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   Preface 

   What is this DSP thing I keep hearing about? What’s so great about it? What do DSP 
engineers do? And how do I get in on the action? Great questions! Take a journey with me 
and all will be revealed …  

    Defi ning DSP 

   First, let’s fi gure out what DSP is. The acronym DSP has two alternate meanings: Digital 
Signal Processing and Digital Signal Processor. Let’s look at each, starting with digital signal 
processing. The meaning of  “ digital ”  is obvious — it means we are working in the world of 
1’s and 0’s, and not in the analog world. The idea of a  “ signal ”  is a bit trickier. Our friend 
Wikipedia defi nes the term as  “ any time-varying or spatial-varying quantity. ”  Speech is 
an example of a time-varying quantity; the pitch and volume of a voice changes from one 
moment to the next. A photograph is an example of a space-varying quantity; the color and 
brightness of an image are different in different areas of the photo. Now we are left to defi ne 
 “ processing. ”  This is a broad concept, but it generally involves analysis and manipulation 
using mathematical algorithms. For example, we could analyze a voice recording to 
determine its pitch, and we could manipulate a photograph by adjusting its colors. 

   DSP applications fall into four main categories: 

      ●      Communications  

      ●      Audio, video, and imaging (sometimes referred to as media processing)  

      ●      Motion control  

      ●      Military and aerospace    

   Of these areas, communications and video receive the most attention. Both areas are evolving 
rapidly, and both impose high computational loads. In addition, both areas include systems 
with severely limited power budgets. 

   With this background, it’s easy to defi ne the term digital signal processor. A digital signal 
processor is a simply a processor with specialized features for signal processing. For example, 
many signal processing algorithms involve multiplication followed by addition, an operation 
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commonly referred to as a multiply accumulate or MAC. Since the MAC operation is so 
common in signal processing, all digital signal processors include special MAC hardware. 
As another example. many DSP applications have limited power budgets. Thus, many DSPs 
offer advanced power-saving features, such as the ability to change speeds and voltages n the 
fl y — a feature known as dynamic frequency and voltage scaling. 

   It is important to note that digital signal  processing  does not require digital signal  processors . 
Many signal processing systems use general-purpose processors (such as those available from 
ARM and MIPS) or custom hardware (built using ASICs and FPGAs). Many systems use 
a mix of hardware. For example, many systems contain both a DSP and a general-purpose 
processor (GPP).  

    The Role of the DSP Engineer 

   So much for the basics. What do DSP engineers actually do? My friend Shiv Balakrishnan 
recently wrote an article on this topic, and I agree with his conclusion that DSP engineers 
typically fall into three categories: 

    1.     System designers create algorithms and (in some cases) the overall system.  

    2.     Hardware designers implement (1) in hardware.  

    3.     Programmers implement (1) in software, either by using hardware created by (2) or by 
using off-the-shelf hardware.    

   This book is intended mainly for programmers. This is the most common role for DSP engineers, 
and the role that is easiest to address without getting into graduate-level concepts. Nonetheless, it 
is worth looking at each of these jobs in detail, and exploring the skill sets for each. 

    System Designer 

   The system designer focuses on the big picture. This engineer may design the overall 
functionality of the system, including all of the attendant algorithms, or they may focus on 
specifi c subsystems and algorithms. The latter case is common for products such as cell 
phones where the system complexity is too great for a single engineer. 

   The system designer is referred to as a domain expert because they need an expert 
understanding of the system requirements and how to meet them. This includes expertise on 
the analog world, because most DSP systems have analog inputs and outputs. For example, 
wireless system designers must know how signals degrade as they propagate through the air. 
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The system designer also needs top-notch algorithmic expertise. To meet these demands, the 
system designer often needs a master’s degree or even a PhD. 

   The system designer builds a functional model of the system using graphical tools such 
as  Simulink  and  LabVIEW  as well as text-based tools like MATLAB and C. The system 
designer often does not get into the details of the hardware and software design, but they must 
understand the basics of these disciplines. Even the most brilliant design is worthless if no 
one can build it! System designers must also take great care to ensure that hardware designers 
and programmers fully understand the functional model. Among other things, this means that 
the system designer must provide a means of testing the hardware and software against the 
system model. To meet these goals, system designers are increasingly turning to Electronic 
System Level (ESL) tools. ESL tools perform a number of functions, including automatic 
generation of reference hardware and software, as well as generation of test vectors.  

    Hardware Designer 

   Once the system is designed, it’s the hardware designer’s turn. The role of the hardware 
designer varies widely. As with the system designer, the hardware designer may work on 
the entire system or may focus on specifi c subsystems. The hardware designer may create 
custom hardware, or they may build a system using off-the-shelf parts. For custom hardware, 
designers once turned to  ASICs , but ASIC design has become prohibitively expensive for all 
but the highest-volume products. As a result, hardware designers often use  FPGAs  instead. 
 Structured ASICs  are also an option, particularly for medium-volume applications. 

   In any of these cases, the hardware designer realizes the hardware as a set of blocks. 
Traditionally, the designer would implement each block in hand-coded  RTL  (either  VHDL  or 
 Verilog ), verify it, and optimize it. While hand-coded RTL is still in use, hardware engineers 
increasingly rely on ESL tools to generate hardware. This is particularly true for key DSP 
algorithms like FFTs and FIR fi lters. ESL tools have become quite profi cient at generating 
hardware for these algorithms. In addition to the custom-built blocks, most applications also 
include one or more programmable processors. The processors may be implemented inside an 
ASIC or FPGA, or the hardware designer may use off-the shelf processors. 

   For systems that use off-the-shelf hardware, the hardware designer’s job is much simpler. 
However, the hardware designer still has to make many careful choices in order to meet 
the system requirements. The processors must have enough performance to handle 
the workload, the buses must have enough bandwidth to handle the data, and so on. In 
many cases, it is impossible to fi nd off-the-shelf hardware that fully meets the system 
requirements, so the hardware designer must create a small amount of custom hardware. 
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For example, many systems use an FPGA to implement I/O that is not available in the off-
the-shelf processor. 

   The upshot of all of this is that hardware designers need a variety of skills. Although ESL 
tools are lightening the workload, the hardware designer must have good RTL coding skills. 
Obviously, hardware designers must understand the algorithms they implement. They must 
also understand the requirements of the software so they can make wise design decisions. 
Although it is possible to meet all of these requirements with a bachelor’s-level education, a 
master’s degree is quite helpful.  

    Programmer 

   Next up: the programmer. The programmer writes code to implement the remaining 
functionality on the systems processor or processors. Like programmers in any other fi eld, 
the DSP programmer generally writes in C/C �  � . However, DSP code is unusual for two 
reasons. First, DSP code often begins as a MATLAB or Simulink model. Thus, tools that 
convert  MATLAB to C  are drawing a great deal of interest. Second, DSP code requires heavy 
optimization for performance, size, and power. In many cases, this requires the programmer to 
optimize key sections of their code using assembly language. To achieve these extreme levels of 
optimization, the DSP engineer must be intimately familiar with the details of their hardware. 

   As mentioned earlier, many DSP systems include multiple processors. For example, many 
systems include both a GPP and a DSP. In recent years, multicore processors have also become 
commonplace. ( Multicore  processors combine two or more processor cores on a single chip.) 
Thus, multiprocessor programming is a critical skill for many DSP programmers. 

   Until recently, DSP programmers wrote most of their own software. Today, DSP 
programmers often use off-the-shelf software for large parts of the system. This is particularly 
true for speech- and media-processing  codecs . These codecs have become highly standardized 
and commoditized. 

   Obviously, the programmer must understand the algorithms they implement. Programmers 
who use off-the-shelf DSP software only need to know the basics of the underlying 
algorithms. In either case, a bachelor’s-level education is generally suffi cient, but a master’s-
level education is helpful.   

    DSP Project Flow 

   So far we have described the three DSP roles as separate disciplines, but the three roles tend 
to overlap in practice. For example, a single engineer may fi ll all three roles in a smaller 
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project. It is also important to note that we have implied a linear project handoff from one 
discipline to the next. Projects rarely work this way in practice. Instead, most projects follow 
an iterative process with extensive feedback between the various roles. In addition, the system 
design, hardware design, and programming often proceed in parallel.  

    The Future of DSP 

   DSP was once a narrow, highly specialized fi eld. Five years ago, DSP was nearly 
synonymous with telecom. If someone told you they were a DSP engineer, you had a good 
idea of what they did. You could be certain that they had good math skills and could explain 
exactly how a FIR fi lter works. Today, DSP is everywhere, often disguised under a moniker 
like  “ media processing. ”  Many of the engineers working on DSP systems have only a general 
understanding of the underlying algorithms. With all these changes, it is hard to clearly defi ne 
exactly what a DSP engineer is, or what they do — and this confusion is likely to get worse 
as DSP diffuses into an ever-growing list of applications. However, one thing is certain: DSP 
engineering will remain an important and in-demand skill for many years to come.       
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 CHAPTER 1 

                                                                                                                 ADCs, DACs, and Sampling Theory 
   Walt   Kester    

   Dan   Sheingold   
     James   Bryant    

     A chapter on analog? What’s this doing in a DSP book? And at the very front of the book, no less! 

 Relax. You don’t need to be an analog expert to do DSP. However, a little analog knowledge is 
a big help! Nearly all DSP systems have analog inputs. Before we can manipulate this analog 
data, we need to pass it through an analog-to-digital converter (ADC). This conversion process 
is always fl awed — the digital data cannot capture the analog signal with perfect precision. ADCs 
also change the data by adding noise and distortion. What’s worse, ADCs present the possibility 
of aliasing — a phenomenon where two signals that are obviously different in the analog world 
become indistinguishable in the digital world. 

 Things are just as bad on the output side. Most DSP systems have analog outputs, so we have to 
pipe the output through digital-to-analog converters (DACs). DACs cannot reproduce our digital 
signal with perfect precision — they always introduce noise and distortion. 

 If all of this sounds frightening, don’t worry. As long as you understand the limitations of ADCs 
and DACs, these limitations are usually easy to manage. This chapter by Walt Kester will help 
you do just that. The author explains the principles behind ADCs and DACs, including the all-
important Nyquist sampling theorem. He explains the basic operation of ADCs and DACs, and 
shows how even  “ ideal ”  ADCs and DACs introduce errors. He then goes on to explain the fl aws 
of real-world ADCs and DACs. 

 The information in this chapter will be more than enough for most DSP engineers. If you want to 
dive deeper, I heartily recommend these series: 

 ADCs for DSP 
   http://www.dspdesignline.com/howto/202200877   

 DACs for DSP 
   http://www.dspdesignline.com/howto/205601725   

  — Kenton Williston   
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    1.1       Coding and Quantizing 

   Analog-to-digital converters (ADCs) translate analog quantities, which are characteristic of 
most phenomena in the  “ real world, ”  to digital language, used in information processing, 
computing, data transmission, and control systems. Digital-to-analog converters (DACs) are 
used in transforming transmitted or stored data, or the results of digital processing, back to 
 “ real-world ”  variables for control, information display, or further analog processing. The 
relationships between inputs and outputs of DACs and ADCs are shown in  Figure 1.1   . 

   Analog input variables, whatever their origin, are most frequently converted by transducers 
into voltages or currents. These electrical quantities may appear (1) as fast or slow  “ DC ”  
continuous direct measurements of a phenomenon in the time domain, (2) as modulated AC 
waveforms (using a wide variety of modulation techniques), (3) or in some combination, with 
a spatial confi guration of related variables to represent shaft angles. Examples of the fi rst are 
outputs of thermocouples, potentiometers on DC references, and analog computing circuitry; 
of the second,  “ chopped ”  optical measurements, AC strain gage or bridge outputs, and digital 
signals buried in noise; and of the third, synchros and resolvers. 

   The analog variables to be dealt with in this chapter are those involving voltages or currents 
representing the actual analog phenomena. They may be either wideband or narrowband. 
They may be either scaled from the direct measurement, or subjected to some form of analog 
preprocessing, such as linearization, combination, demodulation, fi ltering, sample-hold, etc. 

MSB

MSB

LSB

LSB

VREF

VREF

Digital
input
N-bits

Digital
output
N-bits

Analog
output

Analog
input

�FS

0 OR –FS
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0 OR –FS

Range
(span)

Range
(span)

N-bit
ADC

N-bit
DAC

 Figure 1.1 :         Digital-to-analog converter (DAC) and analog-to-digital converter (ADC) 
input and output defi nitions    
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   As part of the process, the voltages and currents are  “ normalized ”  to ranges compatible 
with assigned ADC input ranges. Analog output voltages or currents from DACs are direct 
and in normalized form, but they may be subsequently post-processed (e.g., scaled, fi ltered, 
amplifi ed, etc.). 

   Information in digital form is normally represented by arbitrarily fi xed voltage levels referred 
to  “ ground, ”  either occurring at the outputs of logic gates, or applied to their inputs. The 
digital numbers used are all basically binary; that is, each  “ bit, ”  or unit of information has 
one of two possible states. These states are  “ off, ”   “ false, ”  or  “ 0, ”  and  “ on, ”   “ true, ”  or  “ 1. ”  It is 
also possible to represent the two logic states by two different levels of current; however, this 
is much less popular than using voltages. There is also no particular reason why the voltages 
need be referenced to ground — as in the case of emitter-coupled-logic (ECL), positive-
emitter-coupled-logic (PECL) or low-voltage-differential-signaling logic (LVDS) for example. 

    Words  are groups of levels representing digital numbers; the levels may appear 
simultaneously in  parallel,  on a bus or groups of gate inputs or outputs,  serially  (or in a time 
sequence) on a single line, or as a sequence of parallel bytes (i.e.,  “ byte-serial ” ) or nibbles 
(small bytes). For example, a 16-bit word may occupy the 16 bits of a 16-bit bus, or it may be 
divided into two sequential bytes for an 8-bit bus, or four 4-bit nibbles for a 4-bit bus. 

   Although there are several systems of logic, the most widely used choice of levels are those 
used in TTL (transistor-transistor logic) and, in which positive  true,  or 1, corresponds to a 
minimum output level of 2.4       V (inputs respond unequivocally to  “ 1 ”  for levels greater than 
2.0       V); and  false,  or 0, corresponds to a maximum output level of 0.4       V (inputs respond 
unequivocally to  “ 0 ”  for anything less than 0.8       V). It should be noted that even though CMOS 
is more popular today than TTL, CMOS logic levels are generally made to be compatible 
with the older TTL logic standard. 

   A unique parallel or serial grouping of digital levels, or a  number,  or  code,  is assigned to each 
analog level which is quantized (i.e., represents a unique portion of the analog range). 
A typical digital code would be this array: 

  a a a a a a a7 6 5 4 3 2 1 10111001�       

   It is composed of 8 bits. The  “ 1 ”  at the extreme left is called the  most signifi cant bit  (MSB, or 
bit 1), and the one at the right is called the  least signifi cant bit  (LSB, or bit  N:  8 in this case). 
The meaning of the code, as either a number, a character, or a representation of an analog 
variable, is unknown until the  code  and the  conversion relationship  have been defi ned. It is 
important not to confuse the designation of a particular bit (i.e., bit 1, bit 2, and so on) with 
the subscripts associated with the  “ a ”  array. The subscripts correspond to the power of 2 
associated with the weight of a particular bit in the sequence. 
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   The best-known code (other than base-10) is  natural or straight binary  (base-2). Binary codes 
are most familiar in representing integers; i.e., in a natural binary integer code having  N  bits, 
the LSB has a weight of 2 0  (i.e., 1), the next bit has a weight of 2 1  (i.e., 2), and so on up to the 
MSB, which has a weight of 2  N    � 1  (i.e., 2  N  /2). The value of a binary number is obtained by 
adding up the weights of all non-zero bits. When the weighted bits are added up, they form a 
unique number having any value from 0 to 2 N  � 1. Each additional trailing zero bit, if present, 
essentially doubles the size of the number. 

   In converter technology, full-scale (abbreviated  FS ) is independent of the number of bits of 
resolution,  N . A more useful coding is  fractional  binary, which is always normalized to full-
scale. Integer binary can be interpreted as fractional binary if all integer values are divided by 
2 N . For example, the MSB has a weight of ½ (i.e., 2 (N � 1) /2 N  � 2  � 1 ), the next bit has a weight 
of ¼ (i.e., 2  � 2 ), and so forth down to the LSB, which has a weight of 1/2 N  (i.e., 2  � N ). When 
the weighted bits are added up, they form a number with any of 2 N  values, from 0 to (1 � 2  � N ) 
of full-scale. Additional bits simply provide more fi ne structure without affecting full-scale 
range. The relationship between base-10 numbers and binary numbers (base-2) are shown in 
 Figure 1.2    along with examples of each. 

    1.1.1       Unipolar Codes 

   In data conversion systems, the coding method must be related to the analog input range (or 
span) of an ADC or the analog output range (or span) of a DAC. The simplest case is when 
the input to the ADC or the output of the DAC is always a unipolar positive voltage (current 
outputs are very popular for DAC outputs, much less for ADC inputs). The most popular 

LSB

MSB

Number10 � aN–12N–1� aN–12N–2� … �a121� a020

MSB

Example: 10112 � (1�23) � (0�22) � (1�21) � (1�20)

 � 8 � 0 � 2 � 1 � 1110

Whole numbers:

Number10 � aN–12–1� aN–22–2� … �a12–(N–1)� a02–N

Example: 0.10112 � (1�0.5) � (0�0.25) � (1�0.125) � (1�0.0625)

Fractional numbers:

LSB

� 0.5 � 0 � 0.125 � 0.0625 � 0.687510

 Figure 1.2 :         Representing a base-10 number with a binary number (base-2)    
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code for this type of signal is  straight binary  and is shown in  Figure 1.3    for a 4-bit converter. 
Notice that there are 16 distinct possible levels, ranging from the all-zeros code 0000, to the 
all-ones code 1111. It is important to note that the analog value represented by the all-ones 
code is not full-scale (abbreviated FS), but FS � 1 LSB. This is a common convention in 
data conversion notation and applies to both ADCs and DACs.  Figure 1.3  gives the base-10 
equivalent number, the value of the base-2 binary code relative to full-scale (FS), and also the 
corresponding voltage level for each code (assuming a 10       V full-scale converter. The Gray 
code equivalent is also shown, and will be discussed shortly. 

    Figure 1.4    shows the transfer function for an ideal 3-bit DAC with straight binary input 
coding. Notice that the analog output is zero for the all-zeros input code. As the digital input 
code increases, the analog output increases 1 LSB (1/8 scale in this example) per code. The 
most positive output voltage is 7/8 FS, corresponding to a value equal to FS � 1 LSB. The 
midscale output of 1/2 FS is generated when the digital input code is 100. 

   The transfer function of an ideal 3-bit ADC is shown in  Figure 1.5   . There is a range of 
analog input voltage over which the ADC will produce a given output code; this range is 
the  quantization uncertainty  and is equal to 1 LSB. Note that the width of the transition 
regions between adjacent codes is zero for an ideal ADC. In practice, however, there is 
always transition noise associated with these levels, and therefore the width is non-zero. It is 
customary to defi ne the analog input corresponding to a given code by the  code center  which 
lies halfway between two adjacent transition regions (illustrated by the black dots in the 
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 Figure 1.3 :         Unipolar binary codes, 4-bit converter    
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 Figure 1.5 :         Transfer function for ideal unipolar 3-bit ADC    
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diagram). This requires that the fi rst transition region occur at ½ LSB. The full-scale analog 
input voltage is defi ned by 7/8 FS, (FS � 1 LSB).  

    1.1.2       Gray Code 

   Another code worth mentioning at this point is the  Gray  code (or  refl ective-binary ), which 
was invented by Elisha Gray in 1878 (Reference 1) and later re-invented by Frank Gray in 
1949 (see Reference 2). The Gray code equivalent of the 4-bit straight binary code is also 
shown in  Figure 1.3 . Although it is rarely used in computer arithmetic, it has some useful 
properties which make it attractive to A/D conversion. Notice that in Gray code, as the 
number value changes, the transitions from one code to the next involve only one bit at a 
time. Contrast this to the binary code where all the bits change when making the transition 
between 0111 and 1000. Some ADCs make use of it internally and then convert the Gray 
code to a binary code for external use. 

   One of the earliest practical ADCs to use the Gray code was a 7-bit, 100       kSPS electron beam 
encoder developed by Bell Labs and described in a 1948 reference (Reference 3). 

   The basic electron beam coder concepts for a 4-bit device are shown in  Figure 1.6   . The 
early tubes operated in the serial mode (a). The analog signal is fi rst passed through 

Electron gun

Electron gun

Y deflectors

X deflectors

Shadow mask

Collector

Y deflectors
Shadow mask

Collector

(a) Serial mode

(b) Parallel mode

 Figure 1.6 :         The electron beam coder: (a) serial mode and (b) parallel or  “ Flash ”  mode    
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a sample-and-hold, and during the  “ hold ”  interval, the beam is swept horizontally across the 
tube. The Y-defl ection for a single sweep therefore corresponds to the value of the analog 
signal from the sample-and-hold. The shadow mask is coded to produce the proper binary 
code, depending on the vertical defl ection. The code is registered by the collector, and the 
bits are generated in serial format. Later tubes used a fan-shaped beam (shown in  Figure 
1.6b ), creating a  “ Flash ”  converter delivering a parallel output word. 

   Early electron tube coders used a binary-coded shadow mask, and large errors can occur if 
the beam straddles two adjacent codes and illuminates both of them. The way these errors 
occur is illustrated in  Figure 1.7a   , where the horizontal line represents the beam sweep at 
the midscale transition point (transition between code 0111 and code 1000). For example, 
an error in the most signifi cant bit (MSB) produces an error of ½ scale. These errors were 
minimized by placing fi ne horizontal sensing wires across the boundaries of each of the 
quantization levels. If the beam initially fell on one of the wires, a small voltage was added to 
the vertical defl ection voltage which moved the beam away from the transition region. 

   The errors associated with binary shadow masks were eliminated by using a Gray code 
shadow mask as shown in  Figure 1.7b . As mentioned above, the Gray code has the property 
that adjacent levels differ by only one digit in the corresponding Gray-coded word. Therefore, 
if there is an error in a bit decision for a particular level, the corresponding error after 
conversion to binary code is only one least signifi cant bit (LSB). In the case of midscale, 
note that only the MSB changes. It is interesting to note that this same phenomenon can 
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1 1 1 0
1 1 0 1
1 1 0 0
1 0 1 1
1 0 1 0
1 0 0 1
1 0 0 0
0 1 1 1
0 1 1 0
0 1 0 1
0 1 0 0
0 0 1 1
0 0 1 0
0 0 0 1
0 0 0 0

1 0 0 0
1 0 0 1
1 0 1 1
1 0 1 0
1 1 1 0
1 1 1 1
1 1 0 1
1 1 0 0
0 1 0 0
0 1 0 1
0 1 1 1
0 1 1 0
0 0 1 0
0 0 1 1
0 0 0 1
0 0 0 0

 Shadow maskShadow mask

LSBMSBLSBMSB

(a)    4-bit binary code (b)    4-bit reflected-binary code
     (Gray code)

 Figure 1.7 :         Electron beam coder shadow masks for (a) binary code and (b) Gray code    
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occur in modern comparator-based Flash converters due to comparator metastability. With 
small overdrive, there is a fi nite probability that the output of a comparator will generate the 
wrong decision in its latched output, producing the same effect if straight binary decoding 
techniques are used. In many cases, Gray code, or  “ pseudo-Gray ”  codes are used to decode 
the comparator bank. The Gray code output is then latched, converted to binary, and latched 
again at the fi nal output. 

   As a historical note, in spite of the many mechanical and electrical problems relating to 
beam alignment, electron tube coding technology reached its peak in the mid-l960s with 
an experimental 9-bit coder capable of 12 MSPS sampling rates (Reference 4). Shortly 
thereafter, however, advances in all solid-state ADC techniques made the electron tube 
technology obsolete. 

   Other examples where Gray code is often used in the conversion process to minimize errors 
are shaft encoders (angle-to-digital) and optical encoders. 

   ADCs that use the Gray code internally almost always convert the Gray code output to 
binary for external use. The conversion from Gray-to-binary and binary-to-Gray is easily 
accomplished with the exclusive-or logic function as shown in  Figure 1.8   .  

    1.1.3       Bipolar Codes 

   In many systems, it is desirable to represent both positive and negative analog quantities with 
binary codes. Either  offset binary ,  two’s complement ,  one’s complement , or  sign magnitude  
codes will accomplish this, but offset binary and two’s complement are by far the most 

BinaryBinary GrayGray
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1
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1

 Figure 1.8 :         Binary-to-Gray and Gray-to-binary conversion using the exclusive-or 
logic function    
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popular. The relationships between these codes for a 4-bit system is shown in  Figure 1.9   . 
Note that the values are scaled for a  � 5       V full-scale input/output voltage range. 

   For  offset binary , the zero signal value is assigned the code 1000. The sequence of codes is 
identical to that of straight binary. 

   The only difference between a straight and offset binary system is the half-scale offset 
associated with analog signal. The most negative value ( � FS  � 1 LSB) is assigned the code 
0001, and the most positive value ( � FS  � 1 LSB) is assigned the code 1111. Note that in 
order to maintain perfect symmetry about midscale, the all-zeros code (0000) representing 
negative full-scale ( � FS) is not normally used in computation. It can be used to represent a 
negative off-range condition or simply assigned the value of the 0001 ( � FS  � 1 LSB). 

   The relationship between the offset binary code and the analog output range of a bipolar 3-bit 
DAC is shown in  Figure 1.10   . The analog output of the DAC is zero for the zero-value input 
code 100. The most negative output voltage is generally defi ned by the 001 code ( � FS  � 1 
LSB), and the most positive by 111 ( � FS  � 1 LSB). The output voltage for the 000 input 
code is available for use if desired, but makes the output nonsymmetrical about zero and 
complicates the mathematics. 
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 Figure 1.9 :         Bipolar codes, 4-bit converter    
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   The offset binary output code for a bipolar 3-bit ADC as a function of its analog input is 
shown in  Figure 1.11   . Note that zero analog input defi nes the center of the midscale code 100. 
As in the case of bipolar DACs, the most negative input voltage is generally defi ned by the 
001 code ( � FS  � 1 LSB), and the most positive by 111 ( � FS � 1 LSB). As discussed above, 
the 000 output code is available for use if desired, but makes the output nonsymmetrical about 
zero and complicates the mathematics. 

    Two’s complement  is identical to offset binary with the most-signifi cant-bit (MSB) 
complemented (inverted). This is obviously very easy to accomplish in a data converter, 
using a simple inverter or taking the complementary output of a  “ D ”  fl ip-fl op. The popularity 
of two’s complement coding lies in the ease with which mathematical operations can be 
performed in computers and DSPs. Two’s complement, for conversion purposes, consists 
of a binary code for positive magnitudes (0 sign bit), and the two’s complement of each 
positive number to represent its negative. The two’s complement is formed arithmetically by 
complementing the number and adding 1 LSB. For example,  � 3/8 FS is obtained by taking 
the two’s complement of  � 3/8 FS. This is done by fi rst complementing  � 3/8 FS, 0011 
obtaining 1100. Adding 1 LSB, we obtain 1101. 
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 Figure 1.10 :         Transfer function for ideal bipolar 3-bit DAC    
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   Two’s complement makes subtraction easy. For example, to subtract 3/8 FS from 4/8 FS, add 
4/8 to  � 3/8, or 0100 to 1101. The result is 0001, or 1/8, disregarding the extra carry. 

    One’s complement  can also be used to represent negative numbers, although it is much less 
popular than two’s complement and rarely used today. The one’s complement is obtained by 
simply complementing all of a positive number’s digits. For instance, the one’s complement 
of 3/8 FS (0011) is 1100. A one’s complemented code can be formed by complementing 
each positive value to obtain its corresponding negative value. This includes zero, which is 
then represented by either of two codes, 0000 (referred to as 0 � ) or 1111 (referred to as 0 � ). 
This ambiguity must be dealt with mathematically, and presents obvious problems relating to 
ADCs and DACs for which there is a single code that represents zero. 

    Sign-magnitude  would appear to be the most straightforward way of expressing signed analog 
quantities digitally. Simply determine the code appropriate for the magnitude and add a 
polarity bit. Sign-magnitude BCD is popular in bipolar digital voltmeters, but has the problem 
of two allowable codes for zero. It is therefore unpopular for most applications involving 
ADCs or DACs. 

    Figure 1.12    summarizes the relationships between the various bipolar codes: offset binary, 
two’s complement, one’s complement, and sign-magnitude, and shows how to convert 
between them. 
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 Figure 1.11 :         Transfer function for ideal bipolar 3-bit ADC    
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   The last code to be considered in this section is  binary-coded decimal (BCD) , where each 
base-10 digit (0 to 9) in a decimal number is represented as the corresponding 4-bit straight 
binary word as shown in  Figure 1.13   . The minimum digit 0 is represented as 0000, and the 
digit 9 by 1001. This code is relatively ineffi cient, since only 10 of the 16 code states for each 
decade are used. It is, however, a very useful code for interfacing to decimal displays such as 
in digital voltmeters.  

    1.1.4       Complementary Codes 

   Some forms of data converters (for example, early DACs using monolithic NPN quad current 
switches), require standard codes such as natural binary or BCD, but with all bits represented 
by their complements. Such codes are called  complementary codes . All the codes discussed 
thus far have complementary codes which can be obtained by this method. A  complementary  
code should not be confused with a  one’s complement  or a  two’s complement  code. 

   In a 4-bit complementary-binary converter, 0 is represented by 1111, half-scale by 0111, and 
FS � 1 LSB by 0000. In practice, the complementary code can usually be obtained by using 
the complementary output of a register rather than the true output, since both are available. 
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 Figure 1.12 :         Relationships among bipolar codes    
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   Sometimes the complementary code is useful in inverting the analog output of a DAC. 
Today many DACs provide differential outputs which allow the polarity inversion to be 
accomplished without modifying the input code. Similarly, many ADCs provide differential 
logic inputs which can be used to accomplish the polarity inversion.  

    1.1.5       DAC and ADC Static Transfer Functions and DC Errors 

   The most important thing to remember about both DACs and ADCs is that either the input 
or output is digital, and therefore the signal is quantized. That is, an N-bit word represents 
one of 2 N  possible states, and therefore an N-bit DAC (with a fi xed reference) can have only 
2 N  possible analog outputs, and an N-bit ADC can have only 2 N  possible digital outputs. As 
previously discussed, the analog signals will generally be voltages or currents. 

   The resolution of data converters may be expressed in several different ways: the weight 
of the least signifi cant bit (LSB), parts per million of full-scale (ppm FS), millivolts (mV), 
etc. Different devices (even from the same manufacturer) will be specifi ed differently, so 
converter users must learn to translate between the different types of specifi cations if they are 
to compare devices successfully. The size of the least signifi cant bit for various resolutions is 
shown in  Figure 1.14   . 

   Before we can consider the various architectures used in data converters, it is necessary to 
consider the performance to be expected, and the specifi cations which are important. The 
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following sections will consider the defi nition of errors and specifi cations used for data 
converters. This is important in understanding the strengths and weaknesses of different 
ADC/DAC architectures. 

   The fi rst applications of data converters were in measurement and control where the 
exact timing of the conversion was usually unimportant, and the data rate was slow. In 
such applications, the DC specifi cations of converters are important, but timing and AC 
specifi cations are not. Today many, if not most, converters are used in  sampling  and 
 reconstruction  systems where AC specifi cations are critical (and DC ones may not be) — these 
will be considered in Section 1.3 of this chapter. 

    Figure 1.15    shows the ideal transfer characteristics for a 3-bit unipolar DAC and a 3-bit 
unipolar ADC. In a DAC, both the input and the output are quantized, and the graph consists of 
eight points. While it is reasonable to discuss the line through these points, it is very important 
to remember that the actual transfer characteristic is  not  a line, but a number of discrete points. 

   The input to an ADC is analog and is not quantized, but its output is quantized. The transfer 
characteristic therefore consists of eight horizontal steps. When considering the offset, gain 
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 Figure 1.14 :         Quantization: the size of a least signifi cant bit (LSB)    
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and linearity of an ADC we consider the line joining the midpoints of these steps — often 
referred to as the  code centers . 

   For both DACs and ADCs, digital full-scale (all  “ 1 ” s) corresponds to 1 LSB below the analog 
full-scale (FS). The (ideal) ADC transitions take place at ½ LSB above zero, and thereafter 
every LSB, until 1½ LSB below analog full-scale. Since the analog input to an ADC can 
take any value, but the digital output is quantized, there may be a difference of up to ½ LSB 
between the actual analog input and the exact value of the digital output. This is known as 
the  quantization error  or  quantization uncertainty  as shown in  Figure 1.15 . In AC (sampling) 
applications this quantization error gives rise to  quantization noise  which will be discussed in 
Section 1.3 of this chapter. 

   As previously discussed, there are many possible digital coding schemes for data converters: 
 straight binary ,  offset binary ,  one’s complement ,  two’s complement , sign  magnitude ,  Gray 
code ,  BCD,  and others. This section, being devoted mainly to the  analog  issues surrounding 
data converters, will use simple  binary  and  offset binary  in its examples and will not consider 
the merits and disadvantages of these, or any other forms of digital code. 

   The examples in  Figure 1.15  use  unipolar  converters, whose analog port has only a single 
polarity. These are the simplest type, but  bipolar  converters are generally more useful in real-
world applications. There are two types of bipolar converters: the simpler is merely a unipolar 
converter with an accurate 1 MSB of negative offset (and many converters are arranged 
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 Figure 1.15 :         Transfer functions for ideal 3-bit DAC and ADC    
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so that this offset may be switched in and out so that they can be used as either unipolar 
or bipolar converters at will), but the other, known as a  sign-magnitude  converter is more 
complex, and has N bits of magnitude information and an additional bit which corresponds to 
the sign of the analog signal. 

   Sign-magnitude DACs are quite rare, and sign-magnitude ADCs are found mostly in digital 
voltmeters (DVMs). The unipolar, offset binary, and sign-magnitude representations are 
shown in  Figure 1.16   . 

   The four DC errors in a data converter are  offset error ,  gain error , and two types of  linearity 
error (differential and integral) . Offset and gain errors are analogous to offset and gain errors 
in amplifi ers as shown in  Figure 1.17    for a bipolar input range. (Though offset error and 
zero error, which are identical in amplifi ers and unipolar data converters, are not identical in 
bipolar converters and should be carefully distinguished.) 

   The transfer characteristics of both DACs and ADCs may be expressed as a straight line given 
by D  �  K  �  GA, where D is the digital code, A is the analog signal, and K and G are constants. 
In a unipolar converter, the ideal value of K is zero; in an offset bipolar converter it is  � 1 MSB. 
The offset error is the amount by which the actual value of K differs from its ideal value. 

   The gain error is the amount by which G differs from its ideal value, and is generally 
expressed as the percentage difference between the two, although it may be defi ned as the 
gain error contribution (in mV or LSB) to the total error at full scale. These errors can usually 
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 Figure 1.16 :         Unipolar and bipolar converters    
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be trimmed by the data converter user. Note, however, that amplifi er offset is trimmed at zero 
input, and then the gain is trimmed near to full scale. The trim algorithm for a bipolar data 
converter is not so straightforward. 

   The integral linearity error of a converter is also analogous to the linearity error of an 
amplifi er, and is defi ned as the maximum deviation of the actual transfer characteristic of the 
converter from a straight line, and is generally expressed as a percentage of full scale (but 
may be given in LSBs). For an ADC, the most popular convention is to draw the straight line 
through the mid-points of the codes, or the code centers. There are two common ways of 
choosing the straight line:  end point  and  best straight line  as shown in  Figure 1.18   . 
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 Figure 1.17 :         Bipolar data converter offset and gain error    
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   In the  end point  system, the deviation is measured from the straight line through the origin 
and the full-scale point (after gain adjustment). This is the most useful integral linearity 
measurement for measurement and control applications of data converters (since error 
budgets depend on deviation from the ideal transfer characteristic, not from some arbitrary 
 “ best fi t ” ), and is the one normally adopted by Analog Devices, Inc. 

   However, the  best straight line  does give a better prediction of distortion in AC applications, 
and also gives a lower value of  “ linearity error ”  on a data sheet. The best fi t straight line is 
drawn through the transfer characteristic of the device using standard curve-fi tting techniques, 
and the maximum deviation is measured from this line. In general, the integral linearity error 
measured in this way is only 50% of the value measured by end point methods. This makes 
the method good for producing impressive data sheets, but it is less useful for error budget 
analysis. For AC applications it is better to specify distortion than DC linearity, so it is rarely 
necessary to use the best straight line method to defi ne converter linearity. 

   The other type of converter nonlinearity is  differential nonlinearity  (DNL). This relates to 
the linearity of the code transitions of the converter. In the ideal case, a change of 1 LSB in 
digital code corresponds to a change of exactly 1 LSB of analog signal. In a DAC, a change 
of 1 LSB in digital code produces exactly 1 LSB change of analog output, while in an ADC 
there should be exactly 1 LSB change of analog input to move from one digital transition to 
the next. Differential linearity error is defi ned as the maximum amount of deviation of any 
quantum (or LSB change) in the entire transfer function from its ideal size of 1 LSB. 
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 Figure 1.19 :         Transfer functions for nonideal 3-bit DAC and ADC    



20 Chapter 1

www.newnespress.com

   Where the change in analog signal corresponding to 1 LSB digital change is more or less than 
1 LSB, there is said to be a DNL error. The DNL error of a converter is normally defi ned as 
the maximum value of DNL to be found at any transition across the range of the converter. 
 Figure 1.19    shows the nonideal transfer functions for a DAC and an ADC and shows the 
effects of the DNL error. 

   The DNL of a DAC is examined more closely in  Figure 1.20   . If the DNL of a DAC is less 
than  � 1 LSB at any transition, the DAC is  nonmonotonic ; i.e., its transfer characteristic 
contains one or more localized maxima or minima. A DNL greater than  � 1 LSB does not 
cause nonmonotonicity, but is still undesirable. In many DAC applications (especially closed-
loop systems where nonmonotonicity can change negative feedback to positive feedback), 
it is critically important that DACs are monotonic. DAC monotonicity is often explicitly 
specifi ed on data sheets, although if the DNL is guaranteed to be less than 1 LSB (i.e., 
 | DNL |   �  1 LSB), the device must be monotonic, even without an explicit guarantee. 
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 Figure 1.20 :         Details of DAC differential nonlinearity    
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   In  Figure 1.21   , the DNL of an ADC is examined more closely on an expanded scale. ADCs 
can be nonmonotonic, but a more common result of excess DNL in ADCs is  missing codes . 
Missing codes in an ADC are as objectionable as nonmonotonicity in a DAC. Again, they 
result from DNL  �   � 1 LSB. 

   Not only can ADCs have missing codes, they can also be nonmonotonic as shown in 
 Figure 1.22   . As in the case of DACs, this can present major problems — especially in servo 
applications. 

   In a DAC, there can be no missing codes — each digital input word will produce a 
corresponding analog output. However, DACs can be nonmonotonic as previously discussed. 
In a straight binary DAC, the most likely place a nonmonotonic condition can develop is at 
midscale between the two codes: 011 … 11 and 100 … 00. If a nonmonotonic condition occurs 
here, it is generally because the DAC is not properly calibrated or trimmed. A successive 
approximation ADC with an internal nonmonotonic DAC will generally produce missing 
codes but remain monotonic. However, it is possible for an ADC to be nonmonotonic — again 
depending on the particular conversion architecture.  Figure 1.22  shows the transfer function 
of an ADC, which is nonmonotonic and has a missing code. 

   ADCs that use the  subranging  architecture divide the input range into a number of 
coarse segments, and each coarse segment is further divided into smaller segments — and 
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 Figure 1.21 :         Details of ADC differential nonlinearity    
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ultimately the fi nal code is derived. An improperly trimmed subranging ADC may exhibit 
nonmonotonicity, wide codes, or missing codes at the subranging points as shown in  Figure 
1.23    a, b, and c, respectively. This type of ADC should be trimmed so that drift due to aging 
or temperature produces wide codes at the sensitive points rather than nonmonotonic or 
missing codes. 

   Defi ning missing codes is more diffi cult than defi ning nonmonotonicity. All ADCs suffer 
from some inherent transition noise as shown in  Figure 1.24    (think of it as the fl icker between 
adjacent values of the last digit of a DVM). As resolutions and bandwidths become higher, 
the range of input over which transition noise occurs may approach, or even exceed, 1 LSB. 
High resolution wideband ADCs generally have internal noise sources that can be refl ected to 
the input as effective input noise summed with the signal. The effect of this noise, especially 
if combined with a negative DNL error, may be that there are some (or even all) codes where 
transition noise is present for the whole range of inputs. Therefore, there are some codes for 
which there is  no  input that will  guarantee  that code as an output, although there may be a 
range of inputs that will  sometimes  produce that code. 

   For low resolution ADCs, it may be reasonable to defi ne  no missing codes  as a combination 
of transition noise and DNL, which guarantees some level (perhaps 0.2 LSB) of noise-
free code for all codes. However, this is impossible to achieve at the very high resolutions 
achieved by modern sigma-delta ADCs, or even at lower resolutions in wide bandwidth 
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sampling ADCs. In these cases, the manufacturer must defi ne noise levels and resolution in 
some other way. Which method is used is less important, but the data sheet should contain 
a clear defi nition of the method used and the performance to be expected. A complete 
discussion of effective input noise follows in Section 1.3 of this chapter. 

   The discussion thus far has dealt with only the most important DC specifi cations associated 
with data converters. Other less important specifi cations require only a defi nition. For 
specifi cations not covered in this section, the reader is referred to Section 1.5 of this chapter 
for a complete alphabetical listing of data converter specifi cations along with their defi nitions.   
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 Figure 1.23 :         Errors associated with improperly trimmed subranging ADC    
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    1.2       Sampling Theory 

   This section discusses the basics of sampling theory. A block diagram of a typical real-time 
sampled data system is shown in  Figure 1.25   . Prior to the actual analog-to-digital conversion, 
the analog signal usually passes through some sort of signal conditioning circuitry which 
performs such functions as amplifi cation, attenuation, and fi ltering. The low-pass/band-pass 
fi lter is required to remove unwanted signals outside the bandwidth of interest and prevent 
aliasing. 

   The system shown in  Figure 1.25  is a real-time system; i.e., the signal to the ADC is 
continuously sampled at a rate equal to f s , and the ADC presents a new sample to the DSP 
at this rate. In order to maintain real-time operation, the DSP must perform all its required 
computation within the sampling interval, 1/f s , and present an output sample to the DAC 
before arrival of the next sample from the ADC. An example of a typical DSP function would 
be a digital fi lter. 

   In the case of FFT analysis, a block of data is fi rst transferred to the DSP memory. The FFT 
is calculated at the same time a new block of data is transferred into the memory, in order 
to maintain real-time operation. The DSP must calculate the FFT during the data transfer 
interval so it will be ready to process the next block of data. 

   Note that the DAC is required only if the DSP data must be converted back into an analog 
signal (as would be the case in a voiceband or audio application, for example). There 
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 Figure 1.25 :         Sampled data system    
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are many applications where the signal remains entirely in digital format after the initial 
A/D conversion. Similarly, there are applications where the DSP is solely responsible for 
generating the signal to the DAC. If a DAC is used, it must be followed by an analog anti-
imaging fi lter to remove the image frequencies. Finally, there are slower speed industrial 
process control systems where sampling rates are much lower — regardless of the system, the 
fundamentals of sampling theory still apply. 

   There are two key concepts involved in the actual analog-to-digital and digital-to-
analog conversion process:  discrete time sampling  and  fi nite amplitude resolution due to 
quantization.  An understanding of these concepts is vital to data converter applications. 

    1.2.1       The Need for a Sample-and-hold Amplifi er (SHA) Function 

   The generalized block diagram of a sampled data system, shown in  Figure 1.25 , assumes some 
type of AC signal at the input. It should be noted that this does not necessarily have to be so, 
as in the case of modern digital voltmeters (DVMs) or ADCs optimized for DC measurements, 
but for this discussion assume that the input signal has some upper frequency limit f a . 

   Most ADCs today have a built-in sample-and-hold function, thereby allowing them to process 
AC signals. This type of ADC is referred to as a  sampling ADC . However many early ADCs, 
such as Analog Devices ’  industry-standard AD574, were not of the sampling type, but simply 
 encoders  as shown in  Figure 1.26   . If the input signal to a SAR ADC (assuming no SHA 
function) changes by more than 1 LSB during the conversion time (8        μ s in the example), 
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 Figure 1.26 :         Input frequency limitations of nonsampling ADC (encoder)    
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the output data can have large errors, depending on the location of the code. Most ADC 
architectures are subject to this type of error — some more, some less — with the possible 
exception of Flash converters having well-matched comparators. 

   Assume that the input signal to the encoder is a sinewave with a full-scale amplitude (q2 N /2), 
where q is the weight of 1 LSB. 

  v(t) q( sin( f tN� 2 2 2/ ) ).π   (1.1)      

   Taking the derivative: 

  
dv dt q f( )cos( f t)N/ / .� 2 2 2 2π π

 
 (1.2)      

   The maximum rate of change is therefore: 

  
dv dt q f( )

max
N/ / .� 2 2 2π

 
 (1.3)      

   Solving for f: 

  
f (dv dt ) q

max
N� / /( ).π2

  (1.4)      

   If N  �  12, and 1 LSB change (dv  �  q) is allowed during the conversion time (dt  �  8        μ s), 
the equation can be solved for f max , the maximum full-scale signal frequency that can be 
processed without error: 

  f Hzmax � 9 7. .       

   This implies any input frequency greater than 9.7       Hz is subject to conversion errors, even 
though a sampling frequency of 100       kSPS is possible with the 8        μ s ADC (this allows an extra 
2        μ s interval for an external SHA to reacquire the signal after coming out of the hold mode). 

   To process AC signals, a sample-and-hold function is added as shown in  Figure 1.27   . The 
ideal SHA is simply a switch driving a hold capacitor followed by a high input impedance 
buffer. The input impedance of the buffer must be high enough so that the capacitor is 
discharged by less than 1 LSB during the hold time. The SHA samples the signal in the 
 sample  mode, and holds the signal constant during the  hold  mode. The timing is adjusted 
so that the encoder performs the conversion during the hold time. A sampling ADC can 
therefore process fast signals — the upper frequency limitation is determined by the SHA 
aperture jitter, bandwidth, distortion, etc., not the encoder. In the example shown, a good 
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sample-and-hold could acquire the signal in 2        μ s, allowing a sampling frequency of 100       kSPS, 
and the capability of processing input frequencies up to 50       kHz. A complete discussion of the 
SHA function including these specifi cations follows later in this chapter. 

   It is important to understand a subtle difference between a true  sample-and-hold  amplifi er 
(SHA) and a  track-and-hold  amplifi er (T/H, or THA). Strictly speaking, the output of a 
sample-and-hold is not defi ned during the sample mode; however, the output of a track-and-
hold tracks the signal during the sample or  track  mode. In practice, the function is generally 
implemented as a track-and-hold, and the terms  track-and-hold  and  sample-and-hold  are 
often used interchangeably. The waveforms shown in  Figure 1.27  are those associated with a 
track-and-hold. 

   In order to better understand the types of AC errors an ADC can make without a sample-
and-hold function, consider  Figure 1.28   . The photos show the reconstructed output of an 
8-bit ADC (Flash converter) with and without the sample-and-hold function. In an ideal 
Flash converter the comparators are perfectly matched, and no sample-and-hold is required. 
In practice, however, there are timing mismatches between the comparators that cause high 
frequency inputs to exhibit nonlinearities and missing codes as shown in the right-hand 
photos. The data was taken by driving a DAC with the ADC output. The DAC output is a low 
frequency aliased sinewave corresponding to the difference between the sampling frequency 
(20 MSPS) and the ADC input frequency (19.98       MHz). In this case, the alias frequency is 
20       kHz. (Aliasing is explained in detail in the next section.)  
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 Figure 1.27 :         Sample-and-hold function required for digitizing AC signals    
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    1.2.2       The Nyquist Criteria 

   A continuous analog signal is sampled at discrete intervals, t s   �  1/f s , which must be carefully 
chosen to ensure an accurate representation of the original analog signal. It is clear that the 
more samples taken (faster sampling rates), the more accurate the digital representation; 
however, if fewer samples are taken (lower sampling rates), a point is reached where critical 
information about the signal is actually lost. The mathematical basis of sampling was set 
forth by Harry Nyquist of Bell Telephone Laboratories in two classic papers published in 
1924 and 1928, respectively. (See References 1 and 2.) Nyquist’s original work was shortly 
supplemented by R. V. L. Hartley (Reference 3). These papers formed the basis for the 
PCM work to follow in the 1940s, and in 1948 Claude Shannon wrote his classic paper on 
communication theory (Reference 4). 

   Simply stated, Nyquist’s criteria require that the sampling frequency be at least twice the 
highest frequency contained in the signal, or information about the signal will be lost. If the 
sampling frequency is less than twice the maximum analog signal frequency, a phenomena 
known as aliasing will occur. 

   In order to understand the implications of  aliasing  in both the time and frequency domain, fi rst 
consider the case of a time domain representation of a single tone sinewave sampled as shown 
in  Figure 1.30   . In this example, the sampling frequency f s  is not at least 2       f a , but only slightly 
more than the analog input frequency f a  — the Nyquist criteria is violated. Notice that the 
pattern of the actual samples produces an  aliased  sinewave at a lower frequency equal to f s  � f a . 

 Without SHAWith SHA

fs � 20 MSPS, fa � 19.98 MHz, fs � fa � 20 kHz

 Figure 1.28 :         8-bit, 20 MSPS Flash ADC with and without sample-and-hold    
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   The corresponding frequency domain representation of this scenario is shown in  Figure 1.31b   . 
Now consider the case of a single frequency sinewave of frequency f a  sampled at a frequency 
f s  by an ideal impulse sampler (see  Figure 1.31a ). Also assume that f s   	  2f a  as shown. The 
frequency-domain output of the sampler shows  aliases  or  images  of the original signal around 
every multiple of f s ; i.e., at frequencies equal to  |  � Kf s  � f a  | , K  �  1, 2, 3, 4,  … .. 

   The  Nyquist  bandwidth is defi ned to be the frequency spectrum from DC to f s /2. The 
frequency spectrum is divided into an infi nite number of  Nyquist zones , each having a width 
equal to 0.5       f s  as shown. In practice, the ideal sampler is replaced by an ADC followed by an 
FFT processor. The FFT processor only provides an output from DC to f s /2, i.e., the signals or 
aliases that appear in the fi rst Nyquist zone. 

   Now consider the case of a signal that is outside the fi rst Nyquist zone ( Figure 1.31b ). The 
signal frequency is only slightly less than the sampling frequency, corresponding to the 
condition shown in the time domain representation in  Figure 1.30 . Notice that even though 

•  A signal with a maximum frequency fa must be sampled at a rate fs 	 2fa
   or information about the signal will be lost because of aliasing. 

•  Aliasing occurs whenever fs � 2 fa

•  The concept of aliasing is widely used in communications applications
    such as direct IF-to-digital conversion.

•  A signal which has frequency components between fa and fb
   must be sampled at a rate fs 	 2 (fb – fa) in order to prevent alias
   components from overlapping the signal frequencies. 

 Figure 1.29 :         Nyquist’s criteria    
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 Figure 1.30 :         Aliasing in the time domain    
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the signal is outside the fi rst Nyquist zone, its image (or  alias ), f s  � f a , falls inside. Returning 
to  Figure 1.31a , it is clear that if an unwanted signal appears at any of the image frequencies 
of f a , it will also occur at f a , thereby producing a spurious frequency component in the fi rst 
Nyquist zone. 

   This is similar to the analog mixing process and implies that some fi ltering ahead of the 
sampler (or ADC) is required to remove frequency components that are outside the Nyquist 
bandwidth, but whose aliased components fall inside it. The fi lter performance will depend on 
how close the out-of-band signal is to f s /2 and the amount of attenuation required.  

    1.2.3       Baseband Antialiasing Filters 

   Baseband sampling implies that the signal to be sampled lies in the fi rst Nyquist zone. It is 
important to note that with no input fi ltering at the input of the ideal sampler,  any frequency 
component (either signal or noise) that falls outside the Nyquist bandwidth in any Nyquist 
zone will be aliased back into the fi rst Nyquist zone . For this reason, an antialiasing fi lter is 
used in almost all sampling ADC applications to remove these unwanted signals. 

   Properly specifying the antialiasing fi lter is important. The fi rst step is to know the 
characteristics of the signal being sampled. Assume that the highest frequency of interest is f a . 
The antialiasing fi lter passes signals from DC to f a  while attenuating signals above f a . 
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   Assume that the corner frequency of the fi lter is chosen to be equal to f a . The effect of 
the fi nite transition from minimum to maximum attenuation on system dynamic range is 
illustrated in  Figure 1.32a   . 

   Assume that the input signal has full-scale components well above the maximum frequency 
of interest, fa. The diagram shows how full-scale frequency components above f s  � f a  are 
aliased back into the bandwidth DC to f a . These aliased components are indistinguishable 
from actual signals and therefore limit the dynamic range to the value on the diagram which 
is shown as  DR . 

   Some texts recommend specifying the antialiasing fi lter with respect to the Nyquist 
frequency, f s /2, but his assumes that the signal bandwidth of interest extends from DC to 
f s /2 which is rarely the case. In the example shown in  Figure 1.32a , the aliased components 
between f a  and f s /2 are not of interest and do not limit the dynamic range. 

   The antialiasing fi lter transition band is therefore determined by the corner frequency f a , the 
stopband fequency f s  � f a , and the desired stopband attenuation, DR. The required system 
dynamic range is chosen based on the requirement for signal fi delity. 

   Filters become more complex as the transition band becomes sharper, all other things being 
equal. For instance, a Butterworth fi lter gives 6       dB attenuation per octave for each fi lter pole (as 
do all fi lters). Achieving 60       dB attenuation in a transition region between 1       MHz and 2       MHz 
(1 octave) requires a minimum of 10 poles — not a trivial fi lter, and defi nitely a design challenge. 
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 Figure 1.32 :         Oversampling relaxes requirements on baseband antialiasing fi lter    
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   Therefore, other fi lter types are generally more suited to applications where the requirement 
is for a sharp transition band and in-band fl atness coupled with linear phase response. Elliptic 
fi lters meet these criteria and are a popular choice. A number of companies specialize in 
supplying custom analog fi lters; TTE is an example of such a company (Reference 5). 

   From this discussion, we can see how the sharpness of the antialiasing transition band 
can be traded off against the ADC sampling frequency. Choosing a higher sampling rate 
(oversampling) reduces the requirement on transition band sharpness (hence, the fi lter 
complexity) at the expense of using a faster ADC and processing data at a faster rate. This is 
illustrated in  Figure 1.32b  which shows the effects of increasing the sampling frequency by 
a factor of K, while maintaining the same analog corner frequency, f a , and the same dynamic 
range, DR, requirement. The wider transition band (f a  to Kf s  � f a ) makes this fi lter easier to 
design than for the case of  Figure 1.32a . 

   The antialiasing fi lter design process is started by choosing an initial sampling rate of 2.5 
to 4 times f a . Determine the fi lter specifi cations based on the required dynamic range and 
see if such a fi lter is realizable within the constraints of the system cost and performance. 
If not, consider a higher sampling rate which may require using a faster ADC. It should be 
mentioned that sigma-delta ADCs are inherently highly over-sampled converters, and the 
resulting relaxation in the analog antialiasing fi lter requirements is therefore an added benefi t 
of this architecture. 
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   The antialiasing fi lter requirements can also be relaxed somewhat if it is certain that there 
will never be a full-scale signal at the stopband frequency f s   �  f a . In many applications, it is 
improbable that full-scale signals will occur at this frequency. If the maximum signal at the 
frequency f s   �  f a  will never exceed X dB below full-scale, then the fi lter stopband attenuation 
requirement can be reduced by that same amount. The new requirement for stopband attenuation 
at f s   �  f a  based on this knowledge of the signal is now only DR  –  X dB. When making this type 
of assumption, be careful to treat any noise signals that may occur above the maximum signal 
frequency f a  as unwanted signals that will also alias back into the signal bandwidth. 

   As an example, the normalized response of the TTE, Inc., LE1182 11-pole elliptic 
antialiasing fi lter is shown in  Figure 1.33   . Notice that this fi lter is specifi ed to achieve at 
least 80       dB attenuation between f c  and 1.2       f c . The corresponding pass band ripple, return 
loss, delay, and phase response are also shown in  Figure 1.33 . This custom fi lter is available 
in corner frequencies up to 100       MHz and in a choice of PC board, BNC, or SMA with 
compatible packages.  

    1.2.4        Undersampling (Harmonic Sampling, Bandpass Sampling, if Sampling, Direct 
IF-to-Digital Conversion) 

   Thus far we have considered the case of baseband sampling, where all the signals of interest 
lie within the fi rst Nyquist zone.  Figure 1.34a    shows such a case, where the band of sampled 
signals is limited to the fi rst Nyquist zone, and images of the original band of frequencies 
appear in each of the other Nyquist zones. 

   Consider the case shown in  Figure 1.34b , where the sampled signal band lies entirely within 
the second Nyquist zone. The process of sampling a signal outside the fi rst Nyquist zone is 
often referred to as  under-sampling , or  harmonic sampling . Note that the image which falls in 
the fi rst Nyquist zone contains all the information in the original signal, with the exception of 
its original location (the order of the frequency components within the spectrum is reversed, 
but this is easily corrected by re-ordering the output of the FFT). 

    Figure 1.34c  shows the sampled signal restricted to the third Nyquist zone. Note that the 
image that falls into the fi rst Nyquist zone has no frequency reversal. In fact, the sampled 
signal frequencies may lie in  any  unique Nyquist zone, and the image falling into the fi rst 
Nyquist zone is still an accurate representation (with the exception of the frequency reversal 
tjat occurs when the signals are located in even Nyquist zones). At this point we can clearly 
restate the Nyquist criteria: 

    A signal must be sampled at a rate equal to or greater than twice its  bandwidth  in order to 
preserve all the signal information.  
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   Notice that there is no mention of the absolute  location  of the band of sampled signals within 
the frequency spectrum relative to the sampling frequency. The only constraint is that the 
band of sampled signals be restricted to a  single  Nyquist zone, i.e., the signals must not 
overlap any multiple of f s /2 (this, in fact, is the primary function of the antialiasing fi lter). 

   Sampling signals above the fi rst Nyquist zone has become popular in communications 
because the process is equivalent to analog demodulation. It is becoming common practice 
to sample IF signals directly and then use digital techniques to process the signal, thereby 
eliminating the need for an IF demodulator and fi lters. Clearly, however, as the IF frequencies 
become higher, the dynamic performance requirements on the ADC become more critical. 
The ADC input bandwidth and distortion performance must be adequate at the IF frequency, 
rather than only baseband. This presents a problem for most ADCs designed to process 
signals in the fi rst Nyquist zone, therefore an ADC suitable for undersampling applications 
must maintain dynamic performance into the higher order Nyquist zones.  

    1.2.5       Antialiasing Filters in Undersampling Applications 

    Figure 1.35    shows a signal in the second Nyquist zone centered around a carrier frequency, 
f c , whose lower and upper frequencies are f 1  and f 2 . The antialiasing fi lter is a bandpass fi lter. 
The desired dynamic range is DR, which defi nes the fi lter stopband attenuation. The upper 
transition band is f 2  to 2f s   �  f 2 , and the lower is f 1  to f s   �  f 1 . As in the case of base-band 
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sampling, the antialiasing fi lter requirements can be relaxed by proportionally increasing the 
sampling frequency, but f c  must also be increased so that it is always centered in the second 
Nyquist zone. 

   Two key equations can be used to select the sampling frequency, f s , given the carrier 
frequency, f c , and the bandwidth of its signal,  Δ f. The fi rst is the Nyquist criteria: 

  f fs 	 2Δ  
 (1.5)      

   The second equation ensures that f c  is placed in the center of a Nyquist zone: 

  
f

f

NZs
c�
�

4

2 1  
 (1.6)     

  where NZ  �  1, 2, 3, 4,  … . and NZ corresponds to the Nyquist zone in which the carrier and 
its signal fall (see  Figure 1.36   ).   

   NZ is normally chosen to be as large as possible while still maintaining f s   	  2 Δ f. This results 
in the minimum required sampling rate. If NZ is chosen to be odd, then f c  and its signal will 
fall in an odd Nyquist zone, and the image frequencies in the fi rst Nyquist zone will not be 
reversed. Trade-offs can be made between the sampling frequency and the complexity of the 
antialiasing fi lter by choosing smaller values of NZ (hence a higher sampling frequency). 

   As an example, consider a 4       MHz wide signal centered around a carrier frequency of 71       MHz.
The minimum required sampling frequency is therefore 8 MSPS. Solving Eq. 1.6 for NZ 
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 Figure 1.35 :         Antialiasing fi lter for undersampling    
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using f c   �  71       MHz and f s   �  8 MSPS yields NZ  �  18.25. However, NZ must be an integer, so 
we round 18.25 to the next lowest integer, 18. Solving Eq. 1.6 again for f s  yields f s   �  8.1143 
MSPS. The fi nal values are therefore f s   �  8.1143 MSPS, f c   �  71       MHz, and NZ  �  18. 

   Now assume that we desire more margin for the antialiasing fi lter, and we select f s  to be 10 MSPS. 
Solving Eq. 1.6 for NZ, using f c   �  71       MHz and f s   �  10 MSPS yields NZ  �  14.7. We round 14.7 
to the next lowest integer, giving NZ  �  14. Solving Eq. 1.6 again for f s  yields f s   �  10.519 MSPS. 
The fi nal values are therefore f s   �  10.519 MSPS, f c   �  71       MHz, and NZ  �  14. 

   The above iterative process can also be carried out starting with f s  and adjusting the carrier 
frequency to yield an integer number for NZ.   

    1.3       Data Converter AC Errors 

   This section examines the AC errors associated with data converters. Many of the errors and 
specifi cations apply equally to ADCs and DACs, while some are more specifi c to one or the 
other. All possible specifi cations are not discussed here, only the most common ones. Section 
1.4 of this chapter contains a comprehensive listing of converter specifi cations as well as their 
defi nitions, including some not discussed in this section. 

    1.3.1       Theoretical Quantization Noise of an Ideal N-Bit Converter 

   The only errors (DC or AC) associated with an ideal N-bit data converter are those related 
to the sampling and quantization processes. The maximum error an ideal converter makes 
when digitizing a signal is  � ½ LSB. The transfer function of an ideal N-bit ADC is shown in 
 Figure 1.37   . The quantization error for any AC signal that spans more than a few LSBs can 
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 Figure 1.36 :         Centering an undersampled signal within a Nyquist zone    
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be approximated by an uncorrelated sawtooth waveform having a peak-to-peak amplitude of 
q, the weight of an LSB. Although this analysis is not precise, it is accurate enough for most 
applications. W. R. Bennett of Bell Laboratories analyzed the actual spectrum of quantization 
noise in his classic 1948 paper (Reference 1). With certain simplifying assumptions, his 
detailed mathematical analysis simplifi es to that of  Figure 1.37 . Other signifi cant papers on 
converter noise (References 2 – 5) followed Bennett’s classic publication. 

   The quantization error as a function of time is shown in  Figure 1.38   . Again, a simple 
sawtooth waveform provides a suffi ciently accurate model for analysis. The equation of the 
sawtooth error is given by 

  e(t) st q s t q s� � � � �, / /2 2   (1.7)      

   The mean-square value of e(t) can be written: 
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   Performing the simple integration and simplifying, 
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 Figure 1.37 :         Ideal N-bit ADC quantization noise    
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   The root-mean-square quantization error is therefore: 

  
rms quantization noise r t

q
� �2

12
( )

 
 (1.10)      

   As Bennett points out (Reference 1), this noise is approximately Gaussian and spread more 
or less uniformly over the Nyquist bandwidth DC to f s /2. The underlying assumption here is 
that the quantization noise is uncorrelated to the input signal. Under certain conditions where 
the sampling clock and the signal are harmonically related, the quantization noise becomes 
correlated and the energy is concentrated at the harmonics of the signal — the rms value 
remains approximately  q 12    . 

   The theoretical signal-to-noise ratio can now be calculated assuming a full-scale input 
sinewave: 
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 (1.11)      

   The rms value of the input signal is therefore: 
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 Figure 1.38 :         Quantization noise as a function of time    



ADCs, DACs, and Sampling Theory 39

www.newnespress.com

   The rms signal-to-noise ratio for an ideal N-bit converter is therefore: 
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 (1.13)      
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 (1.14)      

   These relationships are summarized in  Figure 1.39   . 

   Bennett’s paper shows that although the actual spectrum of the quantization noise is quite 
complex to analyze — the simplifi ed analysis which leads to Eq. 1.14 is accurate enough 
for most purposes. However, it is important to emphasize again that the rms quantization 
noise is measured over the full Nyquist bandwidth, DC to f s /2. In many applications, the 
actual signal of interest occupies a smaller bandwidth, BW. If digital fi ltering is used to fi lter 
out noise components outside the bandwidth BW, then a correction factor (called  process 
gain ) must be included in the equation to account for the resulting increase in SNR. The 
process of sampling a signal at a rate greater than twice its bandwidth is often referred to 
as  oversampling . In fact, oversampling in conjunction with quantization noise shaping and 
digital fi ltering is a key concept in sigma-delta converters. 
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 Figure 1.39 :         Theoretical signal-to-quantization noise ratio of an ideal N-bit converter    
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   The signifi cance of process gain can be seen from the following example. In many digital 
basestations or other wideband receivers the signal bandwidth is composed of many 
individual channels, and a single ADC is used to digitize the entire bandwidth. For instance, 
the analog cellular radio system (AMPS) in the U.S. consists of 416 30-kHz-wide channels, 
occupying a bandwidth of approximately 12.5       MHz. Assume a 65 MSPS sampling frequency, 
and that digital fi ltering is used to separate the individual 30       kHz channels. The process gain 
due to oversampling is therefore given by: 
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 (1.16)      

   The process gain is added to the ADC SNR specifi cation to yield the actual SNR in the 
30       kHz bandwidth. In the above example, if the ADC SNR specifi cation is 65       dB (DC to 
f s /2), then it is increased to 95.3       dB in the 30       kHz channel bandwidth (after appropriate digital 
fi ltering). 

    Figure 1.41    shows an application that combines oversampling and undersampling. The signal 
of interest has a bandwidth BW and is centered around a carrier frequency f c . The sampling 
frequency can be much less than f c  and is chosen such that the signal of interest is centered in 
its Nyquist zone. Analog and digital fi ltering removes the noise outside the signal bandwidth 
of interest, and therefore results in process gain per Eq. 1.16. 
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   Although the rms value of the noise is accurately approximated by  q 12    , its frequency 
domain content may be highly correlated to the AC input signal. For instance, there is greater 
correlation for low amplitude periodic signals than for large amplitude random signals. Quite 
often, the assumption is made that the theoretical quantization noise appears as white noise, 
spread uniformly over the Nyquist bandwidth DC to f s /2. Unfortunately, this is not true in 
all cases. In the case of strong correlation, the quantization noise appears concentrated at the 
various harmonics of the input signal, just where you don’t want them. Bennett (Reference 
1) has an extensive analysis of the frequency content contained in the quantization noise 
spectrum in his classic 1948 paper. 

   In most practical applications, the input to the ADC is a band of frequencies (always 
summed with some unavoidable system noise), so the quantization noise tends to be random. 
In spectral analysis applications (or in performing FFTs on ADCs using spectrally pure 
sinewaves — see  Figure 1.42   ), however, the correlation between the quantization noise and 
the signal depends upon the ratio of the sampling frequency to the input signal. This is 
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 Figure 1.41 :         Undersampling and oversampling combined results in process gain    
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demonstrated in  Figure 1.43   , where the output of an ideal 12-bit ADC is analyzed using a 
4096-point FFT. In the left-hand FFT plot, the ratio of the sampling frequency to the input 
frequency was chosen to be exactly 32, and the worst harmonic is about 76       dB below the 
fundamental. The right hand diagram shows the effects of slightly offsetting the ratio to 409
6/127  �  32.25196850394, showing a relatively random noise spectrum, where the SFDR is 
now about 92       dBc. In both cases, the rms value of all the noise components is approximately  
q 12    , but in the fi rst case, the noise is concentrated at harmonics of the fundamental. 

   Note that this variation in the apparent harmonic distortion of the ADC is an artifact of the 
sampling process and the correlation of the quantization error with the input frequency. In a 
practical ADC application, the quantization error generally appears as random noise because 
of the random nature of the wideband input signal and the additional fact that there is a 
usually a small amount of system noise which acts as a dither signal to further randomize the 
quantization error spectrum. 

   It is important to understand the above point, because single-tone sinewave FFT testing of 
ADCs is one of the universally accepted methods of performance evaluation. In order to 
accurately measure the harmonic distortion of an ADC, steps must be taken to ensure that 
the test setup truly measures the ADC distortion, not the artifacts due to quantization noise 
correlation. This is done by properly choosing the frequency ratio and sometimes by injecting 
a small amount of noise (dither) with the input signal. The exact same precautions apply to 
measuring DAC distortion with an analog spectrum analyzer. 

    Figure 1.44    shows the FFT output for an ideal 12-bit ADC. Note that the average value of the 
noise fl oor of the FFT is approximately 100       dB below full-scale, but the theoretical SNR of a 
12-bit ADC is 74       dB. The FFT noise fl oor is not the SNR of the ADC, because the FFT acts 
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like an analog spectrum analyzer with a bandwidth of f s /M, where M is the number of points in 
the FFT. The theoretical FFT noise fl oor is therefore 10log10(M/2) dB below the quantization 
noise fl oor due to the processing gain of the FFT. In the case of an ideal 12-bit ADC with 
an SNR of 74       dB, a 4096-point FFT would result in a processing gain of 10log10(4096/
2)  �  33       dB, thereby resulting in an overall FFT noise fl oor of 74  �  33  �  107       dBc. In fact, 
the FFT noise fl oor can be reduced even further by going to larger and larger FFTs; just as 
an analog spectrum analyzer’s noise fl oor can be reduced by narrowing the bandwidth. When 
testing ADCs using FFTs, it is important to ensure that the FFT size is large enough that the 
distortion products can be distinguished from the FFT noise fl oor itself.  

    1.3.2       Noise in Practical ADCs 

   A practical sampling ADC (one that has an integral sample-and-hold), regardless of 
architecture, has a number of noise and distortion sources as shown in  Figure 1.45   . The 
wideband analog front-end buffer has wideband noise, nonlinearity, and also fi nite bandwidth. 
The SHA introduces further nonlinearity, bandlimiting, and aperture jitter. The actual 
quantizer portion of the ADC introduces quantization noise, and both integral and differential 
nonlinearity. In this discussion, assume that sequential outputs of the ADC are loaded into 
a buffer memory of length M and that the FFT processor provides the spectral output. Also 
assume that the FFT arithmetic operations themselves introduce no signifi cant errors relative 
to the ADC. However, when examining the output noise fl oor, the FFT processing gain 
(dependent on M) must be considered. 
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 Figure 1.44 :         Noise fl oor for an ideal 12-bit ADC using 4096-point FFT    
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    1.3.2.1       Equivalent Input Referred Noise 

   Wideband ADC internal circuits produce a certain amount of rms noise due to resistor noise 
and  “ kT/C ”  noise. This noise is present even for DC input signals, and accounts for the 
fact that the output of most wideband (or high resolution) ADCs is a distribution of codes, 
centered around the nominal value of a DC input ( Figure 1.46   ). To measure its value, the 
input of the ADC is either grounded or connected to a heavily decoupled voltage source, and 
a large number of output samples are collected and plotted as a histogram (sometimes referred 
to as a  grounded-input  histogram). Since the noise is approximately Gaussian, the standard 
deviation of the histogram is easily calculated (Reference 6), corresponding to the effective 
input rms noise. It is common practice to express this rms noise in terms of LSBs rms, 
although it can be expressed as an rms voltage referenced to the ADC full-scale input range.  

    1.3.2.2       Noise-Free (Flicker-Free) Code Resolution 

   The  noise-free code resolution  of an ADC is the number of bits beyond which it is impossible to 
distinctly resolve individual codes. The cause is the effective input noise (or input-referred noise) 
associated with all ADCs and described above. This noise can be expressed as an rms quantity, 
usually having the units of LSBs  rms . Multiplying by a factor of 6.6 converts the rms noise into 
peak-to-peak noise (expressed in LSBs  peak-to-peak ). The total range of an N-bit ADC is 2 N  
LSBs. The noise-free (or fl icker-free) resolution can be calculated using the equation: 

  Noise-Free Code Resolution Peak-to-Peak NoiseN� log ( / )2 2   (1.17)      
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 Figure 1.45 :         ADC model showing noise and distortion sources    
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   The specifi cation is generally associated with high-resolution sigma-delta measurement 
ADCs, but is applicable to all ADCs. 

   The ratio of the FS range to the  rms  input noise is sometimes used to calculate resolution. In 
this case, the term  effective resolution  is used. Note that under identical conditions, effective 
resolution is larger than noise-free code resolution by log 2 (6.6), or approximately 2.7 bits. 

  Effective Resolution log RMSInput NoiseN� 2 2( / )   (1.18)      

  Effective Resolution Noise-Free Code Resolution bits� � 2 7.   (1.19)      

   The calculations are summarized in  Figure 1.47   .   

    1.3.3       Dynamic Performance of Data Converters 

   There are various ways to characterize the AC performance of ADCs. Before the 1970s, there 
was little standardization with respect to AC specifi cations, and measurement equipment 
and techniques were not well understood or available. Over nearly a 30-year period, 
manufacturers and customers have learned more about measuring the dynamic performance 
of converters, and the specifi cations shown in  Figure 1.48    represent the most popular ones 
used today. Practically all the specifi cations represent the converter’s performance in the 
frequency domain. The FFT is the heart of practically all these measurements. 
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 Figure 1.46 :         Effect of input-referred noise on ADC  “ grounded input ”  histogram    
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    1.3.3.1       Integral and Differential Nonlinearity Distortion Effects 

   One of the fi rst things to realize when examining the nonlinearities of data converters is that 
the transfer function of a data converter has artifacts that do not occur in conventional linear 
devices such as op amps or gain blocks. The overall integral nonlinearity of an ADC is due to 
the integral nonlinearity of the front-end and SHA as well as the overall integral nonlinearity 
in the ADC transfer function. However,  differential nonlinearity is due exclusively to the 

•  Harmonic distortion
•  Worst harmonic
•  Total harmonic distortion (THD)
•  Total harmonic distortion plus noise (THD � N)
•  Signal-to-noise-and-distortion ratio (SINAD, or S/N � D)
•  Effective number of bits (ENOB)
•  Signal-to-noise ratio (SNR)
•  Analog bandwidth (full-power, small-signal)
•  Spurious free dynamic range (SFDR)
•  Two-tone intermodulation distortion
•  Multitone intermodulation distortion
•  Noise power ratio (NPR)
•  Adjacent channel leakage ratio (ACLR) 
•  Noise figure
•  Settling time, overvoltage recovery time 

 Figure 1.48 :         Quantifying data converter dynamic performance    
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 Figure 1.47 :         Calculating noise-free (fl icker-free) code resolution from input-referred noise    
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encoding process  and may vary considerably, dependent on the ADC encoding architecture. 
Overall integral nonlinearity produces distortion products whose amplitude varies as a 
function of the input signal amplitude. For instance, second-order intermodulation products 
increase 2       dB for every 1       dB increase in signal level, and third-order products increase 3       dB 
for every 1       dB increase in signal level. 

   The differential nonlinearity in the ADC transfer function produces distortion products 
which not only depend on the amplitude of the signal but the positioning of the differential 
nonlinearity errors along the ADC transfer function.  Figure 1.49    shows two ADC transfer 
functions having differential nonlinearity. The left-hand diagram shows an error that occurs 
at midscale. Therefore, for both large and small signals, the signal crosses through this point 
producing a distortion product which is relatively independent of the signal amplitude. The 
right-hand diagram shows another ADC transfer function which has differential nonlinearity 
errors at 1/4 and 3/4 full-scale. Signals above 1/2 scale peak-to-peak will exercise these codes 
and produce distortion, while those less than 1/2 scale peak-to-peak will not. 

   Most high-speed ADCs are designed so that differential nonlinearity is spread across the entire 
ADC range. Therefore, for signals that are within a few dB of full-scale, the overall integral 
nonlinearity of the transfer function determines the distortion products. For lower level 
signals, however, the harmonic content becomes dominated by the differential nonlinearities 
and does not generally decrease proportionally with decreases in signal amplitude.  

    1.3.3.2        Harmonic Distortion, Worst Harmonic, Total Harmonic Distortion (THD), Total 
Harmonic Distortion Plus Noise (THD  �  N) 

   There are a number of ways to quantify the distortion of an ADC. An FFT analysis can be 
used to measure the amplitude of the various harmonics of a signal. The harmonics of the 

Out Out

in in

Midscale DNL 1/4FS, 3/4FS DNL
(a) (b)

 Figure 1.49 :         Typical ADC/ DAC DNL errors (exaggerated)    



48 Chapter 1

www.newnespress.com

input signal can be distinguished from other distortion products by their location in the 
frequency spectrum.  Figure 1.50    shows a 7       MHz input signal sampled at 20 MSPS and the 
location of the fi rst nine harmonics. Aliased harmonics of f a  fall at frequencies equal to 
 |  � Kf s  � nf a  | , where n is the order of the harmonic, and K � 0, 1, 2, 3, … . The second and third 
harmonics are generally the only ones specifi ed on a data sheet because they tend to be the 
largest, although some data sheets may specify the value of the  worst  harmonic. 

    Harmonic distortion  is normally specifi ed in dBc (decibels below  carrier ), although at 
audio frequencies it may be specifi ed as a percentage. Harmonic distortion is generally 
specifi ed with an input signal near full-scale (generally 0.5 to 1       dB below full-scale to 
prevent clipping), but it can be specifi ed at any level. For signals much lower than full-scale, 
other distortion products due to the DNL of the converter (not direct harmonics) may limit 
performance. 

    Total harmonic distortion  (THD) is the ratio of the rms value of the fundamental signal to 
the mean value of the root-sum-square of its harmonics (generally, only the fi rst fi ve are 
signifi cant). THD of an ADC is also generally specifi ed with the input signal close to full-
scale, although it can be specifi ed at any level. 

    Total harmonic distortion plus noise  (THD  �  N) is the ratio of the rms value of the 
fundamental signal to the mean value of the root-sum-square of its harmonics plus all 
noise components (excluding DC). The bandwidth over which the noise is measured must 
be specifi ed. In the case of an FFT, the bandwidth is DC to f s /2. (If the bandwidth of the 
measurement is DC to f s /2, THD � N is equal to SINAD — see below).  
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 Figure 1.50 :         Location of distortion products: input signal  �  7       MHz, 
sampling rate  �  20 MSPS    



ADCs, DACs, and Sampling Theory 49

www.newnespress.com

    1.3.3.3        Signal-to-Noise-and-Distortion Ratio (SINAD), Signal-to-Noise Ratio (SNR), and 
Effective Number of Bits (ENOB) 

   SINAD and SNR deserve careful attention, because there is still some variation between 
ADC manufacturers as to their precise meaning. Signal-to-Noise-and Distortion (SINAD, or 
S/(N  �  D) is the ratio of the rms signal amplitude to the mean value of the root-sum-square 
(rss) of all other spectral components,  including harmonics , but excluding DC ( Figure 1.50 ). 
SINAD is a good indication of the overall dynamic performance of an ADC as a function of 
input frequency because it includes all components which make up noise (including thermal 
noise) and distortion. It is often plotted for various input amplitudes. SINAD is equal to 
THD  �  N if the bandwidth for the noise measurement is the same. A typical plot for the 
AD9226 12-bit, 65 MSPS ADC is shown in  Figure 1.52   . 

   The SINAD plot shows where the AC performance of the ADC degrades due to high-
frequency distortion and is usually plotted for frequencies well above the Nyquist frequency 
so that performance in undersampling applications can be evaluated. SINAD is often 
converted to  effective-number-of-bits  (ENOB) using the relationship for the theoretical SNR 
of an ideal N-bit ADC: SNR � 6.02N  �  1.76       dB.The equation is solved for N, and the value of 
SINAD is substituted for SNR: 

  
ENOB

SINAD dB
�

� 1 76

6 02

.

.  
 (1.20)      

   Signal-to-noise ratio (SNR, or SNR- without-harmonics ) is calculated the same as SINAD 
except that the signal harmonics are excluded from the calculation, leaving only the noise 

•  SINAD (Signal-to-noise-and-distortion ratio):
–  The ratio of the rms signal amplitude to the mean value of the
    root-sum-squares (RSS) of all other spectral components,
    including harmonics, but excluding dc

•  ENOB (effective number of bits):

•  SNR (Signal-to-noise ratio, or signal-to-noise ratio without
    harmonics:

–  The ratio of the rms signal amplitude to the mean value of the
    root-sum-squares (RSS) of all other spectral components,
    excluding the first five harmonics and dc 

ENOB � 
SINAD �1.76dB

6.02

 Figure 1.51 :         SINAD, ENOB, and SNR    
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terms. In practice, it is only necessary to exclude the fi rst fi ve harmonics since they dominate. 
The SNR plot will degrade at high frequencies, but not as rapidly as SINAD because of the 
exclusion of the harmonic terms. 

   Many current ADC data sheets somewhat loosely refer to SINAD as SNR, so the engineer 
must be careful when interpreting these specifi cations.  

    1.3.3.4       Analog Bandwidth 

   The analog bandwidth of an ADC is that frequency at which the spectral output of the 
 fundamental  swept frequency (as determined by the FFT analysis) is reduced by 3       dB. It may 
be specifi ed for either a small signal (SSBW —  small signal bandwidth ), or a full-scale signal 
(FPBW —  full power bandwidth ), so there can be a wide variation in specifi cations between 
manufacturers. 

   Like an amplifi er, the analog bandwidth specifi cation of a converter does not imply that 
the ADC maintains good distortion performance up to its bandwidth frequency. In fact, 
the SINAD (or ENOB) of most ADCs will begin to degrade considerably before the input 
frequency approaches the actual 3       dB bandwidth frequency.  Figure 1.53    shows ENOB and 
full-scale frequency response of an ADC with a FPBW of 1       MHz, however, the ENOB begins 
to drop rapidly above 100       kHz.  
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    1.3.3.5       Spurious Free Dynamic Range (SFDR) 

   Probably the most signifi cant specifi cation for an ADC used in a communications application 
is its  spurious free dynamic range  (SFDR). SFDR of an ADC is defi ned as the ratio of the 
rms signal amplitude to the rms value of the  peak spurious spectral content  measured over the 
bandwidth of interest. Unless otherwise stated, the bandwidth is assumed to be the Nyquist 
bandwidth DC to f s /2. 

   Occasionally the frequency spectrum is divided into an  in-band  region (containing the signals 
of interest) and an  out-of-band  region (signals here are fi ltered out digitally). In this case there 
may be an  in-band  SFDR specifi cation and an  out-of-band  SFDR specifi cation, respectively. 

   SFDR is generally plotted as a function of signal amplitude and may be expressed relative to 
the signal amplitude (dBc) or the ADC full-scale (dBFS) as shown in  Figure 1.54   . 

   For a signal near full-scale, the peak spectral spur is generally determined by one of the fi rst 
few harmonics of the fundamental. However, as the signal falls several dB below full-scale, 
other spurs generally occur which are not direct harmonics of the input signal. This is because 
of the differential nonlinearity of the ADC transfer function as discussed earlier. Therefore, 
SFDR considers  all  sources of distortion, regardless of their origin. 

   The AD6645 is a 14-bit, 80 MSPS wideband ADC designed for communications applications 
where high SFDR is important. The single-tone SFDR for a 69.1       MHz input and a sampling 
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 Figure 1.53 :         ADC gain (bandwidth) and ENOB versus frequency shows importance 
of ENOB specifi cation    
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frequency of 80 MSPS is shown in  Figure 1.55   . Note that a minimum of 89       dBc SFDR is 
obtained over the entire fi rst Nyquist zone (DC to 40       MHz). 

   SFDR as a function of signal amplitude is shown in  Figure 1.56    for the AD6645. Notice that 
over the entire range of signal amplitudes, the SFDR is greater than 90       dBFS. The abrupt 
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 Figure 1.54 :         Spurious free dynamic range (SFDR)    
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changes in the SFDR plot are due to the differential nonlinearities in the ADC transfer 
function. The nonlinearities correspond to those shown in  Figure 1.49B , and are offset from 
midscale such that input signals less than about 65       dBFS do not exercise any of the points of 
increased DNL. It should be noted that the SFDR can be improved by injecting a small out-
of-band dither signal — at the expense of a slight degradation in SNR. 

   SFDR is generally much greater than the ADCs theoretical N-bit SNR (6.02N  �  1.76       dB). For 
example, the AD6645 is a 14-bit ADC with an SFDR of 90       dBc and a typical SNR of 73.5       dB 
(the theoretical SNR for 14 bits is 86       dB). This is because there is a fundamental distinction 
between noise and distortion measurements. The process gain of the FFT (33       dB for a 4096-
point FFT) allows frequency spurs well below the noise fl oor to be observed. Adding extra 
resolution to an ADC may serve to increase its SNR but may or may not increase its SFDR.  

    1.3.3.6       Two-Tone Intermodulation Distortion (IMD) 

   Two-tone IMD is measured by applying two spectrally pure sinewaves to the ADC at 
frequencies f 1  and f 2 , usually relatively close together. The amplitude of each tone is set 
slightly more than 6       dB below full scale so that the ADC does not clip when the two tones 
add in-phase. The location of the second- and third-order products are shown in  Figure 1.57   . 
Notice that the second-order products fall at frequencies that can be removed by digital fi lters. 
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However, the third-order products, 2f 2   �  f 1  and 2f 1   �  f 2 , are close to the original signals and 
more diffi cult to fi lter. Unless otherwise specifi ed, two-tone IMD refers to these third-order 
products. The value of the IMD product is expressed in dBc relative to the value of  either  of 
the two original tones, and not to their sum. 

   Note, however, that if the two tones are close to f s /4, the aliased third harmonics of the 
fundamentals can make the identifi cation of the actual 2f 2   �  f 1  and 2f 1   �  f 2  products diffi cult. 
This is because the third harmonic of f s /4 is 3f s /4, and the alias occurs at f s   �  3f s /4  �  f s /4. 
Similarly, if the two tones are close to f s /3, the aliased second harmonics may interfere with 
the measurement. The same reasoning applies here; the second harmonic of f s /3 is 2f s /3, and 
its alias occurs at f s   �  2f s /3  �  f s /3.  

    1.3.3.7       Second- and Third-Order Intercept Points, 1       dB Compression Point 

   Third-order IMD products are especially troublesome in multichannel communications 
systems where the channel separation is constant across the frequency band. Third-order IMD 
products can mask out small signals in the presence of larger ones. 

   In amplifi ers, it is common practice to specify the third-order IMD products in terms of the 
 third-order  intercept point, as shown by  Figure 1.58   . Two spectrally pure tones are applied 
to the system. The output signal power in a single tone (in dBm) as well as the relative 
amplitude of the third-order products (referenced to a single tone) are plotted as a function 
of input signal power. The fundamental is shown by the slope  �  1 curve in the diagram. If 
the system nonlinearity is approximated by a power series expansion, it can be shown that 
second-order IMD amplitudes increase 2       dB for every 1       dB of signal increase, as represented 
by  slope   �  2 curve in the diagram. 
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 Figure 1.57 :         Second and third-order intermodulation products for f 1   �  5       MHz, f 2   �  6 MHz    
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   Similarly, the third-order IMD amplitudes increase 3       dB for every 1       dB of signal increase, as 
indicated by the  slope   �  3 plotted line. With a low level two-tone input signal, and two data 
points, one can draw the second- and third-order IMD lines as they are shown in  Figure 1.58  
(using the principle that a point and a slope defi ne a straight line). 

   Once the input reaches a certain level however, the output signal begins to soft-limit, or 
compress. A parameter of interest here is the 1       dB  compression point . This is the point where 
the output signal is compressed 1       dB from an ideal input/output transfer function. This is 
shown in  Figure 1.58  within the region where the ideal slope � 1 line becomes dotted, and the 
actual response exhibits compression (solid). 

   Nevertheless, both the second- and third-order intercept lines may be extended, to intersect 
the (dotted) extension of the ideal output signal line. These intersections are called the 
 second - and  third - order intercept points,  respectively, or IP2 and IP3. These power level 
values are usually referenced to the output power of the device delivered to a matched load 
(usually, but not necessarily 50        Ω ) expressed in dBm. 

   It should be noted that IP2, IP3, and the 1       dB compression point are all a function of 
frequency and, as one would expect, the distortion is worse at higher frequencies. 
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 Figure 1.58 :         Defi nition of intercept points and 1       dB compression points for amplifi ers    
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   For a given frequency, knowing the third-order intercept point allows calculation of the 
approximate level of the third-order IMD products as a function of output signal level. 

   The concept of  second- and third-order intercept points  is not valid for an ADC, because the 
distortion products do not vary in a predictable manner (as a function of signal amplitude). 
The ADC does not gradually begin to compress signals approaching full scale (there is no 
1       dB compression point); it acts as a  hard limiter  as soon as the signal exceeds the ADC input 
range, thereby suddenly producing extreme amounts of distortion because of clipping. On the 
other hand, for signals much below full scale, the distortion fl oor remains relatively constant 
and is independent of signal level. This is shown graphically in  Figure 1.59   . 

   The IMD curve in  Figure 1.59  is divided into three regions. For low level input signals, the 
IMD products remain relatively constant regardless of signal level. This implies that as the 
input signal increases 1       dB, the ratio of the signal to the IMD level will also increase 1       dB.
When the input signal is within a few dB of the ADC full-scale range, the IMD may start to 
increase (but it might not in a very well-designed ADC). The exact level at which this occurs 
is dependent on the particular ADC under consideration — some ADCs may not exhibit 
signifi cant increases in the IMD products over their full input range, however, most will. As 
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the input signal continues to increase beyond full scale, the ADC should function to act as an 
ideal limiter, and the IMD products become very large. 

   For these reasons, the second and third order IMD intercept points are not specifi ed for 
ADCs. It should be noted that essentially the same arguments apply to DACs. In either 
case, the single- or multitone SFDR specifi cation is the most accepted way to measure data 
converter distortion.  

    1.3.3.8       Multitone Spurious Free Dynamic Range 

   Two-tone and multitone SFDR is often measured in communications applications. The 
larger number of tones more closely simulates the wideband frequency spectrum of cellular 
telephone systems such as AMPS or GSM.  Figure 1.60    shows the two-tone intermodulation 
performance of the AD6645 14-bit, 80/105 MSPS ADC. The input tones are at 55.25       MHz 
and 56.25       MHz and are located in the second Nyquist Zone. 

   The aliased tones therefore occur at 23.75       MHz and 24.75       MHz in the fi rst Nyquist Zone. 
High SFDR increases the receiver’s ability to capture small signals in the presence of large 
ones, and prevents the small signals from being masked by the intermodulation products of 
the larger ones.  Figure 1.61    shows the AD6645 two-tone SFDR as a function of input signal 
amplitude for the same input frequencies.  
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    1.3.3.9        Wideband CDMA (WCDMA) Adjacent Channel Power Ratio (ACPR) and Adjacent 
Channel Leakage Ratio (ADLR) 

   A wideband CDMA channel has a bandwidth of approximately 3.84       MHz, and channel 
spacing is 5       MHz. The ratio in dBc between the measured power within a channel relative to 
its adjacent channel is defi ned as the  adjacent channel power ratio  (ACPR). 

   The ratio in dBc between the measured power within the channel bandwidth relative to the 
noise level in an adjacent empty carrier channel is defi ned as  adjacent channel leakage ratio  
(ACLR). 

    Figure 1.62    shows a single wideband CDMA channel centered at 140       MHz sampled at 
a frequency of 76.8 MSPS using the AD6645. This is a good example of undersampling 
(direct IF-to-digital conversion). The signal lies within the fourth Nyquist zone: 
3f s /2 to 2f s  (115.2       MHz to 153.6       MHz). The aliased signal within the fi rst Nyquist 
zone is therefore centered at 2f s   �  f a   �  153.6  �  140  �  13.6       MHz. The diagram also 
shows the location of the aliased harmonics. For example, the second harmonic of 
the input signal occurs at 2  �  140  �  280       MHz, and the aliased component occurs at 
4f s   �  2f a   �  4  �  76.8  �  280  �  307.2  �  280  �  27.2       MHz.  
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    1.3.3.10       Noise Power Ratio (NPR) 

   Noise power ratio has been used extensively to measure the transmission characteristics of 
frequency division multiple access (FDMA) communications links (Reference 7). In a typical 
FDMA system, 4       kHz wide voice channels are  “ stacked ”  in frequency bins for transmission 
over coaxial, microwave, or satellite equipment. At the receiving end, the FDMA data is 
demultiplexed and returned to 4       kHz individual base-band channels. In an FDMA system 
having more than approximately 100 channels, the FDMA signal can be approximated by 
Gaussian noise with the appropriate bandwidth. An individual 4       kHz channel can be measured 
for  “ quietness ”  using a narrow-band notch (band-stop) fi lter and a specially tuned receiver 
which measures the noise power inside the 4       kHz notch ( Figure 1.63   ). 

   Noise Power Ratio (NPR) measurements are straightforward. With the notch fi lter out, the 
rms noise power of the signal inside the notch is measured by the narrowband receiver. The 
notch fi lter is then switched in, and the residual noise inside the slot is measured. The ratio 
of these two readings expressed in dB is the NPR. Several slot frequencies across the noise 
bandwidth (low, midband, and high) are tested to characterize the system adequately. NPR 
measurements on ADCs are made in a similar manner except the analog receiver is replaced 
by a buffer memory and an FFT processor. 

   The NPR is plotted as a function of rms noise level referred to the peak range of the system. 
For very low noise loading level, the undesired noise (in nondigital systems) is primarily 

0

6

dB
F

S

2 35 4

0 5 10 15 20

Frequency – MHz

25 30 35 40

�10

�20

�30

�40

�50

�70

�80

�90

�100

�110

�120

�130

�60

Encode  � 76.8MSPS
Ain � WCDMA @ 140MHz

Aliased: 2fs � fin � 153.6 � 140 � 13.6MHz

ACLR
�70dB

 Figure 1.62 :         Wideband CDMA (WCDMA) adjacent channel leakage ratio (ACLR)    



60 Chapter 1

www.newnespress.com

thermal noise and is independent of the input noise level. Over this region of the curve, a 1       dB 
increase in noise loading level causes a 1       dB increase in NPR. As the noise loading level is 
increased, the amplifi ers in the system begin to overload, creating intermodulation products 
that cause the noise fl oor of the system to increase. As the input noise increases further, 
the effects of  “ overload ”  noise predominate, and the NPR is dramatically reduced. FDMA 
systems are usually operated at a noise loading level a few dB below the point of maximum 
NPR. 

   In a digital system containing an ADC, the noise within the slot is primarily quantization 
noise when low levels of noise input are applied. The NPR curve is linear in this region. As 
the noise level increases, there is a one-for-one correspondence between the noise level and the 
NPR. At some level, however,  “ clipping ”  noise caused by the hard-limiting action of the ADC 
begins to dominate. A theoretical curve for 10-, 11-, and 12-bit ADCs is shown in  Figure 1.64    
(References 8 and 21). 

    Figure 1.65    shows the maximum theoretical NPR and the noise loading level at which the 
maximum value occurs for 8- to 16-bit ADCs. The ADC input range is 2 V O  peak-to-peak. 
The rms noise level is  σ , and the noise-loading factor k (crest factor) is defi ned as V O / σ , the 
peak-to-rms ratio (k is expressed either as numerical ratio or in dB). 

   In multichannel high frequency communication systems, where there is little or no phase 
correlation between channels, NPR can also be used to simulate the distortion caused by a 
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large number of individual channels, similar to an FDMA system. A notch fi lter is placed 
between the noise source and the ADC, and an FFT output is used in place of the analog 
receiver. The width of the notch fi lter is set for several MHz as shown in  Figure 1.66    for 
the AD9430 12-bit 170/210 MSPS ADC. The notch is centered at 19       MHz, and the NPR 
is the  “ depth ”  of the notch. An ideal ADC will only generate quantization noise inside the 
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notch; however, a practical one has additional noise components due to additional noise and 
intermodulation distortion caused by ADC imperfections. Notice that the NPR is about 57       dB 
compared to 62.7       dB theoretical.  

    1.3.3.11       Noise Factor (F) and Noise Figure (NF) 

   Noise fi gure (NF) is a popular specifi cation among RF system designers. It is used to 
characterize RF amplifi ers, mixers, etc., and widely used as a tool in radio receiver design. 
Many excellent textbooks on communications and receiver design treat noise fi gure 
extensively (see Reference 9, for example) — it is not the purpose here to discuss the topic in 
much detail, but only how it applies to data converters. 

   Since many wideband operational amplifi ers and ADCs are now being used in RF 
applications, the inevitable day has come where the noise fi gure of these devices becomes 
important. As discussed in Reference 10, in order to determine the noise fi gure of an op amp 
correctly, one must not only know op amp voltage and current noise, but the exact circuit 
conditions — closed-loop gain, gain-setting resistor values, source resistance, bandwidth, etc. 
Calculating the noise fi gure for an ADC is even more of a challenge as will be seen. 

    Figure 1.67    shows the basic model for defi ning the noise fi gure of an ADC. The  noise factor , 
F, is simply defi ned as the ratio of the total effective input noise power of the ADC to the 
amount of that noise power caused by the source resistance alone. Because the impedance is 
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matched, the square of the voltage noise can be used instead of noise power. The  noise fi gure , 
NF, is simply the noise factor expressed in dB, NF  �  10log 10 F. 

   This model assumes the input to the ADC comes from a source having a resistance, R, and 
that the input is band-limited to f s /2 with a fi lter having a noise bandwidth equal to f s /2. It is 
also possible to further band-limit the input signal resulting in oversampling and process gain, 
and this condition will be discussed shortly. 

   It is also assumed that the input impedance to the ADC is equal to the source resistance. 
Many ADCs have a high input impedance, so this termination resistance may be external to 
the ADC or used in parallel with the internal resistance to produce an equivalent termination 
resistance equal to R. The full-scale input power is the power of a sinewave whose peak-to-
peak amplitude fi lls the entire ADC input range. The full-scale input sinewave given by the 
following equation has a peak-to-peak amplitude of 2V O  corresponding to the peak-to-peak 
input range of the ADC: 

  v(t) V sin ftO� 2π   (1.21)      

   The full-scale power in this sinewave is given by: 
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 Figure 1.67 :         Noise fi gure for ADCs: use with caution    



64 Chapter 1

www.newnespress.com

   It is customary to express this power in dBm (referenced to 1       mW) as follows: 
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 (1.23)      

   The  noise bandwidth  of a nonideal brick wall fi lter is defi ned as the bandwidth of an ideal 
brick wall fi lter which will pass the same noise power as the nonideal fi lter. Therefore, the 
noise bandwidth of a fi lter is always greater than the 3       dB bandwidth of the fi lter by a factor 
which depends upon the sharpness of the cutoff region of the fi lter.  Figure 1.68    shows the 
relationship between the noise bandwidth and the 3       dB bandwidth for Butterworth fi lters up to 
fi ve poles. Note that for two poles, the noise bandwidth and 3       dB bandwidth are within 11% 
of each other, and beyond that the two quantities are essentially equal. 

   The fi rst step in the NF calculation is to calculate the effective input noise of the ADC from 
its SNR. The SNR of the ADC is given for a variety of input frequencies, so be sure and use 
the value corresponding to the input frequency of interest. Also, make sure that the harmonics 
are not included in the SNR number — some ADC data sheets may confuse SINAD with SNR. 
Once the SNR is known, the equivalent input rms voltage noise can be calculated starting 
from the equation: 
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 (1.24)      

   Solving for V NOISE RMS : 

  V VNOISE  RMS FS  RMS
SNR� � �10 20

  (1.25)      
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 Figure 1.68 :         Relationship between noise bandwidth and 3       dB bandwidth 
for Butterworth fi lter    
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   This is the total effective input rms noise voltage at the carrier frequency measured over the 
Nyquist bandwidth, DC to f s /2. Note that this noise includes the source resistance noise. 
These results are summarized in  Figure 1.69   . 

   The next step is to actually calculate the noise fi gure. In  Figure 1.70    notice that the amount 
of the input voltage noise due to the source resistance is the voltage noise of the source 
resistance  ( kTBR)4     divided by two, or  (kTBR)     because of the 2:1 attenuator formed by 
the ADC input termination resistor. The expression for the noise factor F can be written: 
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 (1.26)      

   The noise fi gure is obtained by converting F into dB and simplifying: 

  
NF logF P dBm SNR logBFS(dBm)� � � � �10 174 1010 10 ,

 
 (1.27)      

   where SNR is in dB, B in Hz, T  �  300       K, k  �  1.38  �  10  � 23        J/K. 

   Oversampling and fi ltering can be used to decrease the noise fi gure as a result of the process 
gain as has been previously discussed. In this case, the signal bandwidth B is less than f s /2. 
 Figure 1.71    shows the correction factor which results in the following equation: 

  
NF F P dBm SNR f B log BFS(dBm) s� � � � � �10 174 10 2 1010 10 10log log / .[ ]

  (1.28)      

•  Start with the SNR of the ADC measured at the carrier frequency
   (Note: this SNR value does not include the harmonics of the
    fundamental and is measured over the Nyquist bandwidth, dc to fs/2)  

SNR � 20 log10

VFS-RMS

VNOISE-RMS

VNOISE-RMS � VFS-RMS 10 – SNR/20

• This is the total ADC effective input noise at the carrier frequency
   measured over the Nyquist bandwidth, dc to fs/2

 Figure 1.69 :         Calculating ADC total effective input noise from SNR    
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    Figure 1.72    shows an example NF calculation for the AD6645 14-bit, 80 MSPS ADC. A 52.3        Ω  
resistor is added in parallel with the AD6645 input impedance of 1       k Ω  to make the net input 
impedance 50        Ω . The ADC is operating under Nyquist conditions, and the SNR of 74       dB is the 
starting point for the calculations using Eq. 1.28 above. A noise fi gure of 34.8       dB is obtained. 

    Figure 1.73    shows how using an RF transformer with voltage gain can improve the noise 
fi gure.  Figure 1.73A  shows a 1:1 turns ratio, and the noise fi gure (from  Figure 1.72 ) is 34.8. 

F �
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 Figure 1.70 :         ADC noise fi gure in terms of SNR, sampling rate, and input power    
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 Figure 1.72 :         Example calculation of noise fi gure under Nyquist conditions for AD6645    
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 Figure 1.73B  shows a transformer with a 1:2 turns ratio. The 249        Ω  resistor in parallel with 
the AD6645 internal resistance results in a net input impedance of 200        Ω . The noise fi gure is 
improved by 6       dB because of the  “ noise-free ”  voltage gain of the transformer.  Figure 1.73C  
shows a transformer with a 1:4 turns ratio. The AD6645 input is paralleled with a 4.02       k Ω  
resistor to make the net input impedance 800        Ω . The noise fi gure is improved by another 6       dB.
Transformers with higher turns ratios are not generally practical because of bandwidth and 
distortion limitations. 

   Even with the 1:4 turns ratio transformer, the overall noise fi gure for the AD6645 was still 
22.8       dB, still relatively high by RF standards. The solution is to provide low noise high gain 
stages ahead of the ADC.  Figure 1.74    shows how the Friis equation is used to calculate 
the noise factor for cascaded gain stages. Notice that high gain in the fi rst stage reduces 
the contribution of the noise factor of the second stage — the noise factor of the fi rst stage 
dominates the overall noise factor. 

    Figure 1.75    shows the effects of a high-gain (25       dB) low-noise (NF  �  4       dB) stage placed in 
front of a relatively high NF stage (30       dB) — the noise fi gure of the second stage is typical of 
high performance ADCs. The overall noise fi gure is 7.53       dB, only 3.53       dB higher than the 
fi rst stage noise fi gure of 4       dB. 

   In summary, applying the noise fi gure concept to characterize wideband ADCs must be done 
with extreme caution to prevent misleading results. Simply trying to minimize the noise 
fi gure using the equations can actually increase circuit noise. 

   For instance, NF decreases with increasing source resistance according to the calculations, 
but increased source resistance increases circuit noise. Also, NF decreases with increasing 
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 Figure 1.74 :         Cascaded noise fi gure using the Friis equation    
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ADC input bandwidth if there is no input fi ltering. This is also contradictory, because 
widening the bandwidth increases noise. In both these cases, the circuit noise increases, 
and the NF decreases. The reason NF decreases is that the source noise makes up a larger 
component of the total noise (which remains relatively constant because the ADC noise is 
much greater than the source noise); therefore, according to the calculation, NF decreases, but 
actual circuit noise increases. 

   It is true that on a standalone basis ADCs have relatively high noise fi gures compared to other 
RF parts such as LNAs or mixers. In the system the ADC should be preceded with low noise 
gain blocks as shown in the example of  Figure 1.75 . Noise fi gure considerations for ADCs are 
summarized in  Figure 1.76   .  

G1dB � 25dB

NF1 � 4dB

G2dB � 0dB

NF2 � 30dB
RL

G1 � 1025/10 � 102.5 � 316, F1 � 104/10 � 100.4 � 2.51 

F2 � 1030/10 � 103 � 1000G2 � 1,

� 2.51  � 1000 �1
316

�  2.51 � 3.16 � 5.67 FT � F1� F2 �1
G1

NFT � 10 log105.67 � 7.53 dB

•  The first stage dominates the overall NF
•  It should have the highest gain possible with the lowest NF possible

RS

 Figure 1.75 :         Example of two-stage cascaded network    

• NF decreases with increasing source resistance.

• NF decreases with increasing ADC input bandwidth if there is no
input filtering. 

• In both cases, the circuit noise increases, and the NF decreases.

• The reason NF decreases is that the source noise makes up a larger
component of the total noise (which remains relatively constant
because the ADC noise is much greater than the source noise).  

• In practice, input filtering is used to limit the input noise bandwidth
and reduce overall system noise.  

• ADCs have relatively high NF compared to other RF parts. In the
system the ADC should be preceded with low-noise gain blocks.  

• Exercise caution when using NF.

 Figure 1.76 :         Noise fi gure considerations for ADCs: summary and caution    
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    1.3.3.12       Aperture Time, Aperture Delay Time, and Aperture Jitter 

   Perhaps the most misunderstood and misused ADC and sample-and-hold (or track-and-
hold) specifi cations are those that include the word  aperture . The most essential dynamic 
property of a SHA is its ability to disconnect quickly the hold capacitor from the input buffer 
amplifi er as shown in  Figure 1.77   . The short (but non-zero) interval required for this action 
is called  aperture time (or sampling aperture ), t a . The actual value of the voltage held at the 
end of this interval is a function of both the input signal slew rate and the errors introduced 
by the switching operation itself.  Figure 1.77  shows what happens when the hold command 
is applied with an input signal of two arbitrary slopes labeled as 1 and 2. For clarity, the 
sample-to-hold pedestal and switching transients are ignored. The value that is fi nally held is 
a delayed version of the input signal, averaged over the aperture time of the switch as shown 
in  Figure 1.77 . The fi rst-order model assumes that the fi nal value of the voltage on the hold 
capacitor is approximately equal to the average value of the signal applied to the switch over 
the interval during which the switch changes from a low to high impedance (t a ). 

   The model shows that the fi nite time required for the switch to open (t a ) is equivalent to 
introducing a small delay (t e ) in the sampling clock driving the SHA. This delay is constant 
and may be either positive or negative. The diagram shows that the same value of t e  works for 
the two signals, even though the slopes are different. This delay is called  effective aperture 
delay time, aperture delay time, or simply aperture delay,  t e . In an ADC, the aperture delay 
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 Figure 1.77 :         Sample-and-hold waveforms and defi nitions    
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time is referenced to the input of the converter, and the effects of the analog propagation 
delay through the input buffer, t da  and the digital delay through the switch driver, t dd , must be 
considered. Referenced to the ADC inputs, aperture time, t e  ’ , is defi ned as the time difference 
between the analog propagation delay of the front-end buffer, t da , and the switch driver digital 
delay, t dd , plus one-half the aperture time, t a /2. 

   The effective aperture delay time is usually positive, but may be negative if the sum of one-
half the aperture time, t a /2, and the switch driver digital delay, t dd , is less than the propagation 
delay through the input buffer, t da . The aperture delay specifi cation thus establishes when the 
input signal is actually sampled with respect to the sampling clock edge. 

   Aperture delay time can be measured by applying a bipolar sinewave signal to the ADC and 
adjusting the synchronous sampling clock delay such that the output of the ADC is midscale 
(corresponding to the zero-crossing of the sinewave). The relative delay between the input 
sampling clock edge and the actual zero-crossing of the input sinewave is the aperture delay 
time (see  Figure 1.78   ). 

   Aperture delay produces no errors (assuming it is relatively short with respect to the 
hold time), but acts as a fi xed delay in either the sampling clock input or the analog input 
(depending on its sign). However, in simultaneous sampling applications or in direct I/Q 
demodulation where two or more ADCs must be well matched, variations in the aperture 
delay between converters can produce errors on fast slewing signals. In these applications, 
the aperture delay mismatches must be removed by properly adjusting the phases of the 
individual sampling clocks to the various ADCs. 
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 Figure 1.78 :         Effective aperture delay time measured with respect to ADC input    
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   If, however, there is  sample-to-sample  variation in aperture delay ( aperture jitter ), a 
corresponding voltage error is produced as shown in  Figure 1.79   . This sample-to-sample 
variation in the instant the switch opens is called  aperture uncertainty,  or  aperture jitter  and is 
usually measured in rms picoseconds. The amplitude of the associated output error is related 
to the rate-of-change of the analog input. For any given value of aperture jitter, the aperture 
jitter error increases as the input dv/dt increases. The effects of phase jitter on the external 
sampling clock (or the analog input for that matter) produce exactly the same type of error. 

   The effects of aperture and sampling clock jitter on an ideal ADC’s SNR can be predicted by 
the following simple analysis. Assume an input signal given by 

  v(t) V sin ftO� 2π   (1.29)      

   The rate of change of this signal is given by: 

  dv dt fV cos ftO/ � 2 2π π   (1.30)      

   The rms value of dv/dt can be obtained by dividing the amplitude, 2 π fV O , by  2    : 

  
dv dt fV

rms O� 2 2π
 

 (1.31)      
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 Figure 1.79 :         Effects of aperture jitter and sampling clock jitter    
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   Now let  Δ v rms   �  the rms voltage error and  Δ  t  �  the rms aperture jitter t j , and substitute: 

  
Δv t fVrms j O� 2 2π

 
 (1.32)      

   Solving for  Δ v rms : 

  
Δv fV trms O j� 2 2π

 
 (1.33)      

   The rms value of the full-scale input sinewave is  Vo / 2    , therefore the rms signal to rms 
noise ratio is given by: 
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 (1.34)      

   This equation assumes an infi nite-resolution ADC where aperture jitter is the only factor 
in determining the SNR. This equation is plotted in  Figure 1.80    and shows the serious 
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effects of aperture and sampling clock jitter on SNR, especially at higher input/output 
frequencies. Therefore, extreme care must be taken to minimize phase noise in the sampling/
reconstruction clock of any sampled data system. 

   This care must extend to all aspects of the clock signal: the oscillator itself (for example, a 555 
timer is absolutely inadequate, but even a quartz crystal oscillator can give problems if it uses 
an active device that shares a chip with noisy logic); the transmission path (these clocks are 
very vulnerable to interference of all sorts), and phase noise introduced in the ADC or DAC. 
As discussed, a very common source of phase noise in converter circuitry is aperture jitter in 
the integral sample-and-hold (SHA) circuitry; however, the total rms jitter will be composed 
of a number of components — the actual SHA aperture jitter often being the least of them.  

    1.3.3.13       A Simple Equation for the Total SNR of an ADC 

   A relatively simple equation for the ADC SNR in terms of sampling clock and aperture jitter, 
DNL, effective input noise, and the number of bits of resolution is shown in  Figure 1.81   . 
The equation combines the various error terms on an rss basis. The average DNL error,  � , 
is computed from histogram data. This equation is used in  Figure 1.82    to predict the SNR 
performance of the AD6645 14-bit, 80 MSPS ADC as a function of sampling clock and 
aperture jitter. 

   Before the 1980s, most sampling ADCs were generally built up from a separate SHA 
and ADC. Interface design was diffi cult, and a key parameter was aperture jitter in the 

fa � Analog input frequency of full-scale input sinewave

tj rms � Combined rms jitter of internal ADC and external clock

ε � Average DNL of the ADC (typically 0.41 LSB for AD6645)

� Number of bits in the ADC

Vnoiserms

N

� Effective input noise of ADC (typically 0.9LSB rms for AD6645) 

SNR �� 20 log10 (2π � fa
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If tj � 0, ε � 0, and Vnoiserms 
� 0, the above equation reduces to the familiar: 

SNR � 6.02 N � 1.76dB
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3

 Figure 1.81 :         Relationship between SNR, sampling clock jitter, quantization 
noise, DNL, and input noise    
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SHA. Today, almost all sampled data systems use  sampling  ADCs that contain an integral 
SHA. The aperture jitter of the SHA may not be specifi ed as such, but this is not a cause 
of concern if the SNR or ENOB is clearly specifi ed, since a guarantee of a specifi c SNR 
is an implicit guarantee of an adequate aperture jitter specifi cation. However, the use of an 
additional high-performance SHA will sometimes improve the high frequency ENOB of even 
the best sampling ADC by presenting  “ DC ”  to the ADC, and may be more cost effective than 
replacing the ADC with a more expensive one.  

    1.3.3.14       ADC Transient Response and Overvoltage Recovery 

   Most high-speed ADCs designed for communications applications are specifi ed primarily in 
the frequency domain. However, in general-purpose data acquisition applications the transient 
response (or settling time) of the ADC is important. The  transient response  of an ADC is the 
time required for the ADC to settle to rated accuracy (usually 1 LSB) after the application 
of a full-scale step input. The typical response of a general-purpose 12-bit, 10 MSPS ADC 
is shown in  Figure 1.83   , showing a 1 LSB settling time of less than 40       ns.The settling time 
specifi cation is critical in the typical data acquisition system application where the ADC is 
being driven by an analog multiplexer as shown in  Figure 1.84   . The multiplexer output can 
deliver a full-scale sample-to-sample change to the ADC input. If both the multiplexer and 
the ADC have not settled to the required accuracy, channel-to-channel crosstalk will result, 
even though only DC or low frequency signals are present on the multiplexer inputs. 
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   Most ADCs have settling times which are less than 1/f s max , even if not specifi ed. However 
sigma-delta ADCs have a built-in digital fi lter that can take several output sample intervals 
to settle. This should be kept in mind when using sigma-delta ADCs in multiplexed 
applications. 
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 Figure 1.83 :         ADC transient response (settling time)    
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   The importance of settling time in multiplexed systems can be seen in  Figure 1.85   , where the 
ADC input is modeled as a single-pole fi lter having a corresponding time constant,  τ   �  RC. 
The required number of time constants to settle to a given accuracy (1 LSB) is shown. A 
simple example will illustrate the point. 

   Assume a multiplexed 16-bit data acquisition system uses an ADC with a sampling frequency 
f s   �  100       kSPS. The ADC must settle to 16-bit accuracy for a full-scale step function input in 
less than 1/f s   �  10        μ s. The chart shows that 11.09 time constants are required to settle to 16-bit 
accuracy. The input fi lter time constant must therefore be less than  τ   �  10        μ s/11.09  �  900       ns.
The corresponding rise time t r   �  2.2 τ   �  1.98        μ s. The required ADC full power input 
bandwidth can now be calculated from BW  �  0.35/t r   �  177       kHz. This neglects the settling 
time of the multiplexer and second-order settling time effects in the ADC. 

    Overvoltage recovery time  is defi ned as that amount of time required for an ADC to achieve 
a specifi ed accuracy, measured from the time the overvoltage signal re-enters the converter’s 
range, as shown in  Figure 1.86   . This specifi cation is usually given for a signal that is some 
stated percentage outside the ADC’s input range. Needless to say, the ADC should act as an 
ideal limiter for out-of-range signals and should produce either the positive full-scale code or 
the negative full-scale code during the overvoltage condition. Some converters provide over- 
and underrange fl ags to allow gain-adjustment circuits to be activated. Care should always be 
taken to avoid overvoltage signals that will damage an ADC input.  

    1.3.3.15       ADC Sparkle Codes, Metastable States, and Bit Error Rate (BER) 

   A primary concern in the design of many digital communications systems using ADCs is the bit 
error rate (BER). Unfortunately, ADCs contribute to the BER in ways that are not predictable 
by simple analysis. This section describes the mechanisms within the ADCs that can contribute 
to the error rate, ways to minimize the problem, and methods for measuring the BER. 

Resolution,
# of bits LSB (%FS)

# of time
constants

6 1.563 4.16

8 0.391 5.55

10 0.0977 6.93

12 0.0244 8.32

14 0.0061 9.70

16 0.00153 11.09

18 0.00038 12.48

20 0.000095 13.86

22 0.000024 15.25

 Figure 1.85 :         Settling time as function of time constant for various resolutions    
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   Random noise, regardless of the source, creates a fi nite probability of errors (deviations from 
the expected output). Before describing the error code sources, however, it is important to 
defi ne what constitutes an ADC error code. Noise generated prior to or inside the ADC can 
be analyzed in the traditional manner. Therefore, an ADC error code is any deviation from the 
expected output that is not attributable to the equivalent input noise of the ADC.  Figure 1.87    
illustrates an exaggerated output of a low amplitude sinewave applied to an ADC that has error 
codes. Note that the noise of the ADC creates some uncertainty in the output. These anomalies 
are not considered error codes, but are simply the result of ordinary noise and quantization. 
The large errors are more signifi cant and are not expected. These errors are random and so 
infrequent that an SNR test of the ADC will rarely detect them. These types of errors plagued 
a few of the early ADCs for video applications, and were given the name  sparkle codes  
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 Figure 1.86 :         Overvoltage recovery time    

Error codes

(sparkle codes,
flyers, rabbits)

Low amplitude
digitized sinewave

 Figure 1.87 :         Exaggerated output of ADC showing error codes    
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because of their appearance on a TV screen as small white dots or  “ sparkles ”  under certain 
test conditions. These errors have also been called  rabbits  or  fl yers . In digital communications 
applications, this type of error increases the overall system bit error rate (BER). 

   In order to understand the causes of the error codes, we will fi rst consider the case of a 
simple Flash converter. The comparators in a Flash converter are latched comparators usually 
arranged in a master-slave confi guration. If the input signal is in the center of the threshold of 
a particular comparator, that comparator will balance, and its output will take a longer period 
of time to reach a valid logic level after the application of the latch strobe than the outputs 
of its neighboring comparators which are being overdriven. This phenomenon is known as 
 metastability  and occurs when a balanced comparator cannot reach a valid logic level in the 
time allowed for decoding. If simple binary decoding logic is used to decode the thermometer 
code, a metastable comparator output may result in a large output code error. Consider the 
case of a simple 3-bit Flash converter shown in  Figure 1.88   . Assume that the input signal 
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is exactly at the threshold of Comparator 4 and random noise is causing the comparator to 
toggle between a  “ 1 ”  and a  “ 0 ”  output each time a latch strobe is applied. The corresponding 
binary output should be interpreted as either 011 or 100. If, however, the comparator output 
is in a metastable state, the simple binary decoding logic shown may produce binary codes 
000, 011, 100, or 111. The codes 000 and 111 represent a one-half scale departure from the 
expected codes. 

   The probability of errors due to metastability increases as the sampling rate increases because 
less time is available for a metastable comparator to settle. 

   Various measures have been taken in Flash converter designs to minimize the metastable state 
problem. Decoding schemes described in References 12 to 15 minimize the magnitude of 
these errors. Optimizing comparator designs for regenerative gain and small time constants is 
another way to reduce these problems. 

   Metastable state errors may also appear in successive approximation and subranging ADCs 
that make use of comparators as building blocks. The same concepts apply, although the 
magnitudes and locations of the errors may be different. 

   The test system shown in  Figure 1.89    may be used to test for BER in an ADC. The analog 
input to the ADC is provided by a high stability low noise sinewave generator. The analog 
input level is set slightly greater than full-scale, and the frequency such that there is always 
slightly less than 1 LSB change between samples as shown in  Figure 1.90   . 
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 Figure 1.89 :         ADC bit error rate test setup    



ADCs, DACs, and Sampling Theory 81

www.newnespress.com

   The test set uses series latches to acquire successive codes A and B. A logic circuit 
determines the absolute difference between A and B. This difference is then compared to the 
error limit, chosen to allow for expected random noise spikes and ADC quantization errors. 
Errors that cause the difference to be larger than the limit will increment the counters. The 
number of errors, E, are counted over a period of time, T. The error rate is then calculated as 
BER  �  E/2Tf s . The factor of 2 in the denominator is required because the hardware records 
a second error when the output returns to the correct code after making the initial error. The 
error counter is therefore incremented twice for each error. It should be noted that the same 
function can be accomplished in software if the ADC outputs are stored in a memory and 
analyzed by a computer program. 

   The input frequency must be carefully chosen such that at least one sample is taken per code. 

   Assume a full-scale input sinewave having an amplitude of 2 N /2: 

  
v(t) ft

N

�
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2
2sin π

 
 (1.35)      

   The maximum rate of change of this signal is 
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 Figure 1.90 :         ADC analog signal for low frequency BER test    
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   Letting  dv   �  1 LSB,  dt   �  1/f s , and solving for the input frequency: 

  
f

f
in

s
N

�
2 π  

 (1.37)      

   Choosing an input frequency less than this value will ensure that there is at least one sample 
per code. The same test can be conducted at high frequencies by applying an input frequency 
slightly offset from f s /2 as shown in  Figure 1.91   . This causes the ADC to slew full-scale 
between conversions. Every other conversion is compared, and the  “ beat ”  frequency is chosen 
such that there is slightly less than 1 LSB change between alternate samples. The equation for 
calculating the proper frequency for the high frequency BER test is derived as follows. 

   Assume an input full-scale sinewave of amplitude 2 N /2 whose frequency is slightly less than 
f s /2 by a frequency equal to  Δ f. 
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 (1.38)      

   The maximum rate of change of this signal is: 
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 (1.39)      
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   Letting dv  �  1 LSB and dt  �  2/f s , and solving for the input frequency  Δ f: 

  
Δ
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 (1.40)      

   Establishing the BER of a well-behaved ADC is a diffi cult, time-consuming task; a single unit 
can sometimes be tested for days without an error. For example, tests on a typical 8-bit Flash 
converter operating at a sampling rate of 75 MSPS yield a BER of approximately 3.7 � 10  � 12  
(1 error per hour) with an error limit of 4 LSBs. Meaningful tests for longer periods of time 
require special attention to EMI/RFI effects (possibly requiring a shielded screen room), 
isolated power supplies, isolation from soldering irons with mechanical thermostats, isolation 
from other bench equipment, etc.  Figure 1.92    shows the average time between errors as 
a function of BER for a sampling frequency of 75 MSPS. This illustrates the diffi culty in 
measuring low BER because the long measurement times increase the probability of power 
supply transients, noise, etc., causing an error.   

    1.3.4       DAC Dynamic Performance 

   The AC specifi cations most likely to be important with DACs are settling time, glitch impulse 
area, distortion, and Spurious Free Dynamic Range (SFDR). 

    1.3.4.1       DAC Settling Time 

   The input to output settling time of a DAC is the time from a change of digital code (t  �  0) to 
when the output comes within  and remains within  some error band as shown in  Figure 1.93   . 
With amplifi ers, it is hard to make comparisons of settling time, since their specifi ed error bands 
may differ from amplifi er to amplifi er, but with DACs the error band will almost invariably be 
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 Figure 1.92 :         Average time between errors versus BER when sampling at 75 MSPS    
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specifi ed as  � 1 or  � ½ LSB. Note that in some cases, the output settling time may be of more 
interest, in which case it is referenced to the time the output fi rst leaves the error band. 

   The input to output settling time of a DAC is made up of four different periods: the  switching 
time  or  dead time  (during which the digital switching, but not the output, is changing), the 
 slewing time  (during which the rate of change of output is limited by the slew rate of the 
DAC output), the  recovery time  (when the DAC is recovering from its fast slew and may 
overshoot), and the  linear settling time  (when the DAC output approaches its fi nal value in 
an exponential or near-exponential manner). If the slew time is short compared to the other 
three (as is usually the case with current output DACs), the settling time will largely be 
independent of the output step size. On the other hand, if the slew time is a signifi cant part of 
the total, the larger the step, the longer the settling time. 

   Settling time is especially important in video display applications. For example a 
standard 1024  �  768 display updated at a 60       Hz refresh rate must have a pixel rate of 
1024  �  768  �  60       Hz  �  47.2       MHz with no overhead. Allowing 35% overhead time increases 
the pixel frequency to 64       MHz corresponding to a pixel duration of 1/(64  �  10 6 )  �  15.6       ns. 
In order to accurately reproduce a single fully-white pixel located between two black pixels, 
the DAC settling time should be less than the pixel duration time of 15.6       ns. 
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 Figure 1.93 :         DAC settling time    
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   Higher resolution displays require even faster pixel rates. For example, a 2048  �  2048 
display requires a pixel rate of approximately 330       MHz at a 60       Hz refresh rate.  

    1.3.4.2       Glitch Impulse Area 

   Ideally, when a DAC output changes it should move from one value to its new one 
monotonically. In practice, the output is likely to overshoot, undershoot, or both ( Figure 1.94   ). 
This uncontrolled movement of the DAC output during a transition is known as a  glitch . 
It can arise from two mechanisms: capacitive coupling of digital transitions to the analog 
output, and the effects of some switches in the DAC operating more quickly than others and 
producing temporary spurious outputs. 

   Capacitive coupling frequently produces roughly equal positive and negative spikes (sometimes 
called a  doublet  glitch) which more or less cancel in the longer term. The glitch produced by 
switch timing differences is generally unipolar, much larger, and of greater concern. 

   Glitches can be characterized by measuring the  glitch impulse area , sometimes inaccurately 
called  glitch energy . The term glitch energy is a misnomer, since the unit for glitch impulse 
area is volt-seconds (or more probably  μ V-sec or pV-sec. The peak  glitch area  is the area 
of the largest of the positive or negative glitch areas. The glitch impulse area is the net area 
under the voltage-versus-time curve and can be estimated by approximating the waveforms 
by triangles, computing the areas, and subtracting the negative area from the positive area as 
shown in  Figure 1.95   . 

   The midscale glitch produced by the transition between the codes 0111 … 111 and 1000 … 000 
is usually the worst glitch because all switches are changing states. Glitches at other code 
transition points (such as 1/4 and 3/4 full scale) are generally less.  Figure 1.96    shows the 
midscale glitch for a fast low glitch DAC. The peak and net glitch areas are estimated using 
triangles as described above. Settling time is measured from the time the waveform leaves the 
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 Figure 1.94 :         DAC transitions (showing glitch)    
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initial 1 LSB error band until it enters and remains within the fi nal 1 LSB error band. The step 
size between the transition regions is also 1 LSB.  

    1.3.4.3       DAC SFDR and SNR 

   DAC settling time is important in applications such as RGB raster scan video display 
drivers, but frequency-domain specifi cations such as SFDR are generally more important in 
communications. 

5 ns/division

2 mV/division

Settling time � 4.5ns
Net glitch area � 1.34 pV-s
Peak glitch area � 1.36 pV-s

1 LSB

≈ 4.5ns

1 LSB

1 LSB

 Figure 1.96 :         DAC midscale glitch shows 1.34       pV-s net impulse area and settling 
time of 4.5       ns    
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   If we consider the spectrum of a waveform reconstructed by a DAC from digital data, we 
fi nd that in addition to the expected spectrum (which will contain one or more frequencies, 
depending on the nature of the reconstructed waveform), there will also be noise and 
distortion products. Distortion may be specifi ed in terms of harmonic distortion, Spurious 
Free Dynamic Range (SFDR), intermodulation distortion, or all of the above. Harmonic 
distortion is defi ned as the ratio of harmonics to fundamental when a (theoretically) pure sine 
wave is reconstructed, and is the most common specifi cation. Spurious free dynamic range is 
the ratio of the worst spur (usually, but not necessarily always a harmonic of the fundamental) 
to the fundamental. 

   Code-dependent glitches will produce both out-of-band and in-band harmonics when the 
DAC is reconstructing a digitally generated sinewave as in a Direct Digital Synthesis (DDS) 
system. The midscale glitch occurs twice during a single cycle of a reconstructed sinewave 
(at each midscale crossing), and will therefore produce a second harmonic of the sinewave, as 
shown in  Figure 1.97   . Note that the higher order harmonics of the sinewave, which alias back 
into the Nyquist bandwidth (DC to f s /2), cannot be fi ltered. 

   It is diffi cult to predict the harmonic distortion or SFDR from the glitch area specifi cation 
alone. Other factors, such as the overall linearity of the DAC, also contribute to distortion as 
shown in  Figure 1.98   . In addition, certain ratios between the DAC output frequency and the 

� Full scale

� Full scale

Midscale
fo � 3 MHz

fs � 10 MSPS

10987654321

fs
2

fs

fo fs � fo

2fofo � 2fo

Cannot
be filtered

Amplitude

Frequency (MHz)

 Figure 1.97 :         Effect of code-dependent glitches on spectral output    
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sampling clock cause the quantization noise to concentrate at harmonics of the fundamental 
thereby increasing the distortion at these points. 

   It is therefore customary to test reconstruction DACs in the frequency domain (using a 
spectrum analyzer) at various clock rates and output frequencies as shown in  Figure 1.99   . 
Typical SFDR for the 16-bit AD9777 Transmit TxDAC is shown in  Figure 1.100   . The clock 
rate is 160 MSPS, and the output frequency is swept to 50       MHz.As in the case of ADCs, 
quantization noise will appear as increased harmonic distortion if the ratio between the 
clock frequency and the DAC output frequency is an integer number. These ratios should be 
avoided when making the SFDR measurements. 

   There is nearly an infi nite combination of possible clock and output frequencies for a 
low distortion DAC, and SFDR is generally specifi ed for a limited number of selected 
combinations. For this reason, Analog Devices offers fast turnaround on customer-specifi ed 
test vectors for the Transmit TxDAC family. A test vector is a combination of amplitudes, 

•  Resolution
•  Integral nonlinearity
•  Differential nonlinearity
•  Code-dependent glitches
•  Ratio of clock frequency to output frequency (even in an ideal DAC)
•  Mathematical analysis is difficult

 Figure 1.98 :         Contributors to DDS DAC distortion    
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output frequencies, and update rates specifi ed directly by the customer for SFDR data on a 
particular DAC.  

    1.3.4.4       Measuring DAC SNR with an Analog Spectrum Analyzer 

   Analog spectrum analyzers are used to measure the distortion and SFDR of high performance 
DACs. Care must be taken that the front end of the analyzer is not overdriven by the 
fundamental signal. If overdrive is a problem, a band-stop fi lter can be used to fi lter out the 
fundamental signal so the spurious components can be observed. 

   Spectrum analyzers can also be used to measure the SNR of a DAC provided attention is 
given to bandwidth considerations. SNR of an ADC is normally defi ned as the signal-to-noise 
ratio measured over the Nyquist bandwidth DC to f s /2. However, spectrum analyzers have 
a resolution bandwidth less than f s /2 — this therefore lowers the analyzer noise fl oor by the 
process gain equal to 10 log 10 [f s /(2  �  BW)], where BW is the resolution noise bandwidth of 
the analyzer ( Figure 1.101   ). 

   It is important that the noise bandwidth (not the 3-dB bandwidth) be used in the calculation; 
however, from  Figure 1.68  the error is small assuming that the analyzer narrowband fi lter 
is at least two poles. The ratio of the noise bandwidth to the 3-dB bandwidth of a one-pole 
Butterworth fi lter is 1.57 (causing an error of 1.96       dB in the process gain calculation). For a 
two-pole Butterworth fi lter, the ratio is 1.11 (causing an error of 0.45       dB in the process gain 
calculation).  
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 Figure 1.100 :         AD9777 16-bit TxDAC SFDR, data update rate  �  160 MSPS    
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    1.3.4.5       DAC Output Spectrum and sin (x)/x Frequency Roll-off 

   The output of a reconstruction DAC can be represented as a series of rectangular pulses 
whose width is equal to the reciprocal of the clock rate as shown in  Figure 1.102   . Note that 
the reconstructed signal amplitude is down 3.92       dB at the Nyquist frequency, f c /2. An inverse 
sin(x)/x fi lter can be used to compensate for this effect in most cases. The images of the 
fundamental signal occur as a result of the sampling function and are also attenuated by the 
sin(x)/x function.  

    1.3.4.6       Oversampling Interpolating DACs 

   In ADC-based systems, oversampling can ease the requirements on the antialiasing fi lter. In 
a DAC-based system (such as DDS), the concept of interpolation can be used in a similar 
manner. This concept is common in digital audio CD players, where the basic update rate 
of the data from the CD is 44.1       kSPS. Early CD players used traditional binary DACs and 
inserted  “ Zeros ”  into the parallel data, thereby increasing the effective update rate to 4 times, 
8 times, or 16 times the fundamental throughput rate. The 4 � , 8 � , or 16 �  data stream is 
passed through a digital interpolation fi lter that generates the extra data points. The high 
oversampling rate moves the image frequencies higher, thereby allowing a less complex fi lter 
with a wider transition band. The sigma-delta 1-bit DAC architecture uses a much higher 
oversampling rate and represents the ultimate extension of this concept and has become 
popular in modern CD players. 

fs
2

Noise floor

fs/2

BW

BW
(noise bandwidth)

dB

f

Sweep

•  BW �  Analyzer resolution noise bandwidth

•  SNR � Noise floor –10 log10

 Figure 1.101 :         Measuring DAC SNR with an Analog spectrum analyzer    
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   The same concept of oversampling can be applied to high speed DACs used in 
communications applications, relaxing the requirements on the output fi lter as well as 
increasing the SNR due to process gain. 

   Assume a traditional DAC is driven at an input word rate of 30 MSPS ( Figure 1.103A   ). 
Assume the DAC output frequency is 10       MHz.The image frequency component at 
30  �  10  �  20       MHz must be attenuated by the analog antialiasing fi lter, and the transition band 
of the fi lter is 10 to 20       MHz.Assume that the image frequency must be attenuated by 60       dB.
The fi lter must therefore go from a pass band of 10       MHz to 60       dB stopband attenuation over 
the transition band lying between 10 and 20       MHz (one octave). A fi lter gives 6       dB attenuation 
per octave for each pole. Therefore, a minimum of 10 poles is required to provide the desired 
attenuation. Filters become even more complex as the transition band becomes narrower. 

   Assume that the DAC update rate is increased to 60 MSPS and insert a  “ zero ”  between each 
original data sample. The parallel data stream is now 60 MSPS, but must now be determined 
the value of the zero-value data points. This is done by passing the 60 MSPS data stream with 
the added zeros through a digital interpolation fi lter that computes the additional data points. 
The response of the digital fi lter relative to the 2 times oversampling frequency is shown in 
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 Figure 1.102 :         DAC sin (x)/x roll-off (amplitude normalized)    
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 Figure 1.103B . The analog antialiasing fi lter transition zone is now 10 to 50       MHz (the fi rst 
image occurs at 2f c   �  f o   �  60  �  10  �  50       MHz). This transition zone is a little greater than 
two octaves, implying that a 5- or 6-pole fi lter is suffi cient. 

   The AD9773/AD9775/AD9777 (12-/14-/16-bit) series of Transmit DACs (TxDAC) are 
selectable 2 � , 4 � , or 8 �  oversampling interpolating dual DACs, and a simplifi ed block 
diagram is shown in  Figure 1.104   . These devices are designed to handle 12-/14-/16-bit input 
word rates up to 160 MSPS. The output word rate is 400 MSPS maximum. For an output 
frequency of 50       MHz, an input update rate of 160       MHz, and an oversampling ratio of 2 � , the 
image frequency occurs at 320       MHz  �  50       MHz  �  270       MHz. The transition band for the analog 
fi lter is therefore 50       MHz to 270       MHz. Without 2 �  oversampling, the image frequency occurs at 
160       MHz  �  50       MHz  �  110       MHz, and the fi lter transition band is 50       MHz to 110       MHz. 

   Notice also that an oversampling interpolating DAC allows both a lower frequency input 
clock and input data rate, which are much less likely to generate noise within the system.    
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    1.4       General Data Converter Specifi cations 

    1.4.1       Overall Considerations 

   Data converters, as we have observed, have a digital port and an analog port and, like all 
integrated circuits, they require power supplies and will draw current from those supplies. 
Data converter specifi cations will therefore include the usual specifi cations common to any 
integrated circuit, including supply voltage and supply current, logic interfaces, power on 
and standby timing, package and thermal issues and ESD. We shall not consider these at any 
length, but there are some issues that may require a little consideration. 

   An overriding piece of advice here is  read the data sheet . There is no excuse for being 
unaware of the specifi cations of a device for which one owns a data sheet — and it is often 
possible to deduce extra information that is not printed on it by understanding the issues and 
conventions involved in preparing it. 

   Traditional precision analog integrated circuits (which include amplifi ers, converters, and 
other devices) were designed for operation from supplies of  � 15       V, and many (but not all — it 
is important to check with the data sheet) would operate within specifi cation over quite a wide 
range of supply voltages. Today the processes used for many, but by no means all, modern 
converters have low breakdown voltages and absolute maximum ratings of only a few volts. 
Converters built with these processes may only work to specifi cation over a narrow range of 
supply voltages. 
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 Figure 1.104 :         Oversampling interpolating TxDAC simplifi ed block diagram    
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   It is therefore important when selecting a data converter to check both the absolute maximum 
supply voltage(s) and the range of voltages where correct operation can be expected. Some 
low-voltage devices work equally well with both 5       V and 3.3       V supplies, others are sold in 5       V 
and 3.3       V versions with different suffi xes on their part numbers — with these it is important to 
use the correct one. 

   Absolute maximum ratings are ratings that can never be exceeded without grave risk of 
damage to the device concerned — they are not safe operating limits, but they are conservative. 
Integrated circuit manufacturers try to set absolute maximum ratings so that every device they 
manufacture will survive brief exposures to absolute maximum conditions. As a result many 
devices will, in fact, appear to operate safely and continuously outside the permitted limits. 
Good engineers do not take advantage of this for three reasons: (1) components are not tested 
outside their absolute maximum limits so, although they may be operating, they may not be 
operating at their specifi ed accuracy. Also the damage done by incorrect operation may not 
be immediately fatal, but may cause low levels of disruption which, in turn, may (2) shorten 
the device’s life, or (3) may affect its subsequent accuracy even when it is operated within 
specifi cation again. None of these effects is at all desirable and absolute maximum ratings 
should always be respected. 

   The supply current in a data converter specifi cation is usually the no-load current — i.e., the 
current consumption when the data converter output is driving a high impedance or open-
circuit load. CMOS logic, and to a lesser extent some other types, have current consumption 
that is proportional to clock speed so a CMOS data converter current may be defi ned at a 
specifi c clock frequency and will be higher if the clock runs faster. Current consumption will 
also be higher when the output (or the reference output if there is one, or both) is loaded. 
There may be another fi gure for  “ standby ”  current — the current that fl ows when the data 
converter is connected to a power supply but is internally shut down into a non-operational 
low power state to conserve current. 

   When power is fi rst applied to some data converters they may take several tens, hundreds, or 
even thousands of microseconds for their reference and amplifi er circuitry to stabilize and, 
although this is less common, some may even take a long time to  “ wake up ”  from a power 
saving standby mode. It is therefore important to ensure that data converters that have such 
delays are not used in applications where full functionality is required within a short time of 
power-up or wake-up. 

   All integrated circuits are vulnerable to electrostatic discharge (ESD), but precision analog 
circuits are, on the whole, more vulnerable than some other types. This is because the 
technologies available for minimizing such damage also tend to degrade the performance of 



ADCs, DACs, and Sampling Theory 95

www.newnespress.com

precision circuitry, and there is a necessary compromise between robustness and performance. 
It is always a good idea to ensure that when handling amplifi ers, converters and other 
vulnerable circuits the necessary steps are taken to avoid ESD. 

   Specifi cations of packages, operating temperature ranges, and similar issues, although 
important, do not need further discussion here.  

    1.4.2       Logic Interface Issues 

   As it is important to read and understand power supply specifi cations, so it is equally 
important to read and understand logic specifi cations. In the past most integrated circuit logic 
circuitry (with the exception of emitter-coupled logic or ECL) operated from 5       V supplies 
and had compatible logic levels — with a few exceptions 5       V logic would interface with other 
5       V logic. Today, with the advent of low voltage logic operating with supplies of 3.3       V, 2.7       V, 
or even less, it is important to ensure that logic interfaces are compatible. There are several 
issues which must be considered — absolute maximum ratings, worst-case logic levels, and 
timing. The logic inputs of integrated circuits generally have absolute maximum ratings, as 
do most other inputs, of 300       mV outside the power supply. Note that these are instantaneous 
ratings. If an IC has such a rating and is currently operating from a  � 5       V supply, the logic 
inputs may be between  � 0.3       V and  � 5.3       V — but if the supply is not present, that input must 
be between  � 0.3       V and  � 0.3       V, not the  � 0.3       V to  � 5.3       V which are the limits once the power 
is applied — ICs cannot predict the future. 

   The reason for the rating of 0.3       V is to ensure that no parasitic diode on the IC is ever turned 
on by a voltage outside the IC’s absolute maximum rating. It is quite common to protect an 
input from such overvoltage with a Schottky diode clamp. At low temperatures the clamp 
voltage of a Schottky diode may be a little more than 0.3       V, and so the IC may see voltages 
just outside its absolute maximum rating. Although, strictly speaking, this subjects the IC 
to stresses outside its absolute maximum ratings and so is forbidden, this is an acceptable 
exception to the general rule provided the Schottky diode is at a temperature similar to the IC 
it is protecting (say within  � 10°C). 

   Some low voltage devices, however, have inputs with absolute maximum ratings that are 
substantially greater than their supply voltage. This allows such circuits to be driven by higher 
voltage logic without additional interface or clamp circuitry. But it is important to read the 
data sheets and ensure that both logic levels and absolute maximum voltages are compatible 
for all combinations of high and low supplies. 

   This is the general rule when interfacing different low voltage logic circuitry — it is always 
necessary to check that at the lowest value of its power supply (a) the Logic 1 output from the 
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driving circuit applied to its worst-case load is greater than the specifi ed minimum Logic 1 
input for the receiving circuit, and (b) with its output sinking maximum allowed current, the 
logic 0 output is less than the specifi ed Logic 0 input of the receiver. If the logic specifi cations 
of the chosen devices do not meet these criteria it will be necessary to select different devices, 
use different power supplies, or use additional interface circuitry to ensure that the required 
levels are available. Note that additional interface circuitry introduces extra delays in timing. 

   It is not suffi cient to build an experimental setup and test it. In general, logic thresholds are 
generously specifi ed and usually logic circuits will work correctly well outside their specifi ed 
limits — but it is not possible to rely on this in a production design. At some point a batch of 
devices near the limit on low output swing will be required to drive some devices needing 
slightly more drive than usual — and will be unable to do so.  

    1.4.3       Data Converter Logic: Timing and Other Issues 

   It is not the purpose of this brief section to discuss logic architectures, so we shall not defi ne 
the many different data converter logic interface operations and their timing specifi cations 
except to note that data converter logic interfaces may be more complex than expected —  read 
the data sheet . Do not expect that because there is a pin with the same name on memory and 
interface chips it will behave in exactly the same way in a data converter. Also, some data 
converters reset to a known state on power-up but many more do not. 

   It is very necessary to consider general timing issues. The new low voltage processes used for 
many modern data converters have a number of desirable features. One that is often overlooked 
by users (but not by converter designers) is their higher logic speed. DACs built on older 
processes frequently had logic that was orders of magnitude slower than the microprocessors 
with which they interfaced, and it was sometimes necessary to use separate buffers, or multiple 
WAIT instructions, to make the two compatible. Today it is much more common for the write 
times of DACs to be compatible with those of the fast logic with which they interface. 

   Nevertheless, not all DACs are speed compatible with all logic interfaces, and it is still 
important to ensure that minimum data setup times and write pulsewidths are observed. 
Again, experiments will often show that devices work with faster signals than their 
specifi cation requires — but at the limits of temperature or supply voltage some may not, and 
interfaces should be designed on the basis of specifi ed rather than measured timing.   

    1.5       Defi ning the Specifi cations 

   The following list, in alphabetical order, should prove helpful regarding specifi cations and 
their defi nitions. The original source for these defi nitions was provided by Dan Sheingold 
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from Chapter 11 in his classic book  Analog-to-Digital Conversion Handbook, Third Edition , 
Prentice-Hall, 1986. 

    Accuracy, Absolute.  Absolute accuracy error of a  DAC  is the difference between actual analog 
output and the output that is expected when a given digital code is applied to the converter. 
Error is usually commensurate with resolution, i.e., less 1/2 LSB of full-scale, for example. 
However, accuracy may be much better than resolution in some applications; for example, a 
4-bit DAC having only 16 discrete digitally chosen levels would have a resolution of 1/16, but 
might have an accuracy to within 0.01 % of each ideal value. 

   Absolute accuracy error of an  ADC  at a given output code is the difference between the actual 
and the theoretical analog input voltages required to produce that code. Since the code can 
be produced by any analog voltage in a fi nite band (see  Quantizing Uncertainty ), the  “ input 
required to produce that code ”  is usually defi ned as the midpoint of the band of inputs that 
will produce that code. For example, if 5       V,  � 1.2       mV, will theoretically produce a 12-bit 
half-scale code of 1000 0000 0000, then a converter for which any voltage from 4.997       V to 
4.999       V will produce that code will have absolute error of (1/2)(4.997  �  4.999)  �  5       V  �   � 2       mV. 

   Sources of error include gain (calibration) error, zero error, linearity errors, and noise. 
Absolute accuracy measurements should be made under a set of standard conditions with 
sources and meters traceable to an internationally accepted standard. 

    Accuracy, Logarithmic DACs.  The difference (measured in dB) between the actual transfer 
function and the ideal transfer function, as measured after calibration of gain error at 0       dB. 

    Accuracy, Relative.  Relative accuracy error, expressed in %, ppm, or fractions of 1 LSB, is 
the deviation of the analog value at any code (relative to the full analog range of the device 
transfer characteristic) from its theoretical value (relative to the same range), after the full-
scale range (FSR) has been calibrated (see  Full-Scale Range ). 

   Since the discrete analog values that correspond to the digital values ideally lie on a straight 
line, the specifi ed worst-case relative accuracy error of a linear ADC or DAC can be 
interpreted as a measure of end-point nonlinearity (see  Linearity).  

   The  “ discrete points ”  of a DAC transfer characteristic are measured by the actual analog 
outputs. The  “ discrete points ”  of an ADC transfer characteristic are the midpoints of the 
quantization bands at each code (see  Accuracy, Absolute).  

    Acquisition Time.  The acquisition time of a track-and-hold circuit for a step change is the time 
required by the output to reach its fi nal value, within a specifi ed error band, after the track 
command has been given. Included are switch delay time, the slewing interval, and settling 
time for a specifi ed output voltage change. 
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    Adjacent Channel Power Ratio (ACPR) . The ratio in dBc between the measured power within 
a channel relative to its adjacent channel. See  Adjacent Channel Leakage Ratio  (ACLR). 

    Adjacent Channel Leakage Ratio (ACLR) . The ratio in dBc between the measured power 
within the carrier bandwidth relative to the noise level in an adjacent empty carrier channel. 
Both ACPR and ACLR are Wideband CDMA (WCDMA) specifi cations. The channel 
bandwidth for WCDMA is approximately 3.84       MHz with 5       MHz spacing between channels. 

    Aliasing . A signal within a bandwidth f a  must be sampled at a rate f s  	 2f a  in order to avoid the 
loss of information. If f s  � 2f a , a phenomenon called  aliasing , inherent in the spectrum of the 
sampled signal, will cause a frequency equal to f s  � f a , called an  alias , to appear in the Nyquist 
bandwidth, DC to f s /2. For example, if f s   �  4       kSPS and f a   �  3       kHz, a 1       kHz alias will appear. 
Note also that for f a   �  1       kHz (within the DC to f s /2 bandwidth), an alias will occur at 3       kHz 
(outside the DC to f s /2 bandwidth). Since noise is also aliased, it is essential to provide 
low-pass (or band-pass) fi ltering prior to the sampling stage to prevent out-of-band noise on 
the input signal from being aliased into the signal range and thereby degrading the SNR. 

    Analog Bandwidth.  For an ADC, the analog input frequency at which the spectral power of 
the fundamental frequency (as determined by the FFT analysis) is reduced by 3       dB. This can 
be specifi ed as full power bandwidth, or small signal bandwidth. (See also  Bandwidth, Full 
Linear  and  Bandwidth, Full Power. ) 

    Analog Bandwidth, 0.1       dB . For an ADC, the analog input frequency at which the spectral 
power of the fundamental frequency (as determined by the FFT analysis) is reduced 
by 0.1       dB. This is a popular video specifi cation. (See also  Bandwidth, Full Linear  and 
 Bandwidth, Full Power. ) 

    Aperture Time  (classic defi nition). Aperture time in a sample-and-hold is defi ned as the time 
required for the internal switch to switch from the closed position (zero resistance) to the 
fully open position (infi nite resistance). A fi rst-order analysis that neglects nonlinear effects 
assumes that the input signal is averaged over this time interval to produce the fi nal output 
signal. The analysis shows that this does not introduce an error as long as the switch opens in 
a repeatable fashion, and as long as the aperture time is reasonably short with respect to the 
hold time. There exists an effective sampling point in time that will cause an ideal sample-
and-hold to produce the same held voltage. The difference between this effective sampling 
point and the actual sampling point is defi ned as effective aperture delay time. 

    Aperture Delay Time,  or  Effective Aperture Delay Time.  In a sample-and-hold or track-and-
hold, there exists an effective sampling point in time that will cause an ideal sample-and-hold 
to produce the same held voltage. The difference between this effective sampling point and 
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the actual sampling point is defi ned as the aperture delay time or effective aperture delay 
time. In a sampling ADC, aperture delay time can be measured by sampling the zero crossing 
of a sinewave with a sampling clock locked to the sinewave. The phase of the sampling clock 
is adjusted until the output of the ADC is 100 … 00. The time difference between the leading 
edge of the sampling clock and the zero crossing of the sinewave — referenced to the analog 
input — is the effective aperture delay time. A dual trace oscilloscope can be used to make the 
measurement. 

    Aperture Uncertainty ( or  Aperture Jitter).  The sample-to-sample variation in the sampling 
point because of jitter. Aperture jitter is expressed as an rms quantity and produces a 
corresponding rms voltage error in the sample-and-hold output. In an ADC it is caused by 
internal noise and jitter in the sampling clock path from the sampling clock input pin to the 
internal switch. Jitter in the external sampling clock produces the same type of error. 

    Automatic Zero.  To achieve zero stability in many integrating-type converters, a time interval 
is provided during each conversion cycle to allow the circuitry to compensate for drift errors. 
The drift error in such converters is substantially zero. A similar function exists in many high 
resolution sigma-delta ADCs. 

    Bandwidth, Full-Linear . The full-linear bandwidth of an ADC is the input frequency at which 
the slew-rate limit of the sample-and-hold amplifi er is reached. Up to this point, the amplitude 
of the reconstructed fundamental signal will have been attenuated by less than 0.1       dB. Beyond 
this frequency, distortion of the sampled input signal increases signifi cantly. 

    Bandwidth, Full-Power (FPBW) . The full-power bandwidth is that input frequency at which 
the amplitude of the reconstructed fundamental signal (measured using FFTs) is reduced 
by 3       dB for a full-scale input. In order to be meaningful, the FPBW must be examined 
in conjunction with the signal-to-noise ratio (SNR), signal-to-noise-plus-distortion ratio 
(SINAD), effective number of bits (ENOB), and harmonic distortion in order to ascertain the 
true dynamic performance of the ADC at the FPBW frequency. 

    Bandwidth, Analog Input Small-Signal . Analog input bandwidth is measured similarly 
to FPBW at a reduced analog input amplitude. This specifi cation is similar to the small 
signal bandwidth of an op amp. The amplitude of the input signal at which the small signal 
bandwidth is measured should be specifi ed on the data sheet. 

    Bandwidth, Effective Resolution (ERB).  Some ADC manufacturers defi ne the frequency 
at which SINAD drops 3       dB as the  effective resolution bandwidth (ERB) . This is the same 
frequency at which the ENOB drops ½ bit. This specifi cation is a misnomer, however, since 
bandwidth normally is associated with signal amplitude. 
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    Bias Current.  The zero-signal DC current required from the signal source by the inputs of 
many semiconductor circuits. The voltage developed across the source resistance by bias 
current constitutes an (often negligible) offset error. When an instrumentation amplifi er 
performs measurements of a source that is remote from the amplifi er’s power-supply, there 
 must  be a return path for bias currents. If it does not already exist and is not provided, those 
currents will charge stray capacitances, causing the output to drift uncontrollably or to 
saturate. Therefore, when amplifying outputs of  “ fl oating ”  sources, such as transformers, 
insulated thermocouples, and AC-coupled circuits, there must be a high impedance DC 
leakage path from each input to common, or to the driven-guard terminal (if present). If a DC 
return path is impracticable, an  isolator  must be used. 

    Bipolar Mode.  (See  Offset. ) 

    Bipolar Offset.  (See  Offset. ) 

    Bus.  A bus is a parallel path of binary information signals — usually 4, 8, 16, 32, or 64-bits 
wide. Three common types of information usually found on buses are data, addresses, and 
control signals. Three-state output switches (inactive, high, and low) permit many sources —
 such as ADCs — to be connected to a bus, while only one is active at any time. 

    Byte.  A byte is a binary digital word, usually 8 bits wide. A byte is often part of a longer word 
that must be placed on an 8-bit bus in two stages. The byte containing the MSB is called the 
 high byte ; that containing the LSB is called the  low byte . A 4-bit byte is called a  nibble  on an 
8-bit or greater bus. 

    Channel-to-Channel Isolation.  In multiple DACs, the proportion of analog input signal 
from one DAC’s reference input that appears at the output of the other DAC, expressed 
logarithmically in dB. See also  crosstalk.  

    Charge Transfer, Charge Injection ( or  Offset Step).  The principal component of  sample-
to-hold offset  (or  pedestal)  is the small charge transferred to the storage capacitor via 
interelectrode capacitance of the switch and stray capacitance when switching to the  hold  
mode. The offset step is directly proportional to this charge: 

   Offset error � Incremental Charge/Capacitance �  Δ Q/C 

   It can be reduced somewhat by lightly coupling an appropriate polarity version of the  hold  
signal to the capacitor for fi rst-order cancellation. The error can also be reduced by increasing 
the capacitance, but this increases  acquisition time.  

    Code Width.  This is a fundamental quantity for ADC specifi cations. In an ADC where the 
code transition noise is a fraction of an LSB, it is defi ned as the range of analog input values 
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for which a given digital output code will occur. The nominal value of a code width (for all 
but the fi rst and last codes) is the voltage equivalent of 1 least signifi cant bit (LSB) of the 
full-scale range, or 2.44       mV out of 10       V for a 12-bit ADC. Because the full-scale range is 
fi xed, the presence of excessively wide codes implies the existence of narrow and perhaps 
even missing codes. Code transition noise can make the measurement of code width diffi cult 
or impossible. In wide bandwidth and high resolution ADCs additional noise modulates the 
effective code width and appears as input-referred noise. Many ADCs have input-referred 
noise that spans several code widths, and histogram techniques must be used to accurately 
measure differential linearity. 

    Common-Mode Range.  Common-mode rejection usually varies with the magnitude of the 
range through which the input signal can swing, determined by the sum of the common-mode 
and the differential voltage.  Common-mode range  is that range of  total  input voltage over 
which specifi ed common-mode rejection is maintained. For example, if the common-mode 
signal is  � 5       V and the differential signal is  � 5       V, the common-mode range is  � 10       V. 

    Common-Mode Rejection  (CMR). A measure of the change in output voltage when both inputs 
are changed by equal amounts of AC and/or DC voltage. Common-mode rejection is usually 
expressed either as a ratio (e.g., CMRR � 1,000,000:1) or in decibels: CMR � 20log 10 CMRR; 
if CMRR � 10 6 , CMR � 120       dB. A CMRR of 10 6  means that 1       V of common mode is processed 
by the device as though it were a differential signal of 1        μ V at the input. 

   CMR is usually specifi ed for a full range common-mode voltage change (CMV), at a given 
frequency, and a specifi ed imbalance of source impedance (e.g., 1       k Ω  source unbalance, at 
60       Hz). In amplifi ers, the common-mode rejection ratio is defi ned as the ratio of the signal 
gain, G, to the common-mode gain (the ratio of common-mode signal appearing at the output 
to the CMV at the input. 

    Common-Mode Voltage (CMV).  A voltage that appears in common at both input terminals 
of a differential-input device, with respect to its output reference (usually  “ ground ” ). For 
inputs, V 1  and V 2 , with respect to ground, CMV � ½(V 1  � V 2 ). An ideal differential-input 
device would ignore CMV.  Common-mode error (CME)  is any error at the output due to the 
common-mode input voltage. The errors due to supply voltage variation, an internal common-
mode effect, are specifi ed separately. 

    Compliance-Voltage Range.  For a current-output DAC, the maximum range of (output) 
terminal voltage for which the device will maintain the specifi ed current-output characteristics. 

    Conversion Complete . An ADC digital output signal which indicates the end of conversion. 
When this signal is in the opposite state, the ADC is considered to be  “ busy. ”  Also called 
 end-of-conversion (EOC) ,  data ready , or  status  in some converters. 
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    Conversion Time  and  Conversion Rate.  For an ADC without a sample-and-hold, the time 
required for a complete measurement is called  conversion time.  For most converters 
(assuming no signifi cant additional systemic delays), conversion time is essentially identical 
with the inverse of  conversion rate.  For simple sampling ADCs, however, the conversion rate 
is the inverse of the conversion time plus the sample-and-hold’s acquisition time. However, 
in many high speed converters, because of pipelining, new conversions are initiated before 
the results of prior conversions have been determined; thus, there can one, two, three, or 
more clock cycles of conversion delay (plus a fi xed delay in some cases). Once a train of 
conversions has been initiated, as in signal-processing applications, the conversion rate can 
therefore be much faster than the conversion time would imply. 

    Crosstalk.  Leakage of signals, usually via capacitance between circuits or channels of a 
multichannel system or device, such as a multiplexer, multiple input ADC, or multiple DAC. 
Crosstalk is usually determined by the impedance parameters of the physical circuit, and 
actual values are frequency-dependent. See also  channel-to-channel isolation.  

   Multiple DACs have a  digital crosstalk  specifi cation: the spike (sometimes called a  glitch ) 
impulse appearing at the output of one converter due to a change in the digital input code of 
another of the converters. It is specifi ed in nanovolt- or picovolt-seconds and measured at 
V REF   �  0       V. 

    Data Ready. ( See  Conversion Complete.)  

    Deglitcher ( See  Glitch.)  A device that removes or reduces the effects of time-skew in D/A 
conversion. A deglitcher normally employs a track-and-hold circuit, often specifi cally 
designed as part of the DAC. When the DAC is updated, the deglitcher holds the output of 
the DAC’s output amplifi er constant at the previous value until the switches reach 
equilibrium, then acquires and tracks the new value. 

    DAC Glitch.  A glitch is a switching transient appearing in the output during a code transition. 
The worst-case DAC glitch generally occurs when the DAC is switched between the 
011 … 111 and 100 … 000 codes. The net area under the glitch is referred to as  glitch impulse 
area  and is measured in millivolt-nanoseconds, nanovolt-seconds, or picovolt-seconds. 
Sometimes the term  glitch energy  is used to describe the net area under the glitch — this 
terminology is incorrect because the unit of measurement is not energy. 

    Differential Analog Input Resistance, Differential Analog Input Capacitance,  and  Differential 
Analog Input Impedance.  The real and complex impedances measured at each analog input 
port of an ADC. The resistance is measured statically and the capacitance and differential 
input impedances are measured with a network analyzer. 
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    Differential Analog Input Voltage Range . The peak-to-peak differential voltage that must 
be applied to the converter to generate a full-scale response. Peak differential voltage is 
computed by observing the voltage on a single pin and subtracting the voltage from the other 
pin, which is 180 degrees out of phase. Peak-to-peak differential is computed by rotating 
the inputs phase 180 degrees and taking the peak measurement again. The difference is then 
computed between both peak measurements. 

    Differential Gain (  Δ  G).  A video specifi cation that measures the variation in the amplitude 
(in percent) of a small amplitude color subcarrier signal as it is swept across the video range 
from black to white. 

    Differential Phase (  Δ  φ  ).  A video specifi cation that measures the phase variation (in degrees) 
of a small amplitude color subcarrier signal as it is swept across the video range from black 
to white. 

    Droop Rate.  When a sample-and-hold circuit using a capacitor for storage is in  hold,  it will 
not hold the information forever. Droop rate is the rate at which the output voltage changes 
(by increasing or decreasing), and hence gives up information. The change of output occurs 
as a result of leakage or bias currents fl owing through the storage capacitor. The polarity of 
change depends on the sources of leakage within a given device. In integrated circuits with 
external capacitors, it is usually specifi ed as a  (droop  or  drift)  current, in ICs having internal 
capacitors, a rate of change. Note: dv/dt (volts/second) � I/C (picoamperes/picofarads). 

    Dual-Slope Converter.  An integrating ADC in which the unknown signal is converted to 
a proportional time interval, which is then measured digitally. This is done by integrating 
the unknown for a predetermined length of time. A reference input is then switched to the 
integrator, which integrates  “ down ”  from the level determined by the unknown until the 
starting level is reached. The time for the second integration process, as determined by the 
counter, is proportional to the average of the unknown signal level over the predetermined 
integrating period. The counter provides the digital readout. 

    Effective Input Noise. ( See  Input-Referred Noise.)  

    Effective Number of Bits (ENOB).  With a sinewave input, Signal-to-Noise-and-Distortion 
(SINAD) can be expressed in terms of the number of bits. Rewriting the theoretical SNR 
formula for an ideal N-bit ADC and solving for N: 

   N � (SNR � 1.76       dB)/6.02 

   The actual ADC SINAD is measured using FFT techniques, and ENOB is calculated from: 

   ENOB � (SINAD � 1.76       dB)/6.02 
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    Effective Resolution. ( See  Noise-Free Code Resolution.)  

    Encode Command. ( See  Encode, Sampling Clock.)  

    Encode (Sampling Clock) Pulsewidth/Duty Cycle . Pulsewidth high is the minimum amount 
of time that the ENCODE pulse should be left in Logic 1 state to achieve rated performance; 
pulsewidth low is the minimum time ENCODE or pulse should be left in low state. See 
timing implications of changing the width in the text of high speed ADC data sheets. At a 
given clock rate, these specs defi ne an acceptable ENCODE duty cycle. 

    Feedthrough.  Undesirable signal coupling around switches or other devices that are supposed 
to be turned off or provide isolation,  e.g., feedthrough error  in a sample-and-hold, multiplexer, 
or multiplying DAC. Feedthrough is variously specifi ed in percent, dB, parts per million, 
fractions of 1 LSB, or fractions of 1       V, with a given set of inputs, at a specifi ed frequency. 

   In a multiplying  DAC,  feedthrough error is caused by capacitive coupling from an AC V REF  to 
the output, with all switches off. In a  sample-and-hold, feedthrough  is the fraction of the input 
signal variation or AC input waveform that appears at the output in  hold.  It is caused by stray 
capacitive coupling from the input to the storage capacitor, principally across the open switch. 

    Flash Converter.  A converter in which all the bit choices are made at the same time. It 
requires 2 N  � 1 voltage-divider taps and comparators and a comparable amount of priority 
encoding logic. A scheme that gives extremely fast conversion, it requires large numbers of 
nearly identical components, hence it is well suited to integrated-circuit form for resolutions 
up to eight bits. Several Flash converters are often used in multistage  subranging converters,  
to provide high resolution at somewhat slower speed than pure Flash conversion. 

    Four-Quadrant.  In a multiplying DAC,  “ four quadrant ”  refers to the fact that both the 
reference signal and the number represented by the digital input may be of either positive or 
negative polarity. Such a DAC can be thought of as a gain control for AC signals ( “ reference ”  
input) with a range of positive and negative digitally controlled gains. A four-quadrant 
multiplier is expected to obey the rules of multiplication for algebraic sign. 

    Frequency-to-Voltage Conversion (FVC).  The input of an FVC device is an AC waveform —
 usually a train of pulses (in the context of conversion); the output is an analog voltage, 
proportional to the number of pulses occurring in a given time. FVC is usually performed by 
a voltage-to-frequency converter in a feedback loop. Important specifi cations, in addition to 
the accuracy specs typical of VFCs (see  Voltage-to-Frequency conversion),  include  output 
ripple  (for specifi ed input frequencies),  threshold  (for recognition that another cycle has been 
initiated, and for versatility in interfacing several types of sensors directly),  hysteresis,  to 
provide a degree of insensitivity to noise superimposed on a slowly varying input waveform, 
and  dynamic response  (important in motor control). 
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    Full-Scale Input Power (ADC).  Expressed in dBm (power level referenced to 1       mW). 
Computed using the following equation, where V Full Scale rms  is in volts, and Z input  is in  Ω . 
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    Full-Scale Range (FSR).  For binary ADCs and DACs, that magnitude of voltage, current, 
or — in a multiplying DAC — gain, of which the MSB is specifi ed to be exactly one-half or 
for which any bit or combination of bits is tested against its (their) prescribed ideal ratio(s). 
FSR is independent of resolution; the value of the LSB (voltage, current, or gain) is 2  � N  FSR. 
There are several other terms, with differing meanings, that are often used in the context of 
discussions or operations involving full-scale range. They are: 

    Full-scale —  similar to full-scale range, but pertaining to a single polarity. Thus, full-scale for 
a unipolar device is twice the prescribed value of the MSB and has the same polarity. For a 
bipolar device,  positive or negative full-scale  is that positive or negative value, of which the 
next bit after the polarity bit is tested to be one-half. 

    Span —  the scalar voltage or current range corresponding to FSR. 

    All-1s — All bits on,  the condition used, in conjunction with  all-zeros,  for gain adjustment 
of an ADC or DAC, in accordance with the manufacturer’s instructions. Its magnitude, for 
a binary device, is (l � 2  � N ) FSR.  All-1s  is a  positive-true  defi nition of a specifi c magnitude 
relationship; for complementary coding the  “ all-ls ”  code will actually be all zeros. To avoid 
confusion, all-ls should never be called  full-scale ; FSR and FS are independent of the number 
of bits, all-ls isn’t. 

    All-0s — All bits off,  the condition used in offset (and gain) adjustment of a DAC or ADC, 
according to the manufacturer’s instructions. All-0s corresponds to zero output in a unipolar 
DAC and negative full-scale in an offset bipolar DAC with positive output reference. In a 
sign-magnitude device, all-0s refers to all bits after the sign bit. Analogous to  “ all-ls, ”   “ all-0s ”  
is a  positive-true  defi nition of the  all-bits-off  condition; in a complementary-coded device, 
it is expressed by all ones. To avoid confusion, all-0s should not be called  “ zero ”  unless it 
accurately corresponds to true analog zero output from a DAC. 

    Gain.  The  “ gain ”  of a converter is that analog scale factor setting that establishes the nominal 
conversion relationship, e.g., 10       V full-scale. In a multiplying DAC or ratiometric ADC, it 
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is indeed a gain. In a device with fi xed internal reference, it is expressed as the full-scale 
magnitude of the output parameter (e.g., 10       V or 2       mA). In a fi xed-reference converter, where 
the use of the internal reference is optional, the converter gain and the reference may be 
specifi ed separately. Gain and zero adjustment are discussed under  zero.  

    Glitch.  Transients associated with code changes generally stem from several sources. Some 
are spikes, known as digital-to-analog feedthrough, or charge transfer, coupled from the 
digital signal (clock or data) to the analog output, defi ned with zero reference. These spikes 
are generally fast, fairly uniform, code-independent, and hence fi lterable. However, there is a 
more insidious form of transient, code-dependent, and diffi cult to fi lter, known as the  “ glitch. ”  

   If the output of a counter is applied to the input of a DAC to develop a  “ staircase ”  voltage, 
the number of bits involved in a code change between two adjacent codes establish  “ major ”  
and  “ minor ”  transitions. The most major transition is at ½-scale, when the DAC switches all 
bits, i.e., from 011 … 111 to 100 … 000. If, for digital inputs having no skew, the switches are 
faster to switch  off  than  on,  this means that, for a short time, the DAC will seek zero output, 
and then return to the required 1 LSB above the previous reading. This large transient spike 
is commonly known as a  “ glitch. ”  The better matched the input transitions and the switching 
times, the faster the switches, the smaller will be the area of the glitch. Because the size of the 
glitch is not proportional to the signal change, linear fi ltering may be unsuccessful and may, 
in fact, make matters worse.  ( See also  Deglitcher.)  

   The severity of a glitch is specifi ed by  glitch impulse area,  the product of its duration and its 
average magnitude, i.e., the net area under the curve. This product will be recognized as the 
physical quantity,  impulse  (electromotive  force  �  Δ  time);  however, it has also been incorrectly 
termed  “ glitch energy ”  and  “ glitch charge. ”  Glitch impulse area is usually expressed, for fast 
converters, in units of pV-s or mV-ns. 

   The glitch can be minimized through the use of fast, nonsaturating logic, such as ECL, LVDS, 
matched latches, and nonsaturating CMOS switches. 

    Glitch Charge, Glitch Energy, Glitch Impulse, Glitch Impulse Area. ( See  Glitch.)  

    Harmonic Distortion, 2nd.  The ratio of the rms signal amplitude to the rms value of the 
second harmonic component, reported in dBc. 

    Harmonic Distortion, 3rd.  The ratio of the rms signal amplitude to the rms value of the third 
harmonic component, reported in dBc. 

    Harmonic Distortion, Total (THD).  The ratio of the rms signal amplitude to the rms sum of 
all harmonics (neglecting noise components). In most cases, only the fi rst fi ve harmonics are 
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included in the measurement because the rest have negligible contribution to the result. The 
THD can be derived from the FFT of the ADC’s output spectrum. For harmonics that are 
above the Nyquist frequency, the aliased component is used. 

    Harmonic Distortion, Total, Plus Noise (THD  �  N) . Total harmonic distortion plus noise 
(THD � N) is the ratio of the rms signal amplitude to the rms sum of all harmonics and noise 
components. THD � N can be derived from the FFT of the ADC’s output spectrum and is a 
popular specifi cation for audio applications. 

    Impedance, Input.  The dynamic load of an ADC presented to its input source. In unbuffered 
CMOS switched-capacitor ADCs, the presence of current transients at the converter’s clock 
frequency mandates that the converter be driven from a low impedance (at the frequencies 
contained in the transients) in order to accurately convert. For buffered-input ADCs, the input 
impedance is generally represented by a resistive and capacitive component. 

    Input-Referred Noise (Effective Input Noise) . Input-referred noise can be viewed as the net 
effect of all internal ADC noise sources referred to the input. It is generally expressed in 
 LSBs rms , but can also be expressed as a voltage. It can be converted to a peak-to-peak value 
by multiplying by the factor 6.6. The peak-to-peak input-referred noise can then be used to 
calculate the  noise-free code resolution . (See  Noise-Free Code Resolution ). 

    Intermodulation Distortion (IMD).  With inputs consisting of sinewaves at two frequencies, 
f 1  and f 2 , any device with nonlinearities will create distortion products of order (m � n), at sum 
and difference frequencies of mf 1  � nf 2 , where m, n � 0, 1, 2, 3,  … . Intermodulation terms are 
those for which m or n is not equal to zero. For example, the second-order terms are (f 1  � f 2 ) 
and (f 2  � f 1 ), and the third-order terms are (2f 1  � f 2 ), (2f 1  � f 2 ), (f 1  � 2f 2 ), and (f 1  � 2f 2 ). The IMD 
products are expressed as the dB ratio of the rms sum of the distortion terms to the rms sum 
of the measured input signals. 

    Latency. ( See  Pipelining.)  

    Leakage Current, Output.  Current that appears at the output terminal of a DAC with all 
bits  “ off. ”  For a converter with two complementary outputs (for example, many fast CMOS 
DACs), output leakage current is the current measured at OUT 1, with all digital inputs  low —
 and  the current measured at OUT 2, with all digital inputs  high.  

    Least-Signifi cant Bit (LSB).  In a system in which a numerical magnitude is represented by 
a series of binary (i.e., two-valued) digits, the  least-signifi cant bit  is that digit (or  “ bit ” ) that 
carries the smallest value, or weight. For example, in the natural binary number 1101 (decimal 
13, or (1 � 2 3 ) � (1 � 2 2 ) � (0 � 2 1 ) � (1 � 2 0 )), the rightmost digit is the LSB. Its analog weight, 
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in relation to full-scale (see  Full-Scale Range),  is 2  � N , where N is the number of binary digits. 
It represents the smallest analog change that can be resolved by an n-bit converter. 

   In data converter nomenclature, the LSB is bit N; in bus nomenclature (integer binary), it is 
Data Bit 0. 

    Left-Justifi ed Data . When a 12-bit word is placed on an 8-bit bus in two bytes, the high byte 
contains the 4 or 8 most-signifi cant bits. If 8, the word is said to be left justifi ed; if 4 (plus 
fi lled-in leading sign bits), the word is said to be right justifi ed. 

    Linearity. ( See also  Nonlinearity.)  Linearity error of a converter  ( also,  integral nonlinearity —
  see  Linearity, Differential),  expressed in % or parts per million of full-scale range, or 
(sub)multiples of 1 LSB, is a deviation of the analog values, in a plot of the measured 
conversion relationship, from a straight line. The straight line can be either a  “ best straight 
line, ”  determined empirically by manipulation of the gain and/or offset to equalize maximum 
positive and negative deviations of the actual transfer characteristic from this straight line; 
or, it can be a straight line passing through the end points of the transfer characteristic after 
they have been calibrated, sometimes referred to as  “ end- point ”  linearity.  “ End-point ”  
nonlinearity is similar to relative accuracy error  ( see  Accuracy, Relative).  It provides an easier 
method for users to calibrate a device, and it is a more conservative way to specify linearity. 

   For multiplying DACs, the  analog  linearity error, at a specifi ed analog gain (digital code), is 
defi ned in the same way as for analog multipliers, i.e., by deviation from a  “ best straight line ”  
through the plot of the analog output-input response. 

    Linearity, Differential.  In a DAC, any two adjacent digital codes should result in measured 
output values that are exactly 1 LSB apart (2  � N  of full-scale for an N-bit converter). 
Any positive or negative deviation of the measured  “ step ”  from the ideal difference is 
called  differential nonlinearity,  expressed in (sub)multiples of 1 LSB. It is an important 
specifi cation, because a differential linearity error more negative than  � 1 LSB can lead to 
nonmonotonic response in a DAC and missed codes in an ADC using that DAC. 

   Similarly, in an ADC, midpoints between code transitions should be 1 LSB apart. Differential 
nonlinearity is the deviation between the actual difference between midpoints and 1 LSB, 
for adjacent codes. If this deviation is equal to or more negative than  � 1 LSB, a code will be 
missed (See  Missing Codes. ) 

   Often, instead of a maximum differential nonlinearity specifi cation, there will be a simple 
specifi cation of  “ monotonicity ”  or  “ no missing codes, ”  which implies that the differential 
nonlinearity cannot be more negative than  � 1 for any adjacent pair of codes. However, the 
differential linearity error may still be more positive than  � 1 LSB. 
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    Linearity, Integral. ( See  Linearity.)  While  differential linearity  deals with errors in step size, 
 integral linearity  has to do with deviations of the overall shape of the conversion response. 
Even converters that are not subject to differential linearity errors. (e.g., integrating types) 
have integral linearity (sometimes just  “ linearity ” ) errors. 

    Maximum Conversion Rate.  The maximum sampling (encode) rate at which parametric 
testing is performed. 

    Minimum Conversion (Sampling) Rate.  The encode rate at which the SNR of the lowest 
analog signal frequency drops by no more than 3       dB below the guaranteed limit. 

    Missing Codes.  An ADC is said to have missing codes when a transition from one quantum of 
the analog range to the adjacent one does not result in the adjacent digital code, but in a code 
removed by one or more counts. Missing codes can be caused by large negative differential 
linearity errors, noise, or changing inputs during conversion. A converter’s proclivity towards 
missing codes is also a function of the architecture and temperature. 

    Monotonicity.  An DAC is said to be  monotonic  if its output either increases or remains 
constant as the digital input increases, with the result that the output will always be a single-
valued function of the input. The condition  “ monotonic ”  requires that the derivative of 
the transfer function never change sign. Monotonic behavior requires that the differential 
nonlinearity be more positive than  � 1 LSB. The same basic defi nition applies to an ADC —
 the digital output code either increases or remains constant as the digital input increases. 
In practice, however, noise will cause the ADC output code to oscillate between two code 
transitions over a small range of analog input. Input-referred noise can make this effect worse, 
so histogram techniques are often used to measure ADC monotonicity in these situations. 

    Most Signifi cant Bit (MSB).  In a system in which a numerical magnitude is represented by 
a series of binary (i.e., two-valued) digits, the  most-signifi cant bit  is that digit (or  “ bit ” ) that 
carries the greatest value or weight. For example, in the natural binary number 1101 (decimal 
13, or (1 � 2 3 ) � (1 � 2 2 ) � (0 � 2 1 ) � (1 � 2 0 )), the leftmost  “ 1 ”  is the MSB, with a weight of ½ 
nominal peak-to-peak full-scale (full-scale range). In bipolar devices, the sign bit is the MSB. 

   In converter nomenclature, the MSB is bit 1; in bus nomenclature, it is Data Bit (N � 1). 

    Multiplying DAC.  A multiplying DAC differs from the conventional fi xed-reference DAC in 
being designed to operate with varying (or AC) reference signals. The output signal of such 
a DAC is proportional to the product of the  “ reference ”  (i.e., analog input) voltage and the 
fractional equivalent of the digital input number. (See also  Four-Quadrant.)  

    Multitone Spurious Free Dynamic Range (SFDR).  The ratio of the rms value of an input tone 
to the rms value of the peak spurious component. The peak spurious component may or may 
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not be an intermodulation distortion (IMD) product. May be reported in dBc (dB relative to 
the carrieror in dBFS (dB relative to full-scale). The amplitudes of the individual tones are 
equal and chosen such that the ADC is not overdriven when they add in-phase. 

    Noise-Free (Flicker-Free) Code Resolution.  The noise-free code resolution of an ADC is the 
number of bits beyond which it is impossible to distinctly resolve individual codes. The cause 
is the effective input noise (or input-referred noise) associated with all ADCs. This noise can 
be expressed as an rms quantity, usually having the units of  LSBs rms . Multiplying by a factor 
of 6.6 converts the rms noise into peak-to-peak noise (expressed in  LSBs peak-to-peak ). The 
total range of an N-bit ADC is 2 N . The noise-free (or fl icker-free) resolution can be calculated 
using the equation: 

    Noise-Free Code Resolution  � log 2 (2 N /Peak-to-Peak Noise) 

   The specifi cation is generally associated with high-resolution sigma-delta measurement 
ADCs, but is applicable to all ADCs. 

   The ratio of the FS range to the  rms  input noise is sometimes used to calculate resolution. 
In this case, the term  effective resolution  is used. Note that effective resolution is larger than 
noise-free code resolution by log 2 (6.6), or approximately 2.7 bits. 

    Effective Resolution  � log 2  (2 N  / RMS Input Noise). 

    Noise, Peak and RMS.  Internally generated random noise is not a major factor in DACs, 
except at extreme resolutions and dynamic ranges. Random noise is characterized by rms 
specifi cations for a given bandwidth, or as a spectral density (current or voltage per root 
hertz); if the distribution is Gaussian, the probability of peak-to-peak values exceeding 6.6 �  
the rms value is less than 0.l%. 

   Of much greater importance in DACs is interference, in the form of high amplitude, low 
energy (hence low rms) spikes appearing at a DAC’s output, caused by coupling of digital 
signals in a surprising variety of ways; they include coupling via stray capacitance, via power 
supplies, via inadequate ground systems, via feedthrough, and by glitch-generation (see 
 Glitch).  Their presence underscores the necessity for maximum application of the designer’s 
art, including layout, shielding, guarding, grounding, bypassing, and deglitching. 

   Noise in ADCs in effect narrows the region between transitions. Sources of noise include the 
input sample-and-hold, resistor noise,  “ KT/C ”  noise, the reference, the analog signal itself, 
and pickup in infi nite variety. 

    Noise Power Ratio (NPR) . In this measurement, wideband Gaussian noise (bandwidth  �  f s /2) 
is applied to an ADC through a narrowband notch fi lter. The notch fi lter removes all noise 
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within its bandwidth. The output of the ADC is examined with a large FFT. The ratio of the 
rms noise level to the rms noise level inside the notch (due to quantization noise, thermal 
noise, and intermodulation distortion) is defi ned as the  noise power ratio (NPR) . The rms 
noise level at the input to the ADC is generally adjusted to give the best NPR value. 

    No Missing Codes Resolution.  (See  Resolution, No Missing Codes .) 

    Nonlinearity (or   “ gain nonlinearity ” ) The deviation from a straight line on the plot of output 
versus input. The magnitude of linearity error is the maximum deviation from a  “ best straight 
line, ”  with the output swinging through its full-scale range. Nonlinearity is usually specifi ed 
in percent of full-scale output range. 

    Normal Mode.  For an amplifi er used in instrumentation, the  normal-mode  signal is the 
actual difference signal being measured. This signal often has noise associated with it. Signal 
conditioning systems and digital panel instruments usually contain input fi ltering to remove 
high frequency and line frequency noise components.  Normal-mode rejection  (NMR), is 
a logarithmic measure of the attenuation of normal-mode noise components at specifi ed 
frequencies in dB. 

    Offset, Bipolar.  For the great majority of bipolar converters (e.g.,  � 10       V output), negative 
currents are not actually generated to correspond to negative numbers; instead, a unipolar DAC 
is used, and the output is offset by half full-scale (1 MSB). For best results, this offset voltage 
or current is derived from the same reference supply that determines the gain of the converter. 

   Because of nonlinearity, a device with perfectly calibrated end points may have offset error at 
analog zero. 

    Offset Step.  (See  Pedestal. ) 

    Output Propagation Delay.  For an ADC having a single-ended sampling (or ENCODE) clock 
input, the delay between the 50% point of the sampling clock and the time when all output data 
bits are within valid logic levels. For an ADC having differential sampling clock inputs, the 
delay is measured with respect to the zero crossing of the differential sampling clock signal. 

    Output Voltage Tolerance.  For a reference, the maximum deviation from the normal output 
voltage at 25°C and specifi ed input voltage, as measured by a device traceable to a recognized 
fundamental voltage standard. 

    Overload.  An input voltage exceeding the ADC’s full-scale input range producing an 
overload condition. 

    Overvoltage Recovery Time.  Overvoltage recovery time is defi ned as the amount of time 
required for an ADC to achieve a specifi ed accuracy after an overvoltage (usually 50% greater 
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than full-scale range), measured from the time the overvoltage signal reenters the converter’s 
range. The ADC should act as an ideal limiter for out-of-range signals, producing a positive 
or negative full-scale code during the overvoltage condition. Some ADCs provide over- and 
underrange fl ags to allow gain-adjustment circuits to be activated. 

    Overrange, Overvoltage.  An input signal that exceeds the full-scale input range of an ADC, 
but is less than an overload. 

    Pedestal,  or  Sample-to-Hold Offset Step.  In sample/track-and-hold amplifi ers, a shift in level 
between the last value in  sample  and the value settled-to in  hold;  in devices having fi xed 
internal capacitors, it includes  charge transfer,  or  offset step.  However, for devices that may 
use external capacitors, it is often defi ned as the residual step error after the  charge transfer  is 
accounted for and/or cancelled. Since it is unpredictable in magnitude and may be a function 
of the signal, it is also known as  offset nonlinearity.  

    Pipelining.  A pipelined converter is a multistage converter capable of accepting a new signal 
before it has completed the conversion of one or more previous ones. A new signal arrives 
while others are still  “ in the pipeline. ”  This is a technique used where a fast conversion rate is 
desired and the latency of individual conversions is relatively unimportant. 

    Power-Supply Rejection Ratio (PSRR).  The ratio of a change in DC power supply voltage to 
the resulting change in the specifi ed device error, expressed in percentage, parts per million, 
or fractions of 1 LSB. It may also be expressed logarithmically, in dB, PSR � 20 log 10  (PSRR). 

    Quad-Slope Converter.  This is an integrating analog-to-digital converter that goes through 
two cycles of  dual-slope  conversion, once with zero input and once with the analog input 
being measured. The errors determined during the fi rst cycle are subtracted digitally from the 
result in the second cycle. The scheme can result in high-accuracy conversion. 

    Quantizing Uncertainty ( or   “ Quantization Error ” ).  The analog continuum is partitioned 
into 2 N  discrete ranges for N-bit conversion and processing. All analog values within a given 
quantum are represented by the same digital code, usually assigned to the nominal midrange 
value. There is, therefore, an inherent quantization uncertainty of  � ½ LSB, in addition to 
the actual conversion errors. In integrating ADCs, this  “ error ”  is often expressed as  “  � 1 
count. ”  Depending on the system context, it may be interpreted as a truncation (round-off ) 
error or as noise. 

    Ratiometric.  The output of an ADC is a digital number proportional to the  ratio  of (some 
measure of ) the input to a reference voltage. Most requirements for conversions call for an 
absolute measurement, i.e., against a fi xed reference; but this presumes that the signal applied 
to the converter is either reference-independent or in some way derived from another fi xed 
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reference. However, real references are not truly fi xed; the references for both the converter 
and the signal source vary with time, temperature, loading, etc. Therefore, if the converter is 
used with signal sources that also rely on references (for example, strain-gage bridges, RTDs, 
thermistors), it makes sense to replace this multiplicity of references by a single system 
reference. In this case, reference-caused errors will tend to cancel out. This can be done 
by using the converter’s internal reference (if it has one) as the system reference. Another 
way is to use a separate external system reference, which also becomes the reference for a 
 ratiometric  converter. For instance, if a bridge is excited with the same voltage used for the 
ADC reference, ratiometric operation is achieved, and the ADC output code is not a function 
of the reference. This is because the bridge output signal is proportional to the same voltage 
which defi nes the ADC input range. 

    Resolution.  An N-bit binary converter has N digital data inputs (DAC) or N digital data 
outputs (ADC). A converter that satisfi es this criterion is said to have a  resolution  of N bits. 

    Resolution, No Missing Codes . The  no missing code resolution  of an ADC is the maximum 
number of bits of resolution beyond which the ADC will have missing codes. For instance, if 
an 18-bit ADC has a no missing code resolution of 16 bits, there will be no missing codes if 
only the 16 MSBs are utilized. Codes may be missed at the 17- and 18-bit level. The smallest 
output change that can be resolved by a linear DAC is 2  � N  of the full-scale span. Thus, 
for example, the resolution of an 8-bit DAC would be 2  � 8 , or 1/256. On the other hand, a 
nonlinear device, such as the AD7111 LOGDAC ™ , can ideally achieve a dynamic range of 
89.625       dB, or 30,000:1, in 0.375       dB steps, using only 8 bits of digital resolution. 

    Right-Justifi ed Data . When a 12-bit word is placed on an 8-bit bus in two stages, the high 
byte contains the 4 or 8 most-signifi cant bits. If 8, the word is said to be left justifi ed; if 4 
(plus fi lled-in leading sign bits), the word is said to be right justifi ed. 

    Sample-to-Hold Offset.( See  Pedestal.)  

    Sampling ADC.  A sampling ADC includes a sample-and-hold function that acquires the input 
value at a given instant and holds it throughout the conversion time (or until the converter is ready 
for the next sample point). Flash ADCs and sigma-delta ADCs are inherently sampling devices. 

    Sampling Clock. ( See  Encode Command).  

    Sampling Frequency . The rate at which an ADC converts an analog input signal into digital 
outputs, not to be confused with  conversion time . 

    Serial Output.  A bit-serial output consists of a series of bits clocked out on a single line. 
There must be some means of identifying the beginning and ends of words; this can be 
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accomplished via an additional clock line, by using synchronized clocks, and/or by providing 
a consistent identifying signature for the beginning of a word. Byte-serial consists of a series 
of bytes transmitted in sequence on a bus. (See  Byte. ) 

    Settling Time — ADC.  The time required, following an analog input step change (usually 
full-scale), for the digital output of the ADC to reach and remain within a given fraction 
(usually � ½ LSB). 

    Settling Time — DAC.  The time required, following a prescribed data change, for the output of 
a DAC to reach and remain within an error band (usually  � ½ LSB) of the fi nal value. Typical 
prescribed changes are full-scale, 1 MSB, and 1 LSB at a major carry. Settling time of 
current-output DACs is quite fast. The major share of settling time of a voltage-output DAC 
is usually contributed by the settling time of the output op-amp. DAC settling time can also 
be defi ned with respect to the output. Output settling time is the time measured from the point 
the output signal leaves an error band referenced to the initial output value until the time the 
signal enters and remains within the error band referenced to the fi nal output value. 

    Signal-to-Noise-and-Distortion Ratio (SINAD).  The ratio of the rms signal amplitude (set 
1       dB below full-scale to prevent overdrive) to the rms value of the sum of all other spectral 
components, including harmonics but excluding DC. 

    Signal-to-Noise Ratio (without Harmonics).  The ratio of the rms signal amplitude (set at 
1       dB below full-scale to prevent overdrive) to the rms value of the sum of all other spectral 
components, excluding the fi rst fi ve harmonics and DC. Technically, all harmonics should be 
excluded, but in practice, only the fi rst fi ve are generally signifi cant. 

    Single-Slope Conversion.  In the single-slope converter, a reference voltage is integrated until 
the output of the integrator is equal to the input voltage. The time period required for the 
integrator to go from zero to the level of the input is proportional to the magnitude of the 
input voltage and is measured by an internal clock. Measurement accuracy is sensitive to 
clock speed and integrating capacitance, as well as the reference accuracy. 

    Slew(ing) Rate.  A limitation in the rate of change of output voltage, usually imposed by 
some basic circuit consideration, such as limited current to charge a capacitor. The output 
slewing speed of a voltage-output DAC is usually limited by the slew rate of the amplifi er 
used at its output. 

    Spurious-Free Dynamic Range (SFDR).  The ratio of the rms signal amplitude to the rms 
value of the peak spurious spectral component. The peak spurious component may or may 
not be a harmonic. May be reported in dBc (i.e., degrades as signal level is lowered) or dBFS 
(related back to converter full-scale). 
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    Stability.  In a well-designed, intelligently applied converter,  dynamic stability  is not an 
important question. The term stability usually applies to the insensitivity of the converter’s 
characteristics to time, temperature, etc. All measurements of stability are diffi cult and time 
consuming, but stability versus temperature is suffi ciently critical in most applications to 
warrant universal inclusion in tables of specifi cations (see  Temperature Coeffi cient).  

    Staircase.  A voltage or current, increasing in equal increments as a function of time and 
having the appearance of a staircase (in a time plot); it is generated by applying a pulse train 
to a counter, and the output of the counter to the input of a DAC. 

    Subranging ADCs.  In this type of converter, a fast converter produces the most-signifi cant portion 
of the output word. This portion is stored in a holding register and also converted back to analog 
with a fast, high-accuracy DAC. The analog result is subtracted from the input, and the resulting 
residue is amplifi ed, converted to digital at high speed, and combined with the results of the 
earlier conversion to form the output word. In  digitally corrected subranging  (DCS) ADCs, the 
two conversions are combined in a manner that corrects for the error of the LSB of the most 
signifi cant bits. For example, using 8-bit and 5-bit conversion, plus this technique and a great deal 
of video-speed converter expertise, a full-accuracy high speed 12-bit ADC can be built. Many 
pipelined subranging ADCs use more than two stages with error correction between each stage. 

    Successive Approximation.  Successive approximation is a method of conversion by 
comparing an unknown against a group of weighted references. The operation of a 
successive-approximation ADC is generally similar to the orderly weighing of an unknown 
quantity on a precision balance, using a set of weights, such as 1 gram ½ gram, ¼ gram, 
etc. The weights are tried in order, starting with the largest. Any weight that tips the scale is 
removed. At the end of the process, the sum of the weights remaining on the scale will be 
within 1 LSB of the actual weight ( � ½ LSB, if the scale is properly biased — see  Zero ). The 
successive approximation ADC is often called a SAR ADC, because the logic block that 
controls the conversion process is known as a successive approximation register (SAR). 

    Switching Time.  In a DAC, the switching time is the time taken for an analog switch to change 
to a new state from the previous one. It includes propagation delay time, and rise time from 
10% to 90%, but does not include settling time. 

    Temperature Coeffi cient.  In general, temperature instabilities are expressed as %/°C, ppm/°C, 
fractions of 1 LSB per degree C, or as a change in a parameter over a specifi ed temperature 
range. Measurements are usually made at room temperature (25°C) and at the extremes of the 
specifi ed range, and the temperature coeffi cient (tempco, TC) is defi ned as the change in the 
parameter, divided by the corresponding temperature change. Parameters of interest include 
gain, linearity, offset (bipolar), and zero. 
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    a.      Gain Tempco:  Two factors principally affect converter gain stability with temperature. 
In fi xed-reference converters, the reference voltage will vary with temperature. The 
reference circuitry and switches (and comparator in ADCs) will also contribute to the 
overall gain TC.  

    b.      Linearity Tempco:  Sensitivity of linearity (integral and/or differential linearity) to 
temperature, in % FSR /°C or ppm FSR /°C, over the specifi ed range. Monotonic behavior 
in DACs is achieved if the differential nonlinearity is less than 1 LSB at any temperature 
in the range of interest. The  differential nonlinearity temperature coeffi cient  may be 
expressed as a ratio, as a maximum change over a temperature range, and/or implied by 
a statement that the device is monotonic over the specifi ed temperature range. To avoid 
missing codes in noiseless ADCs, it is suffi cient that the differential nonlinearity error be 
less than  � 1 LSB at any temperature in the range of interest. The differential nonlinearity 
temperature coeffi cient is often implied by the statement that there are no missed 
codes when operating within a specifi ed temperature range. In DACs, the differential 
nonlinearity TC is often implied by the statement that the DAC is monotonic over a 
specifi ed temperature range.  

    c.      Zero TC (unipolar converters):  The temperature stability of a unipolar fi xed-reference 
DAC, measured in % FSR/°C or ppm FSR/°C, is principally affected by current leakage 
(current-output DAC), and offset voltage and bias current of the output op amp (voltage-
output DAC). The zero stability of an ADC is dependent on the zero stability of the DAC 
or integrator and/or the input buffer and the comparator. It is typically expressed in  μ V/°C 
or in percent or ppm of full-scale range (FSR) per degree C.  

    d.      Offset Tempco:  The temperature coeffi cient of the all-DAC-switches-off (minus full-
scale) point of a bipolar converter (in % FSR/°C or ppm FSR/°C) depends on three major 
factors — the tempco of the reference source, the voltage zero-stability of the output 
amplifi er, and the tracking capability of the bipolar-offset resistors and the gain resistors. 
In an ADC, the corresponding tempco of the negative full-scale point depends on similar 
quantities — the tempco of the reference source, the voltage stability of the input buffer 
and the sample-and-hold, and the tracking capabilities of the bipolar offset resistors and 
the gain-setting resistors.    

    Thermal Tail.  The slow drift of an amplifi er having a thermally induced offset due to self-
heating as it settles to a fi nal electrical equilibrium value corresponding to internal thermal 
equilibrium. 

    Total Unadjusted Error.  A comprehensive specifi cation on some devices which includes full-
scale error, relative-accuracy and zero-code errors, under a specifi ed set of conditions. 
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    Transient Response.  (See  Settling Time. ) 

    Two-Tone SFDR.  The ratio of the rms value of either input tone to the rms value of the peak 
spurious component. The peak spurious component may or may not be an intermodulation 
distortion (IMD) product. May be reported in dBc (i.e., degrades as signal level is lowered) or 
in dBFS (always related back to converter full-scale). 

    Worst Other Spur.  The ratio of the rms signal amplitude to the rms value of the worst spurious 
component (excluding the second and third harmonic) reported in dBc.   
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 CHAPTER 2 

                     Digital Filters 
   Robert   Meddins    

     Most introductory texts on DSP are very similar. Every author seems compelled to demonstrate 
that they can still derive the fundamental equations of DSP — never mind that you don’t need 
to see these derivations! In this introduction to DSP, the author’s stated goal is a genuine 
introduction without going into the usual derivations and examples. It’s a refreshing approach. 
The text does a good job of quickly explaining the essential ideas without any fuss. If you want 
the derivations and more examples, the author provides plenty of references. 

 The chapter introduces the most basic principles of DSP, starting with the difference between 
analog and digital processing. It then moves on to sampling, anti-aliasing fi lters, and analog-
to-digital converters (ADC). Finally, it wraps up with examples of basic digital systems such as 
fi nite-impulse-response (FIR) fi lters and infi nite-impulse-response (IIR) fi lters. 

 The examples are very simple. For instance, ADCs are much more complex than the simple 
circuit given. But the example lets you know how ADCs operate, which is all most of us need 
to know. Wrap your brain around these examples and you will be well on your way to calling 
yourself a DSP engineer. 

 The text is showing its age in places (fi rst published in 1995). It spends a few skippable 
paragraphs making the case for DSP over analog signal processing — a war long won by DSP. 
And its comments about DSP processors don’t apply too well to the current generation of DSP 
processors. 

 All in all, however, this chapter should quickly give you the basic concepts needed to move on to 
the more advanced topics in this book. 

  —  Kenton Williston    

    2.1       Chapter Preview 

   In this chapter you will be introduced to the basic principles of digital signal processing 
(DSP). We will look at how digital signal processing differs from the more conventional 
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analog signal processing and also at its many advantages. Some simple digital processing 
systems will be described and analyzed. The main aim of this chapter is to set the scene and 
give a feel for what digital signal processing is all about.  

    2.2       Analog Signal Processing 

   You are probably very familiar with  analog  signal processing. Some obvious examples of this 
type of processing are amplifi cation, rectifi cation and fi ltering. With all analog processing, 
signals enter a system, are processed by passing them through circuits containing capacitors, 
resistors, inductors, op amps, transistors, etc. They are then outputted from the system with 
a different shape or size.  Figure 2.1    shows a very elementary example of an analog signal 
processing system, consisting of just a resistor and a capacitor — you will probably recognize 
it as a simple type of lowpass fi lter. Analog signal processing circuits are commonplace 
and have been very important system building blocks since the early days of electrical 
engineering. 

   Unfortunately, as useful as they are, analog processing systems do have major defects. An 
obvious one is that they have to be physically modifi ed if the processing needs to be changed. 
For example, if the gain of an amplifi er has to be increased, then this usually means that 
at least a resistor has to be changed. What if a different cut-off frequency is required for a 
fi lter or, even worse, we want to replace a highpass fi lter with a lowpass fi lter? Once again, 
components must be changed. This can be very inconvenient to say the least — it’s bad enough 
when a single system has to be adjusted but imagine the situation where a batch of several 
thousand is found to need modifying. How much better if changes could be achieved by 
altering a parameter or two in a computer program …  
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   Another problem with analog systems is that of  “  repeatability . ”  It is  very  unlikely that two 
analog systems will have identical performances, even though they have been made in 
exactly the same way, with supposedly the same value components. This is mainly because of 
component tolerances. Analog devices have two further disadvantages. The fi rst is that their 
components age and so the device performance changes. The other is that components are 
also affected by temperature changes.  

    2.3       An Alternative Approach 

   So, having slightly dented the reputation of analog processors, what’s the alternative? 
Luckily, signal processing systems do exist which work in a completely different way and 
do not have these problems. A major difference is that these systems fi rst sample, at regular 
intervals, the signal to be processed ( Figure 2.2   ). The sampled voltages are then converted to 
equivalent binary values, using an analog-to-digital converter ( Figure 2.3   ). Next, these binary 
numbers are fed into a digital processor, containing a particular program, which will change 
the samples. The way in which the digital values are modifi ed will obviously depend on the 
type of signal processing required — for example, do we want lowpass or highpass fi ltering 
and what cut-off frequency do we require? The transformed samples are then outputted, via a 
digital-to-analog converter, to produce the reconstituted but processed analog output signal. 

   Because computers can process data so quickly, the signal processing can be done almost in 
 “ real time, ”  i.e., the processed output samples are fed out continuously, almost in step with 
the corresponding input samples. Alternatively, the processed data could be stored, perhaps 
on a chip or CD-ROM, and then read when required. 
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   By now, you’ve probably guessed that this form of processing is called  digital signal 
processing . Digital signal processing (DSP) does not have the drawbacks of analog signal 
processing, already mentioned. For example, the type of processing required can be modifi ed 
very easily — if the specifi cation of a fi lter needs to be changed then new parameters can 
simply be keyed into the DSP system, i.e., the processing is  programmable . The performance 
of a digital fi lter is also constant, not changing with either time or temperature. DSP systems 
are also inherently repeatable — if several DSP systems have been programmed to process 
signals in a certain way then they will all behave identically. DSP systems can also process 
signals in ways impossible for analog systems. 

   To summarize: 

      ●       Digital signal processing systems  are available that will do almost everything that 
analog signals can do, and much more —  versatile .  

      ●      They can be easily changed —  programmable .  

      ●      They can be made to process signals identically —  repeatable .  

      ●      They are not affected by temperature or aging —  physically stable .     

    2.4       The Complete DSP System 

   The heart of the digital signal processing system, the analog-to-digital converter (ADC), 
digital processor and the digital-to-analog converter (DAC), is shown in  Figure 2.3 . However, 
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this sub-unit needs  “ topping and tailing ”  in order to create the complete system. An entire, 
general DSP system is shown in  Figure 2.4   . 

   Each block will now be described briefl y. 

    2.4.1       The Anti-Aliasing Filter 

   If the analog input voltage is not sampled frequently enough then this results in something of 
a shambles. Basically, high frequency input signals will appear as low frequency signals at the 
output, which will be very confusing to say the least! This phenomenon is called  aliasing . In other 
words, the high frequency input signals take on another identity, or  “ alias, ”  on leaving the system. 

   To get a feel for the problem of aliasing, consider a sinusoidal signal, of fi xed frequency, which is 
being sampled every 7/8 of a period, i.e., 7 T /8 ( Figure 2.5   ). Having only the samples as a guide, it 
can be seen that the sampled signal appears to have a much lower frequency than it really has. 

   In practice, a signal will not usually have a single frequency but will consist of a very wide 
range of frequencies. For example, audio signals can contain frequency components in the 
range of about 20       Hz to 20       kHz. 
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    To prevent aliasing, it can be shown that the signal must be sampled at least twice as fast as 
the highest frequency component.  

   This very important rule is known as the Nyquist criterion, or Shannon’s sampling theorem, 
after two distinguished pioneers from the world of signal processing. 

   If this sampling rate cannot be achieved, perhaps because the components used just cannot 
respond this quickly, then a lowpass fi lter must be used on the input end of the system. 
This has the job of removing signal frequencies greater than  f  s �2, where  f  s  is the sampling 
frequency. This is the role of the  anti-aliasing fi lter . An anti-aliasing fi lter is therefore a 
lowpass fi lter with a cut-off frequency of  f  s �2. 

   The important frequency of  f  s �2 is usually called the  Nyquist frequency.   

    2.4.2       The Sample-and-Hold Device 

   An ADC should not be presented with a changing voltage to convert. The changing signal 
should be sampled and then this sampled voltage held while the conversion is carried out 
( Figure 2.6   ). (In practice, the sampled value is normally held until the next sample is taken.) 
If the voltage is  not  kept constant during conversion then, depending on the type of converter 
used, the digital output might not just be a little inaccurate but could be absolute rubbish, 
bearing no relationship to the true value. 

   At the heart of the  sample-and-hold  device is a capacitor ( Figure 2.7   ). The electronic switch, S, 
is closed, causing the capacitor to charge to the current value of the input voltage. After a brief 
time interval the switch is reopened, so keeping the sampled voltage across the capacitor constant 
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while the ADC carries out its conversion. The complete sample-and-hold device usually includes 
a voltage follower at both the input and the output of the basic system shown in  Figure 2.7 . The 
characteristically low output impedance and high input impedance of the voltage followers ensure 
that the capacitor is charged very quickly by the input voltage and discharges very slowly through 
the ADC connected to its output, so maintaining the stored voltage.  

    2.4.3       The Analog-to-Digital Converter 

   This converts the steady, sampled voltage, supplied by the sample-and-hold device, to an 
equivalent digital value in preparation for processing. The more output bits the converter has, 
the fi ner the resolution of the device, i.e., the smaller is the voltage change represented by the 
least signifi cant output bit changing from 0 to 1 or from 1 to 0. 

   You are probably aware that there are many different types of ADC available. However, some of 
these are too slow for most DSP applications, e.g., single- and dual-slope and the basic counter-
feedback versions. An ADC widely used in DSP systems is the sigma-delta converter. If you feel 
the need to do some extra reading in order to brush up on ADCs then some keywords to look out 
for are: single-slope, dual-slope, counter-feedback, successive approximation, fl ash, tracking and 
sigma-delta converters and also converter resolution. Millman and Grabel (1987) is just one of 
many books that give a good general treatment, while Marven and Ewers (1994) and also Proakis 
and Manolakis (1996) are two texts that give good coverage of the sigma-delta converter.  

    2.4.4       The Processor 

   This  could  be a general-purpose microprocessor chip, but this is unlikely. The data processing 
part of a purpose-built DSP chip is designed to be able to do a limited number of fairly 
simple operations, in particular addition and multiplication,  but they do these exceptionally 
quickly . Most of the major chip-producing companies have developed their own DSP chips, 
e.g., Motorola, Texas Instruments and Analog Devices, and their user manuals are obvious 
reference sources for further reading.  
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    2.4.5       The Digital-to-Analog Converter 

   This converts the processed digital value back to an equivalent analog voltage. Common 
types are the weighted resistor and the R-2R ladder converters, although the weighted resistor 
version is not a practical proposition, as it cannot be fabricated suffi ciently accurately as an 
integrated circuit. Details of these two devices can be found in Millman and Grabel (1987), 
while Marven and Ewers (1994) describes the more sophisticated  “ bit-stream ”  DAC, often 
used in DSP systems.  

    2.4.6       The Reconstruction Filter 

   As the anti-aliasing fi lter ensures that there are no frequency components greater than  f  s �2 
entering the system, then it seems reasonable that the output signal will also have no frequency 
components greater than  f  s �2. However, this is not so! The output from the DAC will be 
 “ steppy ”  because the DAC can only output certain voltage values. For example, an 8-bit DAC 
will have 256 different output voltage levels going from perhaps  � 5       V to  � 5       V. When this 
quantized output is analyzed, frequency components of  f  s , 2 f  s , 3 f  s , 4 f  s , etc. (harmonics of the 
sampling frequency) are found. The very action of sampling and converting introduces these 
harmonics of the sampling frequency into the output signal. It is these harmonics which give the 
output signal its steppy appearance. The  reconstruction fi lter  is a lowpass fi lter having a cut-off 
frequency of  f  s �2, and is used to fi lter out these harmonics and so smooth the output signal.   

    2.5       Recap 

        ●      Analog signal processing systems have a variety of disadvantages, such as 
components needing to be changed in order to change the processor function, 
inaccuracies due to component aging and temperature changes, processors built in the 
same way not performing identically.  

      ●      Digital processing systems do not suffer from the problems above.  

      ●      Digital signal processing systems sample the input signal and convert the samples to 
equivalent digital values. These values are processed and the resulting digital outputs 
converted back to analog voltages. This series of discrete voltages is then smoothed 
to produce the processed analog output.  

      ●      The analog input signal must be sampled at a frequency which is at least twice as 
high as its highest frequency component, otherwise  “ aliasing ”  will take place.     
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    2.6       Digital Data Processing 

   For the rest of this chapter we will concentrate on the processing of the digital values by the 
digital data processing unit — this is where the clever bit is done! 

   So, how does it all work? The digital data processor ( Figure 2.4 ) is constantly being 
bombarded with digital values, one following the other at regular intervals. Its job is to 
output a suitable digital number in response to each digital input. This is something of an 
achievement as all that the processor has to work with is the current input value and the 
previous input and output samples. Somehow it has to use these to generate the output value 
corresponding to the current input value. 

   The mechanics of what happens is surprisingly simple. First, a number of the previous input 
and/or output values are stored in special data storage registers, the number stored depending 
on the nature of the signal processing to be done. Weighted versions of these stored values 
are then added to (or subtracted from) the current input sample to generate the corresponding 
output value — the actual algorithm obviously depending on the type of signal processing 
required. It is this processing algorithm which is at the heart of the whole system — arriving at 
this can be a  very  complicated business! This is something we will examine in detail in later 
chapters. Here we will look at some fairly simple examples of processing, just to get a feel for 
what is involved.  

    2.7       The Running Average Filter 

   A good example to start with is the  running  ( or moving )  average fi lter . This processing 
system merely outputs a value which is the average of the current input and a particular 
number of the  previous  input samples. 

   As an example, consider a simple running average fi lter that averages the current input and 
the  last three  input samples. Let’s assume that the sampled input values are as shown in  Table 
2.1   , where  T  represents the sampling period. 

   As we need to average the current sample and the previous  three  input samples, the processor 
will clearly need three registers to store the previous input samples, the contents of these 
registers being updated every time a new sample is taken. For simplicity, we will assume that 
these three registers have initially been reset, i.e., they contain the value zero. 
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   The following sequence shows how the fi rst three samples of  ‘ 2 ’ ,  ‘ 1 ’ , and  ‘ 4 ’  are processed:

   

Time � 0, input sample � 2

Current
Sample Reg 1 Reg 2 Reg 3

2 0 0 0

Output value � 2 � 0 � 0 � 0

4
� 0.5

        

          

Time � T, input sample � 1

Current
sample Reg 1 Reg 2 Reg 3

1 2 0 0

Output value � 1 � 2 � 0 � 0

4
� 0.75

i.e. the previous input sample of '2' has now been shifted to
storage register 'Reg 1 '

 Table 2.1                          

   Time  Input sample 

   0   2 

   T   1 

   2T   4 

   3T   5 

   4T   7 

   5T  10 

   6T   8 

   7T   7 

   8T   4 

   9T   2 
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Time � 2T, input sample � 4

Current
Sample Reg 1 Reg 2 Reg 3

4 1 2 0

Output value � 4 � 1 � 2 � 0

4
� 1.75

       

 and so on. 

    Table 2.2  shows all of the output values — check that you agree with them before 
moving on. 

   N.B.1  The fi rst three output values of 0.5, 0.75 and 1.75, represent the initial  “ transient, ”  
i.e., the part of the output signal where the initial three zeros are being shifted out of 
the three storage registers. The output values are only valid once these initial zeros 
have been cleared out of the storage registers. 

   N.B.2         A running average fi lter tends to smooth out any rapid changes in a signal and so is a 
form of lowpass fi lter.  

 Table 2.2                          

   Time  Input sample  Output sample 

   0   2  0.5 

   T   1  0.75 

   2T   4  1.75 

   3T   5  3.00 

   4T   7  4.25 

   5T  10  6.50 

   6T   8  7.50 

   7T   7  8.00 

   8T   4  7.25 

   9T   2  5.25 
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    2.8       Representation of Processing Systems 

   The running average fi lter, just discussed, could be represented by the block diagram 
shown in  Figure 2.8   . Each of the three  T  blocks represents a time delay of one sample 
period, while the  Σ  box represents the summation of the four values. The 0.25 triangle is 
an attenuator which ensures that the average of the four values is outputted and not just 
the sum. So  A  is the current input divided by four,  B  the previous input, again divided by 
four, C the input before that, again divided by four, etc. If we catch the system at 6T say, 
then, from  Table 2.2   ,  A  � 8�4,  B  � 10�4,  C  � 7�4 and  D  � 5�4, giving the output of 7.5, i.e., 
 A  �  B  �  C  �  D . 

   N.B. The division by four could have been done  after  the summation rather than before, 
and this might seem the obvious thing to do. However, the option used is preferable as 
it means that, as we are processing smaller numbers, i.e., numbers already divided by 
four, we can get away with using smaller registers during processing. Here there were 
only four numbers to be added, but what if there had been a thousand? Dividing  before  
addition, rather than after, would clearly makes a huge difference to the size of the 
registers needed.  

    2.9       Feedback (or Recursive) Filters 

   So far we have only met fi lters which make use of previous  inputs . There is nothing to stop us 
from using the previous  outputs  instead — in fact, much more useful fi lters can be made in this 
way. A simple example is shown in  Figure 2.9   . 

   Because it is the previous  output  values which are fed back into the system and added to 
the current input, these fi lters are called  feedback  or  recursive  fi lters. Another name very 
commonly used is  infi nite impulse response  fi lters — the reason for this particular name will 
become clear later. 
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   As we know, the  T  boxes represent time delays of one sampling period, and so  A  is the 
previous output and  B  the one before that. It is often useful to think of these boxes as the 
storage registers for the previous outputs, with  A  and  B  being their contents. 

   From  Figure 2.9  you should see that: 

  Data out Data in� � �0 4 0 2. .A B   (2.1)      

   This is the simple processing that the digital processor needs to do for every input sample. 

   Imagine that this particular recursive fi lter is supplied with the data shown in  Table 2.3   , and 
that the two storage registers needed are initially reset. 

   From Eq. (2.1), as both  A  and  B  are initially zero, the fi rst output must be the same as the 
input value, i.e., 10. 

   By the time the second input of 15 is received the previous output of 10 has been shifted into 
the storage register, appearing as  A  ( Table 2.3 ). In the meantime, the previous  A  value (0) has 
been moved to  B , while the previous value of  B  has been shifted right out of the system and 
lost, as it is no longer of any use. 

   So, when time �  T , we have: 

   Input data � 15,  A  � 10,  B  � 0 
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 Figure 2.9                            
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   From Eq. (2.1), the new output value is given by: 

  15 0 4 10 0 2 0 11� � � � �. .   (2.1)      

   In preparation for generating the next output value, the current output of 11 is now shifted 
to  A , the  A  value of 10 having already been moved to  B . The third output value is therefore 
given by: 

 20 0.4 11 0.2 10 17.6� � � � �      

   Before moving on it’s best to check through the rest of  Table 2.3  for yourself. (Spreadsheets 
lend themselves well to this application.) 

   You will notice from  Table 2.3  that we are getting outputs  even when the input values are 
zero  (at times 7 T , 8 T  and 9 T ). This makes sense as, at time 7 T , we are pushing the previous 
output value of 8.5 back through the system to produce the next output of  � 2.4. This 
output value is, in turn, fed back into the system, and so on. Theoretically, the output could 
continue for ever, i.e. even if we put just a single pulse into the system we could get output 
values, every sampling period,  for an infi nite time . This explains the alternative name of 

 Table 2.3                          

   Time  Input data  A  B  Output data 

   0  10   0.0   0.0  10.0 

   T  15  10.0   0.0  11.0 

   2T  20  11.0  10.0  17.6 

   3T  15  17.6  11.0  10.2 

   4T   8  10.2  17.6   7.5 

   5T   6   7.5  10.2   5.1 

   6T   9   5.1   7.5   8.5 

   7T   0   8.5   5.1   � 2.4 

   8T   0   � 2.4   8.5   2.7 

   9T   0   2.7   � 2.4   � 1.53 
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 infi nite impulse response  ( IIR ) fi lter for feedback fi lters. Note that this persisting output will 
not happen with processing systems which use only the input samples (nonrecursive) — with 
these, once the input stops, the output will continue for only a fi nite time. To be more 
specifi c, the output samples will continue for a time of  N   �   T , where  N  is the number of 
storage registers. This is why fi lters which make use of only the  previous  inputs are often 
called  fi nite impulse response  (FIR) fi lters (pronounced  “ F-I-R ” ), for short. A running 
average fi lter is therefore an example of an FIR fi lter. (Yet another name used for this type of 
fi lter is the  transversal  fi lter.) 

   IIR fi lters require fewer storage registers than equivalent FIR fi lters. For example, a particular 
highpass FIR fi lter might need 100 registers but an equivalent IIR fi lter might need as few 
as three or four. However, I must add a few words of warning here, as there are drawbacks 
to making use of the previous  outputs . As with  any  system which uses feedback, we have to 
be  very  careful during the design as it is possible for the fi lter to become unstable. In other 
words, instead of acting as a well-behaved system, processing our signals in the required way, 
we might fi nd that the output values very rapidly shoot up to the maximum possible and sit 
there. Another possibility is that the output oscillates between the maximum and minimum 
values. Not a pretty sight! We will look at this problem in more detail in later chapters. 

   So far we have looked at systems which make use of either previous inputs or previous 
outputs only. This restriction is rather artifi cial as, generally, the most effective DSP systems 
use both previous inputs  and  previous outputs.  

    2.10       Chapter Summary 

   Hopefully, you now have a reasonable understanding of the basics of digital signal 
processing. You should also realize that this type of signal processing is achieved in a 
very different way from  “ traditional ”  analog signal processing. In this chapter we have 
concentrated on the heart of the DSP system, i.e., the part that processes the digital samples 
of the original analog signal. Several processing systems have been analyzed. At this stage 
it will not be clear how these systems are designed to achieve a particular type of signal 
processing, or even the nature of the signal processing being carried out. This very important 
aspect will be dealt with in more detail in later chapters. We have met fi nite impulse response 
fi lters (those that make use of previous input samples only, such as running average fi lters) 
and also infi nite impulse response fi lters (also called  feedback  or  recursive fi lters ) — these 
make use of the previous output samples. Although IIR systems generally need fewer storage 
registers than equivalent FIR systems, IIR systems can be unstable if not designed correctly, 
while FIR systems will  never  be unstable.   
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 CHAPTER 3 

                        Frequency Domain Processing 
   Nasser   Kehtarnavaz    

     Frequency transforms are one of the most important concepts of DSP. Transforming a signal reveals a 
whole world of previously invisible information and enables the engineer to manipulate signal in ways 
that are not possible in the time domain. For example, frequency transforms are the basis for most 
modern audio and video compression algorithms. Taking audio and video into the frequency domain 
reveals data that can be  “ thrown away ”  without affecting the perceived quality of the signal. 

 Frequency transforms are also a powerful computational tool. Processing a signal in the 
frequency domain is often more computationally effi cient than doing it in the time domain. 

 In this chapter, Nasser Kehtarnavaz provides the concepts you need to implement the most 
common transforms. He starts with the basic discrete Fourier transform (DFT) and its inverse, 
the IDFT. He then moves on to the fast Fourier transform (FFT), short time Fourier transform 
(STFT), and the discrete wavelet transform (DWT). Finally, he points us to a LabVIEW toolkit 
that uses these and other transforms for time-frequency analysis. 

 Of these transforms. the FFT is the most important — along with the FIR fi lter, it is an essential tool 
for every DSP engineer. There are many variants of the FFT, and the FFT presented in this chapter 
(taken from a Texas Instruments application note) may not be the best for your application. For a 
derivation of another common FFT variant, check out this informative article on the DFT and FFT: 

   http://www.dspdesignline.com/howto/206800602   

 The STFT is simply the FFT applied to a windowed time-domain signal. As noted in the chapter, 
choosing the right window and window size can be tricky. There are whole textbooks concerning 
this. For an introduction to windowing and time-frequency analysis, this page on power spectrum 
analysis is a good place to start: 

   http://www.dspdesignline.com/howto/206801391   

 The discrete wavelet transform is newer and less commonly used. However, it is often more 
effi cient than the FFT and is being quickly adopted in signal processing applications. It is 
particularly popular for image processing. 

 For more on working in the frequency domain, see these online references: 

 Frequency domain tutorial 
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   Transformation of signals to the frequency domain is widely used in signal processing. 
In many cases, such transformations provide a more effective representation and a more 
computationally effi cient processing of signals as compared to time domain processing. For 
example, due to the equivalency of convolution operation in the time domain to multiplication 
in the frequency domain, one can fi nd the output of a linear system by simply multiplying the 
Fourier transform of the input signal by the system transfer function. 

   This chapter presents an overview of three widely used frequency domain transformations, 
namely fast Fourier transform (FFT), short-time Fourier transform (STFT), and discrete 
wavelet transform (DWT). More theoretical details regarding these transformations can be 
found in many signal processing textbooks, e.g.,  [1] . 

    3.1        Discrete Fourier Transform (DFT) and Fast Fourier 
Transform (FFT) 

   The discrete Fourier transform (DFT)  X [ k ] of an  N -point signal  x [ n ] is given by: 
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  where  W N      �  e  �    j2 π    /   N  . The above transform equations require  N  complex multiplications and  N   –  1 
complex additions for each term. For all  N  terms,  N  2  complex multiplications and  N  2   –   N  complex 
additions are needed. As it is well known, the direct computation of Eq. (3.1) is not effi cient. 

   To obtain a fast or real-time implementation of Eq. (3.1), one often uses a fast Fourier 
transform (FFT) algorithm, which makes use of the symmetry properties of DFT. 

   There are many approaches to fi nding a fast implementation of DFT; that is, there are many 
variations of FFT algorithms. Here, we mention the approach presented in the  TI Application 
Report SPRA291  for computing a 2 N -point FFT  [2] . This approach involves forming two new 

   http://www.dspdesignline.com/howto/208403009   

 FFT convolution and the overlap-add method 

   http://www.dspdesignline.com/howto/199901970   
  — Kenton Williston   
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 N -point signals  x  1 [ n ] and  x  2 [ n ] from a 2 N -point signal  g [ n ] by splitting it into an even and an 
odd part as follows: 
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  From the two sequences  x  1 [ n ] and  x  2 [ n ], a new complex sequence  x [ n ] is defi ned to be:   

  x n x n jx n n N[ ] [ ] [ ]� � �1 2 0 1� �   (3.3)     

  To get  G [ k ], the DFT of  g [ n ], the equation:   
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   Only  N  points of  G [ k ] are computed from Eq. (3.4). The remaining points are found by using 
the complex conjugate property of  G [ k ], that is,  G [2 N   –   k ]  �   G  * [ k ]. As a result, a 2 N -point 
transform is calculated based on an  N -point transform, leading to a reduction in the number of 
operations.  

    3.2       Short-Time Fourier Transform (STFT) 

   Short-time Fourier transform (STFT) is a sequence of Fourier transforms of a windowed 
signal. STFT provides the time-localized frequency information for situations in which 
frequency components of a signal vary over time, whereas the standard Fourier transform 
provides the frequency information averaged over the entire signal time interval. 

   The STFT pair is given by: 
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   where  x [ k ] denotes a signal and  g [ k ] denotes an  L -point window function. From 
Eq. (3.7), the STFT of  x [ k ] can be interpreted as the Fourier transform of the product 
 x [ k ] g [ k   –   m ].  Figure 3.1    illustrates computing STFT by taking Fourier transforms of a 
windowed signal. 

   There exists a trade-off between time and frequency resolution in STFT. In other words, 
although a narrow-width window results in a better resolution in the time domain, it generates 
a poor resolution in the frequency domain, and vice versa. Visualization of STFT is often 
realized via its spectrogram, which is an intensity plot of STFT magnitude over time. Three 
spectrograms illustrating different time-frequency resolutions are shown in  Figure 3.2   . The 
implementation details of STFT are described in Lab 3.  

    3.3       Discrete Wavelet Transform (DWT) 

   Wavelet transform offers a generalization of STFT. From a signal theory point of view, 
similar to DFT and STFT, wavelet transform can be viewed as the projection of a signal into a 
set of basis functions named wavelets. Such basis functions offer localization in the frequency 
domain. In contrast to STFT having equally spaced time-frequency localization, wavelet 
transform provides high frequency resolution at low frequencies and high time resolution at 
high frequencies.  Figure 3.3    provides a tiling depiction of the time-frequency resolution of 
wavelet transform as compared to STFT and DFT. 
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 Figure 3.1 :         Short-time Fourier transform    
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   The discrete wavelet transform (DWT) of a signal  x [ n ] is defi ned based on approximation 
coeffi cients,  W j kφ[ , ]0     and detail coeffi cients,  W j kψ[ , ]    , as follows: 
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  and the inverse DWT is given by:   
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   where  n   �  0, 1, 2,  …  ,  M   –  1,  j   �  0, 1, 2,  …  ,  J   –  1,  k   �  0, 1, 2,  …  , 2  j   – 1, and  M  denotes 
the number of samples to be transformed. This number is selected to be  M   �  2  J  , where  J  
indicates the number of transform levels. The basis functions  { }φ j k n, [ ]     and  { }ψ j k n, [ ]     are 
defi ned as: 
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  where  φ [ n ] is called the  scaling function  and  ψ [ n ] is called the  wavelet function .   

   For an effi cient implementation of DWT, the fi lter bank structure is often used.  Figure 3.4    
shows the decomposition or analysis fi lter bank for obtaining the forward DWT coeffi cients. 
The approximation coeffi cients at a higher level are passed through a highpass and a lowpass 
fi lter, followed by a downsampling by two to compute both the detail and approximation 
coeffi cients at a lower level. This tree structure is repeated for a multi-level decomposition. 

   Inverse DWT (IDWT) is obtained by using the reconstruction or synthesis fi lter bank shown 
in  Figure 3.5   . The coeffi cients at a lower level are upsampled by two and passed through 

Wϕ[j+1,n]

G1(z) Wψ[j,n]

Wϕ[j,n]G0(z) ↓2

↓2

 Figure 3.4 :         Discrete wavelet transform decomposition fi lter bank,  G 0 lowpass and  G 1 highpass 
decomposition fi lters    
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a highpass and a lowpass fi lter. The results are added together to obtain the approximation 
coeffi cients at a higher level.  

    3.4       Signal Processing Toolset 

   Signal Processing Toolset (SPT) is an add-on toolkit of LabVIEW that provides useful tools 
for performing time-frequency analysis  [3] . SPT has three components: joint time-frequency 
analysis (JTFA), super-resolution spectral analysis (SRSA), and wavelet analysis. 

   The VIs associated with STFT are included as part of the JTFA component. The SRSA 
component is based on the model-based frequency analysis normally used for situations in 
which a limited number of samples is available. The VIs associated with the SRSA component 
include high-resolution spectral analysis and parameter estimation, such as amplitude, phase, 
damping factor, and damped sinusoidal estimation. The VIs associated with the wavelet analysis 
component include 1D and 2D wavelet transform as well as their fi lter bank implementations.  

    Lab 3: FFT, STFT, and DWT 

   This lab shows how to use the LabVIEW tools to perform FFT, STFT, and DWT as part of a 
frequency domain transformation system. 

    L3.1 FFT versus STFT 

   To illustrate the difference between FFT and STFT transformations, three signals are combined 
here to form a 512-point input signal: a 75       Hz sinusoidal signal sampled at 512       Hz, a chirp 
signal with linearly decreasing frequency from 200 to 120       Hz, and an impulse signal having 
an amplitude of 2 for 500       ms located at the 256th sample. This composite signal is shown in 
 Figure L3.1   . The FFT and STFT graphs are also shown in this fi gure. The FFT graph shows 
the time averaged spectrum refl ecting the presence of a signal from 120 to 200       Hz, with 
one major peak at 75       Hz. As one can see from this graph, the impulse having the short time 
duration does not appear in the spectrum. The STFT graph shows the spectrogram for a time 

Wϕ[j�1,n]

H1(z)

H0(z)

Wψ[j,n]

Wϕ[j,n] ↑2

↑2

 Figure 3.5 :         Discrete wavelet transform reconstruction fi lter bank, H 0  lowpass and H 1  highpass 
reconstruction fi lters    
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increment of 1 and a rectangular window of width 32 by which the presence of the impulse 
can be detected. 

   As far as the FP is concerned, two  Menu Ring  controls ( Controls   »   Modern   »   Ring  &  
Enum   »   Menu Ring ) are used to input values via their labels. The labels and corresponding 
values of the ring controls can be modifi ed by right-clicking and choosing  Edit Items  …  from 
the shortcut menu. This brings up the dialog box shown in  Figure L3.2   . 

   An  Enum  (enumerate) control acts the same as a  Menu Ring  control, except that values of 
an  Enum  control cannot be modifi ed and are assigned sequentially. A  Menu Ring  or  Enum  
can be changed to a  Ring Constant  or  Enum Constant  when used on a BD. 

 Figure L3.1 :         FP of FFT versus STFT    
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   Several spectrograms with different time window widths are shown in  Figure L3.3   . 
 Figure L3.3(a)  shows an impulse (vertical line) at time 500       ms because of the relatively 
time-localized characteristic of the window used. Even though a high resolution in the time 
domain is achieved with this window, the resolution in the frequency domain is so poor that 
the frequency contents of the sinusoidal and chirp signals cannot be easily distinguished. This 
is due to the Heisenberg’s uncertainty principle  [4] , which states that if the time resolution is 
increased, the frequency resolution is decreased. 

   Now, let us increase the width of the time-frequency window. This causes the frequency 
resolution to become better while the time resolution becomes poorer. As a result, as shown 
in  Figure L3.3(d) , the frequency contents of the sinusoidal and chirp signals become better 
distinguished. One can also see that as the time resolution becomes poorer, the moment of 
occurrence of the impulse becomes more diffi cult to identify. 

 Figure L3.2 :         Properties of a ring control    
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   The BD of this example is illustrated in  Figure L3.4   . To build this VI, let us fi rst generate the 
input signal with the specifi cations stated previously.  Figure L3.5(a)    shows the generation 
of the input signal (512 samples generated with the sampling frequency of 512       Hz) using a 
 MathScript Node . In order to use this VI as the signal source of the system, an output 
terminal in the connector pane is wired to a waveform indicator. Then, the VI is saved as 
 Composite Signal.vi . 

   Alternatively, the three signals can be generated using the built-in LabVIEW VIs and 
added together to form a composite signal; see  Figure L3.5(b) . The sinusoidal waveform is 
generated by using the  Sine Waveform  VI ( Functions   »   Signal Processing   »   Waveform 
Generation   »   Sine Waveform ), and the chirp signal is generated by using the  Chirp 
Pattern  VI ( Functions   »   Signal Processing   »   Signal Generation   »   Chirp Pattern ). 
Also, the impulse is generated by using the  Impulse Pattern  VI ( Functions   »   Signal 
Processing   »   Signal Generation   »   Impulse Pattern ). 

(a)

(c)

(b)

(d)

 Figure L3.3 :         STFT with time window of width (a) 16, (b) 32, (c) 64, and (d) 128    
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   Now, let us create the entire transformation system using the  Composite Signal  VI just 
made. Create a blank VI; then select  Functions   »   Select a VI  …  This brings up a window for 
choosing and locating a VI. Click  Composite Signal.vi  to insert it into the BD. The composite 
signal output is connected to three blocks consisting of a waveform graph, an  FFT , and 
an  STFT  VI. The waveform data ( Y  component) are connected to the input of the  FFT  VI 
( Functions   »   Signal Processing   »   Transforms   »   FFT ). Only the fi rst half of the output 
data from the  FFT  VI is taken, since the other half is a mirror image of the fi rst half. This is 
done by placing an  Array Subset  function and wiring to it one half of the signal length. 
The magnitude of the FFT output is then displayed in the waveform graph. Properties of an 
FP object, such as scale multiplier of a graph, can be changed programmatically by using a 
property node. Property nodes are discussed in the next subsection. 

   Getting the STFT output is more involved than FFT. The  STFT  VI ( Functions   »   Addons   »  
 Time Frequency Analysis   »   Time Frequency Transform   »   STFT ), which is part of the 
Signal Processing Toolkit (SPT), is used here for this purpose. To utilize the  STFT  VI, 
one needs to connect several inputs as well as the input signal. These inputs are time-freq 
sampling info, extension, window info, and user-defi ned window. The time-freq sampling 

 Figure L3.4 :         BD of FFT and STFT    
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(a)

 Figure L3.5 :         Composite signal (sine  �  chirp  �  impulse) generation using (a) MathScript Node 
and (b) graphical approach      

(b)
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info is a cluster of time steps and frequency bins where time steps specify the sampling 
period along the time axis and the frequency bins indicate the FFT block size of the STFT. 
A constant of 1 is used for time steps in the example shown in  Figure L3.4 . The extension 
input specifi es the method to pad data at both ends of a signal to avoid abrupt changes in the 
transformed outcome. There exist three different extension options: zero padding, symmetric, 
and periodic. The periodic mode is used in the example shown in  Figure L3.4 . The window 
info input specifi es which commonly used sliding window to apply and defi nes the resolution 
of the resulting time-frequency representation. On the other hand, the user-defi ned window 
input allows one to have a customized sliding window by specifying the coeffi cients. In 
our example, a Hanning window is considered by passing an array of all 1’s whose width is 
adjustable by the user through the  Hanning window  VI ( Functions   »   Signal Processing   »  
 Window   »   Hanning Window ). Similar to FFT, only one-half of the frequency values are 
taken while the time values retain the original length. The start index of the array subset is set 
to one-half the number of frequency bins to access the positive frequency values, as shown 
in  Figure L3.4 . The reason is that the output of the STFT corresponding to the negative 
frequency values is followed by the output belonging to the positive frequency values. 
Additional details on using the  STFT  VI can be found in  [5] . 

   The output of the STFT is displayed in the  Intensity Graph  ( Controls   »   Modern   »  
 Graph   »   Intensity Graph ). Right-click on the  Intensity Graph  and then uncheck the 
 Loose Fit  option under both  X Scale  and  Y Scale  from the shortcut menu. When this is done, 
the STFT output graph gets fi tted into the entire plotting area. Enable auto-scaling of intensity 
by right-clicking on the  Intensity Graph  and choosing  Z Scale   »   AutoScale Z . 

    L3.1.1 Property Node 

   The number of FFT values varies based on the number of samples. Similarly, the number 
of frequency rows of STFT varies based on the number of frequency bins specifi ed by the 
user. However, the scale of the frequency axis in FFT or STFT graphs should always remain 
between 0 and  f  s /2, which is 256       Hz in the example, regardless of the number of frequency 
bins, as illustrated in  Figure L3.1  and  Figure L3.3 . For this reason, the multiplier for the 
spectrogram scale needs to be changed depending on the width of the time window during 
run time. 

   A property node can be used to modify the appearance of an FP object. A property node 
can be created by right-clicking either on a terminal icon in a BD or an object in an FP, 
and then by choosing the  visible  property element through  Create   »   Property Node.  This 
way, the default element of the chosen property gets created in a BD, which is linked to a 
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corresponding FP object. Various property elements of the property node can be modifi ed 
to refl ect the read or the write mode. Note that, by default, a property node is set to read. To 
change to the write mode, right-click on a property element and choose  Change to Write . 
The read/write mode of all elements can be changed together by choosing  Change all to 
Read/Write . 

   To change the scale of the spectrogram graph, one needs to modify the value of the element 
 YScale.Multiplier . Replace the element  visible  with  YScale.Multiplier  by clicking it and 
choosing  Y Scale   »   Offset and Multiplier   »   Multiplier . The sampling frequency of the 
signal divided by the number of frequency bins, which defi nes the scale multiplier, is wired to 
the element  YScale.Multiplier  of the property node. Two more elements,  XScale.Multiplier  
and  XScale.Precision,  are added to the property node for modifying the time axis multiplier 
and precision, respectively. 

   A property node of the FFT graph is also created and modifi ed in a similar way considering 
that the resolution of FFT is altered depending on the sampling frequency and number 
of input signal samples. The property nodes of the STFT and FFT graphs are shown in 
 Figure L3.4 . More details on using property nodes can be found in  LabVIEW User 
Manual   [6] .   

    L3.2 DWT 

   In this transformation, the time-frequency window has high frequency resolution for higher 
frequencies and high time resolution for lower frequencies. This is a great advantage over 
STFT where the window size is fi xed for all frequencies. 

   The BD of a 1D decomposition and reconstruction wavelet transform is shown in  Figure 
L3.6   . Three VIs including  WA Wavelet Filter  VI ( Functions   »   Addons   »   Wavelet 
Analysis   »   Discrete Wavelet   »   Filter Banks ),  WA Discrete Wavelet Transform  
VI, and WA  Inverse Discrete Wavelet Transform  VI ( Functions   »   Addons   »  
 Wavelet Analysis   »   Discrete Wavelet ) are used here from the wavelet analysis palette. 

   A chirp type signal, shown in  Figure L3.7   , is considered to be the input signal source. This 
signal is designed to consist of four sinusoidal signals, each consisting of 128 samples with 
increasing frequencies in this order: 250, 500, 1000, 2000       Hz. This makes the entire chirp 
signal 512 samples. The Fourier transform of this signal is also shown in  Figure L3.7 . 

    Figure L3.8(a)    illustrates the BD of this signal generation process. Save this VI as  Chirp 
Signal.vi  to be used as a signal source subVI within the  DWT  VI. Note that the  Concatenate 
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 Figure L3.6 :         Wavelet decomposition and reconstruction    

(a)

 Figure L3.7 :         Waveforms of input signal: (a) time domain and (b) frequency domain      

(b)
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(a)

 Figure L3.8 :         Generating input signal using (a) graphical approach and (b) textual approach      

(b)
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Inputs  option of the  Build Array  function should be chosen to build the 1D chirp signal. 
This VI has only one output terminal. As an alternative to the graphical approach, a  MATLAB 
Script Node  can be used to generate the chirp signal. This way, the four signals need to 
be concatenated using the operator [ ], as shown in  Figure L3.8(b) . 

   The  WA Discrete Wavelet Transform  VI requires four inputs, including input 
signal, extension, levels, and analysis fi lter. The input signal is provided by the  Chirp 
Signal  VI. For the extension input, the same options are available as mentioned earlier for 
STFT. The input levels specify the number of levels of decomposition. In the BD shown in 
 Figure L3.6 , a three-level decomposition is used via specifying a constant 3. The fi lter bank 
implementation for a three-level wavelet decomposition is illustrated in  Figure L3.9   . In this 
example, the Daubechies-2 wavelet is used. The coeffi cients of the fi lters are generated by the 
 Wavelet Filter  VI. This VI provides the coeffi cient sets for both the decomposition and 
reconstruction parts. 

   The result of the  WA Discrete Wavelet Transform  VI is structured into a 1D array 
corresponding to the components of the transformed signal in the order LLL, LLH, LH, H, 
where L stands for low and H for high. The length of each component is also available from 
this VI. The wavelet decomposed outcome for each stage of the fi lter bank is shown in  Figure 
L3.10   . From the outcome, it can be observed that lower frequencies occur earlier and higher 
frequencies occur later in time. This demonstrates the fact that wavelet transform provides 
both frequency and time resolution, a clear advantage over Fourier transform. 

   The decomposed signal can be reconstructed by the WA  Inverse Discrete Wavelet 
Transform  VI. From the reconstructed signal, shown in  Figure L3.10 , one can see that the 
wavelet decomposed signal is reconstructed perfectly by using the synthesis or reconstruction 
fi lter bank.    
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 Figure L3.9 :         Waveform decomposition tree    
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 CHAPTER 4 

                         Audio Coding 
   Khalid   Sayood    

     Audio processing has been an important part of DSP from the very beginning, and it is one of 
the few areas of DSP that is well-known among nonengineers. Recording studios have used DSP 
for over 20 years, and today every album on the shelves has gone through some form of digital 
signal processing. Audiophiles know about DSP thanks to the  “ DSP ”  button on receivers from 
Yamaha and other manufacturers. Even the average consumer knows a little bit about DSP 
thanks to the prevalence of audio compression. If you have an iPod, listen to satellite or Internet 
radio, or watch DVDs, you’ve experienced the wonders of audio compression. 

 In this chapter, Khalid Sayood gives an introduction to audio compression, focusing on popular 
compression standards. The author’s stated goal is to help you understand these standards 
without getting bogged down in details. In this respect he succeeds. If you already understand 
basic DSP concepts such as frequency transforms (audio compression algorithms use the 
modifi ed discrete cosine transform, or MDCT), you will walk away with a solid understanding of 
how these algorithms work, where they’ve been applied, and why. 

 Sayood starts with the basic principles of audio coding, and then dives into MPEG layer I and 
II — two of the fi rst frequency-based codecs. This is primarily a setup for a discussion of the big 
kahuna of codecs: MPEG layer III, or MP3. Sayood describes MP3 in detail, giving us insight 
into why it is so successful. We also learn of its Achilles heel: it was designed for backwards 
compatibility with MPEG layer I/II, and is therefore ineffi cient. This leads to a discussion of 
more effi cient codecs, including MPEG Advanced Audio Coding (AAC) and Dolby AC3 (Dolby 
Digital). Finally, we’re given a brief rundown of other notable codecs such as DTS and the open-
source Ogg Vorbis. (Yes, Ogg Vorbis is a real codec name — never doubt the creative power of the 
open-source community!) 

  — Kenton Williston   
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    4.1       Overview 

   Lossy compression schemes can be based on a source model, as in the case of speech 
compression, or a user or sink model, as is somewhat the case in image compression. In this 
chapter we look at audio compression approaches that are explicitly based on the model of 
the user. We will look at audio compression approaches in the context of audio compression 
standards. Principally, we will examine the different MPEG standards for audio compression. 
These include MPEG Layer I, Layer II, Layer III (or  mp3 ) and the Advanced Audio Coding 
Standard. As with other standards described in this book, the goal here is not to provide all 
the details required for implementation. Rather the goal is to provide the reader with enough 
familiarity so that they can then fi nd it much easier to understand these standards.  

    4.2       Introduction 

   The various speech coding algorithms rely heavily on the speech production model to identify 
structures in the speech signal that can be used for compression. Audio compression systems 
have taken, in some sense, the opposite tack. Unlike speech signals, audio signals can be 
generated using a large number of different mechanisms. Lacking a unique model for audio 
production, the audio compression methods have focused on the unique model for audio 
perception, a psychoacoustic model for hearing. At the heart of the techniques described in 
this chapter is a psychoacoustic model of human perception. By identifying what can and, 
more importantly, what cannot be heard, the schemes described in this chapter obtain much 
of their compression by discarding information that cannot be perceived. The motivation 
for the development of many of these perceptual coders was their potential application in 
broadcast multimedia. However, their major impact has been in the distribution of audio over 
the Internet. 

   We live in an environment rich in auditory stimuli. Even an environment described as quiet is 
fi lled with all kinds of natural and artifi cial sounds. The sounds are always present and come 
to us from all directions. Living in this stimulus-rich environment, it is essential that 
we have mechanisms for ignoring some of the stimuli and focusing on others. Over the 
course of our evolutionary history we have developed limitations on what we can hear. 
Some of these limitations are physiological, based on the machinery of hearing. Others are 
psychological, based on how our brain processes auditory stimuli. The insight of researchers 
in audio coding has been the understanding that these limitations can be useful in selecting 
information that needs to be encoded and information that can be discarded. The limitations 
of human perception are incorporated into the compression process through the use of 
psychoacoustic models. We briefl y describe the auditory model used by the most popular 
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audio compression approaches. Our description is necessarily superfi cial and we refer readers 
interested in more detail to Moore,  An Introduction to the Psychology of Hearing  (Academic 
Press) and Bosi/Goldberg,  Introduction to Digital Audio Coding and Standards  (Kluwer 
Academic Press). 

   The machinery of hearing is frequency dependent. The variation of what is perceived as 
equally loud at different frequencies was fi rst measured by Fletcher and Munson at Bell 
Labs in the mid-1930s. These measurements of perceptual equivalence were later refi ned 
by Robinson and Dadson. This dependence is usually displayed as a set of equal loudness 
curves, where the sound pressure level (SPL) is plotted as a function of frequency for 
tones perceived to be equally loud. Clearly, what two people think of as equally loud will 
be different. Therefore, these curves are actually averages and serve as a guide to human 
auditory perception. The particular curve that is of special interest to us is the threshold-of 
hearing curve. This is the SPL curve that delineates the boundary of audible and inaudible 
sounds at different frequencies. In  Figure 4.1    we show a plot of this audibility threshold in 
quiet. Sounds that lie below the threshold are not perceived by humans. Thus, we can see that 
a low amplitude sound at a frequency of 3       kHz may be perceptible while the same level of 
sound at 100       Hz would not be perceived. 

    4.2.1       Spectral Masking 

   Lossy compression schemes require the use of quantization at some stage. Quantization can 
be modeled as as an additive noise process in which the output of the quantizer is the input 
plus the quantization noise. To hide quantization noise, we can make use of the fact that 
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signals below a particular amplitude at a particular frequency are not audible. If we select the 
quantizer step size such that the quantization noise lies below the audibility threshold, the 
noise will not be perceived. Furthermore, the threshold of audibility is not absolutely fi xed 
and typically rises when multiple sounds impinge on the human ear. This phenomenon gives 
rise to  spectral masking . A tone at a certain frequency will raise the threshold in a  critical 
band  around that frequency. These critical bands have a constant  Q , which is the ratio of 
frequency to bandwidth. Thus, at low frequencies the critical band can have a bandwidth 
as low as 100       Hz, while at higher frequencies the bandwidth can be as large as 4       kHz. This 
increase of the threshold has major implications for compression. Consider the situation in 
 Figure 4.2   . Here a tone at 1       kHz has raised the threshold of audibility so that the adjacent 
tone above it in frequency is no longer audible. At the same time, while the tone at 500       Hz is 
audible, because of the increase in the threshold the tone can be quantized more crudely. This 
is because increase of the threshold will allow us to introduce more quantization noise at that 
frequency. The degree to which the threshold is increased depends on a variety of factors, 
including whether the signal is sinusoidal or atonal.  

    4.2.2       Temporal Masking 

   Along with spectral masking, the psychoacoustic coders also make use of the phenomenon 
of temporal masking. The temporal masking effect is the masking that occurs when a 
sound raises the audibility threshold for a brief interval preceding and following the sound. 
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In  Figure 4.3    we show the threshold of audibility close to a masking sound. Sounds that occur 
in an interval around the masking sound (both after and before the masking tone) can be 
masked. If the masked sound occurs prior to the masking tone, this is called premasking or 
backward masking, and if the sound being masked occurs after the masking tone this effect is 
called postmasking or forward masking. The forward masking remains in effect for a much 
longer time interval than the backward masking.  

    4.2.3       Psychoacoustic Model 

   These attributes of the ear are used by all algorithms that use a psychoacoustic model. There are 
two models used in the MPEG audio coding algorithms. Although they differ in some details, 
the general approach used in both cases is the same. The fi rst step in the psychoacoustic model 
is to obtain a spectral profi le of the signal being encoded. The audio input is windowed and 
transformed into the frequency domain using a fi lter bank or a frequency domain transform. 
The Sound Pressure Level (SPL) is calculated for each spectral band. If the algorithm uses a 
subband approach, then the SPL for the band is computed from the SPL for each coeffi cient  X k  . 
Because tonal and nontonal components have different effects on the masking level, the next 
step is to determine the presence and location of these components. The presence of any tonal 
components is determined by fi rst looking for local maxima where a local maximum is declared
at location  k  if  X Xk k
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where the values  j  depend on the frequency. The identifi ed tonal maskers are removed from 
each critical band and the power of the remaining spectral lines in the band is summed to 
obtain the nontonal masking level. Once all the maskers are identifi ed, those with SPL below 
the audibility threshold are removed. Furthermore, of those maskers that are very close to 
each other in frequency, the lower-amplitude masker is removed. The effects of the remaining 
maskers are obtained using a spreading function that models spectral masking. Finally, the 
masking due to the audibility level and the maskers is combined to give the fi nal masking 
thresholds. These thresholds are then used in the coding process.   

   In the following sections we describe the various audio coding algorithms used in the 
MPEG standards. Although these algorithms provide audio that is perceptually noiseless, 
it is important to remember that even if we cannot perceive it, there is quantization noise 
distorting the original signal. This becomes especially important if the reconstructed audio 
signal goes through any postprocessing. Postprocessing may change some of the audio 
components, making the previously masked quantization noise audible. Therefore, if there 
is any kind of processing to be done, including mixing or equalization, the audio should be 
compressed only after the processing has taken place. This  “ hidden noise ”  problem also 
prevents multiple stages of encoding and decoding or tandem coding.   

    4.3       MPEG Audio Coding 

   We begin with the three separate, stand-alone audio compression strategies that are used in 
MPEG-1 and MPEG-2 and known as Layer I, Layer II, and Layer III. The Layer III audio 
compression algorithm is also referred to as  mp3 . Most standards have  normative  sections 
and  informative  sections. The  normative  actions are those that are required for compliance 
to the standard. Most current standards, including the MPEG standards, defi ne the bitstream 
that should be presented to the decoder, leaving the design of the encoder to individual 
vendors. That is, the bitstream defi nition is normative, while most guidance about encoding 
is informative. Thus, two MPEG-compliant bitstreams that encode the same audio material 
at the same rate but on different encoders may sound very different. On the other hand, a 
given MPEG bitstream decoded on different decoders will result in essentially the same 
output. 

   A simplifi ed block diagram representing the basic strategy used in all three layers is shown in 
 Figure 4.4   . The input, consisting of 16-bit PCM words, is fi rst transformed to the frequency 
domain. The frequency coeffi cients are quantized, coded, and packed into an MPEG 
bitstream. Although the overall approach is the same for all layers, the details can vary 
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signifi cantly. Each layer is progressively more complicated than the previous layer and also 
provides higher compression. The three layers are backward compatible. That is, a decoder 
for Layer III should be able to decode Layer I –  and Layer II – encoded audio. A decoder for 
Layer II should be able to decode Layer I – encoded audio. Notice the existence of a block 
labeled  Psychoacoustic model  in  Figure 4.4 . 

    4.3.1       Layer I Coding 

   The Layer I coding scheme provides a 4:1 compression. In Layer I coding the time frequency 
mapping is accomplished using a bank of 32 subband fi lters. The output of the subband fi lters 
is critically sampled. That is, the output of each fi lter is down-sampled by 32. The samples 
are divided into groups of 12 samples each. Twelve samples from each of the 32 subband 
fi lters, or a total of 384 samples, make up one frame of the Layer I coder. Once the frequency 
components are obtained the algorithm examines each group of 12 samples to determine a 
 scalefactor . The scalefactor is used to make sure that the coeffi cients make use of the entire 
range of the quantizer. The subband output is divided by the scalefactor before being linearly 
quantized. There are a total of 63 scalefactors specifi ed in the MPEG standard. Specifi cation 
of each scalefactor requires 6 bits. 

   To determine the number of bits to be used for quantization, the coder makes use of the 
psychoacoustic model. The inputs to the model include the  fast Fourier transform  (FFT) of 
the audio data as well as the signal itself. The model calculates the masking thresholds in each 
subband, which in turn determine the amount of quantization noise that can be tolerated and 
hence the quantization step size. As the quantizers all cover the same range, selection of the 
quantization stepsize is the same as selection of the number of bits to be used for quantizing 
the output of each subband. In Layer I the encoder has a choice of 14 different quantizers for 
each band (plus the option of assigning 0 bits). The quantizers are all midtread quantizers 
ranging from 3 levels to 65,535 levels. Each subband gets assigned a variable number of bits. 
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 Figure 4.4 :           The MPEG audio coding algorithms    
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However, the total number of bits available to represent all the subband samples is fi xed. 
Therefore, the bit allocation can be an iterative process. The objective is to keep the noise-to-
mask ratio more or less constant across the subbands. 

   The output of the quantization and bit allocation steps is combined into a frame as shown in 
 Figure 4.5   . Because MPEG audio is a streaming format, each frame carries a header, rather 
than having a single header for the entire audio sequence. The header is made up of 32 bits. 
The fi rst 12 bits comprise a sync pattern consisting of all 1       s. This is followed by a 1-bit 
version ID, a 2-bit layer indicator, a 1-bit CRC protection. The CRC protection bit is set to 
0 if there is no CRC protection and is set to a 1 if there is CRC protection. If the layer and 
protection information is known, all 16 bits can be used for providing frame synchronization. 
The next 4 bits make up the bit rate index, which specifi es the bit rate in kbits/sec. There are 
14 specifi ed bit rates to choose from. This is followed by 2 bits that indicate the sampling 
frequency. The sampling frequencies for MPEG-1 and MPEG-2 are different (one of the few 
differences between the audio coding standards for MPEG-1 and MPEG-2) and are shown in 
 Table 4.1    These bits are followed by a single padding bit. If the bit is  “ 1, ”  the frame needs an 
additional bit to adjust the bit rate to the sampling frequency. The next two bits indicate the 
mode. The possible modes are  “ stereo, ”   “ joint stereo, ”   “ dual channel, ”  and  “ single channel. ”  
The stereo mode consists of two channels that are encoded separately but intended to be 
played together. The joint stereo mode consists of two channels that are encoded together. 
The left and right channels are combined to form a  mid  and a  side  signal as follows: 
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   The dual-channel mode consists of two channels that are encoded separately and are not 
intended to be played together, such as a translation channel. These are followed by two mode 
extension bits that are used in the joint stereo mode. The next bit is a copyright bit ( “ 1 ”  if the 
material is copyrighted,  “ 0 ”  if it is not). The next bit is set to  “ 1 ”  for original media and  “ 0 ”  
for copy. The fi nal two bits indicate the type of de-emphasis to be used. 

   If the CRC bit is set, the header is followed by a 16-bit CRC. This is followed by the bit 
allocations used by each subband and is in turn followed by the set of 6-bit scalefactors. The 
scalefactor data is followed by the quantized 384 samples.  

    4.3.2       Layer II Coding 

   The Layer II coder provides a higher compression rate by making some relatively minor 
modifi cations to the Layer I coding scheme. These modifi cations include how the samples are 
grouped together, the representation of the scalefactors, and the quantization strategy. Where 
the Layer I coder puts 12 samples from each subband into a frame, the Layer II coder groups 
three sets of 12 samples from each subband into a frame. The total number of samples per 
frame increases from 384 samples to 1152 samples. This reduces the amount of overhead 
per sample. In Layer I coding a separate scalefactor is selected for each block of 12 samples. 
In Layer II coding the encoder tries to share a scale factor among two or all three groups of 
samples from each subband fi lter. The only time separate scalefactors are used for each group 
of 12 samples is when not doing so would result in a signifi cant increase in distortion. The 
particular choice used in a frame is signaled through the  scalefactor selection information  
fi eld in the bitstream. 

   The major difference between the Layer I and Layer II coding schemes is in the quantization 
step. In the Layer I coding scheme the output of each subband is quantized using one of 
14 possibilities; the same 14 possibilities for each of the subbands. In Layer II coding the 
quantizers used for each of the subbands can be selected from a different set of quantizers 
depending on the sampling rate and the bit rates. For some sampling rate and bit rate 

 Table 4.1 :           Allowable sampling frequencies in MPEG-1 and MPEG-2  

   Index  MPEG-1  MPEG-2 

   00  44.1       kHz  22.05       kHz 

   01  48       kHz  24       kHz 

   10  32       kHz  16       kHz 

   11  Reserved 
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combinations, many of the higher subbands are assigned 0 bits. That is, the information 
from those subbands is simply discarded. Where the quantizer selected has 3, 5, or 9 levels, 
the Layer II coding scheme uses one more enhancement. Notice that in the case of 3 levels 
we have to use 2 bits per sample, which would have allowed us to represent 4 levels. The 
situation is even worse in the case of 5 levels, where we are forced to use 3 bits, wasting three 
codewords, and in the case of 9 levels where we have to use 4 bits, thus wasting 7 levels. 
To avoid this situation, the Layer II coder groups 3 samples into a  granule . If each sample 
can take on 3 levels, a granule can take on 27 levels. This can be accommodated using 
5 bits. If each sample had been encoded separately we would have needed 6 bits. Similarly, 
if each sample can take on 9 values, a granule can take on 729 values. We can represent 
729 values using 10 bits. If each sample in the granule had been encoded separately, we 
would have needed 12 bits. Using all these savings, the compression ratio in Layer II coding 
can be increase from 4:1 to 8:1 or 6:1. 

   The frame structure for the Layer II coder can be seen in  Figure 4.6   . The only real difference 
between this frame structure and the frame structure of the Layer I coder is the scalefactor 
selection information fi eld.  

    4.3.3       Layer III Coding –  mp3  

   Layer III coding, which has become widely popular under the name  mp3 , is considerably 
more complex than the Layer I and Layer II coding schemes. One of the problems with 
the Layer I and coding schemes was that with the 32-band decomposition, the bandwidth 
of the subbands at lower frequencies is signifi cantly larger than the critical bands. This 
makes it diffi cult to make an accurate judgement of the mask-to-signal ratio. If we get a 
high amplitude tone within a subband and if the subband was narrow enough, we could 
assume that it masked other tones in the band. However, if the bandwidth of the subband is 
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signifi cantly higher than the critical bandwidth at that frequency, it becomes more diffi cult to 
determine whether other tones in the subband will be be masked. 

   A simple way to increase the spectral resolution would be to decompose the signal directly 
into a higher number of bands. However, one of the requirements on the Layer III algorithm 
is that it be backward compatible with Layer I and Layer II coders. To satisfy this backward 
compatibility requirement, the spectral decomposition in the Layer III algorithm is performed 
in two stages. First the 32-band subband decomposition used in Layer I and Layer II is 
employed. The output of each subband is transformed using a modifi ed discrete cosine 
transform (MDCT) with a 50% overlap. The Layer III algorithm specifi es two sizes for the 
MDCT, 6 or 18. This means that the output of each subband can be decomposed into 18 
frequency coeffi cients or 6 frequency coeffi cients. 

   The reason for having two sizes for the MDCT is that when we transform a sequence into 
the frequency domain, we lose time resolution even as we gain frequency resolution. The 
larger the block size the more we lose in terms of time resolution. The problem with this is 
that any quantization noise introduced into the frequency coeffi cients will get spread over 
the entire block size of the transform. Backward temporal masking occurs for only a short 
duration prior to the masking sound (approximately 20 msec). Therefore, quantization noise 
will appear as a  pre-echo . Consider the signal shown in  Figure 4.7   . The sequence consists 
of 128 samples, the fi rst 118 of which are 0, followed by a sharp increase in value. The 128-
point DCT of this sequence is shown in  Figure 4.8   . Notice that many of these coeffi cients are 
quite large. If we were to send all these coeffi cients, we would have data expansion instead 
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of data compression. If we keep only the 10 largest coeffi cients, the reconstructed signal is 
shown in  Figure 4.9   . Notice that not only are the nonzero signal values not well represented, 
there is also error in the samples prior to the change in value of the signal. If this were an 
audio signal and the large values had occurred at the beginning of the sequence, the forward 
masking effect would have reduced the perceptibility of the quantization error. In the situation 
shown in  Figure 4.9 , backward masking will mask some of the quantization error. However, 
backward masking occurs for only a short duration prior to the masking sound. Therefore, if 
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the length of the block in question is longer than the masking interval, the distortion will be 
evident to the listener. 

   If we get a sharp sound that is very limited in time (such as the sound of castanets) we would 
like to keep the block size small enough that it can contain this sharp sound. Then, when we 
incur quantization noise it will not get spread out of the interval in which the actual sound 
occurred and will therefore get masked. The Layer III algorithm monitors the input and where 
necessary substitutes three short transforms for one long transform. What actually happens is 
that the subband output is multiplied by a window function of length 36 during the stationary 
periods (that is a blocksize of 18 plus 50% overlap from neighboring blocks). This window 
is called the  long window . If a sharp attack is detected, the algorithm shifts to a sequence of 
three  short windows  of length 12 after a transition window of length 30. This initial transition 
window is called the  start  window. If the input returns to a more stationary mode, the short 
windows are followed by another transition window called the  stop  window of length 30 and 
then the standard sequence of long windows. The process of transitioning between windows 
is shown in  Figure 4.10   . A possible set of window transitions is shown in  Figure 4.11   . For 
the long windows we end up with 18 frequencies per subband, resulting in a total of 576 
frequencies. For the short windows we get 6 coeffi cients per subband for a total of 192 
frequencies. The standard allows for a mixed block mode in which the two lowest subbands 
use long windows while the remaining subbands use short windows. Notice that while 
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the number of frequencies may change depending on whether we are using long or short 
windows, the number of samples in a frame stays at 1152. That is 36 samples, or 3 groups of 
12, from each of the 32 subband fi lters. 

   The coding and quantization of the output of the MDCT is conducted in an iterative fashion 
using two nested loops. There is an outer loop called the  distortion control loop  whose 
purpose is to ensure that the introduced quantization noise lies below the audibility threshold. 
The scalefactors are used to control the level of quantization noise. In Layer III scalefactors 
are assigned to groups or  “ bands ”  of coeffi cients in which the bands are approximately the 
size of critical bands. There are 21 scalefactor bands for long blocks and 12 scalefactor bands 
for short blocks. 

   The inner loop is called the  rate control loop . The goal of this loop is to make sure that a 
target bit rate is not exceeded. This is done by iterating between different quantizers and 
Huffman codes. The quantizers used in  mp3  are companded nonuniform quantizers. The 
scaled MDCT coeffi cients are fi rst quantized and organized into regions. Coeffi cients at the 
higher end of the frequency scale are likely to be quantized to zero. These consecutive zero 
outputs are treated as a single region and the run-length is Huffman encoded. Below this 
region of zero coeffi cients, the encoder identifi es the set of coeffi cients that are quantized 
to 0 or  � 1. These coeffi cients are grouped into groups of four. This set of quadruplets is the 
second region of coeffi cients. Each quadruplet is encoded using a single Huffman codeword. 
The remaining coeffi cients are divided into two or three subregions. Each subregion is 
assigned a Huffman code based on its statistical characteristics. If the result of using this 
variable length coding exceeds the bit budget, the quantizer is adjusted to increase the 
quantization stepsize. The process is repeated until the target rate is satisfi ed. 

   Once the target rate is satisfi ed, control passes back to the outer, distortion control loop. The 
psychoacoustic model is used to check whether the quantization noise in any band exceeds 
the allowed distortion. If it does, the scalefactor is adjusted to reduce the quantization 
noise. Once all scalefactors have been adjusted, control returns to the rate control loop. 
The iterations terminate either when the distortion and rate conditions are satisfi ed or the 
scalefactors cannot be adjusted any further. 

Long Start StopShort Long

 Figure 4.11 :           Sequence of windows    
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   There will be frames in which the number of bits used by the Huffman coder is less than the 
amount allocated. These bits are saved in a conceptual  bit reservoir . In practice what this 
means is that the start of a block of data does not necessarily coincide with the header of the 
frame. Consider the three frames shown in  Figure 4.12   . In this example, the main data for 
the fi rst frame (which includes scalefactor information and the Huffman coded data) does 
not occupy the entire frame. Therefore, the main data for the second frame starts before the 
second frame actually begins. The same is true for the remaining data. The main data can 
begin in the  previous frame . However, the main data for a particular frame cannot spill over 
into the  following  frame. 

   All this complexity allows for a very effi cient encoding of audio inputs. The typical  mp3  
audio fi le has a compression ratio of about 10:1. In spite of this high level of compression, 
most people cannot tell the difference between the original and the compressed 
representation. 

   We say most because trained professionals can at times tell the difference between the 
original and compressed versions. People who can identify very minute differences between 
coded and original signals have played an important role in the development of audio coders. 
By identifying where distortion may be audible they have helped focus effort onto improving 
the coding process. This development process has made  mp3  the format of choice for 
compressed music.   

    4.4       MPEG Advanced Audio Coding 

   The MPEG Layer III algorithm has been highly successful. However, it had some built-
in drawbacks because of the constraints under which it had been designed. The principal 
constraint was the requirement that it be backward compatible. This requirement for 
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backward compatibility forced the rather awkward decomposition structure involving a 
subband decomposition followed by an MDCT decomposition. The period immediately 
following the release of the MPEG specifi cations also saw major developments in hardware 
capability. The Advanced Audio Coding (AAC) standard was approved as a higher quality 
multichannel alternative to the backward compatible MPEG Layer III in 1997. 

   The AAC approach is a modular approach based on a set of self-contained tools or modules. 
Some of these tools are taken from the earlier MPEG audio standard while others are new. As 
with previous standards, the AAC standard actually specifi es the decoder. The decoder tools 
specifi ed in the AAC standard are listed in  Table 4.2   . As shown in the table, some of these 
tools are required for all profi les while others are only required for some profi les. By using 
some or all of these tools, the standard describes three profi les. These are the  main  profi le, 
the  low complexity  profi le, and the  sampling-rate-scalable  profi le. The AAC approach used in 
MPEG-2 was later enhanced and modifi ed to provide an audio coding option in MPEG-4. In 
the following section we fi rst describe the MPEG-2 AAC algorithm, followed by the MPEG-4 
AAC algorithm. 

    4.4.1       MPEG-2 AAC 

   A block diagram of an MPEG-2 AAC encoder is shown in  Figure 4.13   . Each block represents 
a tool. The psychoacoustic model used in the AAC encoder is the same as the model used in 

 Table 4.2 :           AAC DecoderTools (ISO/IEC)  

   Tool Name   

   Bitstream Formatter  Required 

   Huffman Decoding  Required 

   Inverse Quantization  Required 

   Rescaling  Required 

   M/S  Optional 

   Interblock Prediction  Optional 

   Intensity  Optional 

   Dependently Switched Coupling  Optional 

   TNS  Optional 

   Block switching/MDCT  Required 

   Gain Control  Optional 

   Independently Switched Coupling  Optional 
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the MPEG Layer III encoder. As in the Layer III algorithm, the psychoacoustic model is used 
to trigger switching in the blocklength of the MDCT transform and to produce the threshold 
values used to determine scalefactors and quantization thresholds. The audio data is fed in 
parallel to both the acoustic model and to the modifi ed Discrete Cosine Transform. 

    4.4.1.1       Block Switching and MDCT 

   Because the AAC algorithm is not backward compatible it does away with the requirement 
of the 32-band fi lterbank. Instead, the frequency decomposition is accomplished by a 
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 Figure 4.13 :           An MPEG-2 AAC encoder (ISO/IEC IS 14496)    
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Modifi ed Discrete Cosine Transform (MDCT). The AAC algorithm allows switching between 
a window length of 2048 samples and 256 samples. These window lengths include a 50% 
overlap with neighboring blocks. So 2048 time samples are used to generate 1024 spectral 
coeffi cients, and 256 time samples are used to generate 128 frequency coeffi cients. The  k th   
spectral coeffi cient of block  i ,  X i,k   is given by: 
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   The longer block length allows the algorithm to take advantage of stationary portions of 
the input to get signifi cant improvements in compression. The short block length allows the 
algorithm to handle sharp attacks without incurring substantial distortion and rate penalties. 
Short blocks occur in groups of eight in order to avoid framing issues. As in the case of 
MPEG Layer III, there are four kinds of windows: long, short, start, and stop. The decision 
about whether to use a group of short blocks is made by the psychoacoustic model. The 
coeffi cients are divided into scalefactor bands in which the number of coeffi cients in the 
bands refl ects the critical bandwidth. Each scalefactor band is assigned a single scalefactor. 
The exact division of the coeffi cients into scalefactor bands for the different windows and 
different sampling rates is specifi ed in the standard (ISO/IEC IS 14496).  

    4.4.1.2       Spectral Processing 

   In MPEG Layer III coding the compression gain is mainly achieved through the unequal 
distribution of energy in the different frequency bands, the use of the psychoacoustic model, 
and Huffman coding. The unequal distribution of energy allows use of fewer bits for spectral 
bands with less energy. The psychoacoustic model is used to adjust the quantization step size 
in a way that masks the quantization noise. The Huffman coding allows further reductions 
in the bit rate. All these approaches are also used in the AAC algorithm. In addition, the 
algorithm makes use of prediction to reduce the dynamic range of the coeffi cients and thus 
allow further reduction in the bit rate. 

   Recall that prediction is generally useful only in stationary conditions. By their very nature, 
transients are almost impossible to predict. Therefore, generally speaking, predictive coding 
would not be considered for signals containing signifi cant amounts of transients. However, 
music signals have exactly this characteristic. Although they may contain long periods of 
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stationary signals, they also generally contain a signifi cant amount of transient signals. The AAC 
algorithm makes clever use of the time frequency duality to handle this situation. The standard 
contains two kinds of predictors, an intrablock predictor, referred to as temporal noise shaping 
(TNS), and an interblock predictor. The interblock predictor is used during stationary periods. 
During these periods it is reasonable to assume that the coeffi cients at a certain frequency do not 
change their value signifi cantly from block to block. Making use of this characteristic, the AAC 
standard implements a set of parallel DPCM systems. There is one predictor for each coeffi cient 
up to a maximum number of coeffi cients. The maximum is different for different sampling 
frequencies. Each predictor is a backward adaptive two-tap predictor. This predictor is really 
useful only in stationary periods. Therefore, the psychoacoustic model monitors the input and 
determines when the output of the predictor is to be used. The decision is made on a scalefactor 
band by scalefactor band basis. Because notifi cation of the decision that the predictors are being 
used has to be sent to the decoder, this would increase the rate by one bit for each scalefactor 
band. Therefore, once the preliminary decision to use the predicted value has been made, further 
calculations are made to check if the savings will be suffi cient to offset this increase in rate. If 
the savings are determined to be suffi cient, a  predictor_data_present  bit is set to 1 and one bit 
for each scalefactor band (called the  prediction_used  bit) is set to 1 or 0 depending on whether 
prediction was deemed effective for that scalefactor band. If not, the  predictor_data_present  
bit is set to 0 and the  prediction_used  bits are not sent. Even when a predictor is disabled, 
the adaptive algorithm is continued so that the predictor coeffi cients can track the changing 
coeffi cients. However, because this is a streaming audio format it is necessary from time to time 
to reset the coeffi cients. Resetting is done periodically in a staged manner and also when a short 
frame is used. 

   When the audio input contains transients, the AAC algorithm uses the intraband predictor. 
Recall that narrow pulses in time correspond to wide bandwidths. The narrower a signal 
in time, the broader its Fourier transform will be. This means that when transients occur 
in the audio signal, the resulting MDCT output will contain a large number of correlated 
coeffi cients. Thus, unpredictability in time translates to a high level of predictability in terms 
of the frequency components. The AAC uses neighboring coeffi cients to perform prediction. 
A target set of coeffi cients is selected in the block. The standard suggests a range of 1.5       kHz 
to the uppermost scalefactor band as specifi ed for different profi les and sampling rates. 
A set of linear predictive coeffi cients is obtained using any of the standard approaches, such 
as the Levinson-Durbin algorithm. The maximum order of the fi lter ranges from 12 to 20 
depending on the profi le. The process of obtaining the fi lter coeffi cients also provides the 
expected prediction gain  g p  . This expected prediction gain is compared against a threshold 
to determine if intrablock prediction is going to be used. The standard suggests a value of 
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1.4 for the threshold. The order of the fi lter is determined by the fi rst PARCOR coeffi cient 
with a magnitude smaller than a threshold (suggested to be 0.1). The PARCOR coeffi cients 
corresponding to the predictor are quantized and coded for transfer to the decoder. The 
reconstructed LPC coeffi cients are then used for prediction. In the time domain predictive 
coders, one effect of linear prediction is the spectral shaping of the quantization noise. The 
effect of prediction in the frequency domain is the  temporal  shaping of the quantization noise, 
hence the name Temporal Noise Shaping. The shaping of the noise means that the noise will 
be higher during time periods when the signal amplitude is high and lower when the signal 
amplitude is low. This is especially useful in audio signals because of the masking properties 
of human hearing.  

    4.4.1.3       Quantization and Coding 

   The quantization and coding strategy used in AAC is similar to what is used in MPEG Layer 
III. Scalefactors are used to control the quantization noise as a part of an outer  distortion 
control loop . The quantization step size is adjusted to accommodate a target bit rate in an 
inner  rate control loop . The quantized coeffi cients are grouped into  sections . The section 
boundaries have to coincide with scalefactor band boundaries. The quantized coeffi cients in 
each section are coded using the same Huffman codebook. The partitioning of the coeffi cients 
into sections is a dynamic process based on a greedy merge procedure. The procedure starts 
with the maximum number of sections. Sections are merged if the overall bit rate can be 
reduced by merging. Merging those sections will result in the maximum reduction in bit rate. 
This iterative procedure is continued until there is no further reduction in the bit rate.  

    4.4.1.4       Stereo Coding 

   The AAC scheme uses multiple approaches to stereo coding. Apart from independently 
coding the audio channels, the standard allows Mid/Side (M/S) coding and intensity stereo 
coding. Both stereo coding techniques can be used at the same time for different frequency 
ranges. Intensity coding makes use of the fact that at higher frequencies two channels can 
be represented by a single channel plus some directional information. The AAC standard 
suggests using this technique for scalefactor bands above 6       kHz. The M/S approach is used to 
reduce noise imaging. As described previously in the joint stereo approach, the two channels 
(L and R) are combined to generate sum and difference channels.  

    4.4.1.5       Profi les 

   The main profi le of MPEG-2 AAC uses all the tools except for the gain control tool of 
 Figure 4.13 . The low complexity profi le in addition to the gain control tool the interblock 
prediction tool is also dropped. In addition the maximum prediction order for intra-band 
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prediction (TNS) for long windows is 12 for the low complexity profi le as opposed to 20 for 
the main profi le. 

   The Scalable Sampling Rate profi le does not use the coupling and interband prediction tools. 
However this profi le does use the gain control tool. In the scalable-sampling profi le the 
MDCT block is preceded by a bank of four equal width 96 tap fi lters. The fi lter coeffi cients 
are provided in the standard. The use of this fi lterbank allows for a reduction in rate and 
decoder complexity. By ignoring one or more of the fi lterbank outputs the output bandwidth 
can be reduced. This reduction in bandwidth and sample rate also leads to a reduction in the 
decoder complexity. The gain control allows for the attenuation and amplifi cation of different 
bands in order to reduce perceptual distortion.   

    4.4.2       MPEG-4 AAC 

   The MPEG-4 AAC adds a perceptual noise substitution (PNS) tool and substitutes a long 
term prediction (LTP) tool for the interband prediction tool in the spectral coding block. In 
the quantization and coding section the MPEG-4 AAC adds the options of Transform-Domain 
Weighted Interleave Vector Quantization (TwinVQ) and Bit Sliced Arithmetic Coding (BSAC). 

    4.4.2.1       Perceptual Noise Substitution (PNS) 

   There are portions of music that sound like noise. Although this may sound like a harsh (or 
realistic) subjective evaluation, that is not what is meant here. What is meant by noise here 
is a portion of audio where the MDCT coeffi cients are stationary without containing tonal 
components (Watkinson,  The MPEG Handbook ). This kind of noise-like signal is the hardest 
to compress. However, at the same time it is very diffi cult to distinguish one noise-like signal 
from another. The MPEG-4 AAC makes use of this fact by not transmitting such noise-like 
scalefactor bands. Instead the decoder is alerted to this fact and the power of the noise-
like coeffi cients in this band is sent. The decoder generates a noise-like sequence with the 
appropriate power and inserts it in place of the unsent coeffi cients.  

    4.4.2.2       Long Term Prediction 

   The interband prediction in MPEG-2 AAC is one of the more computationally expensive 
parts of the algorithm. MPEG-4 AAC replaces that with a cheaper long term prediction (LTP) 
module.  

    4.4.2.3       TwinVQ 

   The Transform-Domain Weighted Interleave Vector Quantization (TwinVQ) (Iwakami et al.) 
option is suggested in the MPEG-4 AAC scheme for low bit rates. Developed at NTT in the 
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early 1990s, the algorithm uses a two-stage process for fl attening the MDCT coeffi cients. 
In the fi rst stage, a linear predictive coding algorithm is used to obtain the LPC coeffi cients 
for the audio data corresponding to the MDCT coeffi cients. These coeffi cients are used to 
obtain the spectral envelope for the audio data. Dividing the MDCT coeffi cients with this 
spectral envelope results in some degree of  “ fl attening ”  of the coeffi cients. The spectral 
envelope computed from the LPC coeffi cients refl ects the gross features of the envelope 
of the MDCT coeffi cients. However, it does not refl ect any of the fi ne structure. This fi ne 
structure is predicted from the previous frame and provides further fl attening of the MDCT 
coeffi cients. The fl attened coeffi cients are interleaved and grouped into subvectors and 
quantized. The fl attening process reduces the dynamic range of the coeffi cients, allowing 
them to be quantized using a smaller VQ codebook than would otherwise have been possible. 
The fl attening process is reversed in the decoder as the LPC coeffi cients are transmitted to 
the decoder.  

    4.4.2.4       Bit Sliced Arithmetic Coding (BSAC) 

   In addition to the Huffman coding scheme of the MPEG-2 AAC scheme, the MPEG-4 AAC 
scheme also provides the option of using binary arithmetic coding. The binary arithmetic 
coding is performed on the bitplanes of the magnitudes of the quantized MDCT coeffi cients. 
By bitplane we mean the corresponding bit of each coeffi cient. Consider the sequence of 4-bit 
coeffi cients  x n  : 5, 11, 8, 10, 3, 1. The most signifi cant bitplane would consist of the MSBs of 
these numbers, 011100. The next bitplane would be 100000. The next bitplane is 010110. The 
least signifi cant bitplane is 110011. 

   The coeffi cients are divided into  coding bands  of 32 coeffi cients each. One probability table 
is used to encode each coding band. Because we are dealing with binary data, the probability 
table is simply the number of zeros. If a coding band contains only zeros, this is indicated 
to the decoder by selecting the probability table 0. The sign bits associated with the nonzero 
coeffi cients are sent after the arithmetic code when the coeffi cient has a 1 for the the fi rst 
time. 

   The scalefactor information is also arithmetic coded. The maximum scalefactor is coded as an 
8-bit integer. The differences between scalefactors are encoded using an arithmetic code. The 
fi rst scalefactor is encoded using the difference between it and the maximum scalefactor.    

    4.5       Dolby AC3 (Dolby Digital) 

   Unlike the MPEG algorithms described in the previous section, the Dolby AC-3 method 
became a de facto standard. It was developed in response to the standardization activities 
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of the  Grand Alliance , which was developing a standard for HDTV in the United States. 
However, even before it was accepted as the recommendation for HDTV audio, Dolby-
AC3 had already made its debut in the movie industry. It was fi rst released in a few theaters 
during the showing of  Star Trek IV  in 1991 and was formally released with the movie  Batman 
Returns  in 1992. It was accepted by the  Grand Alliance  in October of 1993 and became an 
Advanced Television Systems Committee (ATSC) standard in 1995. Dolby AC-3 had the 
multichannel capability required by the movie industry along with the ability to downmix the 
channels to accommodate the varying capabilities of different applications. The 5.1 channels 
include right, center, left, left rear, and right rear, and a narrowband low-frequency effects 
channel (the 0.1 channel). The scheme supports downmixing the 5.1 channels to 4, 3, 2, or 
1 channel. It is now the standard used for DVDs as well as for Direct Broadcast Satellites 
(DBS) and other applications. 

   A block diagram of the Dolby-AC3 algorithm is shown in  Figure 4.14   . Much of the Dolby-
AC3 scheme is similar to what we have already described for the MPEG algorithms. As in 
the MPEG schemes, the Dolby-AC3 algorithm uses the modifi ed DCT (MDCT) with 50% 
overlap for frequency decomposition. As in the case of MPEG, there are two different sizes of 
windows used. For the stationary portions of the audio a window of size 512 is used to get a 
256 coeffi cient. A surge in the power of the high frequency coeffi cients is used to indicate the 
presence of a transient and the 512 window is replaced by two windows of size 256. The one 
place where the Dolby-AC3 algorithm differs signifi cantly from the algorithm described is in 
the bit allocation. 
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 Figure 4.14 :           The Dolby AC3 algorithm    
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    4.5.1       Bit Allocation 

   The Dolby-AC3 scheme has a very interesting method for bit allocation. Like the MPEG 
schemes, it uses a psychoacoustic model that incorporates the hearing thresholds and the 
presence of noise and tone maskers. However, the input to the model is different. In the 
MPEG schemes the audio sequence being encoded is provided to the bit allocation procedure 
and the bit allocation is sent to the decoder as side information. In the Dolby-AC3 scheme the 
signal itself is not provided to the bit allocation procedure. Instead a crude representation of 
the spectral envelope is provided to both the decoder and the bit allocation procedure. As the 
decoder then possesses the information used by the encoder to generate the bit allocation, the 
allocation itself is not included in the transmitted bitstream. 

   The representation of the spectral envelope is obtained by representing the MDCT 
coeffi cients in binary exponential notation. The binary exponential notation of a number 
110.101 is 0.110101  
  2 3 , where 110101 is called the  mantissa  and 3 is the exponent. 
Given a sequence of numbers, the exponents of the binary exponential representation 
provide an estimate of the relative magnitude of the numbers. The Dolby-AC3 algorithm 
uses the exponents of the binary exponential representation of the MDCT coeffi cients as the 
representation of the spectral envelope. This encoding is sent to the bit allocation algorithm, 
which uses this information in conjunction with a psychoacoustic model to generate the 
number of bits to be used to quantize the mantissa of the binary exponential representation 
of the MDCT coeffi cients. To reduce the amount of information that needs to be sent to the 
decoder, the spectral envelope coding is not performed for every audio block. Depending on 
how stationary the audio is, the algorithm uses one of three strategies (Bosi/Goldberg). 

    4.5.1.1       The D15 Method 

   When the audio is relatively stationary, the spectral envelope is coded once for every six 
audio blocks. Because a frame in Dolby-AC3 consists of six blocks, during each block we 
get a new spectral envelope and hence a new bit allocation. The spectral envelope is coded 
differentially. The fi rst exponent is sent as is. The difference between exponents is encoded 
using one of fi ve values  { 0,  � 1,  � 2 } . Three differences are encoded using a 7-bit word. Note 
that three differences can take on 125 different combinations. Therefore, using 7 bits, which 
can represent 128 different values, is highly effi cient.  

    4.5.1.2       The D25 and D45 Methods 

   If the audio is not stationary, the spectral envelope is sent more often. To keep the bit rate 
down, the Dolby-AC3 algorithm uses one of two strategies. In the D25 strategy, which is 
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used for moderate spectral activity, every other coeffi cient is encoded. In the D45 strategy, 
used during transients, every fourth coeffi cient is encoded. These strategies make use of the 
fact that during a transient the fi ne structure of the spectral envelope is not that important, 
allowing for a more crude representation.    

    4.6       Other Standards 

   We have described a number of audio compression approaches that make use of the 
limitations of human audio perception. These are by no means the only ones. Competitors 
to Dolby Digital include Digital Theater Systems (DTS) and Sony Dynamic Digital 
Sound (SDDS). Both of these proprietary schemes use psychoacoustic modeling. The 
Adaptive TRansform Acoustic Coding (ATRAC) algorithm (Tsutsui et al.) was developed 
for the minidisc by Sony in the early 1990s, followed by enhancements in ATRAC3 and 
ATRAC3plus. As with the other schemes described in this chapter, the ATRAC approach uses 
MDCT for frequency decomposition, though the audio signal is fi rst decomposed into three 
bands using a two-stage decomposition. As in the case of the other schemes, the ATRAC 
algorithm recommends the use of the limitations of human audio perception in order to 
discard information that is not perceptible. 

   Another algorithm that also uses MDCT and a psychoacoustic model is the open source 
encoder Vorbis. The Vorbis algorithm also uses vector quantization and Huffman coding to 
reduce the bit rate.  

    4.7       Summary 

   The audio coding algorithms described in this chapter take, in some sense, the opposite tack 
from speech coding algorithms. Instead of focusing on the source of information, as is the 
case with the speech coding algorithm, the focus in the audio coding algorithm is on the sink, 
or user, of the information. By identifying the components of the source signal that are not 
perceptible, the algorithms reduce the amount of data that needs to be transmitted.   
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 CHAPTER 5 

                                                                         Video Processing 
   Keith   Jack    

     Video processing has become one of the main applications of signal processing technology. One 
reason for the increasing importance of digital video is that it is everywhere, from YouTube to 
unpiloted military drones. The other reason is that digital video is hard to do — the algorithms 
are complicated, and they demand huge computational power. Thus, video applications will keep 
many of us employed for years to come! 

 In this chapter, Keith Jack gives an in-depth treatment of digital video processing. The main 
topics include display enhancement, video mixing and graphics overlay, frame rate conversion, 
interlacing/deinterlacing, video scaling, and user controls (brightness, contrast, etc). 

 You may have noticed that this list does not include compression and decompression algorithms 
(i.e., codecs) such as H.264. The end of the chapter does give some insight into discrete cosine 
transform (DCT) based compression, but otherwise I have decided to leave the details out of this 
book. Few DSP engineers design or implement video codecs, so most of us just need to know 
the basics. For a good general overview of video codecs, I recommend reading  “ How Video 
Compression Works ” :

  http://www.dspdesignline.com/howto/201202637   

 Jack brings a wealth of experience to the topic. He’s currently director of product marketing at 
Sigma Designs, which develops system-on-chips (SoC) for IPTV, set-top-boxes, HD-DVD players, 
portable media players, and more. Before that he was involved in designing or marketing over 
forty multimedia chips for the consumer market. In this text, his experience shows. Each topic 
is chock-full of practical technical detail one would need to implement the video processing 
covered. 

  — Kenton Williston   

   In addition to encoding and decoding MPEG, NTSC/PAL, and many other types of video, a 
typical system usually requires considerable additional video processing. 

   Since many consumer displays, and most computer displays, are progressive (noninterlaced), 
interlaced video must be converted to progressive ( “ deinterlaced ” ). Progressive video must 
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be converted to interlaced to drive a conventional analog VCR or interlaced TV, requiring 
noninterlaced-to-interlaced conversion. 

   Many computer displays support refresh rates up to at least 75 frames per second. CRT-based 
televisions have a refresh rate of 50 or 59.94 (60/1.001) fi elds per second. Refresh rates of 
up to 120 frames per second are becoming common for fl at-panel televisions. For fi lm-based 
compressed content, the source may only be 24 frames per second. Thus, some form of frame 
rate conversion must be done. 

   Another not-so-subtle problem includes video scaling. SDTV and HDTV support multiple 
resolutions, yet the display may be a single, fi xed resolution. 

   Alpha mixing and chroma keying are used to mix multiple video signals or video with 
computer-generated text and graphics. Alpha mixing ensures a smooth crossover between 
sources, allows subpixel positioning of text, and limits source transition bandwidths to 
simplify eventual encoding to composite video signals. 

   Since no source is perfect, even digital sources, user controls for adjustable brightness, 
contrast, saturation, and hue are always desirable. 

    5.1       Rounding Considerations 

   When two 8-bit values are multiplied together, a 16-bit result is generated. At some point, a 
result must be rounded to some lower precision (for example, 16 bits to 8 bits or 32 bits to 16 
bits) in order to realize a cost-effective hardware implementation. There are several rounding 
techniques: truncation, conventional rounding, error feedback rounding, and dynamic rounding. 

    5.1.1       Truncation 

   Truncation drops any fractional data during each rounding operation. As a result, after only 
a few operations, a signifi cant error may be introduced. This may result in contours being 
visible in areas of solid colors.  

    5.1.2       Conventional Rounding 

   Conventional rounding uses the fractional data bits to determine whether to round up or round 
down. If the fractional data is 0.5 or greater, rounding up should be performed — positive 
numbers should be made more positive and negative numbers should be made more negative. 
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If the fractional data is less than 0.5, rounding down should be performed — positive numbers 
should be made less positive and negative numbers should be made less negative.  

    5.1.3       Error Feedback Rounding 

   Error feedback rounding follows the principle of  “ never throw anything away. ”  This 
is accomplished by storing the residue of a truncation and adding it to the next video 
sample. This approach substitutes less visible noise-like quantizing errors in place of 
contouring effects caused by simple truncation. An example of an error feedback rounding 
implementation is shown in  Figure 5.1   . In this example, 16 bits are reduced to 8 bits using 
error feedback.  

    5.1.4       Dynamic Rounding 

   This technique (a licensable Quantel patent) dithers the LSB according to the weighting of the 
discarded fractional bits. The original data word is divided into two parts, one representing 
the resolution of the fi nal output word and one dealing with the remaining fractional data. The 
fractional data is compared to the output of a random number generator equal in resolution 
to the fractional data. The output of the comparator is a 1-bit random pattern weighted by the 
value of the fractional data, and serves as a carry-in to the adder. In all instances, only one 
LSB of the output word is changed, in a random fashion. An example of a dynamic rounding 
implementation is shown in  Figure 5.2   .   

    5.2       SDTV-HDTV YCbCr Transforms 

   SDTV and HDTV applications have different colorimetric characteristics. Thus, when SDTV 
(HDTV) data is displayed on an HDTV (SDTV) display, the YCbCr data should be processed 
to compensate for the different colorimetric characteristics. 
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 Figure 5.1 :         Error feedback rounding    
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    5.2.1       SDTV to HDTV 

   A 3  
  3 matrix can be used to convert from Y 601 CbCr (SDTV) to Y 709 CbCr (HDTV): 

    1        � 0.11554975        � 0.20793764  

    0       1.01863972       0.11461795  

    0       0.07504945       1.02532707  

   Note that before processing, the 8-bit DC offset (16 for Y and 128 for CbCr) must be 
removed, then added back in after processing.  

    5.2.2       HDTV to SDTV 

   A 3  
  3 matrix can be used to convert from Y 709 CbCr (HDTV) to Y 601 CbCr (SDTV): 

    1       0.09931166       0.19169955  

    0       0.98985381        � 0.11065251  

    0        � 0.07245296       0.98339782  

   Note that before processing, the 8-bit DC offset (16 for Y and 128 for CbCr) must be 
removed, then added back in after processing.   
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 Figure 5.2 :         Dynamic rounding    
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    5.3       4:4:4 to 4:2:2 YCbCr Conversion 

   Converting 4:4:4 YCbCr to 4:2:2 YCbCr ( Figure 5.3   ) is a common function in digital video. 
4:2:2 YCbCr is the basis for many digital video interfaces, and requires fewer connections to 
implement than 4:4:4. 

   Saturation logic should be included in the Y, Cb, and Cr data paths to limit the 8-bit range 
to 1 – 254. The 16 and 128 values shown in  Figure 5.3  are used to generate the proper levels 
during blanking intervals. 

    5.3.1       Y Filtering 

   A template for the Y lowpass fi lter is shown in  Figure 5.4    and  Table 5.1   . 

   Because there may be many cascaded conversions (up to 10 were envisioned), the fi lters were 
designed to adhere to very tight tolerances to avoid a buildup of visual artifacts. Departure 
from fl at amplitude and group delay response due to fi ltering is amplifi ed through successive 
stages. For example, if fi lters exhibiting  � 1       dB at 1       MHz and  � 3       dB at 1.3       MHz were 
employed, the overall response would be  � 8       dB (at 1       MHz) and  � 24       dB (at 1.3       MHz) after 
four conversion stages (assuming two fi lters per stage). 
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 Figure 5.3 :         4:4:4 to 4:2:2 YCbCr conversion    
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   Although the sharp cut-off results in ringing on Y edges, the visual effect should be minimal 
provided that group-delay performance is adequate. When cascading multiple fi ltering 
operations, the passband fl atness and group-delay characteristics are very important. The 
passband tolerances, coupled with the sharp cut-off, make the template very diffi cult (some 
say impossible) to match. As a result, there is usually a temptation to relax passband accuracy, 
but the best approach is to reduce the rate of cut-off and keep the passband as fl at as possible.  

    5.3.2       CbCr Filtering 

   Cb and Cr are lowpass fi ltered and decimated. In a standard design, the lowpass and 
decimation fi lters may be combined into a single fi lter, and a single fi lter may be used for 
both Cb and Cr by multiplexing. 
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 Figure 5.4 :         Y fi lter template. F s   �  Y1  
  sample rate    

 Table 5.1 :         Y fi lter ripple and group delay tolerances. F s   �  Y1  
  sample rate. T  �  1/F s   

   Frequency Range  Typical SDTV Tolerances  Typical HDTV Tolerances 

   Passband Ripple Tolerance     

   0 to 0.40F s    � 0.01       dB increasing to  � 0.05       dB   � 0.05       dB 

   Passband Group Delay Tolerance     

   0 to 0.27F s   0 increasing to � 1.35       ns   � 0.075T 

   0.27F s  to 0.40F s    � 1.35       ns increasing to  � 2       ns   � 0.110T 
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   As with Y fi ltering, the Cb and Cr lowpass fi ltering requires a sharp cut-off to prevent 
repeated conversions from producing a cumulative resolution loss. However, due to the low 
cut-off frequency, the sharp cut-off produces ringing that is more noticeable than for Y. 

   A template for the Cb and Cr fi lters is shown in  Figure 5.5    and  Table 5.2   . 

   Since aliasing is less noticeable in color difference signals, the attenuation at half the 
sampling frequency is only 6       dB. There is an advantage in using a skew-symmetric response 
passing through the  � 6       dB point at half the sampling frequency — this makes alternate 
coeffi cients in the digital fi lter zero, almost halving the number of taps, and also allows using 
a single digital fi lter for both the Cb and Cr signals. Use of a transversal digital fi lter has the 
advantage of providing perfect linear phase response, eliminating the need for group-delay 
correction. 
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 Figure 5.5 :         Cb and Cr fi lter template for digital fi lter for sample rate conversion from 4:4:4 to 
4:2:2. F s   �  Y1  
  sample rate    

 Table 5.2 :         CbCr fi lter ripple and group delay tolerances. F s   �  Y1  
  sample rate. T  �  1/F s   

   Frequency Range  Typical SDTV Tolerances  Typical HDTV Tolerances 

   Passband Ripple Tolerance     

   0 to 0.20F s   0       dB increasing to  � 0.05       dB   � 0.05       dB 

   Passband Group Delay Tolerance     

   0 to 0.20F s   delay distortion is zero by design   
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   As with the Y fi lter, the passband fl atness and group-delay characteristics are very important, 
and the best approach again is to reduce the rate of cut-off and keep the passband as fl at as 
possible.   

    5.4       Display Enhancement 

    5.4.1       Brightness, Contrast, Saturation (Color), and Hue (Tint) 

   Working in the YCbCr color space simplifi es the implementation of brightness, contrast, 
saturation, and hue controls, as shown in  Figure 5.6   . Also illustrated are multiplexers to allow 
the output of black screen, blue screen, and color bars. 

   The design should ensure that no overfl ow or underfl ow wraparound errors occur, effectively 
saturating results to the 0 and 255 values. 

    5.4.1.1       Y Processing 

   16 is subtracted from the Y data to position the black level at zero. This removes the DC 
offset so adjusting the contrast does not vary the black level. Since the Y input data may have 
values below 16, negative Y values should be supported at this point. 

   The contrast (or  picture  or  white level ) control is implemented by multiplying the YCbCr data 
by a constant. If Cb and Cr are not adjusted, a color shift will result whenever the contrast is 
changed. A typical 8-bit contrast adjustment range is 0 – 1.992 
 . 

   The brightness (or  black level ) control is implemented by adding or subtracting from the Y 
data. Brightness is done after the contrast to avoid introducing a varying DC offset due to 
adjusting the contrast. A typical 8-bit brightness adjustment range is  � 128 to  � 127. 

   Finally, 16 is added to position the black level at 16.  

    5.4.1.2       CbCr Processing 

   128 is subtracted from Cb and Cr to position the range about zero. 

   The hue (or  tint ) control is implemented by mixing the Cb and Cr data: 

 

Cb Cb Cr
Cr Cr Cb

� � �

� � �

cos sin
cos sin

θ θ
θ θ      

   where  θ  is the desired hue angle. A typical 8-bit hue adjustment range is  � 30 °  to  � 30 ° . 
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   The saturation (or  color ) control is implemented by multiplying both Cb and Cr by a constant. 
A typical 8-bit saturation adjustment range is 0 – 1.992 
 . In the example shown in  Figure 5.6 , 
the contrast and saturation values are multiplied together to reduce the number of multipliers 
in the CbCr datapath. 

   Finally, 128 is added to both Cb and Cr. 

   Many displays also use separate hue and saturation controls for each of the red, green, blue, 
cyan, yellow, and magenta colors. This enables tuning the image at production time to better 
match the display’s characteristics.   

    5.4.2       Color Transient Improvement 

   YCbCr transitions should be aligned. However, the Cb and Cr transitions are usually slower 
and time-offset due to the narrower bandwidth of color difference information. 
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 Figure 5.6 :         Hue, saturation, contrast, and brightness controls    
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   By monitoring coincident Y transitions, faster horizontal and vertical transitions may be 
synthesized for Cb and Cr. Small pre- and after-shoots may also be added to the Cb and Cr 
signals. 

   The new Cb and Cr edges are then aligned with the Y edge, as shown in  Figure 5.7   . 

   Displays commonly use this technique to provide a sharper-looking picture.  

    5.4.3       Luma Transient Improvement 

   In this case, the Y horizontal and vertical transitions are shortened, and small pre- and after-
shoots may also be added, to artifi cially sharpen the image. 

   Displays commonly use this technique to provide a sharper-looking picture.  

    5.4.4       Sharpness 

   The apparent sharpness of a picture may be increased by increasing the amplitude of high-
frequency luminance information. 

   As shown in  Figure 5.8   , a simple bandpass fi lter with selectable gain (also called a  peaking 
fi lter ) may be used. The frequency where maximum gain occurs is usually selectable to be 
either at the color subcarrier frequency or at about 2.6       MHz. A coring circuit is typically used 
after the fi lter to reduce low-level noise. 

    Figure 5.9    illustrates a more complex sharpness control circuit. The high-frequency 
luminance is increased using a variable bandpass fi lter, with adjustable gain. The coring 
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 Figure 5.7 :         Color transient improvement    
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 Figure 5.8 :         Simple adjustable sharpness control: (A) NTSC, (B) PAL    
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function (typically  � 1       LSB) removes low-level noise. The modifi ed luminance is then added 
to the original luminance signal. 

   In addition to selectable gain, selectable attenuation of high frequencies should also be 
supported. Many televisions boost high-frequency gain to improve the apparent sharpness of 
the picture. Although the sharpness control on the television may be turned down, this affects 
the picture quality of analog broadcasts.  

    5.4.5       Blue Stretch 

   Blue stretch increases the blue value of white and near-white colors in order to make whites 
appear brighter. When applying blue stretch, only colors only within a specifi ed color range 
should be processed. 

   Colors with a Y value of  � 80% or more of the maximum, have a low saturation value, and 
fall within a white detection area in the CbCr-plane, have their blue components increased 
by  � 4% (the blue gain factor) and their red components decreased the same amount. For 
more complex designs, the white detection area and blue gain factor can be dependent on the 
color’s Y value and saturation level. 

   A transition boundary can be used around the white detection area for gradually decreasing 
the blue gain factor as colors move away from the white detection area boundary. This can 
prevent hard transitions between areas that are blue stretched and areas that are not. If a 
color falls inside the transition boundary area, it is blue stretched using a fraction of the blue 
gain factor, with the fraction decreasing as the distance from the edge of the detection area 
boundary increases.  

    5.4.6       Green Enhancement 

   Green enhancement creates a richer, more saturated green color when the level of green is 
low. Displays commonly use this technique to provide greener looking grass, plants, etc. 
When applying green enhancement, only colors only within a specifi ed color range should be 
processed. 

   Colors with a low green saturation value, and fall within a green detection area in the CbCr-
plane, have their saturation increased. Rather then centering the green detection area about the 
green axis (241 °  in Figure 9.28) some designs use  � 213 °  for the green detection axis so the 
same design can also easily be used to implement skin tone correction. 
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   Simple implementations have the maximum saturation gain ( � 1.2 
 ) occurring on the green 
detection axis, with the saturation gain decreasing to 1 
  as the distance from the green 
detection axis increases. For more complex designs, the green detection area and maximum 
saturation gain can be dependent on the color’s Y value and saturation level 

   Some displays also use this technique to implement blue enhancement, used to make the sky 
appear more blue.  

    5.4.7       Dynamic Contrast 

   Using dynamic contrast (also called  adaptive contrast enhancement ), the differences between 
dark and light portions of the image are artifi cially enhanced based on the content in the 
image. Displays commonly use this technique to improve their contrast ratio. 

   Bright colors in mostly dark images are enhanced by making them brighter (white stretch). 
This is typically done by using histogram information to modify the upper portion of the 
gamma curve. 

   Dark colors in mostly light images are enhanced by making them darker (black stretch). This 
is typically done by using histogram information to modify the lower portion of the gamma 
curve. 

   For a medium-bright image, both techniques may be applied. 

   A minor gamma correction adjustment may also be applied to colors that are between dark 
and light, resulting in a more detailed and contrasting picture.  

    5.4.8       Color Correction 

   The RGB chromaticities are usually slightly different between the source video and what the 
display uses. This results in red, green and blue colors that are not completely accurate. 

   Color correction can be done on the source video to compensate for the display 
characteristics, enabling more accurate red, green and blue colors to be displayed. 

   An alternate type of color correction is to perform color expansion, taking advantage of 
the greater color reproduction capabilities of modern displays. This can result in greener 
greens, bluer blues, etc. One common technique of implementing color expansion is to use 
independent hue and saturation controls for each primary and complementary color, plus the 
skin color.  
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    5.4.9       Color Temperature Correction 

   In an uncalibrated television, the color temperature (white color) varies based on the 
brightness level. 

   The color temperature of D 65 , the white point specifi ed by most video standards, is 6500 ° K. 
Color temperatures above 6500 ° K. are more bluish (cool); color temperatures below 6500 ° K. 
are more reddish (warm). 

   Many televisions ship from the factory with a very high average color temperature 
(7000 – 8000 ° K.) to emphasize the brightness of the set. Viewers can select from two or 
three factory presets (warm, cool, etc.) or viewing modes (movies, sports, etc.) which are a 
reference to the color temperature. A  “ cool ”  setting is brighter (like what you see in midday 
light) and is better for daylight viewing, such as sporting events, because of the enhanced 
brightness. A  “ warm ”  setting is softer (like what you see in a softly lit indoor environment) 
and is better for viewing movies, or in darkened environments. 

   The color temperature may be fi nely adjusted by using a 3  
  3 matrix multiplier to process 
the YCbCr or R � G � B �  data. 10 registers (one for every 10 IRE step from 10 – 100 IRE) 
provide the nine coeffi cients for the 3  
  3 matrix multiplier. The values of the registers are 
determined by a calibrating process. YCbCr or R � G � B �  values for intermediate IRE levels 
may be determined using interpolation.   

    5.5       Video Mixing and Graphics Overlay 

   Mixing video signals may be as simple as switching between two video sources. This is 
adequate if the resulting video is to be displayed on a computer monitor. 

   For most other applications, a technique known as  alpha mixing  should be used. Alpha 
mixing may also be used to fade to or from a specifi c color (such as black) or to overlay 
computer-generated text and graphics onto a video signal. 

   Alpha mixing must be used if the video is to be encoded to composite video. Otherwise, 
ringing and blurring may appear at the source switching points, such as around the edges of 
computer-generated text and graphics. This is due to the color information being lowpass 
fi ltered within the NTSC/PAL encoder. If the fi lters have a sharp cut-off, a fast color transition 
will produce ringing. In addition, the intensity information may be bandwidth-limited to 
about 4 – 5       MHz somewhere along the video path, slowing down intensity transitions. 
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   Mathematically, with alpha normalized to have values of 0 – 1, alpha mixing is 
implemented as: 

 out alpha_0 in_0 alpha_1 in_1� � �( )( ) ( )( ) …     

   In this instance, each video source has its own alpha information. The alpha information may 
not total to one (unity gain). 

    Figure 5.10    shows mixing of two YCbCr video signals, each with its own alpha information. 
As YCbCr uses an offset binary notation, the offset (16 for Y and 128 for Cb and Cr) is 
removed prior to mixing the video signals. After mixing, the offset is added back in. Note that 
two 4:2:2 YCbCr streams may also be processed directly; there is no need to convert them to 
4:4:4 YCbCr, mix, then convert the result back to 4:2:2 YCbCr. 

   When only two video sources are mixed and alpha_0  �  alpha_1  �  1 (implementing a 
crossfader), a single alpha value may be used mathematically shown as: 

 out alpha in_ alpha in� � �( )( ) ( )( _ )0 1 1      

   When alpha  �  0, the output is equal to the in_1 video signal; when alpha � 1, the output is 
equal to the in_0 video signal. When alpha is between 0 and 1, the two video signals are 
proportionally multiplied, and added together. 

   Expanding and rearranging the previous equation shows how a two-channel mixer may be 
implemented using a single multiplier: 

 out alpha in_0 in_1 in_1� � �( )( )      

   Fading to and from a specifi c color is done by setting one of the input sources to a constant 
color. 

    Figure 5.11    illustrates mixing two YCbCr sources using a single alpha channel.        Figures 5.12 
and 5.13      illustrate mixing two R � G � B �  video sources (R � G � B �  has a range of 0 – 255).        Figures 
5.14 and 5.15      show mixing two digital composite video signals. 

   A common problem in computer graphics systems that use alpha is that the frame buffer 
may contain preprocessed R � G � B �  or YCbCr data; that is, the R � G � B �  or YCbCr data in the 
frame buffer has already been multiplied by alpha. Assuming an alpha (A) value of 0.5, 
nonprocessed R � G � B � A values for white are (255, 255, 255, 128); preprocessed R � G � B � A 
values for white are (128, 128, 128, 128). Therefore, any mixing circuit that accepts R � G � B �  
or YCbCr data from a frame buffer should be able to handle either format. 
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 Figure 5.10 :         Mixing two YCbCr video signals, each with its own alpha channel    
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   By adjusting the alpha values, slow to fast crossfades are possible, as shown in  Figure 5.16   . 
Large differences in alpha between samples result in a fast crossfade; smaller differences 
result in a slow crossfade. If using alpha mixing for special effects, such as wipes, the 
switching point (where 50% of each video source is used) must be able to be adjusted to 
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 Figure 5.11 :         Simplifi ed mixing (crossfading) of two YCbCr video signals using a 
single alpha channel    
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an accuracy of less than one sample to ensure smooth movement. By controlling the alpha 
values, the switching point can be effectively positioned anywhere, as shown in  Figure 5.16a . 

   Text can be overlaid onto video by having a character generator control the alpha inputs. 
By setting one of the input sources to a constant color, the text will assume that color. 
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 Figure 5.13 :         Simplifi ed mixing (crossfading) of two RGB video signals (RGB has a range 
of 0 – 255) using a single alpha channel    
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   Note that for those designs that subtract 16 (the black level) from the Y channel before 
processing, negative Y values should be supported after the subtraction. This allows the 
design to pass through real-world and test video signals with minimum artifacts.  

    5.6       Luma and Chroma Keying 

   Keying involves specifying a desired foreground color; areas containing this color are 
replaced with a background image. Alternately, an area of any size or shape may be specifi ed; 
foreground areas inside (or outside) this area are replaced with a background image. 

8

Black
level Alpha_0

Black
level Alpha_1

Source_0

�8

Source_1

�8

Rounding
and

lmiting
out

8

Black
level

� �
�

�

 Figure 5.14 :         Mixing two digital composite video signals, each with its own alpha channel    
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 Figure 5.15 :         Simplifi ed mixing (crossfading) of two digital composite video signals using a 
single alpha channel    
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    5.6.1       Luminance Keying 

   Luminance keying involves specifying a desired foreground luminance level; foreground 
areas containing luminance levels above (or below) the keying level are replaced with the 
background image. 

   Alternately, this hard keying implementation may be replaced with soft keying by specifying 
two luminance values of the foreground image: Y H  and Y L  (Y L   �  Y H ). For keying the 
background into white foreground areas, foreground luminance values (Y FG ) above Y H  are 
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 Figure 5.16 :         Controlling alpha values to implement (A) Fast or (B) Slow keying. In (A), the 
effective switching point lies between two samples. In (B), the transition is wider and is aligned 

at a sample instant.    
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replaced with the background image; Y FG  values below Y L  contain the foreground image. 
For Y FG  values between Y L  and Y H , linear mixing is done between the foreground and 
background images. This operation may be expressed as: 

 

if Y Y
K background only

FG H�

� �1      

 

if Y

K foreground only
FG L�

� �

Y

0      

 

if Y Y

K Y Y Y Y mix
H FG L

FG L H L

� �

� � � �

Y

( ) /( )      

   By subtracting K from 1, the new luminance keying signal for keying into black foreground 
areas can be generated. 

    Figure 5.17    illustrates luminance keying for two YCbCr sources. Although chroma keying 
typically uses a suppression technique to remove information from the foreground image, this 
is not done when luminance keying as the magnitudes of Cb and Cr are usually not related to 
the luminance level. 

    Figure 5.18    illustrates luminance keying for R � G � B �  sources, which is more applicable for 
computer graphics. Y FG  may be obtained by the equation: 

 Y R G BFG � � � � � �0 299 0 587 0 114. . .      

   In some applications, the red and blue data is ignored, resulting in Y FG  being equal to only the 
green data. 

    Figure 5.19    illustrates one technique of luminance keying between two digital composite 
video sources.  

    5.6.2       Chroma Keying 

   Chroma keying involves specifying a desired foreground key color; foreground areas 
containing the key color are replaced with the background image. Cb and Cr are used to 
specify the key color; luminance information may be used to increase the realism of the 
chroma keying function. The actual mixing of the two video sources may be done in the 
component or composite domain, although component mixing reduces artifacts. 
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 Figure 5.17 :         Luminance keying of two YCbCr video signals    



www.newnespress.com

R_out

G_out

B_out

1 – K

Background
R

Background
G

Background
B

Foreground
R

Foreground
G

Foreground
B

Rounding
and

limiting

K

K

Luminance
key

generator

Mixer

1 – K

Mixer

K

1 – K

Mixer

�

�

�

Rounding
and

limiting

Rounding
and

limiting

 Figure 5.18 :         Luminance keying of two RGB video signals. RGB range is 0 – 255    



Video Processing 209

www.newnespress.com

   Early chroma keying circuits simply performed a hard or soft switch between the foreground 
and background sources. In addition to limiting the amount of fi ne detail maintained in 
the foreground image, the background was not visible through transparent or translucent 
foreground objects, and shadows from the foreground were not present in areas containing the 
background image. 

   Linear keyers were developed that combine the foreground and background images in a 
proportion determined by the key level, resulting in the foreground image being attenuated 
in areas containing the background image. Although allowing foreground objects to appear 
transparent, there is a limit on the fi neness of detail maintained in the foreground. Shadows 
from the foreground are not present in areas containing the background image unless 
additional processing is done — the luminance levels of specifi c areas of the background 
image must be reduced to create the effect of shadows cast by foreground objects. 

   If the blue or green backing used with the foreground scene is evenly lit except for shadows 
cast by the foreground objects, the effect on the background will be that of shadows cast by 
the foreground objects. This process, referred to as shadow chroma keying, or luminance 
modulation, enables the background luminance levels to be adjusted in proportion to the 
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 Figure 5.19 :         Luminance keying of two digital composite video signals    
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brightness of the blue or green backing in the foreground scene. This results in more realistic 
keying of transparent or translucent foreground objects by preserving the spectral highlights. 

   Note that green backgrounds are now more commonly used due to lower chroma noise. 

   Chroma keyers are also limited in their ability to handle foreground colors that are close to 
the key color without switching to the background image. Another problem may be a bluish 
tint to the foreground objects as a result of blue light refl ecting off the blue backing or being 
diffused in the camera lens. Chroma spill is diffi cult to remove since the spill color is not the 
original key color; some mixing occurs, changing the original key color slightly. 

   One solution to many of the chroma keying problems is to process the foreground and 
background images individually before combining them, as shown in  Figure 5.20   . Rather 
than choosing between the foreground and background, each is processed individually and 
then combined.  Figure 5.21    illustrates the major processing steps for both the foreground and 
background images during the chroma key process. Not shown in  Figure 5.20  is the circuitry 
to initially subtract 16 (Y) or 128 (Cb and Cr) from the foreground and background video 
signals and the addition of 16 (Y) or 128 (Cb and Cr) after the fi nal output adder. Any DC 
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 Figure 5.20 :         Typical component chroma key circuit    
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(a) (b)

(d)(c)

(f)(e)

 Figure 5.21 :         Major processing steps during chroma keying. (A) Original foreground scene 
(B) Original background scene (C) Suppressed foreground scene (D) Background keying signal 
(E) Background scene after multiplication by background key (F) Composite scene generated 

by adding (C) and (E)    
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offset not removed will be amplifi ed or attenuated by the foreground and background gain 
factors, shifting the black level. 

   The foreground key (K FG ) and background key (K BG ) signals have a range of 0 to 1. The 
garbage matte key signal (the term  matte  comes from the fi lm industry) forces the mixer to 
output the foreground source in one of two ways. 

   The fi rst method is to reduce K BG  in proportion to increasing K FG . This provides the 
advantage of minimizing black edges around the inserted foreground. 

   The second method is to force the background to black for all nonzero values of the matte 
key, and insert the foreground into the background hole. This requires a cleanup function to 
remove noise around the black level, as this noise affects the background picture due to the 
straight addition process. 

   The garbage matte is added to the foreground key signal (K FG ) using a non-additive mixer 
(NAM). A non-additive mixer takes the brighter of the two pictures, on a sample-by-sample 
basis, to generate the key signal. Matting is ideal for any source that generates its own keying 
signal, such as character generators, and so on. 

   The key generator monitors the foreground Cb and Cr data, generating the foreground keying 
signal, K FG . A desired key color is selected, as shown in  Figure 5.22   . The foreground Cb 
and Cr data are normalized (generating Cb �  and Cr � ) and rotated  θ  degrees to generate the X 
and Z data, such that the positive X axis passes as close as possible to the desired key color. 
Typically,  θ  may be varied in 1 °  increments, and optimum chroma keying occurs when the X 
axis passes through the key color. 

   X and Z are derived from Cb and Cr using the equations: 

 

X Cb Cr
Z Cr Cb

� � � �

� � � �

cos sin
cos sin
θ θ
θ θ      

   Since Cb �  and Cr �  are normalized to have a range of  � 1, X and Z have a range of  � 1. 

   The foreground keying signal (K FG ) is generated from X and Z and has a range of 0 – 1: 

 

K X | |/ /
K  if X | |/ /

FG

FG

� �

� �

( (tan( )))
( (tan( )))

Z
Z
α
α

2
0 2      

   where  α  is the acceptance angle, symmetrically centered about the positive X axis, as shown 
in  Figure 5.23   . Outside the acceptance angle, K FG  is always set to zero. Inside the acceptance 
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angle, the magnitude of K FG  linearly increases the closer the foreground color approaches 
the key color and as its saturation increases. Colors inside the acceptance angle are further 
processed by the foreground suppressor. 

   The foreground suppressor reduces foreground color information by implementing 
X  �  X  �  K FG , with the key color being clamped to the black level. To avoid processing Cb 
and Cr when K FG   �  0, the foreground suppressor performs the operations: 

 

Cb Cb K
Cr Cr K

FG FG

FG FG

� �

� �

cos
sin
θ
θ      

   where Cb FG  and Cr FG  are the foreground Cb and Cr values after key color suppression. Early 
implementations suppressed foreground information by multiplying Cb and Cr by a clipped 
version of the K FG  signal. This, however, generated in-band alias components due to the 
multiplication and clipping process and produced a hard edge at key color boundaries. 

   Unless additional processing is done, the Cb FG  and Cr FG  components are set to zero only 
if they are exactly on the X axis. Hue variations due to noise or lighting will result in areas 
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 Figure 5.22 :         Rotating the normalized Cb and Cr (Cb �  and Cr � ) axes by  θ  to obtain the X and Z 
axes, such that the X axis passes through the desired key color (blue in this example)    
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of the foreground not being entirely suppressed. Therefore, a suppression angle is set, 
symmetrically centered about the positive X axis. The suppression angle ( β ) is typically 
confi gurable from a minimum of zero degrees, to a maximum of about one-third the 
acceptance angle ( α ). Any CbCr components that fall within this suppression angle are set to 
zero.  Figure 5.24    illustrates the use of the suppression angle. 

   Foreground luminance, after being normalized to have a range of 0 – 1, is suppressed by: 

 

Y Y y K
Y if y K Y

FG S FG

FG S FG

� � �

� � �0      

   Here, y S  is a programmable value and used to adjust Y FG  so that it is clipped at the black level 
in the key color areas. 

   The foreground suppressor also removes key-color fringes on wanted foreground areas caused 
by chroma spill, the overspill of the key color, by removing discolorations of the wanted 
foreground objects. 
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 Figure 5.23 :         Foreground key values and acceptance angle    



Video Processing 215

www.newnespress.com

Red

Green
Cyan

Magenta

Blue

X

Z

Yellow
KFG � 0

KFG � 0

α  / 2

Before
suppression

Color shifts as
a result of suppression

Red

Green

Cyan

Magenta

Blue

X

Z

Yellow

KFG � 0

KFG � 0

Color shifts as
a result of suppression

X  �  Z  �  0
After  suppression

β  / 2

(a)

(b)

KFG � 0

KFG � 0

After
suppression

 Figure 5.24 :         Suppression angle operation for a gradual change from a red foreground object to 
the blue key color. (A) Simple suppression (B) Improved suppression using a suppression angle    
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   Ultimatte ®  improves on this process by measuring the difference between the blue and green 
colors, as the blue backing is never pure blue and there may be high levels of blue in the 
foreground objects. Pure blue is rarely found in nature, and most natural blues have a higher 
content of green than red. For this reason, the red, green, and blue levels are monitored to 
differentiate between the blue backing and blue in wanted foreground objects. 

   If the difference between blue and green is great enough, all three colors are set to zero to 
produce black; this is what happens in areas of the foreground containing the blue backing. 

   If the difference between blue and green is not large, the blue is set to the green level unless 
the green exceeds red. This technique allows the removal of the bluish tint caused by the blue 
backing while being able to reproduce natural blues in the foreground. As an example, a white 
foreground area normally would consist of equal levels of red, green, and blue. If the white 
area is affected by the key color (blue in this instance), it will have a bluish tint — the blue 
levels will be greater than the red or green levels. Since the green does not exceed the red, the 
blue level is made equal to the green, removing the bluish tint. 

   There is a price to pay, however. Magenta in the foreground is changed to red. A green 
backing can be used, but in this case, yellow in the foreground is modifi ed. Usually, the 
clamping is released gradually to increase the blue content of magenta areas. 

   The key processor generates the initial background key signal (K �  BG ) used to remove areas 
of the background image where the foreground is to be visible. K �  BG  is adjusted to be zero in 
desired foreground areas and unity in background areas with no attenuation. It is generated 
from the foreground key signal (K FG ) by applying lift (k L ) and gain (k G ) adjustments followed 
by clipping at zero and unity values: 

 K K k kBG FG L G� � �( )      

    Figure 5.25    illustrates the operation of the background key signal generation. The transition 
between K �  BG   �  0 and K �  BG   �  1 should be made as wide as possible to minimize 
discontinuities in the transitions between foreground and background areas. 

   For foreground areas containing the same CbCr values, but different luminance (Y) values, as 
the key color, the key processor may also reduce the background key value as the foreground 
luminance level increases, allowing turning off the background in foreground areas containing 
a lighter key color, such as light blue. This is done by: 

 

K K y Y
K if y Y K

BG BG C FG

BG C FG FG

� � �

� �0      
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   To handle shadows cast by foreground objects, and opaque or translucent foreground objects, 
the luminance level of the blue backing of the foreground image is monitored. Where the 
luminance of the blue backing is reduced, the luminance of the background image also is 
reduced. The amount of background luminance reduction must be controlled so that defects in 
the blue backing (such as seams or footprints) are not interpreted as foreground shadows. 

   Additional controls may be implemented to enable the foreground and background signals 
to be controlled independently. Examples are adjusting the contrast of the foreground so 
it matches the background or fading the foreground in various ways (such as fading to the 
background to make a foreground object vanish or fading to black to generate a silhouette). 

   In the computer environment, there may be relatively slow, smooth edges — especially edges 
involving smooth shading. As smooth edges are easily distorted during the chroma keying 
process, a wide keying process is usually used in these circumstances. During wide keying, 
the keying signal starts before the edge of the graphic object. 
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 Figure 5.25 :         Background key generation    
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    5.6.2.1       Composite Chroma Keying 

   In some instances, the component signals (such as YCbCr) are not directly available. For 
these situations, composite chroma keying may be implemented, as shown in  Figure 5.26   . 

   To detect the chroma key color, the foreground video source must be decoded to produce the 
Cb and Cr color difference signals. The keying signal, K FG , is then used to mix between the 
two composite video sources. The garbage matte key signal forces the mixer to output the 
background source by reducing K FG . 

   Chroma keying using composite video signals usually results in unrealistic keying, since there 
is inadequate color bandwidth. As a result, there is a lack of fi ne detail, and halos may be 
present on edges.   

    5.6.3       Superblack and Luma Keying 

   Video systems also may make use of  superblack  or  luma  keying. Areas of the foreground 
video that have a value within a specifi ed range below the blanking level (analog video) or 
black level (digital video) are replaced with the background video information.   
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 Figure 5.26 :         Typical composite chroma key circuit    
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    5.7       Video Scaling 

   With all the various video resolutions ( Table 5.3   ), scaling is usually needed in almost every 
solution. 

   When generating objects that will be displayed on SDTV, computer users must be concerned 
with such things as text size, line thickness, and so forth. For example, text readable on a 
1280  
  1024 computer display may not be readable on an SDTV display due to the large 
amount of downscaling involved. Thin horizontal lines may either disappear completely or 
fl icker at a 25 or 29.97       Hz rate when converted to interlaced SDTV. 

   Note that scaling must be performed on component video signals (such as R � G � B �  or YCbCr). 
Composite color video signals cannot be scaled directly due to the color subcarrier phase 
information present, which would be meaningless after scaling. 

   In general, the spacing between output samples can be defi ned by a Target Increment (tarinc) 
value: 

 tarinc I O� /      

   where I and O are the number of input (I) and output (O) samples, either horizontally or 
vertically. 

   The fi rst and last output samples may be aligned with the fi rst and last input samples by 
adjusting the equation to be: 

 tarinc I / O� � �( ) ( )1 1      

 Table 5.3 :         Common active resolutions for consumer displays and broadcast sources   

   Displays  SDTV Sources  HDTV Sources 

    704  
  480   640  
  480  704  
  360 1   704  
  432 1   1280  
  720 

    854  
  480   800  
  600  480  
  480  480  
  576  1440  
  816 2  

    704  
  576  1024  
  768  528  
  480    1440  
  1040 3  

    854  
  576  1280  
  768  544  
  480  544  
  576  1280  
  1080 

   1280  
  720  1366  
  768  640  
  480    1440  
  1080 

   1280  
  768  1024  
  1024  704  
  480  704  
  576  1920  
  1080 

   1920  
  1080  1280  
  1024    768  
  576   

 1 16:9 letterbox on a 4:3 display.  2 2.35:1 anamorphic for a 16:9 1920  
  1080 display.  3 1.85:1 anamorphic for a 16:9 
1920  
  1080 display
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    5.7.1       Pixel Dropping and Duplication 

   This is also called  nearest neighbor  scaling since only the input sample closest to the output 
sample is used. 

   The simplest form of scaling down is pixel dropping, where (m) out of every (n) samples 
are thrown away both horizontally and vertically. A modifi ed version of the Bresenham 
line-drawing algorithm (described in most computer graphics books) is typically used to 
determine which samples not to discard. 

   Simple upscaling can be accomplished by pixel duplication, where (m) out of every (n) 
samples are duplicated both horizontally and vertically. Again, a modifi ed version of the 
Bresenham line-drawing algorithm can be used to determine which samples to duplicate. 

   Scaling using pixel dropping or duplication is not recommended due to the visual artifacts 
and the introduction of aliasing components.  

    5.7.2       Linear Interpolation 

   An improvement in video quality of scaled images is possible using linear interpolation. 
When an output sample falls between two input samples (horizontally or vertically), the 
output sample is computed by linearly interpolating between the two input samples. However, 
scaling to images smaller than one-half of the original still results in deleted samples. 

    Figure 5.27    illustrates the vertical scaling of a 16:9 image to fi t on a 4:3 display. A simple bi-
linear vertical fi lter is commonly used, as shown in  Figure 5.28a   . Two source samples, L n  and 
L n � 1 , are weighted and added together to form a destination sample, D m . 
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   However, as seen in  Figure 5.28a , this results in uneven line spacing, which may result in 
visual artifacts.  Figure 5.28b  illustrates vertical fi ltering that results in the output lines being 
more evenly spaced: 
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   The linear interpolator is a poor bandwidth-limiting fi lter. Excess high-frequency detail is 
removed unnecessarily and too much energy above the Nyquist limit is still present, resulting 
in aliasing.  

    5.7.3       Anti-Aliased Resampling 

   The most desirable approach is to ensure the frequency content scales proportionally with the 
image size, both horizontally and vertically. 
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(480) * (4/3)/(16/9) � 360
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 Figure 5.27 :         Vertical scaling of 16:9 images to fi t on a 4:3 display. (A) 480-line systems 
(B) 576-line systems    
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    Figure 5.29    illustrates the fundamentals of an anti-aliased resampling process. The input 
data is upsampled by A and lowpass fi ltered to remove image frequencies created by the 
interpolation process. Filter B bandwidth-limits the signal to remove frequencies that will 
alias in the resampling process B. The ratio of B/A determines the scaling factor. 

   Filters A and B are usually combined into a single fi lter. The response of the fi lter largely 
determines the quality of the interpolation. The ideal lowpass fi lter would have a very fl at 
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 Figure 5.28 :         75% vertical scaling of 16:9 images to fi t on a 4:3 display. (A) Unevenly spaced 
results (B) Evenly spaced results    
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 Figure 5.29 :         General anti-aliased resampling structure    
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passband, a sharp cutoff at half of the lowest sampling frequency (either input or output), and 
very high attenuation in the stopband. However, since such a fi lter generates ringing on sharp 
edges, it is usually desirable to roll off the top of the passband. This makes for slightly softer 
pictures, but with less pronounced ringing. 

   Passband ripple and stopband attenuation of the fi lter provide some measure of scaling 
quality, but the subjective effect of ringing means a fl at passband might not be as good as one 
might think. Lots of stopband attenuation is almost always a good thing. 

   There are essentially three variations of the general resampling structure. Each combines the 
elements of  Figure 5.29  in various ways. 

   One approach is a variable-bandwidth anti-aliasing fi lter followed by a combined interpolator/
resampler. In this case, the fi lter needs new coeffi cients for each scale factor — as the scale 
factor is changed, the quality of the image may vary. In addition, the overall response is poor 
if linear interpolation is used. However, the fi lter coeffi cients are time-invariant and there are 
no gain problems. 

   A second approach is a combined fi lter/interpolator followed by a resampler. Generally, the 
higher the order of interpolation,  n , the better the overall response. The center of the fi lter 
transfer function is always aligned over the new output sample. With each scaling factor, the 
fi lter transfer function is stretched or compressed to remain aligned over  n  output samples. 
Thus, the fi lter coeffi cients, and the number of input samples used, change with each new 
output sample and scaling factor. Dynamic gain normalization is required to ensure the sum 
of the fi lter coeffi cients is always equal to one. 

   A third approach is an interpolator followed by a combined fi lter/resampler. The input data 
is interpolated up to a common multiple of the input and output rates by the insertion of zero 
samples. This is fi ltered with a low-pass fi nite-impulse-response (FIR) fi lter to interpolate 
samples in the zero-fi lled gaps, then resampled at the required locations. This type of design 
is usually achieved with a  “ polyphase ”  fi lter which switches its coeffi cients as the relative 
position of input and output samples change.  

    5.7.4       Display Scaling Examples 

                        Figures 5.30 through 5.38                    illustrate various scaling examples for displaying 16:9 and 4:3 
pictures on 4:3 and 16:9 displays, respectively. 
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   How content is displayed is a combination of user preferences and content aspect ratio. 
For example, when displaying 16:9 content on a 4:3 display, many users prefer to have the 
entire display fi lled with the cropped picture ( Figure 5.31 ) rather than seeing black or gray 
bars with the letterbox solution ( Figure 5.32 ). In addition, some displays incorrectly assume 
any progressive video signal on their YPbPr inputs is from an  “ anamorphic ”  source. As a 
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 Figure 5.30 :         16:9 source example    
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 Figure 5.31 :         Scaling 16:9 content for a 4:3 display:  “ Normal ”  or pan-and-scan mode. Results in 
some of the 16:9 content being ignored (indicated by gray regions)    
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result, they horizontally upscale progressive 16:9 programs by 25% when no scaling should 
be applied. Therefore, for set-top boxes it is useful to include a  “ 16:9 (Compressed) ”  mode, 
which horizontally downscales the progressive 16:9 program by 25% to precompensate for 
the horizontal upscaling being done by the 16:9 display.   
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 Figure 5.32 :         Scaling 16:9 content for a 4:3 display:  “ Letterbox ”  mode. Entire 16:9 program 
visible, with black bars at top and bottom of display    
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 Figure 5.33 :         Scaling 16:9 content for a 4:3 display:  “ Squeezed ”  mode. Entire 16:9 program 
horizontally squeezed to fi t 4:3 display, resulting in a distorted picture    
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    5.8       Scan Rate Conversion 

   In many cases, some form of scan rate conversion (also called  temporal rate conversion , 
 frame rate conversion , or  fi eld rate conversion ) is needed. Multi-standard analog VCRs 
and scan converters use scan rate conversion to convert between various video standards. 
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 Figure 5.34 :         4:3 Source example    
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 Figure 5.35 :         Scaling 4:3 content for a 16:9 display:  “ Normal ”  mode. Left and right portions of 
16:9 display not used, so made black or gray    
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 Figure 5.36 :         Scaling 4:3 content for a 16:9 display:  “ Wide ”  mode. Entire picture 
linearly scaled horizontally to fi ll 16:9 display, resulting in distorted picture unless used with 

anamorphic content    
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 Figure 5.37 :         Scaling 4:3 content for a 16:9 display:  “ Zoom ”  mode. Top and bottom portion of 
4:3 picture deleted, then scaled to fi ll 16:9 display    



228 Chapter 5

www.newnespress.com

Computers usually operate the display at about 75       Hz noninterlaced, yet need to display 50 
and 60       Hz interlaced video. With digital television, multiple frame rates can be supported. 

   Note that processing must be performed on component video signals (such as R � G � B �  
or YCbCr). Composite color video signals cannot be processed directly due to the color 
subcarrier phase information present, which would be meaningless after processing. 

    5.8.1       Frame or Field Dropping and Duplicating 

   Simple scan-rate conversion may be done by dropping or duplicating one out of every N 
fi elds. For example, the conversion of 60       Hz to 50       Hz interlaced operation may drop one out 
of every six fi elds, as shown in  Figure 5.39   , using a single fi eld store. 

   The disadvantage of this technique is that the viewer may see jerky motion, or  motion judder . 
In addition, some video decompression products use top-fi eld only to convert from 60       Hz to 
50       Hz, degrading the vertical resolution. 

   The worst artifacts are present when a noninteger scan rate conversion is done — for example, 
when some frames are displayed three times, while others are displayed twice. In this 
instance, the viewer will observe double or blurred objects. As the human brain tracks an 
object in successive frames, it expects to see a regular sequence of positions, and has trouble 
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 Figure 5.38 :         Scaling 4:3 content for a 16:9 display:  “ Panorama ”  mode. Left and right 
25% edges of picture are nonlinearly scaled horizontally to fi ll 16:9 display, distorted 

picture on left and right sides    
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reconciling the apparent stop-start motion of objects. As a result, it incorrectly concludes that 
there are two objects moving in parallel.  

    5.8.2       Temporal Interpolation 

   This technique generates new frames from the original frames as needed to generate the 
desired frame rate. Information from both past and future input frames should be used to 
optimally handle objects appearing and disappearing. 

   Conversion of 50       Hz to 60       Hz operation using temporal interpolation is illustrated in  Figure 
5.40   . For every fi ve fi elds of 50       Hz video, there are six fi elds of 60       Hz video. 
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 Figure 5.39 :         60       Hz to 50       Hz conversion using a single fi eld store by dropping 
one out of every six fi elds    
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 Figure 5.40 :         50       Hz to 60       Hz conversion using temporal interpolation 
with no motion compensation    
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   After both sources are aligned, two adjacent 50       Hz fi elds are mixed together to generate a 
new 60       Hz fi eld. This technique is used in some inexpensive standards converters to convert 
between 50       Hz and 60       Hz standards. Note that no motion analysis is done. Therefore, if the 
camera operating at 50       Hz pans horizontally past a narrow vertical object, you see one object 
once every six 60       Hz fi elds, and for the fi ve fi elds in between, you see two objects, one fading 
in while the other fades out. 

    5.8.2.1       50       Hz to 60       Hz Examples 

    Figure 5.41    illustrates a scan rate converter that implements vertical, followed by temporal, 
interpolation.  Figure 5.42    illustrates the spectral representation of the design in  Figure 5.41 . 

   Many designs now combine the vertical and temporal interpolation into a single design, as 
shown in  Figure 5.43   , with the corresponding spectral representation shown in  Figure 5.44   . 
This example uses vertical, followed by temporal, interpolation. If temporal, followed by 
vertical, interpolation were implemented, the fi eld stores would be half the size. However, the 
number of line stores would increase from four to eight. 

   In either case, the fi rst interpolation process must produce an intermediate, higher-resolution 
progressive format to avoid interlace components that would interfere with the second 
interpolation process. It is insuffi cient to interpolate, either vertically or temporally, using 
a mixture of lines from both fi elds, due to the interpolation process not being able to 
compensate for the temporal offset of interlaced lines.  

    5.8.2.2       Motion Compensation 

   Higher-quality scan rate converters using temporal interpolation incorporate motion 
compensation to minimize motion artifacts. This results in extremely smooth and natural 
motion, and images appear sharper and do not suffer from  motion judder . 

   Motion estimation for scan rate conversion differs from that used by MPEG. In MPEG, the 
goal is to minimize the displaced frame difference (error) by searching for a high correlation 
between areas in subsequent frames. The resulting motion vectors do not necessarily 
correspond to true motion vectors. 

   For scan rate conversion, it is important to determine true motion information to perform 
correct temporal interpolation. The interpolation should be tolerant of incorrect motion 
vectors to avoid introducing artifacts as unpleasant as those the technique is attempting to 
remove. Motion vectors could be incorrect for several reasons, such as insuffi cient time to 
track the motion, out-of-range motion vectors, and estimation diffi culties due to aliasing.  
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    5.8.2.3       100       Hz Interlaced Television Example 

   A standard 50       Hz interlaced television shows 50 fi elds per second. The images fl icker, 
especially when you look at large areas of highly saturated color. A much improved picture 
can be achieved using a 100       Hz interlaced frame rate (also called  double scan ). 
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 Figure 5.41 :         Typical 50       Hz to 60       Hz conversion using vertical, 
followed by temporal, interpolation    
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 Figure 5.42 :         Spectral representation of vertical, followed by temporal, interpolation (A) Vertical 
lowpass fi ltering (B) Resampling to intermediate sequential format and temporal lowpass 

fi ltering (C) Resampling to fi nal standard    



V
ideo Processing 

233

w
w

w
.n

ew
n

esp
ress.co

m

HHHHHHH

F F F F625/50
Interlaced

525/60
Interlaced

AAA

A

F  �  Field store
H  �  Line store

����� �

 Figure 5.43 :         Typical 50       Hz to 60       Hz conversion using combined vertical and temporal interpolation    
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   Early 100       Hz televisions simply repeated fi elds (F 1 F 1 F 2 F 2 F 3 F 3 F 4 F 4  … ), as shown in  Figure 
5.45(A)   . However, they still had line fl icker, where horizontal lines constantly jumped 
between the odd and even lines. This disturbance occurred once every twenty-fi fth of a 
second. 

   The fi eld sequence F 1 F 2 F 1 F 2 F 3 F 4 F 3 F 4  …  can be used, which solves the line fl icker problem. 
Unfortunately, this gives rise to the problem of judder in moving images. This can be 
compensated for by using the F 1 F 2 F 1 F 2 F 3 F 4 F 3 F 4  …  sequence for static images, and the 
F 1 F 1 F 2 F 2 F 3 F 3 F 4 F 4  …  sequence for moving images. 

   An ideal picture is still not obtained when viewing programs created for fi lm. They are subject 
to judder, owing to the fact that each fi lm frame is transmitted twice. Instead of the fi eld 
sequence F 1 F 1 F 2 F 2 F 3 F 3 F 4 F 4  … , the situation calls for the sequence F 1 F 1 �  F 2 F 2 �  F 3 F 3 �  F 4 F 4 �   …  
( Figure 5.45(B) ), where F n �   is a motion-compensated generated image between F n  and F n � 1 .   

    5.8.3       2:2 Pulldown 

   This technique is used with some fi lm-based compressed content for 50       Hz regions. Film is 
usually recorded at 24 frames per second. 
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 Figure 5.44 :         Spectral representation of combined vertical and temporal interpolation 
(A) Two-dimensional lowpass fi ltering (B) Resampling to fi nal standard    
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   During compression, the telecine machine is sped up from 24 to 25 frames per second, 
making the content 25 frames per second progressive. During decompression, each fi lm frame 
is simply mapped into two video fi elds (resulting in 576i25 or 1080i25 video) or two video 
frames (resulting in 576p50, 720p50, or 1080p50 video). 

   This technique provides higher video quality and avoids motion judder artifacts. However, it 
shortens the duration of the program by about 4%, cutting the duration of a 2-hour movie 
by  � 5 minutes. Some audio decoders cannot handle the 4% faster audio data via S/PDIF 
(IEC 60958). 

   To compensate the audio changing pitch due to the telecine speedup, it may be resampled 
during decoding to restore the original pitch (costly to do in a low-cost consumer product) or 
resampling may be done during the program authoring.  
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 Figure 5.45 :         50       Hz to 100       Hz (double scan interlaced) techniques    
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    5.8.4       3:2 Pulldown 

   When converting 24 frames per second content to 60       Hz, 3:2 pulldown is commonly used, as 
shown in  Figure 5.46   . During compression, the fi lm speed is slowed down by 0.1% to 23.976 
(24/1.001) frames per second since 59.94       Hz is used for NTSC timing compatibility. During 
decompression, 2 fi lm frames generate 5 video fi elds (resulting in 480i30 or 1080i30 video) 
or 5 video frames (resulting in 480p60, 720p60, or 1080p60 video). 

   In scenes of high-speed motion of objects, the specifi c fi lm frame used for a particular video 
fi eld or frame may be manually adjusted to minimize motion artifacts. 

   3:2 pulldown may also be used during video decompression to simply to increase the frame 
rate from 23.976 (24/1.001) to 59.94 (60/1.001) frames per second, avoiding the deinterlacing 
issue. 

   Varispeed may be used to cover up problems such as defects, splicing, censorship cuts, or 
to change the running time of a program. Rather than repeating fi lm frames and causing a 
 stutter , the 3:2 relationship between the fi lm and video is disrupted long enough to ensure a 
smooth temporal rate. 
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 Figure 5.46 :         3:2 pulldown for converting 24       Hz fi lm to 60       Hz video    
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   Analog laserdiscs used a white fl ag signal to indicate the start of another sequence of related 
fi elds for optimum still-frame performance. During still-frame mode, the white fl ag signal 
tells the system to back up two fi elds (to use two fi elds that have no motion between them) to 
re-display the current frame.  

    5.8.5       3:3 Pulldown 

   This technique is used in some displays that support 72       Hz frame rate. The 24 frames per 
second fi lm-based content is converted to 72       Hz progressive by simply duplicating each fi lm 
frame three times.  

    5.8.6       24:1 Pulldown 

   This technique, also called  12:1 pulldown , can be used to convert 24 frames/second content to 
50 fi elds per second. 

   Two video fi elds are generated from every fi lm frame, except every 12th fi lm frame generates 
3 video fi elds. Although the audio pitch is correct, motion judder is present every one-half 
second when smooth motion is present.   

    5.9       Noninterlaced-to-Interlaced Conversion 

   In some applications, it is necessary to display a noninterlaced video signal on an interlaced 
display. Thus, some form of noninterlaced-to-interlaced conversion may be required. 

   Noninterlaced-to-interlaced conversion must be performed on component video signals (such 
as R � G � B �  or YCbCr). Composite color video signals (such as NTSC or PAL) cannot be 
processed directly due to the presence of color subcarrier phase information, which would be 
meaningless after processing. These signals must be decoded into component color signals, 
such as R � G � B �  or YCbCr, prior to conversion. 

   There are essentially two techniques: scan line decimation and vertical fi ltering. 

    5.9.1       Scan Line Decimation 

   The easiest approach is to throw away every other active scan line in each noninterlaced 
frame, as shown in  Figure 5.47   . Although the cost is minimal, there are problems with this 
approach, especially with the top and bottom of objects. 

   If there is a sharp vertical transition of color or intensity, it will fl icker at one-half the frame 
rate. The reason is that it is only displayed every other fi eld as a result of the decimation. 
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For example, a horizontal line that is one noninterlaced scan line wide will fl icker on and off. 
Horizontal lines that are two noninterlaced scan lines wide will oscillate up and down. 

   Simple decimation may also add aliasing artifacts. While not necessarily visible, they will 
affect any future processing of the picture.  

    5.9.2       Vertical Filtering 

   A better solution is to use two or more lines of noninterlaced data to generate one line of 
interlaced data. Fast vertical transitions are smoothed out over several interlaced lines. 

   For a 3-line fi lter, such as shown in  Figure 5.48   , typical coeffi cients are [0.25, 0.5, 0.25]. 
Using more than three lines usually results in excessive blurring, making small text diffi cult 
to read. 

   An alternate implementation uses IIR rather than FIR fi ltering. In addition to averaging, this 
technique produces a reduction in brightness around objects, further reducing fl icker. 

   Note that care must be taken at the beginning and end of each frame in the event that fewer 
scan lines are available for fi ltering.   

    5.10       Interlaced-to-Noninterlaced Conversion 

   In some applications, it is necessary to display an interlaced video signal on a noninterlaced 
display. Thus, some form of  deinterlacing  or  progressive scan conversion  may be required. 
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 Figure 5.47 :         Noninterlaced-to-interlaced conversion using scan line decimation    
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   Note that deinterlacing must be performed on component video signals (such as R � G � B �  
or YCbCr). Composite color video signals (such as NTSC or PAL) cannot be deinterlaced 
directly due to the presence of color subcarrier phase information, which would be 
meaningless after processing. These signals must be decoded into component color signals, 
such as R � G � B �  or YCbCr, prior to deinterlacing. 

   There are two fundamental deinterlacing algorithms: video mode and fi lm mode. Video mode 
deinterlacing can be further broken down into inter-fi eld and intra-fi eld processing. The goal 
of a good deinterlacer is to correctly choose the best algorithm needed at a particular moment. 

   In systems where the vertical resolution of the source and display do not match (due to, for 
example, displaying SDTV content on an HDTV), the deinterlacing and vertical scaling can 
be merged into a single process. 

    5.10.1       Video Mode: Intra-Field Processing 

   This is the simplest method for generating additional scan lines using only information in the 
original fi eld. The computer industry has coined this technique as  bob . 

   Although there are two common techniques for implementing intra-fi eld processing, scan line 
duplication and scan line interpolation, the resulting vertical resolution is always limited by 
the content of the original fi eld. 

    5.10.1.1       Scan Line Duplication 

   Scan line duplication ( Figure 5.49   ) simply duplicates the previous active scan line. Although 
the number of active scan lines is doubled, there is no increase in the vertical resolution.  
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 Figure 5.48 :         Noninterlaced-to-interlaced conversion using 3-line vertical fi ltering    
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    5.10.1.2       Scan Line Interpolation 

   Scan line interpolation generates interpolated scan lines between the original active scan 
lines. Although the number of active scan lines is doubled, the vertical resolution is not. 

   The simplest implementation, shown in  Figure 5.50   , uses linear interpolation to generate a 
new scan line between two input scan lines: 
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 Figure 5.49 :         Deinterlacing using scan line duplication. New scan lines are generated by 
duplicating the active scan line above it    
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 Figure 5.50 :         Deinterlacing using scan line interpolation. New scan lines are generated by 
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   Better results, at additional cost, may be achieved by using a FIR fi lter: 
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    5.10.1.3       Fractional Ratio Interpolation 

   In many cases, there is a periodic, but nonintegral, relationship between the number of input 
scan lines and the number of output scan lines. In this case, fractional ratio interpolation may 
be necessary, similar to the polyphase fi ltering used for scaling only performed in the vertical 
direction. This technique combines deinterlacing and vertical scaling into a single process.  

    5.10.1.4       Variable Interpolation 

   In a few cases, there is no periodicity in the relationship between the number of input and 
output scan lines. Therefore, in theory, an infi nite number of fi lter phases and coeffi cients are 
required. Since this is not feasible, the solution is to use a large, but fi nite, number of fi lter 
phases. The number of fi lter phases determines the interpolation accuracy. This technique also 
combines deinterlacing and vertical scaling into a single process.   

    5.10.2       Video Mode: Inter-Field Processing 

   In this method, video information from more than one fi eld is used to generate a single 
progressive frame. This method can provide higher vertical resolution since it uses content 
from more than a single fi eld. 

    5.10.2.1       Field Merging 

   This technique merges two consecutive fi elds together to produce a frame of video ( Figure 
5.51   ). At each fi eld time, the active scan lines of that fi eld are merged with the active scan 
lines of the previous fi eld. The result is that for each input fi eld time, a pair of fi elds combine 
to generate a frame (see  Figure 5.52   ). Although simple to implement, the vertical resolution is 
doubled only in regions of no movement. 
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   Moving objects will have artifacts, also called  combing , due to the time difference between 
two fi elds — a moving object is located in a different position from one fi eld to the next. When 
the two fi elds are merged, moving objects will have a double image (see  Figure 5.53   ). 

   It is common to soften the image slightly in the vertical direction to attempt to reduce the 
visibility of combing. When implemented, it causes a loss of vertical resolution and jitter on 
movement and pans. 

   The computer industry refers to this technique as  weave , but weave also includes the inverse 
telecine process to remove any 3:2 pull-down present in the source. Theoretically, this 
eliminates the double image artifacts since two identical fi elds are now being merged.  

    5.10.2.2       Motion Adaptive Deinterlacing 

   A good deinterlacing solution is to use fi eld merging for still areas of the picture and scan 
line interpolation for areas of movement. To accomplish this, motion, on a sample-by-sample 
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 Figure 5.51 :         Deinterlacing using fi eld merging. Shaded scan lines are generated by using the 
input scan line from the next or previous fi eld.    
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 Figure 5.52 :         Producing deinterlaced frames at fi eld rates    
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basis, must be detected over the entire picture in real time, requiring processing several fi elds 
of video. 

   As two fi elds are combined, full vertical resolution is maintained in still areas of the picture, 
where the eye is most sensitive to detail. The sample differences may have any value, from 
0 (no movement and noise-free) to maximum (for example, a change from full intensity to 
black). A choice must be made when to use a sample from the previous fi eld (which is in the 
wrong location due to motion) or to interpolate a new sample from adjacent scan lines in the 
current fi eld. Sudden switching between methods is visible, so crossfading (also called  soft 
switching ) is used. At some magnitude of sample difference, the loss of resolution due to a 
double image is equal to the loss of resolution due to interpolation. That amount of motion 
should result in the crossfader being at the 50% point. Less motion will result in a fade 
towards fi eld merging and more motion in a fade towards the interpolated values. 

   Rather than  “ per pixel ”  motion adaptive deinterlacing, which makes decisions for every 
sample, some low-cost solutions use  “ per fi eld ”  motion adaptive deinterlacing. In this case, 
the algorithm is selected each fi eld, based on the amount of motion between the fi elds.  “ Per 
pixel ”  motion adaptive deinterlacing, although diffi cult to implement, looks quite good 
when properly done.  “ Per fi eld ”  motion adaptive deinterlacing rarely looks much better than 
vertical interpolation.   
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 Figure 5.53 :         Movement artifacts when fi eld merging is used    
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    5.10.3       Motion-Compensated Deinterlacing 

   Motion-compensated (or motion vector steered) deinterlacing is several orders of magnitude 
more complex than motion adaptive deinterlacing, and is commonly found in pro-video 
format converters. 

   Motion-compensated processing requires calculating motion vectors between fi elds for each 
sample, and interpolating along each sample’s motion trajectory. Motion vectors must also 
be found that pass through each of any missing samples. Areas of the picture may be covered 
or uncovered as you move between frames. The motion vectors must also have sub-pixel 
accuracy, and be determined in two temporal directions between frames. 

   The motion vector errors used by MPEG are self-correcting since the residual difference 
between the predicted macroblocks is encoded. As motion-compensated deinterlacing is 
a single-ended system, motion vector errors will produce artifacts, so different search and 
verifi cation algorithms must be used.  

    5.10.4       Film Mode (Using Inverse Telecine) 

   For sources that have 3:2 pulldown (i.e., 60 fi elds/second video converted from 24 frames/
second fi lm), higher deinterlacing performance may be obtained by removing duplicate fi elds 
prior to processing. 

   The inverse telecine process detects the 3:2 fi eld sequence and the redundant third fi elds are 
removed. The remaining fi eld pairs are merged (since there is no motion between them) to 
form progressive frames at 24 frames/second. These are then repeated in a 3:2 sequence to get 
to 60 frames/second. 

   Although this may seem to be the ideal solution, some content uses both 60 fi elds/second 
video and 24 frames/second video (fi lm-based) within a program. In addition, some content 
may occasionally have both video types present simultaneously. In other cases, the 3:2 
pulldown timing (cadence) doesn’t stay regular, or the source was never originally from fi lm. 
Thus, the deinterlacer has to detect each video type and process it differently (video mode vs. 
fi lm mode). Display artifacts are common due to the delay between the video type changing 
and the deinterlacer detecting the change.  

    5.10.5       Frequency Response Considerations 

   Various two-times vertical upsampling techniques for deinterlacing may be implemented by 
stuffi ng zero values between two valid lines and fi ltering, as shown in  Figure 5.54   . 
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   Line A shows the frequency response for line duplication, in which the lowpass fi lter 
coeffi cients for the fi lter shown are 1, 1, and 0. 

   Line interpolation, using lowpass fi lter coeffi cients of 0.5, 1.0, and 0.5, results in the 
frequency response curve of Line B. Note that line duplication results in a better high-
frequency response. Vertical fi lters with a better frequency response than the one for line 
duplication are possible, at the cost of more line stores and processing. 

   The best vertical frequency response is obtained when fi eld merging is implemented. 
The spatial position of the lines is already correct and no vertical processing is required, 
resulting in a fl at curve (Line C). Again, this applies only for stationary areas of the 
image.   
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 Figure 5.54 :         Frequency response of various deinterlacing fi lters (A) Line duplication 
(B) Line interpolation (C) Field merging    
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    5.11       DCT-Based Compression 

   The transform process of many video compression standards is based on the Discrete Cosine 
Transform, or DCT. The easiest way to envision it is as a fi lter bank with all the fi lters 
computed in parallel. 

   During encoding, the DCT is usually followed by several other operations, such as 
quantization, zig-zag scanning, run-length encoding, and variable-length encoding. During 
decoding, this process fl ow is reversed. 

   Many times, the terms  macroblocks  and  blocks  are used when discussing video compression. 
 Figure 5.55    illustrates the relationship between these two terms, and shows why transform 
processing is usually done on 8  
  8 samples. MPEG-4.10 (H.264) also supports 8  
  4, 
4  
  8, and 4  
  4 blocks.     

    5.11.1       DCT 

   The 8  
  8 DCT processes an 8  
  8 block of samples to generate an 8  
  8 block of DCT 
coeffi cients. The input may be samples from an actual frame of video or motion-compensated 
difference (error) values, depending on the encoder mode of operation. Each DCT coeffi cient 
indicates the amount of a particular horizontal or vertical frequency within the block. 

Divide picture
into 16 
 16 blocks

(macroblocks)

Each macroblock is
16 samples by 16 lines (4 blocks)

Each block is 8
samples by 8 lines

 Figure 5.55 :         The relationship between macroblocks and blocks    
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   DCT coeffi cient (0,0) is the DC coeffi cient, or average sample value. Since natural images 
tend to vary only slightly from sample to sample, low frequency coeffi cients are typically 
larger values and high frequency coeffi cients are typically smaller values. 

   A reconstructed 8  
  8 block of samples is generated using an 8  
  8 inverse DCT (IDCT). 
Although exact reconstruction is theoretically achievable, it is not practical due to fi nite-
precision arithmetic, quantization and differing IDCT implementations. As a result, there are 
mismatches between different IDCT implementations. 

   Mismatch control attempts to reduce the drift between encoder and decoder IDCT results by 
eliminating bit patterns having the greatest contribution towards mismatches. 

   MPEG-1 mismatch control is known as  oddifi cation  since it forces all quantized DCT 
coeffi cients to negative values. MPEG-2 and MPEG-4.2 use an improved method called  LSB 
toggling , which affects only the LSB of the 63rd DCT coeffi cient after inverse quantization. 

   H.264 (also known as  MPEG-4.10 ) neatly sidesteps the issue by using an  “ exact-match 
inverse transform. ”  Every decoder will produce exactly the same pictures, all else being equal.  

    5.11.2       Quantization 

   The 8  
  8 block of DCT coeffi cients is quantized, which reduces the overall precision of 
the integer coeffi cients and tends to eliminate high frequency coeffi cients, while maintaining 

8 
 8 BLOCK

DCT

Increasing
horizontal
frequency

Increasing
vertical

frequency

Isolated
high-frequency

term

DC  term

Frequency
coefficients

 Figure 5.56 :         The DCT processes the 8  
  8 block of samples or error terms to generate an 
8  
  8 block of DCT coeffi cients    
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perceptual quality. Higher frequencies are usually quantized more coarsely (fewer values 
allowed) than lower frequencies, due to visual perception of quantization error. The quantizer 
is also used for constant bit-rate applications where it is varied to control the output bit-rate.  

    5.11.3       Zig-Zag Scanning 

   The quantized DCT coeffi cients are re-arranged into a linear stream by scanning them in 
a zig-zag order. This rearrangement places the DC coeffi cient fi rst, followed by frequency 
coeffi cients arranged in order of increasing frequency, as shown in          Figures 5.57, 5.58, and 
5.59       . This produces long runs of zero coeffi cients.  

    5.11.4       Run Length Coding 

   The linear stream of quantized frequency coeffi cients is converted into a series of [run, 
amplitude] pairs. [run] indicates the number of zero coeffi cients, and [amplitude] the nonzero 
coeffi cient that ended the run.  
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 Figure 5.57 :         The 8  
  8 block of quantized DCT coeffi cients are zig-zag scanned to arrange in 
order of increasing frequency. This scanning order is used for H.261, H.263, MPEG-1, MPEG-2, 

MPEG-4.2, ITU-R BT.1618, ITU-R BT.1620, SMPTE 314M, and SMPTE 370M    
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 Figure 5.58 :         H.263, MPEG-2, and MPEG-4.2  “ alternate-vertical ”  scanning order    
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 Figure 5.59 :         H.263 and MPEG-4.2  “ alternate-horizontal ”  scanning order    
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    5.11.5       Variable-Length Coding 

   The [run, amplitude] pairs are coded using a variable-length code, resulting in additional 
lossless compression. This produces shorter codes for common pairs and longer codes for less 
common pairs. 

   This coding method produces a more compact representation of the DCT coeffi cients, as a 
large number of DCT coeffi cients are usually quantized to zero and the re-ordering results 
(ideally) in the grouping of long runs of consecutive zero values.   

    5.12       Fixed Pixel Display Considerations 

   The unique designs and color reproduction gamuts of fi xed-pixel displays have resulted in 
new video processing technologies being developed. The result is brighter, sharper, more 
colorful images regardless of the video source. 

    5.12.1       Expanded Color Reproduction 

   Broadcast stations are usually tuned to meet the limited color reproduction characteristics 
of CRT-based televisions. To fi t the color reproduction capabilities of PDP and LCD, 
manufacturers have introduced various color expansion technologies. These include using 
independent hue and saturation controls for each primary and complementary color, plus the 
fl esh color.  

    5.12.2       Detail Correction 

   In CRT-based televisions, enhancing the image is commonly done by altering the electron 
beam diameter. With fi xed-pixel displays, adding overshoot and undershoot to the video 
signals causes distortion. An acceptable implementation is to gradually change the brightness 
of the images before and after regions needing contour enhancement.  

    5.12.3       Nonuniform Quantization 

   Rather than simply increasing the number of quantization levels, the quantization steps can 
be changed in accordance with the intensity of the image. This is possible since people better 
detect small changes in brightness for dark images than for bright images. In addition, the 
brighter the image, the less sensitive people are to changes in brightness. This means that 
more quantization steps can be used for dark images than for bright ones. This technique can 
also be used to increase the quantization steps for shades that appear frequently.  
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    5.12.4       Scaling and Deinterlacing 

   Fixed-pixel displays, such as LCD and plasma, usually upscale then downscale during 
deinterlacing to minimize moir é  noise due to folded distortion. For example, a 1080i source 
is deinterlaced to 2160p, scaled to 1536p, then fi nally scaled to 768p (to drive a 1024  
  768 
display). Alternately, some solutions deinterlace and upscale to 1500p, then scale to the 
display’s native resolution.   

    5.13       Application Example 

          Figures 5.60 and 5.61      illustrate the typical video processing done after video decompression 
and deinterlacing. 

   In addition to the primary video source, additional video sources typically include an on-
screen-display (OSD), content navigation graphics, closed captioning or subtitles, and a 
second video for picture-in-picture (PIP). 

   The  OSD plane  displays confi guration menus for the box, such as video output format and 
resolution, audio output format, etc. OSD design is unique to each product, so the OSD 
plane usually supports a wide variety of RGB/YCbCr formats and resolutions. Lookup tables 
gamma-correct linear RGB data, convert 2-, 4-, or 8-bit indexed color to 32-bit YCbCrA data, 
or translate 0 – 255 graphics levels to the 16 – 235 video levels. 

   The  content navigation plane  displays graphics generated by Blu-ray BD-J, HD DVD HDi, 
electronic program guides, etc. It should support the same formats and capabilities as the 
OSD plane. 

   The  subtitle plane  is a useful region for rendering closed captioning, DVB subtitles, DVD 
subpictures., etc. Lookup tables convert 2-, 4-, or 8-indexed color to 32-bit YCbCrA data. 

   The  secondary video plane  is usually used to support a second video source for picture-
in-picture (PIP) or graphics (such as JPEG images). For graphics data, lookup tables can 
gamma-correct linear RGB data, convert 2-, 4-, or 8-indexed color to 32-bit YCbCrA data, or 
translate 0 – 255 graphics levels to the 16 – 235 video levels. 

   Being able to scale each source independently offers maximum fl exibility. In addition to 
being able to output any resolution regard-less of the source resolutions, special effects can 
also be accommodated. 

   Chromaticity correction ensures colors are accurate independent of the sources and display 
(SDTV vs. HDTV). 
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Video Processing 253

www.newnespress.com

   Independent brightness, contrast, saturation, hue, and sharpness controls for each source and 
video output interface offers the most fl exibility. For example, PIP can be adjusted without 
affecting the main picture, video can be adjusted without affecting still picture video quality, etc. 

   The optional downscaling and progressive-to-interlaced conversion block for the top NTSC/
PAL encoder in  Figure 5.61  enables simultaneous HD and SD outputs, or simultaneous 
progressive and interlaced outputs, without affecting the HD or progressive video quality. 

   The second NTSC/PAL encoder shown at the bottom of  Figure 5.61  is useful for recording a 
program without any OSD or subtitle information being accidently recorded.   
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 CHAPTER 6 

                                  Modulation 
   Ian   Poole    

     Communications is by far the largest market for signal processing technology. Shipments of 
wireless handsets alone have reached an incredible one billion units per year — and this is just 
one of the many wireless applications we encounter every day. Add in other applications such 
as terrestrial radio and television, satellite radio and televison, WiFi and WiMAX, Bluetooth and 
RFID, and the size of this market becomes absolutely mind-boggling. 

 While these various applications have many important differences, all of them rely on the 
principles of modulation. With so many applications of modulation, there is a good chance that 
you will encounter it at some point in your career. That can be a scary prospect: Modulation is a 
complicated subject, fi lled with complex math and advanced DSP concepts. 

 In this chapter author Ian Poole accomplishes an impressive feat. He starts with a succinct, 
layman’s defi nition of modulation, and without introducing complex math or advanced concepts, 
manages to escort us in a mere twenty-three pages to a basic understanding of how today’s 
complex, 3G modulation schemes work. 

 He does this by starting with the oldest and simplest form of modulation, amplitude modulation 
(AM). He then works his way up in complexity (and through history), to frequency modulation 
(FM) and its variants, phase modulation, and fi nally more advanced methods such as quadrature 
amplitude modulation (QAM), spread spectrum techniques, and orthogonal frequency division 
multiplex (OFDM). 

 Along the way, he introduces important concepts, such as the modulation index and deviation 
ratio, which help you understand the theoretical limits of the various schemes. The author also 
provides some practical information, such as telling you what modulation schemes are used for 
what standards and why. 

 This text does assume some basic DSP theory knowledge. But the fact that the author takes that 
basic DSP knowledge as far as he does without more theoretical background is impressive. 

  — Kenton Williston   



256 Chapter 6

www.newnespress.com

   Radio signals can be used to carry information. The information, which may be audio, data 
or other forms, is used to modify (modulate) a single frequency known as the  carrier . The 
information superimposed onto the carrier forms a radio signal which is transmitted to the receiver. 

   Here, the information is removed from the radio signal and reconstituted in its original format 
in a process known as  demodulation . It is worth noting at this stage that the carrier itself does 
not convey any information. 

   There are many different varieties of modulation but they all fall into three basic categories, 
namely amplitude modulation, frequency modulation and phase modulation, although 
frequency and phase modulation are essentially the same. Each type has its own advantages 
and disadvantages. A review of all three basic types will be undertaken, although a much 
greater focus will be placed on those types used within phone systems. By reviewing all the 
techniques, a greater understanding of the advantages and disadvantages can be gained. 

    6.1       Radio Carrier 

   The basis of any radio signal or transmission is the carrier. This consists of an alternating 
waveform like that shown in  Figure 6.1   . This is generated in the transmitter, and if it is 
radiated in this form it carries no information — it appears at the receiver as a constant signal.  

    6.2       Amplitude Modulation 

   Possibly the most obvious method of modulating a carrier is to change its amplitude in line 
with the modulating signal. 

Time

 Figure 6.1 :         An alternating waveform    
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   The simplest form of amplitude modulation is to employ a system known as  on-off keying 
(OOK) , where the carrier is simply turned on and off. This is a very elementary form of 
digital modulation and was the method used to carry Morse transmissions, which were widely 
used especially in the early days of  “ wireless. ”  Here, the length of the on and off periods 
defi ned the different characters. 

   More generally, the amplitude of the overall signal is varied in line with the incoming audio or 
other modulating signal, as shown in  Figure 6.2   . Here, the envelope of the carrier can be seen 
to change in line with the modulating signal. This is known as  amplitude modulation  (AM). 

   The demodulation process for AM where the radio frequency signal is converted into an audio 
frequency signal is very simple. It only requires a simple diode detector circuit like that shown 
in  Figure 6.3   . In this circuit the diode rectifi es the signal, only allowing the one-half of the 
alternating radio frequency waveform through. A capacitor is used as a simple low-pass fi lter 
to remove the radio-frequency parts of the signal, leaving the audio waveform. This can be fed 
into an amplifi er, after which it can be used to drive a loudspeaker. This form of demodulator 
is very cheap and easy to implement, and is still widely used in many AM receivers today. 

Envelope of
modulated signal

Radio frequency
signal

TimeModulating
waveform

 Figure 6.2 :         An amplitude modulated signal    
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   The signal may also be demodulated more effi ciently using a system known as  synchronous 
detection  ( Figure 6.4   ). Here, the signal is mixed with a locally generated signal with the same 
frequency and phase as the carrier. In this way the signal is converted down to the baseband 
frequency. This system has the advantage of a more linear demodulation characteristic than 
the diode detector, and it is more resilient to various forms of distortion. There are various 
methods of generating the mix signal. One of the easiest is to take a feed from the signal 
being received and pass it through a very high-gain amplifi er. This removes any modulation, 
leaving just the carrier with exactly the required frequency and phase. This can be mixed with 
the incoming signal and the result fi ltered to recover the original audio. 

   AM has the advantage of simplicity, but it is not the most effi cient mode to use — both in 
terms of the amount of spectrum it takes up and the usage of the power. For this reason, it 
is rarely used for communications purposes. Its only major communications use is for VHF 
aircraft communications. However, it is still widely used on the long, medium, and short wave 
bands for broadcasting because its simplicity enables the cost of radio receivers to be kept to 
a minimum. 

Radio frequency
signal

Rectified signal
The capacitor removes
the radio frequency element

 Figure 6.3 :         A simple diode detector circuit    
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 Figure 6.4 :         Synchronous AM demodulation    
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   To fi nd out why it is ineffi cient, it is necessary to look at a little theory behind the operation of 
AM. When a radio-frequency signal is modulated by an audio signal, the envelope will vary. 
The level of modulation can be increased to a level where the envelope falls to zero and then 
rises to twice the unmodulated level. Any increase above this will cause distortion because the 
envelope cannot fall below zero. As this is the maximum amount of modulation possible, it is 
called  100% modulation  ( Figure 6.5   ). 

   Even with 100% modulation, the utilization of power is very poor. When the carrier is 
modulated, sidebands appear at either side of the carrier in its frequency spectrum. Each 
sideband contains the information about the audio modulation. To look at how the signal is 
made up and the relative powers, take the simplifi ed case where the 1-kHz tone is modulating 
the carrier. In this case, two signals will be found: 1       kHz either side of the main carrier, as 
shown in  Figure 6.6   . When the carrier is fully modulated (i.e., 100%), the amplitude of the 

Level when no
modulation is
present

Peak amplitude is twice
that when no modulation
is present

 Figure 6.5 :         Fully modulated signal    
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 Figure 6.6 :         Spectrum of a signal modulated with a 1-kHz tone    
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modulation is equal to half that of the main carrier — that is, the sum of the powers of the 
sidebands is equal to half that of the carrier. This means that each sideband is just a quarter 
of the total power. In other words, for a transmitter with a 100       W carrier, the total sideband 
power will be 50       W and each individual sideband will be 25       W. During the modulation 
process the carrier power remains constant. It is only needed as a reference during the 
demodulation process. This means that the sideband power is the useful section of the signal, 
and this corresponds to (50/150) 
 100%, or only 33% of the total power transmitted. 

   Not only is AM wasteful in terms of power, it is also not very effi cient in its use of spectrum. 
If the 1-kHz tone is replaced by a typical audio signal made up of a variety of sounds with 
different frequencies, then each frequency will be present in each sideband ( Figure 6.7   ). 
Accordingly, the sidebands spread out either side of the carrier as shown and the total 
bandwidth used is equal to twice the top frequency that is transmitted. In the crowded 
conditions found on many of the short wave bands today this is a waste of space, and other 
modes of transmission that take up less space are often used. 

   To overcome the disadvantages of AM, a derivative known as  single sideband (SSB)  is often 
used. By removing or reducing the carrier and removing one sideband, the bandwidth can 
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 Figure 6.7 :         Spectrum of a signal modulated with speech or music    
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be halved and the effi ciency improved. The carrier can be introduced by the receiver for 
demodulation. 

   Neither AM in its basic form nor SSB is used for mobile phone applications, although in 
some applications AM combined with phase modulation is used.  

    6.3       Modulation Index 

   It is often necessary to defi ne the level of modulation that is applied to a signal. A factor or 
index known as the modulation index is used for this. When expressed as a percentage, it is 
the same as the depth of modulation. In other words, it can be expressed as: 

          

The value of the modulation index must not be allowed to exceed 1 (i.e., 100% in terms of the 
depth of modulation), otherwise the envelope becomes distorted and the signal will spread out 
either side of the wanted channel, causing interference to other users.  

    6.4       Frequency Modulation 

   While AM is the simplest form of modulation to envisage, it is also possible to vary the 
frequency of the signal to give frequency modulation (FM). It can be seen from  Figure 6.8    
that the frequency of the signal varies as the voltage of the modulating signal changes. 

   The amount by which the signal frequency varies is very important. This is known as 
the  deviation , and is normally quoted in kilohertz. As an example, the signal may have a 
deviation of  � 3       kHz. In this case, the carrier is made to move up and down by 3       kHz. 

   FM is used for a number of reasons. One particular advantage is its resilience to signal-
level variations and general interference. The modulation is carried only as variations in 
frequency, and this means that any signal-level variations will not affect the audio output 
provided that the signal is of a suffi cient level. As a result, this makes FM ideal for mobile 
or portable applications where signal levels vary considerably. The other advantage of FM 
is its resilience to noise and interference when deviations much greater than the highest 
modulating frequency are used. It is for this reason that FM is used for high-quality broadcast 
transmissions where deviations of  � 75       kHz are typically used to provide a high level of 
interference rejection. In view of these advantages, FM was chosen for use in the fi rst-
generation analog mobile phone systems. 

M �
RMS value of modulating signal

RMS value of unmodulated siignal
.M �

RMS value of modulating signal

RMS value of unmodulated siignal
.
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   To demodulate an FM signal, it is necessary to convert the frequency variations into voltage 
variations. This is slightly more complicated than demodulating AM, but it is still relatively 
simple to achieve. Rather than just detecting the amplitude level using a diode, a tuned circuit 
has to be incorporated so that a different output voltage level is given as the signal changes its 
frequency. A variety of methods is used to achieve this, but one popular approach is to use a 
system known as a quadrature detector. It is widely used in integrated circuits, and provides 
a good level of linearity. It has the advantages that it requires a simple tuned circuit and it is 
also very easy to implement in a form that is applicable to integrated circuits. 

   The basic format of the quadrature detector is shown in  Figure 6.9   . It can be seen that the 
signal is split into two components. One of these passes through a network that provides 
a basic 90 phase-shift, plus an element of phase shift dependent upon the deviation. The 
original signal and the phase-shifted signal are then passed into a multiplier or mixer. The 
mixer output is dependent upon the phase difference between the two signals, i.e., it acts as a 

Modulating signal

Radio frequency signal

 Figure 6.8 :         A frequency modulated signal    
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phase detector and produces a voltage output that is proportional to the phase difference and 
hence to the level of deviation of the signal.  

    6.5       Modulation Index and Deviation Ratio 

   In many instances a fi gure known as the  modulation index  is of value and is used in other 
calculations. The modulation index is the ratio of the frequency deviation to the modulating 
frequency, and will therefore vary according to the frequency that is modulating the 
transmitted carrier and the amount of deviation: 

       

   However, when designing a system it is important to know the maximum permissible values. 
This is given by the deviation ratio, and is obtained by inserting the maximum values into the 
formula for the modulation index: 

        

    6.6       Sidebands 

   Any signal that is modulated produces sidebands. In the case of an amplitude modulated 
signal they are easy to determine, but for frequency modulation the situation is not quite 
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 Figure 6.9 :         Block diagram of an FM quadrature detector    



264 Chapter 6

www.newnespress.com

as straightforward. They are dependent upon not only the deviation, but also the level of 
deviation  —  i.e., the modulation index M. The total spectrum is an infi nite series of discrete 
spectral components, expressed by the complex formula: 
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   In this relationship,  J n  ( M ) are Bessel functions of the fi rst kind,  ω c   is the angular frequency of 
the carrier and is equal to 2  π f , and   ω  m   is the angular frequency of the modulating signal.  Vc  is 
the voltage of the carrier. 

   It can be seen that the total spectrum consists of the carrier plus an infi nite number of 
sidebands spreading out on either side of the carrier at integral frequencies of the modulating 
frequency. The relative levels of the sidebands can be read from a table of Bessel functions, 
or calculated using a suitable computer program.  Figure 6.10    shows the relative levels to give 
an indication of the way in which the levels of the various sidebands change with different 
values of modulation index. 
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 Figure 6.10 :         The relative amplitudes of the carrier and the fi rst 10 side frequency components of 
a frequency modulated signal for different values of modulation index    
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   It can be gathered that for small levels of deviation (that is, what is termed  narrowband FM ) 
the signal consists of the carrier and the two sidebands spaced at the modulation frequency 
either side of the carrier. The spectrum appears the same as that of an AM signal. The major 
difference is that the lower sideband is out of phase by 180. 

   As the modulation index increases, other sidebands at twice the modulation frequency start to 
appear ( Figure 6.11   ). As the index is increased, further sidebands can also be seen. It is also 
found that the relative levels of these sidebands change, some rising in level and others falling 
as the modulation index varies.  

    6.7       Bandwidth 

   It is clearly not acceptable to have a signal that occupies an infi nite bandwidth. Fortunately, 
for low levels of modulation index all but the fi rst two sidebands may be ignored. However, 
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 Figure 6.11 :         Spectra of frequency-modulated signals with various values of modulation index 
for a constant modulation frequency. It can be seen that for small values of the modulation 

index M (e.g., M  �  0.5), the signal appears to consist of the carrier and two sidebands. As the 
modulation index increases, the number of sidebands increases and the level of the carrier can be 

seen to decrease for these values.    
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as the modulation index increases the sidebands further out increase in level, and it is often 
necessary to apply fi ltering to the signal. This should not introduce any undue distortion. 
To achieve this it is normally necessary to allow a bandwidth equal to twice the maximum 
frequency of deviation plus the maximum modulation frequency. In other words, for a VHF 
FM broadcast station with a deviation of  � 75       kHz and a maximum modulation frequency of 
15       kHz, this must be (2 3  
  75)  �  15       kHz; i.e., 175       kHz. In view of this a total of 200       kHz is 
usually allowed, enabling stations to have a small guard band and their center frequencies on 
integral numbers of 100       kHz.  

    6.8       Improvement in Signal-to-Noise Ratio 

   It has already been mentioned that FM can give a better signal-to-noise ratio than AM when 
wide bandwidths are used. The amplitude noise can be removed by limiting the signal. In fact, 
the greater the deviation, the better the noise performance. When comparing an AM signal 
with an FM signal, an improvement equal to 3 D  2  is obtained where  D  is the deviation ratio. 
This is true for high values of  D  — i.e., wideband FM. 

   An additional perceived improvement in signal-to-noise ratio can be achieved if the audio 
signal is pre-emphasized. To achieve this, the lower-level high-frequency sounds are 
amplifi ed to a greater degree than the lower-frequency sounds before they are transmitted. 
Once at the receiver, the signals are passed through a network with the opposite effect to 
restore a fl at frequency response. 

   To achieve the pre-emphasis, the signal may be passed through a capacitor-resistor (CR) 
network. At frequencies above the cut-off frequency, the signal increases in level by 6       dB per 
octave. Similarly, at the receiver the response falls by the same amount.  

    6.9       Frequency-Shift Keying 

   Many signals employ a system called  frequency-shift keying (FSK)  to carry digital data 
( Figure 6.12   ). Here, the frequency of the signal is changed from one frequency to another, one 
frequency counting as the digital 1 (mark) and the other as a digital 0 (space). By changing 
the frequency of the signal between these two it is possible to send data over the radio. 

   There are two methods that can be employed to generate the two different frequencies needed 
for carrying the information. The fi rst and most obvious is to change the frequency of the 
carrier. Another method is to frequency-modulate the carrier with audio tones that change in 
frequency, in a scheme known as  audio frequency-shift keying (AFSK) . This second method 
can be of advantage when tuning accuracy is an issue.  
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    6.10       Phase Modulation 

   Another form of modulation that is widely used, especially for data transmissions, is  phase 
modulation  (PM). As phase and frequency are inextricably linked (frequency being the rate of 
change of phase), both forms of modulation are often referred to by the common term  angle 
modulation . 

   To explain how phase modulation works, it is fi rst necessary to give an explanation of phase. 
A radio signal consists of an oscillating carrier in the form of a sine wave. The amplitude 
follows this curve, moving positive and then negative, and returning to the start point after 
one complete cycle. This can also be represented by the movement of a point around a circle, 
the phase at any given point being the angle between the start point and the point on the 
waveform as shown in  Figure 6.13   . 

   Modulating the phase of the signal changes the phase from what it would have been if no 
modulation were applied. In other words, the speed of rotation around the circle is modulated 
about the mean value. To achieve this it is necessary to change the frequency of the signal for 
a short time. In other words, when phase modulation is applied to a signal there are frequency 
changes and  vice versa . Phase and frequency are inseparably linked, as phase is the integral 
of frequency. Frequency modulation can be changed to phase modulation by simply adding 
a CR network to the modulating signal that integrates the modulating signal. As such, the 
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digital
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 Figure 6.12 :         Frequency-shift keying    
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information regarding sidebands, bandwidth and the like also holds true for phase modulation 
as it does for frequency modulation, bearing in mind their relationship.  

    6.11       Phase-Shift Keying 

   Phase modulation may be used for the transmission of data. Frequency-shift keying is robust, 
and has no ambiguities because one tone is higher than the other. However, phase-shift 
keying (PSK) has many advantages in terms of effi cient use of bandwidth and is the form of 
modulation chosen for many cellular telecommunications applications. 

   The basic form of phase-shift keying is known as  binary phase-shift keying  (BPSK) or, 
occasionally,  phase reversal keying  (PRK). A digital signal alternating between  � 1 and  � 1 (or 1 
and 0) will create phase reversals — i.e., 180 °  phase-shifts — as the data shifts state ( Figure 6.14   ). 

   The problem with phase-shift keying is that the receiver cannot know the exact phase of 
the transmitted signal, to determine whether it is in a mark or space condition. This would 
not be possible even if the transmitter and receiver clocks were accurately linked, because 
the path length would determine the exact phase of the received signal. To overcome this 
problem, PSK systems use a differential method for encoding the data onto the carrier. This 
is accomplished by, for example, making a change in phase equal to a 1 and no phase change 
equal to a 0. Further improvements can be made upon this basic system, and a number of 
other types of phase-shift keying have been developed. One simple improvement can be made 
by making a change in phase of 90 °  in one direction for a 1, and 90 °  the other way for a 0. 
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 Figure 6.13 :         Phase modulation    
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This retains the 180 °  phase reversal between the 1 and 0 states, but gives a distinct change for 
a 0. In a basic system not using this process it may be possible to lose synchronization if a 
long series of zeros is sent. This is because the phase will not change state for this occurrence. 

   There are many variations on the basic idea of phase-shift keying. Each has its own advantages 
and disadvantages, enabling system designers to choose the one most applicable for any given 
circumstances. Other common forms include quadrature phase-shift keying (QPSK), where four 
phase states are used, each at 90 °  to the other; 8-PSK, where there are eight states, and so forth. 

   It is often convenient to represent a phase-shift keyed signal, and sometimes other types of 
signal, using a phasor or constellation diagram (see  Figure 6.15   ). Using this scheme, the 
phase of the signal is represented by the angle around the circle, and the amplitude by the 
distance from the origin or centre of the circle. In this way the signal can be resolved into 
quadrature components representing the sine or I for In-phase component, and the cosine for 
the quadrature component. Most phase-shift-keyed systems use a constant amplitude, and 
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 Figure 6.14 :         Binary phase-shift keying    
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therefore points appear on one circle with a constant amplitude and the changes in state being 
represented by movement around the circle. For binary shift keying using phase reversals, the 
two points appear at opposite points on the circle. Other forms of phase-shift keying may use 
different points on the circle, and there can be more points on the circle. 

   When plotted using test equipment, errors may be seen from the ideal positions on the 
phase diagram. These errors may appear as the result of inaccuracies in the modulator and 
transmission and reception equipment, or as noise that enters the system. It can be imagined 
that if the position of the real measurement when compared to the ideal position becomes too 
large, then data errors will appear because the receiving demodulator is unable correctly to 
detect the intended position of the point on the circle. 

   Using a constellation view of the signal enables quick fault-fi nding in a system. If the problem 
is related to phase, the constellation will spread around the circle. If the problem is related to 
magnitude, the constellation will spread off the circle, either towards or away from the origin. These 
graphical techniques assist in isolating problems much faster than when using other methods. 

   QPSK is used for the forward link from the base station to the mobile in the IS-95 cellular 
system, and uses the absolute phase position to represent the symbols. There are four phase 
decision points, and when transitioning from one state to another it is possible to pass through 
the circle’s origin, indicating minimum magnitude. 

   On the reverse link from mobile to base station, offset-quadrature phase-shift keying (O-QPSK) 
is used to prevent transitions through the origin. Consider the components that make up any 
particular vector on the constellation diagram as X and Y components. Normally, both of these 
components would transition simultaneously, causing the vector to move through the origin. 
In O-QPSK one component is delayed, so the vector will move down fi rst and then over, thus 
avoiding moving through the origin, and simplifying the radio’s design. A constellation diagram 
will show the accuracy of the modulation.  

    6.12       Minimum-Shift Keying 

   It is found that binary data consisting of sharp transitions between 1 and 0 states and vice 
versa potentially create signals that have sidebands extending out a long way from the 
carrier, and this is not ideal from many aspects. This can be overcome in part by fi ltering 
the signal, but the transitions in the data become progressively less sharp as the level of 
fi ltering is increased and the bandwidth is reduced. To overcome this, a form of modulation 
known as  Gaussian-fi ltered minimum-shift keying (GMSK)  is widely used; for example, it 
has been adopted for the GSM standard for mobile telecommunications. It is derived from 
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a modulation scheme known as  minimum-shift keying (MSK) , which is what is known as a 
continuous-phase scheme. Here, there are no phase discontinuities because the frequency 
changes occur at the carrier zero crossing points. 

   To illustrate this, take the example shown in  Figure 6.16   . Here, it can be seen that the 
modulating data signal changes the frequency of the signal and there are no phase 
discontinuities. This arises as a result of the unique factor of MSK that the frequency 
difference between the logical 1 and logical 0 states is always equal to half the data rate. This 
can be expressed in terms of the modulation index, and is always equal to 0.5. 

   While this method appears to be fi ne, in fact the bandwidth occupied by an MSK signal is too 
wide for many systems, where a maximum bandwidth equal to the data rate is required. 

   A plot of the spectrum of an MSK signal shows sidebands extending well beyond a 
bandwidth equal to the data rate ( Figure 6.17   ). This can be reduced by passing the modulating 
signal through a low-pass fi lter prior to applying it to the carrier. The requirements for 
the fi lter are that it should have a sharp cut-off and a narrow bandwidth, and its impulse 
response should show no overshoot. The ideal fi lter is known as a Gaussian fi lter, which has a 
Gaussian-shaped response to an impulse and no ringing. 

   There are two main ways in which GMSK can be generated. The most obvious way is to fi lter 
the modulating signal using a Gaussian fi lter and then apply this to a frequency modulator 
where the modulation index is set to 0.5, as shown in  Figure 6.18   . While simple, this method 
has the drawback that the modulation index must exactly equal 0.5. In practice, this analog 
method is not suitable because component tolerances drift and cannot be set exactly. 

   A second method is more widely used. Here, what is known as a quadrature modulator is used. 
The term  quadrature  means that the phase of a signal is in quadrature, or 90 ° , to another one. 
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 Figure 6.16 :         An example of an MSK signal    
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The quadrature modulator uses one signal that is said to be in phase and another that is in 
quadrature to this. In view of the in-phase and quadrature elements, this type of modulator is often 
said to be an I-Q modulator ( Figure 6.19   ). When using this type of modulator, the modulation 
index can be maintained at exactly 0.5 without the need for any settings or adjustments. This 
makes it much easier to use, and capable of providing the required level of performance without 
the need for adjustments. For demodulation, the technique can be used in reverse. 

   A further advantage of GMSK is that it can be amplifi ed by a nonlinear amplifi er and remain 
undistorted. This is because there are no elements of the signal that are carried as amplitude 
variations, and it is therefore more resilient to noise than some other forms of modulation.  

    6.13       Quadrature Amplitude Modulation 

   Another form of modulation that is widely used in data applications is known as  quadrature 
amplitude modulation (QAM) . It is a signal in which two carriers shifted in phase by 90 °  are 
modulated, and the resultant output consists of both amplitude and phase variations. In view 
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 Figure 6.18 :         Generating GMSK using a Gaussian fi lter and a frequency modulator with the 
modulation index set to 0.5    
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of the fact that both amplitude and phase variations are present, it may also be considered as a 
mixture of amplitude and phase modulation. 

   A continuous bit stream may be grouped into threes and represented as a sequence of eight 
permissible states:

   Bit sequence  Amplitude  Phase ( ° ) 

   000  1/2  0 (0 ° ) 

   001  1  0 (0 ° ) 

   010  1/2   π /2 (90 ° ) 

   011  1   π /2 (90 ° ) 

   100  1/2   π  (180 ° ) 

   101  1   π  (180 ° ) 

   110  1/2  3 π /2 (270 ° ) 

   111  1  3 π /2 (270 ° ) 

   Phase modulation can be considered as a special form of QAM where the amplitude remains 
constant and only the phase is changed. By doing this, the number of possible combinations is 
halved. 
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 Figure 6.19 :         A block diagram of a quadrature or I-Q modulator used to generate GMSK    
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   Although QAM appears to increase the effi ciency of transmission by utilizing both amplitude 
and phase variations, it has a number of drawbacks. The fi rst is that it is more susceptible to 
noise because the states are closer together, so that a lower level of noise is needed to move 
the signal to a different decision point. Receivers for use with phase or frequency modulation 
can both use limiting amplifi ers that are able to remove any amplitude noise and thereby 
improve the noise reliance. This is not the case with QAM. The second limitation is also 
associated with the amplitude component of the signal. When a phase or frequency modulated 
signal is amplifi ed in a transmitter there is no need to use linear amplifi ers, whereas 
when using QAM that contains an amplitude component, linearity must be maintained. 
Unfortunately, linear amplifi ers are less effi cient and consume more power, and this makes 
them less attractive for mobile applications.  

    6.14       Spread Spectrum Techniques 

   In many instances it is necessary to keep transmissions as narrow as possible to conserve 
the frequency spectrum. However, under some circumstances it is advantageous to use 
what are known as  spread spectrum techniques , where the transmission is spread over a 
wide bandwidth. There are two ways of achieving this: one is to use a technique known as 
 frequency hopping , while the other involves spreading the spectrum over a wide band of 
frequencies so it appears as background noise. This can be done in different ways, and the 
two most widely used systems for this are DSSS and OFDM.  

    6.15       Frequency Hopping 

   In some instances, particularly in military applications, it is necessary to prevent any people 
apart from intended listeners from picking up a signal or from jamming it. Frequency hopping 
may also be used to reduce levels of interference. If interference is present on one channel, 
the hopping signal will only remain there for a short time and the effects of the interference 
will be short lived. Frequency hopping is a well-established principle. In this system, the 
signal is changed many times a second in a pseudo-random sequence from a predefi ned 
block of channels. Hop rates vary, and are dependent upon the requirements. Typically the 
transmission may hop a hundred times a second, although at HF this will be much less. 

   The transmitter will remain on each frequency for a given amount of time before moving 
on to the next. There is a small dead time before the signal appears on the next channel, and 
during this time the transmitter output is muted. This is to enable the frequency synthesizer 
time to settle, and to prevent interference to other channels as the signal moves. 
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   To receive the signal, the receiver must be able to follow the hop sequence of the transmitter. 
To achieve this, both transmitter and receiver must know the hop sequence, and the hopping 
of both transmitter and receiver must be synchronized. 

   Frequency hopping transmissions usually use a form of digital transmission. When speech 
is used, this has to be digitized before being sent. The data rate over the air has to be greater 
than the overall throughput to allow for the dead time while the set is changing frequency.  

    6.16       Direct-Sequence Spread Spectrum 

    Direct-sequence spread spectrum  (DSSS) is a form of spread spectrum modulation that is 
being used increasingly as it offers improvements over other systems, although this comes 
at the cost of greater complexity in the receiver and transmitter. It is used for some military 
applications, where it provides greater levels of security, and it has been chosen for many of the 
new cellular telecommunications systems, where it can provide an improvement in capacity. 
In this application it is known as  code division multiple access , because it is a system whereby 
a number of different users can gain access to a receiver as a result of their different  “ codes. ”  
Other systems use different frequencies (frequency division multiple access — FDMA), or 
different times or time slots on a transmission (time division multiple access — TDMA). 

   Its operation is more complicated than those that have already been described. When selecting 
the required signal, there has to be a means by which the selection occurs. For signals such as 
AM and FM different frequencies are used, and the receiver can be set to a given frequency 
to select the required signal. Other systems use differences in time. For example, using pulse 
code modulation, pulses from different signals are interleaved in time, and by synchronizing 
the receiver and transmitter to look at the overall signal at a given time, the required signal 
can be selected. CDMA uses different codes to distinguish between one signal and another. 
To illustrate this, take the analogy of a room full of people speaking different languages. 
Although there is a large level of noise, it is possible to pick out the person speaking English, 
even when there may be people who are just as loudly (or maybe even louder) speaking a 
different language you may not be able to understand. 

   The system enables several sets of data to be placed onto a carrier and transmitted from 
one base station, as in the case of a cellular telecommunications base station. It also allows 
for individual units to send data to a receiver that can receive one of more of the signals 
in the presence of a large number of others. To accomplish this, the signal is spread over 
a given bandwidth. This is achieved by using a spreading code, which operates at a higher 
rate than the data. The code is sent repeatedly, each data bit being multiplied by each bit 
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of the spreading code successively. The codes for this can be either random or orthogonal. 
Orthogonal codes are ones which, when multiplied together and then added up over a period 
of time, have a sum of zero. To illustrate this, take the example of two codes:

   Code A  1   � 1   � 1  1 

   Code B  1   � 1  1   � 1 

   Product  1  1   � 1   � 1 summed over a period of 
 time  �  0, i.e., 1 � 1 � 1 � 1  �  0 

   Using orthogonal codes, it is possible to transmit a large number of data channels on the same 
signal. To achieve this, the data are multiplied with the chip stream ( Figure 6.20   ). This chip 
stream consists of the codes being sent repeatedly, so that the each data bit is multiplied with 
the complete code in the chip stream — in other words, if the chip stream code consists of four 
bits, then each data bit will be successively multiplied by four chip bits. It is also worth noting 
that the spread rate is the number of data bits in the chip code (i.e., the number of bits that 
each data bit is multiplied by). In this example the spread rate is four, because there are four 
bits in the chip code. 

Data

Spreading or
chip code

Spread
data

 Figure 6.20 :         Multiplying the data stream with the chip stream    
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   To produce the fi nal signal that carries several data streams, the outputs from the individual 
multiplication processes are summed ( Figure 6.21   ). This signal is then converted up to the 
transmission frequency and transmitted. 

   At the receiver, the reverse process is adopted. The signal is converted down to the base band 
frequency. Here, the signal is multiplied by the relevant chip code and the result summed 
over the data bit period to extract the relevant data in a process known as correlation. By 
multiplying by a different chip code, a different set of data will be extracted. 

   To see how the system operates, it is easier to refer to a diagram. In  Figure 6.22   , it can be 
seen that the waveforms (a) and (b) are the spreading codes. The spreading code streams are 
multiplied with their relevant data. Here, the spreading code stream (a) is multiplied by the 
data in (c) to give the spread data stream shown in (d). Similarly, spreading code stream (b) is 
multiplied by the data in (e) to give (f). The two resulting spread data streams are then added 
together to give the baseband signal ready to be modulated onto the carrier and transmitted. 

   In this case, it can be seen that chip stream (a) is repeated in waveform (h). This is multiplied by 
(g) to give the waveform (i). Each group of four bits (as there are four bits in the chip code used 
in the example) is summed, and from this the data can be reconstituted as shown in waveform (j). 

   When a random or, more correctly, a pseudo-random spreading code is used, a similar process is 
followed. Instead of using the orthogonal codes, a pseudo-random spreading sequence is used. 
Both the transmitter and receiver will need to be able to generate the same pseudo-random code. 
This is easily achieved by ensuring that both transmitter and receiver use the same algorithms to 
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 Figure 6.21 :         Generating a signal that carries several sets of data    
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generate these sequences. The drawback of using a pseudo-random code is that the codes are not 
orthogonal, and as a result some data errors are expected when regenerating the original data.  

    6.17       Orthogonal Frequency Division Multiplexing 

   Another form of modulation that is being used more frequently is orthogonal frequency division 
multiplexing (OFDM). A form of this, known as coded OFDM or COFDM, is used for many 
Wi-Fi applications, such as IEEE Standard 802.11 as well as digital radio (DAB), and it is likely 
that it will be used for the fourth-generation (4G) mobile standards to provide very high data rates. 

   A COFDM signal consists of a number of closely-spaced modulated carriers. When 
modulation of any form — voice, data, etc. — is applied to a carrier, then sidebands spread 
out on either side. It is necessary for a receiver to be able to receive the whole signal in 
order to successfully demodulate the data. As a result, when signals are transmitted close 
to one another they must be spaced so that the receiver can separate them using a fi lter, and 
there must be a guard band between them. This is not the case with COFDM. Although the 
sidebands from each carrier overlap, they can still be received without the interference that 
might be expected because they are orthogonal to each another. This is achieved by having 
the carrier spacing equal to the reciprocal of the symbol period. 

    Figure 6.23    shows a traditional view of receiving signals carrying modulation, and
 Figure 6.24    shows the spectrum of a COFDM signal. 

   To see how this works, we must look at the receiver. It acts as a bank of demodulators, 
translating each carrier down to DC. The resulting signal is integrated over the symbol period 
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filter passband:
one signal is selected

Multiple signals

Frequency

 Figure 6.23 :         Traditional view of receiving signals carrying modulation    
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to regenerate the data from that carrier. The same demodulator also demodulates the other 
carriers. As the carrier spacing equal to the reciprocal of the symbol period means that they 
will have a whole number of cycles in the symbol period, their contribution will sum to 
zero — in other words, there is no interference contribution. 

   One requirement of the transmitting and receiving systems is that they must be linear, as any 
nonlinearity will cause interference between the carriers as a result of intermodulation distortion. 

   This will introduce unwanted signals that will cause interference and impair the orthogonality 
of the transmission. 

   In terms of the equipment to be used, the high peak-to-average ratio of multicarrier systems 
such as COFDM requires the RF fi nal amplifi er on the output of the transmitter to be able 
to handle the peaks while the average power is much lower, and this leads to ineffi ciency. 
In some systems, the peaks are limited. Although this introduces distortion that results in a 
higher level of data errors, the system can rely on the error correction to remove them. 

   The data to be transmitted are spread across the carriers of the signal, each carrier taking part 
of the payload. This reduces the data rate taken by each carrier. The lower data rate has the 
advantage that interference from refl ections is much less critical. This is achieved by adding 
a guard band time (or guard interval) into the system ( Figure 6.25   ), which ensures that the 
data are only sampled when the signal is stable (i.e., a sine wave) and no new delayed signals 
arrive that will alter the timing and phase of the signal. 

   The distribution of the data across a large number of carriers has some further advantages. Nulls 
caused by multipath effects or interference on a given frequency only affect a small number of 
the carriers, the remaining ones being received correctly. Using error-coding techniques, which 
does mean adding further data to the transmitted signal, enables many or all of the corrupted data 
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 Figure 6.24 :         The spectrum of a COFDM signal    
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to be reconstructed within the receiver. This can be done because the error correction code 
is transmitted in a different part of the signal. It is this error coding that is referred to in the 
 “ Coded ”  of COFDM.  

    6.18       Bandwidth and Data Capacity 

   One of the features that is of paramount importance in any communications system is the amount 
of data throughput. With users requiring more data and at faster rates, it is essential to make 
the optimum use of the available channels. It has been seen that there are many different types 
of modulation that can be used, some being more effi cient than others for particular purposes. 
Nevertheless, there are certain laws that govern the amounts of data that can be transferred. 

   The bandwidth of a channel that is used is one of the major factors that infl uences the amount 
of data that can be accommodated. Bandwidth is literally the width of a band of frequencies 
measured in hertz (Hz). It is found simply by subtracting the lower limit of the frequencies 
used from the upper limit of the frequencies used. 

   Nyquist’s theorem relates the bandwidth to the data rate by stating that a data signal with a 
transmission rate of 2       W can be carried by frequency of bandwidth W. The converse is also 
true: given a bandwidth of W, the highest signal rate that can be accommodated is 2       W. The 
data signal need not be encoded in binary, but if it is then the data capacity in bits per second 
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 Figure 6.25 :         The guard interval used to prevent intersymbol interference    
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(bps) is twice the bandwidth in hertz. Multilevel signaling can increase this capacity by 
transmitting more bits per data signal unit. 

   The problem with multilevel signaling is that it must be possible to distinguish between the 
different signaling levels in the presence of outside interference — in particular, noise. A law 
known as Shannon’s Law defi nes the way in which this occurs. It was formulated by Claude 
Shannon, a mathematician who helped build the foundations for the modern computer, and it is 
a statement of information theory that expresses the maximum possible data speed that can be 
obtained in a data channel. Shannon’s Law says that the highest obtainable error-free data speed 
is dependent upon the bandwidth and the signal-to-noise ratio. It is usually expressed in the form: 

      

  where  C  is the channel capacity in bits per second,  W  is the bandwidth in hertz and 
 S/N  is the signal-to-noise ratio.   

   Theoretically, it should be possible to obtain between 2 and 12 bps/Hz, but generally this 
cannot be achieved and fi gures of between 1 and 4 bps/Hz are more reasonable. As a matter 
of simplicity, no attempt will be made here to provide a serious distinction between the two 
kinds of ways of measuring capacity and we will simply talk about  “ bandwidth ”  in terms of 
bits per second. However, it must be remembered that bandwidth and digital data rate are two 
different quantities. Bandwidth is a measure of the range of frequencies used in an analog 
signal, and bits per second is a measure of the digital data rate. 

   Error correction codes can improve the communications performance relative to un-coded 
transmissions, but no practical error correction coding system exists that can closely approach 
the theoretical performance limit given by Shannon’s Law.  

    6.19       Summary 

   There are three ways in which a signal can be modulated: its amplitude, phase or frequency 
can be varied, although of these phase and frequency are essentially the same. However, 
there are a great many ways in which this can be achieved, and each type has its advantages 
and disadvantages. Accordingly, the choice of the correct type of modulation is critical when 
designing a new system.    

C W S N� �log /2 1( )C W S N� �log /2 1( )



www.newnespress.com

 CHAPTER 7 

                                        DSP Hardware Options 
   Dake   Liu    

     One of the most confusing aspects of DSP is the fact that the acronym has two meanings: It is 
used as shorthand for both digital signal processing and digital signal processor. This sometimes 
leads to the false impression that all signal processing takes places on digital signal processors. 
In fact, DSP engineers have many other hardware options, and choosing the right hardware 
platform is an important part of the DSP development process. 

 In this chapter Dake Liu lays out the key DSP hardware options: general-purpose processors 
(GPPs), DSPs, ASIC, FPGA, and application-specifi c instruction-set processors (ASIPs). He 
also explains the implementation issues associated with each option. Liu gives an overview of a 
generic DSP architecture and explains how the DSP fi ts into an embedded system. (For a closer 
look at DSP architectures, check out the next chapter in this book.) 

 Before getting into the details of the hardware, Liu offers an overview of DSP theory and 
applications. This overview assumes a basic level of experience with DSP theory, applications, 
and implementations. If you are just getting started in DSP, you should start by reviewing the 
earlier chapters in this book. 

 The section on DSP theory is similar to what you’ll fi nd in most DSP textbooks. Here we fi nd the 
usual equations and diagrams related to sampling, FIR fi lters, FFTs, etc. Liu deviates from these texts 
in the end by introducing the more advanced DSP topics of adaptive fi ltering and random processes. 

 In the DSP applications section, we’re introduced to the concept of real-time processing. Liu 
illustrates DSP applications through two examples: a basic communications system and a 
multimedia processing system. 

 If you take only one idea away from the chapter, it should be that you have many hardware 
options. Choosing the wrong option can sink a project. Thinking outside the box and choosing 
and making an unusual choice can give you a big competitive advantage. For more on this 
important topic, check out this article: 

  http://www.dspdesignline.com/howto/199001104  
  — Kenton Williston   
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    7.1       DSP Theory for Hardware Designers 

   Many theoretical books about DSP algorithms are available        [2,3] . It is not this book’s intent 
to review DSP algorithms; instead, DSP algorithms will be discussed from a profi ling point 
of view in order to expose the computing cost. 

   The remaining part of this chapter is a collection of background knowledge. If you feel that 
it is insuffi cient, we recommend that you read a basic DSP book. However, all readers are 
recommended to carefully read through Section 7.3. 

    7.1.1       Review of DSP Theory and Fundamentals 

   A signal is generated by physical phenomena. It has detectable energy and it carries 
information; for example, variation in air pressure (sound), or variation in electromagnetic 
radiation (radio). In order to process these signals, they fi rst must be converted into electrical 
analog signals. These signals must be further converted into digital electrical signals before 
any digital signal processing can take place. A digital signal is a sequence of (amplitude) 
quantized values. In the time domain, this sequence is in fi xed order with fi xed time intervals. 
In the frequency domain, the spectrum sequence is in fi xed order with fi xed frequency 
intervals. A continuous signal can be converted into a digital signal by sampling. A sampling 
circuit is called an analog-to-digital converter (ADC). Inversely, a digital signal can be 
converted into an analog signal by interpolation. A circuit for doing this conversion is called a 
digital-to-analog converter (DAC). 

   A system is an entity that manipulates signals to accomplish certain functions, yielding 
new signals. The process of digital signal manipulation therefore is called digital signal 
processing (DSP). A system that handles digital signal processing is called a DSP system. A 
DSP system handles signal processing either in the time domain or in the frequency domain. 
Transformation algorithms translate signals between time- and frequency domains. 

   DSP is a common name for the science and technology of processing digital signals using 
computers or digital electronic circuits (including DSP processors). Processing here stands 
for running algorithms based on a set of arithmetic kernels. 

   An arithmetic operation is specifi ed as an atomic element of computing operations, for 
instance, addition, subtraction, multiplication, and division. Special DSP arithmetic 
operations such as guarding, saturation, truncation, and rounding will be discussed in 
more detail later. If it is not specially mentioned, two’s complement is the default data 
representation in this book. 
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   An algorithm is the mathematical representation of a task. An algorithm specifi es a group of 
arithmetic operations to be performed in a certain order. However, it does not specify how 
the arithmetic operations involved are implemented. An algorithm can be implemented in 
software (SW) using a general-purpose computer or a DSP processor, or in hardware (HW) 
as an ASIC. 

   A simplifi ed digital signal processing (DSP) system is shown in  Figure 7.1   . It has at least one 
input sequence  x ( n ) and one output sequence  y ( n ) that is generated by applying operation 
OP {  }  to  x ( n ). 

   Signals  x ( n ) and  y ( n ) are actually  x ( nT ) and  y ( nT ), where  T  is a time interval representing the 
sampling period. This means that the time interval between  x ( n ) and  x ( n   �  1) is  T . OP {  }  in 
 Figure 7.1  can be a single operation or a group of operations. A DSP system can be as simple 
as pure combinational logic, or as complicated as a complete application system including 
several processors such as video encoders. 

   In  Figure 7.2   , fundamental knowledge is classifi ed and depicted in the top part. Applications 
using fundamental knowledge are listed in the middle, and basic knowledge related to 
implementations is listed in the bottom part of the fi gure.  

    7.1.2       ADC and Finite-length Modeling 

   As mentioned earlier, a continuous electrical signal can be converted into a digital signal by 
an ADC. A digital signal can be converted into an analog signal by a DAC.  Figure 7.3    shows 
a simplifi ed and general DSP system based on a digital signal processor (DSP in this fi gure). 

   During the conversion from analog to digital and the subsequent processing, two types of 
errors are introduced. The fi rst type is aliasing, which occurs if the sampling speed is close 
to the Nyquist rate. The second type is quantization error due to the fi nite word-length of the 
system. The ADC performs amplitude quantization of the analog input signal into binary 
output with fi nite-length precision. The maximum signal-to-quantization-noise ratio, in dB, of 
an ideal  N -bit ADC is described in  [4] . 

  
SNR  dBQ max– . . . . ( )� � � � �6 02 4 77 3 6 02 1 77N N

 
 (7.1)      

DSP operation

...x(2), x(1), x(0) ...y(2), y(1), y(0)

x(n) y(n)
OP{}

 Figure 7.1 :         A simple DSP operation or a DSP system    
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   1.77       dB is based on a sinusoidal waveform statistic and varies for other waveforms.  N  represents 
the data word length of the ADC. The SNR Q – max  expression gives a commonly used rule of 
thumb of 6 dB/bit for the SNR of an ADC. The maximum signal-to-noise ratio of a 12 bits ADC 
is 74       dB. The principle of deriving the SNR Q – max  can be found in fundamental ADC books.  

Applications and implementations will be discussed in detail later on

Quantization theory and design for finite-length precision system

Filter design Trans-domain design Close loop system Coding design
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 Figure 7.2 :         Review of DSP theory and related activities for ICT (Information and 

Communication Technology)    
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    7.1.3       Digital Filters 

   A fi lter attenuates certain frequency components of a signal. All frequency components of an 
input signal falling into the pass-band of the fi lter will have little or no attenuation, whereas 
those falling into the stop-band will have high attenuation. It is not possible to achieve an 
abrupt change from pass-band to stop-band, and between these bands there will be always 
be a transition-band. The frequency where the transition-band starts is called transition start 
frequency  f  pass . The frequency where the transition-band ends is called stop frequency  f  stop . 
 Figure 7.4    illustrates examples of typical fi lters. In this fi gure, (a) is a low-pass fi lter, (b) is a 
high-pass fi lter, (c) is a band-pass fi lter, and (d) is a band-stop fi lter. All fi lters can be derived 
from the general difference equation given in the following form.      1    
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 (7.2)      

   1  Equations representing fundamental DSP knowledge can be found in any DSP book. We will not 
explain and derive equations of fundamental DSP in this book. You can fi nd details in        [2,3] .   
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 Figure 7.4 :         Filter specifi cations    
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   From Equation 7.2, the FIR (Finite Impulse Response) and the IIR (Infi nite Impulse 
Response) fi lters can be defi ned by Equation 7.3 and Equation 7.4: 
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 (7.3)      
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 (7.4)      

   When FIR or IIR later appears in this book, it will implicitly stand for  “ a fi lter. ”  

   Let us take a 5-tap FIR fi lter as an example and explore how an FIR fi lter works. The 
algorithms of the 5-tap FIR fi lter is  y ( n )  �   Σ  x ( n  �  k ) *h ( k ),  k   �  0 to 4. Here,  x ( n   �   k ) is the 
input signal,  h ( k ) is the coeffi cient, and  k  is the number of iterations. To unroll the iteration 
loop, the basic computing is given in the following pseudocode of a 5-tap FIR. 

     //5-tap FIR behavior code   
      {    
        A0  �  x(n)*h(0);   
        A1  �  A0  �  x(n-1)*h(1);   
        A2  �  A1  �  x(n-2)*h(2);   
        A3  �  A2  �  x(n-3)*h(3);   
        Y(n)  �  A3  �  x(n-4)*h(4);   
      }      

   The signal fl ow diagram is illustrated in  Figure 7.5   . In this fi gure, a FIFO (First In First 
Out) buffer consists of  n   –  1 memory positions keeping  n   –  1 input values.  Z  �    1  denotes the 

� � � �

x(n)

h(0) h(1) h(2) h(3) h(4)

x(n�1) x(n�2) x(n�3) x(n�4)
Z�1 Z�1Z�1Z�1

A data FIFO buffer

A1 A2 A3 y(n)

 Figure 7.5 :         A 5-tap FIR fi lter with a FIFO data buffer    
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delay of the input signal or the next position of the FIFO. The triangle symbol denotes the 
multiplication operation. If the FIFO data and the coeffi cients are stored in memories, FIR 
computing of one data sample usually consists of  K  multiplications,  K  accumulations, and 
2        K  memory accesses. Here  K  denotes the number of taps of the fi lter. 

   Equation 7.4 illustrates an IIR fi lter. Because the fi lter output is fed back as part of the inputs 
for regressive computing, the fi lter may be unstable if it is not properly designed. The most 
used IIR fi lter is the so-called Biquad IIR.A Biquad IIR is a two-tap IIR fi lter that is defi ned 
by the following equation: 

  y n a x n a x n a x n b y n b y n( ) ( ) ( ) ( ) ( ) ( )� � � � � � � � �0 1 2 1 21 2 1 2   (7.5)      

   The signal fl ow graph for a Biquad IIR fi lter of Equation 7.5 is shown in  Figure 7.6   . 

   For minimizing the computing cost,  b  0  is set to 1. Programming a Biquad IIR fi lter usually 
means that two short loops are unrolled. For processing one data sample, up to 19 operations 
are required including fi ve multiplications, four additions, and ten memory accesses.  

    7.1.4       Transform 

   In this book, a transform is an algorithm to translate signals or elements in one style to 
another style without losing information. Typical transforms are FFT (fast Fourier transform), 
and DCT (discrete cosine transform). These two transforms translate signals between the time 
domain and frequency domain. 

   Time-domain signal processing may consume too much computing power, so signal 
processing in other domains might be necessary. In order to process a signal in another 
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 Figure 7.6 :         A Biquad IIR fi lter    
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domain, a domain transformation of the signal is required before and after the signal 
processing. Digital signal processing in the frequency domain is popular because of its explicit 
physical meaning and lower computational cost in comparison with time-domain processing. 
For example, if a FIR fi lter is implemented in the time domain, the fi ltering operation is 
done by convolution. The computing cost of a convolution is  K * N , where  K  is the number 
of taps of the fi lter and  N  is the number of samples. If the FIR fi lter is implemented in the 
frequency domain, the computing cost will be reduced to  N  because the fi ltering operation in 
the frequency domain is  Y ( f )  �   H ( f )  * X ( f ). Here,  Y  is the output in frequency domain,  H  is 
the system transfer function in frequency domain, and  X  is the input signal in the frequency 
domain. The total cost of frequency-domain signal processing includes the computing cost in 
the frequency domain, and the cost of the transform and inverse transform. In general we can 
summarize that the condition to select frequency-domain algorithms is: 

  TD FFT FD IFFTcost cost cost cost� � �   (7.6)      

   TD cost  is the execution time cost in the time domain, the FD cost  is the execution time cost in 
the frequency domain, and the FFT cost  and IFFT cost  are the execution time cost of FFT and 
inverse FFT. 

   The computational complexity of a direct Fourier transform (DFT) involves at least  N  2  
complex multiplications or at least 2        N ( N  �  1) arithmetic operations, without including 
extra addressing and memory accesses. The computing cost can be reduced if the FFT is 
introduced. FFT is not a new transform from the theoretical perspective; instead it is an 
effi cient way of computing the DFT (discrete Fourier transform). If the DFT is decomposed 
into multiple 2-point DFTs, it is called a radix-2 algorithm. If the smallest DFT in the 
decomposition is a 4-point DFT, then it is called a radix-4 algorithm. Detailed discussions on 
FFT and DFT can be found in  [2] . 

   There are two main radix-2 based approaches, decimation in time (DIT) and decimation in 
frequency (DIF). The complexities of both algorithms are the same considering the number 
of basic operations, the so-called butterfl y operations. The butterfl y operations are slightly 
different between the DIT and DIF implementations. Both butterfl y schematics (DIT and 
DIF) are illustrated in  Figure 7.7   . 

    X  and  Y  in  Figure 7.7  are two complex data inputs of the butterfl y algorithm.  W  is the 
coeffi cient of the butterfl y algorithm in complex data format. Computing a DIT or DIF 
butterfl y consists of 10 operations including a complex data multiplication (equivalent to six 
integer operations), two complex data additions (equivalent to four integer operations), and 
fi ve memory accesses of complex data (two data load, one coeffi cient load, and two data 
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store, equivalent to 10 integer data accesses). For the DIT algorithm, the input data should be 
in bit-reversed order. Bit-reversal addressing is given in  Figure 7.8    for an 8-point FFT. The 
bit-reversal computing cost is at least  N . 

   An 8-point FFT signal fl ow is given as an example in  Figure 7.8 . 

   It can be seen in  Figure 7.8  that the computation consists of log 2   N  computing layers. 
Each layer consists of  N/ 2 butterfl y subroutines. The total computing cost is at least 
 N   �  0.5        N   
  (the cost of a butterfl y)  
  log 2   N . Therefore, the computing cost of a 256-point 
FFT is at least 0.5  
  256  
  10  
  log 2  256  �  10240 arithmetic operations and 10240 basic 
memory accesses (not including bit-reversal addressing, illustrated in  Table 7.1)   .  
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 Figure 7.8 :         Signal fl ow of an 8-point Radix-2 DIF FFT    
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    7.1.5       Adaptive Filter and Signal Enhancement 

   In order to adapt to the dynamic environment, such as dynamic noise, dynamic echo, or 
dynamic radio channel of a mobile radio transceiver, some fi lter behaviors should be updated 
according to the change of the environment. 

   An adaptive fi lter is a kind of fi lter where the coeffi cients can be updated by an adaptive 
algorithm in order to improve or optimize the fi lter’s response to a desired performance 
criterion. An adaptive fi lter consists of two basic parts: the fi lter, which applies the required 
processing to the incoming signal, and the adaptive algorithm, which adjusts the coeffi cients 
of the fi lter to improve its performance. 

   The structure of an adaptive fi lter is depicted in  Figure 7.9   . The input signal,  x ( n ), is fi ltered 
(or weighted) in a digital fi lter, which provides the output  y ( n ). The adaptive algorithm will 
continuously adjust the coeffi cients  c ( n ) in the fi lter in order to minimize the error  e ( n ). The 
error is the difference between the fi ltered output  y ( n ), and the desired response of the fi lter  d ( n ). 

   A room acoustic echo canceller, shown in  Figure 7.10   , is a typical application of an adaptive 
fi lter. The purpose of the fi lter is to cancel the echo sampled by the microphone. 

   In this acoustic echo canceller, the new coeffi cient is calculated by the following adaptive 
algorithm: 

  c n Kx n c n( ) ( ) ( )new old� �   (7.7)      

   Here  K   �   f  ( e ( n )) is the convergence factor. The fi lter is usually a FIR fi lter operating in the 
time domain using convolution. A convolution of a data sample consists of  N  multiplications, 

 Table 7.1 :         Bit-reversal addressing  

   Sequential Order    Bit-reversed Order   

   Sample order  Binary  Binary  Sample order 

    X  [0]  000  000   X  [0] 

    X  [1]  001  100   X  [4] 

    X  [2]  010  010   X  [2] 

    X  [3]  011  110   X  [6] 

    X  [4]  100  001   X  [1] 

    X  [5]  101  101   X  [5] 

    X  [6]  110  011   X  [3] 

    X  [7]  111  111   X  [7] 
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 N  accumulations, and 2        N  memory read operations. Similar to convolution, coeffi cient 
adaptation during one data sample consists of  N  multiplication and  N  accumulator operations. 
There is no extra memory load because the access of the old coeffi cient and the data were 
counted for by the computing of the fi lter. However, the new coeffi cient should be updated 
and written back to the coeffi cient memory. Thus there will be N memory write operations. 
To conclude, the processing cost of an adaptive fi lter during one data sampling period 
could be up to 4       N computations and 3       N memory accesses if the coeffi cients are updated 
continuously. The computing cost and the memory accesses are at least twice that of 
a fi xed FIR fi lter.  

    7.1.6       Random Process and Autocorrelation 

   Statistics and probability theories are used in DSP to characterize signals and processes. 
One purpose of DSP is to reduce different types of interference such as noise and other 
undesirable components in the acquired data. Signals are always impaired by noise during 
data acquisition, or noise is induced as an unavoidable byproduct of fi nite-length DSP 
operations (quantization). The theories of statistics and probability allow these disruptive 
features to be measured and classifi ed. 

   Mean and standard deviation are basic measurements for statistics. The  mean ,   μ  , is the 
average value of a signal. The mean is simply calculated by dividing the sum of  N  samples 
by  N , the number of samples. The standard variance is achieved by squaring each of the 
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�
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 Figure 7.9 :         General form of an adaptive fi lter    
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 Figure 7.10 :         A room acoustic echo canceller    
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deviations before taking the average, and the standard deviation  σ  is the square root of the 
standard variation. 
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 (7.8)      

   The mean indicates the statistics behavior of a signal and is an estimation of the expected 
signal value. The standard deviation gives a creditable measurement of the estimation. The 
computing cost of mean is 2        N  � 1 ( N  additions,  N  memory accesses, and the fi nal step of 
1 /N ). Similarly, the computing cost of standard deviation is 4        N  � 2 (three arithmetic and one 
memory access operations in each tap). 

   Two other algorithms, autocorrelation and cross-correlation, are useful for signal 
detection. Autocorrelation is used for fi nding regularities or periodical features of a signal. 
Autocorrelation is defi ned as: 
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 (7.9)      

   The computing cost of autocorrelation is similar to the cost of FIR. The main difference is 
that autocorrelation uses two variables from the same data array. 

   Cross-correlation is used for measuring the similarity of a signal with a known signal pattern. 
Cross-correlation is defi ned as: 

  
y k c i x i k

i

N

( ) ( ) ( )� �
�

�

0

1

∑
 

 (7.10)      

   The computing cost is exactly the same as the cost of a FIR.   

    7.2       Theory, Applications, and Implementations 

   The scope of DSP is huge, and DSP as an abbreviation has been used by different people 
with different meanings. In this book, DSP is divided into three categories: DSP theory, DSP 
applications, and DSP implementations. 

   DSP theory is the mathematical description of signals and systems using discrete-time or 
discrete-frequency methods. Most DSP books have DSP theory as the main subject, and this 
area is today a mature science. On the other hand, applications and implementations based on 
DSP theory have become major challenges in today’s DSP academia and industry. The three 
DSP categories are summarized in  Figure 7.11   . 
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   The theory of digital signal processing (DSP) is the mathematical study of signals in a digital 
representation and the processing methods of these signals. By using DSP theory, a system 
behavior is modeled and represented mathematically in a discrete-time domain or discrete-
frequency domain. The scope of DSP theory is huge, and the main activities (related to this 
chapter) are selectively listed in  Figure 7.11 . 

   DSP has turned out to be one of the most important technologies in the development of 
communications systems and other electronics. After Marconi and Armstrong’s invention 
of basic radio communication and transceivers, users were soon dissatisfi ed with the poor 
communication quality. The noise was high and the bandwidth utility was ineffi cient. 
Parameters changed due to variations in temperature, and the signals could not be reproduced 
exactly. In order to improve the quality, analog radio communication had to give way to 
digital radio communication. 

   DSP applications in this chapter are processes through which systems with specifi c purposes 
can be modeled using the knowledge of DSP theory. DSP applications based on established 
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 Figure 7.11 :         DSP categories for ICT (Information Communication Technology)    
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DSP theory can be found everywhere in daily life. For example, coding for communications 
is a kind of DSP application. Coding for communications can be further divided into reliable 
coding (for error detection and error correction) and effi cient coding (compression). Other 
DSP applications will be discussed. 

   DSP applications can be divided into two categories: applications following standards and 
those not following standards. When a system must communicate with other systems, or 
access data from certain storage media, standards are needed. Standards regulate the data 
format and the transmission protocol between the transmitter and the receiver or between 
the data source and the data consumer. There are several committees and organizations 
working with standards, such as IEEE (Institute of Electronics and Electrical Engineering), 
ISO (International Standard Organization), ITU (International Telecom Union), and ETSI 
(European Telecommunications Standard Institute)  [5] . A standard gives requirements, 
regulations, and descriptions of functions, performance, and constraints. 

   Standards do not describe or defi ne implementation details. For example, a physical 
layer standard of WLAN (Wireless Local Area Network) specifi es the format and quality 
requirement of a radio channel and regulations for radio signal coding and transmission. 
However, this standard does not regulate the implementation. A semiconductor manufacturer 
can implement the radio and the baseband part in an integrated or a distributed way, and into 
a programmable or a dedicated nonprogrammable device. Effi cient implementations make 
successful stories, and all companies have fair chances to compete in the market. 

   DSP implementation is about realizing DSP algorithms in a programmable device or into an 
ASIC. DSP implementation can be divided into concept development, system development, 
software development, hardware development, product development, and fabrication. In this 
book, focus will be on development and implementation of hardware systems.  

    7.3       DSP Applications 

   In this section, DSP applications are introduced briefl y through examples. The motivation 
is to provide examples of real-time systems where digital signal processing is intensively 
used, because real-time applications form the implicit scope throughout this book. For entry-
level readers and students, it might be a bit hard to fully understand every application case 
presented here. However, this will not prevent you from understanding other parts of the book. 
From an engineering point of view, the examples selected in this section are simpler than those 
real-world designs in industrial products. Simplifi cation is necessary because understanding a 
real-world design might take a very long time and may even be confusing sometimes. 
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   As ASIP designers, you should know more about the methods to analyze the cost of 
applications instead of a deep understanding of the theory behind them. You should 
understand where the cost is from, and how to analyze and estimate it. To obtain more details, 
visit the related company websites  [6] . 

    7.3.1       Real-Time Concepts 

   There are two types of systems: real-time and non-real-time        [7,8] . A real-time system is 
the simplifi cation of a real-time computing system. The system processes data in a time-
predictable fashion so that the results are available in time to infl uence the process being 
monitored, played, or controlled. The defi nition of a real-time system is not absolutely 
unambiguous; however, it is generally accepted that a real-time DSP subsystem is a system 
that processes periodical signals. A real-time system in this chapter, therefore, creates the 
output signal samples at the same rate at which the input signals arrive. It means that the 
processing capacity must be enough for processing one sample within the time interval 
of two consecutively arriving samples. For example, digital signal processing for voice 
communication in a mobile phone must be real-time. If the decoding of a voice data packet 
cannot be fi nished before the arrival of the next data packet, the computing resource has to 
abort the current computation and information will be lost. To formalize, a real-time system 
processes tasks within a time interval and fi nishes the processing before a certain deadline. 

   Non-real-time digital signal processing has no strict requirements on the execution time. 
For instance, image encoding in a digital camera does not necessarily have to be real-time 
because the slow execution will not introduce any system error (though it may annoy the 
camera user).  

    7.3.2       Communication Systems 

   A communication system is usually a real-time system, which transmits a message stream 
from the source to the destination through a noisy channel. The message source is called a 
transmitter, and the destination is called a receiver. A simplifi ed communication system is 
given in  Figure 7.12     [9] . 

Estimated
message signal

Receiver

Received
signal

Transmitted
signal

Message
signal

ChannelTransmitter

 Figure 7.12 :         A communication system    
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   The transmitter and the receiver are usually at different physical locations. The channel is the 
physical medium between them, which can be either the air interface of a radio system (e.g., a 
mobile phone and a radio base station) or a telephone wire. 

   The received signal that has propagated through the channel is interfered with by the 
external environment and distorted internally by the receiver itself due to the physical 
characteristics of the channel. Thus, the signal received is actually different from the 
signal sent by the transmitter. For example, a receiver may get continuous interference 
from other neighboring radio systems and interference such as burst glitches from 
surrounding equipment. The receiver may receive both the wave in the direct path with 
normal delay and waves from paths experiencing multiple refl ections with longer delays. 
The signal attenuation may change quickly according to the change of the relative position 
between the transmitter and the receiver. 

   The function of the receiver in  Figure 7.13    is to recover the transmitted data by estimating 
the received signal and dynamically modeling the channel behavior. The function of the 
transmitter is not only to send data, but also to code it in order to enable and facilitate the 
estimation of the channel impulse response at the receiver side. This enables the receiver 
to compare the received signal with a known training data and to fi nd the difference 
between the expected signal and the signal actually received, in order to fi nally calculate the 
approximation of the channel impulse response. As soon as the channel is correctly modeled, 
data can be received and recovered by symbol detection with suffi cient accuracy. All these 
heavy computations in the transmitter and the receiver are called radio baseband signal 
processing, and include coding, channel model estimation, signal reception, error detection, 
and error correction. All radio baseband signal processing is a class of DSP applications 
based on well-known DSP theory. 

   The computing cost of baseband signal processing varies signifi cantly according to the 
channel condition and the coding algorithms. An advanced radio receiver requires several 
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 Figure 7.13 :         Streaming signal between a transceiver pair    
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hundred to several thousand operations (including memory accesses) for recovering one data 
bit received from a radio channel. Thus, receiving one megabit per second might require 
several giga-operations per second. The principle of typical radio baseband signal processing 
is illustrated in  Figure 7.13 . The receiver gets a training signal packet fi rst, which is the 
known signal used for detecting the current channel model as the transfer function  H ( f )  � 

  Y ( f )/ X ( f ) by comparing the known training signal stored in the receiver ( X ) to the received 
signal ( Y ). Note that this computation must be conducted in a very short time in order to 
process the normal signal (payload) in time  [10] . The estimated channel model  H  is used for 
recovering the normal signal during data reception.  

    7.3.3       Multimedia Signal Processing Systems 

   Multimedia signal processing is an important class of DSP applications. Here, the concept 
of multimedia covers various information formats such as voice, audio, image, and video. 
Data can be stored in different ways — for example, on CD, hard disk, or memory card, and 
transmitted via fi xed-line or radio channel. Both transmission bandwidth and storage volume 
will directly affect the end cost. Therefore, data must be compressed for transmission and 
storage. The compressed data needs to be decompressed before being presented  [11] . 

   There are two effi cient coding techniques for compression and decompression of data: lossy 
compression and lossless compression. Lossy compression can be used for voice-, audio-, 
and image-based applications because the imperfect human hearing and visual capability 
allows certain types of information to be removed. Lossless compression is required when all 
information in the data has to be fully recovered. 

    7.3.3.1       Lossless Compression 
   Lossless compression is a method of reducing the size of a data fi le without losing any 
information, which means that less storage space or transmission bandwidth is needed after 
the data compression. However, the fi le after compression and decompression must exactly 
match the original information. The principle of lossless compression is to fi nd and remove 
any redundant information in the data. For example, when encoding the characters in a 
computer system, the length of the code assigned to each character is the same. However, 
some characters may appear more often than the others, thus making it more effi cient to use 
shorter codes for representing these characters. 

   A common lossless compression scheme is Huffman coding, which has the following 
properties: 

      ●      Codes for more probable symbols are shorter than those for less probable symbols.  

      ●      Each code can be uniquely decoded.    
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   A Huffman tree is used in Huffman coding. This tree is built based on statistical 
measurements of the data to be encoded. As an example, the frequencies of the different 
symbols in the sequence ABAACDAAAB are calculated and listed in  Table 7.2   . 

   The Huffman tree is illustrated in  Figure 7.14   . 

   In this case, there are four different symbols (A, B, C, and D), and at least two bits per symbol 
are needed. Thus 10  
  2  �  20 bits are required for encoding the string ABAACDAAAB. 
If the Huffman codes in Table 7.4 are used, only 6  
  1  �  2  
  2  �  3  �  3  �  16 bits are 
needed. Thus four bits are saved. Once the Huffman codes have been decided, the code of 
each symbol can be found from a simple lookup table. 

   Decoding can be illustrated by the same example. Assume that the bit stream 01000110111 
was generated from the Huffman codes in Table 7.2. This binary code will be translated in 
the following way: 0  →  A, 10  →  B, 0  →  A, 0  →  A, 110  →  C, and 111  →  D. Obviously the 
Huffman tree must be known to the decoder. 

   Without special hardware acceleration, the performance of Huffman coding and decoding is 
usually much lower than one bit per instruction. With special hardware acceleration, two bits 
per instruction can be achieved. In reference  [12] , the throughput of Huffman encoding was 
enhanced from 0.083 bit per clock cycle to more than 2 bits per clock cycle by using a special 
hardware architecture. Huffman coding and decoding are typical applications for a FSM 
(fi nite state machine).  

 Table 7.2 :         Symbol frequencies and Huffman codes      2     

   Symbol  Frequency  Normal code  Huffman code 

   A  6  00    0 

   B  2  01   10 

   C  1  10  110 

   D  1  11  111 

root
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0
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C D

 Figure 7.14 :         Huffman tree    

   2  Power point fi les are available at the web page of the book.   
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    7.3.3.2       Voice Compression 

   In order to reach a high compression ratio, lossy compression can be used. In this case, data 
cannot be completely recovered. However, if the lost information is not important to the user 
or is negligible for other reasons, lossy compression can be very useful for some applications 
 [13] . For example, modern voice compression techniques can compress 104 kbits/s voice data 
(8       kHz sampling rate with 13 bits resolution) into a new stream with a data rate of 1.2 kbits/s 
with reasonable (limited) distortion using an eMELP voice codec. The compression ratio here 
is 86:1  [14] . 

   Voice (speech) compression has been thoroughly investigated, and advanced voice 
compression today is based on voice synthesis techniques. A simplifi ed example of a voice 
encoder can be found in  Figure 7.15   . 

   The voice encoder depicted in  Figure 7.15   [13]  synthesizes both the vocal model and the 
voice features within a period of time. A typical period is between 5 and 20 milliseconds. The 
vocal mode is modeled using a 10-tap IIR fi lter emulating the shape of the mouth. The voice 
features are described by four parameters: gain (volume of the voice), pitch (fundamental 
frequency of the voice providing the vocal feature), attenuation (describes the change in voice 
volume), and noise pattern (describes the consonants of the voice). 

   Instead of transferring or storing the original voice, the vocal model and voice patterns will 
be transferred or stored. Taking the voice codec in  Figure 7.15  as an example, the data size of 
the original voice during 20 milliseconds is 104       kb  
  0.02  �  2.08       kb. After compression, the 
vocal and voice patterns can be coded using 10  
  8  �  4  
  8  �  112 bits. This corresponds 
to a compression ratio of 18:1. For implementing the encoder and the decoder, many DSP 
algorithms will be used such as autocorrelation, Fast Fourier transform, adaptive fi ltering, 
quantization, and waveform generation. The computing cost of a complete voice encoder is 
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 Figure 7.15 :         A voice encoder based on voice synthesis technique    
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around 10 to 50 million operations per second for compressing 104 kbits per second using the 
voice synthesis technique. This is equivalent to about 100 to 500 operations per voice sample. 

   A voice codec (coder and decoder) is a real-time system, which means that the complete 
coding and decoding must be fi nished before the next data arrives (in other words, the data 
processing speed must be faster than the data rate).  

    7.3.3.3       Image and Video Compression 

   Generally, compression techniques for image and video  [15]  are based on two-dimensional 
signal processing. Both lossy and lossless compression techniques are used for these 
applications. Image and video compression techniques are illustrated in  Figure 7.16   . 

   The complete algorithm fl ow in  Figure 7.16  is a simplifi ed video compression fl ow, and 
the shaded subset is a simplifi ed image compression fl ow. The fi rst step in image and video 
compression is color transformation. The three original color planes R, G, B (R  �  red, 
G  �  green, B  �  blue) are translated to the Y, U, V color planes (Y  �  luminance, U and 
V  �  chrominance). Because the human sensitivity to chrominance (color) is lower than the 
sensitivity to luminance (brightness), the U and V planes can be down-sampled to a quarter of 
their original size. Therefore, a frame with a size factor of 3 (3 color planes) is down-sampled 
to a frame with the size factor of 1  �  1 / 4  �  1 / 4  �  1.5. The compression ratio here is 2. 

   Frequency-domain compression is executed after the RGB to YUV transformation. The DCT 
is used for transferring the image from the time domain to the frequency domain. Because 
the human sensitivity to spatially high-frequency details is low, the information located in the 
higher frequency parts can be reduced by quantization (the information is represented with 
lower resolution). 
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 Figure 7.16 :         Image and video compression    
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   After the frequency-domain compression, a lossless compression such as Huffman coding 
will fi nally be carried out. 

   The classical JPEG (Joint Picture Expert Group) compression for still images can reach 
20:1 compression on average. Including the memory access cost, JPEG encoding consumes 
roughly 200 operations and decoding roughly 150 operations, for one RGB pixel (including 
three color components). The processing of Huffman coding and decoding can vary a lot 
between different images, so the JPEG computing cost of a complete image cannot be 
accurately estimated. 

   Video compression is an extension of image compression. Video compression is utilizing 
two types of redundancies: spatial and temporal. Compression of the fi rst video frame, the 
reference frame, is similar to compression of a still image frame. The reference frame is used 
for compressing later frames, the inter-frames. 

   If the difference between a reference frame and a neighbor frame is calculated, the result 
(motion vectors) can be used for representing this frame. The size of this data is usually very 
small compared to the size of the original frame. Often there is little difference between 
the corresponding pixels in consecutive frames except for the movement of some objects. 
The data transferred will consist of a reference frame and a number of consecutive frames 
represented by motion vectors. The video stream can therefore be signifi cantly compressed. 

   The classical MPEG2 (Moving Picture Expert Group) video compression standard can 
reach a 50:1 compression ratio on average. The advanced video codec H.264/AVC standard 
can increase this ratio to more than 100:1. The computing cost of a video encoder is very 
dependent on the complexity of the video stream and the motion estimation algorithm used. 
Including the cost of memory accesses, an H.264 encoder may consume as much as 4000 
operations and its decoder about 500 operations for a pixel on average. As an example, for 
encoding a video stream with QCIF size (176  
  144) and 30 frames per second, the encoder 
requires about 3  
  10 9  operations per second. The corresponding decoder requires about 
4  
  10 8  operations per second.   

    7.3.4       Review on Applications 

   You may have realized that the application examples discussed in this section are applicable 
to a high-end mobile phone with a video camera. The total digital signal processing cost, 
including 3G (third-generation) baseband, voice codec, digital camera, and video camera, is 
actually much more than the capacity of a Pentium running at 2 GHz! 

   How can a DSP subsystem in a mobile phone supply so much computing capacity while 
keeping the power consumption low? The answer is the use of application-specifi c 
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processors! Both the radio baseband and media (voice, audio, and video) processors are 
application-specifi c instruction set processors (ASIP) or ASIC modules. They are designed 
for a class of applications and optimized for low power and low silicon cost. 

   For designing an ASIP, the computing cost of the target applications is an essential design 
input. In this section, the cost is measured as the unit cost, the cost per sample (a voice 
sample, a pixel in a picture, or a bit of recovered data from radio channel). We strongly 
recommend that you use this way of counting the computing cost.   

    7.4       DSP Implementations 

   A DSP application can be implemented in a variety of ways. One way is to implement the 
application algorithms using a general-purpose computer, like a personal computer or a 
workstation. There are two reasons for implementing a DSP application on a general-purpose 
computer: 

    1.     To quickly supply the application to the fi nal user within the shortest possible time.  

    2.     To use this implementation as a reference model for the design of an embedded system.    

   The discussion of the DSP implementation using a general computer in this section follows 
the fi rst reason. Many DSP applications are implemented using a general-purpose DSP 
(off-the-shelf processor). Here, general-purpose DSP stands for a DSP available from a 
semiconductor supplier and not targeted for a specifi c class of DSP applications. For example, 
the TMS320C55X processor from Texas Instruments  [6]  is available on the market and can be 
used for many DSP applications requiring a computing performance of less than 500 million 
arithmetic operations per second. 

   DSP applications can also be implemented using an ASIP DSP. An ASIP is designed for a 
class of applications such as radio baseband processing in a multimode mobile phone, audio 
processing in an MP3 player, or image processing in a digital camera. 

   Another alternative for implementing DSP applications is the nonprogrammable ASIC 
(Application Specifi c Integrated Circuit). Many DSP applications were implemented 
this way in the 1980s due to limitations in silicon area and performance. Recently the 
nonprogrammable DSP ASIC has been taken over gradually by the DSP ASIP in accordance 
with increasing requirements on fl exibility. 

   An FPGA (Field-Programmable Gate Array) is also an alternative as an intermediate or the 
fi nal implementation of DSP applications. 
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    7.4.1       DSP Implementation on GPP 

   Many DSP applications, with or without real-time requirements, can be implemented on 
a general-purpose processor (GPP). Recently, applications for media entertainment have 
become popular in personal computers, for example, audio and video players. A video player 
is a video decoder that is decompressing data according to international standards (e.g., ISO/
IEC MPEG-4) or proprietary standards (e.g., Windows Media Video from Microsoft). 

   The video player must be able to decode the video stream in real-time using the operating 
system (OS). However, most operating systems for desktops are not originally designed for 
real-time applications. When designing a high quality media player using such an OS, attention 
must be paid to the real-time features by correctly setting the priorities of the running tasks. 

   Another type of DSP application, without real-time requirements, is high performance 
computing. Typical examples are analysis of the stock market, weather forecast, or 
earthquakes. This type of analysis often is implemented in software running on a personal or 
supercomputer. The execution time of such a software program is not strictly regulated and 
this software therefore is defi ned as general software instead of real-time DSP software.  

    7.4.2       DSP Implementation on GP DSP Processors 

   A general-purpose DSP can be bought off-the-shelf from a number of different DSP suppliers 
(e.g., Texas Instruments, Analog Devices, or Freescale)  [6] . A general-purpose DSP has 
a general assembly instruction set that provides good fl exibility for many applications. 
However, high fl exibility usually means fewer application-specifi c features or less acceleration 
of both arithmetic and control operations. Therefore, a general-purpose DSP is not suitable 
for applications with very high performance requirements. High fl exibility also means that 
the chip area will be large. A general-purpose DSP processor can be used for initializing a 
product because the system design time will be short. When the volume has gone up, a DSP 
ASIP could replace the general-purpose processor in order to reduce the component cost. 

   No general-purpose DSP is 100% general. Most general-purpose DSP processors are 
actually designed with different target applications in mind. General-purpose DSP processors 
can be divided into processors targeted for either low power or high performance. For 
example, TMS320C2X of Texas Instruments is designed for low-cost applications, whereas 
TMS320C55 of Texas Instruments is designed for applications with medium performance 
and medium power. TMS320C6X of Texas Instruments is designed for applications requiring 
high performance. General-purpose DSP processors can also be divided into fl oating-point 
processors and fi xed-point processors. 
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    “ General-purpose ”  implies only that the DSP is designed neither for a specifi c task nor for a 
class of specifi c tasks. It is available on the device market for all possible applications. The 
instruction set and the architecture must be general, meaning that the instruction set covers all 
basic arithmetic functions and suffi cient control functions. The instruction set is not designed 
for accelerating a specifi c group of algorithms. At the same time, peripherals and interfaces 
must be comprehensive in order to be able to connect to various microcontrollers, memories, 
and peripheral devices. 

   Since the processor is off-the-shelf, the main development of a DSP product will be software 
design. The hardware development is limited to peripheral design, which means connecting 
the DSP to the surrounding components, including the MCU (microcontroller), main memory, 
and other input – output components. The best way of designing peripherals for an available 
DSP is to fi nd a reference design from the DSP supplier such as a debug board  [6] .  

    7.4.3       DSP Implementation on ASIP 

   A DSP ASIP has an instruction set optimized for a single application or a class of 
applications. On the one hand, a DSP ASIP is a programmable machine with a certain level 
of fl exibility, which allows it to run different software programs. On the other hand, its 
instruction set is designed based on specifi c application requirements, making the processor 
very suitable for these applications. Low power consumption, high performance, and low 
cost by manufacturing in high volume can be achieved. In case the processor is used for 
applications for which it was not intended, poor performance can be expected. For example, 
using a video or image DSP for radio baseband applications will result in catastrophically 
poor performance. DSP ASIPs are suitable in volume products such as mobile phones, digital 
cameras, video camcorders, and audio players (MP3 player). 

   An ASIP DSP has a dedicated instruction set and dedicated data types. These two features 
will be discussed and implemented throughout this book. You will fi nd later in this book 
that one instruction of an ASIP DSP could be equivalent to a kernel subroutine or part of 
a kernel subroutine running on a general-purpose DSP. For supporting algorithm-level 
acceleration, special functions will be implemented using specifi c hardware. This yields 
better performance, lower power consumption, and higher performance/silicon ratio 
compared to a general-purpose DSP. At the same time, the range of application is limited due 
to simplifi cation of the instruction set. 

   An ASIP can be an in-house product or a commercial off-the-shelf (COTS) component available 
on the market. In-house means a dedicated design for a specifi c product within a company. 
COTS means that the processor is designed as an ASSP (application-specifi c standard product).  
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    7.4.4       DSP Implementation on ASIC 

   There are two cases when an ASIC is needed for digital signal processing. The fi rst is to 
meet extreme performance requirements. In this case, a programmable device would not be 
able to handle the processing load. The second case is to meet ultra-low power or ultra-low 
silicon area, when the algorithm is stable and simple. In this case, there is no requirement on 
fl exibility, and a programmable solution is not needed. 

   A typical ASIC application example is decimation for synthetic aperture radar baseband 
processing. The requirement for this application is up to 1011 MAC (multiplication and 
accumulation) operations per second with relative low power consumption. Nonprogrammable 
devices can give such performance (as of 2006). Another typical application is a hearing aid 
device that includes a band-pass fi lter bank (synthesizer) and an echo canceller. About 40 MIPS 
(million instructions per second), high data dynamic range, and the power consumption below 
1       mW are required. A programmable device will not likely meet these requirements (as of 2006). 

   ASIC implementation is to map algorithms directly to an integrated circuit  [16] . Comparing 
a programmable device supplying the fl exibility at every clock cycle, an ASIC has very 
limited fl exibility. It can be confi gurable to some extent in order to accommodate very similar 
algorithms, but typically it cannot be updated in every clock cycle. 

   When designing an ASIP DSP, functions are mapped to subroutines consisting of assembly 
instructions. When designing an ASIC, the algorithms are directly mapped to circuits. 
However, most DSP applications are so complicated that mapping functions to circuits is 
becoming increasingly diffi cult. On the other hand, mapping DSP functions to an instruction 
set is becoming more popular because the challenge of complexity is handled in both 
software and hardware, and conquered separately. 

   Example 7.1 exposes the way to map functions directly to a circuit.   

   Finally the circuit is shown in  Figure 7.17   . 

   In order to avoid accumulation-induced overfl ow in this example, the data width should be 
increased after each accumulation. Because the result  y ( n ) shall have the same data type as 
the input  x ( n ), a rounding operation is necessary before truncating the lower 16 bits. Overfl ow 
might happen, so saturation is necessary before using the result. 

   We can see in Example 7.1 that mapping an FIR to hardware is simple. However, when 
algorithms or applications are complicated, especially when the algorithm details cannot 
be decided during the system design, this method cannot be used. In this case mapping 
applications to an instruction set is the only solution. 
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       Example 7.1      

   Mapping a 5-tap FIR fi lter to a hardware circuit: The algorithm of the 5-tap FIR fi lter is 
 y ( n )  �   Σ  x ( n   �   k ) *h ( k ). Here,  k  is the number of iterations from  k   �  0 to  k   �  4. 

   The algorithm can be mapped to hardware after unrolling the iteration. The 
pseudocode of a 5-tap FIR becomes: 

     //5-tap FIR behavior   
      {    
        A1  �  x(n)*h0  �  x(n-1)*h1;   
        A2  �  A1  �  x(n-2)*h2;   
        A3  �  A2  �  x(n-3)*h3;   
        Y(n)  �  A3  �  x(n-4)*h4;   
      }      

   The pseudo HDL code of a 5-tap FIR becomes: 

     //5-tap FIR HDL   
      {    
        A0[32:0]  �  �  x(n)[15:0]*h0[15:0]   
        A1[32:0]  �  �  A0[32:0]  �  x(n-1)[15:0]*h1[15:0];   
        A2[33:0]  �  �  A1[32:0]  �  x(n-2)[15:0]*h2[15:0];   
        A3[34:0]  �  �  A2[33:0]  �  x(n-3)[15:0]*h3[15:0];   
        A4[35:0]  �  �  A3[34:0]  �  x(n-2)[15:0]*h4[15:0];   
        Y(n)[15:0]  �  �  saturation (round (A4[35:0]));   
      }    

     clk  �   ‘ 1 ’  and clk’event   
      {    
        X(n-4) �  �  x(n-3); x(n-3) �  �  x(n-2); X(n-2) �  �  x(n-1);   
        x(n-1) �  �  x(n);   
      }         

    7.4.5       Trade-off and Decision of Implementations 

   In  Figure 7.18   , the power consumption (based on a 90       nm digital silicon process) is 
shown as a function of the MOPS (million operations per second) fi gure for different 
DSP implementations. The power consumption of the memory is very dependent on the 
application-specifi c hardware confi guration, so the memory cost is not included in this fi gure. 



DSP Hardware Options 309

www.newnespress.com

   The general DSP processor typically is used for applications with not more than a thousand 
MOPS. The DSP ASIC can support applications with very low power consumption (less 
than 0.01 mW/MHz) and high performance but without requirements on fl exibility. The DSP 
ASIP, however, is used mostly when a trade-off between silicon/power cost, performance, and 
development effort is required.   

    7.5       Review of Processors and Systems 

   Most DSP applications are implemented using either general-purpose or ASIP DSP 
processors. A digital signal processor is a programmable integrated circuit for data 
manipulation. A DSP processor is designed for performing arithmetic functions like add, 
subtract, multiply, and shift as well as logic functions. 
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 Figure 7.17 :         A 5-tap FIR fi lter    
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 Figure 7.18 :         Comparing three types of DSP implementations    



310 Chapter 7

www.newnespress.com

    7.5.1       DSP Processor Architecture 

   Learning processor design is an iterative process. In this chapter, you will get a bird’s-eye 
view of the methodology of DSP processor design and the processor architecture. 

    7.5.1.1       What Is Inside a DSP? 

   Similar to other types of processors, a DSP contains fi ve key components: 

      ●      Program memory (PM): PM is used for storing programs (in binary machine code). 
PM is part of the control path.  

      ●      Programmable FSM: It is a programmable fi nite state machine consisting of a program 
counter (PC) and an instruction decoder (ID). It supplies addresses to the program 
memory for fetching instructions. Meanwhile, it also performs instruction decoding 
and supplies control signals to the data processing unit and data addressing unit.  

      ●      Data memory and data memory addressing: DM stores information to be processed. 
Three types of data are stored in DM: input/output data, intermediate data in a 
computing buffer (a part of the data memory), and parameters or coeffi cients. The 
data memory addressing unit is controlled by programmable FSM and supplies 
addresses to data memories.  

      ●      Data processing unit (DU): The data processing unit, or datapath, performs arithmetic 
and logic computing. A DU includes at least a register fi le (RF), a multiplication and 
accumulation unit (MAC), and an arithmetic logic unit (ALU). A data processing unit 
may also include some special or accelerated functions.  

      ●      Input/output unit (I/O): I/O serves as an interface for functional units connected to 
the outside world. I/O also handles the synchronization of external signals. Memory 
buses and peripherals are also included.    

   A simplifi ed block diagram is given in  Figure 7.19   .   

    7.5.2       DSP Firmware 

   Before introducing fi rmware in detail, you should simply accept that fi rmware is fi xed 
software running in an electronic product. Only real-time fi rmware will be discussed in this 
book. Real-time DSP fi rmware usually consists of an infi nite loop that processes real-time 
signals continuously and periodically.  Figure 7.20    depicts a typical top-level infi nite loop in a 
real-time system. One data unit (one data packet or one data sample) is processed in the fi gure 
through one complete execution of the infi nite loop. 
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   The executable binary code is developed in four steps: 

    1.      Design the behavior source code.  The behavior source code is the original description 
that models an application or an algorithm.  

    2.      Design the hardware dependent source code.  The behavior source code must be 
modifi ed or rewritten in order to adapt it to the hardware. Hardware adaptation includes 
modifying hardware constraints and utilizing hardware features.  

Input/output, busses, and other peripherals

Programmable
FSM

Program memory Data memory and addressing

Data processing
unit: DU

I/O
connections
to outside
world

 Figure 7.19 :         DSP processor architecture    
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 Figure 7.20 :         An infi nite loop in a DSP processor    
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    3.      Design the assembly code.  The hardware-dependent source code is translated to 
assembly code, or the assembly code is written using the hardware-dependent source 
code as a reference.  

    4.      Generate and debug the binary machine code.  Finally, the assembly code is assembled 
and linked to executable binary machine code. The binary machine code is verifi ed by 
executing it on an assembly instruction set simulator.    

   Most DSP applications do not require ultra-high data precision. Therefore, fi xed-point 
processors can be used in order to reduce the silicon cost. For a fi xed-point DSP the silicon 
cost can be less than half compared to a standard fl oating-point DSP. As fi xed-point DSP 
processors are dominant on the DSP market, the discussions in this book will be focused on 
this type of processor. 

   Quantization (noise) error and offset of frequency response are unwanted behaviors when 
using a fi xed-point processor. These errors are due to the fi nite data length, and handling 
them will increase fi rmware complexity. The fi rmware must maintain the quality of input 
and intermediate data in the computing buffers. Data quality here stands for a measure of the 
quantization error (which should be minimized) and the dynamic range (which should be 
maximized). The fi nal fi rmware for a fi xed-point DSP will contain both functional fi rmware 
and fi rmware for data quality control. The fi rmware for data quality control includes data 
quality measurement and scaling (to be discussed with  Figure 7.22   ). Data quality can be 
optimized by data scaling. Normally, the execution of the data quality control fi rmware does 
not occur very often, and it is only needed when the amplitude of the input data is changed or 
the algorithm in the fi rmware is changed. 

   The program fl ow is shown in  Figure 7.21    and further illustrated in  Figure 7.22 . The complete 
fi rmware running on a fi xed-point processor can be divided into three fl ows. The main fl ow is 
shown with gray background, the measurement fl ow is shown with a background of vertical 
fi lling lines, and the scaling fl ow is shown with a background of horizontal fi lling lines. 

   In  Figure 7.21  and  Figure 7.22 , the main fl ow is executed once for each input streaming data. 
The data quality control fl ows are not executed very often. In most cases, the quality control 
part is skipped (via the default path in  Figure 7.21 ) until it is needed. The measurement 
fl ow monitors inputs and intermediate results. In the measurement fl ow, parameters such 
as signal-to-noise ratio, signal level on average, and maximum/minimum values will be 
measured. Other parameters may also be observed, for example, event counting of overfl ow 
and saturation. Counters are used for collecting statistics of certain events. The results from 
measurements will be used in the scaling fl ow. Finally, scaling factors for input, output, and 
internal data are modifi ed.  
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    7.5.3       Embedded System Overview 

   An embedded system is a system that is inside a product system or a product  [18] . An 
embedded system is a special-purpose computer system designed to perform one or a class 
of dedicated functions. In contrast, a general-purpose computer, such as a personal computer, 
can do many different tasks, depending on programming. The product user may not even be 
aware of the existence of the embedded system, although it may play an important role in the 
function of the product. An embedded system could be a component of a personal computer 
such as a keyboard controller, mouse controller, or a wireless modem. An embedded system 
could also be a digital subsystem inside a mobile phone, a digital camera, a digital TV, or 
in medical equipment. Except for general computers, most microelectronic systems are 
embedded systems. 

   A general computer system is not designed for any specifi c purpose. A desktop computer can 
be a general-purpose computing engine, a home electronics system, a documentation editing 
system, a media terminal, or a network terminal. An embedded system is an application-
specifi c system, different from a general computer system. Within the specifi c application 
domain, the embedded system may have much higher performance or much lower power 
consumption compared to a general computer system. An embedded system, such as a radar 
signal processing system or a computer tomography (CT) processing system, can have 
terafl ops performance (~1000 times more than the performance of a Pentium). Ultra low power 
consumption in the range 30 to 50 MIPS/mW is possible for hearing aid embedded systems. 

   However, it will be impossible to use an embedded processor for applications outside the 
specifi c domain. For example, a processor designed for controlling a washing machine can 
never be used as a DSP for video applications. On the other hand, a desktop computer can 
handle both these tasks. But fl exibility has a price tag. A processor for a washing machine can 
cost less than one dollar, and a Pentium 4 in a desktop costs much more than $100 (in 2005). 

   To summarize: embedded systems are application-specifi c. Product cost, design cost, 
performance, power consumption, and lifetime are all application-specifi c. In general, 
embedded system design covers almost all activities in the area of electrical engineering. 
Thus, the number of different types of embedded systems is very big. In this book, we discuss 
only DSP subsystems inside embedded systems.  

    7.5.4       DSP in an Embedded System 

   DSP processors are essential components in many embedded systems. One or several DSP 
processors consist of a DSP subsystem in an embedded system. A general embedded system, 
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including a DSP subsystem, is shown in  Figure 7.23   . Such a system is also called a system on 
a chip (SoC) platform for embedded applications. 

   The system in  Figure 7.23  can be divided into four parts. The fi rst part is the microcontroller 
(MCU), which is the master of the chip or the system. The MCU is responsible for handling 
miscellaneous tasks, except computing for real-time algorithms. Typical miscellaneous tasks 
are operating system, connection protocols, Java programs, human-machine-interface, and 
hardware management. 

   The second part is the ASIP DSP subsystem including accelerators, which is the main 
computing engine of the system. All heavy computing tasks should be allocated to this 
subsystem. The DSP subsystem could include a single processor with accelerators or a 
multicore processor cluster. For example, in a 3G mobile phone, the DSP subsystem usually 
has two processors: a baseband processor and an application processor. 

   The third part is the memory subsystem, which supports data and program storage for the 
DSP subsystem and the MCU. A SoC usually has multiple levels of memories. Within the 
MCU core and the DSP core, local memories or level-1 caches can be found. At SoC level, a 
level-2 cache or an on-chip main memory can be found. Level three in the memory hierarchy 
is the off-chip main memory. 

   The fourth part consists of peripherals including high-speed and low-speed I/Os. Analog 
circuits could be part of the low-speed I/O.  

    7.5.5       Fundamentals of Embedded Computing 

   Within a DSP subsystem, embedded computing can be divided into three parts: computing 
using ASIC, computing using hardware/software (HW/SW) (processors  �  accelerators), and 
computing using SW. Here, the focus is to discuss the computing using HW/SW and SW 
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 Figure 7.23 :         DSP processor in an embedded system    
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instead of using ASIC. Embedded SW can be divided further into three categories: operating 
system, SW for real-time computing, and SW for best-effort embedded computing. In this 
book, the focus is the SW for real-time computing. 

   SW for real-time computing must be executed on a specifi c DSP platform based on real-
time scheduling. The platform must supply enough computational capacity, and the real-
time scheduling guarantees that the execution will consume less time than the time interval 
between arriving input data. 

   In an embedded system, the complexity or dependency is relatively known before runtime. 
Static scheduling can therefore be used to enhance the utilization of the time and hardware 

       Example 7.2      

   Classify the following systems. Which is a real-time system, and which is not a real-time 
system? 

      ●      A mobile phone receiving and sending voice data.  

      ●      A mobile phone receiving and sending short message packets.  

      ●      A person calculating the statistics on the quality of stored data.  

      ●      A computer that analyzes stock information.    

    Answers  

      ●       Mobile phone sending and receiving voice data . It is a real-time system because the 
decoding of the received voice packet must be fi nished before the arrival of the next 
voice data packet.  

      ●       Mobile phone receiving and sending short messages . The baseband part is a real-time 
system because a symbol must be processed before the arrival of the next symbol. 
The application part for message display is not a real-time system, because the 
display of the short message can be delayed for a while without affecting the 
functionality of the system.  

      ●       Statistics on stored data.  It is not a real-time system. Your boss might ask you to 
speed up the process. Nevertheless, the arriving new data will not be lost if your 
processing speed is low.  

      ●       Stock analysis . Even though the processing result must be available in time, it is not 
a real-time system because the new arriving data will not be lost when the 
processing is slow.       
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resources. In a general computing system, on the contrary, the management of running 
applications is dynamic, and the issue of a task is based on a dynamic priority table. 

   Another special feature of embedded computing is the application-specifi c precision. Both 
the precision of operands and the precision of computing are specifi ed according to the 
application. The precision of audio processing can be rather high (around 24 bits), whereas 
the precision of video can be as low as 8 to 12 bits.    

    7.6       Design Flow 

   The system development process from conceptualization to manufacturing includes modeling, 
implementation, and verifi cation. This is known as the design fl ow. Conducting designs using 
the design fl ow is called the design methodology. In this section, methodologies for designing 
hardware, including processors, will be briefl y reviewed. 

    7.6.1       Hardware Design Flow in General 

   The design of an embedded system includes implementation of complete and correct 
functions with a specifi ed performance (not necessarily the highest), affordable cost, 
reasonable reliability, and within a limited amount of design time. In most cases, the product 
lifetime is also a design parameter. In order to design a system, with complex functions 
optimized and allocated to both hardware and software, an effi cient and reliable design fl ow 
or methodology is required. 

   A design consists of several transformation steps from a high-level to a low-level description. 
More hardware, control information, and constraints are inserted during each transformation 
to a lower level. A transformation from one level to the next lower level can be executed 
via description or synthesis. Two basic types of transformations, described as two design 
methodologies, are introduced in most methodology books: the capture-and-simulate 
methodology and the describe-and-synthesize methodology  [19] . 

   Capture-and-simulate has been the dominant methodology since the 1960s. According to this 
method, the system is described at every level and each description is proved by simulation. 
This method is not effi cient, because it consumes a lot of design time and designs cannot be 
suffi ciently optimized. However, this is still the only proven way (as of 2007) of high-level 
design from system specifi cation down to RTL coding. 

   The describe-and-synthesize methodology was introduced during the late 1980s by the 
success of logic synthesis. This methodology can be further divided into two levels of 
abstraction. At the higher level, behavioral synthesis translates the behavioral description 
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into a structural RTL description, including the data fl ow at bit level and the control details 
at cycle and bit level. The main tasks for behavioral synthesis are allocation, scheduling, and 
binding. At the lower level, RTL synthesis translates the RTL code to a gate level description, 
the net list. 

   Behavioral synthesis is currently (in 2007) far from mature. In most cases, behavioral 
synthesis of an ASIP is impossible today. There is hardly any automatic method for 
translating an assembly instruction set to a good HW architecture. One reason for this is 
the extremely large design space that makes it diffi cult to optimize the design toward HW 
multiplexing, high performance, and power effi ciency. 

   A well-known methodology for embedded system design is to divide the design activities 
using the famous  Y -chart, shown in  Figure 7.24   , which was proposed by Professor Daniel 
Gajski  [19] . 

   In using the  Y -chart, an assumption is made that each design can be modeled in three basic 
ways, emphasizing different properties, no matter how complex the design is. The  Y -chart has 
three axes representing design behavior (function, specifi cation), design structure (net list, 
block diagram), and physical design (layout, boards, packages). 

   Behavior design of a system means that the design is represented as a black box with 
specifi ed input and output data relations. The black box behavior does not indicate in any way 
how it is implemented or how its internal structure looks. 

   Structure design gives a description of the hardware partition and the relation 
(interconnection) between the black boxes. Each black box should be further refi ned by a 
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 Figure 7.24 :          Y  - chart    



DSP Hardware Options 319

www.newnespress.com

more detailed structure description including functionality, timing cost, and interconnects 
until the design reaches the register transfer level (RTL). 

   Physical design implements functions based on logic gates or transistors and interconnects. 
Physical features include the size and the position of each component, the wire routing 
between components, the placement, physical delay, power consumption, and thermo 
behavior. Physical parameters are taken into account, such as parasitic capacitance and 
resistance of interconnects.  

    7.6.2       ASIP Hardware Design Flow 

   Processor design is a complicated process. Without an advanced design fl ow, a processor 
cannot be designed in time and the quality of the design will not be high. The design fl ow is 
therefore essential for complicated systems such as ASIP. 

   The ASIP design fl ow is introduced briefl y here. The ASIP design fl ow is divided into three 
parts: architecture design, design of programming tools, and fi rmware design, as depicted in 
 Figure 7.25   . In this section, focus will be on architecture design, and in particular on system 
architecture and hardware development fl ow. Other topics such as design of programming 
tools and design of application fi rmware will be addressed briefl y. 

   The fi rst and most important step in the design of a processor is the instruction set design. 
This design step is complicated, and no one can really claim that a certain instruction set is 
the best. The instruction set design is a trade-off among a multitude of parameters including 
performance, functional coverage, fl exibility, power consumption, silicon cost, and design 
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 Figure 7.25 :         Knowledge required in ASIP design    
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time. In  Figure 7.26   , a simplifi ed design fl ow is described, including the basic fl ow for the 
design of an instruction set architecture. 

   The starting point of the design of an ASIP is the application analysis. Application coverage 
should be specifi ed fi rst and then translated to functional (algorithm) coverage. Application 
coverage is the process of reading and understanding specifi cations and standards of 
the relevant applications. Functional coverage of an ASIP is decided based on both the 
current standard specifi cations and carefully collected knowledge (e.g., books and research 
publications) in order to add extra features for future usage. Performance and cost should also 
be specifi ed as design constraints. 

   After the functional coverage is determined, the partitioning of hardware and software should 
be decided through profi ling of the source code. Hardware/software partitioning for an ASIP 
is to meet the performance constraint by defi ning what functions should be accelerated by 
application-specifi c instructions and what functions should be implemented as software 
routines using conventional instructions. This is an important design step of an instruction 
set, which is called the 10%-90% code locality. The locality rule means that 10% of the 
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 Figure 7.26 :         ASIP design fl ow    
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instructions run 90% of the time and 90% of the instructions appear only 10% of the time 
during execution. In other words, ASIP design is to fi nd the best instruction set architecture 
optimized for the 10% most frequently used instructions and to select those among the 90% 
of the not often used instructions in order to guarantee the functional coverage. 

   During the process of hardware and software partitioning, the instruction set of the ASIP is 
gradually specifi ed. The next design step is to implement the instruction set, which includes 
instruction coding, design of the instruction set simulator, and benchmarking. The coding of 
the instruction set includes the design of the assembly syntax and the design of the binary 
machine codes. The instruction set simulator must be implemented after the instruction 
set has been coded. Finally, the instruction set must be evaluated by benchmarking. The 
performance of the instruction set and the usage of each instruction will be exposed as inputs 
for further optimization. 

   The ASIP architecture can be specifi ed when the assembly instruction set is released. The 
microarchitecture design is a refi nement of the architecture design including fi ne-grained 
function allocation and hardware pipeline scheduling, specifying hardware modules, and 
interconnections between modules.  

 The ASIP design fl ow starts from the requirement specifi cation and is complete after 
the microarchitecture design. The design of an ASIP is based mostly on experience, 
and it is essential to minimize the cost of design iteration. The implementation of the 
microarchitecture, which involves RTL coding, is not the focus of this section. You can fi nd 
more information in references   [17]  and  [22] . 

    7.6.3       ASIP Design Automation 

   This subsection is written for researchers and project managers. Custom design of an ASIP 
DSP Processor is based on experience and is error prone. Design automation has been 
investigated and can be used to replace the custom ASIP design. ASIP design automation 
tools is summarized in  Figure 7.27   . 

   Figure 7.27 presents the research on ASIP design automation, which can be divided into three 
steps. The fi rst step is the architecture exploration (selecting or generating an architecture 
and assembly instruction set according to the application analyses). Different profi lers were 
designed by researchers, but the constraint specifi cation tool has not been investigated. The 
tool to merge multiple CFG has not been extensively investigated. (CFG in this step stands for 
 control fl ow graph .) 

   The second step is to specify an ADL (Architecture Description Language) to model the 
instruction set and architecture. This step can be very diffi cult. The language must be easy 
enough that ASIP designers can use it in modeling the design. However, if an ADL is easy, it 
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cannot carry suffi cient information to generate all tools and architectures. For example, tool 
generation requires suffi cient modeling of the instruction set, and the hardware (datapath, 
control path) generation requires suffi cient modeling of the microarchitecture (for example, 
structure of hardware multiplexing) and its function. If the ADL carries suffi cient information 
for generating tools and architectures, the ADL will not be readable and cannot be used by 
ASIP designers. Details are beyond the scope of this chapter and can be found in our NoGAP 
research        [38,39] . 

   The third step involves generations and verifi cations. Enormous research on generation 
of tools and architectures can be found in Tensilica        [32,33]  and the famous LISA project 
       [34,35] . As of 2007, there have been few research contributions to the ASIP formal 
verifi cation. 

   It is good for designers to know the basic concepts behind design automation tools. 
Designers ’  interests actually focus on how to use the tools to generate instruction set, 
architecture, and assembly programming tools, as well as support for design verifi cations. 
This is summarized in  Figure 7.28   . 

   Architecture and assembly instruction set exploration according to application profi ling is the 
fi rst step of processor design automation. This is actually the most diffi cult part, because the 

Design a tool to analyze and specify product and project constraints

Expert lib: Reference
architectures and

reference assembly
instruction sets

Merge
CFGs for
multiple

applications

Design a profiling
tool for multi-source
code profiling, CFG
for each application

Design a tool to generate or select an instruction set and architecture

Design an ADL to model the instruction set and the architecture

Design tools for a formal verifications and test pattern generations

G
en

er
at

io
n-

ve
rif

ic
at

io
n

M
od

el
in

g
A

rc
hi

te
ct

ur
e 

ex
pl

or
at

io
n

C
om

pl
ie

r
ge

ne
ra

to
r

A
ss

em
bl

er
ge

ne
ra

to
r

S
im

ul
at

or
ge

ne
ra

to
r

D
at

ap
at

h
ge

ne
ra

to
r

C
on

tr
ol

 p
at

h
ge

ne
ra

to
r

R
T

L 
co

de
ge

ne
ra

to
r

 Figure 7.27 :         Automatic ASIP design fl ow (tool researcher’s view)    
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distance between CFGs of multiple applications and an ASM (assembly instruction set) is very 
large, and there are too many choices to make in selecting different instruction set architectures. 
To manage the large gap, another design step (constraint specifi cation) might be needed. 

   Optimum ways to make decisions concerning tools have not yet been thoroughly investigated. 
Tools to generate accelerator instructions are available, but the tool to generate a complete 
processor instruction set does not exist. 

   Instruction set architecture of a processor is proposed and decided by designers, and the 
instruction set and the architecture selected will be inputs of processor modeling. The 
processor model will be used for generating the instruction set simulator, the compiler, 
assembler, and the architecture behavior model. After benchmarking of the instruction set 
and architecture, RTL code will fi nally be generated by the ASIP automation design tools. In 
 Table 7.3   , selected ASIP design tools are briefl y discussed                                  [25 – 39] . 

   The last column in the table shows a feature of ASIP design automation tools; the instruction 
set and architecture selection may or may not be limited by a built-in architecture. Limited by 
an architecture means that the automation tool offers instruction extension based on a built-in 
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processor instruction set architecture. The drawback is obviously that the built-in processor 
may not be suitable for all applications. Therefore,  “ no ”  in that column is superior to  “ limited ” . 

   MIMOLA is possibly the fi rst processor design automation tool. It was proposed by Professor 
Zimmermann in 1976 and was the research product of Professor Zimmermann and Professor 
Marwedel of Kiel University and TU Dortmund in Germany. Cathedral-I and II proposed 
by Professor Rabaey and Professor De Man of IMEC in Belgium was possibly the fi rst 
tool successfully used by industry (on the Mentor DSP station). Target was a successful 
research spin-off of Dr. Gert Goossens of IMEC, Belgium. ARC and Tensilica are successful 
companies that supply programmable hardware acceleration based on their processor core as 
the master of the platform. 

   LISA of CoWare was the research spin-off of Professor Meyr and Professor Leupers of ISS 
Aachen University, Germany. MESCAL is the research project of GigaScale of UC, Berkeley, 
California. NoGAP is the research project of Link ö ping University, Sweden.   

    7.7       Conclusions 

   The scope of DSP is huge, and includes DSP theory, DSP-related standards and applications, 
and DSP implementations. The intention of this chapter is to make a good partitioning of 

 Table 7.3 :         Review of ASIP design automation tools    
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DSP concepts into these three categories, and to focus on the hardware implementation of 
application-specifi c instruction set DSP processors. 

   In this chapter, knowledge required by the ASIP designer was briefl y reviewed. DSP 
implementation was discussed based on four platforms — the general computer, the general-
purpose DSP, the ASIP DSP, and the ASIC. DSP architectures were briefl y introduced. 
Furthermore, the concepts of embedded systems and embedded computing also have been 
introduced, because the DSP subsystem is an essential part of most embedded systems. ASIP 
design fl ow and methodologies of ASIP design automation were briefl y introduced. All topics 
covered in this chapter are only introductions. 

   We strongly recommend that you study the listed reference books            [2,17,21,22]  if you are not 
acquainted with the background knowledge discussed in this chapter.   
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 CHAPTER 8 

                                        DSP Processors and 
Fixed-Point Arithmetic 

   Li   Tan    

     This chapter presents the basic concepts of DSP hardware and software. And by basic, I mean 
it starts by referencing von Neumann’s seminal 1946 paper introducing the von Neumann 
architecture, and contrasts it with the almost-as-old Harvard architecture favored by most DSPs. 
It then delves into the operation of basic execution units such as the multiply-accumulate (MAC) 
unit, shifter, and address generation unit (AGU). 

 You may be wondering,  “ Why do I need to know how a shifter works? Why do I need to know 
the difference between an opcode and operand? ”  The reason is that DSP algorithms are 
computationally intensive, and generally require high levels of optimization to meet performance, 
power, and cost targets. This optimization often entails working in assembly or another low-level 
language. To work in these low-level languages, you must know the underlying hardware. 

 On the software side, Tan gives us fundamental concepts that every DSP engineer needs. He 
starts with an explanation of fi xed-point and fl oating-point data formats and then dives into the 
problems of underfl ow and overfl ow — the main reasons fi xed-point implementations take so long. 
Then, he gets practical and lays out the IEEE standards for fi xed and fl oating-point operations. 

 In the end of the chapter, Tan illustrates the above concepts with real hardware and software. He 
implements FIR and IIR fi lters — two of the most common DSP functions — on Texas Instruments ’  
fi xed-point C54x DSP and fl oating-point C3x DSP. If you want to tinker with your own fi lters, you 
are in luck: Tan provides sample C and MATLAB code for each example. 

  —  Kenton Williston    

    8.1       Digital Signal Processor Architecture 

   Unlike microprocessors and microcontrollers, digital signal (DS) processors have special 
features that require operations such as fast Fourier transform (FFT), fi ltering, convolution 
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and correlation, and real-time sample-based and block-based processing. Therefore, DS 
processors use a different dedicated hardware architecture. 

   We fi rst compare the architecture of the general microprocessor with that of the DS processor. 
The design of general microprocessors and microcontrollers is based on the  von Neumann 
architecture,  which was developed from a research paper written by John von Neumann and 
others in 1946. Von Neumann suggested that computer instructions, as we shall discuss, be 
numerical codes instead of special wiring.  Figure 8.1    shows the von Neumann architecture. 

   As shown in  Figure 8.1 , a von Neumann processor contains a single, shared memory for 
programs and data, a single bus for memory access, an arithmetic unit, and a program control 
unit. The processor proceeds in a serial fashion in terms of fetching and execution cycles. 
This means that the central processing unit (CPU) fetches an instruction from memory and 
decodes it to fi gure out what operation to do, then executes the instruction. The instruction 
(in machine code) has two parts: the  opcode  and the  operand . The opcode specifi es what 
the operation is, that is, tells the CPU what to do. The operand informs the CPU what data 
to operate on. These instructions will modify memory, or input and output (I/O). After an 
instruction is completed, the cycles will resume for the next instruction. One an instruction or 
piece of data can be retrieved at a time. Since the processor proceeds in a serial fashion, 
it causes most units to stay in a wait state. 

   As noted, the von Neumann architecture operates the cycles of fetching and execution by 
fetching an instruction from memory, decoding it via the program control unit, and fi nally 
executing the instruction. When execution requires data movement — that is, data to be read 
from or written to memory — the next instruction will be fetched after the current instruction 
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 Figure 8.1 :         General microprocessor based on von Neumann architecture    
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is completed. The von Neumann-based processor has this bottleneck mainly due to the use of 
a single, shared memory for both program instructions and data. Increasing the speed of the 
bus, memory, and computational units can improve speed, but not signifi cantly. 

   To accelerate the execution speed of digital signal processing, DS processors are designed 
based on the  Harvard architecture,  which originated from the Mark 1 relay-based computers 
built by IBM in 1944 at Harvard University. This computer stored its instructions on punched 
tape and data using relay latches.  Figure 8.2    shows today’s Harvard architecture. As depicted, 
the DS processor has two separate memory spaces. One is dedicated to the program code, 
while the other is employed for data. Hence, to accommodate two memory spaces, two 
corresponding address buses and two data buses are used. In this way, the program memory 
and data memory have their own connections to the program memory bus and data memory 
bus, respectively. This means that the Harvard processor can fetch the program instruction 
and data in parallel at the same time, the former via the program memory bus and the latter 
via the data memory bus. There is an additional unit called a  multiplier and accumulator  
(MAC), which is the dedicated hardware used for the digital fi ltering operation. The last 
additional unit, the shift unit, is used for the scaling operation for fi xed-point implementation 
when the processor performs digital fi ltering. 
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 Figure 8.2 :         Digital signal processors based on the Harvard architecture    
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   Let us compare the executions of the two architectures. The von Neumann architecture 
generally has the execution cycles described in  Figure 8.3   . The fetch cycle obtains the opcode 
from the memory, and the control unit will decode the instruction to determine the operation. 
Next is the execute cycle. Based on the decoded information, execution will modify the 
content of the register or the memory. Once this is completed, the process will fetch the next 
instruction and continue. The processor operates one instruction at a time in a serial fashion. 

   To improve the speed of the processor operation, the Harvard architecture takes advantage 
of a common DS processor, in which one register holds the fi lter coeffi cient while the other 
register holds the data to be processed, as depicted in  Figure 8.4   . 

   As shown in  Figure 8.4 , the execute and fetch cycles are overlapped. We call this the 
 pipelining  operation. The DS processor performs one execution cycle while also fetching the 
next instruction to be executed. Hence, the processing speed is dramatically increased. 

   The Harvard architecture is preferred for all DS processors due to the requirements of most DSP 
algorithms, such as fi ltering, convolution, and FFT, which need repetitive arithmetic operations, 
including multiplications, additions, memory access, and heavy data fl ow through the CPU. 

   For other applications, such as those dependent on simple microcontrollers with less of a 
timing requirement, the von Neumann architecture may be a better choice, since it offers 
much less silicon area and is thus less expensive.  
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 Figure 8.3 :         Execution cycle based on the von Neumann architecture    
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    8.2       Digital Signal Processor Hardware Units 

   In this section, we will briefl y discuss special DS processor hardware units. 

    8.2.1       Multiplier and Accumulator 

   As compared with the general microprocessors based on the von Neumann architecture, 
the DS processor uses the MAC, a special hardware unit for enhancing the speed of digital 
fi ltering. This is dedicated hardware, and the corresponding instruction is generally referred 
to as a MAC operation. The basic structure of the MAC is shown in  Figure 8.5   . 

   As shown in  Figure 8.5 , in a typical hardware MAC, the multiplier has a pair of input 
registers, each holding the 16-bit input to the multiplier. The result of the multiplication is 
accumulated in a 32-bit accumulator unit. The result register holds the double precision data 
from the accumulator.  

    8.2.2       Shifters 

   In digital fi ltering, to prevent overfl ow, a scaling operation is required. A simple scaling-down 
operation shifts data to the right, while a scaling-up operation shifts data to the left. Shifting data 
to the right is the same as dividing the data by 2 and truncating the fraction part; shifting data to 
the left is equivalent to multiplying the data by 2. As an example, for a 3-bit data word 011 2   �  3 10 , 
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 Figure 8.5 :         The multiplier and accumulator (MAC) dedicated to DSP    
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shifting 011 to the right gives 001 2   �  1; that is, 3/2  �  1.5, and truncating 1.5 results in 1. Shifting 
the same number to the left, we have 110 2   �  6 10 ; that is, 3  
  2  �  6. The DS processor often shifts 
data by several bits for each data word. To speed up such operations, the special hardware shift 
unit is designed to accommodate the scaling operation, as depicted in  Figure 8.2 .  

    8.2.3       Address Generators 

   The DS processor generates the addresses for each datum on the data buffer to be processed. 
A special hardware unit for circular buffering is used (see the address generator in  Figure 8.2 ).  Figure 
8.6    describes the basic mechanism of circular buffering for a buffer having eight data samples. 

   In circular buffering, a pointer is used and always points to the newest data sample, as shown in 
the fi gure. After the next sample is obtained from analog-to-digital conversion (ADC), the data 
will be placed at the location of  x ( n   –  7), and the oldest sample is pushed out. Thus, the location 
for  x ( n   –  7) becomes the location for the current sample. The original location for  x ( n ) becomes 
a location for the past sample of  x ( n   –  1). The process continues according to the mechanism just 
described. For each new data sample, only one location on the circular buffer needs to be updated. 

   The circular buffer acts like a fi rst-in/fi rst-out (FIFO) buffer, but each datum on the buffer 
does not have to be moved.  Figure 8.7    gives a simple illustration of the 2-bit circular buffer. 
In the fi gure, there is data fl ow to the ADC ( a, b, c, d, e, f, g,   … ) and a circular buffer initially 
containing  a, b, c,  and  d . The pointer specifi es the current data of  d,  and the equivalent FIFO 
buffer is shown on the right side with a current data of  d  at the top of the memory. When  e  
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 Figure 8.6 :         Illustration of circular buffering    
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comes in, as shown in the middle drawing in  Figure 8.7 , the circular buffer will change the 
pointer to the next position and update old  a  with a new datum  e . It costs the pointer only 
one movement to update one datum in one step. However, on the right side, the FIFO has to 
move each of the other data down to let in the new datum  e  at the top. For this FIFO, it takes 
four data movements. In the bottom drawing in  Figure 8.7 , the incoming datum  f  for both the 
circular buffer and the FIFO buffer continues to confi rm our observations. 

   Like fi nite impulse response (FIR) fi ltering, the data buffer size can reach several hundreds. 
Hence, using the circular buffer will signifi cantly enhance the processing speed.   

    8.3       Digital Signal Processors and Manufacturers 

   DS processors are classifi ed for general DSP and special DSP. The general-DSP processor 
is designed and optimized for applications such as digital fi ltering, correlation, convolution, 

d

Data flow: a, b, c, d, e, f, g, ...

c
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d
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FIFO
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c
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d

fe
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Past data

c

d

e
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Equivalent to

Equivalent to

Equivalent to

Data

Data

c
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 Figure 8.7 :         Circular buffer and equivalent FIFO    



336 Chapter 8

www.newnespress.com

and FFT. In addition to these applications, the special DSP processor has features that are 
optimized for unique applications such as audio processing, compression, echo cancellation, 
and adaptive fi ltering. Here, we will focus on the general-DSP processor. 

   The major manufacturers in the DSP industry are Texas Instruments (TI), Analog Devices, 
and Motorola. TI and Analog Devices offer both fi xed-point DSP families and fl oating-point 
DSP families, while Motorola offers fi xed-point DSP families. We will concentrate on TI 
families, review their architectures, and study real-time implementation using the fi xed-and 
fl oating-point formats.  

    8.4       Fixed-Point and Floating-Point Formats 

   In order to process real-world data, we need to select an appropriate DS processor, as well as 
a DSP algorithm or algorithms for a certain application. Whether a DS processor uses a fi xed- 
or fl oating-point method depends on how the processor’s CPU performs arithmetic. A fi xed-
point DS processor represents data in  2’s complement integer format  and manipulates data 
using integer arithmetic, while a fl oating-point processor represents numbers using a mantissa 
(fractional part) and an exponent in addition to the integer format and operates data using 
fl oating-point arithmetic (discussed in a later section). 

   Since the fi xed-point DS processor operates using the integer format, which represents only 
a very narrow dynamic range of the integer number, a problem such as overfl ow of data 
manipulation may occur. Hence, we need to spend much more coding effort to deal with 
such a problem. As we shall see, we may use fl oating-point DS processors, which offer a 
wider dynamic range of data, so that coding becomes much easier. However, the fl oating-
point DS processor contains more hardware units to handle the integer arithmetic and the 
fl oating-point arithmetic, hence is more expensive and slower than fi xed-point processors 
in terms of instruction cycles. It is usually a choice for prototyping or proof-of-concept 
development. 

   When it is time to make the DSP an application-specifi c integrated circuit (ASIC), a chip 
designed for a particular application, a dedicated hand-coded fi xed-point implementation can 
be the best choice in terms of performance and small silica area. 

   The formats used by DSP implementation can be classifi ed as fi xed or fl oating point. 
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 Table 8.1 :         A 3-bit 2’s complement number representation  

   Decimal Number  2’s Complement 

   3  011 

   2  010 

   1  001 

   0  000 

    � 1  111 

    � 2  110 

    � 3  101 

    � 4  100 

    8.4.1       Fixed-Point Format 

   We begin with 2’s complement representation. Considering a 3-bit 2’s complement, we can 
represent all the decimal numbers shown in  Table 8.1   . 

   Let us review the 2’s complement number system using  Table 8.1 . Converting a decimal 
number to its 2’s complement requires the following steps: 

    1.     Convert the magnitude in the decimal to its binary number using the required number 
of bits.  

    2.     If the decimal number is positive, its binary number is its 2’s complement representation; 
if the decimal number is negative, perform the 2’s complement operation, where we negate 
the binary number by changing the logic 1’s to logic 0’s and logic 0’s to logic 1’s and then 
add a logic 1 to the data. For example, a decimal number of 3 is converted to its 3-bit 2’s 
complement as 011; however, for converting a decimal number of  � 3, we fi rst get a 3-bit 
binary number for the magnitude in the decimal, that is, 011. Next, negating the binary 
number 011 yields the binary number 100. Finally, adding a binary logic 1 achieves the 
3-bit 2’s complement representation of  � 3, that is, 100  �  1  �  101, as shown in  Table 8.1 .    

   As we see, a 3-bit 2’s complement number system has a dynamic range from   �  4 to 3, 
which is very narrow. Since the basic DSP operations include multiplications and additions, 
results of operation can cause overfl ow problems. Let us examine the multiplications in 
Example 8.1.
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        Example 8.1      

   Given: 

    1.     2 
 ( � 1)  
    2.     2 
 ( � 3), 

    a.     Operate each using its 2’s complement. 

    a.     1.          

 

     

010

00010




�

001
010

000
000

        
     and 2’s complement of 00010 � 11110. Removing two extended sign bits 

gives 110. 

    The answer is 110 ( � 2), which is within the system. 

2.    
010

00110




�

011
010

010
000

     

 

      and 2’s complement of 00110  �  11010. Removing two extended sign bits 
achieves 010. 

   Since the binary number 010 is 2, which is not ( � 6) as we expect, overfl ow occurs; that 
is, the result of the multiplication ( � 6) is out of our dynamic range (  �  4 to 3).      

   Let us design a system treating all the decimal values as fractional numbers, so that we obtain 
the fractional binary 2’s complement system shown in  Table 8.2   . 

   To become familiar with the fractional binary 2’s complement system, let us convert a 
positive fraction number  3

4     and a negative fraction number  � 1
4

    in decimals to their 2’s 
complements. Since 

    

3

4
0 2 1 2 1 20 1 2� 
 � 
 � 
� � ,
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 Table 8.2 :         A 3-bit 2’s complement system using fractional representation  

   Decimal Number  Decimal Fraction  2’s Complement 

   3  3/4  0.11 

   2  2/4  0.10 

   1  1/4  0.01 

   0  0  0.00 

    � 1   � 1/4  1.11 

    � 2   � 2/4  1.10 

    � 3   � 3/4  1.01 

    � 4   � 4/4  �   � 1  1.00 

   its 2’s complement is 011. Note that we did not mark the binary point for clarity. Again, since   

    1

4
0 2 0 2 1 20 1 2� 
 � 
 � 
� � ,

       

  its positive-number 2’s complement is 001. For the negative number, applying the 2’s 
complement to the binary number 001 leads to 110  �  1  �  111, as we see in  Table 8.2 .   

   Now let us focus on the fractional binary 2’s complement system. The data are normalized 
to the fractional range from  – 1 to  1 2 2 3

4� �� .     When we carry out multiplications with two 
fractions, the result should be a fraction, so that multiplication overfl ow can be prevented. Let 
us verify the multiplication (010)  
  (101), which is the overfl ow case in Example 8.1: 

  

 .
 0.11

0 10

010
010

000

0 0110




�

.         

   2’s complement of 0.0110  �  1.1010. 

   The answer in decimal form should be: 

  

1 1010 1 0 0110 0 2 1 2 1 2 0 22
1 2 3 4. . ( )� � 
 � � � 
 � 
 � 


�

� � �( ) ( ) ( ( ) ( ) ( ) )×

−

−

33

8
.       
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   This number is correct, as we can verify from  Table 8.2 , that is,  ( ( ))2
4

3
4

3
8
 � � � .     

   If we truncate the last two least-signifi cant bits to keep the 3-bit binary number, we have an 
approximated answer as: 

  1 10 1 0 10 1 2 0 2
1

22
1 2. . .� � 
 � � 
 � 
 � �� �( ) ( ) ( ( ) ( ) )       

   The truncation error occurs. The error should be bounded by  2 2� � 1
4

   . We can verify that: 

  � � � � �1 2 3 8 1 8 1 4/ / / / .( )       

   To use such a scheme, we can avoid the overfl ow due to multiplications but cannot prevent 
the additional overfl ow. In the following addition example, 

  

0 11
0 01

1 00

.
.

.

�

     

  where the result 1.00 is a negative number.   

   Adding two positive fractional numbers yields a negative number. Hence, overfl ow 
occurs. We see that this signed fractional number scheme partially solves the overfl ow in 
multiplications. Such fractional number format is called the signed Q-2 format, where there 
are 2 magnitude bits plus one sign bit. The additional overfl ow will be tackled using a scaling 
method discussed in a later section. 

   Q-format number representation is the most common one used in fi xed-point DSP 
implementation. It is defi ned in  Figure 8.8   . 

   As indicated in  Figure 8.8 , Q-15 means that the data are in a sign magnitude form in which 
there are 15 bits for magnitude and one bit for sign. Note that after the sign bit, the dot shown 
in  Figure 8.8  implies the binary point. The number is normalized to the fractional range from 
  �  1 to 1. The range is divided into 2 16  intervals, each with a size of 2  � 15 . The most negative 
number is  � 1, while the most positive number is 1 � 2  � 15 . Any result from multiplication 
is within the fractional range of  � 1 to 1. Let us study the following examples to become 
familiar with Q-format number representation.

Q-15
•

�20 2�1 2�2 2�3 2�4 2�5 2�6 2�7 2�8 2�9 2�10 2�11 2�12 2�13 2�14 2�15

Implied binary point

 Figure 8.8 :         Q-15 (fi xed-point) format    
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        Example 8.2      

      a.     Find the signed Q-15 representation for the decimal number 0.560123.    

    Solution 

      a.     The conversion process is illustrated using  Table 8.3   . For a positive fractional 
number, we multiply the number by 2 if the product is larger than 1, carry bit 1 as 
a most-signifi cant bit (MSB), and copy the fractional part to the next line for the 
next multiplication by 2; if the product is less than 1, we carry bit 0 to MSB. The 
procedure continues to collect all 15 magnitude bits.    

    We yield the Q-15 format representation as 

    0 100011110110010. .         

    Since we use only 16 bits to represent the number, we may lose accuracy after conversion. 
Like quantization, the truncation error is introduced. However, this error should be 
less than the interval size, in this case, 2   �  15   �  0.000030517. We shall verify this in 

 Table 8.3 :         Conversion process of Q-15 representation  

   Number  Product  Carry 

   0:560123  
  2  1.120246  1 (MSB) 

   0:120246  
  2  0.240492  0 

   0:240492  
  2  0.480984  0 

   0:480984  
  2  0.961968  0 

   0:961968  
  2  1.923936  1 

   0:923936  
  2  1.847872  1 

   0:847872  
  2  1.695744  1 

   0:695744  
  2  1.391488  1 

   0:391488  
  2  0.782976  0 

   0:782976  
  2  1.565952  1 

   0:565952  
  2  1.131904  1 

   0:131904  
  2  0.263808  0 

   0:263808  
  2  0.527616  0 

   0:527616  
  2  1.055232  1 

   0:055232  
  2  0.110464  0 (LSB) 

   MSB, most-signifi cant bit; LSB, least-signifi cant bit. 
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        Example 8.3      

      a.     Find the signed Q-15 representation for the decimal number  � 0.160123.    

    Solution 

      a.     Converting the Q-15 format for the corresponding positive number with the same 
magnitude using the procedure described in Example 8.2, we have:    

  0 160123 0 0001010001111110. . .�       
   Then, after applying 2’s complement, the Q-15 format becomes: 

  � �0 160123 1 110101110000010. . .       

    Alternative way:  Since ( � 0.160123) 
 2 15   �   � 5246.9, converting the truncated number 
  �  5246 to its 16-bit 2’s complement yields 1110101110000010.      

        Example 8.4      

      a.     Convert the Q-15 signed number 1.110101110000010 to the decimal number.    

    Solution 

      a.     Since the number is negative, applying the 2’s complement yields:    

  0 001010001111110. .       
    Then the decimal number is: 

  � � � � � � � � � �� � � � � � � �( ) . .2 2 2 2 2 2 2 2 0 1600953 5 9 10 11 12 13 14
           

Example 8.5. An alternative way of conversion is to convert a fraction, let’s say ¾, to Q-2 
format, multiply it by 2 2 , and then convert the truncated integer to its binary, that is, 

    ( )3 4 2 3 0112
2/ .
 � �         

   In this way, it follows that: 

    ( )0 560123 2 1835415. .
 �         

   Converting 18354 to its binary representation will achieve the same answer. The 
next example illustrates the signed Q-15 representation for a negative number.      
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        Example 8.5      

      a.     Convert the Q-15 signed number 0.100011110110010 to the decimal number.    

    Solution 

      a.     The decimal number is:    

  2 2 2 2 2 2 2 2 0 5601201 5 6 7 8 10 11 14� � � � � � � �� � � � � � � � . .       

   As we know, the truncation error in Example 8.2 is less than 2  – 15  � 0:000030517. We 
verify that the truncation error is bounded by: 

  0 560120 0 560123 0 000003 0 000030517. . . . .� � �       

   Note that the larger the number of bits used, the smaller the round-off error that may 
accompany it.       

       Example 8.6      

      a.     Add the two numbers in Examples 8.4 and 8.5 in Q-15 format.    

    Solution 

      a.     Binary addition is carried out as follows:    

  

   
 0.100011110110010

 10.011001100110100

1 110101110000010.
�

..
      

   Then the result is: 
  0 011001100110100. .       

   This number in the decimal form can be found to be: 

  2 2 2 2 2 2 2 0 4000242 3 6 7 10 11 13� � � � � � �� � � � � � � . .           

   Examples 8.6 and 8.7 are devoted to illustrating data manipulations in the Q-15 format.   
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   As a result, the Q-format number representation is a better choice than the 2’s complement 
integer representation. But we need to be concerned with the following problems. 

    1.     Converting a decimal number to its Q- N  format, where  N  denotes the number of 
magnitude bits, we may lose accuracy due to the truncation error, which is bounded by 
the size of the interval, that is, 2  –    N  .  

    2.     Addition and subtraction may cause overfl ow, where adding two positive numbers leads 
to a negative number, or adding two negative numbers yields a positive number; similarly, 
subtracting a positive number from a negative number gives a positive number, while 
subtracting a negative number from a positive number results in a negative number.  

    3.     Multiplying two numbers in Q-15 format will lead to a Q-30 format, which has 31 bits 
in total. As in Example 8.7, the multiplication of Q-3 yields a Q-6 format, that is, 6 
magnitude bits and a sign bit. In practice, it is common for a DS processor to hold the 
multiplication result using a double word size such as MAC operation, as shown in 
 Figure 8.9    for multiplying two numbers in Q-15 format. In Q-30 format, there is one 

       Example 8.7      

   This is a simple illustration of fi xed-point multiplication. 

    a.     Determine the fi xed-point multiplication of 0.25 and 0.5 in Q-3 fi xed-point 2’s 
complement format.    

    Solution 

      a.     Since 0.25  �  0.010 and 0.5  �  0.100, we carry out binary multiplication as follows:    

 

0 010

0000
0000

0010
0000

.



�

0.100

0.001000      
   Truncating the least-signifi cant bits to convert the result to Q-3 format, we have: 

  0 010 0 100 0 001. . . .
 �       

   Note that 0.001  �  2   �  3   �  0.125. We can also verify that 0.25  
  0.5  �  0.125.     
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sign-extended bit. We may get rid of it by shifting left by one bit to obtain Q-31 format 
and maintaining the Q-31 format for each MAC operation. Sometimes, the number in Q-
31 format needs to be converted to Q-15; for example, the 32-bit data in the accumulator 
needs to be sent for 16-bit digital-to-analog conversion (DAC), where the upper most-
signifi cant 16 bits in the Q-31 format must be used to maintain accuracy. We can shift 
the number in Q-30 to the right by 15 bits or shift the Q-31 number to the right by 16 
bits. The useful result is stored in the lower 16-bit memory location. Note that after 
truncation, the maximum error is bounded by the interval size of 2  – 15 , which satisfi es 
most applications. In using the Q-format in the fi xed-point DS processor, it is costive to 
maintain the accuracy of data manipulation.  

    4.     Underfl ow can happen when the result of multiplication is too small to be represented 
in the Q-format. As an example, in the Q-2 system shown in  Table 8.2 , multiplying 
0.01  
  0.01 leads to 0.0001. To keep the result in Q-2, we truncate the last two bits of 
0.0001 to achieve 0.00, which is zero. Hence, underfl ow occurs.     

    8.4.2       Floating-Point Format 

   To increase the dynamic range of number representation, a fl oating-point format, which 
is similar to scientifi c notation, is used. The general format for fl oating-point number 
representation is given by: 

  x M E� ⋅ 2 ,   (8.1)     

  where  M  is the mantissa, or fractional part, in Q format, and  E  is the exponent. The mantissa 
and exponent are signed numbers. If we assign 12 bits for the mantissa and 4 bits for the 
exponent, the format looks like  Figure 8.10   .   

   Since the 12-bit mantissa has limits between  – 1 and  � 1, the dynamic range is controlled 
by the number of bits assigned to the exponent. The bigger the number of bits assigned to 

15 magnitude bits

30 magnitude bitsS S

15 magnitude bits SS Q�15Q-15

Q-30




 Figure 8.9 :         Sign bit extended Q-30 format    

�23 �2022 21 20 2�1 2�2 2�3 2�4 2�5 2�6 2�7 2�8 2�9 2�10 2�11

12 bit mantissa4 bit exponent

 Figure 8.10 :         Floating-point format    
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the exponent, the larger the dynamic range. The number of bits for the mantissa defi nes 
the interval in the normalized range; as shown in  Figure 8.10 , the interval size is 2  – 11  in the 
normalized range, which is smaller than the Q-15. However, when more mantissa bits are 
used, the smaller interval size will be achieved. Using the format in  Figure 8.10 , we can 
determine the most negative and most positive numbers as: 

   Most negative number  �   ( . ) ( ) .1 00000000000 2 1 2 128 02
0111 72⋅ � � 
 � �     

   Most positive number  �   ( ) ( )0 11111111111 2 1 2 2 127 93752
0111 11 72. . .⋅ � � 
 ��     

   The smallest positive number is given by 

   Smallest positive number  �   ( ) ( ) .0 000000000001 2 2 2 22
1000 11 8 192. ⋅ � 
 �� � �     

   As we can see, the exponent acts like a scale factor to increase the dynamic range of the 
number representation. We study the fl oating-point format in the following example.

        Example 8.8      

   Convert each of the following decimal numbers to the fl oating-point number using the 
format specifi ed in  Figure 8.10 . 

    1.     0.1601230  
    2.       �  20.430527    

    Solution 

      a.                        1.      We fi rst scale the number 0.1601230 to 0.160123/2   �  2   �  0:640492 
with an exponent of  � 2 (other choices could be 0 or  � 1) to get 0.160123  �  
0.640492 
  2  � 2 . Using 2’s complement, we have  � 2  �  1110. Now we convert 
the value 0.640492 using Q-11 format to get 010100011111. Cascading the 
exponent bits and the mantissa bits yields:       

  1110010100011111.                          
     2.      Since  � 20.430527/2 5   �   � 0.638454, we can convert it into the fractional part 

and exponent part as  � 20.430527  �   � 0.638454  
  2 5 .       

   Note that this conversion is not particularly unique; the forms  � 20.430527  �    
� 0.319227  
  2 6  and  � 20.430527  �   � 0.1596135  
  2 7   . . .  are still valid 
choices. Let us keep what we have now. Therefore, the exponent bits should be 
0101. Converting the number 0.638454 using Q-11 format gives: 

  010100011011.       



DSP Processors and Fixed-Point Arithmetic 347

www.newnespress.com

   Using 2’s complement, we obtain the representation for the decimal number 
  �  0.638454 as: 

  101011100101.      

   Cascading the exponent bits and mantissa bits, we achieve: 

  0101101011100101.       

   The fl oating arithmetic is more complicated. We must obey the rules for manipulating 
two fl oating-point numbers. Rules for arithmetic addition are given as: 

  
x M
x M

E

E
1 1

2 2

2
2

1

2

�

� .       

   The fl oating-point sum is performed as follows: 

  
x x

M M E E

M M

E E E

E E E1 2
1 2 1 2

1 2

2 2

2 2

1 2 1

2 1 2

� �

 �


 � 


� �

� �

( ) if 

( ) i

( )

( )

+ × ,

ff E E1 2�

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪       

   As a multiplication rule, given two properly normalized fl oating-point numbers: 

  

x M
x M

E

E
1 1

2 2

2
2

1

2

�

� ,      

  where 0.5 �    M  1       �  1 and 0.5 �    M  2     �  1. Then multiplication can be performed as 
follows: 

  x x M M ME E E
1 2 1 2 2 21 2
 � 
 
 � 
�( ) .       

   That is, the mantissas are multiplied while the exponents are added: 

  

M M M
E E E

� 

� �

1 2

1 2.
      

   Examples 8.9 and 8.10 serve to illustrate manipulators.         

   Next, we examine overfl ow and underfl ow in the fl oating-point number system. 

    8.4.2.1       Overfl ow 

   During operation, overfl ow will occur when a number is too large to be represented in the 
fl oating-point number system. Adding two mantissa numbers may lead to a number larger than 
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       Example 8.9      

      a.     Add two fl oating-point numbers achieved in Example 8.8:    

  

1110 010100011111 0 640136718 2
0 6381

2 
0101 101011100101

� 


� �

�.
. 883593 25
 .       

    Solution 

      a.     Before addition, we change the fi rst number to have the same exponent as the 
second number, that is,    

  0101 000000001010 0 005001068 25 � 
. .       
   Then we add two mantissa numbers: 

  

0 00000001010

1 01011100101

1 01011101111

.

.

.

�

     

  and we get the fl oating number as:   

  0101 101011101111 .       

   We can verify the result by the following: 

  

0101101011101111 2 2 2 2 2
0 633300781 2

1 3 7 11 5

5
 ( )� � � � � 


� � 
 � �

� � � �

. 220 265625. .           

       Example 8.10      

      a.     Multiply two fl oating-point numbers achieved in Example 8.8:    

  

1110 010100011111 0 640136718 2
0101101011100101 0 63

2  
  

� 


� �

�.
. 88183593 25
 .       

    Solution 

      a.     From the results in Example 8.8, we have the bit patterns for these two numbers as:    

  E E M M1 2 1 21110 0101 010100011111 101011100101� � � �, , ,   .       
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1 or less than  – 1; and multiplying two numbers causes the addition of their two exponents, so 
that the sum of the two exponents could overfl ow. Consider the following overfl ow cases. 

    Case 1.  Add the following two fl oating-point numbers: 

 0111 011000000000 0111 010000000000  � .      

   Note that two exponents are the same and they are the biggest positive number in 4-bit 2’s 
complement representation. We add two positive mantissa numbers as: 

  

0 11000000000

0 10000000000

1 01000000000

.

.

. .

�

      

   The result for adding mantissa numbers is negative. Hence, the overfl ow occurs. 

   Adding two exponents in 2’s complement form leads to: 

  E E E� � � � �1 2 1110 0101 0011,      

  which is  � 3, as we expected, since in decimal domain (  �  2)  �  5  �  3.   

   As previously shown in the multiplication rule, when multiplying two mantissas, 
we need to apply their corresponding positive values. If the sign for the fi nal 
value is negative, then we convert it to its 2’s complement form. In our example, 
 M  1   �  010100011111 is a positive mantissa. However,  M  2   �  101011100101 is 
a negative mantissa, since the MSB is 1. To perform multiplication, we use 2’s 
complement to convert  M  2  to its positive value, 010100011011, and note that the 
multiplication result is negative. We multiply two positive mantissas and truncate 
the result to 12 bits to give: 

  010100011111 010100011011 001101000100
 � .       

   Now we need to add a negative sign to the multiplication result with 2’s 
complement operation. Taking 2’s complement, we have: 

  M � 110010111100.       

   Hence, the product is achieved by cascading the 4-bit exponent and 12-bit mantissa as: 

  0011 110010111100 .       

   Converting this number back to the decimal number, we verify the result to be 
0.408203125  
  2 3   �    �  3.265625.     
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    Case 2.  Multiply the following two numbers: 

  0111 011000000000 0111 011000000000  � .       

   Adding two positive exponents gives: 

  0111 0111 1000� �  (negative; the overflow occurs).       

   Multiplying two mantissa numbers gives: 

  0 11000000000 0 11000000000 0 10010000000. . .  (OK )
 � ! .       

    8.4.2.2       Underfl ow 

   As we discussed before, underfl ow will occur when a number is too small to be represented in 
the number system. Let us divide the following two fl oating-point numbers: 

  1001 001000000000 0111 010000000000  .�       

   First, subtracting two exponents leads to: 

  
1001 0111 1001 1001

0010
 (negative)  (positive)

 (positive; 
� � �

� tthe underflow occurs)       

   Then, dividing two mantissa numbers, it follows that: 

  0 01000000000 0 10000000000 0 10000000000. .  (OK ).� � . !       

   However, in this case, the expected resulting exponent is   �  14 in decimal, which is too small 
to be presented in the 4-bit 2’s complement system. Hence the underfl ow occurs. 

   Understanding basic principles of the fl oating-point formats, we can next examine two 
fl oating-point formats of the Institute of Electrical and Electronics Engineers (IEEE).   

    8.4.3       IEEE Floating-Point Formats 

    8.4.3.1       Single Precision Format 

   IEEE fl oating-point formats are widely used in many modern DS processors. There are two 
types of IEEE fl oating-point formats (IEEE 754 standard). One is the IEEE single precision 
format, and the other is the IEEE double precision format. The single precision format is 
described in  Figure 8.11   . 
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   The format of IEEE single precision fl oating-point standard representation requires 23 
fraction bits  F,  8 exponent bits  E,  and 1 sign bit  S,  with a total of 32 bits for each word. 
 F  is the mantissa in 2’s complement positive binary fraction represented from bit 0 to bit 22. 
The mantissa is within the normalized range limits between  � 1 and  � 2. The sign bit S is 
employed to indicate the sign of the number, where when  S   �  1 the number is negative, and 
when  S   �  0 the number is positive. The exponent  E  is in excess 127 form. The value of 127 
is the offset from the 8-bit exponent range from 0 to 255, so that E-127 will have a range 
from  – 127 to  � 128. The formula shown in  Figure 8.11  can be applied to convert the IEEE 
754 standard (single precision) to the decimal number. The following simple examples also 
illustrate this conversion: 

  

0 1000000 000000000000000000000000 1 1 0 2 20
2

128 127  ( ) ( )� � 
 
 ��. ..

.

0

0 1000000 110100000000000000000000 1 1 101 20
2

129  ( ) ( )� � 
 
 −1127

1
2

6 51

1 1000000 110100000000000000000000 1 1 101

�

� � 


.

  ( ) ( . ) 

 � ��2 6 5129 127 . .       

   Let us look at Example 8.11 for more explanation.   

    8.4.3.2       Double Precision Format 

   The IEEE double precision format is described in  Figure 8.12   . 

   The IEEE double precision fl oating-point standard representation requires a 64-bit word, 
which may be numbered from 0 to 63, left to right. The fi rst bit is the sign bit  S , the next 
eleven bits are the exponent bits  E , and the fi nal 52 bits are the fraction bits  F . The IEEE 
fl oating-point format in double precision signifi cantly increases the dynamic range of number 
representation, since there are eleven exponent bits; the double precision format also reduces 
the interval size in the mantissa normalized range of  � 1 to  � 2, since there are 52 mantissa 
bits as compared with the single precision case of 23 bits. Applying the conversion formula 
shown in  Figure 8.12  is similar to the single precision case.

FractionExponent

x � (�1)s 
 (1.F )
 2E−127
 

s
022233031

 Figure 8.11 :         IEEE single precision fl oating-point format    



352 Chapter 8

www.newnespress.com

       Example 8.11      

      a.     Convert the following number in the IEEE single precision format to the decimal 
format:    

  110000000 010 0000 . .…       
    Solution 

      a.     From the bit pattern in  Figure 8.11 , we can identify the sign bit, exponent, and 
fractional as:    

  

s E

F

� � �

� � � ��

1 2 128

1 1 01 2 2 1 25

7

0 2

,

. . 2 ( ) ( ) . .       
   Then, applying the conversion formula leads to: 

  x = ( ) ( . ) .� 
 � � 
 � ��1 1 25 2 1 25 2 2 51 128 127 1. .       

   In conclusion, the value  x  represented by the word can be determined based on the 
following rules, including all the exceptional cases: 

      ●      If  E   �  255 and  F  is nonzero, then  x   �   NaN  ( “ Not a number ” ).  
      ●      If  E   �  255,  F  is zero, and  S  is 1, then  x   �    �  Infi nity.  
      ●      If  E   �  255,  F  is zero, and  S  is 0, then  x   �   � Infi nity.  
      ●      If 0  �   E   �  255, then  x   �  (  �  1)  s    
  (1.F)  
  2  E  �     127 , where 1. F  represents the binary 

number created by prefi xing  F  with an implicit leading 1 and a binary point.  
      ●      If  E   �  0 and  F  is nonzero, then  x  � (  �  1)  s    
  (0. F )  
  2   �  126 . This is an 

 “ unnormalized ”  value.  
      ●      If  E   �  0,  F  is zero, and  S  is 1, then  x   �    �  0.  
      ●      If  E   �  0,  F  is zero, and  S  is 0, then  x   �  0.    

   Typical and exceptional examples are shown as follows: 

   

0 00000000 00000000000000000000000 0
1 00000000 00000000000

  
  

�
0000000000000 0

0 11111111 00000000000000000000000
� �
�  Infinityy

  Infinity
  

111111111 00000000000000000000000
0 11111111 0

� �
00000100000000000000000

111111111 00100010001001010101
� NaN

  0010
0 00000001 00000000000000000000000 1 1 0 20

2

�

� � 
 


 NaN
  ( ) ( ). 11 127 126

0
2

2
0 00000000 10000000000000000000000 1 0 1

� ��

� � 
  ( ) ( . ))
  ( ) (


 �

� � 


� �2 2
0 00000000 00000000000000000000001 1 0

0 126 127

0 .. )
smallest positive

00000000000000000000001 2
2

2
0 126

149



�

�

� (   value)
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s Fraction

00 1313 30 20

 Even register Odd register

x � (�1)s 
 (1.F ) 
 2E�1023  

Exponent Fraction

19

 Figure 8.12 :         IEEE double precision fl oating-point format    

        Example 8.12      

      a.     Convert the following number in IEEE double precision format to the decimal 
format:    

  001000 0 110 0000. . . . . . .       
    Solution 

      b.     Using the bit pattern in  Figure 8.12 , we have:    

  

s E

F

� � �

� � � � �� �

0 2 512

1 1 11 2 2 2 1 75

9

2
0 1 2

,

. . . .

 and

( ) ( ) ( )       
   Then, applying the double precision formula yields: 

  x � � 
 � 
 � 
� � �( ) ( . ) . .1 1 75 2 1 75 2 2 6104 100 512 1023 511 154.             

   For purposes of completeness, rules for determining the value  x  represented by the double 
precision word are listed as follows: 

      ●      If  E   �  2047 and  F  is nonzero, then  x   �   NaN  ( “ Not a number ” ).  

      ●      If  E   �  2047,  F  is zero, and  S  is 1, then  x   �   – Infi nity.  

      ●      If  E   �  2047,  F  is zero, and  S  is 0, then  x   �   � Infi nity.  

      ●      If 0  �   E   �  2047, then  x   �  ( – 1)  s    
  (1.F)  
  2  E    – 1023 , where 1. F  is intended to represent 
the binary number created by prefi xing  F  with an implicit leading 1 and a binary point.  

      ●      If  E   �  0 and  F  is nonzero, then  x   �  ( – 1)  s    
  (0.F)  
  2  – 1022 . This is an  “ unnormalized ”  
value.  

      ●      If  E   �  0,  F  is zero, and  S  is 1, then  x   �   – 0.  

      ●      If  E   �  0,  F  is zero, and  S  is 0, then  x   �  0.      
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    8.4.4       Fixed-Point Digital Signal Processors 

   Analog Devices, Texas Instruments, and Motorola all manufacture fi xed-point DS processors. 
Analog Devices offers a fi xed-point DSP family such as ADSP21xx. Texas Instruments 
provides various generations of fi xed-point DSP processors based on historical development, 
architectural features, and computational performance. Some of the most common ones are 
TMS320C1x (fi rst generation), TMS320C2x, TMS320C5x, and TMS320C62x. Motorola 
manufactures varieties of fi xed-point processors, such as the DSP5600x family. The new 
families of fi xed-point DS processors are expected to continue to grow. Since they share 
some basic common features such as program memory and data memory with associated 
address buses, arithmetic logic units (ALUs), program control units, MACs, shift units, and 
address generators, here we focus on an overview of the TMS320C54x processor. The typical 
TMS320C54x fi xed-point DSP architecture appears in  Figure 8.13   . 

   The fi xed-point TMS320C54x families supporting 16-bit data have on-chip program memory 
and data memory in various sizes and confi gurations. They include data RAM (random 
access memory) and program ROM (read-only memory) used for program code, instruction, 
and data. Four data buses and four address buses are accommodated to work with the data 
memories and program memories. The program memory address bus and program memory 
data bus are responsible for fetching the program instruction. As shown in  Figure 8.13 , the 
C and D data memory address buses and the C and D data memory data buses deal with 
fetching data from the data memory, while the E data memory address bus and the E data 
memory data bus are dedicated to moving data into data memory. In addition, the E memory 
data bus can access the I/O devices. 

   Computational units consist of an ALU, an MAC, and a shift unit. For TMS320C54x families, 
the ALU can fetch data from the C, D, and program memory data buses and access the E 
memory data bus. It has two independent 40-bit accumulators, which are able to operate 
40-bit addition. The multiplier, which can fetch data from C and D memory data buses and 
write data via the E memory data bus, is capable of operating 17-bit 
 17-bit multiplications. 
The 40-bit shifter has the same capability of bus access as the MAC, allowing all possible 
shifts for scaling and fractional arithmetic such as we have discussed for the Q-format. 

   The program control unit fetches instructions via the program memory data bus. Again, in 
order to speed up memory access, there are two address generators available: one responsible 
for program addresses and one for data addresses. 

   Advanced Harvard architecture is employed, where several instructions operate at the same 
time for a given single instruction cycle. Processing performance offers 40 MIPS (million 
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instruction sets per second). To further explore this subject, the reader is referred to Dahnoun 
(2000), Embree (1995), Ifeachor and Jervis (2002), and Van der Vegte (2002), as well as the 
website for Texas Instruments ( www.ti.com ).  

    8.4.5       Floating-Point Processors 

   Floating-point DS processors perform DSP operations using fl oating-point arithmetic, as 
we discussed before. The advantages of using the fl oating-point processor include getting 
rid of fi nite word length effects such as overfl ows, round-off errors, truncation errors, and 
coeffi cient quantization errors. Hence, in terms of coding, we do not need to do scaling 
input samples to avoid overfl ow, shift the accumulator result to fi t the DAC word size, scale 
the fi lter coeffi cients, or apply Q-format arithmetic. The fl oating-point DS processor with 

Program
memory

Program memory data bus

Input/output
devices

Arithmetic
logic unit

D data memory address bus

E data memory address bus

C data memory data bus

Data
memory

Multiplier/
accumulator

Shift unit

Program memory address bus

C data memory address bus

D data memory data bus

E data memory data bus

Data address
generator

Program
address

generator

Program
control unit

 Figure 8.13 :         Basic architecture of TMS320C54x family    
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high-performance speed and calculation precision facilitates a friendly environment to 
develop and implement DSP algorithms. 

   Analog Devices provides fl oating-point DSP families such as ADSP210xx and TigerSHARC. 
Texas Instruments offers a wide range of fl oating-point DSP families, in which the TMS320C3x 
is the fi rst generation, followed by the TMS320C4x and TMS320C67x families. Since the fi rst 
generation of a fl oating-point DS processor is less complicated than later generations but still 
has the common basic features, we overview the fi rst-generation architecture fi rst. 

    Figure 8.14    shows the typical architecture of Texas Instruments ’  TMS320C3x families. We 
discuss some key features briefl y. Further detail can be found in the TMS320C3x User’s 
Guide (Texas Instruments, 1991), the TMS320C6x CPU and Instruction Set Reference Guide 
(Texas Instruments, 1998), and other studies (Dahnoun, 2000; Embree, 1995; Ifeachor and 
Jervis, 2002; Kehtarnavaz and Simsek, 2000; Sorensen and Chen, 1997; van der Vegte, 2002). 
The TMS320C3x family consists of 32-bit single chip fl oating-point processors that support 
both integer and fl oating-point operations. 

   The processor has a large memory space and is equipped with dual-access on-chip memories. 
A program cache is employed to enhance the execution of commonly used codes. Similar to 
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 Figure 8.14 :         The typical TMS320C3x fl oating-point DS processor    
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the fi xed-point processor, it uses the Harvard architecture, in which there are separate buses 
used for program and data so that instructions can be fetched at the same time that data are 
being accessed. There also exist memory buses and data buses for direct-memory access 
(DMA) for concurrent I/O and CPU operations, and peripheral access such as serial ports, I/O 
ports, memory expansion, and an external clock. 

   The C3x CPU contains the fl oating-point/integer multiplier; an ALU, which is capable of 
operating both integer and fl oating-point arithmetic; a 32-bit barrel shifter; internal buses; a 
CPU register fi le; and dedicated auxiliary register arithmetic units (ARAUs). The multiplier 
operates single-cycle multiplications on 24-bit integers and on 32-bit fl oating-point values. 
Using parallel instructions to perform a multiplication, an ALU will cost a single cycle, which 
means that a multiplication and an addition are equally fast. The ARAUs support addressing 
modes, in which some of them are specifi c to DSP such as circular buffering and bit-reversal 
addressing (digital fi ltering and FFT operations). The CPU register fi le offers 28 registers, 
which can be operated on by the multiplier and ALU. The special functions of the registers 
include eight extended 40-bit precision registers for maintaining accuracy of the fl oating-
point results. Eight auxiliary registers can be used for addressing and for integer arithmetic. 
These registers provide internal temporary storage of internal variables instead of external 
memory storage, to allow performance of arithmetic between registers. In this way, program 
effi ciency is greatly increased. 

   The prominent feature of C3x is its fl oating-point capability, allowing operation of numbers 
with a very large dynamic range. It offers implementation of the DSP algorithm without 
worrying about problems such as overfl ows and coeffi cient quantization. Three fl oating-
point formats are supported. A short 16-bit fl oating-point format has 4 exponent bits, 1 sign 
bit, and 11 mantissa bits. A 32-bit single precision format has 8 exponent bits, 1 sign bit, 
and 23 fraction bits. A 40-bit extended precision format contains 8 exponent bits, 1 sign bit, 
and 31 fraction bits. Although the formats are slightly different from the IEEE 754 standard, 
conversions are available between these formats. 

   The TMS320C30 offers high-speed performance with 60-nanosecond single-cycle instruction 
execution time, which is equivalent to 16.7 MIPS. For speech-quality applications with 
an 8       kHz sampling rate, it can handle over 2,000 single-cycle instructions between two 
samples (125 microseconds). With instruction enhancement such as pipelines executing each 
instruction in a single cycle (four cycles required from fetch to execution by the instruction 
itself) and a multiple interrupt structure, this high-speed processor validates implementation 
of real-time applications in fl oating-point arithmetic.   
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    8.5        Finite Impulse Response and Infi nite Impulse Response Filter 
Implementations in Fixed-Point Systems 

   With knowledge of the IEEE formats and of fi lter realization structures such as the 
direct form I, direct form II, and parallel and cascade forms, we can study digital fi lter 
implementation in the fi xed-point processor. In the fi xed-point system, where only integer 
arithmetic is used, we prefer input data, fi lter coeffi cients, and processed output data to be in 
the Q-format. In this way, we avoid overfl ow due to multiplications and can prevent overfl ow 
due to addition by scaling input data. When the fi lter coeffi cients are out of the Q-format 
range, coeffi cient scaling must be taken into account to maintain the Q-format. We develop 
FIR fi lter implementation in Q-format fi rst, and then infi nite impulse response (IIR) fi lter 
implementation next. In addition, we assume that with a given input range in Q-format, the 
fi lter output is always in Q-format even if the fi lter passband gain is larger than 1. 

   First, to avoid overfl ow for an adder, we can scale the input down by a scale factor S, which 
can be safely determined by the equation: 

  S I h k I h h h
k

� � � � �max max ,⋅ ⋅ ( )
=

∞

∑ ( ) ( ) ( ) ( )0 1 2
0

�   (8.2)     

  where  h ( k ) is the impulse response of the adder output and  I  max  the maximum amplitude of 
the input in Q-format. Note that this is not an optimal factor in terms of reduced signal-to-
noise ratio. However, it shall prevent the overfl ow. Equation  (8.2)  means that the adder output 
can actually be expressed as a convolution output:   

  adder output ( ) ( ) ( ) ( ) ( ) ( )� � � � � �h x n h x n h x n0 1 1 2 2 �       

   Assuming the worst condition, that is, that all the inputs  x ( n ) reach a maximum value of  I  max  
and all the impulse coeffi cients are positive, the sum of the adder gives the most conservative 
scale factor, as shown in Equation  (8.2) . Hence, scaling down of the input by a factor of  S  will 
guarantee that the output of the adder is in Q-format. 

   When some of the FIR coeffi cients are larger than 1, which is beyond the range of Q-format 
representation, coeffi cient scaling is required. The idea is that scaling down the coeffi cients 
will make them less than 1, and later the fi ltered output will be scaled up by the same amount 
before it is sent to DAC.  Figure 8.15    describes the implementation. 

   In the fi gure, the scale factor B makes the coeffi cients  b k  /B  convertible to the Q-format. The 
scale factors of  S  and  B  are usually chosen to be a power of 2, so the simple shift operation 
can be used in the coding process. Let us implement an FIR fi lter containing fi lter coeffi cients 
larger than 1 in the fi xed-point implementation.
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�

B

1/S

S

 Figure 8.15 :         Direct-form I implementation of the FIR fi lter    

        Example 8.13      

   Given the FIR fi lter: 

  y n x n x n x n( ) ( ) ( ) ( )� � � � �0 9 3 1 0 9 2. . ,      

  with a passband gain of 4, and assuming that the input range occupies only 1/4 of the 
full range for a particular application,   

    a.     Develop the DSP implementation equations in the Q-15 fi xed-point system.    

    Solution 

      a.     The adder may cause overfl ow if the input data exists for ¼ of a full dynamic range. 
The scale factor is determined using the impulse response, which consists of the FIR 
fi lter coeffi cients.    

  S h h h� � � � � � �
1
4

0 1
1
4

0 9 3 0 9 1 2( ) ( ) (2) ( . ) . .( ) .       

   Overfl ow may occur. Hence, we select  S   �  2 (a power of 2). We choose  B   �  4 
to scale all the coeffi cients to be less than 1, so the Q-15 format can be used. 
According to  Figure 8.15 , the developed difference equations are given by: 

  

x n
x n

y n x n x n x n
y n

s

s s s s

( )
( )

( ) ( ) . ( ) ( )
( )

�

� � � � �
�

2
0 225 0 75 1 0 225 2
8

. .
yy ns ( )
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 Figure 8.16 :         Direct-form I implementation of the IIR fi lter    

        Example 8.14      

   The following IIR fi lter, 
  y n x n y n( ) ( ) ( )� � �2 0 5 1. ,      

   uses the direct form I, and for a particular application, the maximum input is 
 I  max   �  0.010 . . . 0 2   �  0.25. 

    a.     Develop the DSP implementation equations in the Q-15 fi xed-point system.    

    Solution 

      a.     This is an IIR fi lter whose transfer function is:    

  H z
z

z

z
( ) �

�
�

��

2

1 0 5

2
0 51. .

.       

   Applying the inverse z-transform, we have the impulse response: 

  h n u nn( ) ( ) ( )� 
2 0 5. .       

   Next, the direct-form I implementation of the IIR fi lter is illustrated in  Figure 8.16   . 

   As shown in  Figure 8.16 , the purpose of a scale factor  C  is to scale down the original fi lter 
coeffi cients to the Q-format. The factor  C  is usually chosen to be a power of 2 for using a 
simple shift operation in DSP.
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   To prevent overfl ow in the adder, we can compute the  S  factor with the help of the 
Maclaurin series or approximate Eq. (9.2) numerically. We get: 

    S � 
 � � �0 25 2 0 5 2 0 5 2 0 5
0 25 2 1

1 0 5
10 1 2.

.
.

.( ( . ) ( . ) ( . ) )… =
× ×

−
=       

   MATLAB function  impz()  can also be applied to fi nd the impulse response and the  S  
factor: 

    » h  �  impz(2,[1  –  0.5]); % Find the impulse response  

    » sf  �  0.25* sum(abs(h)) % Determine the sum of absolute 
values of h(k)  

     sf  �  1  

   Hence, we do not need to perform input scaling. However, we need to scale down 
all the coeffi cients to use the Q-15 format. A factor of  C   �  4 is selected. From 
 Figure 8.16 , we get the difference equations as: 

 

   

x n x n
y n x n y n
y n y n
y n y n

s

s s f

s

f

f

( ) ( )
( ) ( ) . ( )
( ) ( )
( ) (

�
� � �
�
�

0 5 0 125 1
4

.

)).         

   We can develop these equations directly. First, we divide the original difference 
equation by a factor of 4 to scale down all the coeffi cients to be less than 1, that is, 

    

1
4

1
4

2
1
4

0 5 1y n x n y nf s f( ) ( ) ( )� 
 � 
 �. ,
     

  and defi ne a scaled output:   

    y n y ns f( ) ( )�
1
4

.       

   Finally, substituting  y s  ( n ) to the left side of the scaled equation and rescaling up the 
fi lter output as  y f  ( n )  �  4 y s  ( n ) we have the same results we got before.       

   The fi xed-point implementation for the direct form II is more complicated. The developed 
direct-form II implementation of the IIR fi lter is illustrated in  Figure 8.17   . 

   As shown in  Figure 8.17 , two scale factors  A  and  B  are designated to scale denominator 
coeffi cients and numerator coeffi cients to their Q-format representations, respectively. Here 
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 S  is a special factor to scale down the input sample so that the numerical overfl ow in the fi rst 
sum in  Figure 8.17  can be prevented. The difference equations are listed here: 

  
w n x n a w n a w n a w n M
y n b w n b w n

M( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

� � � � � � � �

� � �
1 2

0 1

1 2
1

�
�� � �� b w n MM ( ).

      

   The fi rst equation is scaled down by the factor  A  to ensure that all the denominator 
coeffi cients are less than 1, that is, 

  

w n
A

w n
A

x n
A

a w n
A

a w n
A

a w n M

w n

s M( ) ( ) ( ) ( ) ( ) ( )

( )

� � � � � � � � �
1 1 1

1
1

2
1

1 2 �

�� 
A w ns ( ).       

   Similarly, scaling the second equation yields: 

  y n
B

y n
B

b w n
B

b w n
B

b w n Ms M( ) ( ) ( ) ( ) ( )� � � � � � �
1 1 1

1
1

0 1 �       

   and 
  y n B y ns( ) ( )� 
       

   To avoid the fi rst adder overfl ow (fi rst equation), the scale factor  S  can be safely determined 
by Eq. (8.3): 
  S I h h h� � � �max ,( ( ) ( ) ( ) )0 1 2 �   (8.3)     
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 Figure 8.17 :         Direct-form II implementation of the IIR fi lter    
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  where  h ( k ) is the impulse response of the fi lter whose transfer function is the reciprocal of the 
denominator polynomial, where the poles can cause a larger value to the fi rst sum:   

  h n Z
a z az M

( ) �
� � �

�

� �

1

1
1

1

1 �

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
.   (8.4)      

   All the scale factors  A, B,  and  S  are usually chosen to be a power of 2, respectively, so 
that the shift operations can be used in the coding process. Example 8.15 serves for 
illustration.  

   The implementation for cascading the second-order section fi lters can be found in Ifeachor 
and Jervis (2002). 

   A practical example will be presented in the next section. Note that if a fl oating-point DS 
processor is used, all the scaling concerns should be ignored, since the fl oating-point format 
offers a large dynamic range, so that overfl ow hardly ever happens.  

       Example 8.15      

   Given the following IIR fi lter: 

    y n x n x n x n y n y n( ) . ( ) . ( ) . ( ) . ( ) . ( )� � � � � � � � �0 75 1 49 1 0 75 2 1 52 1 0 64 2 ,     

with a passband gain of 1 and a full range of input, 

    a.     Use the direct-form II implementation to develop the DSP implementation 
equations in the Q-15 fi xed-point system.    

    Solution 

      a.     The difference equations without scaling in the direct-form II implementation are 
given by:    

  
w n x n w n w n
y n w n w n
( ) ( ) ( ) ( )
( ) ( ) ( )

� � � � �
� � � �

1 52 1 0 64 2
0 75 1 49 1 0

. .
. . .775 2w n( )� .       

   To prevent overfl ow in the fi rst adder, we have the reciprocal of the denominator 
polynomial as: 

  A z
z z

( )
.

�
� �� �

1

1 1 52 0 641 2.
.       
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   Using the MATLAB function leads to: 

    » h  �  impz(1, [1 1:52 0.64]);  

    » sf  �  sum(abs(h))  

    sf  �  10.4093.  

   We choose the  S  factor as  S   �  16 and we choose  A   �  2 to scale down the denominator 
coeffi cients by half. Since the second adder output after scaling is: 

  
y n

B
w n

B
w n

B
w ns ( ) ( ) ( ) ( )� � � � �

0 75 1 49
1

0 75
2

. . .
,
     

  we have to ensure that each coeffi cient is less than 1, as well as the sum of the absolute 
values:   
  0 75 1 49 0 75

1
. . .
B B B

� � �
   

  

  to avoid second adder overfl ow. Hence  B   �  4 is selected. We develop the DSP 
equations as:   

  

x n x n
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w n w
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s s
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    8.6       Digital Signal Processing Programming Examples 

   In this section, we fi rst review the TMS320C67x DSK (DSP Starter Kit), which offers 
fl oating-point and fi xed-point arithmetic. We will then investigate real-time implementation of 
digital fi lters. 

    8.6.1       Overview of TMS320C67x DSK 

   In this section, a Texas Instruments TMS320C67x DSK is chosen for demonstration in  Figure 
8.18   . This DSK board (Kehtarnavaz and Simsek, 2001; Texas Instruments, 1998) consists of 
the TMS320C67x chip, SDRAM (synchronous dynamic random access memory) and ROM 
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for storing program code and data, and an ADC535 chip performing 16-bit ADC and DAC 
operations. The gain of the ADC channel is programmable to provide microphone or other 
line inputs, such as from the function generator or other sensors. The DAC channel is also 
programmable to deliver the power gain to drive a speaker or other devices. The ADC535 
chip sets a fi xed sampling rate of 8       kHz for speech applications. The on-board daughter card 
connections facilitate the external units for advanced applications. For example, a daughter 
card designed using PCM3001/3 offers a variable high sampling rate, such as 44.1       kHz, and 
its own programmable ADC and DAC for CD-quality audio applications. The parallel port is 
used for connection between the DSK board and the host computer, where the user program 
is developed, compiled, and downloaded to the DSK for real-time applications using the user-
friendly software called the Code Composer Studio, which we shall discuss later. 

   The TMS320C67x operates at a high clock rate of 300       MHz. Combining with high speed and 
multiple units operating at the same time has pushed its performance up to 2,400 MIPS at 
300       MHz. Using this number, the C67x can handle 0.3 MIPS between two speech samples at 
a sampling rate of 8       kHz and can handle over 54,000 instructions between two audio samples 
with a sampling rate of 44.1       kHz. Hence, the C67x offers great fl exibility for real-time 
applications with a high-level C language. 

    Figure 8.19    shows a C67x architecture overview, while  Figure 8.20    displays a more detailed 
block diagram. C67x contains three main parts, which are the CPU, the memories, and 

TMS320
C6711
DSP

Line level I/O microphone
Line level I/O speaker

Reset pushbutton

PC parallel port
interface

Power jack

TLC320AD535
16 bit

AD535

SDRAM (2)
128K 
 8 bit
flash ROM

Daughter card I/F

Daughter card I/F

User option
dip switches

TI 1.8 V power supply

TI 3.3 V power supply

Emulation
JTAG controller

JTAG header

 Figure 8.18 :         C6711 DSK board    
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the peripherals. As shown in  Figure 8.19 , these three main parts are joined by an external 
memory interface (EMIF) interconnected by internal buses to facilitate interface with 
common memory devices; DMA; a serial port; and a host port interface (HPI). 

   Since this section is devoted to showing DSP coding examples, C67x key features and 
references are briefl y listed here: 

    1.     Architecture: The system uses Texas Instruments Veloci  
™

   architecture, which is an 
enhancement of the VLIW (very long instruction word architecture) (Dahnoun, 2000; 
Ifeachor and Jervis, 2002; Kehtarnavaz and Simsek, 2000).  

    2.     CPU: As shown in  Figure 8.20 , the CPU has eight functional units divided into two sides 
 A  and  B , each consisting of units .D, .M, .L, and .S. For each side, an .M unit is used for 
multiplication operations, an .L unit is used for logical and arithmetic operations, and a 
.D unit is used for loading/storing and arithmetic operations. Each side of the C67x CPU 
has sixteen 32-bit registers that the CPU must go through for interface. More detail can 
be found in Kehtarnavaz and Simsek (2000) and Texas Instruments (1998).  

    3.     Memory and internal buses: Memory space is divided into internal program memory, 
internal data memory, and internal peripheral and external memory space. The internal 
buses include a 32-bit program address bus, a 256-bit program data bus to carry out eight 
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 Figure 8.19 :         Block diagram of TMS320C67x fl oating-point DSP    
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32-bit instructions (VLIW), two 32-bit data address buses, two 64-bit load data buses, 
two 64-bit store data buses, two 32-bit DMA buses, and two 32-bit DMA address buses 
responsible for reading and writing. There also exist a 22-bit address bus and a 32-bit data 
bus for accessing off-chip or external memory.  

    4.     Peripherals: 

      ●      EMIF, which provides the required timing for accessing external memory.  

      ●      DMA, which moves data from one memory location to another without interfering 
with the CPU operations.  

      ●      Multichannel buffered serial port (McBSP) with a high-speed multichannel serial 
communication link.  

      ●      HPI, which lets a host access internal memory.  

      ●      Boot loader for loading code from off-chip memory or the HPI to internal memory.  

Additional
peripherals:

timers,
serial ports

etc.

DMA
EMIF

Program cache/program memory
32-bit address 256-bit data

Program fetch

Instruction dispatch

Instruction decode

Data cache/data memory
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Data path A

Register file A

Control
logic

Test

Emulation

Interrupts

.L1 .D1.M1 .D2.S1

Register file B

.M2 .S2 .L2

Data path B

 Figure 8.20 :         Registers of the TMS320C67x fl oating-point DSP    
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      ●      Timers (two 32-bit counters).  

      ●      Power-down units for saving power for periods when the CPU is inactive.       

   The software tool for the C67x is the Code Composer Studio (CCS) provided by TI. It allows 
the user to build and debug programs from a user-friendly graphical user interface (GUI) and 
extends the capabilities of code development tools to include real-time analysis. Installation, 
tutorial, coding, and debugging can be found in the  CCS Getting Started Guide  (Texas 
Instruments, 2001) and in Kehtarnavaz and Simsek (2000).  

    8.6.2       Concept of Real-Time Processing 

   We illustrate real-time implementation in  Figure 8.21   , where the sampling rate is 8,000 
samples per second; that is, the sampling period  T   �  1 /f s    �  125 microseconds, which is the 
time between two samples. 

   As shown in  Figure 8.21 , the required timing includes an input sample clock and an output 
sample clock. The input sample clock maintains the accuracy of sampling time for each ADC 
operation, while the output sample clock keeps the accuracy of time instant for each DAC 
operation. Time between the input sample clock  n  and the output sample clock  n  consists 
of the ADC operation, algorithm processing, and the wait for the next ADC operation. 
The numbers of instructions for ADC and DSP algorithms must be estimated and verifi ed 
to ensure that all instructions have been completed before the DAC begins. Similarly, the 
number of instructions for DAC must be verifi ed so that DAC instructions will be fi nished 
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between the output sample clock  n  and the next input sample clock  n  � 1. Timing usually is 
set up using the DSP interrupts (we will not pursue the interrupt setup here). 

   Next, we focus on the implementation of the DSP algorithm in the fl oating-point system for 
simplicity.  

    8.6.3       Linear Buffering 

   During DSP such as digital fi ltering, past inputs and past outputs are required to be buffered and 
updated for processing the next input sample. Let us fi rst study the FIR fi lter implementation. 

    8.6.3.1       Finite Impulse Response Filtering 

   Consider implementation for the following 3-tap FIR fi lter: 

  y n x n x n x n( ) ( ) ( ) ( )� � � � �0 5 0 2 1 0 5 2. . . .       

   The buffer requirements are shown in  Figure 8.22   . The coeffi cient buffer b[3] contains 
3 FIR coeffi cients, and the coeffi cient buffer is fi xed during the process. The input buffer 
x[3], which holds the current and past inputs, is required to be updated. The FIFO update 
is adopted here with the segment of codes shown in  Figure 8.22 . For each input sample, 
we update the input buffer using FIFO, which begins at the end of the data buffer; the 
oldest sampled is kicked out fi rst from the buffer and updated with the value from the upper 
location. When the FIFO completes, the fi rst memory location x[0] will be free to be used to 
store the current input sample. The segment of code in  Figure 8.22  explains implementation. 

   Note that in the code segment, x[0] holds the current input sample x(n), while b[0] is the 
corresponding coeffi cient; x[1] and x[2] hold the past input samples  x ( n   –  1) and  x ( n   –  2), 
respectively; similarly, b[1] and b[2] are the corresponding coeffi cients. 

   Again, note that using the array and loop structures in the code segment is for simplicity 
in notations and assumes that the reader is not familiar with the C pointers in C-language. 
This concern for simplicity has to do mainly with the DSP algorithm. More coding 
effi ciency can be achieved using the C pointers and circular buffer. The DSP-oriented coding 
implementation can be found in Kehtarnavaz and Simsek (2000).  

    8.6.3.2       Infi nite Impulse Response Filtering 

   Similarly, we can implement an IIR fi lter. It requires an input buffer, which holds the 
current and past inputs; an output buffer, which holds the past outputs; a numerator 
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coeffi cient buffer; and a denominator coeffi cient buffer. Considering the following IIR fi lter 
for implementation, 

  y n x n x n x n y n y n( ) ( ) ( ) ( ) ( ) ( )� � � � � � � � �0 5 0 7 1 0 5 2 0 4 1 0 6 2. . . . . ,      

  we accommodate the numerator coeffi cient buffer b[3], the denominator coeffi cient buffer 
a[3], the input buffer x[3], and the output buffer y[3] shown in  Figure 8.23   . The buffer 
updates for input x[3] and output y[3] are FIFO. The implementation is illustrated in the 
segment of code listed in  Figure 8.23 .   

Coefficient buffer b[3]

Update of input
buffer x[3] (FIFO)

new input x(n)

b[0]

b[1]

b[2]

0.5

0.5

0.2

x[0]

x[1]

x[2]

x(n)

x(n�1)

x(n�2)

Kicked out
First step

Free for new sample

 Figure 8.22 :         Example of FIR fi ltering with linear buffer update    
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   Again, note that in the code segment, x[0] holds the current input sample, while y[0] holds the 
current processed output, which will be sent to the DAC unit for conversion. The coeffi cient 
a[0] is never modifi ed in the code. We keep that for a purpose of notation simplicity and 
consistency during the programming process.  

Coefficients b[3]

Update of input
buffer x[3] (FIFO)

new input x(n)

b[0]

b[1]

b[2]

0.5

�0.5

0.7

a[0]

a[1]

a[2]

x[0]

x[1]

x[2]

1

0.4

�0.6

x (n)

x (n−1)

x (n−2)

Kicked out
First step

Free for new sample

Update of output
buffer y[3] (FIFO)

y[0]

y[1]

y[2]

y (n)

y (n�1)

y (n�2)

Kicked out
First step

Free for output sample

Coefficients a[3]

 Figure 8.23 :         Example of IIR fi ltering using linear buffer update    
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    8.6.3.3       Digital Oscillation with Infi nite Impulse Response Filtering 

   The principle for generating digital oscillation is where the input to the digital fi lter is the 
impulse sequence, and the transfer function is obtained by applying the z-transform of the 
digital sinusoidal function. Applications can be found in dual-tone multifrequency (DTMF) 
tone generation, digital carrier generation for communications, and so on. Hence, we can 
modify the implementation of IIR fi ltering for tone generation with the input generated 
internally instead of by using the ADC channel. 

   Let us generate an 800       Hz tone with a digital amplitude of 5,000. The transfer function, 
difference equation, and impulse input sequence are found to be, respectively, 
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   We defi ne the numerator coeffi cient buffer b[2], the denominator coeffi cient buffer a[3], the 
input buffer x[2], and the output buffer y[3], shown in  Figure 8.24   , which also shows the 
modifi ed implementation for the tone generation. 

   Initially, we set x[0]  �  5000. Then it will be updated with x[0]  �  0 for each current 
processed output sample y[0].   

    8.6.4       Sample C Programs 

    8.6.4.1       Floating-Point Implementation Example 

   Real-time DSP implementation using the fl oating-point processor is easy to program. The 
overfl ow problem hardly ever occurs. Therefore, we do not need to consider scaling factors, 
as described in the last section. The code segment shown in  Figure 8.25    demonstrates the 
simplicity of coding the fl oating-point IIR fi lter using the direct-form I structure.   

    8.6.5       Fixed-Point Implementation Example 

   Where execution time is critical, fi xed-point implementation is preferred in a fl oating-point 
processor. We implement the following IIR fi lter with a unit passband gain in direct form II: 
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   Using MATLAB to calculate the scale factor  S , it follows that: 

  

�� � � �

�� �

  h impz    .

  sf su

1 1 2 1192 2 6952 1 6924 0 6414[ ] [ ]( ), . . . ;

mm(abs(h))
 sf � 28 2196.
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 Figure 8.24 :         Example of IIR fi ltering using linear buffer update and the impulse sequence input    
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volatile int sample;

float a[5]�{1.00,�2.1192, 2.6952,�1.6924, 0.6414};

float b[5]�{0.0201,0.00,�0.0402, 0.00, 0.0201};

float x[5]�{0.0, 0.0, 0.0, 0.0, 0.0};

float y[5]�{0.0, 0.0, 0.0, 0.0, 0.0};

/*****************************************************************∗/

/∗AtoD() Interrupt Service Routine (ISR)–>interrupt 12 defined in IST

of vectors.asm (read McBSP)∗/

/*****************************************************************∗/
interrupt void AtoD()

{

int i;

float temp, sum;

sample� mcbsp0_read();/∗ADC ∗/

//Insert DSP Algorithm Here ()

temp�(float) sample;

for(i� 4; i� 0; i--)

{

x[i]� x[i�1];

}

x[0]�temp;

for(i� 4; i� 0; i--)

{

y[i]� y[i �1];

}
sum� b[0]∗x[0]�b[1]∗x[1]�b[2]∗x[2]�b[3]∗x[3]�b[4]∗x[4]�a[1]∗y[1]�a[2]∗

y[2]�a[3]∗y[3]�a[4]∗y[4];

y[0]� sum;

sample� sum;

}

/*****************************************************************∗/

/∗DtoA() Interrupt Service Routine (ISR)–>interrupt 11 defined in IST

of vectors.asm (write to McBSP)∗/

/*****************************************************************∗/

interrupt void DtoA()

{

sample� sample & 0xfffe; /∗set LSB to 0 for primary communication∗/

mcbsp0_write(sample); /∗DAC ∗/

}

 Figure 8.25 :         Sample C code for IIR fi ltering (fl oat-point implementation)    
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   Hence we choose  S   �  32. To scale the fi lter coeffi cients in the Q-15 format, we use the 
factors  A   �  4 and  B   �  1. Then the developed DSP equations are: 
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   We can convert fi lter coeffi cients into the Q-15 format; each coeffi cient is listed in  Table 8.4   . 

   The list of codes for the fi xed-point implementation is displayed in  Figure 8.26   , and some 
coding notations are given in  Figure 8.27   .   

    8.7       Summary 

      1.     The von Neumann architecture consists of a single, shared memory for programs and 
data, a single bus for memory access, an arithmetic unit, and a program control unit. The 
von Neumann processor operates fetching and execution cycles in series.  

    2.     The Harvard architecture has two separate memory spaces dedicated to program code and 
to data, respectively, two corresponding address buses, and two data buses for accessing 
two memory spaces. The Harvard processor offers fetching and execution cycles in 
parallel.  

 Table 8.4 :         Filter coeffi cients in Q-15 format  

   IIR Filter  Filter Coeffi cients  Q-15 Format (Hex) 

    �  a  1   0.5298  0x43D0 

    �  a  2    � 0.6738  0xA9C1 

    �  a  3   0.4230  0x3628 

    �  a  4    � 0.16035  0xEB7A 

    b  0   0.0201  0  
  0293 

    b  1   0.0000  0  
  0000 

    b  2    � 0.0402  0  
  FADB 

    b  3   0.0000  0  
  000 

    b  4   0.0201  0  
  0293 
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volatile in tsample;

/ ∗float a[5]�{1.00,�2.1192,2.6952,�1.6924,0.6414};

float b[5]�{0.0201,0.00,�0.0402,0.00,0.0201}; ∗/

short a[5]�{0
 2000,0
 43D0,0
 A9C1,0
 3628,0
 EB7A};/ ∗coefficients in Q-15 forma

short b[5]�{0
 0293,0
 0000,0
 FADB,0
 0000,0
 0293};

int w[5]�{0,0,0,0,0};

interrupt void AtoD()

{int i,sum� 0;

sample� mcbsp0_read();/∗ADC ∗/

//Insert DSP Algorithm Here()

sample �(sample��16);/ ∗Move to high 16 bits ∗/

sample �(sample��5);/∗Scaled down by 32 to avoid overflow ∗/

for(i�4;i>0;i--)

{

w[i]� w[i�1];

}

sum �(sample��2);/∗Scaled down by 4 to use Q�15 ∗/

for(i�1;i�5; i��)

{

sum � �(_mpyhl(w[i],a[i]))��1;

}

sum�(sum��2); /∗scaled up by 4∗/

w[0]� sum;

sum� 0;

for(i� 0; i�5;i��)

{

sum � �(_mpyhl(w[i],b[i]))��1;

}

sum �(sum��5); /∗Scaled up by 32 to get y(n) ∗/

sample� sum��16);/∗Move to low 16 bits ∗/

}

/

/∗DtoA()Interrupt Service Routine (ISR)�� interrupt 11 defined in IST of

vectors.asm(write to McBSP) ∗/
/

interrupt void DtoA()

{

sample� sample & 0xfffe; /∗set LSB to 0 for primary communication ∗/

mcbsp0_write(sample);/ ∗DAC ∗/

}

∗/

∗/

 Figure 8.26 :         Sample C code for IIR fi ltering (fi xed-point implementation)    
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    3.     The DSP special hardware units include an MAC dedicated to DSP fi ltering operations, a 
shifter unit for scaling, and address generators for circular buffering.  

    4.     The fi xed-point DS processor uses integer arithmetic. The data format Q-15 for the fi xed-
point system is preferred to avoid overfl ows.  

    5.     The fl oating-point processor uses fl oating-point arithmetic. The standard fl oating-point 
formats include the IEEE single precision and double precision formats.  

    6.     The architectures and features of fi xed-point processors and fl oating-point processors 
were briefl y reviewed.  

    7.     Implementing digital fi lters in the fi xed-point DSP system requires scaling fi lter 
coeffi cients so that the fi lters are in Q-15 format, and input scaling for the adder so that 
overfl ow during the MAC operations can be avoided.  

    8.     The fl oating-point processor is easy to code using fl oating-point arithmetic and develops 
the prototype quickly. However, it is not effi cient in terms of the number of instructions it 
has to complete compared with the fi xed-point processor.  

    9.     The fi xed-point processor using fi xed-point arithmetic takes much effort to code. But it 
offers the least number of instructions for the CPU to execute.      

short  coefficient;      declaration of 16 bit signed integer

int  sample, result;    declaration of 32 bit signed integer

MPYHL   assembly instruction (signed multiply high low 16 MSB 
16 LSB)  

result � (_mpyhl(sample, coefficient) ) <<1; 

sample must be shifted left by 16 bits to be stored in the high 16 MSB.

coefficient is the 16 bit data to be stored in the low 16 LSB.

result is shifted left by one bit to get rid of the extended sign bit, and high 16 

MSB’s are designated for the processed data.

Final result will be shifted down to right by 16 bits before DAC conversion. 

sample � (result��16);

 Figure 8.27 :         Some coding notations for the Q-15 fi xed-point implementation    
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 CHAPTER 9 

                       Code Optimization and Resource 
Partitioning 

   David   Katz  
  Rick   Gentile    

     DSP is all about algorithms. These algorithms place heavy burdens on systems that often have 
limited cost and power budgets. Thus, DSP code usually requires heavy optimization and careful 
use of memory and other resources. In the early days of DSP, there was only one way to meet 
these goals: Use DMA to bring data into internal SRAM (caches were rare) and then process it 
in hand-coded assembly (many early DSPs only had an assembler!). 

 Today, DSP algorithms are implemented on many different classes of hardware, often with 
caches and multiple processing cores. You can program in high-level languages like C, low-
level assembly, or a mixture of both. This presents developers with a much more complex set of 
decisions. 

 In this chapter, David Katz and Rick Gentile show the modern programmer how to manage 
code optimization and system resource partitioning. Katz and Gentile do a good job exploring 
the topic, and bring up important issues that every DSP programmer should understand. This 
chapter focuses on the Blackfi n processor from Analog Devices, but their ideas apply to most 
processors used for DSP. 

 The chapter starts with a look at event handling and generation. These are hugely important 
topics because most DSP systems require fast real-time responses. Katz and Gentile then show 
how to choose between C/C �  � , assembly, or a mixture of both. With this out of the way, they 
present guidelines for effi cient programming, including tips on helping compilers produce 
effi cient code. Finally, they go into some detail on memory management. They show when to use 
cache over DMA (and vice versa), how to use a memory management unit (MMU), and they 
review the physics of data movement. This last point is important, because data movement can 
create major bottlenecks and can boost system power signifi cantly. 

 There’s a lot to digest in this chapter, but it is all crucial information. Woe to any developer who 
starts coding without a fi rm grasp of these concepts! 

  — Kenton Williston   
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    9.1       Introduction 

   In an ideal situation, we can select an embedded processor for our application that provides 
maximum performance for minimum extra development effort. In this utopian environment, 
we could code everything in a high-level language like C, we wouldn’t need an intimate 
knowledge of our chosen device, it wouldn’t matter where we placed our data and code, we 
wouldn’t need to devise any data movement subsystem, the performance of external devices 
wouldn’t matter …  In short, everything would just work. 

   Alas, this is only the stuff of dreams and marketing presentations. The reality is, as embedded 
processors evolve in performance and fl exibility, their complexity also increases. Depending 
on the time-to-market for your application, you will have to walk a fi ne line to reach your 
performance targets. The key is to fi nd the right balance between getting the application to 
work and achieving optimum performance. Knowing when the performance is  “ good enough ”  
rather than optimal can mean getting your product out on time versus missing a market window. 

   In this chapter, we want to explain some important aspects of processor architectures that can 
make a real difference in designing a successful multimedia system. Once you understand the 
basic mechanics of how the various architectural sections behave, you will be able to gauge 
where to focus your efforts, rather than embark on the noble yet unwieldy goal of becoming 
an expert on all aspects of your chosen processor. 

   Here, we’ll explore in detail some Blackfi n processor architectural constructs. Again, keep 
in mind that much of our discussion generalizes to other processor families from different 
vendors as well. 

   We will begin with what should be key focal points in any complex application: interrupt and 
exception handling and response times.  

    9.2       Event Generation and Handling 

   Nothing in an application should make you think  “ performance ”  more than event 
management. If you have used a microprocessor, you know that  “ events ”  encompass two 
categories: interrupts and exceptions. An interrupt is an event that happens asynchronous to 
processor execution. For example, when a peripheral completes a transfer, it can generate an 
interrupt to alert the processor that data is ready for processing. 

   Exceptions, on the other hand, occur synchronously to program execution. An exception 
occurs based on the instruction about to be executed. The change of fl ow due to an exception 



Code Optimization and Resource Partitioning 381

www.newnespress.com

occurs prior to the offending instruction actually being executed. Later in this chapter, we’ll 
describe the most widely used exception handler in an embedded processor — the handler 
that manages pages describing memory attributes. Now, however, we will focus on interrupts 
rather than exceptions, because managing interrupts plays such a critical role in achieving 
peak performance. 

    9.2.1       System Interrupts 

   System level interrupts (those that are generated by peripherals) are handled in two stages —
 fi rst in the system domain, and then in the core domain. Once the system interrupt controller 
(SIC) acknowledges an interrupt request from a peripheral, it compares the peripheral’s 
assigned priority to all current activity from other peripherals to decide when to service 
this particular interrupt request. The most important peripherals in an application should be 
mapped to the highest priority levels. In general, the highest-bandwidth peripherals need the 
highest priority. One  “ exception ”  to this rule (pardon the pun!) is where an external processor 
or supervisory circuit uses a nonmaskable interrupt (NMI) to indicate the occurrence of an 
important event, such as powering down. 

   When the SIC is ready, it passes the interrupt request information to the core event controller 
(CEC), which handles all types of events, not just interrupts. Every interrupt from the SIC 
maps into a priority level at the CEC that regulates how to service interrupts with respect to 
one another, as  Figure 9.1    shows. The CEC checks the  “ vector ”  assignment for the current 
interrupt request, to fi nd the address of the appropriate interrupt service routine (ISR). Finally, 
it loads this address into the processor’s execution pipeline to start executing the ISR. 

   There are two key interrupt-related questions you need to ask when building your system. The 
fi rst is,  “ How long does the processor take to respond to an interrupt? ”  The second is,  “ How 
long can any given task afford to wait when an interrupt comes in? ”  

   The answers to these questions will determine what your processor can actually perform 
within an interrupt or exception handler. 

   For the purposes of this discussion, we defi ne interrupt response time as the number of cycles 
it takes from when the interrupt is generated at the source (including the time it takes for the 
current instruction to fi nish executing) to the time that the fi rst instruction is executed in the 
interrupt service routine. In our experience, the most common method software engineers 
use to evaluate this interval for themselves is to set up a programmable fl ag to generate an 
interrupt when its pin is triggered by an externally generated pulse. The fi rst instruction in 
the interrupt service routine then performs a write to a different fl ag pin. The resulting time 
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difference is then measured on an oscilloscope. This method only provides a rough idea of 
the time taken to service interrupts, including the time required to latch an interrupt at the 
peripheral, propagate the interrupt through to the core, and then vector the core to the fi rst 
instruction in the interrupt service routine. Thus, it is important to run a benchmark that more 
closely simulates the profi le of your end application. 

   Once the processor is running code in an ISR, other higher priority interrupts are held off 
until the return address associated with the current interrupt is saved off to the stack. This 
is an important point, because even if you designate all other interrupt channels as higher 
priority than the currently serviced interrupt, these other channels will all be held off until 
you save the return address to the stack. The mechanism to re-enable interrupts kicks in 
automatically when you save the return address. When you program in C, any register the 
ISR uses will automatically be saved to the stack. Before exiting the ISR, the registers are 
restored from the stack. This also happens automatically, but depending on where your stack 
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is located and how many registers are involved, saving and restoring data to the stack can take 
a signifi cant amount of cycles. 

   Interrupt service routines often perform some type of processing. For example, when a line of 
video data arrives into its destination buffer, the ISR might run code to fi lter or downsample 
it. For this case, when the handler does the work, other interrupts are held off (provided that 
nesting is disabled) until the processor services the current interrupt. 

   When an operating system or kernel is used, however, the most common technique is to 
service the interrupt as soon as possible, release a semaphore, and perhaps make a call to 
a callback function, which then does the actual processing. The semaphore in this context 
provides a way to signal other tasks that it is okay to continue or to assume control over some 
resource. 

   For example, we can allocate a semaphore to a routine in shared memory. To prevent more 
than one task from accessing the routine, one task takes the semaphore while it is using the 
routine, and the other task has to wait until the semaphore has been relinquished before it can 
use the routine. A Callback Manager can optionally assist with this activity by allocating a 
callback function to each interrupt. This adds a protocol layer on top of the lowest layer of 
application code, but in turn it allows the processor to exit the ISR as soon as possible and 
return to a lower-priority task. Once the ISR is exited, the intended processing can occur 
without holding off new interrupts. 

   We already mentioned that a higher-priority interrupt can break into an existing ISR once you 
save the return address to the stack. However, some processors (like Blackfi n) also support 
self-nesting of core interrupts, where an interrupt of one priority level can interrupt an ISR 
of the same level, once the return address is saved. This feature can be useful for building a 
simple scheduler or kernel that uses low-priority software-generated interrupts to preempt an 
ISR and allow the processing of ongoing tasks. 

   There are two additional performance-related issues to consider when you plan out your 
interrupt usage. The fi rst is the placement of your ISR code. For interrupts that run most 
frequently, every attempt should be made to locate these in L1 instruction memory. 
On Blackfi n processors, this strategy allows single-cycle access time. Moreover, if the 
processor were in the midst of a multi-cycle fetch from external memory, the fetch would be 
interrupted, and the processor would vector to the ISR code. 

   Keep in mind that before you re-enable higher priority interrupts, you have to save more than 
just the return address to the stack. Any register used inside the current ISR must also be 
saved. This is one reason why the stack should be located in the fastest available memory in 
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your system. An L1  “ scratchpad ”  memory bank, usually smaller in size than the other L1 data 
banks, can be used to hold the stack. This allows the fastest context switching when taking an 
interrupt.   

    9.3       Programming Methodology 

   It’s nice not to have to be an expert in your chosen processor, but even if you program in a 
high-level language, it’s important to understand certain things about the architecture for 
which you’re writing code. 

   One mandatory task when undertaking a signal-processing-intensive project is deciding what 
kind of programming methodology to use. The choice is usually between assembly language 
and a high-level language (HLL) like C or C �  � . This decision revolves around many factors, 
so it’s important to understand the benefi ts and drawbacks each approach entails. 

   The obvious benefi ts of C/C �  �  include modularity, portability and reusability. Not only 
do the majority of embedded programmers have experience with one of these high-level 
languages, but also a huge code base exists that can be ported from an existing processor 
domain to a new processor in a relatively straightforward manner. Because assembly language 
is architecture-specifi c, reuse is typically restricted to devices in the same processor family. 
Also, within a development team it is often desirable to have various teams coding different 
system modules, and an HLL allows these cross-functional teams to be processor-agnostic. 

   One reason assembly has been diffi cult to program is its focus on actual data fl ow between 
the processor register sets, computational units and memories. In C/C �  � , this manipulation 
occurs at a much more abstract level through the use of variables and function/procedure 
calls, making the code easier to follow and maintain. 

   The C/C �  �  compilers available today are quite resourceful, and they do a great job of 
compiling the HLL code into tight assembly code. One common mistake happens when 
programmers try to  “ outsmart ”  the compiler. In trying to make it easier for the compiler, they 
in fact make things more diffi cult! It’s often best to just let the optimizing compiler do its 
job. However, the fact remains that compiler performance is tuned to a specifi c set of features 
that the tool developer considered most important. Therefore, it cannot exceed handcrafted 
assembly code performance in all situations. 

   The bottom line is that developers use assembly language only when it is necessary to 
optimize important processing-intensive code blocks for effi cient execution. Compiler 
features can do a very good job, but nothing beats thoughtful, direct control of your 
application data fl ow and computation.  
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    9.4       Architectural Features for Effi cient Programming 

   In order to achieve high performance media processing capability, you must understand the 
types of core processor structures that can help optimize performance. These include the 
following capabilities: 

      ●      Multiple operations per cycle  

      ●      Hardware loop constructs  

      ●      Specialized addressing modes  

      ●      Interlocked instruction pipelines    

   These features can make an enormous difference in computational effi ciency. Let’s discuss 
each one in turn. 

    9.4.1       Multiple Operations per Cycle 

   Processors are often benchmarked by how many millions of instructions they can execute 
per second (MIPS). However, for today’s processors, this can be misleading because of the 
confusion surrounding what actually constitutes an instruction. For example, multi-issue 
instructions, which were once reserved for use in higher-cost parallel processors, are now also 
available in low-cost, fi xed-point processors. In addition to performing multiple ALU/MAC 
operations each core processor cycle, additional data loads and stores can be completed in the 
same cycle. This type of construct has obvious advantages in code density and execution time. 

   An example of a Blackfi n multi-operation instruction is shown in  Figure 9.2   . In addition 
to two separate MAC operations, a data fetch and data store (or two data fetches) can also 
be accomplished in the same processor clock cycle. Correspondingly, each address can be 
updated in the same cycle that all of the other activities are occurring.  

    9.4.2       Hardware Loop Constructs 

   Looping is a critical feature in real-time processing algorithms. There are two key looping-
related features that can improve performance on a wide variety of algorithms:  zero-overhead 
hardware loops  and  hardware loop buffers . 

   Zero-overhead loops allow programmers to initialize loops simply by setting up a count value 
and defi ning the loop bounds. The processor will continue to execute this loop until the count 
has been reached. In contrast, a software implementation would add overhead that would cut 
into the real-time processing budget. 
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   Many processors offer zero-overhead loops, but hardware loop buffers, which are less 
common, can really add increased performance in looping constructs. They act as a kind of 
cache for instructions being executed in the loop. For example, after the fi rst time through a 
loop, the instructions can be kept in the loop buffer, eliminating the need to re-fetch the same 
code each time through the loop. This can produce a signifi cant savings in cycles by keeping 
several loop instructions in a buffer where they can be accessed in a single cycle. The use of 
the hardware loop construct comes at no cost to the HLL programmer, since the compiler 
should automatically use hardware looping instead of conditional jumps. 

   Let’s look at some examples to illustrate the concepts we’ve just discussed.   

    9.4.3       Specialized Addressing Modes 

    9.4.3.1       Byte Addressability 

   Allowing the processor to access multiple data words in a single cycle requires substantial 
fl exibility in address generation. In addition to the more signal-processing-centric access sizes 
along 16-and 32-bit boundaries, byte addressing is required for the most effi cient processing. 
This is important for multimedia processing because many video-based systems operate on 
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 memory for use in next instruction
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 Figure 9.2 :         Example of single-cycle, multi-issue instruction    
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       Example 9.1 Dot Product      

   The dot product, or scalar product, is an operation useful in measuring orthogonality 
of two vectors. It’s also a fundamental operator in digital fi lter computations. Most C 
programmers should be familiar with the following implementation of a dot product: 

      short    dot(   const short    a[],   const short    b[],   int    size)  {      

   /* Note: It is important to declare the input buffer arrays as const, because this gives 
the compiler a guarantee that neither  “ a ”  nor  “ b ”  will be modifi ed by the function. */ 

            int    i;   
       int    output � 0;   

       for   (i � 0; i � size; i �  � )  {   
            output  �  �  (a[i] * b[i]);      
       }    
       return    output;      
      }      

   Below is the main portion of the equivalent assembly code: 

      /* P0 � Loop Count, P1  &  I0 hold starting addresses of a  &  b 
       arrays */   
      A1 � A0 � 0;        /* A0  &  A1 are accumulators */   
      LSETUP (loop1, loop1) LC0 � P0 ; /* Set up hardware loop 
       starting   and ending at label loop1 */   
      loop1: A1  �  �  R1.H * R0.H , A0  �  �  R1.L * R0.L || R1 � [ P1  �  �  ]  
             || R0 � [ I0  �  �  ] ;        

   The following points illustrate how a processor’s architectural features can facilitate this 
tight coding. 

   Hardware loop buffers and loop counters eliminate the need for a jump instruction at the 
end of each iteration. Since a dot product is a summation of products, it is implemented 
in a loop. Some processors use a JUMP instruction at the end of each iteration in order to 
process the next iteration of the loop. This contrasts with the assembly program above, 
which shows the LSETUP instruction as the only instruction needed to implement a loop. 

   Multi-issue instructions allow computation and two data accesses with pointer 
updates in the same cycle. In each iteration, the values a[i] and b[i] must be read, then 
multiplied, and fi nally written back to the running summation in the variable output. On 
many microcontroller platforms, this effectively amounts to four instructions. The last 
line of the assembly code shows that all of these operations can be executed in one cycle. 

   Parallel ALU operations allow two 16-bit instructions to be executed simultaneously. The 
assembly code shows two accumulator units (A0 and A1) used in each iteration. This 
reduces the number of iterations by 50%, effectively halving the original execution time.    
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8-bit data. When memory accesses are restricted to a single boundary, the processor may 
spend extra cycles to mask off relevant bits.  

    9.4.3.2       Circular Buffering 

   Another benefi cial addressing capability is  circular buffering . For maximum effi ciency, this 
feature must be supported directly by the processor, with no special management overhead. 
Circular buffering allows a programmer to defi ne buffers in memory and stride through them 
automatically. Once the buffer is set up, no special software interaction is required to navigate 
through the data. The address generator handles nonunity strides and, more importantly, 
handles the  “ wrap-around ”  feature illustrated in  Figure 9.3   . Without this automated address 
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 Figure 9.3 :         Circular buffer in hardware    
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generation, the programmer would have to manually keep track of buffer pointer positions, 
thus wasting valuable processing cycles. 

   Many optimizing compilers will automatically use hardware circular buffering when they 
encounter array addressing with a modulus operator.   

    9.4.3.3       Bit Reversal 

   An essential addressing mode for effi cient signal-processing operations such as the FFT 
and DCT is bit reversal. Just as the name implies, bit reversal involves reversing the bits 

       Example 9.2 Single-Sample FIR      

   The fi nite impulse response fi lter is a very common fi lter structure equivalent to the 
convolution operator. A straightforward C implementation follows: 

     // sample the signal into a circular buffer   
     x[cur] �  sampling_function ();   
     cur  � (cur � 1)%TAPS; // advance cur pointer in circular fashion   

     // perform the multiply-addition   
     y  �  0;   
     for (k � 0; k � TAPS; k �  � )  {   
      y  �  �  h[k] * x[(cur � k)%TAPS];      
      }      

   The essential part of an FIR kernel written in assembly is shown below. 

     /* the samples are stored in the R0 register, while the 
   coeffi cients are stored in the R1 register */   
     LSETUP (loop_begin, loop_end) LC0 � P0; /* loop counter set to 
   traverse the fi lter */   
     loop_begin: A1 �  � R0.H*R1.L, A0 �  � R0.L*R1.L || R0.L � [I0 �  � ] ;  
        /* perform MAC and fetch next data */      
     loop_end: A1 �  � R0.L*R1.H, A0 �  � R0.H*R1.H || R0.H � [I0 �  � ] || 
   R1 � [I1 �  � ];   
       /* perform MAC and fetch next data */     

   In the C code snippet, the % (modulus) operator provides a mechanism for circular 
buffering. As shown in the assembly kernel, this modulus operator does not get 
translated into an additional instruction inside the loop. Instead, the Data Address 
Generator registers I0 and I1 are confi gured outside the loop to automatically wrap 
around to the beginning upon hitting the buffer boundary.    
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in a binary address. That is, the least signifi cant bits are swapped in position with the most 
signifi cant bits. The data ordering required by a radix-2 butterfl y is in  “ bit-reversed ”  order, 
so bit-reversed indices are used to combine FFT stages. It is possible to calculate these bit-
reversed indices in software, but this is very ineffi cient. An example of bit reversal address 
fl ow is shown in  Figure 9.4   . 
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Sample code:

//Loop count � 8 

// I0 points to input buffer, automatically incremented in 

//bit-reversed progression

// I2 points to bit-reversed buffer

 Figure 9.4 :         Bit reversal in hardware    

       Example 9.3 FFT      

   A fast Fourier transform is an integral part of many signal-processing algorithms. One 
of its peculiarities is that if the input vector is in sequential time order, the output comes 
out in bit-reversed order. Most traditional general-purpose processors require the 
programmer to implement a separate routine to unscramble the bit-reversed output. 
On a media processor, bit reversal is often designed into the addressing engine. 

   Allowing the hardware to automatically bit-reverse the output of an FFT algorithm 
relieves the programmer from writing additional utilities, and thus improves 
performance.    
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   Since bit reversal is very specifi c to algorithms like fast Fourier transforms and discrete 
Fourier transforms, it is diffi cult for any HLL compiler to employ hardware bit reversal. For 
this reason, comprehensive knowledge of the underlying architecture and assembly language 
are key to fully utilizing this addressing mode.    

    9.4.4       Interlocked Instruction Pipelines 

   As processors increase in speed, it is necessary to add stages to the processing pipeline. 
For instances where a high-level language is the sole programming language, the compiler 
is responsible for dealing with instruction scheduling to maximize performance through 
the pipeline. That said, the following information is important to understand even if you’re 
programming in C. 

   On older processor architectures, pipelines are usually not interlocked. On these architectures, 
executing certain combinations of neighboring instructions can yield incorrect results. 
Interlocked pipelines like the one in  Figure 9.5   , on the other hand, make assembly 
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 Figure 9.5 :         Example of interlocked pipeline architecture with stalls inserted    
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            Register Transfer/Multiply latencies (One stall, due to R0 being used in the multiply): 

     R0 � R4; /* load R0 with contents of R4 */   
      � STALL �    
     R2.H � R1.L * R0.H; /* R0 is used as an operand */     

   In this example, any instruction that does not change the value of the operands can be 
placed in-between the two instructions to hide the stall. 

   When we load a pointer register and try to use the content in the next instruction, there 
is a latency of three stalls: 

     P3 � [SP �  � ]; /* Pointer register loaded from stack */   
      � STALL �    
      � STALL �    
      � STALL �    
     R0 � P3; /* Use contents of P3 after it gets its value from earlier 
   instruction */        

programming (as well as the life of compiler engineers) easier by automatically inserting 
stalls when necessary. This prevents the assembly programmer from scheduling instructions 
in a way that will produce inaccurate results. It should be noted that, even if the pipeline 
is interlocked, instruction rearrangement can still yield optimization improvements by 
eliminating unnecessary stalls. 

   Let’s take a look at stalls in more detail. Stalls will show up for one of four reasons: 

    1.     The instruction in question may itself take more than one cycle to execute. When this 
is the case, there isn’t anything you can do to eliminate the stall. For example, a 32-bit 
integer multiply might take three core-clock cycles to execute on a 16-bit processor. This 
will cause a  “ bubble ”  in two pipeline stages for a three-cycle instruction.  

    2.     The second case involves the location of one instruction in the pipeline with respect to an 
instruction that follows it. For example, in some instructions, a stall may exist because 
the result of the fi rst instruction is used as an operand of the following instruction. When 
this happens and you are programming in assembly, it is often possible to move the 
instruction so that the stall is not in the critical path of execution.    

    Here are some simple examples on Blackfi n processors that demonstrate these concepts.

      3.     The third case involves a change of fl ow. While a deeper pipeline allows increased clock 
speeds, any time a change of fl ow occurs, a portion of the pipeline is fl ushed, and this 
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consumes core-clock cycles. The branching latency associated with a change of fl ow 
varies based on the pipeline depth. Blackfi n’s 10-stage pipeline yields the following 
latencies:    

    Instruction fl ow dependencies (Static Prediction): 

    Correctly predicted branch       (4 stalls) 

    Incorrectly predicted branch       (8 stalls) 

    Unconditional branch       (8 stalls) 

     “ Drop-through ”  conditional branch       (0 stalls) 

    The term  “ predicted ”  is used to describe what the sequencer does as instructions that 
will complete ten core-clock cycles later enter the pipeline. You can see that when the 
sequencer does not take a branch, and in effect  “ drops through ”  to the next instruction after 
the conditional one, there are no added cycles. When an unconditional branch occurs, the 
maximum number of stalls occurs (eight cycles). When the processor predicts that a branch 
occurs and it actually is taken, the number of stalls is four. In the case where it predicted no 
branch, but one is actually taken, it mirrors the case of an unconditional branch. 

    One more note here. The maximum number of stalls is eight, while the depth of the 
pipeline is ten. This shows that the branching logic in an architecture does not implicitly 
have to match the full size of the pipeline. 

    4.     The last case involves a confl ict when the processor is accessing the same memory space 
as another resource (or simply fetching data from memory other than L1). For instance, 
a core fetch from SDRAM will take multiple core-clock cycles. As another example, if 
the processor and a DMA channel are trying to access the same memory bank, stalls will 
occur until the resource is available to the lower-priority process.      

    9.5       Compiler Considerations for Effi cient Programming 

   Since the compiler’s foremost task is to create correct code, there are cases where the 
optimizer is too conservative. In these cases, providing the compiler with extra information 
(through pragmas, built-in keywords, or command-line switches) will help it create more 
optimized code. 

   In general, compilers can’t make assumptions about what an application is doing. This is why 
pragmas exist — to let the compiler know it is okay to make certain assumptions. For example, 
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a pragma can instruct the compiler that variables in a loop are aligned and that they are not 
referenced to the same memory location. This extra information allows the compiler to optimize 
more aggressively, because the programmer has made a guarantee dictated by the pragma. 

   In general, a four-step process can be used to optimize an application consisting primarily of 
HLL code: 

    1.     Compile with an HLL-optimizing compiler.  

    2.     Profi le the resulting code to determine the  “ hot spots ”  that consume the most processing 
bandwidth.  

    3.     Update HLL code with pragmas, built-in keywords, and compiler switches to speed up 
the  “ hot spots. ”   

    4.     Replace HLL procedures/functions with assembly routines in places where the optimizer 
did not meet the timing budget.    

   For maximum effi ciency, it is always a good idea to inspect the most frequently executed 
compiler-generated assembly code to make a judgment on whether the code could be more 
vectorized. Sometimes, the HLL program can be changed to help the compiler produce faster 
code through more use of multi-issue instructions. If this still fails to produce code that is fast 
enough, then it is up to the assembly programmer to fi ne-tune the code line-by-line to keep all 
available hardware resources from idling. 

    9.5.1       Choosing Data Types 

   It is important to remember how the standard data types available in C actually map to the 
architecture you are using. For Blackfi n processors, each type is shown in  Table 9.1   . 

 Table 9.1 :         C data types and their mapping to Blackfi n registers  

   C type  Blackfi n equivalent 

   char  8-bit signed 

   unsigned char  8-bit unsigned 

   short  16-bit signed integer 

   unsigned short  16-bit unsigned integer 

   lnt  32-bit signed integer 

   unsigned int  32-bit unsigned integer 

   long  32-bit signed integer 

   unsigned long  32-bit unsigned integer 
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   The   fl oat   (32-bit),   double   (32-bit),   long long   (64-bit) and   unsigned long long   
(64-bit) formats are not supported natively by the processor, but these can be emulated.  

    9.5.2       Arrays versus Pointers 

   We are often asked whether it is better to use arrays to represent data buffers in C, or whether 
pointers are better. Compiler performance engineers always point out that arrays are easier to 
analyze. Consider the example: 

      void    array_example (   int    a[],   int    b[],   int    sum[],   int    n)   
      {   
       int    i;   
       for    (i � 0; i � n;  �  � i)   
      sum[i] � a[i] �   b[i];      
      }      

   Even though we chose a simple example, the point is that these constructs are very easy to 
follow. 

   Now let’s look at the same function using pointers. With pointers, the code is  “ closer ”  to the 
processor’s native language. 

      void    pointer_example (   int    a[],   int    b[],   int    sum[],   int    n) {   
       int    i;   
       for    (i  �  0; i  �  n;  �  � i)  
      *out �  �   �  *a �  �   �  *b �  �  ;         
      }      

   Which produces the most effi cient code? Actually, there is usually very little difference. It 
is best to start by using the array notation because it is easier to read. An array format can 
be better for  “ alias ”  analysis in helping to ensure there is no overlap between elements in 
a buffer. If performance is not adequate with arrays (for instance, in the case of tight inner 
loops), pointers may be more useful.  

    9.5.3       Division 

   Fixed-point processors often do not support division natively. Instead, they offer division 
primitives in the instruction set, and these help accelerate division. 

   The  “ cost ”  of division depends on the range of the inputs. There are two possibilities: You 
can use division primitives where the result and divisor each fi t into 16 bits. On Blackfi n 
processors, this results in an operation of  � 40 cycles. For more precise, bitwise 32-bit 
division, the result is  � 10 
  more cycles. 
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   If possible, it is best to avoid division, because of the additional overhead it entails. Consider 
the example: 

      if    ( X/Y  �  A/B )     

   This can easily be rewritten as: 

      if    ( X * B  �  A * Y )     

   to eliminate the division. 

   Keep in mind that the compiler does not know anything about the data precision in your 
application. For example, in the context of the above equation rewrite, two 12-bit inputs are 
 “ safe, ”  because the result of the multiplication will be 24 bits maximum. This quick check 
will indicate when you can take a shortcut, and when you have to use actual division.  

    9.5.4       Loops 

   We already discussed hardware looping constructs. Here we’ll talk about software looping 
in C. We will attempt to summarize what you can do to ensure best performance for your 
application. 

    1.     Try to keep loops short. Large loop bodies are usually more complex and diffi cult to 
optimize. Additionally, they may require register data to be stored in memory, decreasing 
code density and execution performance.  

    2.     Avoid loop-carried dependencies. These occur when computations in the present iteration 
depend on values from previous iterations. Dependencies prevent the compiler from 
taking advantage of loop overlapping (i.e., nested loops).  

    3.     Avoid manually unrolling loops. This confuses the compiler and cheats it out of a job at 
which it typically excels.  

    4.     Don’t execute loads and stores from a noncurrent iteration while doing computations 
in the current loop iteration. This introduces loop-carried dependencies. This means 
avoiding loop array writes of the form:    

      for    (i   �   0; i   �   n;  �  � i)  

      a[i] �   b[i] * a[c[i]]; /* has array dependency*/        

    5.     Make sure that inner loops iterate more than outer loops, since most optimizers focus on 
inner loop performance.  
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    6.     Avoid conditional code in loops. Large control-fl ow latencies may occur if the compiler 
needs to generate conditional jumps.    

   As an example, 

     for  {   
      if  {  …..  }  else  { ….. }       

       }      

   should be replaced, if possible, by: 

      if     {   
       for      { ….. }       

       }     else     {   
       for      { ….. }   

       }                

    7.     Don’t place function calls in loops. This prevents the compiler from using hardware loop 
constructs, as we described earlier in this chapter.  

    8.     Try to avoid using variables to specify stride values. The compiler may need to use 
division to fi gure out the number of loop iterations required, and you now know why this 
is not desirable!     

    9.5.5       Data Buffers 

   It is important to think about how data is represented in your system. It’s better to pre-arrange 
the data in anticipation of  “ wider ”  data fetches — that is, data fetches that optimize the amount 
of data accessed with each fetch. Let’s look at an example that represents complex data. 

   One approach that may seem intuitive is: 

      short    Real_Part[ N ];   
      short    Imaginary_Part [ N ];     

   While this is perfectly adequate, data will be fetched in two separate 16-bit accesses. It is 
often better to arrange the array in one of the following ways: 

      short    Complex [ N*2 ];     

   or 

      long    Complex [ N ];     

   Here, the data can be fetched via one 32-bit load and used whenever it’s needed. This single 
fetch is faster than the previous approach. 
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   On a related note, a common performance-degrading buffer layout involves constructing a 
2D array with a column of pointers to   malloc  ’d rows of data. While this allows complete 
fl exibility in row and column size and storage, it may inhibit a compiler’s ability to optimize, 
because the compiler no longer knows if one row follows another, and therefore it can see no 
constant offset between the rows.  

    9.5.6       Intrinsics and In-lining 

   It is diffi cult for compilers to solve all of your problems automatically and consistently. This 
is why you should, if possible, avail yourself of  “ in-line ”  assembly instructions and intrinsics. 

   In-lining allows you to insert an assembly instruction into your C code directly. Sometimes 
this is unavoidable, so you should probably learn how to in-line for the compiler you’re using. 

   In addition to in-lining, most compilers support intrinsics, and their optimizers fully 
understand intrinsics and their effects. The Blackfi n compiler supports a comprehensive 
array of 16-bit intrinsic functions, which must be programmed explicitly. Below is a simple 
example of an intrinsic that multiplies two 16-bit values. 

     #   include     � fract.h �    
      fract32    fdot(   fract16    *x,   fract16    *y,   int    n)   
      {   
       fract32    sum � 0;   
       int    i;   
       for    (i  �  0; i  �  n; i �  � )  
      sum  �  add_fr1x32(sum, mult_fr1x32(x[i], y[i]));      
       return    sum;      
      }      

   Here are some other operations that can be accomplished through intrinsics: 

      ●      Align operations  

      ●      Packing operations  

      ●      Disaligned loads  

      ●      Unpacking  

      ●      Quad 8-bit add/subtract  

      ●      Dual 16-bit add/clip  

      ●      Quad 8-bit average  
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      ●      Accumulator extract with addition  

      ●      Subtract/absolute value/accumulate    

   The intrinsics that perform the above functions allow the compiler to take advantage of video-
specifi c instructions that improve performance but that are diffi cult for a compiler to use natively. 

   When should you use in-lining, and when should you use intrinsics? Well, you really don’t 
have to choose between the two. Rather, it is important to understand the results of using 
both, so that they become tools in your programming arsenal. With regard to in-lining of 
assembly instructions, look for an option where you can include in the in-lining construct 
the registers you will be  “ touching ”  in the assembly instruction. Without this information, 
the compiler will invariably spend more cycles, because it’s limited in the assumptions it can 
make and therefore has to take steps that can result in lower performance. With intrinsics, 
the compiler can use its knowledge to improve the code it generates on both sides of the 
intrinsic code. In addition, the fact that the intrinsic exists means someone who knows the 
compiler and architecture very well has already translated a common function to an optimized 
code section.  

    9.5.7       Volatile Data 

   The  volatile  data type is essential for peripheral-related registers and interrupt-related data. 

   Some variables may be accessed by resources not visible to the compiler. For example, they 
may be accessed by interrupt routines, or they may be set or read by peripherals. 

   The   volatile   attribute forces all operations with that variable to occur exactly as written 
in the code. This means that a variable is read from memory each time it is needed, and 
it’s written back to memory each time it’s modifi ed. The exact order of events is preserved. 
Missing a   volatile   qualifi er is the largest single cause of trouble when engineers port 
from one C-based processor to another. Architectures that don’t require   volatile   for 
hardware-related accesses probably treat all accesses as volatile by default and thus may 
perform at a lower performance level than those that require you to state this explicitly. When 
a C program works with optimization turned off but doesn’t work with optimization on, a 
missing   volatile   qualifi er is usually the culprit.   

    9.6       System and Core Synchronization 

   Earlier we discussed the importance of an interlocked pipeline, but we also need to 
discuss the implications of the pipeline on the different operating domains of a processor. 
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On Blackfi n devices, there are two synchronization instructions that help manage the 
relationship between when the core and the peripherals complete specifi c instructions or 
sequences. While these instructions are very straightforward, they are sometimes used 
more than necessary. The  CSYNC  instruction prevents any other instructions from entering 
the pipeline until all pending core activities have completed. The  SSYNC  behaves in a 
similar manner, except that it holds off new instructions until all pending system actions 
have completed. The performance impact from a  CSYNC  is measured in multiple  CCLK  
cycles, while the impact of an  SSYNC  is measured in multiple  SCLK s. When either of these 
instructions is used too often, performance will suffer needlessly. 

   So when do you need these instructions? We’ll fi nd out in a minute. But fi rst we need to talk 
about memory transaction ordering. 

    9.6.1       Load/Store Synchronization 

   Many embedded processors support the concept of a Load/Store data access mechanism. 
What does this mean, and how does it impact your application?  “ Load/Store ”  refers to the 
characteristic in an architecture where memory operations (loads and stores) are intentionally 
separated from the arithmetic functions that use the results of fetches from memory 
operations. The separation is made because memory operations, especially instructions that 
access off-chip memory or I/O devices, take multiple cycles to complete and would normally 
halt the processor, preventing an instruction execution rate of one instruction per core-clock 
cycle. To avoid this situation, data is brought into a data register from a source memory 
location, and once it is in the register, it can be fed into a computation unit. 

   In write operations, the  “ store ”  instruction is considered complete as soon as it executes, 
even though many clock cycles may occur before the data is actually written to an external 
memory or I/O location. This arrangement allows the processor to execute one instruction 
per clock cycle, and it implies that the synchronization between when writes complete and 
when subsequent instructions execute is not guaranteed. This synchronization is considered 
unimportant in the context of most memory operations. With the presence of a write buffer 
that sits between the processor and external memory, multiple writes can, in fact, be made 
without stalling the processor. 

   For example, consider the case where we write a simple code sequence consisting of a 
single write to L3 memory surrounded by fi ve  NOP  ( “ no operation ” ) instructions. Measuring 
the cycle count of this sequence running from L1 memory shows that it takes six cycles to 
execute. Now let’s add another write to L3 memory and measure the cycle count again. We 
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will see the cycle count increase by one cycle each time, until we reach the limits of the write 
buffer, at which point it will increase substantially until the write buffer is drained.  

    9.6.2       Ordering 

   The relaxation of synchronization between memory accesses and their surrounding instructions 
is referred to as  “ weak ordering ”  of loads and stores. Weak ordering implies that the timing of 
the actual completion of the memory operations — even the order in which these events occur —
 may not align with how they appear in the sequence of a program’s source code. 

   In a system with weak ordering, only the following items are guaranteed: 

      ●      Load operations will complete before a subsequent instruction uses the returned data.  

      ●      Load operations using previously written data will use the updated values, even if 
they haven’t yet propagated out to memory.  

      ●      Store operations will eventually propagate to their ultimate destination.    

   Because of weak ordering, the memory system is allowed to prioritize reads over writes. In 
this case, a write that is queued anywhere in the pipeline, but not completed, may be deferred 
by a subsequent read operation, and the read is allowed to be completed before the write. 
Reads are prioritized over writes because the read operation has a dependent operation waiting 
on its completion, whereas the processor considers the write operation complete, and the write 
does not stall the pipeline if it takes more cycles to propagate the value out to memory. 

   For most applications, this behavior will greatly improve performance. Consider the case 
where we are writing to some variable in external memory. If the processor performs a write 
to one location followed by a read from a different location, we would prefer to have the read 
complete before the write. 

   This ordering provides signifi cant performance advantages in the operation of most memory 
instructions. However, it can cause side effects — when writing to or reading from non-
memory locations such as I/O device registers, the order of how read and write operations 
complete is often signifi cant. 

   For example, a read of a status register may depend on a write to a control register. If the 
address in either case is the same, the read would return a value from the write buffer rather 
than from the actual I/O device register, and the order of the read and write at the register 
may be reversed. Both of these outcomes could cause undesirable side effects. To prevent 
these occurrences in code that requires precise (strong) ordering of load and store operations, 
synchronization instructions like  CSYNC  or  SSYNC  should be used. 
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   The  CSYNC  instruction ensures all pending core operations have completed and the core 
buffer (between the processor core and the L1 memories) has been fl ushed before proceeding 
to the next instruction. Pending core operations may include any pending interrupts, 
speculative states (such as branch predictions) and exceptions. A  CSYNC  is typically required 
after writing to a control register that is in the core domain. It ensures that whatever action you 
wanted to happen by writing to the register takes place before you execute the next instruction. 

   The  SSYNC  instruction does everything the  CSYNC  does, and more. As with  CSYNC , it 
ensures all pending operations have to be completed between the processor core and the L1 
memories.  SSYNC  further ensures completion of all operations between the processor core, 
external memory and the system peripherals. There are many cases where this is important, 
but the best example is when an interrupt condition needs to be cleared at a peripheral before 
an interrupt service routine (ISR) is exited. Somewhere in the ISR, a write is made to a 
peripheral register to  “ clear ”  and, in effect, acknowledge the interrupt. Because of differing 
clock domains between the core and system portions of the processor, the  SSYNC  ensures 
the peripheral clears the interrupt before exiting the ISR. If the ISR were exited before the 
interrupt was cleared, the processor might jump right back into the ISR. 

   Load operations from memory do not change the state of the memory value itself. 
Consequently, issuing a speculative memory-read operation for a subsequent load instruction 
usually has no undesirable side effect. In some code sequences, such as a conditional branch 
instruction followed by a load, performance may be improved by speculatively issuing the 
read request to the memory system before the conditional branch is resolved. 

   For example, 

     IF CC JUMP away_from_here   
     RO   � [P2];   
     …   
     away_from_here:     

   If the branch is taken, then the load is fl ushed from the pipeline, and any results that are in the 
process of being returned can be ignored. Conversely, if the branch is not taken, the memory 
will have returned the correct value earlier than if the operation were stalled until the branch 
condition was resolved. 

   However, this could cause an undesirable side effect for a peripheral that returns sequential 
data from a FIFO or from a register that changes value based on the number of reads that are 
requested. To avoid this effect, use an  SSYNC  instruction to guarantee the correct behavior 
between read operations. 
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   Store operations never access memory speculatively, because this could cause modifi cation of 
a memory value before it is determined whether the instruction should have executed.  

    9.6.3       Atomic Operations 

   We have already introduced several ways to use semaphores in a system. While there are 
many ways to implement a semaphore, using atomic operations is preferable, because they 
provide noninterruptible memory operations in support of semaphores between tasks. 

   The Blackfi n processor provides a single atomic operation:  TESTSET . The  TESTSET  
instruction loads an indirectly addressed memory word, tests whether the low byte is zero, 
and then sets the most signifi cant bit of the low memory byte without affecting any other bits. 
If the byte is originally zero, the instruction sets a status bit. If the byte is originally nonzero, 
the instruction clears the status bit. The sequence of this memory transaction is atomic —
 hardware bus locking insures that no other memory operation can occur between the test 
and set portions of this instruction. The  TESTSET  instruction can be interrupted by the core. 
If this happens, the  TESTSET  instruction is executed again upon return from the interrupt. 
Without something like this  TESTSET  facility, it is diffi cult to ensure true protection when 
more than one entity (for example, two cores in a dual-core device) vies for a shared resource.   

    9.7       Memory Architecture — The Need for Management 

   In this section we will discuss how to best use memory in your application. 

    9.7.1       Memory Access Trade-offs 

   Embedded media processors usually have a small amount of fast, on-chip memory, whereas 
microcontrollers usually have access to large external memories. A hierarchical memory 
architecture combines the best of both approaches, providing several tiers of memory with 
different performance levels. For applications that require the most determinism, on-chip 
SRAM can be accessed in a single core-clock cycle. Systems with larger code sizes can 
utilize bigger, higher-latency on-chip and off-chip memories. 

   On its own, this hierarchy is only part of the answer, since most complex programs today 
are large enough to require external memory, and this would dictate an unacceptably slow 
execution speed. As a result, programmers would be forced to manually move key code in and 
out of internal SRAM. However, by adding data and instruction caches into the architecture, 
external memory becomes much more manageable. The cache reduces the manual movement of 
instructions and data into the processor core, thus greatly simplifying the programming model. 
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    Figure 9.6    demonstrates a typical memory confi guration where instructions are brought in 
from external memory as they are needed. Instruction cache usually operates with some type 
of least recently used (LRU) algorithm, insuring that instructions that run more often get 
replaced less often. The fi gure also illustrates that having the ability to confi gure some on-
chip data memory as cache and some as SRAM can optimize performance. DMA controllers 
can feed the core directly, while data from tables can be brought into the data cache as they 
are needed. 

   When porting existing applications to a new processor,  “ out-of-the-box ”  performance is 
important. As we saw earlier, there are many features compilers exploit that require minimal 
developer involvement. Yet, there are many other techniques that, with a little extra effort by 
the programmer, can have a big impact on system performance. 

   Proper memory confi guration and data placement always pays big dividends in improving 
system performance. On high-performance media processors, there are typically three paths into 
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a memory bank. This allows the core to make multiple accesses in a single clock cycle (e.g., 
a load and store, or two loads). By laying out an intelligent data fl ow, a developer can avoid 
confl icts created when the core processor and DMA vie for access to the same memory bank.  

    9.7.2       Instruction Memory Management — To Cache or To DMA? 

   Maximum performance is only realized when code runs from internal L1 memory. Of course, 
the ideal embedded processor would have an unlimited amount of L1 memory, but this is not 
practical. Therefore, programmers must consider several alternatives to take advantage of the 
L1 memory that exists in the processor, while optimizing memory and data fl ows for their 
particular system. Let’s examine some of these scenarios. 

   The fi rst, and most straightforward, situation is when the target application code fi ts entirely 
into L1 instruction memory. For this case, there are no special actions required, other than for 
the programmer to map the application code directly to this memory space. It thus becomes 
intuitive that media processors must excel in code density at the architectural level. 

   In the second scenario, a caching mechanism is used to allow programmers access to larger, 
less expensive external memories. The cache serves as a way to automatically bring code into 
L1 instruction memory as needed. The key advantage of this process is that the programmer 
does not have to manage the movement of code into and out of the cache. This method is best 
when the code being executed is somewhat linear in nature. For nonlinear code, cache lines 
may be replaced too often to allow any real performance improvement. 

   The instruction cache really performs two roles. For one, it helps pre-fetch instructions from 
external memory in a more effi cient manner. That is, when a cache miss occurs, a cache-line 
fi ll will fetch the desired instruction, along with the other instructions contained within the 
cache line. This ensures that, by the time the fi rst instruction in the line has been executed, the 
instructions that immediately follow have also been fetched. In addition, since caches usually 
operate with an LRU algorithm, instructions that run most often tend to be retained in cache. 

   Some strict real-time programmers tend not to trust cache to obtain the best system 
performance. Their argument is that if a set of instructions is not in cache when needed for 
execution, performance will degrade. Taking advantage of cache-locking mechanisms can 
offset this issue. Once the critical instructions are loaded into cache, the cache lines can be 
locked, and thus not replaced. This gives programmers the ability to keep what they need in 
cache and to let the caching mechanism manage less-critical instructions. 

   In a fi nal scenario, code can be moved into and out of L1 memory using a DMA channel that 
is independent of the processor core. While the core is operating on one section of memory, 
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the DMA is bringing in the section to be executed next. This scheme is commonly referred to 
as an overlay technique. 

   While overlaying code into L1 instruction memory via DMA provides more determinism 
than caching it, the tradeoff comes in the form of increased programmer involvement. In 
other words, the programmer needs to map out an overlay strategy and confi gure the DMA 
channels appropriately. Still, the performance payoff for a well-planned approach can be well 
worth the extra effort.  

    9.7.3       Data Memory Management 

   The data memory architecture of an embedded media processor is just as important to the 
overall system performance as the instruction clock speed. Because multiple data transfers take 
place simultaneously in a multimedia application, the bus structure must support both core 
and DMA accesses to all areas of internal and external memory. It is critical that arbitration 
between the DMA controller and the processor core be handled automatically, or performance 
will be greatly reduced. Core-to-DMA interaction should only be required to set up the DMA 
controller, and then again to respond to interrupts when data is ready to be processed. 

   A processor performs data fetches as part of its basic functionality. While this is typically 
the least effi cient mechanism for transferring data to or from off-chip memory, it provides 
the simplest programming model. A small, fast scratchpad memory is sometimes available 
as part of L1 data memory, but for larger, off-chip buffers, access time will suffer if the core 
must fetch everything from external memory. Not only will it take multiple cycles to fetch 
the data, but the core will also be busy doing the fetches. It is important to consider how the 
core processor handles reads and writes. As we detailed above, Blackfi n processors possess a 
multi-slot write buffer that can allow the core to proceed with subsequent instructions before 
all posted writes have completed. For example, in the following code sample, if the pointer 
register P0 points to an address in external memory and P1 points to an address in internal 
memory, line 50 will be executed before R0 (from line 46) is written to external memory: 

     …   
     Line 45: R0  � R1 � R2;   
     Line 46: [P0] � R0; /* Write the value contained in R0 to slower   

     external memory */   
     Line 47: R3 � 0x0 (z);   
     Line 48: R4 � 0x0 (z);   
     Line 49: R5 � 0x0 (z);   
     Line 50: [P1] � R0; /* Write the value contained in R0 to faster  
      internal memory */        
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   In applications where large data stores constantly move into and out of external DRAM, 
relying on core accesses creates a diffi cult situation. While core fetches are inevitably needed 
at times, DMA should be used for large data transfers, in order to preserve performance. 

    9.7.3.1       What about Data Cache? 

   The fl exibility of the DMA controller is a double-edged sword. When a large C/C �  �  
application is ported between processors, a programmer is sometimes hesitant to integrate 
DMA functionality into already-working code. This is where data cache can be very useful, 
bringing data into L1 memory for the fastest processing. The data cache is attractive because 
it acts like a mini-DMA, but with minimal interaction on the programmer’s part. 

   Because of the nature of cache-line fi lls, data cache is most useful when the processor 
operates on consecutive data locations in external memory. This is because the cache doesn’t 
just store the immediate data currently being processed; instead, it prefetches data in a region 
contiguous to the current data. In other words, the cache mechanism assumes there’s a good 
chance that the current data word is part of a block of neighboring data about to be processed. 
For multimedia streams, this is a reasonable conjecture. 

   Since data buffers usually originate from external peripherals, operating with data cache is 
not always as easy as with instruction cache. This is due to the fact that coherency must be 
managed manually in  “ non-snooping ”  caches.  “ Non-snooping ”  means that the cache is not 
aware of when data changes in source memory unless it makes the change directly. For these 
caches, the data buffer must be invalidated before making any attempt to access the new data. 
In the context of a C-based application, this type of data is  “ volatile. ”  This situation is shown 
in  Figure 9.7   . 

   In the general case, when the value of a variable stored in cache is different from its value in 
the source memory, this can mean that the cache line is  “ dirty ”  and still needs to be written 
back to memory. This concept does not apply for volatile data. Rather, in this case the cache 
line may be  “ clean, ”  but the source memory may have changed without the knowledge of the 
core processor. In this scenario, before the core can safely access a volatile variable in data 
cache, it must invalidate (but not fl ush!) the affected cache line. 

   This can be performed in one of two ways. The cache tag associated with the cache line 
can be directly written,  or  a  “ Cache Invalidate ”  instruction can be executed to invalidate the 
target memory address. Both techniques can be used interchangeably, but the direct method 
is usually a better option when a large data buffer is present (e.g., one greater in size than 
the data cache size). The Invalidate instruction is always preferable when the buffer size 
is smaller than the size of the cache. This is true even when a loop is required, since the 
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Invalidate instruction usually increments by the size of each cache line instead of by the more 
typical 1-, 2- or 4-byte increment of normal addressing modes. 

   From a performance perspective, this use of data cache cuts down on improvement gains, in 
that data has to be brought into cache each time a new buffer arrives. In this case, the benefi t 
of caching is derived solely from the pre-fetch nature of a cache-line fi ll. Recall that the prime 
benefi t of cache is that the data is present the second time through the loop. 

   One more important point about volatile variables, regardless of whether or not they 
are cached — if they are shared by both the core processor and the DMA controller, the 
programmer must implement some type of semaphore for safe operation. In sum, it is best to 
keep volatiles out of data cache altogether.   

    9.7.4       System Guidelines for Choosing Between DMA and Cache 

   Let’s consider three widely used system confi gurations to shed some light on which approach 
works best for different system classifi cations. 

    9.7.4.1       Instruction Cache, Data DMA 

   This is perhaps the most popular system model, because media processors are often 
architected with this usage profi le in mind. Caching the code alleviates complex instruction 
fl ow management, assuming the application can afford this luxury. This works well when the 
system has no hard real-time constraints, so that a cache miss would not wreak havoc on the 
timing of tightly coupled events (for example, video refresh or audio/video synchronization). 
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 Figure 9.7 :         Data cache and DMA coherency    
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   Also, in cases where processor performance far outstrips processing demand, caching 
instructions is often a safe path to follow, since cache misses are then less likely to cause 
bottlenecks. Although it might seem unusual to consider that an  “ oversized ”  processor would 
ever be used in practice, consider the case of a portable media player that can decode and 
play both compressed video and audio. In its audio-only mode, its performance requirements 
will be only a fraction of its needs during video playback. Therefore, the instruction/data 
management mechanism could be different in each mode. 

   Managing data through DMA is the natural choice for most multimedia applications, because 
these usually involve manipulating large buffers of compressed and uncompressed video, 
graphics and audio. Except in cases where the data is quasi-static (for instance, a graphics 
icon constantly displayed on a screen), caching these buffers makes little sense, since the 
data changes rapidly and constantly. Furthermore, as discussed above, there are usually 
multiple data buffers moving around the chip at one time — unprocessed blocks headed for 
conditioning, partly conditioned sections headed for temporary storage, and completely 
processed segments destined for external display or storage. DMA is the logical management 
tool for these buffers, since it allows the core to operate on them without having to worry 
about how to move them around.  

    9.7.4.2       Instruction Cache, Data DMA/Cache 

   This approach is similar to the one we just described, except in this case part of L1 data 
memory is partitioned as cache, and the rest is left as SRAM for DMA access. This structure 
is very useful for handling algorithms that involve a lot of static coeffi cients or lookup tables. 
For example, storing a sine/cosine table in data cache facilitates quick computation of FFTs. 
Or, quantization tables could be cached to expedite JPEG encoding or decoding. 

   Keep in mind that this approach involves an inherent tradeoff. While the application gains 
single-cycle access to commonly used constants and tables, it relinquishes the equivalent 
amount of L1 data SRAM, thus limiting the buffer size available for single-cycle access to 
data. A useful way to evaluate this tradeoff is to try alternate scenarios (Data DMA/Cache 
versus only DMA) in a Statistical Profi ler (offered in many development tools suites) to 
determine the percentage of time spent in code blocks under each circumstance.  

    9.7.4.3       Instruction DMA, Data DMA 

   In this scenario, data and code dependencies are so tightly intertwined that the developer must 
manually schedule when instruction and data segments move through the chip. In such hard 
real-time systems, determinism is mandatory, and thus cache isn’t ideal. 
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   Although this approach requires more planning, the reward is a deterministic system where 
code is always present before the data needed to execute it, and no data blocks are lost 
via buffer overruns. Because DMA processes can link together without core involvement, 
the start of a new process guarantees that the last one has fi nished, so that the data or code 
movement is verifi ed to have happened. This is the most effi cient way to synchronize data and 
instruction blocks. 

   The Instruction/Data DMA combination is also noteworthy for another reason. It provides 
a convenient way to test code and data fl ows in a system during emulation and debug. 
The programmer can then make adjustments or highlight  “ trouble spots ”  in the system 
confi guration. 

   An example of a system that might require DMA for both instructions and data is a video 
encoder/decoder. Certainly, video and its associated audio need to be deterministic for a 
satisfactory user experience. If the DMA signaled an interrupt to the core after each complete 
buffer transfer, this could introduce signifi cant latency into the system, since the interrupt 
would need to compete in priority with other events. What’s more, the context switch at the 
beginning and end of an interrupt service routine would consume several core processor 
cycles. All of these factors interfere with the primary objective of keeping the system 
deterministic. 

          Figures 9.8 and 9.9      provide guidance in choosing between cache and DMA for instructions 
and data, as well as how to navigate the tradeoff between using cache and using SRAM, 
based on the guidelines we discussed previously. 

   As a real-world illustration of these fl owchart choices,        Tables 9.2 and 9.3      provide actual 
benchmarks for G.729 and GSM AMR algorithms running on a Blackfi n processor under 
various cache and DMA scenarios. You can see that the best performance can be obtained 
when a balance is achieved between cache and SRAM. 

   In short, there is no single answer as to whether cache or DMA should be the mechanism of 
choice for code and data movement in a given multimedia system. However, once developers 
are aware of the tradeoffs involved, they should settle into the  “ middle ground, ”  the perfect 
optimization point for their system.   

    9.7.5       Memory Management Unit (MMU) 

   An MMU in a processor controls the way memory is set up and accessed in a system. The 
most basic capabilities of an MMU provides for memory protection, and when cache is used, 



Code Optimization and Resource Partitioning 411

www.newnespress.com

it also determines whether or not a memory page is cacheable. Explicitly using the MMU 
is usually optional, because you can default to the standard memory properties on your 
processor. 

   On Blackfi n processors, the MMU contains a set of registers that can defi ne the properties 
of a given memory space. Using something  called cacheability protection look-aside buffers  
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(CPLBs), you can defi ne parameters such as whether or not a memory page is cacheable, and 
whether or not a memory space can be accessed. Because the 32-bit-addressable external 
memory space is so large, it is likely that CPLBs will have to be swapped in and out of the 
MMU registers. 
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    9.7.5.1       CPLB Management 

   Because the amount of memory in an application can greatly exceed the number of available 
CPLBs, it may be necessary to use a CPLB manager. If so, it’s important to tackle some 
issues that could otherwise lead to performance degradation. First, whenever CPLBs are 
enabled, any access to a location without a valid CPLB will result in an exception being 
executed prior to the instruction completing. In the exception handler, the code must free up a 
CPLB and re-allocate it to the location about to be accessed. When the processor returns from 
the exception handler, the instruction that generated the exception then executes. 

   If you take this exception too often, it will impact performance, because every time you 
take an exception, you have to save off the resources used in your exception handler. The 
processor then has to execute code to re-program the CPLB. One way to alleviate this 
problem is to profi le the code and data access patterns. Since the CPLBs can be  “ locked, ”  you 
can protect the most frequently used CPLBs from repeated page swaps. 

   Another performance consideration involves the search method for fi nding new page 
information. For example, a  “ nonexistent CPLB ”  exception handler only knows the address 
where an access was attempted. This information must be used to fi nd the corresponding 
address  “ range ”  that needs to be swapped into a valid page. By locking the most frequently used 

 Table 9.2 :         Benchmarks (relative cycles per frame) for G.729A algorithm with cache enabled  

     L1 banks confi gured as 
SRAM 

 L1 banks confi gured as cache  Cache  �  SRAM 

     All L2  L1  Code only  Code  �  DataA  Code  �  DataB  DataA cache, 
DataB SRAM 

   Coder  1.00  0.24  0.70  0.21  0.21  0.21 

   Decoder  1.00  0.19  0.80  0.20  0.19  0.19 

 Table 9.3 :         Benchmarks (relative cycles per frame) for GSM AMR algorithm with cache enabled  

     L1 banks confi gured as 
SRAM 

 L1 banks confi gured as cache  Cache  �  SRAM 

     All L2  L1  Code  Code  �  DataA  Code  �  DataB  DataA cache, 
DataB SRAM 

   Coder  1.00  0.34  0.74  0.20  0.20  0.20 

   Decoder  1.00  0.42  0.75  0.23  0.23  0.23 



414 Chapter 9

www.newnespress.com

pages and setting up a sensible search based on your memory access usage (for instructions 
and/or data), exception-handling cycles can be amortized across thousands of accesses.  

    9.7.5.2       Memory Translation 

   A given MMU may also provide memory translation capabilities, enabling what’s known as 
 virtual memory . This feature is controlled in a manner that is analogous to memory protection. 
Instead of CPLBs,  translation look-aside buffers  (TLBs) are used to describe physical memory 
space. There are two main ways in which memory translation is used in an application. As 
a holdover from older systems that had limited memory resources, operating systems would 
have to swap code in and out of a memory space from which execution could take place. 

   A more common use on today’s embedded systems still relates to operating system support. 
In this case, all software applications run thinking they are at the same physical memory 
space, when, of course, they are not. On processors that support memory translation, 
operating systems can use this feature to have the MMU translate the actual physical memory 
address to the same virtual address based on which specifi c task is running. This translation is 
done transparently, without the software application getting involved.    

    9.8       Physics of Data Movement 

   So far, we’ve seen that the compiler and assembler provide a bunch of ways to maximize 
performance on code segments in your system. Using of cache and DMA provide the next 
level for potential optimization. We will now review the third tier of optimization in your 
system — it’s a matter of physics. 

   Understanding the  “ physics ”  of data movement in a system is a required step at the start of 
any project. Determining if the desired throughput is even possible for an application can 
yield big performance savings without much initial investment. 

   For multimedia applications, on-chip memory is almost always insuffi cient for storing entire 
video frames. Therefore, the system must usually rely on L3 DRAM to support relatively fast 
access to large buffers. The processor interface to off-chip memory constitutes a major factor 
in designing effi cient media frameworks, because access patterns to external memory must be 
well planned in order to guarantee optimal data throughput. There are several high-level steps 
that can ensure that data fl ows smoothly through memory in any system. Some of these are 
discussed below and play a key role in the design of system frameworks. 
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    1.      Grouping Like Transfers to Minimize Memory Bus Turnarounds     

   Accesses to external memory are most effi cient when they are made in the same direction 
(e.g., consecutive reads or consecutive writes). For example, when accessing off-chip 
synchronous memory, 16 reads followed by 16 writes is always completed sooner than 16 
individual read/write sequences. This is because a write followed by a read incurs latency. 
Random accesses to external memory generate a high probability of bus turnarounds. 
This added latency can easily halve available bandwidth. Therefore, it is important to take 
advantage of the ability to control the number of transfers in a given direction. This can be 
done either automatically (as we’ll see here) or by manually scheduling your data movements. 

   A DMA channel garners access according to its priority, signifi ed on Blackfi n processors by 
its channel number. Higher priority channels are granted access to the DMA bus(es) fi rst. 
Because of this, you should always assign higher priority DMA channels to peripherals with 
the highest data rates or with requirements for lowest latency. 

   To this end, MemDMA streams are always lower in priority than peripheral DMA activity. 
This is due to the fact that with Memory DMA, no external devices will be held off or 
starved of data. Since a Memory DMA channel requests access to the DMA bus as long as 
the channel is active, effi cient use of any time slots unused by a peripheral DMA are applied 
to MemDMA transfers. By default, when more than one MemDMA stream is enabled and 
ready, only the highest priority MemDMA stream is granted. 

   When it is desirable for the MemDMA streams to share the available DMA bus bandwidth, 
however, the DMA controller can be programmed to select each stream in turn for a fi xed 
number of transfers. 

   This  “ Direction Control ”  facility is an important consideration in optimizing use of DMA 
resources on each DMA bus. By grouping same-direction transfers together, it provides a way 
to manage how frequently the transfer direction changes on the DMA buses. This is a handy 
way to perform a fi rst level of optimization without real-time processor intervention. More 
importantly, there’s no need to manually schedule bursts into the DMA streams. 

   When direction control features are used, the DMA controller preferentially grants data 
transfers on the DMA or memory buses that are going in the same read/write direction as in 
the previous transfer, until either the direction control counter times out, or until traffi c stops 
or changes direction on its own. When the direction counter reaches zero, the DMA controller 
changes its preference to the opposite fl ow direction. 
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   In this case, reversing direction wastes no bus cycles other than any physical bus turnaround 
delay time. This type of traffi c control represents a tradeoff of increased latency for improved 
utilization (effi ciency). Higher block transfer values might increase the length of time each 
request waits for its grant, but they can dramatically improve the maximum attainable 
bandwidth in congested systems, often to above 90%. 

   Here’s an example that puts these concepts into some perspective.  

   As a rule of thumb, it is best to maximize same-direction contiguous transfers during 
moderate system activity. For the most taxing system fl ows, however, it is best to select a 
block transfer value in the middle of the range to ensure no one peripheral gets locked out 
of accesses to external memory. This is especially crucial when at least two high-bandwidth 
peripherals (like PPIs) are used in the system. 

   In addition to using direction control, transfers among MDMA streams can be alternated in 
a  “ round-robin ”  fashion on the bus as the application requires. With this type of arbitration, 
the fi rst DMA process is granted access to the DMA bus for some number of cycles, followed 
by the second DMA process, and then back to the fi rst. The channels alternate in this pattern 
until all of the data is transferred. This capability is most useful on dual-core processors (for 
example, when both core processors have tasks that are awaiting a data stream transfer). 

       Example 9.4      

   First, we set up a memory DMA from L1 to L3 memory, using 16-bit transfers, that 
takes about 1100 system clock ( SCLK ) cycles to move 1024 16-bit words. 

   We then begin a transfer from a different bank of external memory to the video port 
(PPI). Using 16-bit unpacking in the PPI, we continuously feed an NTSC video encoder 
with 8-bit data. Since the PPI sends out an 8-bit quantity at a 27       MHz rate, the DMA 
bus bandwidth required for the PPI transfer is roughly 13.5       M transfers/second. 

   When we measure the time it takes to complete the same 1024-word MemDMA transfer 
with the PPI transferring simultaneously, it now takes three times as long. 

   Why is this? It’s because the PPI DMA activity takes priority over the MemDMA channel 
transactions. Every time the PPI is ready for its next sample, the bus effectively reverses 
direction. This translates into cycles that are lost both at the external memory interface 
and on the various internal DMA buses. 

   When we enable Direction Control, the performance increases because there are fewer 
bus turn-arounds.    
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Without this  “ round-robin ”  feature, the fi rst set of DMA transfers will occur, and the second 
DMA process will be held off until the fi rst one completes. Round-robin prioritization can 
help insure that both transfer streams will complete back-to-back. 

   Another thing to note: using DMA and/or cache will always help performance because these 
types of transactions transfer large data blocks in the same direction. For example, a DMA 
transfer typically moves a large data buffer from one location to another. Similarly, a cache-
line fi ll moves a set of consecutive memory locations into the device, by utilizing block 
transfers in the same direction. 

   Buffering data bound for L3 in on-chip memory serves many important roles. For one, the 
processor core can access on-chip buffers for pre-processing functions with much lower 
latency than it can by going off-chip for the same accesses. This leads to a direct increase in 
system performance. Moreover, buffering this data in on-chip memory allows more effi cient 
peripheral DMA access to this data. For instance, transferring a video frame on-the-fl y 
through a video port and into L3 memory creates a situation where other peripherals might 
be locked out from accessing the data they need, because the video transfer is a high-priority 
process. However, by transferring lines incrementally from the video port into L1 or L2 
memory, a Memory DMA stream can be initiated that will quietly transfer this data into L3 
as a low-priority process, allowing system peripherals access to the needed data. 

    2.      Understanding Core and DMA SDRAM Accesses     

   Consider that on a Blackfi n processor, core reads from L1 memory take one  core -clock 
cycle, whereas core reads from SDRAM consume eight  system  clock cycles. Based on 
typical  CCLK/SCLK  ratios, this could mean that eight  SCLK  cycles equate to 40  CCLK s. 
Incidentally, these eight  SCLK s reduce to only one  SCLK  by using a DMA controller in a 
burst mode instead of direct core accesses. 

   There is another point to make on this topic. For processors that have multiple data fetch 
units, it is better to use a dual-fetch instruction instead of back-to-back fetches. On Blackfi n 
processors with a 32-bit external bus, a dual-fetch instruction with two 32-bit fetches takes 
nine  SCLK s (eight for the fi rst fetch and one for the second). Back-to-back fetches in separate 
instructions take 16  SCLK s (eight for each). The difference is that, in the fi rst case, the request 
for the second fetch in the single instruction is pipelined, so it has a head start. 

   Similarly, when the external bus is 16 bits in width, it is better to use a 32-bit access rather 
than two 16-bit fetches. For example, when the data is in consecutive locations, the 32-bit 
fetch takes nine  SCLK s (eight for the fi rst 16 bits and one for the second). Two 16-bit fetches 
take 16  SCLK s (eight for each). 
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    3.      Keeping SDRAM Rows Open and Performing Multiple Passes on Data     

   Each access to SDRAM can take several  SCLK  cycles, especially if the required SDRAM 
row has not yet been activated. Once a row is active, it is possible to read data from an entire 
row without reopening that row on every access. In other words, it is possible to access any 
location in memory on every  SCLK  cycle, as long as those locations are within the same row 
in SDRAM. Multiple SDRAM clock cycles are needed to close a row, and therefore constant 
row closures can severely restrict SDRAM throughput. Just to put this into perspective, an 
SDRAM page miss can take 20 – 50  CCLK  cycles, depending on the SDRAM type. 

   Applications should take advantage of open SDRAM banks by placing data buffers 
appropriately and managing accesses whenever possible. Blackfi n processors, as an example, 
keep track of up to four open SDRAM rows at a time, so as to reduce the setup time — and 
thus increase throughput — for subsequent accesses to the same row within an open bank. 
For example, in a system with one row open, row activation latency would greatly reduce 
the overall performance. With four rows open at one time, on the other hand, row activation 
latency can be amortized over hundreds of accesses. Let’s look at an example that illustrates 
the impact this SDRAM row management can have on memory access bandwidth: 

    Figure 9.10    shows two different scenarios of data and code mapped to a single  external  
SDRAM bank. In the fi rst case, all of the code and data buffers in external memory fi t in a 
single bank, but because the access patterns of each code and data line are random, almost 
every access involves the activation of a new row. In the second case, even though the access 
patterns are randomly interspersed between code and data accesses, each set of accesses has 
a high probability of being within the same row. For example, even when an instruction fetch 
occurs immediately before and after a data access, two rows are kept open and no additional 
row activation cycles are incurred. 

   When we ran an MPEG-4 encoder from external memory (with both code and data in 
SDRAM), we gained a 6.5% performance improvement by properly spreading out the code 
and data in external memory. 

    4.      Optimizing the System Clock Settings and Ensuring Refresh Rates are 
Tuned for the Speed at Which SDRAM Runs     

   External DRAM requires periodic refreshes to ensure that the data stored in memory retains 
its proper value. Accesses by the core processor or DMA engine are held off until an in-
process refresh cycle has completed. If the refresh occurs too frequently, the processor can’t 
access SDRAM as often, and throughput to SDRAM decreases as a result. 
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   On the Blackfi n processor, the SDRAM Refresh Rate Control register provides a fl exible 
mechanism for specifying the Auto-Refresh timing. Since the clock frequency supplied to 
the SDRAM can vary, this register implements a programmable refresh counter. This counter 
coordinates the supplied clock rate with the SDRAM device’s required refresh rate. 

   Once the desired delay (in number of SDRAM clock cycles) between consecutive refresh 
counter time-outs is specifi ed, a subsequent refresh counter time-out triggers an Auto-Refresh 
command to all external SDRAM devices. 

   Not only should you take care not to refresh SDRAM too often, but also be sure you’re 
refreshing it often enough. Otherwise, stored data will start to decay because the SDRAM 
controller will not be able to keep corresponding memory cells refreshed. 

    Table 9.4    shows the impact of running with the best clock values and optimal refresh 
rates. Just in case you were wondering, RGB, CYMK and YIQ are imaging/video formats. 
Conversion between the formats involves basic linear transformation that is common in 
video-based systems.  Table 9.4  illustrates that the performance degradation can be signifi cant 
with a nonoptimal refresh rate, depending on your actual access patterns. In this example, 
 CCLK  is reduced to run with an increased  SCLK  to illustrate this point. Doing this improves 
performance for this algorithm because the code fi ts into L1 memory and the data is partially 
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in L3 memory. By increasing the  SCLK  rate, data can be fetched faster. What’s more, by 
setting the optimal refresh rate, performance increases a bit more. 

    5.      Exploiting Priority and Arbitration Schemes between System Resources     

   Another important consideration is the priority and arbitration schemes that regulate 
how processor subsystems behave with respect to one another. For instance, on Blackfi n 
processors, the core has priority over DMA accesses, by default, for transactions involving 
L3 memory that arrive at the same time. This means that if a core read from L3 occurs at the 
same time a DMA controller requests a read from L3, the core will win, and its read will be 
completed fi rst. 

   Let’s look at a scenario that can cause trouble in a real-time system. When the processor has 
priority over the DMA controller on accesses to a shared resource like L3 memory, it can lock 
out a DMA channel that also may be trying to access the memory. Consider the case where 
the processor executes a tight loop that involves fetching data from external memory. DMA 
activity will be held off until the processor loop has completed. It’s not only a loop with a 
read embedded inside that can cause trouble. Activities like cache line fi lls or nonlinear code 
execution from L3 memory can also cause problems because they can result in a series of 
uninterruptible accesses. 

   There is always a temptation to rely on core accesses (instead of DMA) at early stages in 
a project, for a number of reasons. The fi rst is that this mimics the way data is accessed 
on a typical prototype system. The second is that you don’t always want to dig into the 
internal workings of DMA functionality and performance. However, with the core and DMA 
arbitration fl exibility, using the memory DMA controller to bring data into and out of internal 
memory gives you more control of your destiny early on in a project.   

 Table 9.4 :         Using the optimal refresh rate  

     Sub-optimal 
SDRAM refresh rate 

 Optimal SDRAM 
refresh rate 

  

   CCLK (MHz)  594       MHz  526       MHz  526       MHz   

   SCLK (MHz)  119       MHz  132       MHz  132       MHz   

   RGB to CMYK Conversion (iterations per second)  226  244  250   

   RGB to YIQ Conversion (iterations per second)  266  276  282  Total 

   Cumulative Improvement    5%  2%  7% 
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 CHAPTER 10 

                   Testing and Debugging DSP Systems 
   Robert   Oshana    

     While not the sexiest part of embedded design, test and debug is crucial for a product’s success. 
It’s also one of the most vexing parts. In survey after survey, developers list test and debug as their 
biggest source of project delays. In the 2008 Tech Insights survey, for example, 38% of engineers 
reported that debugging was their biggest concern. This was followed closely by worries over 
the related issue of code complexity, a concern that vexed 26% of respondents. The responding 
engineers ’  greatest concern for future projects? Debugging tools and software integration. 

 The anxiety over the future is unsurprising. Test and debug isn’t getting any easier. With design 
complexity on the rise, particularly in multi-core designs, makers of debug hardware and 
software tools face an uphill battle. DSP applications can be particularly diffi cult to debug, as 
DSP engineers are often called upon to do more low-level optimization — and therefore are more 
likely to introduce changes that will break the code. 

 In this chapter, Robert Oshana tackles this complicated subject, giving us a broad overview of 
the state of the art of test and debug. He starts with the old methods like printf statements and 
shows how they’re broken. He then goes into some detail on JTAG, the most commonly used debug 
technology. JTAG is built into most of today’s processors, and is a technology most DSP engineers 
will use at some point in their careers. He then delves into many important topics such as emulation, 
trace, high-speed data collection and visualization, compiler and linker dependencies, real-time 
embedded software testing techniques, and common DSP algorithm bugs. By the time you get to the 
end of the chapter, you should have a good handle on the key techniques for DSP debugging. 

  — Kenton Williston   

    10.1       Multicore System-on-a-Chip 

   Designing and building embedded systems is a diffi cult task, given the inherent scarcity of 
resources in embedded systems (processing power, memory, throughput, battery life, and cost). 
Various trade-offs are made between these resources when designing an embedded system. 
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Modern embedded systems are using devices with multiple processing units manufactured 
on a single chip, creating a sort of multicore system-on-a-chip (SoC), which can increase the 
processing power and throughput of the system while at the same time increasing the battery 
life and reducing the overall cost. One example of a DSP-based SoC is shown in  Figure 10.1   . 
Multicore approaches keep hardware design in the low frequency range (each individual 
processor can run at a lower speed, which reduces overall power consumption as well as heat 
generation), offering signifi cant price, performance, and fl exibility (in software design and 
partitioning) over higher speed single-core designs. 

   There are several characteristics of SoC that we will discuss (see Jerraya). I will use an example 
processor to demonstrate these characteristics and how they are deployed in an existing SoC. 

    1.      Customized to the application   –  Like embedded systems in general, SoCs are customized to 
an application space. As an example, I will reference the video application space. A suitable 
block diagram showing the fl ow of an embedded video application space is shown in 
 Figure 10.2   . This system consists of input capture, real-time signal processing, and output 
display components. As a system there are multiple technologies associated with building 
a fl exible system including analog formats, video converters, digital formats, and digital 
processing. An SoC processor will incorporate a system of components; processing 
elements, peripherals, memories, I/O, and so forth to implement a system such as that 
shown in  Figure 10.2 . An example of an SoC processor that implements a digital video 
system is shown in  Figure 10.3   . This processor consists of various components to input, 
process, and output digital video information. More about the details of this in a moment.  

    2.      SoCs improve power/performance ratio   –  Large processors running at high frequencies 
consume more power, and are more expensive to cool. Several smaller processors 

DSP DSP

ARM

Shared memory

HW accelerator

HW accelerator

Lo
ca

l
m

em
or

y

Lo
ca

l
m

em
or

y

 Figure 10.1 :         Block diagram of a DSP SoC    



Testing and Debugging DSP Systems 425

www.newnespress.com

running at a lower frequency can perform the same amount of work without consuming 
as much energy and power. In  Figure 10.1 , the ARM processor, the two DSPs, and the 
hardware accelerators can run a large signal processing application effi ciently by properly 
partitioning the application across these four different processing elements.  

    3.      Many apps require programmability   –  SoCs contain multiple programmable processing 
elements. These are required for a number of reasons: 

      ●       New technology   –  Programmability supports upgradeability and changeability easier 
than nonprogrammable devices. For example, as new video codec technology is 
developed, the algorithms to support these new standards can be implemented on a 
programmable processing element easily. New features are also easier to add.  

      ●       Support for multiple standards and algorithms   –  Some digital video applications 
require support for multiple video standards, resolutions, and quality. Its easier to 
implement these on a programmable system.  

      ●       Full algorithm control   –  A programmable system provides the designer the ability 
to customize and/or optimize a specifi c algorithm as necessary which provides the 
application developer more control over differentiation of the application.  
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 Figure 10.2 :         Digital video system application model (courtesy of Texas Instruments)    
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      ●       Software reuse in future systems   –  By developing digital video software as components, 
these can be reuse/repackaged as building blocks for future systems as necessary.     

    4.      Constraints such as real-time, power, cost   –  There are many constraints in real-time 
embedded systems. Many of these constraints are met by customizing to the application.  

    5.      Special instructions   –  SoCs have special CPU instructions to speed up the application. As 
an example, the SoC in  Figure 10.3  contains special instructions on the DSP to accelerate 
operations such as: 

      ●      32-bit multiply instructions for extended precision computation  

      ●      Expanded arithmetic functions to support FFT and DCT algorithms  
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      ●      Improve complex multiplications  

      ●      Double dot product instructions for improving throughput of FIR loops  

      ●      Parallel packing Instructions  

      ●      Enhanced Galois Field Multiply       

    Each of these instructions accelerate the processing of certain digital video algorithms. Of 
course, compiler support is necessary to schedule these instructions, so the tools become 
an important part of the entire system as well. 

    6.      Extensible   –  Many SoCs are extensible in ways such as word size and cache size. Special 
tooling is also made available to analyze systems as these system parameters are 
changes.  

    7.      Hardware acceleration   –  There are several benefi ts to using hardware acceleration in an 
SoC. The primary reason is better cost/performance ratio. Fast processors are costly. By 
partitioning into several smaller processing elements, cost can be reduced in the overall 
system. Smaller processing elements also consume less power and can actually be better 
at implementing real-time systems as the dedicated units can respond more effi ciently to 
external events.    

    Hardware accelerators are useful in applications that have algorithmic functions that 
do not map to a CPU architecture well. For example, algorithms that require a lot of 
bit manipulation require a lot of registers. A traditional CPU register model may not be 
suited to effi ciently execute these algorithms. A specialized hardware accelerator can be 
built that performs bit manipulation effi ciently which sits beside the CPU and used by the 
CPU for bit manipulation operations. Highly responsive I/O operations are another area 
where a dedicated accelerator with an attached I/O peripheral will perform better. Finally, 
applications that are required to process streams of data, such as many wireless and 
multimedia applications, do not map well to the traditional CPU architecture, especially 
those that implement caching systems. Since each streaming data element may have a 
limited lifetime, processing will require the constant thrashing of cache for new data 
elements. A specialized hardware accelerator with special fetch logic can be implemented 
to provide dedicated support to these data streams. 

    Hardware acceleration is used on SoCs as a way to effi ciently execute classes of 
algorithms. The use of accelerators if possible can lower overall system power, since 
these accelerators are customized to the class of processing and, therefore, perform these 
calculations very effi ciently. The SoC in  Figure 10.3  has hardware acceleration support. 
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In particular, the video processing subsystem (VPSS) as well as the Video Acceleration 
block within the DSP subsystem are examples of hardware acceleration blocks used to 
effi ciently process video algorithms.  Figure 10.4    shows a block diagram of one of the 
VPSS. This hardware accelerator contains: 

    A front end module containing: 

            ●      CCDC (charge coupled device)  

      ●      Previewer  

      ●      Resizer (accepts data from the previewer or from external memory and resizes from 
¼ 
  to 4 
 )       

    and a back end module containing:      

      ●      Color space conversion  

      ●      DACS  

      ●      Digital output  

      ●      On-screen display       

    This VPSS processing element eases the overall DSP/ARM loading through hardware 
acceleration. An example application using the VPSS is shown in  Figure 10.5   . 
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    8.      Heterogeneous memory systems   –  Many SoC devices contain separate memories for the 
different processing elements. This provides a performance boost because of lower latencies 
on memory accesses, as well as lower power from reduced bus arbitration and switching.    

   This programmable coprocessor is optimized for imaging and video applications. Specifi cally, 
this accelerator is optimized to perform operations such as fi ltering, scaling, matrix multiplication, 
addition, subtraction, summing absolute differences, and other related computations. 

   Much of the computation is specifi ed in the form of commands which operate on arrays 
of streaming data. A simple set of APIs can be used to make processing calls into this 
accelerator. In that sense, a single command can drive hundreds or thousands of cycles. 

   As discussed previously, accelerators are used to perform computations that do not map 
effi ciently to a CPU. The accelerator in  Figure 10.6    is an example of an accelerator that 
performs effi cient operations using parallel computation. This accelerator has an 8-parallel 
multiply accumulate (MAC) engine which signifi cantly accelerates classes of signal 
processing algorithms that requires this type of parallel computation. 

   Examples include: 

      ●      JPEG encode and decode  

      ●      MPEG-1/2/4 encode and decode  

      ●      H.263 encode and decode  
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 Figure 10.5 :         A video phone example using the VPSS acceleration module 
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      ●      WMV9 decode  

      ●      H.264 baseline profi le decode    

   The variable length code/decode (VLCD) module in this accelerator supports the following 
fundamental operations very effi ciently; 

      ●      Quantization and inverse quantization (Q/IQ)  

      ●      Variable length coding and decoding (VLC/VLD)  

      ●      Huffman tables  

      ●      Zigzag scan fl exibility    

   The design of this block is such that it operates on a macroblock of data at a time (max 6 8  
  8 
blocks, 4:2:0 format). Before starting to encode or decode a bitstream, the proper registers and 
memory in the VLCD module must fi rst be initialized by the application software. 

   This hardware accelerator also contains a block called a  sequencer  which is really just a 
16-bit microprocessor targeted for simple control, address calculation, and loop control 
functions. This simple processing element offl oads the sequential operations from the DSP. 
The application developer can program this sequencer to coordinate the operations among 
the other accelerator elements including the iMX, VLCD, System DMA, and the DSP. 
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The sequencer code is compiled using a simple macro using support tools, and is linked with 
the DSP code to be later loaded by the CPU at run time. 

   One of the other driving factors for the development of SoC technology is the fact that there 
is an increasing demand for programmable performance. For many applications, performance 
requirements are increasing faster than the ability of a single CPU to keep pace. The allocation 
of performance, and thus response time, for complex real-time systems is often easier with 
multiple CPUs. And dedicated CPUs in peripherals or special accelerators can offl oad low-
level functionality from a main CPU, allowing it to focus on higher-level functions.  

    10.2       Software Architecture for SoC 

   Software development for SoC involves partitioning the application among the various 
processing elements based on the most effi cient computational model. This can require a 
lot of trial and error to establish the proper partitioning. At a high level the SoC partitioning 
algorithm is as follows: 

      ●      Place the state machine software (those algorithms that provide application control, 
sequencing, user interface control, event driven software, and so on) on a RISC 
processor such as an ARM.  

      ●      Place the signal processing software on the DSP, taking advantage of the application 
specifi c architecture that a DSP offers for signal processing functions.  

      ●      Place high rate, computationally intensive algorithms in hardware accelerators, if they 
exist and if they are customized to the specifi c algorithm of consideration.    

   As an example, consider the software partitioning shown in  Figure 10.7   . This SoC model 
contains a general-purpose processor (GPP), a DSP, and hardware acceleration. The GPP 
contains a chip support library which is a set of low level peripheral APIs that provide 
effi cient access to the device peripherals, a general-purpose operating system, an algorithmic 
abstraction layer and a set of API for and application and user interface layer. The DSP 
contains a similar chip support library, a DSP centric kernel, a set of DSP specifi c algorithms 
and interfaces to higher level application software. The hardware accelerator contains a 
set of APIs for the programmer to access and some very specifi c algorithms mapped to 
the acceleration. The application programmer is responsible for the overall partitioning of 
the system and the mapping of the algorithms to the respective processing elements. Some 
vendors may provide a  “ black box ”  solution to one or more of these processing elements, 
including the DSP and the hardware accelerators. This provides another level of abstraction 
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to the application developer who does not need to know the details of some of the underlying 
algorithms. Other system developers may want access to these low level algorithms, so there 
is normally fl exibility in the programming model for these systems, depending on the amount 
of customization and tailoring required. 

   Communication in an SoC is primarily established by means of software. The communication 
interface between the DSP and the ARM in  Figure 10.7 , for example, is realized by defi ning 
memory locations in the DSP data space as registers. The ARM gains read/write access to 
these registers through a host interface. Both processors can asynchronously issue commands 
to each other, no one masters the other. The command sequence is purely sequential; 
the ARM cannot issue a new command unless the DSP has sent a  “ command complete ”  
acknowledgement. 

   There exist two register pairs to establish the two-way asynchronous communication between 
ARM and DSP, one register pair is for the sending commands to ARM, and the other register 
pair is for the sending commands to DSP. Each register pair has: 

      ●      a command register, which is used pass commands to ARM or DSP;  

      ●      a command complete register, which is used to return the status of execution of the 
command;  
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      ●      each command can pass up to 30 words of command parameters;  

      ●      also, each command execution can return up to 30 words of command return 
parameters.    

   An ARM to DSP command sequence is as follows: 

      ●      ARM writes a command to the command register  

      ●      ARM writes number of parameters to number register  

      ●      ARM writes command parameters into the command parameter space  

      ●      ARM issues a nonmaskable interrupt to the DSP  

      ●      DSP reads the command  

      ●      DSP reads the command parameters  

      ●      DSP executes the command  

      ●      DSP clears the command register  

      ●      DSP writes result parameters into the result parameter space  

      ●      DSP writes  “ command complete ”  register  

      ●      DSP issues HINT interrupt to ARM    

   The DSP to ARM command sequence is as follows: 

      ●      DSP writes command to command register  

      ●      DSP writes number of parameters to number register  

      ●      DSP writes command parameters into the command parameter space  

      ●      DSP issues an HINT interrupt to the DSP  

      ●      ARM reads the command  

      ●      ARM reads the command parameters  

      ●      ARM executes DSP command  

      ●      ARM clears the command register  

      ●      ARM writes result parameters into the result parameter space  



434 Chapter 10

www.newnespress.com

      ●      ARM writes  “ command complete ”  register  

      ●      ARM sends an INT0 interrupt to the DSP    

   Communication between the ARM and the DSP is usually accomplished using a set of 
communication APIs. Below is an example of a set of communication APIs between 
a general-purpose processor (in this case an ARM) and a DSP. The detailed software 
implementation for these APIs is given at the end of the chapter.

    #defi ne    ARM_DSP_COMM_AREA_START_ADDR 0 
 80  

       Start DSP address for ARM-DSP.   

    #defi ne    ARM_DSP_COMM_AREA_END_ADDR 0xFF  

       End DSP address for ARM-DSP.   

    #defi ne    ARM_DSP_DSPCR (ARM_DSP_COMM_AREA_START_ADDR)  

       ARM to DSP, parameters and command from ARM.   

    #defi ne    ARM_DSP_DSPCCR (ARM_DSP_COMM_AREA_START_ADDR � 32)  

       ARM to DSP, return values and completion code from 
DSP.   

    #defi ne    ARM_DSP_ARMCR (ARM_DSP_COMM_AREA_START_ADDR � 64)  

       DSP to ARM, parameters and command from DSP.   

    #defi ne    ARM_DSP_ARMCCR (ARM_DSP_COMM_AREA_START_ADDR � 96)  

       DSP to ARM, return values and completion code from 
ARM.   

    #defi ne    DSP_CMD_MASK (Uint16)0 
 0FFF  

       Command mask for DSP.   

    #defi ne    DSP_CMD_COMPLETE (Uint16)0 
 4000  

       ARM-DSP command complete, from DSP.   

    #defi ne    DSP_CMD_OK (Uint16)0 
 0000  

       ARM-DSP valid command.   

    #defi ne    DSP_CMD_INVALID_CMD (Uint16)0 
 1000  

       ARM-DSP invalid command.   

    #defi ne    DSP_CMD_INVALID_PARAM (Uint16)0 
 2000  

      ARM-DSP invalid parameters.  
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    10.2.1       Functions 
           

    STATUS    ARMDSP_sendDspCmd (Uint16 cmd, Uint16 *cmdParams, 
Uint16 nParams)  

       Send command, parameters from ARM to DSP.   

    STATUS    ARMDSP_getDspReply (Uint16 *status, Uint16 
*retParams, Uint16 nParams)  

       Get command execution status, return parameters sent 
by DSP to ARM.   

    STATUS    ARMDSP_getArmCmd (Uint16 *cmd, Uint16 *cmdParams, 
Uint16 nParams)  

       Get command, parameters sent by DSP to ARM.   

    STATUS    ARMDSP_sendArmReply (Uint16 status, Uint16 
*retParams, Uint16 nParams)  

       Send command execution status, return parameters 
from ARM to DSP.   

    STATUS    ARMDSP_clearReg ()  

       Clear ARM-DSP communication area.   

    10.3       SoC System Boot Sequence 
   Normally, the boot image for DSP is part of the ARM boot image. There could be many 
different boot images for the DSP for the different tasks DSP needs to execute. The sequence 
starts with the ARM downloading the image related to the specifi c task to be executed by 
the DSP. ARM resets then the DSP (via a control register) and then brings the DSP out of 
reset. At this stage the DSP begins execution at a predefi ned location, usually in ROM. The 
ROM code at this address initializes the DSP internal registers and places the DSP into an 
idle mode. At this point ARM downloads the DSP code by using a host port interface. After 
it completes downloading the DSP image, the ARM can send an interrupt to the DSP, which 
wakes it up from the idle mode, vectors to a start location and begins running the application 
code loaded by the ARM. The DSP boot sequence is given below: 

      ●      ARM resets DSP and then brings it out of reset.  

      ●      DSP gets out of reset and load its program counter (PC) register with a start address.  

      ●      The ROM code in this location branches the DSP to an initialization routine address.  



436 Chapter 10

www.newnespress.com

      ●      A DSP status register is initialized to move the vector table to a dedicated location, all 
the interrupts are disabled except for a dedicated unmaskable interrupt and the DSP is 
set to an mode.  

      ●      While DSP is in its mode, the ARM loads the DSP Program/Data memory with the 
DSP code/data.  

      ●      When the ARM fi nishes downloading the DSP code, it wakes up DSP from the mode 
by asserting an interrupt signal.  

      ●      The DSP then branches to a start address where the new interrupt vector table is located. 
The ARM should have loaded this location with at least a branch to the start code.     

    10.4       Tools Support for SoC 

   SoC, and heterogeneous processors in general, require more sophisticated tools support. 
A SoC may contain several programmable debuggable processing elements that require 
tools support for code generation, debug access and visibility, and real-time data analysis. 
A general model for this is shown in  Figure 10.8   . A SoC processor will have several 
processing elements such as an ARM and DSP. Each of these processing elements will 

Visualization

ARM DSP

Emulator or
channel
of choice

ARM/DSP
basic debug

DSP stream data
System stream data

ARM stream data

 Figure 10.8 :         An SoC tools environment (courtesy of Texas Instruments)    
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require a development environment that includes mechanisms to extract, process, and 
display debug and instrumentation streams of data, mechanisms to peak and poke at memory 
and control execution of the programmable element, and tools to generate, link, and build 
executable images for the programmable elements. 

   SoC tools environments also contain support for monitoring the detailed status of each of 
the processing elements. As shown in  Figure 10.9   , detailed status reporting and control of 
the processing elements in an SoC allows the developer to gain visibility into the execution 
profi le of the system. Also, since power-sensitive SoC devices may power down some or all 
of the device as the application executes, it is useful to also understand the power profi le of 
the application. This can also be obtained using the proper analysis tools.  

    10.5       A Video Processing Example of SoC 

   Video processing is a good example of a commercial application requiring a system on a 
chip solution. Video processing applications are computationally intensive and demand a lot 

Target disconnected Processor status Start-up mode Loaded program

Clock status (normal, slow, forced) Power status (normal, low, forced)

Context menu to force clock/power stateSecure mode
indicator

 Figure 10.9 :         Tools support provides visibility into the status of each of the SoC processing 
elements (courtesy of Texas Instruments)    
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of MIPS to maintain the data throughput required for these applications. Some of the very 
compute-intensive algorithms in these applications include: 

      ●      Image pipe processing and video stabilization  

      ●      Compression and decompression  

      ●      Color conversion  

      ●      Watermarking and various forms of encryption    

   To perform a 30 frame per second MPEG-4 algorithm can take as much as 2500 MIPS 
depending on the resolution of the video. 

   The Audio channel processing is not as demanding but still requires enough overall MIPS to 
perform audio compression and decompression, equalization and sample rate conversion. 

   As these applications become even more complex and demanding (for example new 
compression technologies are still being invented), these SoC will need to support not just one 
but several different compression standards. SoCs for video applications include dedicated 
instruction set accelerators to improve performance. The SoC programming model and 
peripheral mix allows for the fl exibility to support several formats of these standards effi ciently. 

   For example the DM320 SoC processor in  Figure 10.10    has an on chip SIMD engine (called 
iMX) dedicated to video processing. This hardware accelerator can perform the common 
video processing algorithms (Discrete Cosine Transform (DCT), IDCT, Motion Estimation, 
Motion Correlation to name a few). 

   The VLCD (variable length coding/decoding) processor is built to support variable length 
encoding and decoding as well as quantization of standards such as JPEG, H.263, MPEG-
1/2/4 video compression standards. 

   As you can see from the fi gure, an SoC solution contains appropriate acceleration 
mechanisms, specialized instruction sets, hardware coprocessors, etc. that provide effi cient 
execution of the important algorithms in DSP applications. We discussed an example of video 
processing but you will fi nd the same mechanisms supporting other applications such as 
wireless basestation and cellular handset. 

   The code listings below implement the ARM-side APIs that talk to the DSP Controller 
module that manages the ARM/DSP interface across the DSP’s Host Port Interface. These 
APIs are used to boot and reset the DSP and load the DSP code from the ARM, since the 
DSP can only execute code from internal memory that ARM loads. 
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     /**  
       \ DSP Control Related APIs       
     */   
     static STATUS DSPC_hpiAddrValidate(Uint32 dspAddr, Uint8 read);   
     /**  
      \    Reset the DSP, Resets the DSP by toggling the DRST bit of 
HPIB Control Register. \n       
     */   
     STATUS DSPC_reset()  {   
      DSPC_FSET( HPIBCTL, DRST, 0);   
      DSPC_FSET( HPIBCTL, DRST, 1);   
      return E_PASS;      
      }    
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 Figure 10.10 :         A SoC designed for video and image processing using a RISC device (ARM926) 
and a DSP (courtesy of Texas Instruments)    



440 Chapter 10

www.newnespress.com

     /**  
       \ Generate an Interrupt to the DSP. Generates either INT0 or 
NMI interrupt to the DSP depending on which one is specifi ed.    

      \param int ID DSP interrupt ID : INT0 -interrupt 0 NMI -NMI 
interrupt   
      \return if success, \c E_PASS, else error code      
     */   
     STATUS DSPC_strobeINT(DSP_INT_ID intID)  {    

     STATUS status  �  E_PASS;  
       switch(intID) {    
      case INT0:   
         DSPC_FSET( HPIBCTL, DINT0, 0);   
         DSPC_FSET( HPIBCTL, DINT0, 1);      
        status  �  E_PASS;   
        break;   
      case NMI:   
         DSPC_FSET( HPIBCTL, HPNMI, 0);   
         DSPC_FSET( HPIBCTL, HPNMI, 1);   
         status  �  E_PASS;   
         break;   
         default:  
         status  �  E_INVALID_INPUT;   
         break;      
        }    
       return (status);   
      }    
     /**  
      \    Assert the hold signal to the DSP       
     */   
     STATUS DSPC_assertHOLD()  {   
      DSPC_FSET( HPIBCTL, DHOLD, 0);   
      return E_PASS;      
      }    
     /**  
      \ Release the hold signal that was asserted to the DSP      
     */   
     STATUS DSPC_releaseHOLD()  {    
      DSPC_FSET( HPIBCTL, DHOLD, 1);   
      return E_PASS;   
      }    
     /**  
       \ Check if HOLD acknowledge signal received from DSP       
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     */   
     DM_BOOL DSPC_checkHOLDACK()  {   
      return((DM_BOOL)( DSPC_FGET( HPIBSTAT, HOLDA )  �  �  0 ? DM_TRUE :
DM_ FALSE));      
      }    

     /**  
       \ Enable/Disable byte swapping when transferring data over HPI 
interface    
      \param enable Byte swap, DM_TRUE: enable, DM_FALSE: disable      
     */   
     STATUS DSPC_byteSwap(DM_BOOL enable)  {   
      DSPC_FSET( HPIBCTL, EXCHG, ((enable  �  �  DM_TRUE) ? 1 : 0));   
      return E_PASS;      
      }    
     /**  
       \ Enable/Disable HPI interface    
      \param enable HPI interface, DM_TRUE: enable, DM_FALSE: disable      
     */   
     STATUS DSPC_hpiEnable(DM_BOOL enable)  {   
      DSPC_FSET( HPIBCTL, EXCHG, ((enable  �  �  DM_TRUE) ? 1 : 0));   
      return E_PASS;      
      }    
     /**  
       \ Get HPI interface status register HPIBSTAT    
      \return register HPIBSTAT (0 
 30602)      
     */   
     Uint16 DSPC_hpiStatus()  {   
      return DSPC_RGET( HPIBSTAT );      
      }    
     /**  
       \ Write data from ARM address space to DSP address space    
      Memory map in DSP address space is as follows:   
      \code       

    Address    Address Access    Description  

    Start    End    

    0 
 60    0 
 7F R/W    DSP specifi c memory area (32W)  

    0 
 80    0 
 7FFF R/W    DSP on-chip RAM, mapped on  

     both program and data space (�32KW)  
      0 
 8000 0 
 BFFF R/W DSP on-chip RAM, mapped on      
     data space only (16KW)  
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      0 
 1C000 0 
 1FFFF R/W DSP on-chip RAM, mapped on program 
space only (16KW)      
     \endcode  
      \param address Absolute address in ARM address space, must be 
          16-bit aligned   
      \param size   Size of data to be written, in units of 16-bit 
          words   
      \param dspAddr Absolute address in DSP address space, 0 
 0 .. 
          0 
 1FFFF   
      \return if success, \c E_PASS, else error code      
     */   
     STATUS DSPC_writeData(Uint16 *address, Uint32 size, Uint32 dspAddr)  {   
      if(size �  � 0)   
         return E_PASS;   
      if((Uint32)address  &  0 
 1 )   
         return E_INVALID_INPUT;   
      if( DSPC_hpiAddrValidate(dspAddr, 0) ! �  E_PASS )   
         return E_INVALID_INPUT;      
       {   
         Uint16 *hpiAddr;   
         Uint16 *armAddr;   
         hpiAddr � (Uint16*)HPI_DSP_START_ADDR;   
         armAddr � (Uint16*)address;      

         if(((dspAddr  �  �  0 
 10000)  &  &  (dspAddr � 0 
 18000)) || 
 (dspAddr  �  �  0 
 1C000 ))   
          {   
            hpiAddr  �  �  (dspAddr-0 
 10000);      
          } else if((dspAddr  �  �  0 X 0060) &  & (dspAddr � 0XC000)) {   
          hpiAddr  �  �  dspAddr;      
          } else  {   
          hpiAddr � (Uint16*)COP_SHARED_MEM_START_ADDR;   
          hpiAddr  �  �  (dspAddr-0 
 C000);      
          }    
         while(size--)  
          *hpiAddr �  �  � *armAddr �  � ;   
       }    
      return E_PASS;      
      }    
     /**  
       \ Read data from DSP address space to ARM address space    
      Memory map in DSP address space is as follows:   
      \code   
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      Address      Address Access     Description   
      Start      End   
      0 
 60       0 
 7F R/W    DSP specifi c memory area (32W)   
      0 
 80       0 
 7FFF R/W     DSP on-chip RAM, mapped on both 

program and data space (�32KW)      
      0 
 8000       0 
 BFFF       R/W  DSP on-chip RAM, mapped on data 
      space only (16KW)   
      0 
 1C000    0 
 1FFFF R/W   DSP on-chip RAM, mapped on 
      program space only (16KW)   
     \endcode  
      \param address    Absolute address in ARM address 
      space, must be 16-bit         aligned   
      \param size    Size of data to be read, in units 
      of 16-bit words   
      \param dspAddr    Absolute address in DSP address 
      space, 0 
 0 .. 0 
 1FFFF   
      \return if success, \c E_PASS, else error code      
     */   
     STATUS DSPC_readData(Uint16 *address, Uint32 size, Uint32 dspAddr)  {   
      if(size �  � 0)   
         return E_PASS;   
      if((Uint32)address  &  0 
 1 )   
         return E_INVALID_INPUT;   
      if( DSPC_hpiAddrValidate(dspAddr, 1) ! �  E_PASS )   
         return E_INVALID_INPUT;   
       {    
         Uint16 *hpiAddr;   
         Uint16 *armAddr;   

         hpiAddr � (Uint16*)HPI_DSP_START_ADDR;   
         armAddr � (Uint16*)address;   

         if(((dspAddr  �  �  0 
 10000)  &  &  (dspAddr � 0 
 18000)) || 
    (dspAddr  �  �  0 
 1C000 ))   
          {    
          hpiAddr  �  �  (dspAddr - 0 
 10000);   
          } else if((dspAddr  �  �  0 
 0060)  &  &  (dspAddr � ;0 
 C000)) {    
          hpiAddr  �  �  dspAddr;   
          } else  {    
          hpiAddr � (Uint16*)COP_SHARED_MEM_START_ADDR;   
          hpiAddr  �  �  (dspAddr - 0 
 C000);   
          }    
      while(size--)   
          **armAddr �  �  � hpiAddr �  � ;   
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       }    
      return E_PASS;      
      }    
     /**  
       \ Similar to DSPC_writeData(), except that after writing it  
 verifi es the contents written to the DSP memor   y   
      Memory map in DSP address space is as follows:   
      \code   
      Address     Address Access     Description   
      Start     End   
        0 
 60           0 
 7F R/W    DSP specifi c memory area (32W)   
        0 
 80           0 
 7FFF R/W     DSP on-chip RAM, mapped on both 

program and data   
           space   
           (�32KW)   
      0 
 8000         0 
 BFFF R/W     DSP on-chip RAM, mapped on data 

space only (16KW)   
      0 
 1C000        0 
 1FFFF R/W     DSP on-chip RAM, mapped on 

program space         o      
     \endcode  
      \param address    Absolute address in ARM address space, 

must be 16-bit         aligned   
      \param size    Size of data to be written, in units of 
     16-bit words   
      \param dspAddr   Absolute address in DSP address space, 
     0 
 0 .. 0 
 1FFFF   
      \param retryCount  Number of times to retry in case of 
     failure in writing data to DSP 
     memory   
      \return if success,  \c E_PASS, else error code      
     */   
     STATUS DSPC_writeDataVerify(Uint16 *address, Uint32 size, Uint32 
dspAddr, Uint16 retryCount)  {   
      if(size �  � 0)   
         return E_PASS;   

      if((Uint32)address  &  0 
 1 )   
         return E_INVALID_INPUT;   

      if( DSPC_hpiAddrValidate(dspAddr, 0) ! �  E_PASS )   
         return E_INVALID_INPUT;   
       {    
         volatile Uint16 *hpiAddr;   
         volatile Uint16 *armAddr;   



Testing and Debugging DSP Systems 445

www.newnespress.com

         hpiAddr � (Uint16*)HPI_DSP_START_ADDR;   
         armAddr � (Uint16*)address;   
         if(((dspAddr  �  �  0 
 10000)  &  &  (dspAddr � 0 
 18000)) || 
    (dspAddr  �  �  0 
 1C000 ))   
          {    
             hpiAddr  �  �  (dspAddr-0 
 10000);   
          } else if((dspAddr  �  �  0 
 0060)  &  &  (dspAddr � 0 
 C000)) {    
             hpiAddr  �  �  dspAddr;   
          } else  {    
             hpiAddr � (Uint16*)COP_SHARED_MEM_START_ADDR;   
             hpiAddr  �  �  (dspAddr-0 
 C000);   
          }    
          {    
             Uint16 i;   
             volatile DM_BOOL error;   

             while(size--)  {    
              error � (DM_BOOL)DM_TRUE;   
              for(i � 0;i � retryCount;i �  � )  {    
               *hpiAddr � *armAddr;   
               if(*hpiAddr �  � *armAddr)  {    
             error � (DM_BOOL)DM_FALSE;   
             break;   
             }    
            }    
           if(error �  � DM_TRUE)   
            return E_DEVICE;   
           hpiAddr �  � ;   
           armAddr �  � ;   
           }    
          }    
       }    
      return E_PASS;      
      }    
     /**  
       \ Download code to DSP memory    
      \param pCode code to be dowloaded   
      \see DSPCODESOURCE      
     */   
     STATUS DSPC_loadCode(const DSPCODESOURCE* pCode)  {   
      if ( pCode  �  �  NULL || pCode- � size  �  �  0 )   
       return E_INVALID_INPUT;   

       // reset DSP   
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      DSPC_reset();   

      // download the code to DSP memory   
      while ( pCode- � size ! �  0 )  {    
       Uint16 nRetry � 5;   
       if( DSPC_writeDataVerify((Uint16 *)pCode- � code, pCode-
 � size, pCode- � address, nRetry) ! �  E_PASS )   
        return E_DEVICE;   
       pCode �  � ;   
       }    
      // let DSP go   
      DSPC_strobeINT(INT0);   
      return E_PASS;      
      }    
     static STATUS DSPC_hpiAddrValidate(Uint32 dspAddr, Uint8 read)  {    
     // even if dspAddr  �  �  0 
 80 allow write  
       if(dspAddr  �  �  0 
 60  &  &  dspAddr  �  �  0 
 FFFF )   
        return E_PASS;   
       if(dspAddr  �  �  0 
 10000  &  &  dspAddr  �  �  0 
 17FFF )   
        return E_PASS;   
       if(dspAddr  �  �  0 
 1c000  &  &  dspAddr  �  �  0 
 1FFFF )   
        return E_PASS;   
       return E_INVALID_INPUT;      
      }    

     /**  
      \ ARM-DSP Communication APIs      
     */   
     /*   
     /**  
       \ Send command, parameters from ARM to DSP    
      This routine also triggers the NMI interrupt to DSP   
      \param cmd command to be sent to DSP   
      \param cmdParams pointer to paramters   
      \param nParams number of parameters to be sent 0..30, \n      
     if \c nParams � 30, then remaining ARM-DSP register set is fi lled with 0’s  
      \return if success, \c E_PASS, else error code      
     */   
     STATUS ARMDSP_sendDspCmd(Uint16 cmd, Uint16* cmdParams, Uint16 
nParams)  {   
      DSPC_writeData(  & cmd, 1, ARM_DSP_COMM_AREA_START_ADDR);   
      DSPC_writeData(  & nParams, 1, ARM_DSP_COMM_AREA_START_ADDR � 1);   
      DSPC_writeData( cmdParams, nParams, 
ARM_DSP_COMM_AREA_START_ADDR � 2);   
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      DSPC_strobeINT(NMI);   
      return E_PASS;      
      }    
     /**  
       \ Get command execution status, return parameters sent by DSP 
to ARM    
      \param    status    command status received from DSP   
      \param    retParams    pointer to return paramters   
      \param    nParams    number of parameters to be fetched 
     from ARM-DSP communication area, 0..30   
      \return if success, \c E_PASS, else error code      
     */   
     STATUS ARMDSP_getDspReply( Uint16* status, Uint16* retParams, Uint16 
nParams)   
      {   
      DSPC_readData( status, 1, ARM_DSP_COMM_AREA_START_ADDR � 32);   
      DSPC_readData( retParams, nParams, 
ARM_DSP_COMM_AREA_START_ADDR � 34);   
      return E_PASS;      
      }    
     /**  
       \ Get command, parameters sent by DSP to ARM    
      \param cmd command received from DSP   
      \param cmdParams    pointer to paramters   
      \param nParams       number of parameters to be fetched from 
          ARM-DSP         communication area, 0..30   
      \return if success, \c E_PASS, else error code      
     */   
     STATUS ARMDSP_getArmCmd( Uint16* cmd, Uint16* cmdParams, Uint16 
nParams)  {   
      DSPC_readData( cmd, 1, ARM_DSP_COMM_AREA_START_ADDR � 64);   
      DSPC_readData( cmdParams, nParams, 
ARM_DSP_COMM_AREA_START_ADDR � 66);   
      return E_PASS;      
      }    
     /**  
       \ Send command execution status, return parameters from ARM to 
DSP    
      This routine also triggers the NMI interrupt to DSP   
      \param status    command execution status to be sent to DSP   
      \param retPrm    pointer to return paramters   
      \param nParams    number of parameters to be sent 0..30, \n      
     if \c nParams � 30, then remaining ARM-DSP register set is fi lled with 0’s  
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      \return if success, \c E_PASS, else error code      
     */   
     STATUS ARMDSP_sendArmReply( Uint16 status, Uint16* retParams, Uint16 
nParams )   
      {   
      DSPC_writeData(  & status, 1, ARM_DSP_COMM_AREA_START_ADDR � 96);   
      DSPC_writeData( retParams, nParams, 
ARM_DSP_COMM_AREA_START_ADDR � 98);   
      DSPC_strobeINT(INT0);   
      return E_PASS;      
      }    
     /**  
       \ Clear ARM-DSP communication area    
      \return if success, \c E_PASS, else error code      
     */   
     STATUS ARMDSP_clearReg()  {   
      Uint16 nullArray[128];   
      memset((char*)nullArray, 0, 256);   
      if(DSPC_writeData(nullArray, 128,ARM_DSP_COMM_AREA_START_ADDR) 
! �  E_PASS )   
       return E_DEVICE;   
      return E_PASS;      

      }        
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 sample-and-hold amplifi er (SHA) 

function   ,  25 – 7   
 undersampling   ,  33 – 4  

 antialiasing fi lters in   ,  34 – 6     
 Address generators   ,  334 – 5   
 Adjacent channel leakage ratio 

(ACLR)   ,  58   ,  59   ,  98   
 Adjacent channel power ratio 

(ACPR)   ,  58   ,  98   
 ADL (Architecture Description 

Language)   ,  321 – 2   
 ADSP21xx   ,  354   
 ADSP210xx   ,  356   
 Advanced Audio Coding (AAC)   ,  174   
 Aliasing   ,  1   ,  28   ,  29   ,  98   ,  127   ,  285   
 All-0s   ,  105   
 All-1s   ,  105   
 Alpha mixing   ,  186   ,  198   ,  199   ,  201   
 Amplitude modulation (AM)   ,  256 – 61   
 Analog bandwidth   ,  50 – 1   ,  98   
 Analog Devices   ,  19   ,  125   ,  129   ,  336   , 

 354   ,  356   
 Analog signal processing   ,  124 – 5   
 Analog spectrum analyzer   ,  89 – 90   
 Analog-to-digital converter (ADC)   , 

 129   ,  284  
 and fi nite-length modeling   ,  285 – 6    

 Angle modulation   ,  267   
 Anti-aliased resampling   ,  221 – 3   
 Anti-aliasing fi lter   ,  127 – 8   
 Aperture delay time   ,  70   ,  71   ,  98 – 9   
 Aperture jitter   ,  70   ,  72 – 4   ,  99   
 Aperture time   ,  70   ,  71   ,  98   
 Aperture uncertainty   ,  see   Aperture 

jitter   
 Application-specifi c instruction set 

processors (ASIP)   ,  304  

 design automation   ,  321 – 4   
 DSP implementation on   ,  306   
 DSP subsystem   ,  315   
 hardware design fl ow   ,  319 – 21    

 Application specifi c integrated circuit 
(ASIC)   ,  304  

 DSP implementation on   ,  307 – 8    
 ARC   ,  324   
 ARM and DSP   ,  432 – 4   ,  435 – 6   ,  438   
 ARM processor   ,  425   
 Arrays versus pointers   ,  395   
 Assembly code   ,  312   
 Assembly language   ,  384   
 Atomic operations   ,  403   
 Audio coding   ,  159  

 Adaptive Transform Acoustic 
Coding (ATRAC)   ,  183   

 Digital theater systems (DTS)   ,  183   
 Dolby AC3   ,  180 – 3   
 MPEG advanced audio coding   ,  173  

 MPEG-2 AAC   ,  174 – 9   
 MPEG-4 AAC   ,  179 – 80    

 MPEG audio coding   ,  164  
 Layer I coding   ,  165 – 7   
 Layer II coding   ,  167 – 8   
 Layer III coding   ,  168 – 73    

 psychoacoustic model   ,  163 – 4   
 Sony Dynamic Digital Sound 

(SDDS)   ,  183   
 spectral masking   ,  161 – 2   
 temporal masking   ,  162 – 3    

 Audio frequency-shift keying 
(AFSK)   ,  266   

 Autocorrelation   ,  294   

B
 Background key signal generation   , 

 216 – 17   
 Backward masking   ,  see   Premasking   
 Bandwidth   ,  265 – 6  

 analog bandwidth   ,  98   
 analog input bandwidth   ,  99   
 and data capacity   ,  281 – 2   
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Bandwidth (continued )
 effective resolution bandwidth 

(ERB)   ,  99   
 full-linear bandwidth   ,  99   
 full-power bandwidth (FPBW)   ,  99    

 Baseband antialiasing fi lters   ,  30 – 3   
  Batman Returns    ,  181   
 Behavior source code   ,  311   
 Behavioral synthesis   ,  317 – 18   
 Best straight line   ,  18   ,  19   
 Binary-coded decimal (BCD) code   , 

 13   ,  14   
 Binary codes   ,  4   ,  8   ,  311 – 12   
 Binary machine code   ,  312   
 Binary phase-shift keying (BPSK)   , 

 268   ,  269   
 Binary-to-gray and gray-to-binary 

conversion   ,  9   
 Bipolar codes   ,  9 – 13   
 Bipolar converters   ,  16   ,  17   
 Biquad IIR fi lter   ,  289   
 Bit error rate (BER)   ,  77 – 83   
 Bit reversal addressing   ,  291   ,  292   , 

 389 – 91   
 Bit Sliced Arithmetic Coding 

(BSAC)   ,  180   
 Black box   ,  318   
 Blackfi n processors   ,  383   ,  385   ,  391   , 

 394   ,  395   ,  403   ,  406   ,  411   ,  417   , 
 418   ,  419   ,  420   

 Block switching and MDCT   ,  175 – 6   
 Blue stretch   ,  196   
 Bob   ,  see   Intra-fi eld processing   
 Brightness (black level) control   ,  192   , 

 193   
  Build Array  function   ,  155   
 Butterfl y operations   ,  290   
 Byte addressability   ,  386   ,  388   

C
 C/C     �    �    ,  384   
  “ Cache Invalidate ”  instruction   ,  407 – 8   
 Cacheability protection look-aside 

buffers (CPLBs)   ,  411  
 management   ,  413 – 14    

 Caching mechanism   ,  405   
 Callback Manager   ,  383   
 Capture-and-simulate methodology   , 

 317   

 Carrier, defi nition of   ,  256   
 Cathedral-II   ,  324   
 CbCr fi ltering   ,  190 – 2   
 CbCr processing   ,  192 – 3   
  CCLK  cycles   ,  400   
  CCS Getting Started Guide    ,  368   
 Chip stream   ,  276   
  Chirp Pattern  VI   ,  148   
 Chroma keying   ,  186   ,  206   ,  209 – 18   
 Circular buffering   ,  334 – 5   ,  388 – 9   
 Code centers   ,  5   ,  16   
 Code-dependent glitches   ,  87   
 Code division multiple access 

(CDMA)   ,  275   
 Code optimization and resource 

partitioning   ,  379  
 data movement, physics of   ,  414  

 core and DMA SDRAM 
accesses   ,  417   

 grouping like transfers to 
minimize memory bus 
turnarounds   ,  415 – 17   

 priority and arbitration schemes 
between system resources   , 
 420   

 SDRAM refresh rates and clock 
settings   ,  418 – 20   

 SDRAM row management   ,  418    
 effi cient programming, 

architectural features for   ,  385  
 hardware loop constructs   ,  385 – 6   
 interlocked instruction pipelines   , 

 391 – 3   
 multiple operations per cycle   , 

 385   
 specialized addressing modes   , 

 386 – 91    
 effi cient programming, compiler 

considerations for   ,  393  
 arrays versus pointers   ,  395   
 data buffers   ,  397 – 8   
 data types, choosing   ,  394 – 5   
 division   ,  395 – 6   
 intrinsics and in-lining   ,  398 – 9   
 loops   ,  396 – 7   
 volatile data   ,  399    

 event generation and handling   ,  380  
 system interrupts   ,  381 – 4    

 memory architecture   ,  403  

 data memory management   , 
 406 – 8   

 DMA and cache, choosing 
between   ,  408 – 10   

 instruction memory 
management   ,  405 – 6   

 memory access trade-offs   ,  403 – 5   
 memory management unit 

(MMU)   ,  410 – 14    
 programming methodology   ,  384   
 system and core synchronization   , 

 399  
 atomic operations   ,  403   
 load/store synchronization   , 

 400 – 1   
 ordering   ,  401 – 3     

 Coded OFDM (COFDM)   ,  279   ,  280   
 Color correction   ,  197   
 Color temperature correction   ,  198   
 Color transient improvement   ,  193 – 4   
 Commercial off-the-shelf (COTS)   ,  306   
 Common-mode range   ,  101   
 Common-mode rejection (CMR)   ,  101   
 Common-mode voltage (CMV)   ,  101   
 Communication system   ,  297 – 9   
 Compiler considerations, for effi cient 

programming   ,  393  
 arrays versus pointers   ,  395   
 data buffers   ,  397 – 8   
 data types, choosing   ,  394 – 5   
 division   ,  395 – 6   
 intrinsics and in-lining   ,  398 – 9   
 loops   ,  396 – 7   
 volatile data   ,  399    

 Complementary codes   ,  13 – 14   
 Complete DSP system   ,  126  

 analog-to-digital converter   ,  129   
 anti-aliasing fi lter   ,  127 – 8   
 digital-to-analog converter   ,  130   
 processor   ,  129   
 reconstruction fi lter   ,  130   
 sample-and-hold device   ,  128 – 9    

 Compliance-voltage range   ,  101   
 Composite chroma keying   ,  218   
  Composite Signal  VI   ,  148   ,  149   ,  

150   
 Computer tomography (CT) 

processing system   ,  314   
 Concatenate Inputs option   ,  152 – 155   
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 Contrast (picture/white level) control   , 
 192   ,  193   

 Conventional rounding   ,  186 – 7   
 Conversion complete   ,  101   
 Conversion rate   ,  102   
 Conversion time   ,  102   
 Convolution   ,  292 – 3   
 Core and DMA SDRAM accesses   , 

 417   
 Core event controller (CEC)   ,  381   
 Core Synchronization ( CSYNC )   ,  399  

 atomic operations   ,  403   
 Load/Store synchronization   ,  400 – 1   
 ordering   ,  401 – 3    

 Cross-correlation   ,  294   
 Crosstalk   ,  102   

D
 D15 method   ,  182   
 D25 method   ,  182 – 3   
 D45 method   ,  183   
 DAC settling time   ,  83 – 5   ,  114   
 Data buffers   ,  397 – 8   
 Data cache   ,  407 – 8  

 and DMA   ,  412    
 Data capacity and bandwidth   ,  281 – 2   
 Data converter AC errors   ,  36  

 DAC dynamic performance   ,  83  
 DAC output spectrum and sin 

(x)/x frequency roll-off   ,  90   
 DAC settling time   ,  83 – 5   
 DAC SNR measurement, with 

analog spectrum analyzer   , 
 89   ,  90   

 glitch impulse area   ,  85 – 6   
 oversampling interpolating 

DACs   ,  90 – 3   
 SDFR and SNR   ,  86 – 9    

 dynamic performance   ,  45  
 ADC sparkle codes, metastable 

states, and bit error rate   , 
 77 – 83   

 ADC transient response and 
overvoltage recovery   ,  75 – 7   

 analog bandwidth   ,  50 – 1   
 aperture time, aperture delay 

time, and aperture jitter   ,  70 – 4   
 differential nonlinearity 

distortion effects   ,  46 – 7   

 harmonic distortion   ,  47   ,  48   
 integral nonlinearity distortion 

effects   ,  46 – 7   
 intercept points and 1       dB 

compression points   ,  54 – 7   
 multitone spurious free dynamic 

range   ,  57 – 8   
 noise factor (F) and noise fi gure 

(NF)   ,  62 – 9   
 noise power ratio (NPR)   ,  59 – 62   
 SINAD, SNR, and ENOB   , 

 49 – 50   
 spurious free dynamic range 

(SFDR)   ,  51 – 3   
 total harmonic distortion (THD)   , 

 47   ,  48   
 total harmonic distortion plus 

noise (THD      �      N)   ,  47   ,  48   
 total SNR of ADC, equation for   , 

 74 – 5   
 two-tone intermodulation 

distortion (IMD)   ,  53 – 4   
 WCDMA ACPR and ACLR   , 

 58 – 9   
 worst harmonic   ,  47 – 8    

 ideal N-bit converter, theoretical 
quantization noise of   ,  36 – 43   

 practical ADCs, noise in   ,  43  
 equivalent input referred noise   , 

 44   
 noise-free code resolution   ,  44 – 5     

 Data converter specifi cations  
 logic interface issues   ,  95 – 6   
 overall considerations   ,  93 – 5   
 timing and issues   ,  96    

 Data DMA   ,  408 – 9   
 Data DMA/cache   ,  409   
 Data memory (DM)   ,  310  

 management   ,  406 – 8    
 Data memory addressing   ,  310   
 Data movement, physics of   ,  414  

 core and DMA SDRAM accesses   , 
 417   

 grouping like transfers to minimize 
memory bus turnarounds   , 
 415 – 17   

 SDRAM row management   ,  418   
 priority and arbitration schemes 

between system resources   ,  420   

 SDRAM refresh rates and clock 
settings   ,  418 – 20    

 Data processing unit (DU)   ,  310   
 Data types, for effi cient 

programming   ,  394 – 5   
 DCT (discrete cosine transform)   , 

 246 – 7   ,  289   ,  302   
 DCT-based compression   ,  246  

 DCT   ,  246 – 7   
 quantization   ,  247 – 8   
 run length coding   ,  248   
 variable-length coding   ,  250   
 zig-zag scanning   ,  248   ,  249    

 Dead time   ,  see   Switching time   
 Decimation in frequency (DIF)   ,  290   , 

 291   
 Decimation in time (DIT)   ,  290   ,  291   
 Deinterlacing algorithms   ,  239   
 Demodulation   ,  256   ,  257   ,  258   
 Describe-and-synthesize 

methodology   ,  317 – 18   
 Design fl ow  

 hardware design fl ow   ,  317 – 19  
 ASIP   ,  319 – 24     

 Deviation, defi nition of   ,  261   
 Deviation ratio  

 and modulation index   ,  263    
 Differential analog input voltage 

range   ,  103   
 Differential gain ( Δ G)   ,  103   
 Differential linearity error   ,  19   ,  108   , 

 109   
 Differential nonlinearity (DNL)   ,  19   , 

 20   ,  21   ,  46 – 7   ,  108   
 Differential phase ( Δφ   )   ,  103   
 Digital data processing   ,  131   
 Digital fi lters   ,  123   ,  287 – 9  

 alternative approach   ,  125 – 6   
 analog signal processing   ,  124 – 5   
 complete DSP system   ,  126  

 analog-to-digital converter   ,  129   
 anti-aliasing fi lter   ,  127 – 8   
 digital-to-analog converter   ,  130   
 processor   ,  129   
 reconstruction fi lter   ,  130   
 sample-and-hold device   ,  

128 – 9    
 digital data processing   ,  131   
 feedback fi lters   ,  134 – 7   



454 Index

www.newnespress.com

Digital fi lters (continued)
 processing systems representation   , 

 134   
 running/moving average fi lter   , 

 131 – 3    
 Digital signal processing (DSP), 

defi nition of   ,  284   
 Digital theater systems (DTS)   ,  183   
 Digital-to-analog converter (DAC)   ,  2   , 

 130   ,  284   
 Diode detector circuit   ,  257   ,  258   
 Direct Broadcast Satellites (DBS)   , 

 181   
 Direct Digital Synthesis (DDS) 

system   ,  87   
 Direct Fourier transform   ,  290   
 Direct-sequence spread spectrum 

(DSSS)   ,  275 – 9 
   see also   Spread spectrum 

techniques   
 Direction Control   ,  415   
 Discrete Cosine Transform (DCT)   , 

 246 – 7   ,  289   ,  438   
 Discrete Fourier transform   ,  140 – 1   , 

 290   
 Discrete wavelet transform (DWT)   , 

 139   ,  142 – 5  
 FP of   ,  156   
 LabVIEW tools for   ,  152 – 6    

 Display enhancement   ,  192  
 blue stretch   ,  196   
 brightness, contrast, saturation 

(color), and hue (tint)   ,  192 – 3   
 color correction   ,  197   
 color temperature correction   ,  198   
 color transient improvement   ,  193 – 4   
 dynamic contrast   ,  197   
 green enhancement   ,  196 – 7   
 luma transient improvement   ,  194   
 sharpness   ,  194 – 6    

 Display scaling examples   ,  223 – 6   , 
 227   ,  228   

 Distortion control loop   ,  172   
 DMA versus cache   ,  408 – 10   
 Dolby AC3   ,  180  

 bit allocation   ,  182   
 D15 method   ,  182   
 D25 method   ,  182 – 3   
 D45 method   ,  183    

 Dolby digital   ,  see   Dolby AC3   
 Dot product   ,  387   
  Double  (32-bit) format   ,  395   
 Double precision format   ,  351 – 3   
 Doublet glitch   ,  85   
 Droop rate   ,  103   
 DSP processors and fi xed-point 

arithmetic  
 architecture   ,  329 – 32   
 fi nite impulse response and infi nite 

impulse response fi lter 
implementations   ,  358 – 64   

 fi xed-point and fl oating-point 
formats   ,  336  

 fi xed-point digital signal 
processors   ,  354 – 5   

 fi xed-point format   ,  337 – 45   
 fl oating-point format   ,  345 – 50   
 fl oating-point processors   ,  355 – 7   
 IEEE fl oating-point formats   , 

 350 – 3    
 hardware units  

 address generators   ,  334 – 5   
 multiplier and accumulator 

(MAC)   ,  333   
 shifters   ,  333 – 4    

 and manufacturers   ,  335 – 6   
 programming examples   ,  364  

 fi xed-point implementation   ,  372   , 
 375   ,  376   ,  377   

 fl oating-point implementation   , 
 372   ,  374   

 linear buffering   ,  369 – 72   
 real-time processing   ,  368 – 9   
 sample C programs   ,  372   
 TMS320C67x DSK   ,  364 – 8     

 DSP theory   ,  284  
 applications   ,  295 – 6   ,  296 – 304   
 fi rmware   ,  310 – 13   
 and fundamentals, review of   , 

 284 – 5   ,  294   ,  295   
 implementations   ,  296   ,  304 – 9   
 processor architecture   ,  310   ,  311    

 DSP5600x family   ,  354   
 Dual-slope converter   ,  103   
 Duplication   ,  220 

   see also   Scan line duplication   
 Dynamic contrast   ,  197   
 Dynamic rounding   ,  187   ,  188   

E
 Effective aperture delay time   ,  70   ,  71   , 

 98   ,  99   
 Effective number of bits (ENOB)   , 

 49 – 50   ,  51   ,  103   
 Effective resolution   ,  45   ,  110   
 Effective resolution bandwidth 

(ERB)   ,  99   
 Embedded computing   ,  315 – 17   
 Embedded system   ,  314  

 DSP in   ,  314 – 15    
 Emitter-coupled-logic (ECL)   ,  3   
 Encode (sampling clock) pulsewidth/

duty cycle   ,  104   
 End-of-conversion (EOC)   ,  101   
 end-point linearity   ,  108   
 end-point nonlinearity   ,  108   
 End point system   ,  18   ,  19   
 Enum Constant   ,  146   
 Enum control   ,  146   
 Equivalent input referred noise   ,  44   
 Error feedback rounding   ,  187   
 Event generation and handling   ,  380  

 system interrupts   ,  381 – 4    
 Exceptions   ,  380 – 1   

F
 Fast Fourier transform (FFT)   ,  140 – 1   , 

 165   ,  289   ,  290   ,  291   ,  390  
 block diagram   ,  149   
 property node   ,  151 – 2   
 versus STFT   ,  145 – 52    

 Feedback fi lters   ,  134 – 7   
 Feedthrough error   ,  104   
 FFT   ,  see   Fast Fourier transform   
 Field merging   ,  241 – 2   ,  245   
 Field rate conversion   ,  see   Scan rate 

conversion   
 FIFO (First In First Out) buffer   , 

 288 – 9   ,  334   ,  335   
 Film mode deinterlacing   ,  239   ,  244   
 Filters   ,  287   
 Finite impulse response (FIR) fi lter   , 

 137   ,  288  
 implementation, in fi xed-point 

systems   ,  358 – 9   ,  369   ,  370    
 Firmware, DSP   ,  310 – 13   
 First-in/fi rst-out (FIFO) buffer   ,  see  

 FIFO (First In First Out) buffer   
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 Fixed pixel display considerations   , 
 250  

 detail correction   ,  250   
 expanded color reproduction   ,  250   
 nonuniform quantization   ,  250   
 scaling and deinterlacing   ,  251    

 Fixed-point and fl oating-point 
formats   ,  336  

 fi xed-point digital signal 
processors   ,  354 – 5   

 fi xed-point format   ,  337 – 45   
 fl oating-point format   ,  345 – 50   
 fl oating-point processors   ,  355 – 7   
 IEEE fl oating-point formats   ,  350 – 3    

 Fixed-point digital signal processors   , 
 354 – 5   

 Fixed-point DSP fi rmware fl ow   ,  312   , 
 313   

 Fixed-point systems  
 FIR fi lter implementation in   , 

 358 – 9   ,  369   ,  370   
 IIR fi lter implementation in   ,  360 – 4   , 

 369 – 71   ,  372   ,  373    
 Flash converter   ,  27   ,  104   
 Float (32-bit) format   ,  395   
 Floating-point format   ,  345 – 50  

 overfl ow   ,  347 – 50   
 underfl ow   ,  350    

 Floating-point processors   ,  355 – 7   
 Forward masking   ,  see   Postmasking   
 FPBW (full power bandwidth)   ,  50   ,  99   
 FPGA (Field-Programmable Gate 

Array)   ,  304   
 Fractional binary   ,  4   
 Fractional ratio interpolation   ,  241   
 Frame rate conversion   ,  see   Scan rate 

conversion   
 Frame/fi eld dropping and duplicating   , 

 228 – 9   
 Frequency division multiple access 

(FDMA)   ,  59   ,  60   ,  275   
 Frequency domain processing   ,  139  

 discrete Fourier transform (DFT)   , 
 140 – 1   

 discrete wavelet transform (DWT)   , 
 142 – 5  

 LabVIEW tools for   ,  152 – 6    
 fast Fourier transform (FFT)   , 

 140 – 1  

 LabVIEW tools for   ,  145 – 51    
 short-time Fourier transform 

(STFT)   ,  141 – 2  
 LabVIEW tools for   ,  145 – 51    

 signal processing toolset   ,  145    
 Frequency-domain signal processing   , 

 290   
 Frequency hopping   ,  274 – 5   
 Frequency modulation (FM)   ,  261 – 3   
 Frequency response, of deinterlacing 

fi lters   ,  244 – 5   
 Frequency shift keying (FSK)   ,  266 – 7   
 Frequency-to-voltage conversion 

(FVC)   ,  104   
 Friis equation   ,  68   
 Full-scale input power (ADC)   ,  105   
 Full-scale range (FSR)   ,  105   
 Fully modulated signal   ,  see   100% 

modulation   

G
 G.729A algorithm, benchmarks for   , 

 413   
 Gain error   ,  17 – 18   
 Gain tempco   ,  116   
 Gaussian fi lter   ,  271   
 Gaussian-fi ltered minimum shift-

keying (GMSK)   ,  270   ,  271   , 
 272   

 General-purpose processor (GPP)   , 
 431  

 DSP implementations on   ,  305    
 Glitch   ,  85   ,  102   ,  106   
 Glitch energy   ,  85   ,  102   ,  106   
 Glitch impulse area   ,  85 – 6   ,  102   ,  106   
  Grand Alliance    ,  181   
 Gray code   ,  7 – 9   
 Green enhancement   ,  196 – 7   
 Grounded-input histogram   ,  44   
 GSM AMR algorithm, benchmarks 

for   ,  413   

H
 H.264   ,  247   
 Hanning Window VI   ,  151   
 Hardware dependent source code   ,  311 

   see also   Assembly code   
 Hardware design fl ow   ,  317 – 19   
 Hardware loop buffers   ,  386   

 Hardware loop constructs   ,  385 – 6   
 Hardware options   ,  283  

 design fl ow   ,  317 – 24   
 DSP applications   ,  295 – 6  

 communication system   ,  297 – 9   
 multimedia signal processing 

systems   ,  299 – 303   
 non-real-time system   ,  297   
 real-time system   ,  297   
 review on   ,  303 – 4    

 DSP fi rmware   ,  310 – 13   
 DSP implementations   ,  296   ,  304  

 on application-specifi c 
instruction set processors 
(ASIP)   ,  306   

 on application specifi c integrated 
circuit (ASIC)   ,  307 – 8   

 on general-purpose DSP (GP 
DSP) processors   ,  305 – 6   

 on general-purpose processor 
(GPP)   ,  305   

 trade-off and decision of   ,  308 – 9    
 DSP theory   ,  284   ,  294 – 5  

 adaptive fi lter and signal 
enhancement   ,  292 – 3   

 ADC and fi nite-length modeling   , 
 285 – 6   

 autocorrelation   ,  294   
 cross-correlation   ,  294   
 digital fi lters   ,  287 – 9   
 and fundamentals   ,  284 – 5   
 random process and 

autocorrelation   ,  293 – 4   
 transforms   ,  289 – 92    

 DSP processors and systems, 
review of   ,  309  

 architecture   ,  310   
 embedded computing, 

fundamentals of   ,  315 – 17   
 embedded system   ,  314 – 15   
 fi rmware   ,  310 – 13     

 Harmonic distortion   ,  47   ,  48   
 Harmonic sampling   ,  33   
 Harvard processor   ,  331   ,  332   
 HDTV to SDTV   ,  188   
 Heterogeneous memory systems   ,  

429   
 High-level language (HLL)   ,  384   
 High-pass fi lter   ,  287   
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 High performance media processing 
capability  

 hardware loop constructs   ,  385 – 6   
 interlocked instruction pipelines   , 

 391 – 3   
 multiple operations per cycle   ,  385   
 specialized addressing modes   , 

 386 – 91    
 Hue (tint) control   ,  192   ,  193   
 Huffman coding   ,  299   ,  300   
 Huffman tree   ,  300   

I
 I-Q modulator   ,  272   ,  273   
 Image and video compression   ,  302 – 3   
  Impulse Pattern  VI   ,  148   
 IMX   ,  438   
 Infi nite impulse response (IIR) fi lter   , 

 137   ,  288   ,  289  
 implementation, in fi xed-point 

systems   ,  360 – 4   ,  369 – 71   ,  372   , 
 373   ,  374    

 In-lining   ,  398 – 9   
 Input impedance   ,  107   
 Input/output unit (I/O), of DSP   ,  310   
 Input-referred noise   ,  107   
 Institute of Electrical and Electronics 

Engineers (IEEE) fl oating-
point formats  

 double precision format   ,  351 – 3   
 single precision format   ,  350 – 1    

 Instruction cache   ,  404   ,  405  
 data DMA   ,  408 – 9   
 data DMA/cache   ,  409    

 Instruction/data DMA combination   , 
 409 – 10   ,  411   ,  412   

 Instruction memory management   , 
 405 – 6   

 Integral linearity error   ,  18   ,  19   
 Integral nonlinearity, of ADC   ,  46   ,  47   
  Intensity graph    ,  151   
 Intercept points and 1       dB compression 

points   ,  54 – 7   
 Inter-fi eld processing   ,  241  

 fi eld merging   ,  241 – 2   
 motion adaptive deinterlacing   , 

 242 – 3    
 Interlaced-to-noninterlaced 

conversion   ,  238  

 fi lm mode   ,  244   
 frequency response considerations   , 

 244 – 5   
 inter-fi eld processing   ,  241 – 3   
 intra-fi eld processing   ,  239 – 41   
 motion-compensated deinterlacing   , 

 244    
 Interlocked instruction pipelines   , 

 391 – 3   
 Intermodulation distortion (IMD)   , 

 107   
 Interrupt service routine (ISR)   ,  381   , 

 383   ,  402   ,  410   
 Intra-fi eld processing   ,  239  

 fractional ratio interpolation   ,  241   
 scan line duplication   ,  239   ,  240   
 scan line interpolation   ,  240 – 1   
 variable interpolation   ,  241    

 Intrinsics   ,  398 – 9   
 Invalidate instruction   ,  407 – 8   
 Inverse DCT (IDCT)   ,  247   ,  438   
  Inverse Discrete Wavelet Transform  

VI   ,  155   
 Inverse DWT (IDWT)   ,  144   
 Inverse telecine process   ,  244   

J
 Joint time-frequency analysis (JTFA)   , 

 145   
 JPEG (Joint Picture Expert Group)   , 

 303   

L
 L1 memory   ,  405   
 L3 memory   ,  420   
 Least signifi cant bit (LSB)   ,  3   ,  107 – 8   
 Left-justifi ed data   ,  108   
 Levinson – Durbin algorithm   ,  177   
 Linear buffering   ,  369  

 digital oscillation with infi nite 
impulse response fi ltering   , 
 372   

 fi nite impulse response fi ltering   , 
 369   

 infi nite impulse response fi ltering   , 
 369 – 71    

 Linear settling time   ,  84   
 Linearity error   ,  17   ,  108   
 Linearity tempco   ,  116   

 LISA   ,  324   
  Long long  (64-bit) format   ,  395   
 Long term prediction (LTP) tool   ,  179   
 Long window   ,  171   
 Looping   ,  385 – 6  

 in C   ,  396 – 7    
 Lossless compression   ,  299 – 300   
 Lossy compression   ,  160   ,  161   ,  299   , 

 301   
 Low-pass fi lter   ,  287   
 Low-voltage-differential-signaling 

logic (LVDS)   ,  3   
 Luma and chroma keying   ,  204  

 chroma keying   ,  206   ,  209 – 18   
 luminance keying   ,  205 – 6   ,  207   , 

 208   ,  209   
 superblack and luma keying   ,  218    

 Luma transient improvement   ,  194   
 Luminance keying   ,  205 – 6   ,  207   ,  208   , 

 209   
 Luminance modulation   ,  see   Shadow 

chroma keying   

M
 Macroblocks and blocks, relationship 

between   ,  246   
  MathScript Node    ,  148   
  MATLAB Script Node    ,  155   
 Maximum conversion rate   ,  109   
 Maximum signal-to-quantization-

noise ratio   ,  285   ,  286   
 Mean   ,  293   
 MemDMA streams   ,  415   
 Memory architecture  

 choosing between DMA and cache, 
system guidelines for   ,  408 – 10   

 data memory management   ,  406 – 8   
 instruction memory management   , 

 405 – 6   
 memory access trade-offs   ,  403 – 5   
 memory management unit (MMU)   , 

 410 – 14    
 Memory management unit (MMU)   , 

 410 – 14   
 Memory subsystem   ,  315   
  Menu Ring  controls   ,  146  

 properties   ,  147    
 MESCAL   ,  324   
 Metastability   ,  79   
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 Metastable state errors   ,  80   
 Metastable states   ,  77   ,  79 – 80   
 Microcontroller (MCU)   ,  306   ,  315   
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 MIMOLA   ,  324   
 Minimum conversion rate   ,  109   
 Minimum-shift keying (MSK)   ,  270 – 2   
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 Modifi ed discrete cosine transform 
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 Modulation   ,  255  

 amplitude modulation   ,  256 – 61   
 bandwidth   ,  265 – 6   
 bandwidth and data capacity   , 

 281 – 2   
 deviation ratio   ,  263   
 direct-sequence spread spectrum   , 

 275 – 9   
 frequency hopping   ,  274 – 5   
 frequency modulation   ,  261 – 3   
 frequency shift keying   ,  266 – 7   
 minimum-shift keying   ,  270 – 2   
 modulation index   ,  261   ,  263  

 and deviation ratio   ,  263    
 orthogonal frequency division 

multiplexing   ,  279 – 81   
 phase modulation   ,  267 – 8   
 phase-shift keying   ,  268 – 70   
 quadrature amplitude modulation   , 

 272 – 4   
 radio carrier   ,  256   
 sidebands   ,  263 – 5   
 signal-to-noise ratio, improvement 

in   ,  266   
 spread spectrum techniques   ,  274    

 Monotonicity   ,  109   
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 Motion adaptive deinterlacing   ,  242 – 3   
 Motion-compensated deinterlacing   , 

 244   
 Motion compensation   ,  230   
 Motion Correlation   ,  438   
 Motion Estimation   ,  438   
 Motion vector steered deinterlacing   , 

 see   Motion-compensated 
deinterlacing   

 Motorola   ,  129   ,  336   ,  354   
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average fi lter   
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 MPEG-2 AAC   ,  174 – 9   
 MPEG-4 AAC   ,  179 – 80    

 MPEG audio coding   ,  164  
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 layer II coding   ,  167 – 8   
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 MPEG2 (Moving Picture Expert 
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 quantization and coding   ,  178   
 spectral processing   ,  176 – 8   
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 perceptual noise substitution   ,  179   
 TwinVQ   ,  179 – 80    
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 Multicore system-on-a-chip (SoC)   , 
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 Multiplying DAC   ,  104   ,  105 – 6   ,  109   
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 Nyquist’s theorem   ,  281 – 2   

O
 Oddifi cation   ,  247   
 Offset binary   ,  9   ,  10   ,  11   ,  16   
 Offset error   ,  17   ,  100   
 Offset nonlinearity   ,  112   
 Offset-quadrature phase-shift keying 

(O-QPSK)   ,  270   
 Offset tempco   ,  116   
 On-off keying (OOK)   ,  257   
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 interpolating DACs   ,  90 – 3    
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 Phase modulation (PM)   ,  267 – 8   
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 340 – 5   
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 Radix-2 algorithm   ,  290   
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 error feedback rounding   ,  187   
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 Run length coding   ,  248   
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 Scan line interpolation   ,  240 – 1   
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 3:2 pulldown   ,  236 – 7   
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 Shannon’s Law   ,  282   
 Shannon’s sampling theorem   
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 Shifters   ,  333 – 4   
 Short-time Fourier transform (STFT)   , 
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 Sign-magnitude converter   ,  17   
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 Signal processing toolset   ,  145   
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 improvement in   ,  266    
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 Sony Dynamic Digital Sound 
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 Sound pressure level (SPL)   ,  161   ,  163   
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 Spectral masking   ,  161 – 2   
 Spread spectrum techniques   ,  274   
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 Stability   ,  115   
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(SRSA)   ,  145   
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 System and core synchronization   ,  399  
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 Load/Store synchronization   ,  400 – 1   
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 System level interrupts   ,  381 – 4   
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 232   ,  233   

 motion compensation   ,  230    
 Temporal masking   ,  162 – 3   
 Temporal noise shaping (TNS)   ,  177   
 Temporal rate conversion   ,  see   Scan 
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 Testing and debugging DSP systems   , 

 423  
 multicore SoC   ,  423 – 31   
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 software architecture   ,  431 – 5   
 system boot sequence   ,  435 – 6   
 tools support   ,  436 – 7   

 video processing example   , 
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 Texas Instruments (TI)   ,  129   ,  336   , 

 354   ,  356   
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 Transforms   ,  289 – 92   
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V
 Variable length code/decode (VLCD) 

module   ,  430   
 Variable-length coding   ,  250   
 Vertical fi ltering   ,  238   
 Video and image compression   ,  302 – 3   
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 Video mixing and graphics overlay   , 
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 motion-compensated 
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 error feedback rounding   ,  187   
 truncation   ,  186    
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  WA Discrete Wavelet Transform  VI   , 
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