contract
DDBJ DNA Data Bank of Japan
DOM Document Object Model
DSL domain-specific language
DSM Domain-Specific Modeling
EBI European Bioinformatics Institute
EJB Enterprise JavaBean
EL expression language
EMBL European Molecular Biology Laboratory
EMF Eclipse Modeling Framework
EMP Eclipse Modeling Project
EMOF Essential Meta-Object Facility

XII List of Abbreviations

ENF Engeler Normal Form
ERP enterprise resource planning
FBB Formula Building Block
GME Generic Modeling Environment
GMF Graphical Modeling Framework
GP Generative Programming
GPS Global Positioning System
GUI Graphical User Interface
HTML Hypertext Markup Language
HUTN Human-Usable Textual Notation
IDE Integrated Development Environment
ITE Integrated Test Environment
jABC EE jABC Execution Engine
JAXB Java Architecture for XML Binding
JCE Java Class Extruder
JCG1 Java Class Generator 1
JCG2-SC Java Class Generator 2, structured code variant
JCG2-LI Java Class Generator 2, lightweight interpreter variant,

reflective service calls
JCG2-LI-GS Java Class Generator 2, lightweight interpreter variant,

generated service calls
JDK Java Development Kit
JEE Java Enterprise Edition
jETI Java Electronic Tool Integration
JME Java Micro Edition
JMI Java Metadata Interface
JML Java Modeling Language
JSE Java Standard Edition
JSP JavaServer Pages
JSTL JavaServer Pages Standard Tag Library
JVM Java Virtual Machine
KTS Kripke Transition System
MIL model-in-the-loop
MPS Meta Programming System
M2M Model 2 Model
MD* Umbrella term for any model-driven approaches to software

development
MDA Model Driven Architecture
MDD Model-Driven Development
MDE Model-Driven Engineering
MDSD Model-Driven Software Development
MDTD Model-Driven Test Development
MDT Model Development Tools
MOF Meta-Object Facility
MOFM2T MOF Model to Text Transformation Language

List of Abbreviations XIII

MSA Multiple Sequence Alignment
NXC Not eXactly C
OASIS Organization for the Advancement of Structured Information

Standards
OCS Online Conference Service
o DOBS Dortmunder Online Bibliographieservice
OMG Object Management Group
OTA One-Thing-Approach
PIL processor-in-the-loop
PIM Platform-Independent Model
POJO Plain Old Java Object
POM Project Object Model
PSM Platform-Specific Model
QVT Query/View/Transformation
RCX Robotic Command Explorer
RMI Remote Method Invocation
RTE round-trip engineering
SIB Service Independent Building Block
SIL software-in-the-loop
SLG Service Logic Graph
SUT system under test
SWT Standard Widget Toolkit
UID unique identifier
UML Unified Modeling Language
URL Uniform Resource Locator
V&V Verification & Validation
VTL Velocity Template Language
WSDL Web Services Description Language
XMDD Extreme Model-Driven Development
XMI XML Metadata Interchange
XML Extensible Markup Language

List of Figures

2.1 Simple Bootstrapping Example: Getting a Native Compiler
for Language L . 13

2.2 Basic MD* terminology (by Stahl et al. [Sta+07, p. 28],
translated into English) . 15

2.3 Four-Level Example of MDA’s Metamodel Hierarchy (based
on [Obj10a, p. 19]) . 18

2.4 Using a template engine for code generation 30

3.1 The Extreme Model-Driven Development (XMDD) approach 40
3.2 The jABC user interface [JSM10] . 44
3.3 Service adapter pattern for realizing a SIB’s behavior 50
3.4 Hierarchical models in jABC. 51
3.5 The LocalChecker plugin in jABC [JMS11] 55
3.6 Executing an SLG with the Tracer . 62
3.7 User interface of the GEAR plugin . 68

4.1 Genesys architecture and involved roles 75
4.2 Data type mapping infrastructure in Genesys 81
4.3 Specifying variants via hierarchical modeling 86
4.4 The Docu Generatormain model (topmost hierarchy level) . . . 89
4.5 The Initialize Docu Generator model (second hierarchy

level) . 90
4.6 The Load Models model (third hierarchy level) 91
4.7 The Generate Documentation model (second hierarchy

level) . 91
4.8 The Generate Model Pages model (third hierarchy level) . . . 92
4.9 The Generate Markup for SIBs model (fourth hierarchy

level) . 93
4.10 The model hierarchy of the Documentation Generator 94
4.11 Translating the SLGs of the Documentation Generator to

Java code . 95

XVI List of Figures

4.12 Left hand side: Inspector for editing a code generator’s
metadata, Right hand side: Setting up a benchmark 97

4.13 Benchmark results visualized in tabular or bar chart form . . . 98
4.14 Creating a configuration for using a code generator in jABC . . . 100

5.1 Generation concept of the Java Class Extruder 104
5.2 Java Class Extruder: Processing the input SLGs 106
5.3 Bootstrapping the Java Class Extruder by means of the

Tracer . 107
5.4 Generation concept of the Java Class Generator 112
5.5 Basic control flow patterns and their translation into code . . . 116
5.6 The fork-join control flow pattern and its translation to

code . 116
5.7 An unstructured SLG and its equivalent structured

pendant . 117
5.8 Transformation of a fork-join construct to hierarchical

submodels . 118
5.9 Java Class Generator: Root Service Logic Graph (SLG) (1),

Model transformations (2) . 119
5.10 Java Class Generator: Detection of Control Flow Patterns . . . 121
5.11 Lightweight data structure for SLGs (excerpt) 122
5.12 Generation concept of the Java Class Generator’s “Interpreter

Variant” . 123
5.13 Transformation phase of the Genesys Code Generator

Generator . 125
5.14 Reuse of models among the Java Class Generator Variants . . . 130
5.15 Distribution of Service Independent Building Block (SIB)

bundles in the different Java code generators 132
5.16 Genealogical tree of code generators for jABC 137

6.1 Verification & Validation in Genesys . 156
6.2 Example: Verifying the Java Class Extruder with GEAR and

the FormulaBuilder . 159
6.3 Constraints from the actionOccurrence category 161
6.4 Constraints from the actionOrder category 164
6.5 The new “Handle By” pattern with scope “before”, meaning

“Handle every A by P before Q”. 166
6.6 A constraint checking for the complete handling of input

SLGs using the “Handle By” pattern . 167
6.7 Model-Driven Test Development (MDTD) in jABC 169
6.8 Strategy for testing the jABC code generators 171
6.9 Example SLGs modeling test inputs . 173
6.10 The testing concept from Fig. 6.8, modeled in jABC 174
6.11 Excerpt from the test suite graph of the Java Class

Generator . 176

List of Figures XVII

7.1 Approach for constructing code generators for EMF with
Genesys . 178

7.2 EMF workflow . 179
7.3 Overview of the Ecore metamodel [Ecl05] 181
7.4 Example metamodel in Ecore: Simple taxonomy 182
7.5 Model Generate EMF SIBs . 183
7.6 Model Generate Code for Model Element 184
7.7 Model Generate Code for Structural Features 185
7.8 SIBs generated from the “Simple taxonomy” metamodel 186
7.9 Taxonomy POJO Generator main model 187
7.10 Model Generate Code for Object . 187
7.11 Example taxonomy model (“Media Catalog”) and generated

POJO . 188
7.12 Modeling on different metalevels . 189
7.13 Code generators of the case study, by metalevels 190

8.1 Integration concept for combining jABC’s code generators
and AndroMDA. 194

8.2 Code generation approach in AndroMDA 195
8.3 jABC models for the Multiple Sequence Alignment (MSA)

process . 197
8.4 UML diagrams for the MSA web application 199
8.5 Associating SLGs with UML diagrams (left hand side) and

configuring the AndroMDA SIB (right hand side) 200
8.6 Screens of the Generated MSA Web Application 202

List of Tables

3.1 Complex built-in data types in jABC . 49

4.1 Services for data type mapping . 82
4.2 Services for identifier generation. 84
4.3 Service for the generation of variants . 87

5.1 Java mapping for complex jABC data types 114
5.2 Quantitative comparison of the different

Java code generators . 128
5.3 Experimental performance results for classes produced by the

different Java code generators . 134
5.4 Size of the generated Java source classes 135
5.5 JME mapping for complex jABC data types 145

Contents

Part I Motivation and Fundamentals

1 Introduction . 3
1.1 Requirements of the Genesys Approach 5
1.2 Organization of the Book . 9

2 The State of the Art in Code Generation 11
2.1 Influences of Compiler Construction . 11
2.2 Models, Metamodels and Domain-Specific Languages 13
2.3 The Role of Code Generation . 19

2.3.1 Computer-Aided Software Engineering 19
2.3.2 Generative Programming . 20
2.3.3 Model Driven Architecture . 22
2.3.4 Domain-Specific Modeling . 24
2.3.5 Language Workbenches . 25
2.3.6 Approaches without Code Generation 26

2.4 Code Generation Techniques . 27
2.4.1 Programming the Code Generator 28
2.4.2 Template-Based Code Generation 29
2.4.3 Rule-Based Transformation . 31
2.4.4 Round-Trip Engineering versus Full Code

Generation . 32
2.5 Quality Assurance of Code Generators 34
2.6 Classification of Genesys . 35

3 Extreme Model-Driven Development and jABC 39
3.1 Extreme Model-Driven Development . 39
3.2 jABC . 43

3.2.1 Service Independent Building Blocks 46
3.2.2 Service Logic Graphs . 50
3.2.3 Plugins . 54

XXII Contents

3.3 Model Execution with the Tracer . 57
3.3.1 Execution Semantics . 57
3.3.2 Execution Context . 58
3.3.3 Control SIBs . 60
3.3.4 Tracer Plugin . 62

3.4 Model Checking with GEAR . 63
3.4.1 Specification of Global Constraints 63
3.4.2 GEAR Plugin . 66

3.5 jABC as a Basis for Realizing the Genesys Approach 68

Part II The Genesys Framework and Case Studies

4 The Genesys Framework . 75
4.1 Services for Building Code Generators 78

4.1.1 Contributions to the Common SIBs 78
4.1.2 Type Mapping . 79
4.1.3 Identifier Generation . 83
4.1.4 Variant Management. 85

4.2 Simple Example: Documentation Generator 87
4.2.1 Structuring the Generation Process 88
4.2.2 The Initialization Phase . 89
4.2.3 The Generation Phase . 90
4.2.4 Finalizing the Generator . 94
4.2.5 General Remarks on the Example 95

4.3 Genesys Tooling . 96
4.3.1 Developer Tools . 96
4.3.2 User Tools . 99

5 Case Studies: Code Generators for jABC 101
5.1 Bootstrapping: Java Class Extruder . 102

5.1.1 The Extruder Concept . 103
5.1.2 Development of the Generator 105
5.1.3 Evaluation . 107

5.2 Java Class Generator . 109
5.2.1 Handling Service Calls . 109
5.2.2 From Single Class to Multiple Classes 112
5.2.3 Data Type Mappings and Execution Context 113
5.2.4 Variant 1: Structured Code . 114
5.2.5 Variant 2: The Interpreter Approach 121
5.2.6 Genesys Code Generator Generator 125
5.2.7 Remarks on Different Versions 126

Contents XXIII

5.3 Comparison and Evaluation of the Java Code Generators . 127
5.3.1 Code Generator Models . 127
5.3.2 Code Generator Results . 132
5.3.3 Conclusions . 135

5.4 Further Code Generators for jABC . 136
5.4.1 Servlet Extruder and Servlet Generator 138
5.4.2 SIB Extruder and SIB Generator 139
5.4.3 Web Service Generator . 140
5.4.4 leJOS and NXC Generator . 140
5.4.5 BPEL Generator . 142
5.4.6 C# Generator . 143
5.4.7 JME Generator . 144
5.4.8 EE Process Definition Generator 146
5.4.9 JML Extension for Java Class Generator 147
5.4.10 iPhone Generator . 148
5.4.11 Code Generators for Ruby, Perl and JavaScript 150
5.4.12 Robocode Generator . 151

6 Verification & Validation of Code Generators 155
6.1 Local Constraints for Code Generators 157
6.2 Global Constraints for Code Generators 158

6.2.1 FormulaBuilder . 158
6.2.2 The Constraint Library . 160
6.2.3 Occurrence Constraints . 161
6.2.4 Order Constraints . 163
6.2.5 Deriving Patterns & Composing Constraints 165

6.3 Testing of Code Generators . 168
6.3.1 Testing the jABC Code Generators 170
6.3.2 Generation of Test Scripts for JUnit 173

7 Case Study: Domain-Specific Code Generators
for EMF . 177
7.1 Eclipse Modeling Framework . 179
7.2 The Ecore Metamodel . 180
7.3 EMF SIB Generator . 182
7.4 Example: Taxonomy POJO Generator 185
7.5 Evaluation . 188

8 Case Study: Service-Oriented Combination of Code
Generation Frameworks . 193
8.1 AndroMDA . 195
8.2 Example Application:

Multiple Sequence Alignment (MSA) . 196

XXIV Contents

8.3 Integrated Modeling . 198
8.4 Integrated Code Generation . 200
8.5 Evaluation . 202

Part III Conclusions and Future Work

9 Conclusions . 207
9.1 Requirements of the Genesys Approach Revisited 207
9.2 Further Applications of Genesys . 210

10 Future Work . 215

Bibliography . 223

Index . 243

Part I

Motivation and Fundamentals

1

Introduction

Today’s software systems and the platforms they reside on “are often among
the most complex engineering systems” [Sel03]. In their day-to-day work,
software engineers are faced with a huge and constantly changing variety of
languages, tools, frameworks and platforms that need to be mastered.

Abstraction is a traditional and very powerful means for shielding soft-
ware engineers from this complexity. For instance, operating systems hide
the complexity of underlying hardware platforms, and compilers allow the
use of high-level programming languages that abstract from low-level lan-
guages such as assembly or machine code.

At an additional level of abstraction, models allow the specification of a
software system independent of the concrete technologies that are used for
its actual implementation. However, in order to fully exploit the potential of
models, it is not sufficient to use them for documentation and visualization
purposes only (called model-based development by Stahl et. al [Sta+07, p. 3]).
Instead the gap that arises between the model of a system (the abstraction)
and a corresponding implementation (a concrete incarnation of the abstrac-
tion) has to be bridged.

This is the task of code generators, which automatically derive an im-
plementation from the model, and which thus relate to models in the same
way in which compilers relate to high-level languages. Consequently, models
are promoted to primary development artifacts. Ideally, the availability of
automatic code generation relieves the developer from ever having to deal
with the resulting code, which is considered a by-product just like the results
produced by compilers. Due to the prominent role of models, correspond-
ing approaches to software development are called model-driven. Today this
realm has many incarnations referred to by a plethora of acronyms such as
MDD, MDE, MDSD, MDA, DSM (cf. Chap. 2 for details on the single ab-
breviations) and so forth. Völter [Völ09] coined MD* as an umbrella term
that conveniently comprises all approaches to model-driven development.

Apart from bridging the gap between models and implementations, code
generation provides further advantages. Herrington [Her03, p. 15], e.g., refers

S. Jörges: Construction and Evolution of Code Generators, LNCS 7747, pp. 3–9, 2013.
© Springer-Verlag Berlin Heidelberg 2013

4 1 Introduction

to the high quality of generated code, which is usually more consistent than
hand-written code. For instance, a code generator automatically and con-
sistently propagates bug fixes and other modifications to all corresponding
parts of the code. Furthermore, Herrington points out that the generation of
cumbersome boilerplate code allows the software engineer to concentrate on
the important design aspects.

With the evolution of MD* approaches, code generation has successively
gained in importance. Whereas in earlier approaches, such as Computer-
Aided Software Engineering (CASE) [CNW89], code generators usually were
fixed and static parts of general-purpose development environments, today’s
approaches increasingly focus on domain-specificity: From the modeling lan-
guage through to the required tooling, all aspects of a development environ-
ment are tailored to each domain, which usually in particular includes the
construction of dedicated code generators.

Consequently, there is a high demand for approaches that enable a simple
and fast development of code generators. Currently, lots of techniques are
available that support the specification and implementation of code genera-
tors, such as dedicated Application Programming Interfaces (APIs), template
engines or rule-based transformation engines (cf. Sect. 2.4). All those tech-
niques have in common that code generators are either directly programmed
or described by means of textual specifications.

This book presents a novel approach called Genesys , which suggests the
graphical development of code generators on the basis of models and services.
It will be shown that this unique approach provides significant advantages
for the construction and evolution of code generators.

Why models?

Just like for any software system, the advantages of models can also be ap-
plied to code generators. As code generators tend to be very complex, they
can in the same way benefit from the abstraction provided by models. Espe-
cially hierarchical models (i.e., supporting a mechanism that allows embed-
ding models into each other) are a powerful means for mastering complexity.
Furthermore, apart from its structuring character, hierarchy enables the sep-
aration of concerns, e.g., by only showing those parts of the model hierarchy
which are of current interest to the developer.

Another benefit arising from the abstraction provided by models is porta-
bility: A code generator can be developed independently from a particular
implementation language or host machine. Via suitable generator generators,
the same code generator can be translated for and deployed to arbitrary host
systems without the need of adapting the generator’s design.

Finally, models are amenable to formal verification methods such as model
checking (cf. Sect 1.1), which allows the application of powerful tools that
increase the reliability and robustness of code generators.

1.1 Requirements of the Genesys Approach 5

Why graphical models?

According to Sendall, “there are perceived cognitive gains” [SK03] when using
graphical notations, and available research on visual programming languages
underpins this (see e.g., [Bla96; Whi97; Bla01; Moo09]). For instance, a fre-
quently used argument (e.g., [Kle08, p. 5; Moo09]) is that textual notations
are one-dimensional due to their purely sequential character, whereas the spa-
tial arrangements used in graphical notations may be more complex, but at
the same time lead to a greater expressiveness. Furthermore, Moody [Moo09]
points out that graphical notations are usually processed in parallel by the
human mind in contrast to the serial processing of textual notations. Finally,
Schmidt [Sch06] argues that graphical representations help flatten learning
curves.

Why services?

Services [MSR05] are reusable units with simple and unified interfaces. As
their usage does not require any knowledge about their actual implementa-
tion, services are, just like models, a suitable means for hiding complexity.
Furthermore, assembling a code generator from services adds to its modu-
larity and adaptability: Single services can be easily replaced by newer or
alternative versions, thus allowing agile development and evolution. Exist-
ing code generation techniques, tools and frameworks can be made available
as services, which can be freely used and combined in order to realize com-
plex code generators. Moreover, models that are assembled from services are
typically executable. Apart from supporting rapid prototyping and easy de-
bugging, constructing code generators as executable models also enables the
application of bootstrapping (cf. Sect. 1.1).

Genesys is a general approach for modeling code generators for arbitrary
source and target languages. In particular, it is designed to support incre-
mental language development on arbitrary metalevels (cf. Chap. 7). This
monograph shows the feasibility of the Genesys approach by means of a
fully-fledged reference implementation, which has been field-tested in a large
number of case studies. The conceptual and technical basis of this imple-
mentation is given by the Extreme Model-Driven Development (XMDD)
paradigm and its tool incarnation jABC (cf. Sect. 3), which enable model-
driven and service-oriented development according to the mindset described
above. The reference implementation meets a number of requirements which
have been identified for the realization of the Genesys approach.

1.1 Requirements of the Genesys Approach

As described above, model-driven development and service orientation are the
basic principles of the Genesys approach. Based on these two key demands,
several general requirements can be formulated:

6 1 Introduction

Requirement G1 - Platform Independence
The abstract nature of models allows designing a code generator inde-
pendent of a specific programming language or particular host system
on which it will be executed. Thus the same code generator model may
be translated for execution on different host systems. Using services as
building blocks of models further strengthens this abstraction: For the
generator developer, those services are black boxes, and their usage does
not require any knowledge about their concrete implementation. In order
to guarantee a code generator’s translatability for multiple platforms, ser-
vice implementations need to be easily interchangeable, but by all means
transparent to the generator developer. Furthermore, the employed ser-
vice mechanism must not pose any restrictions on what can be made
available as a service, so that there are no limitations on which libraries
or tools (e.g., template engines, cf. Sect. 2.4.2) can be used for composing
a code generator. Finally, a code generation framework must not be re-
stricted to code generators that only support particular source or target
languages.

Requirement G2 - Reusability and Adaptability
As programming languages, platforms and libraries change rapidly and
new ones emerge frequently, code generator frameworks need to support
fast creation and adaptation. Facilitating this kind of agility is one of
the key concerns of service orientation: Services are made available in
repositories in a way that allows to reuse them among different appli-
cation contexts, thus avoiding the proverbial “reinvention of the wheel”.
This reusability, which is self-evident at the service level, is also desirable
for entire models. If models themselves are easily reusable, code gener-
ators and their features can, once modeled, be collected in a repository
just like services, so that modelers benefit from work that has already
been done before. Furthermore, as every new code generator in turn con-
tributes reusable assets to this repository, the potential of reuse is growing
continuously.

Requirement G3 - Simplicity
In recent code generation approaches, often a huge variety of different lan-
guages is involved in the development of a code generator (cf. Sect. 2.4),
such as template languages, transformation languages, grammar nota-
tions or constraint languages. This demands a high learning effort prior
to getting started and inevitably slows down development. Thus it is de-
sirable to keep the number of required formalisms, modeling notations
and languages as small as possible in order to reduce the complexity of
using the framework, of course without limiting its overall functionality.
Choosing services as basic building blocks for models already is a first
step towards simplicity, as services should have standardized and very
simple interfaces. When replacing one service with another, it is not nec-
essary to learn a new API or even programming language, as it is often
the case when substituting libraries at the code level. Furthermore, as

1.1 Requirements of the Genesys Approach 7

already mentioned above, services can be used without knowing any de-
tails about their actual implementation or complexity.

Requirement G4 - Separation of Concerns
As code generators may get very complex, a suitable modeling language
and its corresponding tools should support the separation of concerns. A
generator developer should be able to focus on particular aspects rather
than being confronted with the full amount of information all along. Hi-
erarchical models have already been mentioned above as a possible way
of supporting the separation of concerns.

Requirement G5 - Verification and Validation
Software verification and validation (often referred to as “V&V”) are key
activities for ensuring that a system meets all previously specified re-
quirements and needs, and that it is built in an appropriate and correct
way. When writing source code in an Integrated Development Environ-
ment (IDE), usually several checking mechanisms are executed in the
background, performing, e.g., syntax checks or static code analysis. If
any problems are detected, the developer is immediately alerted. Simi-
lar checks are often also supported by today’s modeling environments.
Given a metamodel that describes a modeling language’s abstract syntax
and static semantics (cf. Sect. 2.2), a corresponding editor with suitable
checking facilities can be easily provided. Apart from syntactic checking,
formal methods like model checking (cf. Sect. 3.4) go further by verifying
whether a model conforms to a set of given constraints, often tailored to
a specific domain. Provided that a suitable modeling language is chosen
(i.e., one that is supported by existing model checkers) and a library of
constraints for code generation is created, model checkers can perform
sophisticated verification and thus increase the robustness and reliability
of code generators. This verification potential goes beyond anything sup-
ported by most code generation approaches today (cf. Sect. 2.5). Beyond
such checking mechanisms, testing is another important facet of V&V
that needs to be supported by a code generation framework.

On the basis of those fairly general demands, several more specific require-
ments arise, especially when considering the current state of the art in code
generation (cf. Chap. 2):

Requirement S1 - Domain-Specificity
Being themselves an enabling technique for domain-specific modeling as
outlined above, it is also desirable to construct code generators in a way
that respects the domain knowledge of the generator developer. Instead of
using a general-purpose modeling formalism, the selected modeling lan-
guage should be adaptable to a given domain, including suitable termi-
nology and visualization. This adaptation could be initially performed by
a domain expert, or even be automated on the basis of a given metamodel
that describes the domain. A customized modeling language tailored to

8 1 Introduction

the domain knowledge of the modeler greatly improves the simplicity of
the approach (cf. Requirement G3 - Simplicity).

Requirement S2 - Full Code Generation
A common technique that is involved in several code generation ap-
proaches is round-trip engineering. Essentially, this term refers to the
automatic tool support for keeping models in sync with code generated
from them. This is especially necessary when generated artifacts have to
be manually modified or completed by developers. Changes in the gen-
erated artifacts need to be propagated to the corresponding models and
vice versa, while assuring at the same time that no manual work is lost
or overwritten. Implementing automatic tool support for this task is very
cumbersome and increases the complexity of involved code generators
(Sect. 2.4.4 elaborates on that). Consequently, it is desirable to avoid the
need of round-trip engineering and to employ approaches that enable full
code generation. Accordingly, all modifications are exclusively performed
on the models, while generated artifacts are considered a by-product that
never has to be touched. If there are any changes to the models, then the
corresponding artifacts are simply regenerated. This deliberate avoidance
of a bidirectional synchronization of models and generated artifacts con-
siderably eases the work of a corresponding code generator and the overall
development process (cf. Sect. 2.4.4).

Requirement S3 - Variant Management and Product Lines
The evolution of code generators based on reuse and adaptation (cf. Re-
quirement G2 - Reusability and Adaptability) needs to be facilitated by
corresponding tools. This includes tool support for the definition and cre-
ation of variants, using existing code generators and features as patterns
for new product lines .

Requirement S4 - Clean Code Generator Specification
A typical code generator usually consists of two main aspects. First, its
generation logic realizes, e.g., the traversal of the input model’s elements
and collects the data required for code generation. Second, the code gen-
erator includes an output description that specifies the resulting code or
markup (cf. Sect. 2.4). Especially modern template languages often mis-
lead to mixing up those two aspects, which may make it harder to under-
stand, maintain and adapt a code generator, and to use it as a pattern for
other code generators (cf. Requirement G2 - Reusability and Adaptability
and Requirement S3 - Variant Management and Product Lines). Thus it
is desirable to establish a way for clearly separating generation logic and
output description when designing a code generator (cf. Requirement G2
- Reusability and Adaptability).

Requirement S5 - Bootstrapping
Bootstrapping (see Sect. 2.1) is a common development technique that
emerged from compiler construction. Basically, a new compiler is de-
veloped in several stages by incrementally adding target language fea-
tures and applying existing compilers to each other. As this approach is

1.2 Organization of the Book 9

well-established and proven, it should be supported by a modern code
generation framework.

Requirement S6 - Tool-Chain Integration
As code generators are usually built to be integrated into tools or produc-
tive development setups consisting of certain tool-chains, a code genera-
tion framework and the code generators based on it need to be compatible
with build management tools like Apache Maven [Apa11b].

1.2 Organization of the Book

This book is divided into three main parts:

Part I:

After this introductory chapter, Chap. 2 presents the state of the art in code
generation. Besides establishing terminology that is required for the rest of
the monograph, the overview of the fundamentals of code generation provided
by this chapter is at the same time intended as a presentation of related work.
Accordingly, the chapter finishes with a comparison of Genesys with other
approaches. Afterwards, Chap. 3 introduces the XMDD paradigm as well
as jABC along with several plugins that play a central role for this book.
The chapter also compares other MD* approaches with XMDD/jABC and
evaluates their suitability as a basis of the Genesys approach.

Part II:

This part elaborates on the reference implementation of the Genesys approach
called the Genesys framework, and on the case studies that were performed in
order to field-test it. Chap. 4 presents the Genesys framework along with its
services and tooling. Furthermore, it exemplifies the use of the framework by
describing the construction of a simple code generator. Chap. 5 elaborates on
a collection of case studies that aimed at providing various code generators
for jABC itself. Chap. 6 illustrates the verification and validation of code
generators in the Genesys framework by means of examples from the jABC
case studies. Another case study is presented in Chap. 7, which describes
the use of Genesys for the construction of domain-specific code generators
for Eclipse Modeling Framework (EMF) on the basis of services that are
generated from a given metamodel. Finally, Chap. 8 discusses the last case
study that deals with the integration of services into Genesys, exemplified by
means of the code generation framework AndroMDA.

Part III:

Chap. 9 sums up and draws several conclusions. In particular, it revisits the
requirements of the Genesys approach and shows how they have been met
by the reference implementation. In the end, Chap. 10 elaborates on future
plans and possible extensions of Genesys.

2

The State of the Art in Code Generation

Some of the requirements for the Genesys approach presented in Sect. 1.1
are a direct result of examining and evaluating the work that has been done
in the field of code generation so far. This chapter provides an overview of
the current state of the art in code generation for MD*. It starts off with
a brief retrospect on classical compiler construction (Sect. 2.1), which de-
veloped ideas and concepts that clearly influence current code generation
techniques. Sect. 2.2 elaborates on the conceptual foundations of MD* and
on how the associated terminology is used in this book. Afterwards, Sect. 2.3
examines the role of code generation in several existing MD* (and related)
approaches, and Sect. 2.4 introduces techniques for actually realizing code
generators. Sect. 2.5 presents the state of the art in verifying and validating
code generators. Finally, Sect. 2.6 compares Genesys with the approaches and
techniques described in the preceding sections.

2.1 Influences of Compiler Construction

Beyond doubt, compiler construction is one of the most well-grounded and
well-proven fields in computer science. Having its seeds in the early 1950s,
compiler construction promoted the evolution of important theoretical topics
such as formal languages, automata theory and program analysis. The intro-
duction of compilers had far-reaching effects on software development, as they
enabled the use of high-level programming languages (such as FORTRAN)
instead of tediously writing software in low-level languages like assembly or
even machine code. By raising the level of abstraction, developers should be
shielded from hardware-specific details.

Code generation approaches for MD* share these ideas. According to Selic,
“most standard techniques used in compiler construction can also be applied
directly to model-based automatic code generation” [Sel03]. However, as mod-
els are by their very nature more abstract than source code (cf. Sect. 2.2),
corresponding code generators work on a much higher level of abstraction

S. Jörges: Construction and Evolution of Code Generators, LNCS 7747, pp. 11–38, 2013.
© Springer-Verlag Berlin Heidelberg 2013

12 2 The State of the Art in Code Generation

than compilers for source code. The following paragraphs highlight some sim-
ilarities as well as differences between classical compilers and MD* code gen-
erators, focusing on concepts and notions that are important for the Genesys
approach.

General Structure:

In essence, a compiler translates a program written in a given source language
into a program in a given target language. Usually, modern compilers are or-
ganized into consecutive phases, such as lexing, parsing or data flow analysis,
each of them often operating on their own intermediate language or represen-
tation [App98, p. 4]. Depending on whether such a phase is concerned with
analysis (i.e., resolving the source program into its constituent parts, assign-
ing a grammatical structure, etc.) or synthesis (i.e., constructing the desired
target program), the phase is said to be part of the compiler’s front-end or
back-end [Aho+06, p. 4], respectively. One of these phases is called “code gen-
eration”, which is situated in a compiler’s back-end. It usually retrieves some
intermediate form, such as an abstract syntax tree produced by a parser, and
translates it to code in the desired target language, e.g., machine code or
bytecode executable by a virtual machine. This translation typically raises
issues such as instruction selection, register allocation or code optimization.

For MD* code generators, especially issues close to hardware are at most
secondary, and can often even be considered commodity. When generating
code from abstract models, target languages are in most cases high-level
languages (such as Java or C++) with existing compilers, interpreters or
execution engines that further process the generated output. Accordingly,
compilers can be regarded as tasks or services that are incorporated in or
postpositioned to code generators. In a similar fashion, MD* code generators
employ parsers in order to translate models from their serialized form (e.g.,
XML Metadata Interchange, XMI [Obj07]) to an in-memory representation
(e.g., an implementation of the Java Metadata Interface, JMI [Jav02]) prior
to the actual code generation. As there is extensive tool-support for the de-
velopment of compilers and their single components, e.g., parser generators
such as ANTLR [PQ95] or Lex/Yacc [LMB92], code generator developers can
resort to a rich repertoire of mature services.

Bootstrapping:

Apart from source and target language, the compiler’s implementation lan-
guage is relevant to the categorization of the compiler. For instance, a self-
compiling (or self-hosting) compiler [LPT78] is a compiler that is written in
the language it compiles, and a cross-compiler [Hun90, p. 8] targets a ma-
chine other than the host. Especially self-compiling compilers are often used
for bootstrapping [Wat93, p. 44], which is a common technique for evolving
compilers. Typically, this approach aims at decreasing the overall complex-
ity of compiler development by separating the implementation process into
consecutive stages.

2.2 Models, Metamodels and Domain-Specific Languages 13

Fig. 2.1 uses the established notation of T-diagrams [Hun90, p. 11] for vi-
sualizing an example of a very simple bootstrapping process. In this notation,
blocks that look like the letter “T” represent compilers. The three text labels
on the blocks indicate the compiler’s source language (left), target language
(right) and implementation language (bottom). Suppose we want to imple-
ment a native compiler for a fictitious programming language called L. As a
start, we implement version 1 of this compiler using C, an existing program-
ming language with an available native compiler (M is for “machine code”).
Afterwards, we compile the newly written compiler, which results in a native
L-to-M compiler. We could stop at this point, but as the maintenance of our
L-to-M compiler now depends on the existence of a C-compiler, we imple-
ment a second version in L (rebuilding should not be as hard as building
from scratch). Finally, we compile version 2 using version 1 and get a native
L-to-M compiler that is no longer dependent on C.

L M

C C M

M

L M

M

L M

L L M

M

L M

M

Version 1 Version 1 (compiled) Version 2 Version 2 (compiled)

Fig. 2.1. Simple Bootstrapping Example: Getting a Native Compiler for Language
L

The example in Fig. 2.1 is only a very small bootstrapping process. As
mentioned above, bootstrapping is usually organized in stages in order to di-
vide the implementation complexity into small manageable chunks. Instead
of starting with the entire language L, a simple subset L∗ ⊂ L is identified,
so that the first version of the compiler can be developed much easier. After
building an L∗-to-M compiler in the manner described above, the compiler
is enriched with the missing L-features and the procedure is repeated. Us-
ing several sublanguages with small feature additions in each stage further
simplifies the implementation of the final compiler version.

The use of bootstrapping is also very common and desirable in MD* code
generators, and thus an important technique used in the Genesys approach
(see Sect. 1.1, 5.1 and 7.5). Throughout this work, T-diagrams will be used
to visualize bootstrapping and other code generator evolution processes.

2.2 Models, Metamodels and Domain-Specific
Languages

The existence of MD* approaches and numerous corresponding tools (cf.
Sect. 2.3) indicates that there seems to be at least a common intuition of

14 2 The State of the Art in Code Generation

what a model actually is. However, there is still no generally accepted def-
inition of the term “model”. For instance, while Kleppe defines a model as
“a linguistic utterance of a modeling language” [Kle08, p. 187], the Object
Management Group (OMG) focuses on the role of the model as a means of
specification [Obj03b, p. 12]:

“A model of a system is a description or specification of that system
and its environment for some certain purpose. A model is often pre-
sented as a combination of drawings and text. The text may be in a
modeling language or in a natural language.”

Kühne emphasizes the abstraction aspect of models [Küh06]:

“A model is an abstraction of a (real or language-based) system al-
lowing predictions or inferences to be made.”

Another characterization of models that is cited frequently in the literature is
the one of Stachowiak, who identifies three main features of models [Sta73, pp.
131–133]:

1. Mapping feature: A model is always a mapping of some natural or artifi-
cial original, which may in turn be a model.

2. Reduction feature: Generally, a model does not capture all attributes of
the represented original, but only those relevant to the person who creates
or uses the model.

3. Pragmatic feature: A model always serves a particular purpose.

This “fuzziness” or lack of precision can be observed for most of the vocabulary
used in the context of MD*. There is still no established fundamental theory
of modeling and related concepts that would be comparable to the maturity
achieved in other disciplines of computer science, such as compiler construc-
tion (cf. Sect. 2.1). However, several publications (e.g., [BG01;Fav04;Küh06])
try to come up with precise definitions, and thus discuss issues like when it
is appropriate to call a model a metamodel.

As a reflection of this discussion goes far beyond the scope of this mono-
graph, all following chapters and sections resort to the terminology definitions
described by Stahl et al. [Sta+07, pp. 28–32]. Fig. 2.2 uses the Unified Mod-
eling Language (UML) [Obj10b; Obj10a] in order to illustrate the relevant
concepts and their relationships, which are introduced in the following.

Domain:

A domain is a delimited field of interest or knowledge which consists of “real”
things and concepts. It may also be divided into an arbitrary number of sub-
domains. For instance, the domain “hospital” contains, among other things,
the subdomains “intensive care unit” and “coronary care unit”, each capturing
specific parts of the superordinate domain.

2.2 Models, Metamodels and Domain-Specific Languages 15

respects

«instanceOf»

expressed by means of

Formal Model

describes
relevant

concepts of

MetamodelDomain

0..*

Subdomain

Modeling
Language

«synonymous»

Semantics

DSL

Abstract
Syntax

Static
Semantics

expressed by
means of

Concrete
Syntax

obtains meaning through

is specific to

Fig. 2.2. Basic MD* terminology (by Stahl et al. [Sta+07, p. 28], translated into
English)

Metamodel:

A metamodel is a formal description of a domain’s relevant concepts. It spec-
ifies how formal models (or programs), that are specific to the given domain,
can be composed. For this purpose, a metamodel comprises two important
parts: the abstract syntax and the static semantics.

The abstract syntax defines the elements of the metamodel and their re-
lationships, independent of the concrete representation of any corresponding
formal model. For instance, the abstract syntax of an object-oriented lan-
guage might define concepts like classes and interfaces, which have attributes
such as a name and which are associated via relationships such as inheritance.

The static semantics specifies constraints for the well-formedness of a for-
mal model. Accordingly, it is defined relative to an abstract syntax, i.e., it
uses the contained terminology and concepts in order to describe the con-
straints. For instance, the static semantics of a metamodel for control flow
graphs could specify constraints that demand the existence of exactly one
start node.

Domain-Specific Language:

According to Fowler, the notion domain-specific language (DSL) refers to
“a computer programming language of limited expressiveness focused on a
particular domain” [Fow10, p. 27]. Stahl et al. [Sta+07] as well as this book
use the notion synonymously with the term modeling language. As visible in
Fig. 2.2, a DSL is based on a metamodel that comprises the abstract syntax
and static semantics as described above.

Furthermore, a DSL provides a concrete syntax , which describes a par-
ticular representation of the elements and concepts specified by the abstract
syntax. The concrete syntax can thus be considered an instance of the ab-
stract syntax, and it is possible to define multiple concrete syntaxes for one

16 2 The State of the Art in Code Generation

abstract syntax. For instance, a UML class diagram [Obj10b] can be repre-
sented using at least three concrete syntaxes: the graphical UML notation
itself, the Human-Usable Textual Notation (HUTN) [Obj04] and the XML-
based interchange format XMI. In particular, this example illustrates that a
concrete syntax – and thus the DSL and any formal model that follows the
concrete syntax – can be textual or graphical.

The beginning of Chap. 1 presented several arguments that highlight ad-
vantages of graphical notations over purely textual notations (better cogni-
tive accessibility, higher expressiveness, flatter learning curves etc.). However,
there are also publications that argue in favor of textual notations. For in-
stance, from the tool perspective, Völter [Völ09] points out that it requires
more effort to build usable editors for graphical languages as opposed to tex-
tual editors. Stahl et al. [Sta+07, p. 103] exemplify this by means of the
support for collaborative development: Whereas the synchronization of tex-
tual development artifacts is supported by a variety of tools (such as Sub-
version [Apa11e]), graphical notations often require the implementation of
specific solutions.

Further positions advocate that graphical and textual notations are not
mutually exclusive. Van Deursen et al. [DVW07] observe complementary
strengths and thus propose a unification of both notations. Kleppe exem-
plifies UML class diagrams as such a hybrid concrete syntax, as they provide
“a textual syntax embedded in a graphical one” [Kle08, p. 5]. Finally, Kelly
and Pohjonen point out that the choice of a suitable concrete syntax “de-
pends on the audience, the data’s structure, and how users will work with
the data” [KP09].

As the third component besides the metamodel and the concrete syntax,
a DSL also provides semantics that assigns a meaning to any well-formed
model written in the DSL. In practice, this semantics is often described by
means of natural language as for instance performed in the UML specifica-
tion [Obj10b]. However, in order to avoid the ambiguity and imprecision of
natural languages, semantics can also be described formally, e.g., using a de-
notational [Sch86], operational [Plo81;Kah87], axiomatic [Hoa69] or transla-
tional approach [Kle08, p. 136f]. In the context of this book, the latter is most
interesting: Following the translational approach, the semantics of a language
is given by a translation into another language with well-known semantics. In
MD*, such a translation can be provided by a model transformation, which
may, e.g., be realized by a code generator. Sect. 2.3.5 elaborates on this role
of code generation.

Fowler [Fow10, p. 15] distinguishes between internal and external DSLs.
An internal DSL (also known as embedded DSL) forms a real subset of an
existing (general-purpose) language, its “host language”. It employs the syn-
tactic constructs of the host language and maybe also parts of its available
tooling support. Several languages like Lisp [McC60] or Ruby [FM08] support
the creation of such internal DSLs. In contrast to this, an external DSL uses
a separate custom syntax that is not directly derived from an existing host

2.2 Models, Metamodels and Domain-Specific Languages 17

language. Consequently, with an external DSL it is usually not possible to
resort to existing tools, so that, e.g., a specific parser for the language has to
be implemented.

Formal Model:

The box labeled formal model in Fig. 2.2 represents a program or model
written in a particular DSL. Consequently,

• it describes something from the domain for which the DSL is tailored,
• it is an instance of the metamodel contained in the DSL and in particular

respects the metamodel’s static semantics,
• it is written using the concrete syntax of the DSL, and
• its meaning is given by the DSL’s semantics.

Due to its “formal” nature, such a model is a suitable basis for activities like
verification, interpretation or code generation. For the sake of simplicity, this
book uses the notion “model” in place of “formal model”, implicitly including
textual as well as graphical incarnations.

Metamodeling and Metalevels:

The notions and concepts depicted in Fig. 2.2 can be applied to arbitrary
metalevels . For instance, considering “modeling” itself as a possible domain,
one could create a “meta-DSL” for describing DSLs. Accordingly, when us-
ing the meta-DSL to specify a particular DSL myDSL, this new DSL is an
instance of (i.e., a formal model conforming to) the metamodel given by
the meta-DSL, or in other words: The meta-DSL provides the metamodel of
myDSL. Continuing the example, myDSL can now in turn be used to create a
particular model M, i.e., following the same argumentation as above, myDSL
provides the metamodel of M. However, given the fact that myDSL itself is
formally described by means of the meta-DSL, the meta-DSL provides the
metametamodel of M. Thus the role of the meta-DSL is determined relative
to the metalevel from which it is observed. Accordingly, the “metaness” of a
model arises from its relations to other models (being its instances) rather
than being an intrinsic model property [Sta+07, p. 63].

A well-known example of a metamodeling architecture which employs met-
alevels is the Model Driven Architecture (MDA) [Obj03b] (cf. Sect. 2.3.3)
proposed by the OMG. MDA enables model-driven software development on
the technological basis of standards that are also created by the OMG, such
as the Meta-Object Facility (MOF) [Obj11d] and UML. Fig. 2.3 is a slightly
extended version of an illustration from [Obj10a, p. 19], showing an example
of metalevels in MDA. The single metalevels are typically labeled M0, M1,
M2 and so on, with M0 designating the lowest level. M0 usually represents
the actual system (existing or non-existing) that is to be modeled, or more
precisely its runtime objects and user data. The models that represent this
system are situated on level M1, e.g., concrete diagrams (class diagrams etc.)

18 2 The State of the Art in Code Generation

modeled in UML. Level M2 holds the modeling language that is used for de-
scribing the models on M1, i.e., their metamodel. For instance, in the MDA
context, this might be the UML along with its associated concepts. Finally,
the metamodel on M2 is again formally described by a model which is situ-
ated on level M3, the metametamodel. In MDA, this role is played by MOF,
and thus in order to be MDA-compliant, a modeling language has to be an
instance of (i.e., it has to conform to) MOF. Please note that only levels
M1–M3 (and maybe above) are actual modeling levels, as M0 represents the
“real” system (which is why, e.g., Bézivin refers to the four-level example as
a “3+1 architecture” [Béz05]).

name : String
Customer

name = "Jane Doe"
:Customer

Attribute Class Instance

Class

aCustomer

«snapshot»

classifier

«instanceOf»

«instanceOf»
«instanceOf» «instanceOf»

«instanceOf»

«instanceOf»«instanceOf»«instanceOf»

M0
(Model Instance)

M3
(Metametamodel)

M2
(Metamodel)

M1
(Model)

Meta-Object
Facility (MOF)

Unified
Modeling
Language

(UML)

Concrete
Diagram

Concrete
Runtime
Objects

«instanceOf»

Fig. 2.3. Four-Level Example of MDA’s Metamodel Hierarchy (based on [Obj10a,
p. 19])

Except for the topmost metalevel, the elements of each level are instances
of elements in the level above. Conceptually, there is no need for such a
“hierarchy top” at all – the number of metalevels can be arbitrary [Obj10a,
p. 19]. However, in practice, this potentially indefinite layering is usually
avoided by means of a reflexive model, i.e., a model that is able to describe
itself [Sei03; Sel09]. As indicated in Fig. 2.3, MOF is such a model that is
defined in terms of itself, so that effectively no more metalevels are required.
Another example of a reflexive model is Ecore from EMF (see Chap. 7).

It should be noted that the one-dimensional view on metalevels shown in
Fig. 2.3 is subject to controversy. For instance, Atkinson and Kühne [AK02]
pointed out that it fails to distinguish different types of “instance of” relation-
ships and thus proposed a two-dimensional framework. However, a detailed
discussion of those issues goes beyond the scope of this book.

2.3 The Role of Code Generation 19

Users of MD* tools usually only deal with a restricted view on the available
metalevels. For instance, in typical UML tools like ArgoUML [Tig11], any
modeling activity happens exclusively on level M1, i.e., the levels M2 and M3
are “hard-wired”. Other tools such as language workbenches (see Sect. 2.3.5)
also allow the user to define his own modeling languages and thus hard-wire
only level M3 or above.

2.3 The Role of Code Generation

As pointed out in Chap. 1, code generation is key to any MD* approach to
software development. It bridges the gap that arises when models are used to
abstract from the technical details of a concrete software system. Code gener-
ation is thus an enabling factor for allowing real model-driven software devel-
opment which treats models as primary development artifacts [Sei03;Béz05],
as opposed to the approach termed model-based software development in
Chap. 1 that is limited to using models for documentation purposes [Sta+07,
p. 3].

Apart from the notion MD*, which is used in this book (following Völ-
ter [Völ09]) as a generic term for referring to the variety of existing ap-
proaches to model-driven development, there are several further notions that
are used in a similar way. Examples that can be frequently found in publi-
cations are Model-Driven Development (MDD) [Sel03;AK03], Model-Driven
Engineering (MDE) [Sch06; Béz05; Fav04; DVW07] and Model-Driven Soft-
ware Development (MDSD) [Sta+07], which are largely used synonymously.
Among MD* approaches, code generation is usually considered a specific form
of model transformation and thus often referred to as model-to-text trans-
formation [CH06; Old+05] or model-to-code transformation [Sel03; Sta+07;
Hem+10].

The following sections (2.3.1–2.3.5) provide examples of existing MD* and
related approaches, with a particular focus on the respective role of code
generation. Afterwards, Sect. 2.3.6 briefly sketches MD* approaches that do
not resort to code generation.

2.3.1 Computer-Aided Software Engineering

The idea of automatically generating an implementation from high-level spec-
ifications is not really new. For instance, in the 1980s, the Computer-Aided
Software Engineering (CASE) approach [CNW89] had very similar objec-
tives, including the design of software systems by means of graphical general-
purpose languages and the use of code generators for automatically producing
suitable implementations [Sch06].

However, the CASE approach has not asserted itself in practice. As one rea-
son for this, Schmidt [Sch06] especially designates the deficient translation of

20 2 The State of the Art in Code Generation

CASE’s graphical general-purpose languages to code for desired target plat-
forms. The creation of corresponding code generators was very difficult as
the produced code had to compensate the lack of important features, such
as fault tolerance or security, in operating systems at that time. As a result,
the code generators were very complex and thus hard to maintain. Moreover,
CASE tools focused on proprietary execution environments, which resulted
in low reusability and integrability of the generated code. Schmidt also names
further problems of CASE, such as the lack of support for collaborative devel-
opment and the fact that the employed graphical languages were too generic
and too static to be applicable in a large variety of domains. Especially as
a result of the insufficient code generation facilities, CASE tools were often
used for model-based software development only [Sch06].

Today’s MD* approaches benefit from the fact that programming lan-
guages and platforms significantly evolved since that time. Apart from the
fact that code generation technologies have matured [Sel03], code generation
has become much more feasible, as generators “can synthesize artifacts that
map onto higher-level, often standardized, middleware platform APIs and
frameworks, rather than lower-level OS APIs” [Sch06], which decreases their
complexity significantly.

Moreover, as another lesson learned from CASE, lots of MD* approaches
advocate the use of DSLs rather than general-purpose languages, thus turning
away from CASE’s “one size fits all” idea [Sta+07, p. 44]. The focus on DSLs
further increases the significance of code generation, as the specification of
a DSL often entails the demand for a corresponding code generator – or
multiple ones if several target platforms are used –, the creation of which
also needs to be supported by appropriate frameworks and tools.

2.3.2 Generative Programming

Generative Programming (GP) [CE00], also known as Generative Software
Development, is an approach that “aims at modeling and implementing sys-
tem families in such a way that a given system can be automatically generated
from a specification written in one or more textual or graphical domain-
specific languages” [Cza04].

Accordingly, it puts particular emphasis on two main aspects. First, GP
focuses on developing families of systems instead of only single systems. A
system family is a set of systems based on a common set of assets [CE00, p.
31], which are used for building the single family members. Among other
things, such a system family might form the basis for creating product
lines [Sta+07, p. 35]. Second, GP involves the automatic assembly of the
final system via generators. Inspired by industrial manufacturing, the gener-
ated system should resemble a complete, “highly customized and optimized
intermediate or end-product” [CE00, p. 5].

The common model that is used for generating the single members of a
system family is called the generative domain model. This model essentially

2.3 The Role of Code Generation 21

describes three components: the problem space, the solution space as well as a
mapping between both. The problem space can be considered the domain, and
it contains one or more domain-specific languages that provide the concepts
and terminology for specifying system family members. For instance, feature
models [CHE04] are frequently used in connection with GP as a means for
describing the common features of system family members along with those
features that are variable. Feature models also capture how variable features
depend on each other. The solution space consists of elementary implementa-
tion components which are used to assemble a system. The mapping between
problem space and solution space is given by configuration knowledge, which
includes illegal combinations of features, default settings and dependencies as
well as construction rules and combinations [CE00, p. 6]. This configuration
knowledge is implemented by means of one or more generators.

Based on this generative domain model, a system is essentially specified
via configuration: An application programmer creates such a configuration
by selecting desired features in the problem space, and the generator uses the
configuration knowledge for automatically mapping it to a configuration of
implementation components in the solution space. Besides this configuration
view [Cza04] further describes a transformational view on the generative do-
main model. In this view, the problem space is resembled by a domain-specific
language which is transformed into an implementation language situated in
the solution space. Independent of the particular view, GP does not dictate
which technologies are used for actually implementing the single elements of
the generative domain model [CØV02].

GP is strongly related to MD* approaches as both advocate the use of
DSLs for creating high-level specifications along with corresponding genera-
tors that automatically produce a system from those specifications. However,
GP’s strong focus on the development of software system families distin-
guishes it from several MD* approaches such as MDA (see the following
section). Whereas MDA mainly addresses technical variability by aiming at
portability, GP also takes application domain variability into account [Cza04].
Furthermore, Stahl et al. [Sta+07, p. 39] point out that GP traditionally fo-
cuses more on textual DSLs rather than on graphical notations.

In particular, lots of research in the realm of software product line engineer-
ing [CN01;PBL05] relates to GP’s mindset. A recent example is the HATS
project [Cla+11], which employs Abstract Behavioral Specification (ABS) in
order to model system families. To this end, ABS consists of five textual
languages for specifying

1. core modules of the system in a behavioral fashion,
2. the system’s features and their attributes via feature modeling,
3. variability of the system by means of delta modeling [Sch+10],
4. product line configurations that link features with delta modules, and
5. concrete product selections.

22 2 The State of the Art in Code Generation

From the GP perspective, those specifications provide the required concepts
in the problem space as well as the configuration knowledge required for the
mapping into the solution space. Finally, a concrete product is generated via
a dedicated compiler, which, for instance, is able to translate an ABS model
into Java code.

2.3.3 Model Driven Architecture

As mentioned in Sect. 2.2, Model Driven Architecture (MDA) [Obj03b] is an
initiative of the OMG. It has been introduced in 2001 and primarily aims at
“portability, interoperability and reusability through architectural separation
of concerns” [Obj03b, p. 12]. Conceptually, MDA defines three models that
represent different viewpoints on a system:

• Computation-Independent Model (CIM): Also termed “domain model”
or “business model” [Fra02, p. 192], the CIM describes the pure business
functionality including the requirements of and rules for the system. Any
technical aspects of the system are ignored. CIMs are supposed to be
created and used by business experts (or “domain practitioners” [Obj03b,
p. 15]) and thus use familiar terminology of the respective domain. They
are intended as a bridge between business experts who are versed with
a particular domain, and IT experts who have the technical knowledge
for realizing a system. CIMs provide a very broad view as they also may
contain aspects of a domain that are not automated at all [Fra02, p. 194].

• Platform-Independent Model (PIM): In contrast to CIMs, PIMs also
consider technical aspects of a system, but only those which are inde-
pendent of a concrete platform. This platform-independence is key to
achieving the goal of portability, however it should be noted that it is
a relative notion. Frankel [Fra02, p. 48f] exemplifies this by means of
OMG’s middleware standard, the Common Object Request Broker Ar-
chitecture (CORBA) [Obj11b], which can be considered platform-inde-
pendent as it does not depend on particular programming languages or
operating systems. However, when viewing CORBA as one among many
existing middleware technologies, it also can be considered a specific plat-
form. From this perspective, platform-independence is only achieved by
not depending on a concrete middleware technology. Accordingly, a PIM
“exhibits a specified degree of platform-independence so as to be suitable
for use with a number of different platforms of similar type” [Obj03b, p.
16].

• Platform-Specific Model (PSM): A PSM augments a PIM by further
technical details that are specific to a particular platform. Please note
that the above comments on the relativity of platform-independence can
be similarly applied to platform-specificity.

Further OMG standards provide the technological basis for creating such
models: Any modeling language that conforms to MOF (see Sect. 2.2) can be
used, such as UML or the Common Warehouse Metamodel (CWM) [Obj03a].

2.3 The Role of Code Generation 23

PIMs, PSMs and the actual implementation code of the system are con-
nected by means of transformations. For instance, a PIM could be succes-
sively refined by one or several consecutive model transformations producing
either further PIMs or PSMs, the last of which being the most concrete or spe-
cific model that is used as the basis of a final code generation step. However,
the creation of intermediate models is not mandatory, as it might also be pos-
sible (e.g., depending on the abstractness of the employed PIM) to produce
code directly from a PIM [Obj03b, p. 25]. The exact nature of the trans-
formation is not dictated by MDA: A transformation may, e.g., be entirely
manual, semi-automatic by marking the models with additional information,
or fully automatic [Obj03b, pp. 34–36].

Model transformations (PIM to PIM, PIM to PSM, PSM to PSM) can,
e.g., be realized by using any implementation of OMG’s Query/View/Trans-
formation (QVT) [Obj11c] specification. Another example for a language that
supports such model transformations is the Atlas Transformation Language
(ATL) [JK06]. Both QVT and ATL are, e.g., implemented in the context
of the Model 2 Model (M2M) project which is part of the Eclipse Modeling
Project (EMP) [Gro09].

For code generation (PIM to code, PSM to code), there exists a plethora
of tools and frameworks such as AndroMDA (which has been used for a case
study in the context of this monograph and thus will be described in more
detail in Sect 8.1), MOFScript [Old+05], Fujaba [GSR05] or XCoder [Car11].
Moreover, there are implementations of OMG’s MOF Model to Text Trans-
formation Language (MOFM2T) [Obj08] like Acceleo [Obe11], and integrated
code generation facilities in tools that support UML modeling, such as Altova
UModel [Alt11] and Together [Bor11].

Although the MDA has gained lots of attention and is, in the author’s as-
sessment, perhaps the most widely known MD* approach, some of its related
standards are subject to criticism. For instance, Sect. 2.2 already pointed out
that the one-dimensional metamodeling architecture specified by MOF was
controversial – however, the situation improved significantly with the intro-
duction of UML 2.0 and MOF 2.0 (though still some issues remain [AK03]).

Maybe the most contentious part of MDA is UML. A major point of crit-
icism is its lack of a clearly and formally described semantics [Tho04;BC11].
Furthermore, Kelly and Tolvanen point out the low abstraction provided by
UML models, which “are at substantially the same level of abstraction as
the programming languages supported” [KT08, p. 19f], because “the mod-
eling constructs originate from the code constructs” [KT08, p. 14] instead
of deriving them from the domain of the modeled system. Another problem
arises from the practical difficulty of synchronizing the various UML models
that describe different aspects of a system: When changes to a model are
not propagated to dependent models, this may lead to inconsistencies that
hamper the system’s evolution [Hör+08]. In particular, this issue also con-
cerns round-tripping, i.e., the synchronization of UML models and the code
generated from them – Sect. 2.4.4 further elaborates on this.

24 2 The State of the Art in Code Generation

2.3.4 Domain-Specific Modeling

Domain-Specific Modeling (DSM) [KT08] explicitly focuses on the creation
of solutions that are entirely tailored to a particular domain. According to
Kelly and Tolvanen, DSM typically includes three components: a domain-
specific modeling language, a domain-specific code generator and a domain
framework [KT08, p. xiii f]. Once those components are in place, develop-
ers use the domain-specific modeling language for creating models which are
automatically translated into code. The use of the term “domain-specific mod-
eling language” (instead of just DSL) can be considered to reflect a tendency
of DSM towards visual notations “such as graphical diagrams, matrices and
tables” [KT08, p. 50], that are used along with text (i.e., hybrid concrete
syntaxes as described in Sect. 2.2). Furthermore, DSM clearly aims at full
code generation (cf. Sect. 2.4.4), so that the generated code is complete and
does not have to be touched [KT08, p. 49f]. In order to reduce the complexity
of code generators, the produced code often is executed on top of a dedicated
domain framework. Such a domain framework provides elementary imple-
mentations that do not have to be generated and thus relieve and simplify
the code generator.

Kelly and Tolvanen point out that full code generation is achievable, be-
cause the language and the generator employed in DSM “need [to] fit the
requirements of only one company and domain” [KT08, p. 3], thus strictly
following the tenet that “Customized [sic] solutions fit better than generic
ones” [KT08, p. xiv]. As a consequence of this orientation, DSM typically
does not involve shipping of ready-made DSLs or code generators, because
both are developed in-house as a part of implementing a DSM solution for a
particular domain. In [TK09], Tolvanen and Kelly state that based on their
industry experiences, this implementation phase is usually very short, with
the time required for implementing the generator often outweighing the time
for realizing the language.

In order to enable this modus operandi, proper tooling is required that sup-
ports both the definition and the usage of a DSM environment for creating a
particular domain-specific solution. Consequently, tools for DSM usually have
a hard-wired metametamodel (i.e., level M3, see Sect. 2.2), thus allowing the
definition of new metamodels, ergo new domain-specific modeling languages.
In this respect, DSM tools contrast with CASE or UML tools [KT08, p. 60],
which usually dictate the use of a particular modeling language.

Perhaps the most prominent DSM tool is MetaEdit+ [TK09;KLR96]. As
further tools that can be considered realizations of the approach, Kelly and
Tolvanen [KT08, p. 390–396] mention the Generic Modeling Environment
(GME) [Led+01] (originally developed in the context of Model-Integrated
Computing [SK97]), Microsoft’s DSL Tools [Coo+07] (a part of the Soft-
ware Factories [Gre+04] initiative) and the EMF-based Graphical Modeling
Framework (GMF) [Ecl11a;Gro09].

2.3 The Role of Code Generation 25

2.3.5 Language Workbenches

In 2005, Martin Fowler coined the term language workbench [Fow05] for refer-
ring to a class of tools that specifically focus on DSLs. This is not restricted
to providing an IDE for creating a DSL (e.g., features for creating a meta-
model or generating a parser): Language workbenches also support building
a specialized IDE that is equipped with, e.g., custom editors and views for
using the created DSL. Consequently, similar to tools for DSM mentioned in
Sect. 2.3.4, language workbenches significantly differ from CASE and UML
tools, which usually are based on a fixed metamodel [KT08, p. 60]. Alto-
gether, a language workbench enables the definition of a DSL environment
by specifying the metamodel, an editing environment and the semantics of the
DSL ([Fow10, p. 130], adapted to the terminology introduced in Sect. 2.2).

For the custom editing environment, language workbenches usually employ
either source editing or projectional editing [Fow10, p. 136]. Source editing
uses one single representation for editing and for storing, which is usually
text. The creation of such text does not depend on a particular tool but
can be performed with any text editor. In contrast to this, with projectional
editing the primary representation of a program or model is specified and
tightly coupled with the employed tool. The tool provides the user with an
editable projection of this representation, which might follow any concrete
syntax (textual or graphical). Editing the projection then directly modifies
the primary representation. In consequence, in this scenario, the user never
works directly with the primary representation, and the tool is imperatively
required for editing, as it has to perform the projection.

Projectional editing provides several advantages over direct source editing,
such as the possibility to provide multiple (e.g., user-specific) projected rep-
resentations. Graphical modeling tools naturally employ projectional editing,
as the actual model is usually kept separate from its graphical representation.
Thus the differentiation makes most sense for textual DSLs. Language work-
benches that are based on projectional editing are also termed projectional
language workbenches (see, e.g., [VV10]).

Code generation plays a central role for most language workbenches as it
is frequently used for providing the semantics of a created DSL. According
to Fowler, the semantics of the DSL is most commonly specified in a transla-
tional way (cf. Sect. 2.2), i.e., by means of code generation, and more rarely on
the basis of interpretation [Fow10, p. 130]. Consequently, most workbenches
provide means for specifying code generators, some of which will be exempli-
fied in Sect. 2.4.

The rationale behind language workbenches is often associated with lan-
guage-oriented programming (see, e.g., [Fow05;?]). The term has been coined
by Ward [War94] in 1994 and refers to the general approach of solving a
problem with one or more domain-specific languages rather than with general-
purpose languages.

26 2 The State of the Art in Code Generation

Many existing tools meet the characteristics of language workbenches de-
scribed above. For instance, MetaEdit+ (presented in Sect. 2.3.4) can be
considered a language workbench which supports the creation of graphical
(or visual) DSLs along with projectional editing. Other language workbenches
mainly focus on textual DSLs, providing either projectional editing like the
Meta Programming System (MPS) [Jet11] or parser-based source editing like
Xtext [Ecl11h], Spoofax [KV10] or Rascal [KSV09].

2.3.6 Approaches without Code Generation

For the sake of completeness, it should be noted that code generation is not
the only way to obtain a running system from a model. Another common
solution is the use of an interpreter which directly executes a model without
previous translation.

Business Process Modeling (BPM) is an example of a field which pre-
dominantly employs model execution. Such models are usually business pro-
cesses that are described by means of dedicated languages, and that are typ-
ically executed (i.e., interpreted) by a process engine. Examples are Business
Model & Notation (BPMN) [Obj11a] with corresponding process engines
like jBPM [Red11b] or Activiti [Act11b], and the Business Process Execu-
tion Language (BPEL) [OAS07] which can be executed by engines such as
ActiveVOS [Act11a] or Apache ODE [Apa11c]. Typically, process engines
provide features like scalability, long-running transactions (e.g., via persis-
tency of process instances), support for human interactions and monitoring
of running processes.

A major feature of interpreters is late binding. In BPM this is used, among
other things, for running multiple versions of a process. It also allows, e.g., the
realization of multi-tenancy capabilities, or of process adaptations at runtime.
The latter is also a major goal of the “models@run.time” approach [BBF09]
which aims at exploiting the advantages of models not just for software devel-
opment, but also in the running system. For instance, models can be useful
at runtime for realizing (self-)adaptive software systems.

Furthermore, an interpreter may play the role of a reference implementa-
tion that specifies the semantics of a DSL, as an alternative to describing the
semantics in a formal way (cf. Sect. 2.2). Kleppe [Kle08, p. 135] refers to this
as pragmatic semantics.

The choice between code generation and interpretation is not exclusive, as
both approaches can be combined. For instance, the execution of generated
Java code can be considered such a combination, as the Java Virtual Machine
(JVM) [LY99] can be regarded an interpreter for bytecode. This book will
show several further combinations of code generation and interpretation, such
as interpreter-based bootstrapping of a code generator (Sect. 5.1) and the use
of an interpreter via API in order to realize the execution of generated code
(Sect. 5.1.1).

2.4 Code Generation Techniques 27

2.4 Code Generation Techniques

Similar to a compiler, a code generator can be characterized as a “T-shape”
in a T-diagram (cf. Sect. 2.1): It supports a particular source language, trans-
lates to a desired target language and is implemented using a specific imple-
mentation language. Each of these three facets may be based on a different
language. While the source and the target language are usually given by ini-
tial requirements, the implementation language has to be selected advisedly.
For instance, it may be advantageous to use the same language as source and
implementation language in order to enable bootstrapping (cf. Sect. 2.1).

Apart from the selection of an appropriate implementation language, there
are also several approaches for the actual implementation of a code generator.
Generally, each approach covers two aspects of the code generator. First, the
output description specifies the structure and the appearance of the generated
code. Second, the generation logic describes the logic of the code generator,
i.e., how the mapping from the source language to the target language is
actually performed. This may also include further actions such as pretty-
printing, assembling code fragments or writing the code to corresponding
files.

In the literature, different classifications are used for categorizing the exist-
ing approaches to code generation. For instance, Kleppe [Kle08, pp. 151–156]
makes the following interrelated distinctions:

1. Model transformation rules versus hard-coded transformation: In the first
case, the code generator is described by means of a set of transformation
rules. These rules are processed by a corresponding tool which performs
the actual translation from source to target language, and which thus
realizes a large part of the generation logic via a generic transformation
engine. In the second case, the transformation is implemented explicitly,
e.g., using an imperative language.

2. Source-driven versus target-driven transformation: With source-driven
transformation, the structure of the input model in the source language
drives the code generation: The generator processes the input model and
produces corresponding code in the target language for each model el-
ement. For instance, this might result in a set of code fragments that
are assembled in a final step. If the translation is target-driven, the code
generator is oriented towards the structure of the desired output. In such
an approach, the code is, e.g., generated sequentially into some kind of
stream, and each time any information from the input model is required,
the model is specifically queried for it.

3. Concrete form versus abstract form target: A code generator may either
translate into the concrete syntax of the target language or into a repre-
sentation of its abstract syntax. Accordingly, in the latter case, the result
is again a model resembling an abstract form of the code (see Sect. 2.4.3
for more details on this).

28 2 The State of the Art in Code Generation

Czarnecki and Helsen [CH06] employ a much more coarse-grained and tech-
nical categorization as they only distinguish visitor-based and template-based
approaches. The former use a form of the well-known visitor design pat-
tern [Gam+95, pp. 331ff] for realizing the traversal of the input model and
for mapping elements of the source language to elements of the target lan-
guage (see also [Kle08, pp. 158f]). The approaches associated with the second
category describe the code generation by means of templates, a combination
of static text (i.e., the output description) and dynamic portions (which re-
alize parts of the generation logic). In order to produce the actual code, a
template engine evaluates the dynamic portions on the basis of the input
model (see Sect. 2.4.2 for more details).

Fowler [Fow10, p. 124] also introduces two categories, called transformer
generation and templated generation. Basically, templated generation equals
Czarnecki and Helsen’s category of templated-based approaches. With trans-
former generation, Fowler refers to any approach that processes the input
model and emits code in the target language for each model element.

The following sections describe different techniques for realizing code gen-
erators and, where applicable and useful, assign them to the different cat-
egories outlined above. Finally, Sect. 2.4.4 elaborates on different types of
outputs that can be produced with code generation.

2.4.1 Programming the Code Generator

The most minimalistic way to implement a code generator is to write it using
a general-purpose programming language. As in this case the transformation
from source language to target language is explicitly implemented, the result-
ing code generators belong to Kleppe’s “hard-coded transformation” category.
In the sense of Fowler’s classification, those generators are an application of
transformer generation.

Implementing a code generator this way only requires an API for access-
ing the models programmatically. The actual output is typically assembled
by means of basic string concatenation. Accordingly, output description and
generator logic are usually mixed up in such implementations. Moreover,
depending on the selected programming language, the required handling of
strings may increase the complexity of the implementation: If, e.g., Java is
selected as the implementation language, special characters (such as quota-
tion marks) have to be escaped and explicit operators (e.g., +) have to be
employed for the concatenation of strings [Sta+07, pp. 150f].

In parts, this complexity can be hidden by means of dedicated code genera-
tion APIs. As described by Völter [V03], such an API is designed to resemble
the abstract concepts of the target language. For instance, if Java is the target
language, a corresponding code generation API would provide concepts like
classes, methods, modifiers etc. as manipulable objects. After manipulation,

2.4 Code Generation Techniques 29

each of those objects would be able to produce its own code in the target lan-
guage. Consequently, the generator developer only has to deal with the API,
which relieves him of tedious tasks such as low-level string concatenation.

Additionally, the visitor pattern (see above) can be applied for realizing
the mapping of the API objects to corresponding code non-invasively and
at a central place. Czarnecki and Helsen [CH06] mention the code genera-
tor framework Jamda [Boo03] as an example of an API- and visitor-based
approach.

Code generators which are implemented “per pedes” based on a general-
purpose programming language and APIs are usually sufficient for small
application scenarios, which do not require generating a large amount of
complex code. However, for larger scenarios such code generators usually do
not scale well as in this case they are much harder to write [V03] and to
maintain. Furthermore, Kelly and Tolvanen [KT08, p. 271] point out that
many general-purpose languages do not provide convenient support for the
navigation of complex models and the production of text at once.

A possible solution to the latter problem is the selection of a programming
language which provides facilities that are specifically designed to support
the implementation of code generators. An example of such a language is
Xtend 2 [Ecl11g] which is used in recent versions of Xtext (version 2 at the
time of writing this text). As another solution, Kelly and Tolvanen propose
the use of a dedicated DSL, which allows a more concise description of a code
generator than a general-purpose language. Furthermore, a DSL enables the
specification of the code generator on a higher level of abstraction, thus hiding
low-level issues. An example of such a DSL is MERL [KT08, p. 273] which
is used for creating code generators in MetaEdit+. As a disadvantage of this
solution, it is not possible to resort to existing tool support, which is typically
readily available for general-purpose languages. Consequently, if the DSL is
not an internal DSL, the implementation of specific tools for, e.g., executing
and debugging the code generator may be required. For MERL, MetaEdit+
provides corresponding tools [TK09].

2.4.2 Template-Based Code Generation

This technique is based on the use of templates . Similar to a form let-
ter [Sta+07, p. 146], a template consists of static text with embedded dynamic
portions that are evaluated by a template engine. This approach is especially
common in web development, where it is used by techniques such as Active
Server Pages .NET (ASP.NET) [Mic11] or JavaServer Pages (JSP) [Jav09b]
for dynamic server-side generation of web site contents.

Fig. 2.4 shows an example of a template and the general modus operandi
of the approach. It is visible that apart from the actual template, a template
engine also requires concrete data as an input. In order to generate the actual
output, the dynamic portions of the template are evaluated on the basis of
this data and replaced by corresponding static text.

30 2 The State of the Art in Code Generation

public class $class.name
{
 #foreach ($attribute in $class.attributes)
 private $attribute.typeName $attribute.name;
 #end
}

title : String
author : String

Book

3. Template
Engine

public class Book
{
 private String title;
 private String author;
}

1. Template

2. Data

4. Output

Fig. 2.4. Using a template engine for code generation

The template depicted in Fig. 2.4 describes the translation of a class noted
as a UML class diagram into corresponding Java code. The dynamic portions
of the template (visualized in bold face) are written in a template language.
Such languages typically use dedicated control characters (in the example
$ and #) for distinguishing static from dynamic contents. In the example,
it is visible that the template accesses the elements of the class diagram
via the diagram’s abstract syntax (defined in the corresponding metamodel).
For instance, a class contained in the diagram is referenced by means of
the expression $class, and also the properties of the class are accessed via
suitable expressions such as $class.name or $class.attributes. Moreover,
apart from such facilities for data access, most template languages support
the use of control flow statements like conditionals, loops as well as method-
or macro-calls. The example in Fig. 2.4 shows a foreach loop which iterates
over all attributes of a class. For each attribute, the template describes the
generation of a private member variable in the resulting Java class.

There is a large number of ready-made template engines which can be
used for implementing a template-based code generator, such as StringTem-
plate [Par04], Velocity [Apa10], FreeMarker [Fre11b], Xpand [Ecl11f] and
JET [Ecl11d]. Usually each template engine defines its own template lan-
guage. For some template engines there is also sophisticated IDE support.
For instance, Xpand is supported by an Eclipse-based editor that provides
features such as syntax highlighting and code completion.

Template-based code generators are very common [KT08, p. 272], which
can also be witnessed by the fact that Fowler as well as Czarnecki and
Helsen consider them a category of their own. Examples of tools which em-
ploy template-based code generation are ANTLR (StringTemplate), EMF
(JET), AndroMDA (Velocity, FreeMarker), Fujaba (Velocity), Acceleo (own
template language) and former versions of Xtext (Xpand).

Similar to code generator implementation by means of a programming
language (as described in Sect. 2.4.1), templates mix generation logic and
output description. However, with a template-based approach, the genera-
tor developer is not confronted with issues such as escaping and string con-
catenation. Especially the latter is specified implicitly in the template and
performed automatically and transparently by the template engine. As the

2.4 Code Generation Techniques 31

structure of a template follows the structure of the output, the transforma-
tion is, in Kleppe’s terminology, target-driven. Furthermore, template-based
approaches belong to the category of hard-coded transformations [Kle08, p.
151].

Kelly and Tolvanen [KT08, p. 273] point out that working with templates
can be inefficient if the generated output is distributed among multiple files
(or locations). As a template usually resembles one file, a separate template
is required for each output file and all templates have to be evaluated se-
quentially in order to produce the entire set of resulting files. This may lead
to unnecessarily frequent traversals of the input model, even if information
that is relevant for multiple files is located at the same place in the model.

2.4.3 Rule-Based Transformation

As mentioned above in Kleppe’s categories, an alternative to hard-coding the
transformation performed by a code generator is the use of transformation
rules. In this approach, a set of such rules describes how each element in
the source language is translated to a corresponding element in the target
language. For the actual transformation, a transformation engine processes
those rules and applies them to the input model given in the source language.

A code generator can be realized as a chain of such transformations. For
instance, according to the MDA approach (cf. Sect. 2.3.3), such a chain is
a sequence of model-to-model transformations on several intermediate repre-
sentations, eventually ending with a final model-to-text transformation. Es-
sentially, this idea is based on the classical “divide-and-conquer” paradigm:
A complex transformation is handled by dividing it into smaller, simpler and
thus more manageable steps.

Furthermore, approaches using chains of rule-based transformations often
aim at an abstract form of the target language rather than at its concrete
syntax (see Kleppe’s “abstract form target” category). Instead of directly
translating the original input model or any of the intermediate representa-
tions along the transformation chain to the concrete syntax of the target
language, a structured representation (i.e., a model) of the target language
is produced. The actual code is then produced by means of a final abstract-
form-to-concrete-form transformation within the target language [Kle08, p.
155]. As the major advantage of targeting an abstract form, the abstract rep-
resentation of the code is still available after the code generation. Thus it can
be used for further processing steps and transformations, e.g., for extending
the target language with additional constructs [Hem+10].

An example of rule-based transformations is described by Hemel et al. in
[Hem+10]. They use Stratego/XT [Bra+08] (also employed by the language
workbench Spoofax) for specifying the code generation via rewrite rules in
combination with strategies for applying those rules. Another example is the
language workbench MPS, which also allows rule-based transformation with
abstract form target.

32 2 The State of the Art in Code Generation

2.4.4 Round-Trip Engineering versus Full Code Generation

With regard to their results, code generators can be distinguished by means
of two further categories: those which produce complete code and those which
only generate stubs or skeletons that have to be completed by a developer.

Round-Trip Engineering:

Due to the fact that in the latter case models and code are both editable
development artifacts, it is required to keep them mutually consistent. Per-
forming this by hand is error-prone and increases the workload, because the
same information has to be maintained at multiple locations. Consequently, a
technique called round-trip engineering (RTE) [HLR08;SMW10] (also called
round-tripping [KT08, p. 5]) aims at automating the synchronization be-
tween models and code. The both directions of this synchronization are also
referred to as forward engineering (higher level model to lower level model
or code) and reverse engineering (lower level model or code to higher level
model) [MER99]. Accordingly, code generation belongs to the forward engi-
neering techniques.

However, RTE has several problematic aspects. For instance, the forward
engineering part has to ensure that the code can be regenerated safely when
the model has been modified. This task is not trivial, especially when the
code also has been subject to modification: In order to protect the devel-
oper’s work, such changes must not be overwritten or invalidated by the
regeneration.

According to Frankel, one possible solution is partial round-trip engineer-
ing [Fra02, p. 233–235], which restricts the allowed code modifications to
additive changes. In this scenario, it is not allowed to overwrite or delete any
code that has been generated from the model. At the same time, it is forbid-
den to add any code that could have been generated from a corresponding
description in the modeling language. Consequently, the developer and the
code generator only touch code for which they are exclusively responsible.
This form of RTE is partial because it is unidirectional only – it does not
support iterative reverse engineering [Fra02, p. 234].

Protected regions [KT08, p. 295f; Fra02, p.234]are a means for support-
ing such strictly additive code changes. Those regions are specific parts of
the code that are, e.g., marked with dedicated comments. As a general rule,
the developer must not perform any modifications outside of the protected
regions. In turn, the code generator is able to detect the protected regions
and leaves them untouched in case of a regeneration. However, as this fea-
ture needs to be supported by the code generator, this inevitably increases
the complexity of the generator’s implementation. Further problems with
protected regions include modifications to the model which lead to the in-
validation of manually written code (such as renaming of classes, methods
etc.) [KT08, p. 66], or developers who do not stick to the rules and perform
modifications outside of the protected regions [Fra02, p. 234].

2.4 Code Generation Techniques 33

An alternative to protected regions is the use of the generation gap pat-
tern [Vli98, pp. 85ff]. Based on this pattern, manually written code can be
added non-invasively by means of inheritance: The “hand-made” classes sim-
ply extend the generated classes. On regeneration, the code generator can
safely overwrite the superclasses, and the manually written subclasses are
not affected at all. Hence the code generator is less complex than for the
protected regions approach, because it only has to ensure that, e.g., suitable
visibilities in the generated code support the inheritance.

Besides partial RTE, there is also full round-trip engineering [Fra02, pp.
235f] which allows arbitrary changes to model and code along with a bidirec-
tional synchronization of both. However, in practice, full RTE is very hard
to realize due to the fact that “transformations in general are partial and not
injective” [HLR08]. As a consequence, full RTE often only works if model and
code are at the same level of abstraction [Sta+07, p. 45; KT08, pp. 5f]. This
contradicts the very purpose of a model, that is, to be an abstraction of the
code (cf. Sect. 2.2).

MDA is a prominent example of an approach that is frequently realized on
the basis of RTE. Many code generators for UML, such as AndroMDA which
is presented in more detail in Sect. 8.1, mainly produce stubs and skeletons
that have to be completed manually. Hence lots of UML modeling tools like
Together or Altova UModel provide support for RTE. As many UML models
are very close to the code in terms of abstraction, even full RTE is possible –
however, as already pointed out in Sect. 2.3.3, UML is often criticized exactly
for this lack of abstraction.

Full Code Generation:

An alternative approach that aims at avoiding the problems arising from
stub/skeleton generation and RTE is full code generation [KT08, p. 49 f]. This
refers to the generation of fully functional code which does not require any
manual completion. More precisely, the manual modification of the generated
code is explicitly forbidden: Any change to the system has to be performed
at the modeling level, followed by a regeneration of the code. As the code is
never edited, the code generator can overwrite it blindly (similar to the super-
classes of the generation gap pattern, see above) which strongly simplifies the
generation. In this scenario, the generated code is considered a by-product,
analogous to the results of a compiler for a programming language [Sel03].

Please note that full code generation usually is not equivalent to generating
a full application, though in some cases the generated source code may already
resemble a complete application or system. Typically, the generated parts
coexist with other code and software components, such as hand-written code
(e.g., specialized GUIs, legacy code, a domain framework in the sense of
DSM), frameworks (e.g., a web framework like Struts [Apa11d]), libraries
(e.g., a template engine like StringTemplate, see Sect. 2.4.2), or an application
server like JBoss [Red11a].

34 2 The State of the Art in Code Generation

It largely depends on the source language whether full code generation is
possible or not. The challenge is to design the language in such a way that it
contains enough information for the generation of complete code, but at the
same time is not forced to align its abstraction level with the code.

For instance, the latter can be observed with Executable UML [MB02;
Rai+04], which aims at making UML models executable via precisely de-
fined action semantics, using a compliant action language like the Action
Specification Language (ASL) [Ken03]. Although this technique improves the
results of code generation, it comes at the cost of less abstract and more
technical models: Executable UML is virtually using UML itself as a pro-
gramming language. [KT08, pp. 56f]. Similar arguments apply to other ap-
proaches that, e.g., try to generate the dynamic aspects from collaboration
diagrams [Eng+99].

One approach for achieving full code generation is specifically tailoring the
language and the code generator to each domain, as, e.g., advocated by DSM
and MDSD. This book will show that another solution is the combination
of model-driven development and service-orientation that is proposed by the
XMDD paradigm (cf. Chap. 3).

2.5 Quality Assurance of Code Generators

Just like any other software product, code generators have to be the sub-
ject of quality assurance measures such as verification and validation (V&V).
Bugs in code generators may lead to drastic problems such as uncompilable
code or unexpected behavior of the generated system. This is particularly
unacceptable for safety-critical systems that can be found, e.g., in the auto-
motive or aviation industry. In consequence, it is essential that the automated
translation provided by a code generator is dependable and always leads to
the desired results.

In compiler construction, there has been lots of research on V&V, including
compiler verification (e.g., based on techniques like theorem proving [Str02;
Ler06], refinement algebras [MO97], translation validation [PSS98; Nec00],
program checking [GZ99] and proof-carrying code [Nec97]) as well as com-
piler testing [KP05]. In particular, the “verifying compiler”, i.e., one that
proves the correctness of the compilation result, has been the subject of a
grand challenge proposed by Tony Hoare in 2003 [Hoa03]. Moreover, compiler
verification in general is still an active topic (see, e.g., the workshop on “Com-
piler Optimization Meets Compiler Verification”, COCV; or the conference
on “Verified Software: Theories, Tools and Experiments”, VSTTE).

Sect. 2.1 already pointed out that existing tools from the realm of com-
piler construction (e.g., parser generators) can be reused for the construction
of code generators in MD* approaches. Similarly, insights and techniques
from compiler verification often serve as the basis of V&V for such code gen-
erators. For instance, theorem proving is used by Blech et al. [BGL05] to

2.6 Classification of Genesys 35

verify the translation of statecharts to a subset of Java, and in the Gene-
Auto [Rug+08] project for verifying the generation of C code from data-flow
and state models. Ryabtsev and Strichman [RS09] apply translation valida-
tion to a commercial code generator that translates Simulink [The11] models
to optimized C code. Denney and Fischer [DF06] propose an evidence-based
approach to the certification of generated code that is similar to the ideas of
proof-carrying code.

Concerning testing, Stürmer et al. described “a general and tool-indepen-
dent test architecture for code generators” [Stü+07;SC04]. Sect. 6.3 further
elaborates on this testing approach, as parts of it have been realized in the
context of the Genesys framework presented in this book. Beyond the pub-
lications of Stürmer et al., the author could not find any further substantial
research on code generator testing.

Stürmer et al. categorize V&V of code generators as analytical proce-
dures [SWC05]. Apart from this, they also identify further approaches to the
quality assurance of code generators termed constructive procedures. Such ap-
proaches advocate the implementation of code generators along the lines of
systematic development processes. According to Stürmer et al., this includes,
e.g., the adoption of standards like SPICE (Software Process Improvement
and Capability Determination, ISO/IEC 15504).

2.6 Classification of Genesys

This section locates Genesys on the scale of approaches and techniques pre-
sented in the previous sections. For this purpose, it focuses on highlighting
the differences and similarities – for any details on the single aspects of Ge-
nesys there will be cross-references to the corresponding chapters in this
book.

As pointed out in Chap. 1, the Genesys approach propagates the construc-
tion of code generators on the basis of graphical models and services. This
approach is, to the knowledge of the author, unique in the realm of code
generation.

Generally, the advantages of service orientation are typically not exploited
for building code generators. For instance, this is also true for the field of
BPM, which is traditionally closely connected to the ideas of service ori-
entation. Furthermore, it frequently features the combined use of graphical
models and services (e.g., in BPMN, cf. Sect. 2.3.6). However, those notations
are typically used for higher-level business processes, and not for lower-level
technical domains such as code generation.

If a program written in a DSL is considered a model (cf. Sect. 2.2), one
could argue that some approaches (e.g., MERL in MetaEdit+) indeed employ
modeling for realizing code generators. However, none of the code generation
approaches known to the author of this book uses graphical models for this
purpose: Textual specifications of code generators are the rule.

36 2 The State of the Art in Code Generation

A reason for this might be that code generation generally seems to be
attributed to a lower level of abstraction. Code generators are mainly imple-
mented by developers who are used to textual languages and APIs – so why
bother them with graphical models and services? This book argues that the
use of both can be highly beneficial for the development of code generators.

The previous sections showed that existing approaches are usually re-
stricted to the use of specific code generation techniques (e.g., templates
engines in AndroMDA, rule-based transformations in Spoofax, or the lan-
guage Xtend in Xtext). In contrast to this, Genesys does not dictate which
techniques or tools are used for building a code generator. This is a direct
consequence of service orientation: Any tool or framework can be incorpo-
rated as a service and directly used in Genesys. Modeling on the basis of the
available services is not fixed to any specific procedure, and thus the gener-
ator developer is free to choose any technique and modus operandi for the
code generator.

For instance, most of the Genesys code generators exemplified in this
monograph (cf. Sect. 4.2 and Chap. 5) employ template engines and thus
can be considered template-based. Each template engine is an available ser-
vice, so that the generator developer can freely select which engine should be
used. He could even mix several template engines in one single code generator.

It should be noted that in order to obtain a clean separation of genera-
tion logic and output description (Requirement S4 - Clean Code Generator
Specification), many Genesys code generators employ template engines in
a different manner than typical template-based generators. For instance, as
a convention in Genesys, advanced features of template languages such as
control flow statements or function calls should be avoided: Instead the cor-
responding logic is specified explicitly in the code generator models, so that
it can, e.g., be captured by verification tools (see Sect. 4.2.5). As a result
of this convention, those Genesys code generators typically use rather small
templates that are distributed over the code generator, producing code frag-
ments that need to be assembled at some point of the code generation process.
This is similar to, e.g., the rule-based transformation approach described by
Hemel et al. [Hem+10], which employs a similar fragmentation of the output
description.

Apart from separating generation logic and output description, a further
advantage arising from this different use of template engines in Genesys is
the fact that code generators can be source-driven and template-based at
the same time. As mentioned above in Sect. 2.4.2, code generators employ-
ing template engines are typically restricted to target-driven transformation.
However, because Genesys imposes no restrictions on the order in which the
code fragments have to be produced, the generation of the output can be per-
formed in a source-driven as well as in a target-driven manner, or even with
a combination of both. This flexibility also helps to overcome the typical
problems of template-based code generators that occur when dealing with
multiple files (cf. Sect. 2.4.2). The Documentation Generator described in

2.6 Classification of Genesys 37

Sect. 4.2 is an example which employs templates, is both source-driven and
target-driven, and deals with multiple output files.

This book also shows examples of Genesys code generators which are not
template-based at all. For instance, the FormulaBuilder (cf. Sect. 6.2.1) em-
ploys a rule-based transformation with a concrete form target, and the BPEL
Generator (cf. Sect. 5.4.5) performs a transformation to an abstract form tar-
get and then serializes this to code.

Furthermore, this book illustrates the flexibility arising from service orien-
tation by integrating and using the code generation framework AndroMDA as
a service (in this case even paving the way for full code generation, cf. Chap. 8).
Consequently, Genesys may be considered “a code generator construction kit
whichallows the (re)use andcombinationof existingheterogeneous tools, frame-
works and approaches independent of their complexity” [JS11]. In this role, Ge-
nesys does not complement, but supplement and unify existing approaches.

Additionally, Genesys is not limited to any particular source language (see
Chap. 7) or representation of the source language, like the bulk of language
workbenches which strongly focus on textual source languages. Likewise,
there are no restrictions of supported target languages whatsoever.

The development of code generators in Genesys is characterized by the
reuse of existing components, as it relies on a library of models and services
(cf. Chap. 4). Accordingly, Genesys strives for a balanced approach that aims
at:

1. providing fast creation of code generators via customization and reuse, in
contrast to, e.g., DSM and language workbenches, which usually achieve
their high domain-specificity by developing an entirely new code genera-
tor for each domain (thus repeatedly starting from scratch), and at the
same time

2. being more flexibly adaptable to different domains than, e.g., CASE or
UML tools with their rather fixed and inextensible code generators.

As another major difference in comparison to other approaches, Genesys pro-
vides a holistic view on code generator construction that supports all phases
including the specification, execution, generation, debugging, verification and
testing of a code generator1. While specification, execution and generation
are typically supported, facilities for debugging a code generator are more
rare. Among the examples listed in the previous sections, only MetaEdit+
supports this by means of a dedicated tool [TK09], and in the case of code
generators implemented with a programming language, existing debuggers
can be used. However, for testing and in particular for verification, most
approaches do not provide integrated and dedicated solutions.

Furthermore, Genesys aims at retaining simplicity along all phases of code
generator development. Following Requirement G3 - Simplicity, the goal is
that constructing a code generator demands learning as few languages as
1 For specification, execution, generation and debugging see Chap. 4 and 5, for

verification and testing see Chap. 6

38 2 The State of the Art in Code Generation

possible. In other approaches, the knowledge of multiple languages (or at
least dialects of a language) are required, apart from the actual source and
target language of the code generator. For instance, the language workbench
Xtext has separate languages for specifying grammars, transformations and
workflows of transformations [Ecl11h]. Genesys uses the same simple mod-
eling language (cf. Sect. 3.2.2) for all artifacts required in the single phases.
In consequence, artifacts like test cases, test suites (cf. Sect. 6.3) or con-
straints (cf. Sect. 6.2) are specified by means of the same language employed
for developing the actual code generators. Aside from this, only a (freely se-
lectable) template language might have to be learned, given the case that a
template-based code generator is to be developed.

Concerning verification, Genesys is also unique in that it applies model
checking for proving the correctness of code generators relative to a set of
constraints. Although in particular model checking and another facility called
local checking (i.e., checking of constraints attached locally to single services,
cf. Sect. 6.1) are in the focus of this book, other verification techniques can
be easily incorporated into Genesys (cf. Sect. 10).

The reference implementation of the Genesys approach presented in this
monograph is conceptually and technically based on another MD* approach
called XMDD and its tool incarnation jABC (cf. Chap. 3). Sect. 3.5 evaluates
the feasibility of other MD* approaches and tools with regard to their apti-
tude for realizing the requirements of the Genesys approach (cf. Sect. 1.1),
and in doing so it illustrates why XMDD and jABC are a suitable basis for
reaching those goals.

Finally, the combination of XMDD, jABC and Genesys can be considered
a realization of GP (cf. Sect. 2.3.2). In this combination, services resemble the
elementary implementation components situated in GP’s solution space, and
models provide a particular configuration of services in the problem space.
Those models are a suitable basis for the evolution of system families, as
exemplified with a family of code generators in Chap. 5. Variability can be
specified by means of the variant management features presented in this book
(cf. Sect. 4.1.4 and 10). The code generators provided by Genesys in conjunc-
tion with a library of constraints (cf. Sect. 3.1) embody GP’s configuration
knowledge.

3

Extreme Model-Driven Development and jABC

This chapter introduces the jABC framework and the underlying Extreme
Model-Driven Development (XMDD) paradigm, which form the technical
and conceptual (respectively) basis for the reference implementation of the
Genesys approach described in this book. Historically, the demand for code
generation in jABC provided the initial motivation for starting the Genesys
project. In the beginning, the project started off as one of many application
scenarios of jABC and XMDD. However, during its evolution, the approach
showed great potential for application beyond the jABC context, so that the
scope of the Genesys project has broadened.

Nevertheless, XMDD and jABC remained the integral core of the Gene-
sys framework. Accordingly, reading the following sections is highly recom-
mended, as they introduce the notions and concepts that are required for
understanding all remaining chapters of this book. Sect. 3.1 first introduces
the XMDD approach, which establishes a basic mindset for model-driven and
service-oriented software engineering. Afterwards, Sect. 3.2 introduces jABC
as a concrete framework and toolset for software development along the lines
of XMDD. Sect. 3.3 describes the execution of models in jABC, and Sect. 3.4
elaborates on jABC’s support for system verification via model checking,
which has been used intensively in the Genesys framework (cf. Chap. 6). Fi-
nally, Sect. 3.5 discusses the feasibility of jABC/XMDD as a basis for realizing
the Genesys approach in comparison to related approaches.

3.1 Extreme Model-Driven Development

Today’s software projects are facing several kinds of gaps that may lead to
serious problems or even to failure. First, there are social gaps between peo-
ple involved in developing a software product. Those gaps may be of cultural
nature, e.g., for development teams scattered globally, or they result from
miscommunication between project members with differing mindsets and pro-
fessional backgrounds, such as customers, developers and the management.

S. Jörges: Construction and Evolution of Code Generators, LNCS 7747, pp. 39–71, 2013.
© Springer-Verlag Berlin Heidelberg 2013

40 3 Extreme Model-Driven Development and jABC

Charette [Cha05] lists “poor communication among customers, developers,
and users” as one of the most common reasons for failed projects. Cerpa and
Verner add further communication-related factors such as “customer/users
[sic] had unrealistic expectations” or “process did not have reviews at the end
of each phase” [CV09].

Second, as described by Margaria and Steffen [MS08], system gaps hamper
the construction of software, especially of heterogeneous large-scale systems
that cross organizational boundaries. Typically, such systems are composed of
components, such as libraries or entire products like enterprise resource plan-
ning (ERP) systems, that evolve independently of each other, e.g., because
they are created by different manufacturers. Consequently, updates of single
components are very problematic, as they may affect the correct functionality
of the overall system in an unexpected – and often also unpredictable – way,
thus making the problem diagnosis a very cumbersome task.

Model
Library

Consistent Integration

Global
System
Model

Source Code

Manager

Full Code Generation

Views

Business
Expert

IT
Expert

Models

Services

Constraints

Fig. 3.1. The Extreme Model-Driven Development (XMDD) approach

The XMDD [MS08; MS09a; MS09b] approach illustrated in Fig. 3.1 has
been proposed by Steffen et al. for bridging those gaps. In order to achieve
this, it combines the ideas of model-driven development, service orientation,
extreme programming and aspect orientation [MS09b]. By promoting models
to central and primary development artifacts, XMDD exploits the fact that
models typically raise the level of abstraction (cf. Chap. 1). Moreover, the

3.1 Extreme Model-Driven Development 41

approach postulates that the integration of a system is performed at the
modeling level rather than at the level of software components [MS08].

As shown in Fig. 3.1, modeling is performed on the basis of a library of
models, which are combined to one large artifact, the global system model,
that reflects the actual system. Due to the approach’s focus on this single cen-
tral artifact it is also called the One-Thing-Approach (OTA) [SN07;MS09a].

Integrating the system at the modeling level provides the significant advan-
tage that models are amenable to formal methods. Accordingly, the consis-
tency of the global system model (i.e. the valid combination of its constituent
models) can be ensured by means of corresponding tools that perform, e.g.,
model checking (see Sect. 3.4). Such mechanism help overcoming the com-
patibility and interoperability issues of software components outlined above.

A necessary condition for this modus operandi is the consequent restric-
tion of any system changes to the modeling level. As visible in Fig. 3.1, the
global system model is automatically translated into code for a desired tar-
get platform via full code generation (cf. Sect. 1.1). Due to the fact that this
generated code is complete (i.e. no stubs or skeletons), it can be considered
a by-product that does not have to be modified. Any system changes are di-
rectly performed at the modeling level by adapting the global system model,
followed by a regeneration of the corresponding code.

As the code generator does not need to take care of any manual changes
on the code, results from old generation runs can be overwritten safely. Ac-
cordingly, there is no need for any round-trip engineering mechanisms which
may introduce additional complexity or problems that jeopardize the sys-
tem’s consistency (cf. Sect. 2.4.4). XMDD shares this tenet with other MD*
approaches such as MDSD and DSM (cf. Sect. 2.3).

The global system model is used as a common basis for collaboratively de-
signing the actual system. As a central objective of XMDD, this process is
not solely performed by developers. Instead the customers and/or business
experts are continuously involved in the entire project evolution, with the
global system model being the shared language for bridging the social gaps
described above. Again, the abstract nature of models is beneficial for achiev-
ing this, as any technical details of the final target platform are faded out.
However, several additional mechanisms are required in order to provide a
model that is capable of combining both the developer’s technical perspective
and the business expert’s functional perspective of a system.

One of such mechanisms in XMDD is hierarchical modeling [Ste+97].
As visible in Fig. 3.1, the global system model is constructed in a hierar-
chical fashion, which, apart from reducing the model’s complexity through
modularization, enables a collaborative creation of the model by means of
iterative refinement. Starting at a rather abstract level, which only specifies
the global tasks or features of the system, the model is continuously refined
and enriched, getting more and more concrete with each hierarchy level. Fi-
nally, the models at the lowest level consist of atomic services, which are

42 3 Extreme Model-Driven Development and jABC

elementary building blocks of models, and which represent real functionality
of the system.

This functionality is either reused from existing systems or software com-
ponents (e.g., commercial off-the-shelf or libraries), or it is implemented by
a developer. In order to be able to integrate the represented functionality in
different application domains, services are usually configurable. However, at
the modeling level, the details of the service implementations are not visible,
so that the “system development becomes in essence a user-centric orches-
tration of intuitive service functionality” [MS08]. This orchestration of “real”
functionality has another important advantage: Models composed of services
are immediately executable. Among other things, this enables rapid proto-
typing, debugging and tangibly trying out the modeled system, even at very
early stages of development. As shown at the top left of Fig. 3.1, services are
an integral part of the model library.

Analogous to the reusability of atomic services, hierarchical modeling also
allows the reuse of entire models. Once created, a model can be seen as a
ready-made aspect or feature, which becomes a part of the model library and
thus can be reused in other application scenarios. Consequently, the model
library plays the role of a steadily growing repertoire: With each new applica-
tion domain or developed system, this library is enriched by new models and
services, thus constantly increasing the potential of reuse for any following
projects.

This steady growth even applies to constraints, which are, besides models
and services, the third part of XMDD’s model library. Constraints specify
the consistency rules of the global system model and its constituent parts.
Typically, there are two types of such constraints: local and global constraints.
Local constraints concern the atomic parts of a model, i.e. the contained
services. In contrast to this, global constraints relate to an entire model and
usually ensure the consistent interplay of all contained models and services,
in order to guarantee, e.g., well-formedness and executability.

Both types of constraints are verified by corresponding check tools such
as model checkers (see Sect. 3.4) for global constraints. With each such con-
straint that is added to the library, the impact of the check tools on the
integrity of the global system model as well as the automatic guidance of
the user while modeling is increased, a process which is also referred to as
incremental formalization [Ste+96;MS06].

Another mechanism for facilitating different perspectives on the global
system model in XMDD is the support of views [SM99]. Such views are
typically provided by means of transformations on the representation of the
global system model. Fig. 3.1 shows some examples of different views:

• The manager’s view only contains the topmost hierarchy level of the
model, as he is only interested in the global features or process of the
system.

• The business expert’s perspective on the system is more detailed. He is
able to see more hierarchy levels, but some of the models may be simplified

3.2 jABC 43

(e.g., by hiding error paths). Furthermore, his view does not include the
lowest hierarchy levels that contain the concrete services.

• The IT expert’s view contains the most concrete models at the lowest
hierarchy levels.

MDA also captures different perspectives on a system with its concepts of
CIM, PIM and PSM (cf. Sect. 2.3.3). However, in MDA these different models
are connected by means of transformations of the actual model structure. The
views in XMDD are projections of the global system model. This means that
when a view is created, the global system model itself is not altered, but only
its representation to the user.

By means of hierarchical modeling and views, the global system model
becomes a suitable basis for the collaborative system development outlined
above, as the perspectives of all involved persons are adequately supported.
Apart from bridging the social gaps, the close cooperation with the cus-
tomer/business experts in XMDD leads to shorter feedback cycles and a
higher flexibility for dealing with changing requirements [MS09b]. XMDD
shares those objectives with other agile approaches such as Extreme Pro-
gramming1 [BA04] or Scrum [SB01].

3.2 jABC

jABC [Ste+07; MS08] is a highly customizable Java-based framework that
realizes the tenets of XMDD described above. Previous versions were based on
C++, and the earliest precursors appeared almost two decades ago [Ste+94;
SM99]. Currently, the framework is developed and maintained by the Chair
of Programming Systems at the TU Dortmund.

jABC provides a tool that allows users to graphically develop systems in
a behavior-oriented manner [MS06] by means of models called Service Logic
Graphs (SLGs). As advocated by XMDD, SLGs are constructed hierarchi-
cally, and their elementary building blocks represent concrete services. Those
building blocks are called Service Independent Building Blocks (SIBs). The
jABC tool provides facilities for composing and manipulating SLGs as well
as for instantiating and configuring the contained SIBs. Further functionality
can be added by means of plugins.

Fig. 3.2 shows a screenshot of the tool’s user interface, which consists of
three main areas (corresponding to the numbers in the screenshot):

1. Project and SIB browsers: The project browser (not visible in the fig-
ure) provides an overview of all available projects, which are the basic
organization units in jABC. Each system that is under development is
reflected by a corresponding project which collects all models, services
and constraints that are of interest for and employed by this system.
For enabling the collaborative work on a project, its contents are usually

1 In fact, the “X” in XMDD is a reference to Extreme Programming.

44 3 Extreme Model-Driven Development and jABC

Fig. 3.2. The jABC user interface [JSM10]

managed by a revision control system such as Subversion [Apa11e]. Be-
sides the project browser, the SIB browser enlists all services that can
be used in the current project. The corresponding SIBs are organized by
means of a taxonomy. In this context, taxonomies are graphs in which
the sinks represent services and the intermediate nodes are groups or cat-
egories that subsume several services according to common properties or
characteristics. Such a taxonomy is usually adapted to fit the current ap-
plication domain in terms of which SIBs are visible (and thus applicable),
and how they are named and organized. As visible from Fig. 3.2, jABC’s
SIB browser displays taxonomies as simple tree structures.

2. Canvas: On the canvas, the user graphically models the SLGs that rep-
resent the actual system. After selecting a service from the SIB browser
(1), it can be instantiated by dragging it onto the canvas, where it is
integrated into the SLG.

3. Inspectors: The inspectors provide detailed information on the currently
displayed SLG and on its constituent parts. For instance, the SIB inspec-
tor allows to view and modify the current configuration of a particular
SIB in the SLGs. This is visible in Fig. 3.2: The SIB inspector shows
the configuration of the SIB Generate Index Header which has been
selected in the canvas. As a further example, the Graph inspector al-
lows the configuration of an entire model. Furthermore, it supports the

3.2 jABC 45

modification of metadata associated with an SLG, such as its name. Fi-
nally, plugins are able to add further inspectors that provide specific
information and functionality.

Usually, when working with jABC in a team, several roles with different
responsibilities can be identified [MS06;MS04]. First, the application expert
or business expert has deep knowledge about the tasks and processes of a
particular application, and he uses jABC for modeling this knowledge as
SLGs. For this task, the application expert does not have to be familiar with
the target platform, i.e., the technical infrastructure of the resulting system.
In particular, no programming skills are required.

Second, the domain expert has detailed knowledge about the application
domain including corresponding concepts and terminology. At the beginning
of a new project, the domain expert customizes jABC in order to produce
a variant that is tailored to the concrete domain and that optimally fits the
needs of the application expert. For instance, this customization includes the
adaption of the SIB taxonomy by selecting, naming and categorizing ser-
vices on the basis of domain-specific terminology and characteristics. Further
customization tasks are the selection of suitable plugins as well as the spec-
ification of additional domain knowledge such as supported data types or
constraints [NLS11]. Finally, and most relevant in the context of this book,
the domain expert selects required code generators for the translation of the
SLGs for the desired target platform. If no appropriate code generator is
available, he even may play the role of the generator developer (cf. Chap. 4)
and use the Genesys framework in order to create a code generator that is
tailored to the requirements of the chosen target platform. Accordingly, it
may be advantageous (though not mandatory) if the domain expert is also
roughly familiar with the technical characteristics of the target platform.

Third, the IT expert or SIB expert is technically versed and usually a
classical software developer. Using his IDE of choice (e.g., Eclipse), he creates
new SIBs on demand by integrating existing services or by implementing
new ones. The SLGs created in collaboration with the application expert
provide him with corresponding requirements. Accordingly, the IT expert also
participates in the actual modeling, in particular in the creation of the more
concrete models on the lower hierarchy levels (cf. Sect. 3.1). Furthermore,
the IT expert is responsible for the software infrastructure and the runtime
environment of the target platform.

The customization mentioned in the context of the domain expert is a
central concept in jABC, as it provides the means for flexibly using the
framework in arbitrary application scenarios. In contrast to the DSM ap-
proach described in Sect. 2.3.4, domain-specificity in jABC is not achieved
by constantly creating entirely new languages, but by adapting the ac-
tual framework to the specific needs of the domain. The feasibility of
this modus operandi is witnessed by a large variety of domains that have
been covered in practical projects with jABC. For instance, jABC has
been used for modeling telecommunication services [SM99], experiments in

46 3 Extreme Model-Driven Development and jABC

bioinformatics [MKS08; LMS08], large-scale web applications [KM06], re-
mote configuration management [BM06], supply chain management pro-
cesses [Hör+08], robot control programs [Jör+07], game strategies [BJM09],
test cases [MS04;Raf+08], compiler optimizations [MRS06], property speci-
fications [JMS06] and web services [Kub+09]. This book presents code gen-
eration as another application domain for jABC.

The following sections elaborate on jABC’s core constituents that real-
ize the ideas of XMDD: Sect. 3.2.1 further describes the concept of SIBs,
Sect. 3.2.2 focuses on SLGs and Sect. 3.2.3 enlarges upon plugins. Parts of
those sections are based on a previous publication [JSM10].

3.2.1 Service Independent Building Blocks

Service Independent Building Blocks (SIBs) are the elementary building
blocks of models in jABC. The notation originates from the telecommunica-
tion realm [IIT97; IIT93]. It refers to a SIB being an abstract representation
that is independent of

a) its context of usage, i.e., reusable for composing different applications or
systems (which in turn can be considered services from a compositional
perspective [IIT97]) spanning arbitrary domains, and of

b) the technical realization of the actual service functionality or behavior it
stands for.

As already pointed out in Sect. 3.1, the granularity of the service represented
by a SIB is arbitrary. It ranges from low-level functionality like string con-
catenation or database access to remotely available web services, or even to
the interaction with more complex systems such as ERP software.

The Application Expert’s View on SIBs

From the perspective of an application expert who is modeling a system, the
concrete manifestation of the represented services is entirely transparent and
irrelevant: In order to use a SIB, it is only necessary to know which behavior
it represents, but not how the behavior is implemented. As advocated by
XMDD, application experts resort to a modeling repertoire that contains
ready-made libraries of SIBs, which can be used as simple black boxes.

jABC already ships with a library of such SIBs, the Common SIBs [TU10],
that represent very general and basic services that are of interest for almost
any application domain. The Common SIBs are organized as bundles accord-
ing to their tasks. For instance, the “IO SIBs” represent I/O functionality
such as reading text from a file or creating directories, and the “Collection
SIBs” provide services that deal with different collections such as hash tables
or lists.

In order to enable an intuitive usage in jABC, SIBs have a simple inter-
face [MS04] that provides:

3.2 jABC 47

• a set of parameters which enable the configuration of the SIB’s behavior,
• a set of branches , which reflect the possible execution results of a SIB and

which are used to connect SIB instances in a model via directed edges
(cf. Sect. 3.2.2),

• an icon and a label which are used for visualizing the SIB in the canvas,
and

• a documentation that informs the user about the behavior represented
by the SIB and about the purpose of its parameters and branches.

In order to illustrate this, Fig. 3.2 highlights an example of a SIB used in
a model displayed in the canvas (2). From the SIB browser (1) it is visible
that the SIB is an instance of RunStringTemplate, which is categorized as
part of the Common SIBs bundle called “Script SIBs”. RunStringTemplate
integrates the template engine StringTemplate (cf. Sect. 2.4.2) as a service.
Accordingly, the task of this service is the evaluation of a template. The
corresponding SIB instance in the canvas is labeled Generate Index Header,
and there is another instance of the SIB contained in the model (labeled
Generate Index Footer), which illustrates the reusability of the building
blocks. The icons and labels that are used to visualize the SIB instances in
the canvas can be customized by the application expert.

By selecting a particular SIB instance in the canvas, its details are dis-
played by the SIB inspector (3). As visible in Fig. 3.2, the SIB RunString-
Template provides four parameters, with one of them (“template”) being the
template that should be evaluated by StringTemplate. Furthermore, the SIB
has two branches (not visible in the figure): default, reflecting the case that
the template evaluation succeeded, and error, indicating that the template
could not be evaluated (e.g., due to syntax errors).

In order to enable SIB instances in a model to communicate with each
other, i.e., to share data, the concrete service implementations keep track of
an execution context which acts as a shared memory. Technically, this context
is like a hash table containing a set of key-value pairs. Thus a SIB instance is
able to read and manipulate data that has been stored in the context by other
SIB instances, provided that both SIB instances agree on the key which iden-
tifies the data. While the concrete implementation of the execution context is
irrelevant for (and invisible to) the application expert, it is his responsibility
to specify the keys used by SIB instances for accessing shared data. These
keys are specified by means of special SIB parameters. For instance, the SIB
instance shown in Fig. 3.2 provides a parameter “result” (3) which specifies
the key used to store the evaluation result of the StringTemplate service in
the execution context (in the example, this key is indexPage). Sect. 3.3.2
elaborates on the concept of the execution context in more detail.

The IT Expert’s View on SIBs

Among other tasks (cf. Sect. 3.2), the IT expert provides the application
expert with required SIBs, either by continuously extending the ready-made

48 3 Extreme Model-Driven Development and jABC

libraries such as the Common SIBs, or as a reaction to a direct request.
Implementing a SIB basically consists of two parts: the SIB itself and its
service adapters.

SIB:

The SIB is the (graphical) building block used by the application expert
for composing models in jABC. As pointed out above, it is an abstract rep-
resentation of a specific behavior or functionality, providing parameters for
configuration and branches for reflecting the possible execution results. Tech-
nically, such a SIB is described by means of a very simple Java class which
defines the SIB’s constituents via programming conventions:

• Parameters are defined by all public fields of the Java class. All param-
eters have to be initialized with default values (i.e. in particular null
values are not allowed).

• Branches are separated into final and mutable branches. Final branches
cannot be modified by the application expert when configuring the SIB,
whereas mutable branches can be renamed or deleted. The latter may
be useful if one or more execution results emerge dynamically when the
represented service is executed. The final branches of a SIB are defined by
a final static String array called BRANCHES, and the mutable branches are
specified in a non-constant String array named branches. Furthermore,
if the branches array is initialized at least as an empty array, this enables
the possibility for the application expert to add new mutable branches
via the jABC tool.

• An icon and the SIB’s documentation are specified by implementing spe-
cial methods.

• Optionally, plugins may introduce further information or functionality
by means of corresponding interfaces, which then can be implemented by
the IT expert (see Sect. 3.2.3 and 3.3.1 for examples).

Finally, the class is marked as a SIB via an annotation (@SIBClass), which
also declares a unique identifier (UID) in order to reliably distinguish the
SIB from other SIBs.

The jABC framework only allows a restricted set of data types for spec-
ifying a SIB’s parameters. The set is separated into simple and complex
types. The simple types consist of standard Java data types such as Boolean,
String, numeric types (e.g., Integer, Float), File, arrays and various col-
lections (e.g., ArrayList, HashMap).

Furthermore, the framework supports several complex types which are
listed in Table 3.1. The data types written in italics have been designed
for very specific application scenarios and are rarely used, thus they will
not be considered further in this book. The remaining data types are used
more commonly and serve different purposes. Some of those complex types
represent data that allows to deal with jABC-specific concepts. For instance,
ContextExpression and ContextKey enable working with contents of the

3.2 jABC 49

Table 3.1. Complex built-in data types in jABC

Complex Data Type Represented data
ContextExpression EL expression evaluated on the execution context (cf.

Sect. 3.3.2)
ContextKey Key for accessing contents of a particular execution con-

text (cf. Sect. 3.3.2)
ExtendedFile File located relative to the current jABC project, may be

restricted to specific file types
JavaBeanReference Arbitrary Java object following the JavaBeans program-

ming model [Ora11d]
ListBox Single object/item selected from a fixed list of values
MultiObject Aggregated object, similar to a record in Pascal or a struct

in C
ObjectReference Arbitrary object
Password Password string
SIBLink Link to another SIB instance in an arbitrary SLG
StrictCollection Typed collection
StrictList Typed list
Variable Typed variable

execution context (Sect. 3.3.2 elaborates on the usage of those types). Further
complex types mainly have the purpose of indicating the display of particular
user interface elements in the jABC tool, in order to adequately support
the application expert in specifying the corresponding data. Accordingly, the
type ListBox signals the use of a combo box that allows the selection of one
value from a fixed list of items, and the type Password leads to a typical
password input field which only shows asterisks instead of the entered text.
Finally, other complex types compensate the lack of particular data types
or features in Java, such as MultiObject, which resembles an aggregated
object similar to records in Pascal. Furthermore, StrictCollection and
StrictList represent typed collections which, in contrast to Java’s generics
that are subject to type erasure [Gos+05, p. 56], also retain and use their
type restriction at runtime. As another convention in jABC, all collection
and array types must only contain values which are in turn assignable to one
of the supported simple or complex types.

Please note that this set of data types represents the technical ground-
ing for realizing the parameters of a SIB. Accordingly, those data types are
typically only visible to the IT expert who implements the SIB. The appli-
cation expert who uses a SIB in the jABC tool usually only deals with ab-
stract types. During the customization described above, the domain expert
defines such abstract types and maps them to the corresponding technical
data types [NLS11].

50 3 Extreme Model-Driven Development and jABC

SIB

Platform 1

Service
Adapter

Service

Platform 2

Service
Adapter

Service

Platform n

Service
Adapter

Service

...

Service Calls,
Data Conversions...

Libraries,
Frameworks...

Fig. 3.3. Service adapter pattern for realizing a SIB’s behavior

Service Adapters:

A service adapter realizes the SIB’s behavior for a concrete target platform
using the object adapter pattern [Gam+95]. Particularly, as one SIB may
be executable on multiple target platforms, an arbitrary number of service
adapters can be attached to a SIB. Fig. 3.3 illustrates this pattern. Each
service adapter is implemented in a programming language supported by the
desired target platform, so it may for instance be a Java class, a C# class or a
Python script. Typically, it contains calls to, e.g., platform-specific third party
libraries or systems, that realize the actual service represented by the SIB,
along with corresponding data conversions. Decoupling the concrete platform-
specific implementations from the SIB description assures that the SIB itself
is entirely platform-independent. As soon as at least one service adapter is
implemented for a SIB, the SIB is executable, thus enabling interpretation
and code generation for models that contain the SIB. Sect. 5.2.1 elaborates
on the high importance of the service adapter concept for code generation in
jABC.

3.2.2 Service Logic Graphs

As mentioned above, the models in jABC are called Service Logic Graphs
(SLGs). Basically, SLGs are directed graphs that represent the flow of actions
in an application, thus focussing on its behavioral (dynamic) aspects [MS06].
In formal terms, SLGs are Kripke Transition Systems (KTS) [MOSS99;
MS09a], a combination of Kripke structures and labeled transition systems.
Accordingly, nodes as well as edges are labeled in a KTS:

Definition 1 (Kripke Transition System, KTS). A KTS over a set of
atomic propositions AP is a four-tuple M = (S,A,→, I) where

• S is a finite set of states (nodes),
• A is a finite set of action labels,

3.2 jABC 51

• the transition relation → ⊆ S ×A× S describes possible action-triggered
transitions between states, and

• the interpretation function I : S → 2AP specifies which atomic proposi-
tions hold at which node.

AP is assumed to always contain the propositions true and false, and for
any state s ∈ S, true ∈ I(s) and false /∈ I(s). A finite path π in
M is considered a sequence of states and action labels π = 〈s1, a1, s2, a2,
s3,. . . , sn〉 with si ∈ S and ai ∈ A, such that (si, ai, si+1) ∈→ (also written
si

ai−→ si+1) for i = 1, . . . , n − 1. Infinite paths are defined in a similar
manner [MOSS99]. Furthermore, πi refers to the state si on the path.

The set of atomic propositions AP and the interpretation function I are
mostly required for verification, which is described in more detail in Sect. 3.4.
In the context of SLGs, the nodes in such a graph are SIB instances or,
in order to enable hierarchical modeling (cf. Sect. 3.1), macros that point
to other SLGs. For instance, in the example model depicted on the top of
Fig. 3.4, the nodes labeled Print Exception and Print Success are SIB in-
stances, while the nodes labeled Initialize Docu Generator and Generate
Documentation are macros (indicated by the big dot on their icons).

default

errorerror error 2
default

1

2

error error

error
1

Generate Documentation

Fig. 3.4. Hierarchical models in jABC

The directed edges between the nodes, described by the transition relation
→, indicate the flow of actions. In SLGs , the actions connecting two nodes
are reflected by branches: Each edge is labeled with one or more branches,
whereas the source node of the edge defines the set of possible branches that
can be assigned to that edge. In other words, the wiring of SIB instances
and macros in models is performed on the basis of possible execution results.
Thus roughly speaking, branches could also be seen as potential “exits” of a
SIB/macro.

52 3 Extreme Model-Driven Development and jABC

If a node has more than one outgoing edge, the edges represent alterna-
tive execution flows. For instance, the node Initialize Docu Generator in
Fig. 3.4 has two branches “default” and “error”, each assigned to one outgoing
edge. This reads as follows: If the result of Initialize Docu Generator is
“default” proceed with Generate Documentation, if the result is “error” ex-
ecute Print Exception. If Initialize Docu Generator produces another
result, it is considered an undefined behavior. In order to specify where the
execution of a model starts, a node can be defined as an entry point. This
is indicated by the node’s label being underlined (e.g., Initialize Docu
Generator in Fig. 3.4). Please note that an SLG could potentially have more
than one entry point, depending on whether this is supported by the selected
interpreter or code generator.

Hierarchical Modeling:

In order to enable seamless hierarchical modeling, macros are used just like
normal SIBs. For the application expert, the SLG referenced by a macro is
also considered a service (with the difference that its realization is available as
another model) that follows the same simple interface that is also imposed on
SIBs. In consequence, macros also have parameters and branches. However, as
these parameters and branches belong to an entire model associated with the
macro, they are called model parameters and model branches , respectively.

An SLG’s set of model parameters and model branches is defined by se-
lectively exporting parameters and branches of SIB instances or macros in
that SLG. Fig. 3.4 illustrates this for model branches. The bottom part of
the figure shows the submodel that is associated with the macro Generate
Documentation. This submodel has again one designated entry point, as
indicated by the underlined label of Generate Index Header. For proper
execution semantics, we also need to specify at which points the submodel
can be left in order to return to the parent model. This is done by means
of model branches, which, analogous to SIB branches, define the “exits” of
models. In the jABC tool, such exits are not visualized by concrete edges
pointing to the parent model, but instead the information is displayed in one
of the inspectors (the Graph inspector). For illustration, Fig. 3.4 indicates
the model exits via dashed arrows.

In the example, each SIB instance contained in the submodel has a branch
labeled “error”, all of them exported and mapped to a model branch which
is also called “error” 1 . The name of a model branch or model parameter
can be defined freely by the application expert. Resulting from this specifi-
cation of the “error” model branch, the error handling for all execution steps
in the submodel is delegated to the parent model. Furthermore, the SIB in-
stance Write Index Page exports its “default” branch as a model branch
which is also called “default” 2 . In the parent model, the macro Generate
Documentation provides exactly those two exits “default” and “error”, which
are defined as model branches in the underlying submodel. As with normal
SIBs, these branches then can be assigned to outgoing edges of the macro.

3.2 jABC 53

Likewise, it is possible to define model parameters of a submodel, which then
become the parameters of an associated macro.

Technical Realization:

Technically, jABC manages SLGs by means of a data structure called SIB-
GraphModel which strongly focuses on robustness. In particular, the data
structure ensures that SLGs can always be opened and modified, even if
some or all of the contained SIBs are not available (e.g., because a particular
SIB bundle has not been installed). For this purpose, any affected SIBs are
replaced by a proxy SIB , which is a special generic SIB that is able to emulate
any other SIB’s interface. Thus the proxy SIB that replaces another SIB has
the same parameters and branches, and both can be manipulated in the jABC
tool as usual. Consequently, it is entirely transparent to the application expert
whether all SIBs contained in his models are actually available.

While being an adequate replacement at modeling time, proxy SIBs are
not able to emulate the runtime behavior of a SIB. As proxy SIBs lack corre-
sponding service adapters, they are not executable. Thus proxy SIBs can only
compensate the effects of missing SIBs in a way that the application expert’s
work is not interrupted – however, as missing SIBs threaten the executability
of the modeled system, they pose a problem which has to be fixed by the IT
expert.

Besides its focus on robustness, jABC’s SIBGraphModel data structure is
very extensible. For instance, plugins are allowed to attach arbitrary informa-
tion, called user objects, to all constituent parts of a model (i.e., nodes, edges
and the model itself). Similar to a hash table, any user object associated with
a model element is identified by a unique key.

Metamodeling:

From the metamodeling perspective, SLGs and their associated concepts
(SIBs, branches etc.) are jABC’s metamodel. As this metamodel is hard-wired
in the framework, it is not interchangeable and thus cannot be substituted by
an entirely different one, i.e., jABC is not a language workbench in the sense
described in Sect. 2.3.5. In terms of the metalevels proposed by the OMG (cf.
Sect 2.3.3), modeling in jABC mostly happens on level M1.

However, this is a deliberate design decision that aims at reducing the
framework’s overall complexity in favor of simplicity. In contrast to CASE
tools with their fixed modeling languages (cf. Sect. 2.3.1), jABC’s metamodel
is not static, as it can be customized in a number of ways. For instance,
its abstract syntax can be dynamically extended by new SIBs which thus
increase the size and expressibility of the modeling language. Additionally,
the domain expert’s customization possibilities outlined above allow tailoring
the modeling language to particular domains, e.g., by adjusting the available
language elements via taxonomies, or by adapting the concrete syntax of
SLGs (terminology, icons etc.). By means of a special class of SIBs called

54 3 Extreme Model-Driven Development and jABC

“control SIBs” (cf. Sect. 3.3.3) it is even possible to introduce entirely new
modeling constructs. However, such new constructs usually also require a
corresponding adaptation of jABC’s tooling (e.g., plugins). In this respect,
the modeling languages derived from jABC’s metamodel show characteristics
of both internal (addition of new SIBs, customization by the domain expert)
and external (addition of new modeling constructs) DSLs (cf. Sect. 2.2).

Apart from the abstract syntax, the static semantics of jABC’s metamodel
can also be customized via

• local constraints (cf. Sect. 6.1) which are attached to each SIB,
• global constraints (cf. Sect. 6.2) which are (domain-specifically) defined

for models, and
• plugins (cf. Sect. 3.2.3) which may, e.g., introduce additional well-formed-

ness rules.

This clearly contrasts the approach of language workbenches, which usu-
ally generate a domain-specific environment from a metamodel specification.
jABC achieves this domain-specificity by means of customization and adap-
tation of a generic metamodel and tool. This idea is comparable to UML’s
profile mechanism (cf. Sect. 8.1).

In summary, with this customizable and extensible metamodel, jABC de-
fines a class of domain-specific languages that share a fixed (and thus con-
trolled) common core, the SLG concept.

SLG Types:

In this book, SLGs are used for many different purposes. Hence in the fol-
lowing chapters and sections, any figure containing an SLG is marked with a
small icon in one of its corners, in order to avoid confusion. The icons indicate
the type of the depicted model:

CG Code generator A Any application

F Formula TC Test case

TS Test suite TD Test data

3.2.3 Plugins

Plugins allow adding functionality to jABC, e.g., by extending the jABC tool
with further menus or inspectors, or by enriching SLGs and their constituents
with additional information (i.e., user objects). Plugins are even able to as-
sociate different semantics with one SLG. While the previous section already
anticipated the most common semantics according to which an SLG is a con-
trol flow graph, there are also plugins that interpret SLGs differently, e.g., as
an entity-relationship model [Win06] or even as a formula (cf. Sect. 6.2.1).
Like jABC itself, plugins are implemented in Java and then integrated in
jABC via a simple interface.

3.2 jABC 55

As mentioned above, the selection of suitable plugins is an important task
of the domain expert who customizes jABC for a particular application do-
main. For this purpose, a multitude of plugins is available, supporting dif-
ferent aspects of system development with jABC. Two plugins that are very
important from the perspective of this book are presented in detail in sep-
arate sections: the Tracer, which allows the execution of SLGs (Sect. 3.3),
and GEAR, which enables SLG verification via model checking (Sect. 3.4).
Furthermore, the Genesys framework also provides a jABC plugin in order
to support code generation for SLGs (cf. Sect. 4.3). The FormulaBuilder, an-
other plugin that extends jABC by the ability of modeling and generating
formulas, has been realized on the basis of Genesys and thus is also presented
later on in Sect. 6.2.1. Further relevant plugins are briefly introduced below.

LocalChecker:

The LocalChecker plugin [Neu07; Ste+07] ensures the correct use of SIB
in models by checking local constraints (cf. Sect. 3.1) that are attached
to each SIB. The checks that realize those constraints are directly imple-
mented as Java code: The IT expert adds them to the SIB’s Java class (see
Sect. 3.2.1) by implementing a special interface (LocalCheck). For conve-
nience, the LocalChecker provides a set of general standard checks that are
domain-independent and thus can be used for most SIBs. The bulk of those
checks concern the well-formedness of the SLGs (i.e., they check an SLG’s con-
formance with the static semantics specified by the metamodel, cf. Sect. 2.2).
Examples of such checks include the correct parametrization of a SIB (valid
codomain, input syntax etc.), branches that are not assigned to any outgoing
edges, or unconnected edges that do not have a valid source or target node.
The standard checks already cover the most common modeling mistakes.

CG

Fig. 3.5. The LocalChecker plugin in jABC [JMS11]

While modeling in jABC, all checks specified for the employed SIBs are
performed continuously. Any feedback obtained from the checks is immedi-
ately reported to the user via an additional inspector, which is depicted on the

56 3 Extreme Model-Driven Development and jABC

left side of Fig. 3.5. The figure also shows several examples of messages pro-
duced by different checks, and it is visible that those messages are classified
by severity as errors, warnings or plain informations. For instance, the SIB
“Next Model Parameter” causes a warning (second line from bottom in the
inspector), and for a second instance of the SIB, an incoming edge without
a proper source node leads to an error message (last line in the inspector).
Besides the messages in the inspector, the check results are also indicated
directly in the SLG on the icon of each SIB. Sect. 6.1 elaborates on how the
LocalChecker has been employed in the context of this book.

Annotation Editor:

The Annotation Editor [Nag09] allows attaching almost any kind of informa-
tion to jABC projects as well as to SLGs and their constituent parts (such
as SIB instances or edges). By means of grammars (which are also specified
as SLGs), the Annotation Editor can be tailored to specific application sce-
narios. Such a grammar determines which kind of information is allowed to
be attached to which elements. From the grammar, the Annotation Editor
dynamically assembles a correspondingly adapted user interface for creating
and editing suitable information in jABC. An important application of the
Annotation Editor is, e.g., the documentation of SLGs and their contained
elements.

Taxonomy Editor:

This plugin is mainly used by the domain expert when customizing jABC
for a particular application domain. It allows naming and organizing the
available SIBs in a way that they fit the terminology and concepts of the
targeted domain. For this purpose, the Taxonomy Editor provides a user
interface that shows all available SIBs listed according to their physical Java
package structure. Starting from this view, the domain expert renames and
rearranges the SIBs as required.

jETI plugin:

Java Electronic Tool Integration (jETI) [SMN05] augments jABC by enabling
the inclusion of remotely available services and tools as SIBs. Such SIBs can
be used just like any other SIBs, i.e., the communication with the remote
services is seamless and transparent to the application expert. The corre-
sponding remote services or tools either have to be available on the internet
in some standardized form (e.g., as Web Services [Pap08]), or they are pro-
vided by means of jETI’s own tool server. In both cases, jETI is able to
automatically generate the corresponding SIBs [SMN05;Kub+09], that allow
the application expert to integrate those remote services or tools in his SLGs.

3.3 Model Execution with the Tracer 57

3.3 Model Execution with the Tracer

The Tracer [Doe06; Ste+07; JMS08] enables the direct execution of models
and can thus be considered an interpreter for SLGs . As such it is key to
activities such as rapid prototyping, debugging and monitoring. The Tracer
is separated into two parts: a general execution environment for SLGs and a
corresponding jABC plugin.

The execution environment is an integral part of the jABC framework, and
it provides

• an execution semantics for SLGs , incarnated by a corresponding inter-
preter (thus being an example of pragmatic semantics, cf. Sect. 2.3.6),

• the concept of the execution context (already mentioned in Sect. 3.2.1)
which acts as a shared memory for SIB instances, as well as

• an interface for adding new control flow mechanisms via specific SIBs
called control SIBs.

The Tracer plugin augments the jABC tool with facilities for starting, con-
trolling, observing and debugging SLG executions.

The Tracer is particularly essential to the realization of the Genesys ap-
proach. First, any code generator modeled with Genesys (and thus in jABC)
can be, just like any other SLG, immediately tested by executing it with the
Tracer. Second, when using Genesys for building code generators for jABC
(cf. Sect. 5), the Tracer is the technical basis for an entire class of genera-
tors called Extruders (see Sect. 5.1). Finally, the execution semantics defined
by the Tracer is a guideline for the behavior of the generated code, which
should coincide with the behavior of the traced SLG (execution equivalence,
see Sect. 5.1).

The following sections elaborate on the constituent parts of the Tracer.

3.3.1 Execution Semantics

In parts, the execution semantics for SLGs which is used by the Tracer has al-
ready been anticipated above in Sect. 3.2.2. The execution of an SLG always
starts with one designated entry point (also called start SIB). When a SIB
instance is reached by the interpreter, the underlying service is executed us-
ing the configuration that results from the SIB’s parameter values. How this
happens exactly is specified by the IT expert: In order to be executable by the
Tracer, the SIB’s Java class (see Sect. 3.2.1) has to implement the Tracer in-
terface Executable. This implementation describes the SIB’s behavior when
it is executed by the interpreter. For this purpose, it may call a particular
service or service adapter, it may directly implement the service itself (though
this has several disadvantages for code generation, see Sect. 5.2.1), or it may
contain mock code or delegate to a mock service. The latter is an option for

58 3 Extreme Model-Driven Development and jABC

enabling executability even if the actual service represented by a SIB is not
available yet. If the reached SLG node is not an instance of a SIB but a macro,
the execution descends to the referenced submodel and proceeds with the
submodel’s entry point. The submodel is configured with the values specified
for the macro’s parameters.

By all means, the result of executing a SIB instance or macro should al-
ways be one of the available branches (i.e., branches defined for the SIB or
macro). The interpreter then determines the outgoing edge that is labeled
with this branch and continues executing the corresponding successor. If the
result reflects a model branch, i.e., an “exit” of the SLG, the execution pro-
ceeds with the parent model, and searches for a suitable outgoing edge at
the macro which previously caused the interpreter to descend the hierarchy.
Correspondingly, in this execution semantics, multiple outgoing branches of a
SIB instance or macro usually represent alternative execution flows (though
this pattern may be changed, see “Control SIBs” below).

The execution of an SLG is finished regularly (i.e., successfully) as soon
as it reaches a SIB or macro that is contained in the topmost model of the
hierarchy and that does not have any outgoing edges. The following situations
may cause an execution to stop irregularly:

• The execution does not end at the topmost hierarchy level.
• The execution of a SIB instance produces a result which is not among

the branches defined for the SIB.
• The execution of a SIB instance fails (e.g., because it has been replaced

by a proxy SIB, see Sect. 3.2.2).
• An SLG defines multiple entry points or none at all.

In those cases, the Tracer aborts the execution and reports an error to the
user.

3.3.2 Execution Context

As mentioned above, the execution context is a shared memory that enables
communication of SIB instances in a model. Any SIB instance is able to put
data into the execution context and to read, edit and delete data stored by
other SIB instances. Similar to a hash table, each datum contained in the
execution context is identified by a unique identifier called context key.

In order to enable modeling recursion with an SLG hierarchy, the Tracer
also allows stacked execution contexts. In this setting, each SLG in the hierar-
chy is associated with its own execution context, similar to a local namespace.
Each time the execution descends to a submodel referenced by a macro, a new
execution context is put on the stack of contexts, and when the execution of
the model is finished, the context is removed from the stack and thus ceases
to exist. This concept allows shadowing of context keys, which enables full

3.3 Model Execution with the Tracer 59

support for recursion as known from programming languages. A recursive
SLG can, e.g., be constructed by means of a macro which in turn references
the SLG in which it is contained. The application expert takes the decision
whether a submodel should be executed with its own local execution context
by selecting a corresponding type of macro (see Sect. 3.3.3). Consequently,
stacking of execution contexts can be flexibly enabled or disabled for each
hierarchy level.

Independent of execution context stacking being enabled or not, the Tracer
always provides one designated global execution context which is accessible
from anywhere in the SLG hierarchy. This global context is even maintained
after the actual execution has been terminated, e.g., in order to avoid the
loss of data that resulted from the SLG execution.

Besides being able to work with this global execution context and an op-
tional local execution context associated with their model, SIB instances are
also allowed to access any other context that may be present on the stack.
For identifying the particular execution context that should be accessed, the
Tracer defines four scopes :

• global designates the global context,
• local is the local context associated with the currently executed SLG,
• parent refers to the superordinate context on the stack, which usually

belongs to the current SLG’s parent model, and
• declared references the first context on the stack that contains a specific

key (starting from the local context).

When working with execution contexts, SIB instances that are supposed to
share data have to agree on the corresponding keys. Accordingly, SIBs may
provide parameters of type ContextKey (see Sect. 3.2.1) which allow the ap-
plication expert to configure how the execution contexts are accessed by a
SIB. For this purpose, such a ContextKey parameter demands the specifica-
tion of a name for the key that identifies the data in the context, as well as
the selection of a scope for determining which context should be accessed.
For instance, the SIB inspector depicted in Fig. 3.2 (3) in Sect. 3.2 shows an
example of a context key parameter called “result” which specifies the key
“indexPage” along with the scope “global”. Most SIBs in jABC’s ready-made
libraries (such as the Common SIBs) provide this configurability.

Another type of SIB parameter for working with contents of the execu-
tion contexts is ContextExpression (see Sect. 3.2.1). This data type uses
context expressions written in the expression language (EL) introduced with
the JavaServer Pages Standard Tag Library (JSTL) [Jav06] in order to en-
able dynamic access to the execution contexts. The Tracer’s execution en-
vironment provides corresponding resolvers for evaluating such expressions
during the execution. For instance, the simple expression ${keyName} is

60 3 Extreme Model-Driven Development and jABC

resolved to the value identified by the context key keyName. In this expres-
sion, anything between the characters ${ and } is interpreted as a context
key, and upon evaluation the resolvers search the correspondingly referenced
value in the execution contexts using the scope “declared”. Furthermore, con-
text expressions can be used to perform more complex tasks such as con-
catenating character data (e.g., ${key1}${key2}), accessing attributes of
objects stored in the context (e.g., ${keyOfObject.attributeName}), per-
forming comparisons (e.g., ${key1 <= key2}) or calling external functions
(e.g., ${key}_${Math:random()} for suffixing the string value of key with
an underscore and a random number). In consequence, as expressions may
contain static strings along with the dynamically evaluated parts (such as _ in
the last example), context expressions may even be used as a simple template
language2 (cf. Sect. 2.4.2). However, as working with context expressions re-
quires certain technical skills, they are mostly intended to be used by IT
experts on the lower levels of an SLG hierarchy, rather than by application
experts.

As to the experience of the author, advanced features like stacked exe-
cution contexts or context expressions are not required in most application
scenarios. Especially for applications which do not require recursion, resort-
ing to one single (i.e., flat) execution context instead of the stack variant is
often preferable. This way, application experts do not have to consider scopes
at all, which noticeably eases the creation of SLGs . Furthermore, for applica-
tion experts, context expressions complicate the usage of corresponding SIBs
as they require to learn and to apply the expression language. Hence instead
of producing generic, highly configurable SIBs with context expressions, the
development of more domain-specific SIBs is preferable, because such SIBs
are usually significantly easier to use.

For the sake of simplicity, the remainder of this book will use the singular
notion “the execution context” for both a flat execution context and for the
stack variant.

3.3.3 Control SIBs

As a further important feature, the Tracer’s execution environment supports
the extension and adaptation of the standard execution semantics for SLGs
described above. Such extensions can be performed by means of specific SIBs
called control SIBs. In contrast to normal SIBs, control SIBs do not represent
an underlying service that is executed by the Tracer. Instead, when the execu-
tion arrives at a control SIB, the Tracer completely hands over the execution
control. As control SIBs are granted full access to the execution environment,

2 In fact, the EL language combined with a corresponding implementation, such
as the resolvers provided by the Tracer’s execution environment, is just another
template engine.

3.3 Model Execution with the Tracer 61

they are, e.g., able to create new execution contexts or even new execution
threads. Given these competences, control SIBs are able to alter existing
control flow patterns and to define new ones. Currently, jABC provides a
small set of standard control SIBs that add control flow patterns for hierarchy,
multi-threaded execution as well as event handling.

The previous sections already stated that hierarchy in SLGs is created by
means of macros. In fact, those macros are control SIBs which tell the Tracer
to continue the execution with corresponding submodels. As mentioned above
in the description of the execution context, there are several types of macros
that represent different ways for executing a submodel. The standard macro
is the MacroSIB, which simply executes the referenced submodel using a
flat execution context. In contrast to this, the GraphSIB creates a new local
context for the execution of the submodel (i.e., stacked execution contexts
are used). The ThreadSIB behaves similarly, but it additionally executes the
submodel in a separate thread. Thus by selecting one of those three macros,
the application is able to determine how the referenced submodel should be
executed and in particular which type of execution context (flat or stacked,
cf. “Execution Context” above) is employed.

Further control SIBs allow the use of multi-threading in SLGs. For this
purpose, the ForkSIB modifies the standard execution semantics that usu-
ally treats multiple outgoing edges as alternative execution paths. For the
ForkSIB, each outgoing edge represents a separate thread, so that upon exe-
cution, the Tracer follows all specified outgoing edges in parallel. Via another
control SIB, the JoinSIB, threads can be synchronized and remerged as one
single thread. SLG 4 in Fig. 6.9 (Sect. 6.3.1) illustrates the use of those two
control SIBs. When executing this model, the ForkSIB creates one thread for
each outgoing edge (“Thread1” and “Thread2”), so that the macros Sequence
and Recursion are executed in parallel. Afterwards, the JoinSIB synchro-
nizes the two threads, i.e., it waits for both threads to finish and then proceeds
with the execution in one single thread.

In order to enable proper execution, the Tracer defines strict rules for the
well-formedness of such fork-join constructs. First, fork and join are only al-
lowed to occur pairwise, i.e., for each ForkSIB there has to be exactly one
corresponding JoinSIB that synchronizes exactly those threads created by
the ForkSIB. Correspondingly, the number of outgoing edges of a ForkSIB
(i.e., the number of created threads) has to match the number of incom-
ing edges of the corresponding JoinSIB. In particular, this entails that the
modeled threads between the ForkSIB and the JoinSIB must not contain
any “exits”, such as model branches or other paths that bypass the JoinSIB.
Furthermore, fork-join constructs have to be nested in a way that does not
violate any of the above rules. If a fork-join construct violates one or more of
these rules it is not well-formed and thus will lead to an irregular termination
of the execution.

62 3 Extreme Model-Driven Development and jABC

Finally, there are also control SIBs that support event handling. Those con-
trol SIBs allow to suspend the execution of a model until it receives a specific
event. Furthermore, a submodel can be specified that handles the incoming
event. In order to avoid infinite waiting, the suspension of the execution can
be restricted by means of a timeout.

The control flow mechanisms supported by the standard execution seman-
tics and by the existing control SIBs have proven sufficient for all application
scenarios of jABC so far. However, further control flow patterns (e.g., those
from [VDA+03] that are not yet supported) can be added on demand by
implementing corresponding control SIBs.

3.3.4 Tracer Plugin

The Tracer plugin can be considered a debugger for SLGs . Besides allowing to
simply execute an SLG straightaway by pushing a “play” button, it is also able
to graphically visualize the current state of an execution. This is depicted in
Fig. 3.6. In the SLG on the right hand side, the SIB that is currently executed
(Generate Model Pages) is marked by a little icon, and the previous path
of the execution is also made visible by means of highlighted edges.

CG

Fig. 3.6. Executing an SLG with the Tracer

The dialog that is shown on the left hand side of Fig. 3.6 has two purposes.
First, it allows to control the execution: By means of the buttons on the top,
the user is able to start, pause and stop the execution at any point. Second, the
dialog displays information about the current execution, such as the currently

3.4 Model Checking with GEAR 63

running threads, the current contents of the execution contexts and a history
reflecting the execution path so far.

Instead of visually executing the SLG step by step, the user may also define
breakpoints which cause the execution to stop at specified points of interest.

3.4 Model Checking with GEAR

As outlined in Sect. 3.1, safeguarding the consistency of the global system
model while it is composed from models and services is a central requirement
of the XMDD approach, as it helps overcoming typical system gaps. Further-
more, only a consistent global system model can be properly executed and
translated to working code. The rules that have to be followed (or, in other
words, the properties that have to be satisfied) in order to ensure this consis-
tency are specified by means of (temporal) constraints, which are an integral
part of XMDD’s model library. Those constraints form a steadily growing
library and thus are the basis of incremental formalization (cf. Sect. 3.1).
Sect. 3.2.3 already presented the LocalChecker plugin, which focusses on ver-
ifying local constraints that concern the single SIB instances in a model.
However, an additional check tool is required that takes care of global con-
straints which describe the rules addressing entire models.

As also stated above, a central advantage of shifting all activities of sys-
tem development to the modeling level is the fact that models are amenable
to formal methods. Among those, model checking [CGP99; QS82; MOSS99]
is an established technique for checking whether a given model satisfies a
specified property. The GEAR plugin [Bak+09] enables user-friendly model
checking of global constraints for SLGs in jABC based on a game-based ap-
proach [Bak+07;MOY04]. The following sections introduce this plugin from
the user perspective: Sect. 3.4.1 elaborates on how global constraints for
GEAR are specified and Sect. 3.4.2 describes how the GEAR model checker
is actually used via the corresponding jABC plugin. Please note that the sec-
tions only focus on those parts of GEAR which are important in the context
of this book. For more details on GEAR’s conceptual and algorithmic aspects,
in particular on the realization and impact of the employed game-based ap-
proach, please refer to [Bak+07;MOY04;Yoo07]. Finally, Sect. 6.2 elaborates
on how GEAR has been applied for model checking of code generators.

3.4.1 Specification of Global Constraints

When working with model checkers, constraints or properties that should be
verified are typically specified by means of temporal logics [CGP99]. This ap-
proach is quite general, as temporal logic is sufficient to express any required

64 3 Extreme Model-Driven Development and jABC

property [Ste89; SI94]. GEAR essentially is a model checker for the modal
μ-calculus [Koz83], which is its core logic for formulating global constraints.
However, GEAR also supports “derived, more user-friendly logics” [Bak+09]
(or also “domain-specific specification languages” [Bak+09]) such as the Com-
putation Tree Logic (CTL) [BAPM83; CE81]. Such alternative logics and
specification formalisms can be flexibly added to GEAR on the basis of so-
called macros (called GEAR macros in the following in order to avoid con-
fusion with the macros used in SLGs for modeling hierarchy, cf. Sect. 3.2.2).
Basically, a GEAR macro is an abbreviation or a pattern that represents a
specific formula, and that can be used like a simple black box (similar to the
idea of SIBs), thus leading to more readable and concise constraints. When
using a GEAR macro, GEAR automatically expands it and internally – i.e.,
transparently to the user – translates it to the modal μ-calculus. This even al-
lows mixing several formalisms and languages in one constraint specification
(see Sect. 6.2 for example constraints).

The flexibility and extensibility of GEAR’s input syntax is a powerful fea-
ture as it allows to continuously improve the accessibility and simplicity of
property specifications. For instance, this mechanism is used to incorporate
the property specification patterns proposed by Dwyer et al. [DAC99]. Those
patterns capture common constraints concerned with the occurrence or order
of actions in a formalism-independent way, and thus are, in terms of their
abstraction level, on par with GEAR macros. Sect. 6.2 shows several exam-
ples of those patterns, which are frequently used in this book for specifying
constraints for code generators.

The FormulaBuilder is an extension of GEAR that aims at further eas-
ing the specification of constraints. This jABC plugin allows to graphically
formulate constraints as SLGs, which can be seamlessly used, just like any
other constraints, for performing model verification with GEAR. Since the
FormulaBuilder is also an application of the Genesys approach, it is presented
in detail in Sect. 6.2.1.

Finally, as this book uses a variant of CTL for the formal description of
constraints, this logic is briefly introduced in the following.

Computation Tree Logic (CTL)

CTL can be used to formulate temporal constraints of a model or, more for-
mally, of a computation tree, which can be represented, e.g., as a Kripke
structure [CGP99] or as a Kripke Transition System (cf. Sect. 3.2.2). For
instance, such constraints are concerned with the reachability or order of cer-
tain states. For the specification of constraints, CTL employs path quantifiers
and temporal operators [CGP99]. The former refer to the branching structure
of a model, and the latter describe properties that hold on a single path. The

3.4 Model Checking with GEAR 65

possible path quantifiers in CTL are A meaning “for all paths”, and E meaning
“for some paths”. Furthermore, there are four temporal operators:

• X φ (“next”): The property φ holds in the next state of the path.
• G φ (“globally”): φ holds in all states of the path.
• F φ (“finally”): φ holds eventually at some state of the path.
• φ U ψ (“until”): ψ holds at some state of the path and φ holds in all

preceding states. This operator is sometimes also called “strong until” as
it requires ψ to hold finally [MOSS99]. There is also a commonly used
variant of this operator called “weak until” (φ WU ψ) which does not
demand the occurrence of ψ, but instead also allows φ to hold forever.

Due to the fact that its operators quantify over paths that start in a specific
state of the model, CTL belongs to the branching-time logics [MOSS99]. For
the formal description of temporal constraints, this book uses a variant of
CTL based on a logic described by Schmidt and Steffen [SS98]. This variant
adds the box ([]) and diamond (〈〉) operators known from Hennessy-Milner
logic [HM85;Mil89] along with corresponding backward counterparts ([] resp.
〈〉). Those operators are basically parametrized versions of the “next” operator
that allow to refer to certain actions. The following definition describes how
formulas of the CTL variant are composed syntactically:

Definition 2 (Syntax of CTL variant, based on [SS98] and [MOSS99]).
The syntax of a CTL formula is defined as follows3:

φ ::= p | ¬φ | φ ∧ φ | φ ∨ φ | φ⇒ φ

| [a] φ | [a] φ | 〈a〉 φ | 〈a〉 φ
| AG φ | EG φ| AF φ | EF φ| A[φ U φ] | E[φ U φ]

with p being an element of a set of atomic propositions AP and a being an
element of a finite set of action labels A.

Please note that the definition is reduced to those syntactic elements that are
required for the descriptions in this book. Consequently, it does not contain
all CTL extensions introduced in [SS98] (e.g., the parametrized version of the
AG operator).

The semantics of those formulas can be defined with respect to Kripke
Transition Systems (KTS, see Definition 1), which are the formal basis of
SLGs :

Definition 3 (Semantics of the CTL variant, based on [HR04, p.
211] and [MOSS99]). Let M = (S,A,→, I) be a KTS. The relation M, s �
φ (read as “φ holds in state s of M”) is defined by structural induction on φ:
3 The notation of the syntax description is based on the well-known Backus-Naur

Form (BNF) [Bac+63].

66 3 Extreme Model-Driven Development and jABC

1. M, s � p ⇔ p ∈ I(s)
2. M, s � ¬φ ⇔ M, s � φ
3. M, s � φ1 ∧ φ2 ⇔ M, s � φ1 and M, s � φ2

4. M, s � φ1 ∨ φ2 ⇔ M, s � φ1 or M, s � φ2

5. M, s � φ1 ⇒ φ2 ⇔ M, s � φ1 or M, s � φ2

6. M, s � [a] φ ⇔ for all t with s a−→ t we have M, t � φ
7. M, s � [a] φ ⇔ for all t with t a−→ s we have M, t � φ
8. M, s � 〈a〉 φ ⇔ there exists a t with s a−→ t such that M, t � φ
9. M, s � 〈a〉 φ ⇔ there exists a t with t a−→ s such that M, t � φ

10. M, s � AG φ ⇔ for all paths π with π1 = s and all si along the
path, we have M, si � φ

11. M, s � EG φ ⇔ there exists a path π with π1 = s and for all si

along the path, we have M, si � φ
12. M, s � AF φ ⇔ for all paths π with π1 = s there exists an si such

that M, si � φ
13. M, s � EF φ ⇔ there exists a path π with π1 = s for which there

exists an si such that M, si � φ
14. M, s � A[φ1 U φ2] ⇔ for all paths π with π1 = s there exists an si

such that M, si � φ2 and for each j < i we have
M, sj � φ1

15. M, s � E[φ1 U φ2] ⇔ there exists a path π with π1 = s for which there
exists an si such that M, si � φ2 and for each
j < i we have M, sj � φ1

It is often convenient to use [Act] and 〈Act〉 for a set of action labels Act ⊆
A [MOSS99]:

[Act] φ
def
=

∧

a∈Act

[a] φ 〈Act〉 φ def
=

∨

a∈Act

〈a〉 φ

Using this notation, the original (unparametrized) “next” operator of CTL
can be written as:

AX φ
def
= [A] φ EX φ

def
= 〈A〉φ

The “weak until” operator mentioned above can be expressed by means of
the “until” operator [Lar95]:

A[φ1 WU φ2] ≡ ¬E[¬φ2 U (¬φ1 ∧ ¬φ2)]
E[φ1 WU φ2] ≡ ¬A[¬φ2 U (¬φ1 ∧ ¬φ2)]

3.4.2 GEAR Plugin

The GEAR plugin provides a user interface for verifying SLGs in jABC.
In order to account for the various roles involved in working with jABC

3.4 Model Checking with GEAR 67

(cf. Sect. 3.2) and their different skill sets, the plugin supports two different
inspectors: the basic and the advanced view.

The basic view is visible on the bottom left of Fig. 3.7. It is intended for
application experts and other users who want to check whether their mod-
eled SLGs satisfy a given set of constraints. This set consists of a selection
of constraints from the constraint library, which are applied to the current
domain. This selection is usually performed by the domain expert (or a dedi-
cated specification expert as described in [Bak+09]). The basic view provides
a simple list of those active constraints which are displayed in form of nat-
ural language descriptions. While assembling an SLG, the active constraints
are checked continuously4, and the list entries in the basic view are marked
green or red depending on whether the corresponding constraint is satisfied
or not, respectively. For further inspection, the application expert may select
a particular constraint in the list: Consequently, each SIB in the currently
displayed SLG is marked with a green or red box, depending on whether
the selected constraint holds at this node. For instance, in the basic view in
Fig. 3.7, the first constraint from the list is marked red (indicated by a “*”),
meaning that it is not satisfied by the current SLG. The constraint descrip-
tion says “Errors are always handled.”. By clicking the constraint in the list,
the source of the error can be identified directly in the SLG shown at the
top of Fig. 3.7. All SIBs in this SLG are marked with a green box, except for
Extrude Java Class (again indicated by a “*”). Unlike the others, this SIB
misses an outgoing edge labeled “error” which models how errors should be
handled, thus violating the constraint. In this case, the error can be corrected
by simply adding the missing edge.

For domain experts and specification experts who are versed in the em-
ployed specification formalisms, the advanced view provides means for further
diagnosis. As visible on the bottom right of Fig. 3.7, this view shows the for-
mula underlying a constraint, in this case the formula associated with the
constraint exemplified above. Furthermore, the view displays the syntax tree
of the formula which may be used for further inspection: Each node in this
tree corresponds to a subformula, and on selecting a particular node, again
green or red boxes highlight the SIBs in the SLG based on whether they sat-
isfy the selected subformula. This also works in the opposite direction: When
selecting a particular SIB in the SLG, the single nodes in the syntax tree are
marked green or red, so that the user is able to see which subformulas are
satisfied by the SIB and which are not satisfied. Bakera et al. refer to this as
reverse checking [Bak+09].

The advanced view supports the creation and modification of constraints by
means of features such as syntax highlighting, on-the-fly syntax checking and
auto completion. An additional formula manager dialog (not visible in Fig. 3.7)
allows adding constraints to or removing them fromthe set of active constraints,
and it is also used for providing the natural language descriptions displayed to
4 Alternatively, the check can be triggered manually via the “Check” button.

68 3 Extreme Model-Driven Development and jABC

*

*

CG

Fig. 3.7. User interface of the GEAR plugin

the application expert in the basic view. Furthermore, the advancedview allows
access to GEAR’s game-based facilities [Bak+09].

Finally, the GEAR plugin provides an inspector (also not shown in the
figure) for manually equipping SIBs in an SLG with atomic propositions.
Please note that atomic propositions may also be automatically attached to
SIBs or, e.g., derived from the domain knowledge specified by the domain
expert [Lam+10].

3.5 jABC as a Basis for Realizing the Genesys
Approach

As mentioned at the beginning of this chapter, the demand for code gener-
ation facilities in jABC was the initial motivation for starting the Genesys
project. Beyond that, jABC in general provides a suitable basis for realiz-
ing the requirements of the Genesys approach presented in Sect. 1.1. In fact,
jABC and its plugins contribute to most requirements:

• Requirement G1 - Platform Independence: jABC’s service mechanism em-
bodied by SIBs facilitates platform independence as demanded by this
requirement: SIBs represent arbitrary services (i.e., there are no restric-
tions whatsoever), and the corresponding implementations can be easily
interchanged. The latter is performed by adding new or replacing exist-
ing service adapters, which requires no changes at the modeling level and
which is thus transparent to the generator developer.

3.5 jABC as a Basis for Realizing the Genesys Approach 69

• Requirement G2 - Reusability and Adaptability: As pointed out in Sect. 3.1,
both reusability and adaptability are rooted as very basic principles in
XMDD, which are obtained by establishing libraries of models and ser-
vices. The reusability of models is enabled by means of hierarchical mod-
eling.

• Requirement G3 - Simplicity: As jABC essentially aims at involving non-
programmers in the design and development of software systems, it is
specifically designed towards simplicity.

• Requirement G4 - Separation of Concerns : The separation of concerns is
supported by jABC via hierarchical modeling.

• Requirement G5 - Verification and Validation: The LocalChecker plugin
and the GEAR plugin provide powerful verification mechanisms.

• Requirement S1 - Domain-Specificity: jABC can be tailored to a specific
domain by a domain expert, using mechanisms such as SIB taxonomies,
plugins and code generators.

• Requirement S2 - Full Code Generation: Due to the combination of mod-
els and services, jABC’s SLGs represent complete and executable (sub-)
systems, and thus contain all information required for the generation of
complete code (cf. Sect. 2.4.4).

• Requirement S3 - Variant Management and Product Lines : As will be
shown in Sect. 4.1.4, the mechanisms for hierarchical modeling in jABC
also form an adequate technical basis for specifying variability.

• Requirement S5 - Bootstrapping: Bootstrapping is enabled by the ex-
ecutability of jABC models and by the availability of the Tracer (cf.
Sect. 5.1).

In sum, jABC was an obvious choice for the reference implementation of the
Genesys approach. However, the question arises as to whether other MD*
approaches and tools would also be suitable for such an implementation. The
remainder of this section exemplarily discusses this for several approaches
related to XMDD and jABC. Please note that the presented list is not ex-
haustive, as the consideration of all related work5 of XMDD and jABC is
beyond the scope of this book. Instead the following discussion is intended to
provide an intuition for which general characteristics and features are neces-
sarily required for realizing the Genesys approach.

MDA:

As pointed out in Sect. 2.3.3, platform independence and reusability (Gene-
sys requirements G1 and G2) are primary concerns of MDA. Furthermore,
UML’s profile mechanism (see Sect. 8.1 for details) is designed to support
domain-specificity (requirement S1), and there are also various approaches
to the verification (requirement G5) of UML models (e.g., [LMM99;Sch+04;
5 See, e.g., [Ste+07] or [Nag09] for more discussions on related work of XMDD

and jABC.

70 3 Extreme Model-Driven Development and jABC

JS04]). However, especially when using UML, MDA is not a suitable basis
for the Genesys approach due to several reasons.

First, UML does not per se include concepts for modeling with services.
There have been several proposals for extending it correspondingly (e.g.,
[HLT03;LS+08]), but those extensions usually add bare modeling constructs
and terminology only. In particular, this means that at modeling time, there
is usually no direct connection between the services reflected as correspond-
ing constructs in the models, and their actual implementation(s). In jABC,
this relationship is established by means of the service adapters attached to
each SIB.

The second problem of UML is the lack of model executability. In con-
trast to this, jABC models are executable by design, and the Tracer provides
a corresponding interpreter as well as a debugging environment. The lack
of comparable facilities in UML particularly impedes the realization of the
Genesys requirements S2 - Full Code Generation and S5 - Bootstrapping.
Sect. 2.4.4 already pointed out that initiatives like Executable UML aim at
adding executability to UML, but typically come at the expense of the ab-
straction provided by the models.

Finally, this lack of abstraction, which is often criticized for UML in general
(cf. Sect. 2.3.3), also impinges upon simplicity (requirement G3).

BPM:

As mentioned in Sect. 2.6, approaches in the realm of BPM very often employ
graphical modeling on the basis of services. In consequence, executability is a
natural characteristic of the models occurring in those approaches. Sect. 2.3.6
listed several examples of process engines that execute the various notations
available in BPM. Just like for UML, there are also several approaches to
verification that apply to different process notations used in BPM [Mor08].

However, the Genesys approach typically requires executability for rapid
prototyping, fast debugging during development as well as for realizing full code
generation and bootstrapping. After a code generator is completed, it is typi-
cally translated into a desired implementation language running on a particular
host platform (such as the JVM). In contrast to this, in BPM approaches, pro-
cess engines are the host platform rather than primarily being a helpful device
duringmodeling. Consequently, those engines usually provide features that aim
at supporting the operation of large software systems, such as scalability, per-
sistence or long-running transactions. While useful for the typical application
scenarios of BPM, those features are not required for the development of code
generators and thus provide a significant overhead. The lightweight execution
enabled by jABC’s Tracer is much more suitable in this context.

Another fundamental difference can be observed for domain-specificity.
Due to the fact that jABC can be tailored to specific domains by design
(as described in Sect. 3.2), it can in particular be easily customized for the
domain “code generation”. However, tools for BPM usually are optimized for
and thus restricted to one specific domain – business processes. Consequently,

3.5 jABC as a Basis for Realizing the Genesys Approach 71

BPM tools are not intended at all for the development of code generators,
and thus are by their very nature not able to support a generator developer
like a customized domain-specific tool.

DSM and Language Workbenches:

Sect. 2.3.4 and 2.3.5 pointed out that the DSM approach and the class of
tools called language workbenches include domain-specificity by definition:
Both are based on providing dedicated development environments for the
creation of domain-specific solutions. Due to this very general orientation,
all requirements of the Genesys approach could be realized with DSM or
language workbenches (excluding those language workbenches that only focus
on textual DSLs, such as Xtext or Spoofax).

Realizing the Genesys approach this way would include the design of a
graphical DSL that allows modeling code generators on the basis of services,
and, where required, the implementation of corresponding specific tooling
(e.g., an interpreter for execution, and tools for verification and testing).
Consequently, such an approach would have cost significantly more develop-
ment time than required for the jABC-based solution presented in this book.
As jABC already provides a customizable modeling language, a correspond-
ing modeling environment, useful plugins and several libraries of ready-made
services (e.g., the Common SIBs), it was clearly preferable to DSM and lan-
guage workbenches.

Part II

The Genesys Framework and Case Studies

4

The Genesys Framework

The Genesys code generation framework is a reference implementation of
the ideas that constitute the Genesys approach presented in this book. As
mentioned in Sect. 3, the jABC framework and its underlying XMDD ap-
proach form the technical and conceptual basis for this implementation. At
the same time, jABC is also an appropriate domain for applying the Genesys
framework in case studies (see Chap. 5).

Constraints

Genesys Framework

jABC PluginDeveloper Tools Maven
Plugin

Generator
Developer

Generator
User

Generator Models

Services

Generator
Binaries

Testing Framework

Fig. 4.1. Genesys architecture and involved roles

Fig. 4.1 shows how the reference implementation is organized, the central
part being the actual framework, which consists of the following components:

S. Jörges: Construction and Evolution of Code Generators, LNCS 7747, pp. 75–100, 2013.
© Springer-Verlag Berlin Heidelberg 2013

76 4 The Genesys Framework

Services: The framework provides a library of services that cover typical
functionality required for most code generators, such as type conversion,
identifier generation, model transformations and code beautification (Re-
quirement G2 - Reusability and Adaptability). These services are available
as SIBs (cf. Sect. 3.2), so that they can be used as atomic building blocks
for code generator models built with jABC. Sect. 4.1 further elaborates
on this service library.

Generator Models: As described in Sect. 3.2, XMDD does not only sup-
port the reuse of services, but also of entire models (Requirement G2
- Reusability and Adaptability). Consequently, the framework contains a
library of code generator models which realize further typical function-
ality such as loading and traversing input models, e.g., jABC’s SLGs or
EMF models (cf. Chap. 7). Just like the atomic services mentioned above,
these models can be directly reused as macros when building a new code
generator (thus representing ready-made features in the sense of XMDD,
see Sect. 3.1). They can also serve as patterns which are instantiated or
adapted for new code generators. Furthermore, the model library contains
most code generators created in the case studies which will be presented
in Chap. 5–8. The rationale behind this is that each new code genera-
tor contributes to this library of models, so that the available repertoire
and the potential for reuse is growing continuously (Requirement G2 -
Reusability and Adaptability).

Generator Binaries: In order to be accessible by tools and users, the frame-
work also includes all code generators as compiled Java classes. For this
purpose, each modeled code generator is translated to an appropriate
Java class via the Genesys Code Generator Generator (see Sect. 5.2.6).

Testing Framework: As an addition to manually testing a code generator by
executing its models with the Tracer (cf. Sect. 3.3), the Genesys frame-
work also includes an approach for the automated model-driven testing of
code generators. In this approach, test cases as well as the corresponding
test inputs are also modeled as SLGs. Subsequently, dedicated code gen-
erators (again developed with Genesys) translate these SLGs into test
scripts or test programs running on a desired test platform. Sect. 6.3
elaborates on the details of this approach, which is currently realized for
jABC code generators, i.e., those which support SLGs as input models
(see Chap. 5). Accordingly, the provided facilities include a library of SIBs
for building test cases and test data models, a collection of standard test
cases covering the domain of jABC models as well as a testing strategy
for checking whether the execution semantics of a model is retained by
the code generation (cf. Sect. 6.3.1).

4 The Genesys Framework 77

Constraints: For verifying code generators via model checking, the framework
provides a library of global constraints which specify required properties
such as the complete processing of the input data or proper handling of
errors. These constraints are specified graphically as formula graphs and
then translated to temporal logics by the FormulaBuilder (cf. Sect. 6.2.1),
which is also an application of jABC and Genesys. Sect. 6.2 presents
examples of such global constraints for code generators and shows how
they are specified.

Above the framework, Fig. 4.1 shows tools that support the usage and the
development of code generators. The jABC plugin allows the configuration
and invocation of code generators within the jABC editor, and the Maven
Plugin enables the integration into a Maven-based project setup. Finally, the
developer tools bundle utilities that support the creation of code generators.
All tools will be presented in more detail in Sect. 4.3.

Fig. 4.1 also indicates the roles that are targeted by Genesys. First, Ge-
nesys addresses generator developers (left hand side of Fig. 4.1) by providing
facilities that support creating, adapting, verifying and testing code gen-
erators. For this purpose, they use a specific jABC bundle tailored to the
domain “code generation”, containing all services, models and tools depicted
in Fig. 4.1. In combination, the ready-made services and models form a DSL
for building code generators. Second, Genesys offers a library of ready-made
code generators which can be used without deeper knowledge of the Genesys
approach or the internals of the framework. Generator users (right hand side
of Fig. 4.1) may access these generators by means of the tools outlined above
(jABC plugin, Maven plugin), or integrate the generator binaries into their
own applications via API.

When Genesys is applied to jABC itself, i.e., used for developing a code
generator whose source language is given by SLGs, the above two roles can
be related to the jABC roles introduced in Sect. 3.2. In this specific scenario,
which is examined in greater detail in Chap. 5, the generator developer equals
the domain expert and the generator user is congruent with the application
expert. When creating a domain-specific jABC variant for the application
expert, the domain expert also has to define how SLGs are translated to
code in the target domain by creating new code generators with Genesys or
selecting existing ones. The application expert then uses the jABC variant
customized by the domain expert to model and to generate an application
for the target domain.

The following sections will elaborate on Genesys’ constituent parts, start-
ing with the atomic services for creating code generator models (Sect. 4.1).
In order to give an idea of modeling a code generator with Genesys, Sect. 4.2
describes a complete example of a simple code generator. Finally, Sect. 4.3
presents all tools provided by Genesys.

78 4 The Genesys Framework

4.1 Services for Building Code Generators

The Genesys framework is equipped with many ready-made atomic services
which are made available as SIBs, the most important building blocks for cre-
ating code generator models. Following the principles of service orientation,
these services are black boxes with very simple interfaces, and, in conse-
quence, easy to use without any knowledge of their actual implementation
(Requirement G3 - Simplicity). The availability of such ready-to-use services
saves the generator developer from having to start from scratch, thus speeding
up the overall development (Requirement G2 - Reusability and Adaptability).
The following sections present services which are especially relevant to the
code generation domain. As the description of all available SIBs (more than
200 Common SIBs and around 40 Genesys-specific SIBs) would go beyond
the scope of this book, there is a focus on those services which are essential
to most code generators. For an exhaustive list of all available SIBs please
refer to the documentation of the Common SIBs [TU10] and the Genesys
SIBs [Jör10].

Please note that the following descriptions focus on the parameters when
explaining the structure of the SIBs. This is due to the fact that all presented
SIBs provide the same two branches: default, meaning that the service has
been executed successfully, and error, indicating that the execution of the
service has failed.

4.1.1 Contributions to the Common SIBs

During the development of Genesys, many SIBs had to be created, in partic-
ular at the very beginning of the project. At this time, Genesys significantly
pushed the development of jABC’s Common SIBs (cf. Sect. 3.2.1), thus con-
tributing to the availability of general jABC services. Any created SIB which
was suitable to be used with a broader scope than code generation has been
added to the Common SIBs.

The following SIB bundles have been heavily influenced by Genesys and
thus are used in nearly any code generator:

Basic SIBs: The SIBs contained in this bundle provide very basic func-
tionality which is required by nearly any application modeled in jABC
(especially by any Genesys code generator). This mainly includes build-
ing blocks for manipulating the execution context (see Sect. 3.3.2), e.g.,
creating, modifying, removing or copying context entries, as well as for
thread-safe access, and locking or unlocking context entries. Furthermore,
the bundle provides SIBs that realize control flow patterns such as con-
ditional constructs (“if” and “switch”) and loops. There are also building
blocks for the basic support of application-level logging and performance
measurement. Due to their elementary character, most SIBs in this bun-
dle are very generic and represent rather fine-grained functionality.

4.1 Services for Building Code Generators 79

Graph Model SIBs: This bundle provides building blocks for handling SLGs
and hence is relevant to code generators that are built for jABC (cf.
Chap. 5). It includes SIBs for loading and traversing hierarchical SLGs
as well as for retrieving information from contained SIBs (e.g., SIB labels,
parameters, branches, outgoing edges, successors in the SLG, or user ob-
jects). Due to this reflective character, the bundle can be considered a
metamodel API for accessing SLGs and their constituent parts. The more
than 60 SIBs of this bundle were originally a part of Genesys, but have
been contributed to the Common SIBs in order to enable SLG accessi-
bility for other jABC applications. Please note that in order for a code
generator to be able to deal with another modeling language than SLGs,
another SIB bundle suitable for the new modeling language has to be em-
ployed. This is exemplified by the case study presented in Chap. 7, which
required the development of a SIB bundle for accessing EMF models.

IO SIBs: These SIBs mainly support dealing with files and directories, e.g.,
creating and scanning directories or writing text files. It is used by Ge-
nesys for writing generated code to actual files. Furthermore, the bundle
contains simple building blocks for exception and error display on the
console.

Script SIBs: This is a set of more specialized SIBs that enable the execu-
tion of scripts as well as the integration of template engines, the latter
being particularly relevant to Genesys. Currently, the template engines
Velocity [Apa10], StringTemplate [Par04]1 and FreeMarker [Fre11b] are
supported. Consequently, the generator developer can freely decide upon
an appropriate template engine by just using the corresponding SIB (Re-
quirement G1 - Platform Independence). It is also possible to mix several
template engines in one code generator model, e.g., in order to benefit
from a specific feature of a template language without having to use the
corresponding engine for the entire code generator.

Apart from those very general SIBs, which can be used in any jABC ap-
plication and mostly realize small, fine-grained tasks, there are also services
specifically designed for the code generation domain. Several examples of
those SIBs, which are part of the Genesys framework (cf. Fig. 4.1) and form
a bundle called “Genesys SIBs” [Jör10], are presented in the following sections.

4.1.2 Type Mapping

An essential task of a code generator is mapping the data types found in
the source language to corresponding data types of the target language. In
middleware techniques like CORBA and Web Services [Pap08], data type
mapping usually includes the use of intermediate exchange formats such as
the Common Data Representation (CDR) for CORBA or XML dialects like
1 The RunStringTemplate SIB described in Sect. 3.2 is also contained in the “Script

SIBs”.

80 4 The Genesys Framework

SOAP [W3C07] for Web Services. Thus marshalling and unmarshalling is
required, i.e., the conversion of the data types into the exchange format
and vise versa. In the case of Web Services, e.g., this conversion is per-
formed by XML binding libraries like the Java Architecture for XML Bind-
ing (JAXB) [Jav09a].

Type Mapping Scenarios:

For code generators, this task is usually much simpler, as it involves a di-
rect unidirectional translation of the data type to a corresponding text-based
representation (e.g., an initializer) in the target language. The overall com-
plexity of this task strongly depends on the given combination of source and
target language. For this book, the following cases are distinguished:

1. Identity: The exact same data type exists in the source language as well
as in the target language. For instance, when translating jABC’s SLGs
to Java, the data type java.lang.String exists in both languages, due
to the fact that SIBs are realized as Java classes.

2. Direct Mapping: The data type can be mapped to an equivalent type
in the target language without any loss or omission of information. For
instance, when generating Java code from EMF models, the data type
EString in Ecore (cf. Sect. 7.2) can be directly mapped to the Java data
type java.lang.String. Such a mapping does not necessarily have to be
injective, as it is possible to map several data types which are different
in the source language to one single data type in the target language.

3. Reductive Mapping: If the data type has no direct equivalent in the target
language, it possibly can be reduced, provided that the source data type
contains information that is not required for the generated result. For in-
stance, the built-in data type ContextKey in jABC’s SLGs (cf. Sect. 3.2.1)
has no direct counterpart in any target language. However, it contains a
context scope, which might be omitted if the target language does not
support a stacked execution context. In this case, ContextKey can be
reduced to the name of the context key, which can be easily represented
by a simple string in the target language. This method only works if the
omitted information is irrelevant, otherwise a solution without informa-
tion loss is preferable. An additive counterpart of the reductive mapping
is imaginable, but as no practically relevant examples have been found
in the context of Genesys, this case is not considered here.

4. New Data Type: There is no equivalent counterpart for a source data type
in the target language, neither for a direct nor for a reductive mapping.
In this case, a possible solution is the introduction of a new data type in
the target language. The corresponding code of the new data type has
to be emitted by the code generator. As will be presented in Sect. 5.2,
this solution is applied by the code generator which translates SLGs to
plain Java code. For every complex jABC data type (cf. Sect. 3.2.1), such
as ContextKey or ListBox which are not built-in Java types, the code
generator emits a corresponding counterpart.

4.1 Services for Building Code Generators 81

5. Data Type Exclusion: If neither of the above cases is applicable, a source
data type may be excluded from the mapping, at the expense of no longer
being able to translate any inputs containing that data type. In most
cases, this solution is only a compromise and thus should be avoided.
For instance, the ContextExpression data type in jABC’s SLGs (cf.
Sect. 3.3.2) requires an implementation for resolving EL expressions,
which is not available for non-Java languages such as Objective-C [Koc09].
Instead of spending effort on providing such an implementation, the ex-
clusion of the ContextExpression data type might be a pragmatic al-
ternative.

...

Conversion Controller

register register
in

qu
ire

Ecore → C#

CollectionConverter

StringConverter

SibParameterConverter

...

SLG → Objective-C

SetUpSlgTypesForObjectiveC

EListConverter

EStringConverter

EIntConverter

...

SetUpEcoreTypesForC# GenerateTypeName

re
tr

ie
ve

 ty
pe

 n
am

e

GenerateInitializer

in
qu

ire
re

tr
ie

ve
 in

iti
al

iz
er

Fig. 4.2. Data type mapping infrastructure in Genesys

Type Mapping Services:

Genesys provides a simple infrastructure for establishing data type mappings,
which is depicted in Fig. 4.2. For each combination of source and target
language, a mapping has to be specified by means of a set of converters.
A converter is responsible for one or more source data types and is able to
produce corresponding type names, initializers etc. for the target language.
For instance, Fig. 4.2 shows a data type mapping from SLGs to Objective-C,
containing a String Converter. For a given String instance found in an SLG,
this converter is, among other things, able to produce a corresponding type
name (NSString) or initializer (@"myStringValue"2), which is used by the
code generator.

All registered converters are managed by the Conversion Controller (bot-
tom of Fig. 4.2). Given a concrete primitive value or object instance found in
the source language, the controller determines the responsible converter, ap-
plies it and returns the result. In order to keep the determination mechanism
2 @"myStringValue" is Objective-C’s way of creating a new constant string object

with the value myStringValue.

82 4 The Genesys Framework

simple, each possible data type in the source language has to be assigned
to exactly one converter. While multiple data types may be handled by one
converter, it is not allowed to assign more than one converter to a data type.

From the perspective of the generator developer, the data type mapping
infrastructure is accessed via simple services shown at the top of Fig. 4.2. In
the initialization phase of the code generator, the system has to be set up by
registering required converters, which is performed by a dedicated, usually
parameterless, SIB (e.g., SetUpSlgTypesForObjectiveC). Such a SIB and
its corresponding converters have to be created for every new combination of
a source and a target language, either by the generator developer himself or
by a SIB expert. Technically (and transparent to the generator developer),
the SIB registers all required converters with an instance of the conversion
controller, which is then stored in the execution context (cf. Sect. 3.3.2) so
that it can be accessed by other SIBs.

After this initialization step, the generator developer may use the SIBs
GenerateTypeName and GenerateInitializer to apply the data type map-
pings for the code generation. Table 4.1 shows the parameters of those ser-
vices that are available to the generator developer. Besides context keys for
the input and output, especially the GenerateTypeName SIB provides several
additional configuration flags that, e.g., allow the omission of any package
or namespace information in the resulting type name. Except for the case in
which the generator developer writes converters by himself, everything below
the dashed line in Fig. 4.2 is transparent to him and virtualized by the SIBs.

Table 4.1. Services for data type mapping

GenerateInitializer Generates an initializer string for the
given object/primitive value.

Parameters object Context key for reading the object.
initializer Context key for storing the generated ini-

tializer.
GenerateTypeName Generates a type name string for the

given object/primitive value.
Parameters object Context key for reading the object.

typeName Context key for storing the generated
type name.

generateSimple-
TypeName

If this flag is set to true, the simple type
name (without the package or namespace
information) will be generated.

preferInterface If this flag is set to true, the type name
for a preferred interface will be gener-
ated (e.g., java.util.List instead of
java.util.ArrayList), which is useful
for declarations.

4.1 Services for Building Code Generators 83

4.1.3 Identifier Generation

Another important task of code generators is the output of valid identifiers.
Identifiers are tokens that name elements in programming languages such as
classes, variables, labels or methods. The generation of appropriate identi-
fiers depends on the given target language, as each programming language
defines its own syntactic restrictions for correct identifiers. For instance, a
valid identifier in Java is composed of characters such as lowercase or up-
percase ASCII Latin letters, digits, underscores or dollar signs, but must not
begin with a digit, contain any blanks or have the same spelling as a reserved
language keyword such as “public” [Gos+05]. Furthermore, some program-
ming languages even assign semantics to single characters in identifiers. In
Perl, identifiers beginning with a dollar sign ($) indicate scalars, and those
starting with the percent sign (%) denote hashes [Wal00]. As another exam-
ple, in Ruby, variables with identifiers that start with an upper case letter are
considered immutable [FM08]. Thus with each new target language, identifier
generation needs to be specified appropriately.

Apart from the syntactic restrictions, a central characteristic of identifiers
is their uniqueness. For example, in most programming languages it is forbid-
den to declare two variables with the same identifier within the same scope.
When generating code from models, identifiers are often produced from the
names of model elements, which usually are subject to various syntactic re-
strictions, or which are not regulated at all. For instance, the labels of SIB
instances in jABC’s SLGs are not restricted and thus may contain blanks, or
even may equal reserved keywords of a target language. Simply using such
names as identifiers and ignoring the rules of the target languages may lead
to faulty generation results, such as code which is not compilable or which
yields unexpected execution behavior.

In order to cope with this recurring task, the Genesys framework provides
a backend for identifier generation, which can be accessed by corresponding
services. In essence, this backend keeps track of a blacklist of reserved and
previously used identifiers. When a new identifier is given, this blacklist is
checked: If the new identifier is already on the blacklist, then it is unified,
e.g., by adding a suffix like “_<serial number>”, and finally added to the
blacklist. Otherwise, the unmodified identifier is added to the blacklist. For
instance, if “public” is given as an identifier and it is contained in the blacklist
due to being a reserved keyword, it will be unified to “public_1”, which can
be safely used in generated code.

In the initialization phase of a code generator, reserved identifiers such as
keywords of the target language can be added to the blacklist via the SIB
RegisterReservedKeywords. At this point it is necessary to distinguish be-
tween two kinds of identifiers that occur in code generation: those which are
derived from the code generator’s input (generated identifiers) and those which
are fixed, e.g., because they are hard-coded in a template (fixed identifiers). In
contrast to generated identifiers, fixed identifiers are static at generation time

84 4 The Genesys Framework

Table 4.2. Services for identifier generation

RegisterReservedKeywords Creates a blacklist containing keywords
and prefixes which are forbidden to be
used for identifiers in generated code.

Parameters reservedKeywords Set containing the reserved keywords.
reservedPrefixes Set containing prefixes for reserved key-

words. All words starting with one of
these prefixes are not allowed.

UnifyString Unifies a given string.
Parameters string Context key for reading the string that

should be unified.
uniqueString Context key for storing the unified

string.
GenerateJavaIdentifier Converts a given string into a valid

Java identifier.
Parameters string Context key for reading the string that

should be converted.
identifier Context key for storing the resulting

identifier.
GenerateUniqueJavaIdentifierForSlg Generates a unique Java identifier for

the given SLG, derived from its name.
Parameters model Context key for reading the SLG.

uniqueIdentifier Context key for storing the resulting
unique identifier.

and are specified by the generator developer when modeling a code generator.
In order to avoid clashes between such generated and fixed identifiers, the gen-
erator developer might add each fixed identifier to the blacklist as a separate
reserved keyword. As this is rather uncomfortable, it is, apart from prohibit-
ing entire words, also possible to define reserved prefixes. Each identifier start-
ing with a reserved prefix is treated as if it would already be contained in the
blacklist. Consequently, as a convention for the generator developer, any fixed
identifier has to start with such a reserved prefix (e.g., “cg_”).

After initializing the blacklist, any given string may be unified by using the
SIB UnifyString. This SIB expects a string in the execution context, invokes
the backend for identifier generation to unify it, and finally stores the resulting
unique string in the execution context for further usage. However, before a
string can be unified, it has to be converted to a valid identifier, adhering to
the rules of the target language for which the code is generated. Consequently,
for each different target language, a corresponding specific service is required.

For instance, the SIB GenerateJavaIdentifier converts a given string
into a Java identifier according to the rules outlined above. Just as with
the converters for data types described in Sect. 4.1.2, such a specific SIB
has to be created if it does not exist yet, either by the generator developer
himself, or by a SIB expert. However, once the SIB has been created, it can

4.1 Services for Building Code Generators 85

be reused for every code generator that targets the corresponding language
(Requirement G2 - Reusability and Adaptability), which is a major benefit of
service orientation.

Optionally, even more specific SIBs may be added as desired, e.g., to pro-
vide more convenient identifier generation for specific combinations of source
and target languages (Requirement S1 - Domain-Specificity). As an example,
the SIB GenerateUniqueJavaIdentifierForSlg creates an identifier from a
given SLG by extracting the name of the SLG, converting it to a Java iden-
tifier and then unifying it in one step. Furthermore, it additionally caches all
identifiers that have already been generated for SLGs, so that executing the
service repeatedly for the same SLG always yields the same identifier. This
is very useful if the identifier occurs at multiple places in the generated code.

Table 4.2 sums up the services presented in this section.

4.1.4 Variant Management

When reusing existing code generators as drafts or templates for building
new ones, it is an obvious approach to start with a code generator that is as
similar as possible to the one that should be developed. For instance, in the
context of code generators for jABC, it was easy to derive a code generator
for Java Servlets [Jav11b] from an existing code generator for ordinary Java
classes with only few modifications (cf. Sect. 5.4.1), as the structure and
generated output of both is very similar.

Genesys is designed to facilitate software product line engineering [CN01;
PBL05] (Requirement S3 - Variant Management and Product Lines). Using
the terminology established in this realm, the models and services contained
in the Genesys framework are core assets that form the basis for building
product lines and deriving variants .

Accordingly, appropriate tool support is required that enables specifying
and managing variability, e.g., via the definition of variation points [PBL05,
p. 62]. The Genesys framework enables this by offering a dedicated service.
Please note that as its implementation was driven by the demands raised
during the realization of Genesys, this service does not exploit the full poten-
tial of applying product line engineering in jABC yet – Sect. 10 elaborates
on further prospects and possibilities.

The service enables the specification of variants on the basis of aspect ori-
entation (AO) [Kic+97] provided by jABC’s hierarchical modeling facilities.
As described in Sect. 3.2.2, hierarchical modeling is performed in jABC via
macros, which enable embedding SLGs into each other. On this basis, mod-
els can act as reusable aspects (Requirement G4 - Separation of Concerns):
For managing variability, macros are used as variation points (or joinpoints
in AO nomenclature) to which multiple submodels may be assigned, each of
them representing a single variant. This is an extension of jABC’s standard

86 4 The Genesys Framework

Default
Variant

Servlet
Variant

Servlet
Variant

+ Debug

servletGenerator

servletGenerator
Debug

CG

Fig. 4.3. Specifying variants via hierarchical modeling

semantics for hierarchical models, which normally only allows assigning ex-
actly one submodel to a macro.

Fig. 4.3 shows a simplified and schematic example of this concept. On the
left hand side, there is a simple model that represents the generation of a Java
class: First, the header of the class is generated, followed by the content, and
finally the remainder of the class is added. The SIB for generating the class
content is a macro and thus a potential variation point.

In order to obtain a complete model that is well-formed in terms of exe-
cutability, at least one submodel, which represents the default behavior, has
to be assigned to the macro. In Fig. 4.3, this submodel is labeled “Default
Variant” and generates the content of an ordinary Java class, consisting of a
constructor and a main method3.

The modeler may now specify further variants, which are kept apart by
unique names. The example in Fig. 4.3 shows two variants. The first (“Servlet
Variant”) with the unique name servletGenerator produces the content of
a Servlet class by generating a doGet and a doPost method4 instead of the
main method defined in the default behavior. The second (“Servlet Variant +
Debug”) with the unique name servletGeneratorDebug extends the Servlet
variant by adding extra code for debugging.

Please note that the unique name of a variant does not necessarily refer
to one single variant model only. Instead it globally identifies a variant (or
product line) of an entire SLG hierarchy (or even several hierarchies). For
instance, the variant name servletGeneratorDebug in Fig. 4.3 may refer to
a set of variant models that are associated with variation points distributed
over the SLGs hierarchy.

As the assignment of multiple submodels to a macro is not supported by
jABC, this feature is added by the Genesys jABC plugin (see Sect. 4.3.2).
Please note that technically, only the submodel that represents the default
behavior is a physical part of the model hierarchy. All other variants assigned
to a macro are just attached to it as additional information, but are not
incorporated into the model hierarchy.
3 main is a dedicated method used for starting the execution of Java programs.
4 See the Servlet specification [Jav11b] for details on the doGet and doPost meth-

ods.

4.2 Simple Example: Documentation Generator 87

Table 4.3. Service for the generation of variants

BuildVariant Builds the variant identified by the given
name for the given models.

Parameters models Context key for reading the models that
will be transformed.

variantName The unique name of the variant that will
be built.

transformedModels Context key for storing the transformed
models.

For achieving this, the specified variants are automatically generated by
means of an accordingly equipped generator generator. To this end, the gen-
erator generator needs to incorporate the BuildVariant SIB (see Table 4.3),
which builds a variant via a simple model-to-model transformation. As its
input, the service requires the unique name of the variant that will be built
along with the list of models to be transformed. For each macro contained
in each of the given models, the service checks whether a variant with the
given unique name is assigned to it. If so, the detected variant is set as the
default submodel of the macro (thus now representing the new default be-
havior). Otherwise the macro is not modified, leaving the default behavior
unchanged. The role of this model-to-model transformation is very much com-
parable to the one of aspect weavers [Kic+97] in AO, except that the weaving
is performed on the model level (model weaving [Béz+04]). After this trans-
formation step, the generator generator translates the models, which now
represent the desired variant of a code generator, to code.

The current implementation of the variant management service imposes
one restriction on models in order to be suitable as variants: They have to
provide the same model interface (i.e., model parameters and branches) as the
default variant. This is due to the fact that there is currently no support for
separately parametrizing variants – the implementation of a corresponding
GUI will remove this restriction (cf. Sect. 10 for details).

A more complex example showing the application of variant management
is the Java Class Generator for jABC, which will be presented in detail in
Sect. 5.2. This generator offers different generation strategies, each of them
realized by a corresponding variant.

4.2 Simple Example: Documentation Generator

In order to give the reader an idea of modeling a code generator with Ge-
nesys, the following sections present a complete example of a simple code
generator called the “Documentation Generator”. For the most part, this

88 4 The Genesys Framework

example is based on a tutorial introduction which originally has been pub-
lished in [JSM10]. The Documentation Generator is designed to be used in
jABC, i.e., SLGs are its source language. The generator’s task is to pro-
duce an HTML documentation website (comparable to the output of Java’s
Javadoc Tool) from those models according to the following requirements:

1. The generator should process all models in a given directory.
2. For each model, a separate HTML page should be generated, containing

the following information:
• the documentation of the model and
• a list of all SIB instances contained in that model. Each list entry

should display the corresponding SIB’s label. Furthermore, each en-
try should be linked to a detail page (described in 3) containing the
documentation of the particular SIB instance, as well as to the cor-
responding online SIB documentation (e.g., [TU10]).

3. For each SIB instance in each SLG, a detail HTML page will be generated,
displaying the SIB instance’s documentation. This page should be linked
to the corresponding model page.

4. An index page should be generated, listing all processed models along
with links to their respective model pages.

5. Each generated HTML page should contain a timestamp in order to retain
the time of the last generation.

Based on these requirements, the code generator is modeled by a genera-
tor developer who has to have knowledge of using jABC and Genesys, of
SLGs (the source and implementation language) along with their associated
concepts such as SIBs and branches, and of the HTML format (the target
language). The following sections will show how to model the complete Doc-
umentation Generator, which is built almost entirely on the basis of jABC’s
Common SIB library. For the sake of simplicity, not all the parameterizations
of the employed SIBs will be explained in detail, but instead the descriptions
will focus on which SIBs are used to solve the task and how they are con-
nected to each other. For each employed SIB, the corresponding class will be
named, so that it can be easily related to the online documentation [TU10],
which contains detailed information for all SIBs. If no class is given, then the
name of the SIB class equals the SIB label displayed in the model.

4.2.1 Structuring the Generation Process

Modeling a code generator with Genesys usually proceeds top-down. Ac-
cordingly, as the first step of modeling the Documentation Generator, the
generation process is divided into two abstract coarse-grained phases: the
initialization phase and the generation phase. In the initialization phase, the
code generator will set up the generation by verifying the input parameters
and loading the input SLGs, and in the generation phase the actual HTML
website is produced.

4.2 Simple Example: Documentation Generator 89

CG

Fig. 4.4. The Docu Generator main model (topmost hierarchy level)

Fig. 4.4 shows the resulting model, containing the SIB Initialize Docu
Generator for the initialization phase and Generate Documentation for the
generation phase. Both SIBs are macros (SIB class MacroSIB), and both
phases will be refined and concretized in the following. Please note that all
models of the Documentation Generator only use MacroSIBs (cf. Sect. 3.3.3)
as macros, i.e., a flat execution context is employed (cf. Sect. 3.3.2). Along
with the two macros, the model contains two other SIBs emitting either a
success message (Print Success, SIB class PrintConsoleMessage) when
the two phases have been finished successfully, or an error message (Print
Exception) if anything failed during the execution of the code generator.

Note that in this example, the error handling is in most cases delegated
to the main model depicted in Fig. 4.4 (error delegation). All SIBs used
in the Documentation Generator’s models have “error” branches, most of
which lead to the SIB Print Exception, either as direct edges in the main
model, or as model branches in all the other models. Consequently, Print
Exception is the central (though very simple) error handling step for the
entire generator. Another (but more rare) way of handling errors is in-place
handling, whereby the handling is usually performed by subsequent SIBs (or
even models) in the same model. This distinction between in-place handling
and error delegation is very much comparable to exception handling in Java,
where a caught exception may either be handled directly or thrown again in
order to be handled somewhere else.

4.2.2 The Initialization Phase

Subsequently, the initialization phase is concretized. Basically, this phase has
to verify the input parameters provided by the user and to set up the genera-
tion process. The Documentation Generator will have two input parameters:

outputFolder, the absolute path to the output directory for the generated
HTML files, and

modelPath, a list of absolute paths to directories containing the jABC models
for which the documentation should be generated.

Fig. 4.5 shows the refined model for the initialization phase.

90 4 The Genesys Framework

CG

Fig. 4.5. The Initialize Docu Generator model (second hierarchy level)

The generator starts by processing the parameter “outputFolder”, whose
value is first put into the execution context (Put Output Folder, SIB class
PutFile) in order to be accessible by the following SIBs. Afterwards, the SIB
Check Output Folder (SIB class CheckPath) verifies this value: If it does
not denote a proper (i.e., existent and writeable) directory, the following
step Throw Exception issues an error. Otherwise, the initialization phase
continues with handling the second input parameter “modelPath” (macro
Load Models), which is again performed in a submodel.

Referring to the different error handling techniques described above, the
SIB Throw Exception is an example for in-place handling of errors. In this
case, the exit branch of a preceding step (Check Output Folder in Fig. 4.5)
reflects an undesired result. When such an error is detected, it is directly
handled by Throw Exception, which performs the error handling in-place at
the service level, rather than delegating it to a higher model hierarchy level.

The submodel referenced by Load Models is displayed in Fig. 4.6. As load-
ing SLGs is a standard task for many code generators (at least for those dealing
with SLGs as their source language), this model is, among many others, con-
tained in the Genesys framework and thus can be entirely reused for the Docu-
mentation Generatorwithout any changes.A detailed discussion of this loading
process is not required at this point: The generator developer does not have to
know the technical details of loading SLGs anyway, as from his perspective, the
model is used just like a ready-made service in a black box fashion.

4.2.3 The Generation Phase

For modeling the generation phase, the macro Generate Documentation in
the main model (Fig. 4.4) is refined. Fig. 4.7 shows the resulting model.
The generation process starts with producing the static header of the in-
dex page (Generate Index Header) using StringTemplate (see Sect. 2.4.2).
Please note that all SIBs with “ST” on their icon are instances of the SIB
class RunStringTemplate described in Sect. 3.2.1. The header of the index
page only consists of static text, for instance, containing the opening html and
body tags for the document. Afterwards, a time stamp is generated (Generate
Time Stamp, SIB class GetTimeStamp), which is inserted into the footer of

4.2 Simple Example: Documentation Generator 91

CG

Fig. 4.6. The Load Models model (third hierarchy level)

each generated HTML page. The generation of the index page content and
the detail pages for the models and the contained SIBs is again modeled in a
submodel (referenced by the macro Generate Model Pages). After the detail
pages are produced, the generator finalizes the index page. For this purpose,
the SIB Generate Index Footer is parameterized with the following simple
template:

<hr>
<i>Generated : $timeStamp$</i>

</body>
</html>

Besides some closing tags, this template contains a placeholder called “time-
Stamp”, which is enclosed by dollar signs. When the generator is executed,
StringTemplate replaces this placeholder by the timestamp produced by the
step Generate Time Stamp. The generation phase finishes with writing the
index page to a file (Write Index Page, SIB class WriteTextFile).

CG

Fig. 4.7. The Generate Documentation model (second hierarchy level)

The submodel that refines the macro Generate Model Pages is depicted
in Fig. 4.8. It starts by iterating over all input SLGs that have been loaded
in the initialization phase (Next Model, SIB class IterateElements). Please

92 4 The Genesys Framework

note that the Documentation Generator produces HTML pages for all SLGs
in a given directory, which particularly includes all referenced submodels.
Consequently, we do not need to expand the macros or to use any recursion -
a simple iteration of the models is sufficient. As long as there are still models
left to be processed, the “next” branch of the SIB will be used. Otherwise,
the execution proceeds with the parent model (Fig. 4.7), which is connected
via a model branch (i.e., the “exit” branch of Next Model is exported as a
model branch that leads to the parent model). The following step Update
Model Counter (SIB class UpdateCounter) keeps track of a model number
that is incremented each time the SIB is executed. This number is required to
construct the names for the model detail pages. Then the generator extracts
some information from the current model. The SIB Get Model Name stores
its name in the execution context, and the SIB Convert Content to Html
reads annotated documentation and converts it to proper HTML markup,
which is also stored in the execution context. Now the generator has collected
enough information for generating an index page entry for the current model
(basically the model name, linked to the model detail page, step Generate
Index Entry) as well as the header of the model detail page containing the
model’s documentation and name.

CG

Fig. 4.8. The Generate Model Pages model (third hierarchy level)

In order to generate the list of SIBs in the current model along with the
SIB detail pages, the generator retrieves all contained SIB instances (Get
SIB Graph Cells) and then again delegates the production of all SIB-specific
HTML markup to a submodel (macro Generate Markup for SIBs). Finally,
the footer of the detail page is generated (Generate Model Page Footer)
and the entire page is written to a file (Write Model Page).

The last model required for the Documentation Generator refines the
macro Generate Markup for SIBs and is depicted in Fig. 4.9. In the first
step, it iterates over all SIB instances contained in the current model (Next
SIB Graph Cell, SIB class IterateElements), which works just like the
Next Model step in Fig. 4.8. Furthermore, analogous to the model detail
pages, the SIB Update SIB Counter (SIB class UpdateCounter) keeps track
of a SIB counter that is used for the file names of the resulting SIB detail
pages. Then again, some information is collected from the current SIB found

4.2 Simple Example: Documentation Generator 93

CG

Fig. 4.9. The Generate Markup for SIBs model (fourth hierarchy level)

in the execution context: its class name (Get SIB Class Name), unique iden-
tifier (Get SIB Class Name) and instance label (Get SIB Label).

The following SIB Generate Documentation Link differs from the other
SIBs used in the Documentation Generator, as it is the only one that calls
a remote functionality, in this case a Web Service. This Web Service takes a
SIB’s class name and UID (cf. Sect. 3.2.1) as input and uses this information
to construct the URL of the online documentation [TU10] that describes the
SIB class. As such a SIB was not provided by the Common SIBs, it had to
be created by implementing an appropriate service adapter (cf. Sect. 3.2.1),
that realizes the communication with the already existing Web Service. This
implementation was an easy one-time task.

In the following step, the code generator reads the documentation an-
notated to the current SIB (Convert Content To Html). Depending on
whether such a documentation could be found, a list entry for the current
SIB on the model page is generated. In case a documentation exists, this
entry is linked to a SIB detail page which is generated in the step Generate
SIB Page. This SIB is parameterized with the following template:
<html>

<body>
$sibDoc$
<a hre f="model_$modelCounter$. html">back to "$modelName$"
<hr>
<i>Generated : $timeStamp$</i>

</body>
</html>

Again, the static text contains placeholders that are replaced by StringTem-
plate, using information collected by the code generator:

sibDoc: The current SIB’s HTML documentation retrieved by the Convert
Content To Html step in Fig. 4.9.

modelCounter: The number of the current model assigned by the SIB Update
Model Counter in Fig. 4.8.

94 4 The Genesys Framework

Fig. 4.10. The model hierarchy of the Documentation Generator

modelName: The name of the current model retrieved by the SIB Get Model
Name in Fig. 4.8.

timeStamp: The time stamp produced by the SIB Generate Time Stamp in
Fig. 4.7.

The usage of this information in the template shows how SIB instances in
submodels can easily access information left in the execution context by SIB
instances at arbitrary levels of the model hierarchy, which is due to the flat
nature of the execution context.

Finally, if a SIB detail page has been generated, it is also written to a file
(Write SIB Page).

4.2.4 Finalizing the Generator

In summary, the demonstrated models constitute a complete code generator
according to the requirements listed above. The resulting generator consists
of six models (five new, one could be reused from Genesys’ model library),
containing 43 instances of 23 different SIBs. Only one SIB had to be im-
plemented, as the rest of the required functionality could be covered with
existing ones. The resulting model hierarchy (see Fig. 4.10) spans four levels.

While modeling a code generator, it is possible at any time to execute,
debug and test it using jABC’s Tracer (Sect. 3.3). However, for productive
use of the code generator, it should be translated to code itself, for instance
in order to be able to use it via the Genesys jABC Plugin or to integrate it
into a Maven-based tool-chain (both options will be described in more detail

4.2 Simple Example: Documentation Generator 95

HTMLSLG

SLG

 Documentation Generator

JavaSLG

Java

Genesys Code Generator Generator

HTMLSLG
Documentation Generator

Java

1

2

3

Fig. 4.11. Translating the SLGs of the Documentation Generator to Java code

in Sect. 4.3.2). This finalization of the code generator usually consists of two
steps: editing the generator’s metadata and finally generating the generator.
The former includes metadata such as the generator’s name, version, author
and usage documentation, and is edited via a corresponding GUI that is part
of Genesys’ developer tools presented in Sect. 4.3.1.

In the second step, a corresponding generator generator is responsible
for translating the generator models into code. The T-diagram depicted in
Fig. 4.11 shows that for the Documentation Generator, this translation is per-
formed by means of the Genesys Code Generator Generator (see Sect. 5.2.6).
It translates a set of given generator models to Java code that contains all
necessary information (e.g., metadata and corresponding interface implemen-
tations) to be useable with the appropriate tools named above.

4.2.5 General Remarks on the Example

The example above demonstrated how a code generator is modeled with Ge-
nesys. Several aspects of the example are particularly noteworthy as they
illustrate some characteristics of the general approach. In particular, the
SLGs of the Documentation Generator show that there is a strict separa-
tion between the generation logic and the output description (cf. Sect. 2.4),
as demanded by Requirement S4 - Clean Code Generator Specification. The
generation logic is given by the code generator SLGs, and the output descrip-
tion is given by the templates, which are parameters of dedicated SIBs such
as RunStringTemplate.

In order to achieve this strict separation, it is not advisable to describe
parts of the generation logic in the templates. This would be easily possible,
as most template languages also support control structures like conditionals,
loops or function calls (cf. Sect. 2.4.2). However, describing parts of the gen-
eration logic in the code generator SLG and other parts in the templates has
several serious drawbacks. First, the models are more difficult to understand
as the generation logic of the code generator cannot be fully grasped by just

96 4 The Genesys Framework

looking at the flow of actions in the SLGs. Second, as parts of the genera-
tion logic are hidden in templates and not modeled explicitly, they are not
considered by tools such as a model checker (see Sect. 3.4), thus impeding a
proper verification of the code generator.

Consequently, the use of templates in Genesys is mostly restricted to those
facilities of a template language that allow accessing data (e.g., placeholders
or simple expressions). Employing advanced control structures is discour-
aged, as they most likely would be used to describe logic which should rather
be modeled explicitly by means of corresponding SIBs provided by Genesys.
Likewise, templates should not be misapplied for making function calls. In-
stead either an existing SIB realizing the function should be used or, if no such
SIB exists yet, a new one should be created in order enable the reusability of
the function.

Accordingly, the templates shown in the previous sections are not partic-
ularly simple examples. Instead they are characteristic of how templates are
generally used in Genesys.

The Documentation Generator also exemplifies the mixed application of
source-driven and target-driven transformation. The generator is target-
driven as, apart from the actual templates, its generation logic roughly follows
the structure of the output. For instance, the headers of the single HTML
pages are always generated before the footers (see, e.g., Fig. 4.7 and 4.8).
At the same time, the generator can be considered source-driven, because its
generation logic avoids multiple traversals: Each model and each contained
SIB is only visited once, and when processing a model or SIB, all required
output is produced at once, so that no additional visit is necessary. This is,
e.g., visible in the SLG shown in Fig. 4.9, which generates an entry for the
model detail page as well as the SIB detail page for a particular SIB instance.

Furthermore, this flexibility of structuring the transformation allows the
Documentation Generator to produce multiple output files without any prob-
lems, thus overcoming the typical inefficiencies attributed to template-based
code generators (cf. Sect. 2.4.2).

4.3 Genesys Tooling

As outlined at the beginning of this chapter and depicted in Fig. 4.1, Genesys
provides tools supporting generator developers as well as generator users. The
following sections briefly introduce those tools.

4.3.1 Developer Tools

The developer tools provide facilities that assist the generator developer in
building code generators. They are realized as jABC plugins, but are not
necessarily restricted to code generators for jABC (i.e., having SLGs as their
source language).

4.3 Genesys Tooling 97

Fig. 4.12. Left hand side: Inspector for editing a code generator’s metadata, Right
hand side: Setting up a benchmark

Descriptor Inspector:

The Descriptor Inspector allows the generator developer to add metadata to
a code generator. This includes information such as the name of the code
generator, a short and a long description, the author’s name, a version, the
category of the code generator as well as an icon. This metadata is attached
to the topmost model of the code generator as a user object (cf. Sect. 3.2.2)
and serves multiple purposes. First, generator generators may incorporate
the metadata into a generated version of the code generator and thus may
allow tools using the code generator to display the information to users.
For instance, when translating a code generator for jABC using the Genesys
Code Generator Generator (see Sect. 5.2.6), any metadata is added to the
resulting Java class. When using a code generator translated this way in
jABC, the information is displayed to the user by means of the Genesys jABC
Plugin presented in the next section. Second, the metadata may be used to
automatically generate documentation (e.g., an HTML website) for the code
generator. Fig. 4.12 (left hand side) shows the contents of the Descriptor
Inspector for the Documentation Generator presented in Sect. 4.2.

Benchmark Framework:

By means of the benchmark framework , a generator developer is able to com-
pare different code generators or generator variants in terms of the perfor-
mance of their generated results. For instance, one could compare the two
Servlet Generator variants exemplified in Sect. 4.1.4 in order to examine
whether the addition of extra debugging code negatively influences the per-
formance of generated results. The benchmark framework performs this com-
parison by

1. using each participating code generator to translate a set of input models
which act as objects of investigation,

98 4 The Genesys Framework

Fig. 4.13. Benchmark results visualized in tabular or bar chart form

2. executing the result of each generation (after eventually compiling it, if
necessary),

3. measuring the time duration of each execution and
4. finally visualizing the measurements.

For setting up a benchmark, the generator developer first creates a config-
uration for each participating code generator. Such a configuration includes
information such as the code generator that will be used, the input models
which are translated to code as well as a so-called execution runner that spec-
ifies how the generated code is executed. The latter strongly depends on the
code generator that is used, as, e.g., a Java class with a main method is exe-
cuted in a different way than a Servlet. Technically, an execution runner is a
Java class following a simple interface, which has to be implemented for every
generation result that should be supported by the benchmark framework.

Furthermore, the generator developer may also specify the number of runs
for a configuration. This avoids benchmarks which execute so fast that they
are hardly observable, e.g., due to small input models or very high-end host
machines. Another motivation for repeated executions is dealing with sta-
tistical deviations which might prevent reliable comparison of results, e.g.,
resulting from possible effects of memory caching, just-in-time compilation
or hot-spot optimizations. Fig. 4.12 (right hand side) shows the graphical
interface for setting up a benchmark, which contains prepared configurations
for different variants of a code generator for Java classes (cf. Sect. 5.3).

After this preparatory configuration, the benchmark can be executed. The
benchmark framework follows the procedure described above and then dis-
plays the results. As shown in Fig. 4.13, the measurements can be viewed in
either tabular form or as bar charts.

Please note that although only the execution time of the generated artifacts
is measured, it is nevertheless possible to similarly benchmark the execution

4.3 Genesys Tooling 99

performance of the code generators. For setting up such a benchmark, the
used code generator has to be a generator generator, that is then applied to
the models of the code generators whose performance is to be measured.

VTL Editor:

As many Genesys users choose Velocity (cf. Sect. 2.4.2) as their template
engine, the Developer Tools provide a textual editor for templates written in
the Velocity Template Language (VTL). This editor allows in-place editing
of Velocity templates in jABC with line numbering and syntax highlighting.
Please note that although Velocity is specifically supported that way, Genesys
is not restricted to any particular template engine.

4.3.2 User Tools

jABC Plugin:

The Genesys Plugin for jABC provides a graphical interface, depicted in
Fig. 4.14, for configuring and executing code generators in order to translate
SLGs to code. For an existing jABC project, a user may create an arbitrary
number of code generator configurations. After selecting the desired code gen-
erator, the metadata specified by the generator developer (see Sect. 4.3.1) is
displayed and the generator can be configured (e.g., its input models and
output directory). The code generation can then be started via this configu-
ration. An integrated console informs the user about the generation progress
and about any errors.

Furthermore, apart from generator users in jABC, this jABC plugin is
also useful for generator developers. The graphical interface allows them to
conveniently generate their code generator models by creating a configuration
for an appropriate generator generator. In order for a code generator to be
usable with the Genesys Plugin for jABC, it has to be generated with the
Genesys Code Generator Generator , which is described in more detail in
Sect. 5.2.6.

Maven Plugin:

Apache Maven [Apa11b] is a popular and powerful tool for creating build
environments. It supports, among other things, building and deploying arti-
facts, dependency management, automatic testing and release management.
All these activities are realized as plugins. In a special XML file, the so-called
Project Object Model (POM), such plugins are configured and assigned to
particular phases of a build lifecycle managed by Maven.

As code generators are often integral parts of such build environments they
need to be compatible with corresponding management tools (Requirement
S6 - Tool-Chain Integration). For being able to integrate a code generator
developed with Genesys into a Maven-based tool-chain, Genesys provides a

100 4 The Genesys Framework

Fig. 4.14. Creating a configuration for using a code generator in jABC

corresponding Maven plugin. In analogy to the Genesys jABC plugin, this
Maven plugin is able to execute any code generator that has been translated
with the Genesys Code Generator Generator . Like any other Maven plugin,
it is configured and added to a build environment via a project’s POM.

As code generators produced by the Genesys Code Generator Generator
are just plain Java classes, it is moreover easy to use them with other build
management tools such as Apache Ant [Apa11a] or GNU make [Fre11a].

5

Case Studies: Code Generators for jABC

Besides being the basis of the Genesys framework, jABC itself is an applica-
tion field for code generation. As described in Sect. 3.1, the XMDD paradigm
underlying jABC postulates an unidirectional code generation approach that
deliberately avoids round-tripping (cf. Sect. 2.4.4). Consequently, jABC is in
need of code generation facilities that are powerful enough to support this
tenet, and at the same time are easy to use in a way that respects jABC’s
users, who are typically application experts without deep technical know-
how. Similar objectives can also be found among the basic requirements of
the Genesys approach (Requirement S2 - Full Code Generation, Requirement
G3 - Simplicity). Furthermore, as jABC is used in a broad range of very het-
erogeneous application scenarios (cf. Sect. 3.2), it provides the opportunity
of examining and comparing the construction of code generators for very dif-
ferent target platforms, each of them representing a separate case study with
its own set of specific requirements.

In fact, the Genesys framework is itself one of jABC’s application scenarios,
because it is based on jABC. Accordingly, developing a code generator with
Genesys is the same as applying jABC for the domain “code generation”. At
the same time, Genesys is used to develop code generators for jABC. Both
projects strongly profit from this “self-application”: jABC provides concrete
motivation and demand for case studies with Genesys, while each new code
generator enriches jABC’s functionality and its practical range in terms of
supported target platforms.

Consequently, a large number of case studies presented in this book focus
on developing code generators for jABC. The source language of these code
generators is generally given by SLGs (cf. Sect. 3.2.2). This does not restrict
the validity of the case studies whatsoever, as the high diversity of target
platforms still allows checking whether the Genesys framework meets the
requirements set in Sect. 1.1. However, the case study presented in Chap. 7
also demonstrates the application of Genesys for source languages other than
SLGs.

S. Jörges: Construction and Evolution of Code Generators, LNCS 7747, pp. 101–153, 2013.
© Springer-Verlag Berlin Heidelberg 2013

102 5 Case Studies: Code Generators for jABC

The following sections elaborate on the different code generators that have
been developed for jABC. As a full description of all generators goes beyond
the scope of this book, the descriptions focus on important aspects that show
the application of the Genesys framework as well as the fulfillment of the ba-
sic requirements. Sect. 5.1 and 5.2 start off with the development of the first
code generator, a generator for plain Java classes, which proceeded in several
stages by means of bootstrapping and which gave rise to different generation
strategies and variants. Sect. 5.2.6 elaborates on the Genesys Code Generator
Generator which allows translating code generator models to code, e.g., in or-
der to be useable with the tools provided by Genesys (cf. Sect. 4.3). Sect. 5.4
proceeds with further generators that resulted from other case studies and
diploma theses. In particular, the reader will get an impression of how every
code generator enriched Genesys’ repertoire of services and models, and how
the code generators evolved from each other on the basis of reuse (Require-
ment G2 - Reusability and Adaptability).

5.1 Bootstrapping: Java Class Extruder

One of the central ideas of Genesys is the iterative, evolutionary development
of code generators based on previously built and thus ready-made services
and models (Requirement G2 - Reusability and Adaptability). However, at
the very beginning of the project, no such services and models existed, let
alone any tool support specific to code generation, as presented in Sect. 4.3.

Consequently, the first code generator had to be developed from scratch,
using only jABC and its plugins such as the Tracer (cf. Sect. 3.3). This
first code generator was the Java Class Extruder. It translates a hierarchical
SLG1 modeled in jABC into a Java class which may either be executed via
a main method or by means of an appropriate API method. The former
allows the class to be invoked, e.g., via a command-line interface, and the
latter enables embedding the class in other programs, comparable to using a
library. The execution behavior of the generated class should coincide exactly
with the execution behavior of the SLG executed with the Tracer (execution
equivalence).

There were two reasons for the choice of Java as the target language of the
first code generator. First, all SIBs available at that time (e.g., from other
jABC projects) offered a Java implementation of their underlying services
in order to support execution with the Tracer. Accordingly, calling the ser-
vices used in an SLG from correspondingly generated Java code was very
simple. Second, as the Tracer could be used as a standalone Java library
for the execution of SLGs (without the jABC tool), it was possible to apply
the Tracer in the generated code and thus benefit from its features, such as
1 In the following, the notion “an SLG” is assumed to denote a hierarchical SLG,

i.e., an SLG along with all its contained submodels (0 or more).

5.1 Bootstrapping: Java Class Extruder 103

the execution context, calling the services, parallel execution, or management
of SLG hierarchies.

The following sections elaborate on a concept for translating SLGs to Java
code that uses the Tracer, and on how the Java Class Extruder has been
developed with jABC. Finally, the result is evaluated.

5.1.1 The Extruder Concept

As mentioned above, code generated by the Java Class Extruder uses the
Tracer for execution. This considerably shifts the task of the code genera-
tor: Instead of translating the flow of actions modeled by an SLG to cor-
respondingly structured code (i.e., a composition of sequential statements,
conditional statements and loops), it is sufficient to generate code that is
able to reconstruct the SLG’s structure in a way that it can be processed by
the Tracer.

As the input for starting an execution, the Tracer expects an SLG in its
deserialized in-memory representation, which is defined by jABC’s SIBGraph-
Model (see Sect. 3.2.2). Consequently, when code generated by the Java Class
Extruder is executed, it reconstructs the SIBGraphModel data structure of
the original SLGs and passes it to the Tracer. There is no need to generate any
code that, e.g., realizes the execution flow, establishes the execution context
or calls the single services, because all these features are already provided by
the Tracer. Furthermore, no mapping of data types is required: As the data
types occurring in SLGs (cf. Sect. 3.2.1) are exactly those expected by the
Tracer, it is always the “identity” case (cf. Sect. 4.1.2) that applies.

In other words, the code generator does not care about the execution se-
mantics of the SLG, and thus the generated code does not explicitly contain
corresponding statements that realize any execution semantics. Instead the
code generator maps the data structure of the SLG to code, and the execu-
tion semantics are left to an execution library or engine like the Tracer. In
this book, such a code generation approach is called extrusion, and a code
generator realizing it is called Extruder.

Fig. 5.1 illustrates how an SLG is mapped to Java code using this concept.
On the left hand side, the figure depicts a hierarchical SLG containing one
submodel, that serves as an input for the Java Class Extruder. The right
hand side of the figure shows the Java code generated from this input. Please
note that both the SLG and the generated code are simplified for illustration
purposes.

The code generation results in a single class that is named after the topmost
model of the SLG hierarchy. This class contains one method for each model
that is contained in the SLG hierarchy (in the example: createModel and
createSubmodel). In the following, these methods are referred to as model
methods. Each model method is responsible for reconstructing the data struc-
ture of the corresponding SLG, as, e.g., shown for the SLG “Model” in lines
4–13 of the generated code in Fig. 5.1.

104 5 Case Studies: Code Generators for jABC

public class Model {

 private SIBGraphModel createModel() {
 SIBGraphModel model = new SIBGraphModel();

 SIB A = new SIB("A", new SibA(...), ...);
 A.setIsStartSib(true);
 model.add(A);
 SIB B = new SIB("B", createSubmodel(), ...);
 [...]
 model.connect(A, B, "a");
 [...]
 return model;
 }

 private SIBGraphModel createSubmodel() {
 [...]
 }

 public Map<String,Object> execute() {
 return Tracer.execute(createModel());
 }

 public static void main(String[] args) {
 new Model().execute();
 }
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

Submodel

Model

A

Fig. 5.1. Generation concept of the Java Class Extruder

First, a new empty SIBGraphModel data structure is created. Afterwards,
all contained SIBs are created as instances of the generic container SIB. This
container collects information such as the SIB’s name and label, and the
Java class that implements the SIB (e.g., SibA in line 6). Macros like B in the
SLG “Model” are not implemented by a Java class, but are instead assigned
to the model method that reconstructs the corresponding submodel (e.g.,
createSubmodel in line 9).

Subsequently, the SIB instances are added to the data structure (line 8)
and connected via edges labeled with the corresponding branch names (line
11). Further information usually contained in the generated code, but not
displayed in the simplified example, includes the configuration of SIB and
model parameters as well as the assignment of branches.

Besides the model methods, the code contains a main method and an API
method (execute, lines 20–22), which allow the execution of the class. For
this purpose, the Tracer is applied to the data structure created by the model
methods, as visible in line 21. The map returned by the execute method (line
20) represents the execution context and, for instance, allows the retrieval of
computed results after the execution.

Fig. 5.1 does not illustrate the translation of model parameters, which nev-
ertheless play an important role for code generation. As a reminder, model
parameters enable the configuration and reuse of entire SLGs (see Sect. 3.2.2).
When generating code from such a configurable SLG, its model parameters
are used as parameters of the corresponding model method. For instance,
for a model called “MyModel” with two model parameters “param1” of type
String and “param2” of type Integer, the signature of the corresponding

5.1 Bootstrapping: Java Class Extruder 105

model method will look like this: createMyModel(String param1, Integer
param2).

That way, the generated code is kept more compact by avoiding the gener-
ation of redundant model methods. Even if an SLG is reused multiple times
across the given SLG hierarchy, the generated code will contain only one
configurable model method for this SLG. The model parameters of the top-
most model in the SLG hierarchy (e.g., “Model” in Fig. 5.1) are a special
case, as they additionally determine the parameters of the whole Java class
that is generated. Such model parameters are translated to parameters of
the execute API method and are also expected as command-line arguments
when using the main method.

Although the Extruder approach to code generation is simple yet powerful
due to the sophisticated features of the Tracer, it is not applicable for every
code generator. Sect. 5.1.3 elaborates on that.

5.1.2 Development of the Generator

Following the concept of translating SLGs to Java code described in the pre-
vious section, the Java Class Extruder had to be developed from scratch.
As jABC had never been used for constructing code generators before, there
were no ready-made services or models which could be reused. In particu-
lar, all required SIBs and their underlying services had to be implemented,
the most important among them being the “Graph Model SIBs”, which al-
low processing SLGs and their constituent parts (see Sect. 4.1.1), and the
RunVelocity SIB (later part of the “Script SIBs”), which made the template
engine Velocity available as a service. The Tracer was used for debugging and
testing the Java Class Extruder throughout the entire modeling activity.

Fig. 5.2 shows the part of the Java Class Extruder that is responsible
for processing the input SLGs for which code will be generated.2 The SLG
marked with number 1 first iterates over all input models (Next Model). Via
an instance of the RunVelocity SIB, it then generates the header of the
model method. Afterwards, there are two macros containing further SLGs
that generate code for the SIBs (the SLG marked with 2), for the SLG’s
edges and for its model parameters. Finally, another RunVelocity SIB is
used to generate the remainder of the model method.

SLG 2 generates code for all SIB instances contained in an input model.
First, the current input model and its SIBs are retrieved from the execution
context. Afterwards, the SLG iterates over the SIBs and generates code for
each by calling SLG 3, which is again embedded via a macro. SLG 3 first
retrieves the current model, the current SIB and its parameters from the
execution context. Subsequently, it iterates over the SIB’s parameters and
generates corresponding code via RunVelocity SIBs, depending on whether
2 Please note that the depicted SLG hierarchy is truncated for the sake of pre-

sentability.

106 5 Case Studies: Code Generators for jABC

2

1

3

CG

Fig. 5.2. Java Class Extruder: Processing the input SLGs

the current parameter is a normal SIB parameter or exported as a model
parameter. The SLGs depicted in Fig. 5.2 are not limited to the Java Class
Extruder: In fact, they are shared by all code generators following the Ex-
truder approach and targeting a Java-based platform, such as the Servlet
Extruder and the SIB Extruder which are presented in Sect. 5.4.

Due to the fact that the code generator is realized as SLGs, the only way to
use it in earlier development phases was opening its models in jABC and then
executing it with the Tracer. However, for being able to make the generator
accessible via a jABC plugin or to integrate it in a tool-chain (cf. Sect. 4.3.2),
it needs to be available as an executable Java class. As illustrated by the T-
diagram in Fig. 5.3, this is achieved by means of bootstrapping. Note that the
box marked with the number “3” is the T-diagram notation for an interpreter,
with text labels indicating the source language that is interpreted (top) and
the interpreter’s implementation language (bottom). The interpreter shown
in Fig. 5.3 is the Tracer, with SLGs as its source language and Java as its
implementation language. In essence, the Java Class Extruder generates itself
by executing it with the Tracer, using its own models as input. This boot-
strapping step yields the Java Class Extruder as an executable Java Class.

5.1 Bootstrapping: Java Class Extruder 107

JavaSLG

SLG

Java Class Extruder

JavaSLG
Java Class Extruder

Java

1

2

3

1, 2 Java Class Extruder (SLG)

3 Tracer

4 Java Class Extruder (Java)

Java

SLG
Tracer

JavaSLG

SLG

Java Class Extruder

4

Fig. 5.3. Bootstrapping the Java Class Extruder by means of the Tracer

In order to make this Java class accessible for the Genesys tools, it needs
to implement an interface called CodeGenerator. This interface is used by the
tools to detect code generators and to acquiremetainformation, such as the gen-
erator’s name, author and documentation, that can be displayed to the user.
This metainformation is usually provided by the generator developer via the
Descriptor Inspector (cf. Sect. 4.3.1). In order to enable the Java Class Extruder
to produce such a special Java class for a code generator, corresponding gener-
ator generator features had to be added to its models.

The bootstrapping process used for the Java Class Extruder is comparably
simple, as it only involves one single stage. There are two reasons for this.
First, as the Java Class Extruder’s source and implementation language are
both SLGs, it is a self-generating generator (analogous to the notion of a
self-compiling compiler established in Sect. 2.1) and thus highly amenable to
bootstrapping. Second, due to the availability of the Tracer as an interpreter
for SLGs, the self-generation is performed easily without the need of an addi-
tional compiler. Especially the latter shows that jABC’s executable modeling
language eases and facilitates bootstrapping, thus meeting Requirement S5 -
Bootstrapping.

Furthermore, the self-generation of the Java Class Extruder is an example
of full code generation (Requirement S2 - Full Code Generation). The Java
class resulting from the bootstrapping process does not require any manual
adjustment or completion, and can be directly compiled and executed using
a Java Development Kit (JDK). This is due to the service-oriented modeling
approach in jABC: All required services have been implemented before the
actual code generation, so that there is no missing information or unspecified
behavior.

5.1.3 Evaluation

The Extruder approach to code generation provides several advantages, the
most evident of them being the fact that the actual code generation is very
simple, as described above. The direct reuse of the Tracer’s features also sig-
nificantly improves the maintainability of the code generator, because it does

108 5 Case Studies: Code Generators for jABC

not need to be adapted to new Tracer versions (except for the case the API
for invoking the Tracer changes). Any new feature introduced by the Tracer,
such as a new control SIB realizing a novel execution pattern, is immedi-
ately supported by any Extruder. Furthermore, the execution equivalence of
the models and the generated code is guaranteed automatically, because the
Tracer is used for the execution in both cases.

Besides those advantages, there are also some drawbacks when using an
Extruder. The biggest problem clearly is the overall size of the generated
artifact. Although an Extruder-generated Java class usually does not grow
beyond critical boundaries, it entails a lot of dependencies, such as libraries
which need to be present at compilation time as well as at runtime. This
is due to the Tracer which requires jABC’s SIBGraphModel data structure,
which in turn requires the jABC framework, a graph library, libraries for
XML serialization etc. Furthermore, the SIBGraphModel data structure al-
ways contains the complete SIBs, including icons, documentation and code
for jABC plugins such as the LocalChecker (cf. Sect. 3.2.3). Such information
is not really required for executing the generated code, but it is induced by
the employed libraries and thus cannot be omitted. This plethora of (for the
generated code in large part unnecessary) information and dependencies may
lead to a big size of the resulting artifact.

Furthermore, the runtime performance of the generated code is decreased,
as the necessary construction of the data structure delays the actual execu-
tion. The Tracer’s execution features are also expensive in terms of perfor-
mance and cause some runtime overhead (cf. benchmark results in Sect. 5.3).

While being uncritical in lots of environments, those issues are especially
problematic for target platforms with strong performance requirements or
memory limitations, such as embedded systems. Sect. 5.4.4 describes the
leJOS Generator, that is an example of a code generator for an embedded
system to which the Extruder approach was not applicable due to the prob-
lems described above.

Furthermore, generating one single Java class does not scale for very large
SLG hierarchies. The number of different models determines the number of
model methods in the generated class, and the size of each model method
depends on the overall number of elements contained in the model. Those
elements include SIB instances, SIB parameters, model parameters, edges,
branches, model branches and user objects, and each of those elements leads
to one or more lines of code. For instance, when the Java Class Extruder
(see Sect. 5.3.1 for the size of the corresponding models) generates itself, this
results in a Java class with 6366 lines of code and a file size of 410 KB. More
complex SIB hierarchies can easily lead to even bigger Java classes, which
may in the worst case exceed the limits set by the JVM [LY99, p. 152].

Apart from these technical issues, another reason for refusing an Extruder
approach might be the prevention of a possible vendor lock-in. Code gener-
ated by an Extruder highly depends on the jABC framework and the Tracer,

5.2 Java Class Generator 109

i.e., on third-party software. If such dependencies are unwanted or even dep-
recated, the Extruder approach is clearly not appropriate.

Due to these drawbacks, an alternative approach had to be developed,
which is presented in the following sections.

5.2 Java Class Generator

The weak points of the Extruder approach, which made it inapplicable for
several target platforms like embedded systems, led to the development of
alternative code generation strategies. Resulting from the experience with
the Java Class Extruder described above, these alternatives are based on the
following requirements:

1. Small deployment size: The overall size of the generated artifact,
including its (compile-time and runtime) dependencies, should be kept
small.

2. Scalability: The code generator should be able to produce valid results,
even for large inputs.

3. Better performance: The performance should be improved in compar-
ison to Extruder results.

4. No vendor lock-in: The generated artifact should not per se depend
on third-party tools or libraries, except for those induced by the services
used in the models.

Requirements 1 and 4 enforce the relinquishment of the Tracer as well as of
jABC’s SIBGraphModel data structure, due to the huge amount of dependen-
cies resulting from both. Furthermore, the size of SIBs has to be reduced to
those constituent parts relevant to the generated artifact, e.g., by sorting out
unnecessary information. Requirement 3 also inhibits the use of the Tracer as
it is a performance bottleneck of Extruder-generated code (cf. benchmark re-
sults in Sect. 5.3). Finally, as a consequence of requirement 2, the single class
generation performed by Extruders has to be replaced by a more scalable con-
cept. In order to distinguish code generators adhering to these principles from
those that follow the Extruder approach, previous publications established
the notion of Pure Generators for referring to the former [JMS08; Jör+07].
The Pure Generator counterpart for the Java Class Extruder is called the
Java Class Generator.

The following sections elaborate on the Java Class Generator as well as on
its underlying concepts and different variants.

5.2.1 Handling Service Calls

The development pattern for SIBs described in Sect. 3.2.1 was noticeably
influenced by the experiences made with the Java Class Extruder. In the
very beginning of the Genesys project, when jABC did not yet provide any

110 5 Case Studies: Code Generators for jABC

facilities for code generation, the Tracer was the only way to execute SLGs.
At this time, when designing a SIB it was general practice to directly call
the underlying service from the SIB. This was viable because most SIBs pro-
vided only Java implementations anyway, and because the Tracer, which was
primarily designed for debugging and (visual) animation in jABC, required
the entire SIB for execution.

However, as outlined above in Sect. 5.1.3, this practice was not equally fea-
sible for code generation. The large amount of information which is contained
in a SIB but irrelevant for generated code, such as the icon, documentation,
constraints or plugin annotations, leads to unnecessary dependencies and in-
creases the generated artifact’s size. Consequently, a code generator needs to
be able to isolate only the required portion of a SIB, consisting of

1. the information on how the SIB’s underlying service is called, and
2. the values of those SIB parameters which are used for configuring the

underlying service.

The concept that emerged from these considerations was the decoupling of the
SIB and the underlying service by means of a service adapter (cf. Sect. 3.2.1).
This removes any unnecessary dependencies from the generated code, which
has to contain direct calls to the service adapters only. In order to be able
to generate such a call to a SIB’s service adapter, a code generator has to
inquire some information, as indicated in 1 and 2 above.

As an example, assume that the Java Class Generator detects an instance
of the SIB WriteTextFile from the “IO SIBs” bundle (see Sect. 4.1.1) in an
input model. The task of this SIB is to write a text, found in the execution
context, to a file. For this purpose, the SIB provides two parameters: text
denotes the execution context key for the actual text, and file specifies the
path to the output file to which the text will be written. In order to generate
a call to the SIB’s Java implementation, the code generator first has to de-
termine the corresponding service adapter and the name of the actual service
that will be called. For WriteTextFile, the service adapter is a Java class
called JavaServiceAdapter, containing a method named writeTextFile,
which provides the actual implementation of the SIB’s behavior. In the next
step, the code generator identifies the SIB parameters required for configur-
ing the service call, which are text and file. With this information, the code
generator is finally able to produce a direct call to the SIB’s service adapter,
e.g.:

de . jabc . adapter . common. i o . JavaServiceAdapter . wr i t eTex tF i l e (
"This i s a t e s t t e x t . " , new java . i o . F i l e ("/path/ to / f i l e . txt ")) ;

The aggregate of this information is called the service adapter descriptor .
In order to realize this concept, an appropriate mechanism was required

that connects a SIB with its available service adapters in a way that allows a
code generator to deduce the necessary information for generating a service
call from a given SIB instance, as described above. Two solutions emerged for
achieving this, the first of which uses interfaces to establish the connection:

5.2 Java Class Generator 111

For any new service adapter that realizes a SIB, the SIB has to implement a
corresponding interface. This interface implementation provides the informa-
tion on how to call the service adapter, i.e., the service adapter descriptor.
Although this solution works well and has been used extensively by the first
Genesys code generators for jABC, a major disadvantage is the effort that is
required in order to attach a new service adapter to a SIB. For each new ser-
vice adapter, the following steps are required: a corresponding interface has
to be implemented if it does not already exist, the SIB has to be adapted so
that it implements the new interface and exposes the corresponding service
adapter descriptor, and finally the SIB has to be recompiled. Those modifi-
cations are usually rather cumbersome and sometimes even hardly possible,
especially if the affected SIB is contained in a third-party bundle that is only
available in binary form.

Thus the second solution avoids the need for modifying and recompiling the
SIB by using a separate XML file. Such a file contains the mapping between
SIBs and their service adapters for an entire SIB bundle and is placed in a
standardized location, so that it can be easily found by a code generator.
Listing 5.1 shows an excerpt of such an XML file, which associates a service
adapter implemented in Java to the SIB WriteTextFile mentioned above.
The mapping between the SIB and the service adapter is established via the
SIB’s UID in order to avoid ambiguities (line 1). The adapter tag in line 2
declares the name of the service adapter that contains the implementation
of the SIB, which is, in this example, a Java class. For other cases, it may,
e.g., denote the name of an Objective-C class or a Perl script. The following
lines 3–7 specify the name of the particular service that implements the SIB’s
behavior (in this case the name of a Java method) as well as the names of
the SIB parameters which provide the input values for the service.

1 <serv iceAdapte r uid=" io−s i b s /WriteTextFi le ">
2 <adapter>de . jabc . adapter . common. i o . JavaServiceAdapter</ adapter

>
3 <s e r v i c e>wr i t eTex tF i l e</ s e r v i c e>
4 <arguments>
5 <argument name=" tex t" />
6 <argument name=" f i l e " />
7 </arguments>
8 </ serv i ceAdapter>

Listing 5.1. Excerpt from an XML file that maps service adapters to SIBs

The XML file that contains the excerpt from Listing 5.1 attaches Java im-
plementations to all SIBs in the “IO SIBs” bundle. If further implementations
are available, e.g., for Ruby, they are mapped to the SIBs via an additional
XML file. Each such file is identified by a unique name. For instance, the
file containing the Java mappings is called adapters_java.xml, and the one
for the Ruby mappings is called adapters_ruby.xml. For convenience and
in order to shield the generator developer from these technical issues, the
Genesys framework contains SIBs that retrieve the desired service adapter
descriptor for a given SIB instance. This includes finding the corresponding

112 5 Case Studies: Code Generators for jABC

public class Model {
 private java.lang.String param1 = "";
 private int param2 = 0;

 private Model (String param1, int param2) {
 this.param1 = param1;
 this.param2 = param2;
 }

 public Map<String,Object> execute() {
 [...]
 }

 public static void main(String[] args) {
 [...]
 }
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

public class Submodel {
 private java.lang.String param = "";

 private Submodel (String param) {
 this.param = param;
 }

 public Map<String,Object> execute() {
 [...]
 }
}

1
2
3
4
5
6
7
8
9
10
11

Model (param1:String, param2:int)

Submodel (param:String)

A

Fig. 5.4. Generation concept of the Java Class Generator

XML file, parsing it, extracting the relevant information and storing it in the
execution context, so that it can be further processed by the code generator.

Due to this concept, adding new implementations to a SIB is very easy, as
it is reduced to augmenting an existing XML file or adding a new one. Re-
compilation is not required, so that this solution also works if a SIB’s source
code is not available. There are no limitations on the number of implemen-
tations (and thus target platforms for code generation) that can be assigned
to one SIB. Please note that this flexible service concept is applicable for all
SIBs, including those used for building code generators with Genesys, conse-
quently meeting Requirement G1 - Platform Independence and Requirement
G2 - Reusability and Adaptability.

5.2.2 From Single Class to Multiple Classes

Sect. 5.1.3 argued that generating one Java class per SLG hierarchy, as per-
formed by the Java Class Extruder, does not scale well. Thus an alternative
approach had to be found, that produces results respecting the limitations
set by the JVM, even for large inputs. A natural solution is partitioning the
generated artifact: Instead of one single class for an entire SLG hierarchy,
the Java Class Generator produces one class for each (different) model that
is contained in the hierarchy.

Fig. 5.4 illustrates this concept by means of the sample SLGs already
used in Fig. 5.1. Additionally, the example now displays the model parame-
ters of the involved SLGs: “Model” has two model parameters “param1” and
“param2” of type String and int respectively, and “Submodel” provides one
String parameter named “param”. The right hand side of the figure sketches

5.2 Java Class Generator 113

the code resulting from the generation process, again in a simplified and
truncated form. It is visible that each SLG in the hierarchy yields a separate
Java class, called the model class, each containing an execute method for
executing the behavior represented by the corresponding model. Only the
class Model has been equipped with a main method, as it corresponds to the
topmost model in the SLG hierarchy and thus is considered the application’s
entry point.

In contrast to results produced by the Java Class Extruder, the execute
methods are always parameterless, as the configuration of each class is per-
formed via its constructor. Generally, the model parameters of an SLG
lead to corresponding constructor parameters (line 5 in Model and line 4
in Submodel) and private instance variables (lines 2–3 in Model and line 2
in Submodel) in the resulting code. Just like the model methods in the Ex-
truder pendant, this configurability allows the reuse of generated code, in
this case of entire Java classes, thus avoiding redundancies. For instance, al-
though “Submodel” may be reused multiple times in the SLG hierarchy, the
code generation will nevertheless always produce exactly one Submodel class,
which will be reused in an analogous manner in the generated code.

Although this concept does not reduce the overall size of the generated
artifact, it produces Java classes which are considerably smaller and thus do
not exceed any limits set by the JVM. For generating the code that realizes
the actual behavior of the SLGs, i.e., the content of the execute methods,
two variants have been developed which will be presented in Sect. 5.2.4 and
5.2.5, respectively.

5.2.3 Data Type Mappings and Execution Context

As most of jABC’s built-in data types are in fact Java data types, the map-
pings required for the Java Class Generator are very simple. Consequently, in
terms of the five cases of data type mapping defined in Sect. 4.1.2, all jABC
data types referred to as “simple types” in Sect. 3.2.1 belong to the “identity”
category.

In contrast to this, the complex data types provided by jABC have no
direct pendants in Java, so that corresponding mappings are required. Table
5.1 lists those mappings, and it is visible that most of them belong to cat-
egory 4 (“new data type”). For those data types, new lightweight pendants
are introduced (suffixed with Foundation), which preserve all necessary in-
formation, but at the same time do not induce any unwanted dependencies.
For instance, the jABC data type ContextKey, which specifies a location for
accessing data in the execution context (cf. Sect. 3.3.2), contains a name for
the context key as well as information about the context scope. This data
type is translated to ContextKeyFoundation, which carries the same infor-
mation, but is implemented without the use of any jABC-specific APIs. The
Java Class Generator emits those lightweight types on demand, i.e., only if
the corresponding jABC data type is used in the input models.

114 5 Case Studies: Code Generators for jABC

Table 5.1. Java mapping for complex jABC data types

jABC Data Type Java Data Type
ContextExpression ContextExpressionFoundation
ContextKey ContextKeyFoundation
ExtendedFile File
ListBox ListBoxFoundation
MultiObject MultiObjectFoundation
Password String
StrictCollection StrictCollectionFoundation
StrictList StrictListFoundation

The types ExtendedFile and Password belong to category 3 (“reductive
mapping”). Both contain information which is used by jABC for properly
displaying the parameter in the SIB inspector. For instance, ExtendedFile
allows the definition of a filter for restricting the modeler to the selection of
particular file types. However, such information is solely required for model-
ing, but it has no effect on the execution of a SIB using a correspondingly
typed parameter. Hence such data types could be reduced to the informa-
tion relevant for execution: ExtendedFile is reduced to a simple File object
specifying an absolute file path, and Password is mapped to a simple string
containing the password.

Apart from data types, the stacked execution context provided by the
Tracer (cf. Sect. 3.3.2) also has to be supported by the generated code. Again,
the Tracer’s original execution context cannot be reused as it induces too
many unwanted dependencies. In consequence, a lightweight version of the
execution context has been designed, which basically uses hash tables for
the single contexts, that are managed in a stack. Just like the lightweight
data types described above, this lightweight implementation of the execution
context is emitted by the code generator.

The lightweight data types and the lightweight execution context are not
only important for the generated code, but also for the SIBs contained in
the input SLGs of the code generator: The Java service adapters of the SIBs
must exclusively use the lightweight types and context in order to assure
compatibility with the generated code (which contains corresponding service
calls, see Sect. 5.2.1), and to avoid unnecessary dependencies to jABC. This
has to be considered by the SIB expert who is responsible for developing the
service implementations.

5.2.4 Variant 1: Structured Code

The first variant for mapping the behavior modeled by an SLG to corre-
sponding code involves the generation of structured code. This refers to the
translation of the control flow resembled by an SLG to corresponding code
statements with equivalent semantics. As described in Sect. 3.3.1, the seman-
tics for the execution of SLGs is determined by the Tracer.

5.2 Java Class Generator 115

Such translations are usually based on the identification of structured re-
gions, which can be easily converted to corresponding code statements. How-
ever, due to the trade-off between graph-based (like SLGs) and block-oriented
(like Java) languages, models may contain unstructured parts which cannot
be directly translated to code. Both the identification of structured regions
and the treatment of unstructuredness are well-researched fields.

Identifying Control Flow Patterns:

Essentially, the control flow structures occurring in an SLG are very similar to
those found in elementary flow charts used to represent procedural programs.
Williams [Wil77] refers to these structures as the “three basic structures of
structured programming”, consisting of sequences, selections (i.e., decisions)
and repetitions. The translation of those three control flow patterns to corre-
sponding block-oriented code is usually straightforward. Fig. 5.5 shows SLG
examples for the patterns and illustrates the translation of each into code.
The latter is written as simplified Java-like code. The generated code for SIBs
is represented by simple function calls such as “A();” for the SIB A (mean-
ing that the service underlying A is called), instead of a full service call as
described in Sect. 5.2.1.

In terms of the translation, sequences (part a) are the most simple case, as
they are directly mapped to consecutive statements. For decisions, branches
are used to distinguish different alternatives, in accordance with the SLG
semantics defined by the Tracer. This is depicted in part b of Fig. 5.5: First,
the service underlying SIB A is called and its result, which is a branch name,
is obtained. Subsequently, an if-else-statement is constructed according to all
branches of the SIB that are assigned to outgoing edges, in the example “first”
and “second”. For each alternative, the service underlying the corresponding
successor is called. Finally, part c of Fig. 5.5 exemplifies the code resulting
from a repetition by means of a do-while-loop. In the SLG, the SIB labeled
A decides whether the loop is continued (branch “loop”) or exited (branch
“exit”). Thus it is the service underlying A which is called first. Afterwards,
the result is checked: For “exit”, the loop is aborted immediately, otherwise
the contents of the loop are processed (in the example a sequence of B and
C). Finally, the service underlying A is called again at the end of the loop,
prior to evaluating the loop condition.

Besides the three basic patterns described above, SLGs may also contain
hierarchy and fork-join constructs. However, the former do not introduce
a new control flow pattern to SLGs. As described in Sect. 3.2.2, macros
are a structural means for hiding parts of an SLG. Although such a macro
resembles an entire submodel, it appears just like any other SIB in a model.
This is even true for recursion, which can, e.g., be built by means of a macro
that in turn references the same model in which it is contained. For a code
generator, the only difference is the generation of a corresponding service call:
Instead of producing a call to an existing service (cf. Sect. 5.2.1), a macro is
translated into a call to the generated code corresponding to the referenced

116 5 Case Studies: Code Generators for jABC

A();
B();
C();

result = A();
if(result == "first")
 B();
else if(result == "second")
 C();

result = A();
do {
 if(result == "exit")
 end;
 B();
 C();
 result = A();
} while(result == "loop");
D();

a) b) c)

A

Fig. 5.5. Basic control flow patterns and their translation into code

Thread thread1 = new Thread() { public void run(){ A(); }};
Thread thread2 = new Thread() { public void run(){ B(); }};
Thread thread3 = new Thread() { public void run(){ C(); }};

thread1.start();
thread2.start();
thread3.start();

thread1.join();
thread2.join();
thread3.join();

A

Fig. 5.6. The fork-join control flow pattern and its translation to code

submodel. Consequently, hierarchy constructs are ignored for the following
considerations.

In turn, fork-join constructs introduce an additional control flow pattern
to SLGs. However, those constructs are unproblematic for the generation of
structured code, as they are subject to strict well-formedness rules described
in Sect. 3.3.3 (such as pairwise occurrence of fork and join, or correct nesting).
The single threads between a fork and a join may only contain the three basic
patterns as well as further well-formed fork-join constructs.

Fig. 5.6 shows the translation of a well-formed fork-join construct into
corresponding code. Like in Fig. 5.5, the code is written as simplified Java-
like code. It is visible that for each of the parallel steps modeled in the SLGs

5.2 Java Class Generator 117

A

Fig. 5.7. An unstructured SLG and its equivalent structured pendant

on the left hand side, a separate thread is constructed in the generated code.
After the threads have been started, the generated program waits until all
threads are finished.

Handling Unstructuredness:

Any control flow structure that cannot be assigned to the basic patterns
described above is considered unstructured. The SLG on the left hand side
of Fig. 5.7 is an example of such a case, as it contains one loop with multiple
entry points (B and C), which is one of five basic unstructured forms identified
by Williams [Wil77]. The remaining forms named by Williams are abnormal
selection paths, loops with multiple exit points, overlapping loops and parallel
loops.

For flow charts, it is well established that any unstructured form can be
transformed to an equivalent structured form. For instance, apart from identi-
fying unstructured forms that may occur in flow charts, Oulsham [Oul82] also
provided transformations that convert each to equivalent structured forms.
This is typically achieved by means of node duplication or by introducing
auxiliary variables. As SLGs are basically a condensed version of flow charts
that omits split and join nodes (especially those for reflecting alternative
flows), similar transformations can also be adapted and applied to SLGs.

The right hand side of Fig. 5.7 shows a structured pendant for the un-
structured SLG on the left hand side. In this model, the unstructuredness
is resolved by duplicating the loop, so that each outgoing edge of A leads to
one loop with a single unique entry point. Furthermore, the transformation
preserves the model’s execution behavior, which shows that it can be safely
used as a pre-processing step for code generation.

Further relevant research emerged from BPM (cf. Sect. 2.3.6), which re-
cently focused on this topic, e.g., when translating BPMN to BPEL. The
results include efficient techniques for the detection of control flow pat-
terns [VVK08;GB08], for transforming unstructured BPMN models and other
workflow specification languages to structured pendants [DGBP11;KHB00]
as well as strategies for code generation [Ouy+06; ABL08]. In the case of
BPMN, the translation to structured code is much more complex than for
SLGs. This is due to the fact that BPMN provides much more syntactic
constructs which mostly are not subject to strict well-formedness rules like

118 5 Case Studies: Code Generators for jABC

the SLGs’ fork-join, thus entailing a higher potential for unstructuredness.
Consequently, the techniques mentioned above also cover SLGs, which may
be considered a subset of BPMN in terms of control structures.

Engeler Normal Form (ENF):

The structured code variant of the Java Class Generator does not yet employ
the advanced techniques mentioned above, but it is available as a simple pro-
totypical realization. For eliminating unstructuredness, it uses an algorithm
which employs node duplication in order to transform SLGs to their Engeler
Normal Form (ENF) [Eng71]. This normal form only contains structured in-
stances of the three basic control flow patterns described above, and thus can
be easily translated into code.

As an example, the structured model on the right hand side of Fig. 5.7 is
the ENF of the SLG on the left hand side. The transformation algorithm was
described and implemented in a diploma thesis [Dra06]. For generator devel-
opers, the ENF transformation is available as a SIB called BuildEngeler-
NormalForm, which transforms a given set of SLGs to their corresponding
ENFs.

In order to be applicable in the Java Class Generator, the algorithm was
extended for supporting fork-join constructs, which are handled in a prior
transformation step. Fig. 5.8 illustrates this transformation, which maps a
well-formed fork-join construct (left hand side) to a hierarchical graph (right
hand side): Each thread modeled between fork and join is moved to a sepa-
rate submodel. In the example, the sequences B-C and D-E are single threads
which are converted to submodels. In the original model, the entire fork-
join construct is replaced by a special macro which allows the assignment of
multiple models (in contrast to standard macros in SLGs, which are able to
reference one single submodel only). Finally, the new submodels representing
the threads are assigned to this macro. During execution of the model, the
special macro behaves just like an ordinary fork-join construct: It executes
each assigned submodel in parallel and waits until each thread finishes, before
the next step (in the example F) is executed.

A

Fig. 5.8. Transformation of a fork-join construct to hierarchical submodels

As a consequence, code generators need to be aware of the special macro
in order to generate corresponding code as described above. However, as the

5.2 Java Class Generator 119

1

2 structuredCode

CG

Fig. 5.9. Java Class Generator: Root SLG (1), Model transformations (2)

major advantage of this modus operandi, model-to-model transformations
such as the ENF transformation do not have to explicitly support the fork-
join control flow pattern.

After the ENF transformation, each node in an SLG can be assigned to
one of the basic control flow patterns by simply counting its incoming and
outgoing edges:

• sequence: 0 to 1 incoming edges and 0 to 1 outgoing edges
• decision: 0 to 1 incoming edges and 2 to n outgoing edges
• repetition: n > 1 incoming edges (or 1 if the node is a start node) and 1

to n outgoing edges

The identification of the control flow patterns and the actual translation into
code can be performed simultaneously during a depth-first traversal.

Modeling the Structured Code Approach:

The first version of the Java Class Generator exclusively followed the struc-
tured code approach (cf. Sect. 5.2.7). Subsequently, further alternative ap-
proaches (see Sect. 5.2.5) were added and the parts of the generator that
realize the structured code approach became one variant among others. In
Fig. 5.9, SLG 1 at the top shows the root model of the Java Class Generator.
Besides several steps that perform logging (those SIBs which show a pen on
their icon), it is visible that the generator is separated into three phases:

1. Initialization Phase (macro Initialize Generator): In this phase, the
code generator is initialized. For instance, this includes the verification
of the generator arguments provided by the user as well as loading the
input SLGs from the file system. Furthermore, the required data type
mappings are set up (cf. Sect. 4.1.2 and 5.2.3) and all keywords reserved
by Java are added to the identifier blacklist (cf. Sect. 4.1.3).

2. Transformation Phase (macro Perform Model Transformations): If the
input SLGs need to be pre-processed or transformed prior to the actual
code generation process, this can be performed in the transformation
phase. For the structured code approach, this is the place where the input

120 5 Case Studies: Code Generators for jABC

SLGs are transformed to their corresponding ENFs, as shown by SLG 2
in Fig. 5.9. Preceding the BuildEngelerNormalForm SIB that performs
the transformation, SLG 2 contains a SIB that saves backup copies of the
original (unmodified) input SLGs, and two SIBs that issue log messages.

3. Generation Phase (macro Generate Java Class): This is where the ac-
tual code generation is performed, i.e., the elements of the input SLGs
are processed in order to collect all information necessary for generat-
ing code, which is assembled and finally written to corresponding output
files.

Fig. 5.9 also exemplifies the use of Genesys’ variant management feature
described in Sect. 4.1.4. SLG 2 represents a variant that realizes the trans-
formation phase, identified by means of the unique name structuredCode.
In the parent SLG 1, this variant is assigned to the macro Perform Model
Transformations, which serves as a variation point, i.e., other variants may
realize the transformation phase differently. For instance, the alternative gen-
eration approach presented in Sect. 5.2.5 does not require any model trans-
formations, so that the model specifying this phase is empty for this variant.
At the same time, there are also parts that are shared by all variants such as
SLG 1 and all models realizing the initialization phase. This illustrates the
reuse of models (Requirement G2 - Reusability and Adaptability) on the one
hand and the specification of variability and product lines (Requirement S3
- Variant Management and Product Lines) on the other hand.

Furthermore, by means of the SIB BuildEngelerNormalForm, SLG 2 in
Fig. 5.9 shows how the abstraction provided by SIBs (and services in gen-
eral) simplifies the development process: A generator developer is able to
apply the ENF transformation without knowing all of its theoretical, algo-
rithmic or implementation details. All he has to know is the purpose of the
ENF transformation explained in the SIB’s documentation, in order to rec-
ognize it as a necessary pre-processing step for the detection of control flow
patterns. If the generator developer subsequently decides to use another al-
gorithm for the ENF construction, or even another transformation, the SIB
can be easily replaced by another one (Requirement G3 - Simplicity). Simi-
larly, the code generator can be improved with the advanced techniques from
the BPMN/BPEL community outlined above. In order to achieve this, the
corresponding algorithms, libraries etc. have to be made available once as
corresponding SIBs, so that they can be used by generator developers for
modeling.

Fig. 5.10 shows the part of the structured code variant that is responsible
for detecting the control flow patterns. The depicted SLGs are situated in the
generation phase of the code generator, and thus work on input models which
already have been converted to their ENF. Each input model is traversed in
a depth-first manner. For each SIB instance in an input model, the steps
modeled by SLG 1 in Fig. 5.10 are executed. After retrieving the current SIB
instance, the generator checks whether it has already been visited. If this is
the case, then the SIB instance represents a loop entry and as it already has

5.2 Java Class Generator 121

1

2CG

Fig. 5.10. Java Class Generator: Detection of Control Flow Patterns

been visited, the traversal just followed a back edge. Consequently, the gen-
erator produces a continue statement for jumping back to the loop entry3.
If the SIB instance has not been visited before, it is checked for being a loop
entry. If it is a loop entry, corresponding code is generated, otherwise the
generator first produces the corresponding service call along with code for
handling any model branches specified by the SIB instance. Afterwards, its
outgoing edges are examined in order to decide whether it is a sequence or
a decision that should be generated. This check is modeled in SLG 2, and it
resembles the criteria for identifying sequential and conditional control flow
patterns outlined above.

5.2.5 Variant 2: The Interpreter Approach

The second variant of the Java Class Generator is influenced by the ideas of
the Extruder approach described above in Sect. 5.1.1. It aims at translating
an SLG into a corresponding data structure, which is then executed by means
of an interpreter. However, in contrast to Extruders, the resulting code has
to be self-contained in order to meet the requirements for the Java Class
Generator formulated above. This means that both the data structure used
for representing the SLG as well as the interpreter itself have to be generated
in a way that avoids the problems of the Extruder approach.

The Lightweight Data Structure:

Similar to the handling of data types and the execution context (cf. Sect. 5.2.3),
an SLG is translated into a simplified lightweight data structure. The class di-
agram in Fig. 5.11 shows an excerpt of this data structure, which is a highly
condensed version of jABC’s SIBGraphModel (see Sect. 3.2.2), that is reduced
3 As a result of simplifying the models of the generator, the technical implemen-

tation of how the Java Class Generator produces code for loops slightly differs
from the simplified code in Fig. 5.4.

122 5 Case Studies: Code Generators for jABC

Fig. 5.11. Lightweight data structure for SLGs (excerpt)

to contain only information which is relevant for execution. Anything else that
is, e.g., specific to displaying (such as icons or positioning information) or ver-
ifying (i.e., local and global constraints) SLGs is omitted.

In the lightweight data structure, any contained service has to be con-
structed as specified by the Service interface. According to this interface,
a service has to define its execution behavior by implementing the execute
method, which works on the lightweight version of the execution context
outlined in Sect. 5.2.3. As its result, this method always returns the name
of a branch which reflects the service’s execution result. Furthermore, the
Service interface defines that a service can have zero or more successors, each
of them identified by a corresponding branch name (methods addSuccessor
and getSuccessorForBranch). As the management of the successors is the
same for almost any service, this functionality is realized by an abstract class
called AbstractService. Thus any concrete service only needs to extend this
abstract class and to implement the remaining execute method.

Fig. 5.11 also provides examples for concrete services that may occur in
the lightweight data structure:

• GenericElementaryService is the lightweight pendant to a SIB. Basi-
cally, such a service is parametrized with the information contained in a
SIB’s service adapter descriptor (see Sect. 5.2.1). When the service is ex-
ecuted, it uses the information to call the corresponding service adapter
by means of Java’s Reflection API.

• LocalContextService and ThreadedService are counterparts of the
GraphSIB and the ThreadSIB, respectively. In jABC, both are macros
and control SIBs, so that they cause another service (realized by a sub-
model) to be executed in a certain way. In order to reflect this, the
lightweight pendants are designed on the basis of the well-known Dec-
orator pattern [Gam+95]. Accordingly, these services mainly “decorate”
another service (such as a GenericElementaryService) with additional
execution behavior: execution with a stacked context in case of the

5.2 Java Class Generator 123

Submodel

public class Model implements AbstractService {
 [...]
 public String execute(LightweightExecutionContext ctx) {
 Service A = new GenericElementaryService([...]);
 Service B = new Submodel();
 Service C = new GenericElementaryService([...]);

 A.addSuccessor("a", B);
 B.addSuccessor("b", C);

 return interpret(A, ctx);
 }
 [...]
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14

public class Submodel implements AbstractService {
 [...]
 public String execute(LightweightExecutionContext ctx) {
 Service A = new GenericElementaryService([...]);
 Service B = new GenericElementaryService([...]);
 Service C = new GenericElementaryService([...]);
 Service D = new GenericElementaryService([...]);

 A.addSuccessor("a", B);
 B.addSuccessor("b1", C);
 B.addSuccessor("b2", D);
 C.addSuccessor("c", new ExitService("b"));
 D.addSuccessor("d", new ExitService("b"));

 return interpret(A, ctx);
 }
 [...]
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

Model

c

d

b

b

A

Fig. 5.12. Generation concept of the Java Class Generator’s “Interpreter Variant”

LocalContextService and execution in a separate thread in case of the
ThreadedService.

• An ExitService is equivalent to a model branch which is used in SLGs
to mark the exit of a model. It is also responsible for mapping the branch
name returned by the previously executed service to the branch name
that reflects the corresponding execution result of the entire model4. An
example for this will be provided below.

Similar lightweight pendants exist for all control SIBs (e.g., for event han-
dling), but for the sake of clarity, only a representative subset of them is
presented in Fig. 5.11.

If the use of reflection is undesired, e.g., due to performance reasons (or for
target languages other than Java, if no reflection capabilities are available),
the GenericElementaryService can be easily replaced by correspondingly
generated services: For each SIB class, the code generator has to produce a
suitable implementation of Service that contains the direct call to the SIB’s
service adapter, as described in Sect. 5.2.1. When comparing and evaluating
the different Java code generators in Sect. 5.3, both alternatives (i.e., with
and without reflection) will be considered.

Fig. 5.12 illustrates the translation to the lightweight data structure by
means of the sample SLGs already used in Fig. 5.1 and Fig. 5.4. In addi-
tion to the previous examples, the edges in the SLGs have been augmented
by corresponding branch labels. Furthermore, model branches leaving the
model are indicated for the SLG “Submodel”. The resulting model classes
4 As described in Sect. 3.2.2, the name of a model branch may differ from the

name of the actual SIB branch that has been exported.

124 5 Case Studies: Code Generators for jABC

extend AbstractService, i.e., in the generated code, models are treated just
like any other services. In the implementation of the execute method, the
corresponding lightweight data structure is constructed. First, the services re-
sembling the single SIBs are created. The example mostly contains standard
SIBs which are translated to GenericElementaryServices. As an exception,
the macro B in the SLG “Model” is resembled by an instance (class Model at
the top, line 5) of the generated “Submodel” class. Second, the connections
between the services are established by declaring the successors of each ser-
vice. Those connections reflect the edges in the original SLG. Accordingly,
each successor is set along with the branch name which labels the correspond-
ing incoming edge in the SLG. For instance, in Fig. 5.12, the edge labeled “a”
between A and B in the SLG “Model” is translated to “A.addSuccessor("a",
B)” (class Model, line 8).

Fig. 5.12 also exemplifies the use of exit services. In the SLG “Submodel”,
it is visible that the SIB C provides a branch “c”, which is in turn exported
as a model branch called “b”, used to label the outgoing edge of macro B in
the superordinate SLG “Model”. In the generated code, this is reflected by
an exit service, which returns the name of the model branch “b”, and which
is set as a successor of C and a virtual outgoing edge labeled “c” (see class
Submodel, line 12).

After constructing the lightweight data structure, it is executed via an
interpreter.

The Interpreter:

Given the lightweight data structure, the interpreter for the execution is very
simple. In order to start an execution, the interpreter just requires the start
service of the data structure (A in the examples in Fig. 5.12) along with the
lightweight execution context.

1 public St r i ng i n t e r p r e t (S e rv i c e s t a r t S e r v i c e ,
LightweightExecutionContext ctx) {

2 Se rv i c e s e r v i c e = s t a r t S e r v i c e ;
3 St r i ng r e s u l t = "" ;
4 while (s e r v i c e != null) {
5 r e s u l t = s e r v i c e . execute (ctx) ;
6

7 i f (i sEx i t S e r v i c e (s e r v i c e))
8 break ;
9

10 s e r v i c e = s e r v i c e . getSuccessorForBranch (r e s u l t) ;
11 }
12 return r e s u l t ;
13 }

Listing 5.2. Generated interpreter for the lightweight data structure

Listing 5.2 describes the interpretation algorithm by means of simplified
Java-like code. Basically, this algorithm uses a while loop to traverse an ex-
ecution path through the data structure (lines 4–11). Commencing with the
given start service, each service is executed, and afterwards a corresponding

5.2 Java Class Generator 125

CG

Fig. 5.13. Transformation phase of the Genesys Code Generator Generator

execution result is obtained (line 5). This result reflects a branch name that
is used to determine the next service that is to be executed (line 10). The
loop terminates if there is no such successor service or if the next service is
an exit service. The former is equivalent to reaching the end of the topmost
model in an SLG hierarchy, meaning that the overall execution is finished.
The latter indicates the end of a submodel, which causes the execution to
continue by following a model branch that leads to the superordinate model.

The simplicity of the interpreter results from the fact that the actual exe-
cution work is delegated to the single services. The interpreter is emitted by
the Java Class Generator along with the generated code.

5.2.6 Genesys Code Generator Generator

The purpose of the Genesys Code Generator Generator is to make a modeled
code generator accessible for the Genesys tools (such as the jABC plugin or
the Maven plugin, cf. Sect. 4.3.2). It translates the models of a code generator
into a special Java class which implements the interface CodeGenerator (cf.
Sect. 5.1.2). The Genesys tools utilize this interface to detect code generators
and to make them available for users. Furthermore, the interface is intended
to expose the metainformation of a code generator, such as the generator’s
name, author or general documentation to the tools.

The Genesys Code Generator Generator is realized as a simple extension
of the Java Class Generator. It directly reuses the latter’s functionality for
translating an SLG hierarchy into corresponding Java classes and contains
further templates which add the implementation of the CodeGenerator in-
terface. The metainformation that is generated into the resulting Java class is
taken from the data provided by the generator developer via the Descriptor
Inspector (cf. Sect. 4.3.1).

Additionally, the Genesys Code Generator Generator is able to selectively
produce a specific variant of a given code generator. Via an additional pa-
rameter, the user may provide the name of the variant that should be gener-
ated. This parameter is evaluated in the generator generator’s transformation
phase, which is depicted in Fig. 5.13. If the name of a variant has been pro-
vided by the user, the BuildVariant SIB is used to build the corresponding
variant via a model transformation, as described in Sect. 4.1.4. If no variant
name has been specified, the default variant is used as an input for the code
generation. In this case no model transformation is necessary.

Sect. 4.2.4 exemplifies the application of the generator generator for trans-
lating the Documentation Generator.

126 5 Case Studies: Code Generators for jABC

5.2.7 Remarks on Different Versions

The first version of the Java Class Generator did not realize all the concepts
and variants described in the previous sections. In particular, the first Java
Class Generator exclusively followed the structured code approach. This is
partly due to the fact that the services for variant management, which con-
siderably ease experimentation with alternative generation strategies, have
been developed at a later stage of the Genesys framework. Furthermore, as
the first version was directly derived from the Java Class Extruder, and as
the “Scalability” requirement formulated above was not a pressing issue at
that time, it also followed the single class approach rather than producing
multiple classes. In the following, this first version will be referred to as Java
Class Generator 1. The Java Class Generator 1 was in active use and shipped
with jABC bundles for about three years. Consequently, it formed the ba-
sis of numerous code generators that have been derived from it, e.g., in the
context of diploma theses (cf. Sect. 5.4).

The second and current version of the Java Class Generator, the Java Class
Generator 2, realizes all concepts and variants as described above. Based on
experiences made with the code generators developed so far, on updated
requirements (e.g., the additional “Scalability” requirement) as well as on
new features of the Genesys framework (such as the variant management
and new SIBs), it is a complete reworking of the Java Class Generator 1. As
it also adheres to new modeling guidelines and best practices (see Sect. 5.3.1
for examples) that resulted from the jABC core project, only SIBs have been
reused in the usual manner, but almost no models of existing code generators.
Though this led to a higher effort for the reworking, it was a deliberate design
decision with respect to the Java Class Generator’s role as the reference for
derived code generators.

Additionally, similar to the Java Class Extruder (cf. Sect. 5.1.2), the Java
Class Generator 1 was also a generator generator, as it contained features for
translating modeled code generators into corresponding Java classes accessi-
ble for the various Genesys tools. This significantly increased the generator’s
complexity. In order to keep the Java Class Generator 2 clean and simple,
this task was separated from the actual Java class generation process and
moved to a dedicated code generator, the Genesys Code Generator Genera-
tor described in the previous section.

The distinction between Java Class Generator 1 and 2 is especially impor-
tant for the comparison of the different variants and versions in the following
Sect. 5.3. Furthermore, it has to be taken into account when examining how
the code generators evolved from each other (see Sect. 5.4).

5.3 Comparison and Evaluation of the Java Code Generators 127

5.3 Comparison and Evaluation of the Java Code
Generators

The previous chapters introduced various Java code generators created with
Genesys. In the following, these different variants will be compared and eval-
uated on the basis of metrics and experiments that concentrate on two main
aspects. First, the code generator models are examined in order to show the
effects of reuse and variant management (Sect. 5.3.1). Second, the results
produced by the code generators will be compared in terms of performance
and source code size (Sect. 5.3.2). For referring to the different Java code
generators, the following abbreviations are used:

• JCE: Java Class Extruder (cf. Sect. 5.1),
• JCG1: Java Class Generator 1 (cf. Sect. 5.2.7),
• JCG2-SC: Java Class Generator 2, variant for generating structured code

(cf. Sect. 5.2.4),
• JCG2-LI: Java Class Generator 2, lightweight interpreter variant with

reflective service calls (cf. Sect. 5.2.5) using the GenericElementary-
Service,

• JCG2-LI-GS Java Class Generator 2, lightweight interpreter variant with
explicitly generated service calls (cf. Sect. 5.2.5).

5.3.1 Code Generator Models

Size of the Code Generators:

Table 5.2 shows the number of models and SIBs used for the construction of
each Java code generator. The numbers are divided into the total number of
uses and the number of unique uses. The former corresponds to the number
of model and SIB instances, whereas the latter indicates how many different
models and SIBs have been employed. For instance, the JCE contains a total
number of 215 SIB instances, which are instantiated from 34 different SIBs.
The span between the total and unique number is an indicator for reuse of
models or SIBs inside one code generator. This reuse can be measured by
means of the well-known reuse percent metric [FT96], which is calculated as

reuse percent =
reused

total
× 100% , with reused = total − unique.

In this context, reuse means using an existing component more than once
without any modification, except for parametrization.

In Table 5.2, it is visible that the JCE is the smallest code generator, as it
consists of a total number of only 28 models. However, with 3.6%, the reuse
of models is very small – only one model could be used more than once.
This is due to the fact that the contained models have been constructed
specifically for the JCE, without any optimizations for reusability. For SIBs,

128 5 Case Studies: Code Generators for jABC

Table 5.2. Quantitative comparison of the different Java code generators

Models SIBsGenerator Variant total unique total unique Recursion

JCE – 28 27 215 34 –
JCG1 – 86 40 986 43 +

SC 65 32 464 65 +
LI 43 27 312 61 –JCG2

LI-GS 45 29 326 68 –

the potential for reuse was much higher, as the JCE mainly employs the
Common SIBs library which provides a lot of generic services. Consequently,
the reuse among SIBs in the JCE is 84.2%.

As mentioned in Sect. 5.2.7, the JCG1 evolved from the JCE. With 86
models and 986 SIBs, it is the largest and most complex Java code generator,
but at the same time, the reuse percentage is high: 53.5% for models and 96%
for SIBs. This good reuse percentage results from the fact that in contrast
to the JCE, not only the SIBs but also the models used in the JCG1 were
optimized for high reusability.

However, this came at the expense of simplicity, as it resulted in very
generic models and SIBs. In order to assure a broad applicability, such models
and SIBs often provide a lot of parameters (i.e., configuration possibilities),
which have to be considered by the generator developer and thus are more
difficult to use.

An extreme example is the ContextExpression parameter for SIBs (cf.
Sect. 3.3.2), which even allows the modeler to add dynamic behavior via a
dedicated expression language. Although this is quite powerful and improves
the versatility of a SIB, this mixture of modeling and programming clearly
contradicts the goals formulated in Requirement G3 - Simplicity. Further-
more, it could be observed that more generic SIBs tend to be less coarse-
granular, which decreases their abstraction value. In consequence, more SIBs
are required for modeling, which is witnessed by the huge size of the JCG1.

Another reason for the higher complexity of the JCG1 in comparison to
the JCE is the fact that the structured code approach is generally more
elaborate than the Extruder approach. Moreover, Table 5.2 shows that the
JCG1 employs recursion. As this enforces the use of a stacked execution
context (cf. Sect. 3.3.2), the generator developer has to work with context
scopes, which further increases the complexity of the code generator.

In terms of the employed models and SIBs, the JCG2 and its variants
are situated between the JCE and the JCG1. Among the variants, SC is the
biggest one, which is again due to the structured code approach being more
elaborate. The SC variant is significantly smaller than the JCG1, although
it uses recursion which generally adds complexity. This results from the fact
that, in contrast to the approach followed when building the JCG1, the re-
working did not solely focus on maximum reusability, but instead tried to keep

5.3 Comparison and Evaluation of the Java Code Generators 129

the balance between reusability and simplicity. In consequence, SIBs became
less generic and more domain-specific, and rather technical parts of the code
generator previously modeled with several “small” generic SIBs have been re-
placed by more coarse-granular services. This approach had a slightly negative
effect on the SIB reuse, which dropped by 10% to 86% in comparison to the
JCG1, i.e., effectively more different SIBs were required for building the SC
variant. However, this is outweighed by the significant reduction of the over-
all complexity and code generator size. The model reuse even only decreased
by 2.7%.

The LI and LI-GS variants of the JCG2 are very small and more simple
than the SC variant and the JCG1, that follow the structured code approach.
However, they are not as small and simple as the JCE, which directly prof-
its from the features provided by the Tracer and the SIBGraphModel data
structure, which have to be emulated by LI and LI-GS. Similar to the SC
variant, the reuse percentages have decreased (e.g., LI: 37.2% for models
and 80.4% for SIBs), which is also a consequence of the stronger focus on
domain-specificity.

Another reason for the reduced size of all JCG2 variants is the fact that any
generator generator features have been moved to the Genesys Code Generator
Generator (cf. Sect. 5.2.7), thus keeping the JCG2 models clean and simple.
The JCE and the JCG2 directly contained those features.

Reuse among Code Generators:

As formulated in Requirement G2 - Reusability and Adaptability, reusability
is a central goal of the Genesys approach. Due to the application of model-
driven development and service orientation, it is expected that the potential
for reuse should increase with a growing library of models and services. In
order to understand the role of reuse for code generators that evolve from each
other, e.g., via derivation or variant specification, it is important to consider
the reuse of components among code generators. This has to be performed
with respect to the order in which the code generators have been created,
that is: JCE → JCG1 → JCG2-SC → JCG2-LI → JCG2-LI-GS. With each
new code generator, the Genesys library of models and SIBs is extended, so
that each evolution step constitutes the available repertoire for the succeeding
steps. Accordingly, it is interesting to observe the development of reuse along
this chain of evolution steps.

Unfortunately, for SIBs, such an analysis is not easily possible. Due to the
sheer number of available SIBs, it is very difficult to determine (especially
retroactively) which SIBs had to be newly implemented and which ones have
been reused in the single evolution steps. In particular, this is difficult for
SIBs originating from the Common SIBs library, which contains contributions
from numerous other jABC projects and thus advances entirely independent
of Genesys.

For models, the situation is much better, as the code generators do not
contain models that originate from any source other than the Genesys library.

130 5 Case Studies: Code Generators for jABC

SC
LI
LI-GS

Models in SC New Models in LI New Models in LI-GS

Fig. 5.14. Reuse of models among the Java Class Generator Variants

However, the analysis has to be divided into two parts: As the JCG2 is
a complete reworking (cf. Sect. 5.2.7), it deliberately does not reuse any
models from the previous code generators. Accordingly, model reuse has to
be examined separately for JCE → JCG1 on the one hand, and for JCG2-SC
→ JCG2-LI → JCG2-LI-GS on the other hand.

Although the JCG1 emerged from the JCE, the model reuse is at first
sight rather small. Only 5 models from the JCE have been reused without
modification, i.e., 12.5% of the 40 different models contained in the JCG1
can be directly attributed to reuse. One reason for this is the lack of any
variant management support, which did not exist at the time the JCG1 was
created. Consequently, the derivation of new code generators often involved
copying and modifying models instead of reusing them. Clearly, workarounds
of that kind are not desirable, as they always lead to new files that “pollute”
the Genesys library with very similar models and also impede maintenance.
For instance, when fixing an error on the original model, it also has to be
performed on each copied derivative that contains the erroneous parts, which
is very difficult and cumbersome. In order to avoid such workarounds and the
resulting problems, Genesys’ variant management facilities have been created
later on.

Fig. 5.14 visualizes the model reuse in the development of the different
JCG2 variants. SC was the first variant that has been developed, because
conceptually, it could be built along the lines of the JCG1. However, as men-
tioned above, the JCG2 was a complete reworking and thus no models have
been directly reused from previous code generators. Altogether, the SC vari-
ant consists of 32 different models, which are depicted in Fig. 5.14 as square
shapes. In the next step, the LI variant was modeled using 27 different models,
marked by the dashed box in Fig. 5.14. Among those models, 18 were reused
from the SC variant and 9 new models (visualized as triangular shapes) had
to be created, so that 66.7% of the models in the LI variant can be attributed
to reuse. The LI-GS variant has been built by means of 29 different models
marked by the dotted box in Fig. 5.14. Again the variant reuses 18 models

5.3 Comparison and Evaluation of the Java Code Generators 131

from SC, which are actually the same models that have already been reused
by the LI variant. Moreover, LI-GS reuses 7 models from LI and adds only
4 new models (visualized as circles), which results in a reuse percentage of
86%. This shows an important advantage of Genesys’ variant management
feature: It facilitates reuse, in contrast to the “copy and modify minimally”
approach outlined above.

SIB Usage:

Fig. 5.15 shows the distribution of SIBs in the different Java code genera-
tors with respect to SIB bundles. The bundle labeled “Genesys” denotes SIBs
which originate from Genesys’ library of services that are specific to code gen-
eration. “Control” refers to control SIBs (such as macros), which are mostly
delivered by the Tracer or by the jABC framework. All remaining bundles
are part of the Common SIBs library.

The usage of services from the “Script SIBs” bundle is especially interesting
for code generators, as the bundle contains services for different template
engines (cf. Sect. 4.1.1). As a rule of thumb, the more “Script SIBs” are used,
the more templates are contained in the code generator, which increases its
overall complexity. In Fig. 5.15, it is visible that according to absolute usages,
the code generators that follow the structured code approach (i.e., JCG1 and
JCG2-SC) contain the highest number of templates. For all code generators,
at least a fifth of all used SIBs originate from the “Script SIBs” bundle (JCE:
25%, JCG1: 26%, JCG2-SC: 24%, JCG2-LI: 20%, JCG2-LI-GS: 22%), which
shows that templates generally form a substantial part of each generator.

The stronger focus of the JCG2 on using domain-specific services is wit-
nessed by the numbers for the “Genesys” bundle. While the JCE and the
JCG1 contain only few of such dedicated services (JCE: 1.9%, JCG1: 0.5%),
around one quarter of the different JCG2 variants consists of those SIBs
(JCG2-SC: 23.7%, JCG2-LI: 27.2%, JCG2-LI-GS: 27.3%). Conversely, the
JCG1 makes significantly more use of services from the “Basic” bundle, which
mostly contains very basic and generic SIBs. 54.9% of the SIBs in the JCG1
originate from this bundle, which illustrates the generator’s preference for
generic services over domain-specific ones.

Altogether, the “Script”, “Genesys” and “Basic” bundles are the sources
for most SIBs used in the code generators (JCE: 65.1%, JCG1: 81.4%,
JCG2-SC: 64.9%, JCG2-LI: 68.6%, JCG2-LI-GS: 71.2%). The remaining SIBs
are mostly “Graph Model SIBs” for processing the input models, control SIBs
and other bundles like the “Collection SIBs” or the “IO SIBs” (referred to as
“Other” in Fig. 5.15). For those code generators which are not recursive (JCE,
JCG2-LI, JCG2-LI-GS), the “Control” category consists of normal macros
(i.e., of type MacroSIB) only, whereas the JCG1 and the SC variant of the
JCG2 also contain GraphSIBs for the recursion. On average, all Java code
generators manage on SIBs from 8 of around 20 existing SIB bundles.

132 5 Case Studies: Code Generators for jABC

Script Genesys Basic Graph Model Control Other

0

550

JCE JCG1 JCG2-SC JCG2-LI JCG2-LI-GS

101622
52

30 4442
68

89

27 4040
73

41
18

726678

541

82 8985
110

54

7163

113

257

54

N
um

be
r

of
 S

IB
s

Fig. 5.15. Distribution of SIB bundles in the different Java code generators

5.3.2 Code Generator Results

This section examines and compares the generated results (i.e., Java classes)
of the different Java code generators in terms of their performance and size.
For the code generators themselves, these characteristics are not considered
explicitly. However, all following observations and conclusions about the gen-
eration results are true for the code generators as well, because they are also
results of code generation: Either the code generators generate themselves
as it is the case for the JCE, or they are produced by means of a generator
generator (cf. Sect. 5.2.6) that is also developed with Genesys.

Related Experiments:

Concerning the performance of generated artifacts, Lamprecht et al. [LMS09]
describe several interesting results. Based on a reference process from the
realm of bioinformatics, they compared the performance of a corresponding
hand-written program, of directly executing the process with the Tracer in
jABC, and of the artifacts produced by (amongst other Genesys generators)
the JCE and the JCG1.

As the reference process also contained remote services, which were sub-
ject to network delays, the results distinguish between workflow execution
time and local execution time. The former indicates the total time required
for executing the process, including the time required for contained remote
services, whereas the latter provides the execution time without the remote
service runtimes.

Lamprecht et al. observed that the local execution time just takes between
2.7%–11.6% of the workflow execution time. The results also show that the
local execution times of the generated artifacts only vary little (within a
range of 3%) among the different code generators. Furthermore, the difference

5.3 Comparison and Evaluation of the Java Code Generators 133

between the local execution times of the hand-written program, the Tracer-
executed process and the generated artifacts “stays within 5 s and below 5%
of the workflow execution time” [LMS09].

Regarding the size of the code, Lamprecht et al. state that on average, the
generated artifacts contain around twice as much lines of code compared to
the hand-written version. However, they describe the generated code as “very
tense and regular, the correspondence of its structure with the models’ struc-
ture explicit (through systematically introduced comments and annotations)
and [. . .] easily understandable” [LMS09].

Benchmarks:

For this book, further experiments have been conducted in order to measure
the performance and size of the artifacts produced by the different Java code
generators. As the basis for comparison, the experiments use reference models
with specific characteristics:

• “NoOps” contains a long sequence of 100 services, which perform no op-
eration at all.

• “Loops” includes a simple loop, that decrements a given counter with each
iteration. The loop terminates if the value of the counter equals zero. At
the beginning, the counter is initialized with a value of 10000. This model
is realized with three services.

• “Recursion” essentially decrements a counter as well, but instead of a
loop a recursive call is used. Just like for “Loops”, the recursion ends if
the counter equals zero. The start value of the counter is 100. “Recursion”
consists of five services.

• “All Tests“ combines all test models of Genesys’ test suite (see Sect. 6.3)
by means of a common supermodel. The test models contain all kinds of
control SIBs, SIB parameter types etc. that may occur in SLGs. Alto-
gether, “All Tests” consists of 38 submodels and 168 SIBs.

All models have in common that the contained services represent either no
or only very small functionality, in order to be able to focus on the local
execution time. While the first three models aim at basic control flow aspects,
“All Tests” is intended to represent a big hierarchical model.

Table 5.3 shows the results of the experiments5, which have been deter-
mined with Genesys’ benchmark framework (cf. Sect. 4.3.1). In order to in-
crease the expressiveness of the measurements, the mean execution times are
determined from 100 executions of each generated artifact. For all reference
models, the code generated by the JCE is the slowest, which is due to the
overhead resulting from the use of the Tracer, and from the necessary con-
struction of the SIBGraphModel data structure (cf. Sect. 5.1.3). The fastest
artifacts are those produced by the JCG1, which is specifically optimized
5 The experiments have been performed on a MacBook Pro with a 2.33 GHz Core

2 Duo processor, 2GB of RAM, MacOS X 10.6.6 and Java 1.5.0_19.

134 5 Case Studies: Code Generators for jABC

Table 5.3. Experimental performance results for classes produced by the different
Java code generators

Mean Execution Time (s), 100 samplesGenerator Variant NoOps Loops Recursion All Tests
JCE – 2.728 37.898 2.149 106.139
JCG1 – 0.002 1.388 0.096 100.686

SC 0.002 1.470 0.103 100.571
LI 0.122 15.316 0.371 100.792JCG2

LI-GS 0.100 15.355 0.369 100.729

for producing results with good performance characteristics. The differences
between the JCE and the JCG1 are conspicuous: The Java classes gener-
ated by the JCG1 are 27 times faster for “Loops”, 22 times for “Recursion”
and even 1360 times for “NoOps” than the JCE results. Especially the high
factor for the latter case is plausible, as in contrast to using a heavyweight
interpreter like the Tracer, executing a sequence as consecutive statements is
clearly faster and more simple.

The results for the SC variant of the JCG2 are very close to those of the
JCG1, as it also uses the structured code approach. This observation also
shows that in terms of performance, generating multiple classes rather than
one single class has no significantly negative effects.

For LI and LI-GS, the latter variant performs slightly better, which may
be due to the fact that LI-GS relinquishes the use of reflection. The results of
both variants are situated between those of the Extruder and structured code
approaches. For instance, for “NoOps”, the generated artifacts are 22 times
faster than the JCE results, but still 61 times slower than corresponding
structured code (JCG1 or JCG2-SC). In the other scenarios, the gaps are
more moderate, e.g., for “Recursion”, artifacts produced by LI/LI-GS are 6
times faster than those from the JCE and 4 times slower than those generated
by JCG1/JCG2-SC. This indicates that the removal of the Tracer overhead
is effective, but at the same time the execution via a lightweight interpreter
is still more expensive than structured code.

Interestingly, for the reference model “All Tests” there are only very small
differences between all Java code generators. The reason for this is the fact
that, although the reference model consists of a lot of submodels, most of
them are rather small and simple in terms of control flow (e.g., short sequences
and loops with few iterations). This shows that a high number of models
or SIBs alone does not significantly affect the performance of the resulting
artifacts.

In contrast to this observation, the size of the models clearly affects the size
of the generated Java class, as visible in Table 5.4. For comparison, the size of
the generated classes are measured in lines of code. The “All Tests” scenario
is excluded from these considerations, as it is a hierarchical model which
leads to multiple classes with the JCG2 on the one hand, and to one single

5.3 Comparison and Evaluation of the Java Code Generators 135

Table 5.4. Size of the generated Java source classes

Lines of CodeGenerator Variant NoOps Loops Recursion
JCE – 705 156 187
JCG1 – 848 98 176

SC 426 47 76JCG2 LI/LI-GS 445 76 89

class with the other code generators on the other hand, thus complicating
the comparison.

Especially for “NoOps”, i.e., for models containing many SIBs, JCE and
JCG1 produce relatively big classes. Code generated by the JCE suffers from
the complex construction of the SIBGraphModel data structure, whereas the
JCG1 implements an ineffective translation that results in a method for each
SIB. For “Loops” and “Recursion”, both generators perform better, as the
models contain less SIBs.

All JCG2 variants produce significantly smaller classes. The SC variant
generates the smallest classes, which is a result of condensing and improving
the code patterns used by the JCG1. LI and LI-GS produce equally sized
classes close to the results of SC. In particular, this shows the lower complex-
ity of the lightweight data structure in comparison to the SIBGraphModel.

5.3.3 Conclusions

Overall, the JCG2 and its variants are a clear improvement of the JCE and the
JCG1. In particular, it is superior to the JCE in all disciplines. In comparison
with the JCG1, the JCG2 produces smaller classes, and at least artifacts gen-
erated by the SC variant provide a similar performance. Furthermore, from
a generator developer’s perspective, the models of the JCG2 are significantly
smaller and simpler, as they are less generic and relinquish complicated per-
formance optimizations that only had little impact. Generally, the results
above show that using genericity for increasing the potential of reuse reduces
simplicity, especially for SIBs. Thus it is desirable to achieve a reasonable bal-
ance between reusability and simplicity, e.g., by means of domain-specificity.
The increased model reuse in the JCG2 supports the thesis that the potential
for reuse increases with each evolution step of the model library, thus meeting
Requirement G2 - Reusability and Adaptability. Furthermore, the results also
show that Genesys’ variant management features used by the JCG2 facilitate
model reuse (Requirement S3 - Variant Management and Product Lines).

LI is a good compromise between performance and size of the generated
artifact, which should be appropriate for most target languages. If the tar-
get language lacks reflection capabilities, the slightly different LI-GS variant
may be used instead. The approach is very simple, thus it is easy to model
and to comprehend. However, a major disadvantage is the fact that for each

136 5 Case Studies: Code Generators for jABC

programming language, the corresponding lightweight data structure and in-
terpreter have to be specifically constructed. At the very least, the existing
Java version may serve as a reference implementation. If the effort is con-
sidered too high or if the target language is too limited (e.g., because it
misses adequate data structures such as lists or hash tables), SC is a more
appropriate variant.

SC is also the better variant if performance is considered critical. However,
the structured code approach is generally more complicated and thus harder
to comprehend, especially for novices. Furthermore, depending on how the
approach is realized, it may run the risk that the generated code diverges too
much from the structure of the original input models, e.g., due to preceding
model transformations. This is especially problematic for the realization of
monitoring and debugging features, which need to establish the connections
of the generated code to corresponding parts of the original models. In order
to maintain this possibility, the generated code can, e.g., be enriched with
appropriate annotations or comments which provide the necessary informa-
tion (cf. Chap. 10). This entails additional effort and a higher complexity
of the code generator. The lightweight data structure used by LI/LI-GS is
guided by the structure of the input models, which significantly eases the
establishment of the connection between the generated code and the original
models.

5.4 Further Code Generators for jABC

Besides the five Java code generators presented above, 19 code generators tar-
geting other platforms and languages have been developed. Fig. 5.16 provides
an overview in form of a genealogical tree that shows how the generators were
derived from each other. The lines connecting the code generators indicate
two different types of evolution that may occur. First, solid lines show a direct
derivation, which means using the original code generator as a basis and then
modifying it in order to obtain a new one. Second, dashed lines represent the
creation of a code generator by selectively reusing some (parts of) models
from the original generator. Accordingly, the second type of evolution clearly
involves less reuse. Furthermore, the different shapes and colors used for the
code generators in Fig. 5.16 indicate the targeted platforms and languages as
well as the context in which a particular code generator has been developed.

The genealogical tree consists of five connected components which represent
different branches of evolution. The largest family is formed by those genera-
tors descending from the Java Class Extruder. With four cases of direct deriva-
tion and two cases of partial reuse, the Java Class Generator 1 is, in terms of
being a basis for new generators, the most productive code generator. Only
one generator was derived from the Java Class Generator 2 so far, which is due
to the fact that it is a complete reworking which has been created later than
all code generators in the Java Class Extruder family. However, the Java Class

5.4 Further Code Generators for jABC 137

B
P

E
L

G
en

er
at

or

Ja
va

 C
la

ss

G
en

er
at

or
 2 LI

-G
S

LI
S

C

Ja
va

S
cr

ip
t

G
en

er
at

or

N
X

C
G

en
er

at
or

le
JO

S
G

en
er

at
or

Ja
va

 S
er

vl
et

E

xt
ru

de
r

S
IB

 E
xt

ru
de

r

W
eb

 S
er

vi
ce

G

en
er

at
or

Ja
va

 C
la

ss

E
xt

ru
de

r

R
ob

oc
od

e
G

en
er

at
or

Ja
va

 C
la

ss

G
en

er
at

or
 1

E
E

 P
ro

ce
ss

D

efi
ni

tio
n

G
en

er
at

or

S
er

vl
et

G

en
er

at
or

JM
E

G

en
er

at
or

JU
ni

t
G

en
er

at
or

S
IB

 G
en

er
at

or
C

G

en
er

at
or

iP
ho

ne

G
en

er
at

or

R
ub

y
G

en
er

at
or

P
er

l
G

en
er

at
or

Ja
va

-b
as

ed
 p

la
tfo

rm
s

E
m

be
dd

ed
 s

ys
te

m
s

O
th

er
 p

la
tfo

rm
s/

la
ng

ua
ge

s

G
en

er
at

o
r

ta
rg

et
in

g
:

G
en

er
at

o
r

d
ev

el
o

p
ed

 in
 t

h
e

co
n

te
xt

 o
f:

G
en

es
ys

 a
nd

 r
el

at
ed

 p
ro

je
ct

s

D
ip

lo
m

a/
B

ac
he

lo
r's

/M
as

te
r's

 th
es

es

E
vo

lu
ti

o
n

 t
yp

e:

D
ire

ct
 d

er
iv

at
io

n

P
ar

tia
l r

eu
se

Ja
va

 C
la

ss

G
en

er
at

or
 1

 +

JM
L

F
or

m
ul

a-
B

ui
ld

er

F
ig

.
5.

16
.

G
en

ea
lo

gi
ca

l
tr

ee
of

co
de

ge
ne

ra
to

rs
fo

r
jA

B
C

138 5 Case Studies: Code Generators for jABC

Generator 2 is a direct result of all experience made with the previous code
generators, thus it is the reference for any further code generators. It is also
likely that in the future, most code generators from the Java Class Extruder
family will be ported to the new concepts of the Java Class Generator 2.

The following sections elaborate on the remaining code generators depicted
in Fig. 5.16 (except for the FormulaBuilder and the JUnit Generator, which
will be presented later in Sect. 6.2.1 and 6.3.2, respectively). The descriptions
focus on how the generators were derived, on which features of the Genesys
framework have been (re)used, and on which specific challenges were posed
by each code generator. Parts of these descriptions are based on [JMS08].
For illustrating the evolutionary development of the library, the order of
the sections roughly reflects the order in which the single code generators
emerged.

5.4.1 Servlet Extruder and Servlet Generator

In the Java Enterprise Edition (JEE) [Ora11b], a Servlet [Jav11b] is a server-
side component that, e.g., runs on an application server such as the JBoss
AS [Red11a]. It is realized as a Java class that is responsible for receiving,
processing and answering client requests.

By resorting to the existing Java code generators, it was easy to derive
corresponding pendants that generate a Servlet from an SLG [Ste+07]. Two
versions have been created: the Servlet Extruder which was derived from
the Java Class Extruder, and the Servlet Generator, which is based on the
Java Class Generator 1 and thus uses the structured code approach. In both
cases, the templates of the generators (i.e., the parameters of correspond-
ing contained “Script SIBs”, cf. Sect. 4.1.1) had to be adjusted, so that the
resulting Java class extends the super class HttpServlet and provides the
methods doPost and doGet instead of a main method. Please note that only
the method signatures needed to be changed – the content of the mainmethod
could be reused for the bodies of the new methods without any modification.
Furthermore, the models had to be adapted slightly, e.g., in order to remove
the generator generator features of the Java Class Extruder and Java Class
Generator 1, which were not required for the Servlet generators.

For further details on the Servlet Generators please refer to [JMS08], which
also shows excerpts from models and templates of the Servlet Extruder. In
practice, the Servlet Generator was used more frequently than its Extruder
counterpart, which is due to the fact that less dependencies were required
for the generated Servlets. It is visible in Fig. 5.16 that the Servlet Gen-
erator is highly productive as a basis for new code generators (in terms of
direct derivation, it is just as productive as the Java Class Generator 1).
As the Servlet Generator does not contain any generator generator features,
which are especially difficult to comprehend for beginners, it often has been
preferred to the Java Class Generator 1 as the ancestor for derivation.

5.4 Further Code Generators for jABC 139

5.4.2 SIB Extruder and SIB Generator

The basic idea of the generators presented in this section is the translation
of an SLG into an executable SIB, which may in turn be used as a service in
other SLGs. In contrast to using hierarchical modeling and embedding the
SLG via a macro, such a SIB does not allow the user to inspect the model
from which the SIB was generated. Accordingly, translating a model into a
SIB is a simple way of protecting (sub)models from unsolicited insights. For
instance, this might provide a basis for realizing different responsibilities of
departments that own separate parts of a business process.

Similar to the Servlet generators presented above, two versions have been
developed, the SIB Extruder and the SIB Generator, which have been derived
from the Servlet Extruder and from the Servlet Generator, respectively. That
way the SIB generators profited from the fact that for the Servlet generators
the generator generator features of the Java pendants already have been
removed (see Sect. 5.4.1).

Among the two versions, the SIB Extruder is more simple, as it focuses
on generating a SIB that is only compatible with the Tracer and with code
generators that follow the Extruder approach. Due to this restricted task, the
Servlet Extruder only had to be modified minimally in order to derive the
SIB Extruder. Essentially, the templates had to be changed so that the result-
ing Java class carries the @SIBClass annotation with a generated UID and
implements the interfaces required for the Tracer as well as for all Extruders.
The latter includes replacing the doPost and doGet methods by correspond-
ing ones that realize the execution behavior of the SIB (e.g., a trace method
for the Tracer). Similar to the Servlet generators, only the signatures of the
methods had to be changed, and the content of the method bodies could be
reused entirely. Additionally, two new models had to be created that translate
the model parameters and model branches of the input SLG to parameters
and branches of the resulting SIB.

The SIB generator goes one step further, as it produces a SIB that is
compatible with all Java code generators (i.e., not only with those using the
Extruder approach). Such a SIB follows the development pattern described
in Sect. 3.2.1. Consequently, the generated result consists of two parts: first,
a service adapter which contains the actual execution behavior of the input
model and second, a SIB class which implements all required interfaces, and
which delegates to the service adapter. The realization of the SIB genera-
tor required the adjustment of several templates (similar to the Extruder
pendant) as well as the addition of eight new models.

Among others, the SIB generator has been used as a part of a WSDL-
to-SIB importer [Lem+09], which produces corresponding SIBs from a Web
Services Description Language (WSDL) file describing a Web Service [Pap08].
The importer is contained in the jETI framework (see Sect. 3.2.3).

140 5 Case Studies: Code Generators for jABC

5.4.3 Web Service Generator

The Web Service Generator has been developed in the context of the Se-
mantic Web Services (SWS) Challenge [Kub+09] and is a part of the jETI
framework described in Sect. 3.2.3. The generator’s task is to translate an
SLG to a remotely accessible Web Service. As described in [Kub+09], this
could be achieved by entirely reusing the Java Class Extruder non-invasively,
i.e., without any modification: Instead it was simply embedded into the model
of the Web Service Generator as a macro.

For the actual generation of the Web Service, the generator first uses the
Java Class Extruder to produce an executable Java class from the SLG (cf.
Sect. 5.1). Afterwards, it generates wrapper classes which contain the neces-
sary information (e.g., annotations) for publishing this generated Java class
as a Web Service using the JAX-WS [Jav11a] API. Furthermore, the genera-
tor collects all necessary library dependencies and produces an Ant [Apa11a]
script for comfortably starting the Web Service. Finally, all generated sources
and dependencies are packaged into a ZIP archive for distribution.

In order to derive a fully-functional Web Service from an SLG, additional
metadata is required that is not directly inferable from the flow-graph struc-
ture of the SLG. For instance, this information includes XML Schema Def-
initions (XSD [W3C11]) that specify data types and input/output types of
the Web Service. In jABC, such meta-information is usually provided via the
Annotation Editor (cf. Sect. 3.2.3). The Web Service Generator extracts the
meta-information added via the Annotation Editor from the input SLGs and
correspondingly incorporates it into the generated result.

For a detailed description of the Web Service Generator please refer
to [Kub+09].

5.4.4 leJOS and NXC Generator

The leJOS Generator, which has originally been introduced in [Jör+07], was
the first Genesys code generator that targeted an embedded system: the Lego
Mindstorms Robotic Command Explorer (RCX) [Bag02]. Lego Mindstorms
is a construction kit for combining robotics with the famous Lego bricks. It
enjoys great popularity among hobby craftsmen, but is in particular also used
for teaching in schools and universities as well as for projects and experiments
with scientific or industrial background (e.g., [Ive+00], [FVZ03]).

The most important brick of such a construction kit is the RCX, which is
the central command unit of a robot. It enables the attachment of different
sensors, such as light or touch sensors, and motors. This brick can be con-
trolled by means of programs, which are deployed to the RCX, e.g., via its in-
frared interface. Once started, such a program is able to process sensor events
and to steer attached motors. Suitable programs may be implemented with
a variety of supported programming languages. For instance, leJOS [Bag02]
provides a Java-based firmware that replaces the original firmware of the
RCX, and a simple API to control motors, sensors etc.

5.4 Further Code Generators for jABC 141

The basic idea presented in [Jör+07] was to enable jABC as an environ-
ment for modeling programs for the RCX, thus benefitting from advantages
like the graphical SLG notation and the availability of formal verification
methods. Accordingly, a code generator was required, which translates such
SLGs into code that uses the leJOS API and that is executable on the RCX.

At this time, the Extruders for Java classes, Servlets and SIBs were the
only code generators that were fully implemented (the Java Class Generator
1 was still being developed). Thus the first attempt of creating the leJOS
Generator started off by modifying the Java Class Extruder, as this approach
was already successful for the Servlet Extruder (see Sect. 5.4.1). However, the
Extruder approach turned out to be unsuitable due to restrictions imposed
by the RCX. In particular, the memory size of the RCX posed a problem:
After deploying the leJOS replacement firmware, there is only about 16kB
of free memory left for the actual programs. This is problematic both for
the rather big artifacts generated by the Java Class Extruder as well as for
the implied dependencies (cf. Sect. 5.1.3). As an example for the latter, the
jABC framework, required by the generated artifact due to the use of the
Tracer, already has a size of around 800kB. Although the leJOS linker only
incorporates classes directly used by the main program6, the sheer number
of the dependencies implied by an Extruder-generated artifact most likely
exceeds the RCX’s memory limits. Furthermore, any classes that should be
deployed to the RCX have to conform to the leJOS API, which only supports
a limited subset of the Java Standard Edition (JSE). For instance, only a very
restricted set of Java data types is allowed. Programs that imply incompatible
dependencies are denied by the leJOS compiler. Accordingly, any third-party
library used by the generated artifact, including its transitive dependencies,
would have to be adapted to the restricted API, which is impracticable.

Due to these restrictions, the leJOS Generator could not directly evolve
from an Extruder. Consequently, a more suitable approach has been em-
ployed, which consists of two parts. First, the complexity of the gener-
ated artifact had to be decreased by using a structured code approach (see
Sect. 5.2.4) instead of the Tracer and the large SIBGraphModel data struc-
ture. For this purpose, at least some parts of the necessary models could
be reused from the (at this time unfinished) Java Class Generator 1, indi-
cated by the “partial reuse” relationship in Fig. 5.16. Second, apart from the
leJOS API itself, any external dependencies were forbidden for the generated
artifact.

The latter is a very strong restriction, as it entirely impedes the use of
service adapters. In consequence, the leJOS Generator handles services dif-
ferently: Instead of generating calls to the services, it directly incorporates
the code that realizes the service behavior into the generated Java class.
Thus, any SIB used for modeling a robot control program in jABC had to
be able to expose its execution code as a string, rather than just providing
6 Previous publications like [Jör+07] mistakenly claimed that it is only possible

to upload one single class to the RCX, which is not correct.

142 5 Case Studies: Code Generators for jABC

information on how to call its underlying service functionality (cf. Sect. 5.2.1).
This execution code has to be self-contained and must not imply any depen-
dencies other than the leJOS API. This part of the leJOS Generator had to
be modeled from scratch. As a positive side-effect, due to the fact that the
code retrieved from a SIB has to be self-contained, no data-type mappings
(such as the ones described in Sect. 5.2.3) were required for the translation:
The developer who adds the code to the SIBs only employs suitable types
supported by the leJOS API.

Finally, this improved approach led to considerably smaller generated ar-
tifacts, that are suitable to be deployed on the RCX. Please refer to [Jör+07]
for an example of a robot program modeled with jABC.

The NXC Generator, which resulted from a diploma thesis [Sch07], focuses
on Lego’s more recent Mindstorms generation called NXT. With this new
version, several drawbacks of the RCX have been remedied. For instance, the
light sensors were very sensitive to the surrounding light, so that the same
program led to different results, depending on the brightness of the room
illumination or the solar irradiation. Furthermore, the motor movement was
very imprecise.

In contrast to the leJOS Generator, the NXC Generator does not produce
code for a Java-based API, which made it the first Genesys code generator to
target a programming language other than Java. Instead it translates SLGs
into the C-like language Not eXactly C (NXC) [Han07]), which was the most
advanced and stable solution for programming NXTs at this time [Sch07, p.
33]. For NXC, a compiler is available that produces programs which are di-
rectly executable on the NXT brick, without the need for any firmware re-
placement. Due to the strong differences between NXC and the (at this time
purely Java-based) generation results of existing code generators, no SLGs
could be reused for the NXC Generator. Consequently, Fig. 5.16 visualizes it
as a separate connected component. However, the generator reuses the con-
cept of SIBs that are able to return their execution code as a string, which has
already been successfully employed for the leJOS Generator. Furthermore,
by restricting allowed input models to specifically structured ones (e.g., only
special, explicitly compatible control SIBs are allowed), the generator rules
out any unstructured models and thus does not require a structured code
approach with preceding model transformations. Although this significantly
simplifies the code generator itself, it has the obvious disadvantage that not
every model constructed with jABC is supported.

Please refer to [Sch07] for example models and for further details on the
NXC Generator.

5.4.5 BPEL Generator

The BPEL Generator has also been developed in the context of a diploma
thesis [Gae07]. It translates an SLG into BPEL (cf. Sect. 2.3.6), which is a
standard of the Organization for the Advancement of Structured Information

5.4 Further Code Generators for jABC 143

Standards (OASIS) for describing business processes on the basis of Web
Services. Corresponding process descriptions can be directly deployed and
executed on an execution engine (such as ActiveVOS [Act11a]). As BPEL
is based on XML, the structure of a process description essentially differs
from, e.g., the one of Java classes. In consequence, no SLGs of existing code
generators could be reused for the BPEL Generator, which is thus depicted
as a separate connected component in Fig. 5.16.

Furthermore, like the FormulaBuilder (cf. Sect. 6.2.1), the BPEL Genera-
tor is not based on the usage of templates. Instead it uses an implementation
of the Document Object Model (DOM) [W3C09] in order to construct the
XML document in-memory as an abstract form target (cf. Sect. 2.4), prior
to finally writing it to a file. For this purpose, several new SIBs had to be
implemented that support working with DOM.

Similarly to the NXC Generator presented above, the BPEL Generator
considerably constrains the models that are allowed as an input for the trans-
lation. First, only specific SIBs, that are designed to reflect corresponding
BPEL constructs such as Assign, Invoke or Flow, can be used. Second, the
modeling style is guided by the structure of a BPEL description. For instance,
some SIBs like Flow or Switch have to be used strictly pairwise. Again, such
restrictions decrease the complexity of the code generator, as it does not
have to deal with arbitrary models and thus does not require an approach
for generating structured code. However, this comes at the expense of signifi-
cantly limiting the capabilities of jABC for this application scenario, e.g., by
excluding the Common SIBs library.

Currently, a new version of the BPEL Generator is being developed, which
is able to handle arbitrary SLGs by using a structured code approach. With
this generator, any control SIBs contained in the input models are translated
into corresponding BPEL constructs. Any other SIBs (e.g., from the Common
SIBs library) are automatically wrapped as Web Services and reflected by
corresponding Invoke constructs in the resulting BPEL process description.
This new BPEL Generator will be more generally applicable than the one
developed in [Gae07].

5.4.6 C# Generator

The C# Generator [Hös08] was the first code generator which, although it
targets a programming language other than Java, considerably profited from
existing generators. Even though it generates code for C#, which is part of
Microsoft’s .NET [Mic11] framework, it was directly derived from the Servlet
Generator. This can be attributed to the strong structural similarities of
classes in C# and Java.

As the main task of the derivation, all templates contained in the Servlet
Generator had to be translated into C# syntax. This succeeded without any
problems, as for each required Java construct a semantically equivalent C#
pendant could be identified (e.g., package vs. namespace, see [Hös08, p. 113]

144 5 Case Studies: Code Generators for jABC

for more examples). Of course, the doPost and doGet methods produced by
the Servlet Generator also had to be replaced by a C# Main method.

In the context of the C# Generator, the need for general data type map-
ping mechanisms in Genesys became apparent for the first time, as jABC’s
built-in data types had to be converted to corresponding data types in C#.
For this purpose, Hösel [Hös08, pp. 64ff] describes a converter infrastructure
which has been implemented specifically for the C# Generator, and which
can be considered an early precursor of Genesys’ type mapping features (cf.
Sect. 4.1.2). Similar to the Genesys mechanism, the data type converter has
been integrated into the generator model as a new SIB. However, the pro-
posed infrastructure is still very much driven by the needs of C# and is not as
generic as the corresponding mechanism meanwhile provided by the Genesys
framework.

Hösel [Hös08, p. 113f] also lists all required type mappings: Essentially, all
of jABC’s simple types and most of the complex types could be translated to
C# pendants, mostly by means of direct mapping (category 2 in Sect. 4.1.2,
e.g., java.lang.Boolean to System.Boolean, or java.util.HashMap to
System.Collections.Generic.Dictionary). Unfortunately, some of the
complex types such as ContextKey or MultiObject were excluded from the
conversion (category 5 in Sect. 4.1.2), which means that any models con-
taining SIBs which use these data types are not supported by the C# Gen-
erator. In order to nevertheless include the data types, a future version of
the generator could introduce corresponding new C# data types (category
4 in Sect. 4.1.2), similar to the lightweight types created for the Java Class
Generator 2 (cf. Sect. 5.2.3).

In order for an SLG to be translatable to C#, each contained SIB has
to provide a C# implementation via a corresponding service adapter. SIBs
which are not equipped with such a service adapter lead to the abortion
of the code generation process. In addition to the generated C# class, the
generator also produces a C#-based version of the stacked execution context,
which is emitted by the code generator and can then be used by the services
(respectively their service adapter) in order to share data at runtime.

Beyond these changes, virtually no modifications of the SLG’s workflow
were necessary for transforming the Servlet Generator into a code generator
for C#.

5.4.7 JME Generator

The JME Generator targets the Java Micro Edition (JME) [Ora11c], which
is a special variant of Java tailored to mobile and embedded devices, such as
cellphones or multi-functional printers. The resulting code employs the API
defined by the Connected Limited Device Configuration (CLDC) [Jav07].
Such a configuration defines the minimum of library and virtual machine
functionality that has to be available on a target device.

5.4 Further Code Generators for jABC 145

In comparison to normal Java classes for the JSE which are produced
by the Java code generator presented above, CLDC only provides a very
restricted API. In particular, this API only supports a limited subset of
the data types contained in the JSE. For instance, Vector is the only type
of collection, and the different maps are only supported via hash tables.
Some data types such as File are not supported at all. Again, data type
mappings were required in order to translate jABC’s simple and complex
types to CLDC-compatible ones. Consequently, the first generic version of
Genesys’ type mapping features was developed for the JME Generator.

For the most part, jABC’s simple data types could be easily translated via
identity or direct mappings, except for collections and maps, which had to be
mapped to Vector and Hashtable, respectively. Table 5.5 shows the required
data type mappings for jABC’s complex types. Just like for the Java Class
Generator 2 (cf. Sect. 5.2.3), new data types have been introduced in order to
support ContextKey and ListBox, and Password is translated into String
via a reductive mapping. All remaining supported data types are reduced to
corresponding collection and map types. Furthermore, ContextExpression
and File are excluded due to the lack of comparable functionality in CLDC.
Of course, when implementing JME-compliant service adapters, a SIB expert
has to pay attention that only compatible data types are used.

Table 5.5. JME mapping for complex jABC data types

jABC Data Type JME Type
ContextExpression –
ContextKey MicroContextKey
ExtendedFile –
ListBox MicroListBox
MultiObject Hashtable
Password String
StrictCollection Vector
StrictList Vector

As visible in Fig. 5.16, the JME Generator was derived from the Java
Class Generator 1. The first necessary change was the introduction of the
type mapping mechanism described above. For this purpose, a new SIB,
which establishes the data type mappings, was implemented and added to
the JME Generator. Beyond the mapping of data types, the creation of the
JME Generator was straightforward. Besides only a few model changes (such
as removing the generator generator functionality of the Java Class Genera-
tor 1), again mainly the templates had to be modified. Instead of providing
a main method, the generated class only features the execute methods (cf.
Sect. 5.2.2). After deployment on the target device, those methods can, e.g.,
be used within a MIDlet [Jav09c], which is an artifact that realizes a JME

146 5 Case Studies: Code Generators for jABC

application. Such a MIDlet is not produced by the JME Generator and thus
has to be created by a developer in an additional step.

5.4.8 EE Process Definition Generator

The EE Process Definition Generator was developed in the context of the
jABC Execution Engine (jABC EE). The jABC EE is an execution envi-
ronment that deals with “large scale processes”, i.e., processes which require
powerful features such as scalability, failover, compensation, user interaction,
versioning, multi-tenancy and hot deployment. It aims at business-critical ap-
plications deployed in big companies with a large user basis, and thus plays
a role similar to process engines in BPM (cf. Sect. 2.3.6).

Bajohr and Margaria describe an early conceptual precursor of the
jABC EE called the JobFlow-Engine [BM08], which basically extended the
Tracer by the features mentioned above. In contrast to this, the jABC EE is
based on JEE, as this framework already provides the foundations for some
of the required features (such as hot deployment and failover). Since the be-
ginning of 2010, the project is discontinued, but nevertheless the contribution
of Genesys to the jABC EE is noteworthy.

In the context of the jABC EE, a code generator was required which trans-
lates SLGs into corresponding process definitions, which are the artifacts de-
ployable on a running instance of the engine. A process definition is a simple
Java class which maps an SLG to a specific data structure that is defined
and understood by the jABC EE. In fact, this data structure is very similar
to the lightweight data structure used for the interpreter variant of the Java
Class Generator 2 (see Sect. 5.2.5) later on, thus the EE Process Definition
Generator is a precursor of this approach.

Once deployed, such a process definition can be queried (e.g., “get the start
SIB”, “get a specific successor of a particular SIB”) in order to steer the process
execution on the engine. As all execution and control flow mechanisms (such
as multi-threading, hierarchy or event-handling) are provided by the engine,
a process definition does not have to contain any logic or code that realize
these features, just like the artifacts produced by the Java Class Extruder,
which delegate the actual execution to the Tracer.

Another requirement for the EE Process Definition Generator was given
by the fact that a process definition may contain much more information
than a plain SLG, such as:

• Security information: This includes roles and rights thatdeterminewhether
a specific person is allowed to execute a process definition or service on the
jABC EE.

• Client-specific information: Process definitions may contain steps de-
manding an interaction with the user, e.g., in order to ask for information
necessary to proceed with the process. These interaction points are inde-
pendent of how a concrete client interface is realized. For instance, the
user may interact with one and the same process definition via a rich

5.4 Further Code Generators for jABC 147

client (e.g., based on Java Swing) or a thin web-based client. The client-
specific information establishes mappings that tell the jABC EE which
client interface (e.g., which web form or which dialog) can be used for
interaction at a particular point in the process definition.

• Version information: When a process definition has to be modified (e.g.,
because a workflow has been changed), the jABC EE allows hot deploy-
ment on a running instance of the engine without requiring to restart or
stop the server. This is especially interesting for business-critical applica-
tions which do not allow for any downtimes. In order to be able to safely
finish the execution of “old processes” without being disrupted by hot
deployment, versioning of process definitions is required. Consequently,
every process definition carries version information, which is adjusted in
case a process has to be modified.

Just as for the Web Service Generator presented above, this metainformation
is provided via the Annotation Editor (cf. Sect. 3.2.3).

The EE Process Definition Generator collects all information attached to
the jABC project and to the SLGs along with their constituent parts, and
incorporates it into the resulting process definition. The generated artifact
usually consists of multiple files:

• one Java class for each process definition,
• an Enterprise JavaBean (EJB) [Ora11a], which allows the registration and

the deployment of the generated process definitions on the jABC EE, as
well as

• an XML file declaring the main processes (i.e., process definitions which
may be used to start an application, usually corresponding to the topmost
SLGs of a hierarchy). Furthermore, this file contains the security, version
and client-specific information described above.

Although conceptually closer to the Extruder approach, the EE Process Defi-
nition Generator was derived from both the Java Class Extruder and the Java
Class Generator 1. From the former, it borrowed the structure of the gener-
ation processes and combined it with the generic and performance-focused
modeling style of the latter. Altogether, 23 new models had to be created.

5.4.9 JML Extension for Java Class Generator

This extension of the Java Class Generator 1 was realized as a part of a
diploma thesis [Fis09] that aimed at enabling the validation of design by
contract (DBC) [Mey92] specifications for jABC models. According to DBC,
software components are annotated with contracts, e.g., consisting of precon-
ditions, postconditions and invariants, which are specified in a formal and
thus precise way. For instance, corresponding tools then may perform run-
time checking in order to validate whether a given software system fulfills the
contracts associated with its components.

148 5 Case Studies: Code Generators for jABC

The Java Modeling Language (JML) [Bur+05] enables the use of DBC
for Java. For this purpose, contracts specified in JML are embedded into
the Java code as special annotation comments marking, e.g., classes, inter-
faces and methods. Several tools are available that work with JML-annotated
Java programs, such as jmlc/jmlrac [CL02;Bur+05] for runtime checking or
ESC/Java2 [Cha+05] for static checking.

In order to realize the DBC concept for SLGs, the solution created in the
diploma thesis consists of two parts:

1. A method has been developed that allows an application expert to specify
contracts for an SLG and its constituent parts (especially SIBs). The
contracts are specified in a simple input language via wizard-like editors,
that are based on jABC’s Annotation Editor.

2. A dedicated code generator then translates the model to a Java class
annotated with corresponding JML specifications.

The code generator has been realized with Genesys as an extension of the Java
Class Generator 1, which performs the translation to a Java class as usual.
In order to support the translation of the contracts annotated to an SLG,
several additions to the generator were required. Essentially, when processing
an input SLG, the generator has to check for each model constituent whether
it is annotated with a contract. If a contract could be found, it has to be
parsed, translated to JML and incorporated into the resulting Java code.
Accordingly, the JML extension can be considered a specific code generator
embedded into the Java Class Generator 1.

This extension included the addition of around 23 new SLGs that real-
ize the tasks mentioned above. The parsing of the contracts is performed
by means of a special SIB bundle from the Common SIBs library, which al-
lows processing any content attached via the Annotation Editor (those SIBs
have also been used for the Web Service Generator and for the EE Process
Definition Generator presented above). The actual code generation for the
contracts is realized with templates. No new SIBs had to be implemented for
this extension.

Please note that the DBC concept for SLGs developed in this diploma
thesis is neither restricted to JML nor to Java. In fact, by selecting or im-
plementing another code generator, SLGs annotated with contracts can be
translated for other target languages and DBC techniques.

5.4.10 iPhone Generator

The iPhone Generator is also the result of a diploma thesis [Spi09]. It targets
iOS [App11], which is the operating system of Apple’s well-known mobile de-
vices such as the iPhone and the iPad. Applications for iOS are implemented
in Objective-C [Koc09], which is an extension of ANSI C [ISO05] and which
is syntactically based on Smalltalk [GR83].

5.4 Further Code Generators for jABC 149

Due to the fact that iOS is designed for mobiles devices, corresponding
applications are subject to strong restrictions. For instance, an application
can be interrupted, sent to the background or even terminated. This may,
e.g., happen if the user presses specific buttons (such as “home” button), if
the device is put into sleep mode for saving battery power, or if another appli-
cation with a higher priority comes to the foreground, such as the telephone
application in case of an incoming call. Furthermore, applications need to
be aware of the devices’ limited memory, as the system may terminate ap-
plications in order to free required memory. Apart from these interruptions,
each application on iOS runs in a separate sandbox and thus has only very
restricted access to system resources, such as the network or the hardware
of the device. For accessing some resources like the Global Positioning Sys-
tem (GPS) hardware, the applications even have to request user permission.
The code produced by the iPhone Generator has to consider such restrictions.

As depicted in Fig. 5.16, the iPhone Generator is mainly derived from
the C# Generator. However, several considerable changes were necessary.
Primarily, as the syntax of Objective-C is very different from the syntax
of C# and Java, all templates had to be newly developed. Furthermore,
classes in Objective-C are structured differently than in C# and Java, as the
interface definition and the implementation of a class are divided into two
separate files. In order to generate this class structure, several models had to
be modified.

Spitzer [Spi09, pp. 42–49] describes further differences and characteristics
which required the modification of existing and the development of new gen-
erator models. For instance, the resulting Objective-C code also contains a
main method just like classes in C# and Java, but in contrast to the artifacts
produced by the previously introduced code generators, this method is only
used for simple initialization tasks.

The actual execution of the generated application is performed in a meth-
od called applicationDidFinishLaunching, which is additionally gener-
ated. This method is part of the application delegate, which is a special
object that is attributed to each application and which is able to process
specific events that may occur in the application’s life cycle. Correspond-
ingly, applicationDidFinishLaunching is called when the user starts the
application on the mobile device. The application delegate also processes the
interruptions mentioned above. The generated application needs to be able
to handle all events received by the application delegate. Furthermore, the
generated code always has to be executed in a separate thread so that it does
not block the user interface of the device.

As another necessary modification, the conversion of data types had to be
adjusted to Objective-C based on the converter infrastructure of the C# Gen-
erator (see Sect. 5.4.6). The required data type mappings are listed in [Spi09,
p. 47]. Most simple jABC types are included, except for special sorted maps
and sets, which have no equivalent counterparts in Objective-C. Unfortu-
nately, ContextKey is the only complex jABC type that is supported. As

150 5 Case Studies: Code Generators for jABC

another limitation, the iPhone Generator provides only limited support for
control SIBs: Only macros are supported, but other control mechanisms like
multi-threading and event handling are missing.

Similar to the C# Generator, the iPhone Generator emits a small runtime
environment in addition to the generated class, called the iABC environ-
ment [Spi09, pp. 53ff]. iABC contains an Objective-C implementation of the
stacked execution context as well as required data types. Furthermore, this
environment manages the communication between the application delegate
and the service adapters in order to process events.

As another result from restrictions of the target devices, the iABC en-
vironment also distinguishes between two different types of services. First,
there are services which are realized or made accessible via service adapters,
analogous to the other code generators presented previously. For the iPhone
Generator, such service adapters have to be implemented in Objective-C.
However, for iOS, this approach is only appropriate for functionality which
does not require long computation time. In order to cope with long-running
tasks, the runtime environment provides a second type of service, called the
iABC services. Those services execute long-running tasks by means of specific
iOS facilities, which support, among other things, the interruption by higher
prioritized applications. The iPhone Generator has to consider the type of a
SIB’s service implementation in order to generate corresponding service calls.

In spite of these differences to existing code generators, only six new models
and one new SIB (for the registration of the required data type converters)
had to be implemented. The remaining functionality of the code generator
could be realized by parametrization and modification of existing models.

As a further evolution step, the iPhone Generator could serve as a basis
for a general code generator for Objective-C that, e.g., produces MacOS
applications. Such an Objective-C Generator could be derived with little
effort [Spi09].

5.4.11 Code Generators for Ruby, Perl and JavaScript

The Ruby Generator [Kol10] is another example of derivation from the Serv-
let Generator. Ruby [FM08] is an interpreted multi-paradigm programming
language, which supports, e.g., procedural, object-oriented as well as func-
tional programming. The execution of a script written in Ruby requires a
corresponding runtime environment, such as the Java-based JRuby [Com11].

Similar to the case studies for C# and the iPhone, the Ruby Generator
requires any service adapters to be implemented in Ruby. Service adapters
are realized as modules, which are separate files that can be included and used
in the Ruby script produced by the code generator. As for the other non-Java
code generators, the stacked execution context had to be reimplemented in
Ruby.

Due to Ruby’s dynamic type system, the code generation for data types is
much more simple, as the type information does not have to be incorporated

5.4 Further Code Generators for jABC 151

in the resulting code. In order to take advantage of this fact, the Ruby Gener-
ator employs reductive type mappings and (more rare) type exclusions rather
than introducing new data types for Ruby [Kol10]. Only for ContextKey the
introduction of a new type was inevitable in order not to loose the contained
context scoping information. In contrast to other non-Java code generators,
the Ruby Generator also supports the ContextExpression type. In all other
case studies, this type had be excluded due to the lack of a corresponding
EL implementation. Ruby does not contain such an implementation out-of-
the-box either, but it provides powerful constructs for processing strings.
These constructs made it easy to implement a corresponding EL version in
Ruby [Kol10, p. 46].

As a result of the differences mentioned above, all models of the Servlet
Generator had to be adapted. Furthermore, all templates had to be rewritten
in Ruby. Due to Ruby’s condensed syntax and its focus on “convention over
configuration”, the size of most templates was considerably reduced, and some
templates even could be omitted entirely. Altogether, no new models or SIBs
had to be developed.

Another interpreted programming language is targeted by the Perl Gen-
erator [Beu10]. Just like Ruby, Perl [Wal00] supports multiple programming
paradigms and uses a dynamic type system. Consequently, the derivation
steps and the effort required for realizing the Perl Generator were very simi-
lar to those of the Ruby Generator. Please refer to [Beu10] for more details
on the Perl Generator.

Finally, the JavaScript Generator [Tol11] translates SLGs into Java-
Script [Fla06], which also has characteristics similar to those of Perl and Ruby
(interpreted, multi-paradigm, dynamically typed). However, in comparison to
the generators for Ruby and Perl, the JavaScript Generator is most recent
and thus is derived from the LI variant of the Java Class Generator 2 (cf.
Sect. 5.3) instead of the Servlet Generator. Apart from this difference, the
required derivation steps were again very much comparable to those of the
generators for Ruby and Perl (no new models required, specific data type
mappings and service adapters etc.).

5.4.12 Robocode Generator

The Robocode Generator resulted from a diploma thesis [Sto10], that aimed
at modeling strategies for the programming game Robocode [Lar11] in jABC.
In Robocode, small virtual robots are developed that compete against each
other in tournaments and challenges.

Essentially, such a robot consists of a chassis, a gun and a radar, all of
them moveable independently. The radar is used to scan for other robots.
Furthermore, there are several general conditions that need to be considered,
such as the boundaries of the playboard, a robot’s remaining energy and the
temperature of the gun.

152 5 Case Studies: Code Generators for jABC

A robot is programmed as a simple Java class (further dependencies are
allowed). For this purpose, Robocode offers a corresponding Java API. Storz
refers to such a robot program as a strategy [Sto10]. Furthermore, Robocode
provides a graphical environment for testing programmed robots and for let-
ting them compete against other robots.

Apart from the obvious entertainment value, Robocode can be used for
practical learning of object orientation and Java programming. As an exten-
sion to this, Storz [Sto10] proposes the use of jABC in order to formulate
robot strategies as models. Accordingly, instead of a programming language,
the abstract SLG notation is used for creating a strategy, which is especially
easier for beginners. By means of models, they can learn abstract concepts
like iteration or recursion prior to being distracted from the syntactic issues
of a full programming language.

The approach underlying the diploma thesis is inspired by the project
ConnectIT [BJM09]. This project also involves modeling game strategies in
jABC, but in this case for the popular “Connect Four” game. Once modeled,
those strategies can be executed with the Tracer and directly tested in a ded-
icated graphical game environment realized as a jABC plugin. Since several
years, ConnectIT is applied successfully in projects with pupils and students.
The application of Robocode as a new game for this concept is more ambi-
tious, as the robot strategies are much more complex and challenging due to
the higher degree of freedom in the game.

In Robocode, robots are developed based on events. Each robot has a
standard behavior (e.g., “Move along the wall and avoid any obstacles.”) which
is repeated by the system until the end of the game. Furthermore, additional
behavior is specified based on particular events which may occur in the game,
such as “radar scanned another robot” or “wall rammed”.

Due to this structure, jABC models for robot strategies differ from usual
SLGs employed in other application scenarios. As a main difference, a robot
strategy modeled in jABC is separated into several connected components
called sections [Sto10, pp. 46–48]. One section describes the robot’s standard
behavior, and there is an additional section which specifies the behavior for
each event that should cause a reaction of the robot. Each section is identified
by means of a special corresponding start SIB. Furthermore, strategy models
may only contain special SIBs, the Robocode SIBs, which reflect the Robocode
API (e.g., movements of robot body/gun/radar, or firing the gun). Those
strong restrictions of the models are acceptable for this application scenario,
as corresponding users only work with a customized, simplified version of
jABC that is not suitable for creating arbitrary models anyway.

The Robocode Generator is responsible for translating those special SLGs
into corresponding Java classes, which can be executed and tested in Robo-
code’s graphical environment. As the structure of the input models is very
constrained and different from usual SLGs, the bulk of the generator had
to be newly created. As depicted in Fig. 5.16, few models of the Java Class

5.4 Further Code Generators for jABC 153

Generator 1 (e.g., standard tasks like model loading) could be reused, which
is indicated by the “partial reuse” relationship.

The generator translates every section that is contained in the strategy
into a corresponding Java method. For instance, the section for the standard
behavior is translated to a run method, and for the section specifying the
event of scanning another robot, the generator produces a method called
onScannedRobot.

In order to keep the size of the resulting Java class as small as possi-
ble7, the Robocode SIBs relinquish the concept of service adapters. Similar
to the leJOS Generator and the NXC Generator (cf. Sect. 5.4.4), the SIBs
expose their own execution code as a string which is then incorporated in
the generated code. Consequently, no data type conversion is required, as it
is delegated to the developer who implements the Robocode SIB.

Furthermore, the restriction of the models to the Robocode SIBs prevents
the creation of unstructured or erroneous models. Such SLGs are detected
by a specific checker [Sto10, pp. 70f], which is always executed prior to code
generation. Thus the Robocode Generator does not require any additional
mechanisms for handling unstructured or erroneous input SLGs.

In addition to the 14 new models of the generator, 14 new SIBs were
required. The latter covered tasks specific to the Robocode scenario, such as
handling the sections of the strategy models.

By means of a dedicated jABC plugin, a modeled strategy can be executed
and tested immediately. Entirely transparent to the user, the Robocode Gen-
erator translates it into a Java class, which is then automatically compiled
and deployed in a temporary directory. Afterwards, the user may configure
a tournament which is then directly performed within Robocode’s graphical
environment.

7 For some Robocode challenges, the size of the robot’s code is important.

6

Verification & Validation of Code Generators

Sect. 1.1 established verification and validation (V&V) as a central requirement
of the Genesys approach (Requirement G5 - Verification and Validation). As
the primary objective, V&V techniques should support the generator developer
in constructing robust code generators, that correctly produce the desired re-
sults. First of all, this includes standard techniques of software engineering such
as testing and static analysis, which are of course applicable to code generators
just like to any other piece of software. Beyond that, the Genesys approach
provides the decisive advantage that code generators are available as models.
In consequence, they are amenable to formal methods like model checking (cf.
Sect. 3.4).

Fig. 6.1 shows an overview of the V&V techniques that are employed in
Genesys. As visible in the center of the figure, V&V is applied to code gener-
ator models as well as to the contained services. Above the dashed line, there
are those techniques which support the generator developer while modeling
a code generator. The tools that are available for this purpose require a set
of local and global constraints (cf. Sect. 3.1), which are checked continuously
during the modeling activity. In jABC, local constraints are checked by means
of the LocalChecker and, as described in Sect. 3.2.3, specified by the SIB ex-
pert as corresponding Java code in the SIB. Furthermore, global constraints
are checked by means of model checking which is provided by the jABC plu-
gin GEAR (cf. Sect. 3.4). In order to spare the generator developer learning
a temporal logic, such global constraints can also be specified in a graphical
and pattern-based manner as jABC models, using the FormulaBuilder tool
(which is in fact another example of a Genesys code generator).

Below the dashed line, testing techniques check whether the code genera-
tors and the contained services work as desired (or stipulated). As the services
are implemented as code, they can be tested the usual way, e.g., by means
of unit tests. For instance, in the case of Java, testing frameworks like JU-
nit [Bec04] and TestNG [BS07] are suitable for this purpose. For testing entire
code generators in Genesys, a dedicated framework has been developed, and
also implemented in case of the various jABC code generators (cf. Sect. 5).

S. Jörges: Construction and Evolution of Code Generators, LNCS 7747, pp. 155–176, 2013.
© Springer-Verlag Berlin Heidelberg 2013

156 6 Verification & Validation of Code Generators

Global ConstraintsF
or

m
ul

aB
ui

ld
er

Generator Models Services

Test Cases

Local
Constraints

Test Case Models

Model Checker

Modeling

Testing

Local Checker

Testing Framework JUnit, TestNG, ...

Fig. 6.1. Verification & Validation in Genesys

According to the concept underlying this framework, test cases as well as test
inputs are, just like the code generators and the global constraints, specified
as models in jABC.

Please note the special focus on the simple usage of the supported V&V
mechanisms, especially of those working on code generator models. In order
to use the model checker or Genesys’ testing framework, the generator de-
veloper does not have to learn any new language or specification formalisms
(Requirement G3 - Simplicity). The language used for all these tools is given
by jABC’s SLGs, which is the same language that is used for the develop-
ment of the actual code generators. The only syntactic difference between
those models is that different SIBs are used for their construction.

As constraints and test cases are, once created, added to the Genesys
Framework, they form a continuously growing knowledge base for building
robust code generators (bottom of Fig. 4.1 in Chap. 4). Consequently, each
new code generator has to fulfill all suitable constraints and pass all appropri-
ate tests from the knowledge base, which reduces the likelihood of repeating
known mistakes or bugs.

With this holistic and integrated support of V&V, Genesys provides pow-
erful mechanisms for the development and quality assurance of robust and
reliable code generators, which is (to the author’s knowledge) unique among
existing code generation frameworks. All mechanisms have been field-tested
for the jABC code generators presented in the previous chapter. They are,
without further ado, applicable to other domains: In particular, the Lo-
calChecker and the model checker GEAR are not restricted to the domain of
code generation, but are intended for any models and services in jABC.

6.1 Local Constraints for Code Generators 157

The following sections elaborate on the single V&V facets in Genesys:
Sect. 6.1 is concerned with the checking of local constraints, Sect. 6.2 focuses
on global constraints and model checking, and Sect. 6.3 describes the testing
capabilities of Genesys.

6.1 Local Constraints for Code Generators

Sect. 3.2.3 presented the LocalChecker as an important tool for checking
the correct use and configuration of available services in SLGs. This section
elaborates on which local constraints are typically checked in the context of
Genesys.

All Common SIBs and all dedicated Genesys services enforce the use of the
built-in standard checks of the LocalChecker. These standard checks already
impede the most common modeling errors, such as unconnected edges with
missing source or target nodes (which resembles a breach in the execution
flow) or missing branch assignments (leading to inaccessible execution paths).
Another common problem which is avoided with a local constraint is missing
names for context keys (cf. Sect. 3.3.2). Services that are misconfigured this
way might fail reading data from or writing data to the execution context.
Please note that the LocalChecker is only able to check whether the generator
developer generally provided a name for a context key. However, due to its
local scope, which is limited to single SIB instances, the tool is, e.g., not able
to detect unused context keys or SIBs that try to access non-existing context
keys. Instead, data flow analysis (e.g., via model checking [Ste91;LMS06] or
dedicated tool kits [Kle+96]) can be used for spotting such problems.

Another application of local constraints, which is more specific to the do-
main of code generation, is given by the SIBs that make the various template
engines available as services (cf. Sect. 4.1.1). For these SIBs, templates are
usually specified as values of SIB parameters, which is one of the most fre-
quent activities when developing a code generator with Genesys. Erroneous
templates may cause the code generator to produce code that is not compil-
able, or that even shows unpredictable or undesired behavior. Consequently,
apart from the trivial constraint that a template has to be specified and thus
must not be empty, the generator developer is further supported by a local
check that validates the syntactic correctness of the template. This check is
usually realized on the basis of built-in parsers provided by the correspond-
ing template engines. Accordingly, in case of the templates, the LocalChecker
acts in the background as a simple syntax checker, which emits an error mes-
sage as soon as the generator developer mistypes in a template. Fig. 3.5 in
Sect. 3.2.3 contains an example of such an error message, caused by a syntax
error in the Velocity template specified for the SIB Generate Main Method
Header. In conjunction with facilities from Genesys’ developer tools, such
as the editor with syntax highlighting for VTL (cf. Sect. 4.3.1), this local
constraint significantly curbs the danger of incorrect templates.

158 6 Verification & Validation of Code Generators

Furthermore, the LocalChecker can also be employed for realizing modeling
conventions or best practices. For instance, Genesys uses a local constraint in
order to remind generator developers of documenting the single SIB instances
contained in the developed models. As the violation of this constraint is not
a serious error, it is displayed to the generator developer as an information
(the LocalChecker’s lowest severity level).

6.2 Global Constraints for Code Generators

As the usage of jABC’s model checking plugin GEAR has already been
described in Sect. 3.4, the following sections elaborate on how global con-
straints are specified and organized in Genesys. First, Sect. 6.2.1 introduces
the FormulaBuilder, which allows the specification of global constraints as
jABC models, and which is also itself an application of Genesys. Afterwards,
Sect. 6.2.2–6.2.5 present the constraint library by exemplifying typical con-
straints, and by motivating the creation of new constraints and patterns. The
sections are mostly based on [JMS11].

6.2.1 FormulaBuilder

As already mentioned above, the FormulaBuilder [JMS06] is a tool that aims
at simplifying the specification of global constraints which are, e.g., required
for model checking. Instead of presupposing knowledge about property spec-
ification formalisms like temporal logics, the central idea of the tool is to
allow the graphical specification of constraints as SLGs, which is the same
notation that is used for modeling the actual system that is to be checked.
As such graphical constraints are special jABC models, they are also called
formula graphs. In comparison to normal SLGs, there are two restrictions on
formula graphs. First, as formula graphs represent an abstract view of the
syntactic structure of constraints, they usually are trees or directed acyclic
graphs. Second, only specific SIBs, called Formula Building Blocks (FBBs)
can be used to model constraints this way. Formula Building Blocks (FBBs)
represent the parts of a formula such as operators or operands.

The FormulaBuilder provides a large library of FBBs for creating con-
straints, including logical, arithmetic, comparison and set operators, most
of the specification patterns proposed by Dwyer et al. [DAC99], and other
GEAR macros (cf. Sect. 3.4.1). Especially when using the specification pat-
terns, the benefit of graphically modeling constraints becomes apparent: As
the patterns virtualize from usually complex formulas, the graphical SLG
representation is small and intuitive (the examples in the following sections
elaborate on that). Furthermore, the use of hierarchical models allows the
creation of composite constraints and new patterns.

Apart from the FBB library, the FormulaBuilder contains a retargetable
code generator that translates any formula graph into a desired specification

6.2 Global Constraints for Code Generators 159

formalism such as CTL or the modal μ-calculus (cf. Sect. 3.4.1). Accordingly,
the FormulaBuilder targets multiple languages, including different specifica-
tion formalisms as well as different concrete syntaxes of one and the same
formalism (e.g., for use with different tools).

F

CG

Fig. 6.2. Example: Verifying the Java Class Extruder with GEAR and the Formu-
laBuilder

Fig. 6.2 illustrates the interplay of the FormulaBuilder and the model
checker GEAR. The top right of the figure depicts a constraint that has
been specified as a formula graph, and that will be translated by the For-
mulaBuilder into the following formula meaning “From an iterator that pro-
cesses SLGs, an iterator that processes SIBs has to be reachable via the ’next’
branch.”:

IterateSLGs ⇒ 〈next〉 EF (IterateSIBs)

This formula graph can be dragged into the GEAR inspector shown on the
bottom left of Fig. 6.2. It is then added to the constraint library and trans-
lated on-the-fly by the FormulaBuilder, each time the constraint is required.
Via the GEAR inspector and while modeling, the user is always able to check
whether all selected constraints are satisfied by a given SLG and its submod-
els, as it is the case for the Java Class Extruder (cf. Sect. 5.1) displayed on
the bottom right of Fig. 6.2.

160 6 Verification & Validation of Code Generators

The FormulaBuilder is also another application of Genesys. However, the
very first version of the FormulaBuilder’s generation mechanism (the one
described in [JMS06]) was completely implemented “by hand”. Later on, Ge-
nesys has been used for a complete redevelopment of the facility, as the For-
mulaBuilder can be considered a special, very flexible kind of code generator,
which allows to configure the syntax of the generated result via an open in-
terface (for details see [JMS06]). This configuration is performed by writing a
special Java class (the so-called target syntax) which makes use of a dedicated
API that emulates a notation close to the common BNF.

During the redevelopment of the FormulaBuilder’s generation mechanism
as a Genesys code generator, the bulk of the algorithm could be easily mod-
eled by, for the most part, only resorting to the building blocks contained in
jABC’s Common SIBs library. In contrast to most other generators in Gene-
sys (except for the BPEL Generator, cf. Sect. 5.4.5), this code generator is not
template-based. Instead it uses a rule-based transformation (cf. Sect. 2.4.3):
Along with the actual syntax description, the target syntax specification con-
tains the transformation rules that describe how a particular FBB is trans-
lated to a part of a formula, so that the FormulaBuilder directly retrieves the
necessary information from the selected target syntax specification.

In order to add this functionality to the code generator, the existing code
for dealing with target syntaxes had to be divided into reasonable chunks so
that suitable SIBs could be created. This resulted in around 10 new SIBs,
which were required to completely model the generation facilities of the For-
mulaBuilder in Genesys.

6.2.2 The Constraint Library

As mentioned above, global constraints form a library which is an integral
part of the Genesys Framework. This constraint library serves as a corpus of
rules and guidelines for constructing code generators that, just like Genesys’
repertoire of services and models, is growing continuously. There are several
occasions which cause a growth of the library, e.g.:

• A new code generator is developed and raises new constraints.
• A bug traces back to a modeling mistake which has been found in a code

generator. Consequently, a new constraint is added to the library in order
to assure that the mistake does not reoccur.

• Existing constraints are recombined to form new, in most cases stronger
and more strict, constraints.

As depicted in Fig. 6.2 at the top left side, the organization of the library is
based on the semantics of the constraints. This structure is inspired by the or-
ganization of the well-known specification pattern system presented by Dwyer
et al. [DAC99]. Accordingly, most constraints are currently distinguished by

6.2 Global Constraints for Code Generators 161

whether they say something about the occurrence (“actionOccurrence”) or
the relative order (“actionOrder”) of actions.

The following sections provide example constraints from both categories.
In most cases, the constraints are illustrated by means of their representation
as formula graphs. For textual notations of constraints, basically the variant
of CTL introduced in Sect. 3.4.1 is used, along with several non-standard ad-
ditions that resemble GEAR’s macros and other specifics of its input syntax.
Any employed additions to the CTL variant will be explained separately in
the corresponding sections.

6.2.3 Occurrence Constraints

Fig. 6.3 shows three example constraints belonging to the actionOccurrence
category. The depicted formula graphs represent the following constraints
(the numbering corresponds to Fig. 6.3):

3

2

1.1

1.2

F
Fig. 6.3. Constraints from the actionOccurrence category

(1.1 & 1.2) SIB InitCodeGeneration is used and is a start SIB without any
predecessors:

existenceglobally(SIB.class == .∗InitCodeGeneration)
∧((SIB.class == .∗InitCodeGeneration)

⇒ (SIB.isStartSib ∧ [.]false))

(2) No proxy SIBs:

absenceglobally(SIB.isProxySib) ∧ absenceglobally(SIB.isReplaced)

162 6 Verification & Validation of Code Generators

(3) After processing a model, the identifier cache has to be cleared before pro-
cessing the next model :

universalityglobally(IterateModels
⇒ AX(ClearIdentifierCache existencebefore IterateModels))

The formula graphs 1.1 and 1.2 exemplify the use of hierarchy for modeling
constraints with the FormulaBuilder. Formula graph 1.2 corresponds to the
formula SIB.isStartSib ∧ [.]false, which is true for all start SIBs without
any predecessors (usually applies to the very first SIB of an SLG hierarchy).
In this formula, SIB.isStartSib is a GEAR macro, and the backward box
operator [.] (resp. BOXB in formula graph 4) without any explicit actions
(resp. branches) refers to all actions (i.e., it is equivalent with [A]). By means
of hierarchy, this formula graph is embedded into formula graph 1.1 in order
to produce a new constraint.

The resulting composite constraint demands the use of a SIB called
InitCodeGeneration, which is obligatory for older code generators. In ear-
lier versions of Genesys, this SIB was used to initialize required data struc-
tures and facilities, such as the list of reserved keywords and the identi-
fier generation functionality (cf. Sect. 4.1.3), in one step. In current ver-
sions, the SIB is deprecated and has been separated into several SIBs in
order to be more modular. However, older code generators still rely on the
InitCodeGeneration SIB. For ensuring its presence, the constraint uses
SIB.class == .∗InitCodeGeneration, which is true for all SIBs with a
class name matching the regular expression .∗InitCodeGeneration. Fur-
thermore, a specification pattern is used: “Existence” with scope “globally”
means “P has to become true globally” and corresponds to the CTL formula
AF (P) [DAC99]. Via the embedded formula graph 1.2, the constraint addi-
tionally demands that InitCodeGeneration is the very first SIB of any code
generator.

When comparing formula graphs 1.1 and 1.2 in Fig. 6.3 with the corre-
sponding textual formula given above in (1.1 & 1.2), the benefit of the
graphical representation becomes apparent. Due to the structural reuse via
the hierarchy mechanism of SLGs, formula graph representations are partic-
ularly beneficial for defining complex formulas. The example also illustrates
that the high reusability already observed for the code generators also ap-
plies to constraints: Once created, formula graph 1.2 is a ready-made building
block that can be reused in any constraint that includes the demand for using
a specific start SIB (Requirement G2 - Reusability and Adaptability).

The constraint specified by formula graph 2 in Fig. 6.3 is not only appli-
cable to code generators, but to all kinds of executable SLGs, as it checks
the absence of any proxy SIBs (cf. Sect. 3.2.2). Although an SLG containing
proxy SIBs can be loaded and modified without any problems, it cannot be
used for execution or code generation, as proxy SIBs are only placeholders
that lack the required service implementations. In order to ensure that no

6.2 Global Constraints for Code Generators 163

such placeholders are contained in an SLG, constraint 2 uses GEAR macros
to check two cases:

• SIB.isReplaced is true if a SIB has been automatically replaced by a
proxy SIB.

• SIB.isProxySib is true if a user misapplied a proxy SIB for modeling
(which was technically possible in earlier versions of jABC).

Constraint 2 demands that these two cases do not occur in any SLGs by using
the specification pattern “Absence” with the scope “globally”. This pattern
means “P has to be false globally” and corresponds to AG(!P). The textual
notation of the constraint is given above in (2).

Finally, formula graph 3 in Fig. 6.3 represents a constraint that is required
for all code generators that employ the Genesys services for identifier gen-
eration (cf. Sect. 4.1.3) along with the multiple class generation approach
(cf. Sect. 5.2.2). As visible from the constraint’s textual notation given above
in (3), it demands that if multiple models are given as an input (e.g., an
SLG hierarchy), the cache for generated identifiers should be cleared after
processing each model. Consequently, the generation process starts with an
empty cache for each model, so that name clashes are not possible, as for
each model a separate Java class file is produced. If the cache is not cleared
each time, this would result in the generation of unnecessary identifiers, as
the services would make the identifiers unique among all generated files, al-
though uniqueness in a single file is sufficient. For instance, if a serial number
is suffixed for unification as described in Sect. 4.1.3, this number would grow
unnecessarily high, which leads to code that is less readable.

Formula graph 3 employs two specification patterns for establishing the
actual constraint. First, “Existence” with scope “before” is used for speci-
fying that the cache has to be cleared (atomic proposition ClearIdentifier-
Cache) before starting the next iteration (atomic proposition IterateModels).
The pattern means “P has to become true before R” and corresponds to
A[!R WU (P ∧ !R)]. Second, in order to demand the validity of the constraint
for the entire code generator, the formula graph contains the pattern “Uni-
versality” with scope “globally”. The meaning of this pattern is “P has to be
true globally”, thus it corresponds to CTL’s AG operator.

6.2.4 Order Constraints

Fig. 6.4 shows two examples from the actionOrder category. The depicted
formula graphs represent the following constraints:

(1) After it is initialized, the generator eventually either finishes successfully
or fails :

(GenerationSuccessful ∨ GenerationFailed) respondstoglobally Initialization
(2.1 & 2.2) When using the SIBs GenerateTypeName or GenerateInitiali-

zer in the generation phase, the type mapping system has to be initialized

164 6 Verification & Validation of Code Generators

1

2.1

Argument

2.2

F

Fig. 6.4. Constraints from the actionOrder category

by previously employing the SIB InitializeTypeSystem in the initial-
ization phase:

(Initialization ∧ (SIB.class == .∗InitializeT ypeSystem.∗))
precedesglobally (Generation

∧ ((SIB.class == .∗GenerateTypeName.∗)
∨ (SIB.class == .∗GenerateInitializer.∗)))

Constraint (1) (specified by formula graph 1) uses the specification pattern
“Response” with scope “globally” to specify the allowed outcomes of a gener-
ation run, once the code generator has been initialized. This pattern means
“S globally has to respond to P” and translates to AG(P ⇒ AF (S)).

The formula graphs labeled 2.1 and 2.2 in Fig. 6.4 specify a constraint
that demands the proper initialization of Genesys’ type mapping infras-
tructure (cf. Sect. 4.1.2) in the code generator’s initialization phase. This
is obligatory as soon as any services that access this type system (such as
GenerateTypeName or GenerateInitializer) are used in the generation
phase. Again, for identifying the SIBs, the constraint uses regular expres-
sions that match against the single SIB’s class name. In order to specify the
desired order in which the SIBs should be employed, the constraint contains
the specification pattern “Precedence” with the scope “globally”. This pattern
means “S globally has to precede P” and translates to A[¬P WU S].

The single phases of the code generator are identified by means of atomic
propositions, which are true for any service employed in the corresponding
phase. For instance, the atomic proposition Generation is true for any service

6.2 Global Constraints for Code Generators 165

that is contained in the generation phase. As checking whether a property
holds in a particular phase is a very frequent part of constraints, formula
graph 2.2 defines a simple pattern that can be conveniently used via hierarchy.
Essentially, it is an incomplete formula graph defining slots for:

• an atomic proposition that identifies the desired phase, realized as a
model parameter named “Phase”, and

• a (sub-)formula which describes the property that is expected to hold
in the particular phase, realized as a model branch called “Argument”
(indicated by the dashed arrow).

Via macros, this simple pattern is embedded into formula graph 2.1 in order
to identify the initialization and generation phase in the corresponding parts
of the constraint. Besides being another example for the reusability of for-
mula graphs, the comparison with the corresponding textual pendant shown
above in (2.1 & 2.2) shows again that the use of hierarchy and patterns
allows to increase the conciseness of constraint specifications. The following
section elaborates on this by showing the derivation of a bigger pattern and
its application in a complex composite constraint.

6.2.5 Deriving Patterns & Composing Constraints

Similar to the simple pattern presented above, many requirements for code
generators lead to constraints that are very similar in terms of their basic
structure. Consequently, new patterns can often be derived from structural
similarities of the corresponding formula graphs (Requirement G2 - Reusabil-
ity and Adaptability).

A fairly complex example from Genesys’ library is the constraint which
demands the complete inspection of all constituents of the SLGs that serve
as an input for a code generator. This constraint has to check that for every
input SLG, all contained SIBs are guaranteed to be processed, including all
SIB parameters, branches etc. This is intended to ensure that no information
is lost or forgotten when generating code from a hierarchical SLG. As all
these checks are very similar in structure, a new pattern emerged, called
Handle By [JMS11]. It is partly based upon “Precedence” and thus can be
assigned to Dwyer et al.’s class of “Order patterns”. Basically, the new pattern
augments “Precedence” by the possibility to describe conditional cause-effect
relationships. In the description style of Dwyer at. al [DAC99], the pattern’s
intent is:

Definition 4 (Intent of “Handle By”). “To describe cause-effect relation-
ships between a pair of events/states on certain conditions. Under certain
conditions, an occurrence of the first, the cause, must be handled by an oc-
currence of the second, the effect.”

In its current version, the pattern only exists with the scope “before”, as other
scopes were not required yet. In textual form, this version of the pattern is

166 6 Verification & Validation of Code Generators

P
F

Fig. 6.5. The new “Handle By” pattern with scope “before”, meaning “Handle every
A by P before Q”.

to be read as “Handle every A by P before Q”. The formula graph in Fig. 6.5
shows the pattern, which is modeled as an incomplete formula graph with:

• one model branch “P” (indicated by the dashed arrow) as well as
• three model parameters “A”, “Q” and “conditions” (surrounded by dollar

signs for indicating their status as slots which are filled when the pattern
is instantiated).

In Fig. 6.5, A and Q are realized as parameters of the pattern, which means
that these slots can only be filled by atomic propositions, but not by entire
formulas (as it is the case with P). Of course, the pattern itself is by no means
restricted to this: The formula graph could be easily adjusted for supporting
formulas in the slots A and Q. For instance, for the Q slot, this can be achieved
by removing the node labeled “Q” and by replacing the adjacent “P” edge
with a model branch. The slot called conditions provides a list of branch
names that represent the conditions under which A will be handled by P.

In order to actually use the pattern, it can simply be embedded into a
hierarchical formula graph, as depicted on the left hand side of Fig. 6.6. In
this graph, the nodes labeled 1 to 3 use the “Handle By” pattern with the
scope “before”. For instance, node 1 instantiates the pattern with:

• the atomic proposition NextModel as the cause,
• node 2 as the effect,
• “next” as the branch condition, and
• the atomic proposition GenerationTerminated for the “before” scope.

Besides using hierarchy to simplify constraints via the use and creation of
patterns, constraints can be combined with and embedded into each other

6.2 Global Constraints for Code Generators 167

1

1

2

2

3

3

4

4

F

Fig. 6.6. A constraint checking for the complete handling of input SLGs using the
“Handle By” pattern

in order to capture more complex requirements. Fig. 6.6 shows the formula
graph that specifies a part of the constraint outlined above, demanding the
complete processing of all input SLGs of a code generator. The depicted
formula graph focuses on the generation of code for SIB parameters and thus
contains the following requirements:

(1) Handle every input SLG before the generation terminates, by
(2) handling every SIB before handling the next SLG, by
(3) handling every SIB parameter before handling the next SIB, by
(4) generating code for either a “normal” SIB parameter or for a model pa-

rameter before handling the next SIB parameter.

168 6 Verification & Validation of Code Generators

Translating this constraint into a textual formula yields:

AG(NextModel ⇒ [next](
AG(NextSIB ⇒ [next](
AG(NextSIBParameter ⇒ [next](
A[!NextSIBParameter WU (GenerateSIBParameter

∨ GenerateModelParameter)]
)) ∧A[¬NextSIB WU NextSIBParameter]

)) ∧A[¬NextModel WU NextSIB]
)) ∧A[¬GenerationTerminated WU NextModel]

This formula is certainly not very intuitive, and it is rather laborious for a
user to create and understand it. When modeling the constraint explicitly as
a formula graph, as illustrated by Fig. 6.6, it gets more concise due to the
consequent use of hierarchy and of specification patterns like “Precedence”.
Both the combination and embedment of constraints as well as the deriva-
tion of new patterns from structural similarities allow for a rapid growth of
Genesys’ constraint library for code generators. Furthermore, the constraints
tend to be more and more concise and simple to use.

6.3 Testing of Code Generators

Another facet of V&V that is supported by Genesys is testing, i.e., “the
dynamic verification of the behavior of a program on a finite set of test cases,
suitably selected from the usually infinite executions domain, against the
expected behavior” [Abr+04].

In the context of jABC and its precursors, there has already been a lot of
research concerned with this topic. A major result is the Integrated Test Envi-
ronment (ITE) [Nie+01b;Nie+01a;MS04], which provides a holistic approach
for testing modeled systems (also called “system-level testing” [MS04]). Accord-
ing to this approach, test cases and entire test suites are modeled as SLGs,
based on a library of test blocks (i.e., services). Similar to the graphical model-
ing of constraints presented in Sect. 6.2, this provides the significant advantage
that test cases are specified using the same notation as the actual system under
test (SUT).Consequently, no additional language has to be learned for the spec-
ification and coordination of tests (Requirement G3 - Simplicity). In addition,
the user again profits from the general advantages of the SLG notation, such as
the high potential of reusing recurrent structures, e.g., by means of hierarchi-
cally constructed test cases [MS04], or such as verifying the well-formedness of
modeled test cases via model checking [Nie+01b]. Further research on testing
in jABC and its precursors concerns regression testing and test suite generation
via techniques like automata learning [Hag+02b;HMS03;Raf+09], e.g., for test-
ing legacy or black box systems such as web applications [Raf+08;MNS02] or
Computer Telephony Integration systems [Hag+02a].

6.3 Testing of Code Generators 169

Motivated by the need for a framework for the automated test of Genesys
code generators, and based on the research experience outlined above, an
extended testing approach has been developed, which is not only applicable
to Genesys, but to jABC in general. Essentially, it extends the holistic ITE
approach described above by the dimension of code generation. While being
closely related to the notion of model-based testing, which is a little over-
loaded with different definitions and interpretations [UL06;Dal+99], the fol-
lowing sections consider this concept an instance of MDTD [Sta+07]. Fig. 6.7
shows a variant of the MDTD base model described by Stahl et al. [Sta+07, p.
258], adapted to the way it is realized for jABC using Genesys.

Code Generation Code Generation

runs on

steersSUT
(generated)

Execution
Platform

runs on

Testing
Platform

Test
Scripts

Application
Development

SUT
(SLGs)

Test
 Cases

steers

Testing

Fig. 6.7. Model-Driven Test Development (MDTD) in jABC

The left hand side of the figure depicts the standard application develop-
ment in jABC: The application is modeled by means of SLGs, and an appro-
priate Genesys code generator translates those models into code that runs on
a desired execution platform. The testing of the application is shown on the
right hand side of the figure. As motivated above, the test cases are also mod-
eled as SLGs. A test suite is a superordinate model which bundles a set of test
cases by means of hierarchy. For modeling the test cases, a library of dedicated
test SIBs is used. As described by Margaria and Steffen [MS04], this library
consists of SIBs for steering the SUT as well as SIBs that provide the func-
tionality of existing test tools and frameworks as services. A test case that has
been modeled this way can be directly executed with the Tracer, which is in
this case also responsible for steering the SLGs representing the SUT. Prior to
the introduction of Genesys and code generation in jABC, the ITE exclusively
performed the test execution via direct interpretation of the models.

However, through the introduction of code generation, the testing approach
can also be applied on the level of the generated application. For instance,

170 6 Verification & Validation of Code Generators

this may be desirable for testing the application’s behavior under “real cir-
cumstances”, i.e., on the actual target platform. Testing at this level is also
beneficial if the use of a particular testing platform is mandatory for the ex-
ecution of the tests or for the final reporting. Accordingly, analogous to the
SUT itself, the test case models are also translated to executable code, as
shown in Fig. 6.7. This is performed by another code generator created with
Genesys, that produces test scripts which are executable on a desired testing
platform. Upon execution, those scripts then steer the generated SUT.

This extended testing approach is consistent with the previous research
on the ITE, and it particularly meets all requirements on test design, orga-
nization and coordination formulated by Niese et al. [Nie+01b]. In order to
evaluate its feasibility, the approach has been exemplarily realized for the
jABC code generators (cf. Sect. 5). This implementation, which is presented
in the following sections, consists of

1. a strategy for testing jABC code generators, in particular for testing the
expected execution behavior (Sect. 6.3.1), and

2. code generators for translating modeled test cases and test suites into
code for the testing framework JUnit (Sect. 6.3.2).

6.3.1 Testing the jABC Code Generators

According to Stürmer et al., one “can assume that the code generator is
working correctly if invalid test models are rejected by the code generator,
[. . .] and valid test models are translated by the code generator and the code
generated from this behaves in a ‘functionally equivalent’ way” [SC04]. The
term “functionally equivalent” can be considered synonymous with what has
been called “execution equivalence” in Sect. 5.1. In more detail, when testing
a code generator, usually the following aspects are of peculiar interest:

1. Appropriate support of the source language: Does the code gener-
ator accept and process all valid (or desired, if the source language should
not be supported entirely) inputs in the source language? Are any invalid
or undesired inputs rejected?

2. Correct translation to the target language: Does the code gener-
ator produce syntactically valid source code in the target language? Is
the execution behavior specified in the source language retained in the
generated code (execution equivalence)?

3. Parametrization of the code generator: Do possible options of the
code generator have the expected effects?

Of course, by its very nature, testing only provides incomplete answers to
these questions (especially to the one concerning the execution equivalence),
relative to the specified test cases. In particular, according to Stürmer et
al., the traditional notions of correctness (as, e.g., employed by many of the
compiler verification approaches mentioned in Sect. 2.5) cannot be directly
applied to code generators, but instead “the definition of correctness has to

6.3 Testing of Code Generators 171

Source
Code

Compilation
Result

Execution
Footprint

Execution
Footprint

Test
 Data

Report

Code Generator

Compiler

Interpreter/
Execution

Engine

Runtime
Environment

Tracer

Test
Tool

1

2

3

Fig. 6.8. Strategy for testing the jABC code generators

be based on a notion of sufficiently similar behavior” [Stü+07]. Consequently,
testing does not aim at proving correctness in the formal mathematical sense,
but pragmatically tries to answer the above questions by means of a purpose-
ful selection of realistic and expressive test cases.

Testing Strategy:

In unit-based testing [Bec02], tests check whether a unit (e.g., a method)
behaves as desired by comparing its result with some expected value. Con-
sidering a code generator such a unit, its result is the generated code. How-
ever, as Stahl et al. [Sta+07, pp. 166f] point out, testing a code generator
by comparing the generated code with the expected code is rather unfeasible
in practice. The main reason for this is that such an approach goes at the
expense of maintainability: With any change of the code generator that con-
cerns the syntax of its output, the corresponding tests have to be adapted,
even if the semantics of the generated code did not change at all. Conse-
quently, Stahl et al. recommend testing the generated code’s effect (i.e., its
behavior when it is executed) instead of its concrete syntax.

Fig. 6.8 shows the strategy which has been realized for testing jABC code
generators (cf. Sect. 5). As the SLG notation is the source language of those
code generators, the test inputs for the single test cases are again SLGs (upper
left corner of Fig. 6.8). Such test data SLGs are constructed on the basis of a
small set of dedicated SIBs, which serve a special purpose: Upon execution,
each of those SIBs leaves a unique footprint in the execution context (basically
a unique string). After executing a test data SLG, the concatenation of the
single footprints created by all contained SIBs is the execution footprint of
the SLG. In other words, such an execution footprint represents a particular
trace through a test data SLG.

172 6 Verification & Validation of Code Generators

The execution footprint is used for testing the execution equivalence of the
modeled application and its generated counterpart. As depicted in Fig. 6.8,
this test is performed in three main steps:

1. Direct execution: The test data SLG is directly executed with the
Tracer, resulting in a corresponding execution footprint.

2. Execution of the generated result: The test data SLG is translated
to source code by means of the code generator under test. The resulting
source code is either directly executed with an interpreter or an execution
engine, or a compiler is used to translate it for a particular runtime
environment, in which it can be executed afterwards. Again, both cases
yield a corresponding execution footprint.

3. Test evaluation: A test tool compares the two execution footprints ob-
tained in steps 1 and 2. The requirement of a “sufficiently similar behav-
ior” mentioned above is met by a jABC code generator, if the execution
footprints of the modeled application and its generated pendant are equal,
i.e., if in both traces the same SIBs were executed in the exact same order.
Examining those traces on the granularity of SIBs is a suitable approach,
as SIBs are the atomic building blocks of SLGs. Finally, the test tool
reports the test results to the user.

This testing strategy basically performs back-to-back testing [Vou90] and can
be considered an instance of the code generator test approach described by
Stürmer et al. [Stü+07]. In the latter, the direct execution in step 1 is called
model-in-the-loop (MIL), and the execution of the generated result in step 2
is termed software-in-the-loop (SIL).

By using the testing strategy depicted in Fig. 6.8, all of the code generator
aspects listed above are tested relative to the available test cases. For instance,
if the code generator produces syntactically invalid code from a valid test data
SLG (aspect 1), the compilation in step 2, and thus the entire test, will fail.
The test for execution equivalence (aspect 2) is realized by comparing the
execution footprints in step 3. Finally, the effects of the code generator’s
options (aspect 3) are tested by multiple executions of the testing procedure
with different configurations of the generator in step 2.

Of course, a necessary precondition for this testing strategy is the pre-
dictability of the test data SLG’s behavior. A repeated execution of one and
the same test data SLG (given the same parametrization) should always yield
the same execution footprint. Consequently, this modus operandi is not suit-
able for test inputs with self-adapting or randomized behavior.

Test Inputs:

As the actual test process is thus generic (due to its high configurability) and
fixed (as almost all test cases follow the same strategy) at the same time,
and as the different test cases almost exclusively emerge from varying test
inputs, this testing strategy can also be considered data-driven testing [UL06,
pp. 24f]. Similar to the constraint library (see Sect. 6.2.2), the set of test

6.3 Testing of Code Generators 173

1

2

3

4

5

TDFig. 6.9. Example SLGs modeling test inputs

data SLGs continuously grows with each new code generator and each newly
identified scenario (e.g., a bug) that is not yet covered by a test.

Fig. 6.9 shows some examples of test data SLGs from Genesys’ testing
framework, which serve as a basis for corresponding test cases. The special
SIBs mentioned above, which are designed for creating test data SLGs and
which produce the execution footprints in the execution context, are marked
with the word “Test” on their icon. SLG 1 is a simple sequence which tests
the correct translation of different SIB parameters (except for extended SIB
parameters like ContextKey, which are tested in a separate test data SLG).
For this purpose, the SIBs contained in this SLG are equipped with corre-
sponding SIB parameters, such as CheckCollectionParameters, which tests
different Java collections like ArrayList or HashMap. SLGs 2–5 test different
control flow mechanisms, such as recursion (2), loops (3), multi-threading (4)
and hierarchy (5). As visible from SLG 4, those mechanisms are also tested
in combination: Apart from the SIB for forking and joining the control flow,
this model also contains macros. Currently, the test suite for the jABC code
generators contains 65 of such test data SLGs, which serve as the basis of
around 380 test cases, the bulk of which are proceeding according to the
testing strategy described above.

6.3.2 Generation of Test Scripts for JUnit

In the context of a diploma thesis [Smo10], the effort of realizing the testing
concept shown in Fig. 6.7 for the jABC code generators has been completed by
means of code generators and test blocks for the well-known testing framework

174 6 Verification & Validation of Code Generators

TC

Fig. 6.10. The testing concept from Fig. 6.8, modeled in jABC

jUnit [Bec04]. jUnit is a Java instance of the general xUnit framework [Bec02]
for automated testing based on so-called units (e.g., classes and methods). It
provides an API for implementing test scripts as Java classes that are equipped
with special annotations. Furthermore, most development tools such as IDEs
like Eclipse or build management tools like Maven usually support testing with
JUnit. In most cases, those tools also provide facilities for reporting the test
results to the user.Due to thiswidespreaduse and support of the framework and
based on the fact that all jABC code generators are available in Java (as they are
producedby theGenesysCodeGeneratorGenerator, cf. Sect. 5.2.6), JUnit is an
appropriate choice as the underlying testing platform in this scenario.However,
please note that the testing concept is not particularly bound to JUnit – it could
be realized for any testing platform.

Modeling Test Cases:

In order to enable the use of JUnit in modeled test cases, corresponding
SIBs had to be developed [Smo10, pp. 32f]. Essentially, those SIBs provide
JUnit functionality for the comparison of actual and expected values, such
as the check for equality of objects (AssertEquals, AssertArrayEquals) or
of object references (AssertSame, AssertNotSame), for the existence of an
object (AssertNotNull) or for the truth of some condition (AssertTrue,
AssertFalse).

Thanks to the coarse-granularity and configurability of SIBs, only those
seven basic SIBs were required for representing all corresponding JUnit func-
tionality. Apart from those JUnit services, further SIBs were developed for
steering the Tracer and the code generators, and for invoking compilers (e.g., for
Java). For general tasks such as the creation and deletion of required temporary
directories, the existing Common SIBs (cf. Sect. 3.2.1) can be used.

Based on those SIBs, test processes can be modeled as SLGs in jABC.
Fig. 6.10 shows the strategy for testing jABC code generators presented in
the previous section, modeled as a test process in jABC. Most of the SIBs
contained in this model are macros, hence the test process is hierarchical,

6.3 Testing of Code Generators 175

and its single phases are refined by submodels. The basic steps from Fig. 6.8
are visible in this model:

• The macro LoadAndTraceModels obtains the first execution footprint by
tracing the model, and thus corresponds to step 1.

• The macros Generate Sources, Compile Generated Sources as well as
the SIB Execute API Method correspond to step 2, because they obtain
the second execution footprint from the generated pendant.

• Finally, the SIB Assert Trace Equals Generate performs the compar-
ison of the two execution footprints, as defined by step 3 in Fig. 6.8.

The macros Initialize and PostExecute perform necessary tasks before
and after the actual test execution, such as the creation or deletion of re-
quired directories. The SIB Log Success is part of the Common SIBs and
emits a simple log message once the test execution succeeded. The remaining
blocks belong to the newly developed SIBs mentioned above. Execute API
Method directly steers the SUT by executing the generated and compiled
result of the previous steps via an API method (with default values for all
parameters). Finally, the SIB Assert Trace Equals Generate uses JUnit
for comparing the obtained execution footprints. Please note that the report-
ing of the test results is not explicitly modeled in the process, as this task is
entirely performed by JUnit as the underlying testing platform.

In order to translate such modeled test processes into test scripts for JU-
nit, a new code generator has been developed with Genesys: the JUnit Gen-
erator [Smo10, pp. 35–41]. As visible in Fig. 5.16 in Sect. 5.4, the JUnit
Generator was derived from the Java Class Generator 1. In order to gener-
ate JUnit-compatible classes instead of plain Java classes, only a few simple
changes were required. First, instead of a main method, the generator pro-
duces a test method which is marked as such via a special annotation (@Test).
Furthermore, the generation of the parameters for the resulting class had to
be adapted, as JUnit also realizes the parametrization of tests with corre-
sponding annotations (rather than with, e.g., method arguments) [Smo10, pp.
37–40]. For the latter case, one new model had to be created. Beyond that,
no new models or SIBs were required for creating the JUnit Generator.

Modeling Test Suites:

Furthermore, Smolinski [Smo10] proposed the use of a so-called “suite graph”
for supporting the organization of test cases as test suites. A suite graph is
an SLG which only contains macros, each of them referring to a test case
that belongs to the suite. Fig. 6.11 shows an excerpt from the suite graph
that comprises all test cases for the Java Class Generator. The bulk of the
contained macros references the test process depicted in Fig. 6.10, but each
time configured with different test inputs and options.

Please note that the implementation that resulted from the diploma the-
sis [Smo10] does not contain support for modeling order or causalities in suite

176 6 Verification & Validation of Code Generators

graphs, which is why all macros in Fig. 6.11 are unconnected. The implemen-
tation currently assumes the single test cases to be independent of each other
and thus executes them in arbitrary order. However, future extensions will
support connecting selected macros in a suite graph by edges, in order to re-
flect the execution order of the corresponding test cases (e.g., if the execution
of one test case depends on the results of a preceding test case).

TS

Fig. 6.11. Excerpt from the test suite graph of the Java Class Generator

For being able to execute such a modeled test suite with JUnit, another
code generator, the Test Suite Generator, translates a suite graph into a
test suite for JUnit [Smo10, pp. 41–48]. Essentially, this generator works by
iterating over the macros contained in the suite graph. For each macro, the
JUnit Generator is applied to the referenced test case model(s) in order to
generate a corresponding JUnit test script. To this end, the entire JUnit
Generator is embedded in the Test Suite Generator, and thus reused as a
ready-made service. As its result, the Test Suite Generator produces a Java
class, which is marked as a test suite by means of a corresponding annotation
(@Suite). This class references all JUnit test scripts generated from the single
test cases contained in the suite, so that JUnit is able to execute the tests
together. For realizing the Test Suite Generator, it was sufficient to use a
new parent model that introduces a new hierarchy level to the existing JUnit
Generator.

A test suite or script that has been produced by the code generators de-
scribed above can be run in any environment that supports JUnit, such as
the corresponding plugins in Eclipse or Maven. Those environments are also
responsible for the way in which the results are reported to the user (the
remainder of step 3 in Fig. 6.8).

Of course, just as specified by the testing concept presented above in
Fig. 6.8, and as already supported by the classical ITE [MS04], test case
models can also be directly executed by means of the Tracer. In this case,
a dedicated jABC plugin (also developed in the context of the diploma the-
sis [Smo10]) obtains the results from JUnit and displays them to the user.

7

Case Study: Domain-Specific Code Generators
for EMF

The previous chapters mainly focused on the (self-)application of Genesys
in the context of jABC. Although this aspect has been investigated most
intensively, Genesys is not limited to the construction of code generators for
jABC. Accordingly, the case study presented in this chapter is supposed to
illustrate, among others, the feasibility of Genesys for other source languages
and platforms (Requirement G1 - Platform Independence).

For this purpose, the case study is concerned with the Eclipse Modeling
Framework (EMF) [Ste+09], which is part of the Eclipse Modeling Project
(EMP) [Gro09], and which allows modeling based on its metamodel Ecore.
With respect to their basic structure, models specified by Ecore are very
similar to UML class diagrams.

EMP contains a large number of projects, frameworks and tools that deal
with generating code from Ecore models and their instances. For example,
for an arbitrary Ecore model, EMF itself is able to generate an Eclipse plu-
gin which provides a tree-based graphical editor for corresponding model
instances. The Graphical Modeling Framework (GMF) [Ecl11a] even gener-
ates editors for graphical notations. The template language Xpand [Ecl11f]
enables the development of code generators for model instances. The speci-
fication of corresponding Xpand templates is supported by special editors in
Eclipse, that provide, e.g., features such as code completion or static checking
on the basis of a given Ecore model. Further examples of tools that are based
on EMF are Acceleo, AndroMDA, MOFScript and Xtext (cf. Sect. 2.3.3 for
the first three and Sect. 2.3.5 for the latter).

Although there are plenty of code generation solutions around EMF, none
of them (to the author’s knowledge) allows the construction of code genera-
tors like Genesys, in a model-driven and service-oriented way. Consequently,
the case study in this chapter presents an approach for integrating EMF
and Genesys. The central objective of this approach is to utilize the domain
knowledge specified in a metamodel as a basis for generating domain-specific
SIBs. Such generated SIBs can in turn be used in Genesys in order to create
code generators for any models that conform to (i.e., are instances of) the

S. Jörges: Construction and Evolution of Code Generators, LNCS 7747, pp. 177–191, 2013.
© Springer-Verlag Berlin Heidelberg 2013

178 7 Case Study: Domain-Specific Code Generators for EMF

given metamodel. By this means, a generator developer is able to resort to the
specific concepts and terminology of the source language when constructing
code generators, thus meeting Requirement S1 - Domain-Specificity. Fig. 7.1
depicts this approach.

Metamodel MM SIBsEcore
EMF SIB Generator

SLG

Model M

SIBs for
processing MM

instances

Code for desired
target languageMM

instances

SLG

Desired
target

language

used for constructing

instance of

input for

input for

generates

generates

Ecore Genesys

Fig. 7.1. Approach for constructing code generators for EMF with Genesys

Initially, a metamodel1 is created with Ecore. This metamodel establishes
relevant concepts and notions for corresponding models of the desired do-
main (cf. Sect. 2.2). The central goal is enabling generator developers to
apply Genesys for constructing code generators which support any models
conforming to the metamodel. Sect. 4.1.1 mentioned that the development
of a code generator in Genesys requires a corresponding SIB bundle for pro-
cessing the desired source language. In the case of jABC, the “Graph Model
SIBs” are used for processing input SLGs. Accordingly, in order to support
another source language, another specifically dedicated SIB bundle has to be
employed in place of the “Graph Model SIBs”.

As visible in Fig. 7.1, a special code generator, the EMF SIB Generator,
is used to automatically generate such a SIB bundle based on the given
metamodel. The EMF SIB Generator itself was also built and generated with
Genesys. The resulting SIBs are able to process any models that conform to
the metamodel, and thus can be considered on a par with a domain-specific
“model API” for those models. Subsequently, the generated SIBs serve as a
basis for constructing further Genesys code generators, that translate any
instances of the metamodel into a desired target language (bottom part of
Fig. 7.1). This way, a generator developer profits from the advantages of
Genesys without having to relinquish EMF’s strengths in domain-specificity.
1 For the sake of simplicity, this chapter uses the notion “metamodel” synony-

mously with the term “domain model”.

7.1 Eclipse Modeling Framework 179

The following sections elaborate on the constituent parts of this approach.
First, Sect. 7.1 and Sect. 7.2 describe the structure of EMF and the Ecore
metamodel in more detail. Afterwards, Sect. 7.3 enlarges upon how the EMF
SIB Generator has been constructed with Genesys, and how it generates
domain-specific SIBs for an Ecore metamodel. Finally, Sect. 7.4 demonstrates
the working approach by means of an example scenario, and Sect. 7.5 evalu-
ates the results of the case study.

7.1 Eclipse Modeling Framework

Fig. 7.2 shows the basic workflow employed by EMF. An Ecore model can be
created in two ways. First, it can be imported from a supported format such
as UML, specifically annotated Java interfaces, XML Schema or XMI (box
“Import”). Second, it can be created directly by using an Ecore editor (box
“Modeling”), such as the simple tree-based Ecore editor included in EMF.

Modeling

Ecore

Generator Model

Model

Code
Generation

Templates

JET

JMerge

uses

Resulting
Java Code

Model Code

Edit Code

Editor Code

Test Code

Import

...

UML

Annotated
Java

XML
Schema

XMI

«instanceOf»

Fig. 7.2. EMF workflow

After the Ecore model is completed, the code generation needs to be pre-
pared by creating a generator model. This generator model wraps around
the actual Ecore model and decorates it with configuration information for
EMF’s code generation facilities. Accordingly, generator models are compa-
rable to the generator configurations employed in the Genesys jABC plugin
(cf. Sect. 4.3.2). Please note that the generator model is also an Ecore model,
as visible in Fig. 7.2.

The generator model then acts as the input for EMF’s integrated code
generator, which basically performs two steps [Ste+09, p. 342]. First, code is
generated from the Ecore model via the template engine JET (cf. Sect. 2.4.2).
Second, if there are any files already existing from previous generation runs,
the generated code is merged with those files by means of a tool called
JMerge [Ste+09, p. 342], which is based on protected regions (cf. Sect. 2.4.4).

180 7 Case Study: Domain-Specific Code Generators for EMF

The second step is required due to the fact that, in EMF, generated code is
allowed to be edited and extended. Otherwise, if no previously generated files
exist (e.g., because it is the first generation run), corresponding new files are
created.

EMF is able to generate four different kinds of Java code from a given
Ecore model:

• Model code resembles a Java implementation of the model using the API
defined by Ecore (cf. Sect. 7.2),

• edit code provides a UI-independent API for editing instances of the
model,

• editor code is a complete Eclipse plugin that allows to edit model instances
via a tree-based editor, and

• test code provides unit tests for the model.

Please note again that as mentioned above, this standard workflow is not
the only way to generate code from Ecore models: There are several tools
and frameworks that employ modeling with Ecore, but apply their own code
generation techniques. The case study presented in this chapter is an example
of such an approach, as it employs Genesys for generating code from Ecore
models.

7.2 The Ecore Metamodel

Ecore [Ste+09] is the metamodel underlying EMF, i.e., the structure and con-
cepts of any models in EMF are determined by Ecore. While being closely
related to OMG’s UML and MOF specifications (cf. Sect. 2.3.3), Ecore is in
many respects much more simple and pragmatic. At the same time, Ecore has
significantly influenced the OMG’s work on those specifications. For instance,
the MOF specification also defines Essential Meta-Object Facility (EMOF),
which is the “lightweight core of the metamodel that quite closely resem-
bles Ecore” [Ste+09, p. 40]. Essentially, this core contains the class diagram
portion of UML and thus condenses the large specification to a very prag-
matic minimum. In particular, the concepts defined by Ecore are very similar
to those that can be found in Java, which shows EMF’s primary focus on
staying close to implementation, and on targeting developers [Ste+09, p. 11].

Fig. 7.3 provides an overview of the concepts defined by Ecore [Ecl05]
as a UML class diagram. Similar to Java’s Object, there is a root compo-
nent called EObject, which is the basis for any other parts of Ecore. Most
of the remaining concepts are also well-known from Java and UML, such
as packages (EPackage), classes (EClass), data types (EDataType), enumer-
ated types (EEnum) and annotations (EAnnotation). Classes may consist of
attributes (EAttribute) and references to other classes (EReference). To-
gether, both form the structural features of a class (EStructuralFeature).
In order to include behavioral features, classes may also contain parametrized

7.2 The Ecore Metamodel 181

EObject

EModelElement

ENamedElementEFactory EAnnotation

EPackage EClassifier EEnumLiteral ETypedElement

EClass EDataType EStructuralFeature

EEnum EAttribute EReference

EOperation EParameter

Fig. 7.3. Overview of the Ecore metamodel [Ecl05]

operations (EOperation), which are similar to Java methods. Furthermore,
Ecore provides a set of built-in data types (not visible in Fig. 7.3), which
mainly represent basic Java types such as String and boolean. For more
details on the Ecore metamodel, please refer to Steinberg et al. [Ste+09, pp.
103ff].

Ecore is a reflexive metamodel (cf. Sect. 2.2), i.e., it is able to describe
(to model) itself. Accordingly, the Ecore metamodel is itself an Ecore model,
and Ecore is just another EMF model. The reflexivity is an important reason
for Ecore’s flexibility, as it enables the applicability on multiple metalevels.
For instance, Ecore can be used for specifying models (layer M2 in OMG’s
nomenclature), modeling languages like UML (M3) [Ecl11b] as well as meta-
modeling languages for the creation of DSLs (M4) [Béz+05]. Sect. 7.5 further
elaborates on Ecore’s multi-level applicability, and on how it impacts the ap-
proach presented in this chapter.

Fig. 7.4 shows an example of an Ecore model, which is a metamodel de-
scribing a modeling language for simple taxonomies. Many of the concepts
described above can be found in this model, for instance:

• simpleTaxonomy is an instance of EPackage,
• TaxonomyElement and all other elements on the same hierarchy level of

the model are instances of EClass,
• name under TaxonomyElement is an EAttribute with the EDataType
EString, and

182 7 Case Study: Domain-Specific Code Generators for EMF

• taxonomyElements under Taxonomy is an EReference, referring to an
arbitrary number of TaxonomyElement instances.

Furthermore, it is also visible that Ecore supports inheritance of classes, as
Object and Category share TaxonomyElement as a common super class.

Fig. 7.4. Example metamodel in Ecore: Simple taxonomy

According to the metamodel in Fig. 7.4, a taxonomy consists of zero or
more taxonomy elements. A taxonomy element always has a name and may
be a category or an object. Objects are things that are classified in the taxon-
omy. Each object may contain an arbitrary number of attributes that further
describe it. Additionally, an object belongs to one or more categories. A cat-
egory contains an arbitrary number of taxonomy elements, i.e., objects and
other categories. Furthermore, each category is associated with zero or more
parent categories.

The example scenario presented in Sect. 7.4 will use this metamodel, and
it will also provide an example of a corresponding model.

7.3 EMF SIB Generator

As depicted in Fig. 7.1, the EMF SIB Generator generates SIBs from an
arbitrary Ecore model. These SIBs enable Genesys code generators to process
models that conform to the given Ecore model. The EMF SIB Generator itself
has also been developed with Genesys.

In order to construct the generator, several SIBs were required for be-
ing able to process Ecore models. As a consequence from Ecore’s reflexivity
that has been mentioned in the previous chapter, EMF provides a reflection
API for generically accessing Ecore models [Ste+09, p. 419ff]. Based on this

7.3 EMF SIB Generator 183

CG

Fig. 7.5. Model Generate EMF SIBs

API, corresponding SIBs have been developed manually. Fig. 7.5–7.7 show
examples of those SIBs, which are marked with the word “Ecore” on their
icon.

For instance, the model in Fig. 7.5 contains an instance of the SIB
IterateEObjectContents (labeled Iterate Model Contents), which en-
ables iterating over the elements contained in an arbitrary Ecore model. In
Fig. 7.6, the SIB Switch EObjectType is used for determining the type of
an EObject. The SIBs labeled Get Model Name and Get EObject Name in
Fig. 7.5 as well as Get Feature Name in Fig. 7.7 are instances of GetName,
which is able to read the name of any ENamedElement (cf. Fig. 7.3).

In total, 14 SIBs have been developed for the EMF SIB Generator, which
currently supports a subset of Ecore sufficient for the case study presented
in this chapter. Sect. 7.5 reflects on the steps that are required for extending
the EMF SIB Generator in order to support full Ecore.

Resulting from Ecore’s simplicity, the construction of the EMF SIB Gen-
erator was straightforward. In order to illustrate the code generation process,
Fig. 7.5–7.7 show an excerpt of the generator’s models. The model depicted
in Fig. 7.5 is the main process of the generation phase. In a preceding ini-
tialization phase not shown in the figures, the input Ecore model has been
loaded from its XMI serialization and stored in the execution context for
being accessible to all models of the code generator. Technically, the Ecore
model is an object of type EPackage, as the root element of each Ecore model
is always given by a package [Ste+09, p. 118]. As its template engine, the gen-
erator uses StringTemplate (see Sect. 2.4.2) via the SIB RunStringTemplate
described in Sect. 3.2.1 – corresponding SIB instances are marked with “ST”
on the icon.

The generation process in Fig. 7.5 starts with reading the name of the
Ecore model (respectively, of the EPackage object), and then converts it to
a valid identifier (cf. Sect. 4.1.3). This identifier is subsequently used to gen-
erate a name for the service adapter (step Generate Adapter Class Name),
which is produced for the resulting SIBs. Technically, the service adapter is
generated as one single class which contains one method for each resulting

184 7 Case Study: Domain-Specific Code Generators for EMF

SIB, implementing the corresponding SIB’s execution behavior. In the follow-
ing steps, the code generator iterates over the contents of the Ecore model
(more precise: over all contained EObjects). From each element, the genera-
tor first retrieves the name and converts it into a valid identifier. Afterwards,
the code corresponding to the model element is generated in a submodel.
This includes code for the resulting SIB along with a suitable method for the
service adapter. Finally, after all model elements have been processed, the
service adapter is assembled and written to a file.

Fig. 7.6 shows the submodel which is referenced by the macro Generate
Code for Model Element. Its main task is to determine the type of the given
EObject and to dispatch accordingly. In Ecore, the root element of each model
contains an arbitrary number of classifiers (i.e., instances of EClassifier, cf.
Fig. 7.3) [Ste+09, p. 113]. Classifiers in Ecore are either classes (EClass) or
data types (EDataType). As visible in Fig. 7.6, the EMF SIB Generator cur-
rently only supports EClass and EEnum, whereas the latter is a specialization
of EDataType. A support of general EDataType instances was not required for
the case study presented in this chapter. After the type of the given object
has been determined, corresponding code is being generated. In the EClass
case, first all subtypes (i.e., inheriting classes) are processed, and afterwards
all structural features (cf. Sect. 7.2) of the class are translated to code.

CG

Fig. 7.6. Model Generate Code for Model Element

The latter is performed by the model that is depicted in Fig. 7.7. It starts
with iterating over the structural features of the given EClass instance.
Again, each feature’s name is determined and converted into an identifier.
Subsequently, the code generator distinguishes whether the feature is multi-
valued (e.g., a list) or single-valued. If the feature is multi-valued, the gen-
erator produces a SIB that allows iterating over all values of the feature.
Otherwise it generates a “getter”-SIB which enables access to the feature’s
single value (see Sect. 7.4 for examples of both cases). Independent of the
feature’s cardinality, the production of the resulting SIB consists of three
steps that generate

1. a method for the service adapter,
2. a name for the SIB which is derived from the name of the feature, and
3. the SIB itself.

7.4 Example: Taxonomy POJO Generator 185

Finally, the generated SIB is written to a file. The produced service adapter
method is not yet serialized: Instead it is stored in the execution context,
as the final assembly and emission of the service adapter is performed at a
higher hierarchy level, by the last two steps of the model depicted in Fig. 7.5.

CG

Fig. 7.7. Model Generate Code for Structural Features

In order to simplify the usage of the EMF SIB Generator, a corresponding
plugin for Eclipse has been developed. This plugin allows to conveniently in-
voke the generator for any Ecore model via the right-click context menu. The
plugin then creates a new Java project in the user’s workspace, containing the
generated source files (SIBs and service adapters). Furthermore, the plugin
produces a POM for Maven (see Sect. 4.3.1), which supports the compilation
and distribution of the generated SIBs.

7.4 Example: Taxonomy POJO Generator

This section illustrates the application of the approach presented in Fig. 7.1
by means of an example scenario. The scenario is based on the metamodel for
simple taxonomies, which has been introduced in Sect. 7.2. As this metamodel
is a complete and valid Ecore model, the EMF SIB Generator can be applied
to it, e.g., via the Eclipse plugin mentioned in the previous section.

Fig. 7.8 depicts all SIBs that are produced from this metamodel by the
EMF SIB Generator. The rows in the figure indicate from which metamodel
element the corresponding SIBs have been generated, except for the row
labeled “General”, which only contains the SIB LoadEmfModel. This SIB is a
special case, as it is responsible for loading a given model, which is a task that
is always the same, independent of a particular domain or metamodel. Thus
this SIB is generally emitted by the EMF SIB Generator as a default. All

186 7 Case Study: Domain-Specific Code Generators for EMF

remaining SIBs have been derived from the metamodel for simple taxonomies,
and each of them can be assigned to one of three basic categories:

1. Getter-SIBs (prefixed with “Get”) read the value of an element (e.g.,
an EAttribute). For instance, GetTaxonomyElementName determines the
name of a particular element (i.e., of a category or object) in the tax-
onomy. Another example of a Getter-SIB is GetAttributeType, which
reads the type of an object in the taxonomy.

2. Iterators (prefixed with “Iterate”) allow for the iteration over multi-valued
data such as lists. For instance, IterateTaxonomyTaxonomyElements it-
erates over all elements contained in the taxonomy.

3. Type Selectors (prefixed with “Switch”) are a result of inheritance and al-
low determining the type of an EObject. For example, SwitchTaxonomy-
Element allows checking whether a taxonomy element is a category or an
object.

Fig. 7.7 in the previous section shows how the EMF SIB Generator produces
SIBs for categories 1 and 2.

General

Taxonomy

TaxonomyElement

Object

Attribute

Category

Fig. 7.8. SIBs generated from the “Simple taxonomy” metamodel

The SIBs generated by the EMF SIB Generator can now be used to develop
domain-specific code generators with Genesys. As their source language, those
code generators demand a taxonomy model that conforms to the simple tax-
onomy metamodel, which is translated into a desired target language. Fig. 7.9
and 7.10 show excerpts of such a generator, the Taxonomy POJO Generator.
For a given taxonomy model, the Taxonomy POJO Generator produces a set
of corresponding data classes as Plain Old Java Objects (POJOs) [Fow02, p.
118], or more precise as JavaBeans [Ora11d]. JavaBeans can be considered

7.4 Example: Taxonomy POJO Generator 187

specific POJOs which contain only private attributes and corresponding pub-
lic getter- and setter-methods.

As visible in Fig. 7.9, the generator first sets the output directory for the
generated classes (Get Base Outlet), and then loads the taxonomy model
prior to iterating over its elements. The submodel in Fig. 7.10 shows the part
of the code generator that processes those taxonomy elements that are objects
(categories are handled by another submodel). The generator produces one
POJO per object in the taxonomy by first generating a private field as well
as corresponding public access methods from each attribute of the object,
and finally assembling and emitting the actual POJO. In contrast to this,
categories are translated to interfaces (which happens in another submodel
that is not depicted). If an object is contained in a category, this is reflected
in the generated code by the POJO implementing the corresponding category
interface. Due to this reason, the model in Fig. 7.10 determines the categories
that contain the current object, and produces a comma-separated list of their
names in a separate submodel, referenced by the macro Generate Category
Names List. The resulting list is used for the implements statement of the
POJO. Finally, the generated POJO is written to a file.

CG

Fig. 7.9. Taxonomy POJO Generator main model

CG

Fig. 7.10. Model Generate Code for Object

The left hand side of Fig. 7.11 depicts a concrete example of a taxonomy
model that conforms to the simple taxonomy metamodel. It represents a
catalog for classifying and archiving media, which are objects (such as “Movie”
or “Audiobook”) organized by means of several hierarchical categories (e.g.,
“Digital” or “Printed”). The right hand side of the figure shows a POJO,
produced by the Taxonomy POJO Generator for the object “Movie” and its
attributes.

188 7 Case Study: Domain-Specific Code Generators for EMF

public class Movie implements DVD {
 private String title;

 public String getTitle() {
 return this.title;
 }

 public void setTitle(String title) {
 this.title = title;
 }

 private Integer numberOfDVDs;

 public Integer getNumberOfDVDs() {
 return this.numberOfDVDs;
 }

 public void setNumberOfDVDs(
 Integer numberOfDVDs) {
 this.numberOfDVDs = numberOfDVDs;
 }
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

Fig. 7.11. Example taxonomy model (“Media Catalog”) and generated POJO

7.5 Evaluation

The case study presented in the previous sections illustrates several facets
of the Genesys approach. First, it shows that the applicability and relevance
of Genesys is by no means restricted to jABC (Requirement G1 - Platform
Independence), as Ecore models and their instances were the source language
in the examples. Furthermore, with the EMF SIB Generator, a Genesys-
based code generator has been integrated into Eclipse via a plugin, where it
of course operates completely independent of jABC.

Second, it is visible from the presented approach (cf. Fig. 7.1), that Gene-
sys can be used for developing code generators at arbitrary metalevels, thus
facilitating domain-specificity (Requirement S1 - Domain-Specificity).

Application at Multiple Metalevels:

Fig. 7.12 organizes the models (i.e., the taxonomy metamodel and the media
catalog model) created in the case study into their respective metalevels. Ad-
ditionally, for better comparability, the figure shows alternative ways of mod-
eling the media catalog example (i.e., the concrete taxonomy model shown in
Fig. 7.11). Please note that, for orientation, the metalevels are labeled M0–
M4 as a reference to OMG’s MDA metaarchitecture. All solid vertical arrows
in the figure indicate an “instance of” relationship between two models.

The columns labeled a)–e) exemplify the following scenarios for modeling
on different metalevels:

a) Ecore along with its general concepts is directly used as the modeling lan-
guage for constructing the media catalog model (“MediaCatalog.ecore”).
In other words, Ecore is the metamodel, and the media catalog model is
an instance of it. M0-level instances of the media catalog model could in
turn be represented by models containing concrete data (e.g., concrete

7.5 Evaluation 189

(M0) MyCollection.
mediacatalog

(M2)

(M4)

(M3)

(M1)

Ecore
Taxonomy

.ecore

Ecore

MediaCatalog
.ecore

MediaCatalog
.taxonomy

DSL.metadsl

Ecore

MetaDSL
.ecore

MediaCatalog
.dsl

UML.ecore

Ecore

MediaCatalog
.uml

MediaCatalog
.taxonomy

Ecore

Taxonomy
.ecore

MyCollection
.mediacatalog

a) b) c) d) e)

runtime data

Fig. 7.12. Modeling on different metalevels2

DVD movies or music CDs). From the tool perspective, this example re-
sembles the direct use of EMF’s general Ecore editor (which is one way
of creating Ecore models) for modeling the media catalog.

b) This example represents the modeling approach employed by the case
study presented in this chapter (thus it is highlighted in the figure). First,
Ecore has been used as a metametamodel in order to create a metamodel
for describing taxonomies (“Taxonomy.ecore” in Fig. 7.4). Afterwards, by
means of this new language, the media catalog model has been specified
(“MediaCatalog.taxonomy”, depicted on the left hand side of Fig. 7.11).
Instead of using the general Ecore editor like in a), this model was cre-
ated with a domain-specific editor that was generated by EMF from the
taxonomy metamodel.

c) A version of UML that is itself described with Ecore (e.g., [Ecl11b]), is
used to create the media catalog example as a UML model. Please note
that in terms of metalevels, this approach is similar to b), as Ecore is
the metametamodel in both cases, employed for describing the actual
modeling language on level M2. The main difference between those two
examples is the fact that c) uses a general-purpose modeling language
(UML) for specifying the media catalog, whereas b) uses a domain-specific
modeling language. Just like for b), the editor for creating the media cat-
alog UML model might be generated from the metamodel. For instance,
this is the case for the UML2 Tools from Eclipse’s Model Development
Tools (MDT) project [Ecl11c].

d) This can be considered an instance of the “meta-DSL” example described
in Sect. 2.2: A specific DSL is used to create the media catalog model

2 Based on an image posted by Marco Mosconi in the EclipseZone Forums in 2008:
http://www.eclipsezone.com/eclipse/forums/t115395.html#92254259.

http://www.eclipsezone.com/eclipse/forums/t115395.html#92254259

190 7 Case Study: Domain-Specific Code Generators for EMF

(“MediaCatalog.dsl”). This DSL is itself described in a language de-
signed for describing DSLs (“DSL.metadsl”), which is in turn specified
using Ecore (“MetaDSL.ecore”). In this setting, Ecore plays the role of a
metametametamodel. Bézivin et al. [Béz+05] provide an example of this
approach.

e) The models in this column illustrate the relativity of the metalevels, by
viewing the case study presented in this chapter from the perspective of
example d). Analogous to b), Ecore is used for describing the domain-
specific taxonomy language, which is in turn used for specifying the me-
dia catalog model. However, in this example, the primary focus is not
on taxonomy instances, but on instances of the media catalog taxonomy,
i.e., on concrete media catalogs (such as “MyCollection.mediacatalog”).
In b), “MediaCatalog.taxonomy” is the end of the modeling chain, thus it
is the final artifact that is further processed by the Taxonomy POJO
Generator. In contrast to this, in e) it is treated as a specialization
of the domain-specific taxonomy language, which is in turn used to
specify concrete media catalog instances. From this perspective, “Me-
diaCatalog.taxonomy” becomes a metamodel instead of a model, “Tax-
onomy.ecore” becomes a metametamodel instead of a metamodel, and
Ecore is used as a metametametamodel.

For all examples b)–e), level M0 contains concrete runtime data, instantiating
the respective models on level M1.

(M2)

(M3)

(M0)

(M1)

Taxonomy
.ecore

Ecore

MediaCatalog
.taxonomy

used for constructing

SIBs for Taxonomy
instances

EMF SIB
Generator

used for constructing

SIBs for Ecore
instances

EMF SIB
Generator

POJOs for
MediaCatalog

Taxonomy POJO
Generator

runtime data

Fig. 7.13. Code generators of the case study, by metalevels

Fig. 7.13 shows the code generators created in the case study on the met-
alevels M1 and M2. In this context, the EMF SIB Generator has been used
for generating SIBs from the taxonomy metamodel (“Taxonomy.ecore”) on
metalevel M2. The resulting SIBs are domain-specific, as they specifically

7.5 Evaluation 191

work with model instances of the taxonomy metamodel. Subsequently, the
generated SIBs were in turn used to develop the Taxonomy POJO Generator,
which correspondingly is located one metalevel below the EMF SIB Gener-
ator. Finally, on this metalevel, the Taxonomy POJO Generator produces
POJOs from the media catalog model (“MediaCatalog.taxonomy”).

As the EMF SIB Generator can be applied to arbitrary Ecore models,
this approach is not restricted to particular metalevels and thus is extremely
flexible. Independent of the metalevel on which the EMF SIB Generator is
used, it always produces SIBs that are suitable for building a code generator
that works one metalevel below. In particular, this flexibility can be exploited
for letting the EMF SIB Generator extend and complete itself.

Bootstrapping the EMF SIB Generator:

As mentioned above, the EMF SIB Generator currently only covers a subset
of Ecore that was sufficient for the case study. However, an extension of the
generator for complete support of Ecore can be achieved by incremental ad-
dition of new elements in several stages, i.e., by bootstrapping (cf. Sect. 2.1).
This procedure is indicated in the top right corner of Fig. 7.13.

The first stage has already been finished in the case study: A first version
of the EMF SIB Generator, that supports a subset of Ecore, has been created
manually. In the second stage, this generator is applied to the Ecore model
of Ecore itself (a file called “Ecore.ecore”). This yields around 193 SIBs that
are directly derived from “Ecore.ecore”, including the 14 SIBs that have been
implemented manually in the first stage. The generator is now extended on
the basis of the SIBs generated in this stage, so that it is able to work with
additional Ecore concepts that have not been covered before, such as anno-
tations, data types or operations. The third stage is started by applying the
extended generator to “Ecore.ecore” again. This procedure is repeated until
the code generation result only consists of SIBs that support Ecore concepts
already covered by the code generator.

In experiments conducted after the case study, the bootstrapping has been
performed up to the second stage (inclusively). Given the high number of SIBs
obtained in this step, the author estimates that a third stage will suffice for
extending the EMF Generator to support full Ecore.

Altogether, these results emphasize that Genesys is suitable for realizing
domain-specificity independent of any metalevels.

8

Case Study: Service-Oriented Combination of
Code Generation Frameworks

Service orientation is an important cornerstone of the Genesys approach. The
preceding chapters already showed different facets of service orientation, that
provide significant advantages for the construction of code generators, such
as the high reusability and availability resulting from growing service reposi-
tories (cf. Sect. 4.1), or the flexibility and platform independence of services
(cf. Sect. 5.2.1). This chapter presents a case study (published in [JS11])
that enlarges upon this topic by examining the impact of service orientation
on integratability and interoperability. As described in Sect. 3.2.1, jABC’s
service mechanism is incarnated by SIBs, which pose no restrictions whatso-
ever on the granularity of service functionality. For instance, for the domain
of code generation, a service may represent a small task, such as merging
two strings, but it may as well incorporate an entire code generation frame-
work. Consequently, Genesys may be seen as a code generator construction
kit which allows the (re)use and combination of existing heterogeneous code
generation tools, frameworks and approaches.

The case study presented in this chapter demonstrates this advantage by
combining the UML code generation framework AndroMDA [And11] with
the code generators existing in jABC (cf. Sect. 5). Both approaches highly
benefit from each other when used in conjunction. AndroMDA, as a represen-
tative for most code generation solutions in the UML realm, is very powerful
in generating the static aspects of an application, such as business objects,
interfaces and mainly infrastructural boilerplate code. In contrast to this, the
SLGs in jABC are usually (though not exclusively, cf. Sect. 3.2.3) processes
which represent the dynamic behavior of an application. The combination
of both approaches paves the way for full code generation (Requirement S2 -
Full Code Generation), i.e., the automatic generation of complete application
code, encompassing the static as well as the dynamic aspects. As outlined in
Sect. 1.1, full code generation is highly desirable for any model-driven ap-
proach, as it removes the need for manual modification of generated code. In

S. Jörges: Construction and Evolution of Code Generators, LNCS 7747, pp. 193–203, 2013.
© Springer-Verlag Berlin Heidelberg 2013

194 8 Service-Oriented Combination of Code Generators

Full Application
Generated

Frameworks/
Libraries Hand-Written

System/Application Model

st
at
ic

dynam
ic

UML Modeling Tool
 ArgoUML
 MagicDraw
 Enterprise Architect
 ...

 Use Cases
 Business Objects
 Interfaces
 ...

Unified Modeling
Language

XMI

SLGs

jABC

Genesys

Generate SLG Code Establish Links

Generate From UML

Models

Services

Constraints Plugins

Fig. 8.1. Integration concept for combining jABC’s code generators and An-
droMDA

consequence, expensive tool support for synchronizing models and generated
code (round-trip engineering, see Sect. 2.4.4) is no longer necessary.

Fig. 8.1 shows the concept underlying this combined approach. The realiza-
tion of this concept consists of two main parts. First, it involves an integrated
modeling approach (indicated by the big box at the top of Fig. 8.1), that al-
lows to consistently describe an application by means of SLGs and UML
models. Second, correspondingly integrated code generation (the middle and
bottom part of Fig. 8.1) is required, which is the aspect of the case study
that is most interesting for this book. Essentially, this part is enabled by
integrating AndroMDA as a service into Genesys.

Before Sect. 8.3 and 8.4 elaborate on the two parts of the combined ap-
proach, Sect. 8.1 introduces AndroMDA in further detail. In order to illustrate
the applicability of the proposed solution, the case study uses a practical ex-
ample from the field of bioinformatics, which will be introduced in Sect. 8.2.
Finally, Sect. 8.5 evaluates the results of the case study.

For the most part, the descriptions in this chapter are based on [JS11].

8.1 AndroMDA 195

8.1 AndroMDA

AndroMDA is an open source code generation framework following the tenets
of MDA (cf. Sect. 2.3.3). It is able to generate multi-tier code for any desired
target platform from specifically annotated UML models.

Fig. 8.2 shows the code generation approach employed by AndroMDA.
The UML models for which code is supposed to be generated can be created
with any UML modeling tool. However, AndroMDA poses two requirements
on modeling. First, the modeler has to use the AndroMDA UML profile.
Profiles [Obj10b, pp. 669ff] are UML’s mechanism for tailoring the language
to particular domains. Typically, a profile introduces domain-specific termi-
nology and modeling constructs by means of additional stereotypes, tagged
values and constraints (see [Fra02, pp. 145–162] for a thorough introduction
to UML profiles). By means of the elements specified in the AndroMDA UML
profile, the models are annotated with additional information that is used for
configuring and steering the code generation. As the second requirement, the
employed UML modeling tool has to provide an export to XMI (cf. Sect. 2.2).

AndroMDA UML Profile

UML Models

XMI

M
od

el
 P

ar
se

r

Java
Cartridge

Spring
Cartridge

BPM4Struts
Cartridge Te

m
pl

at
e

E
ng

in
e

...

Complete
Source Files

Code
Skeletons

Fig. 8.2. Code generation approach in AndroMDA

As visible in Fig. 8.2, a model parser reads the input models from their
XMI form and makes them available as an in-memory representation, e.g., as
an Ecore model in case the UML model has been created with the EMF-based
UML2 [Ecl11b]. The actual code generation in AndroMDA is template-based
(cf. Sect. 2.4.2), and the single templates are specified by pluggable compo-
nents called cartridges. An arbitrary number of such cartridges may partici-
pate in the code generation process, each of them responsible for contributing
a specific part to the generation result. AndroMDA provides several ready-
made cartridges for different target platforms and technologies, such as Java,
Struts [Apa11d], Spring [Spr11b] or Web Services. The cartridges are config-
ured by means of the additional information annotated to the input UML
models, such as specific tagged values contained in the AndroMDA UML
profile. For instance, when generating a web form, the BPM4Struts cartridge
uses tagged values in order to determine how the single fields of the form
should be rendered. If any new templates are required, they can be added

196 8 Service-Oriented Combination of Code Generators

by creating a new custom cartridge. Besides the cartridges, the model parser
and the employed template engine are also interchangeable, which increases
the flexibility of the code generation process.

During code generation, cartridges are responsible for particular model el-
ements (e.g., marked with appropriate stereotypes recognized by a cartridge).
When AndroMDA traverses the input model’s in-memory representation pro-
duced by the parser, the responsible cartridges are invoked for each model
element. Multiple cartridges may be responsible for one model element, and
each cartridge may contain multiple templates that produce several source
files.

Fig. 8.2 shows that the resulting source code is usually a mixture of com-
plete source files and code skeletons, which have to be manually completed by
a developer, thus entailing the need for round-trip engineering (cf. Sect. 2.4.4).
Although UML contains several diagram types that focus on the specification
of dynamic behavior, such as state diagrams, sequence diagrams or collabo-
ration diagrams, AndroMDA’s cartridges usually accept only a small subset
of UML diagrams as an input. Among those are in most cases only class dia-
grams, use case diagrams and activity diagrams. This shows the rather weak
support for the dynamic application aspects: While the framework is quite
powerful in generating static parts of an application that are, e.g., concerned
with infrastructural details (like XML descriptors, generic web forms, data
transfer objects etc.), the code generation for the dynamic aspects containing
the actual business logic is rather unsatisfactory.

8.2 Example Application: Multiple Sequence
Alignment (MSA)

In bioinformatics, sequence alignments are used to find correspondences be-
tween the bases or codons of DNA, RNA or amino acid sequences [Pol07].
Such correspondences indicate similarities between species, e.g., resulting
from a common ancestor. In order to assist researchers in performing such
analyses, a large number of services, tools and algorithms are available.
For instance, ClustalW [THG94] is a popular algorithm for computing se-
quence alignments, with several ready-to-use implementations. The Web Ser-
vices provided by the Bielefeld University Bioinformatics Server (BiBiServ)
[HKG07] and the DNA Data Bank of Japan (DDBJ) [JD10] are examples of
such implementations.

The example process used in this case study is taken from experiments
that employ these ClustalW implementations for performing sequence align-
ments [LMS08]. This process (in the following referred to as the MSA process)
has been constructed with Bio-jETI [MKS08], which is a special incarnation
of jABC that targets bioinformaticians, and assists them in integrating, or-
chestrating and providing bioinformatics services.

8.2 Example Application: Multiple Sequence Alignment (MSA) 197

P
er

fo
rm

 A
lig

nm
en

t

F
et

ch
 S

eq
ue

nc
es

A

Fig. 8.3. jABC models for the Multiple Sequence Alignment (MSA) process

Fig. 8.3 shows the corresponding SLGs, which allow the user to customize
the process by selecting the provider of the ClustalW implementation for the
sequence alignment. The main process called “Perform Alignment” (left hand
side of Fig. 8.3) starts off by reading the input data, usually the sequences that
will be analyzed, from a local file (step Read Input File). Afterwards, the
provider is determined: Depending on the user’s choice, it is either BiBiServ or
DDBJ that is used. The corresponding process steps ClustalW (BibiServ)
and ClustalW_analyzeSimple both invoke the corresponding public Web
Services. Finally, the alignment is parsed from the result returned by the
executed Web Service. In addition to selecting the algorithm, the process
also provides the option to read the sequences from the European Molecular
Biology Laboratory (EMBL) sequence database, using the DBFetch [Lab+07]
Web Service available from the European Bioinformatics Institute (EBI). In
this case, the input file does not contain the sequences, but only IDs that
are used to read them from the database. The corresponding process step is
realized by a submodel called “Fetch Sequences”.

The use of Genesys for the translation of those processes into executable
Java classes has been examined by Lamprecht et al. [LMS09]. The combi-
nation of AndroMDA and Genesys presented in this chapter drastically im-
proves the generation result, as it enables the generation of a fully functional
web application for invoking the analysis and for viewing the results of a
sequence alignment.

198 8 Service-Oriented Combination of Code Generators

8.3 Integrated Modeling

In order to create the models for the static and dynamic application aspects,
respective tools may be used as usual. The dynamic behavior is modeled in
jABC by means of SLGs, and the UML models for the static aspects can
be built with an arbitrary UML modeling tool, such as Together [Bor11] or
ArgoUML [Tig11]. The UML models are then added to jABC’s modeling
repertoire (indicated by the composition in the middle of Fig. 8.1). For being
able to perform this addition, the diagrams are expected to be available in
the XMI format. Using corresponding access libraries, e.g., following the Java
Metadata Interface (JMI) [Jav02], the diagrams are then available to be read
and manipulated in-memory.

In the MSA example, the dynamic aspects are modeled by the MSA pro-
cess presented above. The UML diagrams that model the static application
aspects are depicted in Fig. 8.4. These diagrams describe everything that
is required for AndroMDA in order to generate the web application for the
MSA process. Diagram 1 is a use case diagram that describes, among other
functionality, the use case “Perform Alignment”. This use case is marked
with two AndroMDA-specific stereotypes: FrontEndUseCase indicates that
the use case should have a corresponding front-end in the resulting applica-
tion, and FrontEndApplication marks the corresponding front-end as the
application’s entry point.

Via the UML modeling tool, “Perform Alignment” is associated with dia-
gram 2, which is an activity diagram describing the flow of actions in the use
case. The activity diagram starts with the activity “Select Sequence File”,
which allows the user to select the file containing the input data for the
MSA process. Again, a specific stereotype (FrontEndView) tells AndroMDA
that this activity should be generated as a front-end in the application. The
“Align” transition leaving the activity is triggered by a so-called signal event,
that carries two parameters: the input file for the MSA process and a string
specifying the provider option (e.g., “DDBJ”). With this information, An-
droMDA translates “Select Sequence File” to a form that allows the user to
upload the input file and to set the provider option. In the subsequent steps
of the diagram, the alignment is computed (“Perform Alignments”) and the
results are displayed for the user (“Alignment”, again a FrontEndView).

Diagram 3 shows an excerpt of a class diagram that defines an Alignment-
Controller responsible for mediating between the front-end functionality
and the business logic on the server. It contains a method performAlignment,
which is associated with the “Perform Alignments” activity from diagram 2,
and thus is intended to realize the invocation of a sequence alignment process
with the data entered by the user.

The example models might raise the question why SLGs as well as UML
activity diagrams are used for describing flows of actions, and whether it
would be possible to resort to only one of those notations for the entire
example. In principle, the MSA process in Fig. 8.3 could be drawn as an

8.3 Integrated Modeling 199

1

2

3

Fig. 8.4. UML diagrams for the MSA web application

activity diagram. However, activity diagrams miss a concept like jABC’s SIBs,
i.e., the single steps in an activity diagram do not provide an implementation
or underlying service (cf. Sect. 3.5). Consequently, they are not executable
and are not appropriate for full code generation. On the other hand, an
SLG could easily be used for replacing diagram 2 in Fig. 8.4. However, this
would imply a more complex customization of AndroMDA, for being able to
extract the necessary information from SLGs instead of activity diagrams.
Due to these considerations, the MSA example keeps both notations, so that
the SLGs are used to describe the application’s core functionality (i.e., its
actual business logic) and the activity diagrams specify the technical flow of
actions in the front-end.

Now that the dynamic as well as the static aspects of the application are
modeled, the UML diagrams need to be associated with the SLGs. Techni-
cally, it is necessary to know which functions or methods, declared by, e.g.,
UML class diagrams, are realized by which SLG. This mapping can either be
established automatically based on some naming convention, or it has to be
specified by the modeler. For the latter case, a corresponding jABC plugin
provides a GUI (developed in a diploma thesis [Len09]) that supports the
modeler in establishing the links.

The left hand side of Fig. 8.5 depicts the GUI with a mapping for the MSA
example. On the top of the dialog, the structure of the UML class diagram
from Fig. 8.3 is displayed as a tree. The inner nodes of this tree reflect the
package organization of the contained classes, and the leaves are methods
defined in those classes. After selecting a method in the tree, an SLG may
be associated with it, meaning that the SLG describes the flow of actions
in this method. In Fig. 8.5, it is visible that the performAlignment method
of the AlignmentController (cf. Fig. 8.5, diagram 3) is associated with the
MSA process shown in Fig. 8.3. Subsequently, such mappings are used for

200 8 Service-Oriented Combination of Code Generators

Fig. 8.5. Associating SLGs with UML diagrams (left hand side) and configuring
the AndroMDA SIB (right hand side)

code generation in order to connect the artifacts generated by jABC’s code
generators with those produced by AndroMDA. Along with the mapping,
the dialog also allows configuring the code generation for the selected SLG
by specifying the name and the output location of the generated artifact.

8.4 Integrated Code Generation

In order to support code generation for the linked UML models and SLGs,
Genesys’ SIB library (see Sect. 4.1) has been extended by two services. The
first service prepares the UML models by including the links to corresponding
SLGs as tagged values, and the second service integrates AndroMDA for
translating the UML models to code. Altogether, the actual code generation
is divided into three main steps, which are indicated in the center of Fig. 8.1.

Step 1, “Generate SLG Code”:

As the first step of the generation process, the corresponding jABC code gen-
erator produces code from the SLGs as usual. In the MSA example, the SLG
depicted in Fig. 8.3 is translated into a Java class called “PerformAlignment”.
This step is depicted as a macro in Fig. 8.1, that references the models of the
corresponding jABC code generator, which is the Java Class Generator (cf.
Sect. 5.2) in case of the MSA application.

Step 2, “Establish Links”:

As described above, the SLGs are linked with (parts of) the UML dia-
grams. When those links are established by the modeler in jABC, they

8.4 Integrated Code Generation 201

are first attached as additional information to the SLGs. The “Establish
Links” step of the code generation process moves this information to the
UML diagrams. Technically, for each link that has been established, the af-
fected UML element is marked with a tagged value, which in turn points
to the artifact generated from the corresponding SLG in step 1. For in-
stance, in the MSA example, the performAlignment method in the class
AlignmentController (Fig. 8.4, diagram 3) is marked with the tagged value
“@genesys.class.name=PerformAlignment”, with “PerformAlignment” be-
ing the name of the Java class generated by the Java Class Generator. Step
2 is realized as a SIB that can be found in the service library of Genesys.

Step 3, “Generate From UML”:

In this final step, AndroMDA is invoked for generating code from the UML
models. For this purpose, AndroMDA is also made available as a SIB. This
SIB represents a customized instance of AndroMDA, which is able to under-
stand the tagged values that have been added to the UML diagrams in step
2, and to generate corresponding extra code. For instance, the tagged value
attached to the method performAlignment leads to the generation of extra
code that basically calls the “PerformAlignment” Java class produced in step
1. That way, the generated method is entirely implemented and executable. If
we would run AndroMDA on the bare UML models without the new tagged
values, this method would be generated as an empty stub.

In order to integrate AndroMDA as such a customized service, its car-
tridges had to be extended, so that they are able to interpret the new tagged
values and to translate them into calls to classes generated by Genesys. In
the context of a diploma thesis [Len09], all cartridges available in the offi-
cial AndroMDA release have been adapted this way, which was possible with
little effort. Please note that this customization had to be done only once
in order to integrate AndroMDA as a SIB. Afterwards, it is a ready-made
building block in Genesys’ modeling repertoire, that may be reused for other
applications and code generators without the need of further customization.

In consequence, any existing jABC code generator can be easily extended
in order to support the combined code generation approach. For this purpose,
an additional hierarchy level has to be added on top of the code generator’s
models. This hierarchy level contains the three steps described above, with
step 1 referencing the models of the code generator that should be extended.

Just as any jABC code generator, the resulting combined code generator
could be used via Genesys’ jABC plugin described in Sect. 4.3.2. However,
the AndroMDA service adds many configuration parameters to the code gen-
erator. Consequently, the generic GUI provided by the Genesys jABC plugin
is rather inconvenient for the configuration of the code generator. Thus a spe-
cial inspector has been developed in the context of a diploma thesis [Ben08],
that specifically supports the usage of those code generators that contain the
AndroMDA SIB. This inspector is displayed on the right side of Fig. 8.5. Be-
sides the configuration of the code generator, it also offers the possibility to

202 8 Service-Oriented Combination of Code Generators

Fig. 8.6. Screens of the Generated MSA Web Application

start the code generation. Furthermore, it provides a console for monitoring
a running code generation process.

When generating code from the MSA example using the concept described
above, we obtain a complete web application that is ready to be built and
deployed. It runs in an appropriate container such as JBoss [Red11a] and
uses the Struts web framework along with Spring. The dynamic parts of
the web application are generated by jABC’s Java Class Generator, which
has been extended as described above, so that the static parts are handled by
AndroMDA, mainly involving its BPM4Struts and Spring cartridges. Fig. 8.6
shows the main screens of the generated web application. The left hand side
of the figure depicts the form for uploading the input file (containing either
sequences or EMBL IDs) and for selecting the provider, and the screen on
the right hand side displays an excerpt of the computed alignment.

The application along with all necessary classes, web forms and configu-
ration files has been entirely generated without writing a single line of code,
thus we have achieved full code generation in the sense described in Sect. 2.4.4
(meeting Requirement S2 - Full Code Generation).

8.5 Evaluation

The results of this case study demonstrate the enormous value of service ori-
entation for the construction of code generators in Genesys. The flexibility
provided by a service mechanism like jABC’s SIBs allows a high-level com-
position of code generators on the basis of arbitrary services, ranging from
small libraries like template engines to entire frameworks like AndroMDA.
At the same time, the size or complexity of a service is completely invisible to
the generator developer, as it is hidden behind the simple and unique inter-
face of SIBs (Requirement G3 - Simplicity). The AndroMDA SIB, although
representing a very complex service, is used just like any other SIB.

8.5 Evaluation 203

The case study also emphasizes that services strongly facilitate reuse
(which is what they are designed for in the first place). First, AndroMDA
and its cartridges have been reused by integrating the framework as a SIB
into Genesys. Thanks to the SIB concept, this integration was straightfor-
ward, and no complex mediators or bridges had to be implemented. Second,
once the SIB is created, it is ready to be reused for any code generator
built with Genesys. Consequently, Genesys’ repertoire for the construction of
code generators is growing continuously, and every generator developer prof-
its from work that has been done previously (Requirement G2 - Reusability
and Adaptability).

Part III

Conclusions and Future Work

9

Conclusions

This monograph presented Genesys, an approach that proposes the construc-
tion of code generators by means of graphical models and services. As the
current state of the art typically relies on developing code generators on
the basis of textual specifications, such as templates, transformation rules or
programs written in a general-purpose programming language or DSL, the
Genesys approach is unique in the realm of code generation.

In order to show the feasibility of this approach, a full-fledged reference im-
plementation, the Genesys framework, has been created. Conceptually and
technically, this framework is based on the XMDD paradigm and its tool
incarnation jABC, which enable model-driven and service-oriented develop-
ment of software systems. The reference implementation has been used for
investigating different facets of Genesys in a multitude of case studies (con-
ducted by the author of this book and in the context of related diploma
theses), which showed that the approach provides significant advantages for
the construction of code generators.

9.1 Requirements of the Genesys Approach Revisited

The advantages of the Genesys approach are best described by revisiting its
requirements formulated at the beginning of this book (cf. Sect. 1.1). The
previous chapters showed how all those requirements are met by the Genesys
framework.

Requirement G1 - Platform Independence
As code generators in the Genesys framework are abstractly specified
as jABC models, they do not depend on a particular implementation
language or host machine. The case studies described in Chap. 5 resulted
in a large number of code generators, that translate arbitrary SLGs into
code for various platforms and languages. In particular, each of those
generators could be employed for porting any code generator specified as
SLGs to different host platforms.

S. Jörges: Construction and Evolution of Code Generators, LNCS 7747, pp. 207–213, 2013.
© Springer-Verlag Berlin Heidelberg 2013

208 9 Conclusions

A necessary condition for porting an SLG to a particular platform is
the availability of a suitable technical grounding of the services employed
in the SLG. In jABC, this grounding is provided by corresponding service
adapters associated with the contained SIBs. Such service adapters can
be added, modified and removed without having to change the actual
SLG. This is entirely transparent to the generator developer, who only
deals with the SIBs, which act as platform-independent representations
of the actual underlying services.

Furthermore, the variety of different services employed in the case stud-
ies, and especially the integration of AndroMDA described in Chap. 8,
shows that there are virtually no limitations on what can be (re)used
as a service for building a code generator. Finally, in addition to the
large diversity of target languages covered by the various code genera-
tors described in this book, the EMF case study explained in Chap. 7
also illustrates that Genesys is not restricted to any particular source
language.

Altogether, code generators in Genesys are specified in a truly platform-
independent way.

Requirement G2 - Reusability and Adaptability
Following the basic principles of the underlying XMDD paradigm, code
generators in the Genesys framework are developed using libraries of mod-
els, services, constraints and test cases. Each time any of such artifacts
has to be newly created, it is added to the corresponding library, so that
it is available to be reused later. In consequence, the generator developer
can resort to a continuously growing repository of those artifacts.

Chap. 5 showed this by means of the genealogy of jABC code genera-
tors developed with Genesys, and in particular by a detailed comparison
of different variants created for the code generator for Java classes. The
results indicate that this reuse potential significantly decreases the de-
velopment effort required for each new code generator. This is because
with each new generator, the generator developer has a larger basis of
reusable artifacts to rely on. Furthermore, reuse and adaptation are fa-
cilitated via the variant management features of the Genesys framework
(see also requirement S3 below).

Requirement G3 - Simplicity
In order to minimize the number of languages that have to be learned for
building a code generator, Genesys uses SLGs as the basic specification
language for all artifacts required in the different phases of development.
Accordingly, the actual code generators, the constraints for model check-
ing as well as the test cases along with their test data are all specified as
SLGs in jABC.

Furthermore, the generator developer is not forced to use specific code
generation techniques, as anything can be incorporated into the Gene-
sys framework as corresponding SIBs. Thus he is, e.g., able to select a

9.1 Requirements of the Genesys Approach Revisited 209

template engine he already knows, which again significantly flattens the
learning curve.

Requirement G4 - Separation of Concerns
As pointed out in Sect. 3.5, jABC supports the separation of concerns via
hierarchical modeling. This is particularly essential for code generators,
which typically tend to grow complex. In the case studies presented in
this book, hierarchical modeling was thus an indispensable feature for
specifying a code generator as a hierarchy of small and manageable mod-
els, and for being able to focus only on those hierarchy levels that were
interesting in a particular phase of development.

Requirement G5 - Verification and Validation
Chap. 6 elaborated on the V&V facilities provided by the Genesys frame-
work. The verification of a code generator is supported via local checking
and model checking. The former checks local constraints that are attached
to the single SIBs employed in the code generator, while the latter verifies
global constraints which are associated with entire SLGs. As mentioned
above, both types of constraints are also managed in corresponding li-
braries (the local constraints are managed along with the SIBs they are
attached to), so that they form a growing knowledge base of rules for
building good code generators.

Validation of code generators is supported by means of a dedicated
testing framework incorporated into Genesys. This framework allows the
specification of test cases and corresponding test data as SLGs. It also
includes an approach for back-to-back testing of code generators, which
has been exemplarily implemented for the jABC code generators.

Requirement S1 - Domain-Specificity
The EMF case study described in Chap. 7 presented an approach for
generating domain-specific SIBs from a given metamodel. Those SIBs
can be employed for building code generators that support instances of
the metamodel as their input. By means of such domain-specific SIBs,
the generator developer can be provided with a domain-specific modeling
language tailored to concepts of the code generator’s source domain (i.e.,
the domain for which the source language of the generator is used).

Furthermore, jABC’s customization mechanisms have been employed
for creating a domain-specific version of the tool, that is optimized for
the construction of code generators, e.g., by means of corresponding SIB
taxonomies and plugins. (cf. Chap. 4).

Requirement S2 - Full Code Generation
All jABC code generators (i.e., those that generate code from SLGs)
support full code generation, as jABC’s SLGs are designed in a way that
they contain all information required for producing complete code (cf.
Sect. 3.5). Sect. 3.1 also pointed out that this avoidance of round-trip
engineering is a basic principle of XMDD.

210 9 Conclusions

Furthermore, the AndroMDA case study (cf. Chap. 8) showed that
full code generation can also be achieved by using Genesys for combining
different source languages and corresponding code generation frameworks
integrated as services, thus exploiting their individual strengths.

Requirement S3 - Variant Management and Product Lines
In order to further facilitate reuse and adaptation, the Genesys framework
supports the management of variants and product lines on the basis of
jABC’s mechanisms for hierarchical modeling (cf. Sect. 4.1.4).

Requirement S4 - Clean Code Generator Specification
When modeling a code generator with Genesys, the generation logic is
typically reflected by the SLGs of the code generator, while the output
description is specified by means of, e.g., templates or transformation
rules, depending on which code generation technique is employed. The
output description usually incarnates as parameter values of SIBs con-
tained in the SLGs (as for the template-based generators presented in
this book, which only use confined templates, cf. Sect. 4.2.5), or it is
specified in a separate place (e.g., as for the transformation rules used by
the FormulaBuilder). Consequently, there is typically a clean separation
between generator logic and output description, which, e.g., is the basis
for being able to properly verify the generator logic via model checking.

Requirement S5 - Bootstrapping
As SLGs are executable models and as jABC’s Tracer provides a full-
fledged interpreter for them, bootstrapping is easily possible. For in-
stance, in the context of Genesys, bootstrapping has been successfully
employed for obtaining the first jABC code generator (cf. Sect. 5.1).

Requirement S6 - Tool-Chain Integration
The tooling provided by the Genesys framework supports the integra-
tion of code generators into development tool-chains in several ways (cf.
Sect. 4.3.2). For instance, code generators for jABC can be used via the
Genesys jABC plugin. Furthermore, a dedicated Maven plugin allows the
incorporation of code generators built with Genesys into Maven-based
development environments. Finally, a code generator can be translated
to an implementation language supported by existing build management
tools like Apache Ant or GNU make.

9.2 Further Applications of Genesys

The Genesys framework is actively used beyond the various applications de-
scribed in the case studies of this book. This section lists further examples
of projects that employ the Genesys Framework.

OCS:

The Online Conference Service (OCS) [NMS11;KM06] is a web-based system
for the submission and review of manuscripts, which are intended for being

9.2 Further Applications of Genesys 211

published, e.g., in conference proceedings or journals. The system has been de-
veloped for and is operated by the international publisher Springer [Spr11a].
On its way to publication, a manuscript typically runs through various phases
involving several user roles. For instance, this includes the actual submission
by the author, the distribution of reviewing tasks by an editor or program
committee chair, or the review and discussion of the manuscript by reviewers.

As those phases differ essentially among conferences and journals, the OCS
needs to be highly adaptable in order to cope with this variability. Arising
from this requirement, the system employs SLGs for specifying product lines
that are tailored to the needs of particular conferences or journals. Accord-
ingly, for each phase of the evaluation workflow, the application expert is
able to define the contained actions and their order in jABC. Apart from
the examples mentioned above, those actions also include notifications of the
users, such as an email informing about the start of a new phase. The corre-
sponding SLGs are then generated using Genesys’ Java Class Generator, and
the resulting code basically forms the domain-specific portion of a particular
OCS product line.

PROPHETS:

The PROPHETS plugin [NLS11;Nau09] extends jABC by the idea of loose
programming [Lam+10]. According to this approach, branches in an SLG can
be marked as being loosely specified, i.e., the specification of the system is
deliberately vague or incomplete at this point. Based on domain knowledge
that has been specified by a domain expert (cf. Sect. 3.2), PROPHETS em-
ploys a synthesis algorithm for finding valid constellations of services, that
may concretize a loosely specified branch [NLS11]. Among other things, the
domain knowledge includes type definitions and domain-specific constraints.
The solutions found by the synthesis algorithm are proposed to the user,
who may either choose to select one of those, or to refine the constraints and
synthesis parameters for restarting the synthesis algorithm. This iterative
refinement is repeated until an acceptable solution is found.

In order to support agility, this workflow underlying PROPHETS is en-
tirely modeled in jABC. By means of Genesys’ Java Class Generator, the
corresponding SLGs are translated into Java code, which is in turn integrated
into the PROPHETS plugin.

Reengineering and Migration of Legacy Systems:

Being the topic of a PhD thesis [Wag12], this project uses the Genesys frame-
work for two main purposes. First, the project performs automatic reverse
engineering of a legacy system by transforming its source code to so-called
code models [WMP09], which are basically very low-level SLGs. In order to
validate this transformation, an appropriate Genesys code generator is used
for translating those code models back into code, which can then be com-
pared to the original source code of the legacy system. Second, the project

212 9 Conclusions

employs the Genesys framework in the context of the migration of legacy
systems. For instance, in order to migrate a C++ legacy system to Java, the
C++ services contained in the corresponding SLGs (e.g., obtained by reverse
engineering as described above) can be successively enriched or replaced with
corresponding Java services. Consequently, in intermediate stages of this mi-
gration process, the SLGs contain C++ services as well as Java services. In
order to keep the system operational in this transitional state, a correspond-
ing Genesys code generator is able to generate code from such SLGs with
mixed service groundings. Wagner [Wag12] describes such a code generator,
which generates a Java application that performs calls to the contained C++
services via CORBA.

o DOBS:

The Dortmunder Online Bibliographieservice (o DOBS) [Bah+07] is a web ap-
plication that supports the bibliographical research of publications in com-
puter science. It has been developed in the context of a one-year student
project, which is a part of the curriculum at the TU Dortmund. o DOBS is
based on the data provided by the well-known DBLP [Ley11], and aims at
providing powerful search facilities for users and an administration interface
for managing the data.

The web application also includes an import feature for periodically fetch-
ing the recent data of the DBLP and updating the o DOBS database corre-
spondingly. This import feature parses the DBLP data (which is publicly
available as a large XML file), then searches it for new and updated biblio-
graphic records, and finally applies all changes to the database of o DOBS. For
being able to quickly react to future changes of the data format, and in order
to enable the extension of the import to support further data sources apart
from the DBLP, this import process has been modeled in jABC. From the re-
sulting SLGs, corresponding code is generated via the Java Class Generator,
thus forming the backend of the import feature in o DOBS.

In a sequel student project [Can+08], the import functionality has been
augmented by a process for the detection and management of duplicate
records.

EE Deploy Plugin:

The EE Deploy Plugin has been developed in the context of the jABC EE
mentioned in Sect. 5.4.8. It provides a simple GUI that enables the deploy-
ment of processes modeled in jABC to a (remote) instance of the execution
engine. The deployment workflow that is executed by the plugin is modeled
with jABC and generated with Genesys’ Java Class Generator. This work-
flow uses the EE Process Definition Generator (cf. Sect. 5.4.8) as a service
for generating process definitions from the SLGs. Afterwards, the resulting
artifacts are packaged and uploaded to the execution engine.

9.2 Further Applications of Genesys 213

SHADOWS:

The goal of the SHADOWS project (Self-healing Approach to Designing
Complex Software Systems [She08]) is equipping complex systems with mech-
anisms for self-healing. Such mechanisms are intended to protect the system
from issues concerning performance, the system’s function and concurrency,
occurring at design time, testing time as well as at runtime [She08]. Bakera
et al. [Bak+10] proposed an approach that aims at supporting this goal for
autonomic systems described in the Autonomic System Specification Lan-
guage (ASSL) [Vas08].

According to this approach, those parts of an ASSL description which cover
the system’s behavioral aspects are translated into corresponding SLGs. For
instance, this enables the use of model checking with GEAR (cf. Sect. 3.4)
as a design-time healing technique. Furthermore, the resulting SLGs can be
equipped with additional abstract annotations (using jABC’s Annotation Ed-
itor, cf. Sect. 3.2.3), which serve as hints as to which parts of the behavioral
specification of the system should be guarded by runtime healing techniques.
At this point, the Genesys framework plays a central role: Upon code gener-
ation, those annotations are processed by means of a suitable Genesys code
generator. Besides translating the SLGs to executable code as usual, the code
generator also enriches the resulting code on the basis of the annotations, so
that corresponding tools for runtime healing are able to work with it. Tech-
nically, such enrichments may, e.g., be specific annotations in the generated
code, or modified service calls that integrate the techniques for self-healing.

A big advantage of this approach is the fact that specifying the mechanisms
for self-healing at the level of SLGs does not require any technical knowledge
about the actual tools that are used at runtime – this knowledge is provided
by the code generator.

10

Future Work

The results on the Genesys approach and its reference implementation pre-
sented in this book matured over six years. However, as Genesys is designed
to explicitly support adaptability and extensibility (e.g., via services or plu-
gins), there is plenty of potential for future research. This chapter elaborates
on several aspects that deserve closer examination.

Code-to-Model Traceability:

Even when the code generation process succeeded and the applied V&V tools
detected no problems, errors might still occur at runtime of the generated sys-
tem. For instance, such errors might arise from exceptional situations which
have not been considered before, so that they are not covered by correspond-
ing constraints or test cases, or from unexpected effects resulting from the
interplay of generated code and the target platform (e.g., a JEE application
server).

In order to diagnose such errors and to find their origin, it is very use-
ful to be able to trace them back to the original models the system has
been generated from. This requires bidirectionality of the mapping between
models and code: For each part of the code, it has to be possible to deter-
mine the corresponding parts of the model from which the code has been
generated [Kle08, p. 164]. For instance, MetaEdit+ supports code-to-model
traceability by means of a feature called “live code” [TK09], which allows to
directly inspect the corresponding model elements by selecting parts of the
generated code.

Currently, the Genesys framework does not provide general facilities for
supporting this. However, several code generators from the jABC case studies
(e.g., the various Java Class Generators, cf. Chap. 5) include mechanisms that
assist the developer in finding the model elements corresponding to a part of
the generated code. First, by default, those generators enrich the generated
code with comments that indicate which code emanated from which model
elements. For instance, service calls are always preceded by a comment that

S. Jörges: Construction and Evolution of Code Generators, LNCS 7747, pp. 215–221, 2013.
© Springer-Verlag Berlin Heidelberg 2013

216 10 Future Work

includes the label of the corresponding SIB in the original model. Second, by
means of a particular option, the generators can be instructed to augment
the resulting code by debug output commands. When running the generated
system, those output commands produce console messages, showing the trace
through the original models that corresponds to the current execution of the
system. This trace is displayed as an alternating sequence of SIB labels and
branch names. By default, the option for generating the debug output com-
mands is not enabled, in order not to affect the performance of the generated
system.

For the jABC code generators, this basic support of code-to-model trace-
ability could be extended by using the Tracer plugin for live monitoring of
the generated code. This is possible due to the fact that the Tracer plugin
is able to observe and visualize remote executions [Doe06, p. 64f] of jABC
models via a remote version of the Observer pattern [Gam+95, p. 293ff]. The
Tracer provides a standard implementation of this remote observer based on
communication via Remote Method Invocation (RMI) [Gro01]. For using this
mechanism from languages other than Java, it could be easily extended by
further communication techniques such as CORBA or Web Services.

In order to exploit this feature for realizing code-to-model traceability,
the generated code could be enhanced with further code that makes it act
like a subject that can be observed by the Tracer plugin. This means that
while executing the actual generated system, the code simultaneously triggers
a visualization of the corresponding original model in the Tracer plugin. In
consequence, the user is able to observe the execution of the generated system
directly in jABC, at the modeling level. This enables “live” code-to-model
traceability as a means for simplifying the diagnosis of errors.

However, this approach is only suitable for, e.g., tracking down the origins
of performance problems or system hangs, which usually cause the system’s
execution to slow down or to stop entirely. In contrast to this, typical execu-
tions are usually too fast to be observable this way.

Another solution that also allows code-to-model traceability for such typ-
ical executions is an a posteriori replay of the trace. The realization of this
approach would require the extension of both the code generators and the
Tracer. First, the above mentioned generation of debug output commands
would have to be changed: Instead of displaying the trace by means of con-
sole messages at runtime of the generated system, a file containing the entire
trace has to be produced using a format understood by the Tracer. Second,
the Tracer plugin has to be extended so that it is able to load such trace files,
and to let the user “replay” the trace via the Tracer’s debugging GUI. That
way, the erroneous system execution could be reproduced step-by-step, thus
enabling the a detailed a posteriori diagnosis.

Of course, as a prerequisite for supporting those solutions, any preceding
model-to-model transformations need to be adapted, in order to retain all
information about the original models required in the generated code.

10 Future Work 217

Integration of Further Verification Approaches and Tools:

Besides the existing verification facilities presented in Chap. 6, the Genesys
framework could be extended by further verification approaches and tools.
Sect. 6.1 already mentioned data-flow analysis as an example, which could be
performed, e.g., via model checking, as proposed by Steffen [Ste91] and Lam-
precht et al. [LMS06]. In code generator SLGs, such a mechanism could be
used to detect problems like unused context keys, services that try to access
non-existing context keys, or the absence of expected inputs and outputs.
Typically, such an approach would require the annotation of the code gener-
ator models with specific data flow information that is used by the analysis
(see, e.g., [Lam+10]). For instance, when performing the data flow analysis
via model checking, such annotations could take the form of atomic propo-
sitions. The data flow information is typically part of the domain knowledge
assembled by the domain expert.

Furthermore, it could be a promising perspective to integrate approaches
and tools that have been applied successfully for the verification of compilers
(cf. Sect. 2.5), in order to examine their feasibility for the high-level code
generator models in Genesys. The integration can be performed easily by us-
ing jABC’s plugin mechanism. However, when conducting such experiments,
it is imperatively important to keep in mind Requirement G3 - Simplicity.
For instance, though theorem provers may be capable of verifying the cor-
rectness of a translation, their application typically requires lots of (formal)
knowledge [Fra+08]. As shown with the use of model checking in this book,
the integration of any formal methods should always be performed in a way
that does not corrupt the overall simplicity of the Genesys framework.

Improvement of the Testing Framework:

As already mentioned in Sect. 6.3.2, future versions of Genesys’ testing frame-
work will include the extension of the suite graphs that resemble test suites.
Those suite graphs will be augmented by the possibility of connecting con-
tained macros with edges in order to reflect interdependencies between the
corresponding test cases.

In its present state, the testing strategy described in Sect. 6.3.1 is re-
alized in a pragmatically sufficient scale, in alignment with what was ac-
tually required for thoroughly testing the jABC code generators. However,
several extensions of this implementation are imaginable for the future. For
instance, test data SLGs (like those exemplified in Fig. 6.9) could themselves
be parametrized with varying test vectors. Stürmer et al. refer to this as
“second-order test cases“ [Stü+07], with the test data SLGs becoming “first-
order test cases”. The current test suite for the jABC code generators does not
yet employ such second-order test cases: If test data SLGs are parametrizable
(via model parameters), the execution is always performed with the default

218 10 Future Work

values of the parameters.1 In order to improve test coverage, the test suite is
planned to be extended by this dimension of second-order test cases.

Another improvement for increasing the test coverage could be the employ-
ment of approaches for automatically generating test cases and test data, such
as [Hag+02b; HMS03; Raf+09; Stü+07]. Currently, all test cases in the test
suite are modeled manually.

Furthermore, a test becomes more expressive if the execution of the gen-
erated code on the real target system is also included in the comparison of
the execution footprints, as proposed in [Stü+07] (called processor-in-the-
loop, PIL). Currently, all execution runs in the tests (direct execution of the
test data SLGs as well as the execution of the generated pendants) are per-
formed on the system of the developer who actually runs the tests, or on a
corresponding continuous integration server. For instance, in the context of
embedded systems, this demands the use of appropriate emulators in order to
be able to execute the generated code. By including execution runs on the real
target systems in the tests, the complexity of the overall test setup increases
in favor of more expressive results, as the tests now are also able to detect,
e.g., unexpected side-effects of the target system’s runtime environment.

Finally, the testing framework would particularly benefit from the im-
provements of code-to-model traceability described above. As both the SUT
and the test case are translated to code before running the tests, the reports
produced by the underlying testing platform always refer to the generated
code. In consequence, corresponding facilities that assist in tracing back error
reports to the original models would be a significant improvement.

Improvement and Generalization of the Variant Management Features:

The facilities for variantmanagement in the Genesys framework (cf. Sect. 4.1.4)
have been implemented pragmatically, in a demand-driven fashion. However,
several further improvements of those features are imaginable:

• The graphical user interface has to be extended in order to better support
the specification of variants. Besides a visualization of variation points
(e.g., with suitable overlay icons), this includes a GUI for the separate
parametrization of the variants. Currently, as described in Sect. 4.1.4, the
variants are restricted to providing the same model interface, in order to
compensate the lack of a proper GUI for parametrization.

• The introduction of dedicated views will help keeping track of specified
variants. The most obvious view is one that shows the SLGs of one par-
ticular variant only. In the current state, the generator developer is only
able to decide locally for each variation point, which corresponding vari-
ant should be displayed. However, as described in Sect. 4.1.4, variants (or
product lines) are a global concept, applied to an entire SLG hierarchy.
Accordingly, a variant-specific view would allow the generator developer

1 Remember that any parameters in SLGs and SIBs always have to be equipped
with default values (cf. Sect. 3.2).

10 Future Work 219

to focus on working on a particular variant, without constantly having to
take the local decision. Another helpful view would be the generation of
a feature model [CHE04] that provides a comprehensive overview of all
specified variants. This could be realized as an extension of the existing
jABC hierarchy view (Fig. 4.10 in Sect. 4.2 shows an example).

• The model weaving employed for the generation of variants could be ex-
tended by mechanisms that additionally support aspect orientation, using
variation points as real joinpoints in the AO sense. Aspects would again
be resembled by SLGs which would be weaved into the main model, as
specified by the joinpoints. Such joinpoints could be defined by the gen-
erator developer (e.g., by employing markers like “before” and “after”, as
in “Weave in variant X before SIB Y.”), or they could be determined
on the basis of constraints (e.g., “Replace all SIBs satisfying the atomic
proposition p with variant X.”).

• The variant management could be augmented by features that allow the
dynamic selection of variants at runtime of the generated system. Cur-
rently, the desired variant is selected at generation time, i.e., each code
generation run only yields exactly one variant of the system. However,
in order to enable the flexible reaction of the resulting system to certain
situations (e.g., error recovery), it might be beneficial to let the system
decide on which variant should be used, based on dynamic conditions
occurring at runtime. For achieving this, there has to be a way for speci-
fying runtime variability in the models, and code generators would have
to be able to produce corresponding code.

Finally, the variant management features could be generalized in order to be
usable for all jABC applications, and not just for code generators. This would
include moving them out of the Genesys framework to a separate project. Fur-
thermore, plugins like the Tracer and GEAR would have to be extended for
supporting variants.

Loose Specification of Code Generators:

The features for loose programming and synthesis provided by the
PROPHETS plugin (described above in Sect. 9.2) could also be applied
for modeling code generators. This application is imaginable at two levels.
First, for a single code generator, sequential standard parts could be loosely
specified and automatically completed by means of synthesis. For instance,
possible parts include initialization steps or postprocessing actions, such as
pretty-printing the code and writing it to files. The remaining parts of a code
generator, especially the templates, are not easily synthesizable from domain
knowledge. In consequence, loose programming is not suitable for those parts,
which thus stay the core competence of the generator developer.

Second, at a higher level, PROPHETS could be used for the synthesis of
code generators, which are in turn composed of several consecutive trans-
formation steps. For instance, as proposed by MDA (cf. Sect. 2.3.3), a code

220 10 Future Work

generator may be designed as a chain of model transformations, ending with
a final code generation step. Given the availability of corresponding domain
knowledge and of SIBs that incorporate suitable model transformations and
code generators as services, such code generators could be specified loosely:
Ideally, the generator developer would only have to specify the type of the in-
put models along with a type that classifies the resulting code. On this basis,
PROPHETS would automatically synthesize possible sequences of transfor-
mations, and thus simplify the generator developer’s work significantly.

Aggregated Template View:

A characteristic of template-based Genesys code generators is the fact that
templates tend to be scattered over the generator models (as, e.g., visible in
the example shown in Sect. 4.2). This is a direct result of Genesys’ different
use of templates for keeping a strict separation between generation logic and
output description, as described in Sect. 2.6 and 4.2.5. However, when us-
ing template engines, generator developers usually appreciate the advantage
of having only a small number of templates, that provide a comprehensive
overview of the entire output description.

In order to support this in the Genesys framework, an aggregated template
view could be computed from a given template-based code generator. This
view aggregates the template fragments found in the code generator to one
template, thus providing the overview familiar to many generator developers.

Technically, the generation of this view could be backed by a corresponding
code generator (also developed with Genesys), that produces the template.
For this purpose, the template fragments have to be connected by the control
flow structures specified in the generation logic of the code generator, for
which the view should be produced. Thus the code generator that generates
the view will have to include an approach for identifying control flow patterns,
as, e.g., described in Sect. 5.2.4.

This view could be further supplemented by editing capabilities that allow
direct modifications in the view, along with the propagation of those changes
to the actual code generator models.

Migration to the Eclipse Platform:

At the time of writing this book, the jABC project is undergoing a transition
to the Eclipse platform in order to benefit from the rich ecosystem provided
by the Eclipse community. According to the recent direction of this transi-
tion, the purely Java-based core of jABC (including SLGs and SIBs) will be
redesigned on the basis of EMF, e.g., by creating an explicit metamodel for
SLGs with Ecore. Although there are plenty of code generation tools for EMF
(cf. Chap. 7), none of these solutions follows an approach similar to Genesys.
Accordingly, a migration of the Genesys framework to the Eclipse platform
could be worthwhile.

10 Future Work 221

The tooling included in the Genesys framework (cf. Sect. 4.3) will most
likely require significant reimplementation effort due to the manifold dif-
ferences of the Eclipse platform (e.g., the usage of the Standard Widget
Toolkit (SWT) [Ecl11e]). However, the migration should be comparably sim-
ple for code generators. Due to the fact the all Genesys code generators are
available as models, they could be ported to the new Ecore-based SLGs by
means of an appropriate model transformation. Such a model transformation
could also be used to convert the entire model library contained in the Gene-
sys framework to the new SLG format. Furthermore, an additional converter
will be required for importing existing SIBs to the new platform.

Bibliography

Primary References

[ABL08] van der Aalst, W.M.P., Lassen, K.B.: Translating unstructured work-
flow processes to readable BPEL: Theory and implementation. Infor-
mation and Software Technology 50(3), 131–159 (2008)

[Abr+04] Abran, A., et al.: Guide to the Software Engineering Body of Knowl-
edge - SWEBOK. 2004 version. IEEE Press (2004) ISBN: 0769510000

[Aho+06] Aho, A.V., et al.: Compilers: Principles, Techniques, and Tools, 2nd
edn. Addison Wesley (2006) ISBN: 0321486811

[AK02] Atkinson, C., Kühne, T.: Rearchitecting the UML infrastruc-
ture. ACM Transactions on Modeling and Computer Simulation
(TOMACS) 12(4), 290–321 (2002)

[AK03] Atkinson, C., Kühne, T.: Model-Driven Development: A Metamodel-
ing Foundation. IEEE Software 20(5), 36–41 (2003)

[App98] Appel, A.W.: Modern Compiler Implementation in Java. Cambridge
University Press (1998) ISBN: 0521583888

[BA04] Beck, K., Andres, C.: Extreme Programming Explained: Embrace
Change, 2nd edn. Addison-Wesley (2004) ISBN: 0321278658

[Bac+63] Backus, J.W., et al.: Revised report on the algorithm language ALGOL
60. Communications of the ACM 6(1), 1–17 (1963); Ed. by Peter Naur

[Bag02] Bagnall, B.: Core Lego MindstormsTM Programming. Prentice Hall
PTR (2002) ISBN: 0130093645

[Bah+07] Bahlo, T., et al.: PG 494 L2EE: Lightweight Process Coordination &
J2EE. Final Report. In German, TU Dortmund, Chair of Program-
ming Systems (2007),
https://eldorado.tu-dortmund.de/bitstream/
2003/24525/1/PG494-Endbericht.pdf

[Bak+07] Bakera, M., et al.: Property-driven functional healing: Playing against
undesired behavior. In: Proceedings of the Business Process Engineer-
ing, CONQUEST 2007, pp. 363–372, dpunkt (2007)

[Bak+09] Bakera, M., et al.: Tool-supported enhancement of diagnosis in model-
driven verification. Innovations in Systems and Software Engineer-
ing 5(3), 211–228 (2009)

https://eldorado.tu-dortmund.de/bitstream/2003/24525/1/PG494-Endbericht.pdf
https://eldorado.tu-dortmund.de/bitstream/2003/24525/1/PG494-Endbericht.pdf

224 Bibliography

[Bak+10] Bakera, M., et al.: Extracting Component-Oriented Behaviour for Self-
Healing Enabling. In: IEEE International Workshop on Engineering of
Autonomic and Autonomous Systems (EASe), pp. 152–161 (2010)

[BAPM83] Ben-Ari, M., Pnueli, A., Manna, Z.: The temporal logic of branching
time. Acta Informatica 20(3), 207–226 (1983)

[BBF09] Blair, G., Bencomo, N., France, R.B.: Models@ run.time. Com-
puter 42, 22–27 (2009)

[BC11] Broy, M., Cengarle, M.V.: UML formal semantics: lessons learned. In:
Software and Systems Modeling, pp. 1–6 (2011)

[Bec02] Beck, K.: Test Driven Development: By Example. Addison-Wesley
(2002) ISBN: 0321146530

[Bec04] Beck, K.: JUnit Pocket Guide (2004) ISBN: 0596007434
[Ben08] Bentmann, B.: Eine UML-Perspektive für jABC mit Anbindung an

Standard-UML-Tools. Diploma Thesis. TU Dortmund, Chair of Pro-
gramming Systems (2008) (in German)

[Beu10] Beulshausen, B.: Automatisches Generieren von Perl Code aus grafis-
chen Prozessmodellen. Diploma Thesis, TU Dortmund, Chair of Pro-
gramming Systems (2010) (in German)

[BG01] Bézivin, J., Gerbé, O.: Towards a Precise Definition of the OMG/MDA
Framework. In: Proceedings of the 16th IEEE International Confer-
ence on Automated Software Engineering, ASE 2001, pp. 273–280.
IEEE Computer Society (2001)

[BGL05] Blech, J.O., Glesner, S., Leitner, J.: Formal Verification of Java Code
Generation from UML Models. Fujaba Days (2005)

[BJM09] Bakera, M., Jörges, S., Margaria, T.: Test your Strategy: Graphical
Construction of Strategies for Connect-Four. In: Proceedings of the
14th IEEE International Conference on Engineering of Complex Com-
puter Systems, ICECCS 2009, pp. 172–181. IEEE Computer Society
(2009)

[Bla01] Blackwell, A.F.: Pictorial Representation and Metaphor in Visual Lan-
guage Design. Journal of Visual Languages & Computing, 223–252
(2001)

[Bla96] Blackwell, A.F.: Metacognitive Theories of Visual Programming:
What do we think we are doing? In: Proceedings of the 1996 IEEE
Symposium on Visual Languages, pp. 240–246. IEEE Computer Soci-
ety (1996)

[BM06] Bajohr, M., Margaria, T.: MaTRICS: A servicebased management tool
for remote intelligent configuration of systems. Innovations in Systems
and Software Engineering 2(2), 99–111 (2006)

[BM08] Bajohr, M., Margaria, T.: High Service Availability in MaTRICS for
the OCS. In: Margaria, T., Steffen, B. (eds.) ISoLA 2008. CCIS,
vol. 17, pp. 572–586. Springer, Heidelberg (2008)

[Bra+08] Bravenboer, M., et al.: Stratego/XT 0.17. A language and toolset for
program transformation. Science of Computer Programming 72(1-2),
52–70 (2008)

[BS07] Beust, C., Suleiman, H.: Next Generation Java Testing: TestNG and
Advanced Concepts. Addison-Wesley (2007) ISBN: 0321503104

[Bur+05] Burdy, L., et al.: An overview of JML tools and applications. Interna-
tional Journal on Software Tools for Technology Transfer (STTT) 7(3),
212–232 (2005)

Bibliography 225

[Béz05] BÉzivin, J.: On the unification power of models. Software and System
Modeling 4(2), 171–188 (2005)

[Béz+04] Bézivin, J., Jouault, F., Rosenthal, P., Valduriez, P.: Modeling in the
Large and Modeling in the Small. In: Aßmann, U., Akşit, M., Rensink,
A. (eds.) MDAFA 2003. LNCS, vol. 3599, pp. 33–46. Springer, Heidel-
berg (2005)

[Béz+05] Bézivin, J., et al.: Bridging the MS/DSL Tools and the Eclipse Mod-
eling Framework. In: Proceedings of the International Workshop on
Software Factories at OOPSLA 2005 (2005)

[Can+08] Can, M., et al.: PG 513 DoPAC: Dortmund Online Public Access Cat-
alog. Final Report. TU Dortmund, Chair of Programming Systems
(2008) (in German)

[CE00] Czarnecki, K., Eisenecker, U.W.: Generative programming - methods,
tools and applications. Addison-Wesley (2000) ISBN: 9780201309775

[CE81] Clarke, E.M., Allen Emerson, E.: Design and Synthesis of Synchroniza-
tion Skeletons Using Branching-Time Temporal Logic. In: Engeler, E.
(ed.) Logic of Programs 1979. LNCS, vol. 125, pp. 52–71. Springer,
Heidelberg (1981)

[CGP99] Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press
(1999) ISBN: 9780262032704

[CH06] Czarnecki, K., Helsen, S.: Feature-based survey of model transforma-
tion approaches. IBM Systems Journal 45(3), 621–645 (2006)

[Cha+05] Chalin, P., Kiniry, J.R., Leavens, G.T., Poll, E.: Beyond Assertions:
Advanced Specification and Verification with JML and ESC/Java2.
In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.)
FMCO 2005. LNCS, vol. 4111, pp. 342–363. Springer, Heidelberg
(2006)

[Cha05] Charette, R.N.: Why Software Fails. IEEE Spectrum 42(9), 42–49
(2005)

[CHE04] Czarnecki, K., Helsen, S., Eisenecker, U.: Staged Configuration Using
Feature Models. In: Nord, R.L. (ed.) SPLC 2004. LNCS, vol. 3154, pp.
266–283. Springer, Heidelberg (2004)

[CL02] Cheon, Y., Leavens, G.T.: A runtime assertion checker for the Java
Modeling Language (JML). In: Proceedings of the International Con-
ference on Software Engineering Research and Practice (SERP 2002),
pp. 322–328. CSREA Press (2002)

[Cla+11] Clarke, D., Diakov, N., Hähnle, R., Johnsen, E.B., Schaefer, I., Schäfer,
J., Schlatte, R., Wong, P.Y.H.: Modeling Spatial and Temporal Vari-
ability with the HATS Abstract Behavioral Modeling Language. In:
Bernardo, M., Issarny, V. (eds.) SFM 2011. LNCS, vol. 6659, pp. 417–
457. Springer, Heidelberg (2011)

[CN01] Clements, P.C., Northrop, L.: Software Product Lines: Practices and
Patterns. SEI Series in Software Engineering. Addison-Wesley (2001)
ISBN: 978201703320

[CNW89] Chen, M., Nunamaker Jr., J.F., Sue Weber, E.: Computer-aided
software engineering: present status and future directions. SIGMIS
Database 20(1), 7–13 (1989)

[Coo+07] Cook, S., et al.: Domain Specific Development with Visual Studio DSL
Tools. Addison-Wesley (2007) ISBN: 9780321398208

226 Bibliography

[CV09] Cerpa, N., Verner, J.M.: Why did your project fail? Communications
of the ACM 52(12), 130–134 (2009) ISSN: 0001-0782

[Cza04] Czarnecki, K.: Overview of Generative Software Development. In:
Banâtre, J.-P., Fradet, P., Giavitto, J.-L., Michel, O. (eds.) UPP 2004.
LNCS, vol. 3566, pp. 326–341. Springer, Heidelberg (2005)

[CØV02] Czarnecki, K., Østerbye, K., Völter, M.: Generative Programming. In:
Hernández, J., Moreira, A. (eds.) ECOOP 2002 Workshops. LNCS,
vol. 2548, pp. 15–29. Springer, Heidelberg (2002)

[DAC99] Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in Property Spec-
ifications for Finite-State Verification. In: Proceedings of the 21st In-
ternational Conference on Software Engineering, ICSE 1999, pp. 411–
420. IEEE CS Press (1999)

[Dal+99] Dalal, S.R., et al.: Model-based testing in practice. In: Proceedings
of the 21st International Conference on Software Engineering, ICSE
1999, pp. 285–294. ACM (1999)

[DF06] Denney, E., Fischer, B.: Extending Source Code Generators for
Evidence-Based Software Certification. In: Proceedings of the Second
International Symposium on Leveraging Applications of Formal Meth-
ods, Verification and Validation (ISoLA), pp. 138–145. IEEE Com-
puter Society (2006)

[DGBP11] Dumas, M., García-Bañuelos, L., Polyvyanyy, A.: Unraveling Unstruc-
tured Process Models. In: Mendling, J., Weidlich, M., Weske, M. (eds.)
BPMN 2010. LNBIP, vol. 67, pp. 1–7. Springer, Heidelberg (2010)

[Doe06] Doedt, M.: Erweiterung der jABC-Framework Bibliothek um eine
modular anpassbare Ausführungsschicht. Diploma Thesis. TU Dort-
mund, Chair of Programming Systems (2006) (in German)

[Dra06] Drazek, M.: jABC Plugin zur Konvertierung von SIB-Graph Modellen
in jABC unabhängige Klassen. Diploma Thesis. TU Dortmund, Chair
of Programming Systems (2006) (in German)

[DVW07] van Deursen, A., Visser, E., Warmer, J.: Model-Driven Software Evo-
lution: A Research Agenda. In: CSMR Workshop on Model-Driven
Software Evolution (MoDSE 2007), pp. 41–49 (2007),
http://swerl.tudelft.nl/twiki/pub/Main/
TechnicalReports/TUD-SERG-2007-006.pdf

[Eng+99] Engels, G., Hücking, R., Sauer, S., Wagner, A.: UML Collaboration
Diagrams and Their Transformation to Java. In: France, R.B. (ed.)
UML 1999. LNCS, vol. 1723, pp. 473–488. Springer, Heidelberg (1999)

[Eng71] Engeler, E.: Structure and Meaning of Elementary Programs. In: Sym-
posium on Semantics of Algorithmic Languages. Lect. Notes in Math-
ematics, vol. 188. Springer (1971)

[Fav04] Favre, J.-M.: Towards a Basic Theory to Model Driven Engineering.
In: Workshop on Software Model Engineering, WISME 2004, Joint
Event with UML 2004 (2004)

[Fis09] Fischbach, A.: JML-basierte Validierung von Design-by- Contract-
Beschreibungen in jABC. Diploma Thesis, TU Dortmund, Chair of
Programming Systems (2009) (in German)

[Fla06] Flanagan, D.: JavaScript: The Definitive Guide. O’Reilly (2006) ISBN:
0596101996

[FM08] Flanagan, D., Matsumoto, Y.: The Ruby Programming Language, 1st
edn. O’Reilly (2008) ISBN: 9780596516178

http://swerl.tudelft.nl/twiki/pub/Main/TechnicalReports/TUD-SERG-2007-006.pdf
http://swerl.tudelft.nl/twiki/pub/Main/TechnicalReports/TUD-SERG-2007-006.pdf

Bibliography 227

[Fow02] Fowler, M.: Patterns of Enterprise Application Architecture. Addison-
Wesley (2002) ISBN: 0321127420

[Fow10] Fowler, M.: Domain Specific Languages, 1st edn. Addison-Wesley
(2010) ISBN: 9780321712943

[Fra+08] Frank, S., et al.: Safety of Compilers and Translation Techniques -
Status quo of Technology and Science. In: Automotive – Safety &
Security 2008. Shaker Verlag (2008)

[Fra02] Frankel, D.: Model Driven Architecture: Applying MDA to Enterprise
Computing. John Wiley & Sons (2002) ISBN: 0471319201

[FT96] Frakes, W., Terry, C.: Software reuse: metrics and models. ACM Com-
puting Surveys (CSUR) 28(2), 415–435 (1996)

[FVZ03] Fehnker, A., Vaandrager, F., Zhang, M.: Modeling and Verifying a
Lego Car Using Hybrid I/O Automata. In: Proceedings of the Third
International Conference on Quality Software, QSIC 2003, pp. 280–289
(2003)

[Gae07] Gaeb, J.: Entwicklung eines BPEL-Plugins für das JavaABCFrame-
work. Diploma Thesis. TU Dortmund, Chair of Programming Systems
(2007) (in German)

[Gam+95] Gamma, E., et al.: Design patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley (1995) ISBN: 9780201633610

[GB08] García-Bañuelos, L.: Pattern Identification and Classification in the
Translation from BPMN to BPEL. In: Meersman, R., Tari, Z. (eds.)
OTM 2008, Part I. LNCS, vol. 5331, pp. 436–444. Springer, Heidelberg
(2008)

[Gos+05] Gosling, J., et al.: The Java Language Specification, 3rd edn. Addison-
Wesley (2005) ISBN: 0321246780

[GR83] Goldberg, A., Robson, D.: Smalltalk-80, The language and its imple-
mentation. Addison-Wesley (1983) ISBN: 0201113716

[Gre+04] Greenfield, J., et al.: Software Factories: Assembling Applications with
Patterns, Models, Frameworks, and Tools. John Wiley & Sons (2004)
ISBN: 0471202843

[Gro01] Grosso, W.: Java RMI. O’Reilly (2001) ISBN: 9781565924529
[Gro09] Gronback, R.C.: Eclipse Modeling Project: A Domain- Specific Lan-

guage (DSL) Toolkit. Addison-Wesley (2009) ISBN: 9780321534071
[GSR05] Geiger, L., Schneider, C., Reckord, C.: Templateand modelbased code

generation for MDA-Tools. In: 3rd International Fujaba Days (2005)
[GZ99] Goos, G., Zimmermann, W.: Verification of Compilers. In: Olderog,

E.-R., Steffen, B. (eds.) Correct System Design. LNCS, vol. 1710, p.
201230. Springer, Heidelberg (1999)

[Hag+02a] Hagerer, A., Hungar, H., Margaria, T., Niese, O., Steffen, B., Ide, H.-
D.: Demonstration of an Operational Procedure for the Model-Based
Testing of CTI Systems. In: Kutsche, R.-D., Weber, H. (eds.) FASE
2002. LNCS, vol. 2306, pp. 336–340. Springer, Heidelberg (2002)

[Hag+02b] Hagerer, A., Hungar, H.: Model Generation by Moderated Regular
Extrapolation. In: Kutsche, R.-D., Weber, H. (eds.) FASE 2002. LNCS,
vol. 2306, pp. 80–95. Springer, Heidelberg (2002)

[Han07] Hansen, J.C.: Lego MindstormsTM NXTTM Power Programming:
Robotics in C. Variant Press (2007) ISBN: 0973864923

[Hem+10] Hemel, Z., et al.: Code generation by model transformation: a case
study in transformation modularity. Software and System Model-
ing 9(3), 375–402 (2010)

228 Bibliography

[Her03] Herrington, J.: Code Generation in Action. Manning Publications Co.
(2003) ISBN: 1930110979

[HKG07] Hartmeier, S., Krüger, J., Giegerich, R.: Webservices and Workflows
on the Bielefeld Bioinformatics Server: Practices and Problems. In:
Proceedings of NETTAB 2007 Workshop: A Semantic Web for Bioin-
formatics (2007)

[HLR08] Hettel, T., Lawley, M., Raymond, K.: Model Synchronisation: Defini-
tions for Round-Trip Engineering. In: Vallecillo, A., Gray, J., Pieran-
tonio, A. (eds.) ICMT 2008. LNCS, vol. 5063, pp. 31–45. Springer,
Heidelberg (2008)

[HLT03] Heckel, R., Lohmann, M., Thöne, S.: Towards a UML Profile for
Service-Oriented Architectures. In: Proceedings of the Workshop on
Model Driven Architecture: Foundations and Applications (MDAFA
2003). CTIT Technical Report. University of Twente, pp. 115–120
(2003)

[HM85] Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and con-
currency. Journal of the ACM 32(1), 137–161 (1985)

[HMS03] Hungar, H., Margaria, T., Steffen, B.: Test- Based Model Generation
For Legacy Systems. In: Proceedings of the International Test Confer-
ence, ITC 2003, pp. 971–980 (2003)

[Hoa03] Hoare, T.: The verifying compiler: A grand challenge for computing
research. Journal of the ACM 50(1), 63–69 (2003)

[Hoa69] Hoare, C.A.R.: An axiomatic basis for computer programming. Com-
munications of the ACM 12(10), 576–580 (1969)

[HR04] Huth, M., Ryan, M.D.: Logic in computer science - modelling and
reasoning about systems, 2nd edn. Cambridge University Press (2004)
ISBN: 9780521543101

[Hun90] Hunter, R.: The Design and Construction of Compilers. John Wiley
& Sons (1990) ISBN: 0471280542

[Hör+08] Hörmann, M., et al.: The jABC Approach to Rigorous Collaborative
Development of SCM Applications. In: Third International Sympo-
sium on Leveraging Applications of Formal Methods, Verification and
Validation, ISoLA 2008, pp. 724–737 (2008)

[Hös08] Hösel, S.: Entwicklung eines Plug-ins für das jABC-Framework zur
Integration von.NET mittels C#. Diploma Thesis. University of Pots-
dam, Chair for Service and Software Engineering (2008) (in German)

[IIT93] Telecommunication Standardization Sector of ITU (ITU-T). General
Recommendations on Telephone Switching and Signalling - Intelligent
Network: Introduction to Intelligent Network Capability Set 1, Recom-
mendation Q.1211. Tech. rep. International Telecommunication Union,
ITU (1993)

[IIT97] Telecommunication Standardization Sector of ITU (ITU-T). Recom-
mendation I.329/Q.120: Intelligent Network - Global Functional Plane
Architecture, 2nd edn. International Telecommunication Union, ITU
(1997)

[Ive+00] Iversen, T.K., et al.: Model-checking real-time control programs: ver-
ifying Lego� MindstormsTM system using UPPAAL. In: Proceedings
of the 12th Euromicro Conference on Real-Time Systems, Euromicro-
RTS 2000, pp. 147–155. IEEE Computer Society (2000)

Bibliography 229

[JK06] Jouault, F., Kurtev, I.: Transforming Models with ATL. In: Bruel,
J.-M. (ed.) MoDELS 2005. LNCS, vol. 3844, pp. 128–138. Springer,
Heidelberg (2006)

[JMS06] Jörges, S., Margaria, T., Steffen, B.: FormulaBuilder: A Tool for
Graph-Based Modelling and Generation of Formulae. In: Proceedings
of the 28th International Conference on Software engineering, ICSE
2006, pp. 815–818. ACM (2006)

[JMS08] Jörges, S., Margaria, T., Steffen, B.: Genesys: service-oriented con-
struction of property conform code generators. Innovations in Systems
and Software Engineering 4(4), 361–384 (2008)

[JMS11] Jörges, S., Margaria, T., Steffen, B.: Assuring property conformance
of code generators via model checking. Formal Aspects of Comput-
ing 23(5), 589–606 (2011)

[JS04] Jürjens, J., Shabalin, P.: Automated Verification of UMLsec Models
for Security Requirements. In: Baar, T., Strohmeier, A., Moreira, A.,
Mellor, S.J. (eds.) UML 2004. LNCS, vol. 3273, pp. 365–379. Springer,
Heidelberg (2004)

[JS11] Jörges, S., Steffen, B.: Leveraging Service-Orientation for Combining
Code Generation Frameworks. In: Proceedings of the 16th IEEE Inter-
national Conference on Engineering of Complex Computer Systems,
ICECCS 2011, pp. 198–207. IEEE Computer Society (2011)

[JSM10] Jörges, S., Steffen, B., Margaria, T.: Building Code Generators with
Genesys: A Tutorial Introduction. In: Fernandes, J.M., Lämmel, R.,
Visser, J., Saraiva, J. (eds.) GTTSE 2011. LNCS, vol. 6491, pp. 364–
385. Springer, Heidelberg (2011)

[Jör+07] Jörges, S., et al.: Model Driven Design of Reliable Robot Control Pro-
grams Using the jABC. In: Proceedings of the 4th IEEE International
Workshop on Engineering of Autonomic and Autonomous Systems,
EASe 2007, pp. 137–148. IEEE Computer Society (2007)

[Kah87] Kahn, G.: Natural Semantics. In: Brandenburg, F.J., Wirsing, M.,
Vidal-Naquet, G. (eds.) STACS 1987. LNCS, vol. 247, pp. 22–39.
Springer, Heidelberg (1987)

[KHB00] Kiepuszewski, B., ter Hofstede, A.H.M., Bussler, C.J.: On Structured
Workflow Modelling. In: Wangler, B., Bergman, L.D. (eds.) CAiSE
2000. LNCS, vol. 1789, pp. 431–445. Springer, Heidelberg (2000)

[Kic+97] Kiczales, G., et al.: Aspect-Oriented Programming. In: Akşit, M., Mat-
suoka, S. (eds.) ECOOP 1997. LNCS, vol. 1241, pp. 220–242. Springer,
Heidelberg (1997)

[Kle+96] Klein, M., et al.: DFA&OPT-METAFrame: A Tool Kit for Program
Analysis and Optimization. In: Margaria, T., Steffen, B. (eds.) TACAS
1996. LNCS, vol. 1055, pp. 422–426. Springer, Heidelberg (1996)

[Kle08] Kleppe, A.: Software Language Engineering: Creating Domain- Spe-
cific Languages Using Metamodels, 1st edn. Addison-Wesley (2008)
ISBN: 9780321553454

[KLR96] Kelly, S., Lyytinen, K., Rossi, M.: MetaEdit+: A Fully Configurable
Multi-User and Multi-Tool CASE and CAME Environment. In: Con-
stantopoulos, P., Vassiliou, Y., Mylopoulos, J. (eds.) CAiSE 1996.
LNCS, vol. 1080, pp. 1–21. Springer, Heidelberg (1996)

230 Bibliography

[KM06] Karusseit, M., Margaria, T.: Feature-based Modelling of a Complex,
Online-Reconfigurable Decision Support Service. Electronic Notes in
Theoretical Computer Science 157(2), 101–118 (2006)

[Koc09] Kochan, S.: Programming in Objective-C 2.0, 2nd edn. Addison- Wes-
ley (2009) ISBN: 9780321566157

[Kol10] Koloch, R.: Genesys und open Architecture Ware: Ein praktischer Ver-
gleich. Diploma Thesis, TU Dortmund, Chair of Programming Systems
(2010) (in German)

[Koz83] Kozen, D.: Results on the Propositional µ-Calculus. Theoretical Com-
puter Science 27, 333–354 (1983)

[KP05] Kossatchev, A.S., Posypkin, M.A.: Survey of compiler testing methods.
Programming and Computer Software 31(1), 10–19 (2005)

[KP09] Kelly, S., Pohjonen, R.: Worst Practices for Domain- Specific Model-
ing. IEEE Software 26, 22–29 (2009)

[KSV09] Klint, P., van der Storm, T., Vinju, J.: RASCAL: A Domain Specific
Language for Source Code Analysis and Manipulation. In: Proceedings
of the 2009 Ninth IEEE International Working Conference on Source
Code Analysis and Manipulation, pp. 168–177. IEEE Computer Soci-
ety (2009)

[KT08] Kelly, S., Tolvanen, J.-P.: Domain-Specific Modeling: Enabling Full
Code Generation. John Wiley & Sons (2008) ISBN: 0470036664

[Kub+09] Kubczak, C., et al.: Service-oriented Mediation with jABC/- jETI. In:
Semantic Web Services Challenge. Semantic Web and Beyond, vol. 8,
pp. 71–99. Springer (2009)

[KV10] Kats, L.C.L., Visser, E.: The Spoofax Language Workbench. Rules
for Declarative Specification of Languages and IDEs. In: Proceedings
of the 25th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA 2010,
pp. 444–463. ACM (2010)

[Küh06] Kühne, T.: Matters of (Meta-)Modeling. Software and System Model-
ing 5(4), 369–385 (2006)

[Lab+07] Labarga, A., et al.: Web Services at the European Bioinformatics In-
stitute. Nucleic Acids Research 35(Web-Server- Issue), 6–11 (2007)

[Lam+10] Lamprecht, A.-L., et al.: Synthesis-Based Loose Programming. In: Pro-
ceedings of the 7th International Conference on the Quality of Informa-
tion and Communications Technology, QUATIC, pp. 262–267. IEEE
Computer Society (2010)

[Lar95] Laroussinie, F.: About the expressive power of CTL combinators. In-
formation Processing Letters 54(6), 343–345 (1995)

[Led+01] Ledeczi, A., et al.: The Generic Modeling Environment. In: Workshop
on Intelligent Signal Processing, WISP 2001, vol. 17. IEEE (2001)

[Lem+09] Lemcke, J., et al.: Advances in Solving the Mediator Scenario with
jABC and jABC/GEM. In: Semantic Web Services Challenge: Pro-
ceedings of the 2008 Workshops, LG-2009-01, pp. 89–102 (2009),
http://logic.stanford.edu/reports/LG-2009-01.pdf

[Len09] Lenzner, N.: Einbindung von UML-Modellierungs- und Codegener-
ierungstools in das Genesys-Framework. Bachelor Thesis. TU Dort-
mund, Chair of Programming Systems (2009) (in German)

http://logic.stanford.edu/reports/LG-2009-01.pdf

Bibliography 231

[Ler06] Leroy, X.: Formal certification of a compiler back-end or: programming
a compiler with a proof assistant. In: Conference Record of the 33rd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2006, pp. 42–54. ACM (2006)

[LMB92] Levine, J., Mason, T., Brown, D.: lex & yacc, 2nd edn. (A Nutshell
Handbook). O’Reilly (1992) ISBN: 1565920007

[LMM99] Latella, D., Majzik, I., Massink, M.: Automatic Verification of a Be-
havioural Subset of UML Statechart Diagrams Using the SPIN Model-
checker. Formal Aspects of Computing 11(6), 637–664 (1999)

[LMS06] Lamprecht, A.-L., Margaria, T., Steffen, B.: Data-Flow Analysis as
Model Checking Within the jABC. In: Mycroft, A., Zeller, A. (eds.)
CC 2006. LNCS, vol. 3923, pp. 101–104. Springer, Heidelberg (2006)

[LMS08] Lamprecht, A.-L., Margaria, T., Steffen, B.: Seven Variations of an
Alignment Workflow - An Illustration of Agile Process Design and
Management in Bio-jETI. In: Măndoiu, I., Wang, S.-L., Zelikovsky, A.
(eds.) ISBRA 2008. LNCS (LNBI), vol. 4983, pp. 445–456. Springer,
Heidelberg (2008)

[LMS09] Lamprecht, A.-L., Margaria, T., Steffen, B.: From Bio-jETI Process
Models to Native Code. In: Proceedings of the 14th IEEE International
Conference on Engineering of Complex Computer Systems, ICECCS
2009, pp. 95–101. IEEE Computer Society (2009)

[LPT78] Lecarme, O., Peyrolle-Thomas, M.-C.: Self-compiling Compilers: An
Appraisal of their Implementation and Portability. Software - Practice
and Experience 8(2), 149–170 (1978)

[LS+08] López-Sanz, M., et al.: Modelling of Service-Oriented Architectures
with UML. Electronic Notes in Theoretical Computer Science 194(4)
(2008); Proceedings of the 6th International Workshop on the Foun-
dations of Coordination Languages and Software Architectures, FO-
CLASA 2007, pp. 23–37 (2007)

[LY99] Lindholm, T., Yellin, F.: The Java Virtual Machine Specification, 2nd
edn. Addison-Wesley (1999) ISBN: 0201432943

[MB02] Mellor, S.J., Balcer, M.: Executable UML: A Foundation for Model-
Driven Architectures. Addison-Wesley (2002) ISBN: 0201748045

[McC60] McCarthy, J.: Recursive functions of symbolic expressions and their
computation by machine, Part I. Communications of the ACM 3(4),
184–195 (1960)

[MER99] Medvidovic, N., Egyed, A.F., Rosenblum, D.S.: Round-Trip Software
Engineering Using UML: From Architecture to Design and Back. In:
Proceedings of the 2nd Workshop on Object-Oriented Reengineering,
WOOR 1999 (1999)

[Mey92] Meyer, B.: Applying ’Design by Contract’. Computer 25(10), 40–51
(1992)

[Mil89] Milner, R.: Communication and Concurrency. Prentice-Hall (1989)
ISBN: 9780131150072

[MKS08] Margaria, T., Kubczak, C., Steffen, B.: Bio-jETI: a service integration,
design, and provisioning platform for orchestrated bioinformatics pro-
cesses. BMC Bioinformatics 9(S-4), 1–17 (2008)

232 Bibliography

[MNS02] Margaria, T., Niese, O., Steffen, B.: Demonstration of an Automated
Integrated Test Environment for Web-Based Applications. In: Boš-
nački, D., Leue, S. (eds.) SPIN 2002. LNCS, vol. 2318, pp. 250–253.
Springer, Heidelberg (2002)

[MO97] Müller-Olm, M.: Modular Compiler Verification. LNCS, vol. 1283.
Springer, Heidelberg (1997)

[Moo09] Moody, D.: The ’Physics’ of Notations: Toward a Scientific Basis for
Constructing Visual Notations in Software Engineering. IEEE Trans-
actions on Software Engineering 35(6), 756–779 (2009)

[Mor08] Morimoto, S.: A Survey of Formal Verification for Business Process
Modeling. In: Bubak, M., van Albada, G.D., Dongarra, J., Sloot,
P.M.A. (eds.) ICCS 2008, Part II. LNCS, vol. 5102, pp. 514–522.
Springer, Heidelberg (2008)

[MOSS99] Müller-Olm, M., Schmidt, D.A., Steffen, B.: Model-Checking: A Tu-
torial Introduction. In: Cortesi, A., Filé, G. (eds.) SAS 1999. LNCS,
vol. 1694, pp. 330–354. Springer, Heidelberg (1999)

[MOY04] Müller-Olm, M., Yoo, H.: MetaGame: An Animation Tool for Model-
Checking Games. In: Jensen, K., Podelski, A. (eds.) TACAS 2004.
LNCS, vol. 2988, pp. 163–167. Springer, Heidelberg (2004)

[MRS06] Margaria, T., Rüthing, O., Steffen, B.: ViDoC - Visual Design of Op-
timizing Compilers. In: Reps, T., Sagiv, M., Bauer, J. (eds.) Wilhelm
Festschrift. LNCS, vol. 4444, pp. 145–159. Springer, Heidelberg (2007)

[MS04] Margaria, T., Steffen, B.: Lightweight coarsegrained coordination:
a scalable system-level approach. International Journal on Software
Tools for Technology Transfer (STTT) 5(2), 107–123 (2004)

[MS06] Margaria, T., Steffen, B.: Service Engineering: Linking Business and
IT. IEEE Computer 39(10), 45–55 (2006)

[MS08] Margaria, T., Steffen, B.: Agile IT: Thinking in User-Centric Models.
In: Margaria, T., Steffen, B. (eds.) ISoLA 2008. CCIS, vol. 17, pp.
490–502. Springer, Heidelberg (2008)

[MS09a] Margaria, T., Steffen, B.: Business Process Modelling in the jABC: The
One-Thing Approach. In: Handbook of Research on Business Process
Modeling, pp. 1–26. IGI Global (2009)

[MS09b] Margaria, T., Steffen, B.: Continuous Model- Driven Engineering.
IEEE Computer 42(10), 106–109 (2009)

[MSR05] Margaria, T., Steffen, B., Reitenspiess, M.: Service-Oriented Design:
The Roots. In: Benatallah, B., Casati, F., Traverso, P. (eds.) ICSOC
2005. LNCS, vol. 3826, pp. 450–464. Springer, Heidelberg (2005)

[Nag09] Nagel, R.: Technische Herausforderungen modellgetriebener Be-
herrschung von Prozesslebenszyklen aus der Fachperspektive: Von der
Anforderungsanalyse zur Realisierung. PhD thesis, TU Dortmund,
Chair Programming Systems (2009) (in German)

[Nau09] Naujokat, S.: Automatische Generierung von Prozessen im jABC.
Diploma Thesis, TU Dortmund, Chair of Programming Systems
(2009) (in German)

[Nec00] Necula, G.C.: Translation validation for an optimizing compiler. In:
Proceedings of the ACM SIGPLAN 2000 Conference on Programming
Language Design and Implementation, PLDI 2000, pp. 83–94. ACM
(2000)

Bibliography 233

[Nec97] Necula, G.C.: Proof-carrying code. In: Proceedings of the 24th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 1997, pp. 106–119. ACM (1997)

[Neu07] Neubauer, J.: LocalChecker Plugin for the jABC. Student Research
Project Report. TU Dortmund, Chair of Programming Systems (2007)

[Nie+01a] Niese, O., et al.: Automated Regression Testing of CTI-Systems. In:
Proceedings of the IEEE European Test Workshop, ETW 2001, pp.
51–57. IEEE Computer Society (2001)

[Nie+01b] Niese, O., Steffen, B., Margaria, T., Hagerer, A., Brune, G., Ide, H.-
D.: Library-Based Design and Consistency Checking of System-Level
Industrial Test Cases. In: Hussmann, H. (ed.) FASE 2001. LNCS,
vol. 2029, pp. 233–248. Springer, Heidelberg (2001)

[NLS11] Naujokat, S., Lamprecht, A.-L., Steffen, B.: Tailoring Process Syn-
thesis to Domain Characteristics. In: Proceedings of the 16th IEEE
International Conference on Engineering of Complex Computer Sys-
tems, ICECCS 2011, pp. 167–175. IEEE Computer Society (2011)

[NMS11] Neubauer, J., Margaria, T., Steffen, B.: Design for Verifiability: The
OCS Case Study. In: Formal Methods for Industrial Critical Systems:
A Survey of Applications. John Wiley & Sons (2011) (in print) ISBN:
9780470876183

[Old+05] Oldevik, J., Neple, T., Grønmo, R., Aagedal, J.Ø., Berre, A.-J.: To-
ward Standardised Model to Text Transformations. In: Hartman, A.,
Kreische, D. (eds.) ECMDA-FA 2005. LNCS, vol. 3748, pp. 239–253.
Springer, Heidelberg (2005)

[Oul82] Oulsnam, G.: Unravelling Unstructured Programs. The Computer
Journal 25(3), 379–387 (1982)

[Ouy+06] Ouyang, C., et al.: From BPMN Process Models to BPEL Web Ser-
vices. In: Proceedings of the IEEE International Conference on Web
Services, pp. 285–292. IEEE Computer Society (2006)

[Pap08] Papazoglou, M.P.: Web Services: Principles and Technology. Pearson,
Prentice Hall (2008) ISBN: 9780321155559

[Par04] Parr, T.: Enforcing strict model-view separation in template engines.
In: Proceedings of the 13th International Conference on World Wide
Web, WWW 2004, pp. 224–233. ACM (2004)

[PBL05] Pohl, K., Böckle, G., van der Linden, F.J.: Software Product Line
Engineering: Foundations, Principles and Techniques. Springer (2005)
ISBN: 3540243720

[Plo81] Plotkin, G.D.: A Structural Approach to Operational Semantics. Tech.
rep. DAIMI FN-19. Computer Science Department, Aarhus University
(1981)

[Pol07] Polanski, A.: Sequence Alignment. In: Bioinformatics, pp. 155-156.
Springer (2007)

[PQ95] Parr, T., Quong, R.: ANTLR: A Predicated-LL(k) Parser Generator.
Software - Practice and Experience 25(7), 789–810 (1995)

[PSS98] Pnueli, A., Siegel, M., Singerman, E.: Translation Validation. In: Stef-
fen, B. (ed.) TACAS 1998. LNCS, vol. 1384, pp. 151–166. Springer,
Heidelberg (1998)

234 Bibliography

[QS82] Queille, J.-P., Sifakis, J.: Specification and Verification of Concurrent
Systems in CESAR. In: Dezani-Ciancaglini, M., Montanari, U. (eds.)
Programming 1982. LNCS, vol. 137, pp. 337–351. Springer, Heidelberg
(1982)

[Raf+08] Raffelt, H., et al.: Hybrid test of web applications with webtest. In:
Proceedings of the 2008 Workshop on Testing, Analysis, and Verifica-
tion of Web Services and Applications, TAVWEB 2008, pp. 1–7. ACM
(2008)

[Raf+09] Raffelt, H., et al.: Dynamic testing via automata learning. In-
ternational Journal on Software Tools for Technology Transfer
(STTT) 11(4), 307–324 (2009)

[Rai+04] Raistrick, C., et al.: Model Driven Architecture with Executable UML.
Cambridge University Press (2004) ISBN: 0521537711

[RS09] Ryabtsev, M., Strichman, O.: Translation Validation: From Simulink
to C. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643,
pp. 696–701. Springer, Heidelberg (2009)

[Rug+08] Rugina, A.-E., et al.: Gene-Auto: Automatic Software Code Genera-
tion for Real-Time Embedded Systems. In: Data Systems in Aerospace,
DASIA 2008. European Space Agency (2008)

[SB01] Schwaber, K., Beedle, M.: Agile Software Development with Scrum.
Prentice Hall PTR (2001) ISBN: 9780130676344

[SC04] Stürmer, I., Conrad, M.: Code Generator Testing in Practice. In: IN-
FORMATIK 2004, - Informatik verbindet, Band 2, Beiträge der 34.
Jahrestagung der Gesellschaft für Informatik e.V (GI), pp. 33-37. GI
(2004)

[Sch+04] Schinz, I., et al.: The Rhapsody UML Verification Environment. In:
Proceedings of the Second International Conference on Software En-
gineering and Formal Methods, SEFM 2004, pp. 174–183. IEEE Com-
puter Society Press (2004)

[Sch+10] Schaefer, I., Bettini, L., Bono, V., Damiani, F., Tanzarella, N.: Delta-
Oriented Programming of Software Product Lines. In: Bosch, J., Lee,
J. (eds.) SPLC 2010. LNCS, vol. 6287, pp. 77–91. Springer, Heidelberg
(2010)

[Sch06] Schmidt, D.C.: Guest Editor’s Introduction: Model-Driven Engineer-
ing. Computer 39, 25–31 (2006)

[Sch07] Schulte, B.E.: Modellgetriebene Steuerung eingebetteter Systeme und
ihrer Anwendung für Lego NXT. Diploma Thesis, TU Dortmund,
Chair of Programming Systems (2007) (in German)

[Sch86] Schmidt, D.A.: Denotational semantics: a methodology for language
development. William C. Brown Publishers (1986) ISBN: 0697068492

[Sei03] Seidewitz, E.: What Models Mean. IEEE Software 20(5), 26–32 (2003)
[Sel03] Selic, B.: The Pragmatics of Model-Driven Development. IEEE Soft-

ware 20, 19–25 (2003)
[Sel09] Selic, B.: The Theory and Practice of Modeling Language Design for

Model-Based Software Engineering—A Personal Perspective. In: Fer-
nandes, J.M., Lämmel, R., Visser, J., Saraiva, J. (eds.) GTTSE 2009.
LNCS, vol. 6491, pp. 290–321. Springer, Heidelberg (2011)

Bibliography 235

[She08] Shehory, O.: SHADOWS: Self-healing complex software systems. In:
23rd IEEE/ACM International Conference on Automated Software
Engineering - Workshop Proceedings (ASE Workshops 2008), pp. 71–
76. IEEE (2008)

[SI94] Steffen, B., Ingólfsdóttir, A.: Characteristic formulae for processes with
divergence. Information and Computation 110(1), 149–163 (1994)

[SK03] Sendall, S., Kozaczynski, W.: Model Transformation: The Heart and
Soul of Model-Driven Software Development. IEEE Software 20(5),
42–45 (2003)

[SK97] Sztipanovits, J., Karsai, G.: Model-integrated computing. Com-
puter 30(4), 110–111 (1997)

[SM99] Steffen, B., Margaria, T.: METAFrame in Practice: Design of Intel-
ligent Network Services. In: Olderog, E.-R., Steffen, B. (eds.) Correct
System Design. LNCS, vol. 1710, pp. 390–415. Springer, Heidelberg
(1999)

[SMN05] Steffen, B., Margaria, T., Nagel, R.: Remote Integration and Coor-
dination of Verification Tools in jETI. In: Proceedings of 12th IEEE
International Conference on the Engineering of Computer Based Sys-
tems, ECBS 2005, pp. 431–436. IEEE Computer Society Press (2005)

[Smo10] Smolinski, M.: Modellbasierte Entwicklung und Generierung von Test-
Suiten: Eine Fallstudie anhand von Genesys & JUnit. Diploma Thesis,
TU Dortmund, Chair of Programming Systems (2010) (in German)

[SMW10] Steffen, B., Margaria, T., Wagner, C.: Round- Trip Engineering. In:
Encyclopedia of Software Engineering, pp. 1044–1055. Taylor & Fran-
cis (2010)

[SN07] Steffen, B., Narayan, P.: Full Life-Cycle Support for End-to-End Pro-
cesses. IEEE Computer 40(11), 64–73 (2007)

[Spi09] Spitzer, D.: Modellbasierte Entwicklung von Code-Generatoren
für stark eingeschränkte Ausführungsumgebungen am Beispiel der
iPhone-Plattform. Diploma Thesis, TU Dortmund, Chair of Program-
ming Systems (2009) (in German)

[SS98] Schmidt, D.A., Steffen, B.: Program Analysis as Model Checking of
Abstract Interpretations. In: Levi, G. (ed.) SAS 1998. LNCS, vol. 1503,
pp. 351–380. Springer, Heidelberg (1998)

[Sta+07] Stahl, T., et al.: Modellgetriebene Softwareentwicklung: Techniken,
Engineering, Management, 2nd edn., dpunkt (2007) (in German)
ISBN: 978-3-89864-448-8

[Sta73] Stachowiak, H.: Allgemeine Modelltheorie. Springer (1973) (in Ger-
man) ISBN: 9783211811061

[Ste+07] Steffen, B., Margaria, T., Nagel, R., Jörges, S., Kubczak, C.: Model-
Driven Development with the jABC. In: Bin, E., Ziv, A., Ur, S. (eds.)
HVC 2006. LNCS, vol. 4383, pp. 92–108. Springer, Heidelberg (2007)

[Ste+09] Steinberg, D., et al.: EMF: Eclipse Modeling Framework 2.0, 2nd edn.
Addison-Wesley (2009) ISBN: 0321331885

[Ste+94] Steffen, B., et al.: Intelligent Software Synthesis in the Da- Capo Envi-
ronment. In: Proceedings of the 6th Nordic Workshop on Programming
Theory. BRICS Report N. 94/6 (December 1994)

[Ste+96] Steffen, B., et al.: Incremental Formalization: A Key to Industrial Suc-
cess. Software - Concepts and Tools 17(2), 78–91 (1996)

236 Bibliography

[Ste+97] Steffen, B., et al.: Hierarchical Service Definition. Annual Review of
Communication, 847–856 (1997)

[Ste89] Steffen, B.: Characteristic Formulae. In: Ronchi Della Rocca, S.,
Ausiello, G., Dezani-Ciancaglini, M. (eds.) ICALP 1989. LNCS,
vol. 372, pp. 723–732. Springer, Heidelberg (1989)

[Ste91] Steffen, B.: Data Flow Analysis as Model Checking. In: Ito, T., Meyer,
A.R. (eds.) TACS 1991. LNCS, vol. 526, pp. 346–365. Springer, Hei-
delberg (1991)

[Sto10] Storz, D.: Intuitive und experimentelle Modellierung von Strategien
am Beispiel von Robocode. Diploma Thesis, TU Dortmund, Chair of
Programming Systems (2010) (in German)

[Str02] Strecker, M.: Formal Verification of a Java Compiler in Isabelle. In:
Voronkov, A. (ed.) CADE-18. LNCS (LNAI), vol. 2392, pp. 63–77.
Springer, Heidelberg (2002)

[Stü+07] Stürmer, I., et al.: Systematic Testing of Model-Based Code Gen-
erators. IEEE Transactions on Software Engineering 33(9), 622–634
(2007)

[SWC05] Stürmer, I., Weinberg, D., Conrad, M.: Overview of existing safeguard-
ing techniques for automatically generated code. In: Proceedings of the
Second International Workshop on Software Engineering for Automo-
tive Systems, SEAS 2005, pp. 1–6. ACM (2005)

[THG94] Thompson, J.D., Higgins, D.G., Gibson, T.J.: CLUSTAL W: improv-
ing the sensitivity of progressive multiple sequence alignment through
sequence weighting, pÆŠositionspecific gap penalties and weight ma-
trix choice. Nucleic Acids Research 22(22), 4673–4680 (1994)

[Tho04] Thomas, D.: MDA: Revenge of the Modelers or UML Utopia? IEEE
Software 21(3), 15–17 (2004)

[TK09] Tolvanen, J.-P., Kelly, S.: MetaEdit+: defining and using integrated
domain-specific modeling languages. In: Companion to the 24th An-
nual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA 2009, pp. 819–820.
ACM (2009)

[Tol11] Tolmatcev, O.: Erprobung und Evaluierung der Anwendbarkeit von
XSLT im Code-Generator-Framework Genesys. Diploma Thesis, TU
Dortmund, Chair of Programming Systems (2011) (in German)

[UL06] Utting, M., Legeard, B.: Practical Model-Based Testing: A Tools Ap-
proach. Morgan Kaufmann Publishers (2006) ISBN: 0123725011

[V03] Völter, M.: A Catalog of Patterns for Program Generation. In: Pro-
ceedings of the 8th European Conference on Pattern Languages of
Programs, EuroPLoP 2003, UVK (2003)

[Vas08] Vassev, E.I.: Towards a framework for specification and code genera-
tion of automatic systems. PhD thesis. Concordia University (2008)

[VDA+03] Van Der Aalst, W.M.P., et al.: Workflow Patterns. Distributed and
Parallel Databases 14(1), 5–51 (2003)

[Vli98] Vlissides, J.: Pattern hatching: design patterns applied. Addison-
Wesley (1998) ISBN: 0201432935

[Vou90] Vouk, M.A.: Back-to-back testing. Information and Software Technol-
ogy 32(1), 34–45 (1990)

Bibliography 237

[VV10] Völter, M., Visser, E.: Language extension and composition with
language workbenches. In: Companion to the 25th Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, SPLASH/OOPSLA 2010, pp. 301–304.
ACM (2010)

[VVK08] Vanhatalo, J., Völzer, H., Koehler, J.: The Refined Process Structure
Tree. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008.
LNCS, vol. 5240, pp. 100–115. Springer, Heidelberg (2008)

[Völ09] Völter, M.: MD* Best Practices. Journal of Object Technology 8(6),
79–102 (2009)

[Wag12] Wagner, C.: Modellgetriebene Software-Migration. PhD thesis. Uni-
versity of Potsdam, Chair of Service and Software Engineering (2012)
(in German)

[Wal00] Wall, L.: Programming Perl, 3rd edn. O’Reilly (2000) ISBN:
0596000278

[War94] Ward, M.P.: Language-Oriented Programming. Software - Concepts
and Tools 15(4), 147–161 (1994)

[Wat93] Watt, D.A.: Programming Language Processors: Compilers and Inter-
preters. Prentice Hall (1993) ISBN: 9780137201297

[Whi97] Whitley, K.N.: Visual Programming Languages and the Empirical
Evidence For and Against. Journal of Visual Languages & Comput-
ing 8(1), 109–142 (1997)

[Wil77] Howard Williams, M.: Generating Structured Flow Diagrams: The Na-
ture of Unstructuredness. The Computer Journal 20(1), 45–50 (1977)

[Win06] Winkler, C.: Entwicklung eines jABC-Plugins zum Design von JDBC-
kompatiblen Datenbankschemata. Diploma Thesis, TU Dortmund,
Chair of Programming Systems (2006) (in German)

[WMP09] Wagner, C., Margaria, T., Pagendarm, H.-G.: Analysis and Code
Model Extraction for C/C++ Source Code. In: Proceedings of the
14th IEEE International Conference on Engineering of Complex Com-
puter Systems, ICECCS 2009, pp. 110–119. IEEE Computer Society
(2009)

[Yoo07] Yoo, H.: Fehlerdiagnose beim Model-Checking durch animierte
Strategie-Synthese. PhD thesis, TU Dortmund, Chair Programming
Systems (2007) (in German)

238 Bibliography

Online References

[App11] Apple. iOS Technology Overview (2011),
http://developer.apple.com/technologies/ios/

[Boo03] Boocock, P.: The Jamda Project (2003),
http://jamda.sourceforge.net/

[Com11] JRuby Community. JRuby.org (2011), http://www.jruby.org
[Dmi04] Dmitriev, S.: Language Oriented Programming: The Next Program-

ming Paradigm (2004), http://www.onboard.jetbrains.com/is1/
articles/04/10/lop/mps.pdf

[Fow05] Fowler, M.: Language Workbenches: The Killer-App for Domain Spe-
cific Languages? (2005), http://martinfowler.com/articles/
languageWorkbench.html

[JD10] DNA Data Bank of Japan (DDBJ). Web API for Biology (WABI)
(2010), http://xml.nig.ac.jp/index.html

[Jet11] JetBrains. Meta Programming System (2011),
http://www.jetbrains.com/mps/

[Jör10] Jörges, S.: Genesys SIBs Website (2010),
http://jabc.cs.tu-dortmund.de/genesys/
genesys-lib/sibdocs/index.html

[Lar11] Larsen, F.N.: Robocode Home (2011),
http://robocode.sourceforge.net/

[Ley11] Ley, M.: DBLP Computer Science Bibliography (2011),
http://dblp.uni-trier.de/

[Mic11] Microsoft. Microsoft .NET Framework (2011),
http://www.microsoft.com/net

[Ora11a] Oracle. Enterprise JavaBeans Technology (2011),
http://www.oracle.com/technetwork/java/javaee/ejb

[Ora11b] Oracle. Java Enterprise Edition Website (2011),
http://www.oracle.com/technetwork/java/javaee

[Ora11c] Oracle. Java ME (2011),
http://www.oracle.com/technetwork/java/javame

[Ora11d] Oracle. JavaBeans Specification (2011),
http://www.oracle.com/technetwork/java/
javase/documentation/spec-136004.html

[TU10] TU Dortmund, Chair for Programming Systems. jABC Common SIBs
Website (2010), http://www.jabc.de/sib

[Act11a] Active Endpoints. ActiveVOS BPMS (2011),
http://activevos.com/

[Act11b] Activiti Team. Activiti (2011), http://www.activiti.org/
[Alt11] Altova. Altova UModel (2011),

http://www.altova.com/umodel.html
[And11] AndroMDA Team. AndroMDA (2011), http://www.andromda.org/
[Apa10] Apache Foundation. Apache Velocity (2010),

http://velocity.apache.org
[Apa11a] Apache Foundation. Apache Ant (2011),

http://ant.apache.org/
[Apa11b] Apache Foundation. Apache Maven (2011),

http://maven.apache.org

http://developer.apple.com/technologies/ios/
http://jamda.sourceforge.net/
http://www.jruby.org
http://www.onboard.jetbrains.com/is1/articles/04/10/lop/mps.pdf
http://www.onboard.jetbrains.com/is1/articles/04/10/lop/mps.pdf
http://martinfowler.com/articles/languageWorkbench.html
http://martinfowler.com/articles/languageWorkbench.html
http://xml.nig.ac.jp/index.html
http://www.jetbrains.com/mps/
http://jabc.cs.tu-dortmund.de/genesys/genesys-lib/sibdocs/index.html
http://jabc.cs.tu-dortmund.de/genesys/genesys-lib/sibdocs/index.html
http://robocode.sourceforge.net/
http://dblp.uni-trier.de/
http://www.microsoft.com/net
http://www.oracle.com/technetwork/java/javaee/ejb
http://www.oracle.com/technetwork/java/javaee
http://www.oracle.com/technetwork/java/javame
http://www.oracle.com/technetwork/java/javase/documentation/spec-136004.html
http://www.oracle.com/technetwork/java/javase/documentation/spec-136004.html
http://www.jabc.de/sib
http://activevos.com/
http://www.activiti.org/
http://www.altova.com/umodel.html
http://www.andromda.org/
http://velocity.apache.org
http://ant.apache.org/
http://maven.apache.org

Bibliography 239

[Apa11c] Apache Foundation. Apache ODE (2011),
http://ode.apache.org/

[Apa11d] Apache Software Foundation. Apache Struts (2011),
http://struts.apache.org/

[Apa11e] Apache Software Foundation. Apache Subversion (2011),
http://subversion.apache.org/

[Bor11] Borland. Together (2011),
http://www.borland.com/us/products/together/

[Car11] Schwennicke, C., Gallert, S.: XCoder (2011),
http://xcoder.sf.net

[Ecl05] Eclipse Foundation. EMF Developer Guide (2005),
http://help.eclipse.org/helios/index.jsp?topic=/
org.eclipse.emf.doc/references/overview/EMF.html

[Ecl11a] Eclipse Foundation. Eclipse Graphical Modeling Framework (GMF)
(2011), http://www.eclipse.org/gmf/

[Ecl11b] Eclipse Foundation. Eclipse Model Development Tools (MDT): UML2
(2011),http://www.eclipse.org/modeling/mdt/?project=uml2

[Ecl11c] Eclipse Foundation. Eclipse Model Development Tools (MDT): UML2
Tools (2011), http://www.eclipse.org/modeling/
mdt/?project=uml2tools

[Ecl11d] Eclipse Foundation. JET (2011),
http://www.eclipse.org/modeling/m2t/?project=jet#jet

[Ecl11e] Eclipse Foundation. SWT: The Standard Widget Toolkit (2011),
http://www.eclipse.org/swt/

[Ecl11f] Eclipse Foundation. Xpand (2011),
http://www.eclipse.org/modeling/m2t/?project=xpand

[Ecl11g] Eclipse Foundation. Xtend 2 (2011),
http://www.eclipse.org/Xtext/#xtend2

[Ecl11h] Eclipse Foundation. Xtext (2011),
http://www.eclipse.org/Xtext/

[Fre11a] Free Software Foundation. GNU ‘make’ (2011),
http://www.gnu.org/software/make/manual/make.html

[Fre11b] FreeMarker Project. FreeMarker: Java Template Engine Library
(2011), http://freemarker.org/

[ISO05] ISO. The ANSI C standard (C99). Tech. rep. WG14 N1124. ISO/IEC
(2005), http://www.open-std.org/JTC1/SC22/
WG14/www/docs/n1124.pdf

[Jav02] Java Community Process. JSR 40: The tadata Interface (JMI) Speci-
fication (2002), http://www.jcp.org/en/jsr/detail?id=40

[Jav06] Java Community Process. JSR 52: A Standard Tag Library for
JavaServer Pages (2006), http://www.jcp.org/en/jsr/detail?id=52

[Jav07] Java Community Process. JSR 139: Connected Limited Device Con-
figuration 1.1 (2007), http://www.jcp.org/en/jsr/detail?id=139

[Jav09a] Java Community Process. JSR 222: Java Architecture for XML Bind-
ing (JAXB) 2.0 (2009), http://www.jcp.org/en/jsr/detail?id=222

[Jav09b] Java Community Process. JSR 245: JavaServer Pages 2.1 (2009),
http://www.jcp.org/en/jsr/detail?id=245

[Jav09c] Java Community Process. JSR 271: Mobile Information Device Profile
3 (2009), http://www.jcp.org/en/jsr/detail?id=271

http://ode.apache.org/
http://struts.apache.org/
http://subversion.apache.org/
http://www.borland.com/us/products/together/
http://xcoder.sf.net
http://help.eclipse.org/helios/index.jsp?topic=/org.eclipse.emf.doc/references/overview/EMF.html
http://help.eclipse.org/helios/index.jsp?topic=/org.eclipse.emf.doc/references/overview/EMF.html
http://www.eclipse.org/gmf/
http://www.eclipse.org/modeling/mdt/?project=uml2
http://www.eclipse.org/modeling/mdt/?project=uml2tools
http://www.eclipse.org/modeling/mdt/?project=uml2tools
http://www.eclipse.org/modeling/m2t/?project=jet#jet
http://www.eclipse.org/swt/
http://www.eclipse.org/modeling/m2t/?project=xpand
http://www.eclipse.org/Xtext/#xtend2
http://www.eclipse.org/Xtext/
http://www.gnu.org/software/make/manual/make.html
http://freemarker.org/
http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1124.pdf
http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1124.pdf
http://www.jcp.org/en/jsr/detail?id=40
http://www.jcp.org/en/jsr/detail?id=52
http://www.jcp.org/en/jsr/detail?id=139
http://www.jcp.org/en/jsr/detail?id=222
http://www.jcp.org/en/jsr/detail?id=245
http://www.jcp.org/en/jsr/detail?id=271

240 Bibliography

[Jav11a] Java Community Process. JSR 224: Java API for XML-Based Web
Services (JAX-WS) 2.0 (2011),
http://jcp.org/en/jsr/detail?id=224

[Jav11b] Java Community Process. JSR 315: Java Servlet 3.0 Specification
(2011), http://www.jcp.org/en/jsr/detail?id=315

[Ken03] Kennedy-Carter. UML ASL Reference Guide, ASL Language Level 2.5
(2003), http://www.ooatool.com/docs/ASL03.pdf

[Mic11] Microsoft. Official Microsoft ASP.NET Site (2011),
http://www.asp.net/

[OAS07] OASIS. Web Services Business Process Execution Language Version
2.0 (2007), http://docs.oasis-open.org/wsbpel/2.0/
OS/wsbpel-v2.0-OS.pdf

[Obe11] Obeo. Acceleo - MDA generator (2011), http://www.acceleo.org
[Obj03a] Object Management Group. Common Warehouse Metamodel (CWM)

Specification, Version 1.1. formal/03-03-02 (2003),
http://www.omg.org/spec/CWM/1.1/

[Obj03b] Object Management Group. Model Driven Architecture (MDA) Guide
Version 1.0.1. omg/2003-06-01 (2003),
http://www.omg.org/cgi-bin/doc?omg/03-06-01

[Obj04] Object Management Group. Human-Usable Textual Notation
(HUTN) Specification. formal/2004-08-01,
http://www.omg.org/spec/HUTN/1.0/

[Obj07] Object Management Group. MOF 2.0/XMI Mapping, Version 2.1.1.
formal/2007-12-01 (2007), http://www.omg.org/spec/XMI/2.1.1/

[Obj08] Object Management Group. MOF Model to Text Transformation Lan-
guage, Version 1.0. formal/2008-01-16 (2008),
http://www.omg.org/spec/MOFM2T/1.0/

[Obj10a] Object Management Group. OMG Unified Modeling LanguageTM

(OMG UML), Infrastructure, Version 2.3. formal/2010-05-03 (2010),
http://www.omg.org/spec/UML/2.3/

[Obj10b] Object Management Group. OMG Unified Modeling LanguageTM

(OMG UML), Superstructure, Version 2.3. formal/2010-05-05 (2010),
http://www.omg.org/spec/UML/2.3/

[Obj11a] Object Management Group. OMG Unified Modeling LanguageTM

(OMG UML), Superstructure, Version 2.3. formal/2010-05-05 (2010),
http://www.omg.org/spec/UML/2.3/

[Obj11b] Object Management Group. Common Object Request Broker Archi-
tecture, CORBA (2011), http://www.omg.org/spec/CORBA/

[Obj11c] Object Management Group. Meta Object Facility (MOF) 2.0
Query/View/ Transformation Specification, Version 1.1. formal/2011-
01-01 (2011), http://www.omg.org/spec/QVT/1.1/

[Obj11d] Object Management Group. Meta Object Facility (MOF) 2.0
Query/View/ Transformation Specification, Version 1.1. formal/2011-
01-01 (2011), http://www.omg.org/spec/QVT/1.1/

[Red11a] Red Hat. JBoss Application Server (2011),
http://www.jboss.org/jbossas/

[Red11b] Red Hat. jBPM (2011), http://www.jboss.org/jbpm
[Spr11a] Springer Science+Business Media. Springer - International Publisher

Science, Technology, Medicine (2011),
http://www.springer.com/

http://jcp.org/en/jsr/detail?id=224
http://www.jcp.org/en/jsr/detail?id=315
http://www.ooatool.com/docs/ASL03.pdf
http://www.asp.net/
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf
http://www.acceleo.org
http://www.omg.org/spec/CWM/1.1/
http://www.omg.org/cgi-bin/doc?omg/03-06-01
http://www.omg.org/spec/HUTN/1.0/
http://www.omg.org/spec/XMI/2.1.1/
http://www.omg.org/spec/MOFM2T/1.0/
http://www.omg.org/spec/UML/2.3/
http://www.omg.org/spec/UML/2.3/
http://www.omg.org/spec/UML/2.3/
http://www.omg.org/spec/CORBA/
http://www.omg.org/spec/QVT/1.1/
http://www.omg.org/spec/QVT/1.1/
http://www.jboss.org/jbossas/
http://www.jboss.org/jbpm
http://www.springer.com/

Bibliography 241

[Spr11b] Spring Source. Spring Framework (2011),
http://www.springsource.org/

[The11] The MathWorks. Simulink - Simulation and Model-Based Design
(2011), http://www.mathworks.co.uk/products/simulink/

[Tig11] The MathWorks. Simulink - Simulation and Model-Based Design
(2011), http://www.mathworks.co.uk/products/simulink/

[W3C07] The MathWorks. Simulink - Simulation and Model-Based Design
(2011), http://www.mathworks.co.uk/products/simulink/

[W3C09] W3C. W3C Document Object Model (2009),
http://www.w3.org/DOM/

[W3C11] W3C. W3C XML Schema (2011), http://www.w3.org/XML/Schema

http://www.springsource.org/
http://www.mathworks.co.uk/products/simulink/
http://www.mathworks.co.uk/products/simulink/
http://www.mathworks.co.uk/products/simulink/
http://www.w3.org/DOM/
http://www.w3.org/XML/Schema

Index

A

abstract form target 27, 31, 37, 143
Annotation Editor 56, 140, 147, 148,

213
application expert 45, 46, 77, 101
aspect orientation 85, 219
atomic proposition 50, 68, 164, 217

B

benchmark framework 97, 133
bootstrapping 8, 12, 69, 106, 191, 210
BPM 26, 35, 70, 117
business expert see application expert
Business Process Modeling see BPM

C

CASE 4, 19–20, 37, 53
code generation

full 8, 24, 33–34, 41, 69, 107, 193,
202, 209

template-based 28–31, 36, 96, 195,
210, 220

visitor-based 29
code-to-model traceability 215–216, 218
Common SIBs 46, 78–79, 128, 129, 131,

143, 148, 157, 160, 174
compiler 12, 171

cross-compiler 12
self-compiling 12, 107
self-hosting 12

Computer-Aided Software Engineering,
see CASE

concrete form target 27
constraints 42, 63, 155, 219

composite 158, 162
global 42, 54, 63–66, 77, 158–168, 209
local 42, 54, 55, 157–158, 209

context key 58, 80, 110, 113, 157, 217
ContextExpression 59, 128, 145, 151
ContextKey 59, 80, 113, 144, 145, 149,

151, 173
control flow pattern 61, 78, 115–117,

120, 146, 220
fork-join 61, 116, 118, 173

D

domain 14
domain expert 45, 53, 55, 56, 67, 77,

211, 217
domain-specific language see DSL
Domain-Specific Modeling see DSM
DSL 15–17, 77

external 16, 54
internal 16, 29, 54

DSM 24, 34, 37, 71

E

Eclipse Modeling Framework see EMF
Ecore 18, 80, 177, 180–182, 188–190,

220
embedded systems 108, 140, 144

244 Index

EMF 18, 76, 177, 179–180, 220
event handling 62, 123, 150
Executable UML 34
execution

context 47, 58–60, 78, 110, 112, 122,
124, 157, 171

flat 60, 61, 89, 94
scope 59, 113, 128, 151
stacked 58, 61, 114, 122, 128, 144,

150
environment 57, 146
equivalence 102, 108, 170–172
footprint 171
semantics 52, 57–58, 60, 76, 103, 114

Extreme Model-Driven Development,
see XMDD

Extruder 57, 103–109, 121, 128, 141,
146, 147

F

FBB 158
flow charts 115, 117
ForkSIB 61
Formula Building Block see FBB
formula graph 77, 158, 161–168
FormulaBuilder 64, 77, 143, 155,

158–160, 162, 210
forward engineering 32

G

GEAR 63–69, 155, 158, 159, 213, 219
macro 64, 158, 161–163

generation gap 33
generation logic 8, 27, 28, 30, 36, 95,

210, 220
Generative Programming see GP
generator developer 77
generator user 77
Genesys

approach 4–9
framework 75–77

Genesys Code Generator Generator 76,
95, 97, 99, 100, 125, 129, 174

GP 20–21, 38
GraphSIB 61, 122, 131

I

identifier generation 83–85, 119, 162,
163

incremental formalization 42, 63
inspector 44
interpreter 26, 57, 70, 106, 121–125,

134, 136, 146, 171, 210
IT expert 45, 47, 55, 57, 114, 145, 155

J

jABC 38, 43–46, 75
plugins 48, 53–56, 62, 66, 69, 77, 96,

99, 152, 153, 176, 199, 209–211,
217

jABC EE 146, 212
jABC Execution Engine see jABC EE
jETI 56, 196
JoinSIB 61

K

Kripke Transition System 50, 64

L

language workbench 19, 25–26, 37, 53,
71

LocalChecker 55, 63, 69, 155, 157–158
loose programming 211, 219

M

macro 51, 52, 58, 61, 76, 115, 118, 122,
131, 165, 173, 175

MacroSIB 61, 89, 131
Maven 9, 77, 99, 185, 210
MD* 3
MDA 17, 22–23, 33, 69, 188
Meta-Object Facility see MOF
metalevel 17–19, 188–191
metametamodel 17
metamodel 7, 15, 53, 180, 220
model 3, 14, 17

executable 5, 42, 70, 107, 210
hierarchical 4, 41, 51, 52, 61, 69, 85,

162, 168, 209, 210

Index 245

reflexive 18, 181
model branch 52, 123
model checking 7, 38, 41, 63, 155, 168,

209, 210, 213, 217
Model Driven Architecture see MDA
model parameter, 52, 104, 217
model-based development 3
model-driven development 3
modeling language see DSL

(domain-specific language)
MOF 17, 180
multi-threading 61, 150, 173

O

One-Thing-Approach see OTA
OTA 41
output description 8, 27, 28, 30, 36, 95,

210, 220

P

product lines 8, 20, 85, 120, 210, 211,
218–219

property specification patterns 64, 158,
160, 162–168

protected regions 32, 179
Pure Generator 109

R

recursion 58, 115, 128, 131, 133, 173
reverse engineering 32, 211
round-trip engineering 8, 23, 32–33, 41,

101, 194, 196, 209
full 33
partial 32

S

self-generating generator 107
semantics 16

static 7, 15, 54, 55
translational 16

service adapter 48, 50, 57, 68, 70,
110–112, 114, 122, 123, 139, 141,
144, 150, 153, 183, 208

descriptor 110, 111, 122

Service Independent Building Block see
SIB

Service Logic Graph see SLG
SIB 43, 46–50

branch, 47, 48, 51, 122
control SIBs 54, 60–62, 108, 122, 123,

131, 133, 142, 150
data types 48
parameter 47, 48
proxy SIB 53, 58, 162
start SIB 57, 152, 162

SIB expert see IT expert
SIBGraphModel 53, 103, 108, 121, 129,

133, 135, 141
SLG 43, 50–54

branch see model branch
parameter see model parameter
recursive 59

structured code 103, 114–121, 126, 128,
131, 134, 136, 142, 143

syntax
abstract 7, 15, 53
concrete 15, 53, 159, 171

synthesis 211, 219

T

T-diagram 13, 95, 106
taxonomy 44, 53, 56, 69, 209
template 28, 29, 83, 91, 93, 95, 131,

157, 210, 219, 220
engine 28, 29, 36, 60, 79, 131, 157,

179, 183, 209, 220
language 30, 38, 60, 95, 177

test
case 156, 168–176, 209, 217
script 170, 175
suite 133, 168, 169, 173, 175–176, 217

testing 7, 76, 155, 168–176, 209,
217–218

back-to-back 172, 209
data-driven 172

ThreadSIB 61, 122
Tracer 57–63, 69, 70, 76, 94, 102–110,

114, 129, 131–133, 139, 141, 146,
152, 169, 171, 174, 176, 210, 216,
219

transformation 23
engine 31

246 Index

hard-coded 27, 28, 31
model-to-code 19
model-to-model 31, 87, 119, 125, 136,

142, 216, 220, 221
model-to-text 19, 31
rule-based 27, 31, 37, 160, 210
source-driven 27, 36, 96
target-driven 27, 31, 36, 96

type mapping 79–83, 103, 113–114, 119,
142, 144, 145, 149, 164

U

UML 17, 30, 33, 34, 37, 54, 69, 180, 193
profile 195

Unified Modeling Language see UML
user objects 53, 54, 97

V

V&V 7, 34–35, 69, 155–176, 209
variants 45, 85–87, 120, 125, 128, 130,

135, 208, 210, 218–219
variation point 85, 120, 218, 219
views 42, 218, 220
visitor 28, 29

W

weaving 87, 219

X

XMDD 38, 40–43, 75

	Title
	Foreword
	Acknowledgments
	Abstract
	List of Abbreviations
	List of Figures
	List of Tables
	Contents
	Part IMotivation and Fundamentals
	Introduction
	Requirements of the Genesys Approach
	Organization of the Book

	The State of the Art in Code Generation
	Influences of Compiler Construction
	Models, Metamodels and Domain-Specific Languages
	The Role of Code Generation
	Computer-Aided Software Engineering
	Generative Programming
	Model Driven Architecture
	Domain-Specific Modeling
	Language Workbenches
	Approaches without Code Generation

	Code Generation Techniques
	Programming the Code Generator
	Template-Based Code Generation
	Rule-Based Transformation
	Round-Trip Engineering versus Full Code Generation

	Quality Assurance of Code Generators
	Classification of Genesys

	Extreme Model-Driven Development and jABC
	Extreme Model-Driven Development
	jABC
	Service Independent Building Blocks
	Service Logic Graphs
	Plugins

	Model Execution with the Tracer
	Execution Semantics
	Execution Context
	Control SIBs
	Tracer Plugin

	Model Checking with GEAR
	Specification of Global Constraints
	GEAR Plugin

	jABC as a Basis for Realizing the Genesys Approach

	Part IIThe Genesys Framework and Case Studies
	The Genesys Framework
	Services for Building Code Generators
	Contributions to the Common SIBs
	Type Mapping
	Identifier Generation
	Variant Management

	Simple Example: Documentation Generator
	Structuring the Generation Process
	The Initialization Phase
	The Generation Phase
	Finalizing the Generator
	General Remarks on the Example

	Genesys Tooling
	Developer Tools
	User Tools

	Case Studies: Code Generators for jABC
	Bootstrapping: Java Class Extruder
	The Extruder Concept
	Development of the Generator
	Evaluation

	Java Class Generator
	Handling Service Calls
	From Single Class to Multiple Classes
	Data Type Mappings and Execution Context
	Variant 1: Structured Code
	Variant 2: The Interpreter Approach
	Genesys Code Generator Generator
	Remarks on Different Versions

	Comparison and Evaluation of the Java Code Generators
	Code Generator Models
	Code Generator Results
	Conclusions

	Further Code Generators for jABC
	Servlet Extruder and Servlet Generator
	SIB Extruder and SIB Generator
	Web Service Generator
	leJOS and NXC Generator
	BPEL Generator
	C# Generator
	JME Generator
	EE Process Definition Generator
	JML Extension for Java Class Generator
	iPhone Generator
	Code Generators for Ruby, Perl and JavaScript
	Robocode Generator

	Verification & Validation of Code Generators
	Local Constraints for Code Generators
	Global Constraints for Code Generators
	FormulaBuilder
	The Constraint Library
	Occurrence Constraints
	Order Constraints
	Deriving Patterns & Composing Constraints

	Testing of Code Generators
	Testing the jABC Code Generators
	Generation of Test Scripts for JUnit

	Case Study: Domain-Specific Code Generatorsfor EMF
	Eclipse Modeling Framework
	The Ecore Metamodel
	EMF SIB Generator
	Example: Taxonomy POJO Generator
	Evaluation

	Case Study: Service-Oriented Combination ofCode Generation Frameworks
	AndroMDA
	Example Application: Multiple Sequence Alignment (MSA)
	Integrated Modeling
	Integrated Code Generation
	Evaluation

	Part IIIConclusions and Future Work
	Conclusions
	Requirements of the Genesys Approach Revisited
	Further Applications of Genesys

	Future Work

	Bibliography
	Index

