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Preface

The rationale of replacing signal analog processing by digital, worth doing when-
ever it is feasible, is well known. The benefits that can be obtained are usually
significant. Digital signal processing (DSP) technology is widely used in the
application range characterized by relatively low frequencies and other accept-
able application conditions. However, ‘going digital’ becomes more difficult and
even problematic as application demands grow. Some nontraditional methods,
techniques and algorithms are suggested in this book for widening the digital
domain over the application area where analog signal processing techniques still
prevail.

Much attention is paid to resolving the problems caused by overlapping of
periodically sampled signal frequencies. This effect, known as aliasing, restricts
application of the conventional digital signal processing methods and techniques
to the frequency range where the achievable sampling rate could at least twice
exceed the higher frequency present in the spectrum of the signal to be digitized
and processed digitally. Attempts to eliminate the harmful impact of aliasing
have led to the development of digital technology for signal processing, specif-
ically the technology called digital alias-free signal processing, or DASP. This
strengthens the competitiveness of digital techniques considerably. Successful
use of special digitizing techniques for the elimination of aliasing has been an
object lesson showing the significance of digitizing in the whole process of signal
digital processing.

Focusing on digitizing and matching of signal processing to the specifics of
signal sampling and quantizing operations has led to other significant improve-
ments in digital signal processing methods and techniques. In fact, many signal
processing problems can be resolved in this way. These considerations and the
experience gained in this area are described in the book.

While this is the first full-scale book discussing DASP, there is a prehis-
tory to it. The previous book Randomized Signal Processing by I. Bilinskis and

xv
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A. Mikelsons was published by Prentice Hall in 1992. With the much appreciated
permission of the publishers, some material from that book has been used and is
included here. Specifically, this concerns Chapters 1 to 6 and Chapters 12 to 16,
where the basics of the randomized and pseudo-randomized sampling and quan-
tizing operations, as well as parameter estimation of signals digitized in this way,
are discussed. The used material represents the classical fundamentals of ran-
domized signal processing. More advanced methods, techniques and algorithms
have been developed on this basis over the last fifteen years since the referenced
book was published.

An attempt has been made to reflect the earlier prehistory in Chapter 1. This
chapter is an introduction, so the content of the book, the discussed problems
and the innovative digital alias-free signal processing technology are outlined. It
is shown that elimination of the harmful aliasing effect is crucial for achieving
progress in this field. The reasons why it is essential to pay attention to signal
digitizing and to match digitizing to the specifics of digital signal processing are
explained.

In Chapter 2 it is shown that to achieve flexibility of the digitization techniques,
essential for matching them to the given signal processing task conditions, sig-
nal sampling and quantization operations should somehow be made variable. It
is therefore suggested that randomization should be used as a tool for making
signal conversion operations, including sampling and quantizing, more flexible
and more adaptable to specific signal processing needs. The application specifics
and potential of this instrument are discussed.

Randomization of sampling is considered in Chapter 3 as a means for achiev-
ing fully digital signal processing in a much wider frequency range. To ran-
domize signal sampling effectively, it must be known how variations of periodic
sampling conditions, including variations of periodic sampling phase, affect the
characteristics of the obtained sampled signals. Some issues of sampling, essen-
tial both for sampling and processing of sampled signals, are considered in this
chapter.

The basics of randomized quantizing are discussed in Chapter 4. While the sig-
nal instantaneous values are always quantized by comparing them with threshold
levels, they are kept in fixed positions in deterministic quantizing and are randomly
varied in randomized quantizing. Although realization of the second approach is
usually more complicated than the first, it is often preferable to perform quan-
tizing of signals in this more complicated way as the properties of the quantized
signals are different and various desirable benefits could be achieved. The essen-
tials, advantages and drawbacks of this quantization approach are discussed in
this chapter.
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Some of the effects caused by the deliberate injection of randomness into the
quantization procedure are positive while others are harmful, increasing statistical
errors. Therefore the randomization level should be controlled to suppress the
additional errors. A useful approach to obtaining the desirable effects is considered
in Chapter 5. It is based on substitution of randomization by deterministic pseudo-
randomization. Although such quantizing is usually described in probabilistic and
statistical terms, it is evidently a fully deterministic process.

There are various techniques for randomization of sampling. Discussions in
Chapter 6 are focused on the direct approach to such randomization. According
to this approach, signal sample values are taken at time instants that are fully and
directly determined by the used randomized sampling point processes. A number
of sampling point processes are discussed. It is emphasized that the statistics of the
signal sample taking timing process, in the case of direct sampling randomization,
are signal independent.

In some cases randomizing of sampling occurs unintentionally as a side effect.
Indirect randomization of sampling, discussed in Chapter 7, takes place when
signal sample values are obtained at the time instants when the signals cross some
thresholds or specially generated reference waveforms. This approach to signal
digitization might be preferential, for example, in the cases of data acquisition
from multiple signal sources on a large scale. The signal sample values are then
obtained at random time instants and the randomization of the sampling process
is not planned or controlled. The application rationale, advantages and limitations
of these sampling techniques are considered.

The derivatives of periodic sampling are considered in Chapter 8. They are
essential for composing hybrid periodic/nonuniform sampling models. Especially
useful are the discussed periodic sampling point sequences with random skips.
Whenever this type of sampling procedure is used, shifting of the sampling phase
plays an important role. Essential relationships between the phase shifting of
sampling and the sampled signal reconstruction conditions are revealed. It is
suggested how to consider the estimation of Fourier coefficients as a process
rather than as a calculation of a parameter.

The aliasing processes observed when the sampling operation is performed
nonuniformly are studied in detail in Chapter 9 to show that randomizing of
sampling only suppresses aliasing and some aliasing-related effects remain. These
effects are diffused and are not as well defined as aliasing in cases of periodic
sampling. The term ‘fuzzy’ fits well to the considered kind of aliasing as there
are numerous multiple-frequency contributions to it. It is shown that both the
sampling and signal processing stages have to be arranged in the correct way to
achieve successful elimination of the aliases.
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Hybrids of periodic and pseudo-randomized nonuniform sampling are dis-
cussed in Chapter 10. An attempt is made to synthesize sampling methods that
have the integrated positive features of the uniform and nonuniform sampling
methods and at the same time would not be impaired by their drawbacks. Avail-
able options are analysed. The concept of hybrid sampling suggests how high-
performance pseudo-randomized nonuniform sampling should be realized on the
basis of a few phase-shifted stabilized periodic processes. This approach is well
suited also for building reduced jitter sampling drivers.

Modifications of data acquisition systems, considered Chapter 11, are basically
related to the following two applications: (a) data acquisition providing alias-free
processing of wideband signals and (b) data acquisition from a large quantity of
signal sources. Structures of the considered data acquisition systems, the used dig-
itizing techniques and the system performance are discussed. Deviations from the
classical data acquisition schemes are substantial. The remote sampling approach
is suggested and described.

Data acquisition does not necessarily mean gathering of raw data. Signal con-
versions performed at the stage of signal pre-processing, specifically their average
parameter estimation procedures carried out close to the signal sources, are de-
scribed in Chapter 12. The emphasis is on the optimization of signal quantizing
and digital processing of the quantized signal sample values. An approach to
optimization of the basic signal average parameter estimation is discussed.

It is shown in Chapter 13 that signal digitizing strongly impacts on the condi-
tions for the correlation analysis and that applying the pseudo-randomized digitis-
ing techniques, if skilfully done, leads to a number of desirable effects. Specifics of
processing pseudo-randomly quantized signals, especially the issues of quantized
signal multiplication, are studied and put in focus. As numerous multiplications
of the quantized signal sample values have to be executed to perform signal corre-
lation analysis, it pays to rationalize them. Development of special hardware for
the correlation analysis is discussed, including application of pseudo-randomized
sampling for signal correlation analysis at small delay time increments.

The problem of matching signal processing to sampling is discussed in Chap-
ter 14. Signal orthogonal and unorthogonal transforms from time to frequency
domains are considered in this context. There are many typical signal processing
applications where the signals have to be transformed on the basis of unorthogonal
transforms. Performing of the unorthogonal transforms is considered.

As soon as the sampling procedure is randomized, the DFT of the respective
signals become strongly sampling-dependent. It is shown in Chapter 15 that direct
calculations of the DFT do not complete the process of signal decomposition into
their components. They simply lead to acquiring intermediate signal processing
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results containing valuable information. Therefore the outcome of the DFT under
these conditions should not always be automatically regarded as spectrograms of
the respective signals.

Nonuniformly sampled signal processing cannot be based on application of
the popular fast DSP algorithms. Other approaches to the algorithm complexity
reduction have to be found and exploited. Some useful techniques for that are
suggested and discussed in Chapter 16. They are based on the exploitation of
rectangular function sets. These functions assume only the values –1, 0 and +1
and, consequently, the application of them leads to the much simpler calculations
of the Fourier coefficients as numerous multiplication operations are replaced by
simple logic operations.

Anti-aliasing signal processing technology is particularly applicable in the area
of spatial signal processing. Discussions in Chapter 17 are focused on the issue
of the complexity reduction of the large-aperture antenna arrays. The potential
of pseudo-randomization of the large-aperture antenna arrays is considered for
reducing the number of sensors in the array. It is suggested that the positive
experience obtained from signal processing be adjusted in the time domain to the
specifics of spatial signal processing, as nonuniform sampling in the time domain
is equivalent to the irregular spacing of sensors in the array.

It is shown in Chapter 18 that introduction of irregularities into a sampling
process leads to the nonorthogonality of the nonuniformly sampled discrete basis
functions. Apparently the pattern of the nonuniform sampling point sequence
defines this nonorthogonality and the errors related to it. At purposeful intentional
pseudo-randomization of sampling this pattern is a priori given. Therefore it
should be possible to use this information to suppress the errors caused by the
nonuniformities. An approach to this problem is considered. This type of adapted
signal processing could be applied for processing both the temporal and spatial
signals.

An application area well suited to the specifics of digital alias-free signal pro-
cessing is considered in Chapter 19. This is the area where signal processing is
carried out to identify objects and to evaluate their parameters by analysing the
signals reflecting the reaction of these objects to some excitation signals. The
parameters and characteristics of the excitation signals are usually known. Ac-
cess to this valuable information makes it easier to keep algorithms relatively
simple and to achieve high performance. The issues of test signal synthesis, fre-
quency response evaluation for the objects, measuring short time intervals and
demodulation of bioimpedance signals are discussed.

Considerable expertise is required to be successful at applications of the de-
scribed digital alias-free signal processing technology. Substantial investments
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in terms of effort, time and money are needed to gain knowledge and experi-
ence sufficient for achieving really significant positive results. A more rational
approach to widening the application area for DASP is suggested in Chapter 20.
It is based on the idea of developing and exploiting specific embedded systems.
This approach makes it possible to encapsulate everything related to the DASP
technology within these embedded systems. Then linking them to other systems
could be realized on the basis of the standard techniques. Widening the digital
domain in the direction of higher frequencies, simplification of data compression,
complexity reduction of sensor arrays and achieving fault tolerance are mentioned
among other gains immediately achievable in this way.

It might be said that this book summarizes to some extent the R&D work done
in the Digital Signal Processing Laboratory of the Institute of Electronics and
Computer Sciences in Riga, Latvia, over the last fifteen years. These were years
after the independence of Latvia had been regained and it was a difficult time
for the Institute. It took a great deal of effort just to survive, to keep the work
going on, and the Institute would not have survived if the European Commission
had not given us the opportunity to participate in the Copernicus programme. We
consider ourselves lucky that our proposal for the project, ‘Complexity-Reduced
Large Aperture Arrays’, against strong competition, gained the European Com-
mission support. It was absolutely crucial for us at that time. This help and support
was and still is much appreciated, and these events in 1992 were just the beginning
of the international cooperation guided and supported by the European Commis-
sion. Looking back in time it is evident that the whole process of supporting
the scientific community of the Eastern European countries has been effectively
organized and executed. With this help we not only managed to survive but other
projects followed and gradually the conditions improved considerably. Since that
time there have been a lot of projects and the research results discussed in this
book have mostly been obtained in the framework of work on various joint Eu-
ropean R&D projects. The last two of them, specifically the projects EuroDASP
and DASPTOOL, are especially closely related to this book. Moreover, without
the encouragement and the gentle but firm pressure applied by the project officer
Mr Javid Khan this book would not have happened. Thank you, Javid! Thank you
for the vision, advice and help!

In conclusion, the point should be stressed that DASP supplements rather than
contradicts the classical DSP theory. There is no doubt that some of the limi-
tations of the conventional regular deterministic DSP methods can be avoided
by appropriate application of the DASP techniques discussed in the book. The
purpose of this book is to provide this knowledge in order to help readers to take
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reasonably well-founded decisions about when and how it is appropriate to use
this approach.

The book is addressed to professionals working either in the academic world
or in industry who are interested in information technologies suitable for closing
the gap between the real world and computers. Hopefully professors/lecturers in
universities and graduate students interested in digital handling of various signals
under demanding conditions will also find this book useful.
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Abbreviations

an, bn Fourier coefficients
Ai Cm, Ai Sm, Cross-interference coefficients

AmCi , Am Si

ADC Analog-to-digital converter
Bi Cm, Bi Sm, Cross-interference coefficients

BmCi , Bm Si

Cx (t) Autocovariance function
Cov[x, y] Covariance between x and y
d Distance between sensors
DAC Digital-to-analog converter
DASP Digital alias-free signal processing
DFT Discrete Fourier transform
DOA Direction of arrival
DSP Digital signal processing
E[ ] Expected value of [ ]
f Frequency (Hz)
fs Sampling frequency (Hz)
FFT Fast Fourier transform
Gxx ( f ) Autospectral density function
IDFT Inverse discrete Fourier transform
IFFT Inverse fast Fourier transform
mx Mean value of x(t)
nk, nx , ny Number of threshold levels
N Number of samples; number of sensors in an array
p(t) Probability density function
p(x, y) Two-dimensional probability density function
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P Mean power
PRNG Pseudo-random number generator
q Quantization step
RF Radio frequencies
Rs(i� f, t), Periodic rectangular functions

Rc(i� f, t)
SFDR Spurious-free dynamic range
SNR Signal-to-noise ratio
t Time variable
tk Time instants
tβ Half of confidence interval corresponding to confidence

probability β

TDC Time-to-digital converter
Var [ ] Variance of [ ]
x(t), y(t) Signals
X (ω), Y (ω) Fourier transforms of x(t) and y(t) respectively
αi , βi Coefficients characterizing signal decomposition in a rectan-

gular function basis
δ Smallest interval on a time grid
δ( ) Delta function
�T Fraction of a period
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�ϕ Phase angle shift
{εk} Quantization noise
θ Observation time of x(t)
Θi Arrival angle of ith signal
λ Wavelength
μ Mean value of time intervals τ k

ξ k Pseudo-random numbers
ξ (t) Noise
ρ Correlation coefficient
σ Standard deviation of time intervals τ k

σ 2 Variance of time intervals τ k

σ 2
ε Variance of quantization error

τ k Random time intervals
‖ϕ(t)‖ Norm of ‖ ‖
ω Angular frequency
ωs Angular sampling frequency
Ωi Wavenumbers
[ ∧ ] Estimate of [ ]
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Introduction: Signal Digitizing
and Digital Processing

The approach used to discuss digital processing of signals in this book is special.
As the title of the book suggests, the central issue concerns the performance of
signal digitizing and processing in a way that provides for the elimination of
negative effects due to aliasing. The term ‘digital alias-free signal processing’ is
introduced and actually covers a wide subject area. As this term also raises some
questions it needs to be explained.

1.1 Subject Matter

Signals originating as continuous-time variables, usually considered as analog
signals, might be and often are processed directly using analog electronics. How-
ever, prior to processing, these signals could also be converted into their digital
counterparts. Using analog-to-digital conversions for digitizing the signals prior
to processing has many well-known advantages and is usually preferable. When
the signals are digitized, the obtained digital signals are processed according to
the concepts of digital signal processing (DSP) technology. Such an approach
is becoming increasingly more popular as digital computer applications spread
out into new fields and there is growing dependence on them. It is helpful that
basically the same principles and techniques are used in both areas of signal
processing and computing. However, signals can still be treated by analog sig-
nal processing techniques whenever application of digital techniques is either
impossible or technically and economically unreasonable.

Digital Alias-free Signal Processing I. Bilinskis
C© 2007 John Wiley & Sons, Ltd

1
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Therefore the analog and digital approaches can complement each other as well
as compete. There are still relatively wide areas where signals are processed in an
analog way simply because the available digital techniques are not applicable un-
der given conditions or are not good enough. Application of digital techniques is
limited. The dominant and most important limitation is the highest value of signal
sample that is achievable under given specific conditions. It is well defined and
violation of this limitation leads to distortion of the signal processing results due
to frequency overlapping or the so-called aliasing effect. Attempts to eliminate the
harmful impact of aliasing have led to the development of advanced digital tech-
nologies for signal processing, specifically to the development of an innovative
technology called ‘digital alias-free signal processing’, or DASP. This strength-
ens the competitiveness of digital techniques considerably. The successful use of
special digitizing techniques for the elimination of aliasing has been important
in showing the significance of digitizing in the whole process of signal digital
processing. Many other benefits could be obtained similarly by focusing on dig-
itizing and matching it to the needs of signal processing, as suggested by DASP.
This book provides answers to questions as to what can be achieved in this way
and how the signal digitizing process needs to be to altered to gain these benefits.

While the application range of the suggested approach is rather wide and various
benefits could be gained in this way, specific aspects need to be taken into account.
This is the subject covered by the whole book. In this chapter, the first comments
are made to clarify this issue, the basic one being the attitude towards digitization
of signals.

The most frequent applications of the traditional DSP technology belong to
the entertainment sphere, forming the basis for audio, digital radio, TV and vari-
ous other multimedia systems. Quite popular is also the use of these techniques
for building fixed-line and mobile phone sets. Less visible are DSP industrial
applications, especially because they are often presented as embedded systems.
However, the role of digital signal processing techniques in modern telecommu-
nication, instrumentation, industrial control, biomedical, radar, navigation and
many other data acquisition and processing areas is significant.

An attempt is made in this book to focus the discussions basically to industrial
applications of the considered digital technology. The industrial tasks for signal
processing are typically challenging and cover a wide range of signal processing
conditions. Signals have to be processed in time, frequency, modulation and
spatial domains. The frequency range to be covered is very wide, extending from
ultra-low frequencies up to several GHz. Processing is often multidimensional
and in real-time. The signal digitizing and digital processing problems considered
in this book are related to these industrial applications through described methods,
algorithms, hardware, and software tools.
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The latest trend in the use of digital techniques for signal processing is towards
the development of ambient intelligence systems, including sensor systems and
networks. They require and put the emphasis on the realization of massive data
acquisition functions for supplying information from a large cluster of distributed
signal sources and this function becomes increasingly important. Recently it has
been found that indirectly randomized nonuniform signal processing techniques
are also well suited for application in this field. The first results obtained are
discussed in Chapter 7. Amazingly, the deliberate indirect randomization of sam-
pling in this particular case can be used for purposes not related to the prevention
of aliasing. The sampling randomization approach, in this case, helps to separate
and distance the sampling operation from the main part of the analog-to-digital
conversion structure, in order to make it an extremely simple operation that can
be easily executed remotely close to the signal sources.

Thus the subjects discussed in the book cover a wide area. For already ex-
plained reasons, much attention is focused on the basic operations of signal
analog-to-digital conversions. Various approaches to randomization and pseudo-
randomization of signal sampling and quantizing processes are discussed in
detail, including issues of adapting signal digitization to conditions of spe-
cific processing. The subjects of indirect sampling randomization and hybrid
periodic/nonuniform sampling are discussed. Digital processing of signals is re-
garded, in general, as being based on processes that decompose signals into their
component parts. Signal parameter estimation, correlation and the spectral anal-
ysis of signals, represented digitally in the alias-free way, are described. The
application of various signal transforms, including nonorthogonal transforms of
nonuniformly sampled signals, is studied. Much attention is given to spectral
analysis and signal waveform reconstruction based on it.

It can be seen from this outline of the subject area that a large part of the
topics covered is not directly related to the issue of alias-free signal processing
emphasized in the title of the book. Nevertheless, all of these subjects belong
to the technology of digital alias-free signal processing. Indeed, to achieve the
elimination of signal distortions caused by aliasing, signals need to be digitized
in a special way. Once that is done, digital representation of the original sig-
nals becomes specific. This fact has to be taken into account when processing
these signals in various ways. It often turns out that the algorithms developed for
processing nonuniformly sampled signals are also well suited for improved pro-
cessing of periodically sampled signals under some specific difficult conditions.
Furthermore, the techniques used for randomization of the sampling operations
are similar to those used for randomization of the quantization operations. In the
case of quantizing time intervals, they are identical. This explains why many of
the topics described in the book, which at first glance may seem not to be related
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to the problems of avoiding aliasing, actually belong to the subject area covered
by the digital alias-free signal processing technology and therefore are discussed
here.

The comments given in this introductory chapter explain the approach used
in this book to studies of signal processing carried out in a digital manner. It is
assumed that the readers of this book are familiar with DSP basics.

DASP, of course, is a recently developed part of DSP. Integration of DASP into
the general theory of DSP still has to be done. As DSP, a widely used mature
technology, is well described in many excellent textbooks, there is no need here to
discuss the basics of these traditional digital techniques once again. However, the
subject area of this book, while significantly differing from classical DSP, is also
closely related to it. For that reason, the traditional methods and techniques for
processing signals digitally are discussed, but are considered in the light of their
relationship to specific nontraditional DASP techniques.

1.2 Digitizing Dictates Processing Preconditions

At first glance, the alias-free digital techniques are invariant with regard to their
applications. Referring to the customary classification of DSP application areas,
the techniques are applicable for nonparametric, model-based and statistical signal
processing. The original analog signals are always converted into their digital
counterparts and the obtained digital signals are then processed as required. On the
other hand, the conditions for various types of applications might differ to a large
extent and, consequently, the digital techniques used for applications in various
areas usually need to be specific. To organize the process of signal processing in
the best possible way, conversion of the original analog signals into their digital
counterparts should be carried out while taking their exact characteristics into
account for usually there are several ways to represent a signal digitally. Some
of the digital representations may turn out to be better for some applications than
others. It is certainly beneficial to learn how to digitize a signal under a given
set of conditions so that the best results are obtained. Therefore signal digitizing
should be optimized whenever possible. A large part of the book is dedicated
to describing various techniques for signal sampling and quantizing, including
issues of optimizing digitization by matching signal digitizing techniques to the
conditions of digital processing dictated by specific applications. It should be
kept in mind that the present digitizing approach determines the conditions for
subsequent processing of the obtained digital signals. However, this fact becomes
meaningful and can be exploited beneficially only if the digitization processes can
be flexibly adjusted to the needs of subsequent processing of the digital signals.
As explained in Chapter 2, randomization is used as a tool for achieving this.
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1.2.1 Connecting Computers to the Real-life World

As the real-life world is basically analog, so are most of the signals reflecting
observed processes. Computers, on the other hand, are digital. Therefore there is
a gap between the real world and computers. Signal processing techniques have
the responsibility for filling this gap. To accomplish that, the original signals have
to be converted into the digital form first. Only after that can these digital signals
be transferred to computers either directly or after performing some preprocessing
of the obtained raw digital signals.

This outlook on the basic function of digital technology for signal processing is
used in the following chapters to generalize the approach to studies of the consid-
ered topics. The achieved progress of converting various types of analog signals
into their digital counterparts and of processing them under difficult conditions
is weighed against the requirements of the general task of connecting computers
(or other digital computing and data transmission devices) to the real-life world.

The involved preprocessing functions, while secondary, are also crucial. Their
contribution to linking the signal sources to computers is often invaluable.
For this reason, much attention is paid to a careful consideration of special
software/hardware subsystems or devices used to perform the needed prepro-
cessing. They are usually capable of doing the job in a cost-effective way, helping
the computers to carry out the required signal processing and providing the in-
formation sought.

How preprocessing is organized depends on the conditions and the specific
work being done. In the present case, signals are digitized in a specific nontradi-
tional way. Consequently, the techniques used for the raw signal preprocessing
described in the following chapters are unusual.

In cases where a computer is used for decision making in a control system,
the developed code, representing the reaction of the computer to the information
carried by the input signals, is transformed again into a digital signal and digital
techniques are used for executing the generated commands. In such cases the
computer is connected to the analog world both by its input and its output. The
feedback calculated and presented in the digital form at the output has then usually
to be converted back to the analog form whenever digital signals are not acceptable
by the objects under control. It is assumed that traditional techniques can be used
in this case so this topic is not considered here.

1.2.2 Widening of the Digital Domain

One of the basic objectives of these research and development activities
has been widening of the digital domain over the area where the analog



JWBK152-01 JWBK152-Bilinskis March 6, 2007 21:13

6 Introduction

signal processing techniques are still used almost exclusively. To reach this
goal, effort should apparently be focused on replacing the mixed analog–
digital or analog techniques by digital. The basic part of this digital domain
is formed by low-frequency digital applications. Therefore the direction in
which the digital domain should be further expanded is towards higher fre-
quency applications. That is the reason why special attention is paid in this
book to digital techniques related to processing radio frequency and microwave
signals.

The task of processing signals digitally at higher and higher frequencies has
been attractive. However, it is not very easy to develop improvement there. The
most serious obstacle preventing progress in this direction so far has been the
aliasing effect that inevitably accompanys the applications of classical digital
techniques. This dictates the necessity to filter off all frequencies above half
of the sampling frequency or, in other words, to use a sampling frequency at
least twice higher than the upper frequency in the spectrum of the signal to be
processed. The aliasing-induced corruption of the signal is the penalty for not
meeting this requirement. In the case of the traditional approach to signal sam-
pling, when the sample values are taken periodically there is no way to increase
the upper frequency in the signal spectra and still avoid aliasing except to go
to higher and higher sampling rates. Thus the uppermost rate of taking signal
sample values that is achievable at reasonable cost using the currently available
microelectronic device manufacturing technologies determines the highest fre-
quencies that could be handled digitally. As these manufacturing technologies
are being continuously improved, the upper frequency limit of the digital do-
main is also going up. However, the digital domain enlarges in this way relatively
slowly.

The alternative is to use a principally differing approach to the problem of
avoiding aliasing. As shown later, avoiding frequency overlapping has to be
based on a sufficiently high frequency periodic sampling or on the nonuniform
digital representation of the signals. Needless to say, such an irregular digital
representation of signals drastically differs from the traditionally used regular
one. Furthermore, these differences do not only concern the signal sampling.
When and if the original analog signals are converted into sequences of their
sample values placed on the time axis nonuniformly, the following digital pro-
cessing process has to be organized in such a way that it takes into account
the specifics of the used digitization process. The exceptionally important role
of signal digitizing needs to be recognized. Paying sufficient attention to this
problem and using the right approach to represent signals in a digital form are
crucial.
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1.2.3 Digital Signal Representation

To convert an original continuous-time or analog signal into a corresponding
digital signal, two essential operations have to be performed. Firstly, a sequence
of instantaneous values of the signal, measured at discrete time instants, has to
be formed. Secondly, the obtained signal readings, usually considered as signal
sample values, are to be rounded off in order to express them in a numeric form.

The operation of sample value taking is referred to as ‘sampling’. The rounding-
off operation is quantizing. The sequence of time instants at which the samples are
obtained represents a stream of uniform events, which can be depicted graphically
as a sampling point process. The results of the quantization operation are used to
obtain the code of signal sample values.

The digital signal obtained as a result of all the mentioned operations (sampling,
quantization and encoding) is the digital substitute for the original analog signal.
It is clear that in an ideal case they should be equivalent. However, in reality
the digital signals always differ to some extent from the originals. In fact there is
always some impact of the analog-to-digital conversion procedures on the features
of the obtained sampled and quantized signals. The patterns of the sampling
point processes and the specific quantization techniques used have a considerable
impact on the properties of the digital signals. Under certain conditions it is
possible to reconstruct the original signals from the digital ones with a high
degree of precision. Nevertheless, the fact remains that the features of the analog
signals and their digital counterparts differ.

In general, the requirements needed for signal analog-to-digital conversions
vary over a wide range. What is good for low-frequency applications is not
necessarily also good for applications at higher frequencies. The requirements
for analog-to-digital conversions at low frequencies more often than not do not
pose a problem. No special efforts usually have to be undertaken to meet them.
That changes as signal frequencies increase. More and more attention then has
to be paid to enable sampling and quantizing operations to take place. The re-
quirements needed for technical realizations of them are obvious. These are the
requirements concerning the precision of signal sample taking timing, the sam-
pling instant jittering and the quantization threshold settling time. However, much
more significant are the requirements for digital representation of the original
signals.

The discovery of the essential relationships characterizing signal sampling,
quantization and digital processing processes, made a long time ago, has been a
dramatic achievement. As that part of history has been well documented, including
references to contributions made by the involved researchers, there is no need to



JWBK152-01 JWBK152-Bilinskis March 6, 2007 21:13

8 Introduction

discuss the matter in detail here. Only the core of these relationships will be
mentioned, the essential and most famous sampling theorem. It has a very high
practical value as it defines, in a simple and clear way, the basic condition for
full recovery of the information carried by the original analog signals from their
sample values taken at discrete time instants.

The end result of the sampling theorem is very well known and is often used
in engineering practice for setting up proper working conditions for correct func-
tioning of analog/digital electronic devices. The theorem also serves in making
a choice between analog and digital approaches to a specific problem. Accord-
ingly, the digital techniques can be used when the frequency at which sample
values are taken from a signal is at least twice higher than the upper frequency
of the signal to be processed. As the highest achievable sampling rate depends
on the technical perfection of the electronic devices available for implementation
of signal analog-to-digital conversions, the sampling theorem evidently deter-
mines the boundary limiting the field where signals could be processed in a
digital manner. How wide that field is at any given moment apparently depends
on the achievable quality of the microelectronic elements being produced at that
time.

These considerations and widely accepted conclusions are of course true. How-
ever, a significant fact is more often than not overlooked. It is the fact that the
conclusions of the sampling theorem in engineering practice are often considered
in a simplified form, stating simply that the sampling rate has to be at least twice
higher than the highest frequency present in the spectrum of the band-limited sig-
nal. The conditions for signal processing in reality might differ from this simple
case substantially. The point is that this basic version of the theorem has been
derived and actually holds fully only in cases where band-limited signals are sam-
pled equidistantly. In other words, the simplified interpretation of the theorem is
valid for the classical DSP approach developed a long time ago. As use of the
periodic sampling approach is still overwhelming, it is often not realized that
there could be any other type of digital version of the respective analog signals.
Nevertheless, as shown later, that is the case.

The considerations mentioned above lead to the conclusion that the specifics
of the used analog-to-digital conversions become increasingly important with
widening of the frequency band within which the analog signals have to be pro-
cessed digitally. It is clear that attempts to enlarge the digital domain in the
direction of higher frequencies can be successful only when much more attention
is paid to signal digitization processes than is customarily done for digitizing
relatively low frequency DSP applications. This is true both for sampling and
quantization principles and their technical implementations. For example, if the
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discrepancies between the expected and actual sampling instants (sampling in-
stant jitter) usually could be and are neglected in audio frequency applications,
then these discrepancies have to be kept in the range of a few picoseconds or even
smaller in cases where the signal upper frequency reaches hundreds of MHz. To
achieve that, the involved digitizers should have special designs.

The necessity to process signals digitally at higher and higher frequencies is
strongly motivated. Much money and effort has been invested in attempts to
meet growing demands in this area. It is not an easy task. When looking for the
obstacles that slow down expansion of the DSP application field in the direction
of higher frequencies, it can easily be seen that the bottleneck is analog-to-digital
conversions. Indeed, processing 16 or 32 bit words at clock frequencies measured
in hundreds of MHz is easier than providing analog signal conversions into digital
signals within a sufficiently wide dynamic range at very high sampling rates.

The basic parameters of analog-to-digital converter (ADCs) that characterize
their precision, dynamic range and frequency range of the input signals are the
quantization bit rate and the sampling rate. The dynamic range and the bandwidth,
usually limited to half of the sampling frequency, are clearly traded off, and this
parameter combination might serve as an indicator of achievable performance
levels. Increasing the sampling rates typically leads to considerable narrowing
of the system dynamic ranges to figures unacceptable for many applications.
Consequently, there is often a deficiency in the DSP subsystem dynamic range
for high-frequency and low-noise applications and insufficiency in sampling rates
(or bandwidth) for high-precision applications.

To achieve progress in the development of high-performance digital technolo-
gies for signal processing at significantly increased frequencies, two different
approaches could be used in parallel. In addition to the ongoing process of im-
proving the DSP hardware/software tools built on the basis of well-established
DSP principles, innovative techniques for signal digitizing and fully digital pro-
cessing, based on nontraditional signal digitizing concepts, could be developed
and used for a very wide variety of applications.

This book is devoted to the exploration of this second approach. As shown in
Chapters 2, 3 and in numerous other places in the book, an effective approach
to digital processing of wideband signals is based on resolving the problem of
frequency overlapping, observed as the aliasing effect. It is shown that elimination
of aliasing opens up the possibility of handling signals digitally at frequencies
exceeding half of the sampling frequency and that this approach is applicable
widely. It is based on the application of various nonuniform sampling techniques.
Much effort has been spent in the book on studies and descriptions of this quite
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fruitful anti-aliasing approach. Using it leads to solutions of various essential
engineering problems.

1.2.4 Complexity Reduction of Systems

Digitizing techniques suitable for signal digitizing at very high frequencies are
obviously much needed for the development of fully digital signal processing
techniques in the frequency range up to several GHz. Such techniques are essen-
tial for many important applications including telecommunications. Attempts to
use the traditional techniques, even when possible, lead to complicated and costly
system designs. In the following chapters nontraditional digital techniques are in-
vestigated that might be successfully used both for expanding the digital domain
and for reducing the complexity of various systems. These two types of bene-
fits go hand in hand and are usually obtained whenever the discussed techniques,
based on nonuniform sampling, pseudo-randomized quantizing and matched pro-
cessing algorithms, are used correctly. Note that the second type of benefit, the
simplification of designs, can often also be obtained in cases where the signals to
be processed contain components that do not exceed a certain limit of relatively
low frequencies and there are no principal obstacles preventing application of the
classic DSP techniques.

The fact that much attention in the book is paid to elimination of aliasing might
have a misleading side effect. It might lead to the wrong impression that the
suggested and discussed special digital techniques are suited and recommended
exclusively for applications related to processing radio frequency and microwave
signals. That is definitely not so. A large part of the discussed techniques could
be used with good results for developing less complicated devices and systems
for signal processing than more traditional systems. Other benefits apart from
elimination of aliasing could be targeted and gained.

For example, substantial complexity reduction of designs and data compression
could be achieved by using the special quantization techniques and their appli-
cation is actually invariant to signal frequencies. Unlike deterministic quantiza-
tion, randomized and pseudo-randomized quantization provide unbiased results.
Therefore, such quantizing could be used to reduce quantization errors, leading
to the reduction of the quantization bit rate. It is also appropriate for applications
where it is desirable to use rough quantization. This quantization mode is not
only of practical interest from the viewpoint of reducing the bit streams repre-
senting quantized signals. What is more important is the fact that ADCs, when
they contain only a few comparators, can be built as extremely broadband de-
vices. They are well suited for building low-power multichannel systems and their
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performance might be enhanced by applying oversampling and low-pass filtering
in combination with randomization of threshold levels.

It is also possible to gain by exploiting the most remarkable properties of
pseudo-randomized quantization. It can be performed in such a way that the cor-
responding quantization noise has very advantageous properties not provided by
deterministic quantization. As shown in Chapter 5, this noise is distributed uni-
formly, is decorrelated from the input signal, has no spurious frequencies and has
a constant power spectral density over the whole frequency range independently
from the input signal and the number of threshold levels used. Consequently, ap-
plication of such pseudo-randomized quantization often turns out to be optimal in
the sense that the required performance is achieved by processing the minimum
number of bits.

Many methods and algorithms initially developed for dealing with nonuni-
formly sampled signals have proved to be quite useful for resolving essential
problems typical for processing signals belonging to the lower frequency range.
Use of nonorthogonal transforms might be mentioned as an example illustrating
this. Their first application was reconstruction of nonuniformly sampled signal
waveforms. Then it was discovered that they are also good for processing signals
at extremely low frequencies. For example, they can be used to remove the neg-
ative effect caused by cutting off part of a signal period when, according to the
classical definition, the processing should be carried out over a number of integer
signal periods (or the periods of their separate components). These transforms
are also useful for decomposing signals into several basic parts simultaneously
or for extraction of signal components under conditions where the spectra of the
components partially overlap.

To add to the given examples, the systems mentioned above for massive data
acquisition will be discussed again. They are remarkable as a showcase demon-
strating that sometimes it is beneficial to use nonuniform sampling techniques
for other purposes rather than for the elimination of aliasing. While such mas-
sive data acquisition systems might be used widely, the applications related to
data acquisition from multiple sources of biomedical signals are especially well
suited. A specific nonuniform remote sampling procedure, based on waveform
crossings, is then performed in order to digitize signals as close to each of the
distributed signal sources as possible, and to do it in a very simple low-power way
as described in Chapter 11. The output of such a sampler, at each sampling event,
is a single pulse generated so that its position in time reflects the corresponding
instantaneous value of the particular input signal. These pulses are transmitted
over wire or radio links to the master parts, where the whole input signal waveform
is reconstructed. Application of these specific nonuniform techniques for remote
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sampling leads to substitution of the standard multiplexing of analog signals by
gathering multiple output signals taken off remote sampling units distributed over
a wide area. This approach of using this specific kind of nonuniform sampling
results in a number of benefits. The number of signal sources from which data
could be acquired in this way, in comparison with the case where analog signal
multiplexing is used, is increased dramatically, up to several hundreds of such
sources at least.

All these examples show that it is crucial to digitize signals in a way best suited
to the particular case of signal processing. How to do this is considered in the
following chapters.

Recognition of the extremely important role that digitizing plays in the whole
process of digital processing of analog signals is the reason why much more
attention has been paid than usual to the issues of digitizing analog signals in this
book. Flexible digitizing adaptable to the specific conditions of the given signal
processing task is considered here as the key factor in the fruitful application of
digital techniques and for obtaining in this way various significant benefits.

1.3 Approach to the Development of Signal
Processing Systems

When a task for signal processing turns up, the basic concern is usually to find
the best algorithm prescribing how the required processing has to be done. More
often than not little attention is paid to the input signal format, assuming that it
is given as a digital signal or can be easily converted to it if the signal originally
is analog. That is the most often applied traditional DSP approach and in many
cases there is evidently nothing wrong with it as it often leads to good results.
However, this is true only conditionally.

This traditional approach is based on the assumption that there are no problems
in converting the analog input signal into its digital counterpart. While that is more
or less the case under conditions typical for processing relatively low frequency
signals, in more demanding signal digitizing cases the situation might be quite
different. Indeed, when an extremely wide dynamic range has to be achieved,
when the signal to be processed is wideband and contains components at high
frequencies, and in many other cases, the analog-to-digital conversions of the input
signal may prove to be the crucial stage in the whole signal processing process.
The point is that signal digitization is a vital component of digital processing and
this fact is fully recognized in this book. This is the basic difference between
the offered and discussed techniques for alias-free digital processing of signals
and the widely used techniques based on periodic sampling and fixed-threshold
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for

Figure 1.1 Closed-loop analysis and definition of digital signal processing system designs

quantizing. It leads to a specific approach to signal digitizing and processing. This
approach will be considered more closely.

It makes sense to approach the analysis and definition of the designs of the
digital signal processing system in the way suggested in Figure 1.1. The starting
point for the development of a design concept of a signal processing system is
the specification of its output. Such a specification has to be given in terms of
functions to be fulfilled and the performance quality to be provided for. Then
the organization of signal digitization procedures, based on selection of the most
suitable sampling and quantization modes, is carefully considered next, target-
ing satisfaction of the specific processing requirements. The decisions taken at
this stage are based on knowledge of the area of various possible sampling and
quantization techniques, their capabilities, advantages and limitations. After it has
become clear how the signal digitizing should be carried out and how the digital
signal will be defined, the development cycle can be concluded by choosing or
defining the algorithm for solving the given specific task with the specific digital
signal features taken into account.

The choice of good algorithms for processing the digitized signals is of course
important for developing any digital signal processing system. However, these
should not be set up before it is clear how the input signal will look digitally. For
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instance, algorithms good for processing periodically sampled signals in most
cases are not directly applicable for processing nonuniformly sampled signals.

The idea of this closed-loop design development approach is simple and uni-
versal. However, it would not make much sense to apply it for optimization of tra-
ditional DSP systems. The limitations in matching the common analog-to-digital
conversion process to the specifics of the given task for signal processing would
prevent good results from being obtained. The problem is that the commonly used
periodic sampling and fixed-threshold quantization operations, constituting the
basis of a typical ADC, are rigid. Little could be done in an attempt to adapt them
to the specific conditions of a given signal processing case. It is only possible to
vary the time intervals between signal sample taking instants at sampling and to
vary the precision of the sample value rounding-off at quantization.

There are many additional ways that operations of signal digitizing can be
diversified if they are deliberately randomized. Good and not so good effects
might result from this. The involved processes and relationships dictating them
are quite complicated. This book is aimed to discover many of the basic ones.

1.4 Alias-free Sampling Option

The effect of aliasing, as well as the more popular means of avoiding it, of
course, is well known. Traditionally the negative consequences caused by aliasing
are usually accepted as unavoidable. Actually, this is not so. It is possible to
avoid overlapping of signal spectral components and to distinguish them without
increasing the mean sampling rate. Consider how that could be achieved.

1.4.1 Anti-aliasing Irregularity of Sampling

Assume that a digital data set, representing a signal sample value sequence, is
given. This is shown graphically in Figure 1.2. Look at these signal samples and
try to imagine how the signal looks from where they have been taken. It is hard to
do that. The digital sample values have to be processed to reconstruct the original
signal they belong to. In this particular case, the indicated sine function 1 (solid
line) is found to fit the data. Therefore it should be the signal from which the sample
values have been taken. However, if the reconstruction process is continued, it
becomes clear that there are other sinusoids at differing frequencies, which also
can be drawn exactly through the same sample value points as the first. All these
sinusoids (dotted curves) are aliases and overlapping of their sample values is
aliasing. The aliasing effect leads to an uncertainty. Indeed, the given sine waves
of different frequencies fit equally well all of the indicated frequencies.
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Figure 1.2 Overlapping of a periodically sampled signal component and its possible aliases

To ensure that a digital signal can provide the correct original analog signal,
the bandwidth of the signal should not exceed half of the sampling frequency.
If all spectral components outside the limited frequency band are filtered off
the original signal or more signal sample values are taken within the same time
interval, there would be no uncertainty. Either one of these possible actions impose
limitations on the bandwidth of the signal, which could be sampled at the given
sampling frequency without corruptions due to aliasing. Apparently, if some other
way could be found to avoid aliasing, a special application of oriented digital
processing of signals would be possible in a much broader frequency range.
That would open up a broad area of new beneficial digital signal processing
applications.

However, it is not clear whether sampling that is not corrupted by aliasing is
feasible at all. In an attempt to find an alternative approach to realization of this
operation, look at the diagrams of Figure 1.2 again. Notice that the time intervals
between the taken signal sample values are of equal length. Now try to vary these
intervals. The sample values of all indicated sinusoidal curves become different,
even at small changes in distances between them. That clearly is interesting as
it means that taking signal sample values irregularly disturbs the aliasing phe-
nomenon.

To see, in a more detailed way, the consequences of this fact look at
Figure 1.3. The signal shown (solid line) is the same one as given in Figure 1.2. The
lower frequency sine function is again sampled and the corresponding data set is
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Figure 1.3 Only the signal waveform (solid line curve) exactly fits the nonuniformly spaced
sample values

obtained. However, the distances between the sampling instants along the time
axis now differ. They are irregular. Amazingly, this proves to be very useful.
Indeed, as can easily be seen, now only one sine function can be drawn exactly
through the points indicating the signal sample values. The sinusoidal curves at
other frequencies simply do not fit them.

The results of this simple experiment suggest that the digital signals formed by
using the nonuniform sampling operation should have features strongly differing
from typical features of the digital signals obtained in the cases when signals
are sampled periodically. Actually, this presumption is true. The content of the
following chapters confirms this fact.

Studies of this kind of sampling show that nonuniform sampling of sinusoids at
different frequencies provides differing data sets. Therefore irregularly or nonuni-
formly sampled signals have no completely overlapping aliases like those ob-
served at periodic sampling. Consequently, it can be expected that application of
nonuniform sampling should open up the possibility of distinguishing all spec-
tral components of the signal, even if their frequencies substantially exceed the
mean sampling rate. Studies, including experimental studies, confirm that this
theoretical expectation is true. Real systems have been developed, built and ex-
ploited that are capable of processing signals fully digitally in a frequency range
many times exceeding the mean sampling rate. Some of these are described in
Chapter 11.

Taking signal sample values irregularly eliminates the basic conditions for alias-
ing to take place. That is very desirable for such sampling. Therefore it seems that



JWBK152-01 JWBK152-Bilinskis March 6, 2007 21:13

Alias-free Sampling Option 17

nonuniform sampling should be preferable. On the other hand, it is also evident
that the end result of nonuniform sampling, the sequence of nonuniformly taken
signal sample values, differs significantly from the result of periodic sampling.

Even such superficial consideration of the illustration of nonuniform sampling
effects leads to the conclusion that this special approach to sampling has advan-
tages and disadvantages. Apparently no conclusions whatsoever could be made
on the grounds of only the diagrams given in Figure 1.3. The issue of nonuniform
sampling is clearly too complicated for that.

1.4.2 Sparse Nonuniform Sampling

Intuitively it might be hard to accept the idea that sometimes it could be possible
to take signal sample values at a rate below twice of the upper frequency of that
signal and yet be able to recover the essential information carried by it. At first
glance it seems that the signal sample values need to be taken often enough to
keep track of the signal changes in time. To do that, the time intervals between
successive sampling instants should be sufficiently short to ensure that the signal
increment during the sampling interval does not exceed a certain limit. This kind
of reasoning leads to the conclusion that the sampling rate has to be at least twice
as high as the highest frequency present in the signal.

However, it is also possible to look at this problem in a different way. Whenever
a continuous-in-time signal is to be digitized and the best sampling technique has
to be found for this, the spectrum of the signal, the acceptable mean sampling
rate and subsequent processing of the digitized signal need to be considered. The
sampling operation should be carried out in such a way that the sequence of signal
samples obtained is as closely related to the original signal as possible. However,
there are other considerations that usually have to be taken into account as well.
To explain what specifically is required, consider the simple example illustrated
by Figure 1.4.

Figure 1.4 displays the panel of a Virtual Instrument of the DASP Lab Sys-
tem described in Section 2.4. This hardware/software system contains a special
digitizer and a PC. The digitizer converts the analog input signals into the digital
form and then this digital signal is analysed by one of the software instruments.
The system operates using the digital alias-free signal processing algorithms and
the mean sampling rate is equal to 80 MS/s (megasamples per second). The
particular instrument shown is a Vector spectrum analyser. Normally the analog
input signal to be analysed would be converted by a digitizer into a stream of
nonuniformly taken sample values and then this digital signal would be analysed.
However, the DASP Lab System could also be used in the rapid prototyping
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mode. In this case, to illustrate application of the nonuniform sampling processes,
the input signal is synthesized and the Vector spectrum analyser of the DASP
Lab System is used to obtain the spectrogram and the reconstructed waveform
shown. The frequencies of the signal components are indicated on the given
spectrogram.

Note that the frequencies of the signal components might have been chosen and
placed on the frequency axis arbitrarily. As the highest frequency in this particular
case is 1.185 GHz, the required sampling rate would be at least 2.370 GHz if the
signal is sampled periodically. However, in the case of this example, the signal
is sampled nonuniformly so the task of spectrum analysis and reconstruction
of the signal waveform is resolved by using sparse sampling at a mean rate of
80 MS/s.

It is possible to reconstruct the signal waveform from such a sparse sequence of
sample values because the signal is ergodic and quasi-stationary. The parameters
do not vary during the time period it is being observed. Under these conditions,
a reduced number of independent sample values are needed to reconstruct it
by estimating all three parameters (amplitude, frequency and phase angle) of
all signal components. In this case, the time intervals between the sampling in-
stants might be large and the mean sampling rate used in this particular case is
80 MS/s. This means that it is approximately 30 times lower than it would have to
be in the case of periodic sampling. Therefore about 30 times less signal sample
values have been taken during the time interval the signal has been observed.
The spectrogram of this particular example contains components in a wide fre-
quency range and is shown in the upper window of the instrument panel given
in Figure 1.4, while the reconstructed signal waveform is displayed in the lower
window.

The example demonstrates that once aliasing is somehow eliminated, the rate
of sampling required for reconstruction of the original signal does not depend on
the highest frequency component of it. For instance, even a much lower sampling
frequency than 80 MS/s could be used for analysis and reconstruction of the signal
considered above because it is stationary and parameters of it do not change during
the observation time.

This does not contradict the sampling theorem. If the sampling process is
periodic, as this theorem assumes it to be, then the sampling frequency has to be
high enough. Otherwise there will be aliasing and it will be impossible to estimate
the signal parameters. The situation changes completely if aliasing is taken out
by introducing nonuniform sampling and estimation of signal parameters in an
appropriate way. Then signal sample values could be taken at a much slower rate.
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Use of periodic sampling under the same conditions would result in taking many
more sample values at a sampling rate about 30 times higher. Apparently the
excessive sample values would not add information in this particular case. They
would serve only to resolve the uncertainty caused by overlapping signal spectral
components. The additional sample values would also help to reduce the impact
of noise present in the signal.

This leads to the conclusion that using nonuniform sampling based anti-aliasing
techniques is quite beneficial under the given conditions. Nonuniform sampling
makes it possible to compress data significantly, so much simpler electronic cir-
cuitry is needed to complete the task. Just imagine how much more complicated
the hardware would need to be in order to execute the periodic sampling operation
at the required frequency of 2.370 GHz and to perform vector spectrum analysis
of the extremely wideband digital signal.

Therefore, as the example suggests, avoiding aliasing in some other way not
based on the use of high-frequency sampling should lead to a reduction in the
requirements for the mean sampling rate and to other related benefits. In other
words, the introduction of such sparse sampling should result in lifting the fre-
quency limit to some higher level and in widening the digital domain in the
direction of higher frequencies. In addition, the application of sparse sampling
might also be good from other points of view. For instance, if a particular task for
signal processing could be resolved by processing fewer signal sample values,
data compression would take place, and that is always beneficial.

Application of sparse sampling (or undersampling) makes sense if the condi-
tions are right. However, it has to be kept in mind that this sparse sampling is also
necessarily nonuniform as only this kind of sampling would lead to suppression
of aliasing. Consequently, processing digital signals obtained as a result of this
kind of sampling has to be carried out in a special way that is suitable for handling
nonuniformly sampled signals, which is a significantly more difficult task than
processing periodically sampled signals.

Of course, there are also application limitations for nonuniform sparse sam-
pling, but they differ from the limitations characterizing application conditions
for periodic sampling. In the case of nonuniform sampling, the limitations on the
lowest sampling rate are imposed by signal parameter variation dynamics rather
than by the upper frequency of their spectra. This changes the attitude to establish-
ing the required parameters for used sampling drivers. The signal nonstationarity
issue becomes the primary consideration and analysis of the expected signal be-
haviour has to be carried out to determine the requirements for the designs of the
sampling driver including the required mean sampling rate.
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Figure 1.5 A typical block of signal sample values taken from a signal nonuniformly

1.4.3 Nonuniform Sampling Events

The crucial issue of timing nonequidistant sampling events will be mentioned in
order to show some typical problems for nonuniform sampling and possible ap-
proaches to their resolution. A part of a signal sample value sequence belonging
to the signal shown above is given in Figure 1.5. It can be seen that the inter-
vals between the sampling instants vary. This represents a problem as the exact
positions of all signal samples on the time axis have to be fixed, in addition to
providing related sample values. In general, the digital signals formed in the case
of nonuniform sampling should contain two times more bits than the digital sig-
nals obtained in the case of periodic sampling. The necessity to measure the time
instants of sampling and to spend two times more bits for a digital description of
a signal is difficult in itself, but this condition is especially worrisome in the light
of the additional computation complexity caused by it.

However, more detailed consideration of this situation reveals that there is a
much better approach to this problem; in fact it is possible to avoid doubling data
volumes that have to be processed when sampling is performed nonuniformly. A
special approach to realization of nonuniform sampling has to be used for that.

In principle, there are two options: measuring each sampling instant digitally
or performing the sampling operation at predetermined time instants. The first
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Figure 1.6 Impact of sampling jitter on spectral analysis of signals: (a) estimated amplitude
spectrum of a signal in the case when the mean square value of the jitter is equal to 5 ps; (b)
the same spectrogram of the same signal, obtained in the case when the mean square value of
the jitter is 20 ps

option, measuring digitally the instants exactly when each signal sample has
been taken, is a quite demanding engineering task, especially if the required time
resolution is taken into account. Indeed, the period, for example, of the 1 GHz
signal is 1 nanosecond. To sample such a signal, the smallest time digit obviously
has to be equal to a few picoseconds.

The second option is much better. To realize it, the required sampling point
process has to be generated and the instants when the signal sample values have
to be taken need to be memorized. This information is then used both for driving
the sampler and for digital processing of the sampled signal. The data indicating
the exact instant of each sampling event are kept in the memory. Therefore only
one digital number per sample value taken appears at the output of the digitizer
performing the sampling operation in this case. As it is much easier to realize
this second approach in timing nonuniform sampling events, typically it is now
almost always used.

According to this approach, the signal sample values are to be taken at exactly
predetermined time instants. However, in reality there is always some discrepancy
between the dictated and the actual sampling instants. In other words, sampling
instants jitter. Apparently this jittering has to be kept within certain margins. The
impact of sampling instant jittering depends on the specific signal processing
taking place. This is illustrated by the spectrograms given in Figure 1.6. It can
be seen that in this particular case stronger jitter leads to significantly increased
noise floor of the spectrograms.
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The impact of sampling jittering is potentially even more damaging than in-
dicated above. Not only does the average noise level increase as a result of such
jittering but it might also lead to peaks at some spurious frequencies.

Imperfections of wideband signal sampling timing are measured in picosec-
onds. This indicates the scale of engineering problems that have to be resolved
in order to achieve the high performance of digitizers based on nonuniform sam-
pling of signals. They are quite serious and the required quality of the involved
electronic designs is rather high. It is almost impossible to predict the behaviour
of this kind of device theoretically. That is especially true in cases where these
devices have to operate in a wide temperature range. Therefore, to obtain the data
characterizing the expected performance of the digitizers, their performance has
to be studied experimentally. That has been done. The obtained results and the
engineering experience accumulated in this area confirm the feasibility of using
such nonuniform samples in a rather wide frequency range. The upper frequencies
of signals digitally processed in this way, at the time of writing this book, might
reach the level of a few GHz.

1.5 Remarks in Conclusion

To conclude this first introductory chapter, some remarks will be made to sum-
marize the basic message.

Although the quality of a modern ADC is high, signal digitization nevertheless
often represents the weakest link in the chain of successive signal conversions
from data acquisition to the performance of the required digital transformations.
In fact, it is possible to process the digital signals in a much wider frequency range
than in the cases where the original signals to be processed are analog. Therefore,
digitizing actually represents the potential DSP bottleneck. This is true not only
because the digitization processes determine the ultimately achievable speed of
signal processing. The signal sampling and quantizing operations also impact on
the quality of signal processing and this impact is much stronger than is usually
realized. These facts lead to the conclusion that digitizing signals deserves much
more attention than it usually receives. Although there is steady progress leading
to the production of better and better microelectronic devices for signal digitizing,
progress is relatively slow and costly as it is based mainly on improvements of
the involved semiconductor manufacturing technologies.

Another approach to the problem of widening the domain where signals are
fully processed digitally is described in this book. It is based on application of
the specific DASP technology and exploits its typical advantages including elim-
ination of aliasing. While in many DSP application cases the simplest approach
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to digitizing provides results that are good enough, in cases where the signals
to be handled digitally have extreme parameters, either in the frequency, time or
spatial domains, the necessity to ensure sufficient flexibility of digitizing becomes
crucial. Providing this flexibility is a cornerstone of the DASP methodology. The
DASP hardware and software tools form the basis for advanced flexibly adaptable
digital representation of signals and matched algorithms for their processing. This
technology targets the execution of digitizing in the best possible way in a rather
broad frequency range. Specific nontraditional techniques have to be and often
are used to achieve the required functional and parametric capabilities. Both the
similarities and differences between the generic DSP and special DASP tech-
niques are discussed in the following chapters, with emphasis on the potential
benefits often obtained by correct application of the suggested techniques.

However, widening of the digital domain does not exhaust all the potential
benefits obtained by skilful use of DASP. In general, it is recommended that ap-
plication of these techniques be considered under the conditions when classical
DSP is inapplicable and/or when it is essential to make signal processing more
cost efficient, meaning costs in terms of money, hardware volume, weight and pro-
cessing time. Application of DASP, when realized in the correct way, should lead
to replacement of the complicated microwave circuitry by substantially simpler
medium frequency microelectronics and to substitution of analog signal process-
ing blocks by digital signals. That translates into simplification of designs and, in
turn, to manufacturing cost reductions, as such devices typically are considerably
simpler and could possibly be built on the basis of much cheaper microelectronic
chips. Various secondary benefits might be achieved as well, such as data com-
pression or reduction of the bit flow to be processed, decorrelation of signals and
their processing errors, elimination of various systematic errors, widening of the
dynamic range achieved by taking out spurious frequencies, etc.

The signal dynamics (nonstationarity, the speed of signal parameter variations)
rather than the upper frequency present in a spectrum of a signal serves as a crite-
rion limiting application of this technology in specific cases. Correct application
of DASP usually requires that a certain number of signal sample values, needed
for resolution of the given specific signal processing task, should be taken in
a given period of time. When signal parameters vary in time slowly, the mean
sampling rate might be relatively low regardless of what the highest frequency
present in the signal spectrum is. On the other hand, if the signal parameters vary
rapidly, the applicability of nonuniform sampling in that particular case has to be
checked.

One of the typical DASP drawbacks is the need for special algorithms. Un-
fortunately, the wealth of algorithms and computer programs developed for DSP
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more often than not cannot be directly used for DASP. Usually special and more
complicated algorithms have to be developed and used. In addition, not all DASP
applications are as good as the similar DSP applications in the lower frequency
range. These are the principal limitations and there are limitations that will prob-
ably be eliminated sometime in the future when research will find more effective
methods and algorithms.

It might seem that there are some contradictions between DASP and DSP. For
instance, processing of a signal sampled at a mean rate lower than the upper fre-
quency of its spectrum, considered to be normal in the case of DASP, is simply
excluded as impossible in the case of DSP. In fact there are no contradictions. The
theory of DASP supplements rather than contradicts the theory and practice of
generic DSP. The cornerstone of DASP is the attitude to signal digitization. Both
basic operations of digitization and sampling, as well as quantizing, are considered
to be most important. Adapting them to the conditions of signal processing helps
in obtaining better results. However, little can be done to vary classic equidistant
sampling and fixed threshold quantizing techniques. As such rigid digitizing more
often than not cannot be adapted to the specifics of DSP, more flexible methods
for executing the basic digitizing operations are needed. Randomization of these
operations proves to be an effective instrument for making these operations flex-
ible. The algorithms used for processing the signal digitized in this special way
naturally have to be matched to the digitization specifics.

Thus randomization is crucial for DASP. An introduction to this specific way
of digitizing is given in the following chapter. It is shown there that this idea
is not in fact original. There have been many attempts to use this approach in
order to achieve specific benefits before. The early experiences obtained in this
field are described. However, there is a problem. Unfortunately randomization of
digitizing leads both to good and bad consequences. The problem is how to benefit
from such deliberate randomization and at the same time avoid the degradation
of signal processing quality caused by it. This is not very easy to achieve. A
really in-depth understanding of the involved processes is compulsory in order to
resolve this problem. In fact, the full story of this book is about just that.
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2

Randomization as a Tool

To achieve flexibility of the digitization techniques essential for matching them
to the given signal processing task conditions, these operations should be made
variable. The problem was to find out how to achieve this. Techniques existed
that were applicable for variations of signal processing procedures. It simply took
some time to realize that introducing an element of randomness into signal con-
version procedures, an approach initially developed for other purposes, also leads
to variations in the basic digitizing functions. Once that was understood, it became
clear that randomization might be used as a tool for making signal conversion
operations, including sampling and quantizing, more flexible and more adaptable
to specific signal processing needs. The application specifics and potential of this
instrument are discussed in this chapter.

However, the applicability and efficiency of this tool is arguable. Indeed, intro-
duction of randomness into signal processing operations might also have negative
consequences, as it usually leads to increased statistical errors. The end result
might therefore not be acceptable. In fact this often happens whenever random-
ization is carried out in a way that is not sufficiently skilful. The problem of
obtaining the targeted positive randomization effect without degradation of the
whole signal conversion process is crucial and is not easy to resolve. Work on the
development of new alias-free signal processing techniques should always be car-
ried out with considerations of this kind taken into account. Various approaches
used to obtain possible solutions of this problem are discussed in the following
chapters. This is the central issue in this book.

Gradually the approach to randomization of the sampling and/or quantizing
operations and for taking care of the potential negative consequences of random-
ization has been improved to the extent that little remains from the techniques

Digital Alias-free Signal Processing I. Bilinskis
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initially used for these purposes. Although randomization techniques are still be-
ing developed, more often than not the processes involved are fully deterministic
as they are actually pseudo-random rather than truly random. If that is kept in
mind then the terminology used in this chapter will help to follow the gradual
developments that have taken place in this area over many years and will not lead
to confusion about the discussed issues.

2.1 Randomized Versus Statistical Signal Processing

Many statistical and randomized signal processing methods and techniques exist.
Only the latter are considered here. Statistical processing techniques are simply
used routinely whenever needed. To avoid misunderstandings, some of the def-
initions will be agreed for the randomized signal processing techniques studied
and discussed in this book.

In general, DSP covers all kinds of signal processing algorithms, including
those of statistical signal processing. This kind of signal processing is typically
used when the input signals are given as random functions and the results of their
processing are often random as well (for instance, the estimates of signal param-
eters). However, this does not mean that such signal processing is randomized.
Consider signal processing techniques to be randomized only if some of the suc-
cessive signal conversion or processing procedures are performed stochastically.

It should also be realized that the conditions under which randomized signal
processing might take place differ. This operational mode might be either enforced
or chosen willingly. The randomness present at some stage of signal processing
might be either an unavoidable reality caused by uncontrollable signal acquisition
conditions or it may be introduced deliberately in order to obtain some benefits.

Indeed, sometimes signals are sampled nonuniformly simply because they can
be observed only at some unpredictable random time instants. Then it is virtually
impossible to control the conditions used to obtain the signal sample values. This
kind of real-life nonuniform signal sampling case actually occurs quite often.
Much has been done in this area. However, in this book, only the second kind of
randomized signal processing, based on a deliberate introduction of randomness
at some stage in signal conversions and processing, is considered, with a few
exceptions (see, for instance, Subsection 20.4.4).

The difference between these two approaches is distinctive. As it is impossible
to control the process of sampling in the first case, the signal sample values are
obtained at unpredictable time instants and it is especially difficult to process this
specific digital signal. It is much easier to organize the whole process of signal
sampling and processing in the second case. Then the sampling operation might
be adapted to the specifics of the signal, which helps to obtain much better results
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of the subsequent signal processing. There is also much in common for both of
the mentioned two specific nonuniform sampling application areas. The same or
at least similar mathematical descriptions, methods for modelling, algorithms for
randomized signal processing and tools for statistical analysis are often applicable
in both cases.

At a first glance deliberate randomization of signal processing is perceived as
the addition of a noise to the signal but that interpretation seems to be absurd.
Actually the essence of randomization of sampling and quantization is different.
Randomization, in fact, means substitution of some fixed or stationary signal
conversion procedures by their variable or nonstationary versions. In the case
of sampling randomization, equidistant signal sample taking is transformed into
a nonuniform procedure of sample value taking in a nonequidistant way. The
distances between sampling instants are then varied in accordance with certain
rules. Likewise, randomized quantization means that the signal sample values are
compared with variable rather than fixed threshold levels, as in the traditional case.
Thus the randomization approach actually results in making the corresponding
signal conversions more dynamic. This leads to positive and negative effects.
Therefore successful randomization of signal processing requires skilful usage of
these techniques, making it possible to overcome the bad effects and to benefit
from the good effects. Learning the lessons of the randomization prehistory might
help to provide some suggestions on how to achieve that. A brief summary of the
most significant achievements marking progress in this field in the past follows.

2.2 Accumulation of Empirical Experience

The origin of randomization can be identified and traced back to the 1960s. It
seems that many people at that time independently came to the idea that an element
of randomness present in signal processing might sometimes be more useful
than damaging. Attempts were made again and again to obtain specific benefits
by adding noise, irregularizing some signal conversion procedures and using
statistical estimation schemes instead of deterministic calculations. Experiments
confirmed that under certain conditions various positive effects could be obtained
in this way.

Comments on some of the most remarkable cases follow.

2.2.1 Using Monte Carlo Methods for Signal Processing

At a time when vacuum tubes and transistors were the basic electronic devices
used to perform signal processing, it was of considerable interest to find and apply
methods that would simplify the involved computations. It was noticed that the
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Figure 2.1 Application of the Monte Carlo method for signal processing

statistical techniques, known as Monte Carlo method, used for simplifying digital
computing could also be successfully applied for the development of electronic
systems for signal analysis.

Usually Monte Carlo methods had been used to estimate integrals by means of
statistical experiments. The basic idea of this approach is simple. Suppose that
the area S of an irregular figure, shown in Figure 2.1(a), is to be measured. By
definition,

S =
∮

(L)
x dy−y dx,

where L represents the contour of the irregular figure. It is evident that the solution
of this task, simple at first glance, may require considerable effort because the
approximation of L could be complicated.

To simplify the solution of this task, the irregular figure under consideration
could be placed within a rectangle with side lengths a and b. To determine the area
S by applying the statistical trial technique, N dots are placed randomly on the
area ab. If the density of the dots is constant over the entire area ab, the number
of dots n falling within the limits of the figure in question must be proportional
to the value of its area S. Then the estimate of the area S can be calculated in a
simple way, defined as

Ŝ = n
N

ab. (2.1)

Thus the basic idea behind the Monte Carlo methods is that of substituting,
where possible, complicated deterministic relationships by much simpler proba-
bilistic ones in order to simplify the computations and programming involved. In
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some fields of science and engineering, for instance in nuclear physics, these
methods have been used very successfully, and in many applications they have
proved to possess considerable advantages. This stimulated further developments
of these methods and, as a result, new modifications emerged.

It is not surprising that Monte Carlo methods were also considered for possible
applications in the field of signal parameter estimation. However, it soon became
clear that only the most simple and basic of the Monte Carlo methods were
suitable for developing specialized measuring devices. Only computers could
realize more subtle versions of the methods, offering more advantages, especially
higher precision.

Some interesting and at the same time useful hardware implementations of
Monte Carlo methods were developed. They were mostly aimed at estimating
integrals by means of statistical experiments. The original descriptions of the
developed systems were presented in a specific way, which made it difficult to
relate them to the structures of common signal processing systems. It therefore
took some time before it was realized that all of the known electronic systems
of this kind could be described in terms of signal analog-to-digital conversions
and processing of the obtained digital signals. Using this approach revealed the
interesting fact that these electronic implementations of the Monte Carlo method
could be reduced to a simple scheme containing ADC and some circuitry for
handling the digital signal taken off that ADC. One-bit randomized quantizing
and periodic sampling techniques were typically used. Usually the mean values
or sometimes the mean values of functionally converted signals were calculated.

It is evident that this approach of estimating integrals can also be applied to
determine an area bounded by a coordinate axis and by some function of time x(t)
considered within a limited interval, as shown in Figure 2.1(b). If this function
represents a signal, the mean value can be estimated by counting the random
dots falling within the area limited by the signal and using the following simple
formula:

m̂x = n
N

. (2.2)

Implementation of this method is easy. A scheme of an electronic device for
realizing such statistical experiments is shown in Figure 2.2. To carry out the
Monte Carlo statistical trials in this case, the signal instant values are compared
with generated random levels. In other words, a randomized one-bit quantizer is
used to round off the signal instantaneous values. The result of this operation is
given as a binary number, which is assumed to be equal to binary 1 when the
signal value is above the random level and to binary 0 when this value is below
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Figure 2.2 Structure of an electronic device for realizing statistical experiments

that level. The mean value of the signal is estimated simply by counting the binary
1 obtained during the whole measurement cycle of N clock periods.

At the time when this approach to statistical signal parameter estimation was
developed and proposed, it was of much more interest to electronic engineers
than it is now. The properties of this technique were considered advantageous
and promising. The hardware was simple – a merit in itself – but also provided
a digital estimation of wideband signal parameters. Only one simple block, the
comparator, had to be designed as a high-frequency device. However, the main
drawback of these methods – a relatively high level of statistical error – was fully
present in these devices, acting as a serious negative factor and often outweighing
the available benefits.

2.2.2 Polarity Coincidence Methods

Polarity coincidence methods for analysing random processes are also worth
mentioning. They were developed many years ago, but cannot be recommended
for practical applications today. However, they are certainly of interest as an
example showing how randomization can improve the quality of signal parameter
estimation. The specific signal characteristics that might be estimated using these
methods are correlation functions.

The mathematical description of the basic polarity coincidence method exploits
the so-called sign (polarity) function which, in the first version of the method, is
given as follows:

sgn[ẋ(t)] =
⎧⎨
⎩

1 for x(t) > 0,

0 for x(t) = 0,

−1 for x(t) < 0,

(2.3)
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where ẋ(t) is a centred random process. The polarity coincidence correlation
function R(t, t) is defined as an expectation of the product of polarity coincidence
functions for two values of the argument

Rx (t1, t2) = E{sgn[ẋ(t1)] sgn [ẋ(t)]}. (2.4)

It has been proved that in the case of a stationary ergodic normally distributed
centred signal the polarity coincidence correlation function Rx (t1, t2) can be ex-
pressed through the probabilities of the coincidence of signal polarities at the time
moments t1 and t2:

Rx (t1, t2) = 4p(++) (t1, t2) − 1 = 4p(−−) (t1, t2) − 1, (2.5)

where

p(++) (t1, t2) and p(−−) (t1, t2)

are the probabilities of the coincidence of positive and negative signs respectively.
Although the polarity coincidence correlation function characterizes the statistical
relationship between remote signal instantaneous values, this function is not the
same as the commonly used correlation function. Nevertheless a relation exists
between them.

It has been established that the following relation exists between the polarity
coincidence correlation function Rx (τ ) and the normalized correlation function
ρx (τ ):

Rx (τ ) = 2

π
arcsin[ρx (τ )],

ρx (τ ) = sin
[π

2
Rx (τ )

]
,

(2.6)

where τ = t2 − t1 is the time delay. It is evident from Equations (2.5) and (2.6)
that the electronic device realizing the polarity coincidence method can be rel-
atively simple, and this simplicity is its major merit. However, the method has
two essential disadvantages: firstly, the experimentally obtained estimate of the
polarity coincidence correlation function is characterized by a large random
error; secondly, the polarity coincidence method has a limited area of appli-
cation. Indeed, expression (2.5) is valid only on condition that the distribution of
the signal x(t) is normal.

The above limitation can be removed if the polarity coincidence method is made
more complicated, i.e. if, when determining the sign of the signal, its instantaneous
values are compared not with the zero level but with some auxiliary random
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function of time, uniformly distributed within the range of the signal. This is the
idea behind the second kind of polarity coincidence method.

Suppose that the cross-correlation function kxy(τ ) is to be obtained using this
method. Then two random auxiliary processes ξ 1(t) and ξ 2(t) are used and the
following sign functions are determined:

sgn[z1(t)] =
⎧⎨
⎩

1 if ẋ(t) > ξ1 (t),
0 if x(t) = ξ1 (t),
−1 if ẋ(t) < ξ1 (t),

sgn[z2(t)] =
⎧⎨
⎩

1 if ẏ(t) > ξ2 (t),
0 if y(t) = ξ2 (t),
−1 if ẏ(t) < ξ2 (t),

(2.7)

where

z1(t) = ẋ(t) − ξ1(t),
z2(t) = ẏ(t) − ξ2(t).

It has been proved that

E[ẋ(t) ẏ(t)] = AE{sgn [z1(t)] sgn [z2(t)]} = ARxyξ (τ ), (2.8)

whereA is a constant that can be calculated on the basis of the ξ 1(t) and ξ 2(t)
distribution boundaries, and Rxyξ (τ ) is the correlation function, determined by
applying the polarity coincidence method.

It is interesting to note that the possibility of removing these drawbacks was
provided by the randomization approach. It was proved that the above limitation
could be removed if the polarity coincidence method is made more complicated.
To achieve this, the sign of the signal is determined by comparing its instanta-
neous values with some auxiliary random function of time (uniformly distributed
within the peak-to-peak range of the signal) rather than with the zero level. This
randomization idea is behind the second kind of polarity coincidence method,
illustrated in Figure 2.3(b).

While at first glance the two polarity coincidence methods for correlation anal-
ysis, the simpler basic and the more complex randomized one, again seem to be
specific, actually that is not the case. In essence they can normally be described
in terms of sampling, quantizing and digital processing. Using that approach, it
can be shown that a fixed threshold quantizer and a randomized quantizer are
used in the first and second cases respectively. Therefore the benefits are due to
randomization of quantization. It will be shown in Chapter 4 that these benefits
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Figure 2.3 Electronic devices realizing the polarity coincidence method: (a) without and (b)
with the use of an auxiliary random process

are expected as soon as deterministic fixed-threshold quantization is substituted
by a randomized operation of this kind.

2.2.3 Stochastic–Ergodic Method

A new method for statistical signal analysis was announced at the beginning of
the 1970s. A series of articles appeared devoted to theoretical investigations of the
method, as well as descriptions of developed and factory produced instruments.
This method was introduced as the stochastic–ergodic method. Here only its
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fundamentals will be considered and an attempt will be made to reveal some of
its peculiarities.

The stochastic–ergodic conversion of a signal is actually an analog-to-digital
conversion. It is called stochastic because it uses probabilistic encoding and er-
godic because the ergodicity of the signal is assumed. This is a useful description
of the method, except for the fact that the estimation of a number of signal pa-
rameters also takes place in addition to the analog-to-digital conversion.

These devices are designed first of all to provide estimates of the moments of
signal distribution, such as the mean and root mean square (RMS) values of the
signals, as well as the autocorrelation and cross-correlation functions. Despite the
diversity of measuring tasks performed, a small number of units form the basis
of the different devices. The major one (according to the terminology mentioned
above) is the so-called ergodic converter. In fact, the ergodic converter fulfills the
functions of a randomized quantizer.

The publications dedicated to the subject of stochastic–ergodic conversion
clearly show that a considerable amount of work has been successfully done
in this area. The development and industrial production of instruments of this
particular type deserve especial mention. For example, the signal analyser that
performed measurements of signal integral parameters, such as the RMS, mean
and amplitude values in the frequency range from 15 Hz to 1 MHz with errors
not exceeding 1 % of the upper scale limit, was quite good for that time. The
terminology used in descriptions of the techniques involved is less appropriate.

2.2.4 Stochastic Computing

Stochastic computing was proposed at about the time when second-generation
digital computers were soon to be replaced by the next generation of computers
built on ICs (integrated circuits). It had already been realized that the conventional
digital computers, although possessing many excellent properties, were often not
good enough to handle the problems associated with the simulation or control of
large complex systems. Such computer applications required real-time processing
of many input variables, which represented a serious difficulty for the single-CPU
(central processing unit) computers since they could only perform computations
on inputs sequentially.

Analog computers were better suited for such applications, since they permit-
ted the simultaneous processing of a relatively large number of inputs. How-
ever, they also had some considerable disadvantages, intensified at that time by
the relatively low element package density of ICs available then. Thus the ana-
log computers could not be considered as economically acceptable substitutes.
That stimulated further investigations and led to the development of randomized
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or stochastic computing. It was proposed as a new and promising technology,
capable of satisfying many of the multiprocessor system demands on the accep-
tance and parallel processing of a large number of varying inputs at a small cost
per separate input channel.

Design specifics of a stochastic computer are determined first of all by the
method used for probabilistic encoding of signals. Although conventional digital
integrated circuits are used as computing elements, they in fact fulfil analog-type
functions, and the stochastic computer itself is programmed as an analog com-
puter. Stochastic computers belong to the family of analog computers, although
they differ from the latter in their use of stochastic bit streams rather than direct
current.

A signal or a physical variable is represented in stochastic computers by a
probability P(1) that a logical level in a clocked pulse sequence at the considered
instant will be the binary 1. The probability P(1) is an analog variable whose
value ranges continuously from 0 to 1. The physical quantities represented by
such stochastic bit streams therefore have to be scaled.

Binary l’s in this kind of stream are represented by pulses formed at some
clocking instants. The absence of pulses at other clocking instants means that
0’s are located there. At each clocking instant only one of two possible events
may take place: a pulse will or will not appear. Each of these pulses is gener-
ated with no statistical influence from the previously formed pulses so that the
stochastic bit stream as a whole may be considered as a quasi-stationary ergodic
process.

Assume that a stochastic bit stream contains m clocking time intervals. Then
the ratio P(1) = n/m can be used as an estimate of the probability P(1), where
n is the number of l’s in that particular stream. If a pulse sequence of this kind is
observed for m clocking intervals, the value of the probability P(1) it produces
can be measured with the rounding-off errors in the range of ±1/2m. To reduce
the random errors, which might considerably exceed the rounding-off errors, a
significantly increased length of the stochastic bit stream segment is averaged.
Theoretically, only an infinite stochastic bit stream allows the exact value of an
input variable to be determined.

Stochastic computers actually operate like analog computers, and so there is
no fixed word length. The input signals are converted into stochastic bit streams
and the stochastic quantities represented by them change relatively slowly in
time following changes in the corresponding input variables. The precision of
stochastic computing at a given clock frequency can be increased only by slowing
down the computer and by limiting the spectra of the input signals. Hence the
computing accuracy and bandwidth need to be traded off. Stochastic computers
cannot be expected to provide very high computing efficiency. At reasonable clock
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frequencies (about 10 MHz) an error rate of 1 % and a bandwidth of approximately
100 Hz can be achieved.

However, the moderate computing accuracy and speed are quite acceptable for
many applications and the advantages of stochastic computing may well outnum-
ber its drawbacks. When this new concept of computation was first proposed, it
was strongly recommended for applications in the field of real-time automatic
control and the simulation of large complex systems. It was predicted that with
advances in large-scale integrated circuit manufacturing, stochastic computing
would be widely and successfully employed to solve many important problems.
However, these predictions did not come true. Developments in microprocessor
technology allowed the design of more efficient computing systems, including
multiprocessor systems. Stochastic computers could not compete and interest in
stochastic computing gradually declined. However, the fact still remains that com-
putation of stochastically represented variables can be performed in an extremely
simple and economic way.

The layout and interconnections of computing elements in stochastic comput-
ers depend on the particular computations to be carried out. Several stochastic
computer hardware mapping schemes are possible. The most commonly used are
based on a single-line unipolar representation of the variables, which are always
positive (or always negative). This scheme leads to the simplest hardware con-
figurations of computing elements, although these elements are still quite simple
even when other mapping schemes are implemented.

Multiplication is one of the most basic and frequently used computing opera-
tions. The complexity of the hardware performing this operation is an important
issue for any type of computer. In the case of stochastic computers, the variables,
represented by stochastic quantities, may be multiplied in an extremely simple
way. For example, only a single logic AND gate is required for multiplying two
unipolar variables represented by corresponding stochastic bit streams.

Many specific stochastic elements have been developed over the years. How-
ever, only relatively few types of elements are actually needed to build a stochastic
computer. Such a computer is basically comprised of a large number of simple
and cheap multipliers and summers.

The original signals to be processed by this kind of computer first have to
be converted into stochastic bit streams. This has to be done whether the input
signals are analog or digital. Therefore at least two types of converters are needed:
analog–stochastic and digital–stochastic converters.

It is easy to see that a randomized one-bit quantizer can be used for conversion
of an analog unipolar signal to a stochastic bit stream. If the signal at the input of
such a converter varies sufficiently slowly, the obtained bit stream would represent
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Figure 2.4 Block diagram of a digital stochastic converter

the input in a format required by the stochastic computing rules. Therefore it is
not necessary to develop and use a special analog–stochastic converter as the
common randomized quantizers can be used.

A block diagram of the less common digital–stochastic converter is shown in
Figure 2.4. This shows that a stochastic bit stream is generated in the process
of comparing the binary input numbers with the pseudo-ramdom numbers pro-
vided by the digital noise source. Binary 1’s are formed at the clocking instants
when the binary input numbers are larger than the pseudo-random numbers. The
pseudo-random numbers used in this kind of computation are uniformly dis-
tributed in the range from 0 to 1, so that at each clock pulse instant any number
within this range is generated with an equal probability. Hence the probability
that an input binary number will be larger than a pseudo-random number is pro-
portional to the input. Thus the binary 1’s appear in the stochastic bit stream at
the converter output with the probability equal to the properly scaled digital input
signal.

This description of digital–stochastic conversion may give the wrong impres-
sion that this procedure has been developed for, and may be applied exclusively
to, stochastic computing. It is true that digital–stochastic converters were inde-
pendently developed to represent digital and analog signals by the stochastic bit
streams needed to perform this kind of signal processing. However, the principles
of their operation can also be explained in terms of sampling and quantization.
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This means that the results of the following chapters may well be used for a
detailed analysis of stochastic computing and for evaluating expected accuracy,
bandwidth and other characteristics.

To demonstrate the possibility of such a generalization the operation of the
digital–stochastic converter can be described in another way. It is obvious that
the digital input signal is sampled periodically by clocking the comparator and
considering the input signal only at discrete time moments. Digital samples are
then rounded off to one of the two levels allowed, to 0 or 1. Note that the rounding-
off operation is nothing other than quantization. It may be a little confusing that
the variable being quantized in this case is digital rather than analog. However,
formally there is not the slightest difference. Digital quantities may be, and of-
ten are, rounded off and a deterministic or randomized quantization procedure
could be applied. In this case the threshold level changes randomly from one
sampling instant to the next, and so quantization itself may be called random-
ized or stochastic. The digital samples of the input signal are compared with
the threshold level (with the pseudo-random numbers), and when the value of
the samples exceeds the threshold level they are rounded off either to level 1
or to level 0.

Thus analog–stochastic and digital–stochastic converters are actually devices
performing the sampling and quantization operations. Sampling is periodic and
quantization is randomized. Therefore the output signals of such converters are
simply digital one-bit signals rather than some special stochastic bit streams.
Amazingly, stochastic computing is not stochastic at all. It is actually deterministic
rather than randomized. The only operation being randomized is quantization.
As it is extremely rough and produces just one-bit digital signals, processing
them is indeed simple. Multiplication, for example, can be realized by means
of a logic gate. Therefore the generalized randomization model, given later in
Figure 2.6, also covers the case of stochastic computing. This once again confirms
the assumption that knowledge of basic randomized signal conversion procedures
is widely used to analyse special cases.

The most valuable feature of stochastic computers – their simplicity – is not
very attractive once the fact is taken into account that this simplicity is due to the
one-bit representation of quantized data and that no more threshold levels can be
used for such quantization in principle. However, it would be unwise to write off
stochastic computers completely. There is still a need for economically attractive
computing techniques that permit efficient parallel processing of many input
variables simultaneously. With advances in microelectronics, it is now possible
to develop specialized VLSI (very large scale integrated) circuits containing a very
large number of stochastic computing elements operating at much higher clock
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Figure 2.5 Illustration of dithering

frequencies. Stochastic computers built on the basis of a microelectronic element
would offer much better precision and bandwidth. It may happen that for some
special kinds of applications, e.g. for fault-tolerant computing, for solving large
systems of differential equations or for sensor network applications, stochastic
computing techniques might become attractive again.

2.2.5 Dithering

Dithering is one of the most popular randomization techniques. This straight-
forward method of randomizing signal processing is based on the addition of
random noise, sometimes called dither, to analog signals to be quantized and pro-
cessed. It is claimed that under certain conditions this approach provides better
accuracy. It is used in a relatively large number of applications, including picture
and speech coding and signal analysis. This approach is often used to take out
spurious frequencies from spectra of deterministically quantized signals.

It may seem strange that improvement in the metrological characteristics of a
system can be achieved by adding noise to its input. However, this is the case.
Assume that a slowly varying signal is presented to an ADC and that the quan-
tization involved is uniform and rough, as illustrated in Figure 2.5(a). Note that
during some time intervals the signal does not go outside the limits of a single
quantization step, i.e. it does not cross any of the threshold levels. As the exact
values of the signal are fixed only when it crosses the threshold levels, and at
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all other times it is only known that the signal is somewhere within the limits of
these two threshold levels, some information is lost.

A method for recovering this information, at least partly, has been developed.
This involves adding some auxiliary process to the signal, either periodic or
random. The resulting mixture crosses the threshold levels much more often,
as shown in Figure 2.5(b), which makes it possible to increase the quantization
accuracy by applying short-time averaging or interpolation procedures.

It can be seen that the addition of random noise to the signal results in a
marked change in the pattern of the quantizer output signal. Instead of more or
less long series of one and the same digital sample value, larger and smaller
sample values are obtained. The pattern of the sequence is random, because it
is formed according to probabilistic rules. A larger number appears at any given
sampling instant with a probability proportional to the closeness of the signal to
the nearest upper threshold.

When this approach is used, the output signals of the ADCs are formed in such
a way that each digital number at the output is calculated by taking into account
some quantity of the quantized samples. Averaging of these samples is usually
carried out to achieve that. In this way, refined results of quantization are obtained,
which are represented by a sequence of digital numbers that may have fractional
parts. These fractional parts can assume any value between 0 and q. However,
this digital sequence can be regarded as the output of a more precise quantizer,
so the least significant bit of each digital number obtained is equal to a step-size
of quantization that is several times smaller. In other words, this approach allows
the number of bits per sample to be increased or the signal-to-noise ratio (SNR)
to be improved, since the power of quantization noise is directly related to the
step-size of the quantizer.

The positive effect just described is obtained as a result of applying two proce-
dures: dithering and averaging. The latter can also be used in cases of conventional
quantization without any random noise being added to the signal. It is therefore
of some interest to evaluate the effect due to dithering itself. The results of the
analysis show that averaging by itself does little to improve the accuracy of quan-
tization, as it might lead to considerable signal-dependent errors. Consequently,
it is not of much use to apply this procedure to increase the number of bits per
sample value without doing something to prevent these bias errors. Amazingly,
this can be accomplished by adding noise to the signal.

Of course, averaging itself does not lead to these signal-dependent errors,
which are caused by the mode of quantization used. In addition, the results of
fixed-threshold deterministic quantization are more or less distorted by bias errors.
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Although they are negligibly small in cases of multibit quantization, these errors
might affect the results of rough quantization significantly. As they are systematic
or signal-dependent, averaging does not help in reducing them.

Remarkably, adding a random process to the input signal leads to elimination
of this kind of error, which takes place for any distribution of the signal even if
quantization is extremely rough, i.e. even if only a single quantization threshold
level is used. However, dithering also has negative effects. Variance of the random
quantisation error increases by twice its minimum value (characterizing determin-
istic quantization) even if the distribution of the added noise is kept within the
optimal limits [−q/2, q/2], where q is the quantization step.

The considered stochastic interpolation technique can be improved. Pseudo-
random noise is generated and added to a signal prior to its quantization and
the same noise is subtracted from the quantizer output. Such dithering not only
eliminates the systematic error or bias but also breaks up the undesirable signal-
dependent patterns within quantization error sequences while the variance of the
random error remains equal to the value characterizing conventional deterministic
quantization.

Much more could be said about dithering, or stochastic interpolation. On the
other hand, it is claimed that all known uses of randomness in the area of sig-
nal processing that have positive effects can be represented as randomization of
sampling and/or quantization. If this is true then stochastic interpolation may be
represented in another form. Indeed, that is the case.

As indicated above, stochastic interpolation includes the operations of adding
noise to the signal and averaging the quantized samples of the mixture. There can
be no doubt that averaging belongs to the domain of processing. The first of these
operations is nothing other than randomized quantization. In fact, it is easy to see
that adding a noise sample to a signal or subtracting it from a threshold level will
produce an equal quantizer reaction.

The two kinds of dithering discussed above are based on two different modes
of randomized quantization. With the first, simpler, approach, some type of truly
random process is used, which is either added to the signal or subtracted from
the threshold levels. Better accuracy results from implementation of the second
kind of randomized quantization. In this case pseudo-randomized quantization is
used as a pseudo-random rather than a random process. Such pseudo-randomized
quantization, studied later in more detail, is equivalent to the dithering model,
which is described as the process of adding analog pseudo-random noise to a
signal at the input and subtracting the same noise in digital format from the
quantized signal.
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Figure 2.6 Generalized scheme, illustrating randomization of signal processing

Depending on which of these two quantization options is used, averaged quan-
tized signal values are characterized by smaller or larger random errors. The
second scheme is much more precise.

2.2.6 Generalized Scheme of Randomized Digitizing

It seems that people working in various remote areas of engineering have dis-
covered the above methods independently. Originally they were described in
quite different terms. Reading about these techniques and their implementations
leads to the impression that there are many various randomized signal processing
methodologies all differing in principle. However, even a simple analysis shows
that this impression is wrong. It is true that the techniques of introducing random-
ness vary, but there are only one or two signal digitization procedures – sampling
and quantizing – either or both of which have been used to introduce the element
of randomness. As to the processing itself, in all known and considered cases it
is performed quite deterministically. Processing is sometimes performed on the
basis of classical algorithms, while in other cases specially developed algorithms
are used. This generalized approach to deliberate randomization is illustrated in
Figure 2.6.

Although it has been stated that randomness can be injected at both the sam-
pling and quantizing stages, the methods described in this section have all been
based on deliberately randomized or pseudo-randomized quantizing, while sam-
pling has been assumed to be periodic. There are, of course, successful applica-
tions of randomized or nonuniform sampling, considered in some of the follow-
ing chapters. They have not been discussed here because it was not necessary.
When deliberate randomization of signal processing is based on randomization of
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sampling techniques, the experience is usually described in terms that clearly fit
the model illustrated in Figure 2.6.

This seemingly simple result of the known case analysis actually proved to be
quite useful. It has led to the possibility of studying and describing the randomized
signal processing methods in a generalized way. This helped to form the DASP
approach, based on the concept that attention needs to be focused on the sampling
and quantizing procedures and that randomized analog-to-digital conversions
should be considered as a vital part of the whole digital signal processing process.
Development of the DASP concept and techniques has taken many years and
DASP is based on many knowledge components. The briefly described early
work in the general area of deliberately randomized signal processing has played
a significant role in forming that approach.

2.3 Discovery of Alias-free Signal Processing

It is typical for the early prehistory of randomized signal processing that most
of the R&D (research and development) activities in that area were isolated. The
applied and academic research was therefore carried out independently at var-
ious places in parallel. While engineering efforts during the 1960s and 1970s
were devoted, in general, to the creation of new complexity-reduced stochas-
tic signal processing systems, and most of them were based on the idea of
deliberate randomization of quantizing, the academic research activities were
mainly focused on problems of randomized sampling. The latter, typically, were
focused on widening the frequency range where signals could be dealt with
digitally.

2.3.1 Early Academic Research in Randomized
Temporal Sampling

Shapiro and Silverman were among the first researchers to draw attention in 1960
to the fact that it might be possible to perform alias-free sampling of random
noise. Their results were remarkable as they showed the reality of expanding the
frequency range where signal processing is not corrupted by aliasing. A very
useful randomized sampling approach called additive random sampling was sug-
gested. This random sampling scheme is based on the assumption that successive
sampling intervals are statistically independent and identically distributed. Soon
other people working in this area picked up this sampling technique; it is still one
of the most popular as it proved to be well suited for various applications. This
method of nonuniform sampling is discussed in detail in Chapter 6.
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It was also discovered that sampling instant jitter, usually considered to be
harmful, could sometimes be beneficial. This kind of randomized sampling model
is known as periodical sampling with jitter; it is also studied in Chapter 6. As more
work was done in the field of randomized sampling, it was realized that many
sampling point (sampling instant) processes might be used to perform nonuniform
sampling. A relatively large variety of random point processes can, in principle,
be applied to random sampling, and a number of them have been investigated
to find out whether they eliminate aliasing. It was confirmed that theoretically it
is possible to reconstruct signal spectra in a frequency range not limited by the
mean sampling rate. The theory of such point processes was gradually developed
and similar mathematical problems have also been extensively studied in the area
known as renewal theory.

Academic research has done much to advance understanding of the randomized
signal processing approach. The results confirmed that it is possible to avoid
aliasing if signals are sampled in the correct nonuniform way. For instance, it
has been proved that under certain conditions it is possible to estimate digitally
signal parameters, including spectrum, in a frequency range exceeding half of the
sampling rate many times. That has been a significant achievement. A relatively
large number of publications on this subject appeared in the 1960s.

However, these particular results were not usually directly applicable for prac-
tical purposes as this research had basically been carried out by mathematicians.
For example, the approach most often used to study randomized sampling was
based on the Poisson sampling scheme as it is convenient for mathematical analy-
sis. According to this approach, the adjacent sampling instants might appear very
close together. Therefore it was impossible to use this sampling model as there
are strong limitations imposed on the highest sampling rate or the smallest time
interval between sampling instants for all types of ADC.

Thus the early euphoria did not last long. Soon it became clear that while it is
indeed possible, for instance, to reconstruct randomly sampled signal spectra in
an extremely wide frequency range, extending far beyond the Nyquist limit, the
traditionally used DSP algorithms, more often than not, were not applicable and
special algorithms had to be developed. Actually the first attempts to use nonuni-
form sampling techniques, made by people not sufficiently well experienced in
this area, usually led to negative rather than positive results. The reason for such
an outcome, of course, was lack of insight into the intricacies of nonuniformly
sampled signals.

However, the fact remains that the academic research results were significant.
They demonstrated both the theoretical possibility as well as the complexity of
performing alias-free signal processing at frequencies exceeding the limit of half
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the sampling rate. It gradually became clear that the practically applicable nonuni-
form sampling techniques are complicated and correct application of them has
to be learned. Hard work, done step-by-step over the last thirty years by a rela-
tively small number of researcher groups, led to the development of nonuniform
sampling theory covering a relatively wide field of applications, including image
coding and processing.

Achievements in the area of special deliberately randomized nonuniform sam-
pling drew attention to this field, stimulating increased activities. The first Inter-
national Workshop on Sampling Theory and Applications SampTA 95, dedicated
first of all to discussions on nonuniform sampling problems, was organized in
Jurmala, Latvia, in 1995. It was well attended by mathematicians and engineers
working in that field in many countries of the world. The decision was taken to
organize such workshops on a regular basis. Since that time SampTA Workshops
have taken place in Portugal (1997), Norway (1999), USA (2001), Austria (2003)
and Turkey (2005). The proceedings of all these events contain interesting and
useful material showing what has been achieved and how the work has developed
in different parts of the world.

2.3.2 Early Research in Randomized Spatial Signal Processing

Although historically the problems of randomizing temporal signal processing
have received much more attention than the analogous problems of spatial filter-
ing of signals, the potential usefulness of deliberate randomization for this kind
of signal processing has not been overlooked. A number of publications provide
evidence of this. However, at first glance, they have little in common with ran-
domized processing of signals. The fact that a number of radar characteristics
could be enhanced by randomization of their antenna design had already been
discovered in the early 1960s. Specifically, it had been shown that nonuniform
element spacing in arrays could lead to side-lobe reduction. It was found that
when antenna elements are spaced nonuniformly rather than regularly undesir-
able spatial aliasing effects are reduced and that other improvements in system
functioning can be achieved.

The subject of deliberate randomization of array signal processing is consid-
ered in Chapter 17. As shown there, various methods developed in the area of
nonuniform temporal sampling digital processing of signals encoded in this way
could also be successfully used for processing of nonuniform array signals.

It should also be noted that randomized spatial filtering of signals is one more
example confirming that all known cases of deliberate randomization of sig-
nal processing are covered by the generalized scheme given in Figure 2.6. The
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behaviour of the arrays of nonuniformly spaced elements can be predicted by
applying the model of random sampling and the research results obtained in this
area.

2.3.3 Engineering Experience

The randomized measuring and computing methods mentioned and described in
Section 2.2 should not be regarded as the ultimate achievement in the field of
randomized signal processing. The large amount of effort that has been put into
theoretical studies of the randomization problems has resulted in the develop-
ment of much more sophisticated methods, which are discussed in the following
chapters. To some extent the hard work in this direction has been encouraged by
successful engineering efforts and by the fact that even relatively simple random-
ization schemes have often proved to be useful and sometimes even considerably
beneficial. This has been demonstrated repeatedly by results of successful en-
gineering attempts to use this approach for development of high-performance
electronic instruments.

Fortunately, it has been possible to realize the deliberate randomization ap-
proach in various ways in a wide complexity range. The simplest randomization
techniques were implemented on an industrial scale first and further industrial
success stories were based on applications of those techniques.

Hewlett-Packard stands out as a company that has achieved most spectacular
results in this field. In a number of high-quality instruments developed and pro-
duced by this company, the problems of expanding the input frequency range
and improving resolution and accuracy have been solved in a very simple way
by using the deliberate randomization approach. This company has been one of a
few that has had enough knowledge of, and confidence in, this approach to apply
it over and over again with remarkable results.

They confirmed that randomization of one or more signal digitizing operations
is a convenient tool for achieving some valuable practical effects. The advantages
of random sampling are convincingly demonstrated by the design and perfor-
mance of HP 3406, a sampling voltmeter. By applying this mode of sampling,
it has become possible to broaden the signal bandwidth up to 1.2 GHz and at
the same time to simplify the instrument design. Developed in the 1960s, this
instrument has been successfully marketed for many years.

Implementation of randomized periodic sampling has led to performance im-
provements of the high-speed digitizing oscilloscope HP 54100 A/D. Resolution
of 10 ps and 1 GHz bandwidth in the repetitive mode have been achieved while
the mean sampling rate was only 40 MS/s. The sampling principle employed
not only permitted these improvements but also led to some additional attractive
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functional enhancements, like the ability to record short-time pulses repeating ran-
domly or periodically with a very low repetition frequency. There are also cases
of successful application of stochastic quantizing for highly accurate digital mea-
surements of time intervals. Instruments of this kind are again characterized by
subnanosecond resolution and very small measurement errors.

Randomized quantization has also been implemented with good results in a
1 GS/s (gigasamples per second) ADC designed for the high-speed digitizing
oscilloscope model (the oscilloscope HP 54111 D). This kind of quantizing plus
averaging is applied to improve measurement accuracy. In this way, the initial 6-bit
ADC code is augmented with two additional bits so that the signal is represented
by 8-bit sample values. Randomized quantizing (called dithering) was found
to be very useful for improving dynamic performance of high-quality ADCs.
Specifically, the spurious-free dynamic range (SFDR) of the 12-bit converter
AD9042, designed and produced by Analog Devices, was improved at least for
25 dB using this approach.

The above examples of randomized signal processing are mentioned not only
to show that this approach is already being used in industrial applications – a
significant fact in itself – but also as a benchmark with which to compare the
methods and applications described further. It was typical of early efforts in this
area that the randomization of signal parameter measurement tasks was seen as a
means of substituting, where possible, complicated deterministic relationships by
much simpler statistical ones in order to be able to build simple electronic devices.
At that time, when electronic instruments and systems were designed around
vacuum tubes, and later transistors, this consideration was indeed important. It
was popularly believed that an increase in statistical errors in these cases was
inevitable and that this loss of precision was a small price to pay for the much
simpler circuits obtained as a result of randomization.

Now the situation has changed. It is no longer so important to simplify electronic
devices, decidedly not at the expense of substantially increased error. Use of
randomized signal processing is worth considering only if it leads to achieving
more, not less, precise signal processing. Current engineering activities, targeting
development of alias-free innovative DASP systems and exploiting the advantages
of nonuniform sampling and other randomized techniques for signal processing,
are based on this concept.

2.4 Randomization Leading to DASP

A significant but previously not recognized fact was revealed by Bilinskis and
Mikelsons about 15 years ago. It was shown then that only the signal digi-
tizing operations rather than the subsequent processing procedures are always
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randomized. The techniques for processing digital signals obtained as a result
of randomized sampling and/or quantizing operations have, contrary to claims,
always been fully deterministic. This generalization disclosed that in fact in all
of the known and considered randomized signal processing cases randomizing
is always based on using randomized modifications of analog-to-digital conver-
sions. However, truly randomized operations of digitizing are used much less
often than pseudo-randomized ones. In the latter cases these procedures are fully
deterministic, the term ‘randomized’ sampling and/or quantizing being a gen-
eralized one covering a broad class of nonuniform sampling and irregularized
quantizing operations.

From the discussions above, it should be clear that the achievable quality of dig-
ital handling of signals to a large extent depends on the perfection of the involved
operations of digitizing and on the selection of correct and suitable sampling and
quantizing options. Recognition of this fact focused attention on the necessity
to improve the traditionally used DSP techniques by developing advanced tech-
niques for signal digitization. That in turn led to the randomization of them, to
the randomization of digitizing and to the development of algorithms matched to
the specifics of processing signals encoded in this special way. These modifica-
tions were so productive that they gradually led to the development of a signal
processing technology significantly differing from the classic DSP. Therefore it
makes sense to consider it as a special case. This innovative technology, the topic
of this book, is called ‘digital alias-free signal processing’.

This is the first book dedicated to DASP technology and there are only a
few previously published books related to this subject. However, the knowledge
already accumulated in this field, including theoretical and engineering experi-
ence, is substantial, sufficient for the development of various competitive systems
with properties unparalleled by the classical DSP systems.

Fortunately, the microelectronic elements, manufactured for the needs of the
traditional DSP, can also be used for engineering implementation of these pseudo-
randomized DASP methods. Therefore it is possible to gain from that knowl-
edge immediately. Although the development of special DASP oriented chips,
of course, would provide even better results, application of this signal pro-
cessing technology makes it possible to use the currently produced ADC in
a frequency range limited by the bandwidth of their analog inputs rather than
by the maximal sampling rate. This approach typically widens that frequency
range approximately 4–8 times. This means that application of DASP in many
cases provides much better exploitation of ADC resources. Of course, there are
also application limitations and drawbacks of DASP that have to be taken into
account.
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2.4.1 DASP Mission

The mission of the DASP technology, in a nutshell, is to provide effective meth-
ods, hardware and software tools for flexible, adaptable digitization and matched
processing of signals digitized in this nontraditional way for widening the dig-
ital domain of signal processing over the areas where analog techniques still
dominate.

Besides anti-aliasing measures, there are many other system performance im-
provement problems that the right sort of randomized signal digitizing techniques
could help to resolve. Massive data acquisition from distributed signal sources,
mentioned above and discussed in Chapter 7, is a good example illustrating this
point. Specific sine wave crossing techniques are used for signal sampling in
order to achieve a number of essential advantages, making it technically and eco-
nomically feasible to gather data in a cost-effective way from a large number of
signal sources. Although these randomized sampling techniques are nonuniform,
they are not used for avoiding aliasing. In this case aliasing is not the central
issue as the signals involved more often than not are of low frequency. Neverthe-
less, it makes sense to use the specific nonuniform digitization techniques in this
case as well. This makes it possible to achieve other benefits, such as complex-
ity reduction of the system gathering data from a very large quantity of sources
and data compression. Similarly, there are some techniques typical for process-
ing nonuniformly sampled signals that are useful for resolving specific problems
of processing signals in the low-frequency range under specific conditions. Ap-
plication of nonorthogonal transforms allowing signals with partly overlapping
spectra to be separated or errors to be eliminated, which appear when the signal
observation time is not equal to an integer number of signal periods, might be
mentioned as additional examples of such specific problems.

Thus, as shown in the following chapters, the application range of DASP is
rather wide and these applications are not exclusively in the field of radio fre-
quency (RF) and microwave signal processing, as already explained. Many of the
specific randomized signal digitizing and special digital processing methods and
tools, initially developed for digitizing wideband signals, later prove to be quite
useful for processing signals under certain conditions, even when their parameters
also allow the use of traditional techniques.

2.4.2 Demonstrator of DASP Advantages and Limitations

Various systems have been developed and made that are capable of process-
ing signals fully digitally in a frequency range many times exceeding the mean
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Figure 2.7 DASP-Lab System design

sampling rate. The best-known one is a computer-based system of Virtual In-
struments called the DASP-Lab System. As a versatile analyser of wideband RF
signals, it serves as a demonstrator showing the advantages and limitations of
the DASP technology, including such an advantage as the capability to perform
a fully digital radio frequency signal analysis in the time and frequency domains.
This system operates in the whole frequency range up to 1.2 GHz while the mean
rate of nonuniform sampling is only 80 MS/s. The system won the 1997 European
IT Prize and is shown in Figure 2.7. There are two optional digitizers, one for
the signal analysis in the time and frequency domains and the other for the signal
analysis in the modulation domain.

The 1.2 GHz digitizer represents the hardware core of the DASP-Lab System.
This device is a standalone unit connected to the host computer of the DASP-Lab
System, typically a PC. It performs an input signal analog-to-digital conversion
in a special way matched to the specific application conditions. The sampling
operation can be chosen to be either periodic or nonuniform. The latter sampling
mode is performed at predetermined time instants.
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While the digitizer performs signal digitizing and data buffering functions, the
computer supports them and executes data exchange via a standard interface.
To obtain good signal alias-free processing results, special algorithms that are
well matched to the specifics of nonuniform sampling must be and are used.
Computer simulated graphical user interfaces are used to set up the digitizer
and the system’s operating conditions for interactive measurements, for digitized
and processed signal visualization, for building up complex test signals and for
performing other virtual instrumentation and virtual protyping functions.

The DASP-Lab System has three basic operational modes. It can be used
for virtual instrumentation, for virtual prototyping and for signal input to the
MATLAB environment. Virtual instruments are also the basis for virtual proto-
typing of DSP systems utilizing nonuniform sampling. In the third operational
mode signals are sampled periodically and their digital replicas can be processed
by the standard MATLAB DSP tools. In the first and second cases signal spectra
can span the whole bandwidth of 1.2 GHz, but the MATLAB DSP tools can only
be used for handling periodically sampled signals.

The virtual instruments of the system cover the following functions:

� Digital oscilloscope. This displays waveforms of periodic or repeated (repeat-
edly triggered) signals. The effective sampling rate is around 3.2 GS/s and
it performs selectable processing routines and external and internal synchro-
nization.

� Vector spectral analyser. This estimates and provides signal spectrum density
functions, amplitude and phase spectra of signal parts having discrete spec-
tra in the whole bandwidth of 1.2 GHz. It performs signal identification, de-
termines signal true component spectra at arbitrary frequencies and performs
high-resolution or discrete Fourier transform (DFT) spectrum analysis, signal
waveform and envelope reconstruction on the basis of direct and inverse spectral
transforms.

� Power analyser. This performs SNR measurements within four independently
variable frequency intervals and estimates the signal average or peak power at
arbitrary frequencies.

� Modulation domain analyser. This fulfils its functions on the basis of continuous
time interval measurements. It performs up to 25 million such measurements
per second with 20 ps single-shot least significant difference (LSD) (5 ps for
up to 4 million measurements/s), clock and data jitter analysis including jitter
spectrum analysis and frequency and phase modulation analysis. It is useful for
resolution of many problems including jitter source identification.
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Virtual prototyping helps in the development of various nonuniform sampling-
based DSP systems. In this operational mode, the DASP-Lab System can be used
for design verification, alias-free RF digital design prototyping, complex test-
signal forming and system prototype testing with virtual instruments. In addition,
virtual prototyping functions of the DASP-Lab System are helpful in acquiring
DASP-based system development skills.

2.5 Some of the Typically Targeted Benefits

To illustrate the usefulness of the DASP technology, extension of the application
range of ADC achievable in many cases will be considered on the basis of this
technology.

As long as the traditional DSP approach is used, the highest sampling rates
of the manufactured ADC define their application boundary in the frequency
domain. It is possible to realize processing of a particular signal digitally only
if there is an ADC available that could be used at a high enough sampling fre-
quency. Thus the achieved highest sampling frequency of a specific type of ADC
might be considered as a benchmark characterizing its application range. Much
effort and money has been spent on advancing the technology for manufacturing
higher-quality microelectronic devices, including faster, more precise and wider
bandwidth analog-to-digital converters. As a result, better and better ADC chips,
applicable for a wider and wider frequency range, are produced and offered to
the market on time. Consequently, the application area of DSP techniques is
continuously widening. However, progress in this field made in this way is evolu-
tionary, relatively slow and very costly. Using DASP leads to the required results
in a considerably less expensive way in a wide range of applications. In this
case widening the ADC application range is achieved by using nontraditional
signal digital processing methods and techniques rather than by improving the
semiconductor manufacturing technologies.

The upper frequency of a signal that could be processed digitally by an ADC in
a traditional way based on DSP depends on two relevant parameters: the highest
sampling rate and the bandwidth of the analog input. That bandwidth then has
to be equal to at least half of the highest sampling rate. However, in many cases
it is much wider. Typically it is often 4 to 8 times wider than the corresponding
half of the sampling rate. This valuable resource of ADC is often not exploited
in classical DSP applications.

The introduction of DASP technology into system designs changes the situation
drastically. Then appropriate nonuniform sampling and matched digital signal
processing techniques can be used to eliminate aliasing and, consequently, the
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Figure 2.8 Using DASP technology leads to significant widening of the operational frequency
range for the existing ADC

needed sampling rate does not directly depend on the upper frequency of the
signal. Only the other mentioned ADC parameter, namely the bandwidth of the
input, restricts this upper frequency. However, as in most cases this bandwidth is
much wider for a given ADC than half of the permitted sampling rate, using the
DASP technology typically increases the frequency limit to a level that is several
times higher.

Figure 2.8 illustrates this effect. This diagram, plotted on the basis of typical
ADC data taken from manufacturers’ catalogues, shows how much the application
range of the existing ADC could be widened in the frequency domain by paying
attention to the signal digitization processes and by changing the signal process-
ing techniques. It can be seen that using the DASP approach extends the upper
frequency limits of the application ranges of the considered ADC to frequencies
that are several times higher.

Note that two kinds of benefits could be obtained as a result of this effect. In
the lower frequency range, covered by many types of ADC, application of DASP
typically leads to cost savings as relatively low-priced converters can often be used
in this frequency range instead of more expensive devices. On the other hand,
only a few types of ADC could be used in the customary way in the indicated
region of the higher frequencies. In this frequency range, application of DASP
results in significant enlargement of the frequency range where signals can be
processed fully digitally. However, the most important benefit is the possibility
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of using existing ADC chips for signal conversions in a much larger frequency
range that is beyond the scope for alternative DSP techniques. For example, as
shown below, application of DASP makes it possible to use a 12-bit ADC with a
highest sampling rate of 125 MS/s in a wide frequency range up to 700 MHz.

It could be argued that replacement of the traditional DSP techniques by those
based on the DASP methods and algorithms is not always possible. That is true
as there are limitations. Although they are not directly tied to the sampling rate
used and are different, the limitations certainly do exist. Nevertheless, there is a
really wide application field where DASP can be applied beneficially.
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3

Periodic Versus Randomized
Sampling

Signal sampling, in general, is a well-investigated and described process. How-
ever, there are also some essential issues of sampling that are not usually given
much attention. The dependence of aliasing on conditions of signal sample value
taking and on the specifics of signal processing might be mentioned as examples.
That is understandable. Indeed, in the case of traditional periodic sampling, the
aliasing effect is not acceptable at all. Sampling then has to be performed in such
a way that the sampled signals are not distorted by aliasing. Under these condi-
tions, studying the impact of various sampling and processing conditions on the
aliasing effect does not make sense. The situation is completely different when
randomization of sampling is considered as a means of making the application
of fully digital signal processing possible in a much wider frequency range. The
processes accompanying aliasing need to be understood really well as the impact
of various sampling conditions on frequency overlapping plays a very important
role. To randomize signal sampling properly, it is essential to know how variations
of the periodic sampling conditions, including variations of the periodic sampling
phase, affect the characteristics of the obtained sampled signals.

Some issues of sampling, essential both for sampling and processing of sampled
signals, are considered in this chapter. Variable phase periodic sampling processes
are discussed, in addition, in Chapter 8.

3.1 Periodic Sampling as a Particular Sampling Case

Information carried by an analog signal x(t) can also be represented in a digital
form as a sequence of its instantaneous values x(tk) measured at time instants

Digital Alias-free Signal Processing I. Bilinskis
C© 2007 John Wiley & Sons, Ltd
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Figure 3.1 Examples of various sampling point processes and their graphical depiction

tk, k = 0, 1, 2, . . . . These signal readings obtained at discrete instants are usually
considered as signal sample values and the process of taking them is referred to
as sampling. The instants at which the samples are obtained form a stream of
uniform events, which can be depicted graphically as a sampling point process.
A few such point processes are shown in Figure 3.1. As demonstrated later, the
properties of the sampled signals depend to a considerable extent on the patterns
of the point processes generated and used for sampling.

When sampling is mentioned, it is usually assumed that the sampling process
considered is deterministic and periodic. The model of equidistant sampling,
according to which signal samples are separated by equal-length time intervals
T , has been extensively studied, is now used almost exclusively and is actually
considered as unique. This is readily comprehensible because such a sampling
approach appears to be the most natural and obvious. It also has a number of
attractive advantages. However, periodic sampling, in reality, is just one among
many other possible sampling models.

It was established a relatively long time ago that application of periodic sam-
pling alone is not sufficient. The periodic sampling model is not applicable when
fluctuations in sampling instants cannot be ignored or when signal samples can be
obtained only at irregular or even random time intervals. In addition, studies have
revealed that randomness in sampling is not always harmful. It was discovered
that random irregularities in the sampling process sometimes might even be ben-
eficial. If properly introduced and exploited, these irregularities provide various
useful effects. Basically they help to preserve the structure of the original signals,
making it possible, for instance, to estimate frequencies of signal components
even when these frequencies exceed half of the sampling rate.



JWBK152-03 JWBK152-Bilinskis March 6, 2007 21:15

Periodic Sampling as a Particular Sampling Case 65

Moreover, the sampling processes in reality are always more or less random-
ized. Although the randomness present at the signal sample taking process might
often be negligible, it still exists. A generalized sampling model describing the
sampling process analytically in a way that takes into account this sampling
feature will now be considered.

3.1.1 Generalized Sampling Model

Mathematical descriptions of sampling and sampled signals x(tk) are often based
on the set of Dirac distributions:

u(t) =
∞∑

k=−∞
δ(t − kT ). (3.1)

Function (3.1) can only be applied to periodic sampling. The sampling instants, in
this case, are separated on the time axis by sampling intervals T . To make it also ap-
plicable for the analysis of irregular sampling, this function is modified as follows:

u(t) =
∞∑

n=−∞
δ(t − tk), (3.2)

where δ(t − tk) is the delta function. Then a sampled signal can be given as

x(tk) = x(t)u(t) (3.3)

A sampling process may also be considered as a sequence of events taking
place at some time instants tk . Graphically this process can be depicted as a
stream of points or, in other words, as a point process. There are various sampling
point processes with significantly differing features. Three typical sampling point
processes that are most often observed are considered. The first periodic sampling
is defined as

tk= kT , k = 0, 1, 2, . . . . (3.4)

although this sampling model is the one most often used, it is evidently just a
theoretical abstraction. As it is extremely simple and often very close to reality,
application of this completely deterministic sampling model is fully justified.
However, the sampling could never be performed in a way strictly corresponding
to (3.4). The sampling events actually take place at time instants that are more or
less distanced from their expected locations on the time axis. In other words, the
sampling instants always fluctuate or jitter. To take this phenomenon into account,
another sampling model is used. It is obtained by rewriting (3.4) as follows:

tk = kT + τk, k = 0, 1, 2, . . ., (3.5)
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where T is the duration of a constant time interval and τ k is a realization of
a random variable τ . Relationship (3.5) is applicable more widely than just as
a description of jittering periodic sampling. It also defines a significant case of
randomized sampling, including deliberate randomization of the kind discussed
in detail in the following chapters.

There is yet another essential sampling model, given as

tk = tk−1 + τk, k = 0, 1, 2, . . .. (3.6)

Equation (3.6) describes a process known as the additive random point process.
Shapiro and Silverman proposed it as a convenient tool to describe randomized
sampling. This point process has a number of properties valuable for practical
applications, discussed in detail in Chapter 6. When the random point process
(3.6) is applied for sampling, the variances of the point locations on the time axis
add up, so that after some time the probability of seeing a sampling instant when
looking at a signal through a narrow window will always be the same. In other
words, in this case the average density of sampling points along the time axis is
constant. This effect cannot be generally achieved if sampling is performed on the
basis of the random point process (3.5), which is really periodic with the points
fluctuating near their expected locations. As this example shows, randomization of
sampling should be implemented properly so that some probabilistic requirements
are met; otherwise the desired positive effects will not be achieved.

Expression (3.6) also demonstrates a notable point showing that the widely
used periodic sampling is actually a particular case of randomized sampling.
Note that at σ/μ = 0 (μ and τ are the mean value and the standard deviation of
the random variable τ respectively) sampling is periodic and the time intervals
between the points are constant and equal to T (in this case μ = T ). By varying
this ratio, it is possible to cover the complete range from deterministic (periodic)
to extremely randomized sampling. The distribution of τ is shown in Chapter 6
to be of little importance, so this sampling scheme is applicable to a wide variety
of sampling interval distributions.

The randomness introduced into the sampling process in both mentioned cases
can be controlled by one parameter, the ratio σ/μ. This parameter has to be set
according to the conditions of the signal processing to be performed. Seemingly
logical rules for choosing the value of this parameter were defined a long time
ago and have been used for many years. It was considered that, on the one hand,
the randomness deliberately introduced at sampling has to be significant enough
to achieve the effect targeted (e.g. the suppression of aliases), but, on the other
hand, that randomness has to be minimized in order to lessen the statistical error.
Therefore the value of the parameter was typically set as small as possible. The
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value of this parameter might be varied in a wide range depending on specific
application conditions. While it is often kept within the range of 0.01–0.1, it might
often be much larger. For the random point processes shown in Figures 3.1(d)
and (e) the value of σ/μ is equal to 0.2. Note that even when such a relatively
large degree of randomness is introduced into the sampling point processes, its
presence is not obvious.

These basic recommendations seem to be straightforward and easy to compre-
hend. However, recently it has been discovered that much better results may be
achieved if a completely different approach to generation of the most effective
randomized sampling point processes is used. Therefore these recommendations,
given in many early publications, need to be taken critically. The generation of
various effective sampling point processes is discussed in Chapter 10.

Substitution of expression (3.6) into Equation (3.3) gives

x(tk) = x(t)
∞∑

k=0

δ[t − (tk−1 + τk)]. (3.7)

This expression describes the generalized sampling model. It covers both the
randomized and periodic sampling processes and is controlled by only one pa-
rameter. Even a small variation of the ratio σ/μ would lead to substantial changes
in characteristics of this sampling model. It should be emphasized that the dis-
cussed generalized model of sampling is signal independent. Deterministic as
well as random signals might be sampled in this way.

Equidistant sampling, although very popular, is really only a particular mode
of sampling. The achievable quality of a sampling operation directly depends on
the sampling point process used. Much better results have been achieved lately by
developing and using more elaborate sampling techniques. However, to develop
good randomized sampling schemes, it is worth carrying out additional studies of
the periodic sampling techniques, paying special attention to the crucial aliasing
effect and related issues.

3.2 Spectra of Sampled Signals

An attempt will now be made to find what can be expected from randomization
of the sampling operation by establishing how the spectral characteristics of the
sampled signals depend on the specifics of the sampling point processes used.
The spectrum of a sampled signal

Ss( fn) = lim
N⇒∞

2

N

N∑
k=1

x(tk) exp(−j2π fntk), (3.8)
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where N is the number of samples processed. By introducing function (3.2) and
noting that ∫ ∞

−∞
x(t)δ(t − tk) dt = x(tk),

it is found from Equation (3.8) that

Ss( fn) = lim
N⇒∞

2

N

∫ Θ

0
x(t)u(t) exp(−j2π fnt) dt, (3.9)

where Θ = E[tN ] and fn = n/Θ .

3.2.1 Spectra of Periodically Sampled Signals

When sampling is performed periodically and the sampling frequency fs = 1/T ,
the function u(t) is also periodic and its Fourier series expansion

u(t) = 1

T
+ 2

T

∞∑
r=1

cos
2πr

R
t

= 1

T
+ 1

T

∞∑
r=1

[
exp

(−j2πr t
T

)
+ exp

(
j2πr t

T

)]
. (3.10)

Substitution of Equation (3.10) into Equation (3.9) yields

Sn( fn) = lim
Θ⇒∞

2

Θ

∫ Θ

0
x(t) exp(−j2π fnt)

×
{

1 +
∞∑

r=1

[
exp

(
−j2π

r t
T

)
+ exp

(
j2π

r t
T

)]}
dt

= lim
2

Θ

∫ Θ

0
x(t) exp(−j2π fnt) dt +

∞∑
r=1

lim
Θ⇒∞

2

Θ

∫ Θ

0
x(t)

×
{

exp

[
−j2π

(
fn + r

T

)
t + exp

[
−j2π

(
fn − r

T

)]
t
}

dt

= Sx ( fn) +
∞∑

r=1

[
Sx

(
r
T

+ fn

)
+ Sx

(
fn − r

T

)]

= Sx ( fn) +
∞∑

r=1

[
Sx

(
r
T

+ fn

)
+ S∗

x

(
r
T

− fn

)]
, (3.11)
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Figure 3.2 Spectra of a signal before and after periodic and random sampling: (a) spectrum
of the analog signal; (b) spectrum of the periodically sampled signal; (c), (d) expectations of
the spectrum estimates when the signal is sampled randomly; (e) overlapping base and image
bands

where Sx ( f ) is the spectrum of the respective original signal and S∗
x ( f ) is the

complex of the conjugate of Sx ( f ).
Figures 3.2(a) and (b) illustrate the result. It is well known, but is not always

interpreted correctly. It can be seen that the spectra of the periodically sampled
signals are also periodic in the frequency domain and the sampling process is
responsible for that. However, it would be wrong to conclude that this periodicity
of sampled signal spectra is unavoidable. It is not the sampling itself but its
periodicity in the time domain that produces this negative effect.
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3.2.2 Spectra of Randomly Sampled Signals

Now assume that sampling is performed randomly according to definition (3.6).
Then the estimated spectrum

Sx ( fn) = lim
N⇒∞

2

N

∫ N

0
x(t)u(t) exp(j2π fnt) dt

= lim
N→∞

2

N

N̂∑
k=1

N x(tk) exp(−j2π fntk), (3.12)

where N̂ is the random number of signal samples taken during the time interval
Θ = Nμ. Function u(t) in this case is defined by Equation (3.2).

Note that the probability density function ϕk(t) of the function δ(t − tk) is
also the same for time intervals in the range [0, tk]. It is proved in Chapter 6 that
additive random sampling, if properly performed, is characterized by the equation

∞∑
k=1

ϕk(t) = 1

μ
= constant, (3.13)

where 1/μ denotes the mean sampling rate. If this condition holds, then it follows
from Equations (3.12) and (3.13) that the expectation of the estimated spectra

E
[

lim
Θ⇒∞

Ŝs( fn)

]
= lim

Θ⇒∞
2

Θ

∫ Θ

0

∞∑
k=1

x(t) exp(−j2π fnt)ϕk(t) dt

= lim
Θ⇒∞

2

N

∫ Θ

0
x(t) exp(−j2π fnt)

∞∑
k=1

ϕk(t) dt = Sx ( fn).

(3.14)

The properties of randomly sampled signals are therefore completely different
from those of periodically sampled ones. On the basis of Equation (3.14) a very
important conclusion is found:

If randomized sampling satisfies the condition (3.13), then the expectation of
the estimated spectra of randomly sampled quasi-stationary signals coincides
with the spectra of the respective original signals.

The spectral characteristics of a signal after periodic and randomized sampling
are shown in Figure 3.2.

It can be seen from the obtained results of this analysis that randomly sam-
pled signals, under specific conditions, might have unique spectral characteristics.
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Firstly, the spectra of the randomly sampled signals are not periodic in the fre-
quency domain. Secondly, the spectra of the original signals digitized in this way
might well be broadband, with their upper frequencies considerably exceeding the
Nyquist limit. Consequently, such randomization of sampling makes it possible
to perform spectral analysis of high-frequency signals without distortions of their
spectra that are usually observed under the same conditions when the sampling
operation is performed periodically.

However, it should be noted that these spectral characteristics have been ob-
tained on the assumption that the signals are stationary and that they are observed
and digitized infinitely. What happens when digitizing conditions are more real-
istic remains to be found. Nevertheless, the fact that randomization of sampling
might lead to elimination of spectral distortions is significant.

3.3 Aliasing Induced Errors at Seemingly
Correct Sampling

The sampling theorem states that a sequence of signal samples taken periodi-
cally is an accurate representation of the original signal provided that the upper
frequency of the analog signal spectrum is equal to or less than half the sam-
pling frequency. If this condition holds, the analog signal can be reconstructed by
interpolation between the sample values on the basis of the following formula:

x∗(t) =
∞∑

k=−∞
x(kT )

sin π(t/T − k)

π(t/T − k)
. (3.15)

The reconstructed signal x∗(t) is identical to the original only if the signal
spectral characteristics and the sampling frequency satisfy the requirements of
the sampling theorem. The typical penalty for not meeting them is the aliasing
effect, leading to increased signal reconstruction errors. On the other hand, if the
requirements defining the correct sampling conditions have been met, then no
aliasing and errors should be induced by this effect. It is tempting to interpret the
sampling theorem as a definition of conditions that, if satisfied, would guarantee
that no matter how the sampled signal is processed there would be no errors due
to aliasing.

The aliasing effect manifests itself in a number of seemingly different ways and
the systematic errors arising from it depend not only on the signal spectra and the
mean sampling rate but also on the specific task for processing the digitized signal.
For this reason, the requirements that have to be satisfied to avoid aliasing are often
more severe than those defined by the sampling theorem. However, this theorem
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does not say anything about the subsequent processing of the sampled signals.
While it states that under the specified conditions it is possible to reconstruct
the original signals from their sample sequences, this does not mean that there
are guarantees against aliasing errors in cases where these sample sequences are
used not for signal reconstruction but for some other kind of signal processing.
An attempt will be made to clarify this seemingly conflicting statement.

Estimates of a variety of averaged signal parameters, such as the mean value,
absolute mean value (rectified signal mean value), mean square value (mean
power), variance, higher moments of the probability density function of x and
other parameters can be defined as the expected values E[F(x)] of the appropri-
ately functionally converted signal F(x). This expectation is given as

E[F(x)] =
∫ ∞

−∞
F(x)p(x) dx = lim

1

2Θ

∫ Θ

−Θ

F(x(t)) dt. (3.16)

Assume that the signal x(t) is equidistantly sampled and try to determine how the
signal spectrum should be restricted under these conditions to ensure that there
is no aliasing. The Fourier series expansion of the functionally converted signal
for a time interval [0, Θ] is as follows:

F(x) = a0 +
∞∑

n=1

(an cos 2π fnt + bn sin 2π fnt), (3.17)

where a0, an and bn are the Fourier coefficients, characterizing F(x) for f = n/Θ .
Substitution of series (3.17) into Equation (3.16) yields

E[F(x)] = a0 + lim
Θ⇒∞

1

2Θ

∞∑
n=1

∫ Θ

−Θ

(an cos 2π fnt + bn sin 2π fnt) dt .

(3.18)

As the averaged value of any sinusoid is equal to zero, E[F(x)] = a0. The estimate
of E[F(x)] can be written as

Ê[F(x)] = E[F(x)] + lim
N⇒∞

1

2N

∞∑
n=1

N∑
k=1

(
an cos

2π fnk
fs

+ bn sin
2π fnk

fs

)
.

(3.19)

If the set of indexes n for which the ratio fn/ fs is an integer is denoted by V, then
it follows from Equation (3.19) that

Ê[F(x)] = E[F(x)] +
∑
n∈V

an. (3.20)
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The estimate Ê[F(x)] is therefore unbiased if the functionally converted signal
F(x) contains no components at frequencies for which the ratio fn/ fs is an integer
or, in other words, for which the set V is empty.

This method, when applied to determine the conditions for avoiding aliasing,
provides interesting results. For instance, to ensure that there is no aliasing when
the mean value of a signal is estimated, it suffices that the signal contains no
components at the frequencies fs, 2 fs, . . . , rfs, . . . . Hence the restrictions on the
signal spectrum are more loose for this kind of signal processing than those defined
by the sampling theorem. Estimation of the mean value is alias free if the upper
frequency of the signal spectrum does not exceed the sampling frequency fs.

However, this case is an exception. Analysis of other cases shows that the
limitations on the signal bandwidth guaranteeing the absence of aliasing errors
are usually stricter than those that formally follow from the sampling theorem.
To demonstrate this, consider some examples.

Example 3.1
The mean value of x3 (kT) is to be estimated. The sampled signal

x(nT ) = c1 sin(2π f1kT + ϕ1) + c2 sin(2π f2kT + ϕ2).

Obviously, E[x3(kT )] = 0. Some specific cases will be considered.

(a) Suppose f1 = 0.4 fs and f2 = 0.2 fs. It is evident the requirements of the
sampling theorem are met. However, calculations made on the basis of the
commonly used averaging procedure yield

lim
N⇒∞

1

N

N∑
k=1

x3(kT ) = − 3

4
c2

1c2 sin(2ϕ1 + ϕ2) �= 0.

The estimate so obtained is biased as a result of aliasing.
(b) Now consider the case where f1 = 0.4 fs and f2 = 1.1 fs. In this case the con-

ditions of the sampling theorem are not satisfied. Nevertheless, the averaging
performed according to the above formula provides an unbiased estimate of
E[x3(kT)], which means that in this case there is no aliasing.

Comments. It can be shown that x3(t) for the given signal contains components
at frequences 3 f1, 3 f2, (2 f1 + f2), ( f1 + 2 f2), f1, f2. In the case of Example
2.1(a) aliasing occurs because 2 f1 + f2 = fs. There is no aliasing in the case of
Example 2.1 (b) because none of the components of the six indicated frequencies
of x3(t) is equal to rfs.
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Example 3.2
The upper frequency fn of a signal spectrum is equal to 0.25 fs. The demands
of the sampling theorem are obviously met. The estimate E[|x{nT }|] is calculated
on the basis of the commonly used algorithm given below. The question is whether
or not the estimate will be corrupted by errors due to aliasing. To find the answer,
it is sufficient to consider the estimation of the mean absolute value of only one
sinusoidal signal component at frequency fn. It can be shown that

E [|x(t) = c sin 2π fnt |] = 2c
π

.

On the other hand, when this signal is sampled and digitally processed as required,
the expected estimate

Ê [|c sin 2π fnkT |] = lim
N⇒∞

1

N

N∑
k=1

∣∣∣∣c sin
πk
2

∣∣∣∣ = c
2
.

Comparison of the true and the estimated values reveals that the latter is biased
and that aliasing therefore occurs. To understand why this is so, the Fourier
series expansion of |c sin 2πf nt | should be considered. It can be shown that it
contains components at frequencies 2 fn , 4 fn , 6 fn , . . . . Under the given conditions,
4 fn = 2 fs and 8 fn = 2 fs, . . . . The components at these frequencies cause the
bias errors.

The given examples show how misleading a superficial interpretation of the sam-
pling theorem can be. They are given in order to draw attention to the fact that
conditions for alias-free signal processing, in the cases where signals are to be
functionally converted, differ from those stated by the sampling theorem. It is not
sufficient to know the upper frequency of the signal spectrum to determine how
high the sampling frequency should be to be sure that there will be no aliasing
induced errors. The subsequent specific processing of the digitized signal should
also be taken into account.

Note that functional conversions, performed either before or after the sampling
operation, lead to the same additional restrictions on the spectra of the correspond-
ing signals. If the original signal x(t) is functionally converted before digitizing, as
shown in Figure 3.3(a), then, naturally, the required sampling frequency is deter-
mined by the spectrum of the converted signal F[x(t)]. When the equivalent con-
version is performed in the course of processing the digital signal x(kT), as shown
in Figure 3.3(b), then the signal is sampled at the same rate as in the first case.

This rule is applied to the cases illustrated by Examples 3.1 and 3.2. It can
easily be established that the permitted bandwidth of the signal x(t) is less than
1/3 fs in the case of the functional conversion F[x(t)] = x3(t). In the case when
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Figure 3.3 Signal parameter estimation options: (a) functional conversion is performed before
analog-to-digital conversions; (b) functional conversion is performed after analog-to-digital
conversions; (c) parameter estimation scheme not requiring an increase in the signal sampling
rate

F[x(t)] = |x(t)|, the acceptable signal bandwidth is even narrower, less than
1/4 fs.

There is another possible way to organize sampling and processing, illustrated
in Figure 3.3(c). This approach allows sampling to be performed without taking
into account additional restrictions imposed by processing algorithms. Accord-
ingly, sampling is carried out correctly as required by the sampling theorem, after
which the original signal is reconstructed and resampled. This makes it possible
to obtain as many sample values as required to ensure that no aliases interfere with
processing the digitized signal. However, this method is much more complicated
and therefore it is not suggested for practical applications.

At least two conclusions may be reached from this brief discussion and
Figure 3.3. Firstly, sampling conditions should be matched to the specifics of
the signal processing algorithms used to change the criterion for alias-free signal
sampling as stated by the sampling theorem. Secondly, the application area of
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Figure 3.4 Difference between: (a) regular and (e) irregular sample value sets. Many sinu-
soids, for instance at the indicated frequencies (b), (c) and (d), can be drawn through the set in
(a), and only one through the set given in (e)

the conventional anti-aliasing technique, in the case of periodic sampling based
on low-pass prefiltering, is considerably narrower than formally follows from the
theorem.

3.4 Overlapping of Sampled Signal Components

Overlapping of a periodically sampled signal components occurs when the orig-
inal signal contains two or more components at the frequencies

f0, fs ± f0, 2 fs ± f0, . . . , n fs ± f0. (3.21)

Therefore many sinusoids can be drawn through an irregular sample value set, as
shown in Figure 3.4. However, it is not clear what really happens when two or
more signal components overlap. It is not obvious exactly how they add up.
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It is clear that adding several analog sinusoids at one and the same frequency
forms one sinusoid but that does not directly apply to the case of aliasing. The
situation is then different as in that case several sinusoids at different frequencies
are added and the obtained sum is sampled. The relationships underpinning this
process will be examined.

Consider a wideband complex signal x(t) containing one component at a fre-
quency f1 ∈ [0, 0.5 fs] and many other sinusoids at the frequencies indicated in
(3.21):

x(t) = c1 sin(ω1t + ϕ1) +
∞∑

m=1

{c1m sin[2π(m fs + f1)t + ϕ1m]

+ c2m sin[2π(m fs − f1)t + ϕ2m]}, (3.22)

where ω1 = 2π f1. Assume that this signal is periodically sampled at time instants
tk = kT = k/ fs. To derive a description of the sampled signal, it is useful to take
into account the following equality:

2π
(m fs ± f1)k

fs
= 2πmk ± 2π f1k

fs
.

Then the sampled signal can be given as

x(tk) = c1 sin(ω1tk + ϕ1) +
∞∑

m=1

[c1m sin(ω1tk + ϕ1m)

+ c2m sin(ω1tk + π − ϕ2m)] (3.23)

Another expression might also be used to describe this sampled signal. To derive it
Equation (3.23) can be rewritten by substituting the following Fourier coefficients:

a1 = c1 sin ϕ1, b1 = c1 cos ϕ1,

a1m = c1m sin ϕm1, b1m = c1m cos ϕm1,

a2 = c2m sin ϕ2m, b2 = c2m cos ϕ2m .

Then

x(tk) = a1 cos ω1tk + b1 sin ω1tk

+
∞∑

m=1

(a1m cos ω1tk + b1m sin ω1tk + a2m cos ω1tk − b2m sin ω1tk)

=
[

a1 +
∞∑

m=1

(a1m + a2m)

]
cos ω1tk +

[
b1 +

∞∑
m=1

(b1m − b2m)

]
sin ω1tk

(3.24)
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1

2

Figure 3.5 Waveform (1) of a complex analog signal and a sinusoid (2) that can be drawn
through the same set of signal sample points

It follows from Equation (3.24) that

x(tk) = a cos ω1tk + b sin ω1tk (3.25)

where

a = a1 +
∞∑

m=1

(a1m + a2m)

b = b1 +
∞∑

m=1

(b1m − b2m)

(3.26)

These expressions show that if a signal contains a number of components with fre-
quencies belonging to the row (3.21), their sum can be described as one digitized
sinusoid. The frequency of this sinusoid may be any from (3.21).

An illustration of the summing of a number of sinusoids at frequencies from
row (3.21) and the associated digital version of the sum are given Figure 3.5.
The analog signal (waveform 1) is formed in accordance with Equation (3.22).
In addition to the sinusoid at frequency f1 = 0.2 fs, other sinusoids are included.
Waveform 1 of a complex analog signal contains components at frequencies ex-
ceeding 0.5 fs and is characterized by the parameters given in Table 3.1 and
shown in Figure 3.5. This signal is sampled and the sinusoid (waveform 2)
with parameters defined by Equations (3.26) is then drawn through the sample
points.

Compare waveforms 1 and 2. They are quite different. Yet there is no doubt that
in the digital domain they are equivalent, because both of them are represented
by one and the same sample sequence. Hence one of the digital representations is
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Table 3.1

m C1m C2m ϕ1m ϕ2m

1 0.10 0.15 −1 3
2 0.20 0.15 5 −2
3 0.05 0.10 −3 2
4 0.05 0.10 1 4
5 0.10 0.05 −4 6

not adequate. Obviously, it is waveform 1 that is misrepresented. To understand
why this is so, note that according to Equations (3.26) it is the Fourier coefficients
of sampled signal components and their related aliases rather than the sampled
waveforms that are added. This is how waveform 2 in Figure 3.5 was obtained.

In the domain of discrete signals, summing sinus waves even at different fre-
quencies may result in one sinusoid. This will be so in cases where the frequencies
of the particular sinusoids belong to the row (3.21). However, it should be noted
that the sinusoid obtained in such a way is really imaginary. It shares its sam-
ple values with the associated aliases, but its parameters differ from those of the
corresponding summary analog signal. To confirm this, the mean powers of the
signal defined by Equation (3.22) and of its digital sinusoid can be compared.
The mean power of the signal is

Px = 1
2

[
a2

1 +
∞∑

m=1

(
a2

1m + a2
2m

) + b2
1m +

∞∑
m=1

(
b2

1m + b2
2m

)]

while the mean power of the sinusoid given by Equation (3.26) is

Ps = 1
2 (a2 + b2).

It is apparent that Px �= Ps .

As the examples given above show, the manner in which aliasing affects the
estimation of signal parameters is one of the essential points that have to be kept
in mind to avoid corruption of signal parameter digital estimation results.

3.5 Various Approaches to Randomization of Sampling

Once the fact is accepted that other types of sampling processes might and
often should be used for signal digital representation as alternatives to periodic
sampling, it soon becomes clear that there are many variations of the sampling
processes that have to be considered in order to choose a version most suitable
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for a given specific application. Two basic sampling options, both appropriate for
various applications, are considered further: periodic and nonuniform.

Periodic sampling is preferable whenever the signal bandwidth can be restricted
or the sampling operation performed at the rate required by the sampling theorem.
There are several reasons for this preference. Firstly, periodic sampling is the
simplest method of performing this procedure. Secondly, periodic sequences of
signal samples are well suited to digital processing. In addition, there are many
highly efficient algorithms available for processing periodically sampled signals,
including so-called fast algorithms.

Nonuniform sampling might take place either when signal sample values are
obtainable and could be taken only at some random unpredictable time instants
or when these sample values are taken nonuniformly in order to obtain some
specifically targeted effects, like avoiding aliasing. The former cases are beyond
the scope of this book. However, many of the developed techniques for handling
nonuniform data are also applicable in this area. The latter cases are of most
interest for many further applications.

One of the basic subjects examined in this book is nonuniform sampling,
realized either as deliberately randomized or deliberately pseudo-randomized
operations. They are vital for achieving the capability of processing signals in a
very wide frequency range. Therefore this kind of sampling is most interesting
in the light of problems considered in the following chapters. While that is true
both for deliberately randomized and deliberately pseudo-randomized sampling
processes, the techniques for their execution and the most suitable applications
for them differ.

Randomized sampling is sometimes appropriate for applications when it is
undesirable to distort signals by filtering off signal components at frequencies
exceeding half of the sampling rate. However, the signal sample values at random-
ized sampling are taken at unknown random time instants. Therefore application
of this kind of randomized sampling is limited to the relatively rare cases where
information about exact sampling instants is not relevant. Estimation of some
signal parameters, including signal power, and measurements of time intervals
with a subnanosecond time resolution might be mentioned as some application
examples for such a sampling approach.

Sampling might be randomized either directly or indirectly. To realize direct
sampling randomization, signal sample values are taken at random time instants
linked to pulses in a specially generated random sampling pulse process.

For indirect sampling randomization, a periodic reference waveform rather
than a sequence of pulses formed at random time instants is used to perform the
sampling process. The sampling process itself is then defined as the signal and the
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reference waveform crossings. The basic design of the involved electronic sam-
plers is simple and helps to locate these devices very close to the signal sources.
The advantage of this approach is that the link between the devices performing the
sampling operation and the master part of the whole structure is digital. This kind
of indirectly randomized sampling is suggested in Chapter 7 as a technique of
remote sampling used for data collection from multiple distributed signal sources.
As shown there, it represents a competitive alternative to multichannel data ac-
quisition based on multiplexing of analog signals. Digital output pulses of the
comparators, which fix in time the crossings of the signal and the reference func-
tion, rather than analog signals are multiplexed in this case. Reconstruction of
the signal sample values is based on the a priori reference waveform parameters
and the fixed crossing time instants. This particular sort of sampling process is
outside the mainstream sampling techniques. However, it has been found to be
quite useful for temporal and spatial data acquisition from a large quantity of
signal sources.

Pseudo-randomized sampling is the basic anti-aliasing technique. The indi-
cations for its use are the same as for the randomized sampling except that the
sampling instants in this case are predetermined with high resolution and preci-
sion. While this type of sampling might be performed in various ways, the most
often used method is the so-called additive pseudo-randomized sampling scheme.
It is described in detail in Chapters 6 and 9.

Both uniform periodic and nonuniform sampling have their typical applica-
tions, advantages and limitations. Indeed, while periodic sampling has many
remarkable positive properties, application of it is limited by its basic disadvan-
tage, aliasing. To avoid aliasing, nonuniform sampling has to be used. However,
nonuniform sampling also has some disadvantages. Application of it often leads
to more or less noticeable statistical signal processing errors. Therefore it makes
sense to combine the periodic and nonuniform sampling processes in an attempt
to develop sampling techniques applicable for alias-free digitizing of signals in a
wider frequency range with increased accuracy. These considerations led to the
development of a quite useful hybrid sampling (HS) approach based on mixing
the periodic and nonuniform sampling processes. It is discussed in Chapter 10.

HS actually covers various kinds of sampling models. The motivation for using
the HS approach is the fact that potentially these techniques are very beneficial
both for theoretic abstractions and practical applications. Application of HS mod-
els often helps in simplifying the analysis of various signal processing cases and
HS abstractions are also useful in the development of new algorithms.

A particular HS model is hybrid double sampling (HDS). The idea underpinning
HDS is the use of at least two ADCs connected in parallel. Such an approach by
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Table 3.2

Especially addressed applications Advantages and limitations

1. Directly randomized nonuniform sampling
Signal parameter estimation not requiring

sample value timing
Subnanosecond resolution time interval and

related parameter digital measurements

Simple and robust technical implementation
of sampling, simple designs of processing
devices

Limited application range.

2. Indirectly randomized nonuniform sampling, based on reference function crossings
Remote sampling for massive data

acquisition systems
Reduced complexity low-power remote

sampler designs
Digital link, either wire or radio, inserted

between the sampling and master parts
of multi-channel ADC

Data compression
Limited to data acquisition from relatively

low frequency sources.

3. Pseudo-randomized nonuniform sampling
Universal digital alias-free signal processing Wide range of alias-free versatile digital

processing applications
Increased complexity processing
The existing fast algorithms not applicable

4. Hybrid periodic/nonuniform sampling
Versatile signal analysis and waveform

reconstruction.
Reduction of nonuniform sampling

drawbacks
Widening of dynamic range
Digital signal preconditioning for reduced

complexity processing

Better suited for processing adapted to
sampling irregularities

Increased-complexity processing in
comparison with the case of periodic
sampling

The existing fast algorithms not applicable

5. Hybrid double periodic/nonuniform sampling
Signal processing requiring closely placed

sample value taking, high-resolution
correlation analysis, processing of
signals with continuous spectra

High resolution at correlation and spectrum
analysis

Two ADCs connected in parallel required
for sampling

itself is not new. Signal sampling by two ADCs connected in parallel is a technique
often applied in cases of periodic sampling of signals. It is obvious that this is
done to increase the sampling rate twice. However, in the case of HDS, the same
approach is used to obtain a quite different effect. Specifically, HDS is usually
performed to provide the right conditions for processing wideband signals with
both discrete and continuous spectra in a broad frequency range. In such cases
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the distances between the adjacent sampling instants need to be sufficiently short.
When sampling is performed in accordance with the HDS model, the signal
sample values, formed by the outputs of two ADCs connected in parallel, could
be placed much closer than half of the sampling interval characterizing the use
of a single ADC.

Thus five different nonuniform sampling approaches, in addition to periodic
sampling, are studied in the following chapters. It is assumed that the advantages
and drawbacks of periodic sampling are well known. All of the nonuniform
sampling approaches, their typical applications, advantages and limitations are
summarized in Table 3.2.

Apparently the classical way of treating signals digitally is not exclusive. There
are also other different ways of doing that, as shown in this book and in many
other publications. These alternatives are examined in this book. Although the
nonuniform sampling techniques differ, all of them are based on taking signal
sample values irregularly in time. That is necessary in order to avoid frequency
overlapping and to avoid aliasing. Theoretically, it is often convenient to as-
sume that the random (pseudo-random) intervals between the sampling instants
are distributed according to one or another distribution, including the exponen-
tial distribution. However, there are practical considerations that impose some
restrictions. Specifically, the interval between two successive sampling instants
should never be shorter than allowed by the operational speed of the used ADC.
By definition, the mean sampling rate of a typical alias-free nonuniform sampling
process covering a certain frequency range is lower than the sampling frequency
of the periodic sampling process that would be used for sampling the same sig-
nals. In other words, a typical nonuniform sampling process is sparse with fewer
sample values taken in a given time interval.
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4

Randomized Quantization

Quantizing is usually defined as a rounding-off operation and this definition fits
both the deterministic and the randomized versions of this operation. The quan-
tization process is always carried out according to the same generalized scheme,
given in Figure 4.1. To quantize a signal, instantaneous values are first roughly
measured and then the measurement results are rounded off. The differences lie
in how in these procedures are implemented, leading to various properties of the
quantized signals. While the signal instantaneous values are always measured by
comparing them with some reference threshold levels, the latter are kept in fixed
positions for deterministic quantizing and are randomly varied for randomized
quantizing. This means that the rounding-off function in both cases is carried
out in two different ways. It is deterministic in the first case and probabilistic
in the second case. Realization of the second approach seems to be and usually
is more complicated than the first. However, under certain conditions it pays to
perform quantizing of signals in this more complicated way as the properties of
the quantized signals are quite different, which leads to various potential desirable
benefits. On the other hand, the errors of randomized quantizing are typically dis-
tributed in an interval that is twice larger than those of comparable deterministic
quantization. Essentials, advantages and drawbacks of this quantization approach
are discussed in this chapter.

4.1 Randomized Versus Deterministic Quantization

Assume that the signals to be quantized are within the signal amplitude range
[−Am, Am]. To perform B-bit quantizing, this range is subdivided into 2(2B−1 −
1) elementary intervals q, which are known as quantization steps. In the course of

Digital Alias-free Signal Processing I. Bilinskis
C© 2007 John Wiley & Sons, Ltd
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Figure 4.1 Essence of the quantizing operation

quantizing, the instantaneous values of signals have to be measured and rounded
off, so the quantized signal is represented in the following form:

xq = nq, n = 0, ±1, ±2, . . . ,±(2B−1 − 1), (4.1)

where

q = 2Am

2B − 2
= Am

2B−1 − 1
.

4.1.1 Basics

Everything said so far applies to both deterministic and the most popular versions
of randomized quantizing. However, if the quantization operation is considered in
some detail, then the deterministic and randomized quantizing of course differ. To
continue this discussion, look at Figure 4.2, where the time diagrams illustrating
deterministic quantizing of a unipolar signal are presented. The levels q, 2q,
3q, . . . , to which input signal instantaneous values are rounded off, are shown in
Figure 4.2(a) by dashed lines. They are in fixed positions. The distance between
them is equal to the quantization step q.

To express the instantaneous values of the input signal in terms of q, they
are first compared with another set of reference levels. In the case illustrated by
Figure 4.2(a) these levels are constant. The distance between two of them is also
equal to q, but the whole set of reference levels is located so that the first of them
is elevated above the x axis by half the quantization step q. The measurement
procedure is accomplished by comparing the signal with these reference levels
and counting the number n of them that are below the signal’s instantaneous
value. When the signal being quantized is analog, as it is in the case shown, the
quantized signal changes its value stepwise whenever the input signal crosses one
of the reference thresholds. As can be seen from the diagrams, rough deterministic
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Figure 4.2 Time diagrams illustrating uniform deterministic quantizing: (a) original and
quantized signals; (b) quantization noise

quantization is a typical nonlinear operation insensitive to small changes in the
input signal.

Randomized quantizing follows the same procedure, but in this case the refer-
ence levels are not fixed: they change continuously or step by random step from
one quantizing instant to the next, as can be seen in Figure 4.3. Randomly (or
pseudo-randomly) quantized signals are henceforth denoted by x̂ . The notation
x̂ is used because it is simple. However, it should be noted that x̂ does not denote
the estimate of the corresponding signal value, unlike other similar notations used
in this book. Then

x̂ = nq, n = 0, ±1, ±2, . . . , ±(2B−1 − 1) (4.2)

Formally, the rounded-off values of a randomly quantized signal are determined
in the same way as for deterministic quantizing, i.e. the randomly changing thresh-
old levels below the respective signal sample value are counted and the quantized
signal x̂k is defined as being equal to nkq. However, the essence of this rounding-
off operation in the case of randomized quantizing is quite different. As explained
further, for randomized quantizing this operation is probabilistic. This means that
one and the same instantaneous value of a signal with probabilities depending on
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Figure 4.3 Illustration of randomized quantizing

that signal value might be rounded off to various digital levels. As a result, the
properties of a randomly quantized signal differ significantly from the properties
of a deterministically quantized signal.

Note that there are two seemingly different approaches to randomization of
quantizing. While in the quite popular cases of so-called dithering, mentioned
in Chapter 1, noise is added to the signal at the input of a deterministic quan-
tizer, the quantization operation could also be randomized as explained above by
just forming time variable sets of reference levels and using them for rounding
off the input signal instantaneous values. Electronic implementations of these
randomized quantization schemes are indeed different. However, the essence of
them is equivalent. It does not matter exactly how the randomness is introduced
at quantizing. The results are exactly the same.

4.1.2 Input–Output Characteristics

The essentials of various quantization models can also be illustrated by spe-
cific representation of the quantized signals, including their input–output charac-
teristics, shown in Figure 4.4. While deterministic quantization has one fixed
input–output relationship (Figure 4.4(a)), randomized quantization, in gen-
eral, is characterized by different input–output relationships depending on the
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Figure 4.4 Input–output characteristics: (a) for deterministic quantizing and (b) input-
expected output characteristic for randomized quantizing

specific quantizing model used. Moreover, the outcome of such quantizing, even
for a specific quantizing model, is determined by instantaneous input–output char-
acteristics. On the other hand, these instantaneous relationships are, of course,
impractical. Instead, averaged input–output characteristics may be used. They are
more convenient and appropriate for characterizing randomized quantizing. They
may also be considered as input–expected output characteristics. The character-
istics of the quantization case illustrated in Figure 4.5 are given in Figure 4.4(b).
They are specific in the sense that they do not provide an exact answer to the
question of what quantized signal value will be indicated in a particular case of a
given input signal value. The answer to this question is obviously probabilistic.
The input–expected output characteristic indicates the probabilities that specific
quantized signal values will be assigned to a given input signal value. Figure 4.5
explains how these probabilities could be evaluated.

The expected value E[x̂] of the quantized signal after correctly executed ran-
domized quantizing is equal to the input signal value. In the case illustrated
in Figure 4.5, x = E[x̂] = 4.37. However, at any given time instant the quan-
tized signal can assume one of two possible values. In the case of this example,
these values are 4 or 5. Figure 4.5 shows how to determine the probabilities
p(x̂ = 4q) and p(x̂ = 5q).

Even these brief descriptions of deterministic and randomized quantizing
clearly show that the deterministic and randomized approaches used to execute
the quantization operation differ significantly. The properties of the quantized
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Figure 4.5 Illustration of quantizing performed according to Model 2 in detail.

signals obtained as a result of these two types of quantizing operation also differ
greatly.

4.1.3 Rationale of Randomizing

The positive effect due to randomizing the quantization operation is actually
obtained as a result of two procedures: randomizing the rounding off of signal
instantaneous values and processing the randomly quantized signal. The sim-
plest processing is simply averaging. Naturally, the deterministically quantized
signals might be processed in this way as well. It is therefore of some interest
to evaluate and compare the effect obtained when averaging is applied to both
deterministically and randomly quantized signals.

In addition, it can be said that randomized quantizing is a linear operation
if it can be accepted that the output signals are represented in statistical terms,
i.e. as estimates of the expected quantized signal values. This obviously requires
averaging of the particular quantized signal samples, which may or may not be
appropriate from the viewpoint of subsequent signal processing.
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Unlike deterministic quantizing, randomized quantizing is sensitive to small
increments of signals, which cause proportional increases in output Ê[x̂]. This
kind of quantizing can therefore be used for applications where it is desirable to
use rough quantizing. It is of practical interest not only from the viewpoint of
reducing the bit streams representing quantized signals. What is more important
is the fact that quantizers, when they contain only a few comparators, can be built
as extremely broadband devices. Such quantizers, or specialized ADCs, could
be very valuable for ultra-high frequency applications. Moreover, this type of
relatively simple specialized ADC can be successfully used even for relatively
complicated signal processing such as correlation and spectral analysis.

Rough deterministic and rough randomized quantizing schemes differ notice-
ably. A single-threshold level deterministic quantizer does not give much infor-
mation about the input signal. While it is possible to measure the time intervals
between signal crossings of the threshold level, none of the signal basic parame-
ters can be estimated. The randomized single-threshold level quantizing process
is much more informative. By processing the randomly quantized signals pre-
sented in the form of stochastic bit streams it is possible to estimate the mean
value of the original signal and to measure its peak or amplitude values.

4.2 Deliberate Introduction of Randomness

Randomness is deliberately introduced into the quantization process to perform
the rounding-off operation in a probabilistic way. This means that a signal in-
stantaneous value xkwithin a range (0, q) is rounded off to the values 0 or q
depending on results of comparing it to a randomly generated value ξ k uniformly
distributed within the same range. If xk < ξk , the value of xk is rounded off to 0
and if xk > ξk then the result of rounding-off is equal to q. Therefore the outcome
of the probabilistic signal rounding-off depends not only on the signal value itself
but also on the random variable ξ . Even a small signal value with some probability
may be rounded off to q and when that happens the particular quantization error
is large. Such randomization of quantizing can be beneficial only under certain
conditions. It does not make sense to randomize the quantization of separate un-
correlated signal sample values as it would then lead to worse, not better, results.
On the other hand, the properties of the signal quantized in this way, as shown
below, are attractive. In general, this approach might be advantageous for applica-
tions where sampled signals are quantized continuously for some duration of time
and the quantized signals are later properly processed. This can be implemented
in various ways.
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4.2.1 Various Models

If the idea is accepted that it is possible to use time-variant threshold levels for per-
forming signal quantization, various models for randomized quantization might
be suggested. They differ first of all in the underlying statistical relationships, ac-
cording to which sets of random threshold levels are formed. In some other cases
the definitions of the quantized signals differ as well. Three models of randomized
quantization have been selected from a relatively large quantity considered over
a long period of time. They are discussed below and recommended for practi-
cal applications. In fact, they are versions of one and the same basic Model 1,
illustrated in Figure 4.5.

Model 1
The intervals between the reference threshold levels (Figure 4.3), according to
this model, are random and each set of levels used at time instants
tk−1, tk, tk+1, tk+2, . . . differs from every other set. The threshold level ordinates
qki should therefore be denoted by double indices indicating the time instant (first
index) and the respective threshold level ordinate (second index). The threshold
level sets are formed in such a way that

qki = qk(i−1) + τki , (4.3)

where τki is a realization of the random variable.
Note that Equation (4.3) actually describes the same relationship as the one

on which the additive random sampling scheme is based. As with random sam-
pling, the intervals between the randomly positioned threshold levels {qki , qk(i−1)}
should also be identically distributed and mutually independent. This is required
to ensure that the quantized signal values x̂k are unbiased, i.e. to ensure that
E [x̂k] = xk . In the case of Model 1,

x̂k = nkq̄, (4.4)

where nk is the number of threshold levels below the corresponding signal value
xk and q̄ is the mean value of the intervals between the threshold levels.

It is apparent from Figure 4.3 that implementation of this quantization scheme
is not simple. Since it makes sense to randomize the quantization of mostly high-
frequency signals, the threshold level sets needed for that have to be generated
during short time intervals {tk+1 − tk}. This is not easy because the required
statistics of those levels should satisfy certain requirements. For instance, the
reference value in this case is the mean value of the intervals between the threshold
levels q̄. Therefore the stability of this parameter has to be secure. This threshold
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forming process will not be dealt with in detail because quantization in accordance
with Model 1 is not really recommended for analog-to-digital conversions of
time-variant signals. This approach is much better suited for quantization of
short time intervals, phase angles and other related physical quantities. For these
applications, the quantization thresholds are in the form of short pulses generated
at proper time instants and the involved techniques are those used for randomized
sampling. They are considered in Chapter 6.

The randomized quantization of time intervals can therefore be analysed using
virtually the same relationships as those derived in Chapter 6 for randomized
sampling. Of course, this is also true for amplitude quantization performed in
accordance with Model 1. For instance, it can written that the expected value of
the quantized signal is

E[x̂k] = q̄ E[nk]. (4.5)

The expected number of threshold levels within the interval [−X0, xk] can be
determined by applying the function derived in Chapter 3. In this case,

lim
x0⇒∞ E[nk] = lim

x0⇒∞[P(X0 + xk) − P(X0)] = xk

q̄
. (4.6)

Substituting Equation (4.6) into expression (4.5) gives

E[x̂k] = xk . (4.7)

Therefore the expected value of a quantized signal value is equal to the corre-
sponding signal value. In this sense the quantization is a linear operation. Such
quantization is unbiased, which holds even for very crude quantization.

To ensure the correct performance of quantizers built according to the require-
ments of Model 1, only one parameter of the random threshold level sets, namely
the mean value q̄, should be kept constant at a given level. Other statistical pa-
rameters may slowly drift so long as they remain within some relatively broad
limits. Instantaneous input-output characteristic is given in Figure 4.6.

Model 2
This model is more versatile and practical. In fact, this is a version of the generic
Model 1, characterized by σ/q̄ ⇒ 0, where σ is the standard deviation of the
intervals {qki − qk(i−1). Under these conditions, the intervals between thresholds
are constant and equal to the quantization step q. Randomized quantization per-
formed in accordance with this model is also illustrated by Figure 4.3. This time
diagram is given for quantization of a unipolar signal. The equidistant threshold
level sets change their positions randomly at time instants tk−1, tk, tk+l , . . . .
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Figure 4.6 Instantaneous input-output characteristic of Model 1.

To ensure that the quantized signal value

x̂k = nkq, (4.8)

the interval q0k between the zero level and the first threshold above it should be
distributed uniformly within the range [0, q]. Note that the random interval q0k at
each quantization instant tk determines the positions not only of the first but also
of all the other evenly spaced threshold levels of the respective set. This means
that only one random variable has to be generated and stabilized, which simplifies
the implementation of this quantization method considerably. The quantization
results in this case are, of course, unbiased.

Model 3
This model is also a version of Model 1, differing from it only by the definition of
the reference value. Instead of relying on a relatively inconvenient basic measure
q̄, this quantization scheme relies on a reference that can be stabilized more
accurately: a constant voltage level X representing the upper boundary of the
signal range. The quantized signal in this case is given as

x̂k = nk

mk
X, (4.9)

where mk is the number of threshold levels falling at the time instant tk within the
interval [0, X ]. It follows from this equation that a quantization scheme such as this
does not require the stability of the involved random processes. This is certainly
a desirable feature, making this technique well suited for practical applications
including short time interval measurements.
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Note that the quantized signal values calculated according to Equation (4.5)
are in fact biased. To confirm this, the quantized signal x̂ can be considered as a
function of the variables n and m. The Taylor expansion of this function around
the point (E[n], E[m − n]) is

x̂ = E[n]

E[m]
X + E[m − n]

(E[m])2 X (n − E[n])

− E[n]

(E[m])2
X (m − n − E[m − n]) + R, (4.10)

where R is the remaining term.

E[x̂] = E[n]

E[m]
X + E[R] = x + E[R]. (4.11)

This means that the bias of the quantised signal x̂ is equal to E[R].
Calculations show that in many cases this bias can be ignored because it is

relatively small. For instance, when q̄ = 0.5X and q̄ = 0.2X the error due to
this bias is no more than 3.5 % and 0.27 % of the maximal statistical error value
respectively (99 % confidence level). Moreover, this bias error rather nontypically
decreases when the quantized signal values are averaged.

It is shown in Chapter 19 that this randomized quantization model is especially
well suited for measuring short time intervals with nanosecond or even picosec-
ond resolution. At these applications, the quantizing stream of pulses generated
at random time instants in accordance with the given relationships is used as
an instrument for comparing the time interval being measured with a reference
interval. The point is that the characteristics of the used random pulse sequence
may drift around their nominal values without degradation of the measurement
precision as long as the reference interval is kept stable.

4.3 Quantization Errors

Whatever quantization principle is applied, the following can always be written:

or
x(t) = xq (t) + ε(t)

x(t) = x̂(t) + ε(t),
(4.12)

where ε(t) is quantization noise. An illustration of ε(t) produced by the determin-
istic quantization of a signal is shown in Figure 4.2(b). When sampled signals are
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quantized, expression (4.12) is slightly modified. Then

or
xk = xqk + εk

xk = x̂k + εk

(4.13)

and the quantization noise is represented by the sequence of respective quantisa-
tion errors εk .

Quantization techniques are usually characterized not only by the time dia-
grams and input–output relationships described but also by the properties of the
corresponding quantization errors or noise. In the case of deterministic quantiz-
ing, the errors {εk} are usually assumed to be uniformly distributed in the range
[−0.5q, 0.5q]. It is also assumed that

E[xq ] = x, E[ε(t)] = 0. (4.14)

It follows from these assumptions that there are no bias errors and that statistical
quantization errors have the following variance and standard deviation:

Var[ε(t)] = q2

12
, σε = q

2
√

3
(4.15)

or, in terms of Equation (4.1),

σε = Am

(2B2)
√

3

These simple formulae are appropriate for quantizer evaluations in rough calcu-
lations and for other simplified calculations. For many multibit quantizer appli-
cations a more complicated analysis is often not required.

However, the assumption that the quantization errors are distributed uniformly
does not hold in cases where rough quantization is applied or when signal am-
plitudes are comparable with the quantization step q. The quantization processes
then need to be characterized in more detail.

4.3.1 Probability Density Function of Errors

Rough randomized quantization may often substitute multibit deterministic im-
plementation of this operation. In many cases such randomized quantization
proves to be more efficient because it allows the required level of precision to
be achieved by processing a smaller volume of bits. However, at the same time
the application success of this technique depends on the attention paid to details.
Consider the vital error characteristics of such a rough randomized quantization
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performed by using relatively few threshold levels. An essential characteristic is
the probability density function of errors defining the distribution of the quanti-
zation errors of the quantization models.

Model 1
The probability density function for an input signal x (t) ∈ [0, X ] is denoted by
ϕ(x). Assume that at the quantization instant the signal is equal to x . Then the
probability that there will be n threshold levels inside the interval [0, x] is

Pr[nx = n] = Pn(x) − Pn+1(x), (4.16)

where P(n) is the probability distribution function of the nth threshold level. For
any value of the signal, x = nq̄ + ε can be written. Hence the probability density
function of the quantization error is defined as

Ψ1(ε) =
∞∑

n=0

[Pn(nq̄ + ε) − Pn+1(nq̄ + ε)]ϕ (nq̄ + ε). (4.17)

Note that the indices at Ψ1 (ε) and other parameters following indicate the number
of the corresponding quantization model considered. The expected value of the
quantization error may be given as

E1[ε] =
∫ ∞

−∞
ε

∞∑
n=0

[Pn(nq̄ + ε) − Pn+1(nq̄ + ε)]ϕ (nq̄ + ε) dε

=
∫ ∞

−∞
ε

∞∑
n=0

(x − nq̄) [Pn(x) − Pn+1(x)]ϕ (x) dx . (4.18)

To simplify the equation it is worthwhile to introduce and use the follow-
ing function:

∞∑
n=0

n[Pn(x) − Pn+1(x)] = H (x). (4.19)

When −X ⇒ ∞, H (x) = x/q̄. In addition,

∞∑
n=0

[Pn(x) − Pn+1(x)] = 1. (4.20)

If these considerations are taken into account,

E1[ε] =
∫ ∞

0

(
x − q̄

x
q

)
ϕ (x) dx = 0. (4.21)
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The variation of the quantization error

Var1[ε] = E1[ε2] =
∫ ∞

−∞

∞∑
n=0

(nq̄ − x)2 [Pn(x) − Pn+1(x)]ϕ (x) dx

=
∫ ∞

−∞
q̄2

∞∑
n=0

(n − E[nx ] q)2 [Pn (x) − Pn+1(x)]ϕ (x) dx .

(4.22)
As it can be written that

∞∑
n=0

(n − E[nx ])2 [Pn(x) − Pn+1(x)] = Var[nx ], (4.23)

Equation (4.22) may be given in the following form:

Var1[ε] = q−2
∫ ∞

0
Var[nx ]ϕ (x) dx (4.24)

On the basis of function (4.19), the variation Var[nx ] is defined as

Var1[nx ] = 2

q̄

∫ x

0

[
H (u) − u

q
+ 1

2

]
du. (4.25)

Model 2
In this case ε ∈ [−q, q] and the following equalities hold:

For ε < 0

⎧⎨
⎩

Pn(nq + ε) = 1 − |ε|
q

Pn+1(nq + ε) = 0
; for ε > 0

⎧⎨
⎩

Pn(nq + ε) = 1

Pn+1(nq + ε) = |ε|
q

.

(4.26)

The probability density function Ψ2(ε) of the quantization error can be obtained
on the basis of these relationships. By analogy with Equation (4.17), it can be
written that

Ψ2(ε) =
∞∑

n=0

(
1 − |ε|

q

)
ϕ(nq + ε). (4.27)

Equation (4.21) can be used to obtain the expected quantization error E2[ε].
Following the previous reasoning, it is easy to show that

E2 [ε] = 0. (4.28)



JWBK152-04 JWBK152-Bilinskis March 6, 2007 21:19

Quantization Errors 101

The general expression for Var2[ε] is given by Equation (4.24). Substituting Equa-
tion (4.22) into Equation (4.24) yields

Var2[ε] =
∞∑

n=0

∫ (n+1)q

nq
(x − nq) (nq + q − x)ϕ (x) dx

=
∫ q

0
n (q − u)

∞∑
n=0

ϕ (nq + u) du. (4.29)

A particular average probability density function of a quantized signal is now
introduced:

ϕ0 (u) =
∞∑

n=0

ϕ(nq + u). (4.30)

This function is obtained by stacking all the subintervals of ϕ(x) for x ∈
[nq, (n + 1) q] on the interval [0, q] and subsequently summing them. When
relatively many threshold levels are used for quantizing, ϕ0 (u) ∼= 1/q and it fol-
lows from Equation (4.29) that

Var2[ε] ∼= 1
6 q2 (4.31)

The quantization error is characterized by this variance in cases where the prob-
ability density function for ε ∈ [−q, q] is triangular. Indeed, substituting ϕ0(u)
into Equation (4.27) gives

Ψ2(ε) ∼= q − |ε|
q2

. (4.32)

It follows from Equations (4.17) and (4.27) that the probability density functions
Ψ1(ε) and Ψ2(ε) in principle depend on the input signal x . When q decreases,
i.e. when the number of threshold levels used for quantization increases, this
dependence weakens and both of these functions tend to become triangular.

The probability density function Ψ2(ε) is illustrated in Chapter 5, where it is
compared with analogous functions characterizing other quantization methods.

4.3.2 Variance of Randomly Quantized Signals

Two of the three quantization models considered here guarantee that the quantized
signal values x̂ are unbiased and the quantization bias errors in Model 3 are
usually negligible. Hence the dominating quantization errors are random and are
characterized by the variance of x̂ . Of course, these errors depend on the particular
quantization conditions described by Models 1, 2 and 3.
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Figure 4.7 Plots of variances Var[n] versus normalized signals characterizing various quan-
tization schemes

Model 1
When randomized quantization is performed as defined by Model 1, x̂ = nq̄x
and

Var1[x̂] = q̄ Var1[n]. (4.33)

Var1[n] is defined by Equation (4.25), which shows that this variation depends
on the probability density function of the signal x , as well as on the standard
deviation of the random intervals {qi j − qi(k−1)}. The statistical quantization errors
are apparently less significant for smaller values of σ/q̄. The dependence of
Var1[n] on x/q̄ is illustrated in Figure 4.7. These diagrams have been calculated
on the basis of Equation (4.25). Curves 1 to 4 correspond to the randomized
quantization carried out under the condition that the probability density functions
of the intervals between the threshold levels are normal. They are given for σ/q̄ =
0.3, 0.2, 0.1 and 0.05 respectively. Line 5 corresponds to extremely randomized
quantization when the ordinates of the threshold levels at each time instant tk
correspond to the Poisson point streams. Thus this line is really a boundary on
the left-hand side. All other possible relationships characterizing randomized
quantization performed according to Model 1 are to the right or below it. At this
extreme quantization mode

Var1[n] = E[n] = x
q

. (4.34)
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Model 2
Quantization, as carried out by this model, is characterized by curve 6. In this
case, the variance of x̂ is defined as

Var2[x̂] = q2 Var[n]. (4.35)

For x ∈ [nq, (n + 1) q] the function H (x) = n. In this case, it follows from Equa-
tion (4.25) that

Var2[n] =
(

x
q

− n
) [

1 −
(

x
q

− n
)]

= −
[(

x
q

− n
)

− 1

2

]2

+ 1

4
. (4.36)

Therefore, under these conditions, the variances of the quantized signals are
represented by parabolas assuming zero values at points where x = nq.

Model 3
Variance Var3[x̂], characterizing randomized quantization executed in accordance
with Model 3, obviously depends on Var3[m], Var3[n], Var3[m − n]. All of these
can be calculated from Equation (4.25). It follows from Equation (4.10) that

Var3[x̂] = X2

E4 [m]
{(E[m − n])2 Var3[n] + (E[n])2 Var[m − n]

− 2E[n] E[m − n] Kn,(m−n)}.
As the covariance

Kn,(m−n) = 1
2 (Var3[m] − Var3[n] − Var3[m − n]),

then

Var3[x̂] = x (X − x) q̄2

X

(
Var3[n]

x
+ Var3[m − n]

X − x
− Var3[m]

X

)
. (4.37)

4.4 Quantization Noise

Time sequences of quantization errors are known as quantization noise. When the
quantization operation is performed on a sampled signal, quantization noise is a
discrete-time random process. The properties of this noise determine the useful-
ness of the corresponding quantization scheme. For a further comparison of the
deterministic and randomized quantization approaches this section will consider
the respective quantization noises. It is assumed that randomized quantization is
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carried out according to Model 1. Realizations of the quantization noise charac-
terizing deterministic and randomized quantization are given in Chapter 5. It is
clear that the various types of quantization noise will differ considerably.

The noise of deterministic quantization varies within the range [−0.5q, +0.5q]
and during some time intervals the envelopes of this noise repeat respective seg-
ments of the signal x(t). The polarity of the errors is determined only by the input
signal values. The range of randomized quantization noise is twice as large, i.e.
[−q, +q]. The envelopes of this noise also repeat the corresponding parts of the
signal, although particular errors can assume either positive or negative values
at random, i.e. the value of the error is either equal to ε

(+)
k or to ε

(−)
k . At each

quantization instant ε
(+)
k + ε

(−)
k = q. The appearance of the larger error is less

probable. It can be written that

Pr
[
εk = ε

(+)
k

]
Pr

[
εk = ε

(−)
k

] = ε
(−)
k

ε
(+)
k

, (4.38)

where Pr[εk = ε
(+)
k ] and Pr[εk = ε

(−)
k ] are the probabilities of the error εk assum-

ing positive or negative values respectively. Of course,

Pr
[
εk = ε

(+)
k

] + Pr
[
εk = ε

(−)
k

] = 1.

This uncertainty in error polarity, typical of randomized quantization, is beneficial
because it decorrelates the input signal and its corresponding quantization noise.

4.4.1 Covariance between the Signal and Quantization Noise

Since the envelopes of quantization noise follow the corresponding parts of the
input signal waveform, it seems that quantization noise is statistically dependent
on the signal. To assess the degree of dependence between these two processes,
consider a randomized quantization performed in accordance with the quantiza-
tion Model 2. Statistical relationships of this kind are more pronounced in coarse
quantization. Therefore, without loss of generality, one threshold randomized
quantization scheme can be considered with x(t) ∈ [0, q] .

If at the quantization instant tk the input signal is xk , the quantized signal x̂k

can be either 0 or q. Hence the quantization error εk = x̂k − xk is either equal to
−xk or to (q − xk). The probabilities of the respective events are

Pr[εk = −xk] = q − xk

q
,

Pr[εk = (q − xk)] = xk

q
.

(4.39)
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It can be written that the covariance between εk and xk is

cov(εk, xk) = E [εk xk]

=
∫ q

0

[
−xk xk

q − xk

q
+ (q − xk)xk

xk

q

]
p(xk) dxk = 0. (4.40)

This result is unexpected. Indeed, as can be seen from Equations (4.26), there
is a strong dependence of εk on xk . It is therefore hard to accept that the corre-
sponding covariance is equal to zero. Nevertheless, the covariance between εk

and xk is equal to zero.

4.4.2 Spectrum

The extremely coarse quantization scheme is also convenient for determining the
spectral characteristics of randomized quantization. Assuming that quantizing is
performed according to Model 2 and taking into account Equation (4.39), the
autocovariance function of quantization noise for all m �= 0 (m = 0, 1, 2, . . .) is
given as

Cεε(mT ) =
∫ q

0

∫ q

0

[
xk xk+m

(q − xk) (q − xk+m)

q2

− xk(q − xk+m)
(q − xk)xk+m

q2
− (q − xk) xk+m

xk(q − xk+m)

q2

+ (q − xk) (q − xk+m)
xk xk+m

q2

]
p (xk, xk+m) dxk dxk+m = 0,

(4.41)

where p(xk , xk+m) is the two-dimensional probability density function. It follows
from this equation that

Cεε(mT ) =
{

σ 2
ε for m = 0,

0 for m �= 0,
(4.42)

where σ 2
ε is the variance of the quantization noise. This result also holds for

multithreshold randomized quantization. Of course, the appropriate variance
characterizing the particular quantization noise should be substituted into
Equation (4.42).
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It follows from Equation (4.42) that the spectral density function of quantization
noise {ε (k�t)} is given as

Gεε( f ) = 2T Cεε(0) + 4T
∞∑

m=1

Cxx (mT ) cos (2π f mT ) = 2σ 2
ε T (4.43)

Note that the covariance between the signal and quantization noise, as well as the
autocovariance function of this noise, is obtained under the assumption that
the signal is sampled periodically. Under this condition and taking into account
the sampling theorem,

Gεε( f ) =
{

2σ 2/ f for f ≤ f/2,

0 for f > fs/2.
(4.44)

As quantization Models 1 and 2 show, quantizing according to Model 1 is
randomized to a greater degree than quantizing as defined by Model 2. The ran-
domization level for Model 1 is characterized by the ratio σ/q̄. When the value of
this ratio decreases, the correlation between quantizing errors increases. However,
even at σ/q̄ = 0, the quantization noise is white; hence it is also white for σ/q̄ > 0
and Equation (4.44) is also true for quantizing performed according to Model 1.
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5

Pseudo-randomized
Quantizing

Some of the effects caused by the deliberate injection of randomness into signal
digitizing procedures are beneficial and some are harmful, increasing statistical
errors. Fortunately, the targeted benefits are often obtained at low levels of ran-
domization. Therefore the randomization level should be controlled to suppress
additional errors and excessive randomization must, of course, be avoided in all
cases. Yet another useful approach to obtaining the desirable effects is substitution
of randomization by making deterministic signal digitization processes simply
irregular. Such an approach is less harmful and usually leads to obtaining the same
positive effects that are expected from the randomization. Pseudo-randomization
of quantizing, considered in this chapter, actually represents such an irregular-
ization. Pseudo-randomized quantizing is evidently a fully deterministic process.
A description of it in probabilistic and statistical terms is a convenient way to
explain that. It is further shown that skilful application of pseudo-randomization
techniques leads to quite good results.

5.1 Pseudo-randomization Approach

It may be a little confusing to understand where the line separating randomized
and pseudo-randomized quantization should be drawn. To randomize or pseudo-
randomize quantizing, an element of randomness either has to be added at the
input of the used ADC or it has to be used for randomizing the positions of the
reference threshold levels used for quantizing, as shown in Figures 5.1(a) and (b)

Digital Alias-free Signal Processing I. Bilinskis
C© 2007 John Wiley & Sons, Ltd
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Figure 5.1 Quantizers illustrated by schemes (a) and (b) are randomized and the pseudo-
randomized quantizer is illustrated by scheme (c)

respectively. Pseudo-random number generators (PRNGs) with digital-to-analog
converters (DACs) added are typically used for generation of the analog auxiliary
pseudo-random processes needed for that. At first glance all three quantizers
shown in Figure 5.1 look equivalent. However, there are significant differences
between the first two schemes and the third, shown in Figure 5.1(c). While both
of the first two schemes depict a randomized quantizer, the third diagram is a
scheme of a pseudo-randomized quantizer.

In all of the illustrated cases the quantizing operation is based on comparing
signal instantaneous values with variable thresholds generated by a PRNG to-
gether with a DAC. When the quantizing operation is performed in this way, the
positions of the threshold levels at all {tk} are in fact known. Whether this infor-
mation is used or not is another question, but it is there, given at each tk even in the
digital form. Evidently, this information is not used at randomized quantization
when the quantized signal is simply defined as nkq.
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The quantizer shown in Figure 5.1(c) differs distinctly from the other schemes
illustrated. There are two components in the output. The quantized signal values
provided are defined as a function depending both on nk and ξ k (or q0k). Evi-
dently the auxiliary pseudo-random process in this case is used in quite a different
way. It is added to the input signal (this is equivalent to shifting the set of ref-
erence threshold levels up or down) and then the same process is used to form
the output signal values. As shown below, such a pseudo-randomized quantizer
has outstanding properties that cannot be obtained either from deterministic or
randomized quantizers. It has the advantages of randomized quantizers without
their basic disadvantages.

The question, of course, is exactly how the ξ k values should be used in
the definition of the pseudo-randomized quantization output. To find the an-
swer to this question, an attempt will be made to discover the conditions under
which the pseudo-ramdomized quantization operation might be considered to be
optimal.

5.2 Optimal Quantizing

Quantizing will be considered optimal if this operation provides the best condi-
tions for estimating the mean value mx of a signal x(t) ∈ [0, X ] . Without loss
of generality, an analysis of optimal quantization can be carried out under the
assumption that x(t) = x = constant and that only a single threshold level is used
for quantization.

5.2.1 Single-threshold Quantizing

Consider pseudo-randomized quantizing with the information provided by {ξ k}
taken into account. The quantized signal then can be defined as

x̂k =
{

f1(ξk) for ξk ≤ xk,

f2(ξk) for ξk > xk,
(5.1)

and the estimate of mx as

m̂x = 1

N

N∑
k=1

x̂k .

Such quantizing should be performed in a way ensuring that the estimate m̂x is
unbiased, i.e. that the following equality holds:

E[m̂x ] = E[x̂k] = x . (5.2)
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Then

E[x̂k] =
∫ x

0
f1(ξk)

dξk

X
+

∫ x

x
f2(ξk)

dξk

X

= 1

X
[F1(x) − F1(0) + F2(X ) − F2(x)]

= x (5.3)

where

F1(x) =
∫

f1(x) dx, F2(x) =
∫

f2(x) dx .

It follows from Equation (5.3) that the functions F1(x) and F2(x) should meet the
conditions

F1(x) − F2(x) = x X,

−F1(0) + F2(X ) = 0.
(5.4)

Any functions f1(ξ ) and f2(ξ ) that satisfy Equations (5.4) can be applied in order
to define the quantized signal according to Equation (5.1), and all of them will
provide unbiased estimates of x . Assume that f1(ξ ) and f2(ξ ) are linear functions

f1(ξ ) = a1ξ + a0,

f2(ξ ) = b1ξ + b0.
(5.5)

In this case,

F1(ξ ) = 1
2 a1ξ

2 + a0ξ + C1,

F2(ξ ) = 1
2 b1ξ

2 + b0ξ + C2.
(5.6)

As can be seen from equation (5.3), E[x̂k] does not depend on the constants
C1 and C2 and, therefore, they can be considered as equal to zero. Substituting
Equation (5.6) into Equation (5.4) gives

1
2 a1x2 + a0x − 1

2 b1x2 − b0x = x X,

1
2 b1 X2 + b0 X = 0.

(5.7)

The first of these equations is satisfied for any x if the following conditions are
met:

a1 = b1,

a0 − b0 = X.
(5.8)
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Taking these expressions into account, it follows from Equation (5.7) that

a0 = (
1 − 1

2 a1
)

X,

b0 = − 1
2 a1 X.

The quantized signal can be defined as follows:

x̂k =
{

f1(ξk) = a1ξk + (
1 − 1

2 a1
)

X for ξk ≤ xk

f2(ξk) = a1ξk − 1
2 a1 X for ξk > xk

(5.9)

Definition (5.9) holds for a1 varying within large margins. For instance, when
a1 = 0, this definition describes randomized quantization. Although the estimate
m̂x with a1 varying remains unbiased, other properties of the quantized signal,
including the random error, of course depend on a1. It is therefore essential to
optimize such quantization or, in other words, to find the value of a1 that provides
the minimum of some criterion K.

As the variance Var[x̂] in general depends on x , optimization can be carried
out with respect to

K =
∫ X

0
Var[x̂] dx . (5.10)

It can be written that

Var[x̂] =
∫ x

0
f 2
1 (ξ )

dξ

X
+

∫ X

x
f 2
2 (ξ )

dξ

X
− x2

= 1
12 a2

1 X2 + (1 − a1)(X − x)x . (5.11)

Substituting Equation (5.11) into Equation (5.10) gives

K = 1
12 X3

(
a2

1 − 2a1 + 2
)

and it is clear that the minimum Kmin = 1
12 X3 is achieved at a1 = 1. Thus pseudo-

randomized quantizing provides the minimum of the variance Var[x̂] averaged
over x if the quantized signal is defined in the following way:

x̂k =
{

f1(ξk) = ξk + 1
2 X for ξk ≤ xk,

f2(ξk) = ξk − 1
2 X for ξk > xk .

(5.12)

It can be seen from Equation (5.10) that such quantization is characterized by

Var[x̂] = 1
12 X2. (5.13)

What is important is that this variance does not depend on x . This remarkable
property makes the quantization model considered here exceptional. All other
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Figure 5.2 Variances of a signal quantized pseudo-randomly in various ways

quantization models defined by Equation (5.9) are characterized by Var[x̂] de-
pending on x , as shown in Figure 5.2. The curves given there are for the normalized
signal values varying within the range of (−1, 1) and five quantization models
corresponding to various values of 0 ≤ a1 ≤ 2.

As optimization of the pseudo-randomized quantization is carried out under the
assumption that the functions f1(ξk) and f2(ξk) are linear, it is not clear whether
the results are also optimal when these functions are nonlinear. This question has
been investigated and it was found that the quantization performed in accordance
with equation (5.12) is also optimal when the functions f1(ξk) and f2(ξk) are
nonlinear.

5.2.2 Multithreshold Quantizing

Since the quantized signals obtained in the course of pseudo-randomized quan-
tizing are unbiased, no matter how coarse the quantization procedure, all essential
relationships characterizing such quantizing are the same both for a single and a
multithreshold quantization. In the latter case, it follows from Equation (5.12) that

x̂k = q0k − 1
2 q + nkq, q0k ∈ [0, q]. (5.14)

It is sometimes more convenient to use another version of Equation (5.14):

x̂k = (
ξk − 1

2

)
q + nkq, ξk ∈ [0, 1]. (5.15)



JWBK152-05 JWBK152-Bilinskis March 6, 2007 21:19

Optimal Quantizing 113

Figure 5.3 Schemes for realizing pseudo-randomized quantizing

As mentioned above, such quantizing is unbiased. Indeed,

E[x̂k] = q E[nk] + E[q0k] − 1
2 q

= q
xk

q
+ 1

2 q − 1
2 q = xk .

Although in this case the reference threshold sets are also formed as described
by the quantization Model 2, there is a considerable difference between the quan-
tization performed according to this model and the pseudo-randomized quanti-
zation. The quantized signal defined by Equations (5.14) or (5.15) also assumes
values, which belong to some discrete levels, but in this case intervals between
them are small and equal to the smallest digit of q0k .

5.2.3 Implementation Approaches

To implement the pseudo-randomized quantization method, it is not necessary
to design a completely new type of analog-to-digital converter. Conventional de-
terministic ADCs can be used to carry out this kind of quantizing, as shown in
Figure 5.3. Note that the ADC used should be a high-speed device with a suffi-
ciently small aperture time. To perform pseudo-randomized quantizing according
to the scheme given in Figure 5.3(a), the auxiliary random process generated by
the pseudo-random number generator (PRNG) is converted by a DAC and the
analog random process obtained is added to the input signal. The ADC con-
verts this additive mixture and the digital random variables {ξ k} are subtracted
from the respective values of the ADC’s output signal. Thus one and the same
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Figure 5.4 A scheme for pseudo-randomized quantising based on application of a flash
converter

random process is added to the input signal and later subtracted from the quantized
signal.

The operational principle of this scheme is the same as for the optimized
quantization mode considered above. When the ADCs used are relatively slow,
the scheme in Figure 5.3(a) can be modified as shown in Figure 5.3(b) by adding
a sample-and-hold (S&H) circuit.

Another implementation approach is based on the principle of changing the
reference threshold levels during the quantization process. A scheme realizing
this principle is shown in Figure 5.4. The most vital elements in it are the voltage
comparators strobed by short pulses at the sampling time instants {tk}. The input
signal is fed to all inputs of these comparators. The reference inputs are connected
to a chain of resistors. Current from a constant current source flowing through this
chain of resistors determines the reference voltages or the threshold levels. They
depend not only on this current but also on the random voltage across the lowest
in the chain resistor R1, generated by the PRNG in connection with the DAC.
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The threshold levels at all the comparator reference inputs follow random voltage
changes, thus providing the correct operational mode for pseudo-randomized
quantizing.

Note that the schemes in Figures 5.3(b) and 5.4 have two rather than one output.
This is essential. Output signals of such quantizers can often be processed in two
differing ways. They might be passed partly through one processing channel and
partly through another. Separate algorithms are used for processing the informa-
tion carried by the sequence {nkq} and the information given by the sequence
{ξ k}. It is possible to speed up processing and to simplify the hardware in this
way, lessening the negative impact of the main disadvantage of this kind of quan-
tizing: the increased quantity of bits needed for encoding the pseudo-randomly
quantized signals.

5.3 Input–Output Relationships

Both instantaneous and expected input–output relationships for pseudo-
randomized quantizing are linear. The point is that the input–expected output
relationship is defined in a remarkable way, specifically E [x̂] = x . Instantaneous
values of x̂ for any value of x all are within a certain area. This means that for all
values of x , the respective x̂ values are distanced from the corresponding values
of E[x̂] by an interval not exceeding ±0.5q. For instance, when x = x0, the quan-
tized value x̂0 can with equal probability assume any value within the interval
[x0 ± 0.5q].

5.4 Quantization Errors

Assume that the quantized signal

x̂ = nq + q0 − 1
2 q. (5.16)

Then the conditional probability density function

Ψ (ε/x̂ = x0) = dq0ϕ(x̂0 + ε)

q Pr[x̂ = x0]
, (5.17)

where Pr[x̂ = x0] is the probability that the quantized signal x̂ is equal to x0. It
is obvious that

q Pr[x̂ = x0] = dq0

q

∫ nq+q0

(n−1)q+q0

ϕ(x) dx .

To obtain the unconditional probability density function of ε, function (5.17)
should be averaged over all possible digital values of n = 0, 1, 2, . . . and over all
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values of q0 that are considered to be continuous. Then

Ψ (ε) = Pr[x̂ = x0]�(ε/x̂ = x0)

= 1

q

∫ q

0

∑
n

ϕ(x̂0 + ε) dq0. (5.18)

The sum can be expressed by means of δ functions. This can be written as

∑
n

ϕ
(
nq + q0 − 1

2 q + ε
) =

∫ ∞

−∞
ϕ(x)

∑
δ
(
x − nq − q0 + 1

2 q − ε
)

dx .

(5.19)
The Fourier transform of the sum of δ functions can be shown to be

∑
n

δ
(
x − nq − q0 + 1

2 q − ε
) = 1

q

∑
n

exp

[
i
2π

q
n
(
x + 1

2 q − q0 − ε
)]

.

(5.20)

Substituting Equation (5.20) into Equation (5.19) and substituting the result into
Equation (5.18) gives

Φ(ε) = 1

q2

∫ q

0
dq0

∫ ∞

−∞
ϕ(x)

∑
n

exp

(
i
2π

q
n
(
x − q0 + 1

2 q − ε
))

dx .

(5.21)
Taking into account the fact that

∫ ∞

∞
ϕ(x)

∑
n

exp

(
i
2π

q
nx

)
dx = ϕ̃

(
2π

q
n
)

,

where ϕ̃ ((2π/q) n) is the value of the signal characteristic function at the argument
equal to (2π/q) n, and that

exp

(
i
2π

q
n

q
2

)
= (−1)n,

Equation (5.21) can be rewritten as

Φ(ε) = − 1

q2

∑
n

ϕ̃

(
2π

q
n
)

(−1)n exp

(
−i

2π

q
nε

) ∫ q

0
exp

(
i
2π

q
nq0

)
dq0.

(5.22)
Note that ∫ q

0
exp

(
−1

2π

q
nq0

)
dq0 =

{
q for n = 0,

0 for n �= 0,
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and ϕ̃ (0) = 1. Finally,

Φ(ε) = 1

q
, ε ∈ [−0.5q, +0.5q]. (5.23)

This result leads to the following very important conclusion:

No matter how coarse the pseudo-randomized quantizing is, quantization errors
do not depend on the probability density function of the signal being quantized
and they are always distributed uniformly in the range [−0.5q, +0.5q].

Consequently,

E[ε] = 0, Var[ε] = 1
12 q2. (5.24)

Independence of the quantization errors from the input signal simplifies the task of
deriving the variance of quantized signals considerably. In this case, it is obvious
that

Var[x̂] = Var[x(t)] + Var[ε] = Var[x(t)] + 1
12 q2. (5.25)

5.5 Quantization Noise

A realization of pseudo-randomized quantization noise is shown in Figure 5.5(d).
To obtain an impression of the main properties of this noise, compare it with the
deterministic and randomized quantization noises, also given in Figures 5.5(b)
and (c).

Comparison of these time diagrams leads to the following conclusions:

1. Pseudo-randomized quantization noise is distributed in an interval
[−0.5q, +0.5q]. Therefore, the quantization noise for the pseudo-randomized
quantizing does not exceed the boundaries characterizing deterministic quan-
tizing and is distributed in an interval twice smaller than in the case of the
noise observed at randomized quantizing of the same signal.

2. An error of pseudo-randomized quantizing at any quantization instant tk
assumes with equal probability any value from the interval [−0.5q, +0.5q].

3. There is no (visible) dependence of the pseudo-randomized quantization noise
on the signal being quantized.

The latter conclusion, of course, cannot be based on visual observation.
This feature of the pseudo-randomized quantization procedure has to be
proved.
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Figure 5.5 Quantizing of a signal in three different ways: (a) input signal with quantization
noise and its probability density function; (b), (e) for deterministic quantizing; (c), (f) for
randomized; and (d), (g) for pseudo-randomized quantizing

Thus it turns out that pseudo-randomized quantizing is unique. No other known
quantization technique has such advantageous properties. At the same time, as
might be expected, this quantization approach also has its drawbacks. The most
serious disadvantage is the increased number of bits required for representing the
quantized signals. At first glance it seems that as a result of this disadvantage
the hardware for processing signals quantized in this way should be considerably
more complicated than usual. Fortunately, this is not so. As shown in the following
chapters, if signal processing is organized on the basis of special algorithms, well
matched to the specifics of pseudo-randomized quantizing, the main disadvantage
of this kind of quantizing becomes less significant.
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5.5.1 Covariance between Signal and Quantization Noise

The quantization noise {εk} is divided into two processes, {ε(+)
k } and {ε(−)

k }.
The first process contains only zeroes and positive errors and the second pro-
cess, similarly, contains zeroes and negative errors. Formally, it can be written
that

ε
(+)
k =

{
εk for εk > 0,

0 for εk ≤ 0,
(5.26)

ε
(−)
k =

{
εk for εk < 0,

0 for εk ≥ 0,
(5.27)

and

{εk} = {ε(+)
k } + {ε(−)

k }. (5.28)

As the pseudo-randomized quantizing errors are distributed uniformly within the
interval [−0.5q, +0.5q] independently of the input signal, the expected value of
the process {ε(+)

k } is

με+ = E[ε(+)
k ] =

∫ 0.5q

0
εk

dεk

q
= q

8
. (5.29)

The covariance between the input signal and the first component of the quantiza-
tion noise {ε(+)

k } is as follows:

Cov(ε(+)
k , xk) =

∫ 0.5q

0

∫ xk

0

(
ξk + q

2
− xk

)
xk

dξk

q

+
∫ q

xk+q/2

(
ξk − q

2
− xk

)
xk

dξk

q
ϕ(xk) dxk

+
∫ q

q/2

∫ q

xk−q/2

(
ξk + q

2
− xk

)
xk

dξk

q
ϕ(xk) dxk − με+mx . (5.30)

After due integration, and taking into account result (5.29),

Cov(ε(+)
k , xk) = 0. (5.31)

Similarly, it can be shown that

Cov(ε(−)
k , xk) = 0. (5.32)

Since the input signal is uncorrelated with either noise component, it is obviously
also uncorrelated with the quantization noise itself.



JWBK152-05 JWBK152-Bilinskis March 6, 2007 21:19

120 Pseudo-randomized Quantizing

5.5.2 Spectrum of the Pseudo-randomized Quantization Noise

In order to determine the spectrum of pseudo-randomized quantization noise, first
its autocovariance function C (p)

εε (mT ) will be obtained. As the mean value of this
noise mε = 0, then

C (p)
εε (mT ) = E[εkεk+m]

= E
[((

ξk − 1
2

)
q + nkq − xk

) ((
ξk+m − 1

2

)
q + nk+mq − xk+m

)]
.

(5.33)

The random variable (ξk − 1
2 )q is uniformly distributed within the interval

[−0.5q, +0.5q]. Assume that the variables (ξk − 1
2 )q and (ξk+m − 1

2 )q at m �= 0
are mutually independent. Note that (nkq − xk) represents errors of randomized
quantization.

If these moments are taken into account, it follows from Equation (5.33) that

C (p)
εε (mT ) = Cξξ (mT ) + Cεε(mT )

+E
[(

ξk − 1
2

)
q(nk+mq − xk+m)

] + E
[(

nkq − xk
)(

ξk+m − 1
2

)
q)

]
,

(5.34)

where the autocovariance function of the auxiliary random process C (p)
εε (mT ) = 0

for m �= 0, and the autocovariance function of randomized quantization noise
C (p)

εε (m Dt ) = 0 for m �= 0, as shown in Chapter 4. Then

E
[
(nkq − xk)

(
ξk+m − 1

2

)
q
] =

∫ q

0

∫ q

0
ϕ(xk, xk+m) dxk dxk+m

×
∫ 0.5q

−0.5q

[ −xk
(
ξk+m − 1

2

)
(q − xk)

+(q − xk)
(
ξk+m − 1

2

)
xk

]d
[(

ξk+m − 1
2

)
q
]

q
= 0.

(5.35)

Likewise,

E
[
(nk+mq − xk+m)

(
ξk − 1

2

)
q
] = 0. (5.36)

Substituting Equations (5.35) and (5.36) into Equation (5.33) yields

C (p)
εε (mT ) =

{
q2/12 for m = 0,

0 for m �= 0.
(5.37)
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Thus the autocovariance function of the pseudo-randomized quantization noise
does not depend on the input signal and is invariable. Consequently, the spectral
density function of this noise is

Gε( f ) = q2

6 fs
= q2T

6
, (5.38)

i.e. it is constant over the frequency range [0, 0.5 fs].
This result leads to the following significant conclusion:

The spectral density function of the pseudo-randomized quantization noise is
invariable and depends only on the quantization step-size q and the sampling
frequency fs. This holds no matter how many reference threshold levels are
used.

In other words:

No matter how rough pseudo-randomized quantizing is, the respective quanti-
zation noise is white and its power and other parameters do not depend on the
input signal if only the auxiliary pseudo-random process used can be considered
to be white.

No other quantization scheme has a similar property. It is true that random-
ized quantizing can also be realized in such a way that the quantization noise is
white. However, the mean power of this noise depends to some extent on the vari-
ance of the input signal. The spectrum of deterministic quantization in principle
largely depends on the input signal and this dependence can be weakened only
by decreasing the size of the quantization step.

Note that formula (5.38), describing the spectrum of the quantization noise
being discussed, is obtained under the assumption that the input signal is sam-
pled periodically. When the signal is sampled randomly, obtaining an analytical
description of the respective spectral density function is much more complicated.
However, computer simulations show that when expression (5.38) is used for
engineering evaluations of the noise spectra, the mean sampling rate fs can be
substituted for the sampling frequency fs in Equation (5.38).

5.5.3 Noise Reduction by Oversampling

Assume that the spectral density function of a signal x(t) being quantized is con-
fined to the frequency range [0, f0], f0 < fs/2. The power Pε of the correspond-
ing rounding-off noise spectrum is distributed evenly over the whole frequency
range [0, fs/2], no matter how rough the quantization is. The spectral density
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function of this noise can be subdivided into two parts. The first part covers the
signal bandwidth and the second part is outside this range. Accordingly, the mean
power Pε is also divided into two respective parts P1 and P2. The mean power
of that part of the noise spectrum that belongs to the signal spectrum range is
denoted by P1 and the remaining part by P2.

Referring to Equation (5.38),

P1 = q2 f0

6 fs
and P2 = q2

(
1

12
− f0

6 fs

)
. (5.39)

If the quantized signal is passed through a low-pass filter with the cut-off frequency
f0, the second part of the rounding-off noise spectrum power P2 is filtered out
and the resulting quantization accuracy, characterized by the signal-to-noise ratio
(SNR) 10 log (Px/P1) ,increases. The SNR can be improved in this way by so-
called signal oversampling. If the sampling frequency is increased four times
and appropriate filtering applied, the quantization accuracy is improved by one
effective bit. This approach is popular and it is used also in the cases of rough
deterministic quantization. However then it might be less effective as the power
of the deterministic quantization noise at a small number of reference levels used
is concentrated more in the low frequency region while it is not so at pseudo-
randomized quantizing.

5.6 Some Properties of Quantized Signals

The properties of quantized signals naturally differ from the properties of the
original signals. These differences depend on the quantization mode applied.
This phenomenon has been extensively studied for deterministic quantization
applications. This problem has been considered for the case when quantizing is
carried out pseudo-randomly.

The moments as,r and the central moments μs,r of a system of random variables
(x,ε) are defined as follows:

as,r = E[xsεr ]

=
∫

	

∫
xsεrϕ(x, ε) dx dε,

μs,r = E[(x − mx )s(ε − mε)r ]

=
∫

Ω

∫
(x − mx )s(ε − mε)rϕ(x, ε) dx dε,
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where mx and mε are the mean values of x and ε respectively, ϕ(x, ε) is the
probability density function of the system of the random variables (x, ε) and Ω

is the space of x, ε on the plane (x, ε). As the probability density function of the
quantization error ε is constant in the interval [−0.5q, 0.5q] and does not depend
on ϕ(x), then ϕ(x, ε) = ϕ(x)Ψ (ε) and

as,r =
∫ ∞

−∞

∫ 0.5q

−0.5q
xsεrϕ(x)Ψ (ε) dx dε

=
∫ ∞

−∞
xsϕ(x) dx

∫ 0.5q

−0.5q
εr 1

q
dε

=
⎧⎨
⎩

as
qr

(r + 1)2r
for even r,

0 for odd r,
(5.40)

where as is the sth moment ϕ(x). Taking into account the fact that mε = 0, then
similarly

μs,r =
⎧⎨
⎩

μs
qr

(r + 1)2r
for even r,

0 for odd r,
(5.41)

where μs is the 5th central moment of ϕ(x). Now E[x̂ s] can be defined. According
to the definition ε = x − x̂ and

E[x̂ s] = E[(x − ε)s]

= E

[
s∑

j=0

(−1) j C j
s xs− jε j

]

=
s∑

j=0

(−1) j C j
s E[xs− jε j ]

=
s∑

j=0

(−1) j C j
s as− j, j . (5.42)

Substituting Equation (5.40) into Equation (5.42) and taking into account
the fact that at odd j the moment as− j, j is equal to zero and that the sum in
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Equation (5.42) should be determined only for even j, gives

E[x̂ s] =
[s/2]∑
j=0

C2 j
s as−2 j,2 j

=
[s/2]∑
j=0

C2 j
s as−2 j

q2 j

(2 j + 1)22 j

= as +
[s/2]∑
j=1

C2 j
s as−2 j

q2 j

(2 j + 1)22 j
,

where [s/2] is the integer part of s/2. Hence

as = E[x̂ s] −
[s/2]∑
j=1

C2 j
s as−2 j

q2 j

(2 j + 1)22 j
(5.43)

On the basis of Equation (5.43), the following corrections, essential for many
engineering calculations, are obtained:

a1 = E[x̂],

a2 = E[x̂2] − 1
12 q2,

a3 = E[x̂3] − 1
4 q2 E[x̂],

a4 = E[x̂4] − 1
2 q2a2 − 1

80 q4

= E[x̂4] − 1
2 q2 E[x̂2] + 7

240 q4.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.44)

These corrections are the same as those obtained for deterministic quantization,
but their meaning is quite different. In the case of deterministically quantized
signals, they reduce the bias of the estimates âs , but their application does not
guarantee its elimination. How efficient they are depends on ϕ(x) and on the
value of q. When Equations (5.44) are applied for correction of the estimates
âs obtained by processing pseudo-randomly quantized signals, these corrections
eliminate bias errors completely, no matter what is the probability density function
of the signal or the size of the quantization step q.

To obtain equations describing the estimates âs of the corresponding moments
as , the estimates (1/N )

∑N
k=1 x̂ should be substituted for E[x̂s]. It can be shown

that the estimates âs defined in this way are unbiased. To obtain equations defining
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Table 5.1

Quantizing

Examples of achievable effects Randomized Pseudo-randomized

Reduction of the quantization bit rate, widening
application range of rough quantization

X X

No systematic bias errors at estimation of signal
parameters, including spectral

X X

Wide dynamic range, no spurious frequencies X X
Decorrelation of signals and quantisation noise X X
Uniform quantization noise distribution invariant to

quantization bit rate
0 X

Uniform power spectrum of the quantization noise
independently of the signal and the quantization
step size

0 X

the estimates of the central moments μs note that on grounds of Equation (5.42),

E[(x − mx )s] =
s∑

j=0

(−1) j C j
s m j

x as− j (5.45)

and the equation obtained should then be substituted into Equation (5.44). The
variance of the estimates x̂ s is given by

Var[x̂ s] =
s∑

j=0

C2 j
2s a2s−2 j

q2 j

(2 j + 1)22 j
−

[
[s/2]∑
j=0

C2 j
s as−2 j

q2 j

(2 j + 1)22 j

]2

(5.46)

To evaluate the errors of estimating as and μs , the variance Var[(1/N )
∑N

k=1 x̂s]
should be determined first by applying Equation (5.46).

5.7 Benefits

The randomization and pseudo-randomization techniques, considered in
Chapters 4 and 5, represent an effective tool for making quantizing flexibly adapt-
able to specific requirements of an application. Skilful application of randomized
and pseudo-randomized quantizing might lead to significant benefits. The most
characteristic ones are indicated in Table 5.1.

Although deliberate randomizing and/or pseudo-randomizing of quantizing
apparently complicate to some extent the execution of this operation, the approach
is also fruitful. The point is that it makes quantizing much better adjusted to the
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needs and conditions of specific applications and that in turn helps to improve the
organization of digital signal processing tasks at hand.
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6

Direct Randomization
of Sampling

In an ideal case, the features of a digital signal obtained as a result of analog-
to-digital conversions would copy the features of the original analogue signal.
The reality is different. The sampling and quantization operations of this kind of
conversion impact on the characteristics of the obtained digital signals substan-
tially. The characteristics of the analogue signal at the input of an ADC and of
its digital output are representative rather than identical. The methods used for
digitization and their implementation determine how large and significant are the
differences between them. Once a signal is digitized, the features of the obtained
digital signal, good as well as bad, are fixed and nothing can be done to change
them. Therefore it makes sense to invest a great deal of time and effort to ensure
that the quality of the signal sampling outcome is high enough.

Deliberate randomization of the signal sample value taking process is one of
the most promising sampling improvement options. Although the randomization
approach significantly complicates the sampling operation and processing of the
digital signals obtained in this way, the resulting benefits justify these complica-
tions. For instance, application of the randomized sampling technique, as shown in
Chapter 1, often leads to much better exploitation of the resources of the existing
ADCs.

There are various techniques used for randomization of sampling. The discus-
sions in this chapter focus on the direct approach to such randomization. Ac-
cording to this approach, signal sample values are taken at time instants that are
fully and directly determined by the used randomized sampling point processes.
Therefore the sampling point process completely defines the signal sampling

Digital Alias-free Signal Processing I. Bilinskis
C© 2007 John Wiley & Sons, Ltd
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randomization scheme. It should be emphasized that the statistics of the signal
sample taking timing process, in the case of direct sampling randomization, is
signal independent. As shown in the following chapter, this is not always the
case.

6.1 Periodic Sampling with Jitter

It is customary to depict the sampling instants {tk} as points on the time axis.
Sequences of such points can be considered as point processes. They play a very
important role because the properties of sampled signals depend first of all on the
characteristics of these point processes.

A relatively large variety of random point processes can, in principle, be applied
for random sampling, and a number of them have been investigated to find out
whether they eliminate aliasing. The theory of such point processes has gradually
been developed and interested readers should refer to the bibliography given at
the end of this chapter. Similar problems have also been extensively studied in
the area known as the renewal theory and many useful research results have been
discovered in that area as well.

Only a few of the known and studied random point processes have been selected
for study here. The explanation for this lies in the fact that now, after much effort
has been expended on research in this area, it can be seen that only a few random
point processes are suitable for randomized sampling applications. One of the
best is the additive random point process, often used for the purpose of deliberate
sampling randomization. This point process has such remarkable properties and
is so flexible that it is almost ideal for random sampling applications.

However, there are several other point processes that should also be considered
because they are connected to relatively frequently observed and important effects
such as fluctuation of sampling instants or random deletion of samples. Fluctuation
of sampling instants is a fairly common occurrence. It can even be said that it
is always present, although more often than not it is insignificant enough to
be ignored. How seriously fluctuation affects the precision of signal processing
depends on the kind of processing being performed and, of course, the magnitude
of the fluctuations.

The randomized sampling model used for analysis of this problem is known as
periodic sampling with jitter. The sampling instants {tk} in it are given by

tk = kT + τ k, T > 0, k = 0, 1, 2, . . . , (6.1)

where {τk} is a family of independent identically distributed random variables with
zero mean. This sampling scheme is illustrated in Figure 6.l. Probability density
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Figure 6.1 Probability density functions characterizing periodic sampling with jitter: (a),
(b), (c), (d) probability density functions of time intervals t1 − t0, t2 − t0, t3 − t0 and t7 − t0

respectively; (e) resulting sampling point density function

functions of time intervals (tk − t0) for k = 1, 2, 3, . . . are shown in Figures 6.1
(a), (b), (c) and (d). As t0 = 0 in this case, the respective density functions are
denoted by pk(t). The sampling point stream is characterized by the following
sampling point density function:

p(t) =
∞∑

k=1

pk(t). (6.2)

It can be seen from Figure 6.1(e) that this particular function has multiple maxima
and minima. Note that as t increases the peaks shown do not decrease.

To understand the meaning of the function p(t), imagine that a narrow time
window �t is moved along the t axis. Under the condition that �t ⇒ 0, the
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function p(t) at any arbitrary time instant is equal to the probability that one of
the sampling points ts will fall within this window �t . Then

p(t) = Pr[ts ∈ �t] = lim
�t⇒0

�t
μ

(6.3)

Therefore if a signal x(t) is sampled at the instants {tk}, which are determined by
the statistical relationship illustrated by Figure 6.1(e), some parts of the signal will
be sampled with a higher probability than others. This is obviously undesirable
as it will lead to signal processing errors.

There is an exception. If the time intervals (tk − t0) are distributed uniformly in
the intervals (kT ± 0.5T ) respectively, then the resulting sampling point density
function p(t) is constant (for t > 0.5T ). When this kind of sampling scheme is
applied, all instantaneous signal values are sampled with an equal probability.
It therefore seems that this method of generating random sampling points is
acceptable for signal sampling implementations. However, this method in fact
has a number of substantial disadvantages that prevent its wide application. The
following drawbacks can be pointed out:

� The random variables {τk} should be distributed strictly uniformly within the
given intervals.

� Time intervals between any two successive sampling instants tk and tk+1 may
be very short. Therefore technical implementations of this sampling scheme
should be wideband, even at relatively low mean sampling rates.

� The randomness introduced at sampling cannot be small. It is in fact consider-
able.

� Statistical errors resulting from the relatively powerful randomness introduced
at sampling are significant.

Up to now, periodic sampling with jitter has been considered only from the
viewpoint of deliberate randomization of sampling. However, as has already been
mentioned, it has another important aspect. Fluctuations in sampling instants may
turn out to be highly undesirable because they may introduce significant bias and
random errors. The model briefly described above is worth considering in order to
find an answer to the question of how harmful these fluctuations really are under
given conditions. The errors caused by such fluctuations depend considerably on
the specific digitized signal processing algorithms applied. Some, like algorithms
for the estimation of a number of averaged signal parameters (such as the mean
power, the higher moments of signal distributions, etc.), are relatively insensitive,
while others are more sensitive.
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6.2 Additive Random Sampling

In the case of additive random sampling, signal samples are taken at instants

tk = tk−1 + τk, k = 0, 1, 2, . . . , (6.4)

where τk is a realization of a random variable. This random sampling scheme,
suggested by Shapiro and Silverman, was originally based on the assumption
that successive sampling intervals {τk, τk+1} were statistically independent and
identically distributed. They were characterized first of all by their mean value
μ and a standard deviation σ . Obviously, the mean sampling rate is equal to
1/μ.

Now consider the time intervals [0, tk] = τ1 + τ2 + · · · + τk . These random
variables are characterized by their respective probability density functions
{pk(t)}. Then

p1(t) = pτ (t),
p2(t) = p1(t)∗ pτ (t),
....................

pk(t) = pk−1(t)∗ pτ (t),

(6.5)

where the asterisk * denotes the composition operation. On the grounds of the
central limit theorem in statistics, a very important conclusion is made:

As the random variable [0, tk] represents the net result of a linear sum of
k statistically independent constituent variables τ1, τ2, . . . , τk , then whatever
probability density functions these constituent variables may have, the proba-
bility density of τ1 + τ2 + · · · + τk = [0, tk] will approach the normal form as
k approaches infinity.

Consequently, whenever the additive random sampling scheme is applied, the
density functions pτ (t) may vary from case to case within wide boundaries without
worsening sampling conditions, because the sampling point density function p(t)
with t increasing will always tend to the constant level 1/μ. Therefore, in this
case

p(t)|t≥Ta = 1

μ
. (6.6)

These transformations of the density functions pk(t) in cases where pr (t) is (a)
uniform and (b) close to exponential are shown in Figure 6.2. Note that the scales
on these figures change from one function to another. The probability density
function of a sum of r time intervals is denoted by pr (t) and the expected values
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Figure 6.2 Evolutions of probability density function pr (t) when p1(t) is (a) uniform and (b)
modified exponential

by μr . In both cases the corresponding pr (t) changes when the number r of
sampling intervals summed increases from 1 to 8.

The probability density functions given Figure 6.3 illustrate the additive random
sampling scheme. It can be seen that the function p(t) in this case tends to
become flat when t exceeds some value Ta . The value of Ta depends on pτ (t)
and, obviously, also on the acceptable deviation of p(t) from the constant level
1/μ. However, this is the case only for synchronized sampling when t0 = 0.
When sampling is stationary, i.e. when t0 is a properly distributed random variable,
p(t) = 1/μ for the whole time interval over which a signal is sampled. This means
that all of the instantaneous signal values are sampled with equal probability.

6.3 Sampling Function

The statistical description of random sampling point processes is not limited to the
probability density functions pk(t) and the sampling point density functions p(t).
Other means of characterization are often more convenient, especially those based
on probability distribution functions of the time intervals τ1 + τ2 + · · · + τk,
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Figure 6.3 Probability density functions characterizing additive random sampling: (a),
(b), (c), (d) probability density functions of time intervals t1 − t0, t2 − t0, t3 − t0 and t7 − t0

respectively; (e) resulting sampling point density function

henceforth denoted Pk(t). These functions have their usual definitions. If the
probability density functions of the respective random time intervals are pk(t),
then

Pk(t) =
∫ ∞

0
pk(t) dt. (6.7)

These functions {Pk(t)} form a basis of yet another very useful characteristic
of randomized sampling. This can be called the sampling function and can be
denoted Ps(t). This function was first introduced in the field of renewal theory,
where it was known as the renewal function, and can be defined as follows:

Ps(t) =
∞∑

k=1

Pk(t). (6.8)
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Figure 6.4 Sampling function

Its usefulness is apparent, as it allows the number nt,�t of sampling points falling
within an interval whose duration is equal to �t to be estimated in a very simple
way. Such an estimate, in a general case, is given by

E[nt,�t ] = Ps(t + �t) − Ps(t). (6.9)

When the sampling process can be considered to be stationary, this kind of esti-
mation is even simpler. Then

E[nt,�t ] = �t
μ

. (6.10)

Although relationships (6.9) and (6.10) can be proved analytically, they are
easier to understand by looking at the graphics of Figure 6.4. The probability
distribution functions Pk(t) correspond to the case where the respective density
functions pk(t) are uniform. After some time they become normal or, more pre-
cisely, almost normal. As, according to the additive random sampling model,
the random variables {τk} should be positive and normal probability density func-
tions are defined in the range [−∞, ∞], only truncated normal probability density
functions pτ (t) are applicable in the present case. They can be defined as follows:

p(t) = d

σ
√

2π
exp

[
− (t − μ)2

2σ 2

]
, (6.11)

where

d = 1

P[(b − μ)/σ ] − P[(a − μ)/σ ]
.
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The quantities a and b are the left and right boundaries of the truncated density
function respectively and P[x] is the standardized normal probability distribution
function given by

P[x] = 1√
2π

∫ x

−∞
exp

(−u2

2

)
du.

The sampling function Ps(t) is obtained by summing the functions {Pk(t)}.
Under conditions where a = 0, b = ∞ and σ/μ < 1

3 , it can be assumed that
d ∼= 1. It then follows from Equations (6.8) and (6.11) that

Ps(t) =
∞∑

k=1

1√
2πkσ

∫ t

0
exp

[
− (u − kμ)2

2kσ 2

]
du. (6.12)

Note that this function describes the case of synchronized sampling where the
beginning of the signal sampling process coincides with one of the points from
the corresponding random point process. With t increasing, this function tends to
a linear form. It has been proved that when t ⇒ ∞, the sampling function Ps(t)
can be defined by

Ps(t) = t
μ

+ σ 2 − μ2

2μ2
+ 0(1) (6.13)

where 0(1) is a function which at t ⇒ ∞ approaches zero. This simplified version
of the sampling function can be used only when the errors due to the oscillations
of Ps(t) are small enough, i.e. when t exceeds some value, say when t ≥ Ta .

Specifically, this approximation can be applied to determine the parameter
Ta mentioned above in connection with the problem of providing stationarity of
sampling. As shown in the next section, synchronized sampling can be considered
stationary if the sampling of a signal is delayed for at least t = Ta relative to the
instant when the corresponding random point process was started. Calculations
made on the basis of the given approximation show that for σ/μ ≤ 0.3 and the
error ε less than 0.0013,

Ta ≥ 0.4μ3

σ 2
(6.14)

The error ε in this case is defined by

ε = max
|p(t) − 1/μ|

1/μ
, t ≥ Ta.

This parameter Ta is also applicable in other cases, for instance when conditions
guaranteeing independent sampling of signal realizations have to be determined.
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Obviously, if a number of signal realizations is sampled and processed, sampling
of a signal realization can only be considered to be independent from the sampling
of a previous realization if the distance between the two is at least equal to Ta .

6.4 Elimination of Bias Errors

It is an accepted practice to divide the errors, which occur in the course of signal
processing, into two groups: random or statistical and systematic or bias errors.
Ways and means of diminishing the first are discussed repeatedly throughout
this book. The second kind of error is considered here. Typically they are more
damaging than the errors of the first kind.

Many factors might lead to errors in signal digital processing and it is
impossible to predict them all. However, as the relationships taking place at
signal representation are considered in digital form, it is of interest to find what
conditions for signal sampling need to be satisfied that would make it possible
to avoid errors at the following processing of the sampled signals. An attempt is
made to determine the conditions under which the estimation of randomly sam-
pled signal parameters is unbiased, no matter which kind of stationary signals are
being sampled and analysed. It is assumed that if a specific sampling procedure is
proved to be good for some representative signal processing tasks, then it would
also be better in many other cases. An estimation of functionally converted signal
parameters is chosen for these representative signal processing tasks.

Consider signal parameters that can be interpreted as the mean values of func-
tionally converted signals:

1. The mean power Px of a signal can be represented by the following equation:

Px = 1

Θ

∫ Θ

0
[x(t)]2 dt. (6.15)

In this case the functional conversion is carried out by squaring the signal x(t).
2. The third moment of the signal x(t) is defined by

ax3 = 1

Θ

∫ Θ

0
[x(t)]3 dt. (6.16)

The corresponding functional conversion is F3 = [x(t)]3.
3. The Fourier transform at the frequency ω is

S(ω) = 2

Θ

∫ Θ

0
k(t) exp(−jωt) dt. (6.17)
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In this case the functional conversion is

Fs(ω) = w(t) exp (−jωt).

Let us denote by A those signal parameters that can be interpreted on the basis
of the functional conversion, FA. Then

A = 1

Θ

∫ Θ

0
FA[x(t)] dt, (6.18)

where Θ is the duration of time during which the signal is observed. Assume
that the signal is sampled at random instants {tk}. Then the estimation Â of the
parameter A is given as

Â = 1

N

M∑
k=1

FA[x(tk]), (6.19)

where M is the number of signal samples within the time interval [0, Θ]. The
expectation can be written as

E[ Â] = 1

N

∫ Θ

0

∞∑
k=1

FA[x(t)]pk(t) d(t)

= 1

N

∫ Θ

0
FA[x(t)]

∞∑
k=1

pk(t) dt . (6.20)

Under the conditions
∞∑

k=1

pk(t) = p(t) = 1

μ
= constant and Nμ = Θ, (6.21)

it follows from Equation (6.10) that

E[ Â] = 1

N

∫ Θ

0
FA[x(t)]p(t) dt

= 1

Θ

∫ Θ

0
FA[x(t)] dt = A.

Thus the following conclusion is made:

To ensure unbiased estimation of the signal parameters, which can be repre-
sented by the mean value of the correspondingly functionally converted signals,
random sampling should be performed in such a way that the conditions (6.21)
are met.
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The conditions for unbiased estimation actually cover a much broader area of
signal analysis than estimation of the mean value of the functionally converted
signals. Note that satisfaction of conditions (6.21) provides unbiased estimation
of signal spectra and unbiased reconstruction of signal waveforms when the recon-
struction is carried out on the basis of the signal spectral component estimations.
These conditions are quite logical. They state that the sampling procedure should
be performed in such a way that all parts of the signals should be sampled with
equal probability. This is obviously relevant for most signal processing cases.
Note that periodic sampling with jitter, in general, does not meet the conditions
(6.21).
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In cases where sampling is being randomized, this is usually done purposefully to
take signal sample values at specifically defined time instants in order to achieve
some specific desirable effects. When that happens, the sampling process is ran-
domized and is also nonuniform. In fact, randomization of sampling and nonuni-
form sampling are almost synonymous. However, deliberate randomization of
sampling makes sense only if such a complication of this operation is justified
by the end results. Apparently there has to be a good reason for randomizing the
sampling operation as the equidistant sample value taking procedure has many
outstanding positive qualities and is preferable whenever application of it is ap-
propriate. The motivation considered so far for randomizing of sampling has been
the widening of the frequency range for fully digital signal processing. That surely
is a good enough argument in favour of deliberate direct randomizing of sampling
as it leads to the irregularities of the sample taking process vital for elimination
of aliasing. However, avoidance of aliasing is not the only possible reason why
sometimes it makes sense to use this approach. There might also be some other
motivational factors, like complexity reduction of systems for data acquisition,
transmission and processing. Specific types of sampling randomizing, indirect
randomizing and targeting goals other than suppression of aliases are discussed
in this chapter.

The operational environment of the data acquisition systems often dictates
the requirements and defines the conditions for sampling. Sometimes there are
restrictions imposed on the accessibility to the signal sources. Then the signals
might be observed and their sample values taken only at random unpredictable
time instants. The obtained sequences of the signal sample values under these

Digital Alias-free Signal Processing I. Bilinskis
C© 2007 John Wiley & Sons, Ltd

139



JWBK152-07 JWBK152-Bilinskis March 6, 2007 21:20

140 Threshold-crossing Sampling

conditions are unavoidably nonuniform and have to be treated as such. In some
other cases randomizing of sampling occurs unintentionally as a side effect. This
kind of indirect randomization of sampling takes place when the sampling process
is arranged so that the signal sample values are obtained from signals at the
time instants when they cross some thresholds, set up either by constant levels
or specially generated reference waveforms. As explained in this chapter, this
approach to signal digitization might be preferred, for example, in cases of data
acquisition from multiple signal sources on a large scale. The signal sample
values are then obtained at random time instants so that they are nonuniformly
spaced. However, in this case the randomization of the sampling process is not
planned or controlled. It occurs as a consequence of the used principle for the
signal sample value taking. The application rationale, advantages and limitations
of these sampling techniques are considered.

7.1 Sampling at Input and Reference Signal Crossings

In addition to the amplitude sampling, so far considered as the basic signal sample
value taking operation for representing signals in a digital form, yet another
approach to this operation, so-called threshold-crossing sampling, might be used.
This kind of sampling is a tool that may be effectively applied in a number
of areas, including demodulation of variously modulated signals and massive
data acquisition from sensor arrays, clusters and networks. There have also been
attempts to exploit the threshold-crossing sampling for many other applications
related to antenna designs, image reconstruction, etc. While the use of amplitude
sampling is universal and is emphasized in this book, sampling at the input signal
x(t) and reference signal r (t) crossings, although more specific and less often
applied, deserves serious attention as well.

At this type of sampling, signals are compared with various types of reference
functions. Achieving the equality x(tk) = r (tk) of a signal x(t) and a reference
function r (t) is considered as a crossing of the threshold. The events of a signal
crossing this threshold are detected and the time instants {tk} of these events carry
the information about the signal sample values. The term ‘threshold-crossing
sampling’ covers many things. Specifically, it encompasses sampling based on
zero crossings, constant level crossings, multiple level crossings and input x(t)
and time-variant reference signal r (t) crossings. Recovery of the signal sample
values from the crossing time instants, straightforward at the zero and constant
level crossings, requires some calculations at the time-variant reference function
crossings.
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7.1.1 Level-crossing Sampling

The simplest and most popular threshold-sampling variety is based on zero cross-
ings. Obviously, crossings of zero or any other single level provide information
limited with regard to the scale factor, as the signal changes below and above the
threshold levels are not reflected in any way at all. The signal sample values are
then fixed and only the time instants {tk} when the signal assumes these constant
values are detected. Relatively many useful zero-crossing applications have been
developed. In particular, this technique serves well in cases where the parameters
to be estimated do not depend on the amplitude, e.g. at applications related to
signal phase angle and frequency measurements. The direct current component
usually has to be extracted from the signal.

Evidently multilevel crossings are more informative. For instance, it is possi-
ble to use such an approach when performing signal asynchronous quantizing.
Analog-to-digital converters built on this basis are specific as the signal sample
values in this case are obtained only at the time instants when the signal crosses
one of the quantization levels. Therefore the signal sampling operation is ran-
domized, nonuniform and signal dependent. On the one hand, special techniques
are needed for processing digital signals formed in this way, which represents a
drawback. On the other hand, this approach has lately received a lot of attention
as it has a significant power saving potential, essential for many applications.

The main attractiveness of the level-crossing sampling approach is the ex-
treme simplicity of the electronic circuits needed for realization of it. Only one
comparator is usually exploited for detecting the signal and threshold-crossing
events. The crossings repeatedly happening at time instants {tk} are converted
into a nonuniformly spaced one-bit stream. However, the quality of this kind of
sampling depends on the performance of the comparator under given specific con-
ditions. If there is virtually no noise present, reaching the equality x(tk) = r (tk) is
fixed precisely as occurring at the correct time instant tk . Unfortunately, when the
signal values approach the threshold, the comparator becomes sensitive to noise,
so even relatively weak noise affects the outcome of this type of sampling. If there
is an additive noise, the signal and noise mixture crosses the threshold sooner or
later than the signal itself. Under the impact of the noise, there might even be
some repeated crossings observed as ‘ringing’ of the comparator. As a result the
time instant when the signal crosses the threshold is indicated with some error.
How large this is depends on various factors, including the threshold-crossing
angle. Of course, this error decreases if the signal rise is steeper. If the thresh-
old is fixed at a constant level, the crossing angle totally depends on the signal
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characteristics and nothing can be done to widen this crossing angle. There are
various techniques that can be used to avoid the ringing effect.

7.1.2 Time-variant Threshold Crossings

The sampling operation and techniques for processing signals sampled in the
threshold-crossing manner are quite specific, but this subject lies beyond the scope
of this book. However, there are some ramifications of this sampling approach that
are much closer to the core subject of here. Specifically, these are the sampling
techniques based on time-variant threshold crossings.

Threshold-crossing sampling becomes more dynamic if this process is arranged
as signal crossings with a time-variable reference function. Then the threshold
changes in time and typically covers the whole dynamic range of the signal being
sampled. Although the sampling instants then still depend on the signal, the
reference function could be used for controlling, to some extent, the sampling
process and that helps to resolve the basic inherent problems of the threshold-
crossing sampling approach.

The subject of time-variant threshold crossings is not a simple one. Many
specific methods and techniques have been proposed in this area and a great deal
of time and effort has been invested in trying to resolve many theoretical and
engineering problems arising at application attempts. The experience obtained in
this direction is valuable; it is relatively well documented and some bibliography
related to this subject is given at the end of the chapter. Although this experience
is taken into account, it is not described here as it makes sense to use a different
approach to analysis and description of this kind of sampling. Indeed, no matter
how specific variable threshold-crossing sampling processes are, they still belong
to the class of nonuniform sampling processes discussed in this book in detail.
Consequently, it is not necessary to cover the full scope of the subject. The
knowledge obtained in other areas of nonuniform sampling makes it easier to
discover the features and characteristics of the sampling based on the time-variant
threshold crossings, which is demonstrated in the following section.

7.2 Representing Signals Using Timing Information

For function-crossing sampling, detection of the time instants {tk} at which a signal
x(t) intersects a reference waveform is the basic operation. Therefore it is crucial
to realize how this type of timing information could be used to represent sampled
signals. The best way of approaching this problem is to focus on finding exactly
how the precise signal sample values x(tk) could be recovered after these time
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Table 7.1

Sampling

Input Comparing Transmitting Digital output

Signal
Analogue values 

    of crossing 

    time instants

Analogue values 

    of sampling 

    instants     

Recovery of digital  

    reference sample 

    values

Sine wave

Recovery of digital  

    sampling instants

instants {tk} have been fixed. In the case of a well-defined and stabilized reference
function r (t), this task of the signal sample value recovery is actually not very
difficult. The signal sample values x(tk) are evidently equal to the corresponding
discrete value of the reference function r (tk). Therefore, the digital version x(tk)
of the original signal x(t) is obtained as a sequence of the reference signal sample
values taken at the crossing instants {tk}. It looks like a typical nonuniform signal
represented by a sequence of signal sample values randomly located on the time
axis at instants {tk}. That confirms the point that the sampling process based on
the time-variant threshold crossings could be reduced to the typical nonuniform
sampling processes considered in other chapters.

Various approaches to realization of this kind of sampling could be used. A
typical set of operations leading to recovery of the digital values of signal samples
and their taking instants is given in Table 7.1. According to this scheme, the
input signal is compared with the reference function and the timing information
obtained is then transmitted over wire, radio or optical channels using an analog
signal. Then the digital values of the reference signal r (tk) and the sampling
instants {tk} are recovered, not necessarily in that order.

The fixed signal and sine-wave crossing instants {tk} and the corresponding
sine-wave values r (tk) recovered from them fully describe the randomly digitized
signal properly tied to the time axis. Evidently the most responsible functions
are both the sine-wave crossing time instant {tk} fixing and the reference signal
value r (tk) recovery. The quality of signal sampling based on sine-wave crossings
to a large extent depends on the accuracy achieved at the performance of these
functions. Some aspects of their execution are discussed in Section 7.5.

At first glance the outcome of function-crossing sampling, the sequence of sig-
nal sample values, is similar to the digital signal obtained as a result of applying
the additive or periodic sampling processes with jitter. However, this similarity is
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superficial. Actually the sampled signal, formed as a result of function-crossing
sampling with subsequent recovery of the signal sample values, has features differ-
ing from the features of the digital signals obtained in the cases of direct deliberate
pseudo-randomization of sampling. The point is that the sampling process based
on the reference function crossings is basically random and, consequently, the
sampling intervals are random continuous-value variables. This means that the
sampling irregularities are not a priori known, which clearly represents a disad-
vantage, especially in the cases where adapting signal processing to the sampling
irregularities is indicated.

As randomizing of the reference function crossings happens unintentionally,
there is no guarantee that the nonuniform output signal, representing the outcome
of such a function-crossing sampling, will provide effective suppression of aliases
unless special arrangements for controlling the sampling irregularities are made.
Nevertheless, under certain conditions, it is feasible. A particular approach to this
problem of achieving an alias-suppression capability is shown in the following
section.

7.3 Sine-Wave Crossings

Choosing an appropriate type of reference function is vital for effective implemen-
tation of the function-crossing sampling. Although various reference functions
might be exploited, sinusoidal functions are often preferable as they are narrow-
band and can be easily generated, stabilized and used for reconstruction of the
input signal. For that reason, the focus of the following discussions is on signal
and sine-wave crossings.

7.3.1 Recovery of Signal Sample Values

The signal sampling process, based on sine-wave crossings, can be arranged
in various ways. Direct application of this sampling concept is illustrated in
Figure 7.1. According to this, a comparator is used for comparing the signal
with the sine-wave reference function. Binary signal 1 is formed at the output
of the comparator marking the parts of the signal waveform where it exceeds
the reference sine wave. The rising and falling edges of the comparator output
signal indicate the intersections of both waveforms occurring at the time instants
tk, k = 0, 1, 2, . . . , when the equality x(tk) − r (tk) = 0 takes place. Recovery of
the signal sample values x(tk) is performed by reading the values r (tk) of the
reference waveform corresponding to the sampling instants tk .
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−

Figure 7.1 Signal sampling based on sine-wave crossings: (a) diagram illustrating realization;
(b) time diagram of the involved signal interaction

In general, two coordinates need to be given for each signal sample value taken
randomly. In the case of direct sampling randomization, the sampling instants
are pre-planned and to fully determine each signal sample only its value has to
be measured. At the threshold-crossing sampling, the input and reference signal
crossings occur randomly in time. Therefore it might seem that this type of indirect
sampling randomization suffers from the handicap of not knowing when the signal
sample values are taken. That is true, but on the other hand the sample value of the
reference function at the crossing instant actually indicates both coordinates of
the corresponding signal sample. Indeed, the time instant tk of taking each signal
sample value x(tk) (and equal reference sine-wave value) functionally depends
on the value of this sample. It simply has to be recovered from the corresponding
instantaneous value of the reference function r (tk) = Ar sin 2π frtk = x(tk), where
Ar is the amplitude of the reference sinusoid. In the case where this type of
sampling is realized on the basis of the scheme illustrated in Figure 7.1, there is
an uncertainty that has to be resolved. This is related to the fact that there are two
phase angle values (except the phase angles equal to π/4 and 3π/4) corresponding
to each particular reading of the reference sine-wave value. The scheme shown in
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−

Figure 7.2 Illustration of sampling based on sine-wave crossings pseudo-randomly activated
for half-periods of the reference function: (a) diagram illustrating realization; (b) time diagram
of the sampling processes

Figure 7.2 takes care of this problem and is more flexible in some other aspects
as well.

When the sampling operation is carried out in a particular way according to
the time diagrams given in Figure 7.2, it is obtained from the equality r (tk) =
Ar sin 2π frtk = x(tk), where the sampling time instants depend on the reference
sample value r (tk) as follows:

tk =
(

k + 1

4

)
Tr + Tr

2π
arcsin

r (tk)

Ar
, (7.1)

where Tr is the period of the reference function and k = 0, 1, 2, . . . is the number
of reference function periods that also indicate the number of sampling events
taking place within this period of the sine wave.
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Figure 7.3 Typical applications of sampling based on sine-wave crossings in the case where
the signal is band-limited and the frequency of reference sinusoid exceeds the upper frequency
of the signal spectrum

7.3.2 Various Realizations

A very useful instrument that can be used to adjust the sampling scheme to
various exploitation conditions is the enabling function indicated in the scheme
given in Figure 7.2. This function effectively controls the scheme that provides
the realization of specific sampling scenarios. It enables the scheme for signal
sampling only during certain time slots. The width of these slots is typically
equal to the half-period of the used reference sine wave. This type of control has a
number of essential functions. Firstly, it leads to resolving the uncertainty. When
crossings of the signal and the sine wave take place within the half-period time
slots, each crossing provides a single reference function value. Secondly, in many
cases the power supply for the comparator can be activated only during the time
intervals when it is enabled for comparison of the input and reference signals. It is
obvious that it is a power-saving measure crucial for many applications. Thirdly,
use of this enabling function makes it possible to arrange data acquisition from
a number of signal sources, as described in Section 7.4. Fourthly, this control
function can be used to match the sampling mode to the specific requirements of
a signal processing system.

In many cases this kind of sampling is used under conditions where the signal
is band limited and the frequency of the reference sinusoid exceeds the upper
frequency W of the signal spectrum by at least two times. Some of these cases
are illustrated in Figure 7.3. The most intensive sampling takes place when there
is only a single signal source connected to a single comparator. This comparator
is enabled periodically with only half-period intervals between successive open
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time slots, as shown in Figure 7.3(a). If there is more than one input and several
comparators are used to perform the sampling operation, a particular comparator
is kept closed for a number of reference signal periods. Figure 7.3(b) illustrates
such a situation.

Note that in both of these cases the time slots within which the signal and sine-
wave crossings occur randomly are repeated periodically. Therefore the sampling
point process belongs to the category of periodic sampling processes with jitter
and the sampling instants are defined as

tk =
(

1

4
+ 1

2
km

)
Tr + τ k, (7.2)

where m denotes the number of reference sine-wave half-periods between the
time slots open for sampling and τk is the random time interval between the edge
of the time slot and the crossing instant.

Figure 7.3(c) illustrates a particular realization of sampling based of sine-wave
crossings providing for alias-free signal digitizing. The comparator in this case
is enabled pseudo-randomly. This means that between successive slots within
which sampling events are located randomly the comparator is kept inactive for
pseudo-random numbers of the reference sine-wave periods. The resulting stream
of sampling events belongs to the category of additive sampling processes, with
the random interval between the sampling instants distributed specifically. The
sampling instants are then given as

tk = tk−1 + (nk Tr + τk) (7.3)

where (nk Tr + τk) denotes the random variable representing the interval between
the sampling instants tk−1 and tk .

While the first component nk Tr of this interval (nk Tr + τk) is equal to a pseudo-
random number nk of the reference sine-wave periods Tr, the second component
τk is a random variable. It is distributed within a half-period slot of the reference
function and the exact distribution itself is not predictable as it depends on the
signal.

Performing this type of sampling in a pseudo-randomized way suppresses the
aliasing effect and makes sense in multichannel data acquisition cases. Therefore
the mean sampling rate in a particular channel depends not only on the frequency
of the reference signal but also on the number of input channels and the need for
anti-aliasing measures might arise.

Sine-wave crossing sampling is also applicable for digitizing of signals at
frequencies exceeding the frequency of the reference signal. How the sampling
process develops under these distinctly different conditions is shown in Figure 7.4.
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Figure 7.4 Sampling based on the signal and sine-wave crossings in the case where the
frequency of the reference signal is lower than the upper frequency of the bandpass signal

The scheme used for performing the sampling operation is similar to that given in
Figure 7.2(a), except that a disabling rather than an enabling function is used for
blocking the comparator, which is normally kept in the active operational state.
The comparator forms a signal whenever a crossing of the input and reference
signals occurs during the time intervals when it is not especially disabled.

However, this sampling mode should be applied with caution. There is a prob-
lem, which is related to the fact that frequencies equal to the reference signal
frequency will not be encoded correctly. As the upper frequency of the input sig-
nal in this case exceeds the frequency of the reference signal, the frequencies of
both signals might overlap and in that case the obtained digital signal would not
reflect the input signal correctly. This type of sampling can only be used if the fre-
quency of the reference signal is eliminated from the input bandpass signal. This
sampling approach is quite useful as it expands the applicability of the sampling
method based on sine-wave crossings, which therefore also widens the applica-
tion range. The expansion of applicability of sine-wave crossings is especially
interesting in the light of fast DFT algorithms, discussed in Section 16.4, which
are used exclusively to process nonuniformly presented digital signals obtained
as a result of sampling based on this approach.
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Figure 7.5 Output signal representations at various approaches to sampling

7.4 Remote Sampling Based on Sine-Wave Crossings

The signal digitizing and processing priorities vary with conditions that are typical
for a specific task. Data acquisition from multiple signal sources, by definition,
is based on data gathering and transporting over shorter or longer distances.
Therefore their performance depends directly on the quality of the techniques
used to fulfil these functions. The sampling techniques, based on timing of the
signal and reference waveform crossing events, are actually considered in
this book first of all because they are especially well suited for meeting the
requirements of such data acquisition systems. For that reason, the suggested sam-
pling approach is considered here in the context of this special remote sampling
application.

The differences in various typical sampling realizations are emphasized in
Figure 7.5. The diagram given in Figure 7.5(a) corresponds to the classical so-
called ‘Shannon sampling’, which is usually based on application of a S&H
circuit. Analog voltage (current) levels, changing at time instants tk when the
latest sample value replaces the previous one, represent the output of such a
sampler in this case. As this kind of analog signal is sensitive to noise, they
are usually immediately converted into their digital counterparts by a quantizer
located in the near vicinity. More often than not, both schemes of the sampler and
quantizer are put on a single crystal that is installed in an ADC chip.

The uniqueness of the sampling based on the signal and sine-wave crossings,
illustrated in Figure 7.5(b), is a consequence of the involved operational principle
and the distinctly different sort of signal representing the output of such a sampler.



JWBK152-07 JWBK152-Bilinskis March 6, 2007 21:20

Remote Sampling 151

This output signal is given as a nonequidistantly spaced single bit stream. In the
operational context of a particular signal processing system, it could be considered
as a signal carrying the timing information vital for recovering the input signal
in a digital form. Physically, it is a sequence of pulses appearing precisely at the
input signal and sine-wave crossing time instants.

If this signal is compared to the analog voltage levels representing the sampler
output in the first case, then an important conclusion can be made:

Sampling based on sine-wave crossings is better suited for execution of this
operation from a distance than the conventional amplitude sampling.

This conclusion is actually based on the differences in the sampled signal rep-
resentations in both cases. Signals sampled on the basis of sine-wave crossings
carrying the timing information are relatively insensitive to the impact of sur-
rounding noise. Consequently, they could be transmitted with small distortions
over considerably longer distances than the signals reflecting the results of the
conventional amplitude sampling. That is obviously crucial for realization of
sampling as a remote operation.

Architectures of signal processing systems apparently depend on the type of
samplers used. Embedding samplers based on sine-wave crossings into signal
processing systems make it possible to restructure these systems on the basis of
remote sampling and introduction of the concept for distributed analog-to-digital
conversions. If this approach is used, a single distributed ADC could replace a
group of ADCs digitizing signals from a multitude of signal sources. To achieve
this, the classical general structure of an ADC is converted into the structure of
a distributed ADC. Therefore a sufficient number of samplers should be used
with communication links inserted between the samplers and a single common
quantizer. The issue of massive data acquisition based on this type of distributed
ADCs is discussed in Chapter 11.

Note that information in this case is again carried by nonuniform flows of
symbols. However, this nonuniformity is usually not and often even could not
be exploited for realization of the aliasing suppressing function. Although sup-
pression of aliasing is also achievable in this case, special techniques need to be
used. The application potential of sampling based on sine-wave crossings depends
more on its capability to provide other desirable benefits exclusively obtainable at
signal sampling. However, there are also problems. The point is that, for a num-
ber of reasons, the specific sampling based on sine-wave crossings considered
here is applicable in a limited frequency range and there are also other factors
narrowing the application range of these techniques. Attention is drawn to the
most significant of these limitations.
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7.5 Advantages and Disadvantages

There are various types of restrictions imposed on potential applications of the
sampling techniques based on sine-wave crossings. A start will be made by point-
ing out some parametric limitations.

First of all, there should be a trade-off between the sampling resolution mea-
sured in an achievable number of bits and the angle of signal/sine-wave crossings.
On the one hand, it is better if the frequency of the reference sine-wave crossing
the signal is relatively high. The steepness of the reference waveform crossing
the input signal should be sufficient so that the crossing time instant is fixed more
precisely and the impact of noise is less damaging. On the other hand, the error
in crossing time definition increases with this steepness and that translates into
more pronounced errors in detection of the corresponding reference signal sam-
ple values. Therefore the reference signal frequency has to be chosen with these
considerations in mind.

The most reliable devices, the quality of which to a large extent determines the
achievable bandwidth and sampling precision, are microelectronic comparators.
They form the output signals, fixing the input and the reference signal crossing
instants, with certain delays. In an ideal case, this kind of delay should be constant.
In reality, it more or less depends on the threshold crossing overdrive. The impact
of these overdrive-induced delay variations has to be kept within given margins.

For these reasons, the frequency of the input signals sampled on the basis of
sine-wave crossings should be limited so that it does not exceed a certain level.
Basically this sampling technique is well suited for handling low-frequency sig-
nals. The achievable upper frequency given in absolute figures depends, of course,
on the quality of the microelectronic products produced and offered in any given
period of time. The performance level of the microelectronic products continu-
ously goes up and, consequently, the frequency range for the usable reference
signals widens. At the time when this book is being written, acceptable sampling
precision has been obtained in the reference frequency range stretching up to
10–30 MHz.

Yet another limitation of a more important nature is related to the fact that
the threshold-crossing sampling can not be regarded as a universal technique for
signal digitizing. Actually, this type of sampling is quite specific and its successful
usage requires appropriate processing of the digitized signals. The basic difficulty,
of course, stems from the unusual nonuniformity of the sampling event spacing,
as this leads to the necessity of using special algorithms that take care of all
related problems and signal processing in this particular area is not yet sufficiently
mature.
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Nevertheless sinusoid-crossing sampling has some very attractive features un-
paralleled by other sampling techniques. Therefore it has a high application poten-
tial in some areas. If skilfully used, exploitation of these techniques could provide
remarkable benefits. Moreover, the difficulties caused by the nonuniform spacing
of the sampled signal values, under certain conditions, could be overcome in an
amazingly simple and effective way. An example of encoding and reconstructing
an electrocardiogram (ECG) signal is demonstrated below.

As sampling based on sine-wave crossings in general are to be used for dig-
itizing signals at relatively low frequencies, these techniques compete with the
traditional periodic sampling positioned rather strongly in this application range.
Therefore there has to be a good reason to take the decision to use the sinusoid-
crossing sampling instead of this type of classic mature periodic sampling. The
specific threshold-crossing techniques, of course, are not competing with periodic
amplitude sampling in the whole digital signal processing area. Their application
area is limited. However, there is a relatively broad area where application of spe-
cific sampling techniques based on sine-wave crossings could play a significant
positive role. Specifically, they represent an attractive option for building systems
that bridge the gap between computers and the real world. Data acquisition sys-
tems, built on the basis of this sampling concept, have features that make them
competitive in this field.

Sinusoid-crossing sampling is well suited for executing the sampling operation
from a distance and the designs of the microelectronic devices realizing such
remote sampling are extremely simple, with all of the consequences that relate
to this fact. If this type of remote action sampler is incorporated into a structure
of a distributed ADC and is used for building systems for data acquisition on
a large scale, a number of significant advantages could be achieved. Some of
them, specifically, are the following: appropriate conditions for sampling signals
very close to the signal source; extremely simple designs of the input devices; low
power consumption of the data acquisition front devices; one-bit representation of
data positioned in time; transmission of data that are relatively insensitive to noise
over relatively long distances; fast and robust logic driven sequential activation
of the multiple input channels substituting input signal switching (multiplexing)
sensitive to errors; a very large number of inputs measured at least in hundreds.

More is said about obtaining these massive data acquisition features in
Chapter 11, where this subject is discussed in some detail. These massive data ac-
quisition techniques look interesting and are worth considering as a possible basis
for development of various sensor systems and networks. Biomedical applications
may be mentioned as an area especially well suited for their use in picking up
signals from a large collection of different types of sensors.
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Figure 7.6 ECG waveform reconstructed from a digital signal obtained as a result of sampling
performed on the basis of sine-wave crossings

On the other hand, while the listed advantages look attractive, the fact remains
that the data acquisition process is indirectly randomized, which may in some
cases discourage applications of it. To show that this potential disadvantage is
not always damaging and that using unfamiliar specific algorithms for handling
nonuniformly represented data is not always necessary, consider an example
related to encoding and reconstruction of a typical signal for biomedicine, an
ECG signal, illustrated in Figure 7.6.

A picked-up and conditioned cardio-signal was sampled according to the
scheme of sine-wave crossings given in Figure 7.3(b). The frequency of the ref-
erence signal was chosen to be 500 kHz and the mean sampling rate was set close
to 1 kS (kilosample)/s. This means that only one half-period in 1000 was used
as a time slot within which the crossings of the input and the reference signals
were taken into account. The values of the reference signal corresponding to the
crossing instants occurring during these time slots were taken as the sampled
input signal values. Under the specified sampling conditions, the randomness
of the sampling intervals plays an insignificant role. Therefore it was assumed
that the sine-wave crossings occur in the middle of sampling time slots that are
1μs long and that the sampling process is consequently periodic. The waveform
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reconstructed under this assumption is very close to the waveform recovered
taking into account exact sampling conditions. It is impossible to see the differ-
ence between the cardiograms reconstructed in the exact and in the approximate
way ignoring the nonuniformity of the sampling intervals. This means that the
assumption about the periodicity of the sampling process is justified under the
given conditions, which simplifies reconstruction of the sampled signals signifi-
cantly. Signals are reconstructed directly from the values of the reference signal
detected at the input and reference signal crossings.

Of course, there are no problems when these signals are sampled periodically by
performing the sampling operation in the traditional amplitude-sampling manner
as the signal spectrum is band limited and the upper frequency is relatively low.
However, application of the sampling based on sine-wave crossings might prove to
be preferential for designing, on this basis, multichannel massive data acquisition
systems. Such sampling performed under the given parameters of the sampling
process would provide data acquisition for up to 500 inputs as only one in 500
periods of the reference signal is used for sampling a particular input signal in
this case. Therefore up to 499 periods of the reference signal are free and could
be activated for sampling additional signals picked up from other signal sources.

The achievable quantization resolution largely depends on the duration of the
time slots within which the devices compare the values of the input and the
reference signals. In the case of this particular example, 1 μs long time slots
should provide at least 12-bit quantization resolution for such devices as, for
example, time-to-digital converters TDC-GPX have resolutions up to 27 ps.
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Derivatives of Periodic
Sampling

It is not easy to benefit from application of nonuniform sampling and at the same
time not to suffer from the negative effects that usually accompany processing of
the signals sampled in this way. To make these anti-aliasing techniques practically
applicable, the typical negative effects corrupting this kind of signal processing
have somehow to be suppressed. A search for a good approach to this prob-
lem has led to the recent development of hybrid sampling methods, discussed in
Chapter 10. They are based on the idea of mixing the elements of periodic and
randomized sampling in order to gain from exploiting the advantages of both.
The derivatives of periodic sampling discussed in this chapter are considered as
essential building blocks for composing such hybrid periodic/nonuniform sam-
pling models. Especially useful are periodic sampling point sequences with ran-
dom skips. As shown in the following chapters, whenever this type of sampling
procedure is used, the consequences of the sampling phase shifting have to be un-
derstood in order to take them into account. To reveal the essential relationships
between the phase shifting of sampling and the sampled signal reconstruction
conditions, it is desirable to visualize the involved signal transformation pro-
cesses. To do this it is suggested that estimation of Fourier coefficients should
be considered as a process rather than a calculation of a parameter and that this
approach should be used to visualize the dynamics of the involved processes.
This proves to be a convenient and productive technique for studies and will be
repeatedly used henceforth.

Digital Alias-free Signal Processing I. Bilinskis
C© 2007 John Wiley & Sons, Ltd
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Generation of the pseudo-randomized sampling pulse sequences used for
analog-to-digital conversions suitable for alias-free signal processing is yet an-
other essential application of the model for periodic sampling with random skips.
The basic considerations that have to be taken into account when designing gen-
erators operating on the basis of this model are discussed as well as practical
experience obtained in this area.

8.1 Phase-shifted Periodic Sampling

Introducing phase variations into periodic sampling, if performed correctly, leads
to suppression of aliasing. To gain from such an approach, it is essential to realize
exactly how the conditions for aliasing change when the phase of the sampling
process is varied.

8.1.1 Dependence of Aliasing on the Sampling Phase

The popular signal model will be used according to which a signal x(t) is com-
posed of a multitude of sinusoidal components at arbitrary frequencies in a limited
frequency band. Suppose that such a signal is sampled periodically. The sampling
frequency is denoted as fs. Then the sampling point process is periodic with the
period T = 1/ fs and the signal sample values are taken at sampling instants
tk = kT + �T, k = 0, 1, 2, . . . , where �T < T is the phase angle of the sam-
pling point process.

It was discovered a long time ago that the following equality holds for a signal
component at frequency fx and corresponding aliasing frequencies:

A sin(2π fx tk + ϕx ) = A sin[2π(m fs ∓ fx )tk + ϕm], m = 0, 1, 2, 3, . . . ,

(8.1)

where ϕm is the phase of the corresponding aliasing frequency. Equality (8.1) is
based on the relationships

2π(m fs ∓ fx )tk = 2π(m fs ∓ fx )(kT + �T ) = 2πmk + 2πm �T
T

∓ 2π fx tk

and

sin(2πmk) = 0, cos(2πmk) = 1.
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Then

sin[2π(m fs ∓ fx )tk] = sin

(
2πmk + 2πm �T

T
∓ 2π fx tk

)

= sin(2πmk) cos

(
2πm �T

T
∓ 2π fx tk

)

+ cos(2πmk) sin

(
2πm �T

T
∓ 2π fx tk

)

= sin

(
2πm �T

T
∓ 2π fx tk

)
,

which leads to Equation (8.1). This means that the signal sample values, taken
from signal components at frequencies belonging to the row m fs ∓ fx , do overlap
and that these frequencies are indistinguishable.

Conditions of this overlapping are reflected by the relationships defining the
dependence of φx on the phase angle of the sampling point process:

ϕx =

⎧⎪⎪⎨
⎪⎪⎩

−
(

ϕm + 2πm �T
T

+ π

)
, for (m fs − fx ),

ϕm + 2πm �T
T

, for (m fs + fx ).

(8.2)

In the case where the sampling phase �T = 0 and tk = kT, k = 0, 1, 2, . . . ,

the phase angle ϕx does not depend on the phase shift of sampling. Under
these conditions the relationship between the phase angle of the signal down-
converted to the baseband and the phase of the aliasing frequencies is as
follows:

ϕx =
{

−(ϕm + π), for (m fs − fx ),

ϕm, for (m fs + fx ).
(8.3)

In all other cases, the phase angle ϕx also depends on the phase shift of the
sampling pulse process. For instance, when the particular aliasing frequency con-
verted down to the baseband [0, 0.5 fs] is f1 = fs − fx , the following equation
holds:

x1k = A1 sin(2π f1tk) = A1 sin

(
2π fx tk − 2π�T

T
− π

)
. (8.4)
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Similarly,

x2k = A2 sin(2π f2tk) = A2 sin

(
2π fx tk + 2π�T

T

)
for f2 = fs + fx ,

(8.5)

x3k = A3 sin(2π f3tk) = A3 sin

(
2π fx tk − 4π�T

T
− π

)
for f3 = 2 fs − fx ,

(8.6)

and

x4k = A4 sin(2π f4tk) = A4 sin

(
2π fx tk + 4π�T

T

)
for f4 = 2 fs + fx .

(8.7)

These relationships demonstrate a remarkable fact. They show that conditions
for frequency overlapping or aliasing essentially depend not only on the sampling
frequency but also on the sampling phase. The fact that the phase angle of the
signal, downconverted by aliasing to the baseband, depends on the phase of the
sampling point process is illustrated in Figure 8.1. The original signal in this
case has just one sinusoidal component at frequency f1 (Figure 8.1(a)). When
it is sampled so that �T = 0 (Figure 8.1(b)), the phase angle ϕa1 of the alias
reconstructed within the baseband [0, 0.5 fs] is equal to the phase ϕx of the
original signal (Figure 8.1(d)). If the same signal is sampled at the same sampling
frequency but all sampling instants are shifted to a position characterised by
�ϕT = 0.75T (Figure 8.1(c)), the phase angle ϕa1 of the reconstructed alias
changes in accordance with the relationships (8.2), as shown in Figure 8.1(d),
diagram 2.

8.1.2 Reconstruction of Sampled Signals

Consider what happens when reconstruction of a signal sampled at time instants
belonging to variable-phase periodic sampling point processes is attempted on
the basis of direct and inverse Fourier transforms. The Fourier coefficients are
estimated at all frequencies within the frequency band of the signal including the
frequencies of a particular row m fs ∓ fx . The signal might have a component at the
frequency fx or not, and other components at some of the indicated frequencies mfs
might overlap this specific frequency. In general, the results of Fourier coefficient
estimation at this frequency depend on the true signal component, the overlapping
aliases and the sampling conditions, specifically the phase of the periodic sampling
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Figure 8.1 Illustration of the fact that the phase angle of the signal, downconverted by aliasing,
depends on the phase of the sampling point process

point process. Attention is drawn to the fact that the phase shift of the sampling
point process affects only the overlapping aliases. Variations of this phase do
not affect the contribution of the true signal component to the Fourier coefficient
estimate at all. There are at least two significant consequences of that:

1. The phase of the periodic sampling point process affects the waveforms
reconstructed from the obtained signal sample values.

2. Using variable phase periodic sampling opens up the possibility of avoiding
overlapping of the aliasing frequencies.

How this possibility might be realized is discussed in Chapter 10. Before studying
this essential issue in some detail, variation of the complementary waveforms of
signal components at frequencies belonging to the row of the aliasing frequencies
m fs ∓ fx will briefly be considered. The diagrams shown in Figure 8.2 illustrate
this kind of waveform variation, which take place when they are reconstructed
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Figure 8.2 Waveform variations in the case when they are reconstructed from the sampled
signal obtained as a result of variable-phase periodic sampling. The original signal (a) is peri-
odically sampled periodically at different phase shifts: �T = 0, 0.25T, 0.5T, 0.75T . Adding
the respective reconstructed waveforms (b, c, d, e) provides the waveform (f)

from the signal sample values obtained under conditions of variable phase periodic
sampling. In this particular case, the analog signal consists of three sinusoids.

It can be seen from Figure 8.2 that, each of the particular waveforms is
actually meaningless. However, using all of them together leads to reconstruc-
tion of the original signal. Therefore the information carried by the signal sam-
ple values, obtained at variable-phase periodic sampling, makes it possible to
avoid aliasing and to reconstruct the original signal not corrupted by frequency
overlapping.
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Figure 8.3 Various periodic sampling point processes with random or pseudo-random skips

The result obtained in this particular case is not surprising. Indeed, using four
phase-shifted periodic sampling processes in parallel is obviously equivalent to
sampling at a frequency four times higher. Actually the purpose of giving this
example is just to show that variations of the sampling phase makes it possible
to obtain data that might be useful for avoiding aliasing. In the case of process-
ing a stationary signal, such phase-shifted sampling should not necessarily be
performed in parallel.

8.2 Periodic Sampling with Random Skips

In many cases of basically periodic sampling, taking of signal sample values
at some of the periodically repeating sampling instants is omitted. This kind of
sampling might take place either in result of some faults in system functioning or
it might be pre-planned and carried out in this way intentionally. We are basically
considering the second case. Then the periodic sampling process with random
skips is organised and carried out in order to obtain some specific effect. Before
discussing particular applications of such sampling, let us consider this general
sampling model in some detail.

8.2.1 General Model

The basis of the sampling approach is a periodic point process with randomly
or pseudo-randomly excluded sampling points. There are a number of sampling
point processes belonging to this category. The difference between them is in the
pattern of the skipped sampling points, illustrated in Figure 8.3.

A periodic sampling point process with random skips is shown in Figure 8.3(a).
The sampling events take place in this case with some probabilities pk . Therefore
the probability that no sample value will be taken at the sampling time instant
tk is equal to (1 − pk). As shown in the following chapters, this sampling model
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is actually a generic one. It represents the basis for decompositions of various
sampling point processes and, in addition, it plays an essential role for the hybrid
sampling schemes discussed in Chapter 10. It may also be used, for example,
to describe a sampling process when some faults occur as a result of electronic
system malfunctioning or when faults are due to signal collisions with interfering
bursts of noise.

The sampling point processes with pseudo-random skips given in Figures 8.3(b)
and (c) define the conditions of sampling performed according to the earlier dis-
cussed models of additive and periodic sampling with jitter respectively. However,
the sampling schemes in this case are digital and the smallest digit is equal to the
period δ of the time grid. Otherwise these schemes are defined as explained in
Chapter 6. In the case of additive random sampling illustrated in Figure 8.3(b),
signal samples are taken at sampling time instants

tk = tk−1 + τk, k = 0, 1, 2, . . . , (8.8)

where τ k is a realization of a digital pseudo-random variable.
In a typical pseudo-randomized sampling case, this digital variable is dis-

tributed uniformly within the interval [μ ± 0.5�t], where μ is the mean value of
the intervals between the sampling events and the interval �t < μ so that the dis-
tance between two successive sample value taking instants is never shorter than
some specified limit. When sampling is performed according to the sampling point
pattern displayed in Figure 8.3(c), the sampling instants {tk} in it are given as

tk = kT + τ k, k = 0, 1, 2, . . . . (8.9)

The period T = nδ and the digital variable τ k is again distributed in an interval
shorter than the period.

Of course, these few cases do not exhaust the various sampling schemes based of
the model of periodic sampling with random skips. There are more. Nevertheless,
all of them have some common features. A high-frequency clock provides their
time basis. The frequency 1/δ is usually stabilized. Specific sampling models
are then implemented by choosing and setting up a particular scheme, according
to which the sampling points are skipped. The pattern of the missing sampling
points define most of the characteristics of the resulting specific sampling model.
This approach is well suited for organizing various pseudo-randomized sampling
modes. The essential advantage of this type of sampling process is the possibility
of using for signal processing the information about the exact sample value taking
instants and the fixed pattern of the empty slots between the sampling time instants.
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8.2.2 Typical Use

Periodic sampling point processes with random skips cover a broad class of var-
ious processes often used in the area of randomized digitizing of signals. First
of all, the pseudo-randomized clock pulse sequences should be mentioned as the
central factor dictating the time instants exactly when the signal sample values are
taken according to the time schedule. In addition, they also control other related
functions of the respective digitizer. The quality of the sampling pulse sequences,
generated according to the preset sampling regime, has to be high as the perfor-
mance standard of the corresponding system largely depends on it. Execution of
the signal processing algorithms is usually based on the assumption that the signal
sample values are taken exactly at the predetermined time instants. The reference
values generated in the computer are typically tied to these time instants as well.
Therefore any discrepancy between the predetermined and realized signal sam-
ple value taking acts leads to serious negative consequences. The generation of
these pseudo-randomized clock pulse sequences is a responsible function, which
needs to be based on a well-developed knowledge basis. A typical example of a
developed and successfully exploited electronic system of this kind is given in
Section 11.1.

Another area where the periodic sampling point processes with random skips
play an essential role is hybrid sampling systems. Although there are various
options on how to build such hybrid systems on the basis of combining elements of
deterministic and randomized signal processing, they typically use the considered
periodic sampling point processes with random skips as essential components,
discussed in Chapter 10.

The last but not the least important application area of periodic sampling point
processes with random skips is signal processing adapted to sampling nonunifor-
mities. This particular technique has a high application potential and is considered
in Chapter 18.

8.3 Compensation Effect

Decomposing periodic sampling point processes with random skips into various
frequency periodic phase-shifted components is a technique helping to provide an
insight into aliasing processes. In turn this is essential for analysis and synthesis
of digital alias-free signal processing algorithms. This technique often provides
good results, especially when it is used in combination with the approach to
Fourier transforms that presents them as processes rather than just calculations of
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Fourier coefficients. Then an interesting effect, discussed here as a compensation
effect, can be observed. It reveals the essence of alias suppression and shows
how this anti-aliasing mechanism works. This effect and examples of its use are
described in this section.

8.3.1 Display of Fourier Transforms

For studies of various side effects of sampling, it is often convenient to use a special
approach to Fourier transforms. To realize how and why something happens,
application of special functions makes it possible to observe these transforms
as processes developing in time. These functions are cumulative sums that are
actually the basis for Fourier transforms. They can be given as

ãa(n) = 2

N

n−1∑
k=0

xk cos(2π fatk)

b̃a(n) = 2

N

n−1∑
k=0

xk sin(2π fatk)

(8.10)

where fa is the frequency of DFT filtering.
Consider a signal model

xk = ar cos(2π frtk) + br sin(2π frtk)

= ar cos[2π(m fs ∓ fa)tk] + br sin[2π(m fs ∓ fa)tk], k = 0, N − 1

where N is the number of the signal samples, fr = m fs ∓ fa, m = 0, 1, 2, . . .

is the signal frequency and fs is the sampling rate. Substituting into Equations
(8.10) yields

ãa(n) = ar
2

N

n−1∑
k=0

cos(2π frtk) cos(2π fatk) + br
2

N

n−1∑
k=0

sin(2π frtk) cos(2π fatk)

b̃a(n) = ar
2

N

n−1∑
k=0

cos(2π frtk) sin(2π fatk) + br
2

N

n−1∑
k=0

sin(2π frtk) sin(2π fatk)

(8.11)

To demonstrate the usefulness of this approach, graphical images reflecting
DFT filtering of true and aliasing signal components are compared.
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Figure 8.4 Results of sampling a signal according to a two-segment phase-shifted sampling
scheme: (a) original signal; (b), (c) phase-shifted sampling point sequences; (d), (e) down-
converted signal segments

8.3.2 Observing the Aliasing Processes

Suppose that the defined signal, depicted in Figure 8.4(a), is sampled periodically
and after taking the first batch of N/2 sample values the sampling pulse stream
is shifted for half of the sampling period so that the following N/2 sample values
are taken with this phase shift introduced as shown in Figures 8.4(b) and (c). As
the sampling frequency, in the illustrated general case, is lower than the signal
frequency, aliasing occurs and the signal is downconverted into the baseband
frequencies. The phase angles of the downconverted signal segments change
following phase shifting of the sampling process. This effect could be used for
reconstruction of the original signal although the sampling frequency is below
the Nyquist limit. The reconstructed downconverted signal waveforms are given
in Figures 8.4(d) and (e).

Now the cumulative sums introduced in the previous section can be used as
a convenient tool for observing the processes related to aliasing. Consider a
particular case where

xk = ar cos(2π frtk) + br sin(2π frtk)
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Figure 8.5 Cumulative sums (cumsum) for an existing real signal component

and ar = 1 and br = 1. The signal frequency fr is set at first below the Nyquist limit
and is equal to the filtering frequency fa. The cumulative sum in this particular
case graphically looks like a linearly increasing function for both segments of
the sampling process and is shown in Figure 8.5. If the filtering frequency fa is
chosen so that it is equal to an aliasing frequency, then the cumulative sum looks
like the broken lines shown in Figure 8.6.

It can be seen from Figure 8.6 that the cumulative sum, obtained for a particular
Fourier coefficient in the case where there is a signal component aliasing to the
frequency of DFT filtering, is a positively increasing linear function for the first
segment of the sampling point process and is equally a negatively increasing
function for the second shifted segment of the sampling point process. In other
words, the cumulative sum formed at the stage of the first segment is compensated
by the cumulative sum accumulated during the time of the second segment of the
sampling point process. The end result is close to zero, which it should be in this
case when there is no signal at the frequency of analysis and only an aliasing
signal component is present.
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Figure 8.6 Cumulative sums in the case where DFT filtering is performed at one of the
aliasing frequencies

Therefore, using the sampling point processes formed by appropriate shifting of
segments of the sampling point process produces the compensation effect, taking
out the signal aliases as described above. This compensation effect naturally
depends on various factors. Nevertheless, it is there and could be exploited with
results better than those usually obtained by application of nonuniform sampling.
If the involved Fourier transforms could be carried out simply as calculations of
the Fourier coefficient estimates, it would be easy not to notice this significant
effect, not to observe it and not to take it into account.

The sampling pulse streams, shown in Figures 8.4(b) and (c), are respectively
defined as follows:

t [0]
k = kTs, k = 0, N/2 − 1,

t [1]
k = kTs + 1.5Ts + t [0]

N/2−1 = kTs + N + 1

2
Ts, k = 0, N/2 − 1,

where Ts = 1/ fs is the period of sampling. Formulae for the respective cumulative
sums can be written as follows:
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1. For signal frequencies m fs − fa and n ≤ N/2, it is found that

ãa
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n ≤ N

2

)
= ar

N

{
n + sin(2π f0Tsn)

sin(2π f0Ts)
cos[2π f0Ts(n − 1)]

}
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{
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}
, (8.12)
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2. For signal frequencies mfs − fa and n > N/2,
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where

α1 = 2π f0Ts

(
N
2

− 1

)
, α2 = 2π f0Ts

(
n − N

2

)
,

α3 = 2π f0Ts

(
n + N

2

)
. (8.16)

Similar formulae can be derived for signal frequencies mfs + fa.
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This technique for visualizing the processes related to aliasing is a convenient
tool. Application of it for analysis of various signal processing operations often
proves to be effective for displaying and presenting them in a comprehensive
form. This is demonstrated repeatedly in the following chapters.

8.4 Generation of Randomized Sampling Pulse Trains

Most of the algorithms for digital signal processing are based on the assumption
that the time instants of signal sample value taking are known. This condition
does not represent a problem for the traditional practice of signal processing. The
intervals between the sampling instants are of a constant and known duration
and the needed timing data are obtained simply by counting the sampling events.
The circumstances are different for processing nonuniformly sampled signals as
the intervals between the sampling instants vary by more or less wide margins.
Theoretically there are two options: either to measure each sampling interval or
to generate the sampling pulses at precisely predetermined instants. As imple-
menting the first option is quite demanding, the second approach to the problem
is usually preferable.

Thus the randomized sampling pulse trains, on the one hand, need to be gener-
ated according to the requirements of the chosen specific sampling point process
and, on the other hand, each pulse has to be generated at the exact predetermined
time instant. The generated sampling pulse trains are then used for clocking ADCs
and initiating in this way the signal sample value taking.

8.4.1 Basic Approach

The basic principles of generating sampling pulse trains can be easily illustrated
using examples of their analog implementations.

Periodic Jittering Pulse Trains
When the distribution of time intervals between successive pulses in the pulse
sequence vary within relatively narrow boundaries, pulse trains can be formed in
a simple way. A sinusoidal function is generated, a random process ξ (t) is added
and the pulses are formed at the time instants when the combined process crosses
the zero level.

Additive Random Pulse Trains
It is convenient to use multivibrators to generate this kind of pulse train. Operation
of a multivibrator is based on a relatively slow exponential charging and abrupt
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discharging process of a capacitor. The capacitor is discharged at time instants
when the capacitor voltage uc(t), which increases during the process of charging,
reaches some threshold level. In the case of this application, a random process
ξ (t) is added to the normally constant threshold level so that this threshold is the
sum of a constant voltage u0(t) and ξ (t). When the power of ξ (t) is negligible, the
multivibrator relaxes almost periodically. In cases where the power of ξ (t) is more
or less substantial, the discharging instants are more or less influenced by this
random process. Multivibrators are appropriate for this application because after
the discharges of the capacitor they begin the next charging cycle, disregarding the
prehistory without taking the timing of past oscillations into account. This means
that intervals between generated sampling pulses are statistically independent as
required.

However, this is true only under the assumption that the multivibrators being
used are ideal. Under real conditions these intervals may be slightly correlated, but
it has been found to be of no real significance. It should be noted that multivibrators
become very sensitive to noise during the short time intervals preceding capacitor
discharges. This means that the sampling pulse generators of this kind have to be
properly screened to prevent their synchronization with outside interference.

Pseudo-random Pulse Trains
The applicability of the analog methods for generating sampling pulse trains is
limited. Much more universal are the digital methods. It is important to understand
that by using them the problem of forming the sampling pulses is solved in
a predetermined way so that their exact positions on the time axis are known
beforehand. Such digital sampling pulse trains are actually pseudo-random.

Generation of pseudo-random sampling pulse trains, in principle, is straight-
forward. They are built on the basis of a periodic clock fulfilling the essential
time reference function. To form these pseudo-random pulse trains, pulses are
randomly taken from the clock pulse sequence in accordance with the sampling
point process to be implemented. A pseudo-random number generator is used
to generate the random variables needed for dictating the distances between the
generated pulses.

The properties of the pulse trains generated in this way are influenced both
by the periodic clock pulse sequence and by the sequence of pseudo-random
numbers used. While the latter determines the sampling point density function,
characterizing the pulse trains obtained, the former is responsible for aliasing,
which may occur if the signals sampled by means of such pulse trains contain
components exceeding half the clock frequency.

The most valuable feature of the pseudo-random pulse trains is, of course,
that they are fully determined by the clock frequency and by the sequence of
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pseudo-random numbers used. This means that: (a) such pulse trains can be
reproduced at will whenever this is necessary; (b) the nth pulse will always appear
at an exactly predetermined instant; (c) descriptions of particular pseudo-random
pulse trains can be stored in computer memory and this information can then be
used to calculate the time instants when some other required functions or signals
should be read out, so that they and the signals are sampled simultaneously.

8.4.2 Practical Experience

While the matter of pseudo-randomized sampling pulse generation at first glance
seems to be simple, in reality the situation is different. The performance of digital
alias-free signal processing systems directly depends on the quality of the gener-
ators producing these sampling pulse sequences. To provide wideband operation
in the frequency range up to several GHz and to achieve high precision for signal
processing, the sampling pulses often have to be generated with a very short time
digit and to be formed very close in time to the respective predetermined instants
so that errors do not exceed a few picoseconds. The sampling pulse sequence also
has the responsibility of providing a stable and precise time reference. The ever-
present jitter needs to be kept within a strictly limited margin as well. Excessive
jitter, for instance, leads to spurious frequencies that corrupt signal processing in
the frequency domain.

The first decision that has to be taken in the initial stage of designing such
a generator is related to the problem of obtaining a precise and stable time
reference. One option is to depend on the clock frequency. Implementation of
this approach leads to quite good results in the case of relatively low frequency
designs. However, the situation is different when the smallest time digit is in
the subnanosecond range. For example, when microwave signals are processed
digitally at frequencies up to 1 or 2 GHz, the required clock frequency would be
twice as much and the necessity to build electronic systems operating at these
frequencies substantially complicates the system designs.

In such cases another option based on the use of signal propagation delays as
the time reference seems to be more appropriate. This approach could be imple-
mented on the basis of considerably lower frequency electronics and therefore the
system designs would then be much simpler. The practical experience obtained
confirms this assumption. High-performance sampling pulse generators have been
developed and made on this basis. Exploitation of various systems containing this
kind of sampling pulse generator has provided good results. However, there is also
an intrinsic drawback characterizing this approach. These are problems related
to the jitter control. The generation process is then based on switching various
time delay elements to generate the sampling pulses with a predetermined proper
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pattern of nonuniform distances between them. It is relatively difficult to ensure
in this case that all generated sampling pulses are placed exactly on the time grid.
Hence there are imperfections in the generation process, which are observed as
jitter of the sampling pulse generation instants.

It seems that the best approach to the generation of sampling pulse trains is to
combine both techniques. This method is illustrated later in Figure 11.3 where a
block diagram of a generator implementing this method is shown. Such a com-
bination of these techniques makes it possible to use moderate clock frequencies
and the quantity of the used delay elements is reduced to a relatively small number.
As a result, the generator shown in Figure 11.3 generates sampling pulses with
high precision while the jitter does not exceed a few picoseconds. To form sam-
pling pulses according to a predetermined nonuniform pattern, the pulse forming
process is based on controllable division of the clock frequency followed by con-
trollable introduction of time delays. The generator of pseudo-random numbers
provides the code for digital control of this process. This is discussed in more
detail in Chapter 11.

To continue the illustration of this example, some figures characterizing a
particular generator are given. The periodic clock pulses were generated at the
rate of 669.3266 MHz. The clock frequency was divided by a random integer
ranging from 9 to 16. Then the output pulses were expanded in width (up to
approximately 5 ns). An adjustable delay line and a high-speed multiplexer were
used to implement a single-bit controllable delay block. As a result, the inter-
vals between the generated sampling pulses at the output of the generator were
pseudo-randomly varied from 13.447 to 24.652 ns with the smallest time digit
equal to 747 ps. This generator is adapted for joint operation over a wide range of
ADCs with the maximum sampling rate over 80 MS/s and a broad analog band-
width. Although in the particular considered case the mean sampling rate is only
53.546 MS/s, the equivalent sampling rate is much higher, providing for digi-
tal alias-free signal processing in the bandwidth up to 669.3 MHz. It should be
emphasized that the introduced tight control of the sampling pulse jitter made
it possible to achieve a bandwidth free from the spurious frequencies due to
sampling imperfections.
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9

Fuzzy Aliasing

This chapter is dedicated to detailed studies of the aliasing processes observed
in cases where the sampling operation is performed nonuniformly. It is shown
that randomizing of sampling can attenuate the aliasing effect. The aliases are not
taken out completely at this stage. Some aliasing related effects are still present but
they are diffused and not so well defined as in cases of periodic sampling. The term
‘fuzzy’ fits well to this kind of aliasing as there are numerous multiple-frequency
contributions to this kind of aliasing process. Various aspects of fuzzy aliasing
are discussed. It is emphasized that successful elimination of aliases, crucial
for high-performance digital signal processing at frequencies exceeding half the
sampling rate, could be achieved only by a skilful combination of randomized
sampling techniques with application of specific algorithms. Both the sampling
and signal processing stages have to be arranged in the correct way. The signal
processing algorithms provide resolution of the frequency-overlapping problem,
which is made feasible by proper randomization of sampling. Some of these
special algorithms for proper alias-free signal processing are described in Part 2
of this book.

As demonstrated in the following chapter, a clear insight into the processes
underpinning fuzzy aliasing is an essential precondition for development of new
techniques for signal processing, including hybrid algorithms and algorithms
adapted to sampling nonuniformities.

9.1 Meaning of the DFT of a Nonuniformly Sampled Signal

Suppose that a single tone signal at frequency fx is sampled nonuniformly ac-
cording to the definition of the additive sampling point process. If the DFT of this
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Figure 9.1 Typical result of the DFT of a nonuniformly sampled single tone signal: (a)
diagram obtained in the case of relatively small ratio σ/μ; (b) diagram obtained at an increased
value of the ratio σ/μ

sampled signal is performed, typical diagrams, usually considered to be spectro-
grams, are obtained as a result. They are given in Figure 9.1.

In the first case, the mean additive sampling rate is equal to 1/μ = 1/8δ, the
sampling intervals are equal to μ + τk and μ = 8δ and the random variable τk

assumes the values (0, ±δ) with equal probability. The second diagram has been
obtained under similar conditions. The only difference is that the random variable
τk in the second case is distributed in a wider interval. Specifically, it assumes,
with equal probability, one of the values (0, ±δ, ±2δ, ±3δ, . . .). It can be seen
from these diagrams that the first of them has distinct peaks at some frequencies.
It is found that the peaks are located in the vicinity of the frequencies belonging
to the following row: fx , 1/μ ± fx , 2/μ ± fx , . . . . There are no such peaks in
the second diagram. This means that increasing the width of the distribution
of the random variable τk indicated above has led to a much more pronounced
suppression of aliasing.

At first glance it seems that everything is clear. To avoid aliasing, the sampling
process simply has to be randomized to a sufficiently high degree. Then there
would be no aliases, only some background noise like the noise present in the
diagram of Figure 9.1(b). Thus it is easy to get the illusion that everything is
more or less fine and that randomizing of sampling indeed provides elimination
of aliases. It is also realized that this positive effect is to some extent spoiled
by the noise that appears as a result of the sampling randomization. However, it
is usually accepted as an unavoidable negative effect as the appearance of it is
a natural consequence of the randomness introduced at the sampling. Therefore
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the conclusions often made are that the dynamic range characterizing spectrum
analysis of nonuniformly sampled signals is poor and that nothing can really be
done to improve it.

Such conclusions would, however, be wrong. The results of the DFT obtained
for a nonuniformly sampled signal under the given conditions should be consid-
ered from a different angle. The fact that the signal has been sampled nonuniformly
changes the situation. The customary approach used in the periodic sampling cases
is not fully applicable automatically when signals are sampled nonuniformly.
While the DFT of periodically sampled signals provides spectrograms indicat-
ing how the amplitudes of signal components are distributed in the frequency
domain, the estimates of Fourier coefficients, obtained as a result of a direct DFT
of a band-limited nonuniformly sampled signal, reflect the features of both the
signal and the involved sampling point processes. Therefore the multitude of these
spectral estimates represents only a half-ready spectrogram of the respective sig-
nal. The effects observed and accepted as aliasing related ones are in fact more
complicated than it might seem at first glance. In fact they contain numerous mul-
tifrequency contributions closely related to these aliasing processes. This is the
essence of fuzzy aliasing, which distorts the raw spectrograms obtained as a result
of direct application of the DFT. To obtain final alias-free spectrograms of signals
not corrupted by side effects of the sampling process, additional processing of
these raw spectrograms is carried out in some special ways.

Apparently, comprehending the impact of fuzzy aliasing on the nonuniformly
sampled signals is crucial for achieving the capability of alias-free digital process-
ing of signals in wide dynamic and frequency ranges. Various aspects of fuzzy
aliasing are discussed in the following sections.

9.2 Concept of Fuzzy Aliasing

While pseudo-randomized sampling might be realized in accordance with various
sampling models, this kind of sampling is by definition digital. This means that
every sampling instant is locked to a regular time grid. Therefore all parameters
of the sampling point process built on this basis are expressed in numbers of
digital quantities with the smallest time digit equal to the period of the respective
clocking pulse sequence.

9.2.1 Generic Periodic Sampling with Random Skips

As the basis of the sampling approach considered here is a periodic point process
with pseudo-randomly excluded sampling pulses, it is essential to focus studies
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Figure 9.2 Spectrograms obtained in the case when sample values of a single-tone signal are
taken periodically with some of them pseudo-randomly skipped: (a) N = 2048; (b) N = 512

on features of this basic component of the sampling process. The goal of these
studies is to discover practical applicable methods for reduction of errors that
impair spectral analysis and waveform reconstruction of a wide class of signals.
The targeted error reduction is to be based on more extensive use of all a priori
information. The pattern of pseudo-random skips is typically fixed, so first a
method must be found showing how this information can be used more effectively.

Aliasing for the periodic sampling pulse streams with pseudo-random skips
is well-defined, shown by the spectrograms given in Figure 9.2. It can be seen
that the aliases are located symmetrically to the sampling frequency and their
amplitudes are equal to the amplitude of the signal. However, the noise due to the
cross-interference is still present.

Broadly speaking, periodic sampling with random skipping of signal sam-
ple values belongs to the class of randomized sampling processes. However, the
features of this kind of randomized sampling differ greatly from those character-
istic of the randomized sampling processes discussed, specifically, in Chapter 3.
Indeed, the basic motivation for deliberate randomization of sampling so far has
been the avoidance of aliasing. In this particular randomization case this effect is
not achieved. Therefore there must be other reasons why such a sampling model
is considered at all.

Actually there are some good reasons. Firstly, it is important to use fault-tolerant
signal processing to discover how to reconstruct spectra and waveforms of signals
when the process of their sampling has been impaired and reduced to the process
of periodic sampling with random skips by some interference and noise. Secondly,
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estimation of signal spectral parameters in the case of such sampling is a vital com-
ponent of more complex algorithms for alias-free signal sampling and processing.

In both cases, it is essential to find a good approach to digital signal parameter
estimation improvement applicable under the considered specific signal sampling
conditions. To achieve this, the dominating relationships characterizing such sam-
pling and processing of the digital signals obtained in this way need to be studied.
It is clear that the targeted error reduction should be based on more effective use
of all a priori information than has been done in this particular area so far. The
real challenge is to take out, or at least suppress, the impact of the interference
due to irregular sampling of other signal components. This problem is considered
in Chapter 18.

9.2.2 Primary and Secondary Aliasing

Consider an additive pseudo-randomized sampling point process. It is formed on
the basis of the periodic clock process so that the sampling instants correspond
to the definition of this kind of sampling. Note that in general it is essentially a
specific periodic process with pseudo-randomly skipped points. The frequency of
the basic periodic process is fc = 1/δ and the mean sampling rate 1/μ is several
times lower. The ratio of these frequencies is evidently equal to μ/δ. To sim-
plify the analysis of fuzzy aliasing, assume that the distribution of the intervals
between the sampling instants is uniform. It is characterized simply by the
mean value μ, the distribution interval of the random variable τk or the stan-
dard deviation σ .

To observe the aliasing effects affecting the sampling processes carried out
according to this periodic sampling scheme with randomized skips, the diagram
given in Figure 9.3 is used. It reflects the results of the DFT obtained for a
sinusoidal signal at frequency fx sampled in accordance with the digital additive
sampling scheme in the frequency range exceeding the clock frequency fc.

At some frequencies there are full-scale aliases and at other frequencies
there are smaller diffused peaks. It is easy to find that no matter what is
the pattern of the missing sampling points, frequencies belonging to the row
fx , fc ± fx , 2 fc ± fx , . . . fully overlap. This happens as a result of the aliasing
effect usually observed. In the context of this analysis, consider this kind of alias-
ing as primary aliasing. At pseudo-randomised sampling the clock frequency is
usually set up at a sufficiently high level to guarantee that there are no primary
aliasing frequencies within the bandwidth of the input signal.

However, there is also a secondary aliasing effect. This depends on the pattern
of skipped sampling points and is not so well defined and might be described
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Figure 9.3 Typical results of the DFT obtained for a single-tone signal sampled according to
the digital additive sampling scheme reflecting the primary and secondary aliasing effects

in probabilistic terms. In the illustrated case of additive sampling, such aliasing
takes place in the close vicinity of the frequencies defined as fx , 1/μ ± fx , 2/μ ±
fx , . . . . Frequency overlapping at these frequencies is suppressed, but is observed
not only at the indicated frequencies but also in the areas near to them. The peaks
observed at this secondary type of aliasing are more or less pronounced depending
on the parameters of the corresponding sampling process. In the illustrated case,
these peaks depend on the interval of distribution of the random variable τk (or
on the ratio σ/μ) and on the number N of the sample values taken. They become
more suppressed with the distribution interval and N increasing and at some
randomization level these peaks are completely washed out. Then the secondary
aliasing is not noticed at all as there is a more powerful noise in the background.
It is tempting to say that under these conditions there is no aliasing. Actually this
is not true. Frequency overlapping still takes place and the observed background
noise is actually the outcome of the aliasing processes occurring in virtually the
whole frequency range. The nature of this secondary aliasing effect, which in fact
is the basis of fuzzy aliasing, is relatively complicated. As fuzzy aliasing plays an
important role in digital alias-free signal processing, it is crucial to obtain a very
clear picture of it. The essence and the anatomy of fuzzy aliasing are revealed
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in the following sections. The key elements of it are the decompositions of the
sampling point processes, which are considered further.

9.2.3 Decomposition of Sampling Point Processes

The quality of nonuniformly sampled signal processing often depends on the
degree of sampling-specific error suppression. These errors are mainly due to
the imperfection of the considered periodic point process with random skips as
most of the used randomized sampling schemes can be tied to this sampling
model. Apparently successful error reduction should be based on more extensive
use of all a priori information available. The pattern of pseudo-random skips is
typically fixed and known. Therefore it has to be learned first of all how to use
this information more effectively. It is useful to decompose the periodic sampling
point process with random skips into a number of component sets at various
frequencies. Each of the component sets contain at a specific frequency in turn a
number of components shifted in phase for different phase angles.

Once such a decomposition task is approached, it is easy to see that the basic
point process with the period δ could be decomposed into two periodic sampling
point processes with pseudo-random skips having a period 2δ two times larger
and the phase shift between them equal to half of this period. Therefore there are at
least two equivalent representations of the basic sampling point process. Actually
there are more variable parameter decompositions. Their specifics depend on the
type of sampling point process decomposed.

Additive Random Sampling
Figure 9.4 illustrates the decomposition of a periodic sampling point process
with random skips in the case where the pattern of the skipped points meets the
requirements of the additive random sampling. The decomposition of the basic
sampling point process with a period equal to δ (Figure 9.4(a)) into three phase-
shifted sampling processes with a period equal to 3δ that is three times larger
is shown in Figure 9.4(b). The same approach can be used to decompose the first
sampling process into three components at the frequency of a basic randomly
decimated periodic process equal to 1

3δ
. This decomposition has three components

shifted in phase for 0, 2π/3 and 4π/3 radians. Apparently this decomposition
approach makes it possible to decompose the initial basic sampling point process
at frequencies 1

4δ
, 1

5δ
, 1

6δ
, . . . , 1/nδ, each containing 4, 5, 6, . . . , n phase-shifted

components respectively. Theoretically, only the number N of the taken signal
sample values limits the number of possible decompositions. Indeed, at each
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Figure 9.4 Decomposition of a periodic sampling point process with random skips into
various components in the case of additive random sampling

decomposition all of the signal sample values are subdivided nonequally between
the n components of the particular nth decomposition.

Periodic Sampling with Jitter
Figure 9.5 illustrates the decomposition of periodic sampling points with jitter.
In this case the features of the obtained decompositions differ from the charac-
teristic features of the decompositions obtained when the primary sampling point
process belongs to the class of additive pseudo-random sampling. Specifically,
the periodic sampling points with jitter are decomposed into only three out of
eight components. The remaining five other components are empty and do not
contain any sampling points. Therefore the conclusion is found that a spectrogram
obtained by performing a DFT for a pseudo-randomly sampled signal contains,
in addition to estimates of the signal components, multiple aliases due to the
primary and the secondary aliasing effects.

The decomposition of the randomized sampling point sequences is an approach
that is convenient for studies of various processes related to processing of signals
sampled in this way. It can also be used both for analysis of various processes
and synthesis of algorithms. For instance, the usefulness of this decomposition
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Figure 9.5 Decomposition of a periodic sampling point process with random skips into
various components in the case of periodic sampling with jitter

idea is demonstrated in the following chapter, where it is used for development
of hybrid sampling models.

9.3 Anatomy of Fuzzy Aliasing

The suggested concept of randomized sampling decomposition provides the in-
strument for tracking various contributions to the overall fuzzy aliasing phe-
nomenon needed for revealing the anatomy of fuzzy aliasing.

9.3.1 Tracking of Particular Contributions

The row defining the frequencies for primary aliasing is based on the clock fre-
quency fc. The secondary aliasing takes place at frequencies belonging to a similar
frequency row:

fx , fc/n + fx , 2 fc/n + fx , 3 fc/n + fx , . . . ; n = 2, 3, 4, . . . . (9.1)

where fc/n are the frequencies of the considered decompositions. The sampling
point process is decomposed at each frequency fc/n into n phase-shifted sampling
point streams so that the total number N of the sampling points is subdivided into
n random parts. However, the power of the secondary aliases is not distributed in
the frequency domain in a way that is obviously related to them. Instead, under
certain conditions, the secondary aliasing is dominated by peaks close to the fre-
quencies in the row: fx , 1/μ ± fx , 2/μ ± fx , . . . Therefore not all sampling point
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Figure 9.6 Typical differing decompositions of an additive sampling point process: (a) de-
composition into eight components; (b) decomposition into five components

decompositions play an equally important role in secondary aliasing. The decom-
position into n = μ/δ components is special. The question is: why it is so special?

To answer this question, look at the features characterizing the considered
decompositions a little more carefully. Two typical decompositions of an additive
sampling point process for the cases where n = μ/δ and n �= μ/δ are illustrated
in Figures 9.6(a) and (b) respectively. The decomposed additive sampling point
process is characterized by μ = 8δ, the sampling intervals are equal to μ + τk

and the random variable τk assumes the values (0, ±δ) with equal probability. It
can be seen that the sampling points drift across the decomposition levels in the
first case where n = μ/δ and jump chaotically between these levels in the second
case where n �= μ/δ. That leads to the characteristic decomposition distributions
illustrated in Figure 9.6.

In general, the distributions of the sampling points between the constituents
represented by various phase-shifted particular periodic processes with random
skips are shown in the cases where n �= μ/δ are closer to uniform (histograms a,
b, c and e in Figure 9.7). The differences in the quantities of the sampling points
belonging to these randomly decimated periodic processes with particular phase
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Figure 9.7 Histograms characterizing the distribution of the sampling points between the
constituents represented by variously phase-shifted periodic processes with random skips

shifts are then relatively small. They are much more pronounced in the cases where
n = μ/δ (histograms d and f in Figure 9.7). Consequently, aliasing occurring at
decomposition frequencies characterized by n �= μ/δ is better compensated than
aliasing taking place at frequencies for which n = μ/δ.

9.3.2 Incomplete Compensation of Aliases

The background noise, present in the diagrams displaying the results of DFT per-
formed for nonuniformly sampled signals, are actually residues of incompletely
compensated aliasing taking place at many frequencies. Compensation of the
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phase-shifted particular aliases plays a significant role in the whole multifre-
quency aliasing mechanism. The particular errors in the estimates of Fourier
coefficients are residues of incompletely compensated aliases. This in turn hap-
pens because the components of particular decompositions contain an unequal
number of signal sample values.

The significance of this compensation effect could be demonstrated by the
example of processing periodically sampled signals. The point is that a periodic
sampling point stream can also be decomposed in the way described. However,
the decompositions would then have different characteristics. For instance, the
total number of signal sample values would be subdivided equally between the
decomposition components. It is easy to check that the aliases occurring in this
case at a particular decomposition frequency would be fully compensated.

9.3.3 Aliasing at Multiple Frequencies

As explained in Section 9.2, every sampling point process could be represented
by a number of equivalent decompositions at frequencies fc/n, 2 fc/n, 3 fc/n, . . .

and each of these decompositions contain n phase-shifted components given
as periodic sampling point processes with random skips. Therefore all of them
provide some aliasing related effects, which happen for the multitude of indicated
frequencies. In addition, the sampling conditions at each of the decomposition
frequencies are dictated by several phase-shifted components of the sampling
point process. Therefore the compensation mechanism, described in Section 8.3,
acts as well and the resulting estimate of the Fourier coefficient calculated at this
particular frequency is affected by all of these factors. The secondary aliasing
conditions change from frequency to frequency. The total number of the taken
signal sample values is subdivided at each of the decomposition frequencies into
n nonequal parts. Therefore the contribution to the summary secondary aliasing
given by these separate decomposition components, with n growing, declines.
Consequently, the total aggregated secondary aliasing effect is rather complicated.
It is suggested that the term ‘fuzzy aliasing’ is used to refer to it.

The impact of fuzzy aliasing on processing of nonuniformly sampled signals
is strong and has to be taken into account. Attention is drawn once again to the
fact that the processing of nonuniformly sampled signals should be matched to
the specifics of randomized sampling. An example elaborating this point follows.

9.4 Object Lesson

The necessary condition for avoiding aliasing is taking signal sample val-
ues at nonequally distanced time instants. Meeting this condition of sampling
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nonuniformity is obligatory as there is no other way to avoid overlapping of fre-
quencies at signal digitizing and digital processing. However, it does not mean
that using nonuniform sampling is sufficient for achieving the desirable elimina-
tion of aliases. In concluding the discussion of studies on fuzzy aliasing, the point
must be stressed that nonuniform sampling by itself does not completely take
out the aliases and does not automatically lead to alias-free signal processing. Al-
though the negative consequences of aliasing in many cases could be avoided, it is
impossible to achieve that by relying exclusively on nonuniform sampling alone.
This kind of nonequispaced sampling only provides the necessary preconditions
for signal processing not corrupted by aliasing.

The perception of the role that randomized sampling plays in digital alias-
free signal processing should therefore be adjusted to this concept. Correctly
performed nonuniform sampling actually leads to two useful effects. Firstly, it
suppresses the magnitude of the aliases. Secondly, it also opens up the possi-
bility of resolving the aliasing problem at the stage when the digitized signals
are processed. In fact, the secret of successful digital alias-free signal processing
lies in using the correct organization of both sampling and processing operations
so that they are effectively combined for elimination of the aliases. The devel-
opment of algorithms for a particular signal processing should be based on the
reality that aliases at randomized sampling are suppressed rather than taken out
completely. Special procedures for elimination of aliases should be included in
those algorithms.

Figure 9.8 illustrates this point. A wideband signal was nonuniformly sam-
pled and the obtained data were used two times. Firstly, the diagram shown
in Figure 9.8(a) was calculated as described in Chapter 15. It represents DFT
results of a nonuniformly sampled wideband signal. Evidently it has a high level
of background noise, which can now be recognized as the product of fuzzy alias-
ing. If the transformed signals have been sampled periodically, this diagram would
represent the signal spectrogram. In this case, where the sampling procedure has
been randomized, the DFT of the sampled signals provides data affected by the
randomness of sampling. To obtain a spectrogram in this case, it has somehow to
be filtered out of the raw data obtained as a result of the DFT.

To demonstrate this point, the same data were used once more to perform the
spectrum analysis more correctly on the basis of a special algorithm taking out the
impact of fuzzy aliasing. The resulting spectrogram is given in Figure 9.8(b). It
was obtained specifically by using the SECOEX algorithm discussed in Chapter
20. The achieved improvement is obviously significant. Thus this example con-
firms the earlier comment on the DFT of randomly sampled signals. The results
of the DFT should therefore not be considered as spectrograms of the respective
signals before the errors imposed by fuzzy aliasing have been eliminated. This
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Figure 9.8 Spectrograms of a nonuniformly sampled wideband signal obtained: (a) as a result
of the DFT and (b) with special anti-aliasing procedures added at the stage of processing the
digitized signal

example also shows how important it is to use the correct tools to process the
nonuniformly sampled signals.
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Hybrid Sampling

Both uniform periodic and nonuniform randomized sampling have their advan-
tages and disadvantages. They are specific and different. However, it can be said
that the drawbacks of periodic sampling are countered to some extent by ad-
vantages of nonuniform randomized sampling and vice versa. Recognition of
this situation has led to attempts to synthesize sampling methods that have inte-
grated positive features of uniform and nonuniform sampling methods and at the
same time would not be impaired by their drawbacks. This kind of periodic and
pseudo-randomized nonuniform sampling hybrids is discussed in this chapter.

Although purposeful development of hybrid sampling is an activity that began
only recently, the basic principles of this approach have been in use for a long
time. For instance, pseudo-randomized sampling may be mentioned as a case
where a periodic clocking process is combined with pseudo-random skipping of
the sampling pulses. Therefore it is not very easy to draw a line between pseudo-
randomized and hybrid sampling models. In fact they partly overlap. The hybrid
sampling techniques discussed here are more elaborate and specific than the basic
pseudo-randomized sampling techniques.

These sampling techniques also offer an additional opportunity to improve the
certainty that the signal sample values will be taken at exact predetermined time
instants. This is essential for high-performance signal processing as the sam-
pling instants then have to be known with sufficient resolution no matter how
the sampling process is organized. Although good results have been achieved
in this area and it is possible to pinpoint the sampling instants with picosec-
ond resolution, the electronic blocks ensuring that sampling is performed exactly
at predetermined time instants are complicated and represent the most expen-
sive part of alias-free digitizers. The concept of hybrid sampling reveals how
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pseudo-randomized nonuniform sampling might be realized on the basis of a few
phase-shifted stabilized periodic processes and this approach is well suited for
building sampling drivers characterized by reduced sampling instant jitter.

10.1 Hybrids of Periodic and Random Sampling

The development of hybrid sampling schemes is based on various combinations of
periodic and randomized sampling elements. The features of these combinations
differ. The basic issue is how to build the hybrid sampling schemes so that they
provide results at minimal incurred costs. Such costs are given in terms of design
hardware and software complexity. The discussions will start with the subject of
hybrid sampling by considering a model based on the superposition of pseudo-
randomly decimated periodic sampling point processes.

10.1.1 Basic Approach

Suppose that a sampling pulse stream, uniform or nonuniform, is used for sam-
pling a signal and sample values of it are taken at instants {tk} given on a discrete
time grid with a uniform step of the grid equal to δ. The step δ of the time grid
determines the Nyquist frequency limit for the given stream of sampling pulses.
This upper frequency limit fu is apparently defined as fu = 1

2δ
and holds both for

the uniform and nonuniform sampling pulse streams formed on the basis of this
time grid.

A particular approach to signal sampling is based on the use of n periodic
sampling pulse streams. Although the periods T = nδ of all these pulse streams
are the same, they are each shifted in phase for �ϕ = 2mπ/n, m = 0, 1,

2, . . . , (n − 1), and in time for �t = mδ. Thus the smallest shift in time is equal
to δ. The resulting sampling pulse stream is obtained by superposition of all these
partial streams.

Obviously, the formed stream represents just a periodic sampling process with
frequency n times higher than the frequency of the partial streams. Using such
shifted interleaving periodic sampling pulse streams for signal sampling by a
number of ADCs connected in parallel is a common practice. This approach is
used when the required sampling rate exceeds the capabilities of the ADC used.
Now suppose that the sampling operation is performed by a single ADC under
the conditions that the highest sampling rate applicable for it is several times
lower than the frequency of the resulting sampling process obtained in this way.
It is evident that some quantity of the sampling pulses has to be taken out. In
other words, the partial sampling pulse streams have to be decimated. That has
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Figure 10.1 Generation of a nonuniform stream of sampling pulses from partial pseudo-
randomly decimated phase-shifted periodic streams

to be done in a pseudo-random way so that the smallest distance between two
adjacent sampling instants is either equal to or larger than the shortest sampling
time interval permitted for the specific ADC used. Figure 10.1 illustrates the
formation of this kind of nonuniform stream of sampling pulses from partial
pseudo-randomly decimated shifted periodic streams.

It can be seen that the sampling process formed in this way represents a classic
pseudo-randomized sampling point process. It actually corresponds to the additive
sampling process and, as shown in the previous chapter, could be interpreted as
a superposition of periodic sampling point processes with random skips.

However, this model of hybrid sampling essentially differs from the basic
pseudo-randomized sampling model. Firstly, each sampling instant is marked
with the number of the specific periodic sampling point process to which it be-
longs. Secondly, sample values marked by the same numbers at digital processing
of the sampled signals are grouped into separate subsequences that are processed
separately so that the phase shift of the particular periodic sampling pulse stream
that they belong to is taken into account. Thirdly, the suggested approach to gener-
ation of sampling point processes based on superposition of a number of periodic
phase-shifted sampling point processes with random skips could be implemented
in a way that is much better than the earlier approach used to generate of the
additive sampling point processes based on the use of a set of controllable time
delay elements. More will be said about this in Section 10.4.

To use this approach successfully, processing of the signal digitized in this
manner has to be properly arranged and some specific conditions have to be taken
into account.
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10.1.2 Arrangements for Sample Value Processing

Basically there are two different sources of errors distorting the results of process-
ing nonuniformly sampled signals. The first type of signal parameter estimation
error is linked to incompletely suppressed aliasing. The second kind of error is
related to sampling irregularities. It should be realized that the hybrid sampling
technique provides for elimination of errors due to aliasing and that benefit is due
to the fact that hybrid sampling is based on superposition of partial sparse periodic
sampling pulse streams. This sampling approach is much better for elimination of
aliases than the more conventional nonuniform sampling techniques. However,
it does not automatically suppress the errors caused by random skipping of the
signal sample value taking. These error components need to be diminished at the
stage of signal processing in some other way. For instance, the signal process-
ing methods adapted to sampling nonuniformities, discussed in Chapter 18, are
effective for that.

As shown in Chapter 8, variable-phase periodic sampling, if performed cor-
rectly, provides the conditions necessary for suppression of aliasing. The consid-
ered method for hybrid sampling exploits the dependencies described there. To
explain how aliases present in the digital signal obtained as a result of hybrid sam-
pling can be eliminated, the signal model will be used again, according to which
a signal x(t) is composed of a multitude of sinusoidal components at arbitrary
frequencies in a limited frequency band. Suppose that such a signal is sampled
periodically and that it is done according to superposition of a number of phase-
shifted periodic sampling point processes. Consider the case where the frequency
range is extended four times. In that case, the highest frequency of the signal
might exceed two times the frequency of the periodic sampling point processes
used. The sampling point processes are periodic with the period T = 1/ fs and the
signal sample values are taken at sampling instants t [m]

k = t [0]
k + mδ, m = 0, 3,

where mδ = mT/4 is the phase angle of the mth sampling point process. Su-
perposition of the particular sampling point processes apparently has to be per-
formed so that the minimal distance between adjacent sampling instants in the
resulting sampling process should not be shorter than the smallest sampling in-
terval allowed for that ADC. Under the specified conditions, each of the signal
basic frequencies f0 within the frequency range (0 − 1

4 fu) has three potentially
aliasing frequencies: f1, f2, f3. The task is to recover the signal components at
all indicated frequencies. At least four periodic sampling point processes are
used.

To compose equations describing the sampling process under these conditions,
account is taken of the fact that all aliasing frequencies represented by sample
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values taken at instants belonging to a particular periodic decimated sampling
point process completely overlap. Therefore it can be written that the signal
component at the frequency f0, filtered out of the signal sampled by one of the
four periodic decimated sampling point processes, represents a sine function. The
parameters of this sine function differ for all involved phase-shifted decimated
periodic sampling point processes. The filtered-out sine functions at frequency
f0 for each of the mentioned four sampling point sequences are denoted by
x(t [0]

k ), x(t [1]
k ), x(t [2]

k ) and x(t [3]
k ) respectively. As overlapping of the aliasing

frequencies is fully determined only by the phase angles of the particular randomly
decimated periodic sampling point processes, the dependencies characterizing
aliasing in the case of variable-phase periodic sampling discussed in Chapter 8
are also fully applicable in this case no matter what pattern of the randomly
skipped sampling points there is. This approach leads to the following set of
equations:

x
(
t [0]
k

)= (a0+ a1 + a2 + a3) cos
(
2π f0t [0]

k

) + (b0 − b1 + b2 − b3) sin
(
2π f0t [0]

k

)
,

x
(
t [1]
k

)= (a0+ b1 + b2 − a3) cos
(
2π f0t [1]

k

) + (b0 + a1− a2 + b3) sin
(
2π f0t [1]

k

)
,

x
(
t [2]
k

)= (a0− a1 − a2 + a3) cos
(
2π f0t [2]

k

) + (b0 + b1− b2 − b3) sin
(
2π f0t [2]

k

)
,

x
(
t [3]
k

)= (a0− b1 − b2 − a3) cos
(
2π f0t [3]

k

) + (b0 − a1 + a2 + b3) sin
(
2π f0t [3]

k

)
.

(10.1)

This system describes how the power of the signal component at frequency f0 is
subdivided between all four aliasing frequencies f0, f1, f2 and f3. Therefore
it can be used to estimate all Fourier coefficients at any arbitrary frequency f0

for all related overlapping signal components. The fact that it can be done is
significant.

Note that the signals on the left side of all equations of (10.1) are sine functions,
characterized by the frequency f0 and differing amplitudes and phase angles.
These parameters, as (10.1) shows, depend on the parameters of the aliasing
frequencies. If the sine functions on the left-hand side of these equations are
represented by their quadratic components, the following system of equations is
obtained:

a[0]
0 = a0 + a1 + a2 + a3, b[0]

0 = b0 − b1 + b2 − b3;

a[1]
0 = a0 + b1 + b2 − a3, b[1]

0 = b0 + a1 − a2 + b3;
(10.2)

a[2]
0 = a0 − a1 − a2 + a3, b[2]

0 = b0 + b1 − b2 − b3;

a[3]
0 = a0 − b1 − b2 − a3, b[3]

0 = b0 − a1 + a2 + b3.
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Next, this equation system can be rewritten as follows:

a0 = 1
4

(
a[0]

0 + a[1]
0 + a[2]

0 + a[3]
0

)
, b0 = 1

4

(
b[0]

0 + b[1]
0 + b[2]

0 + b[3]
0

)
;

a1 = 1
4

(
a[0]

0 + b[1]
0 − a[2]

0 − b[3]
0

)
, b1 = 1

4

(−b[0]
0 + a[1]

0 + b[2]
0 − a[3]

0

)
;

(10.3)
a2 = 1

4

(
a[0]

0 − b[1]
0 − a[2]

0 + b[3]
0

)
, b2 = 1

4

(
b[0]

0 + a[1]
0 − b[2]

0 − a[3]
0

)
;

a3 = 1
4

(
a[0]

0 − a[1]
0 + a[2]

0 − a[3]
0

)
, b3 = 1

4

(−b[0]
0 + b[1]

0 − b[2]
0 + b[3]

0

)
.

It can be seen from the equations of (10.3) that parameters of all aliasing fre-
quencies are explicitly expressed through the amplitudes of the quadratic com-
ponents of the sine functions filtered out of the original signal at the frequency
f0 in the cases where that signal has been sampled by all four of the shifted dec-
imated periodic sampling processes. The obtained mathematical description of
this relationship is very useful. It simplifies calculations significantly and reveals
the essential interdependencies well.

On the other hand, nothing is gained by obtaining estimates of a[m]
0 and b[m]

0 for
all four (m = 0, 1, 2, 3) mentioned sampling subroutines. That needs to be done
in another way. A direct DFT-based parameter estimation is the first possibility
that comes to mind. However, this approach would provide only rough estimates
corrupted by errors due to random skipping of the sampling instants in all four
periodic components of the total sampling point process. To obtain improved
results of such a signal analysis, more elaborate signal spectral parameter estima-
tion procedures, better suited for processing nonuniformly sampled signals, need
to be used to process the signal sample values obtained by applying the hybrid
sampling techniques. Various ways of how to do this are considered in Part 2. As
shown there, while the DFT is still typically involved, the raw estimates obtained
as a result of these transforms could be improved on the basis of either iterative or
adaptive procedures exploiting available a priori information. The specific pat-
tern of the sampling instants excluded from all four (m = 0, 1, 2, 3) mentioned
periodic sampling point processes represents the most valuable information of
this kind.

It follows from the equations of (10.3) that the frequency range of the signal is
subdivided into two parts and different techniques are used for estimating Fourier
coefficients at frequencies within these two parts. While the coefficients a[m]

0 and
b[m]

0 in the baseband range are estimated by filtering signal components out of all
frequencies within this range, calculations based on Equations (10.3) are carried
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Figure 10.2 Illustration of the signal parameter estimation arrangement in the case where a
signal is sampled according to the model of hybrid sampling

out to estimate these parameters at the higher frequencies outside the baseband,
illustrated by Figure 10.2.

An estimation of Fourier coefficients a[m]
0 and b[m]

0 , requiring execution of
a large quantity of multiplication operations, represents the main computational
burden. This concerns estimations only in the baseband frequency/sampling phase
area (shaded in Figure 10.2) that are equal to 1/m of the whole signal fre-
quency/sampling phase range. However, these coefficients apparently have to
be estimated m times for all of the used m phase-shifted periodic sampling point
processes with random skips. Calculating Fourier coefficient estimates within the
other three frequency/sampling phase areas, (0.5 fs − fs)[m], ( fs − 1.5 fs)[m] and
(1.5 fs − 2 fs)[m], is a much simpler task, requiring only a few arithmetic opera-
tions carried out in accordance with Equations (10.3). To simplify the illustration,
only the varying amplitudes of the signal components are shown in Figure 10.2.
Of course, the phase angles of these components, estimated on the basis of pro-
cessing signal sample values obtained at different phase shifts of the sampling
processes, normally differ as well.

A block diagram of a device that performs hybrid sampling and preprocessing
of the sampled signal in the described way is shown in Figure 10.3. A special
sampling driver is used to form the sampling pulse sequence required to perform
the hybrid sampling operation. While different approaches may be used for doing
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Figure 10.3 Block diagram of a device for hybrid sampling providing alias-free digital rep-
resentation of the signal in the frequency domain

that, the pulses formed for sampling are taken from a number of variable-phase
periodic pulse processes. The signal sample values obtained relate to specifically
phased sampling and are transferred to the corresponding signal preprocessing
channel for separate preprocessing. An electronic switch controlled by the sam-
pling driver is used for that. At the stage of signal preprocessing an estimation
of Fourier coefficients a[m]

0 and b[m]
0 for the baseband frequencies is performed in

parallel. These estimates are then used to calculate the wideband Fourier coeffi-
cient estimates according to Equations (10.3), as described above. The obtained
alias-free data then represent the signal in the whole frequency range, which is
m times wider than the baseband. How they are used, of course, depends on the
specific application. However, signal reconstruction and periodic resampling at m
times higher frequency than the frequency of the periodic processes used initially
would obviously represent the most flexible approach. It would make it possible
to exploit the classical algorithms for signal processing.

10.2 Hybrid Double Sampling

Problems of digital alias-free signal processing could often be more effectively
tackled at the stage of original analog signal conversion into the digital format
rather than later at the stage of digitized signal processing. As signal characteristics
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and conditions for their processing vary over a wide range, adapting signal dig-
itizing to them represents a challenge. To face this, the used digitizing methods
and means need to be sufficiently flexible. The hybrid sampling approach might
be considered as a competitive option for developing specific sufficiently adapt-
able sampling methods and sampling driver designs. Hybrid double sampling
techniques discussed in this section develop the basic hybrid sampling idea fur-
ther. Specifically, organization of the sampling operation in a way ensuring that
the signal sample value can be taken at sufficiently short sampling intervals is
considered.

Hybrid double sampling is implementation of hybrid sampling based on the
use of at least two ADCs connected in parallel. It is aimed at obtaining the
right conditions for processing signals with both discrete and continuous spectra.
To achieve this, the distances between adjacent sample values often have to be
shortened and application of hybrid double sampling makes it possible to perform
sampling with small discrete sampling interval increments. This kind of sampling
is based on various combinations of periodic and nonuniform sampling elements.

Note that some of the hybrid sampling schemes can be realized either as a single
ADC version or as a hybrid double sampling scheme built on the basis of two
ADCs. For instance, this applies to the hybrid sampling model mixing pseudo-
randomly decimated phase-shifted periodic sampling point streams, considered
above.

A few specific models of hybrid double sampling models are considered in this
section. These models are considered to be generic and many variations of them
are possible. Their characteristics differ. Some sampling models are better suited
for the needs of special application conditions than others. Therefore it is possible
to adapt, to some extent, the hybrid double sampling mode and parameters to
specific applications. It also means that it is better if the microelectronic sampling
drivers used to implement these sampling techniques are reprogrammable.

10.2.1 Providing for Short Sampling Intervals

There is a typical drawback of scarce nonuniform sampling that leads to some
limitations imposed on essential applications of this kind of sampling. As the
distribution of the sampling intervals for nonuniform sampling has to guarantee
that the distance between two consequent sampling instants is equal or larger than
the shortest sampling time interval permitted for the specific ADC to be used, it is
impossible to obtain signal sample values located more closely on the time axis.
This limitation of scarce nonuniform sampling essentially impacts a particular
type of wideband signal processing. For instance, this applies to the spectrum
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analysis of continuous spectrum signals based on an estimation of correlation
functions. A solution of the short sampling interval problem is offered by hybrid
double sampling.

An estimation of signal spectral density functions is often carried out on the
basis of the DFT performed over the autocorrelation functions Px (τi ). These func-
tions usually have to be estimated for the discrete time delay values τi varying in a
given range including small values. This represents a problem in cases where the
signals have been sampled nonuniformly. There is also an additional condition
that has to be taken into account in these cases. This is related to the obvious
necessity of correctly averaging the products x(tk)x(tk + τi ), which are then cal-
culated for a varying number Ni of discrete values of the time delay in accordance
with the definition of the estimate of the autocorrelation function for a particular
value τi :

ρxx (τi ) = 1

Ni

Ni∑
i=1

x(t)x(t + τi ). (10.4)

The values of Ni in general depend on the used sampling point process and
vary for different delay time values. In the case of additive pseudo-random
sampling, the histogram of Ni values for the varying delay times is shown in
Figure 10.4 This histogram shows the size of the number of averaged products
x(tk)x(tk + τi ) for specific delay time values within the given delay time range.
Therefore this kind of empirical Ni distribution could be used to calculate the esti-
mates of autocorrelation functions in the cases of predetermined pseudo-random
sampling.

It can be seen that the number Ni is equal to zero or is not defined for small
values of τi . This is a problem, as that part of autocorrelation functions is especially
essential for estimation of wideband signal spectra. Next, it is also desirable to
have flat histograms of Ni as the autocorrelation function estimates would then
have approximately the same statistical estimation error for all delay time values.
The histogram of Ni values, given in Figure 10.4, is also not very good from this
point of view.

When wideband signals having components at very high frequencies need to
be analysed, the signal sample values have to be taken with very short intervals
between successive sampling instants tk and tk+1 to perform an estimation of
autocorrelation functions for small delay time values. That requirement could be
satisfied either by using a very high frequency ADC or by using double hybrid
sampling carried out using two ADCs connected in parallel. The second approach
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Figure 10.4 Histogram of Ni values for varying delay time values illustrating conditions
for signal autocorrelation analysis in cases where the signal sample values are taken at the
sampling instants according to the definition of additive pseudo-random sampling

is often preferable. Then the smallest delay step would no longer depend on the
highest sampling rate of the involved ADCs in principle, very small delay step
values could be obtained and that would lead to the possibility of analysing signals
at very high frequencies. However, there are various hybrid double sampling
schemes and some of them are better suited to applications involving the signal
correlation analysis than others.

10.2.2 Double Periodic Sampling with Jitter

The model of double periodic sampling with jitter is based on the already de-
scribed model of ordinary periodic sampling with jitter for which the sampling
instants {tk} are defined as tk = kT + τk, T > 0, k = 0, 1, 2, . . . , where {τk} is
a multitude of independent identically distributed random variables with zero
mean and T is the mean period of sampling. Usually random variables {τk}
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Figure 10.5 Example of double periodic sampling point stream with jitter

are distributed uniformly within a smaller or larger part of the period T . In the
case of double periodical sampling with jitter, the sampling process is performed
according to two sampling point processes acting in parallel. The sampling
instants {tk} in the first and second sequences of the sampling instants {t [1]

k } and
{t [2]

k } are defined as follows:

t [1]
k = 2kT + τ2k, τ2k ∈ [0, (T − δ)], k = 0, 1, 2, . . . ,

(10.5)
t [2]
k = (2k + 1)T + τ2k+1, τ2k+1 ∈ [0, (T − δ)], k = 0, 1, 2, . . . .

Hybrid double periodical sampling point processes with jitter is a superimposition
of sequences {t [1]

k } and {t [2]
k }:

tk = kT + τk, τk ∈ [0, (T − δ)], k = 0, 1, 2, . . . . (10.6)

This means that theoretically this double sampling model is equivalent to the
case of ordinary periodic sampling with jitter where the random variable τk

is uniformly distributed in the interval [0, (T − δ)] so that the shortest distance
between two sampling instants is equal to δ, illustrated in Figure 10.5.

The most interesting characteristic of this model of double periodic sampling
with jitter is the histogram showing how the distances between the sampling
instants are distributed. A typical histogram of this kind is shown in Figure 10.6.
It can be seen that the distribution of distances between the sampling instants, in
this case while relatively flat in a larger scale, varies in the area of short distances
and there are relatively few intervals between the sampling instants, which are
equal to δ, 2δ, 3δ, . . . . This illustration has been obtained in the case where
δ = 0.25T = 0.5 ns.
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Figure 10.6 Histogram of the sampling intervals in the case of double periodic sampling with
jitter

10.2.3 Double Additive Pseudo-random Sampling

The double additive pseudo-random sampling point stream {tk} is a superimpo-
sition of sequences {t [1]

k } and {t [2]
k }. They are given as follows:

t [1]
n = t [1]

n−1 + τn, τn ∈ [0, μ), n = 0, 1, 2, . . . ,
(10.7)

t [2]
k = t [2]

k−1 + τk, τk ∈ [0, μ), k = 0, 1, 2, . . . .

Only one sample value is taken at the overlapping instants tk = t [1]
n ≡ t [2]

k .
A particular realization of such a double additive pseudo-random sampling

point process is shown in Figure 10.7. The histogram of the distances between
the sampling instants characterizing this particular double sampling approach is
shown in Figure 10.8. According to it, the distribution of small sampling intervals,
while not perfect, seems to be acceptable for many cases of practical applica-
tions. This illustration again has been calculated for the case where δ = 0.25T =
0.5 ns.
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Figure 10.7 Illustration of a double additive pseudo-random sampling point process

Figure 10.8 Histogram of the sampling intervals in a double additive pseudo-random sam-
pling case

10.2.4 Periodic/Additive Pseudo-random Sampling

In the case of periodic/additive pseudo-random sampling the hybrid process is a
superimposition of sequences {t [1]

k } and {t [2]
k }, defined as follows:

t [1]
k = kTs, k = 0, 1, 2, . . . ,

t [2]
k = t [2]

k−1 + τk, τk ∈ [0, μ), k = 0, 1, 2, . . . .
(10.8)

Of course, there are also overlapping instants tk = t [1]
n ≡ t [2]

k .



JWBK152-10 JWBK152-Bilinskis March 6, 2007 21:21

Hybrid Double Sampling 205

Figure 10.9 Example of the hybrid periodic/additive pseudo-random sampling point stream

Figure 10.10 Histogram of the sampling interval distribution characterizing superimposed
periodic and additive sampling point streams

An illustration of this particular type of hybrid double sampling scheme is given
in Figure 10.9. The histogram showing the sampling interval distribution in this
case is given in Figure 10.10. It can be seen that this distribution of the sampling
intervals is closer to the desirable uniform distribution. It has been calculated
using the same conditions as those for the histogram displayed in Figure 10.8.

This histogram clearly shows that this kind of sampling provides acceptable
sampling conditions essential for an autocorrelation function estimation in the
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range of small delay times. However, this particular composition of periodic and
additive pseudo-randomized sampling processes has a much wider application
range than just the correlation analysis. An interesting and useful modification of
it is discussed in the following section.

10.3 Mixing Hybrid Sampling with Periodic Sampling

While the development of models for hybrid sampling so far has focused basically
on achieving a uniform distribution of the sampling intervals, especially in the
range of short intervals, it is not actually the exclusive motivation for arranging
the sampling process as a hybrid double one. Hybrid double sampling of signals
might also play an essential role for implementation of special procedures needed
for an effective reduction of errors caused by aliasing. Consider a model of hybrid
double sampling targeting the achievement of this benefit.

The hybrid sampling process already described in Section 10.1 may be used as
a platform for a hybrid double sampling scheme of this kind. As explained above,
this sampling scheme uses n periodic sampling point processes with pseudo-
randomly skipped sampling points. Each of them is shifted in phase for �ϕ =
2mπ/n, m = 0, 1, 2, . . . , (n − 1), or in time for �t = mδ. The important point
is that the signal sample values obtained at the instants belonging to a specific
periodic pseudo-randomly decimated sampling point process are marked and
preprocessed separately. To arrange double sampling on this basis, the rules for
forming the scheme for hybrid sampling as the basis are slightly changed and
an additional periodic sampling process is added. The sampling points falling
into the spaces between the sampling instants {kT } are related to the periodic
pseudo-randomly decimated processes shifted in phase for a phase angle that
differs from the phase angle of the periodic process {kT }. That represents an
additional restriction not imposed on the hybrid sampling process when it is used
separately.

The sampling point stream obtained in this way is shown in Figure 10.11. Note
that the frequency 1/T of the added periodic sampling point process {kT } is equal
to the frequency of the pseudo-randomly decimated periodic components of the
used hybrid sampling process. Moreover, this periodic sampling point process is
used as the basis of the whole hybrid double sampling scheme and the sampling
points from all other pseudo-randomly decimated periodic components interleave
with this process {kT }.

A block diagram of an electronic implementation of this hybrid double sam-
pling mode is given in Figure 10.12. It is based on two ADCs connected in parallel.
Periodic and hybrid sampling drivers are used to execute the sampling operation
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Figure 10.11 Time diagrams of the particular and resulting hybrid double sampling point
processes

in accordance with the described sampling approach. The output signals of both
ADCs, marked so that they are tied to specific periodic components of the hybrid
double sampling process, are put together and transferred for processing.

The algorithms used to process this type of digital signal evidently have to be
matched to the signal hybrid double digitizing specifics. In general, the arrange-
ments for processing signal sample values, taken according to the rules of hybrid
double sampling, should be the same as those already discussed in Section 10.1
with regard to the case of hybrid sampling. However, using two ADCs in this way
leads to better conditions for processing the obtained digital signal. In this case,
no sample values are missing from the sequence x(t [0]

k ) for which all the signal
sample values are taken periodically at instants {kT }. Therefore, considerably
more accurate estimates of a[m]

0 and b[m]
0 are obtained for m = 0 as they are not

corrupted by errors due to random skipping of the sample values. The specific
consequences of that depends, of course, on the particular algorithm used for
signal processing. However, more often than not the fact that the digital signal
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Figure 10.12 Block diagram of a device for signal digitizing according to the hybrid double
sampling model

then contains periodically taken sample values is very useful. For instance, this
makes it possible to use fast algorithms for a precise estimation of the frequencies
of the peaks in signal spectra, which is crucial for obtaining good results in many
cases of digital alias-free signal processing. This is demonstrated in Part 2 of this
book by examples of iterative direct and inverse Fourier transforms and adapting
signal processing to sampling nonuniformities discussed in Chapters 20 and 18
respectively.

Although sampling of signals according to the model for hybrid double sam-
pling usually targets a more precise execution of various algorithms for dig-
ital alias-free signal processing, this kind of sampling is also well suited for
applications related to signal correlation analysis. The sampling interval distri-
bution in this case is close to the distribution displayed by the histogram given in
Figure 10.10. That is understandable as for this particular application area the
hybrid double sampling scheme is close (but not identical) to the model based on
the superposition of periodic and additive sampling point streams.

10.4 Comments in Conclusion

The basic advantage of this hybrid sampling approach over pseudo-randomized
sampling is in the improved suppression of aliasing. Aliases are actually
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eliminated in this way rather than being suppressed. This advantage is largely
due to the decomposition of the original additive pseudo-randomized sampling
process into a number of variable-phase periodic sampling point streams with
pseudo-random skips of sampling instants. It is a fruitful approach leading to
several desirable consequences:

1. This approach leads to the avoidance of fuzzy aliasing. Aliasing, of course, is
still taking place, but now it is well-defined and on a full scale with parameters
depending on the phases of the periodic sampling instant streams but not on the
pattern of randomly skipped sample values. That makes it possible to reveal
the aliases and to take them out.

2. Processing of the digital signals, obtained as a result of the described hybrid
double sampling, can often be realized on the basis of well-developed fast
algorithms such as the fast Fourier transform (FFT). It is also advantageous
that the DFT-based estimation of Fourier coefficients in this case can be carried
out in parallel simultaneously in m channels in a frequency range reduced m
times.

3. There are also some fringe benefits. Specifically, this kind of hybrid sampling
could be implemented in a way characterized by significantly reduced jitter of
the sampling instants. Suppressing sampling jitter is crucial as it causes serious
problems. In general, jittering corrupts processing of wideband nonuniformly
sampled signals because most of the algorithms are sensitive to fluctuations of
the sampling time instants with regard to their predetermined values. Before
the introduction of hybrid sampling, the development of special microelec-
tronic sampling drivers was seen to be the only possible way of decreasing
this kind of jitter. Although this approach still remains as an option, the hy-
brid sampling approach offers a better solution. The problem with implemen-
tation of the additive sampling techniques is that usually a relatively large
number of code-controlled discrete delay elements are involved in the gen-
eration of additive pseudo-random sampling point processes. The difference
between the predetermined and actual sampling instants is often due to devi-
ations of the delay times. For that reason, the development and use of special
high-performance microelectronic sampling drivers does not lead to effective
elimination of that sort of jitter. The performance of hybrid sampling, on the
other hand, does not require the use of many time delay elements. The pulse
streams used for hybrid sampling might be formed on the basis of a few pe-
riodic phase-shifted pulse processes stable in time. Taking out some pulses
from them does not lead to the introduction of jitter either. Therefore using
hybrid sampling techniques is also seen as an option to the jitter suppression
problem.
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Data Acquisition

Digital data reflecting information carried by an analog signal can be represented
either by the signal sample values given at the sampling instants or by the results of
some preliminary signal processing procedure. Signal sample value preprocess-
ing, carried out as data acquisition subroutines, is considered as signal parameter
estimations in Chapter 12 and as complexity-reduced calculations of DFT esti-
mates in Chapter 16.

The first category of the data acquisition systems considered here could often
be realized on the basis of a single ADC with a few devices added for signal
conditioning, data buffering and interfacing. However, this basic data acquisi-
tion scheme has to be diversified as soon as the conditions for data acquisition
become more complicated and more demanding. Then some nontraditional ap-
proach, such as randomized sampling, might prove to be an interesting option.
First of all, it concerns the methodology according to which signals are sampled
and quantized. As shown in Part 1 of this book, these operations could be car-
ried out in various ways so that they could be matched to specific functional and
performance requirements. There are various signal digitizing techniques avail-
able and analysis of them is helpful in finding an appropriate approach to use in
particular special signal digitizing and data acquisition problems. The structure
and performance of data acquisition systems can be modified on the basis of the
selected digitizing techniques with the application conditions taken into account.
The resulting deviations from the classical data acquisition scheme might be sub-
stantial. The modifications of data acquisition systems considered in this chapter
are basically related to the following two topics: (a) data acquisition providing
alias-free processing of wideband signals and (b) data acquisition from a large
quantity of signal sources.

Digital Alias-free Signal Processing I. Bilinskis
C© 2007 John Wiley & Sons, Ltd
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11.1 Data Acquisition from Wideband Signal Sources

The central issue for data acquisition from wideband signal sources is elimination
of limitations imposed on digitization of these signals by the aliasing effect. It
makes sense to use nonuniform sampling techniques to obtain the capability of
digitizing signals at frequencies much higher than the limit marked by half of
the sampling rate. As shown in Part 1 of the book, the task of alias-free signal
sampling can theoretically be resolved in a number of ways and signals can be
digitized without corruptions imposed by aliasing in bandwidths that are several
times wider.

11.1.1 Practical Results Confirming the Theory

These considerations are not purely theoretical. In fact, only physically realizable
and practically applicable methods, algorithms and techniques are considered
in this book. Engineering experience accumulated over many years in this area
confirms the feasibility of them. The example of a wideband digitizer, shown in
Figure 11.1, illustrates this point.

In Section 2.5, it is shown that using the digital alias-free signal processing
technology leads to significant widening of the operational frequency range, even
for existing ADCs. The digitizer shown in Figure 11.1 is designed on the basis of a
12-bit ADC characterized by the maximal sampling rate and the input bandwidth
equal to 125 MS/s and 700 MHz respectively. This means that this digitizer,
operating on the basis of periodic sampling performed at the highest achievable
for this ADC rate, is applicable for digitizing signals in the frequency range up
to 62.5 MHz. Application of randomized sampling opens up the possibility of
widening this frequency range by about 10 times. This digitizer performs alias-
free signal digitization in a wide dynamic frequency range (0.1–669 MHz) and
the achieved spurious free spectral purity is near to that achievable by the high-
performance 12-bit ADC (in this case, AD9433 from Analog Devices). Using
this digitizer and special DASP software makes it possible to analyse signals
completely digitally within this wide frequency band.

A spectrogram and the respective reconstructed waveform obtained by pro-
cessing an amplitude-modulated signal are given in Figure 11.2(a). A similar
spectrogram and waveform are shown in Figure 11.2(b). They have been ob-
tained using the same hardware and software tools in the case where a weak
signal is estimated in the presence of a powerful one. Note that in the case of
DSP, the minimal sampling rate required for performing analysis of these signals
within the indicated frequency range would be 1400 MS/s. That sampling rate



JWBK152-11 JWBK152-Bilinskis March 6, 2007 21:21

Data Acquisition from Wideband Signal Sources 215

Figure 11.1 Digitizer built on the basis of a 12-bit ADC with the 125 MS/s maximum
sampling rate applicable for a DASP based wideband signal analysis in the frequency range
0.1–700 MHz

would be about 25 times higher than the mean sampling rate used to obtain the
given spectrograms.

11.1.2 Sampling with Reduced Uncontrolled Jitter

While the example above illustrates the point that appropriate nonuniform sam-
pling makes it possible to widen the frequency range for input signal alias-free
digitizing, the mentioned frequency of 669 MHz of the input signal spectrum
does not represent the achievable upper limit. The considered digitization tech-
niques are applicable also for handling signals digitally at frequencies in the
GHz range. However, with the upper frequency going up, the perfection level
of the engineering implementation of these alias-free digitization techniques has
to be increased as well. Various engineering aspects are concerned, including
designs of the involved PCBs (printed circuit boards), ASIC and FPGA chips.
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Figure 11.2 Alias-free spectrograms and reconstructed signal waveforms: (a) for an
amplitude-modulated signal; (b) for a weak signal estimated in the presence of a strong signal
component
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Figure 11.3 Block diagram of a sampling pulse former characterized by low-level sampling
instant jitter

A particular problem that has to be dealt with is ensuring that the uncontrolled
jitter present at signal sampling is kept at an acceptable sufficiently low level. In
many cases this means that the standard deviation of the jitter should not exceed
a few picoseconds or it should be even smaller. It has been found that to provide
for at least 50 dB of spurious-free dynamic range (SFDR) in the bandwidth up to
700 MHz the discrepancy between the expected and real sampling instants should
not exceed 2 ps.

To design and manufacture digitizers operating at this performance level is a
challenging engineering task and one of the most responsible electronic devices
in the digitizer structure is the sampling pulse former. A block diagram of it is
given in Figure 11.3. According to the patented operational principle, the pulses
dictating the sampling instants are formed by controlled division of the clock
frequency with subsequent pseudo-random delay of the pulses obtained in this
way. The generator of pseudo-random numbers supervises both of these frequency
division and delay controlling functions.

It can be seen from the scheme given in Figure 11.3 that the frequency of
the clock pulse repeating (669.3266 MHz) is divided in this particular case by
a random integer ranging from 9 to 16. Then the output pulses are expanded in
width and passed to the one-bit controllable delay block. This is designed on
the basis of an adjustable delay line and a high-speed multiplexer. Operating in
this way, the sampling pulse former generates a sequence of sampling pulses
with the intervals between adjacent pulses pseudo-randomly varied from 13.447
to 24.652 ns, with the smallest step-size equal to 747 ps. This design ensures
that the deviation of sampling time instants from the points on a strictly uniform
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Figure 11.4 Block diagram of a device for data acquisition according to the hybrid double
sampling model

timing grid do not exceed a few picoseconds. Although in this case the mean
sampling rate is only 53.546 MS/s, the equivalent sampling rate is much higher,
providing for alias-free signal bandwidth up to 669.3 MHz.

11.2 Application of Hybrid Double Sampling

A block diagram of an electronic implementation of a data acquisition system
based on hybrid double sampling discussed in Chapter 10 is given in Figure 11.4.
It contains two ADCs connected in parallel, with good reason. Periodic and hybrid
sampling drivers are used to execute the sampling operation in accordance with
the described sampling approach. The output signals of both ADCs, marked so
that they are tied to specific periodic components of the hybrid double sampling
process, are put together and transferred for processing.

The algorithms used to processing this type of digital signals evidently have to
be matched to the signal hybrid double digitizing specifics. This issue is covered
in some detail in Chapter 18. In general, the arrangements for processing signal
sample values, taken according to the rules of hybrid double sampling, should
be the same as those already discussed in Section 10.1 in regard to the case of
hybrid sampling. However, using of two ADCs in the described way leads to
specific conditions for processing the obtained digital signal. It is essential that
no sample values are missing from the sequence x(t [0]

k ) for which they are taken
periodically. In result much more accurate estimates of a[0]

0 and b[0]
0 are obtained.
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Although they are corrupted by the aliases these aliases are well defined so that
the sample value sequences pseudo-randomly taken by the second ADC could be
used for taking these aliases out. The sampling interval distribution in this case
is close to the distribution displayed by the histogram given in Figure 10.10.

Although data acquisition performed according to the discussed model for hy-
brid double sampling usually targets more precise execution of various algorithms
for digital alias-free signal processing, this kind of sampling is also well suited
for real-time applications based on signal parallel processing as the data at the
output of the second ADC are decomposed according to the scheme shown in
Figure 10.12. The fact that the digital signal at the output of this data acquisition
scheme contains periodically taken sample values is very useful also for other
reasons. Firstly, this makes it possible to use the fast algorithms for precise esti-
mation of the frequencies of the peaks in signal spectra. Secondly, the data stream
in this case is represented by a periodic sample value sequence with ramdom skips
and, consequently, there is no secondary aliasing. Thirdly, the intervals between
two successive sample values could be very short and that is crucial for obtaining
good results at processing wideband signals with continuous spectra including
signal processing for the correlation analysis to be performed at very small delay
time increments.’

11.3 Pseudo-randomized Multiplexing

A popular approach to data acquisition from multiple sources of information is
based on sequentially connecting these signal sources to the input of a single
ADC. Technical realization of such a data acquisition scheme is typically carried
out on the basis of a multiplexer performing the required switching function in
a regularly rotating manner. The multiplexer then connects the input signals to
the input of the ADC for brief time intervals �t in a fixed order. This means
that the signal sample values are taken in this case from each of the input signals
periodically, as shown in Figure 11.5 (left side). The problem is that period T of
sampling under these conditions depends not only on the highest sampling rate
of the given ADC but also on the number of inputs that have to be sequentially
connected to it. That narrows the bandwidth of the input signals within which
the signals can be processed without errors due to aliasing. In general, periodic
multiplexing imposes additional limitations on the input signal spectra and on the
number of inputs so that these parameters have to be traded off.

Application of deliberate randomization of this type of multiplexing can be
considered as a possible approach to the resolution of this problem. When multi-
plexing is arranged on this basis, the order in which the input signals are connected
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Figure 11.5 Switching patterns for periodic and pseudo-randomized multiplexing of input
signals

Figure 11.6 Nonuniform sampling of input signals taking place when their multiplexing is
deliberately randomized

to the input of the ADC is changed from regular to pseudo-random, as shown in
Figure 11.5. The signals in all input channels are then sampled pseudo-randomly
in a specific pre-planned way controlled by a pseudo-random number generator.
Figure 11.6 illustrates this sampling mode of the input signal multitude.

Evidently, this type of pseudo-random multiplexing results in nonuniform sam-
pling of the information carriers. However, in this case the mean sampling rate
could be below the carrier frequency. Therefore the duration of the multiplexing
cycle could be prolonged. Signals in all channels could be reconstructed and tied
to a common time reference.

While the errors of signal processing due to aliasing might be taken out and
the limitations put on the number of input channels made less restrictive in this
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way, the consequence of obtaining these benefits is increased complexity of the
algorithms used to process the sampled signals. Whether it is acceptable or not
needs to be decided in every given case.

The mentioned drawback of the classic multi-input ADC scheme based on the
customarily used multiplexing of analog input signals, related to worsening the
conditions for aliasing, is not the most damaging one. Actually this approach to
digitizing a multitude of analog input signals based on collecting and passing them
over shorter or longer wires with subsequent switching one by one to the input
of the ADC also has other serious disadvantages. Transients accompanying the
analog signal switching process, which have to be kept within sufficiently narrow
margins, and the analog signal line sensitivity to surrounding noise might be
mentioned in addition. Consequently, the application range for data acquisition
systems based on analog signal multiplexing is limited. They cannot be used
for gathering data from a large number of input signal sources. Another data
acquisition concept is suggested for that in the next section.

11.4 Massive Data Acquisition

Conditions for data acquisition from multiple sources of analog signals, performed
for the purpose of monitoring, analysing and/or controlling various systems and
processes, vary over wide margins. Consequently, the concepts affecting how
data acquisition systems are built differ as well. While relatively simple data
acquisition systems quite often satisfy the requirements of specific applications,
the need for very complicated wireless sensor networks arises more and more
often and much attention has recently been made to develop them.

Referring back to the remote sampling principle discussed in Chapter 7, con-
sider this approach to signal sampling in the context of data acquisition from multi-
ple sources of analog signals. In order to draw attention to the advantages and lim-
itations of the suggested remote sampling techniques based on sine-wave cross-
ings, compare the capabilities of this sampling technique with the two most often
met approaches to the technical realization of multichannel data acquisitions.

11.4.1 Specifics of Multichannel Data Acquisition

The approaches to data acquisition from many sources of information carried
by analog signals mostly differ in organization of analog-to-digital conversions
of the original analog signals. In the case of the first discussed scheme, there
is a central ADC in the master part of the system. It converts the output signal
of an analog multiplexer with its inputs connected by wire links to the multiple
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analog signal sources. Although implementations of this first scheme are typ-
ically relatively simple, the used single central ADC is placed at a distance
from the signal sources and analog signals have to be transmitted over the links
between the front-end part and the master parts. As already pointed out, analog
signal multiplexing imposes additional serious limitations as well.

In the second case, analog-to-digital conversions are moved as close to the
sources of the original signals as possible and digital signals carry the data from
multiple ADCs to the common master part of the data acquisition system. In
this case each front-end device picking up an input signal contains an ADC.
This leads to technically more complicated realizations than those typical for the
first scheme. However, the data acquisition systems of the second kind have an
essential advantage: the links between the front-end (sensor) part and the master
part are digital and for this reason they are well protected against external noise,
making it possible to use relatively long-distance links, including radio links.

The complexity of the data acquisition systems of this kind is apparently related
to the bit rate of the used ADCs. In order to simplify the acquired data transmission
from the sensor, a special type of ADC forming output signals as one-bit streams,
known as �� modulators, is usually considered to be the best choice. They
compare the input signal sample values with the reference signal and, depending
on the result of this comparison, subtract or add an increment to that reference
and form the corresponding binary output signal instantaneous value. Thus the
reference signal is actually the accumulated sum of the previous discrete bipolar
increments and it tracks the input signal waveform. To achieve good enough
accuracy, tracking of the input signal has to be sufficiently close. That leads to the
necessity of performing signal oversampling. Therefore the rate of bits transmitted
between the front-end (sensor) part and the master part significantly exceeds the
upper frequency in the spectrum of the input signals. Consequently, the whole
data acquisition system, including the multichannel data reconstruction part, is
not simple at all. That is true even for each one of the involved multiple sensors
containing the �� modulators.

Thus existing engineering practice in this field shows that the first basic problem
with the data acquisition systems is how to reduce their relatively high complex-
ity. The point is that they often are too complicated. This complexity is bad for
cost-effective massive data collection from a really large number of widely scat-
tered sensors and, what is especially annoying, this makes it difficult to achieve
sufficiently low power consumption.

The second problem is the relatively low number of data acquisition channels,
the number of signal sources from which data might be collected by a single
master part achievable by reasonably complicated and costly systems. The third
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problem is limitations in operational speed related to application limitations in
the frequency domain.

11.4.2 Reconfigurable Distributed Structure ADC

In general, the data acquisition techniques based on the remote sampling concept
belong to the category of the second mentioned data acquisition scheme as the in-
put signal digitization operations are moved close to the signal sources. However,
there the similarity ends. The input signal sampling operations are performed
in a quite different way. The sine-wave crossing remote sampling scheme, dis-
cussed in Chapter 7, and the data acquisition systems based on it do not have the
drawbacks of the popular data gathering techniques. Exploitation of this signal
digitizing concept, relying on the remote sampling approach, leads to unusual de-
velopments in the area of data acquisition systems. Once the idea is accepted that
sampling operations might be distanced from quantizing, the structure of the data
acquisition system could actually be converted into a structure of a distributed
ADC having multiple remotely acting samplers placed close to the signal sources.
The big advantage of this approach is that it leads to extremely simple low-power
designs of the used samplers and that the information that has to be transmitted
between the samplers and the master part of the whole data acquisition system
is the timing information. That in turn makes such systems well suited for data
acquisition from a very large number of signal sources. The gain for that is indi-
rect randomization of the data acquisition process and the resulting necessity to
process nonuniformly sampled signals digitally.

For technical realizations of the suggested data acquisition approach attention
is focused on the complexity reduction of the data acquisition front-end designs.
Obtaining extremely simple front-end designs is targeted, even at the cost of
complicating the master part. To achieve this, the sampling procedure has to be
organized in a way that permits the insertion of the communication link (e.g. a
radio link) in the structure of the data acquisition system as close to the signal
sources as possible. While this link usually connects each ADC with the master
part of the data acquisition system, in this case the sampling operation and the
whole structure of analog-to-digital conversions are organized so that the com-
munication links are inserted inside the structure of the multi-input ADC. A block
diagram of such a remote sampling ADC is given in Figure 11.7.

It can be seen from Figure 11.7 that the structure of such a distributed
multichannel remote sampling ADC is subdivided into two parts. The first part
is a cluster of extremely simple design input devices, each one containing a sam-
pler. The samplers compare input signals during the time intervals when they are
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Figure 11.7 Distributed structure of a remote sampling ADC



JWBK152-11 JWBK152-Bilinskis March 6, 2007 21:21

Bibliography 225

enabled. Outputs of all samplers of a particular cluster are connected to an inter-
face supporting transmission of the timing information, reflecting the sampling
results over the communication link to the second part of the ADC. The circuits
fulfilling the remaining analog-to-digital conversion functions are located in the
second output part of this distributed ADC structure.
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12

Quantizing-specific Signal
Parameter Estimation

Data acquisition does not necessarily mean the gathering of raw data. If the sig-
nals carrying information could be preprocessed in a simple and cost-effective
way, then sometimes it is possible and makes sense to perform some kind of
signal preprocessing carried out close to the signal sources. If the results of this
preprocessing in separate data channels are acceptable for further processing of
total information received from all channels then this approach is useful, as it
apparently leads to data compression and less demanding requirements for the
whole data gathering process. Of course, conditions for data acquisition, their
processing and usage vary from case to case. Nevertheless, some typical and
relatively often used signal preprocessing functions can be selected. In partic-
ular, an estimation of signal parameters seems to be a relatively popular class
of signal conversions performed at the stage of signal preprocessing. They are
partly discussed in this chapter and some aspects are considered in the next
chapter.

A signal parameter estimation is discussed here. Imagine that an average param-
eter of a continuous-time signal, for instance its mean power, has to be estimated
or measured by digital processing of quantized samples of the signal. To solve
this seemingly simple task correctly, many fairly obvious questions have to be
answered:

1. For how long should the signal be observed?
2. How precisely are the signal samples quantized and how many of them need

to be processed to measure the mean power of the signal with the required
accuracy?

Digital Alias-free Signal Processing I. Bilinskis
C© 2007 John Wiley & Sons, Ltd
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3. What are the restrictions on sampling intervals in this case? Should the re-
quirements of the sampling theorem be satisfied?

In this chapter, these and other related questions are studied in an attempt to
work out an appropriate approach to the problem of optimizing a signal average
parameter estimation. Clearly, this kind of estimation can be considered to be
most efficient when the estimation result is obtained in the shortest time possible
and by processing a minimal quantity of bits. It will be shown that random-
izing sampling and quantizing procedures helps to achieve optimal estimation
conditions. Estimations of both random and periodic signal parameters are con-
sidered. In fact, when the input signals are sampled randomly, in most cases it
does not matter whether these signals are random or periodic. However, process-
ing the periodic signals demands a more careful approach, because if they are not
processed over an integer number of periods, additional estimation errors may
occur.

12.1 Theoretical Limits

Answers will now be found to questions 1 and 2 in the case when the r th moment

μr = lim
Θ⇒∞

1

Θ

∫ Θ

0
xr (t) dt (12.1)

of a stationary ergodic signal x (t), observed during a time interval Θ , is to be
estimated by applying digital processing methods.

12.1.1 Minimal Observation Time

Assume that the signal is sampled periodically and is quantized sufficiently accu-
rately for the quantization errors to be negligible. The sampling intervals are equal
to T . Under these conditions, the estimate μ̂r and its variance can be calculated
on the basis of the following equations:

μ̂r = 1

N

N∑
k=1

xr (kT ), (12.2)

Var[μ̂r ] = Var[xr ]

[
1

N
+ 2

N 2

N−1∑
m=1

(N − m) ρxr (mT )

]
, (12.3)

where ρxr is the normalized autocorrelation function of the signal xr (t).
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As the properties of this variance mostly depend on the second term in brackets,
this term should be analysed first. This can be denoted as

L = 2

N 2

N−1∑
m=1

(N − m) ρxr (mT ). (12.4)

It seems that it is more convenient to consider the spectral density function of
the signal rather than the corresponding autocorrelation function. According to
definition,

ρxr (t) = 1

Var [xr ]

∫ ∞

0
Gxr ( f ) cos (2π f ) d f .

Substituting this equation into Equation (12.4) yields

L = 1

N 2Var [xr ]

∫ ∞

0

sin2 π f N T

sin2 π f T
Gxr ( f ) d f − 1

N
, (12.5)

where Gxr ( f ) is the spectral density function of the signal xr (t). By substituting
Equation (12.5) into Equation (12.3),

Var[μ̂r ] = 1

N 2

∫ ∞

0

sin2 π f N T

sin2 π f T
Gxr ( f ) d f . (12.6)

On the basis of Equation (12.4), the limit of L for N ⇒ ∞, T ⇒ 0 and N T = Θ

is given by

lim
N⇒∞
T ⇒0

L = lim
N⇒∞
T ⇒0

2

N 2

N−1∑
m=0

(N − m) ρxr (mT )

= lim
N⇒∞
T ⇒0

2

N 2T 2

N−1∑
m=1

(N T − mT ) ρxr (mT ) T

= 2

Θ2

∫ Θ

0
(Θ − t)

Θ

ρxr
(t) dt . (12.7)

Similarly, from Equation (12.5),

lim
N⇒∞
T ⇒0

L = 1

Var [xr ]

∫ ∞

0

sin2 π f Θ

(π f Θ)2 Gxr ( f ) d f . (12.8)

It follows from Equations (12.7) and (12.8) that the value of the considered
limit will always exceed zero if, for t > 0, ρxr (t) �≡ 0 (Gxr ( f ) �≡ 0). This value
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becomes equal to zero only under the condition that the signal is observed and
processed infinitely, i.e. when Θ = ∞. It is not possible to suppress the vari-
ance Var [μ̂r ] and the random estimation errors due to it completely simply by
enlarging the number N of the signal samples taken and processed. Indeed, if
the observation time is fixed, then as N increases, Var [μ̂r ] tends to the value
Var [xr ] limN⇒∞,T =0 L . On the other hand, if the sampling intervals T are in-
creased till they exceed the correlation interval of the function xr (t), the compo-
nent L is suppressed to zero and the value of the first component increases because,
for a fixed Θ , enlarging T means decreasing N . In this case, the variance of the
estimate μ̂r will be equal to Var[xr ]/N .

Suppose that the estimation error of the parameter μr should not exceed
the value εXr with a probability β, where ε is the relative error and X is the
range of the input signal x(t). The minimal possible time interval Θ0 during
which the signal should be observed in order to satisfy the given requirements
can be determined using Equation (12.7). As this equation presumes that for
N ⇒ ∞, �t ⇒ 0 and N T = Θ0, the value Θ0 in fact represents a theoretical
limit, characterizing signal processing under idealized conditions.

The value Θ0 can be obtained from the following equation:

lim
N⇒∞
�t⇒0

L = 2

Θ2

∫ Θ0

0
(Θ0 − t) ρxr (t) dt

= ε2 X2r

t2
βVar [xr ]

= α, (12.9)

where tβ is half of the confidence interval corresponding to the confidence
probability β. If the right-hand side of Equation (12.9) is denoted by α,
then

α = ε2 X2r

t2
βVar [xr ]

. (12.10)

Equation (12.9) leads to the following conclusion. No matter how small the sam-
pling interval T and how high the precision of quantizing, signal average pa-
rameters can be estimated with estimation errors below some given level only
under the condition that signals are observed and processed at least during a
time interval Θ0. The value of Θ0 depends on the parameter to be estimated,
on the required estimation precision and on the autocorrelation function of the
signal.
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12.1.2 Sufficient Number of Signal Samples

It may sometimes be more important to take some essential estimation character-
istic other than the estimation time to its limit. For instance, it is often desirable to
minimize the number N of signal samples needed to obtain the required estimate
with a specified accuracy. The equations given above can also be used to solve
this task.

In general, to minimize N , the sampling interval T should be enlarged. If
the value of �t exceeds the maxima l correlation interval τc,max of the sig-
nal xr (t), then L = 0 and under this condition it follows from Equation (12.3)
that Var[μ̂r ] = (1/N )Var[xr ] and N ≥ 1/α, where α is defined by Equation
(12.10). Therefore, the minimal number of samples, denoted by N0, is given
by

N0 = 1

α
= t2

βVar [xr ]

ε2 X2r
. (12.11)

Note that the corresponding estimation time (for �t = τ ), defined as

Θ1 = N0τc,max, (12.12)

exceeds the minimal value Θ0 given by Equation (12.9).
The equations obtained lead to the following conclusion. Signal average param-

eters can be estimated with the demanded accuracy by processing N0 ≤ N < ∞
samples. If the signals are sampled at intervals equal to their maximal correlation
intervals, the estimation can be performed by observing the signal during the time
interval Θ1 and by taking and processing the minimal number N0 of samples. A
further increase in observation time does not allow N to be reduced below the
limit N0.

The relationship of N versus Θ ∈ [Θ0, Θ1] can be derived from Equation
(12.3), if the right-hand side of this equation is considered to be equal to ε2 X2r/t2

β .
Taking into account the fact that T = Θ/N yields

1

N
+ 2

N 2

N−1∑
m=1

(N − m)ρxr

(
mΘ

N

)
= ε2 X2r

t2
βVar[xr ]

= α. (12.13)

12.1.3 Influence of Quantization Errors

Recall that the theoretical limits of Θ and N were obtained under the condition that
the quantization errors were negligible. In reality this is not usually so because, as
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shown below, better overall estimation characteristics are achieved if the signal
samples are quantized in a coarse manner with relatively few thresholds.

It will now be established how the equations given above defining the theoretical
limits of Θ and N change if quantization errors are taken into account, i.e. when
the estimates μ̂r are obtained by processing quantized signal samples {x̂k}, rather
than the samples {xk} themselves. Suppose that a sample xr

k of the signal xr (t)
is quantized. The quantized value of this sample x̂ r

k = xr
k + εk , where εk is the

corresponding quantization error. Assume that the quantization noise {εk} is not
correlated with the signal {xr

k }. As shown in Chapters 4 and 5, this assumption is
justified in the cases of randomized and pseudo-randomized quantizing. Under
the given conditions,

Var[μ̂r ] = 1

N
(Var[xr ] + Var [ε]) + 2Var[xr ]

N 2

N−1∑
m=1

(N − m)ρxr (mT ) . (12.14)

The following variable is introduced:

A = 1 + Var[ε]

Var[xr ]
. (12.15)

It is obvious that A depends on the quantization method applied. Now Equation
(12.14) can be rewritten as follows:

Var[μ̂r ] = Var[xr ]

[
A
N

+ 2

N 2

N−1∑
m=1

(N − m) ρxr (mT )

]
. (12.16)

For randomized quantizing

A ∼= 1 + qr

6 Var[xr ]
(12.17)

and for pseudo-randomized quantizing

A ∼= 1 + qr

12Var[xr ]
. (12.18)

However, it is often the signal samples xk rather than the values xr
k that are

quantized and the estimate μ̂r is obtained by processing the quantized samples
μ̂k . In this case the variable A is defined by a more complex equation than
Equations (12.17) and (12.18). For each specific estimation algorithm, the corre-
sponding variance Var[μ̂r ] should be found first. Then there will be no problem
in defining the relative value of A.
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When the quantizing errors are taken into account, the relationship N versus
Θ , describing the conditions for estimating the signal average parameters μr with
the required precision, is given by

A
N

+ 2

N 2

N−1∑
m=1

(N − m) ρxr (T ) = α. (12.19)

This equation shows how quantizing errors influence the estimation time and
accuracy. For a more detailed analysis of these relationships, the specific signal
autocorrelation or spectral density functions should be substituted into the above
equations.

12.1.4 Estimation of Periodic Signal Parameters

The point is stressed once again that systems containing randomized or pseudo-
randomized quantizers and employing random sampling techniques can be ap-
plied equally well to process both random and periodic signals. The randomiza-
tion of sampling and/or quantizing does not orient these systems to some specific
kind of signals. However, this does not mean that the conditions for process-
ing periodic and random signals are always the same. These two categories of
signals have different properties, which is important when the specifics of their
processing are considered. These differences should be taken into account regard-
less of whether the corresponding signal processing systems are randomized or
not.

The analytical results and conclusions obtained above are first of all applicable
to processing random signals. When signals are periodic, other considerations
should be taken into account. As the problems of processing periodic signals are
really beyond the scope of this book, they will not be discussed in depth but the
main points will simply be outlined:

1. In general, an estimation of periodic signal average parameters may be per-
formed during shorter time intervals and by processing fewer signal samples.
For instance, the mean value of a sinus wave can be measured with only two
samples. This means that the processing of periodic signals may be more sen-
sitive to quantization errors and, consequently, may require the application of
more precise quantizers than those which are optimal for encoding random
signals.

2. There are specific error sources that affect periodic signal processing. If no
special algorithms are used then, as a rule, such signals should be processed
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during an integer number of their periods. When the signal period is unknown,
the signal parameter estimation time depends on the lowest frequency in its
spectrum. The sampling rate depends on the upper frequency of the spec-
trum and on the particular parameter that is to be estimated. For instance,
if the mean power of a signal is estimated, the sampling interval should
be less than or equal to one-fourth of the period of the highest frequency
present in the signal spectrum. This is true under conditions where the esti-
mation is performed without preliminary reconstruction and resampling of the
signal.

Thus periodic signal parameter estimation conditions are closely related to the
specifics of the respective signals. In the following sections, the efficiency of
randomized signal encoding for this kind of application is compared with the
efficiency of deterministic encoding methods.

12.2 Optimal Estimation

Equation (12.19) can be used to optimize conditions of signal average parameter
estimation with regard to different criteria. This equation shows how changing
one of the variables A, N and Θ affects other variables. As the value of A for
the given quantization model depends on the quantization step size q or on the
number z of the threshold levels used, optimizing on the basis of this equation
allows the best quantization conditions to be determined, ensuring an efficient
estimation of the signal parameters required.

12.2.1 Minimizing the Number of Signal Samples

Criterion NΘ

For a selected quantization method and the fixed number z of the threshold levels
used, Equation (12.19) describes the relationship between N and Θ . Consider the
estimation to be optimal when criterion NΘ reaches its minimum. The solution
to this task depends first of all on the signal autocorrelation function. If this is
given in an analytical form there are usually no serious problems in finding the
minimum. In some other cases, the solution can be found only by applying less
convenient methods of numerical analysis.

Consider an example of optimizing the conditions for estimating the mean
value μx of a signal x(t), which is characterized by the following triangular
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autocorrelation function:

px (t) =
{

1 − |t/t0| for |t | ≤ t0,

0 for |t | > t0.
(12.20)

The corresponding spectral density function is given by

Gxx (ω) = 4σx sin2 ωt0
t0ω2

, (12.21)

where σ 2
x is the variance of the signal. Substituting Equation (12.20) into Equation

(12.19) (after omitting manipulations) yields

N =

⎧⎪⎨
⎪⎩

3 (A − 1) Θ2ω2
0

t2
0 + 3Θ2α − 3Θt0

for Θ ∈ [Θ0, Θ2] ,

A/α for Θ ≥ Θ2,

(12.22)

where

Θ0 = (1 + √
1 − 4α/3)t0
2α

(12.23)

and

Θ2 = Aτc,max

α
= At0

α

is the estimation time, corresponding to the estimation of μx by processing un-
correlated signal samples.

Equation (12.22) can be used to define the optimal values of N and Θ with
regard to the criterion NΘ. Denote the respective optimal values of N and Θ by
N (1)

opt and Θ
(1)
opt. Then

Θ
(1)
opt = (1 + √

1 − α)t0
α

∼= 2Θ0,

N (1)
opt = 3(A − 1) (1 + √

1 − α)2

α(3 − 2α + 3
√

1 − α)
∼= 2 (A − 1)

α
.

(12.24)

It follows from Equation (12.24) that, under the conditions in question, the optimal
sampling interval is given by

T (1)
opt = Θ

(1)
opt

N (1)
opt

∼= t0
A − 1

. (12.25)
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However, the obtained estimation time will be optimal, in the given sense, only
for Θ

(1)
opt ∈ [Θ0, Θ2]. For Θ

(1)
opt ≥ Θ2, the observance time Θ2 will be optimal,

i.e. the optimal estimation will be performed under the condition that the signal
samples are taken at the minimum time intervals for which these samples are still
uncorrelated.

In the case under discussion this is T = t0. Processing of uncorrelated sam-
ples is optimal for A ≤ 2. For A > 2, the optimal sampling interval is equal
to T (1)

opt .

Example 12.1
The input signal is characterized by X/σx = 10, t0 = 10−6 s. Therefore the signal
bandwidth is f0 = 0.5/t0 = 500 kHz. The mean value μx of the signal should be
estimated with the relative random error ε ≤ 10−3. The confidence probability
β = 0.95(tβ = 2). The signal is quantized roughly and only two threshold levels
are used.

Under the given conditions,

Θ = 0.04 s, A = 3.083, α = 25 × 10−6,

Θ2 = 0.12 s, N2 = 123 320, N2Θ2 = 14 798 s,

Θ
(1)
opt = 0.08 s, N (1)

opt = 166 640,
N (1)

optΘ
(1)
opt

N2Θ2
= 0.9.

The sampling frequency corresponding to the optimal estimation conditions is
fs = 2.083 × 103 Hz.

12.2.2 Simplifying Hardware

The complexity of ADCs and the hardware used for processing digitized signals
first of all depends on the number of bits of the corresponding quantizer. It is
therefore of considerable practical interest to determine the minimum number of
quantizer threshold levels at which it is still possible to solve the given estimation
task with the required accuracy.

Criterion Nz
Minimizing this criterion allows the best conditions to be determined for estimat-
ing the parameter μx by processing a relatively small number of few-bit signal
samples. Assume that the signal autocorrelation function is given by Equation
(12.20) and that sampling is performed in such a way that the signal samples
taken are uncorrelated. The variable z is a positive integer. The conditions are
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found under which N z1 < N z2 if z1 < z2. To do this the following inequality
should be satisfied:

N z1

N z2
= A1z1/α

A2z2/α
= A1z1

A2z2

= z1 + X2/
(
12σ 2

x z1
)

z2 + X2/
(
12σ 2

x z2
) < 1, (12.26)

where A1 and A2 correspond to z = z1 and z = z2. It follows from Equation
(12.26) that

z1z2 >
X2

12σ 2
x
. (12.27)

The inequality obtained can be applied to find the value of z that provides the
minimum of criterion Nz. This procedure can be explained by an example.

Example 12.2
Let X/σx = 10. Substituting this value into the inequality (12.27) yields

z1z2 > 8 1
3 . (12.28)

Let z1 = 1. Then it follows from expression (12.28) that it is better to use one
threshold level than z ≥ 9. At the same time, it is better to use from two to eight
levels than one. Now let z1 = 2. In this case it is better to use two threshold levels
than z ≥ 5. On the other hand, application of two threshold levels is less desirable
than z = 3 or z = 4. By comparing the cases when z = 3 and z = 4, it is found
that, under the given conditions, the best solution minimizing the criterion Nz is
z = 3. The relationship of z versus the ratio σx/X , minimizing this criterion, is
shown in Figure 12.1.

12.2.3 Minimizing Bit Flow

Criterion Nn
Minimizing this criterion allows the optimal number of quantization threshold
levels to be determined, which guarantees that the estimate μ̂x will be obtained
with the required accuracy by processing the minimum bits. Since values of z
and n are connected by z = 2n − 1, optimization can be carried out in the same
way as in the previous case. If the minimum of N is reached by processing
uncorrelated signal samples, as in the case of optimizing with regard to crite-
rion Nz, the minimum of criterion Nn can be determined on the basis of the
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Figure 12.1 The optimal number of threshold levels versus the normalized signal root mean
square

following equation:

Criterion Nn = n
α

+ X2n

12ασ 2
x (2n − 1)2 . (12.29)

For instance, if X/σx = 10, it is found that the best solution is n = 3. This means
that under the given conditions the estimation of μx can be performed with the
required accuracy if the quantizer used for the signal encoding uses seven thresh-
old levels. The relationship of n versus σx/X that minimizes criterion Nn is given
in Figure 12.2.

Criterion NΘz
It is advisable to optimize the signal average parameter estimation with regard
to this criterion in cases where the observation time obtained by optimizing with
regard to criterion Nz is too long. The optimization procedure begins by optimizing
with regard to criterion NΘ and then finding the value of z that gives the minimum
value for criterion NΘz. This last part of the optimization procedure is performed
in the same way as optimization of criterion Nz.
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Figure 12.2 The optimal number of quantization bits as a function of the normalized signal
root mean square

On the basis of the results obtained above in Equation (12.24),

Criterion NΘz = N (1)
optΘ

1
optz =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

4 (A − 1) zt0
α2

= X2t0
3α2σ 2

x z
for A > 2,

t0 A2z
ω0α2

= t0
[
z2 + X2/

(
12σ 2

x

)]2

ω0α2z3
for A ≤ 2.

(12.30)

It can be seen from Equation (12.30) that criterion NΘz for A > 2 is inversely
proportional to z. Of the many possible z values the optimal value is the largest
providing A > 2. This optimal value is denoted by z0.

After z0 has been found, the value of criterion NΘz (z0) should be compared
with the values of criterion NΘz for z > z0. If NΘ(z) < NΘ(z0), the minimum
of criterion NΘz should be determined by using the second equation of system
(12.30) for which A ≤ 2.

Example 12.3
Assume that X/σx = 10. From the inequality

A = 1 + X2

12σ 2
x z2

= 1 + 25

3z2 > 2
,
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it is found that z0 = 2. Then it is found which of the z values above the level z0

satisfies the inequality

Criterion NΘz (z0)

Criterion NΘ(z)
< 1. (12.31)

By applying Equation (12.30) it is easy to find that inequality (12.31) is not
met, even for z = 3. Consequently, criterion NΘz has a minimum of z > 2.
This means that the minimum is achieved when the signal samples processed are
uncorrelated. On the basis of Equation (12.30), it is found that the minimum of
criterion NΘz, corresponding to A < 2 (z > 2), is z = 5. Hence

A = 4/3, N = 4/(3α), Θ = 4t0/(3α), T = t0.

These results can be compared with respective values obtained by optimizing
under the same conditions with regard to criterion Nz. In this case,

A = 5z/27, N = 5z/(27α), Θ = 5zt0/(27α), T = t0.

The estimation optimized for criterion NΘz can be performed during a time
interval and by processing a number of signal samples, which are only 69.23 %
from the respective values obtained by optimizing for criterion Nz. The sampling
frequency in both cases can be the same, i.e. it should be equal to or less than ω0,

provided that the signal samples taken are uncorrelated. A reduction in observation
time and the number of signal samples processed is achieved by increasing the
number of quantizer threshold levels from 3 to 5. The function of z versus σx/X ,
providing the minimum for criterion NΘz, is shown in Figure 12.1 (the broken
curve 2).

12.2.4 Deviations from Optimal Conditions

The optimal estimation conditions given above, providing minima for different
criteria, depend on the normalized signal parameter σx/X. Although it is assumed
that the input signal is stationary and, therefore, that it does not change its parame-
ters during the estimation time interval, its mean power and, correspondingly, the
parameter σx X may, of course, change over time considerably within the whole
range from zero to the maximum. The estimation conditions that are optimal for
some value of σx X will not really be optimal for other values of this parameter.

The theoretical lower limit of N is obtained for z = ∞. This limit is closely
approached at small z values. It is apparent that nothing much can be gained (in the
sense of minimizing N ) by setting the number of quantizer threshold levels higher
than four. Moreover, it seems that the best choice is z = 2, i.e. when one voltage
comparator is used for positive half-waves of the signal and one for negative
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half-waves. In this case, the quantizer and the processor are both simple and this
reduction in the quantizer threshold level number can easily be compensated for
by taking and processing a slightly increased number of signal samples.

Thus the analysis confirms the assumption that application of rough pseudo-
randomized quantizing provides signal average parameter estimation conditions
that are nearly optimal. Application of multibit quantizers only unduly compli-
cates the processing hardware and slows down the estimation process rather than
providing increasing accuracy.

12.2.5 Comments

The optimization of signal average parameter estimation considered above holds
only under a number of assumptions and for the estimation of signal moments.
The results obtained should therefore not be regarded as universally applicable.
Of course, the estimation of other signal average parameters has also to be studied
by taking specific estimation conditions into account. In relatively simple cases,
this can be done analytically and the analysis above can be followed. In more
complicated cases, however, the application of computer simulations of partic-
ular estimation procedures may prove to be more efficient for finding out the
mode of quantizing that will provide the best estimation characteristics under the
conditions given.

Although no presumptions should be made about the best mode of quantizing,
analysis of specific signal average parameter estimation cases will, nevertheless,
more often than not show that in this field of applications rough quantizing is
preferable. This is not an entirely unexpected conclusion. It has been known for a
long time that even when the quantization is deterministic it does not make sense
to apply fine quantizing to digital estimation of correlation functions. It is usually
considered that only six to eight threshold levels are needed to ensure nearly
optimal estimation conditions. A further decrease in the number of threshold
levels used is prevented by bias errors appearing when deterministic quantization
becomes too coarse.

When quantizing is randomized or pseudo-randomized no bias errors occur,
even with extremely rough quantizing; this approach therefore widens the ap-
plication area of this kind of quantizing considerably. Randomized or pseudo-
randomized rough quantizing can usually be performed by using fewer threshold
levels than are required for carrying out this operation under similar conditions
deterministically.

These considerations apply not only to the estimation of moments and cor-
relation functions but also to other more important signal parameters, such as
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Fourier, and similar, coefficients estimated in the course of spectral transforms,
which are performed on an exponential and other orthogonal function basis. Their
estimation is considered in the following chapters. As shown there, optimizing is
carried out by taking into account some additional factors, for instance, whether
or not the signal is noisy. Both fine and rough quantizing modes are applicable
for estimating these parameters.

12.3 Specifics Related to Pseudo-randomized Quantizing

The previous sections have clearly shown that when signal average parameters
have to be estimated, it is advantageous to quantize signals pseudo-randomly.
However, as most of the existing algorithms for digital estimation of such param-
eters have been developed for processing deterministically quantized signals, the
application of pseudo-randomized quantizing is possible only if the processing
algorithms are appropriately modified.

Attempts to replace deterministic by pseudo-randomized quantizers without
adapting the processing algorithms and hardware to the specifics of such quantiz-
ing may well be unsuccessful. Although the digital signals obtained by pseudo-
randomized quantizers have considerably superior properties, the price for this
improvement is an increased bit rate and corresponding hardware complications.

Recall that pseudo-randomly quantized signals are defined as

x̂k = (
ξk − 1

2

)
q + nkq. (12.32)

The first term of this equation indicates the positions that the threshold levels
occupy at the quantization time instants tk when the rounding-off results nkq are
obtained. In the case of deterministic quantizing, the thresholds are fixed and it is
not necessary to add this information to the descriptions of the quantized signals.
Pseudo-randomized quantizer outputs therefore have more bits in principle, and
for this reason their straightforward applications may sometimes be question-
able. Overall good results from the application of such quantizers may only be
expected if their output signals are processed in a way best suited to the given
conditions.

However, as the conditions of signal processing can differ considerably, it is not
possible to give precise recipes for every particular case; for success the general
technical principles must be understood. The material in this chapter may be
found to be helpful in this.

It is first recommended that the digital signal processing be organized in such
a way that the sequences (ξk − 1

2 )q and nkq are processed separately. Next, it
should be taken into account that the process (ξk − 1

2 )q is predetermined and can
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be repeated. This approach sometimes permits some kind of preprocessing of this
pseudo-random sequence where the results are stored in a memory and then used
for corrections.

There may be various approaches to the problem of processing the quantized
signal components (ξk − 1

2 )q and nkq separately. Of course, this processing should
be matched with the corresponding algorithms, but new, unconventional ways of
dealing with the auxiliary pseudo-random process can still be found. Several
typical approaches will now be examined.

12.3.1 Avoiding Processing of the Dither Process

Under some conditions it is possible to simplify processing of pseudo-randomly
quantized signals in such a way that there is no need to take into account the
information carried by the sequence {ξk}. To elucidate this an estimation of the
absolute mean value m|x | of a stationary ergodic signal x (t) is considered. This
signal parameter is defined as

m|x | = 1

Θ

∫ Θ

0
|x (t)| dt . (12.33)

The corresponding estimate is given by

m̂|x | = 1

N

N∑
k=1

|x̂k |.

If the quantized signal {x̂k} is obtained by means of a pseudo-randomized quan-
tizer, this estimate becomes

m̂|x | = q
N

N∑
k=1

∣∣∣∣ξk − 1

2
+ nk

∣∣∣∣ = q
N

N∑
k=1

(
ξk − 1

2

)
+ q

N

N∑
k=1

nk . (12.34)

As the process {ξk} is pseudo-random, clearly the first sum in Equation (12.34)
can be calculated in advance or, under certain conditions, not calculated at all. If
the auxiliary pseudo-random dithering process {ξk} is generated in such a way that
the instantaneous values of ξk do not repeat themselves within a certain cycle, and
an integer number of those cycles is equal to N , this sum is equal to zero. Under
this condition, the estimate m̂|x | can be obtained in the following simplified way:

m̂|x | = q
N

N∑
k=1

nk . (12.35)
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Although in this case the information carried by the process {ξk} is seemingly
not taken into account, this is actually not the case. Equation (12.35) holds only
under the given condition, and this means that quantizing is performed while
the threshold level sets are in predetermined positions. These positions are not
tied to the corresponding quantizing time instants, but this is of no importance,
because the definition of this estimate does not require that they should be. The
probabilistic characteristics of m̂|x | obtained from Equation (12.35) will therefore
be the same as if this estimate had been calculated in a more conventional way, in
accordance with Equation (12.34), without using special versions of the pseudo-
random process {ξk}.

12.3.2 Simplified Processing of the Dither Process

There can be different approaches to the problem of simplifying the processing
of pseudo-randomly quantized signals. Naturally, they depend first of all on the
processing algorithms. However, success in this to a large extent also depends
on the ability to look at this problem in an inventive way. Consider, for instance,
the estimation of the mean power P of a stationary ergodic signal x(t) which is
observed during a time interval [0, Θ]. According to the definition,

P = a2 = lim
Θ⇒∞

1

Θ

∫ Θ

0
x2 (t) dt .

When this signal is sampled and quantized, the corresponding estimate is given
by

P̂ = 1

N

N∑
k=1

x̂2
k − 1

12
q2 (12.36)

where the term 1
12 q2 is the correction that renders the estimate (12.36) unbiased.

The pseudo-randomly quantized signals can be represented in the following
way:

x̂k = q(nk + ck), (12.37)

where ck = ξk − 1
2 . Substituting this expression into Equation (12.36) yields

P̂ = q2

N

N∑
k=1

(
n2

k + 2nkck + c2
k

) − 1

12
q2. (12.38)
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Note that the term (1/N )
∑N

k=1 c2
k is an estimate of E[ck] = 1

12 . Hence,

P̂ = q2

N

N∑
k=1

(
n2

k + 2nkck
) = q2

N

N∑
k=1

(
n2

k + 2nkξk − nk
)
. (12.39)

In this way, the term containing ξ 2
k can be cancelled. This simplifies calculations,

because very rough quantizing is preferable for this kind of application and the
value of nk is then not large.

The most interesting and also the most practical overall results can be obtained
by applying rough quantizing with only one or two (one for negative and one for
positive signal half-waves) threshold levels. In this case nk can assume only the
values 0 and 1 (the signal cannot be positive and negative simultaneously) for
n2

k = nk and Equation (12.39) becomes

P̂ = 2q2

N

N∑
k=1

nkξk (12.40)

This estimate P̂ can then be obtained without performing multidigit multiplication
operations. In this approach, only one adder is required to carry out the estimation
and, consequently, the electronic implementation of this estimation scheme is
extremely simple. This is important for at least two reasons. Firstly, the simplicity
of the input circuits allows the design of very wide band devices. Secondly, the
time intervals between quantizing instants can be small and a high speed of
estimation can be achieved.

Devices for estimating the absolute mean values and the mean power of signals
are described in the following sections. It remains to find out how widely they
can be applied. The above conclusion, stating that the application of extremely
rough pseudo-randomized quantizing provides nearly optimal conditions for esti-
mating signal average parameters, is based on the optimization of the mean value
estimating process. This conclusion does not necessarily hold for the estimation
of higher-order signal distribution moments. Fortunately, the results obtained
and discussed in the following sections show that this quantization technique is
well suited for more complicated average parameter estimation cases as well.
Although the approach to the problem of simplifying processing of the quantized
signal component (ξk − 1

2 )q discussed provides good results, even better effects
can sometimes be achieved. For some pseudo-randomized quantizing applica-
tions it is possible to process the sequence {ξk} beforehand and to store the results
in a memory for applying as corrections to the corresponding estimation results.
This approach is effective for spectrum analysis.
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Figure 12.3 Scheme of an electronic device for measuring the absolute mean value of signals

12.4 Estimation of the Absolute Mean Value

An average parameter estimation of signals can be complicated depending on
the definition of a particular parameter. It is a relatively simple matter to estimate
signal moments and related parameters, so it seems logical to begin by considering
the technique for estimating them.

A randomized scheme for estimating a signal absolute mean value is studied
here. Its performance is first of all evaluated in terms of random estimation errors.
Note that there can be instrumental as well as software implementations of this
and other estimation schemes, provided that signal quantizing is randomized or
pseudo-randomized.

12.4.1 Electronic Device

A block diagram of an electronic device for estimating the absolute mean val-
ues of pseudo-randomly quantized signals is shown in Figure 12.3. This device
comprises a pseudo-randomized ADC and some functional blocks for processing
the quantized signals. It can in fact be used to estimate two signal parameters in
parallel: the absolute mean value and the mean power. The price of adding one
more function, in this case, is very low. Only an additional simple logic gate and
adder are needed.

In accordance with the optimization results given above, the pseudo-
randomized quantizer contains only two voltage comparators, one for positive
and one for negative signal values. The quantizing thresholds q−

0k and q+
0k , pseudo-

randomly changing in time, are generated by the means of the pseudo-random
number generator and a DAC. The latter has two outputs, the first for q+

0k and the
second for q−

0k .
To ensure proper implementation of the estimation algorithm, the following

requirements should be met:
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1. The absolute values of the threshold levels q−
0k and q+

0k at each instant should
be equal.

2. Pseudo-random numbers ξk , generated by the PRNG, are not repeated within
a cycle of N0 numbers.

3. Estimating is carried out until N = nN0 signal samples are taken and pro-
cessed, where n is a positive integer.

Consider a centred signal x(t) ∈ [−q, q], mx = 0. Under the given conditions,
the estimate of its absolute mean value is given by

m̂|x | = q
N

N∑
k=1

nk, (12.41)

where nk = n+
k + n−

k is the sum of the comparator C1 and C2 outputs. For xk ≥
0, n−

k ≡ 0 and for xk < 0, n+
k ≡ 0. Hence nk can assume only the value 1 or 0.

Therefore m̂|x | is proportional to the number of logical 1’s accumulated in the
counter.

12.4.2 Estimation Errors

The estimate that is being considered is unbiased. Therefore estimation inaccuracy
is completely determined by random errors. As m̂|x | can be considered as the
estimate of the expected value of |x(t)|, then

Var[m̂|x |]q = 1

N
Var[|x̂k |] = 1

N
Var[|xk | − εk], (12.42)

where εk is the random error of pseudo-randomized quantizing and the index q
at Var[m̂|x |] indicates that this variance is due to quantizing. Taking into account
the properties of pseudo-randomized quantizing,

Var[m̂|x |]q = 1

N

(
σ 2

|x | +
1

12
q2

)
. (12.43)

This equation describes the variance of the considered estimate under the condi-
tion where the pseudo-random numbers {ξk} are mutually statistically indepen-
dent. In this case, this condition is not satisfied because the auxiliary pseudo-
random process is generated in such a way that the numbers ξk cannot repeat
themselves within a certain cycle. However, the impact of this is negligible.

By definition, the random estimation error caused by the quantization errors is
given as

εq ≤ tβ
√

Var[m̂|x |]q . (12.44)
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To ensure that the error will not exceed some given value ε, more than N quantized
sample values should be averaged. It follows from Equations (12.43) and (12.44)
that

N ≥ t2
β

ε2

(
σ 2

|x | +
1

12
q2

)
. (12.45)

This inequality can be used to calculate number N of signal samples that have to
be processed to ensure with probability β that the random estimation error will
not exceed the predetermined value ε.

To evaluate the efficiency of the estimation method, it can be compared with
others, specifically with those based on extremely rough randomized quantizing
and on multibit deterministic quantizing. The variances of the estimates m̂|x |
obtained in those cases are given, respectively, by the following equations:

Var[m̂|x |r]q = 1

N
m̂|x |(q − m̂|x |), (12.46)

Var[m̂|x |id]q = 1

N
σ 2

|x |, (12.47)

where m̂|x | is the absolute mean value and σ 2
|x | is the variance of the rectified

signal. The indexes r and id indicate that the corresponding estimates are obtained
by applying the extremely rough randomized and the extremely fine idealized
deterministic quantizers respectively.

Obtaining of the estimate m̂|x |id by processing the signal samples, taken without
quantizing errors, is more complicated, because in this case multibit rather than
one-bit numbers have to be averaged. To obtain the estimates m̂|x |r and m̂|x |id, it
is necessary to take and to process Nr, Nid signal samples respectively. It follows
from Equations (12.46) and (12.47) that

Nr ≥ t2
β

ε2
m|x |(q − m|x |), (12.48)

Nid ≥ t2
β

ε2
σ 2

|x |. (12.49)

Although the absolute mean values of signals are not measured very frequently,
this signal processing operation can fairly often be found in more complicated
algorithms. The given analysis shows what happens if the signals to be esti-
mated are quantized randomly, pseudo-randomly and deterministically. It can be
seen from the given relationships that application of pseudo-randomized quan-
tizing allows an estimation to be performed in a very simple way and the loss
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Figure 12.4 Block diagram of a device performing an estimation of the signal mean power

in estimation precision is not very significant. If it is possible to enlarge the
data block processed, the estimation errors can easily be suppressed to the same
level as when the signal samples are obtained virtually without quantization
error.

12.5 Estimation of the Mean Power

Consider estimation of the mean power of a stationary ergodic zero mean sig-
nal x(t) ∈ [−q, q] . Suppose that this procedure is realized on the basis of the
estimation method described by Equation (12.40). The electronic device ap-
plicable for such an estimation is shown in Figure 12.4. It can be seen from
Equation (12.40) and the block diagram of this device that the pseudo-random
numbers ξk generated by the PRNG are passed through a logic gate to an adder.
This gate is open at the instants tk when nk = 1. The value of the estimated
signal mean power is read out from the adder at the end of each estimation
cycle.

Note that the method of estimating the mean power of signals considered here
is very suitable for high-frequency applications. Its electronic implementation is
extremely simple and can easily be developed as a very wide band device. To
do this only the two voltage comparators at the input need to be designed as
ultrahigh-frequency electronic elements, and the restrictions on the input signal
spectra imposed by aliasing can be avoided by applying randomized sampling.
There are no problems in accomplishing this.



JWBK152-12 JWBK152-Bilinskis March 6, 2007 21:21

250 Quantizing-specific Signal Parameter Estimation

12.5.1 Estimation Efficiency

The estimate P̂ of the signal mean power P, as defined by Equation (12.40), is
unbiased. Then

E[P̂] = 2q2

[∫ q

0
φ(x)

∫ x/q

0
ξ dξ dx +

∫ 0

−q
φ(x)

∫ −x/q

0
ξ dξ dx

]

=
∫ q

−q
x2φ(x) dx = P, (12.50)

where φ(x) is the probability density function of the signal. The variance of this
estimate can be derived from Equation (12.40). By definition,

Var[P̂]q = 4q4

N
Var[ξknk] + 8q4

N 2

N−1∑
m=1

N−m∑
k=1

Cov(ξknk, ξk+mnk+m), (12.51)

where Cov (ξknk, ξk+m, nk+m) is the covariance of the random variables ξknk,

ξk+m and nk+m . Equation (12.51) can be given as

Var[P̂]q = 4

3N
q[|x |3] − 1

N
P2 + 2

N 2

N−1∑
m=1

(N − m) Cx2 (mT ) , (12.52)

where Cx2(mT ) is the autocovariance function of x2(t) .

To evaluate the efficiency of this estimation method it should be compared
with other methods. When the signals to be estimated are quantized randomly,
the estimate of the mean power is given as

P̂r = −q2

N

N∑
k=1

n1kn2k, (12.53)

where n1k and n2k are the output signals of the voltage comparators and the index
r for P indicates that x(t) is quantized randomly. The variance of this estimate is
obtained in the same way as the variance described by Equation (12.52). In this
case

Var[P̂r]q = 1

N
(q4 − P2) + 2

N 2

N−1∑
m=1

(N − m) Cx2 (mT ). (12.54)

When the signal samples are taken without the quantization error, the estimate is
defined by

P̂id = −q2

N

N∑
k=1

x2
k (12.55)
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and the variance of this estimate is given by

Var[P̂id]q = − 1

N
(E[x4] − P2) + 2

N 2

N−1∑
m=1

(N − m) Cx2 (mT ). (12.56)

The random estimation error due to quantizing imperfections is defined as

εq ≤ tβ
√

Var[P̂] (12.57)

The random errors characterizing the estimation of variously quantized signals can
therefore be calculated by substituting the corresponding variances into inequality
(12.57).

Equations (12.52), (12.54) and (12.56), defining the variances of the estimates
can be used for deriving expressions for calculating the number N of the signal
samples needed to obtain these estimates with errors not exceeding the preset
values of ε. Then

N ≥ t2
β

ε2

(
4

3
q E[|x |3] − P2

)
, (12.58)

at random quantizing

Nr ≥ t2
β

ε2
(q2 − P2) (12.59)

and without quantizing error

Nid ≥ t2
β

ε2
(E[x4] − P2). (12.60)

12.6 Errors Due to Randomized Sampling

Randomizing various signal processing techniques is often controversial, because
negative as well as positive effects may arise. Whether the desirable effects prevail
or not depends on the particular signal processing conditions and the outcome is
not always easy to predict.

The conditions of signal average parameter estimation are usually well suited
to the specifics of the randomized signal processing as far as randomized quanti-
zation is concerned. Consider what happens if the same parameters are estimated
by processing randomly sampled signals. The following considerations are for
the case when signals are sampled according to the direct randomization scheme
described in Chapter 6.
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12.6.1 Absolute Mean Value Estimate

Suppose that a stationary ergodic signal x(t) is sampled randomly at the instants
{tk} and that the signal samples {xk} are taken without quantization error. The
estimate m̂|x | of the absolute mean value is given by

m̂|x | = 1

N

N∑
k=1

|xk | (12.61)

and the variance of this estimate by

Var[m̂|x |]s = 2
∫ ω,max

0
Var[m̂ (ω)] G |x ||x | (ω) dω, (12.62)

where G |x ||x | is the spectral density function of the rectified signal |x (t)|. The
index s of Var[m̂|x |] indicates that this variance of the estimate m̂|x | is caused by
sampling irregularities.

12.6.2 Mean Power Estimate

Consider estimate (12.56). The variance of this estimate

Var[P̂id]s = 2
∫ 2ω,max

0
Var[m̂ (ω)]G yy (ω) dω, (12.63)

where

G yy(ω) dω = 1

2π

∫ ∞

0
Gxx (v) Gxx (ω − v) dv (12.64)

and Gxx (ω) is the spectral density function of the signal x(t).

12.6.3 Overall Estimation Errors

Consider the estimate P̂. Its random error ε0 can be given as

ε0 ≤ tβ
√

Var[P̂id]q + Var[P̂]
s

(12.65)

This error naturally depends on the variances caused by both the rounding-off er-
rors and the sampling irregularities. The relationships underlying it are in general
fairly complicated. This is true especially with regard to that component of the
error that is tied to random sampling. It can be seen from Equations (12.63) and
(12.64) that the corresponding variance is determined by the frequency-dependent
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variance Var[m̂ (ω)] of the mean value of an elementary signal and by the spectral
density function of x(t).

Fortunately, in the case considered, it is not necessary to calculate ε0 in detail.
The maximal value of the relative estimation error is around 0.5/q2 for N = 1.
To suppress this error, for instance 500 times, 2.5 × 105 signal samples have to
be taken and processed. This number of samples is not needed to compensate
for excessive rounding-off errors; it is needed to measure the mean power of the
signal according to the definition of this parameter. No matter how the signal
is quantized, the number N of signal samples processed should always be large
enough to achieve acceptable estimation precision. Consequently, the variance
Var [m̂(ω)] will to a considerable extent also be suppressed. Calculations show
that in this signal processing area the errors due to random sampling irregularities
are usually suppressed to negligible values.
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Estimation of Correlation
Functions

Continuing the discussion on the specifics of processing nonuniformly quantized
signals, started in the previous chapter, the issues of quantized signal multipli-
cation are studied and put into focus here. They are of special interest in many
cases where two or more pseudo-randomly digitized signals are to be processed
together. An estimation of correlation functions represents the most typical case.
As a rule, numerous multiplications of the quantized signal sample values need to
be executed in order to perform signal correlation analysis. As these operations
are relatively time consuming, it is essential to rationalize them. That is especially
important in cases of special hardware development for correlation analysis. The
most suitable quantization method has to be selected first. Referring back to
Chapter 5, it is clear that application of pseudo-randomized quantizing should
be considered. However, it seems that multiplication of two pseudo-randomly
quantized signals is more complicated than multiplication of randomly or de-
terministically quantized signals. On the other hand, the properties of pseudo-
randomized quantizing are superior to the analogous properties of other quantizing
techniques.

Application of pseudo-randomized sampling for signal correlation analysis is
also discussed. It is shown that signal digitizing strongly impacts on the conditions
for the correlation analysis and that applying pseudo-randomized digitizing tech-
niques, if done skilfully, leads to certain desirable effects. Therefore it is worth
examining various processes related to this kind of signal correlation analysis
more closely.

Digital Alias-free Signal Processing I. Bilinskis
C© 2007 John Wiley & Sons, Ltd
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13.1 Multiplication of Quantized Signals

In order to highlight the problems arising when two or more pseudo-randomly
quantized signals are processed together, multiplication of two quantized signals
x̂ and ŷ are considered, where

x̂ = q(cx + nx ), ŷ = q(cy + ny)

and

cx = ξx − 1
2 , cy = ξy − 1

2 .

13.1.1 Expected Value of Multiplied Quantized Signals

The product

z = x̂ ŷ = q2(cx cy + cx ny + cynx + nx ny) (13.1)

is obviously a random variable. Its expected value is

E[z] = E[x̂ ŷ] = q2(E[cx cy] + E[cx ny] + E[cynx ] + E[nx ny]).

It can easily be shown that the first three expectations are equal to zero. Hence

E[z] = E[x̂ ŷ] = q2 E[nx ny]. (13.2)

Usually it makes sense to apply pseudo-randomized quantizing only if it can
be coarse. To simplify the following analysis, assume that the quantization con-
sidered is extremely coarse, i.e. that

nx =
{

1 for qξx ≤ x,

0 for qξx > x,
ny =

{
1 for qξy ≤ y,

0 for qξy > y.

It then follows from Equation (13.2) that

E[z] = q2
∫ q

0

∫ q

0

∫ x

0

∫ y

0

d(qξx )

q
d(qξy)

q
ϕ(x, y) dx dy

= E[xy] = a11. (13.3)

To minimize the bias error, the multiplication of x̂ and ŷ can therefore be
reduced to multiplying nx and ny , without taking into account other terms of
Equation (13.1). However, this does not mean that those other terms are redundant.
In principle, their addition reduces the statistical error. On the other hand, these
additional terms also complicate calculations.
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13.1.2 Variance of Multiplication Results

As it is assumed that nx and ny are not large (typically they are smaller than the
respective values ξ x and ξ y), then the most inconvenient term is ξ x ξ y , because it
requires the multiplication of multidigit numbers. To decide which of the terms
can be cancelled without unreasonable increase in the number of random errors,
various multiplying options have to be evaluated.

The following notation is introduced:

z(1) = q2(cx ny + cynx + nx ny),
z(2) = q2nx ny .

(13.4)

As all three of the estimates z, z(1) and z(2) are unbiased, they differ only from the
viewpoint of their random errors, which are defined by the respective variances
Var[z], Var[z(1)] and Var[z(2)]. Then

Var[z] = q4 {Var[cx cy] + 2K (cx cy, cx ny) + 2K (cx cy, cynx )

+2K (cx cy, nx ny) + Var[cx ny] + 2K (cx cy, cynx )+2K (cx ny, nx ny)

+Var[cynx ] + 2K (cynx , nx ny) + Var[nx ny]}. (13.5)

To evaluate this variance, its components should be derived first. The variance of
nx is given by

Var[nx ] =
∫ q

0

x
q

ϕ(x) dx −
[∫ q

0

x
q

ϕ(x) dx
]2

= mx

q

(
1 − mx

q

)
. (13.6)

Likewise,

Var[ny] = my

q

(
1 − my

q

)
. (13.7)

As the random numbers cx and cy are mutually independent and do not depend
on the signals x, y,the variance

Var[cx cy] = 1/144. (13.8)

On the basis of Equations (13.6) and (13.7),

Var[cx ny] = Var[cx ]Var[ny] + (E[ny])2Var[cx ]

= my

12q

(
1 − my

q

)
+ my

12q2
= my

12q
. (13.9)
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Similarly,

Var[cynx ] = mx

12q
. (13.10)

The variance of nx ny is

Var[nx ny] =
∫ q

0

∫ q

0

∫ x

0

∫ y

0

d(qξx )

q
d(qξy)

q
ϕ(x, y) dx dy − (E[nx ny])2

= 1

q2
a11 − 1

q4
a2

11. (13.11)

Now the correlation moments involved will be derived. The correlation between
cx cy and cx ny is given by

K (cx cy, cx ny) = E[c2
x cyny] − E[cx cy]E[cx ny]

= E[c2
x ]E[cyny]

= 1

12

∫ q

0
ϕ(y) dy

∫ y

0

(
ξy − 1

2

)
d(qξy)

q

= 1

24q2
(σ 2

y + m2
y − qmy), (13.12)

where ϕ(y) and σ 2
y are the probability density function and the variance of signal

y respectively. Likewise,

K (cx cy, cynx ) = 1

24q2
(σ 2

x + m2
x − qmx ). (13.13)

The correlation between cx cy and cx ny is given by

K (cx cy, nx ny) = E[cx nx cyny]

= K [cx ny, cynx ]

=
∫ q

0

∫ q

0

∫ q

0

(
ξx − 1

2

)
d(qξx )

q

∫ y

0

(
ξx − 1

2

)
d(qξy)

q
ϕ(x, y) dx dy

= 1

4q4
(a22 − qa12 − qa21 + q2a11), (13.14)

where the moments ai j = E[xi y j ], i , j =1, 2, . . . . Next, it can be shown that

K (cx ny, nx ny) = E
[
cx nx n2

y

] = 1

2q3
(a21 − qa11) (13.15)

and

K (cynx , nx ny) = 1

2q3
(a12 − qa11). (13.16)
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Substituting Equations (13.8) to (13.16) into Equation (13.5) gives

Var[z] = q4

144
+ q2

12

(
m2

x + m2
y + σ 2

x + σ 2
y

) − a2
11 + a22. (13.17)

By cancelling the first four terms of equation (13.5) and by substituting the
equations of the respective variances and the correlation moments gives

Var
[
z(1)] = q3

12
(mx + my) − q2

2
a11 − a2

11 + q
2

(a12 + a21) + a22

2
. (13.18)

Note that the variance of z(2) is determined by Equation (13.11).

13.1.3 Optional Approaches

To evaluate the efficiencies of the different approaches to the problem of multiply-
ing pseudo-randomly quantized signals, the variances characterizing the corre-
sponding estimates z, z(1) and z(2) should be compared with the minimal variance
Var[xy], calculated on the assumption that the signal samples are obtained without
quantizing errors. By definition,

Var[xy] =
∫ q

0

∫ q

0
x2 y2ϕ(x, y) dx dy − (E[xy])2

= a22 − a2
11. (13.19)

Assume that the probability density function of the signal x (t) ∈ [−q, q] is
normal and that the signal y(t) = x(t + τ ). This normal random process is char-
acterized by the mean value mx and by the correlation function K (τ ). Under these
conditions, the ai j are given by

a12 = a21 = m3
x + mxσ

2
x + 2mx K (τ ),

a11 = m2
x + K (τ ), (13.20)

a22 = m4
x + 2m2

xσ
2
x + σ 4

x + 4m2
x K (τ ) + 2K 2(τ ).

Substituting Equation (13.20) into Equations (13.17), (13.18) and (13.11)
yields

Var[z] = 1
144 q4 + 1

6 q2m2
x + 1

6 q2σ 2
x + 2m2

xσ
2
x + σ 4

x + 22
x K (τ ) + K 2(τ ),

Var
[
z(1)] = 1

6 q3mx − 1
2 q2m2

x + qm3
x − 1

2 m4
x + qmxσ

2
x + m2

xσ
2
x + 1

2σ 4
x

+2qmx K (τ ) − 1
2 q2 K (τ ),

Var
[
z(2)] = q2m2

x − m4
x + q2 K (τ ) − 2m2

x K (τ ) − K 2(τ ).
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These variances characterize different multiplication methods. The lowest
variance is

Var[x(t)x(t + τ )] = 2m2
xσ

2
x + σ 4

x + 2m2
x K (τ ) + K 2(τ ).

This represents the lower boundary of the considered variances and takes place
whenever the errors due to the signal quantization can be ignored. Multiplying two
randomly quantized signals, carried out in the simplest possible way, naturally
leads to maximal random errors.

The estimate z(1) of the product x̂ ŷ is the best choice, because its variance
exceeds the variance of the estimate z negligibly, while the multiplying process
itself is considerably simpler as the multiplication of the two multidigit numbers
cx and cy is omitted.

Equations (13.1) and (13.4) and their respective variances lead to the conclusion
that the most efficient way of multiplying pseudo-randomly quantized signals is
described by the following equation:

z(1) = x̂ ŷ = q2(cx ny + cynx + nx ny)= q2 [(
ξx − 1

2

)
ny + (

ξy − 1
2

)
nx + nx ny

]
.

(13.21)

This multiplication scheme is very suitable for applications in the field of corre-
lation analysis. The correlometer described in the next section is based on this
scheme.

13.2 Correlation Analysis of Pseudo-randomly
Quantized Signals

Suppose that a cross-correlation function Rxy(t) of two stationary signals x(t) and
y(t) has to be experimentally evaluated at the instants t = mT, m = 0, 1, 2, . . . .

This can be accomplished by averaging the products of the respective quantized
signal sample values{x̂(kΘ), ŷ(kΘ + mT )}, k = 0, 1, 2, . . . , N . Then

Rxy(mT ) = 1

N

N−1∑
k=0

x̂(kΘ)ŷ(kΘ + mT ), (13.22)

where Θ is a time interval whose duration exceeds the correlation interval of
x(t), y(t).
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13.2.1 Estimation Procedure

If x̂(kΘ, ŷ(kΘ + mT ) are obtained by the means of pseudo-randomized quan-
tizers, then, as the results given in the previous section show, estimate (13.22) is
unbiased and evaluation of the acceptable level of the quantizing random errors
leads to choosing the number of quantizing thresholds to be used. Using two
threshold levels, one for the positive and one for the negative signal values, seems
to be the best choice. Thus, each of the ADCs used in both channels actually
consists of two one-bit pseudo-randomized quantizers, one covering the positive
half of the input signal range [0, q] and the other the negative half of the range
[−q,0].

Let qξ k be the positive threshold level at the instant tk = kΘ and qηk the nega-
tive threshold level, where ξ k and ηk are random variables uniformly distributed
within the ranges [0, 1] and [0, −1] respectively. Then, for the x channel,

x̂k =
{

q
(
ξk − 1

2

) + qn+
k for xk ≥ 0,

q
(
ηk + 1

2

) + qn−
k for xk < 0,

(13.23)

where

n+
k =

{
1 for qξk ≤ xk,

0 for qξk > xk,

and

n−
k =

{−1 for qηk ≥ xk,

0 for qηk < xk .

13.2.2 Essential Relationships

To simplify the implementation of this quantizing scheme, the relation ηk = ξk−1
can be used. Note that n−

k ≡ 0 for xk > 0 and n+
k ≡ 0 for xk < 0. Hence Equation

(13.23) can be represented by

x̂k = q
(
ξk − 1

2

) + qnk, (13.24)

where nk = n+
k + n−

k . Now Equation (13.22) can be rewritten as

R̂xx (mT ) = q2

N

N∑
k=1

[(
ξk − 1

2

) (
ξk+m − 1

2

) + (
ξk − 1

2

)
nk+m

+(
ξk+m − 1

2

)
nk + nknk+m

]
. (13.25)
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This scheme for obtaining R̂xy(mT ) corresponds to the full product z, defined by
Equation (13.1). If the correlation function is to be calculated in accordance with
the simplified multiplication procedures z(1), z(2), the respective equations are

R̂(1)
xx (mT ) = q2

N

N∑
k=1

[(
ξk − 1

2

)
nk+m + (

ξk+m − 1
2

)
nk + nknk+m

]
, (13.26)

R̂(2)
xx (mT ) = q2

N

N∑
k=1

nknk+m . (13.27)

For the signalx (t) ∈ [−q, q], Equations (13.17), (13.18) and (13.11) give

Var[R̂xx (mT )] = q4

N

[
1

144
+ σ 2

x

6q2
+ 1

q4
ax22(mT ) − 1

q4
R2

xx (mT )

]
, (13.28)

Var
[
R̂(1)

xx (mT )
] = q4

N

[
m|x |
6q

− 1

2q2
a|x |11(mT ) + 1

q3
a|x |12(mT )

+ 1

2q4
ax22(mT ) − 1

q4
R2

xx (mT )

]
, (13.29)

Var
[
R̂(2)

xx (mT )
] = q4

N

[
1

q2
a|x |11(mT ) − 1

q4
R2

xx (mT )

]
, (13.30)

where

m|x | = E[|x(t)|] a|x |i j = E
[∣∣xi

k

∣∣∣∣x j
k+m

∣∣]. (13.31)

These variances determining the random errors of R̂xx (mT ) when the signals
x(t) and y(t) are roughly quantized can be compared with the minimal value of this
kind of variance characterizing the idealized case when the correlation function
Rxx (mT ) is calculated from the true sample values of the signals obtained without
any quantization errors. Then

R̂(0)
xy (mT ) = 1

N

N∑
k=0

xk xk+m (13.32)

and

Var
[
R̂(0)

xx (mT )
] = q4

N

[
1

q4
ax22(mT ) − 1

q4
R2

xx (mT )

]
, (13.33)
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Figure 13.1 Block diagram of a correlometer processing pseudo-randomly quantized signals

where Rxx (mT ) is the autocovariance function of the signal. By comparing the
random errors in Rxx (mT ) it can easily be seen that if the relative simplicity of
the multiplication scheme (13.21) is taken into account, the estimate R̂(1)

xx (mT )
provides the best compromise between complexity and the estimation accuracy.

13.2.3 Implementation Issues

A block diagram of the electronic device for estimation of correlation functions
in accordance with the considered basic scheme is given in Figure 13.1. It con-
tains two pseudo-randomized ADCs for digitizing the signals x(t) and y(t),some
simple logic circuits and an adder for executing the multiplication operations
according to Equation (13.21).

The quantization operations in both channels are performed as defined by
Equation (13.23). This means that each of the pseudo-randomized ADCs contains
a pseudo-random number generator (PRNG), a DAC and a quantizer. The latter
compares signals x(t) and y(t) with the auxiliary pseudo-random processes {ξ k}
and {ηk} at some digital time instants. The quantized signals are described by the
outputs of these comparators together with the corresponding discrete values of
{ξ k} and {ηk}.

To obtain the correlation function, the quantized sample values of x(t) are
multiplied by the quantized sample values of y(t) delayed for m time intervals of
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T . When quantizing is performed as described above, the values of ny , as well as
of ξ y , should be delayed. While ny can easily be delayed by means of two registers,
many more registers are required to delay ξ y . Fortunately, another method can
be used. A special pseudo-random number generator is used for generation of
the delayed sequence of ξ y . In the scheme shown in Figure 13.1, the generator
PRNG 3 is used for this purpose.

Multiplication of the quantized x(t) sample values with the delayed quantized
y(t) sample values is performed as follows. When, for instance, nx = 1 and ny = 0,
the gate in the y channel is open and delayed for the m time interval values T
and (ξy − 1

2 )q is read from PRNG 3 and entered into the adder to be summed
to the content of the mth cell of the memory, where the averaged values of the
correlation function being calculated are stored. At this time moment, the AND
gate is closed, so nothing else is put through to the adder.

When nx = 0 and ny = 1, the situation is similar, only inverse. Then the gate
in the x channel is open and the output signal of PRNG 3 is passed to the adder.
When nx = 1 and ny = 1, both of the gates and the logical element AND are
open and three digital signals are passed to the adder. They are m time intervals
T, (ξx − 1

2 )q; the delayed value of m time intervals T, (ξy − 1
2 )q; and the log-

ical 1 from the output of the AND gate. Averaging of the multiplied values of
x̂ (kΘ) and ŷ (kΘ + mT ) is carried out in this way by means of the adder and the
memory.

This method of obtaining the correlation functions has several advantages.
Firstly, the multiplication operations required for calculating the correlation func-
tions are replaced by the summing operations. Secondly, the randomized ADCs
used in both channels can easily be designed as extremely broad band devices; to
do this only two wideband strobed voltage comparators are needed for each of the
ADCs. Thirdly, there are no bias errors, although extremely rough quantizing is
applied. The random errors are suppressed by averaging. The application of two-
threshold pseudo-randomized quantizing to correlation analysis makes it possible
to use this discrete technique for direct analysis of extremely high-frequency sig-
nals without the need for any analog preprocessing. A bandwidth of several GHz
could be achieved relatively easily by such correlometers.

13.3 Correlation Analysis of Pseudo-randomly
Sampled Signals

Specific signal sampling affects the correlation analysis of signals even more
than unusual quantizing of their sample values. In general, the motivation for
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Figure 13.2 Estimation of the cross-correlation function by repetitively multiplying the
indicated pairs of x(t) and y(t − τ0) sample values

using nonuniform sampling in a signal correlation analysis is widening of the
frequency range within which the signals could be processed digitally, as this
approach not only permits the analysis of broadband signals but is also better
suited for performing correlation analysis with smaller time delay steps T .

The time diagram given in Figure 13.2 illustrates some specific points typical for
correlation analysis carried out by processing pseudo-randomly sampled signals.
In fact it is a simplified diagram showing what are the specifics of the correlation
analysis in this case. The cross-correlation function values taken at discrete time
moments are estimated by multiplying sample values of both input signals x(t)
and y(t) as usual. Each of the signal y(t) sample values are multiplied by the signal
x(t) sample values delayed for 1, 2, 3, . . . pseudo-random sampling intervals, as
shown in Figure 13.2. In addition, for reasons explained below, the signal y(t) is
also delayed for a stable time interval τ 0.

This illustration shows how a cross-correlation function is estimated by taking
and processing N sample values of y(t). The same quantity of samples is taken
from x(t)at each of the pseudo-randomly varied delays determined by 1, 2, 3 or 4
sampling intervals. The delays, determined by the sampling intervals, are discrete
pseudo-random variables and the delay step T can be very small. This delay step
is equal to the time digit δ gcharacterizing the pseudo-randomized sampling point
process. A histogram of delay times, obtained by computer simulations of this
kind of correlation analysis in the case where the signals are sampled according to
the additive pseudo-random sampling point process, is shown in Figure 10.4. This
histogram shows how many of the particular sample value products are delayed
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Figure 13.3 Block diagram of a correlometer based on the formation of time delays by
pseudo-randomization of the input signal sampling

for any given discrete delay time interval. It also reveals that for a certain delay
time interval close to zero there are no sample value products. To fill this gap, a
constant time delay τ 0 is inserted into the y channel.

It can be seen from Figure 10.4 that the distribution of x(tk)y[tk − (τ +τ 0)]
along the time delay τ axis varies. Consequently, for proper averaging of these
products, it is essential to know how many of them fall into each of the time slots.
So long as the pseudo-random sampling technique is used, the functioning of
such a correlometer is fully deterministic and the information needed for correct
averaging can be prepared and stored in a memory (ROM (read-only memory) in
Figure 13.3). Of course, in this case, when varying numbers of the products are
averaged, the random estimation error is not constant for all τ values.

The diagram given in Figure 13.3 illustrates the implementation of the described
approach to correlation analysis. In accordance with this scheme the signals x(t)
and y(t – τ 0) are pseudo-randomly sampled and quantized by both ADCs and the
digitized signal values are then multiplied as shown in Figure 13.3. The obtained
products are then added to the contents of the corresponding cell of the random
access memory (RAM). The acquisition and processing of a predetermined num-
ber N of y(t − τ0) samples completes a particular cycle of estimating the corre-
lation function, and the results are stored in the RAM. To read out this correlation
function, the varying coefficients stored in the read-only memory (ROM) should
be normalized. These coefficients are inversely proportional to the numbers of
the particular products x(tk)y[tk− (τ + τ 0)] accumulated in the respective cells
of the RAM.

The basic drawback of this approach to correlation analysis is related to the
fact already stated in Chapter 10 that distribution of the nonuniform sampling
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intervals has to guarantee that the distance between two consequent sampling
instants is equal to or larger than the shortest sampling interval characterizing the
used ADC. Therefore in general it is impossible to obtain signal sample values
located more closely on the time axis. That is the reason why the signal y is
delayed for the time interval τ 0. This limitation of scarce nonuniform sampling
essentially impacts on a particular type of wideband signal processing, specifically
the spectrum analysis of signals having continuous spectra based on an estimation
of correlation functions.

The problem of providing for sufficiently short digital delays can be resolved
on the basis of hybrid double sampling. It has already been considered that input
signal digitizing according to the additive sampling scheme leads to the histogram
of Ni values for the varying delay times given in Figure 10.4. This histogram,
showing how large is the number Ni of averaged products x(tk)x(tk + τ i ) for
specific delay time values within the given delay time range, changes drastically
if the input signals are sampled according to the hybrid double sampling scheme.
This histogram, as can be seen, for example, in Figure 10.10, does not have empty
delay time slots like the ones in the histogram in Figure 10.4. Therefore, if the
input signals are sampled according to the hybrid double sampling approach,
then there is no need to insert an analog delay into the y input channel. Under
these conditions of sampling it is possible to estimate the values of the correlation
functions at discrete delay time instants within the whole considered delay time
range with the area near zero delays included. In the cases of predetermined
pseudo-random sampling, these empirical Ni distributions are kept in a memory
as they contain information needed for correct averaging of the estimated values
of the correlation functions.

13.4 Comments

The above schemes for signal correlation analysis, reflecting the specifics related
to the application of pseudo-randomized signal sampling and quantizing, could
be considered as a core of different systems performing signal detection, demod-
ulation and estimation of the correlation structure of a signal or cross-correlation
between signals. Essential applications of such systems are related to an esti-
mation of signal power spectra and to cross-correlation based demodulation of
transmitted signals.

No matter in which particular application area this type of system is used, it
makes sense to digitize signals pseudo-randomly basically in two cases: firstly,
whenever a multiplier-less structure of the system is preferable and, secondly,
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when the correlation function values have to be estimated for delay time intervals
much smaller than the signal sampling intervals.
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The idea of exploiting sampling randomization to achieve the capability of alias-
free signal processing in a wide frequency range is attractive and often attracts
attention. However, to achieve good results processing of nonuniformly repre-
sented signals must be carried out using special algorithms that take into account
the specifics of this sampling approach. While this may seem to be obvious, it
is less clear what criteria are required for evaluating the degree of matching the
specifics of signal sampling and processing. This is not a trivial question. The
following discussions explain to some extent why this is so. More about this is
discussed in Chapter 18.

14.1 Problem of Matching Signal Processing to Sampling

These discussions will start by considering an example. Suppose that the mean
power Px of a wideband signal x(t) component at frequency ωi that exceeds the
mean sampling frequency ωs has to be estimated. The application of random
sampling is clearly indicated. At first glance it seems that this task can be solved
by estimating the Fourier coefficients ai and bi at the frequency ωi on the basis
of the often applied formulae

âi = 2

N

N∑
k=1

x(tk) cos ωi tk,

b̂i = 2

N

N∑
k=1

x(tk) sin ωi tk .

(14.1)

The required estimate is then given as

P̂x = 1

2

(
â2 + b̂2) .

Digital Alias-free Signal Processing I. Bilinskis
C© 2007 John Wiley & Sons, Ltd
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Although these equations look like their conventional counterparts, they are in
fact modified versions because the sample values of the signal and the functions
cos ωt and sin ωt are taken irregularly and simultaneously at the random time
instants {tk}. This is done in an attempt to realize processing of the nonuniformly
sampled signal in a proper manner. If the sampling operation is performed in
accordance with the additive random point process, then, as shown in Chapter 6,
the estimates are virtually unbiased and consequently they and the estimate P̂x

contain only random errors.
Now the question may be asked as to whether the processing algorithm in this

case is matched to sampling or not. On the one hand, the answer to this question
could be affirmative: to some extent this estimation method is matched to the
specifics of random sampling. The absence of the bias errors might be considered
as evidence showing this to be the case. On the other hand, the answer to this
question could just as well be negative. The degree of match between sampling and
processing could be regarded as poor, first of all because the processing algorithm
considered, which was initially developed for estimating the orthogonal signal
components, in this case is applied to estimating signal components that after
random sampling are no longer orthogonal. However, this fact is ignored.

The mutual unorthogonality of the randomly sampled functions sin ωi tk and
cos ωi tk means that the estimation of one is influenced by the other. Moreover,
these two randomly sampled functions are also nonorthogonal with regard to all
of the other signal components. Consequently, the so-called random estimation
errors in this case are not really random at all. They are actually caused, at least
partly, by the interaction of all the signal components.

This sort of cross-interference between signal components is a basic phe-
nomenon playing a significant negative role in processing of nonuniformly sam-
pled signals. It must not be ignored. A particular approach to digital processing of
signals that helps to get rid of this disadvantage is based on unorthogonal trans-
forms. The mathematical apparatus of unorthogonal transforms is a powerful
tool for dealing with many problems arising in advanced processing of irregu-
larly sampled signals. Although many signal processing tasks may be reduced
to unorthogonal transforms, application of them is effective only under certain
conditions.

When the conditions for signal processing meet the requirements of correct
unorthogonal transforms, the obtained results are really good. Then the distortions
of the signal processing results due to the impact of sampling irregularities are
taken out completely, which is demonstrated in this chapter. In other cases when
it is not applicable, adapting signal processing to the specific nonuniformities of
the sampling process might be attempted, as shown in Chapter 18.
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14.2 Bases of Signal Transforms

Suppose that a signal, represented by the function x(t), can be given as

x(t) =
∞∑

i=1

ciφi (t), (14.2)

where φi (t) are functions from a system

Φ = {φ1(t), φ2(t), . . . , φi (t), . . .}. (14.3)

Depending on the properties of the function system Φ, the coefficients {ci } of
the series (14.2) are obtained in different ways. The equations establishing the
relationships between x(t) and the coefficients {ci } of the respective system Φ

define the corresponding signal transform.
The usefulness of such signal transforms is obvious. First of all, they can

be applied to decompose the signals into their components, whose definition
will depend on a priori information about signal properties and signal source.
Solving most signal processing tasks, such as filtering, signal enhancement and
extraction from noise, spectral analysis, identification and recognition, data com-
pression and many others, involves some kind of signal transform and it can be
shown that conventional orthogonal transforms do not always provide the best
results.

14.2.1 Required Properties of the Transform Bases

The function system Φ is the basis of the corresponding signal transforms. There
are certain requirements that it has to satisfy:

1. Completeness. A system Φ is considered to be complete for a certain space of
functions if any function x(t) from this space can be represented by the series
given by Equation (14.2).

2. Linear independence. All functions {φi (t)} of the system Φ should be linearly
independent.

To prove this, consider the case when, for instance, φi (t) is linearly dependent on
other functions of the corresponding system. Then

φi (t) =
∞∑

i=2

hiφi (t). (14.4)
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Substitution of Equation (14.4) into Equation (14.2) gives

x(t) =
∞∑

i=2

(ci + c1hi )φi (t),

which means that it is possible to express the function x(t) by all other functions
of the corresponding system Φ without the function {φi (t)}. Hence this function,
when it linearly depends on the other functions of the system Φ, is redundant.

It seems that no more than these two conditions have to be satisfied for a correct
application of the signal transforms discussed here. The discussion of when and
why the orthogonality of the basis functions is required follows.

14.2.2 Transforms by Means of a Finite Number of
Basis Functions

According to Equation (14.2), the signal x(t) is in general represented by an
infinite series. In practice, the number of terms of such a series is always finite.
Therefore, it is more appropriate to talk about approximating the signal. To do
this, the series

x∗(t) =
m∑

i=1

ciφi (t) (14.5)

has to be constructed, so that x∗(t) approximates x(t) sufficiently closely. The
least squares approximation error can be used as a criterion for evaluating this
closeness.

Now the approximation task both for analog and digital signals will be consid-
ered.

Analog Processing
The coefficients {ci } for the series (14.5) can be determined by solving the fol-
lowing minimization task:

∫ Θ

0

[
m∑

i=1

ciφi (t) − x(t)

]2

dt = min. (14.6)

To find the minimum of the integral (14.6), all the individual derivatives of
{c j } should be considered as being equal to zero. Then

2
∫ Θ

0

[
m∑

i=1

c1φi (t) − x(t)

]
φ j (t) dt = 0 for j = 1, m.
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Therefore m linear equations are obtained, which can be incorporated into the
following system:{

m∑
i=1

ci

∫ Θ

0
φi (t)φ j (t) dt =

∫ Θ

0
x(t)φ j (t) dt

}
j = 1, m. (14.7)

This system of equations can be represented by

α11c1 + α12c2 + α13c3 + · · · + α1mcm = ĉ1

α21c1 + α22c2 + α23c3 + · · · + α2mcm = ĉ2

.........................................................

αm1c1 + αm2c2 + αm3c3 + · · · + αmmcm = ĉm

(14.8)

where

α j i =
∫ Θ

0
φi (t)φ j (t) dt, (14.9)

ĉ j =
∫ Θ

0
x(t)φ j (t) dt . (14.10)

Solving the equation system (14.8) provides the coefficients {ci }, i = 1, m.
Obviously, the number of linearly independent functions of the system Φ =
{φ1(t), φ2(t), . . . , φm(t)} is equal to the number of linearly independent equa-
tions of system (14.8).

Digital Processing
The above minimization task in this case is given by

N∑
k=1

[
m∑

i=1

ciφi (tk) − x(tk)

]2

dt = min, j = 1, m, (14.11)

which leads to the following equation system:{
m∑

i=1

ci

N∑
k=1

φi (tk)φ j (tk) =
N∑

k=1

x(tk)φ j (tk)

}
j = 1, m. (14.12)

This system can also be represented by system (14.8), although in this case

α j i =
N∑

k=1

φi (tk)φ j (tk), (14.13)

ĉ j =
N∑

k=1

x(tk)φ j (tk). (14.14)
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A system of digital functions Φ = {φ(t), k = 1, N } cannot contain more than
N linearly independent functions. To check this, assume that, contrary to this
statement, the system Φ contains (N + 1) linearly independent functions. Express
the (N + 1)th function φN+1(tk) through the other functions as

d1φ1(t1) + d2φ2(t1) + d3φ3(t1) + · · · + dN φN (t1) = φN+1(t1)

d1φ1(t2) + d2φ2(t2) + d3φ3(t2) + · · · + dN φN (t2) = φN+1(t2)

.................................................................................. (14.15)

d1φ1(tN ) + d2φ2(tN ) + d3φ3(tN ) + · · · + dN φN (tN ) = φN+1(tn)

where {di }, i = 1, N , are unknown variables. Each of the digital functions φi (tk),
k = 1, N , can be considered as an N -dimensional vector and the matrix of the
equation system (14.15) represents these vectors in such a way that the i th column
defines the i th vector φi (tk), k = 1, N . According to the assumption all N vectors
are linearly independent, the determinant of system (14.15) differs from zero and
this equation system has only one solution. The kth equation of this system can
be written as

φN+1(tk) =
N∑

i=1

diφi (tk) for all k = 1,N ,

which shows that the function φN+1(tk), k = 1, N , represents a linear combi-
nation of the other N functions. As this contradicts the assumption, the initial
statement is proved to be correct.

Thus, in the case of the discrete transforms, the number m of the functions of
series (14.15) is limited by the number N of the signal sample values processed
and the following unequality should be satisfied:

m ≤ N . (14.16)

14.3 Orthogonal Transforms

The linearly independent functions of the system Φ = {φ1(t), φ2(t), . . . , φm(t)}
are orthogonal if in the time interval [0, Θ] the following conditions are satisfied:

∫ Θ

0
φi (t)φ j (t) dt =

{
αi i > 0 for i = j,
0 for i �= j.

(14.17)

Denote
√

αi i by ‖φi (t)‖. This parameter of the function φi (t) is considered to be
its norm. If for all i

√
αi i = ‖φi (t)‖ = 1,
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the corresponding system of functions is described as orthonormalized. In the
case of digitized signals, conditions (14.17) become

N∑
k=1

φi (tk)φ j (tk) dt =
{

αi i > 0 for i = j,
0 for i �= j.

(14.18)

Now consider solving the equation system (14.18) in the case when the basis
functions are orthogonal. Then

α j i =
{

αi i = ‖φi (t)‖2 > 0 for j = 1,

0 for j �= i,
(14.19)

and the equation system in question is reduced to the following system of equal-
ities:

c1 = 1

‖φ1(t)‖2 ĉ1

c2 = 1

‖φ2(t)‖2 ĉ2

.......................

cm = 1

‖φm(t)‖2 ĉm .

(14.20)

Thus we come to the conclusion that the orthogonal basis functions are a particular
case of linearly independent basis functions and their application considerably
simplifies the corresponding signal transforms. The coefficients {ci } calculated in
the course of the orthogonal transforms can be obtained directly without solving
the equation system under consideration.

14.3.1 Analog Processing

It follows from Equations (14.10) and (14.20) that the coefficients {ci } in the case
of the orthogonal transforms are given as

ci = 1

‖φi (t)‖2

∫ Θ

0
x(t)φi (t) dt, (14.21)

where the norm

‖φi (t)‖ =
[∫ Θ

0
φ2

i (t)
]1/2

dt, i = 1, m.
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Note that in this case the number m of the approximation terms is unlimited, as
long as the orthogonality conditions are satisfied.

14.3.2 Digital Processing

Similarly, it follows from Equations (14.14) and (14.20) that

ci = 1

‖φi (t)‖2

N∑
k=1

x(t)φi (tk), (14.22)

where

‖φi (tk)‖2 =
N∑

k=1

φ2
i (tk), i = 1, m.

The theory of discrete orthogonal transforms is well developed and their proper-
ties, with emphasis on the positive aspects, are well known. It can even be said
that modern signal processing techniques are to a large extent founded on the
concepts of discrete orthogonal transforms. They are so popular, and so widely
discussed in numerous publications, that it is not necessary to discuss them here
in detail. This category of transforms is considered first of all for the purpose of
a survey to indicate the role of orthogonal transforms in the general scheme of
signal transforms as a whole.

There can be no doubt that discrete orthogonal transforms have significant
advantages. They can be carried out by performing relatively few multiplication
and summing operations, and they are well suited to the application of so-called
fast algorithms. On the other hand, discrete orthogonal transforms also have
considerable drawbacks. The following are a few of these:

1. The orthogonal transforms of signals actually represent their approximations
within a given time interval, and these approximations are not applicable for
extrapolating or predicting the signals outside this interval.

2. When they are used, it is difficult, or sometimes impossible, to gain from a
priori information about the input signal source or structure.

3. Orthogonal transforms do not allow signals to be decomposed into their true
components if the latter are mutually unorthogonal.

4. This category of transforms is not applicable to irregularly sampled signals.

The last disadvantage calls for comment. Sometimes the fact that a signal
has been sampled randomly or irregularly can be ignored and the orthogonal
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transforms can be applied. In this case additional estimation errors will result
from sampling irregularities. If this is acceptable, irregularly sampled signals can
be transformed in this way.

14.4 Discrete Unorthogonal Transforms

A signal transform is considered unorthogonal if the system of functions Φ =
{φi (tk), k = 1, N }, applied to perform the transform, is unorthogonal. It is agreed
that the system Φ does not contain any functions identically equal to zero. Under
this condition, ‖φi (t)‖2 > 0 for all i = 1, m.

A few typical signal processing applications will now be mentioned where the
signals need to be transformed on the basis of unorthogonal transforms:

1. Signal transforms carried out by means of a system of analog functions, which
are originally orthogonal and become unorthogonal in the course of digitizing,
as when the sampling applied is irregular. As an example to illustrate this
case, refer to Chapter 15, where the discrete Fourier transforms of randomly
sampled signals are discussed.

2. Short-time periodic signal spectrum analysis, when the signals have to be
transformed under the condition that the observation time interval [0, Θ] is
shorter than the given period of the signal. In this case the frequencies of
the true signal components are known but the system of the functions {φ(t)},
chosen correspondingly, is unorthogonal.

3. Spectrum analysis of quasi-periodic signals, which are actually nonstationary
with a slowly varying period.

4. Spectrum analysis of signals containing components at frequencies irregularly
spaced along the frequency axis.

5. Decomposing signals into true components, which are mutually unorthogonal.

Even this incomplete list of unorthogonal transform applications shows that the
problems approached in this way are significant. In this book, the most interest
lies in the first application.

Now consider a system of functions Φ = {φi (tk), k = 1, N }, i = 1, m, which
is unorthogonal. Some nonzero coefficients αi j , j �= i , which are not placed on
the diagonal of the corresponding matrix defined by the equation system (14.12),
definitely exist. For this reason, this equation system cannot be reduced to the
system of equalities (14.20). Hence, the coefficients {ci }, i = 1, m, have to be
calculated on the basis of the equation system (14.12) and the condition (14.16)
should be met.
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The equation system (14.12) can be represented in the form of the following
matrix equation:

A.C = Ĉ, (14.23)

where the matrix

A =

⎧⎪⎪⎨
⎪⎪⎩

α11 α12 α13 · · · α1m

α21 α22 α23 · · · α2m

· · · · · · · · · · · · · · ·
αm1 αm2 αm3 · · · αmn

(14.24)

is square and contains (m × m) elements. It follows from definition (14.13) of its
elements α j i that this matrix is also symmetric. The vectors of the coefficients
{ci }, i = 1, m, and their estimates {ci } are given by the respective columns

C =

⎡
⎢⎢⎣

c
c2

. . .

cm

⎤
⎥⎥⎦, Ĉ =

⎡
⎢⎢⎣

ĉ
ĉ2

. . .

ĉm

⎤
⎥⎥⎦,

where the estimates {ĉi } are defined by Equation (14.14). It follows from
Equation (14.23) that

C = A−1Ĉ, (14.25)

where A−1 is the inverse of matrix A.
It can be seen from Equation (14.14) that each estimate {ĉ j } is obtained from a

scalar multiplication of the vectors {x(tk)} and {φ j (tk)}, k = 1, N . To obtain the
coefficients themselves, the vector C according to Equation (14.25) should be
multiplied by the matrix A−1. Hence,

c j =
m∑

i=1

α∗
j i ĉ j , j = 1, m, (14.26)

where α∗
j i are elements of the matrix A−1.

Thus, to carry out such unorthogonal transforms, all the elements of the matrix
A should be determined while the estimates {ĉ j } are being calculated; then the
matrix A should be inverted in order to obtain the coefficients. As the inversion
of such matrices is time consuming, this unorthogonal transform procedure is not
suitable for real-time applications. Fortunately, it is often possible to compose the
matrix A and invert it beforehand. Then the coefficients {ĉ j } can be calculated
much more quickly.
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Such an approach can be applied when the unorthogonal transforms are per-
formed in order to eliminate the errors due to sampling irregularities. If the sam-
pling point process {tk} is generated pseudo-randomly, all the functions of the
system Φ are fully defined and the matrix A and its inverse can be obtained
beforehand. Although in this case there are no problems and this method of per-
forming unorthogonal transforms can be widely applied, it can still be improved,
as the next section will show.

14.5 Conversion of Unorthogonal Transforms

Suppose that a signal is sampled pseudo-randomly and that the sampling point
process {tk} is fixed, Denote the values φ j (tk) by φik . Then the system Φ of the
given values can be written as

Φ =

⎡
⎢⎢⎣

φ11 φ12 φ13 φ1N

φ21 φ22 φ23 φ2N

· · · · · · · · · · · ·
φm1 φm2 φm3 φm N

⎤
⎥⎥⎦. (14.27)

If the digital signal is represented as

X =

⎡
⎢⎢⎣

x(t)
x(t2)
. . .

x(tN )

⎤
⎥⎥⎦,

it follows from Equation (14.14) that

Ĉ = ΦX. (14.28)

Substitution of expression (14.28) into Equation (14.23) yields

CA = ΦX.

Multiply both sides of this equation by the inverse matrix A. Then

C = A−1ΦX = ΨX, (14.29)

where

Ψ = A−1Φ. (14.30)

It follows from Equation (14.30) that

A = ΦΦT, (14.31)
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where ΦT is the transpose of matrix Φ. Hence

A−1 = (ΦΦT)−1. (14.32)

Substitution of this expression into Equation (14.30) yields

Ψ = (ΦΦT)−1Φ. (14.33)

As A is a square m × m matrix, the inverse matrix A−1 is also square and also
contains m × m elements.

The matrix Φ, as can be seen from its definition (14.27), is a rectangular m × N
matrix. Hence the matrix Ψ is also rectangular and contains m × N elements.
This matrix can be given as

Ψ =

⎡
⎢⎢⎣

ψ1(t1) ψ1(t2) ψ1(t3) · · · ψ1(tN )
ψ2(t1) ψ2(t2) ψ2(t3) · · · ψ2(tN )
· · · · · · · · · · · · · · ·
ψm(t1) ψm(t2) ψm(t3) · · · ψm(tN )

⎤
⎥⎥⎦. (14.34)

It follows from Equations (14.29) and (14.33) that

ci =
N∑

k=1

x(tk)ψi (tk). (14.35)

Equations (14.33) and (14.35) lead to the following conclusion. If the initial
system Φ of the unorthogonal basis functions is replaced by the equivalent system
Ψ, defined by Equation (14.33), the unorthogonal transforms can be calculated
directly.

This method of performing the unorthogonal transforms is especially efficient
under conditions where the functions {ψ(tk)} can be calculated beforehand, so
that the corresponding data can be stored in a memory. When the unorthogonal
transforms are used for excluding the errors caused by sampling irregularities,
these functions can be determined only for given particular realizations of the
sampling point processes and, for this reason, it is convenient to use pseudo-
random sampling.

Note that when the unorthogonal transforms are performed according to this
approach, this method can be implemented by the same electronic devices
that are commonly used for the DFT. The only difference is that when they
are applied for calculating the unorthogonal transforms, the discrete values of
{sin ωi tk, cos ωi tk}, which are kept stored in a memory unit, should be replaced
by the sample values of the functions {ψ(tk)}. Even the operational character-
istics, like the number of operations per second and the accuracy of the results
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obtained, will be the same in both cases. The only disadvantage of performing
the unorthogonal transforms in this way is that there are no fast algorithms for
calculating them. At least, they have not yet been discovered.

Bibliography

Bilinskis, I. and Mikelsons, A. (1992) Randomized Signal Processing. Prentice-Hall International (UK)
Ltd.



JWBK152-14 JWBK152-Bilinskis March 6, 2007 21:22

282



JWBK152-15 JWBK152-Bilinskis March 6, 2007 21:22

15

DFT of Nonuniformly
Sampled Signals

In the classical case of processing periodically sampled signals on the basis of
the DFT, the results of the performed DFT reflect the structure of the respec-
tive signals in the frequency domain. In other words, the DFT of periodically
sampled signals leads to signal decomposition and to obtaining their spectra.
Therefore it is normal to expect that when the DFT of nonuniformly sampled
signals are calculated the results will also represent the spectra of these signals.
However, these expectations are typically not fulfilled. As soon as the sampling
procedure is randomized, the DFT of the respective signals become strongly
sampling-dependent. As explained in the previous chapter, the basis functions for
the DFT under the conditions of nonuniform sampling become unorthogonal. If
DFT could be performed as unorthogonal transforms then the preference should
be given to such an approach. However, that is not always possible. Direct calcula-
tions of DFT have to be undertaken while clearly realizing that these transforms
will not complete the process of signal decomposition into their components.
Estimating the Fourier coefficients then actually leads to acquiring intermediate
signal processing results containing valuable information. Therefore the outcome
of the DFT under these conditions should not always be automatically regarded
as spectrograms of the respective signals. Some comments on this are given in
Section 15.1. To obtain spectrograms showing the signal components in the fre-
quency domain, this information has to be additionally processed taking into
account the mutual unorthogonality of the basis functions leading to cross-
interference between the signal components being estimated. It is not a trivial
matter. A lot of effort has been spent on research in this area and gradually several
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approaches to processing transformed nonuniformly sampled signals have been
developed. Some of the methods and techniques used for this type of signal pro-
cessing and their potential are discussed in this chapter.

It is worth paying a lot of attention to calculating raw DFT of nonuniformly
sampled signals, as the estimates obtained in this way play a vital role in the
subsequent digital processing of the transformed signals. Such DFT support all
kinds of digital signal filtering and other signal processing procedures, including
signal waveform reconstruction, and the quality of the final signal processing
results often depends on the performance of the involved DFT.

15.1 Problems Related to Sampling Irregularities

To achieve the capability of processing signals in a broad frequency range not
limited by half of the used sampling rate, sampling must be nonuniform. However,
once the signal digitizing is based on nonuniform sampling, processing of the
signals then has to be organized with the specifics of this technique taken into
account. Apparently it is essential to obtain a clear insight into the details of
processing this type of digital signal.

15.1.1 Alternative Approaches to DFT

General considerations of this have been given in Chapter 3. If the sampling point
process satisfies condition (3.13), then it follows from Equation (3.14) that

E
[

lim
N⇒∞

âi

]
= ai and E

[
lim

N⇒∞
b̂i

]
= bi .

This means that asymptotically there should be no bias error and the statistical
estimation errors should tend to c2/N (c is the amplitude of the signal component
being estimated). Therefore, for large N , interval systematic bias and statistical
error at least should be small. That would be so if the side effect caused by the
nonorthogonality of the basis functions and the cross-interference effect due to
it did not exist. This effect certainly cannot be ignored. If these considerations
are taken into account, the following randomized estimation schemes can be
suggested:

1. The signal x(t) is sampled pseudo-randomly at predetermined time instants
{tk}. The values of cos(2πfi tk) and sin(2πfi tk) are calculated beforehand, stored
in a memory and then later used for estimation. To reduce estimation errors to
an acceptable level by averaging, a relatively large data block is processed. The
errors due to the cross-interference remain, fact that has to be taken into account
at further processing of the obtained raw estimates of the Fourier coefficients.
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2. The signal x(t) is sampled pseudo-randomly at predetermined instants {tk}
and this timing information is exploited not only when calculating the
corresponding set {sin(2πfi tk), cos(2πfi tk)} but also to compensate for errors
due to the sampling irregularities.

The first approach is used most often and leads to satisfactory results if the
DFT are carried out to obtain raw Fourier coefficient estimates used in the pro-
cess of further calculations. The second estimation scheme, although much more
complicated than the first one, is in principle more advanced. The mechanism of
error reduction then is not averaging, and the number Nof the sample values to be
processed depends only on the complexity of the signal x(t) being processed, i.e.
on the quantity of its components. Therefore it is applicable under more dynamic
conditions for short-time estimations. Several methods for the DFT that belong to
this category are discussed in this chapter in addition to the unorthogonal trans-
form approach described in the previous chapter. However, before considering
them, two possible techniques for estimating the Fourier coefficients are com-
pared. One of the alternative techniques is based on direct calculations of the
DFT and the second possible approach can be realized in accordance with the
best-fitting procedure.

15.1.2 Best-fitting Procedure Versus Direct DFT

Consider an arbitrary frequency f and the following row of frequencies:

f, fs − f, fs + f, . . . , n fs − f, n fs + f. (15.1)

Apparently in the case where signals are sampled periodically these frequencies
overlap. Suppose a monoharmonic signal with an amplitude equal to 1 and the
frequency fi belonging to row (15.1) is randomly sampled at Nsampling instants
{tk}, so that the following digital signal is obtained:

x(tk) = sin(2π fi tk + ϕi ), k = 1, N .

As the sampling operation is randomized, the aliasing effect has to be elimi-
nated or at least suppressed. The graphical interpretation of this effect is given in
Figure 15.1. The sample values of x(tk) are shown as points. To find out how
randomization of sampling helps to suppress aliasing, an attempt will be made to
draw some other sinusoids with frequencies from row (15.1) through the indicated
set of points. The outcome of such a best-fit operation strongly depends on the
mode of applied sampling. The least mean square errors of drawing a sine wave
at one of the frequencies f j from this row through the points {x(tk)} will be equal
to zero only in the case of periodic sampling, as shown in Figure 15.1(a). Even
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Figure 15.1 Suppression of an aliasing signal component in the case where the signal has
been sampled nonuniformly

a slight randomization of sampling will magnify this error considerably. With an
increasing degree of sampling randomization, the error in drawing a sine wave
at any of the frequencies (15.1) through the sample points tends to become more
and more significant. This is illustrated by Figures 15.1(b) and (c). They show
that at larger values of σ/μ the suppression of the alias is more noticeable.

The effectiveness of the suppression of aliasing may be characterized by the
ratio γ j i = Pj/Pi , where Pi and Pj are the mean powers of the sinusoids at
the frequencies fi and f j respectively. The procedure of drawing a sinusoid at
frequency f j through the sample points {x(tk)} with the least square error should
be performed according to the following condition:

N∑
k=1

[ã j cos 2π f j tk + b̃ j sin 2π f j tk − sin(2π fi tk + ϕi )]
2 = min . (15.2)
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Estimates ã j and b̃ j of the Fourier coefficients characterizing the sinusoid at
frequency f j drawn through the sample points with the least square error are
obtained by solving the system of equations corresponding to Equation (15.2):

ã j = â j iαs − b̂ j iαcs

αcαs − α2
cs

,

(15.3)

b̃ j = b̂ j iαc − â j iαcs

αcαs − α2
cs

,

where

â j i = 2

N

N∑
k=1

sin(2π fi tk + ϕi ) cos 2π f j tk,

(15.4)

b̂ j i = 2

N

N∑
k=1

sin(2π fi tk + ϕi ) sin 2π f j tk

and

αc = 2

N

N∑
k=1

cos2 2π f j tk,

αs = 2

N

N∑
k=1

sin2 2π f j tk, (15.5)

αcs = 2

N

N∑
k=1

sin 2π f j tk cos 2π f j tk .

The solution to the minimization task allows the degree of aliasing γ j i to be
defined as follows:

γ j i = ã2
j + b̃2

j . (15.6)

Now consider the notation in Equation (15.5). Obviously, αc
∼= 1 and interval

αcs
∼= 0. This suggests that aliasing can also be evaluated by the following

approximate equality:

γ j i = â2
j i + b̂2

j i . (15.7)

Substitution of Equation (15.7) for Equation (15.6) is very desirable, because
it considerably simplifies further analysis. The errors arising in this case were
evaluated by computer simulations and they are small enough to justify this
substitution. Therefore there is no need to use the more correct but computation-
ally significantly more complicated best-fitting approach to estimate the Fourier
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coefficients. Direct calculations performed on the basis of Equation (14.1) provide
good enough results.

Taking into account the random nature of sampling, aliasing should actually
be characterized by the expected value:

E[γ j i ] ∼= E
[
â2

j i

] + E
[
b̂2

j i

]
. (15.8)

15.1.3 Sample Values Partly Fitting to Any Frequency

This analysis confirms the already mentioned (see Chapter 9) conclusion that
elimination of aliases cannot be achieved simply by direct substitution of the
periodic sampling by randomization. While intensification of sampling random-
ization helps to reduce the amplitude of the aliasing frequency drawn through
the sampling points of the true signal, the amplitude of the aliasing sinusoid,
estimated on the basis of Equation (15.2), will not be zero even when there are
no aliasing frequencies present. The least squares error of drawing an aliasing
sinusoid through the sampling points of the true signal component depends on
the specific irregularities of the involved sampling point process and the power
of other signal components. Therefore randomization of sampling provides the
necessary preconditions for effective elimination of aliasing. More elaborate spe-
cific anti-aliasing methods are needed and should be used to achieve complete
elimination of the aliases. The interpretation suggested in Chapter 9 of aliasing
processes taking place when processing randomly sampled signals called ‘fuzzy
aliasing’ provides the key to resolution of this problem.

So far the discussion in this section has been focused on the anti-aliasing issue.
Although the above mathematical expressions were derived for evaluation of inad-
equate suppression of aliases, they are also applicable for an analytical description
of the best-fit operation in those cases where an attempt has been made to draw a
sinusoid at any arbitrary frequency f j through a set of sample value points belong-
ing to another sinusoid at a different frequency fi according to Equation (15.2). It
is irrelevant that both of these frequencies belong to the row (15.1). The estimates
of the Fourier coefficients defining the amplitude of this sinusoid at frequency f j

depends on the parameters of other sinusoids at frequency fi and on the specific
nonuniformities of the involved sampling point process. Actually a set of signal
sample values, obtained at nonuniform sampling of a signal, partly fits to any
frequency. It is emphasized that the best-fitting procedure as well as direct calcula-
tions of the Fourier coefficient estimates, working well in cases where signals are
sampled periodically, do not provide sufficiently accurate representation of signals
in the frequency domain whenever signals have been sampled nonuniformly.
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Actually the obtained DFT results then represent simply some kind of raw
estimates of the Fourier coefficients. Nevertheless, they are often needed and
have to be calculated at some stage of the complete signal processing process.

The given relationships are relevant also to the cross-interference effect related
to the nonorthogonality of the nonuniformly sampled discrete basis functions.

15.2 Cross-interference Corrupting DFT

Deliberate randomization of sampling, while crucial for achieving the capability
of alias-free processing of signals digitally in a wide frequency range, also leads to
some problems. In particular, the basis functions for the DFT under conditions of
nonuniform sampling become nonorthogonal, which leads to cross-interference
between signal components. The impact of this cross-interference is observed as
signal parameter estimation errors. They are both sampling and signal-dependent.

To find exactly how the cross-interference due to sampling nonuniformities
impact on the process of the DFT, computer simulations of the DFT, performed
under conditions of pseudo-randomized additive sampling, could be carried out.
It is convenient to start this experiment by using at first a single tone variable
frequency signal and a DFT filter tuned to frequency f1 for estimating the signal
parameters at this frequency, specifically the Fourier coefficients, amplitude and
phase. If the signal is sampled periodically, the performance of this filter would be
close to ideal. Figure 15.2 illustrates the results obtained in this case. At the signal
frequency fi = f1 the calculated values of the Fourier coefficient estimates (for
growing amplitude of the signal) are close to their true values (as shown by the
dashed line 1) and these estimates are near to zero for signal frequencies deviating
from f1.

Now suppose that a single tone signal x(t) at frequency f1 is sampled nonuni-
formly and the Fourier coefficient a1 is estimated under the conditions where
the signal phase is equal to π/2. Then b1 = 0 and the value of a1 is estimated
as being equal to the signal amplitude if there are no estimation errors (line 1).
However, under the conditions of this experiment, the sampling process is no-
ticeably irregular, which leads to these errors. As shown in Figure 15.2, this error
increases proportionally to the growing true value of a1 (line 2). In this partic-
ular case, â1 = a1 (A1C1), where the coefficient A1C1 is a constant indicating
the strength of the impact of the sampling imperfections on the estimation of the
coefficient a1.

Actually the behaviour of the filter is even more complicated. There are also
noticeable estimation errors caused by nonuniform sampling of other signal com-
ponents and these errors depend on the power and frequencies of these signal
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Figure 15.2 Illustration of the impact sampling irregularities on the errors when estimating
the Fourier coefficients

components. In fact, the irregularities of the sampling point stream leads to cross-
interference between the signal components. This phenomenon can be observed
if filtering of a nonuniformly sampled signal with two or more components is
studied. It can be seen that each signal component impacts on the parameter es-
timation of all other signal components and that this impact directly depends on
the specific nonuniformities present in the involved sampling process. To observe
this phenomenon, the experiment should be repeated. Exactly the same sampling
point process should be used for the signal sampling and a sine function at fre-
quency fm should be added to the previously used cosine function with gradually
increased amplitude. The results obtained in this case are displayed as line 3 in
Figure 15.2. It can be seen that the presence of the irregularly sampled com-
ponent at frequency fm adds to the estimation error. However, the value of the
coefficient A1C1 remains the same; it is not changed by the second component.
Therefore it seems that in this second case â = a (A1C1) + bm(A1Sm), where the
coefficient A1Sm indicates the strength of the impact of the sinusoidal signal com-
ponent at frequency fm on the estimation of the coefficient a1 when the signal
is sampled in that particular way. The impact of the specific nonuniformities of
the sampling point process can be characterized by constant coefficients. Thus
it seems that these coefficients characterizing the cross-interference between the
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signal components might be introduced as follows:

âi =
M−1∑
m=0

[am(Ai Cm) + bm(Ai Sm)], i = 0, M − 1,

(15.9)

b̂i =
M−1∑
m=0

[am(Bi Cm) + bm(Bi Sm)], i = 0, M − 1.

These coefficients are actually the weights of the errors introduced by nonuni-
form sampling of the signal sine (or cosine) component at frequency fm that
corrupts the estimation of a Fourier coefficient ai (or bi ) at frequency fi . They
are derived mathematically in Chapter 18. More detailed studies of this subject
reveal that the description of the experiment given above reflects the involved
relationships only approximately. A system of equations has to be composed and
used for a more accurate description, as shown in Chapter 18. The usefulness of
the introduced interference coefficients is demonstrated there by showing how
this concept could be exploited for adapting alias-free processing of signals to
the sampling nonuniformities.

15.3 Exploitation of FFT

Performing the DFT requires a lot of calculations. To reduce the number of
involved multiplication operations, fast algorithms are widely used, especially the
FFT. However, the existing fast algorithms have been developed on the assumption
that the intervals between signal sample values are constant. Therefore, in general,
they cannot also be directly used for processing nonuniformly sampled signals.
Nevertheless, if the nonuniform sampling is performed as a pseudo-randomized
procedure, under certain conditions it is possible to exploit the FFT for reduction
of the computational complexity of the DFT, and that could be done relatively
often. Different approaches to this problem have to be used to handle digital
signals formed on the basis of either directly or indirectly randomized sampling
discussed in Chapters 6 and 7 respectively.

15.3.1 Application of FFT for Processing Nonuniformly
Sampled Signals

To process the directly randomized nonuniformly sampled signals by using
algorithms developed for processing periodically amplitude-sampled signals, the
so-called zero padding method is typically used. According to this method, zeroes
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are inserted into the nonuniform signal sample value sequence at those periodi-
cally repeating time instants where there are no signal sample values, so that the
sampling process is transformed into a periodic one. However, zero padding is a
crude method and its application leads to the introduction of substantial errors. In-
deed, each zero replaces a signal sample value when this technique is used, which
means that each substitution of this kind introduces a particular instantaneous
error equal to the respective missing sample value. If there is a large quantity of
this kind of error then the spectrograms obtained are naturally of a poor quality.
Whether it is acceptable or not depends on the proportion between the sampling
slots filled by the signal sample values and the empty slots marked as zeroes. The
achievable performance is illustrated in Figure 15.3 where spectrograms obtained
at various sample value/zero ratios are displayed.

It can be seen that the zero padding procedure and application of the FFT
leads to a more or less significant distortion of the spectrograms depending on
the specific sample value/zero ratios. In the cases of Figures 15.3(b) and (c) half
and two-thirds of the sample values are randomly replaced by zeroes respectively.
These spectrograms can be compared with the true signal spectrogram obtained
under conditions of correct periodic sampling and are displayed in Figure 15.3(a).
Obviously zero padding has led to the introduction of substantial errors.

The idea of using the FFT to obtain estimates of the Fourier coefficients is
of course attractive, as application of this fast algorithm drastically reduces the
amount of calculations. However, using this approach evidently leads to large
errors in estimating the Fourier coefficients. The achievable accuracy of these
estimates is typically not acceptable. Therefore this procedure, if and when used,
should be regarded as a preliminary calculation providing only raw intermediate
results. The degree of its usefulness depends on the specific algorithm used for
signal analysis.

The algorithm for signal spectrum analysis and waveform reconstruction con-
sidered in Chapter 20 confirms the fact that such usage of the FFT makes sense
and could lead to good results. This algorithm is focused on the realization of
an obvious idea that a priori information should be used as often as possible.
To achieve that, the initially inserted zeroes at some processing stage should be
replaced by approximate estimates of the signal sample values roughly estimated
as a result of the FFT. It is shown that this leads to a dramatic reduction in the
mentioned errors. Even better results are obtained when an iterative procedure
of spectral analysis and waveform reconstruction is used. In is case the missing
uniform sample values are substituted first by zeroes, then estimated signal values
are inserted in those places and after that even more accurately estimated signal
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Figure 15.3 Spectrograms obtained by using the FFT in the case where a signal is sampled
pseudo-randomly and zeroes are inserted to regularize the sequence of the sample values

sample values are used. That leads to a significant improvement in the estimation
accuracy. Such an approach makes it possible to rationalize signal processing on
the basis of the FFT.

This specific example, considered in more detail in Chapter 20, demonstrates
the fact that under certain conditions it is possible to use already existing fast
algorithms, first of all the FFT, for an alias-free estimation of nonuniformly sam-
pled wideband signal parameters in the frequency domain and for subsequent
waveform reconstruction carried out on the basis of the inverse FFT. The fact
is noteworthy as it suggests that probably there are also some other possibilities
still not discovered of using fast algorithms that are effectively applicable for
processing nonuniformly sampled signals.
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Figure 15.4 Regularization of the sampling operation based on sine-wave crossings

15.3.2 Fast Transforms of Signals Sampled at Sine-Wave
Crossing Instants

To achieve the applicability of the standard DSP computer programs for pro-
cessing nonuniform digital signals, the representation of these signals apparently
must be somehow regularized. Some varieties of nonuniform sampling techniques
could be regularized more easily than others. The sampling method based on sine-
wave crossings, discussed in Chapter 7, might be considered as belonging to the
first category as the specifics of this kind of sampling are typically favourable for
regularization. Firstly, the nonuniformity of the sampling operation in this case is
just a consequence of the specific signal sample value encoding based on timing
of the signal and the reference waveform crossings. The irregularities observed
with this type of sampling just occur; they are not introduced intentionally to
achieve some desirable effect like suppression of the aliases. Secondly, it helps
that the frequencies of the signals being sampled are usually below half of the
mean sampling rate. The approach to regularization of the sampled signals in this
case is simple and is illustrated in Figure 15.4.

The signal sample values {xk} are taken at the signal and the reference sine-
wave crossing instants, as shown in Figure 15.4(a). To regularize this type
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Figure 15.5 Regularization error occurring as a result of ascribing the signal instantaneous
value xk to the reference function zero-crossing instant

of sampling, all signal sample values should be assigned to the time instants
tk, k = 0, 1, 2, . . . , which actually are the instants when the reference sine wave
crosses the zero or some other constant level. Thus this regularization approach is
simple and straightforward and leads naturally to the introduction of some noise
ε(tk). The signal values at these time instants differ from those corresponding to
the signal reference function crossing instants. As shown in Figure 15.5, the value
of a particular error εk depends on the angle of the signal/sine-wave crossing and
on the time interval �t between this crossing instant and the reference function
zero-crossing instant tk . The fact that the time interval �t is smaller for smaller
values of the sampled signal helps to keep the relative errors close to a constant
level for small to medium signal values.

When the sampling results are regularized as explained, most of the classic DSP
algorithms, including the fast ones like the FFT, could be used for processing
the digital signals obtained in this way. However, the errors introduced at the
sampling result regularization impose some limitations on the applicability of this
approach. To assess these limitations, it is shown in Figure 15.6 how the power
of the regularization noise ε(tk) depends on the reference sine-wave frequency.
Actually, the given curve is pessimistic as it has been calculated to conditions that
are near to the worst. Specifically, the regularization errors εk were calculated for
a full amplitude single-tone signal at the frequency just below the Nyquist limit.
The time intervals �t and the related regularization errors εk then tend to their
maximal values.
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Figure 15.6 Mean power of the regularization noise versus normalized reference sine-wave
frequency

These estimation errors εk were calculated under the sampling conditions em-
ulating the specifics of massive data acquisition from a variable number of sig-
nal sources. Specifically, the power of the regularization errors εk are given in
Figure 15.6 for the case where the single tone signal is characterized by frequency
fs and amplitude A. The mean sampling rate fms depends both on the reference
frequency fr and the number n of signal sources as fms = fr/n. In this case the
errors εk are calculated for various values of n while the mean sampling rate fms

is kept constant and equal to 2.18753 fx . To keep the mean sampling rate fms

constant, the reference frequency fr is appropriately changed for each nvalue.
Note that n is equal to the reference frequency normalized with regard to the
mean sampling rate n = fr/ fms. This means that the power Pε of the regulariza-
tion noise ε(tk), given for the growing numbers of signal sources, also indicates
its dependence on the normalized reference frequency.

It can be seen from the diagram obtained and displayed in Figure 15.6 that
the mean power of the regularization noise, even in the worst case, decreases
quickly at relatively small numbers n of the signal sources encoded in this way. It
seems that in many cases of data acquisition from multiple signal sources that the
regularization approach should be applicable if the number is about 10 and more.
The feasibility and rationale of this approach is further illustrated in Figure 15.7.
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Figure 15.7 Illustration of (a) the digital regularization noise and (b) the maximal value of the
regularization errors versus the normalized reference sine-wave frequency (number of signal
sources) of the nearly worst case of sine-wave crossing sampling of a single-tone signal at a
frequency close to the Nyquist limit

The digital regularization noise is shown in Figure 15.7(a) and the maximal value
of the regularization errors versus the normalized reference sine-wave frequency
(number of signal sources) is given in Figure 15.7(b).

The regularization noise ε(tk) impacts on the processing of signals sampled on
the basis of the sine-wave crossing approach like any other additive noise present
in the signal. Figure 15.8 illustrates the impact of this noise on the estimation of a
Fourier coefficient. To realize conditions under which the impact of regularization
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Figure 15.8 Impact of the sampling regularization on the estimation of the amplitude of a
single-tone signal.

errors εk is most damaging, the errors in estimating the Fourier coefficients were
calculated for a full amplitude single-tone signal at a frequency close to the
Nyquist limit. The estimation errors were again calculated for the varying nor-
malized reference frequency or, what is the same, for the varying number of signal
sources.

The given curve corresponds to the nearly worst case. Errors corrupting the
estimation of more complex signal parameters containing components at other
lower frequencies are below the given curve. It can be seen from Figures 15.7 and
15.8 that even relatively small increases in the normalized reference frequency
significantly reduce the noise ε(tk) caused by the regularization procedure and
the negative effects due to it. As a result the impact of the sampling regularization
on the signal processing results is insignificant in a large area of the normalized
reference frequency. The errors due to the nonuniform sampling regularization
in the case where this particular sampling technique is used for remote sampling
at massive data acquisition from many signal sources become insignificant when
the number n of the signal sources exceeds 5 to 10. Therefore the errors related to
the considered procedure of sampling regularization under the conditions typical
for data acquisition from a large number of signal sources can often be ignored.
This fact leads to the following conclusion:
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If the remote sampling operations carried out in the process of massive data
acquisition are performed on the basis of sine-wave crossings, the digital signals
obtained in this way can usually be regularized and presented as periodically
sampled signals even at relatively small numbers of signal sources (about 10 or
more). Consequently, most of the well-developed traditional DSP algorithms
for processing periodically sampled signals are applicable for processing digital
signals reconstructed from the data acquired in this way from a relatively large
quantity of remote signal sources.

15.4 Revealing the Essence of the Fourier
Coefficient Estimation

There is no doubt that the Fourier transform plays a significant role in various
algorithms for signal processing. Therefore it is crucial to perform this trans-
form and use the results correctly. While the use of the DFT for dealing with
periodically sampled signals is a well-established routine, the involved estima-
tion of the Fourier coefficients becomes more problematic whenever the signal
to be transformed is represented by the sequence of its sample values obtained in
the process of randomized sampling. Therefore the conditions under which the
estimates of the Fourier coefficients are calculated should be well understood.
Unfortunately they are estimates of a parameter calculated for a given set of data,
which makes the use of them obscure. Often it is much better to use the approach
introduced in Section 8.3, based on the representation of the DFT by cumulative
sums. The point is that this approach makes it possible to observe the estimation
of the Fourier coefficients as a process. This subject will now be expanded.

The DFT performed in the course of Fourier analysis actually represents esti-
mation of a spectral parameters aa or ba characterizing a signal x(tk) = xk at a
given frequency fa . According to definition,

âa = 2

N

N−1∑
k=0

xk cos(2π fatk),

(15.10)

b̂a = 2

N

N−1∑
k=0

xk sin(2π fatk).

Calculations carried out according to these equations only provide the numer-
ical values of the estimates âa and b̂a . This kind of DFT might be considered
as selective digital filtering. Application of such filters for signal decomposi-
tion and spectral analysis is quite popular. Their frequency response is given in
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Figure 15.9 Frequency responses of the selective DFT filters for extracting the quadrature
components of the signal.

Figure 15.10 Typical amplitude–frequency response of a DFT filter

Figures 15.9 and 15.10 just as a reference for further analysis of various aspects
of this type of filtering.

This kind of filtering will now be considered from a different angle. It can be
seen from the expressions (15.10) that these coefficients are obtained by averaging
the accumulated products of signal sample values each multiplied by the sample
values of sine or cosine functions of a particular frequency taken at the same
instants as the respective signal sample values. This accumulation process is
stopped when a predetermined number N of sample values has been used. The
Fourier coefficients are obtained as the end result of this accumulation process.
No attention is paid to that process itself.

As pointed out in Chapter 8, the cumulative process is highly informative and
substantially more information can often be extracted if this kind of spectral
estimation is observed as a process. So far this approach has been used only for
analysis of the effects from phase shifting of a periodic sampling point process.
The proposed exploitation of the cumulative process has proved to be an efficient
tool for discovery of well-hidden relationships. This fact has been confirmed by
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demonstration of the compensation effect that takes place when properly phase-
shifted periodic sampling point processes are used. Now it will be shown that
analysis of this sort of cumulative sum forming is often productive and useful.
Emphasis is put on the application of this approach to the resolution of various
signal filtering tasks.

The cumulative sums related to the Fourier transform can be given as

ãa(n) = 2

N

n−1∑
k=0

xk cos(2π fatk),

(15.11)

b̃a(n) = 2

N

n−1∑
k=0

xk sin(2π fatk),

where fa is the frequency to which this type of DFT filter is tuned.
The calculation and use of these cumulative sums makes it possible to observe

estimation of a Fourier coefficient as a process depending both on the signal being
analysed and on the sampling point process used. Observation and analysis of
these processes leads to the ability to obtain additional information.

The properties of these cumulative sums will now be described, starting with
a case where the signal being filtered is given as

xk = a0 cos(2π f0tk), k = 0, N − 1.

In this particular case the cumulative sums become

ãa(n) = a0
2

N

n−1∑
k=0

cos(2π f0tk) cos(2π fatk),

(15.12)

b̃a(n) = a0
2

N

n−1∑
k=0

cos(2π f0tk) sin(2π fatk).

The properties of these functions depend on the frequencies f0 and fa and on the
sampling point stream. Naturally, they are determined more easily in the case
of periodic sampling. The cumulative sums shown in Figure 15.11 have been
obtained for the coefficients a( f0) for various values of the frequencies f0 and fa .
Note that in the case where f0 �= fa the value of the Fourier coefficient differs if
it is estimated for various values of N .

It can be seen that these cumulative sums are quite informative. By observing
them, it is possible to obtain more information about the involved signals than by
just calculating the values of the corresponding Fourier coefficients. Therefore it
often makes sense to use them in order to reveal the essence of various processes.
It is easier to achieve that if it is clear what various shapes of these functions mean.
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Figure 15.11 Cumulative sums for various locations of frequencies f0 with respect to the
central filter frequency fa in the case where the difference between them is relatively small

Some typical cumulative sums obtained under specific conditions are shown in
Figure 15.12.

The given examples show typical cumulative sums for the case of a single
tone signal. The signal structure that might be expected in reality is of course
much more complicated. Nevertheless, much can be learnt from observations of
this kind of typical cumulative sum. First of all, the cumulative sum for a signal
component at a frequency equal to the frequency to which the respective DFT
filter is tuned graphically looks like a linearly increasing function. Therefore the
presence of a linearly increasing component in a cumulative sum is evidence that
the signal contains a component at the frequency of DFT filtering. This fact has
been used before in Chapter 8 to demonstrate the alias compensation effect.

However, in general the analysis of these cumulative sums might prove not
to be so simple. Apparently it has to cover cases where signals are composed
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−

−

−

−

Figure 15.12 Cumulative sums for both Fourier coefficients calculated for various locations
of frequencies f0 with respect to the central filter frequency fa in the case where the signal
phase angle ϕ = 450
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Figure 15.13 Example of (a) a multifrequency signal filtered by (b) a DFT filter tuned to the
frequency of the first signal component in its spectrum

from multiple components. Figure 15.13 illustrates the forming and analysing of
cumulative sums in the case of multifrequency signals containing four components
at the indicated frequencies.

An ideal selective filter would filter out just one of these components. It would
filter out the component at the frequency equal to the frequency at which the
filter is tuned. In terms of cumulative sums, this component forms the linear
increasing function 1 shown in Figure 15.14. The values indicate the amplitude
of the corresponding component with the number N of signal samples taken into
account. All other signal components would have to be filtered out. In reality
the DFT filter only weakens their impact. These components form the particular
cumulative sums 2, 3 and 4. The resulting cumulative sum 5 provides the result
for the conventional DFT. The difference between the cumulative sums 1 and
5 represents the DFT errors. Two particular errors for N = 512 and N = 1024
are indicated. It is shown that there might be even bigger errors taking place at
different N values. This example also shows what has to be achieved to improve
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Figure 15.14 Cumulative sums formed for the multifrequency signal given in Figure 15.13

DFT filtering. In fact, only the linear component of the total cumulative sum needs
to be preserved. All other oscillating components have to be taken out.

Attention should be drawn to the essential point that the traditional digital
filtering methods could be used for processing or special filtering of the cumulative
sums as the discrete argument (the sample-taking instants) in this case is regular.
It is true that there are pseudo-random skips of the sampling instants, but each
sampling event is placed on a regular grid. While filtering of the signal sample
value sequences require application of special techniques as the sampling intervals
are nonuniform, transformation of the task to filtering of cumulative sums leads
to regularization of the filtering. This is a significant fact and can be exploited in
various ways in order to increase the accuracy of signal transforms from time to
frequency domains.

Note that the necessity to process signals in this way comes from the fact that
the frequency response of the DFT filter is not ideal. It has side lobes. The usual
approach used to reduce the harmful effects due to them is based on windowing.
The described approach based on application of cumulative sums represents an
alternative to application of the windowing techniques.
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Complexity-reduced DFT

As the regularity of signal sample value positioning in time is a crucial pre-
condition for operation of the fast signal processing algorithms, these types of
algorithms, in general, are inappropriate for processing the digital signals ob-
tained as a result of deliberate randomization of the sampling process. There are,
however, exceptions, some of which are described in Section 15.3. These excep-
tions actually prove the rule as the applicability of the FFT in those cases is based
on the rarely usable regularization of the randomized sampling procedure. Thus
the fact remains that the strategy for rationalizing the nonuniform sampled signal
processing cannot be based on application of the popular fast DSP algorithms.
Other approaches to the algorithm complexity reduction have to be found and
exploited. Some useful techniques for that are suggested and discussed in this
chapter.

The possibility of reducing the computational burden for the DFT, achieved
by applying the methods for complexity-reduced spectral analysis, while attrac-
tive, is always especially interesting for increasing the speed of on-line esti-
mations of Fourier coefficients, which often have to be carried out using vari-
ous types of signal preprocessing operations. An example illustrating this kind
of signal preprocessing and the benefits that can be obtained is described in
Section 19.6.

16.1 Potential Gains from Application of Rectangular
Function Sets

The number of multiplication operations that have to be carried out in order to
obtain signal spectra in the frequency domain from their digital waveforms given

Digital Alias-free Signal Processing I. Bilinskis
C© 2007 John Wiley & Sons, Ltd
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in the time domain is the basic characteristic roughly indicating the complexity
of the respective algorithms for such signal transforms. Although the execu-
tion of multiplication operations by means of specialized hardware nowadays
costs considerably less than in the recent past, this kind of algorithm requiring
a smaller quantity of multiplication operations is still in demand. Apparently it
is much more difficult to develop this type of algorithm if the digital signals
to be processed are nonuniform. The experience accumulated in the area of de-
veloping fast algorithms for transforming the periodic sampled signals simply
cannot be used in this case. However, in addition to the application of these fast
algorithms, there is also an alternative approach to the resolution of this com-
plexity reduction problem that is much better suited for rationalizing this type of
signal transform. This approach is based on the exploitation of rectangular func-
tion sets. Their attractiveness is defined by the fact that these functions assume
only the values −1, 0 and +1. Consequently, application of them leads to the
replacement of numerous multiplication operations by simple logic operations.
While there are various types of these function systems and they are used in
different ways, application of them could be beneficial both for processing peri-
odically as well as nonuniformly sampled signals. On the other hand, the condi-
tions for successful use depend on the specifics of the digital signals to be pro-
cessed together with these rectangular functions, and this fact has to be taken into
account.

In general, it is possible to gain benefits from using these types of rectangular
function in two different ways: (a) performing sequential analysis with the or-
thogonal rectangular function sets used as the basis functions and (b) exploiting
this type of function as a tool for complexity reduction of the DFT.

16.1.1 Use of Orthogonal Rectangular Functions

Sequential analysis performed on the basis of the Walsh, Haar and other similar
functions can be mentioned as the most impressive developments in this area.
The main factor making application of these function systems attractive is the
fact that they are rectangular and assume only the values −1, +1 and sometimes
also 0. Therefore when these rectangular waveforms are used as the basis func-
tions for execution of the spectrum analysis, no multiplication operations need
to be executed at all. That is the case, for instance, when obtaining the Walsh
spectrum without performing many of the relatively complicated multiplication
operations. However, this spectrum, a representation of signals in the frequency
domain, although easily obtainable, is specific. It is then expressed in terms of
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Walsh functions. In many cases it makes them inapplicable or at least inconve-
nient, because such spectra cannot be directly interpreted in terms of sinusoidal
signal spectra commonly used in radioelectronics. This has stimulated many
attempts to develop Walsh-to-Fourier spectral conversion methods. Although
under certain conditions such conversions are feasible, they are computation-
ally burdensome, so the rationale for this is questionable. What is gained when
calculating the Walsh coefficients might well be lost during the following spectral
conversions.

Formally, this type of transform might be performed both for periodic and
nonuniform sampled signals. However, the topic of signal spectrum analysis on
the basis of Walsh and similar orthogonal functions as a specific one is beyond
the scope of this book. Attention is focused on the second of the two mentioned
approaches. In this case the rectangular functions are used as a tool for performing
the DFT in a computationally effective way while the signal spectra are obtained
in the commonly used and easily interpretable form.

16.1.2 Reduction in the Computational Burden for DFT

The outline of the suggested approach is as follows. The Fourier transform is
accomplished in two stages. In the first stage, the signal to be analysed is formally
decomposed on the basis of some type of special rectangular function assuming
only the values −1, 0 and +1, so that the decomposition can be carried out without
multiplication. In the second stage a spectral conversion is performed. The set of
coefficients obtained at the first stage is converted into a set of Fourier coefficients.
The complexity of the calculations largely depends on the properties of the used
rectangular functions.

This outline, in general, coincides with the Walsh-to-Fourier conversion scheme
mentioned above, according to which the input signal at the first stage is decom-
posed on the basis of orthogonal Walsh functions. In both cases the spectral
analysis is carried out in two steps. However, there the similarity ends. Accord-
ing to the suggested approach the signal spectrum analysis is carried out on the
basis of the DFT while the involved sets of rectangular functions just support the
involved calculations providing for the complexity reduction. The point is that
they should be appropriate and well suited for carrying out the calculations at
the second stage and it is not a requirement that they are orthogonal. Although
the basic principles of the method are deterministic, the application of random
sampling helping to avoid aliasing is essential for its digital implementation. A
description of this method follows.
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16.2 Complexity-reduced DFT Exploiting
Rectangular Functions

It is essential that the rectangular functions used in the first stage of the suggested
kind of complexity-reduced DFT do not necessarily have to be orthogonal. They
should satisfy only one condition: their inner structure, displayed by their spectra,
should be appropriate for the purposes of the conversions to be carried out in the
second stage. Once this position is understood, it is relatively easy to find suitable
functions and a number of them have been selected.

16.2.1 Essentials of the Method

The most useful two-function systems, which are considered in more detail in the
following discussion, are given in Figures 16.1 and 16.2. Consider system 1 of
the rectangular functions. The functions belonging to this system are periodic and
nonorthogonal. They are in fact the sign functions of the sine and cosine functions
at respective frequencies. At each of the considered frequencies there is a pair
of functions. The functions of each pair are shifted against one another by π/2.
These periodic rectangular functions are denoted by Rs(i� f, t), Rc(i� f, t). The
indices s and c indicate that they are the sign functions of the corresponding sine
and cosine waves respectively.

The formal decomposition of a signal x(t) on the basis of the given rectangular
functions actually involves the calculation of a set of coefficients {αi , βi } covering
the whole frequency range of interest. If the signal x(t) is observed during the
time interval (tb − ta) then, for example, the following equations can be written:

βi = 1

tb − ta

∫ tb

ta
x(t)Rs(i� f, t) dt

= 1

tb − ta

[∫ t1

ta
x(t) dt −

∫ t2

t1
x(t) dt +

∫ t3

t2
x(t) dt − · · ·

]
, (16.1)

where tl, t2, t3, . . . are the instants when the function Rs(i� f, t) changes sign. It
can be seen from this equation that the calculation of the coefficient βi (likewise
also the coefficient αi ) does not require execution of any multiplication operations.

To find out what this coefficient means, consider the structure of Rs(i� f, t).
This function can be expanded into the following Fourier series:

Rs(i� f, t) = bs1 sin(2πi� f t) + bs3 sin(2π3i� f t) + bs5 sin(2π5i� f t) + · · · .
(16.2)
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Figure 16.1 Rectangular function system 1

It follows from Equations (16.1) and (16.2) that

βi = 1

tb − ta

[
bs1

∫ tb

ta
x(t) sin(2πi� f t) dt

]

+ bs3

∫ tb

ta
x(t) sin(2π3i� f t) dt + bs5

∫ tb

ta
x(t) sin(2π5i� f t) dt + · · · .

(16.3)

As this equation shows, the value of the coefficient βi , calculated for the
frequency i� f , actually depends on the signal components at the frequen-
cies 3i� f, 5i� f, 7i� f, . . . . Hence a separate pair of coefficients αi and βi is
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Figure 16.2 Rectangular function system 2

meaningless. Only a full set of them, calculated for the whole signal frequency
range, carries information about the signal spectrum and, as shown in the next
subsection, the conversion of these coefficients {αi , βi } into Fourier coefficients
in this case is then a simple matter.

16.2.2 Mathematical Description

Suppose that a signal is represented by a real centred function x(t) that is
absolutely integrable over the time interval [0, T ] and that the upper frequency
of the signal spectrum is f0. Consider solving the task of calculating the Fourier
series expansion of x(t) on the basis of the method briefly described in the
previous section.
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Consider the rectangular functions of system 1 shown in Figure 16.1. They are
defined by

Rs(i� f, t) = Rs(i� f, t + rTi ), Ti = 1

i� f
, r = 0, 1, 2, . . . ,

Rc(i� f, t) = Rs

(
i� f, t + Ti

4

)
, i = 1, 2, . . . ,

Rs(i� f, t) = Rs(i� f, −t), Rs(i� f, t) ∈ [1, −1],

∫ Ti

0
Rs(i� f, t) dt = 0

(16.4)

The signal x(t) is first decomposed on the basis of these functions. Then

αi = 2

T

∫ T

0
x(t)Rc(i� f, t) dt,

(16.5)

βi = 2

T

∫ T

0
x(t)Rs(i� f, t) dt .

On the other hand, the Fourier series expansions of the functions Rs(i� f, t),
Rc(i� f, t), given by

Rs(i� f, t) =
∞∑

r=1

bsr sin(2πri� f t),

(16.6)

Rc(i� f, t) =
∞∑

r=1

acr cos(2πri� f t),

where

asr = 4(−1)r+1

π(2r − 1)
, bcr = 4

π(2r − 1)

are the Fourier coefficients for the frequencies ri� f .
Substituting expressions (16.6) into Equations (16.5) yields

αi = 2

T

∫ T

0
x(t)

∞∑
r=1

acr cos(2πri� f t) dt

=
∞∑

r=1

acr
2

T

∫ T

0
x(t) cos(2πri� f t) dt . (16.7)
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Similarly, it can be shown that

βi =
∞∑

r=1

bsr
2

T

∫ T

0
x(t) sin(2πri� f t) dt . (16.8)

As the Fourier coefficients of x(t) at the frequency ri� f are defined as

ari = 2

T

∫ T

0
x(t) cos(2πri� f t) dt,

bri = 2

T

∫ T

0
x(t) sin(2πri� f t) dt,

it follows from Equation (16.7) that

αi =
∞∑

r=1

acr ari , βi =
∞∑

r=1

bsr bri . (16.9)

In the cases when the spectra of signals are restricted, Equations (16.9) are finite.
Then

αi =
[n/ i]∑
r=1

acr ari , βi =
[n/ i]∑
r=1

bsr bri , i = 1, n, (16.10)

where n = f0/� f is the number of frequencies considered and [n/ i] is the integer
part of n/ i . Thus the relationship between the coefficients {αi , βi } and the Fourier
coefficients sought are described by two similar systems of n linear independent
equations containing n unknown variables.

The equation system for determining the Fourier coefficients {ai } can be given
as the following matrix equation:

⎡
⎢⎢⎢⎢⎣

ν11 ν12 ν13 · · · ν1n

0 ν22 ν23 · · · ν2n

0 0 ν33 · · · ν3n

· · · · · · · · · · · · · · ·
0 0 0 · · · νnn

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

a1

a2

a3

· · ·
an

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

α1

α2

α3

· · ·
αn

⎤
⎥⎥⎥⎥⎦. (16.11)

An element of this matrix is denoted by νi j , i = 1, n; j = 1, n. For i < j, νi j = 0
and

νi j =
{

acm if m = i/j = [i/j],

0 if m = i/j �= [i/j].
(16.12)
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When the Fourier coefficients characterizing the respective rectangular functions
are given, expression (16.12) allows all the elements νi j to be found. Specifically,
it follows from this expression that ν11 = ν22 = ν33 = · · · = νnn = ac1.

If the functions Rc(i� f, t) are even, the equation describing the relationship
between the coefficients {αi } and the Fourier coefficients {ai } is given as

αi =
∞∑

r=0

ac(2r+i)a(2r+1)i . (16.13)

In the case where the signal spectrum is restricted and the Fourier coefficients at
frequencies exceeding n� f can be considered to be equal to zero,

a(2r+1)i = 0 for (2r + 1)i > n (16.14)

and Equation (16.13) is then given by

αi =
[n/2i−1/2]∑

r=0

ac(2r+i)a(2r+1)i . (16.15)

It follows that αi = ac1ai for all i satisfying the inequality

n
2i

− 1

2
< 1.

Therefore

αi = ac1ai for i > [n/3]. (16.16)

In the case where, for example, n = 16, the relationships can be described by
the following system of equations:

α1 = ac1a1 + ac3a3 + ac5a5 + ac7a7 + ac9a9 + ac11a11 + ac13a13 + ac15a15

α2 = ac1a2 + ac3a6 + ac5a10 + ac7a10

α3 = ac1a3 + ac3a9 + ac5a15

α4 = ac1a4 + ac3a12 (16.17)

α5 = ac1a5 + ac3a15

α6 = ac1a6

..........

α16 = ac1a16.

From this example, for n = 16 all the Fourier coefficients ai , i > 5, are ob-
tained simply by normalizing the respective coefficient αi . On the basis of
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Equations (16.16) and (16.17),

ai =

⎧⎪⎪⎨
⎪⎪⎩

αi

ac1
for i = n, [n/3] + 1,

αi − ∑[n/2i−1/2]
r=1 acr a(2r+1)i

ac1
for i = [n/3], 1.

(16.18)

Similarly,

bi =

⎧⎪⎨
⎪⎩

βi

bs1
for i = [n/3],1,

β1 − ∑[n/2i−1/2]
r=1 bsr b(2r+1)i for i = [n/3], 1.

(16.19)

Thus the spectral conversion at the second stage of the Fourier analysis performed
in accordance with the approach suggested is indeed simple, and only a small
number of multiplication operations are needed to obtain the Fourier coefficients,
far fewer than are needed for the FFT.

These calculations can be simplified even further by using the rectangular
functions of system 2, shown in Figure 16.2. The Fourier series representing
these functions not only does not contain terms with even indices but each third
term with odd indices is also missing, i.e. all the coefficients ac3 = ac9 = ac15 =
ac21 = · · · are equal to zero. This, of course, leads to further simplification of
the calculations at the second stage. Figure 16.3 illustrates how the conditions
for the Fourier coefficient calculations depend on which of the systems 1 or 2 of
the rectangular functions is used. Two-stage calculations have to be carried out
only in the frequency range [0, 1/3 f0] when system 1 is used. In the cases where
system 2 is used, direct single-stage estimation of the Fourier coefficients could
be carried out even in a broader frequency range, covering four-fifths of the whole
signal bandwidth.

16.2.3 Digital Implementation

Both the hardware and software implementations of the described method are
basically simple, which represents a significant advantage of it. After the input
signal x(t) has been digitized by an ADC, it is processed to obtain the estimates
of the coefficients α̂i and β̂i . The following equations are used:

α̂i = 2

N

N∑
k=1

x(tk)Rc(i� f, tk),

β̂i = 2

N

N∑
k=1

x(tk)Rs(i� f, tk).

(16.20)
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Figure 16.3 Dependence of the conditions for direct single-stage estimation of the Fourier
coefficients on the systems of the rectangular functions used

Figure 16.4 Block diagram of the basic digital filter for estimation of the coefficients αi

and βi

A simple electronic device is used to estimate the αi and βi coefficients. A block
diagram of it is given in Figure 16.4.

As the functions Rs(i� f, t) and Rc(i� f, t) assume only the values −1, 0 and
+1, only two adders and a couple of logic elements are needed to perform an
estimation of both coefficients. To perform full-scale DFT, a number of such
devices, provisionally called filters, are connected and used in parallel. In addition
to the bank of these filters, there is also an ADC and a memory unit, which is
used for storing the discrete values of the functions Rs(i� f, t) and Rc(i� f, t).
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The functioning of this instrument is obvious. Once the estimates {α̂i , β̂}i are
obtained, they are converted into the respective estimates of the required Fourier
coefficients.

Although implementation of the method looks extremely simple, the relation-
ships underlying discrete Fourier transforms performed in this way are more com-
plicated than they seem at first glance. The behaviour of such a system mainly
depends on the sampling method by which the input signal and the applied rect-
angular functions are sampled. The problem is that the spectra of the functions
Rs(i� f, t) and Rc(i� f, t) are infinite and cannot in principle be restricted by
low-pass filtering. It is true that the coefficients of the respective Fourier series
steadily decrease, but there are still many high-frequency components that may
cause aliasing errors if these functions are sampled periodically. To suppress the
aliases and the errors due to them, randomizing of the sampling process often has
to be performed. Randomization of sampling is crucial if the input signals have
components at frequencies exceeding the Nyquist limit. This means that the per-
formance of such a system mainly depends on the quality of its software and on
the perfection of the used methods and algorithms for processing nonuniformly
represented digital signals. Randomization of sampling, while necessary and ir-
replaceable as a tool for the elimination of aliasing, is not a reliable method for
getting sufficiently accurate signal spectra, as shown in the next section. Special
signal processing procedures have to be used in addition to obtain high precision
at spectral analysis carried out in a complexity-reduced way. Fortunately it is now
feasible, as such techniques have recently been developed. The achievable level
of performance in this area is demonstrated in Chapter 18, where adapting the
considered discrete Fourier transforms to nonuniform sampling irregularities is
discussed.

16.3 Computer Simulations of the Rectangular
Function-based DFT

To gain an impression of the properties of the complexity-reduced DFT based
on application of the rectangular basis functions, the computer simulation results
given below may be considered. However, to come to the correct conclusions while
doing that, it is essential to keep in mind that the method used to estimate the
Fourier coefficients is aimed at obtaining valuable intermediate signal processing
results rather than signal spectra, as explained in the introduction to Chapter 15.
This means that the end results at this stage of the approach to the DFT are
estimates of the Fourier coefficients appropriate for various methods of further
processing, including high-performance spectral analysis.
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Figure 16.5 Illustration of rectangular function based DFT of a periodically undersampled
signal

Figure 16.5 illustrates what happens when DFTs are carried out for a sig-
nal sampled periodically under aliasing conditions. In this particular case, the
sampling rate is about two times smaller than the rate ensuring alias-free op-
eration. Apparently full-scale aliasing takes place under the given conditions
and the DFT results are distorted. To avoid this kind of frequency overlapping
effect, the signal sample values have to be taken nonuniformly. Estimates of the
αi and βi coefficients obtained when the same signal is sampled according to
the additive sampling scheme are given in Figures 16.6(a) and (b) respectively.
The end results of DFTs carried out under these specific conditions are shown in
Figure 16.7.

The spectral estimates displayed in Figure 16.7 are much closer to the true
signal spectrum than the estimates distorted by aliasing given in Figure 16.5.
Randomization of sampling has clearly led to considerable suppression of the
aliases and the amplitudes of the signal basic components are estimated relatively
well. However, there is noticeable background noise not present in the input
signal. Therefore this noise has appeared in the spectrogram due to imperfections
of the algorithm used for the DFT. In this particular case the rectangular basis
functions of system 1 have been used to reduce the number of multiplication
operations needed for carrying out the DFT. Therefore the question arises: what
is the real source of this background noise? Does it appear as a result of sampling
randomization or do these errors appear because rectangular basis functions are
used instead of exponential ones?
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Figure 16.6 Estimates of (a) αi coefficients and (b) βi coefficients

To find the answer to these questions, DFTs of the given signal have been
repeated by using the exponential basis functions under other equal conditions.
The results are given in Figure 16.8 and are close to the estimates shown in
Figure 16.7. This fact leads to the conclusion that the imperfections of the used
algorithm for DFTs are related to insufficiently well-handled processing of the
nonuniformly sampled signal rather than to the used rectangular basis functions.

Thus the computer simulations show that the estimates of the Fourier coeffi-
cients obtained as a result of the suggested method for the complexity-reduced
DFT, in comparison with DFT using the exponential basis, are of the same level
of quality. Application of both approaches leads to DFT results corrupted by
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Figure 16.7 DFT of the test signal sampled according to the additive sampling scheme and
performed on the rectangular function basis

Figure 16.8 DFT of the test signal sampled according to the additive sampling scheme and
performed on the exponential function basis

nonuniform sampling at a comparable level. Therefore in many cases it makes
sense to simplify the DFT-related calculations in the described way. The ob-
tained DFT results represent valuable data that are needed and could be success-
fully used for resolution of many signal processing tasks. With regards to the
background noise, it is actually not a noise at all. The observed fluctuations can
be tracked down to the cross-interference between signal components related to
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Figure 16.9 Illustration of the fact that sampling based on sine-wave crossings always results
in a sequence of reference sine-wave sample values even if the signal sampled contains multiple
components: (a) a function enabling the sampling operation; (b) a diagram of the sampling
operation

specific sampling irregularities. In fact, these fluctuations appear as a result of the
typical fuzzy aliasing effect described in Chapter 9. The problem of eliminating
this fuzzy aliasing effect and the DFT errors due to it has been resolved and the
techniques used to achieve this are discussed in Chapters 18, 19 and 20.

16.4 Fast DFT of Sine-Wave Crossings

Properties of digital signals obtained as a result of sampling realized as signal
and reference sine-wave crossings substantially differ from the typical features
of digital signals formed on the basis of the commonly used signal sample value
taking at predetermined time instants. Figure 16.9 illustrates this type of sam-
pling. A periodic pulse sequence, shown in Figure 16.9(a), is used to enable the
sampling operation at a specific signal source periodically during half-periods of
the reference function. The frequency of these enabling pulses depends on the
number of signal sources connected to the respective system.
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Attention is drawn to the amazing fact that when the sampling method based
on the sine-wave crossings is used, the sampled signal represents a sequence
of nonuniformly spaced sample values of the reference sinusoid no matter what
spectrum of the input signal is involved. In consequence of this, a special approach
to processing this kind of digital signal can be used. This approach leads to the
complexity-reduced DFT not requiring multiplication of multidigit numbers.

As shown in Chapter 15, to be able to apply the standard DSP computer pro-
grams to process nonuniform digital signals obtained as a result of sine-wave
crossings, sampling of these signals can often be regularized. When this is the
case, the problem of effective processing of the sampled signals might be con-
sidered as resolved and nothing else needs to be done. The method used for the
complexity-reduced DFT suggested here represents an alternative that can be used
for conditions when the described regularization leads to large and unacceptable
errors.

Whenever the sample values of the reference sine-wave function at the fre-
quency fr represent the sampled signal to be transformed, the expressions usually
used for estimation of the Fourier coefficients at the ith frequency,

âi = 2

N

N−1∑
k=0

xk cos 2π fi tk,

b̂i = 2

N

N−1∑
k=0

xk sin 2π fi tk,

(16.21)

assume the following form:

âi = 2

N

N−1∑
k=0

sin 2π frtk cos 2π fi tk,

b̂i = 2

N

N−1∑
k=0

sin 2π frtk sin 2π fi tk .

(16.22)

Note that Equations (16.22) is given for Ar = 1, where Ar is the amplitude of the
reference signal. The notations α = 2π frtk and β = 2π fi tk are now introduced.
Then it can be written that

âi = 2

N

N−1∑
k=0

sin α cos β,

b̂i = 2

N

N−1∑
k=0

sin α sin β.

(16.23)
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Evidently Equations (16.23) can also be given as

âi = 1

N

N−1∑
k=0

[sin(α − β) + sin(α + β)],

b̂i = 1

N

N−1∑
k=0

[cos(α − β) − cos(α + β)],

(16.24)

where

α − β = 2π ( fr − fi ) tk,

α + β = 2π ( fr + fi ) tk .

Application of the definitions (16.24) is attractive as calculations carried out
using them provide for fast DFTs as only a few multiplications need to
be carried out, especially if calculations of [sin (α − β) + sin (α + β)] and
[cos(α − β) − cos(α + β)] are carried out beforehand and the results are stored
in a look-up table.

Therefore there are at least two options using fast algorithms to process the
digital signals obtained as a result of sine-wave crossings. Firstly, the signals
sampled in this way might often be regularized and then the fast DSP algorithms
can be used. The second alternative is the approach discussed here. Application
of the latter is preferable whenever the regularization errors are large.
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Spatial Data Acquisition and
Processing

The topic of spatial signal processing is now approached to draw attention to the
fact that the anti-aliasing signal processing technology described in this book was
initially developed for handling signals in the time and frequency domains but is
also applicable in the area of spatial signal processing vital for all types of radar
systems. While various types of problems could be attacked on the basis of this
technology, the following discussions are focused on the issue of the complexity
reduction of large-aperture antenna arrays. Specifically, the potential of pseudo-
randomization of large-aperture antenna arrays is considered and evaluated as an
approach applicable for reducing the number of sensors in the array. To achieve
good results in this area, it is suggested that the positive experience obtained at
signal processing in the time domain can be adjusted to the specifics of spatial
signal processing. The rationale of this approach is based on the fact that irregular
taking of signal sample values in the time domain is equivalent to the irregular
spacing of sensors in the array.

Although historically the problems of randomizing the temporal signal process-
ing have received much more attention than the analogous problems of spatial
data acquisition and processing, the potential usefulness of deliberate random-
ization in this area has not been overlooked. A number of publications provide
evidence of this. However, at first glance, these publications have nothing to do
with randomized processing of signals. They are mainly works dealing with radar
antennae. The fact that a number of radar characteristics can be enhanced by ran-
domizing their antenna designs had already been discovered in the early 1960s.
It was found that when antenna sensor elements are spaced randomly rather than

Digital Alias-free Signal Processing I. Bilinskis
C© 2007 John Wiley & Sons, Ltd
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regularly, undesirable aliasing effects are reduced and other improvements in
system functioning can be achieved.

A survey of the research results obtained in the field of array signal processing,
the theory of which is relatively well developed, lies beyond the scope of this
book. To establish the methodological, terminological and notation basis for the
following discussions, a brief description of the principles and relationships rel-
evant to the antenna arrays and array signal processing is given in Section 17.1.
Typical spatial signal processing subsystems, usually included in the structures
of these array systems, are considered.

Although antenna arrays are used for signal transmission or receiving, the cen-
tral problem in array signal processing is beamforming. Proper beamforming is
essential for concentrating signal energy in a required direction at their transmis-
sion and also allows an estimation to be made of the direction of signal arrival at
their receiving. While transmission and receiving of signals seem to be distinctly
different operations, the beamforming procedures in both cases have much in
common. This allows just one of these cases to be considered and to extend the
results of the analysis over both areas. Following this reasoning, the signal receiv-
ing case is selected as the basis for studies of the suggested specific beamforming
techniques suitable for complexity reduction of the array signal processing sys-
tems. The discussions concern, first of all, various aspects of the signal direction
of arrival (DOA) estimation.

17.1 Sensor Array Model

Consider a linear array of sensors shown in Figure 17.1(a). Suppose that the sen-
sors are distortion-free, isotropic (capable of receiving signals from all directions
equally well) and spaced equidistantly. To simplify consideration of the basic
principles of such array functioning, suppose also that the signal impinged on the
array from a far-field source is described as a narrowband signal with a common
centre frequency f or as a nonmodulated sinusoidal carrier at the frequency f .
Assume that the angle between the signal plane and the array axis is equal to
Θ. In this situation, the signals received by sensors 2, 3, 4, . . . are delayed with
respect to the signal received by sensor 1 and these delays depend on Θ and
the intervals d, 2d, 3d, . . . between the respective sensors. Indeed, the signal at
sensor 2 is delayed for a time interval τ 2 during which the signal covers the dis-
tance d sin Θ and as the signal propagation speed is equal to c, then cτ2 = d sin Θ

or τ2 = (d/c) sin Θ . For the kth sensor, the delay

τk = sin Θ
(k − 1)d

c
. (17.1)
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Figure 17.1 Basic array model: (a) delays in signal paths to various sensors depending on the
signal arrival angle; (b) array signal formed from digital sample values taken off the sensors at
their simultaneous sampling

As the phase shift between the output signals of sensors is ϕ = −2π f τ radians,
the phase shift between the adjacent sensor outputs is given as

ϕ = −2π f sin Θ
d
c
. (17.2)

Now suppose that all sensor outputs are sampled simultaneously and the re-
spective signal values are read out in this way. Obviously, all these readings
are from one and the same sinusoid and intervals between the sample values
(Figure 17.1(b)) are equal to the delays mentioned. On the other hand, this sam-
ple sequence forms a discrete signal depending on the signal source frequency
and location. This array signal

xk = A sin (2πΩdk+ϕ), k = 1, 2, 3, . . . , K , (17.3)
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where A is the amplitude of the received signal, dk is the coordinate of a sensor
(with respect to sensor 1) and Ω and ϕ are the wavenumber (spatial frequency)
and the array signal phase respectively. It can be seen from Figure 17.1 that
Ω = sin Θ ( f/c) and Equation (17.3) can be rewritten as

xk = A sin

(
2π f

c
sin Θdk + ϕ

)
, k = 1, 2, 3, . . . , K . (17.4)

Now suppose that there are m = 1, 2, 3, . . . , M rather than one signal sources.
In this case the received signals, arriving from various directions, add up so that
the resulting sequence of the sensor output signal sample values, taken repeatedly
at time instants tn , can be considered as the following vector:

xn =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M∑
m=1

Am sin[2πΩmdmn1 + ϕm + �ϕm(δn)] + ξ (dmn1)

M∑
m=1

Am sin[2πΩmdmn2 + ϕm + �ϕm(δn)] + ξ (dmn2)

...
...

...
M∑

m=1

Am sin[2πΩmdmnN + ϕm + �ϕm(δn)] + ξ (dmnN )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (17.5)

where Am, Ωm andϕm are amplitudes, wavenumbers and phases of the array signal
components respectively, ξ (dmnk) are the noise sample values and �ϕm(δn) are
the additional phase delays that appear in special cases when additional delays
dn are inserted. Note that when the sensor coordinates are denoted as dmnk , it is
presumed that this coordinate may change from one instant tn to another. As that
is usually not the case (the sensor positions are fixed), these coordinates can be
denoted as dmk .

In more general and specific cases, the signals impinged on an array should be
considered as being wideband or narrowband rather than one sine function. Then,
naturally, its definition is more complicated.

17.2 Temporal and Spatial Spectra of Array Signals

While the application area of arrays covers a large variety of tasks, solution of
every one of them is based, in some way, on relationships of array signal temporal
and/or spatial spectra. Basic relationships of this kind will be considered.

Suppose that the far-field signals impinged on a linear array of the type con-
sidered above are sufficiently well approximated by a finite number of complex
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exponential functions. Suppose also that there are altogether m signal sources.
Then the signal of the mth source can be written as

xm(t) =
Im∑

i=1

Ami sin(2π fmi t + ϕmi ), (17.6)

where Ami , fmi and ϕmi are the amplitudes, frequencies and phases of the signal
components respectively and Im is the number of components in the signal emitted
by the mth source.

The first sensor will be chosen as a reference point in time and in distance.
Then, if the distance to the kth sensor is dk and the arrival angle of the signal from
the mth source is denoted by Θm , the component of the kth sensor output signal
coming from the mth signal source can be given as

xmk(t) =
Im∑

i=1

Ami sin

(
2π fmi t − 2π fmi

dk sin Θm

c
+ ϕmi

)
. (17.7)

The complete output signal of the kth sensor, containing components coming
from all signal sources, can then be defined as

xk(t) =
M∑

m=1

xmk(t)

=
M∑

m=1

Im∑
i=1

Ami sin

(
2π fmi t − 2π fmi

dk sin Θm

c
+ ϕmi

)

=
M∑

m=1

Im∑
i=1

[
Ami sin

(
2π

fmi sin Θm

c
dk + π − ϕmi

)
cos 2π fmi t

+ Ami cos

(
2π

fmi sin Θm

c
dk − ϕmi

)
sin 2π fmi t

]
. (17.8)

The function A sin(2πft + ϕ) can be represented in the following form:

A sin(2π f t + ϕ) = a cos 2π f t + b sin 2π f t,

where a = A sin ϕ and b = A cos ϕ.
The coefficients a and b are orthogonal projections of the sine function on

cos 2π f t and sin 2π f t. Suppose that a snapshot multitude {xk(tn)}, n = 1, N ,
has been obtained and that these data have been decomposed by applying some
high-performance method and that parameters of the signal components as well
as the orthogonal projections have been estimated as a result of temporal spectral
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analysis with errors not exceeding some given margins. Then two essential cases
can be distinguished.

17.2.1 When Signal Source Frequencies Do Not Overlap

Suppose that the i th frequency of the mth signal source does not overlap any
other frequency of the other signal sources. Then the orthogonal projections
corresponding to this frequency, which follows from Equation (17.8), are

ami = Ami sin

(
2π

fmi sin Θm

c
dk + π − ϕmi

)
,

(17.9)

bmi = Ami cos

(
2π

fmi sin Θm

c
dk − ϕmi

)
.

It can be seen from Equations (17.9) that these projections can be interpreted as
spatial sinusoidal functions with sample values obtained at points dk . To estimate
the wavenumbers Ωmi , spatial spectral analysis of data {ami , bmi } can be per-
formed. According to Equation (17.8),

Ωmi = fmi sin |Θm |
c

. (17.10)

It follows from Equation (17.10) that

|Θm | = arcsin
cΩmi

fmi
. (17.11)

To determine the sign of Θm , Equations (17.9) are rewritten as

ami = Ami sin ϕmi cos 2π
fmi sin Θm

c
dk

+ Ami cos(π − ϕmi ) sgn(Θm) sin 2π
fmi sin|Θm |

c
dk,

(17.12)

bmi = Ami cos ϕmi cos 2π
fmi sin Θm

c
dk

+ Ami sin ϕmi sgn(Θm) sin 2π
fmi sin |Θm |

c
dk .

Then the orthogonal projections ami and bmi can be given in the following form:

(17.13)
Ami sin ϕmi Ami cos(π − ϕmi ) sgn(Θm)
Ami cos ϕmi Ami sin ϕmi sgn(Θm)
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Table 17.1 Bilinskis

+ − + +
+ + + −

+ + + −
− + − −

− + − −
− − − +

− − − +
+ − + +

m > 0 m < 0Q Q

In order to determine the sign of Ωm , Table 17.1 displays the signs of these
projections at all possible positions of the phase angle ϕmi (it can be in any of the
four quadrants). The amplitudes and phases of the respective sine functions can
also be determined from the projections given in (17.13).

17.2.2 When Signal Source Frequencies Overlap

Suppose that some of frequencies in spectra of signals coming from different
signal sources overlap. Assume that the frequency fmi is common for all sig-
nal sources and denote it by f1. Then the projections corresponding to this fre-
quency, obtained in the course of the temporal spectral analysis as follows from
Equation (17.8), can be written as

a1 =
M∑

m=1

Am1 sin

(
2π

f1 sin Θm

c
dk + π − ϕm1

)
,

(17.14)

b1 =
M∑

m=1

Am1 cos

(
2π

f1 sin Θm

c
dk − ϕm1

)
.
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As Θm differs for various signal sources, then projections a1 and b1 can be inter-
preted as M sums of sine functions at the following wavenumbers:

Ωm = f1 sin Θm

c
. (17.15)

Now Equations (17.14) can be rewritten as

a1 =
M∑

m=1

[
Am1 sin ϕm1 cos 2π

f1 sin Θm

c
dk

+ Am1 cos(π − ϕm1) sgn(Θm) sin 2π
f1 sin |Θm |

c
dk

]
, (17.16)

b1 =
M∑

m=1

[
Am1 cos ϕm1 cos 2π

f1 sin Θm

c
dk

+ Am1 sin ϕm1 sgn(Θm) sin 2π
f1 sin |Θm |

c
dk

]
. (17.17)

To estimate wavenumbers Ωm, m = 1, M , decomposition of a1 and b1 has to be
carried out. As the frequency f1 has been estimated at the stage of the temporal
spectral analysis, then, by applying Equation (17.14),

|Θm | = arcsin
cΩm

f1
. (17.18)

Amplitudes, phases and signs of the arrival angles Θm then can be estimated
for all wavenumbers Ωm in the same way as in the case considered above where
frequencies do not overlap.

17.2.3 Aliasing in the Spatial Domain

Signal processing as described so far in this section is commonly used for spatial
spectrum analysis of a signal received by an array of sensor elements. The tempo-
ral signal sampling is then periodic and the sensors in the array are placed equidis-
tantly. Up to certain temporal and spatial frequencies this approach represents a
good technical solution to the problem of spatial signal filtering. However, there
are limitations. The upper frequency of the signal temporal spectrum is limited,
as usual, by the sampling frequency used at the analog-to-digital conversions of
the sensor output signals. Obviously this spectrum should not exceed a frequency
equal to one-half of the sampling rate.

The minimal wavelength of array signal components is limited by the value d
of the interval between the array elements. To guarantee that there is no aliasing,
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at least two samples from a signal wavelength should be taken, i.e. λmin ≥ 2d
and Ωmax = 1/λmin. If the wavenumber of an array signal component exceeds the
given limit, aliasing occurs. Clearly, there is a row of indistinguishable wavenum-
bers that is analogous to the indistinguishable temporal frequencies. As the dis-
tance between the array signal digital values is equal to d, the following wavenum-
bers completely overlap and are accepted by regular arrays as one and the same:

Ωi ,
1

d
± Ωi ,

2

d
± Ωi ,

3

d
± Ωi , . . . . (17.19)

The aliasing effect is well known and in array beam characteristics it is dis-
played as the so-called grating lobes. This effect has somehow to be avoided.
Otherwise spectra of the signals and noise outside the alias-free range will over-
lap the spectra within this range and distort the results of signal processing.

The obvious way of enlarging the range free of spatial aliasing is to place sensors
closer. However, if this approach is used then, depending on the number of sensors
for a given aperture, the complexity of such arrays and of their signal processing
systems is directly tied to the required wavenumber range of the spatial spectrum
analysis to be performed. There are other problems as well. For instance, cross-
interferences between sensors do not allow the sensors to be placed too close,
thus limiting the achievable upper boundary of this range.

The fact that the inability to distinguish certain spatial signals is caused by the
regularity of their sample value taking procedure was recognized a long time ago
and there have been attempts to avoid such aliasing by spacing array elements
randomly. However, so far they have not led to sufficiently good results. It seems
that the main obstacle preventing the achievement of significant progress in this
direction is lack of sufficiently well-developed special digital signal processing
techniques that are successful in this area. That is the reason why this topic is
included for consideration in this book. There is clearly an analogy between con-
ditions for signal processing in the spatial and the time domains. This means
that some part of the suggested advanced signal processing techniques based on
nonuniform temporal signal sampling could also be exploited for alias-free pro-
cessing of array signals. On the other hand, conditions for array signal processing
are also quite specific. Therefore it is often not obvious how the positive expe-
rience gained in the area of processing nonuniformly sampled temporal signals
could be transferred to the area of array signal processing. The discussions in the
following sections should help to clarify this matter to some extent.

The potential possibility of array complexity reduction is based on the assump-
tion that if the intervals between sensors in arrays are not equidistant and special
anti-aliasing techniques are applied then these intervals between sensors do not
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necessarily have to be less than half of the shortest wavelength of the array signal
components. If that is the case, then the number of sensors in the array with the
same aperture and complexity of the array, directly related to the quantity of used
sensors, can be reduced. The central issue of this matter, of course, is elimination
of aliasing.

Discussions of this issue will start by considering the spectrum analysis of
spatial signals taken off a linear array of isotropic distortion-free sensor elements.
Suppose that the obtained array signal reflects a signal impinged on the array that
comes from a direction Θ and can be described as an unmodulated sinusoidal
carrier. The estimate of the spatial spectrum for a single simultaneous reading of
the sensor outputs can be written as

Ŝ(Ωi ) = 2

K

K∑
k=1

x(dk) exp(−j2πΩi dk), (17.20)

where Ωi is the considered wavenumber and K and dk are the number and the
coordinates of the sensors respectively. Suppose that the array signal is a sine
function at one of the wavenumbers:

Ωl = rΩs ± Ωi , r = 0, 1, 2, . . . , (17.21)

where Ωs is the array signal spatial sampling rate and is inversely proportional to
the distance (mean distance) between the sensors. As the power spectrum does
not depend on the signal phase, to simplify the expressions the signal phase can
be omitted and Equation (17.20) can be rewritten as

Ŝ(Ωi ) = 2

K

K∑
k=1

Al sin 2π(rΩs ± Ωi )dk exp(−j2πΩi dk). (17.22)

Properties of this estimate depend to a large extent on the positions of the
sensors. Consider the case where they are spaced equidistantly with the interval d
between them. Then, apparently, dk = (k − 1)d, Ωs = 1/d and estimate (17.22)
becomes

Ŝ(Ωi ) = 2

K

K∑
k=1

Al sin 2π[r (k − 1) ± Ωi (k − 1)d] exp[−j2πΩi (k − 1)d].

(17.23)

This expression clearly shows that when the sensors are spaced equidistantly, the
value of the power spectrum estimate at Ω i is the same for all values of r. This
means that they are the same for all array signal components at wavenumbers
belonging to the row (17.21) if only the amplitudes Al of these components are
the same.
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The situation is quite different when the intervals between the sensors are not
equal. Then the estimate (17.22) will differ at various wavenumbers (at various
values of r ), which actually means that under these conditions it should be pos-
sible to suppress the aliasing effects. This suggests that it should be possible to
diminish the negative effect of aliasing by spacing the sensor elements irregularly.
Consequently, by applying this technique of array irregularization, it should be
possible to use a lesser number of sensors in arrays, because the upper boundary
of the required wavenumber range is then no longer determined by the mean dis-
tance between the sensors. The computer simulation results given below confirm
this presumption.

17.3 Beamforming

Beamforming for arrays is the most important function allowing signal energy
to be concentrated in a specific direction or to tune the array in a given direc-
tion so that it becomes most sensitive to signals coming from that direction while
suppressing all signals and noise received from other directions. Figure 17.2 illus-
trates the classical direct method for beamforming in the case of signal reception.

When a signal is impinged on a linear array from a direction characterized by
the signal arrival angle Θ , as shown in Figure 17.2(a), this signal is received by
separate sensors delayed for time intervals τ 2, τ 3, τ 4, τ5 (τ 1 = 0). If the delays
in the sensor channels are equalized by inserting additional delays, as shown in
Figure 17.2(b), and then a reading of the sensor output values is taken simul-
taneously, the same spatial signal sample value will be obtained at all sensors.
Therefore, these outputs can be summed as shown and amplification of the signal,
received from the direction to which the array has been tuned by inserting the
indicated specific delays, will result while signals coming from other directions
will be suppressed.

It can be shown that the signal at the output of the adder is given as

y(t) = 1

K

K−1∑
k=0

A sin

[
2π f

(
t − dk sin Θ ′

c
+ dk sin Θ

c

)
+ ϕ

]

= 1

K

K−1∑
k=0

A sin

(
2π f t + ϕ + 4π

f dk

c
cos

Θ + Θ ′

2
sin

Θ − Θ ′

2

)

= A∗ sin(2π f t + ϕ∗), (17.24)
where

A∗ =
√

a2 + b2, ϕ∗ = arctg
a
b
,
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Figure 17.2 Illustration of the direct beamforming principle

and, in turn,

a = 1

K

K−1∑
k=0

A sin

(
4π

f dk

c
cos

Θ + Θ ′

2
sin

Θ − Θ ′

2
+ ϕ

)
,

b = 1

K

K−1∑
k=0

A cos

(
4π

f dk

c
cos

Θ + Θ ′

2
sin

Θ − Θ ′

2
+ ϕ

)
,
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Figure 17.3 Directional pattern of an array of 128 equidistantly spaced sensors (Θ = 11◦)

where Θ is the signal arrival angle and Θ ′ is the angle to which the array has
been tuned. The directional pattern of such an array, containing 128 equidistantly
spaced sensors, is shown in Figure 17.3. The array is tuned to Θ = 0◦. The direc-
tional pattern is obtained on the basis of Equation (17.24) by varying the signal
arriving angle. Signals arriving from angles differing from Θ are significantly
suppressed.

To see what happens under other conditions the sensor number in the same
aperture is reduced to 32. In this case the array directional pattern is as shown in
Figure 17.4. It can be seen that aliasing occurs and corresponding grating lobes
appear. To avoid aliasing and suppress the grating lobes in this way, the sensors
should be spaced in the array irregularly. The obtained directional pattern of such
an array is given later in Figure 17.9 and is commented on in Section 17.5.

17.4 Signal Direction of Arrival Estimation

To estimate an array signal direction of arrival (DOA) and the received signal
parameters, both temporal and spatial spectral analyses have to be carried out.
When this kind of signal processing is considered, it soon becomes clear that
there are several possible ways of approaching the task of the DOA.
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Figure 17.4 Directional pattern of a regular array of 32 sensors under aliasing conditions
(Θ = 11◦)

To simplify the following analysis and taking into account the fact that for
DOA estimation a single sine function model of signals is applicable, the basic
spectral analysis approaches are considered in the case where there are M signal
sources and the signal x(t) received by all sensors can be given as

x(t) =
M∑

m=1

Am sin(2π fmt + ϕ). (17.25)

Then the signal sample value xkn taken off the kth sensor at the instant tn is
described by the following equation:

xkn =
M∑

m=1

Am sin

(
2π fmtn + ϕm − 2π

fm sin Θ

c
dk

)
. (17.26)

It can be seen that there are two variables: tn and Θ . One of them can be taken
as fixed and the other can be varied. Hence there are two possible ways to deal
with the analysis of this equation. They are illustrated by Figures 17.5(a) and (b).
Both approaches will be considered.

Suppose that time is considered as a variable and Θ is fixed. In other words,
the changing time sensor output signals are considered separately for each sensor.
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Figure 17.5 Two possible approaches to an estimation of the DOA

This approach corresponds to the scheme given in Figure 17.5(a) and means that
the temporal spectral analysis is performed first and the spatial spectral analysis
is carried out by processing the sequence of the Fourier coefficients obtained in
the first step. Indeed, equation (17.26) can be rewritten as follows:

xkn =
M∑

m=1

[
Am sin

(
2π

fm sin Θm

c
dk + π − ϕm

)
cos 2π fmtn

+ Am cos

(
2π

fm sin Θm

c
dk − ϕm

)
sin 2π fmtn

]

=
M∑

m=1

(akm cos 2π fmtn + bkm sin 2π fmtn), (17.27)
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Figure 17.6 Implementation of the DOA estimation scheme on the basis of a DFT filter bank
used at the temporal spectrum analysis stage

where

akm = Am sin

(
2π

fm sin Θm

c
dk + π − ϕ

)
,

(17.28)

bkm = Am cos

(
2π

fm sin Θm

c
dk − ϕ

)
.

Thus the coefficients akm and bkm are time independent and for each frequency fm

these coefficients represent sample values of the corresponding sinusoidal spatial
signal. This analysis approach can be directly implemented on the basis of the
DFT by applying DFT filter banks as shown in Figure 17.6.

This approach can also be illustrated in a slightly different way, as shown in
Figure 17.7. The interpretation is based on the sensor output signal sample value
matrix

X =

⎛
⎜⎜⎝

x11 x21 x31 · · · xK 1

x12 x22 x32 · · · xK 2

· · · · · · · · · · · · · · ·
x1N x2N x3N · · · xK N

⎞
⎟⎟⎠, (17.29)

which is formed from the sample value sequences obtained by repeated sampling
of the sensor output signal multitude (by taking repeated snapshots). Then the
data from this matrix are used to perform DFTs in each sensor signal processing
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Figure 17.7 Generalized outline for the DOA estimation according to which the temporal
spectrum analysis is carried out first

channel. The Fourier coefficients obtained in this way are later used as inputs for
the spatial spectrum analysis.

Now the signal arrival angle Θ is considered as a variable and the time is fixed.
In this case equation (17.26) can be rewritten as

xkn =
M∑

m=1

Am sin

(
2π

fm sin Θm

c
dk + π − 2 fmtn − ϕm

)

(17.30)

=
M∑

m=1

(
a∗

mn cos 2πΩmdk + b∗
mn sin 2πΩmdk

)
,

where

a∗
mn = Am sin(2π fmtn + ϕm),

b∗
mn = Am cos(2π fmtn + ϕm − π.

(17.31)
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Figure 17.8 Generalized outline for the DOA estimation according to the which the DFT for
the spatial spectrum analysis is calculated after taking each snapshot

It can be seen that now the coefficients a∗
mn and b∗

mn do not depend on the number
of sensors. Therefore the spatial spectrum analysis, performed by processing
the signal (17.30), will provide the estimates of {Ωm, a∗

mn, b∗
mn}, m = 1, . . . , M .

On the other hand, a∗
mn and b∗

mn can be considered as signals depending on the
argument tn . Note that these signals are sinusoidal. By performing a temporal
spectrum analysis of them, the values of fm and Am, m = 1, . . . , M , are estimated.
This approach to the array signal analysis is illustrated by Figure 17.8.

Consider the schemes given in Figures 17.7 and 17.8 which correspond to the
cases briefly described above. It can be seen that the input data block in both
cases is the same. Therefore an impression may be found that the differences
between them are purely formal. However, that is not true. While the end result
is indeed the same, the sequence of procedures carried out in order to obtain
that result differs and so do the algorithms developed on the basis of one or the
other approach. For instance, in the case illustrated by Figure 17.8, the DFT can
be performed by processing the data obtained at each snapshot sequentially in
time (by applying only one filter bank) while, in the case of schema given in
Figure 17.7, the performance of the DFT operations is delayed until all snapshots
are taken. They are then either repeated sequentially in time by one device or N
such DFT devices are required to perform these transforms parallel in time for all
sensor signal processing channels. The preferable approach obviously depends
on the conditions under which a specific array has to function.
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17.5 Pseudo-randomization of Sensor Arrays

Typically there are many sensors in the sensor arrays used in radar systems.
Each of them represents a signal source and the whole multitude of signals taken
off the sensors has to be processed in real time. Therefore the sensor arrays
and the attached systems fulfilling the task of array signal processing are quite
complicated. The problem is that they cannot be simplified without changing
the very essence of the array functioning. Indeed, if, for example, the classical
one-dimensional array is examined, its spatial resolution is inversely proportional
to the aperture. To achieve a sufficiently high resolution, this aperture has to be
large. K sensors are placed within this aperture with the distance between the
sensors equal to d so that the aperture is equal to (K − 1)d. On the other hand,
the minimal wavelength of array signal components is limited by the value d of
the interval between the array elements. To guarantee that there is no aliasing,
at least two samples from a signal wavelength should be taken, i.e. λmin ≥ 2d
and Ωmax = 1/λmin. If the wavenumber of an array signal component exceeds the
given limit, aliasing occurs. To satisfy both requirements of a sufficiently large
aperture and small enough intervals between the sensors, the number of sensors
in the array often has to be quite large and, consequently, the complexity of the
array is then high.

17.5.1 Complexity Reduction of Arrays

Pseudo-randomization of the sensor array designs offers a way out of the de-
scribed deadlock. Basically it is suggested that spatial aliasing can be avoided by
placing sensors in the array nonuniformly. Assuming that this works, the mean
distance between the sensors could then be enlarged and the number could then
be significantly reduced.

This option for array complexity reduction certainly looks attractive. The
question is how realistic it is. The directional pattern of a randomized array of
32 sensors is given in Figure 17.9. The first impression of the efficiency of sensor
array randomization can be obtained by comparing Figures 17.4 and 17.9. It can
be seen that in principle the grating lobes are indeed suppressed in the diagram in
Figure 17.9. However, the obtained directional pattern of the nonuniform sensor
array is clearly not very good. The question is: what is the meaning of this diagram
and to what conclusions does it lead?

The well-defined aliasing taking place at functioning of the equidistant sensor
arrays in the case of the nonuniform array is replaced by fuzzy spatial aliasing.
The concept of fuzzy aliasing, observed at spectral analysis of signals in the time
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Figure 17.9 Directional pattern of a nonuniform array of 32 sensors (Θ = 11◦).

domain, is explained in Chapter 9. To put this simply, the phenomenon is caused by
the nonuniformities of the intervals between signal sample value taking instants.
The mean sampling rate due to these irregularities then drift in time, which
leads to aliasing occurring at varying frequencies. As a result, the aliasing pattern
in the frequency domain becomes fuzzy. In other words, the sharp lines indicating
aliasing at definite frequencies are spread out, showing that aliasing is suppressed
but occurs in a certain frequency band.

Spatial fuzzy aliasing is analogous to fuzzy aliasing occurring at signal sam-
pling in the time domain. The reason why fuzzy aliasing takes place in the spatial
domain is the nonuniformity of the intervals between sensors in the array. The
spatial sampling rate due to this nonuniformity is not constant, which leads to
spreading out of the spatial aliasing over varying signal arrival angles.

Apparently that is not what is needed. Successful elimination of the aliasing
effect really means avoiding aliasing rather than weakening it at certain frequen-
cies and spreading the aliasing effect out into a broader frequency band. There-
fore the displayed directional pattern of the pseudo-randomized array shown in
Figure 17.9 should not be considered as an acceptable one.
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The relatively bad results should not be surprising as they have been obtained
simply by summing nonuniformly delayed spatial signal sample values. The
problems encountered are similar to those observed at the DFT of nonuniformly
sampled temporal signals and commented on in the introduction to Chapter 15.
As soon as the sensors are placed in an array nonuniformly, the spatial signals
taken off this array depend on the pattern of sensor coordinates in the array.
This means that direct summing of nonuniformly delayed spatial signal sample
values does not complete the process of beamforming. Obtaining this sum actu-
ally leads to the acquisition of intermediate signal processing results containing
valuable information. Therefore this output signal y(t) of the phased nonuniform
array considered at various signal arriving angles under these conditions should
not be automatically regarded as the directional pattern of the respective array.
Additionally processing of y(t) has to be undertaken with the specifics of the
given sensor array nonuniformity taken into account.

A particular approach to resolution of this task is considered in Chapter 20. As
shown there, adapting array signal processing to the nonuniformities of the sensor
location in the array leads to much better beamforming. The directional pattern of
the nonuniform array obtained as a result of such adaptation is incomparably better
than the diagram displayed in Figure 17.9. This leads to the optimistic conclusion
that it is possible to achieve significant complexity reduction of sensor arrays by
pseudo-randomizing the array designs and performing appropriate array signal
processing. The key to the success in this area is in performing effective alias-free
signal processing.

17.5.2 Pseudo-randomization of Array Signal Processing

Pseudo-randomization of sensor arrays, in general, concerns both the array design
(location of sensors in the array) and the array signal processing. To achieve good
results at applications of the considered pseudo-randomized sensor arrays, it is
crucial to ensure that processing of the signals taken off the nonuniform sensor
arrays is carried out in an appropriate way. There is much in common in the
approaches to temporal and spatial array signal processing.

At first glance it seems that only spatial signal processing requires development
of special algorithms matched to the specifics of nonuniform sensor arrays and
that processing of the temporal signals could be realized in the conventional
manner. Basically this is true. On the other hand, various benefits can often
be gained by also using special signal processing algorithms for handling the
temporal signals. Of course, much depends on the characteristics of the signals
transmitted or received by a particular sensor array. While periodic sampling
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and the traditional algorithms for processing temporal signals is preferable when
dealing with relatively narrowband signals, the technology for alias-free signal
processing discussed in this book will lead to better results in cases where the
signals are wideband and/or contain components at very high frequencies.

As shown in the block diagrams of the systems used to estimate the DOA, com-
mon techniques for digital signal processing are related to the DFT performed in
both domains. As a lot of attention is paid in this book to realization of these trans-
forms, a number of the discussed techniques and algorithms are also applicable in
the area of array signal processing. The nonorthogonality appearing in the basis
functions used for the DFT due to irregularities of the sampling process, both in
the temporal and spatial domains, might be mentioned as an example. In fact,
much of the knowledge accumulated in the area of temporal signal processing
could be successfully exploited for enhancement of array signal processing in
the spatial domain. This is demonstrated in the next chapter, where the algorithm
for adapting processing of temporal signals to the nonuniformities of sampling
is modified to extend the applicability of this approach so that it can also be
used for adapting spatial signal processing to the specific nonuniform pattern of
sensor locations in an array. As the results obtained and displayed there show,
this approach, based on the experience gained from processing temporal signals,
leads to significant improvement in pseudo-randomized array performance. An
example showing what can be achieved is given in Chapter 20.

As the subject of pseudo-randomized arrays is really outside the scope of this
book, the brief description given here is intended to draw the attention of readers
to this exciting signal processing area where many of the special alias-free signal
digitizing and processing techniques considered in this book can be successfully
applied.
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Adapting Signal Processing to
Sampling Nonuniformities

Introducing irregularities into a sampling process leads to the nonorthogonality of
nonuniformly sampled discrete basis functions. If the DFT is performed on such
a basis this nonorthogonality leads to significant errors in the estimation of signal
parameters. Apparently the pattern of the nonuniform sampling point sequence
defines this nonorthogonality and the errors related to it. However, at intentional
pseudo-randomization of sampling this pattern is given a priori. Therefore it
should be possible to use this information to suppress the errors caused by sam-
pling nonuniformities. In other words, it should be possible to adapt processing of
nonuniformly sampled signals to the involved specific sampling nonuniformity,
which should lead to significantly better nonuniform signal processing results.
However, it is not clear how to achieve this. One approach to this problem is sug-
gested in Chapter 15 and is further considered here. This type of adapted signal
processing is discussed for applications requiring processing of both the temporal
and spatial signals.

18.1 Cross-interference Coefficients

As shown in Section 15.2, irregularities of the sampling point stream lead to
cross-interference between the signal components. It is hard to overestimate the
role this effect plays in processing nonuniformly sampled signals. There is no
doubt that it is impossible to achieve high precision at processing this type of
digital signal without taking this cross-interference into account in one way or
another. Before discussing various options of how this could be done, the essence
of this cross-interference will be considered.

Digital Alias-free Signal Processing I. Bilinskis
C© 2007 John Wiley & Sons, Ltd
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18.1.1 Definition

Suppose a signal x(ti ) is sampled periodically with some quantity of the signal
samples missing at random. If it is assumed that the signal sampled in this way
contains M components, it can be described as follows:

x(tk) =
M−1∑
m=0

[am cos(2π fmtk) + bm sin(2π fmtk)] (18.1)

where tk ∈ {tk}, k = 0, N − 1, is the pseudo-randomly decimated periodic sam-
pling instant stream. An estimation of the Fourier coefficients for signal x(tk) on
frequency fi might be performed on the basis of the usually applied formulae:

âi = 2

N

N−1∑
k=0

x(tk) cos(2π fi tk),

b̂i = 2

N

N−1∑
k=0

x(tk) sin(2π fi tk).

(18.2)

The problem is that these estimates are corrupted by errors due to the irreg-
ularities of the sample taking process. Therefore the question is: what could be
done to improve this kind of spectral estimation? An attempt will be made to find
an answer to this question. Substitution of Equation (18.1) into Equations (18.2)
leads to the following equations:

âi = 2

N

N−1∑
k=0

M−1∑
m=0

[am cos(2π fmtk) + bm sin(2π fmtk)] cos(2π fi tk),

b̂i = 2

N

N−1∑
k=0

M−1∑
m=0

[am cos(2π fmtk) + bm sin(2π fmtk)] sin(2π fi tk).

(18.3)

Equations (18.3) might also be rewritten as follows:

âi =
M−1∑
m=0

[
am

2

N

N−1∑
k=0

cos(2π fmtk) cos(2π fi tk)

+bm
2

N

N−1∑
k=0

sin(2π fmtk) cos(2π fi tk)

]
,

b̂i =
M−1∑
m=0

[
am

2

N

N−1∑
k=0

cos(2π fmtk) sin(2π fi tk)

+bm
2

N

N−1∑
k=0

sin(2π fmtk) sin(2π fi tk)

]
.

(18.4)
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These equations interpret the cross-interference coefficients characterizing in-
terference between the signal components introduced in Chapter 15. Therefore
expressions (18.4) can be given in the following form:

âi =
M−1∑
m=0

[am(Ai Cm) + bm(Ai Sm)], i = 0, M − 1,

b̂i =
M−1∑
m=0

[am(Bi Cm) + bm(Bi Sm)], i = 0, M − 1,

(18.5)

where the coefficients

(Ai Cm) = 2

N

N−1∑
k=0

cos(2π fmtk) cos(2π fi tk),

(Bi Cm) = 2

N

N−1∑
k=0

cos(2π fmtk) sin(2π fi tk),

(Ai Sm) = 2

N

N−1∑
k=0

sin(2π fmtk) cos(2π fi tk),

(Bi Sm) = 2

N

N−1∑
k=0

sin(2π fmtk) sin(2π fi tk).

(18.6)

These coefficients, reflecting the impact of the sampling imperfections, are
actually the weights of the errors that corrupt the estimation of a Fourier coefficient
ai (or bi ) at frequency fi and are related to the sampling nonuniformities of the
sine (or cosine) component present in the signal at frequency fm . Another set of
cross-interference coefficients, specifically the coefficients AmCi , BmCi , Am Si

and Bm Si , characterize interference acting in the inverse direction from the signal
component at frequency fi to the component at frequency fm . It follows from
Equations (18.6) that

Ai Cm = AmCi , Bi Cm = Am Si ,

Ai Sm = BmCi , Bi Sm = Bm Si .
(18.7)

Therefore it is not necessary to calculate the coefficients AmCi , BmCi , Am Si and
Bm Si on the basis of formulae similar to Equations (18.6), which is a great help.

18.1.2 Interpretation

To get a better idea of exactly how the sampling irregularities impact pro-
cessing of the nonuniformly sampled signals, Equations (18.6) defining the
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cross-interference coefficients could be converted and given as

Ai Cm = Dc + Vc, Bi Cm = Ds + Vs,

Ai Sm = Vs − Ds, Bi Sm = Dc − Vc,
(18.8)

where

Dc = 1

N

N−1∑
k=0

cos 2π( fi − fm)tk, Vc = 1

N

N−1∑
k=0

cos 2π( fi + fm)tk,

Ds = 1

N

N−1∑
k=0

sin 2π( fi − fm)tk, Vs = 1

N

N−1∑
k=0

sin 2π( fi + fm)tk .

(18.9)

Note that all the equations of (18.9) describe the mean values of nonuniformly
sampled sinusoid limited realizations [0, Θ] either for frequency ( fi − fm) or
( fi + fm) and phase angles ϕ = π/2 or ϕ = 0. This is a significant fact. It means
that the impact of random sampling irregularities on the essential properties of
randomly sampled composite signals can be revealed by studying estimation
specifics of the mean value of a sinusoid. The estimate m̂( f ) of the mean value
and the expected value of the squared estimate of the mean value E[m̂2( f )],
derived by Bilinskis and Mikelsons in 1992 for various types of random sam-
pling point processes, prove to be very informative and convenient for describing
effects caused by random sampling irregularities including those related to the
cross-intereference. The values of Dc, Ds, Vc and Vs characterize deviations from
the mean values of sine waves at frequency ( fi − fm) or ( fi + fm), which are due
to the nonuniformity of the used sampling point process. This means that the con-
sidered cross-interference coefficients are related in this way to these deviations
and are tied to specific realizations of a sampling point process.

18.1.3 Approximation

Consider the estimates first in a generalized form not related to specific sampling
conditions. Assume that an analog signal x(t) = sin(2π f t + ϕ) is randomly sam-
pled. It can then be represented in the following form:

x(tk) = sin(2π f tk + ϕ). (18.10)

The estimate of the mean value of this signal is given by

m̂( f ) = 1

N

N∑
k=1

sin(2π f tk + ϕ). (18.11)
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The expected value of m̂( f ) is obtained by averaging the right-hand side of
Equation (18.11) over the sampling instants {tk}. Then

E[m̂( f )] = 1

N

N∑
k=1

∫ ∞

−∞
sin(2π f t + ϕ)pk(t) dt (18.12)

where pk(t) is the probability density function of the time intervals [0, tk].
Thus the expected value of m̂( f ) depends both on the sinusoidal signal param-

eters and on the sampling point process used when sampling this signal. In the
case of periodic sampling with jitter,

pk(t) =
{

1/T for t ∈ [(k − 1)T, kT ],

0 for t /∈ [(k − 1)T, kT ].

Substituting this function into Equation (18.12) leads to

E[m̂(ω)] = 1

Θ

N∑
k=1

∫ ∞

(k−1)T
sin(ωt + ϕ) dt

= 1

Θ

∫ Θ

0
sin(ωt + ϕ) dt

= sin ωΘ/2

ωΘ/2
sin

(
ωΘ

2
+ ϕ

)
, (18.13)

where ω = 2π f and Θ is the time interval during which the signal is observed.
In this particular case, Θ = N T . This expected value of E[m̂( f )] of a sine-wave
signal sampled periodically with jitter is shown in Figure 18.1 as a function of the
normalized frequency ν = f Θ = f N T . The two diagrams (a) and (b) illustrate
the cases where ϕ = π/2 and ϕ = 0 respectively.

This function is directly tied to the expected values of Dc, Ds, Vc and Vs and
therefore also to the expected values of the cross-interference coefficients. While
in the wide frequency range the expected values of these coefficients are mean-
ingless as they are in a wide frequency range close to zero, the function describing
the expected values of them in the low-frequency range is quite useful. The point
is that the expected value of E[m̂( f )] represents a good approximation of the
cross-interference function there.

Basically there are two reasons why the mean value of a sinusoid might differ
from zero. Firstly, it happens if such a signal is observed and the mean value is
calculated for a time interval not equal to an integer number of its periods and,
secondly, the mentioned deviations occur as a result of nonuniform sampling.
Both of these factors often act simultaneously, causing the cross-interference
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Figure 18.1 Expected mean value of a sinusoidal signal sampled periodically with jitter as a
function of the normalized frequency

coefficient deviations from their expected mean values. The consequences of
cutting off some part of a signal period prevail in the low-frequency range. They
are much more powerful than the fluctuations due to nonuniform sampling, which
dominate in a wide higher frequency range. Apparently these deviations of both
types overlap.

Consider a signal component at frequency fi . Suppose that the Fourier coeffi-
cient ai is estimated in the presence of a cosine at frequency fm . The impact of
the frequency fm on the estimation of the coefficient ai is characterized by the
cross-interference coefficient Ai Cm . Figure 18.2 illustrates how this coefficient
depends on the distance between them under the given signal sampling condi-
tions. While the frequency fi is fixed in the indicated zero position, frequency fm

is varied and the value of Ai Cm obtained for N = 254 is displayed as a function
of fm . This diagram, although characterizing the cross-interference coefficient
Ai Cm , actually also reflects some typical tendencies observed at the estimation
of other cross-interference coefficients. It is shown in more detail in Figure 18.3.

Equation (18.13) describing the expected value E[m̂( f )] of a sine-wave signal
sampled periodically with jitter is used for approximation of the cross-interference
coefficient Ai Cm values in this case. Attention is drawn to two points. Firstly, this
approximation is applicable for a wide variety of sampling process parameters. For
example, although it has been calculated for the periodic sampling point process
with jitter, it also fits well the curve obtained in the illustrated case under the
conditions of additive sampling. Secondly, the suggested function approximates
the cross-interference coefficient well in the fm range close to frequency fi . How
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Figure 18.2 Dependence of the cross-interference coefficient Ai Cm on the distance between
considered frequencies fi and fm

close depends on the particular parameters of the used sampling point process.
Figure 18.4 illustrates this point.

18.2 Taking the Cross-interference into Account

When a spectral estimation process is described on the basis of the considered
cross-interference coefficients (18.6), a system of equations can be composed
showing the interference of all signal components. For example, in the case where
there are three frequencies, the estimation of the signal spectral parameters is
described by the following system of six linear equations:

â1 = a1(A1C1) + b1(A1S1) + a2(A1C2) + b2(A1S2) + a3(A1C3) + b3(A1S3),

b̂1 = a1(B1C1) + b1(B1S1) + a2(B1C2) + b2(B1S2) + a3(B1C3) + b3(B1S3),

â2 = a1(A2C1) + b1(A2S1) + a2(A2C2) + b2(A2S2) + a3(A2C3) + b3(A2S3),

b̂2 = a1(B2C1) + b1(B2S1) + a2(B2C2) + b2(B2S2) + a3(B2C3) + b3(B2S3),

â3 = a1(A3C1) + b1(A3S1) + a2(A3C2) + b2(A3S2) + a3(A3C3) + b3(A3S3),

b̂3 = a1(B3C1) + b1(B3S1) + a2(B3C2) + b2(B3S2) + a3(B3C3) + b3(B3S3).

(18.14)
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Figure 18.3 Actual and approximated values of the cross-interference coefficient Ai Cm :
(a) in the fm range close to frequency fi ; (b) in the fm range relatively far from frequency fi

Relationships (18.7) in this case lead to the substitutions given in Table 18.1. The
equation system (18.14) can then be rewritten in a form symmetric to the diagonal
and given as

â1 = a1(A1C1) + b1(A1S1) + a2(A1C2) + b2(A1S2) + a3(A1C3) + b3(A1S3),

b̂1 = a1(A1S1) + b1(B1S1) + a2(B1C2) + b2(B1S2) + a3(B1C3) + b3(B1S3),

â2 = a1(A1C2) + b1(B1C2) + a2(A2C2) + b2(A2S2) + a3(A2C3) + b3(A2S3),

b̂2 = a1(A1S2) + b1(B1S2) + a2(A2S2) + b2(B2S2) + a3(B2C3) + b3(B2S3),

â3 = a1(A1C3) + b1(B1C3) + a2(A2C3) + b2(B2C3) + a3(A3C3) + b3(A3S3),

b̂3 = a1(A1S3) + b1(B1S3) + a2(A2S3) + b2(B2S3) + a3(A3S3) + b3(B3S3).

(18.15)
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Table 18.1

Ai Cm = AmCi Ai Sm = BmCi Bi Cm = Am Si Bi Sm = Bm Si

i = 1 m = 1 A1C1 = A1C1 A1 S1 = B1C1 B1C1 = A1 S1 B1 S1 = B1 S1

m = 2 A1C2 = A2C1 A1 S2 = B2C1 B1C2 = A2 S1 B1 S2 = B2 S1

m = 3 A1C3 = A3C1 A1 S3 = B3C1 B1C3 = A3 S1 B1 S3 = B3 S1

i = 2 m = 1 A2C1 = A1C2 A2 S1 = B1C2 B2C1 = A1 S2 B2 S1 = B1 S2

m = 2 A2C2 = A2C2 A2 S2 = B2C2 B2C2 = A2 S2 B2 S2 = B2 S2

m = 3 A2C3 = A3C2 A2 S3 = B3C2 B2C3 = A3 S2 B2 S3 = B3 S2

i = 3 m = 1 A3C1 = A1C3 A3 S1 = B1C3 B3C1 = A1 S3 B3 S1 = B1 S3

m = 2 A3C2 = A2C3 A3 S2 = B2C3 B3C2 = A2 S3 B3 S2 = B2 S3

m = 3 A3C3 = A3C3 A3 S3 = B3C3 B3C3 = A3 S3 B3 S3 = B3 S3

Figure 18.4 Approximation errors for the cross-interference coefficient Ai Cm values obtained
in the case of additive sampling

In a general matrix form, this can be written as

p̂ = Cp, (18.16)

where

p̂ = [â1 b̂1 â2 b̂2 · · · âM b̂M ]T,

p = [a1 b1 a2 b2 . . . aM bM ]T
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and the coefficient matrix is given as

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

(A1C1) (A1S1) (A1C2) (A1S2) · · · (A1SM ) (A1SM )
(B1C1) (B1S1) (B1C2) (B1S2) · · · (B1CM ) (B1SM )
(A2C1) (A2S1) (A2C2) (A2S2) · · · (A2SM ) (A2SM )
(B2C1) (B2S1) (B2C2) (B2S2) · · · (B2CM ) (B2SM )

. . . . . . . . . . . . . . . . . . . . .

(Ai C1) (Ai S1) (Ai C2) (Ai S2) · · · (Ai CM ) (Ai SM )
(Bi C1) (Bi S1) (Bi C2) (Bi S2) · · · (Bi CM ) (Bi SM )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(18.17)

This matrix can be modified in accordance with the equation system version
(18.15). Then the number of coefficients to be obtained is significantly reduced.

Solution of the given linear equation system provides corrected spectral
parameter estimates. It can be written that

p = C−1 p̂ (18.18)

where C−1 = inv(C). Matrix (18.15) of the cross-interference coefficients is an
essential characteristic of the respective nonuniform sampling point process. Once
the pattern of sampling points is known, all coefficients of matrix C, as well as
inv(C), could be calculated. This means that when a signal is sampled in accor-
dance with such a predetermined nonuniform sampling point process, solving the
equation system (18.18) changes the estimation of the signal spectral estimates
to the specific pattern of sampling points. That significantly reduces the errors
due to the damaging cross-interference between the nonuniformly sampled signal
components.

18.3 Achievable Improvement and Typical Problems

To illustrate the achievable improvement in signal parameter estimation by using
the described concept of the cross-interference between nonuniformly sampled
signal components, an example will be considered. Suppose that a nonuniformly
sampled signal containing a number of components is decomposed and the
parameters of the signal components are estimated. It is sampled according to
the pseudo-randomized additive sampling model and τ/μ in this case is equal to
0.23. Fourier coefficients for the signal components are estimated on the basis
of the DFT and by adapting the spectrum analysis to the specific irregularities
of the used sampling point process. The true values of these Fourier coefficients
and their estimates are given in Table 18.2.

It can be seen from the data given in Table 18.2 that adapting signal spec-
trum analysis to specific nonuniformities of the sampling process provides for
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Table 18.2

DFT Estimates after Estimates after Estimates after
True values estimates iteration 1 iteration 2 iteration 4

ai bi ai bi ai bi ai bi ai bi

Frequencies
i f/ fs

1 0.3086 0 0.63 0.34 0.51 0.05 0.53 0.05 0.63 0 0.63
2 0.4629 1.41 0 1.63 −0.07 1.45 −0.02 1.39 0.06 1.41 0
3 0.7314 0 1.03 −0.24 1.28 −0.08 1.04 0 0.99 0 1.03
4 0.7600 2.92 0 3.39 0.08 2.96 −0.09 3 −0.09 2.92 0
5 0.8914 0.73 0 0.75 −0.22 0.69 0.18 0.7 −0.01 0.73 0
6 1.5714 0 3.32 0.36 3.38 0.09 3.37 0.05 3.21 0 3.32
7 1.6229 0 0.23 0.34 0.19 0.24 0.13 0.07 0.2 0 0.23
8 1.7419 0 2.44 0.33 2.52 0.2 2.52 0.11 2.5 0 2.44

significant improvement in signal parameter estimation accuracy. Spectrograms
illustrating the achieved positive effect are given in Figure 18.5.

As the given example demonstrates, adaptation of signal processing to the
nonuniformities of the sampling point processes used at digitization of the sig-
nal is very effective. Moreover, using this or some other still-not-discovered
approach to the described adaptation is a compulsory precondition for achiev-
ing high-performance processing of signals sampled nonuniformly. The specific
nonuniformities of the sampling process must be taken into account.

Of course there are some difficulties. For instance, the quality of such an
adaptation depends on the involved frequency estimation precision as the cross-
interference coefficient estimation is sensitive to the frequency estimation errors.
The required frequency resolution is evaluated later in Section 18.5. Then there are
problems related to the large quantity of cross-interference coefficients that char-
acterize particular sampling point processes. They have to be either pre-calculated
and kept in a memory or estimated in a real-time mode. Some approaches to the
resolution of this problem are discussed in Sections 18.5 and 18.6. The fact that
there is a simple approximation of the cross-interference coefficients, described
in Section 18.1, certainly helps. Last but not least, there is a problem with the
inevitable increase in the computational burden accompanying the introduction
of the discussed adaptation. The calculations to be made are also relatively time
consuming. An optional approach to implementation of the considered adapta-
tion, making it possible to reduce the time needed for the required calculations,
is based on exploitation of the parallel computing potential.

18.4 Parallel Computing Approach

The problem with direct adaptation of signal processing to the irregularities of the
involved sampling process is the fact that it requires solving a very large equation
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Figure 18.5 Illustration of the improvement in signal spectrum analysis achievable by adapt-
ing signal processing to the specific nonuniformities of the used sampling point process:
(a) results of the direct application of the DFT; (b), (c) spectrograms obtained in the case
of adapting after the first and third iterations respectively
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system requiring operations with large dimension matrices. However, analysis of
this matter shows that in many cases it is possible to subdivide this task into a
number of subtasks that could all be resolved in parallel. This parallel computing
approach is based on the following procedures:

1. The signal sample value sequence is subdivided into a number of periodic
pseudo-randomly decimated subsequences.

2. Adapting the calculation of particular sets of Fourier coefficient estimates to
the sampling nonuniformities for each signal sample value subset is performed
separately and in parallel.

3. The obtained particular sets of Fourier coefficient estimates are aggregated in
order to obtain the alias-free spectral estimates for the whole input signal.

Figure 18.6 illustrates this parallel computing approach to adapting signal pro-
cessing to the irregularities of sampling. All these stages of parallel processing
will be considered in some detail.

18.4.1 Decomposition of the Signal Sample Value Sequence

To rearrange the computing process as a parallel one, the input signal sample
value sequence has to be decomposed. Suppose that the input signal is sampled
according to the pseudo-randomized additive sampling model. Then subdividing
the obtained signal sample value sequences into periodic pseudo-randomly deci-
mated subsequences can be performed as described in Section 9.2. As explained
there, it is essential to avoid fuzzy aliasing. To achieve that, the used additive
nonuniform sampling instant process is decomposed into a number of periodic
sampling pulse processes with pseudo-randomly skipped sampling instants. The
sampling instant sequence is then considered as consisting of z periodic phase-
shifted processes. All of these periodic processes have equal periods T and each
of them is phase-shifted by a phase increment T/z. The time period T should
be equal to or longer than the period of the highest sampling frequency for the
ADC to be used. Each sampling instant in the initial sampling pulse sequence is
marked as belonging to a specific periodic sampling point process.

Such subdivision of the total sampling pulse process into components, orga-
nized as shown in Figure 18.6, improves the quality of signal processing sub-
stantially. Firstly, aliasing for the periodic sampling pulse streams with pseudo-
random skips is well defined. Secondly, these well-defined aliases could be taken
out at spectral estimations by aggregating data obtained by calculating spectral
estimates for all particular data streams.
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Figure 18.7 Detailed block diagram of the functional unit for adapting signal spectrum
estimations to the specific sampling nonuniformities of a signal sample value subset

To realize how this could be done, the impact of phase-shifting of the sampling
pulse sequences on the aliasing conditions has to be taken into account. The point
is that conditions for frequency overlapping or aliasing essentially depend not
only on the sampling frequency but also on the sampling phase. Therefore the
estimates of signal components in the frequency domain differ depending on the
phase shift of the corresponding periodic sampling instant process. The fact that
the phase angle of the signal, downconverted due to aliasing, depends on the
phase of the sampling point process is exploited in order to eliminate the aliases
at the stage of aggregating the data. The particular z sets of the Fourier coefficient
estimates, obtained by processing the signal sample value z subsets, are used to
calculate the final alias-free characteristics of the input signal spectrum.

18.4.2 Adapting the Estimation for Each Signal Sample
Value Subset

Adapting the estimation of the Fourier coefficients for each signal sample value
subset is performed as described in Section 18.2. Once the pattern of the missing
sampling points determined by the pseudo-random number generator used to form
the sampling pulse sequence is known, all coefficients of matrix C are calculated
for each signal sample value subset. They are then used to eliminate the errors
due to the described cross-interference caused by sampling point skipping.

In general, in this approach to the considered adaptation process, the number
of signal components might exceed the number of signal sample values of a
particular periodic sampling subset. Then an iterative procedure has to be used to
adapt the calculation of particular sets of Fourier coefficient estimates to sampling
nonuniformities for each signal sample value subset, as shown in Figure 18.7.

Apparently the differences between the true and estimated values of Fourier
coefficients are errors. While there are various error components caused by
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quantization errors, external noise, etc., the errors due to the sampling nonuni-
formities considered here are dominating. The error of estimating the Fourier
coefficients at a frequency i is proportional to the amplitude of the interfer-
ing quadratic components at the frequency j multiplied by the corresponding
cross-interference coefficient. In general, it might be written that these errors of
estimating coefficients ai and bi depend on the amplitudes of all other quadratic
components a j and b j of the signal at their respective frequencies f j :

εi j (ai , bi ) =
{

Ai C j a j , Ai S j a j

Bi C j b j , Bi S j b j

}
. (18.19)

However, the true values of ai and bi are not known. Only their DFT estimates
âi and b̂i are given. Nevertheless, they make it possible to calculate the approxi-
mation of the estimation errors:

ε
(1)
i j (ai , bi ) =

{
Ai C j â j , Ai S j â j

Bi C j b̂ j , Bi S j b̂ j

}
. (18.20)

These errors are subtracted from the DFT estimates âi and b̂i and the first set of
the improved estimates a(1)

i and b(1)
i are obtained as shown in Figure 18.7.

For the next iteration step, the estimation error

ε
(2)
i j (ai , bi ) =

{
Ai C j a

(1)
j , Ai S j a

(1)
j

Bi C j b
(1)
j , Bi S j b

(1)
j

}
(18.21)

is calculated and then the iteration is made. This iterative process is continued for
a number of times. For the (k + 1)th iteration step,

ε
(k+1)
i j (ai , bi ) =

{
Ai C j a

(k)
j , Ai S j a

(k)
j

Bi C j b
(k)
j , Bi S j b

(k)
j

}
, (18.22)

where the improved estimates a(k)
i and b(k)

i are obtained at the previous kth iteration
step. The obtained estimates of the Fourier coefficients for each and all sampling
pulse substreams are adapted to the sampling nonuniformities in this way. They are
significantly more precise than the initially used raw estimates obtained directly
as a result of application of the DFT. The improved estimates represent data for
further signal processing.

18.4.3 Data Aggregation

Data representing estimates of Fourier coefficients, calculated in the frequency
range 0–0.5 fs for each multitude of signal sample values under conditions of
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100 % aliasing, are to be aggregated to obtain alias-free estimates of Fourier
coefficients in the whole frequency range defined by the phase-shifted value of
the sampling pulse substreams.

Without loss of the generality, the specific equations are given below that
are used for spectral estimations in the case where the common sampling point
stream is subdivided into four substreams. The phase shift between separate sam-
pling pulse substreams is then equal to 1

4 T . Therefore the highest frequency
of the signal might exceed two times the frequency of the periodic sampling
point processes used. After the signal sample values are subdivided into four
subsets, each of them is processed separately in the Nyquist frequency band
(0–0.5 fs). Each of the signal basic frequencies f0 within the frequency band
(0–0.5 fs) has three potentially aliasing frequencies f1, f2 and f3 respectively.
Spectral estimations of the signal components in the whole frequency range
(0–2 fs) have to be made. Accuracy of the estimation of the Fourier coefficients
for all signal components in the whole frequency range depends on the accuracy
of estimating of a[m]

0 and b[m]
0 for all four (m = 0, 1, 2, 3) sampling subroutines.

The values of a[0]
i , b[0]

i , a[1]
i , b[1]

i , a[2]
i , b[2]

i and a[3]
i , b[3]

i are calculated by applying
the DFT procedure and then these estimates are improved by adapting them to the
specific sampling nonuniformities, as explained above. After that, the obtained
data have to be used to obtain the improved estimates of the signal components
in the whole bandwidth.

The following system of equations is used:

a( fi ) = 1
4

(
a[0]

i + a[1]
i + a[2]

i + a[3]
i

)
,

b( fi ) = 1
4

(
b[0]

i + b[1]
i + b[2]

i + b[3]
i

)
,

a( fs − fi ) = 1
4

(
a[0]

i + b[1]
i − a[2]

i − b[3]
i

)
,

b( fs − fi ) = 1
4

(−b[0]
i + a[1]

i + b[2]
i − a[3]

i

)
,

(18.23)
a( fs + fi ) = 1

4

(
a[0]

i − b[1]
i − a[2]

i + b[3]
i

)
,

b( fs + fi ) = 1
4

(
b[0]

i + a[1]
i − b[2]

i − a[3]
i

)
,

a(2 fs − fi ) = 1
4

(
a[0]

i − a[1]
i + a[2]

i − a[3]
i

)
,

b(2 fs − fi ) = 1
4

(−b[0]
i + b[1]

i − b[2]
i + b[3]

i

)
.

After that the Fourier coefficients of all signal components at frequencies within
the frequency bands (0−0.5 fs), (0.5 fs− fs), ( fs−1.5 fs) and (1.5 fs−2 fs) are ex-
plicitly expressed through the amplitudes of the quadratic components of the sine
functions filtered out within the frequency range (0−0.5 fs).
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18.5 Mapping of the Cross-interference Coefficients

The first step to be undertaken for adapting digital signal processing to the nonuni-
formity of a given sampling point sequence should apparently be mapping of
the cross-interference coefficients linking them to this specific sampling point
sequence. Matrix (18.13) has to be composed for that. However, it is not easy
to fulfil this task. A lot of calculations have to be carried out and there are
some questions that have to be answered before a start can be made. One of
the most essential is the question: what is the required dimension of this ma-
trix? The answer obviously depends on the frequency of the step-size � f on
which these calculations need to be based. The next question arising is: how large
should this step-size be? The answer to this question is not as obvious as it may
seem.

18.5.1 Required Frequency Resolution

The frequency resolution � f usually used in a spectrum analysis of a signal is
inversely proportional to the time interval Θ during which the signal has been
observed. This step-size � f more often than not proves to be too large for map-
ping the cross-interference coefficients. Adaptation of signal processing to the
nonuniformities of the used sampling point process is sensitive to deviations
from signal frequencies. Therefore to achieve acceptable results a frequency res-
olution higher than � f = 1/Θ typically has to be ensured. The exact required
frequency resolution depends on a number of factors that have to be taken into
account.

The errors in estimating Ai Cm sharply increase when the distance between the
frequencies fi and fm (for a particular position of frequency fi ) becomes small.
That happens in cases of high-resolution DFTs where some signal components are
located very close to each other. Then their frequencies need to be estimated with
very high precision. How the error �Ai Cm in estimating the cross-interference
coefficient Ai Cm depends on the error in estimating the frequency fi is shown in
Figure 18.8.

Suppose that the frequency fi of a signal component is estimated with an
error equal to 0.2� f . This error then leads to obtaining incorrect values of the
corresponding cross-interference coefficient Ai Cm . The dependence of the error
in estimating this coefficient on the distance between considered frequencies fi

and fm for a particular position of frequency fi is illustrated by Figure 18.9.
Note that these diagrams have been obtained by processing N = 256 sig-

nal sample values. The error in estimating the cross-interference coefficient is less
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Figure 18.8 Illustration of how the error in estimating the cross-interference coefficient Ai Cm

depends on the error in estimating the frequency fi

Figure 18.9 Dependence of the maximal error in estimating the cross-interference coefficient
Ai Cm on the distance between the frequencies fi and fm
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sensitive to error than in estimating the frequency fi in the cases where more
signal samples are processed.

18.5.2 Coefficient Mapping Versus On-line Calculations

As each realization of a sampling point process is exclusively characterized by
a matrix of cross-interference coefficients (18.17), it is tempting to compose and
use such a matrix. However, the size of it represents a problem. So far, to simplify
this discussion, various conditions for estimating just one of the cross-interference
coefficients have been considered. This is acceptable as basically the same conclu-
sions would be made if estimating other cross-interference coefficients is studied
as well. At this stage of the analysis of conditions for adapting signal processing
to the sampling nonuniformities, it is clear that signal component frequencies
for successful adapation typically need to be estimated with errors not exceeding
0.1−0.5� f . Therefore the size of matrix (18.17), containing four sets of four dif-
ferent cross-interference coefficients for a frequency band from 0 to M� f , would
be up to 10M × 10M × 4. Although it is possible to have and use a memory of
this size, it certainly is large.

The size of the memory used to store information about the nonuniformities
of the sampling process could be significantly reduced if the mean values of
nonuniformly sampled sinusoids for variable frequencies are calculated and kept
rather than the values of the cross-interference coefficients. As these coefficients
could be easily calculated on the basis of m( f ) values and Equations (18.8)
and (18.9), it makes sense to store them in the memory and then use them for
simple calculations of the cross-interference coefficients as the mean values of
specifically sampled sinusoids at phase angles ϕ = π2 and ϕ = 0. This approach
reduces the required size of the memory two times. Although this reduction is
significant, the dimensions of the memory even after such a reduction might
actually be considered as excessive.

Further reduction of the size of this memory could be achieved on the basis of
a trade-off between the complications related to the large size and complications
caused by additional on-line calculations.
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Estimation of Object Parameters

To achieve the best results, algorithms for processing digital signals should take
into account the specific features of the digital signals to be processed. These
features to a large extent depend on the chosen and used sampling and quantizing
methods. The latter, in turn, depend on the given task to be solved. Thus the task
actually dictates the requirements that have to be satisfied when choosing and
using signal digitizing and processing techniques.

In the previous chapters an attempt has been made to show that signals could be
digitized and processed in various ways and that it is essential to use appropriate
methods and techniques. This helps to meet requirements of many different ap-
plications and the discussed methods for signal digitizing and processing actually
cover a wide application field where good results can be achieved. On the other
hand, in some areas it is easier to be successful than in others. One such applica-
tion area where it is relatively easy to get good results at solving challenging tasks
is considered in this chapter. This is the area where signal processing is carried
out to identify objects and to evaluate their parameters by analysing the signals
reflecting the reaction of these objects to some excitation signals. The parameters
and characteristics of the excitation signals are usually known. Access to this
valuable information makes it easier to keep algorithms relatively simple and to
achieve high performance.

19.1 Measuring the Frequency Response of Objects

Identification of objects by observing and analysis of their reaction to specific
test signals is a task often met. Many kinds of signal processing systems fulfil

Digital Alias-free Signal Processing I. Bilinskis
C© 2007 John Wiley & Sons, Ltd
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Figure 19.1 Block diagrams of systems for measuring the frequency response of objects.
(a) prototype; (b) improved version

tasks in this category. The existing systems of this type in many cases are good
enough. Nevertheless, with the advancement of high technologies, the require-
ments are growing in this area. The nontraditional signal processing techniques
discussed in this book might prove to be beneficial for achieving significant
widening of the frequency range where these systems could operate, simplifica-
tion of the system designs and/or increasing their operational speed. Simplified
block diagrams of basic and suggested typical systems of this kind are given in
Figure 19.1.

The basic structure of the most popular system for measuring the frequency
response, often considered as a network analyser and shown in Figure 19.1(a), is
well known. Typically, it contains a variable frequency single tone generator and
two vector voltmeters connected to the input and output of the electronic device
to be tested by measuring its frequency response and other derivative parameters.
The frequency response is measured by changing the frequency of the generated
input signal step by step over the whole frequency range of interest. At each
frequency setting, amplitudes and phase angles of the signals at the input and
output of the device under test are measured and the data obtained in this way are
used to calculate all needed parameters.

An improved version of this type of system is given in Figure 19.1(b). The
structure and performance of it differs in the following ways:
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1. A multifrequency signal source is used to speed up the whole measurement
process by avoiding a repetition of the measurement process step by step for
each separate frequency.

2. A spectrum analyser rather than a vector voltmeter is used for high-speed
estimation of the frequency response of the electronic device being tested by
processing a single shot of the output signal.

3. The multifrequency signal source generates the test signal using specified
parameters, including the phase angles for all frequency components, leading
to the possibility of using a single rather than two spectrum analysers and thus
reducing the complexity and production costs of the system.

4. Pseudo-randomized sampling techniques are used to achieve and provide for a
high-resolution vector spectrum analysis of wideband signals in the frequency
range up to a few GHz.

While all the elements of the system determine its performance, the multifre-
quency test signal generator plays a special role. In an ideal case, the generated
excitation signal contains discrete frequencies covering the required density for
the whole frequency range within which the object behaviour is to be observed.
It is not easy to cover all of it at one go if this frequency range is indeed wide. It
is more realistic to generate multifrequency test signals covering some part of the
whole frequency range of interest. Then the test measurement procedure has to
be repeated several times. Obviously, much depends on the frequency band that
could be covered by a single realization of the test signal.

There is some risk when just one channel spectrum analysis is used. Then most
of the responsibility for phase-locking of the generated frequency components of
the excitation signal in the predetermined positions is put on the excitation signal
synthesizer. There may also be some hidden problems as various impedances
may impact on the measurement accuracy. It is necessary to check whether this
effect can be kept under control and whether one spectrum analyser measurement
scheme can be applied in all cases.

All these considerations show that the performance of the whole test system
depends to a large degree on the capabilities of the multifrequency test signal
synthesizer. An approach to such signal synthesis, based on exploitation of the
alias-free signal sampling techniques, is discussed in the next section.

19.2 Test Signal Synthesis from a Sparsely Periodically
Sampled Basis Function

The task of analog signal synthesis from discrete data comes up frequently and the
ways used to resolve it by using a DAC are well known. However, that is true only if
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Figure 19.2 Generalized structure for continuous signal x(t) synthesis from digital data

and when the classical requirements are met, specifically when the corresponding
discrete data block to be transformed into an analog signal is actually represented
by a sample value sequence taken from a certain basis function under conditions
where at least two sample values are taken in the time interval equal to the period
of the highest frequency present in this function. Then no aliasing takes place
and there are no problems. Therefore this is the preferred way to perform analog
signal synthesis whenever the mentioned conditions can be satisfied. However, the
operational speed of DACs is limited and, consequently, the highest frequency
of the signal to be synthesized in this way cannot exceed a certain boundary
determined by the switching speed of the sufficiently high bit rate DAC available.
The accumulated experience of successful suppression of various negative effects
due to aliasing suggests that it is worth looking for a way to avoid this synthesis
limitation.

The generalized model of the continuous signal x(t) synthesis from digital
data is given in Figure 19.2. To obtain a continuous or analog signal x(t), a
related basis function x0(t) is formed. Typically that is done by a computer,
forming it as a sum of a finite number of sinusoidal components. As parameters
(frequencies, amplitudes and phase angles) depend in some way on the analog
signal to be synthesized, their values, as well as the sampling frequency fs, should
be calculated on the basis of the algorithm used for synthesis. The approach to such
analog signal synthesis will be discussed further. At this stage it should simply be
noted that these signal component parameters are fixed and, consequently, sample
values x0(tn), n = 1, 2, . . . , N , of the basis function can be calculated and stored
in a memory. These digital values are than passed at the sampling rate fs to a
DAC performing their conversion into a kind of analog signal, which changes its
values in an idealized stepwise way, as shown in Figure 19.3. The synthesized
signal is taken off the output of the filter.

It can be seen from the diagrams in Figure 19.3 that the values of the basis
function change continuously while the DAC output signal remains at some level
for relatively long time intervals, which are longer than the period of the basis
function. The DAC output signal certainly does not look similar to the given basis
function. The question arises as to what kind of properties this staircase signal
prossesses and whether it is possible to obtain such a signal with the required
properties.
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Figure 19.3 Illustration of analog signal synthesis in the case of periodic sampling; (a) basis
function x0(t) with its sample values x0(tn) indicated; (b) signal at the output of the DAC

The spectrum of the DAC output signal is obviously unlimited, even in the
case of the low-frequency basis function x0(t). On the other hand, this spectrum
clearly depends both on the basis function and the sampling frequency fs. This
relationship determines the properties of the synthesized signal and analysis of it
should provide the answer to the question of how feasible it is to achieve the pos-
sibility of developing a high-performance signal synthesizer. To find the answer
to the question of how feasible it is to synthesize analog signals under conditions
where the requirements of the sampling theorem are not met, it is necessary to
establish how feasible it is to transfer the frequencies of the basis function to the
DAC output signal, even when those frequencies exceed the sampling rate, and
whether it is possible to synthesize a signal having the required frequencies not
corrupted by aliases.

In order to get answers to these and other similar questions, there will be a
focus on the estimation of the spectra of the stepwise DAC output signal that
clearly depends on the sampled basis function and on sampling conditions.

19.2.1 Synthesis in the Case of Monoharmonic Basis

Assume that the basis function x0(t) is monoharmonic:

x0(t) = A0 sin(2π f0t + ϕ0). (19.1)
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It follows from the explained synthesis approach that the DAC output signal is
given as

x(t) = x0(tn), if tn ≤ t < tn+1, −∞ < n < ∞. (19.2)

As sampling is periodic, tn = nμ, where μ = 1/ fs is the sampling time interval.
The spectrum of the signal x(t) in this case can be defined in the following way:

Sx ( f ) = lim
N→∞

2

(2N + 1) μ

N∑
n=−N

∫ (n+1)μ

nμ

A0 sin (2π f0nμ + ϕ0) e−j2π f t dt.

(19.3)

Consider the real ax ( f ) and the imaginary bx ( f ) parts of this Fourier transform
separately. Then

ax ( f ) = lim
N→∞

2

(2N + 1) μ

N∑
n=−N

A0 sin(2π f0nμ + ϕ0)
∫ (n+1)μ

nμ

cos 2π f t dt.

= lim
N→∞

A0 sinc(π f μ)

2N + 1

N∑
n=−N

{sin[2π( f0 − f )nμ − π f μ + ϕ0]

+ sin[2π( f0 + f )nμ + π f μ + ϕ0]}

= lim
N→∞

A0 sinc(π f μ)

{
sinc[π( f0 − f )Θ]

sinc[π( f0 − f )μ]
sin(ϕ0 − π f μ)

+ sinc[π( f0 + f )Θ]

sinc[π( f0 + f )μ]
sin(ϕ0 + π f μ)

}
, (19.4)

where Θ = (2N + 1) μ and sinc(x) = sin x/x . The coefficient bx ( f ) is obtained
in a similar way:

bx ( f ) = lim
N→∞

2

(2N + 1) μ

N∑
n=−N

A0 sin(2π f0nμ + ϕ0)
∫ (n+1)μ

nμ

sin 2π f t dt

= lim
N→∞

A0 sinc(π f μ)

2N + 1

N∑
n=−N

{cos[2π( f0 − f )nμ − π f μ + ϕ0]

− cos[2π( f0 + f )nμ + π f μ + ϕ0]}

= lim
N→∞

A0 sinc(π f μ)

{
sinc[π( f0 − f )Θ]

sinc[π( f0 − f )μ]
cos(ϕ0 − π f μ)

− sinc[π( f0 + f )Θ]

sinc[π( f0 + f )μ]
cos(ϕ0 + π f μ)

}
. (19.5)
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The transition N → ∞ is performed in Equations (19.4) and (19.5). Then

ax ( f ) =

⎧⎪⎪⎨
⎪⎪⎩

A0 sinc(π f μ) sin(ϕ0 − π f μ), if 0 < f = f0 ± r fs,

A0 sinc(π f μ) sin(ϕ0 + π f μ), if 0 < f = − f0 ± r fs,

0, if 0 < f �= ± f0 ± r f,

(19.6)

bx ( f ) =

⎧⎪⎪⎨
⎪⎪⎩

A0 sin c(π f μ) cos (ϕ0 − π f μ) , if 0 < f = f0 ± r fs,

−A0 sinc(π f μ) cos (ϕ0 + π f μ) , if 0 < f = − f0 ± r fs,

0, if 0 < f �= ± f0 ± r fs,

(19.7)

where r = 0, 1, 2, 3, . . . .
The Fourier transform module Ax ( f ), actually representing the amplitude of

the signal x(t) at the frequency f, is derived from Equations (19.6) and (19.7)
as

Ax ( f ) =
⎧⎨
⎩

A0|sinc(π f μ)|, if 0 < f = ± f0 ± r fs,

0, if 0 < f �= ± f0 ± r fs.
(19.8)

It follows from Equation (19.8) that the signal x(t) has discrete components: it
contains the component at frequency f0 and all aliasing frequencies corresponding
to it and to the sampling frequency fs. Equation (19.8) defines the amplitudes of
these components. They decline in accordance with |sinc(π f μ)|. The component
at the lowest frequency from the frequency row 0 < f = ± f0 ± r fs, rather than
the component at the frequency f0, has the maximal value amplitude. However, it
should be noted that, in the case of periodic sampling, any frequency from the row
0 < f = ± f0 ± r fs, r = 0, 1, 2, . . . , is represented by one and the same data set
at the time instants tn , n = 1, 2, . . . . It follows from Equations (19.6) and (19.7)
that the phase spectrum of the DAC output signal is given as

ϕx ( f )=

⎧⎪⎪⎨
⎪⎪⎩

ϕ0 − π f/ fs = ϕ0 − π f0/ fs ± πr, if 0< f = f0 ± r fs,

π − ϕ0 − π f/ fs =−ϕ0 + π f0/ fs + π(1 ∓ r ), if 0< f = − f0 ± r fs,

0, if 0< f �=± f0 ± r fs.

(19.9)
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19.2.2 Synthesis in the Case of Multifrequency Basis

Consider the case where the basis function x0(t) is actually a sum of a certain
number of sinusoidal components:

x0(t) =
K∑

k=1

Ak sin(2π fk t + ϕk). (19.10)

As the Fourier transform is a linear operation, the Fourier coefficients ax ( f ) and
bx ( f ) for the DAC output signal x(t) will differ from zero only at frequencies
fk, k = 1, 2, . . . , and at all corresponding aliasing frequencies:

0 < fkr = ± fk ± r fs, k = 1, 2, . . . , K ; r = 0, 1, 2, . . . . (19.11)

Therefore the described synthesis transforms every sinusoidal component of the
basis function into an infinite sum of sinusoidal components at frequencies defined
by (19.11) and with amplitudes and phase angles determined by Equation (19.8)
and (19.9) if f0, A0 and ϕ0 are substituted by fk, Ak and ϕk respectively. The
component at the zero frequency or at frequencies equal to an integer number
of fs, i.e. if fk = r fs, r = 0, 1, 2, . . . , represents an exception. In this case, all
discrete values of that component are the same and it is accepted that this is a
constant level and, consequently, the DAC output signal is also constant. Therefore
if the basis function contains a component at any of the frequencies fk = r fs, r =
0, 1, 2, . . . , it transforms into a constant level equal to Ak sin ϕk .

All of the basis function frequencies clearly have to be chosen so that they do not
overlap the frequencies of the rest of the basis function components or their aliases.
Therefore any frequency of a basis function component fm, m = 0, 1, 2, . . . , K ,

has to meet the following condition:

fm

⋂
⎛
⎜⎜⎝

K⋃
k=1
k �=m

∞⋃
r=1

fkr

⎞
⎟⎟⎠ = φ, m = 1, 2, . . . , K , (19.12)

where φ is an empty multitude while fkr is determined by (19.11). The amplitude
spectrum of the DAC output signal, for the case where the basis function is given
by

x0(t) =
5∑

k=1

sin

[
2π

(2k − 1) fs

20
t + ϕk

]
, (19.13)



JWBK152-19 JWBK152-Bilinskis March 6, 2007 21:23

Test Signal Synthesis from a Nonuniformly Sampled Basis Function 375

Figure 19.4 Amplitude spectrum of the DAC output signal in the case of a multifrequency
basis function

is shown in Figure 19.4. The spectrum corresponds to the normalized frequency
fs = 1.

It can be seen from this analysis that when the frequencies of the basis func-
tion components cover the Nyquist range uniformly, the components of the DAC
output signal cover uniformly the whole frequency axis. However, their ampli-
tudes decline rather rapidly. If the basis function is represented by a sum of
sinusoidal components, the DAC output signal has a discrete spectrum. Each of
the basis function components at the frequency fk , if fk �= r fs, r = 0, 1, 2, . . . ,

is transformed into a sum of an infinite number of sinusoidal components
with precisely predetermined frequencies, amplitudes and phase angles. Even
when the basis function is relatively simple, the obtained synthesized sig-
nal can have a rich spectrum with precisely predetermined parameters of all
components.

19.3 Test Signal Synthesis from a Nonuniformly Sampled
Basis Function

Consider the case where a monoharmonic basis function x0(t) is sampled nonuni-
formly. The idealized DAC output signal x(t) formed in this case is shown in
Figure 19.5.
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Figure 19.5 Illustration of forming the DAC output signal in the case of nonuniform sampling
of the basis function

The basis function x0(t) with its sampled values marked at time instants tk are
shown in Figure 19.5 by a continuous line while the signal x(t) at the DAC output
is given by a dashed line. The aim is to find what are the properties of the analog
signal obtained in this case and how they differ from the properties of a similar
signal formed in the case of sparse periodic sampling.

19.3.1 Spectrum of the Synthesized Signal

The spectrum of the analog signal x(t) at the DAC output in this case is defined
as follows:

Sx ( f ) = lim
N→∞

2

(2N + 1)μ

N∑
n=−N

A0 sin(2π f0tn + ϕ0)
∫ tn+1

tn
e−j2π f t dt.

(19.14)
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The notation μn = tn+1 − tn is introduced. The Fourier coefficient can be defined
as

ax ( f ) = lim
N→∞

2A0

(2N + 1)μ

N∑
n=−N

sin(2π f0tn + ϕ0)
∫ tn+μn

tn
cos 2π f dt

= lim
N→∞

A0

(2N + 1)2π f μ

N∑
n=−N

{cos[2π( f − f0)tn + 2π f μ − ϕ0]

− cos[2π( f0 + f )tn + 2π f μ + φ0] − cos[2π( f0 − f )tn − ϕ0]

+ cos[2π( f0 + f )tn + φ0]}. (19.15)

Suppose that the sampling intervals are formed as follows:

μn = μ + rnδ,

where the mean value of these intervals is μ = Mδ, M is a positive integer, δ is
the digit for the intervals mn, rn = 0, ±1, ±2, . . . ,±m, and f0 < 1

2δ. Therefore
there are (2m + 1) various intervals mn. It is assumed that all of them are repeated
for an equal number of times. The time instant tn is defined as

tn = (N + n + 1)μ +
N+n+1∑

i=1

riδ =
[

M(N + n + 1) +
N+n+1∑

i=1

ri

]
δ. (19.16)

This kind of sampling point process is statistically equivalent to a periodic point
stream with random skips obtained in the case where the sampling frequency is
equal to 1/δ. From Equation (19.15), by taking into account (19.16), it is found
that

ax ( f ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

lim
x→∞

A0

(2N + 1)2π (i/δ + f0)μ

N∑
n=−N

[cos(2π f0μn − ϕ0) − cos ϕ0]

if f = i/δ + f0, i = 0, 1, 2, . . . ,

lim
x→∞

A0

(2N + 1)2π (i/δ − f0)μ

N∑
n=−N

[cos ϕ0 − cos(2π f0μn − ϕ0)]

if f = i/δ − f0, i = 1, 2, . . . ,

0 for other f.
(19.17)
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By taking into account the properties of the considered sampling point process,
the following sum can be calculated:

N∑
n=−N

cos(2π f0μn − ϕ0) = 2N + 1

2m + 1

m∑
r=−m

cos[2π f0(μ + rδ) − ϕ]

= (2N + 1) cos(2π f0μ − ϕ0) sin π f0δ(2m + 1)

(2m + 1) sin π f0δ

= (2N + 1)
sinc[π f0δ(2m + 1)]

sinc(π f0δ)
cos(2π f0μ − ϕ0)

(19.18)

Substitution of Equation (19.18) into Equations (19.17) yields

ax ( f ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

± A0

2π(i/δ ± f0)μ

{
sinc[π f0δ(2m + 1)]

sinc(π f0δ)
cos(2π f0μ − ϕ0) − cos ϕ0

}

if f = i/δ + f0, i = 0, 1, 2, . . . ,

0 for other f.

(19.19)

The second Fourier coefficient bx ( f ) is obtained in a similar way:

bx ( f ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

A0

2π(i/δ ± f0)μ

{
sinc[π f0δ(2m + 1)]

sinc(π f0δ)
sin(2π f0μ − ϕ0) − sin ϕ0

}

if f = i/δ + f0, i = 0, 1, 2, . . . ,

0 for other f.

(19.20)

Equations (19.19) and (19.20) lead to the module of the Fourier transform:

Ax ( f )=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

A0

2π(i/δ ± f0)μ

(
1 +

{
sinc[π f0δ(2m + 1)]

sinc(π f0δ)

}2

− 2
sinc[π f0δ(2m + 1)]

sinc(π f0δ)
cos 2π f0μ

)1/2

if f = 1/δ ± f0, i = 0, 1, 2, . . . ,

0 for other f.

(19.21)

It can be seen from Equations (19.21) that the analog signal has a discrete
component at frequency f0 of the basis function and also has all aliasing frequen-
cies corresponding to frequencies f0 and 1/δ. Now it should be checked whether
there are only discrete components present in the synthesized analog signal x(t)
or whether there are also additional noisy components with a continuous spec-
trum. The frequencies of the discrete components in increasing order are the
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following:

{ f0, 1/δ − f0, 1/δ + f0, 2/δ − f0, 2/δ + f0, . . .} . (19.22)

Their power, on the basis of Equations (19.21), can be calculated as

Pxk = A2
x ( fk)

2
, (19.23)

where fk is the kth frequency of the sequence (19.22).
If the pseudo-random sampling process is properly arranged, the power of the

aliasing components is usually negligible. Therefore, almost all of the total power
of all signal x(t) discrete components is concentrated within the first component
at frequency f0. However, the signal x(t) contains a component with a continuous
spectrum, in other words, noise.

19.3.2 Multifrequency Signal Synthesis

The properties will be established of the DAC output signal in the case of a
nonuniformly sampled basis function represented by a sum of a certain num-
ber of sinusoidal components, when the basis function is described by Equation
(19.13) at K > 1. It has been already shown that when the basis function is
sampled nonuniformly with the smallest time digit δ, any sinusoidal component
of it transforms into a sum of an infinite number of sinusoidal components with
given frequencies, amplitudes and phases, plus noise due to the cross-interference
caused by sampling irregularities. If the value of the time digit is small enough,
the aliases relative to the frequency 1/δ could be neglected as their amplitudes are
very small. Therefore, in all practically significant cases, it could be assumed that
any component of the basis function is transformed into a sinusoidal component
at the same frequency and noise. The amplitude and phase angle of this discrete
component in the DAC output signal is determined by Equations (19.19) and
(19.20) if f0, A0 and ϕ0 are replaced by fk, Ak and ϕk, respectively. The noise
has declining spectral density and its power is equal to (A2

k − A2
xk)/2, where Axk

is the amplitude of the DAC output signal discrete component.
Thus, when the basis function x0(t) is a sum of several sinusoidal components,

the obtained analog signal at the DAC output, due to the linearity of the Fourier
transforms, will have components at all those frequencies with precisely prede-
termined amplitudes and phases (defined by Equations (19.19) and (19.20)) in a
mixture with the cross-interference induced noise. The amplitude spectrum of the
DAC output signal, corresponding to the nonuniformly sampled multifrequency
basis function, is given in Figure 19.6(a) for the same basis function (19.13)



JWBK152-19 JWBK152-Bilinskis March 6, 2007 21:23

380 Estimation of Object Parameters

Figure 19.6 Amplitude spectra of the DAC output signal in the case of nonuniformly sampled
multifrequency basis function: (a) in the case of basis function (19.13); (b) in the case of basis
function (19.24)

used before as an example at the discussion of the periodic sampling case. The
amplitude spectrum of the analog signal at the output of the DAC, shown in Fig-
ure 19.6(b), corresponds to the case of nonuniform sampling of the following
basis:

x0(t) =
5∑

k=1

sin

{
2π

[
fs + (2k − 1) fs

20

]
t + ϕk

}
. (19.24)

As the same frequencies in Equations (19.13) and (19.24) (at the same k) are
overlapping, these functions when sampled periodically are equivalent; therefore
the corresponding analog signals at the DAC output including their amplitude and
phase spectra are also equivalent.

That is not the case when the basis functions are sampled nonuniformly. Then
the obtained analog signal contains only those frequencies that are in the spec-
trum of the corresponding basis function. The amplitudes of the analog signal
components are lower for higher frequencies and, with frequencies growing, the
power of the additional noise, due to the cross-interference, increases.
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19.3.3 Amplitude Equalization

As shown in the previous section, it is possible to synthesize an analog signal
from scarce data obtained under conditions when the well-known requirements
of the sampling theorem are not met and when the frequencies of the signal to be
synthesized exceed half of the DAC switching rate. However, there are also some
problems and limitations. First of all, the amplitude of the synthesized sinusoidal
signal mainly depends on its frequency. That might cause problems when the
analog signal to be synthesized contains a number of frequencies. As that is
exactly what is typically needed for the generation of multifrequency test signals,
the feasibility of synthesizing such a multifrequency signal will be considered.

Apparently various types of multifrequency test signal are needed. In the con-
text of the considered application, a group of frequencies typically has to be gen-
erated around a certain central frequency. Even in this case, there are a number of
possible variations. Amplitude spectra of some of them are given in Figure 19.7.

Probably the most popular structure of a multifrequency test signal is the one
shown in Figure 19.7(a). All frequencies of it are equidistanced on the frequency
axis and amplitudes of all components are equal. However, as discussed further,
the price of achieving the equality of amplitudes may sometimes be too high.
Quite often it might be better to accept some amplitude variation. Such amplitude
variations, if predetermined, should not represent a problem, especially if all com-
ponent amplitudes are given with sufficiently high precision. This kind of multifre-
quency signal is given in Figure 19.7(b). The third type of multifrequency signals,
illustrated in Figure 19.7(c), differs from the others by the location of the frequen-
cies. In this case the signal components are placed on the frequency axis irregularly
at arbitrary places. How beneficial this possibility could be is another question;
here the fact is simply demonstrated that the suggested synthesis method would
permit that possibility. When the traditional methods for generating such multifre-
quency test signals are used, it certainly is not simple to provide for this functional
feature.

While there are no problems at synthesizing signals with specified frequencies,
except that they cannot be placed too closely together, it is quite another situation
with the synthesis of multifrequency signals with equal or specified amplitudes
of their components. Direct application of the suggested synthesis approach leads
to the synthesis of signals with component amplitudes defined by Equation (19.8)
and illustrated by Figure 19.4. It follows from Equation (19.8) that when the fre-
quency of a component grows its amplitude declines according to |sinc(π f / fs)|,
where fs is the sampling frequency. In addition, the amplitudes of components
close to frequencies fs, 2 fs, fs, . . . are very small (frequencies fs, 2 fs, . . . cannot
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Figure 19.7 Amplitude spectra of various types of multifrequency signals to be synthesized

be used as they are transformed into a constant level). Therefore there may be
considerable measurement problems at those frequencies where the components
are small.

This problem of how ‘small amplitudes’ might be resolved are considered.
There may be at least two distinctly different situations.

19.4 Synthesis of Narrowband and Wideband Signals

Suppose a passband signal z(t) has to be synthesized so that it has a passband in the
frequency range ( fmin, fmax) and that it is possible to chose a realizable sampling
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Figure 19.8 An optional structure for synthesis of a passband signal

frequency fs to sample the basis function so that the frequency band ( fmin, fmax)
can be completely inserted within the interval (i f s, (i + 0.5) fs), or within the
interval ((i + 0.5) fs, (i + 1) fs)), where i is a positive integer. To obtain such a
signal, the basis function is formed as explained above so that the components
of it ( f1, f2, . . . , fK ) cover the frequency band ( fmin, fmax) with the frequency
step δ f . This basis function is sampled and a DAC is used to convert the obtained
digital signal into an analog signal. Then the DAC output signal is passed through
an analog bandpass filter having the same passband ( fmin, fmax). The structure of
such a synthesizer is illustrated by Figure 19.8.

In the case of an ideal filter, the amplitudes of the signal z(t) components are
determined by Equation (19.8). Therefore if the amplitudes of the basis function
components are taken as

AK = A0

|sinc(π fk fs)| , (19.25)

where k = 1, 2, . . . , K , the components of the synthesized signal z(t) will have
equal amplitudes A0. The dynamic range of the signal z(t) is naturally narrower
than that of the DAC output signal (t). It is essential to know their ratio. Let Dx and
Dz be the dynamic ranges of signals x(t) and z(t). Then their ratio ρxz = Dx/Dz .

Figure 19.9 illustrates this approach to signal synthesis where the amplitudes of
the basis function have been calculated on the basis of Equation (19.25). Therefore
they differ for all components, which leads to equalization of the synthesized
signal z(t) component amplitudes, as shown in Figure 19.9(a). The dynamic
ranges of signals x(t) and z(t) are obviously different in comparison with the
respective dynamic ranges when the output signal component amplitudes are not
equalized. In this case ρxz = 4.4.

This effect of ρxz enlargement rapidly increases if the frequency range
( fmin, fmax) approaches any of the frequency points i f s. For instance, if
( fmin, fmax) is defined as (1.01 fs, 1.41 fs) and again nine components are placed
within it with a frequency step of 0.05 fs then the named ratios ρxz for the cases
without and with output signal component amplitude equalization are 6.0 and
27.0 respectively. This is due to the fact that the frequency fmin has approached
frequency fs. This can also be seen from Equation (19.25) as near to i f s the
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−

−

−

Figure 19.9 Synthesis of a narrowband multifrequency signal with component amplitude
equalization: (a) amplitude spectrum of the equalized synthesized signal z(t); (b) basis function
f0(t) (dashed line) and DAC output signal x(t) (continuous stepwise line); (c) the obtained
signal z(t) at the filter output

function |sinc(π fk/ fs)| approaches zero and therefore the corresponding ampli-
tudes of the basis function components have to be large.

Figure 19.10 shows how the amplification coefficient of the basis signal com-
ponents depends on the normalized frequency ( fk/ fs). The curve is given in the
logarithmic scale.

Suppose that the signal z(t) to be synthesized is wideband, the available DAC
satisfies the condition fmax − fmin > fs/2 and the amplitudes of the signal compo-
nents have to be equalized. In this case it makes sense to subdivide the whole band
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Figure 19.10 Amplification coefficient of the basis signal components versus the normalized
frequency ( fk/ fs)

( fmin, fmax) into sub-bands. After that proper sampling frequency has to be cho-
sen for each one of them so that every frequency subinterval is completely placed
within one of the following intervals: (i f s, (i + 0.5) fs) or ((i + 0.5) fs, (i + 1) fs).
Therefore this approach to the multifrequency signal synthesis is based on se-
quential in the time synthesis of a number of signals containing components at
frequencies from the corresponding frequency interval.

19.5 Measuring Small Delays and Switching Times

As shown in Chapter 6, the density of sampling points at additive randomized
sampling tends to a constant level inversely proportional to the mean sampling
interval q̄. When a signal is sampled according to such a sampling model all of
its instantaneous values are sampled with equal and constant probability. This
valuable feature of the additive sampling model could be beneficially exploited
to achieve a high resolution when measuring various signal parameters, such as
delays in the reaction of objects to some excitation signals, switching times and
differences in signal phase angles. Tasks of this type are apparently based on
time-interval measurements.

According to the traditional and most often used approach to digital time-
interval measurements, short clock pulses are generated at a high and stabilized
frequency and are then passed through a gate that is opened for the duration of
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the time interval to be measured. The pulses that pass through are registered by
a counter. All is well as long as the clock period is much smaller than the time
interval being measured because the ±1 count quantization error, characterizing
this measurement method, is acceptable only as long as the number of pulses
counted is sufficiently large. Measuring shorter time intervals is more difficult. A
fairly efficient solution to this problem is based on the use of randomized pulse
sequences mathematically described identically to the description of the additive
sampling point processes. Although the randomization techniques concern time-
interval quantizing rather than sampling, the statistical relationships describing
both of those procedures are in fact the same.

Block diagrams of two implementation schemes of the suggested randomized
time measurement method are given in Figure 19.11. Short pulses generated by
random pulse generators represent the quantizing thresholds in this case. These
pulse sequences are generated in exactly the same way as in the case of the additive
random sampling, i.e. these pulses are formed at time instants given by Equation
(6.4). The performance of the schemes shown in Figure 19.11 depends first of
all on the perfection of the voltage comparators used to generate the inputs. The
comparators should be sensitive wideband devices, capable of detecting small
input and reference voltage U0 differences. Their aperture time should be in the
picosecond range.

The time intervals to be quantized are given as durations of the input pulses
to be measured at some level determined by the reference voltage U0. The num-
ber of time intervals to be averaged is preset and counter 1 in both schemes is
used for counting these intervals in order to stop the quantizing and averaging
process after a given number of pulses have been processed. Note that in the case
of the scheme in Figure 19.11(b), the number of these time intervals is deter-
mined indirectly by actually counting the pulses that fall within time intervals
of a constant and known duration, generated by the single-shot time base gen-
erator triggered by the appearance of each time interval to be measured. The
quantization and averaging results obtained are registered in both schemes by
counters 2. The time intervals at the input can be repeated either randomly or
periodically.

When the first of these two schemes (Figure 19.11(a)) is used, the result of
quantizing a single time interval is given as

�

�ti = ni q̄, (19.26)

where q̄ is the mean value of the time intervals between the quantizing pulses.

The estimate
�

�t of the unknown duration �t of the time intervals is obtained by
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Figure 19.11 Block diagrams of two systems for measuring short time intervals

averaging N particular results
�

�ti as follows:

�

�t = 1

N

N∑
i=1

ni q̄. (19.27)

If the pauses between the time intervals to be quantized are large enough, the
subsequent particular quantization results can be considered to be statistically
independent. Then it can be written that

Var[
�

�t] = q̄2

N

N∑
i=1

Var[ni ], (19.28)
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where Var[ni ] is the variation of the number of quantizing pulses falling within
the time interval being measured. In the case of uncorrelated �ti , the random
error can be written as

εr = tβ(Var[
�

�t])1/2. (19.29)

Although this time-interval estimation scheme is simple and practical, the mean
value q̄ of the time intervals between the quantizing pulses or, in other words,
the mean repetition rate of these pulses, should be stabilized, which is certainly
a disadvantage.

The second time-interval estimation scheme, shown in Figure 19.11(b), does
not have this disadvantage. This improvement is achieved by organizing the esti-
mation process in such a way that the unknown input time intervals are compared
with some constant time intervals T , rather than with the parameter q̄ of the pulse
sequence used for quantizing. Therefore, in this case, it is the time reference pulse
duration T that has to be stabilized. These time reference pulses are generated
whenever a time interval to be quantized appears at the input. The reference and
input time intervals are quantized in parallel by means of the same quantizing
pulse sequence. The quantization results mi and ni are entered into the respective
counters 1 and 2. It can be written that

E[ni ] = �ti
q

and E[mi ] = T
q̄

.

Therefore

�t = E [ni ]

E [mi ]
T

and the estimate
�

�t of the time interval �t , obtained by averaging N quantization
results, is given as

�

�t =
T

N∑
i=1

ni

N∑
i=1

mi

. (19.30)

An estimation of �t can be carried out until either N or the sum of mi reaches
some preset value m. The second approach is preferable and, if it is applied,

�t = T
m

N∑
i=1

ni . (19.31)

In order to carry out the averaged quantizing of time intervals according to Equa-
tion (19.31), the capacity of counter 1 should be set equal to m and quantizing
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Table 19.1

Time interval (ns) Relative error (%)

True values Measurement results Expected values Estimated experimentally

2.00 1.85 2.06 1.65
2.65 2.63 1.65 2.04
5.00 5.18 1.02 0.84

10.00 10.07 0 0.30

should be stopped when this counter is filled up. Then the readout from counter

2 will represent
�

�t in time units.
The advantage of this method for averaged measuring of time intervals, unlike

the classical deterministic measurement method, is that it can be applied for
evaluating time intervals shorter than q̄ when no more than one pulse can fall
within the time interval to be quantized and ni and mi can assume only the values
of 0 or 1. When a quantizing pulse coincides with the time reference interval, the
probability that it will also fall within the interval �t is equal to �t/T . It can
therefore be written that

E[
�

�t] = T
m

m
�T
T

= �t and Var[
�

�t] = �tT
m

(
1 − �t

T

)
. (19.32)

Hence the random estimation error

εr = tβ

[
�tT

m

(
1 − �t

T

)]1/2

, (19.33)

where tβ is half of the confidence interval corresponding to the confidence prob-
ability β.

Note that under the described measurement conditions the random estimation
error does not depend on the probabilistic characteristics of the quantizing pulse
sequence used. This random quantizing pulse sequence is used in this case as a
tool for comparing �t with the reference value T .

The capabilities of this digital time-interval measurement approach are to some
extent illustrated by the experimental measurement results given in Table 19.1.
They are obtained under the following conditions: �t varies in the range 2–10 ns
and m = 26 × 103 calculations were made for the 99 % confidence level. The
measurements of each �t value were repeated 20 times.

The described digital short time-interval measurement techniques can be used
for various applications based on the delay, phase angle or pulse rise and fall time
measurements. This approach has been proved to be of practical value whenever
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it is essential that the designs of systems are extremely simple. The fact that the
time intervals to be measured in this way may be repeated either randomly or
periodically at relatively high frequencies might be considered as an additional
advantage. It is also relatively easy to achieve high precision. Substantial practical
experience has been gained in this field. A number of test and measurement sys-
tems used to measure dynamic parameters of various microelectronic elements
in the process of their manufacture have been developed on this basis and suc-
cessfully used. This experience confirms the reality of achieving, in a simple way,
subnanosecond resolution usually needed for digital measurements of short time
intervals.

19.6 Bioimpedance Signal Demodulation in Real-time

It has been discovered that various processes going on in a human body change the
bioimpedance of it and that these changes carry valuable diagnostic information.
To obtain this information, a test signal in the form of a constant voltage specific
frequency is applied to the body being examined and the bioimpedance signal,
reflecting the reaction of the biological object to this excitation signal, is extracted
and analysed. To do this, the picked-up signal needs to be demodulated. Real-
time demodulation of bioimpedance signals is considered here as an example
showing what could be gained by exploiting the digital alias-free signal processing
technology.

19.6.1 Typical Conditions for Bioimpedance Signal Forming

Variations of the impedance of a human body due to cardiac activities and breath-
ing lead to modulation of the test signal. Amplitude as well as phase modulation
of the carrier takes place. Therefore the modulated carrier has to be processed
in a way that leads to the discovery of both the amplitude and phase changes.
Demodulation of bioimpedance signals can be performed in various ways. A
particular universal solution of this demodulation task could be based on the es-
timation of both Fourier coefficients at the carrier frequency or at all involved
carrier frequencies when a number of test signals at differing frequencies are
generated and used. The Fourier transforms in this case need to be performed in
real-time.

More often than not, the structure of bioimpedance analysers is multichannel.
In addition, bioimpedance signals sometimes have to be obtained at a number of
test frequencies simultaneously. This means that a large amount of data typically
needs to be acquired and handled. This represents a problem, especially when the
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bioimpedance signals have to be observed for a long time. Then it is desirable to
preprocess the data in a cost-effective way and to compress them before these data
are transferred to the host computer. The technical characteristics of this signal
preprocessing unit in terms of complexity, volume, power consumption and oper-
ational speed depend on the method used for bioimpedance signal demodulation
and its hardware and software implementation. Therefore it is essential to develop
and use a good enough method for bioimpedance signal demodulation.

It has been found that impedance signals at various frequencies carry different
information. This means that the test signal frequencies could vary in a wide
frequency range, from relatively low frequencies of about 100 kHz up to 1 GHz.
This is one of the conditions that makes this application area well suited for the
specifics of the digital alias-free signal processing technology.

The next essential condition that complicates the bioimpedance signal on-line
demodulation task considerably is the relatively large number of input signals
that need to be processed in parallel. Typically there are 12 inputs, but sometimes
even more inputs are needed.

The demodulation task is simplified to some extent by the fact that the mod-
ulations are typically within a range of frequencies that is much lower than the
carrier frequencies. The cardiac related and breathing processes that basically
modulate the test signal are typically in the frequency range not exceeding 1 kHz.
Therefore relatively few readings of the Fourier coefficients need to be obtained
in a second to present the demodulated signal sufficiently well. That helps to
process a number of bioimpedance signals in parallel.

19.6.2 Complexity Reduction of Bioimpedance
Signal Demodulation

Analysis of the mentioned considerations has led to the conclusion that the method
developed earlier and discussed in Chapter 16 for the complexity-reduced DFT
represents a promising option for demodulation of the bioimpedance signals under
the given conditions. Using this approach for development of such a system has
provided results close to those expected.

The outline of the suggested approach is as follows. In general, the Fourier
analysis is accomplished in two stages. In the first stage, the signal to be analysed
is formally decomposed on the basis of some rectangular functions assuming
only the values −1, 0 and + 1, so this decomposition can be carried out without
performing the multiplication operations. In the second stage a spectral conversion
is performed. The set of coefficients αi and βi obtained in the first stage are then
converted into a set of Fourier coefficients.
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Figure 19.12 Block scheme of the bioimpedance signal preprocessor performing the signal
demodulation and data compression functions

It follows from the description of the complexity-reduced DFT method given
in Chapter 16 that this is especially attractive for applications where the spectrum
of the signal to be analysed does not contain harmonics above the third (when
system 1 is used) or the fifth (in the case of using system 2). Then the spectral
estimations are actually single stage and no multiplication operations are executed.
The conditions for bioimpedance analysis seem to fit this criterium. Multitone
bioimpedance analysis might sometimes represent an exception, but at least the
single carrier frequency analysis could be well implemented on the basis of this
approach.

A number of benefits could be gained in this way. Firstly, the hardware for
demodulation is simple. The basic scheme for estimation of Fourier coefficients
is basically built on data accumulators. Secondly, real-time demodulation could
be easily implemented on this basis by making estimation of the Fourier coeffi-
cients continuously on-line. Thirdly, due to the simplicity of the basic structure,
multichannel demodulation could also be realized, which could be done in a suf-
ficiently simple way. Fourthly, in addition, the approach is especially attractive
for embedded bioimpedance analysers as they are characterized by low power
consumption.

All of the mentioned considerations lead to the conclusion that demodulation of
the bioimpedance signals can be arranged in accordance with the scheme given in
Figure 19.12. Although Figure 19.12 illustrates the structure of a single-channel
bioimpedance signal demodulator, the simple signal preprocessor shown there
actually would be exactly the same in the case of a multi-channel demodulator.
The ADC then has simply to be replaced by a multiplexer.

Note that estimates of the coefficients αn and βn rather than sample values of
the modulated carrier are passed through the interface block to the computer. In
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this case these coefficients are equal to the corresponding Fourier coefficients
an and bn . Thus this very simple signal preprocessor performs the DFT and
substantial data compression is achieved. This makes the task of the computer
receiving these data much easier. It simply has to collect the preprocessed data
and display the demodulated signals.
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20

Encapsulating DASP
Technology

At present there are no external obstacles preventing beneficial exploitation of
the digital alias-free signal processing technology on a relatively large scale.
The existing microelectronic elements could be used for developing the hard-
ware needed for that and there does not seems to be any problems with creating
software. Actually this is not exactly correct. There are problems that compli-
cate widespread application of the signal processing technology discussed in this
book. Basically these are related to the fact that considerable expertise is required
to be successful in this area and it is not very easy to acquire this. Substantial
investments in terms of effort, time and money are needed to gain knowledge and
experience sufficient to achieve really significant positive results. It is not realistic
to expect that building such expertise can be done in many places quickly. A more
rational and practical approach to widening the application field for this technol-
ogy is based on the idea that the benefits in this area could be gained more easily
by developing and exploiting application-specific subsystems for digital alias-
free signal processing. That clearly has to be done by embedding them in various
larger IT systems operating as usual. This approach is discussed in this chapter.
Among the gains immediately achievable in this way, widening of the digital do-
main in the direction of higher frequencies, simplification of data compression,
complexity reduction of sensor arrays and achieving fault tolerance for signal pro-
cessing could be mentioned. Issues essential for the development of the embedded
systems capable of providing these benefits are discussed in this chapter in some
detail.

Digital Alias-free Signal Processing I. Bilinskis
C© 2007 John Wiley & Sons, Ltd
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20.1 Linking Digital Alias-free Signal Processing with
Traditional Methods

To embed specific digital alias-free signal processing subsystems into larger con-
ventional systems operating on the basis of equidistant data representation in the
time domain, all specific features of the subsystems to be embedded should be
encapsulated within them while their inputs and outputs are defined in a way
fitting the standards of the respective embedding system. The advantage of this
approach is obvious: there is no need to pay any attention to what happens inside
the particular embedded system.

Various embedded DASP systems might be needed to cover a sufficiently
wide application field. There could be universal and application-specific modi-
fications. However, the variety of the embedded systems should be minimized
while the application field covered by them is maximized. The complexity of
the universal embedded systems capable of performing flexible signal processing
in a wide application range could be much higher than the design complexity
of the embedded systems applicable for fulfilling specific functions. These are
much simpler by definition. Consequently, the expected operational speed of the
specific embedded systems is typically much higher than the data processing
rate achievable by the first class of systems. This fact increases the attractive-
ness of the specific embedded systems focused on fulfilling special functions.
On the other hand, orientation towards specialized embedded systems leads to
the necessity of having a longer list. To focus this discussion on the basic con-
cepts of such embedded systems, the emphasis is put on a universal generic
model.

20.1.1 Generic Model of the Embedded DASP Systems

Particular designs of the embedded DASP systems depend both on the microelec-
tronic technology used for their implementation and on concepts underpinning
them. Figure 20.1 illustrates a universal generic model of such an embedded sys-
tem. It reflects the principles according to which this type of embedded system
should be built in order to achieve their wide applicability for digital alias-free
processing of various signals.

This version of the embedded DASP systems basically performs input signal
encoding in an alias-free way and performs processing of the obtained digital
signal in accordance with the algorithm used for programming the computer
included in this scheme. The functional blocks inserted into the structure of this
model are needed to fulfil a number of essential functions. One of the basic
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Figure 20.1 Structure of a generic embedded system for digital alias-free signal processing

functions of the considered embedded DASP systems is to provide a dedicated
service of converting input signals into their digital counterparts and representing
them in a format meeting the requirements of the algorithms for their effective
alias-free processing. Therefore they should have an analog input and a special
pseudo-randomized ADC for performing nontraditional signal sampling and/or
the quantizing procedure.

The next block of particular significance is the computer. Capabilities of the
embedded systems to a large extent depend on both the technical characteristics
of the used computer and on the signal processing algorithms. It should also
be realized that successful use of such embedded systems is possible only if
signal processing is properly matched to the specifics of digitizing the signal.
To ensure that, it is crucial to adapt processing of signals to the irregularities
of sampling carried out at the stage of their digitizing. The information of the
specific nonuniformities of the involved sampling process is kept in a memory
and is used in the process of adapting signal processing operations to the signal
sampling conditions.
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While the embedded systems realized according to this generic model can be
used for processing the input signals in many different ways, the following two
operational modes can be described as the basic ones:

1. Signal analysis/synthesis. This operational mode is universal and very flexible.
The essence of it is signal spectrum analysis with a following reconstruction
of the input signal waveform and periodic resampling of it at a significantly
increased frequency. This kind of signal processing requires relatively compli-
cated iterative computations described in some detail in the following section.
The problem is that the required calculations take a relatively long time and
therefore it is not easy to achieve functioning of this system in real-time.

2. Signal vital parameter estimation. This second operational mode is also ap-
plicable in many cases. The point is that while waveforms of signals contain
full information carried by them, only some parameters characterizing these
waveforms often have to be estimated and used. Whenever this is the case,
signal processing can be carried out in a way that is typically less complicated.
This means that the programmable processors used for realizing this opera-
tional mode could provide the results substantially faster. In those cases, it is
easier to achieve operation of this type of embedded system in real-time.

It may seem that these two operational modes differ substantially. In fact, this is
often not true. Actually technical realization of the second operational mode might
be simpler only in cases where some application-specific parameters characteriz-
ing some specific features of the signal are estimated. Whenever the parameters
to be estimated are more universal, like the Fourier coefficients, amplitude and
power, the complexity of both operational modes is approximately the same. This
is so because it is crucial to adapt processing of nonuniformly sampled signals to
the respective irregularities of the sampling process and the involved iterative pro-
cedure, basically determining the complexity of calculations, is based on direct
and inverse Fourier transforms repeated several times in both cases.

In general, the role of the embedded systems for digital alias-free signal pro-
cessing is to provide the dedicated service of digital processing of the input
analog signal in a significantly widened frequency range, with representation
of the output signal in a digital standard format that is normally and widely
used to execute the standard instructions of traditional DSP algorithms. The DSP
technology, well-developed over a long period of time, and the wealth of clas-
sic DSP algorithms, including algorithms for versatile digital filtering, could be
fully used for further processing the signal digital waveforms and obtained signal
parameter estimates whenever the described embedded systems could be and were
used.
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Incorporation of these universal embedded systems into traditional IT systems
apparently leads to significant widening of the frequency range where signals
could be processed fully digitally. However, other types of various significant
benefits could be gained in this way as well.

20.1.2 Various DASP System Embedding Conditions

The conditions for matching inputs and outputs of the embedded DASP systems
to the specifics of the traditional signal processing master systems obviously
differ. Some of the variations most often met in conditions for application of the
discussed embedded systems are considered.

Using Embedded Systems for Processing Pseudo-randomly Represented
Signals of the Considered Type in Parallel
To connect specifically programmed embedded systems in parallel, a digital
input/output is neeeded in addition to the analog input shown in Figure 20.1.
According to this concept, the digital signal can be passed to the input of the pro-
cessor either from the ADC output or from the digital input. In other applications,
the digital signal formed by the ADC in an embedded system could be passed
to other embedded systems used to fulfil additional signal processing tasks in
parallel. A digital switch is included in the structures of these embedded systems
in order to carry out these functions.

Encoding and Processing Several analog Signals in Parallel
So far encoding of only a single analog signal source has been considered. In many
real-life situations there are a number of such sources. If the quantity of them is
not too large, then the discussed universal embedded system is still applicable.
The required number of these systems simply has to be used then or, in some
other cases, the signal sources could be connected to a single embedded system
of the considered type through a multiplexer.

Using Embedded Systems for Alias-Free Processing of a Large Quantity
of analog Signals
Massive data acquisition and processing is not covered by the universal embedded
system described above. A special approach to embedding systems performing
the nonuniform procedures of signal encoding and preprocessing clearly has to
be used in cases where data are acquired from a large number of signal sources.
Although specific techniques have to be used in those cases, it still makes sense
to use embedded systems as confined areas where the specifics of the digital
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alias-free signal processing are enclosed. The system illustrated by Figure 11.7
could be considered as an example of the embedded systems used to handle a
large cluster of remotely sampled signals.

Achieving Complexity Reduction of Sensor Arrays
Using pseudo-randomized spatial and temporal signal encoding and processing
is essential for achieving high performance at the array signal processing at a
reduced quantity of sensors in the array. While it is of course essential to use em-
bedded systems for encapsulation of specific nonuniform procedures for spatial
and temporal spectrum analysis in this case, the fact has to be taken into account
that a large amount of data is acquired from the sensors in the array and has to
be processed as quickly as possible. Although, in principle, universal embedded
systems built according to the above model could be used for pseudo-randomized
spatial and temporal signal encoding and processing, better results could be ex-
pected if special types of embedded systems matched to the specifics of handling
the array signals are developed and used.

Using Embedded Systems in Special Cases of Processing Distorted
Periodic Sample Value Sequences
As shown in Sections 2.3 and 2.5, the algorithms and techniques developed spe-
cially for pseudo-randomized digitizing and processing of signals digitized in
this special way could also be successfully used for reconstruction of impaired
periodically sampled signals, achieving considerable fault tolerance, and for data
compression executed in a simple manner. At first glance it seems that again
specific embedded systems for digital alias-free signal processing need to be de-
veloped for applications in this area. However, more careful consideration of this
matter has led to the conclusion that if only some minor changes are made in the
structure of the universal embedded system then it could be used for these appli-
cations as well. Actually only a single functional block, specifically an analyser
of sampling irregularities extracting the nonuniform sampling data, needs to be
added to the structure shown in Figure 20.1. The task of this functional block
is to analyse the digital input signals in these cases and to supply the processor
with the information characterizing the specific sampling irregularities. This in-
formation can then be used to adapt signal processing to these specific sampling
irregularities, as explained in the following sections. If this approach is used, no
special embedded systems have to be developed and used for reconstruction of
the compressed data and for reconstruction of data corrupted by interference or
some other kind of functional fault.
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20.2 Algorithm Options in the Development of Firmware

The essential functions of the considered embedded systems are signal alias-free
digitizing, their representation in a digital format and waveform reconstruction.
They are supported by hardware and firmware. Therefore the effectiveness of
their application to a large extent depends on the methods and algorithms used as
the basis for development of the embedded system firmware.

While there is little to be added to what has been said about signal pseudo-
randomized digitizing in previous chapters, less clear is the subject of quality
achievable at signal representation in the frequency and time domains and at
transforms of one particular type of signal representation into another one. The
problem is that the classical approach to periodically sampled signal spectrum
analysis and waveform reconstruction, based on direct and inverse Fourier trans-
forms, is not fully applicable in the cases where the digital signals are given as
sequences of sample values taken at pseudo-random time instants. The results of
the DFT in those cases are distorted by errors due to sampling irregularities and
therefore they do not represent the signal in the frequency domain sufficiently
well. These errors have to be somehow filtered out, which is a difficult task. Dis-
cussions of the problems related to nonuniformly sampled signal representation
in the frequency and time domains and a comparison of various approaches used
to resolve them follow.

20.2.1 Sequential Exclusion of Signal Components

The basic problem with the spectrum analysis of nonuniformly sampled signals
is the fact that errors in estimating parameters of a signal component in the
frequency domain depend on the power of all other signal components. This
dependence, of course, was noticed a long time ago but it took some time to
develop a special algorithm for nonuniformly sampled signal processing that
takes this fact into account. A successful approach to this problem was finally
found. It is based on the use of the so-called sequential component extraction
method, or SECOEX. Historically, development of the SECOEX method could
be considered as a serious achievement marking progress gradually made in
this area. The spectrum analysis of nonuniformly sampled signals performed on
the basis of this algorithm demonstrated the fact that it is possible to improve
significantly the results obtained at this stage of the DFT.

This method is based on estimating the most powerful of the signal compo-
nents, taking it out of the original signal, then estimating the next most powerful
component, subtracting it from the previously calculated difference and repeating
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these cyclic operations until the power of the reminder becomes smaller than a
given threshold. More specifically, cyclic computations are carried out to optimize
the following equation:

N∑
k=1

(ai cos 2π fi tk + bi sin 2π fi tk − xik)2 = min, (20.1)

where the sample value set corresponding to the ith cycle is denoted by {xik},
i = 1, 2, 3, . . . , k = 1, . . . , N . To obtain {x1k}, the most powerful signal com-
ponent a1 = A1 sin ϕ1; b1 = A1 cos ϕ1 (Ai , ϕi and fi are the amplitude, phase
and frequency of the ith component respectively) has to be estimated and then
subtracted from the digital input signal x(tk) = xk, k = 1, . . . , N . In general,

x(i+1)k = xik − Ai sin(2π fi tk + ϕi ). (20.2)

These operations are performed by estimating and varying all three parameters
Ai , ϕi and fi in accordance with Equation (20.1).

The algorithm developed on the basis of the SECOEX method suppresses
relatively well the aliases present in the signal and the errors related to the cross-
interference between the signal components. For example, the spectrogram shown
in Figure 20.2(b) has been obtained using it. Compare this with the spectrogram
displayed in Figure 20.2(a), which represents the results of the DFT performed
for the same signal. It can be seen that application of SECOEX has improved the
spectrogram significantly.

However, after a period of time it became clear that this method had some
noticeable drawbacks and that it is possible to achieve more accurate results.
Firstly, this method does not take into account the specific irregularities of the
sampling instants at which the sample values of the respective signal are taken.
Therefore it cannot be used as the basis for development of the processing proce-
dures adaptable to the nonuniformities of the sampling process. Secondly, errors
due to the cross-interference effect are not taken out completely. While taking
out the larger components of the signal one by one effectively reduces the impact
of the more powerful components on the estimation of the smaller components,
the errors in the parameter estimation of the more powerful components are still
enlarged as a result of the additive impact of the smaller components due to
cross-interference. Thirdly, execution of the calculations arranged according to
SECOEX is computationally burdensome. According to this approach, because
the signal components are taken out sequentially, the Fourier coefficient estimates
are calculated repeatedly in the whole frequency range of the respective signal for
a number of times equal to the number of the most significant signal components.
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Figure 20.2 Spectrograms characterizing a nonuniformly sampled multitone signal obtained
(a) as a result of the DFT and (b) by calculations made on the basis of the SECOEX method

20.2.2 Iterative Variable Threshold Calculations of DFT
and IDFT

Another approach to improving the results of DFT could be used. Although it
is also an iterative one, fewer iteration cycles are needed for realization of it.
A group of signal components are estimated at each cycle rather than a single
component, as in the case of SECOEX. Such an approach naturally leads to a
reduction in the computational burden and to a saving of time.
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A particular realization of this iterative method, based on using the FFT, could
be used whenever the original is sampled pseudo-randomly with sampling instants
located nonuniformly but on a well-defined time grid. Then the so-called zero-
padding method could be used at the first cycle to transform the nonuniform
sampling event stream into a periodic one, as briefly described in Section 15.3.
Once that is done, the signal could be formally processed on the basis of the
FFT.

The idea of using the FFT to obtain estimates of the Fourier coefficients is
of course attractive as application of this fast algorithm drastically reduces the
amount of calculations. However, using this approach evidently leads to large
errors in estimating the Fourier coefficients. The achievable accuracy of these
estimates is typically not acceptable. Therefore this procedure, if and when used,
should be regarded as preliminary calculations providing only raw intermediate
results. The degree of their usefulness depends on the used specific algorithm for
signal analysis.

To suppress the errors due to sampling irregularities down to an acceptable
level, a step-by-step approach should be used. The more powerful signal compo-
nents are estimated at the first cycle. After that the second group of less powerful
components are estimated and so on. Such an approach makes sense as the rel-
ative errors are smaller for the more powerful components. To realize it, a few
threshold levels are introduced. The signal components above the upper threshold
are estimated at the first cycle. Then the inverse DFT (IDFT) is carried out and the
missing sample values are substituted by the corresponding instantaneous values
of the roughly reconstructed waveform. After that the obtained signal sample value
sequence is used for the repeated DFT. Significantly more accurate estimates of
Fourier coefficients are obtained. At the next step, the threshold level is lowered
and the components above it are estimated again. The process is continued in this
way for a given number of cycles.

At first the DFT is performed for frequencies located on the frequency grid,
with the interval between the frequencies determined by the signal observation
time as usual. If all signal components are at frequencies located exactly on this
grid, the DFT provides spectral estimates that are sufficiently accurate. However,
the frequencies of real signal components are often shifted with regard to this
grid. Then the positions of these components on the frequency axis have to be es-
timated more precisely. Otherwise the IDFT will result in unacceptable waveform
reconstruction errors.

The IDFT is performed for all frequencies exceeding the mentioned thresholds.
The waveform obtained as a result of the IDFT, performed for a number of the
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most powerful signal components, is given as

y(0)(i�T ) =
L−1∑
m=0

â(0)( fm) cos(2π fmi�T )

+
L−1∑
m=0

b̂(0)( fm) sin(2π fmi�T ), i = 0, M − 1, (20.3)

where L − 1 is the number of frequencies considered at the particular iteration
cycle.

This waveform is periodically sampled with the sampling intervals equal to
the step of the time grid. The initially used zeroes are then replaced by the taken
sample values of this waveform. A periodic sequence of signal sample values
is formed in this way. All actually taken signal sample values are in the right
places and the roughly estimated sample values are inserted in the places initially
occupied by zeroes. The precision of the signal digital representation can be
significantly improved in this way. Therefore much more accurate estimates of
the Fourier coefficients are obtained when the DFT is performed for this digital
signal for the second time.

The following iteration cycles are repeated in an analogous way. Each time the
threshold is put at a lower level and a group of previously not-estimated signal
components, characterized by powers above this level, are estimated, this informa-
tion is used for reducing the errors in signal sample value estimates at the time in-
stants where the zeroes were placed at the beginning of the signal analysis process.

Relatively good results are obtained in this way. More will be said about this in
Subsection 20.2.4. The main advantage of this iterative algorithm, in comparison
with SECOEX, is the achieved possibility of using a significantly reduced number
of iteration cycles. However, it is still not perfect. The basic drawback is related
to the fact that the cross-interference strongly impacting the results of the DFT is
not taken into account.

20.2.3 Algorithms Adapted to the Sampling Irregularities

There is no doubt that signal processing needs to be adapted to the nonuniformities
of the involved sampling process whenever it is possible. As shown in Figure 20.1,
such adapting is normally performed. The algorithms for this actually combine the
adapting procedures with the iterative approach to cyclically repeated execution
of the DFT and IDFT. In general, algorithms for signal processing adapted to the
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sampling irregularities are similar to the iterative algorithm discussed above. The
basic difference is in the estimation of the Fourier coefficients for a group of signal
components. While standard DFTs are used for this in the case of the described
iterative algorithm, cross-interference coefficients are calculated and the effect of
the cross-interference is taken into account in the case of the algorithm adapted
to sampling irregularities. That changes the situation significantly. The precision
of Fourier coefficient estimation is substantially increased at each iteration cycle,
which leads to faster convergence to the final spectral estimates. Figure 20.3
illustrates this kind of adapted iterative signal processing.

It can be seen from Figure 20.3 that the estimation process develops quickly
in this case. A more detailed comparison of this type of algorithm with both
previously considered ones follows. Note that the illustrated spectrum analysis is
actually only a part of the whole signal processing process. Each adaptation cycle
contains calculations of direct and inverse DFTs. Therefore the signal waveform
is also repeatedly estimated with growing precision.

For calculations carried out during the process of this adaptation, at each itera-
tion cycle they typically cover a relatively small number of signal components at
arbitrary frequencies. Under these conditions, the cross-interference coefficients,
at separate adaptation cycles, are usually calculated for the particular group of
peaks in the signal spectrum that is processed for this cycle. This means that it is
then not necessary to calculate and use the matrix of the cross-interference coef-
ficients characterizing the respective nonuniform sampling point process used to
digitize the signal as described in Chapter 18. Direct on-line calculations of the
cross-interference coefficients are then much more productive and the embedded
systems shown in Figure 20.1 are based on this concept.

In cases where it is essential to achieve high operational speed, the discussed
adaptation process could be realized in accordance with the scheme given in
Figure 18.6. The used nonuniform sampling point process then has to be de-
composed into a number of periodic processes with pseudo-randomly skipped
sampling points. The signal sample values obtained at time instants defined by
each particular sampling point substream can then be processed separately. In this
way the sequential performance of a large number of required computational op-
erations could be replaced by parallel calculations of reduced complexity carried
out in parallel.

20.2.4 Comparison of Algorithm Performance

While all three types of the algorithms discussed above are applicable for adapt-
ing signal waveform reconstruction to the irregularities of the sampling process,
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Figure 20.3 Results of spectrum analysis performed according to the iterative spectrum
analysis adapted to the nonuniformities of the sampling process used when digitizing the signal:
(a) true spectrogram; (b) spectrogram obtained at the end of the first cycle; (c) spectrogram
after the second iteration; (d) spectrogram after the third iteration
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Figure 20.4 SNR versus the iteration cycle numbers characterizing application of the three
compared algorithms for signal waveform reconstruction

their performance characteristics are different. To gain a first impression of their
comparative qualities, a multitone test signal was digitized and its waveform was
reconstructed in the presence of noise by applying all three algorithms. Diagrams
of the SNR versus the iteration cycle numbers characterizing application of
the three compared algorithms for signal waveform reconstruction are shown
Figure 20.4. It can be seen from them that the waveform reconstruction errors,
in the case where the reconstruction is performed on the basis of the SECOEX
algorithm, decrease from one iterative cycle to the next relatively slowly and the
iterative process is long. The second algorithm, the iterative algorithm, provides
better results. However, the best results are obtained in the case of the third al-
gorithm based on iteratively adapting the waveform reconstruction process to
the sampling irregularities. When a signal waveform is reconstructed in accor-
dance with this, suppression of the reconstruction error to their minimal value is
achieved in a reduced number of iteration cycles.

20.3 Dedicated Services of the Embedded DASP Systems

According to the definition, embedded systems provide dedicated services to
embedding systems. The services that should be offered by the embedded DASP
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Figure 20.5 Typical dedicated services of the embedded DASP systems provided for digital
processing of wideband analog signals

systems are unusual, not paralleled by other types of embedded systems. Basically
they need to widen significantly the frequency band within which the analog input
signals can be fully processed digitally. More specifically, the dedicated services
provided by them are based on the following functions:

� digitizing analog input signals in a way making it possible to avoid aliasing-
induced errors at the following digital processing of these signals;

� performing signal digital preprocessing matched to the nonuniformities of the
sampling process;

� presenting the results of digital preliminary processing of the signals into a form
acceptable for the classic DSP hardware and software tools, which are used for
further additional signal processing.

Some application hints are given in Figure 20.5 for the cases where the sig-
nals to be processed by the discussed embedded systems are analog. Firstly,
these signals could be digitized, the digital versions of them stored in a memory
and then processed when requested (Figure 20.5(a)). Note that the digital sig-
nal is typically encoded in a compressed form. Secondly, the digitized signals
are transmitted over wire or wireless channels, received, demodulated and pro-
cessed (Figure 20.5(b)). At least two embedded systems are obviously needed in
that case. Thirdly, processing of the digitized signal is carried out without delay,
preferably in the real-time processing mode, as illustrated by Figure 20.5(c).

Consider the suggested structure of this type of embedded system given in
Figure 20.1. It is assumed that signal sample values are taken at time instants dic-
tated by the generated pseudo-random sampling point process. This means that
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Figure 20.6 Typical dedicated services of the embedded DASP systems provided for pro-
cessing of randomly decimated periodic digital signals

the signal sample value sequences processed by the computer are randomly dec-
imated periodic sequences of numbers or, in other words, are periodic sequences
of numbers with random skips. More often than not, the quantity of the miss-
ing numbers in these sequences is much larger than the quantity of the present
numerical signal sample values.

Now suppose that the computer processes the data given in the above form,
reconstructs the signal waveform and presents it as a periodic sample value
sequence with the period equal to the period characterizing the input data
sequence. No signal sample values will then be missing. Compare the data flows
at the computer input and output. Evidently the computer has decompressed the
data given in a specifically compressed form. The performance of this function
is representative of the kind of embedded system already discussed, so the role
of the computer in the considered type of embedded system can often be defined
in this way.

As the reconstruction of compressed data is a function of considerable practical
value, it makes sense to use the embedded DASP systems, in addition to exploita-
tion of them for dealing with analog signals, to process specifically presented
digital signals. This is the reason why the digital inputs and some additional
functional blocks are included in the structural scheme shown in Figure 20.1.
The embedded systems with these digital inputs added are capable of fulfilling
a number of useful digital signal processing functions. Some embedded system
services of this type are indicated in Figure 20.6.

Firstly, the pseudo-randomly digitized analog signals are demodulated and
processed (Figure 20.6(a)). The multichannel bioimpedance signal demodula-
tion described in Section 19.6 represents an example of this type of embedded



JWBK152-20 JWBK152-Bilinskis March 6, 2007 21:23

Dedicated Services Related to Processing of Digital Inputs 411

system application. Secondly, the digital data compressed in a special way could
be decompressed by reconstructing and resampling the original analog signal
(Figure 20.6(b)). The third type of service that could be given by the discussed
embedded systems is providing for fault tolerance (Figure 20.6(c)). This par-
ticular embedded DASP system application is considered in some detail in the
following section.

Apparently the considered embedded systems could be used for many different
applications in a very wide frequency range. While analog signal processing on
this basis is more interesting for frequencies ranging from hundreds of MHz up to
several GHz, the data compression function is in demand for applications covering
a much wider frequency range starting from low frequencies and extending up to
the microwave frequencies. Discussion of some typical applications of this kind
follows.

20.4 Dedicated Services Related to Processing
of Digital Inputs

In general, using embedded systems to handle specifically represented digital
signals is based on reconstruction of data compressed purposefully or damaged
as a result of system faults. The approach to this task is specific and differs from
various techniques usually exploited for compression of data.

20.4.1 Approach to Data Compression

Data can be compressed if they contain some redundancy. This means that the
achievable data compression rate is limited. Various data compression techniques,
capable of compressing data to the limit, are known and are used. In general,
application of the pseudo-randomized data compression approach does not lead
to more intensive data compression than the data compression rate achievable by
traditional methods. The advantage of the suggested approach is different and is
illustrated in Figure 20.7.

Figure 20.7(a) illustrates the typical approach to data compression. According
to it, data obtained as a result of signal digitizing are processed to achieve their
compression. The compressed data are then either stored or transmitted over some
communication lines and after that the compressed data are processed again to
restore and convert them into the initial form. In this case, according to this
scheme, data are processed twice. The first time resources are used to compress
data and the second time to decompress them. Both of these operations typically
are computationally burdensome and prosecution of them takes time.
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Figure 20.7 Typical difference between the (a) traditional and (b) suggested data
compression/decompression schemes

The advantage of the considered pseudo-randomized data compression
approach over the conventionally used data compression techniques is illustrated
in Figure 20.7(b). The functional block for data compression is not included in the
second scheme. It is not needed as data in the second case are actually presented
in a compressed form at the output of the digitizer. Nothing special has to be done
to compress the acquired data. Therefore it is evident that designs of the data ac-
quisition subsystems exploiting this approach to data compression could be much
simpler with reduced power consumption. The full computational burden in this
case is placed on the functional block performing data decompression. For that,
the waveform of the original signal usually has to be reconstructed. Once that
is accomplished, this waveform could be represented by its equidistant sample
values taken at a sufficiently high sampling rate to meet the requirement of the
sampling theorem.

The embedded systems if they are built according to the scheme given in
Figure 20.1 would support this data compression and reconstruction scheme.
When they are used for dealing with analog signals, the data representing them
are compressed at the stage of signal digitizing. In cases where these data are
immediately processed, the computer performs the processing as required. If
the given data have to be converted into a digital periodic signal sample value
sequence, the computer performs data decompression and the signal waveform
is reconstructed for that.

The computer of a particular embedded system apparently can reconstruct
signal waveforms either by processing the digital signal taken from the output
of the pseudo-randomized ADC included into the structure of this embedded
system or by processing some other external digital signal encoded in a similar
way. Figure 20.8 illustrates a few versions of the digital signals represented in
various forms. The basic digital signal taken off the digitizer output is a sequence
of the input signal sample values obtained at nonuniformly spaced time instants
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Figure 20.8 Various digital representations of the (a, b) compressed and (c) distorted data

{tk}. Both the numerical value and the sampling instant need to be given for each
signal sample.

This information can be encoded in various ways. Firstly, this kind of digital
signal could be and often is presented in the form shown in Figure 20.8(a). In these
cases, the digital time intervals (tk+1 − tk) between the sample values xk+1 and
xk are equal to the time intervals between the respective sampling time instants.
They are equal to some quantity of the smallest sampling time digits δ. The time
diagram of a typical digital output signal of the pseudo-randomized ADC looks
like this.

Figure 20.8(b) illustrates the second possible approach to the compressed data
representation. It is shown that the signal sample values {xk} and the respective
sampling instants {tk} could also be given by two periodic sequences of numerical
values. However, it is much better to sample signals at precisely predetermined
time instants and to use this sampling instant information for a reconstruction of
the respective signal waveform. This approach should be used whenever possible.
Then the compressed signal is simply a periodic sequence of the signal sample
values and the information of the sampling process nonuniformity is kept in a
memory as shown in Figure 20.1.

The third variety of the digital signals that could be processed by the considered
embedded systems is given in Figure 20.8(c). It is a periodic signal with randomly
skipped values. This type of signal has to be processed when a periodically
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Figure 20.9 Block diagram of a device performing data compression by pseudo-random
decimation of the digital signal present at the ADC output

sampled signal is distorted by some faults in functioning of the respective system.
A typical task that has to be resolved is the reconstruction of the distorted and
excluded signal sample values rather than decompression of some compressed
data block. However, the waveform of the original signal apparently also needs to
be restored in this case and when this reconstructed waveform is obtained there
are no problems in reconstruction of the missing sample values.

20.4.2 Data Compression for One-Dimensional Signals

The basic advantage of the considered data compression/reconstruction approach
is the extreme simplicity of the compression. Actually no special data processing
functions need to be performed to compress data in this case. Indeed, to compress
the data representing, for instance, one-dimensional signals given as periodic
sequences of their sample values, the sample value sequences simply have to
be pseudo-randomly decimated, with the remaining sample values packed and
transmitted or stored as shorter periodic digital signals having a reduced number
of discrete values. Forming of the compressed data blocks could be carried out
using the scheme given in Figure 20.9.

Data representing the input signal are given as a uniform digital signal at the
ADC output. The simple logic circuitry of this scheme dictates which of the signal
sample values xk are passed to the output and which are excluded. The PRNG is
used for generation of pseudo-random numbers ξ k within the range (0, 1). The
AND gate is opened when the pseudo-random number ξ k exceeds the threshold
A. The signal sample values taken at these time instants are included in the output
signal, all other sample values being omitted. Thus the signal at the output of
the AND gate is periodic with pseudo-randomly skipped sample values. The
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threshold level A defines the probability of a signal sample value being missing.
This signal representing the compressed data could be transmitted in this form
with zeroes replacing the excluded sample values or the sample values could be
stored in a buffer memory and then transmitted as a shorter periodic sequence.

Evidently this decimation of the signal sample values is performed for data
compression in a way predetermined by the design of the PRNG and its syn-
chronization to the signal. If the same type of properly synchronized PRNG is
used at reconstruction of the compressed data, it is easy to replace the missing
sample values by zeroes. Once that is done, any of the algorithms considered in
Section 20.2 could be used for recovery of the original signal or, in other words,
for decompression of data. The PRNG, of course, could be replaced by a memory
containing a code prescribing the time instances at which the signal sample values
should be eliminated.

Figure 20.10 illustrates a signal reconstructed from compressed data. The signal
given in Figure 20.10(a) was reconstructed by using the SECOEX algorithm.
The next signal shown in Figure 20.10(b) was reconstructed on the basis of the
iterative reconstruction algorithm adapted to the pattern of the missing sample
values. To obtain data for this demonstration under well-controlled conditions, a
periodically sampled (sampling frequency 44.1 KS/s, 16-bit quantizing) signal,
specifically recorded music, was used. These data were compressed three times
in the described way and then reconstructed. The reconstructed sample values
can be compared with the waveform of the original signal.

This example is given to show how data representing a signal could be com-
pressed in a very simple way and then reconstructed. Although these data com-
pression techniques can be used universally, they were actually developed for
applications based on processing and transmission of RF and microwave signals.

20.4.3 Data Compression for Two-Dimensional Signals

Various techniques are used for compression of data representing two-
dimensional images. Typically they are relatively complicated. Therefore it is
tempting to use the data compression approach described above for compressing
this kind of two-dimensional data. A particular image of ‘Lena’, given in Figure
20.11(a), was reconstructed from data compressed four times. The compressed
image with 75 % of pixels missing is shown in Figure 20.11(b). The restored
image is given in Figure 20.11(c). The reconstruction was again based on the
iterative reconstruction algorithm adapted to the pattern of the missing pixels.

The advantage of this approach to image compression is again in the ex-
treme simplicity of the data compression procedure. Reconstruction of the images
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Figure 20.10 Signal waveform reconstructed (solid line) from data compressed three times.
The original signal is given by dashed lines

encoded in this way is computationally burdensome. However, the reconstruction
quality is relatively good.

20.4.4 Providing for Fault Tolerance

Fault-tolerant sensor systems represent yet another area in which application of
the discussed embedded systems could turn out to be quite useful. The point is that
the digital alias-free signal processing technology is well suited for performing
under conditions when data are presented in a nonuniform way, which is exactly
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Figure 20.11 Illustration of two-dimensional data compressed four times and reconstruction
of the respective image: (a) original image; (b) compressed image with 75 % of the pixels taken
out; (c) reconstructed image

417
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Figure 20.12 Illustration of a signal waveform distorted by faults

what is needed for reconstruction of data damaged as a result of system faults.
Therefore application of this technology for the development of sensor signal
processing systems tolerant to faulty signal sample values or to sensor failures is
well worth considering.

To demonstrate the potential of the algorithms discussed above for reconstruc-
tion of signals heavily distorted by fault bursts, a typical case of signal distortion
by faults was simulated and the obtained results follow. It was assumed that as
a digital sensor signal is corrupted by a powerful interference and many of the
signal sample values are completely distorted they had to be taken out of this sig-
nal at time instants indicated in Figure 20.12(a) by zeroes. The signal waveform
distorted by these fault bursts is shown in Figure 20.12(b).

The iterative signal reconstruction algorithm adapted to the specific fault se-
quence was used for recovery of the original signal. A zoomed segment of the
reconstructed signal sample value sequence is given in Figure 20.13. It can be
seen that the quality of the distorted signal reconstruction in this case is good as
the sample values of the reconstructed signal overlap the original signal. As ex-
pected, the algorithms for reconstruction of signals from their nonuniform sample
value sequences adapted to the sampling nonuniformities could be successfully
used also for recovery of signals distorted by system faults.
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Figure 20.13 Segment (zoomed) of the reconstructed signal sample value sequence overlap-
ping the waveform of the original signal

Note that while the approach to data compression–signal reconstruction de-
scribed above is applicable for a wide variety of signals, the achievable recon-
struction quality to a certain extent depends on spectra of them. To achieve good
signal reconstruction adaptability to specific sampling irregularities, it should
be possible to decompose the respective signals into their components and the
frequencies of these components should be estimated with sufficiently high res-
olution and precision. That can usually be done but there might be problems.

20.5 Reducing the Quantity of Sensors in
Large-aperture Arrays

The subject of high-performance complexity-reduced array signal processing is
rather complicated and is actually beyond the scope of this book. Therefore only
a few points on this subject are considered here, simply to draw attention to
the fact that the discussed digital alias-free signal processing technology is quite
competitive and has a high application potential in this area.

As explained in Chapter 17, pseudo-randomization of the distances between
sensors in arrays helps in the suppression of the aliasing effect and under certain
conditions might lead to a significant reduction in the number of sensors in arrays.
However, to succeed, it is crucial to use appropriate nonuniform signal process-
ing techniques for handling array signal processing, both in the time and spatial
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domains. While it is relatively easy to achieve suppression of spatial aliasing, there
are problems with obtaining sufficiently precise estimates of the spatial spectrum
not corrupted by noise related to the fuzzy aliasing effect. Figure 17.9 illustrates
this fact. To achieve better results, special anti-aliasing array signal processing
techniques and tools have to be used to take into account the cross-interference
between components of nonuniformly sampled spatial signals. Although the re-
quired systems for processing spatial signals could be built in various ways, the
development and use of application-specific embedded systems adaptable to the
pattern of sensor positions in the array seems to be the best approach. The feasi-
bility of the sensor quantity reduction achieved by such adaptation is confirmed
by the results of computer simulations given below.

20.5.1 Adapting Signal Processing to Pseudo-random
Positions of Sensors

As soon as the sensors are placed in an array nonuniformly, the spatial signals
taken off this array strongly depend on the pattern of the sensor coordinates in the
array. In particular, the basis functions for spatial spectrum analysis under these
conditions become nonorthogonal, which leads to cross-interference between
spatial signal components. The impact of this cross-interference is observed as
background noise corrupting the results of spatial spectrum analysis and beam-
forming. This noise depends both on the irregularities of sensor positions in the
array and on the received or transmitted signal.

The impact of cross-interference due to non-uniformities of sensor positions
in the array could be characterized by cross-interference coefficients defined in a
way similar to the definition (15.9). Specifically, these coefficients characterizing
the cross-interference between the spatial signal components might be introduced
as follows:

â(Ωm) =
M∑

n=1

[am(AmCn) + bm(Am Sn)], m = 1, M,

(20.4)

b̂(Ωm) =
M∑

n=1

[am(BmCn) + bm(Bm Sn)], m = 1, M .

These coefficients are actually the weights of the errors introduced into the spa-
tial signal in-phase component (or the quadrature component) at frequency Ωn by
nonuniform distancing of sensors. These errors corrupt the estimation of a Fourier
coefficient am (or bm) at spatial frequency Ωm and therefore the coefficients (20.4)
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describe the interference between spatial frequency components of the array
signal. Their definition is similar to the definition of the cross-interference coef-
ficients (18.6) derived in Chapter 18 for the temporal spectrum analysis. In the
case of the spatial spectrum analysis they are given as

(AmCn) = 2

K

K∑
k=1

cos(2πΩmdk) cos(2πΩndk),

(Am Sn) = 2

K

K∑
k=1

cos(2πΩmdk) sin(2πΩndk),

(20.5)

(BmCn) = 2

K

K∑
k=1

sin(2πΩmdk) cos(2πΩndk),

(Bm Sn) = 2

K

K∑
k=1

sin(2πΩmdk) sin(2πΩndk).

Another set of cross-interference coefficients, specifically coefficients AnCm ,
BnCm, An Sm and Bn Sm, characterize interference acting in the inverse direction
from the spatial signal component Ωm to the component Ωn . It follows from
(20.5) that

AnCm = AmCn, BnCm = Am Sn,

An Sm = BmCn, Bn Sm = Bm Sn.
(20.6)

Thus the cross-interference effect, impacting spatial spectrum analysis in the case
where sensors in the array are placed nonuniformly, is reflected by the following
matrix of the cross-interference coefficients:

Z =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

(A1C1) (A1S1) (A1C2) (A1S2) · · · (A1CM ) (A1SM )
(B1C1) (B1S1) (B1C2) (B1S2) · · · (B1CM ) (B1SM )
(A2C1) (A2S1) (A2C2) (A2S2) · · · (A2CM ) (A2SM )
(B2C1) (B2S1) (B2C2) (B2S2) · · · (B2CM ) (B2SM )

· · · · · · · · · · · · · · · · · · · · ·
(AMC1) (AM S1) (AMC2) (AM S2) · · · (AMCM ) (AM SM )
(BMC1) (BM S1) (BMC2) (BM S2) · · · (BMCM ) (BM SM )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (20.7)

This matrix of the cross-interference coefficients is an essential characteristic
of the arrays of sensors with pseudo-random distances between them. Once the
pattern of sensors in the array is known, all coefficients of matrix Z, as well
as of the matrix inv(Z), can be calculated. This means that when a signal is
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Figure 20.14 Estimated spatial spectrum of the array signal taken off the array of 128 equidis-
tantly spaced sensors

sampled in accordance with such a predetermined nonuniform sampling point
process, an equation system similar to (18.19) could be solved, which adapts the
estimation of the array signal parameters to the specific positions of the sensors in
the array. That significantly reduces the impact of cross-interference between the
estimates of the spatial spectrum parameters caused by pseudo-randomization of
the array.

This extension of the positive experience accumulated in the area of temporal
signal processing for enhancement of array signal processing in the spatial do-
main seems to be quite successful. It is demonstrated by the following computer
simulations. The spatial spectrum analysis of an array signal, containing three
components with arrival angles and amplitudes Θ = 34.75◦ (0 dB), Θ = 8.96◦

(−42 dB) and � = −57.37◦ (−15 dB), is simulated. Figure 20.14 illustrates the
results of such an analysis obtained in the case where the array consists of 128
equidistantly placed sensors. To reduce the number of sensors in the array with
the same aperture, the distances between the sensors need to be irregular other-
wise there will be spatial aliasing. The results of the spatial spectrum analysis of
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Figure 20.15 Results of the spatial DFT in the case where there are 32 nonuniformly placed
sensors in the array

the array signal formed by a nonuniform array containing a four times smaller
amount of sensors (only 32) are given in Figure 20.15.

A comparison of the spectrograms given in Figures 20.14 and 20.15 leads to
the conclusion that pseudo-randomization of the sensor array design alone does
not lead to an acceptable array performance. To achieve better results, the spatial
spectrum analysis has to be adapted to the specific irregularities of the sensor
positions in the array, as explained above. Then the spectrograms are considerably
less corrupted by background noise and are obtained in a significantly wider
dynamic range. Figure 20.16 illustrates such adapting of spatial signal processing
to the specific nonuniform pattern of the sensor locations in an array.

It can be seen from the obtained and displayed spectrograms in Figure 20.16
that deliberate randomization of sensor array designs does indeed make it possible
to reduce the number of sensors in the arrays of the same aperture significantly.
However, to benefit from this approach, it is crucial to use effective spatial signal
processing techniques well matched to the specifics of this kind of array. The
point is that the techniques used for adapting spatial signal processing to the
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Figure 20.16 Spatial spectrum of a signal taken off an array of 32 pseudo-randomly spaced
sensors obtained by adapting the spatial spectrum analysis to the nonuniformity of the sensor
positions in the array: (a) after the second iteration; (b) after the fifth iteration; (c) after the
tenth iteration
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irregularities of the sensor positions in arrays meet these requirements. They are
capable of improving the performance of this type of sensor array significantly and
therefore application of them makes it possible to reduce the number of sensors
in the array.

The achievable complexity reduction of this kind of irregular sensor array
depends on the specific conditions of their applications. For instance, the array
complexity and array signal processing time often needs to be traded-off. Never-
theless, it should be possible to reduce the number of sensors in arrays substantially
in this way. As the research results so far obtained show, it is feasible to reduce
in many cases the number of sensors in one-dimensional arrays from 4 to 5 times
and from 16 to 25 times in two-dimensional arrays. It is evident that appropriate
embedded systems for array signal processing, adapted to the irregularities of the
respective sensor arrays, are needed and have to be used for that.
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