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Preface

The amazing world of the mononuclear phagocyte keeps ex-
panding at a pace that, in current vernacular, is truly awesome.
As a result, maintaining currency with the latest developments
and controversies that pertain to this cell type is becoming
increasingly difficult. Hopefully, what is contained in this
volume will be of help in this regard.

The topics have been selected to provide an overview of
subject areas that either have recently become much better
understood or are ones that, in our opinion, hold the promise
of new levels of understanding as they are developed in the
future. The scope of what is included ranges from how these
cells develop, through the means that are used to regulate
them, to the roles that they have in different tissues and in a
variety of infectious diseases.

In closing these brief introductory remarks, we want to
thank the contributors to this volume, especially those who
helped make our job easier by meeting their deadlines, and our
coordinator at Springer-Verlag, Ms. Marga Botsch.

STEPHEN W. RUSSELL and SIAMON GORDON
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1 Introduction

Cell-restricted membrane antigens have made it possible to map the distribution
of mature macrophages in many murine tissues. Monoclonal antibodies (mAbs)
have been used to define the appearance of macrophages dusing foetal and
postnatal development, to establish the anatomic relationships between macro-
phages and other cells in the normal and diseased adult, and to investigate
cellular modulation and heterogeneity within different microenvironments.
Current studies have illustrated the complex differentiation pathway of mononu-
clear phagocytesin vivo and have raised questions concerning the mechanisms
that determine monocyte entry, migration and fate within tissues. Macrophages
constitute a major, widely dispersed system of cells that regulate homeostasis in
the normal host and respond to tissue injury by contributing essential functions

Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE,
United Kingdom

Current Topics in Microbiology and Immunology, Vol. 181
© Springer-Verlag Berlin-Heidelberg 1992
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Antigen Markers of Macrophage Differentiation in Murine Tissues 3

during inflammation and repair. In this review we consider several membrane
marker antigens which have proved useful in studying the life history and
biologic properties of macrophages, and relate immunochemical studies on
antigen expression to lineage analysis and macrophage differentiation in vivo.
We restrict our discussion to the mouse, in which it is possible to manipulate the
system in its entirety. Where known, properties of macrophages in other species
are broadly similar.

2 Antigen Markers

In this section we summarise the properties of antigens which we have used to
study macrophage populations in situ and in vitro. Table 1 lists features that are
relevant to their use as markers. Other mAbs that have been used to characterise
murine macrophages will be referred to in the text. Details of antigen expression
will be described and illustrated below and our standard protocol forimmunocy-
tochemical analysis is given in an appendix.

2.1 F4/80

Knowledge of the presence of mature macrophages in murine tissues derives
mainly from studies with mAbs and monospecific polyclonal antibodies directed
against the macrophage-specific plasma membrane differentiation antigen
F4/80. The epitope defined by a rat mAb isolated by AUSTYN and GORDON (1981)
proved stable to perfusion—fixation, thus permitting HUME, PERRY and others to
identify macrophages in a variety of tissues (for earlier reviews see HUME and
GORDON 1985; PERRY and GORDON 1988). Subsequently DRI (unpublished
observations) used affinity purified F4/80 antigen to raise a potent polyclonal
antiserum that reacts with additional epitopes on the F4/80 molecule. This
monospecific reagent enhances the detection of macrophage plasma mem-
brane within tissues (LAWSON et al. 1990). The F4/80 antigen is a single chain
glycoprotein which displays microheterogeneity on Western blot analysis of
lysates prepared from various tissues and cell lines. The molecule has been
purified (STARKEY et al. 1987) but not yet cloned and its function is unknown.
Expression of F4/80 by peritoneal macrophages is down-regulated by in-
flammatory stimuli, which induce the recruitment ofimmature cells, by short-term
adhesion in cell culture and by exposure to lymphokines, especially interferon-y
(GORDON et al. 1986a). However, the F4/80 antigen can be readily detected on
macrophages by immunocytochemistry after all these treatments. The labelling
pattern in isolated macrophages is mainly (>80%) at the plasma membrane
and is uniform over the cell surface, although F4/80 antigen expression is
concentrated in ruffles and at the edge of spreading cells.
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2.2 Complement Receptor, Type 3 (CR,)

The M1/70 mAb originally described by SPRINGER et al. (1979) reacts with the «
chain of this member of the B2 leucocyte integrin family (SPRINGER 1990) and was
subsequently found to inhibit binding of iC,b-coated sheep erythrocytes to
leucocytes (BELLER et al. 1982). Whilst strongly expressed on polymorphonuclear
leucocytes (PMNs), circulating monocytes and NK cells, CR, expression is
variable on tissue macrophages (LEE et al. 1986; CROCKER and GORDON 1985).
Another mAb raised by ROSEN and GORDON (1987) to inhibit adhesion of
peritoneal macrophages to artificial substrata such as bacteriologic plastic also
reacts with CR,. This reagent blocks iC,b binding activity and in addition is a
potent inhibitor of myelomonocytic adhesion to inflamed endothelium in vivo
(ROSEN and GORDON 1990a), unlike M1/70. In contrast with its modulation in vivo,
expression of CR, is relatively constant on isolated macrophages in culture and
is predominantly at the plasma membrane, although it is detectable in
endosomes after endocytosis (ROSEN, unpublished).

23 7/4

The polymorphic myelomonocytic antigen 7/4 is expressed at high levels on
PMNs (HIRsCH and GORDON 1983), but is absent on resident tissue macrophages.
Monocytes and immune-activated macrophages express low levels of antigen
(TREE, RABINOWITZ and HIRSCH, unpublished). The 40-kDa antigen is stable to
perfusion fixation and Western blotting (RABINOWITZ, unpublished), but has not
been characterised further. mAb 7/4 has been useful as a depleting agent for
myeloid cells in bone marrow (BERTONCELLO et al. 1989) and to enrich for
undifferentiated 7/4-negative haemopoietic precursor cells, in combination with
other lineage-restricted reagents (IKUTA et al. 1990; ZSEBO et al. 1990).

2.4 Sialoadhesin(SER)

Stromal macrophages express a lectin-like receptor that binds sialylated
glycoconjugates on sheep erythrocytes (SER) (CROCKER and GORDON 1986) and
other erythroid model systems (COCKER et al. 1991). Ligands for this receptor are
also present on developing murine myeloid cells (CROCKER, MORRIS and GORDON,
unpublished). Activity of the receptor, now termed sialoadhesin, can be induced
on non-stromal peritoneal macrophages by cultivation in homologous serum
(CROCKER et al. 1988a). This made it possible for CROCKER and GORDON (1989) to
raise a specific inhibitory mAb, SER-4, and, after purification of the receptor by
affinity chromatography, to raise a further panel of mAbs, and a monospecific
polyclonal antibody (CROCKER, MCWILLIAM and GORDON, unpublished). The
sialoadhesin molecule is a single chain glycoprotein which is mainly expressed
on the plasma membrane, where it mediates binding but not ingestion of
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attached cells. In situ, SER antigen is concentrated at points of contact between
bone marrow stromal macrophages and myeloid, but not erythroid cells
(CROCKER et al. 1990). A distinct divalent cation-dependent receptor for adherent
erythroblasts (EbR) is expressed by stromal macrophages in foetal (MORRIS et al.
1988a) and adult tissues (MORRIS etal. 1991), but has not been defined
immunochemically.

2.5 FA.11

The mAb FA.11 isolated by SMITH and KOCH (1987) reacts with an intracellular
membrane glycoprotein that is more widely expressed by tissue macrophages
than is F4/80 (RABINOWITZ, PERRY and LAWSON, unpublished). It is also present on
lymphoid dendritic cells (RABINOWITZ, MILON, STEINMAN, AUSTYN and GORDON,
unpublished), but it is more tissue restricted than a family of lysosomal
glycoproteins, presentin many cell types, to which it may be related (DA SiLvA and
ROSEN, unpublished). Exudate (elicited and activated) but not resident peritoneal
macrophages express a glycoform that binds wheat germ agglutinin through
terminal sialic acid residues (RABINOWITZ et al. 1991a). The FA.11 molecule
consists of a core polypeptide, recognised by the FA.11 mAb, and is heterog-
eneous as a result of extensive N and O glycosylation. Although it can be
detected in the plasma membrane, the bulk of labelling in macrophages is within
the prelysosomal compartment and phagolysosomes and FA.11 reactivity is
absent from terminal lysoscmes (RABINOWITZ et al. 1991b). The FA.11 antigen is
presentin resident and exudate macrophages, but its level of expression, as well
as of glycosylation, is enhanced by endocytic stimuli (RABINOWITZ et al. 1991a;
DA SILVA, unpublished).

3 Distribution and Turnover of Macrophages

3.1 Ontogeny

The ontogeny of macrophages during development was largely unknown before
the introduction of antigen markers. It is now clear from studies with F4/80
(MORRIs et al. 1991b) that macrophages are among the earliest haemopoietic
cells to appear in the embryo (Fig. 1). Macrophages are abundant during mid
and late gestation in most organs and are likely to play an important role in
organogenesis and tissue remodelling. HUME, PERRY and others first used mAb
F4/80 to follow recruitment of monocytes from blood to the developing nervous
system at the time of natural death of neurons and their axons, before and after
birth (Fig. 2) (HUME et al. 1983a; PERRY et al. 1985). Recruited cells phagocytose
neuronal debris and differentiate into progressively more arborised microglia to
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Fig. 1 (cont)
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Fig. 1 (cont)
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Fig. 2. Macrophages in the developing brain. F4/80 demonstrates invading “amoeboid microglia”
(solid arrowhead) alongside ramified cells (open arrowhead) similar to resident microglia, in the
septum of a 1-day-old mouse. Scale bar 200 um; cresyl violet counterstain. (Prepared by L. LAWSON)

Fig. 1a-i. Macrophage ontogeny in lymphohaemopoietic organs. F4/80 labelling of murine tissues
as described. See Morris et al. (1991b) for further details. During development, F4/80" monocytes
and macrophages appear sequentially in yolk sac, liver, spleen and bone marrow and in
non-lymphoid organs such as skin. a Yolk sac, day 10. F4/80* cells are found in small vessels
and in interstitium, but are not associated with abundant erythroblasts in haemopoietic islands.
b-d Liver: b Rounded F4/80* monocytes and early stellate macrophages appear in foetal liver
(day 10) before local erythropoiesis is established; ¢ stellate macrophages are found at peak levels
in mainly erythropoietic islands by day 15; d by 3 days postnatally, haemopoiesis wanes and some
sinus-lining F4/80 labelled macrophages resemble Kupffer cells. e-g Spleen: e day 12, earliest
F4/80* macrophages; f birth, dispersed F4/80 labelled macrophages in haemopoietically active
region containing erythroid and myeloid cells, but few lymphocytes; g 1 week, newborn. F4/80*
macrophages are abundant in red pulp but are excluded from developing white pulp, which is
rich in lymphoid cells. h 3-day newborn femur. Stromal F4/80* macrophages have appeared at
centre of haemopoietic cell clusters. i 3-day newborn skin. Stellate F4/80* cells in developing
epidermis resemble Langerhans cells. Labelled macrophages are also abundant in dermis
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form a mosaic network of cells within the retina. Similar cell populations are
recruited throughout the developing central and peripheral nervous system.

Subsequently, MORRIS et al. (1991b) studied the presence of F4/80% cells in
the early embryo with special reference to haemopoietic tissues, mesenchyme
and other developing organs. F4/807 cells appear in the yolk sac together with
erythroid cells at day 9-10, although it is known from unpublished studies by
SHIA that F4/80-negative precursors of mature macrophages, (Granulocyte-
macrophage colony-forming units, GM-CFUc) can be detected in suspensions
of embryos by day 5. In yolk sac, primitive erythroid cells and F4/80* macro-
phages are not physically associated in haemopoietic cell clusters, as in more
mature tissues (CROCKER et al. 1988b). From day 10 haemopoietic activity shifts
to the foetal liver, where a rapidly expanding population of F4/80* stromal
macrophages is found in erythroblastic islands. Monocytes and more differen-
tiated, definitive erythroid cells produced in foetal liver sinusoids seed developing
organs and mesenchymal tissues widely from day 10, presumably via newly
formed blood vessels which develop at the same time.

After peak levels of haemopoietic activity are reached in the liver at day 14,
the spleen (high levels at day 17) and bone marrow (from day 19) become active
in turn. Erythroblastic islands disappear from liver later in gestation and during
further postnatal development, and sinus-lining hepatic macrophages assume
the appearance of Kupffer cells. A striking feature of haemopoiesis in the foetus
is the relative absence of granulocyte production in foetal liver at day 14, and
myelopoiesis only becomes prominent in spleen and bone marrow during late
gestation. Lymphocytes in spleen and thymus also develop late in foetal life and
expansion of secondary lymphoid organs occurs mostly during the early weeks
of postnatal development.

The F4/80 antigen serves as a sensitive, specific marker for mature
macrophages in foetal tissues throughout gestation. By contrast, the siaload-
hesin antigen (SER) appears later in development and is restricted to subpopu-
lations of F4/80" macrophages in lymphohaemopoietic tissues (MORRS et al.
1992). The sialoadhesin receptor was first identified by CROCKER and GORDON
(1986) on mature macrophages present in adult bone marrow clusters in situ
and in vitro. Immunochemical and rosetting studies with the inhibitory mAb, SER-
4, have shown that sialoadhesin is not expressed by day 14 foetal liver
macrophages although these F4/80* cells express the distinct divalent cation-
dependent receptor for erythroblasts (EbR) which appears to be the major
adhesion receptor involved in erythroblast island formation (MORRIS et al.
1991a). Sialoadhesin appears on stromal macrophages in developing lympho-
haemopoietic organs from ~ day 17, at the time of myelopoiesis, and the striking
pattern of strongly SER-labelled cells observed within the marginal metallophil
zone of adult spleen (CROCKER and GORDON 1989) appears 2-4 weeks
postnatally, in parallel with development of lymphoid cells and white pulp.

These studies have established that different macrophage- and subset-
specific antigens are regulated independently during development. Stromal
macrophages in foetal liver, spleen and bone marrow are likely to regulate
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adhesion, growth and differentiation of various haemopoietic cells, although the
role of different haemagglutinins and the nature of the ligands and haemopoie-
tic cellular interactions remain to be defined. The non-haemopoietic functions of
macrophages in the foetus are obscure, apart from a possible role in remodelling
of the nervous system. Foetal macrophages express characteristic endocytic
receptors such as FcR (CLINE and MOORE 1972) and proliferate vigorously in
response to autocrine and paracrine stimuli. It is likely that they are an important
source of growth factors for a range of other cell types during development (see
chapter by RAPPOLEE and WERB elsewhere in this volume).

3.2 Normal Adult

After the distribution of blood monocytes to many tissues during development,
recruitment of haematogenous cells continues throughout adult life. Their entry,
lifespan and rate of turnover vary in different tissues (for review see GORDON
1986). Enhanced recruitment of monocytes in response to inflammatory and
infectious stimuli depends largely on production within the bone marrow.
However, some resident tissue macrophage populations turn over independently,
e.g. in lung, and are renewed by local proliferation. Macrophages are able to
persist as relatively long-lived cells in tissues such as the adult nervous system,
or migrate from peripheral sites such as skin and gut to lymph nodes, where they
become trapped. It is often difficult to distinguish newly recruited from resident
tissue cells since adaptation of monocytes and macrophages to each special-
ised microenvironment makes it impossible to use morphologic or antigenic
markers by themselves to draw such a distinction. Antigen markers can be
combined with labels for DNA synthesis to trace the kinetics of tissue entry.
Haemopoietic reconstitution of x-irradiated animals has been used to trace the
life history of macrophages, and the Y chromosome may provide a useful
marker to distinguish macrophages of donor male origin from recipient female
cells (PERRY and LAWSON, unpublished). Recently, fluorescent hydrophobic
dyes such as dil (1.1" dioctadecyl 3,3,3',3' tetra methyl indocarbocyanine
perchlorate) have proved useful for ex vivo labelling of peritoneal macrophages
before adoptive transfer to recipient animals (ROSEN and GORDON 1990b).
Dil-labelled peritoneal macrophages can be used as surrogate monocytes since
they migrate from blood to specialised regions of spleen as well as to lungs
and liver in unstimulated animals, and are recruited into peritoneal exudates.
After transfer to the peritoneal cavity, labelled resident peritoneal macrophages
(RPM) migrate rapidly to regional draining lymph nodes (ROSEN and HUGHES,
unpublished).

Antigen markers have helped to identify macrophages in tissues, but
differences in regional expression of antigens reveal considerable heterogeneity
of cell phenotype. We first describe the distribution of F4/80-labelled cells in
tissues and then note variations in marker expression revealed by the use of
SER-4, FA.11 and CR;. Figure 3 summarises the antigen phenotype of resident
macrophages in various tissues, as described below.
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3.2.1 Expression of Antigen Markers by Tissue Macrophages

3.2.1.1 F4/80

A detailed description of F4/807 cells in normal murine tissues has been given
in a series of immunocytochemical studies (summarised by HUME and GORDON
1985). Examples of the varied morphology and cellular associations of resident
macrophages in adult lymphohaemopoietic organs and brain are illustrated
in Figs. 4-6. Quantitative analysis of antigen levels in different tissues is broadly
in agreement with the immunocytochemical findings (LEe etal. 1985).
Substantial populations of sinusoidal and interstitial F4/80% cells are found in
liver (Kupffer cells), red pulp of spleen, bone marrow stroma (within
haemopoietic cell clusters) and subcapsular regions of lymph nodes (HUME
et al. 1983b). Thymus and T lymphocyte-dependent regions (white pulp of
spleen and lymph nodes, Peyer’s patches) are conspicuously free of F4/80 label
whereas other mAbs reveal macrophage subpopulations at these sites
(RABINOWITZ et al. 1991a). Populations of F4/80% cells are present throughout
the lamina propria of the gastrointestinal tract, in epidermis (Langerhans cells)
as well as in subcutaneous tissues (HUME et al. 1984a), and in the parenchyma
of the nervous system (LAWSON et al. 1990). Delicately arborised F4/80% cells
are found regularly dispersed within epithelium (Langerhans cells) and in the
brain (microglia), whereas other stellate cells with shorter plasma membrane
processes are present beneath the basement membrane of epithelial cells in
small intestine and in renal medulla (HUME and GORDON 1983).

The airway, a major portal of entry to the body, contains a population of
rounded alveolar macrophages which express F4/80 only weakly (HUME and
GORDON 1985; GORDON, unpublished). F4/80" macrophages are ubiquitous
in connective tissues but are absent within bone and cartilage matrix (HUME et al.
1984b) and infrequent in normal muscle and heart (GORDON, unpublished).
Interstitial or sinusoidal F4/80* cells can be readily detected in several endocrine
organs (testis, ovary, adrenal, pituitary) whereas they are sparse in normal
pancreatic islets and thyroid (HUME et al. 1984c¢; HUTCHINGS et al. 1990; Pow et al.
1989). In the ovary, F4/80 labelling has revealed striking changes in macrophage
number and morphology during the reproductive cycle (HUME et al. 1984c),
and in posterior pituitary F4/80 labelled microglia selectively endocytose terminals
of neuroendocrine cells containing oxytocin/vasopressin (Pow et al. 1989),
suggestive of functional responses to hormonal stimulation.

F4/80 labelling has revealed considerable heterogeneity among macrophages
in and outside the brain and made it possible for LAWSON et al (1990) to
prepare a map of the distribution and morphology of microglia in the adult
murine CNS (compare Figs. 5 and 6). Microglia form a network of F4/80*
plasma membrane processes throughout white and grey matter; the
morphology of F4/80" cells varies in different regions of the parenchyma, and
distinguishes microglia from other macrophage populations in the choroid
plexus and leptomeninges. F4/80 antigen is expressed at high levels on
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Fig. 4 (cont)
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Fig. 4 (cont)
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Fig. 4a-h. Macrophages in adult murine lymphohaemopoietic tissues exhibit varied phenotype and
cellular associations. a,b Liver. Kupffer cells are relatively large and have simple stellate
morphology. Hepatocytes and endothelial cells are F4/80 negative, ¢,d Bone marrow. Stromal
macrophages in haemopoietic clusters express both F4/80 (c) and SER-4 antigen (d), whereas
monocytes are only labelled by F4/80. Stromal macrophages are finely branched and contact
developing erythroid and myeloid cells. e Spleen. F4/80 labels red pulp macrophages intensely,
but not white pulp. SER-4 expression is intense in marginal matallophil zone, weak in red pulp
and absent in white pulp (f). @ Skin. The cytoplasm is drawn out into many fine processes with
some secondary branching. The F4/80 labelled cells occur in a regular array and associate with
keratinocytes, shown by nuclear counterstain. h Small intestine. Macrophages are found throughout
the lamina propria in gut, forming an almost continuous core within villi. Macrophages lie beneath
epithelium, often enveloping capillaries and lymphatics.
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100 pm k ‘A

Fig. 5A-F. Camera lucida drawings from F4/80 stained coronal sections of mouse brain: A cortex;
B subfornical organ; € corpus callosum; D basal ganglia; E leptomeninges; F choroid
plexus. Macrophages of the adult central nervous system vary in morphology and antigenic
phenotype according to their location. Those lying outside the blood brain barrier (B, E,F) tend
to be simpler stellate cells. Cells within the parenchyma are extensively arborised, with a radial
pattern if they occur in grey matter (A, D) or a longitudinal one if in white matter (C). SER and
CD4 antigens are down-regulated on these cells

microglia, whereas several other antigens (e.g. leucocyte common antigen,
CD,) are down-regulated once cells pass through the blood-brain barrier
(PERRY and GORDON 1987, 1991), as discussed further below.

In summary, F4/80 has proved to be a reliable and specific marker for the
presence of macrophages in many adult tissues apart from specialised T
cell-dependent regions and the alveolar space. F4/80 labelling has defined the
association of tissue macrophages with endothelial, epithelial and other cell
types, and has made it possible to begin to reconstruct the migration and
differentiation of monocytes and macrophages in different compartments of the
body.

3.2.1.2 Sialoadhesin (SER)

The SER antigen is restricted to selected tissue macrophages in lymphohaemo-
poietic organs and scattered macrophages elsewhere (CROCKER and GORDON
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Fig. 6a—c. Microglia (resident macrophages) are numerous, ubiquitous but heterogeneous in their
distribution and morphology in the normal adult mouse brain. a Mouse hippocampus stained with
F4/80 shows the large amount of microglial membrane present and its heterogeneous distribution.
Scale bar 500 um; HF, hippocampal formation; fi, fimbria. b, ¢ Detail of microglial morphology in
hippocampus (b) and fimbria (¢). Scale bars 60 um, no counterstain

1989). Strongly SER™* stellate macrophages are found in bone marrow stroma
(where F4/80 but not SER mAb also labels developing monocytes), in a
characteristic region of the spleen (marginal metailophii zone), where F4/80 is
weak or absent, and in subcapsular stroma in lymph nodes. Weaker SER
labelling is observed on Kupffer cells and spleen red pulp macrophages which
are strongly F4/80*. Conversely, F4/80-poor alveolar macrophages can express
sialoadhesin (CROCKER, MCWILLIAM and GORDON, unpublished). One reason for
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differential expression of sialoadhesin is its dependence on exogenous inducer
protein(s) which are present in normal mouse plasma and lymph (CROCKER et al.
1988a; McWILLIAM and TREE, unpublished). Mouse serum contains similar levels
of inducer activity to that found in plasma, and there is species restriction with
regard to inducer source and target. Although the inducer proteins have not
been characterised, exposure to plasma is correlated with sialoadhesin
expression in vivo. In the central nervous system, for example, the SER antigen
is absent where microglia are shielded from contact with plasma by the blood-
brain barrier. Microglia in circumventricular organs outside the blood-brain
barrier are exposed to plasma proteins and express sialoadhesin; leakage of
plasma proteins after injury to the nervous system also enhances SER antigen
expression on microglia (PERRY et al. 1992). Monocytes and other SER-poor
macrophages can be induced to express high levels of SER in vitro, although
cells vary in the rate and extent of induction. Preliminary studies
(McWiLLIAaM and TREE, unpublished) indicate that cytokines, including inter-
ferons and interleukin-4, modulate sialoadhesin expression. These findings
indicate that macrophage sialoadhesin is regulated by a complex network of
signals that link immune responses and haemopoiesis. Although the role of
sialoadhesin in haemopoietic cell interactions is not understood, its distinctive
regulation in adult and foetal tissues makes it a valuable marker of specialised
macrophages.

3.21.3 FA11

The FA.11 mAb reacts more broadly in tissues than F4/80 and is a candidate
pan-macrophage reagent. However, since its expression is mostly intracellular,
it is less satisfactory than mAbs that react with plasma membrane markers.
FA.11 labels most of the cells which express F4/80 antigen in tissues, although
some resident macrophage populations such as microglia are labelled lightly
(LAWSON, unpublished), possibly reflecting down-regulation of endocytic activity
in these cells. In contrast with F4/80 and sialoadhesin, FA.11 also reacts with
scattered macrophage-like cells in T lymphocyte-dependent regions in spleen
white pulp (RABINOWITZ et al. 1991a). Its labelling of dendritic and related cells
in tissues will be discussed further below. Alveolar macrophages, another
population which expresses low levels of F4/80, are strongly FA.11* (RABINOWITZ
and CROCKER, unpublished). The distribution of FA.11 antigen therefore
reflects endocytic stimulation, and its presence could provide a possible marker
of macrophage activity in situ.

3.2.1.4 CR,

Whilst the role of CRs in induced myelomonocytic recruitment has been studied
in a variety of murine models of inflammation, as discussed below, expression
on normal murine tissue macrophages is heterogeneous (FLOTTE et al. 1983).
CR; and the other leucocyte integrins that share a common f, chain, LFA-1
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and p150/95, are regulated independently. Non-ieucocyte integrins have been
poorly characterised in murine tissues because of lack of suitable reagents,
but monocytes and macrophages in other species are known to interact with
fibronectin, fibrinogen, laminin and vitronectin (BEVILACQUA et al. 1981; BROWN
and GOODWIN 1988; GRESHAM et al. 1989; SHAW et al. 1990; KRISANSEN et al.
1990).

Several anti-murine CR; mAbs label peritoneal macrophages and microglia.
However, other major tissue macrophage populations, including Kupffer cells
(LEE et al. 1985, 1986) and bone marrow stromal macrophages (CROCKER and
GORDON 1985), express low levels of CR;. Alveolar macrophages lack CRj4
(Blusse van OuUD ALBLAS and VAN FURTH 1979; GORDON, unpublished) but express
high levels of LFA-1 (CROCKER, unpublished), a marker enhanced by macrophage
activation (STRAUSMAN et al. 1986). In spleen, CR; is mainly present on PMNs
in red pulp, but marginal zone macrophages are also labelled. The expression
of p150/95 in murine tissues may provide a marker for lymphoid dendritic and
related cells in spleen, as described below. Expression of the a chains of
leucocyte B, integrins is therefore differentially regulated by their microenviron-
ment in situ; CR; expression is rapidly up-regulated once CRjs-negative
macrophages are isolated from tissues and maintained in culture.

3.3 Elicited and Activated Macrophages

Entry, accumulation and turnover of macrophages are markedly enhanced by
many forms of tissue injury, inflammation and repair, including metabolic and
neoplastic diseases. Plasma membrane molecules contribute to, and serve as
useful markers of, many of the functional changes of macrophages involved
in these processes. It is convenient to distinguish between exudate macro-
phages elicited by immunologically non-specific inflammatory stimuli and cells
that are activated to display enhanced microbicidal and cytocidal properties
by the actions of antigen-stimulated T lymphocytes (EzEkowiTz and GORDON
1984). Both types of recruited cell also express common properties that dis-
tinguish them from resident macrophage populations in the peritoneal cavity
and elsewhere (GORDON et al. 1988a). However, responses of macrophages
in different tissues to local and systemic stimuli vary considerably and result
in phenotypic heterogeneity that is difficult to interpret in regard to mechanism
or functional significance (GORDON et al. 1988b).

Several broad generalisations can be made in this regard. Induced
recruitment of monocytes following microbial infection and other forms of
tissue injury is often accompanied by that of other myeloid cells, especially
PMNs (myelomonocytic responses), whereas many forms of CNS injury, viral
infection or malignancy recruit monocytes with T lymphocytes (mononuclear
responses). Macrophages play a central role in initiating, perpetuating and
resolving inflammation through their extensive repertoire of specific plasma
membrane receptors (GORDON et al. 1988b) and secretory products (RAPPOLEE
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and WERB 1991). However, it is not always clear to what extent these activities
are mediated by resident macrophages already present in tissues, or by newly
recruited monocytes. Resident macrophages in liver, spleen and bone marrow,
for example, express plasma membrane receptors for sugar-specific recognition
of foreign agents, but there is little information on the ability of these cells,
possibly involved in first-line interactions with invading organisms, to produce
monokines and other chemotactic and vasoactive mediators of inflammation.
Resident tissue macrophages may be refractory to stimuli such as lipopoly-
saccharide (LPS), and host defence depends on rapid mobilization of blood
monocytes that can be induced to release cytotoxic molecules (LEPAY et al.
1985a, b).

Surface receptors play a key role in macrophage production, migration and
interactions with cellular and humoral ligands. The leucocyte integrin CR; is
known to be essential for induced myelomonocytic recruitment in response to
a wide range of inflammatory stimuli (ROSEN and GORDON 1990a). The
anti-CR; mAb 5C6 is a potent inhibitor of myelomonocytic cell adhesion to
inflamed endothelium after non-specific stimulation (thioglycollate broth, LPS)
and acute listerial infection (ROSEN et al. 1989) and partially inhibits monocyte
recruitment in T cell-dependent delayed-type hypersensitivity (ROSEN et al.
1988) and autoimmune islet cell damage in non-obese diabetic mice (HUTCHINGS
et al. 1990) However, other murine models of infection (e.g. BCG, PLASMODIUM
yoelii) are resistant to 5C6 mAb (ROSEN, unpublished) and presumably involve
CR;-independent pathways of monocyte recruitment.

Once recruited cells arrive at a site of inflammation they undergo discrete
stages of further differentiation before becoming fully activated, reflected by
complex alterations of phenotype. For example, in a relatively simple model of
inflammation, monocytes can be recruited to the peritoneal cavity of mice by
local injection of biogel polyacrylamide beads (FAUVE et al. 1983; RABINOWITZ,
unpublished; STEIN and GORDON 1991). These are too large to be ingested,
but evoke the influx of macrophages which can be stimulated further by
lymphokines or a phagocytic trigger to release high levels of tumour necrosis
factor o (TNF-a), a characteristic property of immunologically activated as well
as of thioglycollate-broth elicited macrophages (STEIN and GORDON 1991).
Plasma membrane receptors for mannosylated ligands (MFR) or for Fc regions
of IgG are efficient triggers for secretion of a range of mediators by primed
macrophages, whereas CR; and other membrane antigens are inert in this
regard (reviewed by GORDON et al. 1988b).

How useful are antigen markers in characterising the functional state of
excudate macrophages in different local microenvironments? Several antigens
are retained on recruited monocytes and/or induced in exudate macrophages,
irrespective of the site at which the cells localise (LEE et al. 1986). These include
F4/80, which is also present on Kupffer cells, and CR3, 7/4 and la (MHC class II),
which are expressed mainly by recruited macrophages, for example in BCG-
induced liver granulomata (Fig. 7) (RABINOWITZ, unpublished) Scattered cells in
liver sinusoids which express these antigens in infected animals represent newly
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Fig. 7a-e. Heterogeneous expression of antigens by macrophages in murine liver during
granuloma formation. Sections were labelled at the peak of the inflammatory response (day 10) after
intravenous injection of bacille Calmette-Guérin (BCG) (RaBinowiTz, unpublished). a, b Low
and high power views. F4/80 antibody labels all macrophages in granulomata, as well as Kupffer
cells and trafficking monocytes in sinusoids. c—e Low, intermediate and high power views. Antibody
7/4 labels a subpopulation of activated macrophages in granulomata, as well as monocytes and
neutrophils in blood vessels and sinusoids. Kupffer cells lining sinusoids are unlabelled

recruited migrating cells. In tissues such as liver (LEE et al. 1986) and the CNS
(ANDERSSON et al. 1991) it becomes increasingly difficult to distinguish newly
recruited monocytes that adopt the characteristic phenotype of macrophages
in each microenvironment from resident cells that have been reactivated by
local inflammation to express previously down-regulated markers.

It has also proved difficult to distinguish immunologically activated macro-
phages (i.e. those recruited cells which display an enhanced capacity to kill
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intracellular pathogens) from non-cytocidal exudate macrophages by antigen
marker analysis in situ. Cytokines produced by macrophages themselves, by
activated T lymphocytes or by other cells are potent modulators of the macro-
phage phenotype. There is little information on the effects of locally produced
cytokines on antigen expression at sites of immune and inflammatory reactions
and on the range of cellular targets induced. Interferon-y, for example, is a
major, although not unique, inducer of la in lymphokine-activated macro-
phages. The 7/4 antigen is expressed by BCG-activated macrophages in situ;
however, it is not inducible in vitro by interferon-y alone, but only in combination
with other T cell dependent and other growth factors (TREE, unpublished;
MAUDSLEY et al. 1991). la (MUNRO et al. 1989) and an intracellular antigen (IP10)
induced in macrophages by interferon-y are also widely expressed in
neighbouring endothelial and epithelial cells (KAPLAN et al. 1987). Immuno-
modulatory agents which deactivate macrophages in situ include glucocorti-
coids, transforming growth factor f (DING et al. 1990) and interferon-a/f
(EzexowITz et al. 1986). The profile of antigen markers expressed by macré-
phages therefore varies considerably at different stages of an inflammatory or
immune process.

At present there are surprisingly few antigen markers available to assess
macrophage functional status in situ, in spite of many attempts to produce
such reagents. Further studies are needed to correlate antigen expression with
changes in secretory repertoire (respiratory burst, TNF etc.) and to define the
link between cell differentiation and activation more clearly. Cellular antigens
could prove useful in analysing the effects of chemotactic and phagocytic
stimuli, cytokines and hormones on macrophages if more discriminating mAbs
were isolated and antigen expression correlated more precisely with function.

4 Relationship of Macrophages to Cells of Related Lineages

Several cell types derived from bone marrow progenitors pass through the blood
at some stage of their life history and express macrophage-like characteristics
in tissues. Antigen markers have been of great value in distinguishing cells of
clearly different haemopoietic lineages, but the relationship of macrophages
(the cells of the mononuclear phagocyte system) to other cells of bone marrow
origin such as lymphoid dendritic cells (LDCs) and osteoclasts remains unclear.
LDCs belong to an ill-defined group of specialised accessory cells that include
veiled, interdigitating and Langerhans cells (for reviews see AUSTYN 1987; MAC-
PHERSON 1989). Isolated LDCs are uniquely potent in presenting antigen to
T lymphocytes to initiate primary immune responses (STEINMAN et al. 1986).
Macrophages and B lymphocytes also serve as accessory cells in secondary
immune responses, but lack the ability to stimulate naive T lymphocytes
efficiently. Dendritic cells are found mainly in lymphoid organs, although not
necessarily in the same sites as macrophages, and both cell types can be present
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in epithelia. LDCs migrate through blood as well as lymph (AuSTYN 1989; LARSEN
etal. 1990), and may recirculate from peripheral lymphoid organs, unlike
macrophages. Both cell types express common markers during part of their life
history and it is not clear whether, or at what stage, these lineages have
separated from each other. Similarly, the mature osteoclasts of bone derive from
circulating mononuclear cells (for review see CHAMBERS 1989), but it is not known
whether they are distinct from monocytes. Recent studies to characterise these
various cells in tissues and in culture have provided insights into their specia-
lisation without resolving the question of their interrelationship. Antigen marker
expression will be considered in the context of their other properties and of
general methods of lineage analysis.

In principle, precursor—product relationships can be established for parti-
cular cell types by examining the progeny of suitably marked progenitor cells in
vivo and in vitro. One difficulty has been the lack of defined culture systems to
grow and maintain cells with the appropriate phenotype, another the shortage of
specific markers. Although macrophages adapt readily to cell culture, they do
not necessarily retain or remain able to acquire a specialised tissue phenotype,
especially when derived from proliferating precursors. Studies on the stromal
markers sialoadhesin and EbR have demonstrated the deficiencies of cell lines
and standard culture systems in maintaining macrophage differentiation in vivo
(MCWILLIAM and FRASER, unpublished). Lineage analysis of these macrophage-
related cells has proved difficult in vitro. It has not been possible to generate
LDCs from haemopoietic progenitor cells in culture although cells of the LDC
phenotype have been derived from isolated Langerhans cells, as discussed
further below. Osteoclasts can be generated in small numbers as part of
multilineage colonies derived from bone marrow. or spleen progenitors
(HATTERSLEY, KERBY and CHAMBERS, 1991, UDAGAWA et al. 1989; KURIHARA et al.
1991; KERBY et al. 1991). Stromal fibroblasts are required, as well as multispecific
growth factors, and osteoclasts are often found in these cultures with macro-
phages, which proliferate more vigorously (KODAMA etal. 1991b). Tumour-
derived or transformed haemopoietic cell lines may provide alternative precur-
sors for clonal analysis to primary sources in foetal liver, bone marrow or spleen,
but have not yet contributed to the elucidation of this problem.

It might be thought that expression of plasma membrane receptors for
lineage-restricted growth factors could provide ideal markers to distinguish
macrophages from their close relatives. For example, receptors for CSF-1 (c-fms)
mediate monocytic differentiation when primary precursors (see chapter by
STANLEY in this volume) or undifferentiated myeloid cell lines (PIERCE et al. 1990;
Wu et al. 1990) are treated with CSF-1 in vitro. However, analysis of CSF-1
receptor expression on tissue macrophages, osteoclasts and LDCs is sketchy.
Expression of CSF-1 receptors in situ is not restricted to macrophages, but is
found on trophoblast epithelium, and receptor expression on macrophages is
subject to down-regulation.

Recent studies with osteopetrotic mice, which display deficient osteoclast
function, provide evidence that CSF-1is essential for development of osteoclasts
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(WIKTOR-JEDRZEJCZAK et al. 1990; YOSHIDA et al. 1990). Homozygote op/op mice
carry a mutation in CSF-1 and in the adult contain reduced numbers of blood
monocytes and selected tissue macrophages (FELIX et al. 1990a). Some of these
deficiencies can be corrected by exogenous CSF-1 (KODAMA et al. 1991a; FELIX
et al. 1990b). The role of CSF-1 in LDC differentiation has not been defined.
Receptors for GM-CSF are also not sufficiently selective for fine lineage
resolution. Apart from various myeloid cells, there is evidence that dendritic cells
respond to this factorin cell culture (KOCH et al. 1990). Other receptors for known
cytokines are often broadly distributed on haemopoietic and non-haemopoietic
cells.

At present analysis of lineage depends on antigen markers and phenotypic
properties of cells that have been studied in situ, or after isolation from various
tissues. Interpretation of these studies should take into account the differentia-
tion, migration and modulation of cells within different microenvironments. The
problem of variability of cellular phenotype can be illustrated by considering the
properties of LDCs and Langerhans cells (LENZ et al. 1989). Isolated LDCs lack
F4/80, but constitutively express high levels of la and are potent stimulators of a
mixed leucocyte reaction (MLR) when cocultivated with resting, allogeneic T
lymphocytes. Earlier attempts to identify these cells in situ were handicapped by
lack of dendritic cell-specific markers suitable for immunocytochemistry. Recent
studies have reported that dendritic interdigitating cells in mouse spleen express
a p150/95 integrin (METLAY et al. 1990) which is less widely expressed on other
tissue macrophages than in man (HOGG et al. 1986), and which may therefore be
a selective marker for murine LDCs. A possible relationship between altered
integrin expression and induced migration of Langerhans cells and LDCs has
not been reported.

Langerhans cells are widely distributed in the epidermis and in other
complex epithelia and express properties which link them to tissue macrophages
and LDCs. They contain morphologically distinct Birbeck granules and have
been implicated in antigen responses in skin and in draining lymph nodes, to
which they migrate. Langerhans cells express F4/80 and other plasma mem-
brane antigens in a characteristic pattern of regularly spaced stellate cells
surrounded by keratinocytes. When isolated from epidermal sheets, Langerhans
cells lose F4/80 antigen, but acquire enhanced MLR activity in culture (SCHULER
and STEINMAN 1985). GM-CSF improves survival of Langerhans cells in vitro
(WITMER-PACK et al. 1987), but the cells do not retain F4/80, unlike macrophages
derived from bone marrow precursors in the same culture medium. These
findings are compatible with the hypothesis that Langerhans cells mature into
functional LDCs.

Expression of the FA.11 antigen provides further evidence that LDCs and
macrophages are related cells. FA.11 labelling is restricted to macrophages and
dendritic cells (RABINOWITZ, MILON, STEINMAN and AUSTYN, unpublished), uniike
other endosomal/lysosomal membrane glycoproteins which are more widely
distributed in haemopoietic and non-haemopoietic cells (DA SiLvA, LAWSON and
ROSEN, unpublished). The FA.11 antigen is found in solitary granules in dendritic



Antigen Markers of Macrophage Differentiation in Murine Tissues 27

cells, perhaps reflecting a rudimentary or specialised vacuolar apparatus,
compared with its distribution in macrophages, which contain numerous FA.117*
vesicles in their cytoplasm. Recent studies have confirmed that endocytic
organelles become reduced when Langerhans cells are isolated from epidermis
and differentiate into LDC-like cells in culture (STOSSEL et al. 1990).

Osteoclasts lack F4/80 antigen, unlike macrophages on adjacent periosteal
or endosteal surfaces in bone (HUME et al. 1984b), but express other leucocyte
antigens (ATHANASOU et al. 1987). Although macrophages are potent catabolic
cells able to degrade a range of connective tissue elements, including fragments
of ingested bone, only true osteoclasts excavate intact bone by local secretion.
Bone resorption is inhibited by calcitonin and osteoclasts express abundant
receptors for calcitonin (NICHOLSON et al. 1986; TAYLOR et al. 1989). Giant cell
formation is uninformative in distinguishing between osteoclasts, which can be
mononuclear, and macrophages, which are often multinucleated, the extent of
polykaryocytosis depending on the species. Osteoclasts and macrophages share
aH* electrogenic vacuolar proton pump, but it is not known whether endosomal
antigens such as FA.11 are present in both cell types.

These studies indicate that there is considerable overlap among these
different lineages. Improved cell-restricted marker antigen would be helpful in
defining in vivo precursors, branch points and possible interconversions among
these cells, and their migration pathway within tissues.

5 Antigens and Macrophage Heterogeneity

We have demonstrated that macrophages and related cells are constitutively
present in different compartments of the body, that they migrate via blood and
lymph and that they undergo complex changes in phenotype in different tissues
even in the absence of inflammation. The induced recruitment of blood mono-
cytes as a result of inflammation and injury brings cells from a common pool to
tissue environments in which extrinsic and local factors further modulate the
macrophage phenotype.

Mature macrophages interact with most other cell types in the body,
including endothelium, epithelium, fibroblasts, lymphohaemopoietic and neuro-
endocine cells. These cells and extracellular matrix influence expression of
antigens and secretory products by macrophages within each microenviron-
ment. Regional specialisation in macrophage biosynthetic activity can be
detected by in situ hybridisation for mRNA products such as lysozyme (CHUNG
et al. 1988), TNF-a (KESHAV et al. 1991) and other monokines. Does the extensive
heterogeneity of cell phenotype reflect a single major lineage of mononuclear
phagocytes or are there subsets of macrophages, perhaps analogous to the
diversity of T lymphocytes? To what extent can cell differentiation and modula-
tion within tissues account for current knowledge of macrophage heterogeneity
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and how successfully can we replicate in culture the unique phenotype
expressed by macrophage populations in situ?

Antigen markers can be used to follow modulation of mature macrophages
directly after adoptive transfer to different sites in the body. The effects on
macrophage antigen expression of specialised microenvironments in spleen,
liver and lung, for example, can be studied by introducing suitably marked cells
via different routes in the intact animal. A more general method is to use mAbs
directed against various plasma membrane antigens to separate progenitor
cells from mature haemopoietic cells in bone marrow, foetal liver or spleen, and
to study their progeny. This approach has been little used to analyse
macrophage differentiation in vivo, but was used by HIRSCH et al. (1981) to
examine expression of F4/80 during macrophage differentiation in cell culture.
Bone marrow progenitors were sorted on the basis of F4/80 labelling and
incubated with L cell conditioned medium as a source of CSF-1. FACS analysis
showed that GM-CFUc lack F4/80, which first appeared on immature promono-
cytes at the time cells became adherent. Studies with anti CR,; and 7/4 mAbs
(HirRsCH and GORDON, unpublished) indicate that, as expected for myelomonocy-
tic markers, these antigens are expressed earlier than F4/80 on GM presursors
that form clusters of both macrophages and PMNs in the presence of GM-CSF.
Since SER and FA.11 are not expressed by PMNs, they are probably also
acquired after these lineages separate. Monocytes and less mature stages of
macrophage development express FA.11 (MILON and GORDON, unpublished), but
not SER. F4/80 expression is weak and variable on monocytes so that it is difficult
to use this marker to study blood mononuclear cell heterogeneity by fluore-
scence sorting experiments. Moreover, the yield of blood monocytes from the
mouse is small and these cells have a more limited proliferative capacity than
progenitor cells.

In addition to relating antigen expression to cell maturity, it is possible to
study clonal heterogeneity in CSF-supplemented cultures. Bone marrow CFUc
cultivated in L cell-conditioned medium yielded colonies in which all macro-
phages in all colonies expressed F4/80 uniformly (HIRSCH et al. 1981). In other
studies, the activation marker la was induced on all independent colonies,
although variable numbers of macrophages in each colony expressed this
antigen. Early studies in which only a limited range of precursors, CSFs and
antigen markers were examined, failed to reveal clonal heterogeneity among
mononuclear phagocytes, and the conclusion was drawn that we are dealing
with a single cell lineage. Similar further clonal studies are needed with specific
markers and functional assays for LDCs and osteoclasts.

Several variables need to be taken into account to perform this type of
analysis. It is necessary to define the role of cell growth in influencing expression
of a stable specialised phenotype. Clonal analysis might also bring to light a
requirement for another cell type (macrophage or fibroblast) which could play
an accessory role in haemopoietic cell differentiation. Improved culture systems
are needed to study relationships among macrophages, LDCs and osteoclasts,
and among mononuclear phagocytes, such as stromal macrophages, alveolar
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macrophages and Langerhans cells which display a tissue-specific phenotype.
In particular, are different cell phenotypes stable or interconvertible, can they be
modulated during a proliferative phase or only once cells become terminally
differentiated? A related requirement is to define the environmental factors which
regulate the phenotype of these cells in situ. Expression of markers such as CR,
and sialoadhesin on macrophages is tightly controlled in different tissues, but
regulation is lost or only partly reproduced in present culture systems. Although
some of the variables that regulate marker expression in vivo have been
identified, such as the plasma inducer of sialoadhesin, other modulating factors
in the microenvironment such as the role of extracellular matrix require further
study. The extensive down-regulation of antigens and other markers in highly
differentiated macrophages such as resident microglia cannot be reproduced in
vitro. This may result from inhibitory interactions with specialised cells in brain
parenchyma (neurons, other glia) acting through macrophage surface re-
ceptors, or from the absence of elements found outside the CNS. The role of
foreign antigens, LPS and other exogenous agents in modulating macrophage
differentiation in tissues should also be borne in mind.

The lymphohaemopoietic system provides a variety of model systems to
study the interplay between pluripotent stem cells and specific cytokines that
regulate their growth and differentiation. Bipotential precursors for macro-
phages and granulocytes have been of particular interest in defining events that
accompany commitment to specialised lineages. The heterogeneity of tissue
macrophages and closely related cells, as discussed here, offers a unique
opportunity to study modulation and differentiation of mature cells, and the
interplay of environmental signals and intracellular events that regulate cell-
specific functions. Development and characterisation of well-defined antigens
should provide markers to analyse the mechanisms by which macrophage
diversity is generated.

6 Conclusion

The combined use of antigen markers and in situ hybridisation has delineated
the life history of macrophages and their functions in tissues. The distribution of
cells has been followed during development, and through adult life, in the steady
state and in response to physiologic changes and pathologic perturbations. The
F4/80 mAb provides a tool to map cell distribution, to identify microheterogeneity
among macrophages within a single organ, and to reveal accumulation of newly
recruited monocytes at sites of injury and their adaptation within a specific tissue
environment. F4/80 antigen expression is absent on macrophages, defined by
other marker antigens, in specialised regions of lymphoid organs. The FA.11
antigen is more widely expressed on macrophages and on LDCs and is
responsive to endocytic stimuli. The sialoadhesin (SER) receptor marks a
subpopulation of stromal macrophages in lymphohaemopoietic tissues which
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are involved in non-phagocytic, possibly trophic, cellular interactions. Antigen
markers have revealed adaptations and novel functions of macrophages, and
have provided tools to manipulate their migration and behaviour in tissues.
Membrane antigens combined with other marker molecules make it possible to
study the role of these versatile cells in a wide range of disease processes, and
provide model systems to study fundamental questions of cellular differentiation.
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Appendix

Immunohistochemistry with F4/80 mAb (adapted from HUME et al. 1983b; PERRY
et al. 1985). Method is based on the biotin-avidin-peroxidase method of Hsu
et al. (1981).

Reagents

a) F4/80 hybridoma supernatant can be purchased from:

UK: Serotec Tel: UK 0867579941
22 Bankside Fax: UK 08675 3899
Station Approach
Kidlington

Oxford OX5 1JE

USA: Bioproducts for Science Inc. Tel: (317) 894 7536
PO Box 29176 Fax: (317) 894 4473
Indiana 46229

Japan: Dai Nipon Pharmaceuticals Co. Ltd.
6—8 Doshomachi
2-Chome
Chuo Ku
Osaka 541

Use 1:20 in phosphate-buffered saline (PBS)

b) Biotinylated rabbit anti-rat IgG, preferably adsorbed to remove cross-
reactivity with mouse IgG, 1:100 (Vector Laboratories Ltd. 16 Wulfric Square,
Bretton, Peterborough, Cambridgeshire, UK).

c) 1% normal rabbit serum (Vector Laboratories Ltd).

d) Detection complex (Elite ABC; Vector Laboratories Ltd), 2 drops of each
reagent in 5ml PBS. This needs to be made up at least 30 min before use,
but should not be kept longer than 72 h.
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e) Chromogen (DAB)
0.125 g diaminobenzidine tetrahydrochloride
0.2g imidazole (optional)
250ml 0.1 M phosphate buffer, pH 7.2
125 ul 30% hydrogen peroxide, added just before use.

Methods

1. Dewax wax sections and take to water. Thaw frozen sections and ensure
they are thoroughly dry.

2. Wash sections in PBS for ca. 10 min to remove embedding medium.

3. Incubate with 1% normal rabbit serum for 30 min at room temperature, in
a humidity chamber. Do not allow any reagents to dry on sections.

4. Remove excess serum and incubate with F4/80 mAb for 60 min at room
temperature.

5. Wash sections in PBS; at least 2 x 10-min washes are desirable.

6. Incubate in biotinylated secondary antiserum for 45 min.

7. Wash sections (at least 2 x 10 min).

8. To quench endogenous peroxidase activity, place sections in 0.3%
hydrogen peroxide in methanol (alternatively 96% alcohol) for 20 min.

9. Wash sections (2 x 10 min).

10. Incubate in Elite ABC for 45min at room temperature.

11. Wash well (at least 2 x 10 min, preferably 3 washes).

12. React in DAB, observing the progress of the reaction. If often takes only
around 20-30s.

13. Wash well in PBS or 0.1 M phosphate buffer.

14. The DAB reaction product may be intensified by incubation in 0.01%
osmium tetroxide in 0.1 M phosphate buffer for about 30s, followed by
careful washing.

15. Counterstain as required, dehydrate and mount sections.

Notes

1. The commonest cause of failure of F4/80 staining is poor fixation of the

tissue. We routinely use 2% paraformaldehyde, lysine, periodate (PLP)
perfusion-fixed material (MCLEAN and NAKaNE 1974) with or without
0.05%-0.1% glutaraldehyde for use with mAb F4/80, ensuring that the final
pH is 7-7.4. The antigen is also stable to 0.5% buffered glutaraldehyde for
use with mAb F4/80, Carnoy's fixative or acid alcohol. Buffered
paraformaldehyde, Karnovsky's fixative and picric acid are not satisfactory
fixatives.

2. F4/80 staining may be carried out on fixed frozen sections or on material

embedded in paraffin or polyester wax. Morphologic preservation is better
with wax-embedded material but there may be some loss of antigen during
prolonged infiltration steps with paraffin wax at 60 °C.
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3. It may be necessary to extend the incubation time for the primary antibody
or to increase its concentration.

The perfusion fixation protocol has been successfully used with the
other mAbs described, although the appropriate antibody concentration
and incubation time have to be determined for each. For intracellular
antigens such as FA.11 it may be necessary to extend the in~ubation time
with mAb.

4. 0.1% Triton X-100 may be added to wash buffers, to improve washin¢ and
render sections more wettable. It is also useful for enhancing penet
of mAbs directed at intracellular antigen.
5. An alternative method for carrying out colour reaction is to use glucose
oxidase and glucose to generate H,0,:
To 250 ml 0.1 M phosphate buffer add:—0.125 g DAB
—0.4 g p-D-glucose
—0.08g NH,CI
—A few mg glucose oxidase

Incubate sections with this mixture and observe progress of reaction. It
takes about 8-10min with 10 uM sections depending on the amount of
enzyme added.

A similar principle may be applied to the quenching of endogenous
peroxidase activity. In this case a few mg glucose oxidase are added to 0.1 M
phosphate buffer containing 1mM sodium azide and 10mM glucose.
Sections are incubated with this mixture for 15min at 37 °C with shaking.

6. Negative controls, where the primary antibody is replaced with diluted normal
serum, PBS or irrelevant antibody should be included with each batch of
experimental slides. Causes of false positive reactions include the presence
of melanin, endogenous peroxidase activity, endogenous biotin, non-specific
binding of the primary antibody (including binding by its Fc moiety) and
cross-reactivity of the secondary antibody between rat and mouse IgG which
may be present in the tissue.
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1 Introduction

Macrophages are abundant in the mesenchymal and connective tissue stroma
ofthe cycling and pregnant uterus, and constitute a significant proportion of the
villous or labyrinthine mesenchymal cells in the human and murid placenta. In
other contexts, the activities of these multifunctional cells are strongly influenced
by regulatory molecules such as steroid hormones, polypeptide growth factors,
and bioactive lipids. All of these are present at particularly high concentrations in
the pregnant uterus and placenta. Thus, uterine and placental macrophages
stimulated by endogenous factors could contribute to the complex cellular and
molecular interactions that result in successful pregnancy.
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This article will focus on uterine and placental macrophages in the human,
mouse, and rat species, in which placentation displays some similarities and
considerable experimentation has been done. Studies are presented that docu-
ment the preferred locations of these cells in uterine and placental compartments,
explore chemoattractants, describe differentiation and activation in resident
cells, and suggest some specific uterine and placental macrophage func-
tions that might contribute to the success of pregnancy. The discussion will
conclude with a commentary on our findings in the colony stimulating factor-1
(CSF-1)-less, macrophage-deficient osteopetrotic (op/op) mouse, which illus-
trate for the first time that a specific hormone-dependent uterine growth factor,
CSF-1, has a major influence on the properties of macrophages in the uterus.

2 Anatomic Arrangements of Uterine and Placental Tissues
and Hormonal Influences

In mammals, the uterus comprises two distinct layers of tissue, the endometrium
and the myometrium, as shown for rats in Fig. 1a. The endometrium is composed
of a single layer of epithelial cells forming the uterine lumen and leading to
glands that ramify through the supporting mesenchymal stroma. The myo-
metrium is composed of circular and longitudinal muscle layers interspersed
with connective tissue stroma. In the mesometrial region of rat and mouse uterus,
the stromal area between the longitudinal and circular muscles is termed the
mesometrial triangle, the region in which the metrial gland arises during
pregnancy.

In humans, rats, and mice, implantation of the blastocyst is accompanied by
differentiation of adjacent endometrial stromal cells into decidual cells, as shown
for rats in Fig. 1b. In humans, decidualization also takes place in the cycling
uterus. During pregnancy in all three species, decidual cells form the maternal
cellular component of the maternal—fetal interface. The fetal component of this
interface comprises tropoblast cells, which arise from the trophectoderm layer of
the blastocyst to form the placenta, the position of which is shown for rats in
Fig. 1c. The inner cell mass of the blastocyst contributes cells to the underlying
placental mesenchyme that is contiguous with the cord, to the membranes that
surround the embryo, and to the embryo. Although the anatomic arrangements
of the placental cell layers are not identical, hemochordial placentation, where
maternal blood circulates through the placenta in direct contact with tro-
phoblast cells, is common to humans, rats, and mice. The murids have therefore
been used extensively for experimental purposes.

In the cycling or pseudopregnant uterus, fluctuating levels of estrogens and
progesterone cause dramatic changes in the uterine endometrium. These
include proliferation of the uterine epithelial cells in response to estradiol-17-
B(E,), differentiation stimulated by progesterone, and altered production of
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Fig. 1a—c. Anatomic compartments of the rat virgin uterus (a), and the pregnant uterus at days 7 (b)
and 12 (¢) of gestation. The figures are oriented such that the mesometrial region is at the top and the
antimesometrial region is at the bottom. The positions of the blastocyst within the lumen (day 7) and
the embryo (day 12) are shown. CM, circular muscle of the myometrium; DB, decidua basalis; DC,
decidua capsularis; EM, stroma of the endometrium; GC, giant trophoblast cell layer of the placenta;
L, lumen; LEp, luminal epithelium; LM, longitudinal muscle of the myometrium; MG, metrial gland; MT,
mesometrial triangle; P, placenta; PDZ, primary decidual zone; SZD, secondary decidual zone. (CHEN
et al. 1991)

polypeptide growth factors (POLLARD 1990). In the endometrial stroma, pro-
gesterone sensitizes the cells to respond to E, by proliferation (MaRTIN et al. 1973;
TABIBZADEH 1990), and cyclic changes in proportions of stromal cells expressing
specific hematopoietic cell markers have been noted (KING et al. 1989; LAGUENS
et al. 1990). In humans, estrogen and progesterone concentrations remain high
during pregnancy. In rat and mouse uterus, whilst progesterone levels are high,
the estrogen levels only reach high concentrations late in pregnancy. New
hormones such as chorionic gonadotropin (in humans), placental prolactins,
luteotropins, and prolactin-like molecules are also synthesized in the decidua
and placenta.

Alterations in cellular behavior observed in the cycling and pregnant uterus
in response to steroid hormones may be an indirect effect of these hormones on
the synthesis or release of locally acting growth factors and bioactive lipids (HILL
1989; BRIGSTOCK etal. 1989; PoLLARD 1990; SIMMEN and SIMMEN 1991). For
example, in mice, stimulation of uterine epithelial cells by ovarian hormones
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induces synthesis of CSF-1 (BARTOCCI et al. 1986; POLLARD et al. 1987; ROTH and
STANLEY, this volume), a growth factor for macrophages (TUSHINSKI et al. 1982;
Boocock et al. 1989) that is targeted, in addition to macrophages, to both
decidual cells and trophoblast in the pregnant uterus (MULLER et al. 1983;
REGENSTREIF and ROSSANT 1989; ARCECI et al. 1989; POLLARD 1990). Other uterine
growth factors that give indications of ovarian hormone regulation, but are less
well documented than CSF-1, are transforming growth factor-g1 (TGF-f1)
(TAMADA et al. 1990) and tumor necrosis factor-a (TNF-a) (YELAVARTHI et al. 1991),
molecules with pleiotropic effects on the growth and differentiation of cells,
including macrophages (RizzINO 1988; SPORN and ROBERTS 1989; BEUTLER and
CERAMI 1989).

Hormonally stimulated epithelial-mesenchymal cell interactions have been
identified in the uterus and other tissues (CUNHA et al. 1983). Macrophages are
abundant in the connective tissue and mesenchymal stroma of the cycling and
pregnant uterus (NicoL 1935; TACHI et al. 1981), and populate the mesenchyme
of the placental villi, particularly in humans (MOSKALEWSKI et al. 1974, 1975; Fox
1978). Uterine and placental macrophages are therefore likely to be participants
in these epithelial-mesenchymal cell interactions. Their products could in-
fluence developmental events in the uterus, placenta, and, possibly, the embryo
(TACHI et al. 1981; HUNT 1989a, 1990; SoKoOL et al. 1990).

3 Uterine Macrophages

Migration of blood monocytes into the uterus is increased during pregnancy and
the cells home to specific anatomic compartments, where residency stimulates
differentiation into phenotypically distinct subpopulations, and local conditions
induce the expression of activation-associated markers. Uterine macrophages
seem to have multiple functions, many of which are related to their secretory
products. (Table 1)

3.1 Distribution and Chemotaxis

The anatomic locations of macrophages are highly predictable in both the
cycling and the pregnant uterus. In the virgin mouse uterus, macrophages are
distributed throughout the endometrium. A recent study suggests the proximity
to the epithelial cell layer may be related to stage of the cycle (DE and WOOD
1990). In the myometrium, the cells are present in the connective tissue stroma and
are closely associated with the serous membrane (HUNT et al. 1985). Quantitative
studies on rat macrophages in situ show that macrophages account for
approximately 10% of the total cells in virgin rat endometrium, and 5% of the
cells in the myometrium (YELAVARTHI et al. 1991).
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Table 1. Potential functions of uterine and placental macrophages
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Uterine macrophages
Phagocytosis

Immunoregulation

Growth factors

TacH et al. 1981 (rat)
REDLINE et al. 1990 (mouse)

HuNT et al. 1984b (mouse)

Tawrik et al. 1986a, b (mouse)
MATTHEWS and SeArLE 1987 (mouse)
LALA et al. 1988 (human)
OkSENBERG et al. 1988 (human)

CSF-1 Not documented

TGF-$1 TAMADA et al. 1990 (mouse)®

TNF-a YELAVARTHI et al. 1991 (rat)®

IL-1 Hu et al. 1992 (monocytes, human)
IL-6 TABIBZADEH et al. 1988 (human)?

Tissue remodeling

Placental macrophages
Phagocytosis

Immunostimulation

Not documented

Fox 1978. (human)
Loke et al. 1982 (human)

HuNT et al. 1984a (human)

Growth factors

CSF-1 DATER et al. 1992 (human)?

TGF-f1 Not documented

TNF-a CHEN et al. 1991 (human)?

IL-1 FLYNN et al. 1982 (human)®
Hu et al. 1992 (human)

IL-6 Not documented

# The results of the these studies provide circumstantial evidence that mononuclear phagocytes are
sources of the particular uterine and placental polypeptide growth factors

Studies on dispersed cells show that the proportion of uterine cells bearing
macrophage markers doubles during pregnancy (HUNT etal. 1985), and
immunocytochemical analysis of rat tissues indicates the same (YELAVARTHI et al.
1991). In early gestation tissues, the distribution of macrophages in the
myometrium and nondecidualized endometrial stroma is unchanged. However,
where decidualization takes place in the stroma immediately surrounding the
blastocyst (Fig. 1b), the macrophages are redistributed. There are virtually no
cells bearing the usual macrophage-specific markers in the rat (TACHI et al. 1981;
YELAVARTHI et al. 1991) or mouse (POLLARD et al. 1991a) primary decidual zone.
Instead, macrophages are relegated to the nondecidualized endometrium
immediately beneath the circular muscle of the myometrium. Exclusion of
macrophages from the decidua basalis continues into late stages of pregnancy
(REDLINE and LU 1988, 1989; YELAVARTHI et al. 1991). Mouse decidual substratum
is apparently not conducive to macrophage migration, which could account
for the lack of these cells in late gestation decidua (REDLINE et al. 1990).

At mid to late stages of pregnancy, macrophages remain abundant in the
myometrium [15%—-20% of the total cells in the rat (YELAVARTHI et al. 1991)].
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Macrophages account for 10-20% of the cells in the rat metrial gland, a
specialized structure in the mesometrial triangle (Fig. 1b, ¢) that is not present in
human tissues, whereas they are scarcer in this compartment in mice (PARR et al.
1990).

The population densities of uterine macrophages as a function of the
menstrual cycle have not been determined with certainty in human tissues
because of the obvious difficulties in obtaining normal tissues, and the size of the
uterus, which could cause sampling errors. Although marker studies indicate
that the relative proportions of bone marrow-derived cells in the endometrial
stroma fluctuate during the cycle (KING et al. 1989; LAGUENS et al. 1990), the
proportions of macrophages seem to remain stable (KING et al. 1989). Macro-
phages are present in the cycling and pregnant human myometrium (KHONG
1987) and, during pregnancy, in the decidua. Unlike the situation in mice and
rats, macrophages are among the bone marrow-derived cells that are most
common in the human decidua, being found near the implantation site (KABAWAT
etal. 1985) and in close proximity to trophoblast cells at both early and late
stages of pregnancy (LESSIN et al. 1988; BULMER et al. 1988, 1989; HUNT 1989b).

Concentration gradients of chemotactic factors, discussed below, might
dictate the final anatomic locations of monocytes migrating into the pregnant
uterus. Synergistic interactions among some of these factors, CSF-1 and TNF-a
for example (BRANCH et al. 1989), could also stimulate in situ proliferation. In
mice, there is clear evidence that migration of blood leukocytes into the uterus is
hormonally regulated (FINN and PoOPE 1986). An influx of leukocytes into the
immature uterus in response to exogenously administered estrogens has been
documented in rats, and monocytes constitute a significant proportion of the
migrating cells (ZHENG et al. 1988). Pregnancy hormones such as progesterone
may be directly chemotactic for monocytes (YANG et al. 1989) or might stimulate
the production of factors that influence their migration (FINN and POPE 1986).
This latter pathway seems more likely given the fact that at least one chemotactic
molecule, CSF-1 (WANG et al. 1988), is hormonally regulated (BARTOCCI et al.
1986; POLLARD et al. 1987), and uterine levels of this factor increase markedly
from day 1 of mouse pregnancy (POLLARD et al. 1987, POLLARD, unpublished
data). Other potential chemoattractants are TGF-f1, TNF-a, and colony
stimulating factor for granulocytes and macrophages (GM-CSF) (WAHL et al.
1987; MING et al. 1987; WANG et al. 1987), all of which are present in higher
concentrations in the pregnant than in the cycling uterus (TAMADA et al. 1990;
CHEN et al. 1991; YELAVARTHI et al. 1991; ROBERTSON and SEAMARK 1990) and might
be stimulated by ovarian or other hormones. However, no studies have as yet
documented directly that higher levels of any of these growth factors stimulate
monocyte migration into the uterus.

3.2 Differentiation

Monoclonal antibodies to rat macrophages, ED1 and ED2 (DIUKSTRA et al. 1985;
SMINIA and JEURISSEN 1986), have been instrumental in subdividing rat uterine
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Fig. 2a,b. Subpopulations of macrophages in the rat mesometrial myometrium at day 12 of
gestation identified with the mouse monoclonal antibodies ED1 and ED2 (Bioproducts for Science).
The tissue was fixed in an alcohol-based fixative (OmniFix, Xenetics Biomedical). a ED1* celis; b
ED2* cells. Arrows mark some of the positive cells. Note that ED1* cells are small and round whereas
ED2* cells are larger and highly vacuolated. x 313
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macrophages into two categories, small round cells that closely resemble
monocytes (ED1* cells) and fully differentiated, highly vacuolated tissue
macrophages (ED2* cells) (Fig. 2). Studies on ED1* and ED2* subpopulations
in the pregnant rat uterus show that ED1* cells are more common in the
undecidualized endometrial stroma than ED2* cells, and that the few macro-
phages that are found in the decidua express only this marker (YELAVARTHI et al.
1991). ED1* and ED2* cells are present in approximately equal numbers in the
metrial gland whereas the myometrial stroma contains predominantly ED2*
cells. TACHI and TACHI (1989) have shown that ED1* and ED2* cells secrete
different patterns of bioactive lipids. Thus, the ED1* and ED2* cells in the uterus
might function differently. Differentiated subpopulations have not been identi-
fied in the mouse uterus—only a polyclonal reagent and the antimacrophage
monoclonal antibody F4/80 (HUME etal. 1983), which marks a 150-kDa
glycoprotein present on a proportion of bone marrow cells, monocytes, and
macrophages (STARKEY et al. 1987), have been used (HUNT et al. 1985; REDLINE
and Lu 1988, PARR et al. 1990; POLLARD et al. 1991a).

There have not as yet been any studies on specific differentiation-
associated macrophage markers expressed by the cells in the human uterus
through the course of gestation. However, we have noted that the monoclonal
antibody 63D3 binds to different macrophage subpopulations in the decidua
adjacent to the chorion membrane than does the monoclonal antibody OKM1,
which identifies C3 receptors (HUNT, unpublished data), and others have
reported similar findings with different antimacrophage reagents (BULMER and
JOHNSON1985).

Colony stimulating factor-1, GM-CSF, and TNF-a are major candidates for
the factors that cause differentiation of new arrivals into morphologically and
functionally distinct uterine tissue macrophages. These factors, found in the
uterus, decidua, and placenta (BARTOCCI et al. 1986; ROBERTSON and SEAMARK
1990; CRAINIE et al. 1990; YELAVARTHI et al. 1991; CHEN et al. 1991), can influence
macrophage maturation (TUSHINSKI et al. 1982; Boocock et al. 1989; BRANCH
et al. 1989).

3.3 Activation

Approximately half of the rat and mouse uterine macrophages express class |l
major histocompatibility (la) antigens (HUNT et al. 1985; HEAD and GAEDE 1986;
REDLINE and Lu 1988), a marker that is strongly associated with activation, and
nearly all human decidual macrophages are class Il HLA-D positive (LESSIN et al.
1988; BULMER et al. 1988). This is in contrast to the ~ 10% of blood monocytes
that are la positive in all of these species.

Although subclasses of la antigens have not been identified on rat or mouse
uterine macrophages, in first trimester human tissues the decidual macrophages
express only HLA-DR whereas during the second trimester and throughout the
balance of pregnancy, the cells exhibit both HLA-DR and HLA-DQ (LESSIN et al.
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Fig. 3a,b. Macrophages in human term placenta and exiraembryonic membranes. a Para-
formaldehyde-fixed first trimester placenta stained with a mouse monoclonal antimacrophage
reagent from ENZO Diagnostics, clone HAMS6. Positive cells are present in the villous stroma.
x 313. b A section of frozen term extraembryonic membranes stained with a monoclonal
antibody to HLA-DR (clone 243, Becton—Dickinson) shows activated macrophages in the decidua
and the mesenchymal stroma between the amnion and chorion (arrows). A, amnion membrane:
C, chorion membrane; D, decidua. x 125
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1988). Figure 3 shows HLA-DR-positive macrophages in the decidua adjacent to
the chorion membrane component of the term extraplacental membranes.

Interferons (IFN), well-described modulators of macrophage activation
(RusseLL and PACE 1987), are likely to be among the endogenous molecules that
stimulate uterine macrophages. IFNs are present in both mouse (FOWLER et al.
1980) and human (CHARD et al. 1986; CHARD 1989) tissues; trophoblast cells
produce type | IFN in response to double-stranded RNA (TOTH et al. 1990), and
both type | and type Il IFN have been identified in human trophoblast cells
(BULMER et al. 1990).

Macrophages are also activated by endotoxins, which are present when
tissues are infected with gram-negative bacteria. This causes increased rates of
transcription and subsequent elaboration of various proteins and biologically
active lipids such as interleukin-1 (IL-1) (DINARALLO 1988), TNF-a (BEUTLER et al.
1985), TGF-p (AsSOIAN et al. 1987), and prostaglandin E, (PGE,) (ADEREM et al.
1986). Concentrations of some of these factors, particularly PGE,, IL-1,
interleukin-6 (IL-6), and TNF-a (ROMERO et al. 1987, 1989a, b, 1990), are higher in
cases of preterm delivery associated with infection. In vitro, endotoxin stimulates
TNF-a synthesis by decidua (CASEY et al. 1989). Such high concentrations of
polypeptide growth factors might affect placental cell functions by altering DNA
synthesis (HUNT et al. 1989) or the expression of membrane proteins (HUNT et al.
1990) by trophoblast cells, and prostaglandins might induce premature contrac-
tions in the uterus (OkAzAKI et al. 1981; MCGREGOR et al. 1988). Thus endotoxin-
stimulated uterine macrophages may bear some of the responsibility for early
pregnancy termination in cases of infection (HUNT 1989a).

Although many uterine macrophages are in a state that is associated with
enhanced phagocytosis, increased antigen-presenting ability, increased
cytotoxic potential, and enhanced synthesis of polypeptide growth factors and
bioactive lipids (NATHAN 1987), the ability of the activated macrophages to
perform specific tasks may be influenced by endogenous cytokines. For
example, TGF-B1, which is present in the uterus (TAMADA et al. 1990), has been
shown to diminish intracellular killing of parasites while having little effect on
tumor cell killing (NELSON et al. 1991).

3.4 Potential Functions

Functional studies on uterine macrophages suggest that these cells contribute
in a variety of ways to survival of the embryo. Of particular note, the cells appear
to serve as immunoregulators, defenders against microbial invasion, and
sources of growth factors (Table 1).

3.4.1 Immunosuppression, Antigen Presentation, and Phagocytosis

It has long been recognized that grafts to the pregnant uterus enjoy prolonged
survival in comparison to grafts in other locations (BEER and BILLINGHAM 1974).
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This immunosuppressive environment is believed to be mediated by soluble
substances, and to aid in protection of the semiallogeneic fetus by preventing
colonization of the uterus by potentially harmful maternal antifetal cytotoxic
lymphocytes (HUNT et al. 1984b, 1991). Mouse uterine macrophages synthesize
high levels of PGE, (TAWFIK et al. 1986a, b; MATTHEWS and SEARLE 1987), which
inhibits lymphocyte proliferation by modulating interleukin-2 synthesis and
receptor expression (CHOUAIB et al. 1985). In human tissues, both macrophages
and decidual cells produce PGE, (PARHAR et al. LALA et al. 1988). PGE,-mediated
immunosuppression might be augmented by the TGF-#2-like substance that
has been identified as a product of small mouse uterine cells (CLARK et al. 1988),
by TGF-f1 (WAHL et al. 1988; TAMADA et al. 1990), or by TNF-a (UMEDA et al. 1983;
YELAVARTHI et al. 1991; CHEN et al. 1991). Complexities in factor interaction
cannot be underestimated. For example, PGE, modulates macrophage syn-
thesis of TNF-a (RENZ et al. 1988).

Efficient presentation of antigens to T lymphocytes, an initial step in the
sequence of events that leads to clonal expansion and development of an
immune response, seems not to be accomplished by uterine macrophages in
situ, despite their display of class Il MHC antigens. For example, chemical
denaturation is required for antibody stimulation by a hapten-adjuvant prepar-
ation administered into the uterus but not other tissues (LANDE 1986). Although
the male-specific H-Y antigen stimulates cytotoxic T lymphocytes in the spleen
and lymph nodes when systemically administered, multiple inseminations of
male cells at natural mating do not prime cytotoxic cells (HANCOCK and FARUKI
1986). Evidence has been presented which suggests that human decidual
accessory cells exposed to fetal cells may, in fact, stimulate suppressor T cells
(OKSENBERG et al. 1988). On balance, therefore, the evidence favors an im-
munosuppressive rather than immunostimulatory role for uterine macro-
phages.

A third protective function of uterine macrophages, phagocytosis of debris
and microbial invaders, is well documented in situ in rats (TACHI and TACHI 1981).
Of particular interest is a study showing that in mice infected with Listeria
monocytogenes, the uterine macrophages contain the organisms (REDLINE and
Lu 1988). Interestingly, these investigators have postulated that vulnerability of
the placenta to infection by Listeria is due to the lack of macrophages in the
mouse decidua, which, by virtue of their phagocytic capacity, would have
otherwise constituted an effective barrier to transmission.

3.4.2 Growth Factors

The particular contributions of macrophages to uterine growth factor networks
have been difficult to dissect. The cells are not morphologically distinct from
other types of stromal cells, and selective harvesting of tissue macrophages
could easily alter their patterns of gene expression (TANIGUCHI 1988). Thus, much
of the evidence for growth factor production cited below is indirect and
circumstantial. Further complexities have been introduced by the finding that,



50 J. S. Hunt and J. W. Pollard

during pregnancy, other types of uterine and placental cells are sites of synthesis
of many factors that have been traditionally associated with macrophages.

Members of the TGF-f family are well-documented regulatory molecules
(SPORN and ROBERTS 1989; WAHL et al. 1989) that have pleiotropic effects on cell
differentiation, influence formation of extracellular matrix (RizzINO 1988), and are
known to play a major role in mouse embryonic development (HEINE et al. 1987).
Although activated macrophages synthesize TGF-f1 (ASSOIAN et al. 1987), in the
postimplantation mouse uterus TGF-$1 originates primarily with epithelial and
decidual cells (TAMADA et al. 1990). Results in this study also indicated that
endometrial stromal cells, which might be macrophages, contained TGF-f1
mRNA. Correlation of transcription and translation of the TGF-f1 gene by
specific cells in the human uterus has not yet been accomplished, although the
factor has been purified from human placenta (FROLIK et al. 1983).

Interleukin-6 is another example of a growth factor that has been identified
as a product of macrophages (VAN DAMME et al. 1988; KATO et al. 1990; VAN SNICK
1990). In the human cycling uterus, this factor is synthesized by unidentified,
undifferentiated endometrial stromal cells, some of which might be macrophage
precursors, and induces IL-1 synthesis by macrophages (TABIBZADEH et al. 1988).
In mouse decidua, IL-6 mRNA has been localized by in situ hybridization to the
cords of endothelial cells that line the maternal blood spaces, and has been
postulated to influence angiogenesis (MOTRO et al. 1990).

A third growth factor that arises from activated macrophages is TNF-a
(BEUTLER et al. 1985). While originally this factor was described as an inhibitor of
tumor cell proliferation produced by activated macrophages (SUGARMAN et al.
1985), recent studies suggest that low levels of TNF-a in normal tissues may
contribute to cellular renewal (ULICH et al. 1989), which might be accomplished in
part by stimulation of other growth factors (KAUSHANSKY et al. 1988), and that
TNF-a is produced by a number of cell types (ROBBINS et al. 1987; KESHAV et al.
1990; BARATH et al. 1990). In both rats and humans, TNF-a is present in the uterus
throughout gestation (YELAVARTHI et al. 1991; CHEN et al. 1991). Data collected in
a rat model show that although epithelial and decidual cells are the most
abundant TNF-a mRNA-containing cells in the uterus, cells in the myometrial
connective tissue that resemble macrophages by morphology also contain
specific messages (YELAVARTHI et al. 1991). Interestingly, only the nonmacro-
phages contain high levels of the protein. Thus, macrophages in the rat
myometrium may be similar to tumor-infiltrating macrophages, which transcribe
this gene but do not translate the messages into protein (BEISSERT et al. 1989). In
early gestation human tissues, TNF-a mRNA and protein are found in epithelial
and decidual cells, and, late in gestation, in cells that reside near the chorion
membrane that resemble macrophages by morphology and anatomic location
(CHEN et al. 1991). TNF-a is contained in human amniotic fluid and is produced
by human uterine and placental cells in vitro (JAATTELA et al. 1988).

The growth factor IL-1, which has overlapping functions and synergistic
interactions with TNF-a (LE and VILCEK 1987; ELIAS et al. 1987; DINARELLO 1988;
AKIRA et al. 1990), is present in human amniotic fluid (TAMATANI et al. 1988), and
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IL-1 mRNA-positive cells have been reported in the mouse endometrium (TAKACS
et al. 1988). Recent immunocytochemical studies in our laboratory (Hu et al.
1992) that used two sets of polyclonal antibodies to the two species of IL-1, IL-1a
and IL-18, indicated that although maternal leukocytes in human first trimester
and term tissues contained the proteins, staining intensities were higher with
antibodies to the latter than to the former. Double-labeling experiments showed
that the IL-1-positive blood leukocytes were monocytes, cells that are well-
documented sources of IL-1 with a preference for synthesizing IL-1f (BEESLEY
et al. 1990). Although IL-1a-positive cells were present in decidua, these may
have been infiltrating extravillous cytotrophoblastic cells rather than maternal
cells.

In mice, CSF-1, which is synthesized exclusively in the uterine epithelium in
response to E, and progesterone, peaks on day 14 of pregnancy (BARTOCCI et al.
1986; POLLARD et al. 1987; REGENSTREIF and ROSSANT 1989; ARCECI et al. 1989,
POLLARD 1990; POLLARD et al. 1991B; ROTH and STANLEY, this volume). Recent
studies in our laboratory (DAITER et al. 1992) show that human tissues are similar
to mice in many respects; uterine epithelium is the major source of CSF-1 in both
the cycling and the pregnant human uterus, CSF-1 mRNA appears to be
hormonally regulated in the cycling uterus, and CSF-1 concentrations in the
endometrium increase with the onset of pregnancy. However, in contrast to the
findings in mice, human endometrial CSF-1 concentrations are highest in the
first trimester and decline as gestation progresses to term. Although there is no
evidence at present that murine macrophages are capable of synthesizing CSF-
1, human macrophages produce this substance (RAMBALDI et al. 1987), and the
possibility that uterine macrophages in human endometrium contribute a
portion of the CSF-1 has not been eliminated.

Macrophage-derived growth factors may be most influential in specific
uterine microenvironments because the effects of polypeptide growth factors are
highly concentration dependent. The observations accumulated to date on the
spatial relationships between macrophages and other types of uterine cells
suggest that in humans, rats, and mice myometrial macrophages have ample
opportunity for tissue-specific effects, whereas there may be species differ-
ences in the ability of macrophages to influence decidual and placental
cells.

3.4.3 Other Functions

The paragraphs above describe some studies that have fed to a better
understanding of the contributions of uterine macrophages to protection from
cytotoxic lymphocytes, to defense against microbial invasion, and to growth
factor production. Macrophages might have other critical functions; NATHAN
(1987) lists 13 categories of macrophage products. Among these are com-
plement components and coagulation factors, various enzymes including
plasminogen activator and collagenase, and proteins such as fibronectin that
compose extracellular matrix.
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Uterine macrophages have not been examined specifically for production of
any of these molecules, yet some might be highly important. To take just one
example, in the myometrium, where the cells are consistently present in the
connective tissue stroma and are closely associated with the serosa, proteolytic
enzymes such as collagenase and plasminogen activator could be useful for
tissue remodeling during uterine expansion and post-partum involution. As with
other uterine macrophage products, synthesis of these enzymes would probably
be influenced by endogenous growth factors, collagenase by uterine TNF-o
(DAYER et al. 1985), and plasminogen activator by CSF-1 (HAMILTON et al. 1980)
and GM-CSF (EvANS et al. 1989). Plasminogen activator ehzyme activity is also
stimulated by colony stimulating factor for granulocytes (KOJIMA et al. 1989),
and receptors for this factor have been identified in the human placenta
(UzumAKI et al. 1989).

4 Placental Macrophages

Patterns of distribution and activation markers have now been identified for fetal
placental macrophages, and a few potential functions for the cells have been
described (Table 1). These studies indicate that macrophages gradually mature
in the placenta until, at parturition, they are sensitive to activation signals and are
capable of performing some of the functions that have been attributed to
macrophages in adult tissues.

4.1 Distribution and Marker Expression

Eearly gestation human placental villous stroma contains large, highly vacuola-
ted Hofbauer cells (FOx 1978), which are one morphologic form of fetal placental
macrophages. These were, until the development of monoclonal antibodies that
could identify cells that are less distinct by morphology, considered to be the only
macrophage-like cells in the human placenta. However, in 1975, MOSKALEWSKI,
PTAK, and CZARNIK showed that human placentae contain many Fc receptor-
positive cells, and further studies verified the mononuclear phagocyte lineage of
many of these cells (WoO0D et al. 1978). Human fetal placental macrophages
have now been tested extensively by immunohistology (BULMER and JOHNSON 1984;
GoLDSTEINet al. 1988: MUES et al. 1989). The morphologic characteristics of these
cells in first trimester placental villous stroma are shown in Fig. 3a. In term
placentas, stromal macrophages appear slightly smaller and are often mar-
ginated to the capillary endothelium (HUNT, unpublished data)

Cells bearing macrophage markers increase in density in the placental
villous stroma as gestation progresses, and the cells gradually develop HLA-D
activation antigens (LESSIN et al. 1988; BULMER et al. 1988). The same is true of
fetal macrophages in the mesenchymal stroma between the amnion and chorion
membrane, as shown in Fig. 3b.
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Although macrophages can be identified by immunohistology in term
mouse placentae (WooD 1980), and are also present in dispersed cell suspen-
sions from this tissue (MOSKALEWSKI et al.” 1974; MATTHEWS et al. 1985), early
gestation murid placentae seem to contain few macrophages. Immunohistologic
studies in rats indicate that macrophage antigen-positive cells are rare in the
fetally derived components of early- to mid-gestation placentae, whereas near
parturition, positive cells can be identified in the chorioallantoic plate at the base
of the placenta (HUNT, unpublished data). The rat experiments show that
embryo-derived macrophages in the placenta bear only the marker for
monocyte/macrophages, EDI, and that the cells only occasionally express
detectable levels of class Il MHC antigens.

Iltis entirely possible that many more macrophages are presentin the human
placental villous mesenchyme and the rat and mouse labyrinthine placenta than
can be identified, particularly at early stages of gestation, because of their
gradual development of lineage-specific markers. The studies have been
reported at this date would also indicate that fetally derived murid macrophages
in extraembryonic tissues are less numerous and develop their markers more
slowly than do their counterparts, despite the presence of high concentrations of
CSF-1 (BARTOCCI et al. 1986).

4.2 Potential Functions

Placental macrophages in situ often contain phagocytosed material (FOx 1978),
and invitro they participate in both immune and nonimmune phagocytosis (LOKE
et al. 1982). These cells are therefore likely to supplement the activities of uterine
macrophages, providing additional protection from microbial invasion. It is
worthy of note that many of the organisms that are transmitted from the mother
to the fetus are intracellular parasites such as Listeria, Toxoplasma, and viruses
(KLEIN, and REMINGTON 1990). The role that macrophages might play in the
transmission of HIV-1 from the mother to the embryo is a current cause for
concern (LEwis et al. 1990).

Although it is not known whether fetal placental macrophages contribute to
the immunosuppressive environment during pregnancy, other functions have
been postulated for the cells. Macrophages taken from term human placentae
bear both class | and class Il major histocompatibility antigens, and are capable
of stimulating maternal lymphocyte proliferation (HUNT et al. 1984a). Because of
the close proximity of the fetal placental macrophages to the maternal
circulation, these cells might provide the immunogenic stimulus for the
antibodies to paternal class | and class Il antigens that are common in pregnant
women (VAN ROOD et al. 1958). Human fetal placental macrophages have been
postulated to protect the fetus from these potentially harmful antibodies by
phagocytosing immune complexes (W0O0D and KING 1982).

As with uterine macrophages, fetally derived placental macrophages could
be important sources of polypeptide growth factors. Recent studies in our



54 J. S. Hunt and J. W. Pollard

laboratory have shown that although placental stromal cells in human first
trimester tissues do not contain TNF-a mRNA, similar cells in term placentae are
strongly positive when tested by in situ hybridization (CHEN et al. 1991). The
positive cells are probably macrophages, which constitute approximately 25% of
the stromal cells (HUNT et al. 1984a). Biologically active [L-1 has been reported as
a product of macrophages harvested from human term placentae (FLYNN et al.
1982). Recent immunocytochemical experiments in our laboratory (HU et al.
1992) have shown that in both first trimester and term human placentas,
mesenchymal cells contain immunoreactive IL-1« and that fetal leukocytes in the
blood vessels of term placentas contain IL-1f. Double labeling studies showed
that many of these IL-1-positive cells were of mononuclear phagocyte lineage.
CSF-1 is a product of villous mesenchymal cells in second trimester human
placentas, suggesting that this growth factor might also be synthesized by fetal
placental macrophages (DAITER et al. 1992). Thus, the data collected to date
indicate that human fetal placental macrophages are sources of several of the
polypeptide growth factors that have been identified as products of the same
types of cells in adult tissues.

Asinthe uterus, other types of cells in the placenta synthesize growth factors
that are usually associated with macrophages. These include IL-1, IL-6, CSF-1,
and TNF-a, all of which have been localized to trophoblast cells in human, rat, or
mouse placentas (MAIN et al. 1987; KAMEDA et al. 1990; MEAGHER et al. 1990;
YELAVARTHI et al. 1991; CHEN et al. 1991; DAITER et al. 1992; Hu et al. 1992). New
tools consisting of monoclonal antibodies that specifically recognize human
fetally derived placental macrophages and can be used to harvest the cells
(NAsH et al. 1989) should allow the performance of experiments that might shed
further light on the functions of these cells.

5 Experiments in the Macrophage-Deficient
Osteopetrotic Mouse Model System

The experiments described above have led to speculation that hormones
influence growth factor production by uterine cells which, in turn, influences
uterine macrophage population density, distribution, differentiation, and perfor-
mance of differentiated cell functions. The osteopetrotic (op/op) mouse provides
an opportunity to study regulation of uterine macrophages by a single growth
factor, CSF-1. In the op/op mouse, an inactivating mulation in the CSF-1 gene
results in the total absence of CSF-1 (YOSHIDA et al. 1990; WIKTOR-JEDRZEJCZAK
et al. 1990). As a consequence these mice have less than one-tenth the normal
number of bone marrow cells, greatly reduced numbers of blood monocytes, and
severe deficiencies in the proportions of peripheral macrophages in locations
such as the pleural and peritoneal cavities (WITKOR-JEDRZEJCZAK et al. 1982,
1990).
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Experiments in this model system have shown that hormonally regulated
uterine epithelial cell CSF-1 regulates the density and properties of mouse
uterine macrophages, a relationship that was established by comparing F4/80-
positive macrophages in the cycling and pregnant uteri of homozygous (op/op)
and heterozygous (op/ + ) mice (POLLARD et al. 1991a). The observations were as
follows: (a) the cycling uterus in op/op mice demonstrated a virtual absence of
F4/80-positive cells whereas positive cells were, as expected, abundant in the
endometrium, myometrium, and mesometrial triangle of op/ + mice (Fig. 4a, b);
(b) early postimplantation op/op mouse tissues (gestation days 7 and 8)
contained macrophages, but fewer than the same tissues from op/+ mice; (c)

Fig. 4a-d. Macrophages are abundant in the uterus of an op/ + mouse (a) but are virtually absent
from the uterus of an op/op mouse (b) x 40. ¢,d Macrophages in the myometrial stroma of an op/ +
mouse uterus (¢) and an op/op uterus. (d) At day 7 of gestation. Note that positive cells in the op/ +
uterus are large and have cytoplasmic extensions whereas the cells in op/op myometrium are smaller
and rounded. x626. Cryostat sections of paraformaldehyde-fixed (a and b) or acetone-fixed (¢ and d)
frozen tissues were stained using the anti-mouse macrophage reagent F4/80
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the macrophagesin the early gestation op/op tissues remained small and round,
whereas, those in the op/+ tissues gave clear morphologic evidence of
spreading (Fig. 4c, d); (d) the macrophages gradually disappeared in op/op
uteri until, at day 14 of gestation, few macrophages could be identified in F4/80
stains of the op/op uterus; in contrast, numerous positive cells were present in
the myometrium of op/+ mouse tissues at the same stage.

Although these data demonstrate clearly that CSF-1 is required for main-
tenance and differentiation of uterine macrophages during mouse pregnancyi, it
seems reasonable to conclude from our observations that some molecule other
than CSF-1 that is present in the post-implantation tissues of the op/op mice
influences monocyte chemotaxis. However, the chemoattractant has less effect
than CSF-1 on induction of differentiation. If macrophage spreading, as has
been shown with macrophage adherence (HAskiLL etal. 1988), influences
transcription of their growth factor genes and proto-oncogenes, this failure
could have important ramifications in pregnancy. GM-CSF, which is chemotactic
for monocytes (WANG et al. 1987), may be a suitable candidate for (one of) the
replacement factor(s). ROBERTSON and SEAMARK (1990) have shown that
synthesis of GM-CSF by mouse uterine epithelial cells is initiated on day 1 of
pregnancy, seemingly stimulated by the presence of seminal vesical fluid, and
that GM-CSF production remains at high levels through day 10 pregnancy.

OVARY UTERUS UTERUS AND PLACENTA

/ MONOCYTE
@‘(—’o CHEMOTAXIS (RAT:EDI*)
a -~
‘ GE- PROLIFERATION
GM- l
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<é b MACROPHAGE
p (RAT:ED2+)

TNF-a
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Fig. 5. A schematic representation of the potential influences of ovarian hormone- stimulated,
epithelial cell-derived CSF-1 and other cytokines on uterine macrophage chemotaxis, differentiation,
and growth factor synthesis. Pathways for reciprocal influences on uterine epithelium and
modulation of placental cells by products of differentiated macrophages are indicated
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GM-CSF or other natural replacement factors are not entirely successful in
overcoming the CSF-1 deficiency. In the op/op mice, pregnancy is severely
compromised and even in those embryos that proceed to term the development
of the extraembryonic tissue appears retarded, thus confirming a causal role
for CSF-1 in gestation. Systemic reconstitution of the mice with human
recombinant CSF-1 during pregnancy fails to restore fertility (WIKTOR-
JEDRZEJCZAK et al. 1991), suggesting that local production of CSF-1 is required
for normal fertility.

All of the functions of uterine CSF-1 are not known, but it is clear that along
with trophoblasts and decidual cells, uterine macrophages are targets for this
molecule. Figure 5 shows a potential pathway for CSF-1 and other cytokine
influences on uterine macrophage density, differentiation, and factor produc-
tion. Appropriate manipulation of the op/op mice should provide a unique
opportunity to study the regulation and functions of macrophages in pregnancy.

6 Conclusions

Macrophages are recruited to the uterus during pregnancy, are present in the
placenta, and are likely to perform important pregnancy-associated functions.
These appear to include immunoregulation, phagocytosis, and growth factor
production. When evaluating the potential functions of uterine and placental
macrophages, however, it is appropriate to recognize that: (a) other types of
uterine and placental cells are, particularly during pregnancy, capable of
synthesizing some factors that are traditionally associated with macrophages,
and {b) some macrophage functions are probably assumed by other cell types
when conditions disallow normal proportions of macrophages in the uterus and
placenta.

The studies cited in this article indicate that highly complex interactions take
place among pregnancy hormones, polypeptide growth factors, and macro-
phages in the uterus and placenta. Causal relationships are best illustrated for
CSF-1, where experiments in the op/op mouse model show that this hormonally
stimulated polypeptide growth factor is responsible in large part for uterine
macrophage chemotaxis and differentiation, and, in all likelihood, their
synthesis of other factors that promote pregnancy.

Note added in press. Three new reports have been added to the literature since the writing of this
article. One describes rat placental macrophages [van Oostveen DC, van den Berg TK, Damoiseaux
JGMC, van Rees EP (1992) Macrophage subpopulations and reticulum cells in rat placenta. Cell
Tissue Res, in press], a second documents macrophages in preimplantation rat uterus [Kachkache
M, Acker GM, Chaouat G, Noun A, Garabedian M (1991) Hormonal and local factors control the
immunohistochemical distribution of immunocytes in the rat uterus before conceptus implantation:
effects of ovariectomy, Fallopian tube section, and injection. Biol Reprod 45:860-868], and a third
describes macrophages in mouse uterus [De M, Wood GW (1991) Analysis of the number and
distribution of macrophages, lymphocytes and granulocytes in the mouse uterus from implantation
through parturition. J Leukocyte Biol 50:381-392].
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1 Introduction

In the adult organism, monocytes and macrophages are among the few cell
types that can migrate within and between body compartments. To do so, they
must have the capacity to clear for themselves a path through the macromole-
cular barriers of basement membranes and other extracellular matrices. This
requires the controlled and localized degradation of matrix proteins by extra-
cellular proteases. Mononuclear phagocytes can produce a number of such
enzymes, including collagenolytic, elastinolytic, and gelatinolytic hydrolases
(TAKEMURA and WERB 1984). Because they can, directly or indirectly, catalyze
the degradation of most components of extracellular matrices, plasminogen
activators (PAs) are thought to play a key role in the proteolytic events that
accompany the migration of a wide variety of cell types, during ontogeny as
well as in pathologic circumstances. Monocytes and macrophages can produce
PAs, and the regulation of their PA-dependent proteolytic activity has been a
focus of attention in recent years. The findings of a number of investigators
converge to suggest that the expression of PA activity is a tightly controlled
phenotypic property of human and murine mononuclear phagocytes, and that
multiple mechanisms act concurrently to achieve the exquisitely focused and

' Institute of Histology and Embryology, and
2 Department of Pathology, University of Geneva Medical School, CH-1211 Geneva 4, Switzerland

Current Topics in Microbiology and Immunology, Vol. 181
© Springer-Verlag Berlin-Heidelberg 1992



66 J.-D. Vassalli et al.

Fig. 1. In vitro modulation of the PA acti-
vity of mouse macrophages. Peritoneal
macrophages from thioglycoliate-induced
exudates were plated at low density, treated
for 16 h with different cytokines (M-CSF,
100 U/ml; IFN-y, 20 U/ml; TNF-e;; 10 ng/ml,
IL-1, 100U/ml) and overlaid with a sub-
strate mixture containing plasminogen and
casein (VAssaALLI et al. 1985). The picture
was taken under dark ground illumination:
plaques represent zones of substrate
lysis around individual cells

regulated generation of plasmin precisely where and when it is needed to allow
cell migration in the context of inflammatory reactions.

Hormones and cytokines play a particularly important role in the regulation
of PA activity in many cell types, including fibroblasts, endothelial cells, ovarian
granulosa cells, Sertoli cells, and mammary epithelial cells (DANO® et al. 1985;
SAKSELA 1985; MOSCATELLI and RIFKIN 1988; SAKSELA and RIFKIN 1988). Similarly,
the PA activity of cultured mouse peritoneal macrophages can be readily altered
as a function of the cytokine balance in the macrophage environment (Fig. 1):
Macrophages embedded in a layer of casein degrade the substrate in their
immediate vicinity through the generation of plasmin from its inactive precursor
plasminogen; this proteolytic activity is enhanced in the presence of the
macrophage-activating cytokine interferon-y (IFN-y), and decreased in the
presence of the macrophage growth factor M-CSF. It is evident that such
regulation can dramatically alter the extent of extraceliular substrate degrada-
tion and this suggests that a clear and complete understanding of the phy-
siologic and pharmacologic control of the macrophage PA system could be
of great help in the therapeutic management of inflammatory reactions and
their associated tissue destruction. The mechanisms involved in controlling
plasmin generation by monocytes/macrophages have been, at least in part,
elucidated, and this review will summarize the roles of the PAs themselves, of
PAinhibitors, and of a plasma membrane binding site specific for the urokinase-
type PA.

2 Plasminogen Activators

Plasminogen activators are serine proteases of tryptic specificity. Their major
macromolecular substrate is the zymogen plasminogen; other proteins, such
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as fibrinogen (WEITZ et al. 1988) and fibronectin (GOLD et al. 1989), can be
directly cleaved by PAs, although this occurs only at very high enzyme to
substrate ratios, and thus may not be of physiologic relevance except under
particular circumstances. Plasminogen is abundant in plasma and in most
extracellular fluids and constitutes a reservoir of broad spectrum proteolytic
activity that can be recruited by PA-catalyzed conversion of the single-chain
zymogen to the two-chain tryptic protease plasmin. Since plasmin appears to
be required for the activation of a metalloprotease cascade that leads to the
generation of active collagenase (WERB et al. 1977), for instance, PAs could
play a key role in catalyzing extracellular proteolysis.

In all mammalian species explored to date, two PAs have been identified:
urokinase-type PA (UPA) and tissue-type PA(tPA). They are the products of
distinct genes and differ in certain aspects of their catalytic and binding
properties. The single-chain form of uPA is a zymogen with no (or very little)
activity (pro-uPA) (PETERSEN et al. 1988); both uPA and pro-uPA bind to a cell
surface receptor that localizes plasmin generation to the immediate cell environ-
ment (see below). By contrast, tPA is active both as a single- and as a two-chain
enzyme (although there are differences in the catalytic properties of the two
forms of tPA); tPA binds to components of extracellular matrices, in particular
fibrin (HOYLAERTS et al. 1982) but also fibronectin and laminin (SALONEN et al.
1984, 1985). The available evidence suggests that tPA-catalyzed proteolysis is
preferentially involved in the maintenance of fluidity of the extracellular milieu,
while uPA plays a role in the cell surface proteolysis necessary for cell migration.
However, it is clear that this tentative model is a simplification. Indeed, in at
least one case, the same cell type produces a different PA in two different
species (CANIPARI et al. 1987). In addition, abundant uPA is produced by cells
that are not in a process of migration (epithelial cells of the nephron and of
the male genital tract, for instance) (LARSSON et al. 1984; HUARTE et al. 1987).
Finally, plasma membrane binding sites for tPA have also been identified
(HAJJAR et al. 1987, BARNATHAN et al. 1988). It should also be noted here that
PAs have not been associated with the traffic of lymphocytes, which are
endowed with remarkable migratory properties.

3 Monocytes and Macrophages Produce
Plasminogen Activators

In the early 1970s, studies on the production of proteases by cells in culture
led to the identification of the PA-plasmin system as a widespread mechanism
used by many different cell types to catalyze extracellular proteolysis (REICH
1978). UNKELESS and co-workers (1974) described the production of a PA by
mouse peritoneal macrophages and human monocytes, and demonstrated
that production of this enzyme could vary dramatically as a function of the



68 J.-D. Vassalli et al.

state of the cells: Macrophages from thioglycollate-elicited peritoneal exudates
produced high levels of PA activity as compared to resident noninflammatory
macrophages; also, certain populations of “in vivo primed” macrophages [e.g.,
after injection of lipopolysaccharide (LPS)] could be triggered in vitro to
produce high levels of enzyme, for instance by phagocytosis of latex particles
(GORDON et al. 1974).

The idea that PA production by macrophages could be a marker for one
stage in the life cycle of these cells, i.e., in the early phases of their participation
in inflammatory reactions, received support from further studies on the modula-
tion of enzyme production in vitro and in vivo. A striking observation in this
context was the inhibition of PA production by inflammatory macrophages
under the influence of anti-inflammatory glucocorticoids (VASSALLI et al. 1976);
similarly, increased enzyme production by macrophages exposed to products
of activated T lymphocytes suggested that PAs could be a marker of macro-
phage “activation” (KLIMETZEK and SORG 1977; NOGUEIRA et al. 1977; VASSALLI
and REeICH 1977; GORDON et al. 1978). Thus, high levels of PA production appear
to be a hallmark of murine inflammatory peritoneal macrophages. At this time
only a few studies have attempted to determine whether this is true for other
macrophage populations; in view of the difficulties inherent to the assay of
PAs in tissue extracts, in particular because of the presence of PA inhibitors,
assays that do not rely on the catalytic evaluation of PA amounts (i.e., im-
munoassays or determination of mRNA levels) should be the tools for such
a study.

The types of PAs produced by mature human and murine monocytes/macro-
phages have been identified using immunologic techniques and nucleic acid
hybridization. Most studies that have investigated this issue have shown that
these cells usually produce exclusively uPA (VASSALLI et al. 1984; SAKSELA et al.
1985: COLLART et al. 1987). The enzyme appears to be secreted as a single-chain
zymogen, the physiologic activation of which is still poorly understood; in vitro,
it can be achieved by plasmin or plasma kallikrein (WUN et al. 1982a; ICHINOSE
et al. 1986). The culture medium of certain leukemic cell lines has been reported
to contain two-chain active enzyme, a result which suggests that these cells
can produce a pro-uPA activator (STEPHENS et al. 1988). It is also possible that,
in the presence of plasminogen, the intrinsic activity of single-chain tPA could
initiate a uPA-dependent cascade (VIHKO et al. 1989).

Interestingly, tPA production has been observed in cultures of granulo-
cyte/macrophage progenitors, and the switch to uPA production was pro-
posed to be an index of cell differentiation (WiLSON and FRANCIS 1987); in this
context, the poor response to chemotherapy of patients with acute myeloblastic
leukemia whose cells secrete tPA (WILSON et al. 1983) supports the notion that
tPA is a marker of early monocyte precursors. Recently, new light has been
shed on this issue by the observation that human peripheral blood monocytes,
in addition to uPA, also produce tPA in response to LPS or interleukin-4 (IL-4)
(HART et al. 1989a, b). It is intriguing that, under certain conditions, these cells
can produce both enzymes; the identification of their respective roles is a
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challenge for future work. At this time, bone marrow-derived and peritoneal
mouse macrophages have not been found to produce tPA, but circulating
mouse monocytes have not been explored.

Given that uPA production is a marker of the activation state of at least
certain macrophage populations, what are the molecular mechanisms that
account for the large differences in enzyme activity between noninflammatory
(resident) and exudate peritoneal macrophages? Nuclear run-on experiments
that assay the transcriptional activity of the uPA gene show that this is markedly
higher in thioglycollate-elicited than in resident macrophages (Fig. 2; see also
COLLART et al. 1986). A comparable difference in the steady state levels of uPA
mRNA between the two populations (Fig. 3) confirms that the modulation of
uPA activity is, at least in part, due to changes in uPA gene transcription.
Analyses of UPA gene transcription and mRNA levels in bone marrow-derived
macrophages indicate that these cells are, in terms of uPA gene expression,
similar to inflammatory exudate cells (Figs.2,3). In the context of such
comparative studies between different populations of mouse macrophages, it
is important to note that quite marked differences in absolute levels of uPA
mRNA have been noted between different preparations of “inflammatory”
(COLLART et al. 1987) or “resident” macrophages. This may be due to the
difficulty inherent in achieving an inflammatory response of similar intensity
from one experiment to the next, and in obtaining cells from animals completely

Fig. 2. Run-on transcription in isolated nuclei. Nuclei were prepared from mouse bone
marrow-derived macrophages (WoHLwenD et al. 1987b) or thioglycollate-elicited or resident
peritoneal macrophages (CoLLART et al. 1986, 1987). Run-on transcription was performed as
described by CoLLART et al. (1987). The two PAI-2 DNAs used are from the 5 (lower dot, nucleotides
1-815) and the 3' (upper dot, nucleotides 810-1245) regions of the human cDNA (SCHLEUNING et al.
1987)
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1) BONE MARROW-derived macrophages
2) THIOGLYCOLLATE-e¢licited peritoneal macrophages
3) RESIDENT peritoneal macrophages

Fig. 3. Northern blot analysis of total cellular RNA. Total RNA was prepared from mouse bone
marrow-derived macrophages (WOHLWEND et al. 1987b), thioglycollate-elicited or resident peritoneal
macrophages (COLLART et al. 1987). Murine uPA (BELIN et al. 1985; CoLLART et al. 1987) and human
PAI-2 (SCHLEUNING et al. 1987; BELIN et al. 1989) cRNA probes were prepared and used as described
by Busso et al. (1986)

devoid of a peritoneal reaction. Macrophage uPA levels are very sensitive
indices of the “activation” state of the cells and may vary from one preparation
to the next; despite this variation, inflammatory cells obtained foliowing intra-
peritoneal injection of thioglycollate broth always have at least ten fold higher
levels (10-50 molecules per cell) of uPA mRNA than their resident counterparts
obtained from uninjected animals.

In vitro pharmacologic studies have reinforced the notion that changes in
uPA gene transcription play an important part in the modulation of uPA
production. Those agents that had previously been shown to decrease
macrophage uPA activity, such as glucocorticoids or compounds that raise
intraceliular cAMP levels, caused a decrease in UPA transcription and mRNA
levels; similarly, agents that increase uPA production, such as lectins or IFN-y
(VASSALLI et al. 1977; VAssALLI and REICH 1977), appear to do so through an
effect on transcription of the gene (COLLART et al. 1987). A comparison with
the changes in the transcription rates of other genes for macrophage-secreted
proteins [e.g., tumor necrosis factor-a (TNF-a) and IL-1] in response to these
agents suggests that the control of uPA production is quite distinct and hence
supports the hypothesis that uPA production is a marker for a specific stage
of macrophage activation. Interestingly, changes in uPA transcription were
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Table 1. Agents that modulate in vitro the PA activity of mononuclear phagocytes?®

PA uPA PAI-2

Activity Enzyme mRNA Serpin mRNA
'FN_Y + + + = =
Con A + + + = n.d.
PMA + + + + +
Endocytosis + + n.d. = n.d.
1,25-VIT Dy + + + - -
LPS - - - + +
M-CSF — = = + +
cAMP - - — + +
Glucocorticoids — — - - —
Retinoids — - - n.d. n.d.
IL-4 + tPA+ tPA mRNA + n.d. n.d.
+ ., increase; =, no effect; —, decrease; n.d., not determined

@ Agents for which only overall changes in PA activity have been reported are not included. For
references, see the text.

found to be preceded by opposite changes in c-fos mRNA levels, suggesting
a possible role for the c-fos gene product in the modulation of uPA gene
expression (COLLART et al. 1987). In addition, protein synthesis inhibitors have
been found to cause a rapid and transient induction of uPA mRNA synthesis
(COLLART et al. 1986), suggesting the existence of short-lived repressors of uPA
gene transcription.

To summarize the data that relate to the control of macrophage PA activity,
we can say that, in most cases where this has been studied, there is a good
correlation between changes in PA production and in uPA gene transcription
or uPA mRNA levels (Table 1). A striking exception, however, is the effect of
the macrophage growth factor M-CSF: while M-CSF decreases macrophage PA
activity (Fig. 1), it does not affect the steady state level of UPA mRNA in these
cells, at least at early times (Fig. 4). A probable solution to this apparent paradox
will be discussed below: M-CSF induces the production of a PA-specific inhibitor
(PAI) by mouse peritoneal macrophages. Further studies of the effects of M-CSF
will be of interest, since stimulation of PA activity in cultures of peritoneal and
bone marrow-derived macrophages has also been observed (HAMILTON et al.
1980; HUME and GORDON 1984). Finally, it should also be noted that some agents
(i.e., LPS and cAMP) cause both a decrease in UPA transcription and an
increase in PAI production, thus causing a profound decrease in uPA activity
through combined effects. The mechanisms of increased uPA production in
response to phagocytosis (GORDON et al. 1974; SCHNYDER and BAGGIOLINI 1978),
endocytosis (FALCONE and FERENC 1988; FALCONE 1989), or 1,25-dihydroxyvita-
min D3 (GYETKO et al. 1988) and of decreased uPA production in the presence
of retinoids or auranofin (VASSALLI et al. 1976; LISON et al. 1989) have not been
investigated; changes in mRNA translation or stability could account for some
of these effects.
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Fig. 4. Northern blot analysis of total
1) Control cellular RNA. Thioglycollate-elicited murine

2) LPS (4h ; 1 ug/ml) peritoneal macrophages were incubated

as indicated. Total RNA was prepared and

3) M-CSF (4h s 20 U/ml) analyzed as for Fig. 3

4 Monocytes and Macrophages Produce A Plasminogen
Activator-Specific Inhibitor

Control of protease activity by macromolecular inhibitors is a physiologically
important mechanism to avoid the damage that can be caused by excessive
proteolysis. A demonstration of this is provided by the progressive destruction
of lung elastic tissue in patients deficient in o -protease inhibitor, an elastase
inhibitor (HUBER and CARRELL 1989). Antiproteases amount to some 10% of
total plasma proteins, and production in tissues may also contribute to the
local proteolytic balance.

Monocytes and macrophages have been shown to produce different
antiproteases, including a;-protease inhibitor and the broad spectrum inhibitor
ay,-macroglobulin (GANTER et al. 1989). A search for antiproteases directed
against PAs has revealed the production by these cells of a PA-specific inhibitor:
addition of uPA to medium from cultures of mouse peritoneal macrophages
or human peripheral blood monocytes resulted in an inhibition of enzyme
activity (KLIMETZEK and SORG 1979; CHAPMAN et al. 1982; GOLDER and STEPHENS
1983; VASSALLI et al. 1984; CHAPMAN and STONE 1985a; KOPITAR et al. 1985;
WOHLWEND et al. 1987b). A number of cell lines from the mononuclear phagocyte
lineage were also found to produce such an inhibitor. Biochemical purification
from cultures of human U937 cells resulted in the isolation of a PA-specific
antiprotease (KRUITHOF et al. 1986), similar to a uPA inhibitor that had originally
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been identified in human placenta (KAWANO et al. 1968). This “placental-type”
PAl was named PAI-2, and was shown to be a member of the family of serine
proteases inhibitors, the serpins (CARRELL and TRAvIS 1985). Two other serpins
with specificity for arginine-proteases and high affinity for PAs have also been
identified: PAI-1, originally identified in cultures of endothelial cells (LOSKUTOFF
et al. 1983), and protease nexin 1 (PN-1), a fibroblast and glial cell product
that also inhibits thrombin (BAKER et al. 1980; GLOOR et al. 1986). PAI-2 appears
to be the predominant PA inhibitor produced by mononuclear phagocytes;
PAI-1 has been detected in two human monocytic cell lines (WOHLWEND et al.
1987a; LUND et al. 1988). PAI-2 inhibits most efficiently uPA (second order rate
constant 5 x 10’M~"'s~' and also reacts with two-chain tPA (10°M~"s™1); it
does not react with pro-uPA, nor with single-chain tPA, plasmin, or thrombin
(KRUITHOF et al. 1986). Besides mononuclear phagocytes, PAI-2 has been
reported in human placenta (syncytiotrophoblasts) (ASTEDT et al. 1986; FEINBERG
et al. 1989), keratinocytes (HASHIMOTO et al. 1989), and endothelial cells (WEBB
et al. 1987).

Cloning and sequencing of the human (SCHLEUNING et al. 1987, WEBB et al.
1987; YE et al. 1987; ANTALIS et al. 1988) and murine (BELIN et al. 1989) PAI-2
cDNAs and of the human PAI-2 gene (YE et al. 1989) confirmed that this inhibitor
belongs to the serpin gene family, which also includes, in addition to PAI-1
and PN-1, a,-protease inhibitor, a,-antiplasmin, antithrombin-lll, and other
proteins with no known antiprotease function, such as ovalbumin, angioten-
sinogen, and cortisol-binding globulin (see HUBER and CARRELL 1989 for a
recent review). Gene sequence comparisons reveal quite extensive divergence
between members of the serpin family, and the similarity between mammalian
PAI-2 and avian ovalbumin suggests that the two genes are closely related (YE
et al. 1987, 1989).

Like other serpins, PAI-2 forms 1:1 complexes with its target proteases;
these complexes are not dissociated in the presence of detergents such as
SDS. Using preparations of radiolabeled enzyme, e.g., '2°-uPA, the presence
of PAI-2 can be demonstrated by gel electrophoresis: free radiolabeled enzyme
can be separated from PAI-2-complexed enzyme, and, given excess enzyme,
this also allows quantitation of PAI-2. Using this electrophoretic assay, two
forms of PAI-2 were identified in cultures of human and murine monocytes/
macrophages (WOHLWEND et al. 1987a, b): one form, of M, 40000, accumulates
in the cell, where it appears to be stored in the cytosol, another form, of M,
55000-60000, is glycosylated and preferentially secreted. These two forms of
PAI-2 are functionally and immunologically indistinguishable, and enzymatic
removal of the polysaccharide portion of secreted PAI-2 yields a protein that
comigrates with the cytosolic inhibitor. Thus these two forms differ only in the
extent of their glycosylation (WOHLWEND et al. 1987a, b; GENTON et al. 1987; YE
et al. 1988). Of newly synthesized PAI-2 molecules, approximately one-half
remain in the cytosol, where they are stable for many hours, while the other
half enter the secretory pathway and rapidly leave the cell. Cytosolic PAI-2
represents an abundant store of the inhibitor: the amount of nonglycosylated
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PAI-2 in the cellis comparable to the amount of glycosylated inhibitor that can
be secreted over a 24-h period. Whether the cytosolic inhibitor can be released
through a post-translational translocation process that does not involve cell
death, or whether it is only released under conditions of cell suffering or
apoptosis, is not known. Interestingly, monocytes/macrophages also contain
in their cytosol other proteins that are believed to act following their release
in the extracellular milieu, i.e., the cytokine IL-1 (SINGER et al. 1988) and elastase
inhibitors (REMOLD-O’DONNELL et al. 1989; POTEMPA et al. 1988); it is possible
that their mechanisms of release are similar. Alternatively, cytosolic PAI-2 may
have an intracellular function, although neither serine proteases nor enzymes
of specificity comparable to that of the PAs have been identified in the cytosol.

Interestingly, the two forms of PAI-2 are encoded by a single mRNA (BELIN
et al. 1989). Indeed, only one PAI-2 mRNA can be detected by Northern blot
hybridization and by RNase protection, and transfection of a PAI-2 cDNA leads
to the synthesis of both forms of the protein. in vitro translation of the mRNA
transcript of a PAI-2 cDNA in the presence of microsomal membranes yields
the two topologically distinct forms of the inhibitor: a membrane-enclosed and
a “cytosolic” product. In this context, it is noteworthy that translation of the
two forms of PAI-2 initiates at the same AUG, and that the secreted form is
released without removal of the putative signal peptide (YE et al. 1988). The
latter observation is reminiscent of ovalbumin secretion, which also occurs
without removal of the N-terminal region of the protein; it may be relevant that
ovalbumin is the closest serpin relative of PAI-2.

Taken together, the available information on PAI-2 indicates that the
inhibitor is secreted through a process of cotranslational, but facultative,
translocation. To our knowledge such a situation has not been described
previously. Other proteins that are distributed bi-topologically to the cytosol
and the extracellular milieu, such as yeast invertase (CARLSON et al. 1983) and
mammalian gelsolin (KWIATKOWSKI et al. 1988), are translated from distinct
mRNAs, one of which encodes a signal peptide. Another mechanism to achieve
bitopological distribution is illustrated by secreted and nuclear rat prostatic
probasins, which result from alternate translational initiation on a bifunctional
mRNA (SPENCE et al. 1989). The unusual mechanism of PAI-2 partition may be
related to structural features of its N-terminal region: this region (amino acids
1-22) contains, in addition to a hydrophobic stretch, two negatively charged
residues near the N-terminus, and two asparagines within the hydrophobic
core. It is striking that these features, which have not been found in other
secreted proteins, are conserved between human and murine PAI-2 (BELIN et al.
1989); it thus seems unlikely that PAI-2 is simply a secreted protein which is
translocated with poor efficiency, and a possible role for the bitopological dis-
tribution of this powerful protease inhibitor will be discussed below.

The production of PAI-2 varies dramatically between different mouse
macrophage populations (WOHLWEND et al. 1987b). While PAI-2 is essentially
undetectable in cultures of bone marrow-derived macrophages, it is abundant
in resident peritoneal macrophages. Peritoneal exudate macrophages induced
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by injection of thioglycollate broth contain very little PAI-2; the inhibitor
detected in the latter cultures is probably that produced by a preexisting sub-
population of “resident” macrophages. These differences in PAI-2 production
can be accounted for by remarkably different rates of transcription of the PAI-2
gene (Fig. 2) and steady state levels of PAI-2 mRNA (Fig. 3); in fact, of those
genes whose transcription rates we have compared, PAI-2 is that which differs
the most between the resident and the inflammatory exudate macrophage
populations (Fig. 2).

In vitro studies have identified some of the agents which may be responsible
for controlling macrophage PAI-2 production (Table 1). Culture of peritoneal
macrophages in the presence of LPS (CHAPMAN et al. 1982), of the phorbol
ester phorbol myristate acetate (PMA), of agents which raise intracellular cAMP
levels, or of M-CSF (WOHLWEND et al. 1987b) results in increased PAI-2 production,
and in correspondingly increased steady state levels of PAI-2 mRNA (Fig. 4).
It remains to be determined whether these changes in PAI-2 mRNA levels are
due to changes in transcription of the gene or in message stability; PAI-2 mRNA
contains inits 3’ untranslated region structural determinants (AU-rich sequences)
which have been shown to be responsible for instability of other mRNAs (SHAW
and KAMEN 1986). Interestingly, in the context of the overall regulation of the
macrophage PA system, IFN-y, which increases uPA production, does not affect
PAI-2 while glucocorticoids, which decrease the production of uPA, also
decrease that of PAI-2 (WOHLWEND et al. 1987Db).

Less is known about modulation of PAI-2 production in human monocytes/
macrophages. PMA (GENTON et al. 1987, SCHLEUNING et al. 1987; WEBB et al.
1987, WOHLWEND et al. 1987a; YE et al. 1987), LPS (CHAPMAN and STONE 1985b:
SCHWARTZ et al. 1988), muramy! dipeptide (STEPHENS et al. 1985), and infection
by dengue virus (KRISHNAMURTHI et al. 1989) increase PAI-2 levels in monocytes
or related cell lines, while 1,25-dihydroxyvitamin D5 decreases PAI-2 production
by U937 cells (GYETKO et al. 1988). Mononuclear phagocytes cultured from
blood, peritoneal cavity, bone marrow, or alveolar lavage, but not those pre-
pared from the colonic mucosa, have been shown to produce PAI-2 (CHAPMAN
and STONE 1985b; STEPHENS et al. 1985).

While the available evidence does not allow a complete understanding of
the role of PAI-2 in the biology of mononuclear phagocytes, it is reasonable
to speculate that it may be required to control uPA-catalyzed proteolysis at
certain stages of the inflammatory reaction. Monocyte uPA is thought to be
necessary for migration of these cells from the blood into the tissues, and it
may perhaps also play a part in removal of fibrin clots. However, fibrin also
constitutes a transitory scaffold that helps the reconstitution of an appropriate
extracellular matrix following tissue damage, and premature or excessive fibrin
degradation would clearly be detrimental to the healing process. Once in the
tissue, perhaps under the influence of locally produced cytokines such as
M-CSF, monocytes/macrophages could start producing PAI-2 and thereby
contribute to the delicate protease—antiprotease balance within the extracellular
matrix. In this view, release of the large stores of cytosolic PAI-2 could play an
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important part in limiting plasmin-mediated tissue destruction, even if the local
conditions lead to some macrophage lethality.

5 A Plasma Membrane Binding Site
for Urokinase-type Plasminogen Activator

The elucidation of the primary structure of uPA (GUNZLER et al. 1982) revealed
an unexpected characteristic of this protein: the presence, in its N-terminal
region, of a domain with substantial homology to epidermal growth factor
(EGF) and transforming growth factor « (TGFa). This suggested that this growth
factor-like domain might dictate the binding of uPA to a receptor site on the
surface of certain cells, and that, if this was the case, uPA could function as
a cell surface-associated enzyme. Exploration of this hypothesis led to the
discovery of a binding site for the M, 55000 form of uPA on human monocytes
and monocyte-like U937 cells (VASSALLI et al. 1985; STOPPELLI et al. 1985). A Ky
of approximately 107'°M, i.e., in the range of the concentration of pro-uPA

Fig. 5. Species-specific binding of uPA to a cell surface receptor. Murine resident peritoneal
macrophages (WOHLWEND et al. 1987b) and human peripheral blood monocytes (VassaLL et al.
1985) were prepared and plated at low cell density as described. Where indicated, cells were
preincubated in the presence of a synthetic peptide corresponding to part of the growth factor-like
domain of murine uPA (BELN et al. 1985; AppeLLA et al. 1987) (1076M, 15min). They were then
incubated for 45 min in the presence of equivalent catalytic amounts of human or murine uPA
(0.6 Ploug unit/ml, approximately 10~ '°M), washed, and analyzed for PA activity as for Fig. 1
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in blood plasma (TISSOT et al. 1982; WUN et al. 1982b), and a number of 60 000
sites per cell were calculated for U937 cells. This receptor was found to be
specific for uPA, in that other proteins with similar domains, including tPA and
EGF, did not compete for uPA binding (VASSALLI et al. 1985).

The uPA receptor can bind both the active enzyme and its zymogen pro-uPA
(CUBELLIS et al. 1986). Binding occurs through the noncatalytic A chain of the
enzyme (VASSALL! et al. 1985; STOPPELLI et al. 1985), and, in confirmation of the
above-mentioned hypothesis, involves the growth factor-like domain of the
molecule (APPELLA et al. 1987). Bound pro-uPA can be activated by plasmin
(CUBELLIS et al. 1986), and the bound enzyme is catalytically active (VASSALLI
et al. 1985) (Fig. 5). Thus, while pro-uPA is a secreted protein, its subsequent
binding to a high affinity cell surface receptor localizes the enzyme to the
plasma membrane; this probably accounts for previous reports describing
membrane-associated forms of uPA (SOLOMON et al. 1980; CHAPMAN et al. 1982,
LEMAIRE et al. 1983). Binding of uPA clearly contributes to limit the activity of
the UPA-plasmin system to the close environment of the cell. It is clear that
such a proteolytic system could operate to catalyze the focal lysis of extracellular
substrates, in an optimal configuration to facilitate cell migration. In this context,
it is interesting to note that immunochemical studies on human fibroblasts and
fibrosarcoma cell cultures have demonstrated the presence of uPA at sites of
attachment of the cells to the substratum, and its codistribution with the
cytoskeletal component vinculin (POLLANEN et al. 1988; HEBERT and BAKER
1988).

The biochemical characterization of the uPA receptor has shown that it
behaves as an integral membrane protein (ESTREICHER et al. 1989) and that it
comprises at least one carbohydrate-containing M, 55000 polypeptide chain
(NIELSEN et al. 1988). Binding, detergent partitioning, and chemical cross-linking
studies have revealed the presence of uPA receptors with similar properties on
human cells other than mononuclear phagocytes, for instance fibroblasts,
polymorphonuclear leukocytes, or endothelial cells (BAJPAI and BAKER 1985;
MILES and PLow 1987; MILES et al. 1988). Studies in other species have been
hampered by the species specificity of uPA binding (ESTREICHER et al 1989)
and the limited availability of purified homologous uPAs. However, utilizing
a catalytic assay, the presence of a receptor for murine uPA on mouse
peritoneal macrophages and the species specificity of the interaction can be
demonstrated (Fig. 5): addition of homologous uPA to human and murine
monocytes/macrophages results in their acquisition of cell-associated PA
activity, while the heterologous enzyme does not bind. The specificity is further
demonstrated by the use of a synthetic peptide corresponding to a part of the
growth factor-like domain of mouse uPA [mouse Ala?°-uPA(13-33)] (APPELLA
et al. 1987). This peptide markedly inhibits the binding of murine uPA to murine
macrophages, but it does not affect the binding of human uPA to human cells.
The observed species specificity of binding can probably be explained by the
structural differences between human and murine uPAs within the growth
factor-like domains of the molecules (ESTREICHER et al. 1989).
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In addition to localizing plasminogen activation to the immediate vicinity of
the cell surface, binding of uPA (or pro-uPA) to its plasma membrane receptor
could change the catalytic specificity or efficiency of the enzyme, or convert
the single-chain protein to an active enzyme. Such studies are not easy to
perform, since they require that the activity of soluble and immobilized molecules
be compared in quantitative terms. Despite these difficulties, a 16-fold accelera-
tion of the activation of cell-bound plasminogen (see below) by cell-bound pro-
uPA was observed in cultures of monocyte-like U937 cells (ELLIS et al. 1989).
This could be accounted for by an increase in the rate of feedback activation
of pro-uPA by cell-bound plasmin. Since such a potentiation was not observed
in the presence of 6-aminohexanoic acid, which prevents cellular binding of
plasminogen, or of the amino-terminal fragment of uPA, which prevents binding
of pro-uPA, it appears that binding does not alter the activity or specificity of
the individual molecules, but rather acts by increasing their rate of reaction,
probably through a receptor-mediated concentration effect on the cell surface.
This interesting study illustrates how the assembly of the components of the
PA-plasmin system on the plasma membrane, through binding to their res-
pective receptors, could dramatically favor proteolysis in the close cellular
environment.

It has previously been suggested that receptor-bound uPA may be
protected from rapid inhibition by antiproteases (BLASI et al. 1987). However,
recent studies have shown that the rates of uPA inactivation by PAI-1 (CUBELLIS
et al. 1989) or PAI-2 (KIRCHHEIMER and REMOLD 1989; ESTREICHER et al., submitted
for publication) (for footnote see p.79) are not markedly different whether the
enzyme is bound or free in solution. Thus, the receptor does not shield uPA from
its specific inhibitors, and the controlled production and secretion of PAI-2 can
play an important part in modulating plasminogen activation at the cell surface.
Nevertheless, it will be of interest to compare the rates of plasmin formation in
the presence and absence of PAIls, using the U937 cell system with cell-bound
and soluble zymogens, as described above.

The affinity, density, and distribution of the uPA receptor are all subject to
modulation. Differentiation of U937 monocyte-like cells in response to PMA
leads to a marked increase in receptor number and a decrease in binding
affinity (STOPPELLI et al. 1985; PICONE et al. 1989). A comparable modulation
has been reported for HelLa cells exposed to PMA or to the growth factor EGF
(ESTREICHER et al. 1989). The mechanisms responsible for these changes have
not been elucidated, although a change in the extent of receptor glycosylation
appears to accompany the change in affinity (PICONE et al. 1989). The biologic
relevance of these changes is not clear. The K, value for the high affinity state
of the receptor is close to the concentration of pro-uPA in plasma; at this
concentration, the net result of the PMA effect would be only a small increase
in receptor-bound uPA. Higher concentrations of uPA may prevail in the close
environment of uPA-producing cells in tissues; under these conditions, a large
increase in the amount of membrane-bound uPA could be achieved. Other
studies have reported an increase in uPA receptor number, with no change in
binding affinity, for U937 cells (LU et al. 1988) and peripheral blood monocytes
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(KIRCHHEIMER et al. 1988) exposed to IFN-y or to IFN-y and TNF-o, respectively.
Finally, the polarization of uPA receptor distribution on monocytes and U937
cells placed in a chemotactic gradient (ESTREICHER et al., submitted for
publication)' suggests an additional dimension in the modulation of receptor
expression and provides further evidence in favor of the hypothesis that the
receptor can serve to focus plasmin generation to the leading edge of migrating
cells.

6 Binding of Plasminogen to the Cell Surface

The discovery of plasminogen-binding sites on cells that also bear uPA
receptors, including human monocytes and U937 cells, has added a new
dimension to the concept of a cell surface system of PA-catalyzed extracellular
proteolysis (HAJJAR et al. 1986; PLow et al. 1986; MILES et al. 1988). The K, value
for plasminogen binding is approximately 107®M, i.e., close to its plasma
concentration (2 x 1076M), and a large fraction of the 200000 plasminogen
receptors on circulating monocytes should thus be occupied. Plasminogen
binding can be inhibited by 6-aminohexanoic acid, indicating that the
lysine-binding sites present on the plasminogen kringles may be involved. The
nature of the plasminogen receptor has not been elucidated, but recent data
suggest a possible role for gangliosides (MILES et al. 1989).

Studies summarized above (ELLIS et al. 1989) have shown that coexpres-
sion of uPA and plasminogen receptors on the same cells facilitates pro-uPA
activation, thus significantly accelerating the generation of plasmin. Most
importantly perhaps, like fibrin-bound plasmin, cell-bound plasmin appears to
be protected from inhibition by a,-antiplasmin, a highly effective inhibitor of
soluble plasmin. Although the precise mechanism of this protection is not
known, it may rely on the fact that the lysine-binding sites of cell surface-bound
plasmin are occupied; indeed, the interaction of soluble plasmin with
ay-antiplasmin involves both the lysine-binding sites on the non-catalytic part
of the enzyme and the active site. In any event, it is clear that the combined
effects of accelerated plasmin generation and prolonged plasmin action
through resistence to inhibition should result in a highly effective cell
surface-bound proteolytic system (STEPHENS et al. 1989). Future studies of
plasminogen-binding sites on other cells of the mononuclear phagocyte
lineage, such as murine peritoneal macrophages, should be of considerable
interest in further evaluating the role of this cell surface catalytic cascade in
extracellular proteolysis.

! Note added in proof: The paper by Estreicher et al. that had been quoted as “submitted for
publication” has been published. Estreicher A, Muhlhauser J, Carpentier J-L, Orci L, Vassalli J-D
(1990) The receptor for urokinase-type plasminogen activator polarizes expression of the protease
to the leading edge of migrating monocytes and promotes degradation of enzyme inhibitor
complexes. J Cell Biol 111; 783—-792
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7 A Powerful Cell Surface Proteolytic System

The large body of information that has been summarized here converges to
indicate that uPA could be a key determinant of a very powerful and highly
regulated proteolytic system at the surface of mononuclear phagocytes, at
certain stages of the inflammatory process. Plasmin generated at the level of
the monocyte/macrophage plasma membrane could catalyze the degradation
of fibrin, and also, either directly or indirectly through the activation of zymogens
to the metalloproteases, that of collagen, elastin, and other components of
extracellular matrices such as laminin and fibronectin (Fig. 6) (CHAPMAN et al.
1984). It is striking that uPA production has been associated with a number
of situations where cell migration is required (trophoblast cells during embryo
implantation, keratinocytes in reepithelializing wounds, endothelial cells during
angiogenesis, malignant cells) (SAPPINO et al. 1989; GRONDAHL-HANSEN et al.
1988; PEPPER et al. 1987; MIGNATTI et al. 1989; DAN® et al. 1985). Moreover, a
direct role for uPA activity has been demonstrated in extracellular matrix
invasion by tumor and endothelial cells (MIGNATTI et al. 1986, 1989; OSSOWSKI
1988a), and receptor-bound uPA has been shown to enhance tumor cell
invasiveness (Ossowski 1988b). Hence, although this has not as yet been directly
tested, it is reasonable to envision that the PA-plasmin system could be essential
for the migration of monocytes and macrophages.
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1 Introduction

In the early decades of the twentieth century biologists sought to grow cells
in culture. Clotted blood was found to contain molecules that accomplished
this purpose (CARREL 1912), but only later did biochemists seek to purify these
molecules. By the middle of the century, biochemists and biologists sought to
explain neonatal eye opening in mice in molecular terms (COHEN 1987; LEvI-
MONTALCINI 1987). Each of these goals ultimately led to the isolation of single
species of molecules called growth factors by using in vitro or in vivo bioassays
for growth and a biochemical algorithm for isolation. Epidermal growth factor
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(EGF), nerve growth factor (NGF), platelet-derived growth factor (PDGF), trans-
forming growth factor-f (TGF-f), interleukin-1 (IL-1), and macrophage
colony-stimulating factor (M-CSF, or CSF-1) were isolated and directly
sequenced or molecularly cloned (based on partial sequences) by these means
in the 1970s and early 1980s. The production of transformed foci of cells by
introduction of fragments of cloned transcripts or genes from tumors also
produced a subclass of oncogenes that turned out to be growth factors [c-sis,
or PDGF-B chain, and Kaposi's sarcoma-fibroblast growth factor (kFGF, or
FGF-4)]. Most recently, the formation of tumors in vivo after random integration
of a highly active viral promoter upstream of cellular genes has produced the
int-1 and int-2 (also known as FGF-3) growth factors. Finally, after the founding
member of a growth factor family is identified with a bioassay, low-stringency
cDNA library screens and polymerase chain reaction can be used to complete
the family (JAKOWLEW et al. 1988; HEBERT et al. 1990). All growth factors are
operationally isolated and defined by their ability to cause growth, but may
also act as nonmitogenic inflammatory factors.

Growth factors have a number of hallmarks. First, they are generally
secreted and therefore act on nearby cells in a paracrine or autocrine fashion
(Ross and VOGEL 1978). Some growth factors may exit cells slowly (e.g. IL-1,
M-CSF) or on cell death (basic and acidic forms of FGF), but all enter the
extracellular milieu. Other growth factors have a membrane-bound form (e.g.,
IL-1, M-CSF, TGF-a, and EGF), but these growth factors also act locally between
cells. The second hallmark of growth factors is that they tend to act in localized
areas either within a cell (Ross and VOGEL 1978; R0ss et al. 1986; DEUEL 1987)
or within a few cell distances [as seen with NGF in pancreatic innervation
(EDWARDS et al. 1989)]. Third, growth factors are generally not stored inside
the cell (exceptions are PDGF and TGF-8 in the platelet) but are highly inducible
at the level of transcription (IL-1), translation [TGF-§, tumor necrosis factor
(TNF)-a, IL-1] and post-translational activation (TGF-f). Fourth, since these
molecules are extremely powerful, they are tightly regulated at the various levels
of production. They are unstable at the transcriptional level because of an
AUUUA motif in the 3" untranslated area of many growth factor transcripts
[c-sis/PDGF, IL-1, IL-2, and granulocyte-macrophage colony-stimulating factor
(GM-CSF) (SHAW and KAMEN 1986) ], and at post-translational levels. PDGF and
TGF-$ are both inactivated by a macrophage product, a,-macroglobulin
(DANIELPOUR and SPORN 1990; ROBERTS and SPORN 1990). In addition, the
mediators of the growth factors (e.g., prostaglandins induced by PDGF or IL-1)
have been demonstrated to negatively regulate the transcription of the inducing
growth factor (KUNKEL et al. 1986; DANIEL et al. 1987). Fifth, growth factors are
pleiotropic, acting as secretagogues, chemoattractants, and differentiation
factors. Finally, growth factors act on the target cell through a transmembrane
receptor. Some growth factors allosterically activate protein kinase activity on
the cytosolic end of the receptor and trigger an amplified cascade of events
within the target cell that lead to the pleiotropic events described. In some
cases the growth factor receptor does not have intrinsic kinase activity but
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activates other kinases within the cell (e.g., TNF-a, IL-1, IL-6, GM-CSF, IL-2
receptors).

The number of growth factors and growth factor families has grown enor-
mously within the last decade (Tables 1-13). The central interest of intercellular
control of growth in abnormal circumstances, such as tumor formation, and
in normal embryogenesis and postnatal growth as well as wound healing has
led to the discovery of several major families of growth factors: PDGF (which
currently has four members), FGF (seven members), EGF (five members), TGF-f
{five members in one subgroup, eight in another), insulin-like growth factors
(four members), and immediate-response-gene growth factors KC/JE/PF-4 (15
members). There are a number of single-member growth factor “families” (Table
13), but for each founder growth factor, molecular biologic techniques are
likely to identify several homologous family members, as they have for several
of the growth factor families (JAKOWLEW et al. 1988; HEBERT et al. 1990). It is not
clear whether these homologous factors are strong growth inducers or whether
they induce other effects, such as inflammation. The current list of 80 growth
factors may expand to several hundred in the next decade.

A case in point is the increase in the number of growth factors known to
be synthesized by the macrophage. In the early 1980s IL-1 was the first growth
factor to be isolated and cloned from macrophages. IL-1 is now known to be
produced by many cells in smaller amounts than in macrophages. it is also
pleiotropic in its functions (Tables 1-3). Since then, approximately 30 growth
factors have been detected in macrophages (Table 4). Only about 15 growth
factors have been found that are not synthesized by macrophages. Undoubtedly,
these numbers will also increase rapidly in coming years (Tables 5-13).

A challenge for those who study the differentiation, production, and
function of macrophages is to understand these processes in terms of the
production and function of growth factors. In this chapter we will examine the
current knowledge of macrophage function in terms of growth factor production
and function. We will first examine the macrophage-derived growth factors as
structurally or functionally related families. We will then examine negative
modulation of growth factors. Finally, we will examine several specific models
that are partially understood: inflammation, wound healing, nerve regeneration,
the immune response, and hematopoiesis (Fig. 1).

2 Growth Factors Produced by Macrophages

2.1 Growth Factors Functionally Related to IL-1

Interleukin-1a, IL-18, TNF-a, IL-6, and leukemia inhibitory factor/differentiation-
inhibiting activity (LIF/DIA) are macrophage-derived growth factors with over-
lapping effects (Table 5). They are functionally but not structurally related. IL-1a
and IL-18 were the first growth factors purified, cloned, and sequenced from
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macrophages (AURON et al. 1984). IL-1a and IL-1§ arise from two distinct genes
in a variety of cell types and act on two distinct receptors expressed in many
cell types (Table 1). The IL-1 receptors exist in high-affinity and low-affinity forms
(K4 of 5-10 pM and 200—-400 pM, respectively) (DINARELLO 1989), which bind to
both IL-1 and IL-18. It is not clear what functional differences these receptors
have. One of these receptors has been cloned and, like the IL-2 and IL-6
receptors, has no intrinsic enzymatic activity but associates with other plas-
malemmal proteins to transduce signals. The IL-1 receptor is in the immunoglo-
bulin superfamily (as are the PDGF o/f, M-CSF, and FGF receptors). Its number
varies from 200 to 20000 per cell, which is low compared with the 10° copies
of PDGF and EGF receptor per fibroblast but is similar to the number of GM-CSF
receptors per cell (METCALF 1985).

Interleukin-1 has the longest molecular history of macrophage-derived
growth factors and a correspondingly large body of knowledge about its
endocrine, paracrine and autocrine effects (Tables 2,3). IL-6 has biologic
responses that broadly overlap those of IL-1; its receptor is also widely distributed,
has been cloned and resembles the IL-1 receptor in that it lacks enzymatic

Table 1. Regulation of IL-1 (modified from RappoLee and WEerB 1988)

Agents stimulating IL-1 production

IL-1 LPS LTD, Zymosan Adherence
TGF-$1 LTC, Muramyl dipeptide  IFN-a? PMA
TNF-a Cbha Silica IFN-y2 Urate crystals

Producer cell types
Macrophages Kupffer cells  Keratinocytes Microglial cells B cells
Endothelial cells  Fibroblasts Mesangial cells Astrocytes Natural killer cells

@ GERRARD et al. (1987)
IFN, interferon; LTC, leukotriene C; PMA, phorbol 12-myristate 13-acetate

Table 2. Effectsof IL-1 onimmune and hematopoietic cells (modified from RappoLee and WER8 1983)

T cells

Cytotoxic T cell generation Chemoattractant Comitogen

IL-2 receptor induction MEL-14 IL-2 ligand induction
LFA-1 induction

B cells

Chemoattractant Comitogen Maturation inducer
LFA-1 induction MEL-14

Natural killer cells
Cytotoxicity inducer

Macrophages
Cytotoxicity inducer
PGE, inducer
TNF-a inducer
MIP-1 inducer
IL-1RA inducer

IL-2 receptor inducer

Reactive oxygen inducer
IFN-B, inducer

MIP-2 inducer

IL-8 inducer

Chemoattractant

IL-1 inducer
Thromboxane f, inducer
JE inducer

IL-1RA, IL-1 receptor antagonist
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Table 3. Effects of IL-1 on connective tissue and other cells (modified from RappoLee and WERB 1988)

Fibroblast and synovial cells

PGE, inducer Collagenase inducer IFN-B1/82 inducer

Pl inducer Hyaluronate inducer Class Il MHC inducer
GM-CSF inducer IL-1 inducer

Stromelysin inducer Proliferation

PDGF-A chain/mitosis

Bone

Resorption

Cartilage

Proteoglycan synthesis Metalloproteinase inducer
suppressor

Endothelial cells

Procoagulant activity inducer ~ PA suppressor IL-1 inducer

PAF, PGF,, PGl, inducer PAl inducer Adherence of T and B cells,

Antiocoagulant activity GM-CSF, G-CSF, PMNs, macrophages
suppressor M-CSF inducer

Systemic changes

Drowsiness Shock Glucocorticoid induction

Acute-phase response Iron decrease (due Fever (reset hypothalamic
inducer (C3, factor B, to lactoferrin secretion) set point)

haptoglobin, fibrinogen)

Schwann cells
NGF inducer

Basophils and mast cells
Histamine release?®

Megakaryocytes
Proliferation®

2 SUBRAMANIAN and BRay (1987)

® WiLLiaMs and MORRISSEY (1989)

PA, plasminogen activator; PAI, plasminogen activator inhibitor; PG, prostaglandin; P, phosphatidyl
inositol turnover

activity and is a member of the immunoglobulin superfamily (Sims et al. 1988;
KISHIMOTO 1989: BAUER et al. 1989; BEAGLEY et al. 1989). LIF/DIA was cloned
recently as both an embryonic stem cell differentiation-inhibiting factor and a
leukemia-inhibiting factor that causes differentiation. It is similar to TNF-a, IL-1,
and IL-6 in its stimulation of acute-phase reactants in liver (BAUMANN and WONG
1989). Its major biologic activites most closely resemble those of IL-6 (MOREAU
et al. 1988; ABE et al. 1989).

Tumor necrosis factor-a is another macrophage-derived growth factor with
a distinct, recently cloned, receptor, which is widely distributed and mediates
biologic responses that broadly overlap those of IL-1 (OLD 1985; BEUTLER and
CERAMI 1988; DINARELLO 1989; SMITH et al. 1990; SCHALL et al. 1990). It induces
fever, the acute-phase response, T and B cell activation, fibroblast proliferation,
collagen synthesis, and many other effects. Several of these effects require a
higher concentration of TNF-a than IL-1 (one to two orders of magnitude). IL-1
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Table 4. Macrophage-derived growth factors and regulatory molecules

Growth factor Reference Growth Factor Reference
Polypeptide production by macrophages
IL-1o a
IL-18 a MIP-1o a
IL-1 receptor a MIP-18 a
IL-1 receptor a JE KOERNER et al. 1987;
antagonist INTRONA et al. 1987
PDGF-A a Mig (monokine FarBeR 1990
PDGF-B/c-sis a induced by
IFN-y)
PDGF-related a IL-6 a
Vascular a M-CSF a
permeability
factor
KC KOERNER et al. 1987,
INTRONA et al. 1987
IP-10 a
TGF-p1 a IP-8 a
TGF-p2 a MIP-2 a
Activin EramaA et al. 1990
Miscellaneous TGF-a RAPPOLEE et al. 1988
bFGF BAIRD et al. 1985
TNF-a a IGF-I RAPPOLEE et al. 1988
GM-CSF a Defensins Ganz et al. 1989
G-CSF a Thymosin a
LIF/DIA a Bombesin WIEDERMANN et al. 1986
Erythropoietin RicH et al. 1982 ACTH SmitH et al. 1986
PauL et al. 1984 Fibronectin ALITALO et al. 1980

Polypeptide growth factors not produced by macrophages

NGF RAPPOLEE, unpublished IL-10 a
data

EGF RAPPOLEE et al. 1988 Neuroleukin a

IL-2 a IGF-II RAPPOLEE, unpublished
data

IL-3 a Insulin RAPPOLEE, unpublished
data

IL-4 a TNF-8 a

IL-5 a IFN-y a

IL-7 a

Other regulatory products produced by macrophages

PGE, a Respiratory burst  a
Acidic isoferritin BROXMEYER et al. 1985 products
Nitric oxide STueHr and NATHAN 1989  Nitrates a

® References from RappoLEE and WERB (1988) or in Tables 5-11. Structurally related genes are
grouped between horizontal lines
ACTH, adrenocorticotropic hormone; IFN, interferon

is distinct from TNF-a in that it affects stem cells in the bone marrow (hemopoie-
tin activity), whereas TNF-a suppresses colony formation (DINARELLO 1989).
On the other hand, TNF-a is more powerful in inducing vascular shock, possibly
by its greater effect in inducing capillary leak syndrome. Biologic responses,
such as enhanced motility of endothelial cells in sprouting capillaries, may
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increase the sensitivity of the TNF-a receptor (GERLACH et al. 1989). TNF-a also
has a larger array of targets for inducing DNA fragmentation and concomitant
cell death (BEUTLER and CERAMI 1988). TNF-a and IL-1 have similar effects on the
major cells in the inflammatory response, inducing respiratory oxidative burst,
chemotaxis, and adhesion in polymorphonuclear leukocytes (PMNSs); produc-
tion of granulocyte colony-stimulating factor (G-CSF), IL-6, and GM-CSF and
procoagulants and adhesion in endothelial cells; production of multiple growth
factors [G-CSF, GM-CSF, M-CSF, IL-1, TNF-«, IL-6, macrophage inflammatory
protein (MIP)-1, MIP-2, and IL-8], chemotaxis, and adhesion in macrophages;
and proliferation, growth factor, and extracellular matrix molecule expression
in fibroblasts (CAVENDER et al. 1986; MUNKER et al. 1986; BEUTLER and CERAMI
1988; DINARELLO 1989; see also references in Tables 2 and 3). TNF-a induces
IL-1 and IL-6 in vitro and in vivo (BROUCKAERT et al. 1989; DINARELLO 1989; FONG
et al. 1989).

The control of adhesion molecules on interacting blood cells and endothelial
cells by TNF-a and IL-1 is becoming clearer. The constitutive expression of
MEL-14, an adhesion molecule for normal recirculating leukocytes and lympho-
cytes that is required for diapedesis by peritoneal exudate cells, is down-
regulated by TNF-a and IL-1 rapidly (within minutes), whereas Mac-1/gp155/90
inflammatory adhesion molecules and intercellular cell adhesion molecules
(ICAM) in PMNs and macrophages and ICAM and endothelial leukocyte
adhesion molecules (ELAM-1) in endothelial cells are up-regulated more siowly
(4h) (GAMBLE et al. 1985; SCHLEIMER and RUTLEDGE 1986; NAWROTH et al. 1986;
DOHERTY et al. 1987; BEUTLER and CeRAMI 1988; KISHIMOTO et al. 1989). It is
speculated that the shedding of MEL-14 may prevent activated leukocytes from
entering normal lymphoid tissue, or it may be a required step in diapedesis as
leukocytes disconnect from their initial binding to the activated endothelial cells
of the vessel wall (BEVILACQUA et al. 1986, 1989; BRETT et al. 1989). The interaction
molecule for ELAM-1 on leukocytes is not known (POBER and COTRAN 1990).
ICAM on endothelial cells and Mac-1/gp155/90 on leukocytes are also up-
regulated within 4 h but decay hours after ELAM-1, perhaps mediating immediate
and long-range adhesion. This coordinate temporal expression paraliels the
autocrine effects of growth factors on stimulation of macrophages.

2.2 Immediate-Response-Gene Growth Factors

The founders of the two groups of inflammatory response genes (group 1: KC,
MIP-2, IL-8, and PF-4; group 2. JE and MIP-1a,8) were originally cloned as
response genes to PDGF (JE and KC) and interferon-y (IP-10) (STILES 1983;
LUSTER et al. 1985; DEUEL 1987; ROLLINS et al. 1988; KAWAHARA and DEUEL 1989,
OQUENDO et al. 1989; STOECKLE and BARKER 1990). It is interesting to note that
the PDGF-inducible genes JE and KC were recently found to be much more
highly induced by IL-1 (HALL et al. 1989). IL-8 (also called neutrophil activity
protein-1/monocyte-derived neutrophil chemotactic factor/T cell chemotactic
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factor), MIP-2, and MIP-1a, have been purified on the basis of biologic assays
for inflammation and cloned from N-terminal sequences of the purified protein
(DAVATELIS et al. 1988; SHERRY et al. 1988; MUKAIDA et al. 1989; STRIETER et al.
1989; WOLPE et al. 1989). The two groups are related by sequence homology,
intron/exon conservation, and biologic function (Table 6).

Many of the factors reach high mRNA and protein concentrations quickly
after exposure of macrophages and other cells to inflammatory stimuli (DEUEL
1987; see also Fig. 2). Therefore, these factors are available from multiple cell
sources early in the inflammatory response or after trauma. They may also
have roles in wound healing, nerve regeneration, delayed-type hypersensitivity,
and other macrophage-mediated pathophysiologic events. As with the more
highly characterized macrophage-derived growth factors (IL-1, TNF-a, and
IL-6), these factors have common targets and effects: PMN chemoattraction
(PF-4, IL-8, MIP-2, MIiP-1a,8), pyrogenesis (MIP-1a,8), and macrophage
chemoattraction (JE).

MIP-1a,8. MIP-1¢ and MIP-18 were cloned from protein sequences
obtained from a lipopolysaccharide (LPS)-stimulated macrophage cell line.
They are 69 amino acid residue heparin-binding polypeptides that induce
neutrophil chemotaxis and cytotoxicity. MIP mRNA is induced 1h after LPS
stimulation and continues at high levels for 16 h before decreasing at 24 h.
MIP-1a is a pyrogen and, 1h after injection, induces a fast, monophasic fever
that is not prostaglandin dependent and-is therefore distinct from fever induced
by TNF-a, IL-1, interferon-a, and perhaps IL-6 (DAVATELIS et al. 1989). MIP-1a

Hours after LPS
stimulation
mRNA
1 5 10 15 20 25 30 34

TNF-alpha

IL-1 alpha

IL-1 recept goni

JE

KC ——

CSF-1 R
GM-CSF —

IGF-I

TGF-alpha —

TGF-beta SLHIEAT ]
IL-6 P
PDGF-8

Fig. 2. The kinetics of RNA induction after addition of LPS. Note that various species and tissues
were the sources of macrophages, and various types of LPS were used in the experiments. The
interleukin receptor antagonist was stimulated by adhesion of macrophages to IgG. References:
TNF-a, IL-10, ScALES et al. 1989; IL-1 receptor antagonist, EISENBERG et al. 1990; JE, KC, INTRONA et al.
1987; CSF-1, BeckeR et al. 1989; Lee et al. 1990; GM-CSF, THoreNs et al. 1987; LEee et al. 1990; IGF-,
NAGAOKA et al. 1990b; TGF-a, RaPPOLEE et al. 1988; TGE-f, Assoian et al. 1987; IL-6, Navarro et al.
1989; NORTHEMANN et al. 1989; PDGF-B, NAGAOKA et al. 1990a
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also regulates the differentiation of macrophage precursors, but MIP-1§ does
not (GRAHAM et al. 1990).

MIP-2. MIP-2, a 6-kDa heparin-binding polypeptide, is induced by LPS in
macrophages. It is a chemoattractant for PMNs but does not activate them for
a respiratory burst. It is most closely related to the KC gene and is in the family
of genes related to PF-4 (WOLPE et al. 1989). MIP-1 and MIP-2 also modulate
in vitro granulopoiesis and monocytopoiesis (BROXMEYER et al. 1989).

IL-8. IL-8 is an 8-kDa heparin-binding polypeptide induced in LPS-stimu-
lated macrophages. It is a chemoattractant and respiratory burst activator in
neutrophils and causes leukotriene production by neutrophils but also appears
to be important in the attraction of T cells to the sites of delayed-type hyper-
sensitivity (MATSUSHIMA et al. 1989; SCHRODER 1989). IL-8 is not, however,
a mitogen or comitogen for thymocytes. IL-1 and TNF-a induce IL-8 in macro-
phages, fibroblasts, and endothelial cells (MATSUSHIMA et al. 1988). Interestingly,
IL-8 is not a chemoattractant for monocytes and does not amplify the macro-
phage response by increasing ingression of macrophages (MATSUSHIMA et al.
1989; LARSEN et al. 1989). It is closely related to the platelet a-granule protein
p-thromboglobulin/CTAP-III.

PF-4. PF-4 is a small polypeptide (76 amino acid residues) that is induced
by PDGF in fibroblasts and delivered to wounds in large quantites by degranu-
lation of platelet a-granules. Serum contains only nanogram quantities of PDGF,
but up to 20 pg/ml of PF-4. It is a neutrophil chemoattractant and is thought to
modulate megakaryopoiesis, and it is anti-angiogenic (DEUEL et al. 1981; DEUEL
1987; OQUENDO et al. 1989; MAIONE et al. 1990).

JE. JE is a 148 amino acid polypeptide induced by interferon-y and IL-1 in
macrophages. Its function is not yet fully characterized, but its importance is
indicated by the speed of its induction (2 h) and high copy number (3000 copies
per fibroblast, which is comparable to TNF-a and IL-1 transcript copy number
in macrophages) (ROLLINS et al. 1988; KAWAHARA and DEUEL 1989; PRPIC et al.
1989, HALL et al. 1989). The transcript for JE accumulates for longer time periods
in macrophages than in fibroblasts (see Fig. 2). JE is a chemoattractant for
macrophages (YOSHMURA and LEONARD 1990).

2.3 Transtorming Growth Factor-f

The TGF-f family of growth factors, which affect macrophage function at many
levels and whose function is controlled by macrophages at many levels, is
pleiotropic (Table 7). TGF-$1 is one of the first major growth factors delivered
to wounds by platelets. Most of the published data refer to TGF-$1, but other
TGF-Bs have similar effects (ROBERTS and SPORN 1990). TGF-f is highly chemo-
attractive for macrophages; its ED5 is 40—-400 fM for macrophage chemotaxis
in vitro. It is autoinductive for macrophages so that motile macrophages may
synthesize TGF-f transcript as they enter the inflammatory locus. TGF-f also
induces other growth factor transcripts in macrophages: PDGF-B, IL-1, TGF-a,
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TNF-a, and FGF (WAHL et al. 1987; CHANTRY et al. 1989; ROBERTS and SPORN
1990). It has been argued that IL-1 is induced by TGF-f only at the
transcriptional level and that a second signal may be required for translation
(ROBERTS and SPORN 1990). Once TGF-f is secreted, it must be activated by
cleavage of the N-terminal fragment to liberate an active C-terminal fragment.
TGF-B can be activated by one of two macrophage-mediated steps: activation
of plasminogen by macrophage-derived plasminogen activator or acidification
of the local environment by lysosomal leakage (MASSAGUE 1987; FAVA et al.
1989; ROBERTS and SPORN 1990). Macrophages may also control the effects of
TGF-B by releasing a,-macroglobulin, which inactivates it (Hovi et al. 1977;
ROBERTS and SPORN 1990). The effects of TGF-§ are important during the
resolution of the wound. TGF-f decreases both T cell-mediated cellular
immunity and the production of hydrogen peroxide by macrophages (TSUNAWAKI
et al. 1988; ROBERTS and SPORN 1990). The injection of TGF-f into dermis causes
formation of granulation tissue and neovascularization (ROBERTS et al. 1986;
PIERCE et al. 1989). Although these effects may be secondary to the
chemoattraction for macrophages, TGF-f also has chemoattractive and
synthetic effects on periwound fibroblasts. It causes fibrosis by up-regulating
transcription and accumulation of the extracelluar matrix components collagen
(types I, lll, IV, V) and fibronectin (MASSAGUE 1987; KHALIL et al. 1989; ROBERTS
and SPORN 1990). It also down-regulates transcription of extracellular matrix-
degrading proteinases and up-regulates the transcription of their inhibitors,
such as tissue inhibitor of metalloproteinases (TIMP) (EDWARDS et al. 1987).
TGF-f also increases the expression of integrins, specifically the a and f units
of fibronection receptor (ROBERTS and SPORN 1990). This may increase the
adhesive characteristics of cells for basal lamina, where TGF-f itself is found
sequestered in basal lamina at times corresponding to peak TGF-f expression
by macrophages in lung disease (KHALIL et al. 1989). Finally, TGF-f causes the
immunoglobulin class switch of B cells preferentially to IgA while suppressing
IgG (COFFMAN et al. 1989).

Another member of the TGF-f superfamily, activin/erythrocyte differentia-
tion factor, has been found to be synthesized by macrophages and may be
important in the regulation of erythropoiesis by macrophages (ERAMAA et al.
1990).

2.4 Platelet-Derived Growth Factor

Platelet-derived growth factor is found in serum at a concentration of 20 ng/ml
but is not found in plasma (< 1 ng/ml). It stimulates a variety of cells through
receptors with a Ky of 1-100 x 107 %, There are two isoforms of PDGF, A and
B (isoform B is c-sis)(Table 8), which are composed of dimers of the related A
and/or B chains of PDGF, and two receptors for these isoforms with overlapping
biologic effects in wound healing and inflammation (DEUEL 1987). Macrophages
produce both isoforms but with different kinetics (MARTINET et al. 1986: RAPPOLEE
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and WERB 1989). The receptors number from 200000 in fibroblasts to 50000
in smooth muscle cells.

The PDGF isoforms have varied effects, causing immediate degranulation
of fibroblasts, chemoattraction of neutrophils and monocytes (at 1 ng/ml and
20 ng/ml, respectively), membrane ruffling, actin reorganization, and mitosis.
Early in hemostasis, PDGF delivered by platelets may act as a powerful vaso-
constrictor and also attracts and activates leukocytes for microbicidal action
(Ross and VOGEL 1978; STILES 1983; BERK et al. 1986; DEUEL 1987). It also rapidly
induces a transient increase in several immediate-response genes, including JE
(induced to 3000 copies per cell), KC (induced to 700 copies per cell), and IL-6.
A second immediate and transient response is that of nuclear trans-activating
factors, c-fos (induced within 15 min by a cycloheximide-insensitive mechanism
or superinduced by cycloheximide) and c-myc (induced to five to ten copies
per cell) (DERYNCK 1988; ROLLINS et al. 1988; KAWAHARA and DEUEL 1989; OQUENDO
et al. 1989). In the immediate phase of inflammation, PDGF liberates fibroblast
enzymes and increases the potential of local cells to mount a second program
of growth factor and cytokine expression whose inflammatory effects are poorly
understood. Since PDGF also induces expression of prostaglandin E,(PGE,),
it may also limit its own production (via prostaglandins) and action on target
cells (through the action of IL-6) (DANIEL et al. 1987). Macrophage-derived
ap,-macroglobulin is also known to sequester and inactivate PDGF (Hovi et al.
1977; Ross et al. 1986).

Platelet-derived growth factor may also have pleiotropic actions in the
later stages of wound healing and inflammation. It induces expression of both
proteinases, such as collagenase, and extracellular matrix proteins, such as
types I, Ill, IV, and V collagen (CHUA et al. 1985; BAUER et al. 1985; R0SS et al.
1986). The actions of these induced molecules may mediate movement of cells,
diapedesis, remodeling, or mitosis. In various molecular phases of wound
healing, PDGF can act much later than TGF- when injected into dermis (PIERCE
et al. 1989). However, PDGF also induces TGF-f, and some of its effects may
be mediated by this growth factor. Since both PDGF and TGF-f bind to various
matrix components, their effects may be residual to the expression of their
corresponding mRNA and protein by local cells.

2.5 Transforming Growth Factor-a

Transforming growth factor-a is in the EGF family of growth factors (Table 9).
It is transcribed by macrophages in response to lipopolysaccharides, lipids,
and, under certain conditions, adhesion (RAPPOLEE et al. 1988, MADTES et al.
1988). TGF-a and EGF share a receptor (the proto-oncogene form of the erb-B
gene) and bind with an identical K4 of 107°M. Macrophages derived from
wound cylinders transcribe and translate TGF-a. Both macrophages and
megakaryocytes (which generate platelets) transcribe TGF-a and liberate a
protein that binds the EGF receptor (RAPPOLEE et al. 1988; MADTES et al. 1988).
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Neither macrophages (RAPPOLEE et al. 1988) nor megakaryocytes (RAPPOLEE,
unpublished data) transcribe EGF mRNA. This suggests that TGF-a, which was
originally thought to be an EGF isoform peculiar to transformed cells, may act
in pathophysiologic events (DERYNCK et al. 1984). The amount of TGF-« polypeptide
secreted by macrophages is low compared with that secreted by eosinophils
and epithelial cells, but when acting in a local environment its concentration
may be near the K4 of its receptor (RAPPOLEE et al. 1988; DERYNCK 1990). It is
also synthesized as a 159 amino acid residue transmembrane precursor of the
mature secreted 50 amino acid polypeptide. The transmembrane molecule has
been shown to mediate biologic effects on target cells bearing the EGF receptor
(BRACHMANN et al. 1989). This indicates that macrophage-derived TGF-a may
act as a secreted molecule or as a transmembrane “precursor.” The relative
activities of the various membrane-bound and secreted molecules are not
understood.

Macrophages do not bind TGF-o (RAPPOLEE, unpublished data). This
suggests that, unlike TGF-g, PDGF, IL-1, M-CSF, TNF-«, and MIP-1, TGF-oo must
work “downstream” on other cell types in a paracrine manner and does not
act in an autocrine manner or recruit or influence new monocytes. According
to current information, TGF-a is the only macrophage-derived growth factor
that mediates all three parts of dermal wound healing: reepithelialization,
formation of granulation tissue, and induction of neovascularization (SCHREIBER
et al. 1986; ROBERTS et al. 1986; SCHULTZ et al. 1987). It also induces interferon-y
in lymphocytes (ABDULLAH et al. 1989). Like PDGF and FGF, TGF-a induces
collagenases and stromelysin and the synthesis of collagens in fibroblasts
(MATRISIAN et al. 1985; EDWARDS et al. 1987). It also induces interferons in fibro-
blasts (LEE and WEINSTEIN 1978).

2.6 Fibroblast Growth Factors

The FGF family currently consists of seven sequenced members (Table 10), only
one of which has been identified in macrophages (BAIRD et al. 1985). Basic
FGF (bFGF) has no signal sequence and is "'secreted” by stimulated P388D1
macrophages in vitro but not by stimulated primary macrophages in vitro
(although these cells have bFGF in the cytosol). It has been hypothesized that
bFGF may be liberated on cell death, and it is possible that P388D1 macrophages
have a higher cell turnover rate in vitro (RAPPOLEE et al. 1988). At least two
other members of the FGF family have signal sequences, but it is not known
whether they are synthesized by macrophages. There are three receptors in
the FGF receptor family, but they have not been well characterized. Two of
them are related to the only FGF receptor that has been cloned by biochemical
means (BURGESS and MACIAG 1989). All of the receptors have intrinsic tyrosine
kinase activity and are more closely related to the M-CSF/PDGF receptor than
to the insulin/EGF group. Biochemically, it is known that there are two FGF
receptors on many cell types: a high-affinity receptor with low copy number
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(Kg = 50-500 pM, 5-50 x 10%cell) and a low-affinity receptor with heparin-like
qualities with high copy number (K4 =10nM, 5-20 x 10%/cell). Heparin binds
and potentiates FGF when both are in solution, and it has been speculated
that the cell surface heparin-like receptor may focus the FGF on the high-affinity
receptor (BURGESS and MACIAG 1989).

Fibroblast growth factor may function late in inflammation in wound healing
and remodeling. It is highly angiogenic, a chemoattractant and mitogen for
endothelial cells, and a mitogen for smooth cells. It also has numerous
immediate effects on fibroblasts as a secretagogue and chemoattractant and
is a mitogen for 3T3 fibroblasts. It may have some of the same effects on fibro-
blasts in regulating proliferation fibrosis as do TGF-8, TGF-a, and PDGF (GRoSS
et al. 1983; ABRAHAM et al. 1986a; EDWARDS et al. 1987).

2.7 Colony-Stimulating Factors

Of the major colony-stimulating factors (CSFs) currently characterized, macro-
phages synthesize M-CSF, G-CSF, GM-CSF, IL-1, and IL-6 (Table 11) but do
not synthesize multi-CSF (IL-3) or IL-5 (NiCOLA 1989). CSFs mediate survival,
proliferation, functional modulation (chemotaxis, degranulation, activation,
adhesion, cytotoxicity, mRNA phenotype changes), and differentiation on
various populations of precursor and mature blood cells (GRABSTEIN et al. 1986;
HORIGUCHI et al. 1987; BECKER et al. 1987, DONAHUE et al. 1988; RAPPOLEE and
WERB 1989; ALVARO-GRACIA et al. 1989; BUSSOLINO et al. 1989; HOANG et al. 1989).
A number of rules have emerged in classifying the activities of CSFs:

1. The EDgo for activating mature cells or causing mitosis in precursors is
higher than that for maintaining survival (although the K4 of all the CSFs
for their cognate ligands is low—between 10 pM and 1000 pM). Bone marrow
precursors in vitro do not survive longer than 24 h unless a specific CSF is
present.

2. At low, limiting concentrations, CSFs are specific for a restricted lineage
(M-CSF for macrophages and G-CSF for granulocytes; IL-3 and GM-CSF
have their highest effects on macrophages).

3. CSFs often act synergistically; IL-3 synergizes with GM-CSF or IL-6 in
maintaining proliferation of committed stem cells.

>

Fig. 3. a The three tiers of development of hematopoietic stem cells. b The effect of four
macrophage-derived growth factors that affect the balance of hematopoietic proliferation and
differentiation. The eight mature cell types produced from a common totipotent stem cell are red
blood cells (RBC), polymorphonuclear leukocytes (PMN), macrophages (MAC), eosinophils (EOS),
megakaryocytes (MEGA), mast cells (MAST), B lymphocytes (B CELL), and T lymphocytes (T CELL).
Heavy lines indicate a mitogenic effect at low concentrations of growth factor; medium lines indicate
a mitogenic effect only at high concentrations of growth factor; light lines indicate no effect. Dots
indicate a modulation of function in the mature cell. (Modified from MeTcALF et al. 1985; NicoLa 1989)
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4. In the lineage of cells in blood cell formation, growth factors act in the
following order during maturation: unknown CSFs for the earliest stem
cells »IL-1a/hemopoietin — IL-3 —» IL-6/GM-CSF — G-CSF — M-CSF.

5. Synergism of CSFs operates at many levels, including induction of receptor
and ligand expression, expansion of precursor populations, and modulation
of receptors.

6. The history of a cell determines how it responds to a given CSF (METCALF
1985; NicoLA 1989). For example, granulocyte-macrophage precursor cell
lines respond to G-CSF to become granulocytes or macrophages or mixed
granulocytes and macrophages, depending on which factor these
precursors have previously been exposed to (NICOLA 1989).

The concentrations of M-CSF and IL-6 in the blood rise after injection of
LPS or in response to bacterial infection, but GM-CSF and IL-3 concentrations
do not rise in response to the same stimulants. However, injection of
recombinant CSFs has resulted in localized activation of macrophages and
PMNs and some proliferation of progenitors, but little rise in numbers of blood
cells because of endocrine activation or proliferation of stem cells in the bone
marrow. The local production of CSFs at sites of inflammation is clearly
important in regulating the functions of endothelial cells, fibroblasts, and
invading blood cells through a large number of molecular mechanisms (see
Sects. 4 and 8). CSFs are mitogenic for endothelial cells (BUSSOLINO et al. 1989)
and white blood cells (METCALF 1985; DONAHUE et al. 1988) and modulate the
molecular phenotype of white blood cells (HORIGUCH! et al. 1987; RALPH and
NAKOINZ 1987; WEISBART et al. 1988; NATHAN 1989; ZUCKERMAN and SUPRENANT
1989). The endocrine, paracrine, and autocrine activities of macrophage-
derived CSFs are not defined (METCALF 1985; NicOLA 1989), although macrophage
products can modulate granulocytopoiesis and monocytopoiesis in vitro
(CHERVENICK and LOBUGLIO 1972; BROXMEYER et al. 1989). In vitro heparan
sulfate-bound GM-CSF (and IL-3) activate hematopoiesis, suggesting a
localization of these factors in a paracrine manner by bone marrow fibroblasts
and macrophages (ROBERTS et al. 1988; Fig. 3). Macrophages are unique among
blood-derived cells in their capacity to undergo a further mitotic division at
sites of activity of the most differentiated cells. This may result in an increased
number of local macrophages. The level of plasma M-CSF is regulated by the
population size of macrophages because macrophages quickly remove M-CSF
injected into the bloodstream (BARTOCCI et al. 1987).

2.8 Insulin-Like Growth Factors

Macrophages are induced by phorbol 12-myristate 13-acetate to transcribe
insulin-like growth factor (IGF)-I (Table 12). In addition, macrophages have a
preformed pool of IGF-I that is secreted on stimulation (NAGAOKA et al. 1990b).
Since wound-derived macrophages express IGF-I mRNA, it is inferred that IGF-I
is translated by macrophages and has a function in the wound (RAPPOLEE et al.
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1988). IGF-I has insulin-like effects on glycogen synthesis and activation of
anabolic processes in target cells. Macrophages do not synthesize either IGF-II
or insulin (RAPPOLEE, unpublished results). The importance of IGF-I in macro-
phage function remains to be determined.

3 Negative Modulation of Macrophage-Derived
Growth Factors

It has become obvious that most, if not all, macrophage-derived growth factors
are either positively cross-induced or autoinductive. These inductions theoreti-
cally allow for functionally different growth factors to reach peak concentrations
quickly and in a set temporal order. The control of growth factor production
and function must also be down-regulated. Much exciting research has recently
been reported, and there is now an understanding of the complexity of the
down-regulation of growth factors.

Many macrophage-derived growth factor transcripts are unstable. IL-1a
and IL-18, PDGF-B, TNF-a, and GM-CSF share an AUUUA motif repeated in the
3’ flanking sequence that is thought to target the transcript for destruction in
the cytosol (SHAW and KAMEN 1986; BRAWERMAN 1989) and have a half-life of
about 1h. Similarly, growth factor polypeptides, such as insulin, are targeted
for destruction by specific peptidases in the extracellular environment
(DuckwORTH 1988). A constitutive destructive process ensures that the powerful
effects of growth factors do not linger when the inductive stimuli have abated.

A second mechanism for negatively modulating the function of growth
factors is to buffer or inhibit the polypeptides. IGF-I has a binding protein with
a binding affinity 100 times that of the IGF-I receptor (SARA and HALL 1990).
Many macrophage-derived growth factors, such as TNF-a, IL-4, IL-2, and
GM-CSF, have a soluble form of the cellular receptor that may have the same
affinity as the cellular form (TREIGER et al. 1986; ENGELMANN et al. 1989; NovicK
et al. 1989). These proteins bind growth factors and prevent binding to
receptors. In addition, a competitive inhibitor of IL-1 has recently been cloned
(CARTER et al. 1990; HANNUM et al. 1990; EiSENBERG et al. 1990). This inhibitor
has sequence homology with IL-1 and binds to IL-1 receptors (in the brain,
T cells, and fibroblasts) with the same affinity as IL-1, but does not activate the
receptor. The IL-1 inhibitor can dampen or attenuate the effects of IL-1 in some
tissues (LIAO et al. 1985; AREND et al. 1990; CARTER et al. 1990). It is produced by
macrophages upon stimulation that also triggers IL-1, but the inhibitor is made
more slowly and lasts longer. The inhibitor transcript has no AUUUA motif and
may therefore attenuate the IL-1 ligand after the initial response in the absence
of the inhibitor. Macrophages also produce a,-macroglobulin, which binds and
activates PDGF and TGF-B, both macrophage-derived growth factors (Ross
et al. 1986; GRAVES and ANTONIADES 1988; MCCAFFREY et al. 1989; DANIELPOUR
and SPORN 1990; ROBERTS and SPORN 1990). In addition, TGF-f can stimulate
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production of a,-macroglobulin in some cells (SHi et al. 1990). Binding proteins
and inhibitors may attenuate ongoing responses or limit the responses spatially.

A third class of negative modulation of growth factors is negative feedback
from either the target or producer cell on production. PDGF and IL-1 induce
PGE, in target cells, and PGE, suppresses the synthesis of these growth factors
(KUNKEL et al. 1986; DANIEL et al. 1987; DINARELLO 1989). Growth factors also
induce polypeptides that down-regulate the production of the growth factor.
For example, TNF-a induces IL-1, which then inhibits the autoinduction of TNF-a
and attenuates TNF-a production (EPSTEIN et al. 1990). Growth factors such as
TNF-o and M-CSF also induce factors such as interferon-f, which act negatively
on the target cell. When blocking antibody to interferon is added in vitro, cells
responding to TNF-a and M-CSF increase their response time and effects
(RESNITZKY et al. 1986; KOHASE et al. 1986). These forms of negative feedback
limit the duration and magnitude of the growth factor response by inhibiting
the production or effect of the factor.

Finally, more extended forms of feedback reside in the equilibrium of
production of producer cells, which is governed by the growth factors they
synthesize. Macrophages synthesize M-CSF, GM-CSF, interferon-a, interferon-,
and IL-1, which positively regulate macrophage production, and PGE, and
MIP-1a, which negatively regulate macrophage production (KURLAND et al. 1978;
MOORE 1984a,b; METCALF 1985; NiCOLA 1989; GRAHAM et al. 1990). Mature
macrophages quickly remove M-CSF from the blood and regulate M-CSF
concentration in inverse proportion to the number of mature macrophages
(BARTOCCI et al. 1987).

It is clear that macrophages and macrophage-derived growth factors
stimulate self-limiting effects on the duration, magnitude, and location of action.
Since each growth factor has unigue effects, this may ensure a temporal series
of specified effects. The mechanisms and significance of these self-limitations
are beginning to be understood.

4 Inflammation

The role of macrophages in the early phases of acute inflammation is not
clearly defined. Although resident tissue macrophages are present and able
to respond to limited stimuli, their functions are unknown. Platelets and
neurogenic spasms provide early hemostasis in the first seconds and minutes.
Neutrophils form the mass of white cells in the first 12 h of inflammation. They
are attracted by simple inflammatory stimuli. The activated macrophage is the
primary cytotoxic cell in the inflammatory lesion at 24 h after stimulation (COHN
1978; NORTH 1978; RAPPOLEE and WERB 1989).

In the later phases of acute inflammation (the end of the first day after
wounding), macrophages are the major leukocyte in the inflammatory locus.
Migration and adhesion of macrophages are controlled by secreted factors,
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including growth factors. Macrophages are attracted by TGF-f, PDGF, IL-1,
TNF-a, IL-2, and a large range of inflammatory debris such as N-formyl
methionyl-capped bacterial proteins, complement split products, and
fibrinopeptides (MING et al. 1987; DINARELLO 1989; RAPPOLEE and WERB 1989).
Since many of the growth factors that attract macrophages are produced by
macrophages, the stimulated macrophages arriving at the wound recruit other
macrophages and white cells to the wound. For example, many macrophage
products, such as TGF-f, IL-1a, TNF-a, platelet-activating factor, leukotriene
B, IL-16, and MIP-1, attract neutrophils (RAPPOLEE and WERB 1988, 1989).
Adhesion or margination before diapedesis of macrophages is under the
influence of growth factors. TNF-a down-regulates the constitutive expression
of GMP-140-related adhesive molecules such as MEL-14 (by shedding), but
up-regulates the expression of GMP-140 by immediate degranulation of
endothelial cells and platelets. MEL-14 is shed from the cell surface of
lymphocytes and monocytes within minutes of addition of growth factor in vitro.
Both TNF-a and IL-1 induce slower changes in ELAM-1 and ICAM expression,
which makes them more adhesive to macrophages and neutrophils as well as
to lymphocytes. These changes in the adhesiveness of endothelial cells peak
at 2—4 h and return to baseline at 24 h, even in the continued presence of TNF-«
in vitro (GAMBLE et al. 1985; DOHERTY et al. 1987; BEUTLER and CERAMI 1988;
KiISHMOTO et al. 1989; BeviLacQuAa et al. 1989). IL-1 induces production of
stromelysin in fibroblasts and macrophages, modulating the ability of these cells
to move through the vascular basement membrane and interstitial extracellular
matrix (FRISCH and RULEY 1987; RAPPOLEE and WERB 1989). It is interesting to note
that TNF-a causes edema, which may be commensurate with increased
transmigration of the macrophage vessel wall, but IL-1 causes only changes
in adhesion without increasing vascular permeability (BEVILACQUA et al. 1989;
BRETT et al. 1989). In addition, M-CSF and IL-4 increase the expression of two
types of plasminogen activator synthesized by macrophages (WERB 1987; HART
et al. 1989a, b). Other macrophage factors such as GM-CSF and G-CSF can
induce endothelial cells to produce CSFs and alter their procoagulant ratios
to become more adhesive to leukocytes and lymphocytes and to further wall
off wounds (BUSSOLINO et al. 1989).

Macrophage growth factors such as PDGF have the capability of causing
vascular spasm through their action on smooth muscle cells, although most
of this activity may occur early in inflammation and be a function of platelet
delivery (BERK et al. 1986). Vascular spasm can be neurogenically caused, as
can macrophage influx as monécytes respond to neuropeptide substance P
chemotactically and by producing IL-1, TNF-a, and IL-6 (RUFF et al. 1985; LOTz
et al. 1988). Production of macrophage TNF-a and IL-1 peaks later after LPS
stimulation (at about 6 and 12 h, respectively, in vitro), suggesting that these
growth factors regulate later maintenance of clot formation and inflammation.
TNF-a and IL-1 may also contribute to pathologic conditions such as
hemorrhagic necrosis, thrombosis, and intravascular coagulation (DURUM et al.
1985; OLD 1985; BEUTLER and CERAMI 1988). Macrophages predominate and
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function well in the wound after 12h for several reasons. They produce an
acid environment by releasing up to 25% of their acidic lysosomes, and they
survive this acid and hypoxic environment better than neutrophils. They also
have a more highly functional protein production apparatus than do neutrophils
and are able to respond to changes in the resolving wound. In addition, they
are much more phagocytic than neutrophils (RAPPOLEE et al. 1989). Inflam-
matory macrophages are probably the major source of IL-1 and TNF-a, as
these two growth factors can approach 1%-5% of total macrophage protein
production. These growth factors have pleiotropic actions. They have endocrine
effects in regulating the hypothalamic temperature set point (and therefore are
pyrogenic) and the production by liver of acute-phase proteins. A recent
finding suggests that IL-1 also regulates the production of glucocorticoids in
the adrenal gland, a pathway that may mediate potential negative feedback
on IL-1 production (BESEDOVSKY et al. 1986). In addition IL-1 autoinduces its
own production as well as inducing TNF-« itself. The kinetics of these inductions
are slightly different, and it has been suggested that IL-1 also down-regulates
the TNF-a autoinduction (EPSTEIN et al. 1990). IL-1 also induces the production
by macrophages of lactoferrin, a molecule that attracts macrophages,
neutrophils, and B and T lymphocytes. Both IL-1 and TNF-« are induced by the
LPS produced by bacteria.

There is a dense network of autocrine and paracrine inductions of growth
factors in the cells of the wound. In the wound-derived macrophage, Cba
complement split product and TGF-f induce IL-1. LPS-stimulated macrophages
produce more TGF-fB. IL-1 produces further IL-1 mRNA and protein in
macrophages, and this induces TNF-a mRNA and protein but inhibits the later
autoinduction of TNF-a. Since TNF-a induces IL-1, this leads to a self-limitation
of TNF-a production through a two-growth-factor circuit (EPSTEIN et al. 1990).
In addition, it ensures that TNF-« is produced early but subsides as IL-1 production
increases. Macrophage TNF-a also induces the production of IL-1 by endothelial
cells and fibroblasts (DINARELLO 1989). Furthermore, macrophage TNF-a and
IL-1 induce the production in endothelial cells of GM-CSF, G-CSF, and M-CSF
(SEELENTAG et al. 1987). The first two of these CSFs have broad functions in
the wound, as their receptors are expressed on many cell types. They modulate
the procoagulant activity of endothelial cells (RYAN and GECzY 1986; ZUCKERMAN
and SUPRENANT 1989) and modulate other functions such as angiogenesis in
these cells (FRATER-SCHRODER et al. 1987; LEIBOVICH et al. 1987). The receptor
for M-CSF (also known as the c-fms proto-oncogene) is expressed only on
macrophages (MeETCALF 1985; NicoLA 1989) and, therefore, the M-CSF growth
factor has a much narrower cellular function. M-CSF causes the macrophage
to become highly secretory (beyond and in synergism with any other
macrophage stimulator) (TAKEMURA and WERB 1984a, b; WARREN and RALPH
1986; NATHAN 1987; BECKER et al. 1987). The CSFs also increase the cytotoxicity
of macrophages and neutrophils by inducing the respiratory burst and produc-
tion of reactive oxygen intermediates (NATHAN 1987; NicoLA 1989). M-CSF may
cooperate with the interferon-y or IL-2 produced by immune T cells to enhance
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the cytotoxicity of macrophages (LI et al. 1989). Antiviral effects may be mediated
by IL-6/interferon-f2, which is induced by LPS and TNF-a. The endocrine effects
of IL-6 on the acute-phase response of liver mimic those induced by TNF-«
and IL-1 (BEUTLER et al. 1986; DARLINGTON et al. 1986; DINARELLO 1989). However,
IL-6 induces fibronectin production by the liver, an effect not produced by the
other two growth factors (LANSER and BROWN 1989).

The extent of the endocrine effects of CSFs produced by macrophages is
not known. The production of many other cells, such as fibroblasts, leads to
the increased concentrations of M-CSF in serum characteristic of some
infections. This increase may play a part in inducing further bone marrow
production of macrophages and neutrophils. The M-CSF concentrations in the
blood are negatively regulated by macrophages themselves (BARTOCCI et al.
1987).

The importance of growth factors in the early participation of macrophages
in hemostasis and the early inflammatory response is great in magnitude, but
not well defined. Certainly, macrophage-derived IL-1, TNF-a, PDGF, TGF-$,
IL-6/interferon-B2, GM-CSF, M-CSF, and G-CSF play potentially large roles.
Newly discovered macrophage growth factors such as TGF-«, IGF-i, and the
immediate-response growth factors KC/JE/MIP-1/MIP-2/IL-8 also may play a
part. These macrophage-derived growth factors stimulate secretion and
migration and reprogram the function of inflammatory celis. They also lead to
increased vascular spasm and procoagulation and adhesive interaction
between endothelial cells and blood cells. They lead to enhanced microbial
and phagocytic capability in neutrophils and macrophages. The importance of
growth factor autoinduction, cross-induction, and negative feedback is not
well understood.

5 Wound Healing

The resolving inflammatory loci provide a stage for the macrophage as central
actor. In killing, debridement, and wound healing, macrophages are absolutely
required (LEBOviICH and Ross 1975; RAPPOLEE and WERB 1989). When macro-
phages are eliminated by antileukocyte serum injected locally, and monocyte
production is prevented by injection of glucocorticoids, wound healing proceeds
very slowly.

Macrophage production of complement and lysosomal hydrolases is
synergized by M-CSF and IL-1 (BENTLEY et al. 1981; TAKEMURA and WERB 1984a;
PERLMUTTER et al. 1986; NicoLA 1989). M-CSF is produced by stimulated fibro-
blasts, endothelial cells, and macrophages in the wound. TNF-¢ and IL-1 induc-
tion has been discussed above. Reactive oxygen intermediates are synthesized
by interferon-y-stimulated macrophages, but GM-CSF, IL-2, prolactin, somatotro-
pin, M-CSF, IL-1, and TNF-a synergize in this induction (ADAMS and HAMILTON
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1984, 1989; METCALF 1985; NATHAN et al. 1985; GRABSTEIN et al. 1986; WARREN
and RALPH 1986; MALKOVSKY et al. 1987; RALPH and NAKOINZ 1987; EDWARDS et al.
1988; BERNTON et al. 1988; FRAKER et al. 1989). Interferon-y production by immune
T cells is enhanced by macrophages (BENACERRAF and UNANUE 1979; LUCAS
and EPSTEIN 1985). In addition, several macrophage-derived growth factors—
IL-1, TNF-o, MIP-1, MIP-2, and IL-8—induce neutrophil chemotaxis and/or
respiratory burst (ADAMS and HAMILTON 1984; DAHINDEN et al. 1989; DAVATELIS
et al. 1989; DINARELLO 1989; LARSEN et al. 1989; WALz et al. 1989; WOLPE et al.
1989). TNF-a kills a broader spectrum of tumor cells than does IL-1. TNF-«
induces the fragmentation of DNA within tumor cells that contain the receptor
for this ligand (ONOzAK! et al. 1985; URBAN et al. 1986; BEUTLER and CERAMI 1988;
DINARELLO 1989). It is not clear how the macrophages control the cytotoxic
molecules they secrete. Clearly, the macrophage is rather resistant to oxygen
radicals. It produces catalase and superoxide dismutase, which inactivate
reactive oxygen intermediates (ADAMS and HAMILTON 1984; TAKEMURA and WERB
1984b; NATHAN 1987). Macrophages also secrete several complement inhibitors,
including a,-macroglobulin, as-proteinase inhibitor, and C3-inhibitor, which may
attenuate complement proteinases as well as restrict complement activation to
its locus (TAKEMURA AND WERB 1984a, b; RAPPOLEE and WERB 1989). Production
of reactive oxygen intermediates by macrophages is down-regulated by TGF-f8
(TSUNAWAKI et al. 1988).

Wound debridement is mediated by lysosomal hydrolases and later by
neutral proteinases, which break down debris in the extracellular milieu, and
by phagocytosis by macrophages and neutrophils. M-CSF synergizes with other
stimulators to induce lysosomal hydrolases. Neutral proteinases, such as the
serine proteinase urokinase plasminogen activator, are induced by M-CSF and
TGF-a, and metalloproteinases, such as collagenase, are induced in fibroblasts,
endothelial cells, and synovial cells by IL-1 and PDGF (LEE and WEINSTEIN
1978; LIN and GORDON 1979; POSTLETHWAITE et al. 1983; BAUER et al. 1985; CHUA
et al. 1985; MATRISIAN et al. 1985; EDWARDS et al. 1987, SCHNYDER et al. 1987;
DERYNCK 1988; DINARELLO 1989). Tissue plasminogen activator is also produced
by macrophages (HART et al. 1989a, b). Uptake of the matrix debris, such as
collagen fragments, induces macrophages to produce IL-1 and PGE,. PGE,,
in turn, induces macrophages themselves to produce collagenase (FRISCH and
RULEY 1987; Table 3). Collagenase and stromelysin are induced in synovial cells
by IL-1 and TNF-a, and IL-1 induces collagenase in dermal fibroblasts (FRISCH
and RULEY 1987; see also Table 3). Collagenase expression can also be induced
in fibroblasts by several macrophage-derived growth factors, including PDGF,
bFGF, and TGF-a/EGF (POSTLETHWAITE et al. 1983; CHUA et al. 1985; DAYER et al.
1985; EDWARDS et al. 1987). PDGF and TGF-a are produced by wound-derived
macrophages (RAPPOLEE et al. 1988; RAPPOLEE and WERB 1990). The metal-
loproteinases stromelysin and collagenase are down-regulated transcriptionally
by TGF-f (EDWARDS et al. 1987; ROBERTS and SPORN 1990). In addition, TGF-g,
PDGF, and IL-1 induce synthesis of TIMP (EDWARDS et al. 1987; DINARELLO 1989;
ROBERTS and SPORN 1990). These effects may limit the effects of the proteinases
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in the wound and down-regulate the production of the proteinases as the
wound clears. Phagocytosis by macrophages and neutrophils is enhanced by
M-CSF, GM-CSF (which induces IgA receptor expression in neutrophils), and
IL-1 (WEISBART et al. 1988).

As the wound resolves, 3-7 days after trauma, dead endothelial cells
(vascular beds), fibroblasts, and epidermal cells must be regenerated and
extracellular matrix must be replaced. By the end of the first week after wounding,
fibroblasts and endothelial cells have filled in the wound with loose connective
tissue and a dense capillary network, respectively. The mass of capillaries
and fibroblasts is called “granulation tissue.” By the end of the second week
the capillary network has thinned and fibrosis of collagen has increased
(STOSSEL 1988; RAPPOLEE and WERB 1989). Ablation experiments indicate that
macrophages, but not neutrophils, are required for this wound healing and
angiogenesis (LEIBOVICH and Ross 1975). Others have found that activated
macrophages and wound fluid induce wound healing (POLVERINI et al. 1977,
GREENBURG and HUNT 1978; BANDA et al. 1982; KOCH et al. 1986).

Macrophages secrete a number of growth factors that are known to
mediate angiogenesis and an overlapping group of growth factors that induce
formation of granulation tissue and reepithelialization. bFGF is synthesized by
stimulated macrophages and induces fibroplasia, DNA synthesis in endothelial
cells, and angiogenesis. IL-1 has limited mitogenic capacity for fibroblasts but
no angiogenic property. Fibroblast mitogenesis is mediated by the ability of
IL-1 to induce fibroblast PDGF-A, and a blocking antibody to PDGF-A prevents
IL-1-induced mitogenesis of fibroblasts (RAINES et al. 1989). Other macrophage-
derived growth factors that induce fibroblast proliferation of fibrosis in vivo or
in vitro are PDGF, TGF-$, TGF-a, IGF-I, and bombesin. Angiogenesis consists
of endothelial sprouting, which can account for up to 1 mm of capillary growth,
and endothelial cell mitosis, which is required for further capillary lengthening
(FOLKMAN 1986; RAPPOLEE and WERB 1989). TGF-f is known to cause endothelial
cell chemotaxis in vitro (and sprouting in vivo) but actually inhibits endothelial
cell mitosis (ROBERTS et al. 1986; HEIMARK et al. 1986; MASSAGUE 1987). TNF-a
has been claimed by two investigative groups to be angiogenic. One group
claims that TNF-a is directly angiogenic for endothelial cells, but because it is
not mitogenic for these cells the angiogenesis is limited to capillary sprouting
(LEIBOVICH et al. 1987). The second group concludes that the angiogenic effect
is secondary to the chemoattractant activity of TNF-a for monocytes, which
produce other angiogenic factors (FRATER-SCHRODER et al. 1987). Endothelial
cells that are motile (e.g., those at sprouting capillaries) are more sensitive to
TNF-a than are confluent endothelial cells in mature blood vessels (GERLACH
et al. 1989). Other factors that have been shown to be mitogenic for endothelial
cells in vitro or angiogenic in vivo are bFGF, TGF-a, G-CSF, and GM-CSF
(THOMAS et al. 1985; SCHREIBER et al. 1986; BURGESS and MACIAG 1989; BUSSOLINO
et al. 1989). It is interesting to note that hypoxia, a condition common to non-
vascularized wound foci, induces macrophages to secrete a nonmitogenic
angiogenic factor in vitro (KNIGHTON et al. 1983). PF-4 is an immediate-response
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growth factor produced by macrophages that is antiangiogenic (MAIONE et al.
1990; RAPPOLEE et al., unpublished data). It is likely that this factor is TNF-a.
As well as being an inducer of granulation tissue and neovascularization,
TGF-a also accelerates reepithelialization when applied in vivo (SCHULTZ et al.
1987).

It is clear that several macrophage-derived growth factors mediate the
killing functions of leukocytes, the debridement functions of leukocytes, and
the wound-healing functions of fibroblasts, endothelial cells, and epidermal
cells.

6 Nerve Regeneration

Macrophages are prominent in peripheral nerve regeneration. Upon crushing
or cutting of peripheral nerve, there is an immediate “wallerian” degeneration
of the distal stump, which consists of the fragmentation of Schwann cell
cytoplasm and breakdown of the distal axon. Within a few days of the trauma,
monocyte-derived macrophages enter the nerve and begin to debride it (PERRY
et al. 1987). During the next 2—3 weeks, the nerve is debrided and the axon
regrows, and the Schwann cells undergo mitosis to populate the regenerating
nerve to about 10 times their original number. If the nerve is cut and explanted
to the peritoneum inside a millipore cylinder that prevents the entrance of
macrophages, no fragmented axon and Schwann cell debridement and no
Schwann cell mitosis occur (SCHEDT etal. 1986). If the cylinder allows
ingression of macrophages, then both debridement and Schwann cell gliosis
occur (SCHEIDT et al. 1986). This suggests that both degeneration and regenera-
tion (debridement and Schwann cell mitosis) are under the control of macro-
phages (HEUMANN et al. 1987, MAHLEY 1988; BAUER et al. 1989; BOYLES et al.
1989). The regenerating nerve undergoes waves of NGF and apolipoprotein E
expression attimes that correspond to the influx of macrophages. Macrophages
synthesize apolipoprotein E after stimulation by products of injured peripheral
nerves (BAsu et al. 1981, BROWN and GOLDSTEIN 1983; WERB and CHIN 1983),
and this synthesis is regenerative (IGNATIUS et al. 1987). If the peripheral nerve
is explanted into culture, NGF is not expressed. However, IL-1 and TNF-a can
replace the monocyte-derived macrophages (which do not enter the explanted
nerve) and induce the transcription of NGF in cells in nerve (LINDHOLM et al.
1987, 1988; UNDERWOOD et al. 1990). Since macrophages do not synthesize
NGF, macrophage-derived TNF-a and IL-1 are probably inducing NGF mRNA
in the major cell of the nerve, the Schwann cell. In addition, TGF-§ induces
the synthesis of TIMP in the nerve, and TGF- mRNA itself increases by more
than tenfold in the crushed peripheral nerve (UNDERWOOD et al. 1990). It is
tempting to speculate that TIMP protects the basal lamina in the nerve to guide
the regrowing axons back to the correct target tissue.
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7 The Immune Response

Macrophages are important in the afferent or generative arm of the immune
response (MACKANESS 1964). Macrophages endocytose and digest antigens
and then present them to T helper cells in a complex with the la antigens on
the macrophage surface (BENACERRAF and UNANUE 1979; UNANUE and ALLEN
1987). This occurs in the immune tissues in lymph nodes, spleen, skin, and
brain (UNANUE and ALLEN 1987; HICKEY and KIMURA 1988). GM-CSF enhances,
but M-CSF suppresses, la expression in macrophages (WILLMAN et al. 1989).
This presentation is required for the generation of immune responses to many
T-dependent antigens and makes the T cells “competent” by inducing expres-
sion of IL-2 receptors. IL-1 can act as a cofactor to antigen/la antigen complex
and stimulates T cells to produce IL-2, which stimulates progression into S phase
by its receptors (RAPPOLEE and WERB 1989). IL-6 also can act as a thymocyte
comitogen.

Interleukin-1 enhances the humoral immune response by several mech-
anisms. First, it stimulates B cell differentiation by inducing a pre-B-cell line
with only cytoplasmic p chains to express k light chains and subsequent surface
immunoglobulin. IL-1 also enhances proliferation and the secretion of immuno-
globulin in mature B cells (DURUM et al. 1985; PIKE and NOSSAL 1985; KURT-JONES
et al. 1987; DINARELLO 1989). Stimulated macrophages additionally produce B
cell stimulatory factor-2, also known as IL-6, and hybridoma growth factor
(GAULDIE et al. 1987; VAN DAMME et al. 1987; TOsATO et al. 1988). IL-6 and IL-1
are major products of stimulated macrophages. Like IL-1, IL-6 induces B cell
proliferation and immunoglobulin expression (BEAGLEY et al. 1989). TGF-§ also
modulates immunoglobulin expression (COFFMAN et al. 1989; SONODA et al.
1989). It is difficult to distinguish the relative contributions of IL-1 and IL-6 to
B cell and T cell activation because T cells can synthesize IL-1 and B cells can
synthesize IL-6, and each factor induces the expression of the other (DINARELLO
1989). Another effect of IL-1 on immune cells is the induction of natural killer
activity. There is more than one IL-1 gene, transcript, and protein in all species
surveyed. The current hypothesis is that all IL-1 species have similar immune
effects and act through a single immune cell receptor (DINARELLO 1989). The
development of the humoral immune response requires the secretion of IL-1
and IL-6 by macrophages, as well as expression of class I MHC molecules
and processed antigen on the macrophage surface.

The development of a cellular immune response requires an interaction
between macrophages and T cells and is represented by delayed-type hyper-
sensitivity. This reaction occurs in previously sensitized individuals and requires
48 h to develop, whereas the immediate hypersensitivity of the humoral immune
response subsides by 48 h. Delayed-type hypersensitivity is characterized by
class Il MHC-restricted interaction between the T cells and macrophages that
have migrated into the interstitial site of bacterial infection. The macrophages
outnumber the T cells in these lesions by more than 10 to 1, but activated T cells
are required to trigger macrophage microbicidal activity (BENACERRAF and
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UNANUE 1979). A complex of soluble factors may mediate communication bet-
ween macrophages and T cells during delayed-type hypersensitivity. Activated
T cells secrete factors IL-2, GM-CSF, and interferon-y, which attract macro-
phages, activate them, induce la expression by macrophages, and prevent their
departure. In response, activated macrophages produce IL-1, TNF-a, M-CSF,
and MIP-1, which further attract and activate T cells and macrophages (UNANUE
and ALLEN 1987). In summary, macrophages and macrophage-derived growth
factors are essential in the generation of the humoral and cellular immune
responses. As previously mentioned, the cytocidal response of macrophages
induced by activated T cells is an important part of the efferent immune
response.

8 Hematopoiesis

Since most blood cells are short-lived, they must be replaced constantly, and
production must be increased under conditions of stress such as inflammation.
The increase in production occurs in the bone marrow, but in times of stress
the spleen can become the primary organ of hematopoiesis.

The eight major types of blood cells arise from a common precursor stem
cell in a series of three tiers of differentiation and proliferation (Fig. 3). The first
tier is composed of 5-hydroxyurea-resistant nonmitotic stem cells that respond
to unknown growth factors and become hemopoietin (IL-1a)-responsive and
then IL-3-responsive stem cells en route to the second tier. The second tier
consists of highly mitotic committed progenitor cells that respond to a broad
array of CSFs in vitro by proliferating and differentiating. GM-CSF, G-CSF,
M-CSF, and other factors (Fig. 3) stimulate these second-tier cells to become
morphologically distinct but functionally immature end cells. At this stage the
specific lineage cells may respond to primarily lineage-specific factors, such
as IL-5 (eosinophils), G-CSF (neutrophils), erythropoietin (erythrocytes and
megakaryocytes), and M-CSF (macrophages) (METCALF 1985).

Each growth factor has a hierarchical effect on hematopoiesis in regard
to lineage specificity: M-CSF is macrophage lineage specific; GM-CSF most
readily stimulates macrophages and secondarily stimulates neutrophils; IL-6
affects macrophages primarily and neutrophils secondarily; and G-CSF affects
neutrophils primarily and macrophages secondarily (METCALF 1985). In any
given circumstance in vivo, local cell types, interregulation of expression of
CSF receptor, and factor concentration may have effects not predicted by in
vitro dose-response experiments. In vitro CSFs maintain cell survival and mitosis
but can also drive differentiation events. Cell lines dependent on one factor
can be driven into terminal differentiation by other CSFs. This may mean that
mitotically active cells can be driven to differentiate if a second factor is present
(NicoLA 1989). In addition, recombinant CSFs are synergistic in vitro and in
vivo. Taken together, these results suggest that expansion and differentiation
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can be uncoupled in such a way that the kinetics and magnitude of production
of various growth factors will determine the outcome of the type and number
of cells released from the bone marrow or spleen into the blood during various
pathophysiologic responses. The type and number of cells released from the
bone marrow will be determined by a combination of growth factors originating
from blood, stromal cells, and the hematopoietic cells themselves.

Although recombinant CSFs can have hematopoietic effects when intro-
duced in vivo or in vitro, there are small or subthreshold concentrations in the
blood both normally and in times of inflammatory stimulation. Little is under-
stood about the endocrine influences of CSFs on hematopoiesis in bone marrow.
M-CSF is unique in that it can stimulate a limited proliferation of macrophages
in nonhematopoietic tissues. The recent work of CROCKER and co-workers
suggests that macrophages in bone marrow and spleen may be important in
some form of trophic interaction during hematopoiesis (CROCKER and GORDON
1989). The production of erythrocyte differentiation factor (activin) by macro-
phages may be important in this interaction (ERAMAA et al. 1990). Macrophages
are the major producers of IL-1, IL-6, and G-CSF and produce large amounts
of GM-CSF and M-CSF. The relative importance of macrophages or macrophage-
derived growth factors is poorly understood in relation to normal or patho-
physiologic homeostasis of blood cell levels.

9 Conclusions and Future Directions

Macrophages must grow, differentiate, and mediate homeostasis by conversing
with other cells in their milieu. An important part of this cell communication is
mediated by macrophage-derived growth factors. As the list of growth factors
increases it will be important to expand the phenotype of macrophage-derived
growth factors. About half of the currently known growth factors are
uncharacterized with respect to macrophages. Other factors, such as soluble
immune response suppressor and parathyroid hormone, may be processed
but not synthesized by macrophages (AUNE and PIERCE 1981; DIMENT et al.
1989). More growth factors may be cloned directly with macrophages as a
source; other extracellular matrix molecules (such as laminin) with functional
growth factor domains (Table 13) will also be characterized in macrophages.
Next, the transcriptional and translational controls of macrophage-derived
growth factors will be defined in more detail. These can be defined in vitro by
biochemical and molecular biologic methods and by examining genomic 5’
flanking sequences for possible control by trans-acting factors (ECONOMOU
et al. 1989). Regulation of growth factor transcription in macrophages by
second messengers is also being studied (ADEREM et al. 1988; PRPIC et al. 1989).
These phenotypes and controls will be correlated with functions of the various
distinct subpopulations of macrophages in vitro and with macrophage
ontogeny. Much of the functional capability of growth factors will be defined
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by testing recombinant growth factors in vivo and in vitro with a knowledge of
the expression of cognate receptors on the responding cells used to interpret
responses. It will be important to determine the spatial expression of macrophage-
derived growth factors by macrophages and other cell types by in situ analysis,
reverse transcription-polymerase chain reaction, or immunocytochemistry
(BAYNE et al. 1986; RAPPOLEE et al. 1988; REMICK et al. 1988). There are few good
genetic models for macrophage function. The osteopetrotic mouse (op/op),
which lacks a functional M-CSF gene (WIKTOR-JEDRZEJCZAK et al. 1990), shows
promise. The construction of transgenic animals that express macrophage-
derived growth factors is beginning to shed light on macrophage function, and
tumor cells or macrophages that express macrophage-derived growth factors
and can be injected into syngeneic mice are proving useful (LANG et al. 1987;
JOHNSON et al. 1989; YOSHIDA et al. 1990). In mice, macrophage-derived growth
factors can also be ablated by homologous recombination, although this is a
more difficult technology (D CHIARA et al. 1990). It may be possible to ablate
macrophages or macrophage-derived growth factors by inserting heterologous
promoters or macrophage-specific enhancer combinations into suicide genes
or antisense growth factor constructs. In addition, understanding of
macrophage-derived growth factors may allow better clinical applications
through use of recombinant macrophage-derived growth factors, or expression
of transformed endogenous macrophages expressing combinations of
macrophage-derived growth factors.

The complex negative regulation of macrophage-derived growth factor
expression is now partially understood. A large group of macrophage-derived
growth factors are negatively regulated by the prostaglandins that also mediate
some of their positive effects (OLD 1985; RoSs et al. 1986; DINARELLO 1989).
However, one recently characterized macrophage-derived growth factor (MIP-1)
does not act through prostaglandin, and its pyrogenic effects are not inhibited
by indomethacin (DAVATELIS et al. 1989). Negative feedback of IL-1 is mediated
by IL-1 induction of glucocorticoids (BESEDOVSKY et al. 1986). MIP-1a was
recently shown to inhibit bone marrow colony formation in vitro by GM-CSF
or M-CSF (GRAHAM et al. 1990). A competitive inhibitor of IL-1 with sequence
homology to IL-1 was also recently cloned (EISENBERG et al. 1990). As neuro-
immunologic interactions are further characterized, they may define further
negative regulatory loops between the nervous system and macrophages,
although only inductive effects are currently known (EDWARDS et al. 1988; LOTZ
et al. 1988). Finally, the kinetics of macrophage-derived growth factor induction
and attenuation may be defined, as has been partially done for TNF-a and
IL-1 in macrophages.

The macrophage is an excellent model system for understanding the
production and function of growth factors. Not only will it provide a satisfactory
understanding of mechanisms of communication of metazoan cells, but this
understanding will lead to a clinically relevant understanding of macrophage
function in pathophysiology and pathology.
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1 Introduction

The constant renewal of blood cells in vertebrate species depends on the
proliferation and differentiation of hematopoietic stem cells in the bone marrow
(HARRISON et al. 1988). These cells in turn give rise to progenitor cells which are
committed to more restricted pathways of differentiation. The survival,
proliferation, and differentiation of these progenitor cells are regulated by the
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