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Homage to Alain Glavieux

To accomplish the sad duty of paying homage to Alain Glavieux, I have referred
to his biography as much as my own memories. Two points of this biography struck
me, although I had hardly paid attention to them until now. I first noted that Alain
Glavieux, born in 1949, is the exact contemporary of information theory, since it
was based on the articles of Shannon in 1948 and 1949. I also noted that his first
research at the Ecole Nationale Supérieure de Télécommunications de Bretagne
(ENST Brittany) related to underwater acoustic communications.

To work on these communications, first of all, meant to be interested in concrete
local problems linked to the maritime vocation of the town of Brest. It also meant
daring to face extreme difficulties because the marine environment is one of the
worst transmission channels there is. Carrying out effective underwater
communications can be conceived only by associating multiple functions (coding,
modulation, equalizing, synchronizing) that do not only have to be optimized
separately, but must be conceived together. This experience, along with the need for
general solutions, which are the only effective ones in overcoming such difficulties,
has prepared him, I believe, for the masterpiece of the invention of turbocodes, born
from his very fruitful collaboration with Claude Berrou. Better still, no one could
understand better than him that iterative decoding, the principal innovation
introduced apart from the actual structure of the turbocodes, implies a more general
principle of exchange of information between elements with different functions but
converging towards the same goal. Admittedly, the idea of dealing with problems of
reception using values representing the reliability of symbols and thus lending
themselves to such an exchange, instead of simple decisions, had already been
exploited by some researchers, like Joachim Hagenauer and myself, but the
invention of turbocodes brought the most beautiful illustration conceivable, paving
the way for a multitude of applications.
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Shannon had shown in 1948 that there exists a bound for the possible
information flow in the presence of noise, the capacity of the channel, but had not
clarified the means of dealing with it. If the asymptotic nature of the Shannon
theorem did not leave any hope to effectively reach the capacity, the attempts to
approach it had remained in vain despite the efforts of thousands of researchers.
Turbocodes finally succeeded 45 years after the statement of the theorem. They
improved the best performances by almost 3 decibels. What would we have read in
the newspapers if an athlete had broken the 100 meters record by running it in 5
seconds! If this development remained almost unknown to the general public, it
resounded like a thunder clap in the community of information and coding
theoreticians.

This result and the method that led to it called into question well anchored
practices and half-truths, which time had solidified into dogmas. They revealed that
unimportant crude restrictions had in fact excluded the best codes from the field of
research. The inventors of turbocodes looked again at the basic problem in the spirit
of Shannon himself, not trying to satisfy the posed a priori criterion to maximize the
minimal distance of the code, but to optimize its real performances. To imitate
random coding, a process that is optimal, but unrealizable in practice that Shannon
had employed to demonstrate the theorem, Berrou and Glavieux introduced an easily
controllable share of risk into coding in the form of an interleaving, whose inversion
did not present any difficulty. The turbocodes scheme is remarkably simple and their
realization is easy using currently available means, but it should be noted that they
would have been inconceivable without the immense progress of the technology of
semi-conductors and its corollary, the availability of computers. In fact, computer
simulations made it possible to choose the best options and to succeed, at the end of
an unprecedented experimental study into the subject, with the first turbocode. Its
announced performances were accommodated with an incredulous smile by experts,
before they realized that they could easily reproduce and verify them. The shock that
resulted from it obliged everyone to revise the very manner of conceiving and
analyzing codes. The ways of thinking and the methods were completely renewed,
as testified by the true metamorphosis of the literature in the field caused by this
invention.

It was certainly not easy to invent turbocodes. From a human point of view it
was perhaps more difficult still to have invented them. How, indeed, could he handle
the authority conferred by the abrupt celebrity thus acquired? Alain Glavieux was
absolutely faithful to himself and very respectful of others. He preferred efficiency
to glamour. He was very conscious of the responsibilities arising from this authority
and avoided the peremptory declarations on the orientation of research, knowing
that, set into dogmas, they were also likely to become blocked. He thus used this
authority with the greatest prudence and, just as at the start when he had put his
engineering talent to the service of people and of regional developments, he devoted
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himself to employ it to the benefit of the students of the ENST Brittany and of the
local economy, in particular, by managing the relations of the school with
companies. He particularly devoted himself to help incipient companies, schooling
them in “seedbed”. He was also concerned with making science and the technology
of communication known, as testified, for example, by his role as the main editor
this book. Some of these tasks entailed not very exciting administrative aspects.
Others would have used their prestige to avoid them, but he fully accepted his
responsibilities. In spite of the serious disease which was going to overpower him,
he devoted himself to them until the very last effort.

The untimely death of Alain Glavieux leaves an enormous vacuum. Fruits of an
exemplary friendship with Claude Berrou, turbocodes definitively marked the theory
and practice of communications, with all the scientific, economic, social and human
consequences that it implies. Among those, the experimental sanction brought to
information theory opens the way for its application to natural sciences. The name of
Alain Glavieux will remain attached to a work with extraordinary implications in the
future, which, alas, offers his close relations only meager consolation.

Gérard Battail
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Chapter 1

Information Theory

1.1. Introduction: the Shannon paradigm

The very title of this book is borrowed from the information theory vocabulary,
and, quite naturally, it is an outline of this theory that will serve as an introduction.
The subject of information theory is the scientific study of communications. To this
end it defines a quantitative measurement of the communicated content, i.e. informa-
tion, and deals with two operations essential for communication techniques: source
coding and channel encoding. Its main results are two fundamental theorems related
to each of these operations. The possibility of channel encoding itself has been essen-
tially revealed by information theory. That shows, to which point a brief summary of
this theory is essential for its introduction. Apart from some capital knowledge of its
possibilities and limits, the theory has, however, hardly contributed to the invention
of means of implementation: whereas it is the necessary basis for the understanding
of channel encoding, it by no means suffices for its description. The reader interested
in information theory, but requiring more information than is provided in this brief
introduction, may refer to [1], which also contains broader bibliographical references.

To start with, we will comment on the model of a communication, known as
the Shannon paradigm after the American engineer and mathematician Claude E.
Shannon, born in 1916, who set down the foundations for information theory and
established the principal results [2], in particular, two fundamental theorems. This
model is represented in Figure 1.1. A source generates a message directed to a recipi-
ent. The source and the recipient are two separated, and therefore distant, entities, but
between them there exists a channel, which, on the one hand, is the medium of the
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2 Channel Coding in Communication Networks

propagation phenomena, in the sense that an excitation of its receptor by the source
leads to a response observable by the recipient at the exit, and, on the other hand, of
the disturbance phenomena. Due to the latter, the excitation applied is not enough to
determine with certainty the response of the channel. The recipient cannot perceive
the message transmitted other than by observing the response of the channel.

Message . .
Source Channel Recipient

!

Disturbances

Figure 1.1. Fundamental communication diagram: Shannon paradigm

The source, is, for example, a person who speaks and the recipient is a person
who listens, the channel being the surrounding air, or two telephone sets connected
by a line; or the source may well be a person who writes, with the recipient being a
reader and the channel being a sheet of paper!, unless the script writer and the reader
are connected via a conducting circuit using telegraphic equipment. The diagram in
Figure 1.1 applies to a large variety of sources, channels and recipients. The slightly
unusual word “paradigm” indicates the general model of a certain structure, indepen-
dently of the interchangeable objects, whose relations it describes (for example in
grammar). This diagram was introduced by Shannon in 1948, in a slightly different
form, at the beginning of his fundamental article [2]. As banal as it may appear to us
now, this simple identification of partners was a prerequisite for the development of
the theory.

The principal property of the channel considered in information theory is the pres-
ence of disturbances that degrade the transmitted message. If we are surprised by the
importance given to phenomena, which often pass unnoticed in everyday life, it should
not be forgotten that the observation of the communication channel response, neces-
sary to perceive the message, is a physical measurement which can only be made with
limited precision. The reasons limiting the precision of measurements are numerous
and certain precautions make it possible to improve these. However, the omnipresence
of thermal noise is enough to justify the central role given to disturbances. One of the
essential conclusions of information theory, as we will see, identifies disturbances
as the factor which in the final analysis limits the possibilities of communication.
Neglecting disturbances would also lead to paradoxes.

1. The Shannon paradigm in fact applies to the recording of a message as well as to its trans-
mission, that is, in the case where the source and the recipient are separated in time and not only
in space, as we have supposed up until now.
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We will note that the distinction between a useful message and a disturbance is
entirely governed by the finality of the recipient. For example, the sun is a source
of parasitic radiation for a satellite communication system. However, for a radio-
astronomer who studies the electromagnetic radiation of the sun, it is the signal of
the satellite which disturbs his observation. In fact, it is convenient to locate in the
“source” block of Shannon’s scheme the events concerning the recipient, whereas the
disturbance events are located in the “channel” block.

Hereafter we will consider only a restricted category of sources, where each event
consists of the emission of a physical signal expressing the choice of one element,
known as a symbol, in a certain finite abstract set known as an alphabet. It could be a
set of decimal or binary digits, as well as an alphabet in the usual sense: Latin, Greek
or Arabic, etc. The message generated by the source consists of a sequence of symbols
and is then known as “digital”. In the simplest case the successive choices of a symbol
are independent and the source is said to be “without memory”. In information theory
we are not interested in the actual signals that represent symbols. Instead we consider
mathematical operations with symbols whose results also belong to a finite alphabet
physically represented in the same way. The operation, which assigns physical signals
to abstract symbols, stems from modulation techniques.

The restriction to numerical sources is chiefly interesting because it makes it pos-
sible to build a simple information theory, whereas considering sources known as
“analog” where the occurring events are represented by continuous values involves
fundamental mathematical difficulties that at the same time complicate and weaken
the theoretical postulates. Moreover, this restriction is much weaker than it appears,
since digitalization techniques based on sampling and quantification operations allow
an approximate digital representation, which may be tuned as finely as we wish, of
signals generated by an analog source. All modern sound (word, music) and image
processing in fact resorts to an analog/digital conversion, whether it is a question of
communication or recording. The part of the information theory dealing with analog
sources and their approximate conversion into digital sources is called distortion or
rate theory. The reader interested in this subject may refer to references [3-5].

To clarify the subject of information theory and to introduce its fundamental con-
cepts, before even considering quantitative measurement of information, a few obser-
vations on the Shannon paradigm will be useful. Let us suppose the source, channel
and recipient to be unspecified: nothing ensures a priori the compatibility between
the source and the channel, on the one hand, and the channel and the recipient, on the
other hand. For example, in radiotelephony the source and the recipient are human
but the immaterial channel symbolizes the propagation of electromagnetic waves. It is
therefore necessary to supplement the diagram in Figure 1.1 with blocks representing
the equipment necessary for the technical functions of conversion and adaptation. We
thus obtain the diagram in Figure 1.2a. It is merely a variation of Figure 1.1, since the
set formed by the source and the transmitting equipment, on the one hand, and the set
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of the receiving equipment and the recipient, on the other hand, may be interpreted as
a new source-recipient pair adapted to the initial channel (Figure 1.2b). We can also
consider the set of the transmitting equipment, the channel and the receiving equip-
ment to constitute a new channel, adapted to the source-recipient pair provided ini-
tially (Figure 1.2c); thus, in the preceding examples, we have regarded a telephonic or
telegraphic circuit as the channel, consisting in an transmitter, a transmission medium
and a receiver.

S — AE C AR D a)
| | | |
s —— AE — C AR D | | b
| | | |

"~ Newsource New recipient
| |

S % AE C AR } D 0)

| |

| I Lo |

\ LA 1 B \

‘ S [ AEl —p»AE2—~ C [~ AR2—> ARl D D
| I Lo |
Standardized source  Standardized channel Standardized r&:iﬁient

Figure 1.2. Variants of the Shannon paradigm.
S means “source”, C, “channel” and D “recipient”.
AE means “transmitter” and AR “receiver”

A more productive point of view, in fact, consists of dividing each transmitter
and receiver into two blocks: one particular to the source (or the recipient), the other
adapted to the channel input (or output). This diagram has the advantage of making it
possible to standardize the characteristics of the blocks in Figure 1.2 thus redefined:
new source aside from point A in Figure 1.2d; new channel between points A and
B; new recipient beyond B. The engineering problems may then be summarized as
separately designing the pairs of adaptation blocks noted AE1 and AR1 in the figure,
on the one hand, and AE2 and AR2 on the other hand. We will not specify what the
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mentioned standardization consists of until after having introduced the concepts of
source and channel coding.

Generally speaking we are free to redefine the borders of the blocks in Figure 1.2
for the purposes of analysis; the section of any circuit connecting a source to a recip-
ient in two points — such that the origin of the message useful for the recipient is on
the left of the figure, and all the links where disturbances are present are in its central
part — defines a new source-channel-recipient triplet.

We will often have to resort to a schematization of the blocks in Figure 1.2, which
sometimes may be very simplistic. However, the conclusions drawn will be general
enough to be applicable to the majority of concrete situations. Indeed, these simplifica-
tions will most often be necessary only to make certain fundamental values calculable,
whose existence remains guaranteed under relatively broad assumptions. Moreover,
even if these assumptions are not exactly satisfied (it is often difficult, even impossi-
ble, to achieve experimental certainty that they are), the solutions of communication
problems obtained in the form of device structures or algorithms generally remain
usable, perhaps at the cost of losing the exact optimality afforded by the theory when
the corresponding assumptions are satisfied.

1.2. Principal coding functions

The message transmitted by the source can be replaced by any other, provided that
it is deduced from it in a certain and reversible manner. Then there is neither creation
nor destruction of information, and information remains invariant with respect to the
set of messages that can be used to communicate it. Since it is possible to assign
messages with various characteristics to the same information, transformations of an
initial message make it possible to equip it with desirable properties a priori. We will
now examine what these properties are, and what these transformations, known as
coding procedures, consist of and how, in particular, to carry out the standardization
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of the “source”, “channel” and “recipient” blocks introduced above.

We may a priori envisage transforming a digital message by source coding, chan-
nel coding and cryptography.

1.2.1. Source coding

Source coding aims to achieve maximum concision. Using a channel is more
expensive the longer the message is, “cost” being taken here to mean very generally
the requirement of limited resources, such as time, power or bandwidth. In order to
decrease this cost, coding can, thus, aim at substituting the message transmitted by the
source by the shortest possible message. It is required that the coding be reversible,
in the sense that the initial message can be restored exactly on the basis of its result.
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Let us take an example to illustrate the actual possibility that coding makes the
message more concise. Let us suppose that the message transmitted by the source is
binary and that the successive symbols are selected independently of each other with
very unequal probabilities, for example, Pr(0) = 0.99 and Pr(1) = 0.01. We can
transform this message by counting the number of zeros between two successive “1”
(supposing that the message is preceded by a fictional “1”) and, if it is lower than
255 = 2% — 1 (for example), we can represent this number by a word with 8 binary
digits. We also agree on a means of representing longer sequences of zeros by several
words with 8 binary digits. We thus replace on average 100 initial symbols by 8.67
coded symbols, that is, a saving factor of approximately 11.5 [1, p. 12].

1.2.2. Channel coding

The goal of channel coding is completely different: to protect the message against
channel noise. We insist on the need for taking channel noise into account to the point
of making their existence its specific property. If the result of this noise is a symbol
error probability incompatible with the specified restitution quality, we propose to
transform the initial message by such a coding that it increases transmission security
in the presence of noise. The theory does not even exclude the extreme case where
specified quality is the total absence of errors.

The actual possibility of protecting messages against channel noise is not obvious.
This protection will be the subject of this entire book; here we will provide a very
simple example of it, which is only intended to illustrate the possibility.

Let us consider a channel binary at its input and output, where the probabilities of
an output symbol conditioned by an input symbol, known as “transition”, are constant
(this channel is stationary), and where the probability that the output symbol differs
from the input symbol, i.e. of an error, is the same regardless of the input symbol
(it is symmetric). It is the binary symmetric channel represented in Figure 1.3. The
probability of error there is, for example, p = 1073,

Figure 1.3. Diagram of a binary symmetric channel with a probability of error p
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We wish to use this channel to transmit a message with a probability of error per
binary symbol lower than 3 - 1076, This result can be achieved by repeating each
symbol of the message 3 times, the decision taken at the receiver end being based on
a majority. Indeed, the probability p. of this decision being erroneous is equal to the
probability of 2 or 3 errors out of the 3 received symbols, or:

pe = 3p*(1 —p) +p> =3p? — 2p> = 2,998 - 10~°

A lower probability of error would have been obtained by repeating each symbol
5,7, etc. times, the decision rule remaining the majority vote.

This example simultaneously shows the possibility of coding protecting the mes-
sage against noise and the cost that it entails: a lengthening of the message. It is, how-
ever, a rudimentary process. Comparable results could have been obtained at a much
lower redundancy cost making use of more elaborated codes called “error correcting
codes”, to which a large part of this book will be dedicated. However, it is gener-
ally true that protection against noise is achieved only by introducing redundancy, as
demonstrated in section 1.5.3.

The objectives of source coding and channel coding thus appear to be incompat-
ible. They are even contradictory, since source coding increases the vulnerability to
errors while improving concision. Thus, in our example of source coding an error in
one of the binary digits of the coded message would cause a shift of the entire sequence
of the restored message, a much more serious error since it involves many symbols.
This simple observation shows that the reduction of redundancy and the reduction of
vulnerability to errors cannot be considered independently of each other in the design
of a communications chain.

1.2.3. Cryptography

Let us note, finally, that a coding procedure can have yet another function, in the-
ory without affecting redundancy or vulnerability to errors: ciphering the message,
i.e. making it unintelligible to anyone but its recipient, by operating a secret transfor-
mation that only he can reverse. Deciphering, i.e. the reconstruction of the message
by an indiscreet interceptor who does not know the “key” specifying the transforma-
tion making it possible to reverse it, must be difficult enough to amount to factual
impossibility. Other functions also involve cryptography, for example, providing the
message with properties making it possible to authenticate its origin (to identify the
source without ambiguity or error), or to render any deterioration of the message by
obliteration, insertion or substitution of symbols detectable. Generally speaking, it is
a question of protecting the message against indiscretions or fraudulent deteriorations.
Cryptography constitutes a discipline in its own right, but this will be outside the scope
of this book.
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1.2.4. Standardization of the Shannon diagram blocks

It is now possible for us to specify what the standardization of blocks in Figure 1.2
presented above consists of, still restricting ourselves to a digital source. The message
coming from the source initially undergoes source coding, ideally with a message
deprived of redundancy as a result, i.e. where successive symbols are independent and
where, moreover, all the symbols of the alphabet appear with an equal probability.
The coding operation realized in this manner constitutes an adaptation only to the
characteristics of the source. The result of this coding is very susceptible to noise,
since each of its symbols is essential to the integrity of information. It is therefore
necessary to carry out channel coding making the message emerging from the source
encoder (ideally) invulnerable to channel noise, which necessarily implies reintroduc-
ing redundancy.

We can suppose that source coding has been carried out in an ideal fashion; the
only role of channel coding is then to protect a message without redundancy from
channel noise. If the message being coded in this way is not completely rid of redun-
dancy, the protection obtained can only increase.

[ Ideal |1 A‘ Ideal Ideal ‘B‘ Ideal [
: S » source : : channel ~ C | source : : channel - D :
! encoder || | encoder decoder |1 1| decoder !
Standardized source "~ Standardized channel ~ Standardized recipient
without redundancy without errors without redundancy

» o«

Figure 1.4. Standardization of the “source”, “channel” and “recipient”
blocks of the Shannon diagram. S, C and D indicate
the initial source, channel and recipient respectively

We can then redraw Figure 1.2d as in Figure 1.4, where the standardized source
generates a message without redundancy and where the standardized channel contains
NO errors.

The procedure consisting of removing the redundancy of the initial message by
source coding, then reintroducing redundancy by channel coding can appear contra-
dictory, but the redundant initial source is not a priori adapted to the properties of
the channel, to which we connect it. Rather than globally conceiving coding systems
to adapt a particular source to a particular channel, the standardization that we have
just defined makes it possible to treat the source and the channel separately, and no
longer the source-channel pair. This standardization also has a secondary advantage:
the alphabet of messages at points A and B of Figure 1.4 is arbitrary. We can suppose
it to be binary, for example, i.e. the simplest possible, without significantly restricting
the generality.
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1.2.5. Fundamental theorems

The examples above suggest that coding operations can yield the following results:

— for source coding, a coded message deprived of redundancy, although the initial
message comes from a redundant source;

— for channel coding, a message restored without errors after decoding, although
the coded message is received through a disturbed channel.

These possibilities are affirmed by the fundamental theorems of the information
theory, under conditions which they specify. Their demonstration does not require clar-
ifying the means of reaching these results. Algorithms approximating optimal source
coding have been known for a long time; on the contrary, the means of approximating
the fundamental limits with regards to channel coding remain unknown in general,
although the recent invention of turbo-codes constitutes a very important step in this
direction [6].

The fundamental theorems concern the ultimate limits of coding techniques and
are expressed according to the values used for quantitative measurement of infor-
mation that we now have to introduce. In particular, we will define source entropy
and channel capacity. The fundamental theorems confer an operational value to these
items, which confirms their adequacy for transmission problems and clarifies their
significance.

1.3. Quantitative measurement of information
1.3.1. Principle

The description of transmitted messages, of their transformation into signals suit-
able for propagation, as well as of noise, belongs to signal theory. Messages and sig-
nals undergo transformations necessary for their transmission (in particular, various
forms of coding and modulation), but they are merely vehicles of a more fundamental
and more difficultly definable entity, invariant in these transformations: information.
The invariance of information with respect to messages and signals used as its support
implies that it is possible to choose from a set of equivalent messages representing
the same information those which a priori have certain desirable properties. We have
introduced in section 1.2 coding operations, in the various senses of this word.

We will not try now to define information, contenting ourselves to introduce its
quantitative measurement that the theory proposes, a measure, which was a necessary
condition of its development. We will briefly reconsider the difficult problem of its
definition in the comments to section 1.3.6, in particular, to stress that, for the theory,
information is dissociated from the meaning of messages. As in thermodynamics, the
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values considered are statistical in nature and the most important theorems establish
the existence of limits.

The obvious remark that the transmission of a message would be useless if it were
known by its recipient in advance leads to:

— treating a source of information as being the seat of random events whose
sequence constitutes the transmitted message;

— defining the quantity of information of this message as a measure of its unpre-
dictability, compared to its improbability.

1.3.2. Measurement of self-information

Let X be an event occurring with a certain probability p. We measure its uncer-
tainty by f(1/p), f(-) being a suitably selected increasing function. The quantity of
information associated with the event z is thus

h(z) = f(1/p).

To choose the function f(-) it is reasonable to admit that the quantity of informa-
tion brought by the joint occurrence of two independent events x; and x5 is the sum
of the quantities of information carried separately by each one of them. We thus wish
to have:

h(ml, .13‘2) = h(xl) + h(l‘g),

which implies for the function f(-):

f(1/pip2) = f(1/p1) + f(1/p2),

where p; and p are the probabilities of 21 and x5 occurring, respectively. Indeed, the
probability of joint occurrence of z; and x5 is the product p;ps of their probabilities.
The continuous function that associates the sum of functions having each of its terms
as an argument to an argument formed by a product is the logarithm function. We are
consequently led to choose:

h(z) = log(1/p) = —log(p). [1.1]

This choice also implies that h(z) = 0, if p = 1, so that a certain event brings
a zero amount of information, which conforms to the initial observation, upon which
quantitative measurement of information is based.

The logarithm function is defined only to the nearest positive factor determined by
the base of the logarithms, whose choice thus specifies the unit of information. The
usually selected base is 2 and the unit of information is then called the bit, an acronym
of binary digit. This term is widely employed, despite the regrettable confusion that
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it introduces between the unit of information and a binary digit which is neither nec-
essarily carrying information, nor, if it is, has information equal to the binary unit.
Following a proposal of the International Standards Organization (ISO), we prefer to
indicate the binary unit of information by shannon, in tribute to Shannon who intro-
duced it [2]. It will often be useless for us to specify hereafter the unit of information,
and we will then also leave unspecified the logarithms base.

1.3.3. Entropy of a source

When the source is hosting repetitive and stationary events, i.e. if its operation is
independent of the origin of time, we can define an average quantity of information
produced by this source and carried by the message that it transmits: its entropy.

We then model the operation of a digital source by the regular, periodic emis-
sion of a random variable X, for example, subject to a certain finite number n of
occurrences &1, Zs, . . . , Ln, With the corresponding probabilities py, ps, . . ., Dy, With
Z?:l p; = 1. In the simplest case, the successive occurrences of X, i.e. the choices
of symbol, are independent and the source is known as “without memory”. Rather
than considering the quantity of information carried by a particular occurrence, we
consider the average information, in the statistical sense, i.e. the value called entropy

defined by:
va ;) = Z;m log(ps)- [1.2]

If the successive occurrences of X are not independent, we define the entropy by
symbol of a stationary source by the limit:

H = lim 1HS, [1.3]

§—00 §

Zp ) log p(c)

where c is any sequence of length s, which the source transmits with probability p(c).
The sum is calculated for all the possible sequences c. The stationarity of the source
suffices for the existence of the limit in [1.3].

with

The entropy defined by [1.2] has many properties, among which:

— it is positive or zero, zero only if one of the probabilities of occurrence is equal
to 1, which leads the others to zero and the random variable X reduced to a given
parameter;

— its maximum is reached when all the probabilities of occurrence are equal, there-
fore if p; = 1/n regardless of i;
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— itis convex N, i.e. the replacement of the initial probability distribution by a dis-
tribution where each probability is obtained by taking an average of the probabilities of
the initial distribution increases entropy (it remains unchanged only if it is maximum
initially).

NOTE.- A notation such as H(X), is convenient but abusive, since X is not a true
argument there. It is only used to identify the random variable X whose entropy is H,
which, in fact, depends only on its probability distribution. This note applies through-
out the remainder of the book, every time a random variable appears as a pseudo-
argument of a information measure.

1.3.4. Mutual information measure

Up until now we have considered self-information, i.e. associated to an event or
a single random variable. It is often interesting to consider pairs of events or random
variables, in particular, those relating to channel input and output. In this case it is
necessary to measure the average quantity of information that the data of a message
received at the output of a channel brings to the message transmitted at the input. As
opposed to entropy, which relates only to the source, this value depends simultane-
ously on the source and the channel. We will see that it is symmetric in the sense that
it also measures the quantity of information which the data of the transmitted message
brings to the received message. For this reason it is called average mutual information
(often shortened to just “mutual information”), “information” already being here an
acronym for “quantity of information”. This value is different from the entropy of the
message at the output of the channel and is smaller than it, since, far from bringing
additional information, the channel can only degrade the message transmitted by the
source, which suffers there from random noise.

In the simplest case, the channel is without memory like the source, in the sense
that each output symbol depends only on an input symbol, itself independent of oth-
ers, if the source is without memory. It can thus be fully described by the probabil-
ities of output symbols conditioned to input symbols, referred to as transition prob-
abilities, which are constant for a stationary channel. Let X be the random variable
at the channel input, that is, represent the source symbols with possible occurrences
Z1,T3,...,T,, and probabilities p1,po, ..., p,, and Y be the random variable at the
output of the same channel, having occurrences 1, ys, . . . , Ym, M being an integer,
perhaps, different from n, with probabilities p1, pe, ..., p, and transition probabili-

ties Dij é Pr(yj | IZ‘), ie.:

Pr(y;) =Y Pr(ziy;) =Y pipi- [1.4]
=1 =1
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Then, the average mutual information is defined, coherently with the self-information
measured by entropy, as the statistical average of the logarithmic increase in the prob-
ability of X, which stems from the given Y, i.e. by:

IID

ZZ r(zi, ;) log[Pr(x; | y;)/ Pr(:)), [1.5]

where Pr(x;,y;) is the joint probability of ; and y;, equal to Pr(z;,y;) = Pr(z;)
Pr(y; | z;) = pipi;, while Pr(y; | z;) is the conditional probability of y; knowing ;
is realized, and Pr(x; | y;) is that of z;, knowing y; is realized. In the indicated form
this measurement of information appears dissymmetric in X and Y, but it suffices to
express in [1.5] Pr(z; | y;) according to Bayes’ rule:

Pr(zi,y;) = Pr(x; |y;) Pr(y;)

to obtain the symmetric expression

n m

I(X;Y) = Z Z Pr(z;,y;)log[Pr(z;,y;)/ Pr(z;) Pr(y;)], [1.6]
i=1 j=1

where Pr(z;) = p; and where Pr(y;) is given by [1.4].

The definition of average mutual information and its symmetry in X and Y means
that we can write:

I(X;Y) = H(X)-H(X|Y)=H(Y)—-H(Y|X) [1.7]
= H(X)+H(Y)-H(X,Y),

where H (X)) and H(Y) are the entropies of the random variables X and Y of channel
input and output, respectively, and H(X,Y') is the joint entropy of X and Y, defined
by

n

HX,Y) 2 =33 Pr(zi,y;) log Pr(zi, ), [1.8]

i=1 j=1
while H (X |Y) is the entropy of X conditioned to Y, defined by:

n m

X|Y ZZPr x;,y;) log Pr(z; | y;), [1.9]

=1 j=1

H(Y | X) being obtained by a simple exchange of X and Y in this definition. We will
note that in expression [1.9] the argument of the logarithm is different from its factor,
whereas it is identical to it in the definition [1.8] of joint entropy.
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We demonstrate that conditioning necessarily decreases entropy, i.e. H(X |Y) <
H(X), equality being possible only if X and Y are independent variables. It follows
that average mutual information I(X;Y") is positive or zero, zero only if X and Y are
independent, a case where, indeed, the data of Y does not provide any information at
allon X.

Valid for a source and a channel without memory, both of them discrete, these
expressions are easily generalized to sources and/or channels where the successive
symbols are not mutually independent.

1.3.5. Channel capacity

The average mutual information does not only characterize the channel, but also
depends on the source. In order to measure the ability of a channel to transmit informa-
tion, the theory defines its capacity as the maximum of the average mutual information
between its input and output variables with respect to all the possible stationary and
ergodic sources connected to its input (their existence is demonstrated under certain
regularity conditions: the channel must be not only stationary, but also causal, in the
sense that its output cannot depend on input symbols which have not yet been intro-
duced, and of finite memory, in the sense that the channel output depends only on
a finite number of input symbols). Ergodism is a concept distinct from stationarity
and is a condition of homogeneity of the set of messages likely to be transmitted by
the source. For an ergodic source, an indefinitely prolonged observation of a single
message almost definitely suffices to characterize the set of the possible transmitted
messages statistically.

The capacity of a channel without memory is given simply by:

C =maxI(X;Y), [1.10]
ya

where I(X;Y) has one of the expressions [1.5] to [1.7] and where p indicates the
probability distribution of the symbols at channel input, i.e., for an alphabet of size
n, the set of probabilities p1, ps, . . ., p, subject to the constraint Z?zl p; = 1. More
complicated expressions, yet without difficulty of principle, can be written in the case
of a causal channel with finite memory.

If the channel is symmetric, which implies that the set of translation probabilities
is independent of the input symbol considered, the calculation of the maximum of
I(X;Y), in [1.10] is made a lot easier, because we then know that it is obtained by
assigning the same probability equal to 1/n to all input symbols, and the entropies
H(X) and H(Y") are also maximal.
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1.3.6. Comments on the measurement of information

We have only used the observation from section 1.3.1 for the quantitative mea-
surement of information. Information defined in this manner is, thus, a very restrictive
concept compared to the current meaning of the word. It should be stressed, in par-
ticular, that at no time did we consider the meaning of messages: information theory
disregards semantics completely. Its point of view is that of a messenger whose func-
tion is limited to the transfer of information, about which it only needs to know a
quantitative external characteristic, a point of view that is also common to engineers.
Similarly, a physical subject has multiple attributes, such as its form, texture, color,
internal structure, etc., but its behavior in a force field depends only on its mass. The
significance of a message results from a prior agreement between the source and the
recipient, ignored by the theory due to its subjective character. This agreement lies
in the qualitative realm, which by hypothesis evades quantitative measurement. The
transfer of a certain quantity of information is, however, a necessary condition to com-
municate a certain meaning, since a message is the obligatory intermediary.

Literal and alien to semantics, information appears to us as a class of equivalence
of messages, such that the result of the transformation of a message pertaining to it,
by any reversible coding, also belongs to it. It is thus a much more abstract concept
than that of a message. The way in which we measure information involves its critical
dependence on the existence of a probabilistic set of events, but other definitions avoid
resorting to probabilities, in particular, Kolmogorov’s theory of complexity, which,
perhaps, makes it possible to base the probabilities on the concept of information by
reversing the roles [7,8].

1.4. Source coding
1.4.1. Introduction

It appeared essential to us to provide an outline of source coding and the corre-
sponding fundamental theorem for two main reasons: on the one hand, to avoid giving
a truncated image of information theory, and on the other hand, because, as we have
already observed, the two functions of source and channel coding cannot in fact be
dissociated in the concrete design of a communication system, as they might be con-
ceptually in a theoretical discourse.

A source is redundant if its entropy by symbol is lower than the possible maximum,
equal to log g, for an alphabet of size g,. This alphabet is then misused, from the point
of view of being economic with symbols. We can also say that the probabilistic set of
sequences transmitted by the source with a given arbitrary length does not correspond
to that of all the possible sequences formed by the symbols of the alphabet, with
equal probabilities assigned. The result is similar if successive symbols are selected
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either with unequal probabilities in the alphabet, or not independently from each other
(both cases may occur simultaneously). The fundamental theorem of source coding
affirms that it is possible to eliminate all redundancy from a message transmitted by a
stationary source. Coding must use the k'" extension of this source for a sufficiently
large k, the announced result being only reachable asymptotically. The k" extension
of a source S whose alphabet has g5 elements (we will call this source gs-ary) is the
source deduced from the initial source considering the symbols which it transmits
by blocks of k, each block interpreted as a symbol of the alphabet with ¢ symbols
(known as g”-ary). Noted S*, this extension is simply another way of describing S,
not a different source. If coding tends towards optimality, the message obtained has
an average length per symbol of the initial source which tends towards the entropy of
this source expressed by taking the size q of the alphabet employed for coding as the
logarithms base.

1.4.2. Decodability, Kraft-McMillan inequality

The principal properties required of source coding are decodability, i.e. the possi-
bility of exploiting the coded message without ambiguity, allowing a unique way to
split it into significant entities, which will be referred to as codewords and the regu-
larity that prohibits the same codeword to represent two different symbols (or groups
of symbols) transmitted by the source. Among the means of ensuring decodability let
us mention, without aiming to be exhaustive:

— coding in blocks where all codewords resulting from coding have the same
length,

— addition of an additional symbol to the alphabet with the exclusive function of
separating the codewords,

— the constraint that no codeword is the prefix of another, that is to say, identical
to its beginning. Coding using this last means is referred to as irreducible.

Any decodable code regardless of the means used to render it such verifies the
Kraft-McMillan inequality, which is a necessary and sufficient condition for the exis-
tence of this property:

N
d g, [1.11]
i=1

where ¢ denotes the size of the code alphabet, N is the number of codewords with

lengths n1,n9,...,nx symbols respectively. The demonstration of this inequality is

very easy for an irreducible code. Let ny be the largest length of codewords. It is
sufficient to note that the set of all the codewords of length n v written with an alphabet
of ¢ symbols can be represented by all the paths of a tree where ¢ branches diverge
from a single root, ¢ branches then diverge from each end, and so on until the length
of the paths in the tree reaches n branches. There are ¢~ paths of different lengths
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ny. When the 7" codeword is selected as belonging to the code, the condition that no
codeword is the prefix of any other codeword interdicts the ¢~ ~™¢ paths whose first
n; branches represent the i*® codeword. Overall, the choice of all codewords (which
all must be different to satisfy the regularity condition) prohibits Zfil q"N ™ paths,
a number at most equal to their total number ¢"~. We obtain [1.11] by dividing the
two members of this inequality by ¢"V.

1.4.3. Demonstration of the fundamental theorem

Let S be a source without memory with an alphabet of size IV and entropy H; let

n be the average length of the codewords necessary for decipherable coding of the

symbols which it transmits, expressed in a number of g-ary code symbols. Then the
double inequality

H/log(q) <m < H/log(q) +1 [1.12]

is verified. We demonstrate it on the basis of Gibbs’ inequality, a simple consequence
of the convexity N of the function y = —zlogx for1 < x < 1:

N N N
> pilog(ai/pi) <0, Y pi=> a=1, [1.13]
i=1 =1 =1

the equality taking place if, and only if, p; = ¢; for all 7. We apply this inequality to the
set of N codewords used to code the N source symbols, defining p; as the probability
of the i*" symbol and posing

%=q "/Q, [1.14]
with
N
Q= Zq—"i. [1.15]
=1

Applying [1.13] it follows:
N N
— Y pilog(p;) < (Y pini)log(g) +1og(Q)
i=1 i=1

or, taking into account [1.2] and posing i = Zf\il Ping:
H < mlog(q) + log(Q).

Having to be decipherable, the code satisfies the Kraft-McMillan inequality [1.11];
the definition of Q by [1.15] and [1.14] thus involves log(Q) < 0.

Let us first examine the conditions under which the equality in [1.12] is verified.
Firstly, that implies @ = 1, i.e. equality in [1.11], which expresses that we use all
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possible codewords compatible with decodability, which we will suppose; and also
p; = gq; for all 7, that is

n; = —log(p;)/log(q),1 <i < N;

if there are NV integers verifying this condition, the coding is referred to as absolutely
optimal.

In general that is not so, but we can always find N integers satisfying [1.11] with
equality and such that:

—log(p;)/log(q) < n; < —log(pi)/log(q) +1,1<i <N,

To obtain [1.12] it is enough to multiply by p; and to sum up for ¢ from 1 to N.

THEOREM 1.1 (THE FUNDAMENTAL THEOREM OF SOURCE CODING). For any sta-
tionary source there is a decodable coding process where the average length T of
codewords per source symbol is as close to its limit lower H/log(q) as we wish.

If the source considered is without memory, we can write [1.12] for its kP exten-
sion. Then H is replaced by kH; dividing by k£ we obtain:

H/log(q) < mi/k < H/log(q) + 1/k, [1.16]

where 7y, is the average length of codewords coding the blocks of k£ symbols of the
initial source, from where 7, /k = 7. The order k of the extension can be chosen to
be arbitrarily large, proving the assertion of the theorem for a source without memory.

This result is generalized directly to any stationary source, since we defined its
entropy by [1.3], as the limit for infinite s of H,/s, H, being the entropy of its s*®
extension.

1.4.4. Outline of optimal algorithms of source coding

Optimal algorithms, i.e. those making it possible to reach this result, are available,
in particular the Huffman algorithm. Very roughly, it involves constructing the tree
representing the codewords of an irreducible code, which ensures its decodability, so
that shorter codewords are used for more probable symbols, and longer codewords are
used for less probable symbols [9]. If optimal coding can be achieved for a finite k,
this length is proportional to the inverse of the logarithm of the occurrence probability
of the corresponding symbol. Otherwise the increase in k makes it possible to improve
the relative precision of the approximation of real numbers by obviously integer code-
word lengths. Moreover, the increase in the number of symbols of the alphabet with
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k involving an increase in the number of codewords, the distribution of codeword
lengths can be adapted all the better to the probability distribution of these symbols.

Another family of source coding algorithms called “arithmetic coding” subtly
avoids taking recourse in an extension of the source to approximate the theoretical
limit of the average length after coding, i.e. the source entropy [10,11]. We make the
average length of the message after coding tend towards its limit H/log(q) by indef-
initely reducing the tolerated variation between the probabilities of the symbols and
their approximation by a fraction with a coding parameter for denominator, which
must therefore grow indefinitely.

1.5. Channel coding
1.5.1. Introduction and statement of the fundamental theorem

The fundamental channel coding theorem is undoubtedly the most important result
of information theory, and is definitely so for this book. We will first state it and
then provide the Gallager demonstration simplified in the sense that it uses the usual
assumptions with respect to coding, and in particular that of coding by blocks. Like the
original Shannon demonstrations, it exploits the extraordinary idea of random coding
and in addition to the proof of the fundamental theorem achieves useful exponential
terminals showing how the probability of error varies after decoding according to the
length of codewords. But this demonstration hardly satisfies intuition, which is why
we will precede its explanation by less formal comments on the need for redundancy
and random coding. Based on a simple example, they are intended to reveal the fun-
damental theorem as a consequence of the law of large numbers. From there we will
gain an intuitive comprehension of the theorem, of random coding and also, hopefully,
of channel coding in general.

The fundamental theorem of channel coding can be stated as follows:

THEOREM 1.2 (THE FUNDAMENTAL THEOREM OF CHANNEL CODING). Using an
appropriate coding process involving sufficiently long codewords, it is possible to sat-
isfy a quality standard of message reconstruction, if it is severe, provided that the
entropy H of the source is either lower than the capacity C of the channel, or:

H<C [1.17]

In its most usual formulation, the reconstruction quality standard used is an upper
limit of the word error probability.

A converse theorem states that if the inequality [1.17] is not verified, it is impos-
sible to obtain an arbitrarily small probability of error under the same conditions (in
fact, the word error probability tends towards 1 when the length of the codewords
increases indefinitely).
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1.5.2. General comments

The fundamental theorem of channel coding is undoubtedly the most original
and the most important result of information theory: original in that it implies the
paradoxical possibility of a transmission without error via a disturbed channel, so con-
trary to apparent common sense that engineers had not even imagined it before Shan-
non; important in theory, but also in practice, because a transmission without error
is a highly desirable result. The absence of explicit means to carry it out efficiently,
just as the importance of the stake, were powerful incentives to perform research in
the field. Starting with Shannon’s publications, they have remained active since then.
Stimulated by the invention of turbo-codes, they are now more important than ever.

The mere possibility of transmitting a quantity of information through a channel,
which is at most equal to its capacity C, does not suffice at all to solve the problem of
communication through this channel: a message coming from a source with entropy
lower or equal to C'. Indeed, let us consider the first of the expressions [1.7] of mutual
information for a channel without memory, rewritten here:

I(X;Y)=H(X)- H(X|Y). [1.18]

It appears as the difference between two terms: the average quantity of informa-
tion H(X) at the channel input minus the residual uncertainty with respect to X that
remains when its output Y is observed, measured by H (X |Y'), in this context often
referred to as “ambiguity” or “equivocation”. It is clear that the effective commu-
nication of a message imposes that this term be rendered zero or negligible when
H(X) measures the information stemming from the source that must be received by
the recipient. The messages provided to the recipient must indeed satisfy a reconsti-
tution quality standard, for example, a sufficiently low probability of error. However,
H(X |Y) depends solely on the channel once the distribution of X has been chosen to
yield the maximum 7 (X;Y") and, if the channel is noisy, generally does not satisfy the
specified criterion. The source thus cannot be directly connected to the channel input:
intermediaries in the shape of an encoder and a decoder must be interposed between
the source and channel input, on the one hand, and the output and the recipient, on
the other hand, according to the diagram in Figure 1.4. The source message must be
transformed by a certain coding, called channel coding, in order to distinguish it from
source coding, and channel output must undergo the opposite operation of decoding
intended to restore the message for the recipient.

1.5.3. Need for redundancy

Channel coding is necessarily redundant. Let us consider, on the one hand, the
channel, with its input and output variables X and Y, and, on the other hand, the
channel preceded by an encoder and followed by a decoder. We suppose that the
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alphabet used is the same everywhere: at the channel input and output as well as at the
encoder input and the decoder output. The random variables at the encoder input and
the decoder output are respectively noted U and V. The average mutual information
I(X;Y) is expressed by [1.18] with positive H (X | Y) dependent on the channel. For
U and V' we have the homologous relation:

I(U;V)=HU)-HU|V)

but the reconstitution quality criterion now imposes H(U | V') < e, where ¢ is a given
positive smaller than H (X |Y"). Now the inequality:

(U, V) <I(X;Y)

is true. Indeed, the encoder and the decoder do not create information and the best
they can do is not to destroy it. The equality is obtained for a well conceived coding
system, i.e. without information loss. It follows that:

H(X)—HU)>H(X|Y)=H(U|V)>0.

The entropy H(U) is therefore smaller than H(X). Let X’ be the variable at the
encoder output. The inequality H(U) > H(X') where the equality is true if informa-
tion is preserved in the encoder involves H(X’) < H(X), which expresses the need
for the redundancy.

1.5.4. Example of the binary symmetric channel

We will now develop certain consequences of the necessarily redundant nature of
channel coding in the simple, but important, case of a binary symmetric channel. Fur-
thermore, the main conclusions reached for this channel can be generalized to almost
any stationary channel. To deal with channel coding independently of the probabilities
of symbols transmitted by the source we will suppose that the necessary redundancy
is obtained by selecting admissible binary sequences at channel input. Moreover, we
will restrict ourselves to binary codewords of constant length n, the redundancy of the
code being expressed by its belonging to a subset of only 2* codewords among the 2"
codewords of length n, with k < n.

1.5.4.1. Hamming’s metric

Let E,, be the set of all binary codewords of length n. We define the Hamming
weight w(a) of a codeword a belonging to E,, by the number of its non-zero symbols.
We define the Hamming distance d g (a, b) between two codewords a and b of the same
length as the number of positions where the symbols of the two codewords differ. For
example, for n = 7,a = [1110010] and b = [0111001], we have dg(a,b) = 4. Let
us define the sum of two codewords by the modulo 2 sum of symbols occupying the
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same positions of the codewords. Its result is still a codeword with n binary symbols.
We then have:
dp(a,b) =w(a—b) =w(a+b), [1.19]

the second equality is due to subtraction and addition carried out in modulo 2 yielding
identical results.

We verify without difficulty on the basis of the definition of Hamming distance
that it satisfies the axioms of a metric, that is:

dp(a,b) >0,

du(a,a) =0,

du(a,b) = du (b, a),

du(a,c) < dp(a,b) +du(b,c) Va,b,c € E,.

Let there be a code conforming to the specifications given at the beginning of this
section, employed on the binary symmetric channel with probability of error p illus-
trated in Figure 1.3. We can assume without loss of generality that we have p < 1/2.
Indeed, the way in which we make the numbers 0 and 1 correspond to the received
symbols is arbitrary. If a given channel has a probability of error p > 1/2, it suffices to
swap the numbers 0 and 1 indicating the output channel symbol to get to the channel
with a probability of error 1 — p < 1/2. The case p = 1/2 does not present inter-
est, because the received symbol does not provide any information on the transmitted
symbol and the observation of this channel output does not serve to make a decision
(it is verified that its capacity is zero).

1.5.4.2. Decoding with minimal Hamming distance

Applying of the operation of vectorial addition modulo 2 defined by [1.19] comes
naturally for the comparison of input and output codewords in a binary symmetric
channel. We can interpret their modulo 2 difference (or sum) as the “configuration of
errors” generated by the channel. Then the probability Pr(e) of a particular configu-
ration of errors e occurring is simply:

Pr(e) = p" & (1 — p)" Ve

Forp < 1/2,Pr(e) is a decreasing function of the weight w(e) of the configuration
of errors, since:

1-p

log[Pr(e)] = nlog(1 — p) — w(e) log

where the factor of —w(e) is positive for p < 1/2. This weight is by definition the
Hamming distance between the transmitted codeword z and the received codeword
y. The optimal reception at the output of a binary symmetric channel (in the sense of
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maximum probability, which guarantees a minimal probability of error, if the input
symbols are equally probable, as we have assumed) thus consists of seeking the code-
word Z belonging to the code, which is the closest to the received codeword y, in the
sense of the Hamming metric. This rule results, in particular, in accepting the received
codeword if it belongs to the code, since the assumption of an error of zero weight
is then the most probable.

1.5.4.3. Random coding

We will first consider the means of implementing random coding without ques-
tioning for the moment the motivations of its use. It will be enough for us to state here
that the use of random coding was justified for Shannon due to the lack of an opti-
mal or near-optimal channel coding technique (which, besides, is still the case after
50 years of research). By demonstrating the fundamental theorem for the average of a
probabilistic set of codes we guarantee the existence of a code in this set which satis-
fies it without having to clarify its construction. Besides, we will see this idea at work
in Gallager’s demonstration (see section 1.5.6). An a posteriori reflection will enable
us to better understand its significance.

As a simplifying hypothesis we will admit that the set of distances between the
codewords and a given word is the same regardless of what this word is, so that, if the
word formed by n zeros belongs to the code, as we will suppose, the distribution of
weights is identified with that of all the distances between its codewords. This property
is perfectly verified for the important class of linear codes, which will be defined in
Chapter 2.

In addition we only consider the average properties of random coding, admitting
that a code with an average distribution of distances of random coding is good. Let
us suppose initially that we randomly draw 2" binary codewords with a length n with
the same probability and independent of each other. We thus obtain on average all the
n-tuples, i.e. the average number of the codewords of weight w is equal to the number
of combinations of n objects w for w, that is C* = n!/(w!(n — w)!). Since we have
demonstrated the need for redundancy obtained by selection of codewords, we only
need to draw 2% codewords, with & < n, from the 2" binary codewords of length n.
The average number a,, of codewords of weight w then becomes a,, = 2~ (*~*)C¥,
a smaller number than C}”, which is generally not an integer. Thus, there does not
exist a redundant code with a distribution of distances exactly equal to the average
distribution of weights obtained by random coding, but we can seek a code with a
distribution of weight close to it, where for example the number of codewords of
weight w would be the best integer approximation. Such a code that imitates random
coding in that it roughly preserves the average distribution of weight and which we will
refer to hereafter as quasi-random, can be interpreted as stemming from a decimation
of the set of n-tuples only allowing 2¥ of its 2" elements to remain.
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1.5.4.4. Gilbert-Varshamov bound

This method of construction of a quasi-random code, by decimation of the set of
n-tuples, supposes that its minimal weight wy,;, is at least equal to a limit, which
we will calculate as follows. For the smallest values of weight w, the number a,, is
smaller than 1/2 so that its best integer approximation is 0. We are going to presume,
in fact, that the integer approximation of a,, taken is equal to 0 if a,, < A, where A is
an arbitrary positive constant, perhaps different from 1/2. Let us suppose large n and
n — k. Then, in the inequality:

27 (k) Comin > )

which expresses that no codeword of the quasi-random code has a weight lower than
Wmin, We can replace C=» by its approximation:
1 nn—i— 1/2

\/ﬂ wwmin+1/2 (n _ wmin)n—wmm-H/Q7

min

C:;)min ~

deduced from the Stirling’s formula n! ~ (n/e)"/v/2mwn, where e is the base of
Napierian logarithms, from where:

nn+1/2

9—(n—k) > \V2r.

Wmin+1/2

min

(n _ wmin)”_wxnix1+1/2

Taking base 2 logarithms dividing by n while having n tend towards infinity,
neglecting the terms in 1/n and in log,(n)/n and, finally, supposing that k/n tends
towards a non-zero limit, we obtain the important Gilbert-Varshamov inequality:

Ho(Wmin/n) > 1 —k/n, [1.20]

with

2

Ho(z) = —zlogex — (1 — ) logy(1 — z), & < 1/2. [1.21]

This inequality is more usually demonstrated (as it was initially) on the basis of
the construction of random linear code [12]. We note that the obtained limit [1.20]
is independent of the constant A, which serves to specify the approximation of the
number of codewords of a certain weight by an integer rendering it robust with
respect to this approximation. The weight w.,;, tends towards infinity with n in such
a way that the limit of wyy;,, /n is strictly positive. The function Hs () is increasing
for 0 < x < 1/2, and the right-hand side term of [1.20] is the proportion of the
redundancy symbols in the codeword. The wy,i,/n ratio is thus lower bounded by
an increasing function of the code redundancy rate, which tends towards 1/2 if k/n
tends towards 0.
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1.5.5. A geometrical interpretation

For a binary symmetric channel with a probability of error p and coding by blocks
where the codewords have the length n, the number of erroneous binary symbols per
codeword is a random variable F' with Bernoulli distribution, that is:

Pr(F=i)=Cip'(1-p)" " 0<i<n.

Its average is u(F') = np and its variance o%(F) = np(1 — p) (these results are
obtained by deriving (z + y)", equalized with its development by the binomial for-
mula, once and twice with respect to x, and then making x = pand y = 1 — p).
The standard deviation o(F) is then only slightly less than \/np. The probability
Pr(F > np + Ay/np(1 —p)), with A > 0, is lower than 1/\? according to the
Bienaymé-Tchebychev inequality. As small as p may be, it is possible to choose n so
that u(F') = np is large. Then, the probability that the number f of errors actually
occurring exceeds u(F)(1 4 €), where ¢ is a positive constant, is small, which is a
manifestation of the weak law of large numbers.

The set E,, of binary n-tuples can be considered, from a geometrical point of
view, as a space with n dimensions. Every n-tuple is a point of this space whose
coordinates are binary. The distances between these points are measured using the
Hamming metric introduced at the beginning of section 1.5.4. We will suppose that the
decimation carried out to pass from the set of 2™ points of space to a subset comprising
only 2* points is such that its distribution of weight is close to the average weight
distribution of random coding, without further exploring the means of carrying it out.

To guarantee a small probability of error it is enough to choose a sufficiently redun-
dant code to achieve a minimum Hamming distance d i, between its codewords
slightly larger than 2u(F), i.e. dmin = 2(1 + d)np where 0 is a positive constant
independent of n. Indeed, as long as f < dmin/2, the actually transmitted codeword
can be identified without ambiguity as being closer to the received codeword than
any other. The probability of having f > diin/2 can be increased according to the
Bienaymé-Tchebychev inequality:

1-p__ p(l—p)
npd2  n(dmin/2n — p)2’

Pr(F > dmin/2) < [1.22]
upper limit which we make as small as we want by choosing a sufficiently large n.
According to section 1.5.4, quasi-random coding guarantees that d;,, /n satisfies the
Gilbert-Varshamov bound [1.20]. According to [1.22] we thus obtain that Pr(F >
dmin/2) decreases as 1/n following the length of the codewords. This probability is
greater than that of a decoding error, but in a coarsely exaggerated fashion because, if
f > dmin/2, such an error occurs only if in a space with n dimensions provided by the
Hamming metric, the configuration of occurring errors goes exactly in the direction
of another codeword, which is at the minimum distance d,,;, from the transmitted
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codeword. However, the redundancy of code means that its codewords are rare in F,,,
and much more so are the codewords at a minimum distance from a given codeword,
which makes this occurrence highly improbable. We will obtain much better bounds
of the probability of error decreasing as a function of the exponential of n in the
following section.

In this geometrical interpretation, random coding appears as a means of distribut-
ing the points in E,, as regular as possible, whereas in general we know of no deter-
ministic means of obtaining this result. The improvement of the performance of the
code through an increase of the length n of the codewords can be surprising, since
it tends to render certain the presence of many errors in the codeword. The impor-
tant fact is that the law of large numbers also makes the received codeword almost
certainly localized on the surface of a Hamming sphere centered on the transmitted
codeword, with a known radius np. If the spheres with np radius centered on all the
transmitted codewords are not connected, it is enough to take an n large enough to
render the probability of error as small as we wish. We will encounter this property
again for the channel with additive white Gaussian noise considered in section 1.6.2,
but the relevant metric there will be Euclidean.

1.5.6. Fundamental theorem: Gallager’s proof

This section is dedicated to the proof of the fundamental theorem, introduced by
Gallager [13], simplified thanks to certain restrictive assumptions usual in coding. This
proof does not have a spontaneous nature, in the sense that it starts with an increase
of the probability of error chosen so as to lead to the already known result sought, but
it has the merit of providing very interesting details on the possible performances of
block codes. In addition, it implements random coding, a basic technique introduced
by Shannon for the proof of the theorem and already discussed in section 1.5.4. Here
is what the simplifying assumptions consist of:

— The source connected to channel input is without memory and of equal prob-
ability, i.e. it chooses with an equal probability and independently of others one of
the M possible messages. These messages may be the M = ¢* symbols of the k™
extension of a gs-ary source, itself deduced from the initial source by ideal source cod-
ing, in accordance with the standardization of blocks of the Shannon paradigm from
section 1.2.4.

— To each message selected by the source in this manner, the encoder associates
in a unique manner a codeword of n symbols belonging to the alphabet of channel
input, whose size is noted ¢. In other codewords, coding consists of an application of
integers from 1 to M = ¢” to the set of codewords with n symbols of this alphabet,
with ¢" > ¢* since coding must be redundant. This type of coding is called block
coding.
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— Less essentially, the channel is supposed to be without memory, this assumption
being introduced during the proof.

1.5.6.1. Upper bound of the probability of error

Let X,, be the set of possible codewords of length n at the channel input and Y;, be
the set of codewords that can be received at its output. We suppose finite X,, and Y,.
The channel is characterized by the set of its transition probabilities, {Pr(y|z)}, each
one of them being the probability that to 2 € X, transmitted there must correspond
y €Y, received.

A code of M words is used, defined by a bijective mapping of the set of mes-
sage indices, i.e. integers from 1 to M, in that of M codewords, of length n, that is,
{Z1,Z9,-.. 251} 2; € X,y regardless of 4,1 < 4 < n. The emission of the mt code-
word represents the m'™ message. We suppose that the reception occurs with maxi-
mum probability, i.e. the decoder associates the number m identifying the decoded
message to the received sequence y, if:

Pr(ylz,,) > Pr(ylz,,) Vm' #m,1 <m’ < M. [1.23]

An error occurs if for a transmitted m this decision rule leads to m’ which is
different from m. We can write the probability of an error by introducing the function
¢dm(y) defined as follows:

1 if there exists m’ # m such that Pr(y|z,,) < Pr(y|z,,.),

Om(y) { 0 ifnot,

that is:
Per = ) Pr(ylz,,)m(y), [1.24]

YEY,

where P, is the probability of an error when m is transmitted.

We now introduce an upper bound of ¢,,(y), that is:

Zm’;ﬁm Pr(ylim/)l/““) s
Pr(yly, )10+

¢m(g) < , §> O7 [125]

where s is a positive parameter, which is arbitrary for the moment. It is indeed an
upper bound of ¢, (y), since:

—if ¢ (y) = O, the right-hand side of the inequality is always positive;

—if ¢, (g) = 1, the numerator is by definition larger that the denominator, since
it is the sum of positive terms including one, which according to [1.23] is larger than

or equal to it. The expression between brackets is thus larger than 1, a property that
remains after the expression is taken to the positive power of s.
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According to [1.24], replacing ¢,, (y) by its upper bound [1.25], we obtain:

S

P, < Z Pr(y|z,,) "/ +) Z Pr(y@m,)l/(l*'s) , §>0. [1.26]
YEY, m/#m

Naturally, the upper bound [1.25] does not come from a spontaneous idea but from
prior knowledge (by other means) of the result, at which we are trying to arrive. It
leads to [1.26], an upper bound dependent on the parameter s, which one can thus
adjust to obtain the tightest possible bound.

1.5.6.2. Use of random coding

This upper bound is valid for any code, but it is generally too complicated to be
useful directly. To go further it is necessary to draw on the method of random coding
already mentioned. We no longer consider a single code (how could code be specified
a priori which would minimize the probability of error?) but a probabilistic set of
codes. It will be easy to calculate an upper bound of its average probability of error.
It will then be shown that if the inequality [1.17] is satisfied, the upper bound of this
average error probability can be made lower than a certain positive €. From that we
will deduce that this set contains at least one code whose error probability is in turn
lower than ¢. That also means, less rigorously, that a code “close” to the average result
of random coding must be “good” in the sense of the fundamental theorem, which
legitimates the use of a quasi-random code introduced in section 1.5.4.

According to this method, random coding consists of choosing each codeword
independently of the others with a probability P(z) defined over the set of sequences
of input X,,. We will calculate an upper bound of the average P.,, of P.,,, with respect
to the set of codes constructed in this manner.

Conditional probabilities in the right-hand side of [1.26] then become random vari-
ables in the sense that they depend on the codewords z,,, and z,,,, that have become
random. They have been selected independently of each other as belonging to the
code, so that these conditional probabilities are independent random variables. We
will represent the averages by superscript bars in the rest of this section.

We can then note that in [1.26]:

— the average of the sum with respect to y is equal to the sum of averages of the
terms between the curly brackets;

— as each one of these terms is the product of two independent factors, its average
is equal to the product of averages;

— restricting ourselves to s < 1, the convexity N of the z° function implies
25 < Z%;
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— finally, we may still invert sum and average, after replacing the term in the form
2% by its upper bound z°.

We thus deduce from [1.26]:

S

Pep < Z Pr(y|z,, )t/ (1+s) Z Pr(y|z,,, )/ (+s) , 0<s<1.
YEY, m’/#m
[1.27]

The codewords z,,, being chosen by random coding with the probability P(z), by
the definition of the average we have:

Pr(ylz,,) /0 = Y~ P(z) Pr(ylz)"/ ), [1.28]
zeXy,

an expression independent of x,, and thus also valid for z,,,. After substitution
according to [1.28], [1.27] becomes:

1+s

Pem < (M —=1)* " | 3 P(z) Pr(yla)/ ,0<s<1.  [1.29]
YyeY, [z€Xn

This bound is very general; it is valid regardless of the probability P(z) and for
channels “with memory” where errors for successive symbols are not independent.
In the case of a channel without memory, in the sense that the successive errors in it
are independent, this limit can be simplified. Let 1, x2, . . ., ,, be the symbols of the
codeword at channel input and y1, y2, . . ., Y, be their corresponding symbols at the
output. The independence of the successive transitions in the channel leads to:

n

Pr(y|z) = HPr yilz:),Va e X,,Vy eY,.

i=1

Restricting ourselves to codes where the successive codeword symbols are chosen
by random coding independently of each other, following the same law p(z;), we

have:
n

P(z) = [[ (=), 22 (21,22, 7o)

i=1
and the expression in brackets in [1.29] can be transformed. The sum then relates to
the products in the form:

Hp(mz) Pr(y; | xi)l/(HS)
i=1
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corresponding to all the possible choices of x in X, i.e. with all the possible code-
words with n symbols in the channel input alphabet: the sum of all the products of n
terms is equal to the n'® power of the sum of the terms written for all the symbols of

this alphabet.

Indicating by a1, a2, .. ., a, the symbols of the channel input alphabet (of size g),
and by by, bs, ..., by those of the output alphabet (of size J), we thus deduce from
[1.29] the limit:

q s+1 n
P < (M —1)° Z Zp ai) Pr(b; lag)/ (1F9) , 0<s<1.

j=1 Lk=1

Increasing M — 1 by M = 2"E where R = (k/n)log,q is the quantity of
information per symbol in shannons, we obtain:

P, < 27 MmsBHEGR] g« g <1, [1.30]
where we have posed:
1+s
Ey(s, p) = —log, Z Zp(ak)Pr(bj|ak)l/(1+s) . [1.31]
i Lk

This function depends, on the one hand, on the parameter s and, on the other
hand, on the vector p having the components p(a1), p(az), ..., p(ay). We note that
the bound obtained is independent of the transmitted message m.

1.5.6.3. Form of exponential limits

The bound [1.30] is important, because within the limits of its conditions of valid-
ity it leads to the existence of a code such that its word error probability is limited for
a given R by:

P, < 27 "E(R) [1.32]

where n is the length of the codewords and where:

E(R) £ max[—sR + Eo(s,p)], 0<s<1. [1.33]

5,p
E(R) is called the reliability function.

Without getting into detail of the discussion of [1.33] (which the reader will find
in [14]), we can say that the curve representing the exponent F(R) as a function of
R appears as the envelope of the straight lines of slope —s and ordinate at the origin
max,[Eo(s,p)] in the interval of variation of 5,0 < s < 1 (Ey(s, p) was defined in
[1.31]). Apart for the teratological exception, this envelope is decreasing and convex
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U. For the smallest values of R, it merges with the straight line of slope —1, of the
equation E(R) = Ry — R, where Ry = max,[Ey(1,p)]. For example, in the case of
the binary symmetric channel, the largest upper bound of the probability of error is
obtained [1.32] for s = 1 (i.e. in the range of values of R where the envelope of the
straight lines £ = —sR + E merges with the straight line of slope —1 and ordinate
at the origin Ry) is written:

P, < g MBo—R)

where, according to [1.31], Ry = 1 — log,(1 4+ 24/p(1 — p)). This exponential upper
bound is much tighter than the one that can be deduced from [1.22].

Beyond a certain value of R, the absolute value s of the slope of the tangent to the
curve representing E'(R), initially equal to 1, decreases and tends towards 0, the curve
becoming tangent with the x-axis at the point R = C for S = 0, where:

C=maxI(X;Y)
P

is the capacity of the channel, [13,14]. In the case of a binary symmetric channel
with probability of error p, an easy calculation shows that this capacity is equal to
1 — Hz(p), where the function Hz(+) has been defined by [1.21].

We see that the factor of n in the exponent of [1.32] is negative only if R < C,
which is thus necessary in order to obtain a probability of error tending towards O
when n tends towards infinity. It is the statement of the fundamental theorem (with-
out the notations, but R = (k/n)log, ¢ is still entropy of the channel input variable
and, therefore, of the source). Moreover, in addition to this asymptotic result, it shows
how the word error probability varies according to their length n. It is clear that to
obtain the same word error probability (or rather the same bound [1.32] of this prob-
ability) n needs to be larger as R becomes closer to C. However, the length n of the
codewords measures the complexity of the coding and decoding operations, which for
block random coding is an increasing exponential function.

We can improve the bound [1.32] for the majority of channels, but only for the
smallest values of R, by operating a selection of the codes resulting from random
coding to preserve only the best (we are said to “expurgate” the set of codes). Then
the curve representing the function F(R) obtained is still decreasing and convex U.
It does not deviate from the straight line of the equation E(R) = Ry — R apart from
beyond a certain point where it is tangential to it and grows quicker than this straight
line when R decreases to, finally, tangentially reach the y-axis at R = 0.
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1.6. Channels with continuous noise
1.6.1. Introduction

Up until now we could satisfy ourselves with the description of a discrete channel
by its transition probabilities and took the example of the binary symmetric channel,
which is the simplest model there is. We will now consider some more realistic channel
models.

One of the principal restrictions made above relates to the finite character of the
channel input and output alphabets. For the input alphabet it stems naturally from the
choice made to limit ourselves to finite discrete, i.e. digital, sources. The omnipresence
of thermal noise, modeled well by the addition of white Gaussian noise, makes the
assumption of a finite output alphabet exaggeratedly restrictive. We will thus devote a
particular development to the channel with additive Gaussian noise. The noise will be
initially supposed to be white, but this restriction will be easily raised. More briefly,
we will also consider the channel with fadings where the received signal undergoes
fluctuations represented by a Rayleigh process multiplying its amplitude before adding
white Gaussian noise.

1.6.2. A reference model in physical reality: the channel with Gaussian additive
noise

Capacity of a channel with additive white Gaussian noise

Before examining the case of a finite number of input signals disturbed by addition
of white Gaussian noise, which interests us mainly, we will make a detour by the case
where the channel input variables are themselves continuous. Let X be a continuous
random variable with probability density function px (), i.e. the probability that the
value taken by X belongs to the infinitesimal interval (x, 2+ dz) is equal to px (z)dz.
The definition [1.2] of the entropy of a discrete random variable is no longer usable
in this case but, by analogy, for the continuous variable X we define the differential
entropy:

Hy(X) = —/px(x) log[px (x)]dz, [1.34]

where the integral is calculated for the set of values taken by X, for example, the set
of real numbers. This value has some but not all of the properties of the entropy of a
discrete variable. Thus, it can be negative and loses certain properties of invariance. Its
principal interest lies in the fact that the mutual information generalized to continuous
variables is still expressed, as in [1.5] or [1.6], by a difference between two entropies
which are now differential.
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By analogy with the discrete case where the capacity of a binary symmetric chan-
nel is equal to mutual information for the probability distribution of the input sym-
bols making their entropy maximal, we will admit that the capacity of the channel
is obtained for the distribution of input variables, which is here continuous, which
renders the differential entropy maximal. It is demonstrated that for a given finite vari-
ance o? this distribution is Gaussian. To reach the capacity we will admit that the
distribution of the channel input variables must be such.

If X is a zero-mean Gaussian random variable o2, by definition it has a probability
density function:

px(x) = b exp(—2?/20?). [1.35]
oV2m

The calculation by [1.34] of its differential entropy (in shannons) yields the result:
Hy(X) = logy o + (1/2) log,(2me), [1.36]

where e is the base of the Napierian logarithms. It is thus equal, to the nearest con-
stant, to the logarithm of the standard deviation o of X, i.e. to the half of the logarithm
of its variance o2. The mutual information between the input and output variables
(both Gaussians) expressed by the difference between differential entropies at output,
respectively not conditional and conditional at input, is thus equal to half of the loga-
rithm of the ratio of the corresponding variances. However, the addition of Gaussian
noise to the channel input variable X gives a variable Y which is also Gaussian with
variance equal to the sum of those of channel noise and input signal. Indeed, the sum
of two Gaussian variables is a Gaussian, the noise and the signal are independent so
that their variances are added and, in addition, the differential entropy of Y condition-
ally to the input variable X is equal to the differential entropy of noise because it is
additive.

The assumption of a source without memory has its equivalent here in the limita-
tion of the band to a certain value B, so that the sampling theorem makes it possible to
represent exactly and reversibly any signal pertaining to the set of functions in a band
limited to B by the sequence of values which it takes with periodic intervals, known
as samples. The period of sampling must be 7' = 1/2B. These samples are random
statistically independent variables and, with our assumptions, Gaussian, centered and
of variance P/2B, where P is the power of the received signal. Thus, thanks to the
discretization of time realized by the sampling of interval 7', we find the same dia-
gram of communication as in our introduction, with the difference that the channel
input alphabet has become the entire set of real numbers. Its symbols, the samples,
undergo the sole disturbance of the addition of noise present in the band B. If we
suppose that the one-sided power spectral efficiency of this noise has a constant value
Ny (the noise is then referred to as “white”) these are, as free-noise samples, Gaussian
variables, centered and mutually independent. Their variance is Ny /2.
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The input samples have a variance of P/2B, those of additive noise Ny /2 and the
output samples the sum of these variances or (P + NyB)/2B. The capacity of this
channel is thus equal to:

1 P+ NoB 1

C= 510g2 = —log,(1

£+ NoB ~ g, 04 L
NoB 2 g %%

P
+ @) 5 ) [1.37]

In this expression, the signal to noise ratio P/N appears in the argument of the

logarithm since N 2 Ny B is the total noise power in the band B. This is the capac-
ity by symbol (or sample); the capacity in shannons by second stems from that by
multiplying it by the frequency 25 of samples, that is:

P EyR
"= Bl 1+ —) =Bl 14+ —— 1.
C Og2< + N) Og2( + NOB> [ 38]

where the notation C’ is employed to indicate that the capacity is expressed here as
information flow, i.e. a quantity of information per unit of time.

Expression [1.38] of the capacity of an additive Gaussian channel is justly famous
but sometimes erroneously interpreted. It has paradoxical consequences for the role
of the bandwidth in communications through a channel with additive white Gaussian
noise. Indeed, [1.38] shows that, C’ being an increasing function of B for P and Ny
kept constant, it is necessary to increase the band to increase the capacity, although
that involves a reduction of the signal to noise ratio P/NyB. This conclusion is rad-
ically opposed to the dominant trend in traditional radio-electronics, where apparent
common sense suggests limiting the bandwidth as much as possible in order to reduce
the noise entering the receiver. It is true that the channel coding function? was then
unknown, although it alone can exploit the increase in capacity due to band widening.

Generalization to the case where the noise power spectral density varies in the
signal band is easy (the noise is then known as colored). It suffices to divide the band
into infinitesimal intervals, each considered as defining a channel with additive white
Gaussian noise and to treat these channels in parallel. The total capacity is equal to
the sum of the capacities of the constituent channels. The calculation of variations
indicates how to maximize it when the total power of the useful signal is given: the
spectral density of this signal must be such that we obtain a constant by adding it to
that of the noise. This result can be expressed by an image: if we assimilate the noise
spectral density, variable in the band, to the thickness of the bottom of a container, all
occurs as if the optimal spectral density of the useful signal were to compensate for
the variable thickness of the bottom so that the total spectral density is represented

2. At least explicitly. The “modulation gain” brought by certain systems, such as frequency
modulation, at the cost of widening the band, in fact, results from a form of channel coding,
misunderstood by radio-electricians prior to the birth of information theory.
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by a horizontal, which we could obtain by pouring a liquid whose volume would
represent the total power of the signal (a result introduced by Shannon, often called
water-filling).

1.6.3. Communication via a channel with additive white Gaussian noise

We note that the capacity [1.37] or [1.38] is finite, although the alphabet of the
channel is continuous. Therefore, communicating via an additive white Gaussian noise
channel with a flow of information of R’ shannons per second (R’ < C"), implies the
use of a repertory of M = oR'T signals of band B and duration 7, where 7 is large
compared with the signal interval. Each signal is associated by a bijective relation to
one of the M source messages. The set of samples (with real values) present in the time
interval 7 can be regarded as a codeword which can itself be represented by a point in a
space with D = 2B dimensions, having for coordinates all its samples in the interval
7. We show that the relevant metric is then Euclidean [15], with an energy meaning.
The rule of optimal decision stays the choice of the codeword represented by the point
nearest to that representing the received signal, for this metric. Reasoning homologous
to that in section 1.5.5, with the exception that the Euclidean metric replaces that
of Hamming, leads to similar conclusions. In fact, this geometrical representation of
Shannon makes it possible to directly prove that a negligible probability of decoding
error can be achieved with random coding, when the number of dimensions D tends
towards infinity, if the flow of information remains smaller than the capacity given by
[1.38]. Thus we prove the fundamental theorem for this particular channel [16].

1.6.3.1. Use of a finite alphabet, modulation

The process of communication through a channel with additive white Gaussian
noise, which we have just considered, has only a theoretical interest, because its imple-
mentation would be exaggeratedly complicated. Indeed, it is necessary to employ a
repertory of M signals where, for a given flow of information R’, M varies as an
exponential function of the duration 7, which must be large so that a small probability
of error is obtained. In practice it is necessary to use an alphabet comprising g sym-
bols, the M necessary messages being obtained by combinations of n of them. To
satisfy the condition of redundancy we take M = ¢* with k < n, i.e. a block code of
the type that has been considered in section 1.5.4 for ¢ = 2. Each symbol of the alpha-
bet is separately represented by a specific signal, which is the modulation operation?.
It makes it possible to use a code built on the basis of a finite alphabet in a channel
receiving continuous signals. The capacity of such a channel is obviously limited to

3. Even if the signal thus obtained does not rigorously conform with the assumption of band
limitation, the geometrical representation of signals in an Euclidean space with a finite number
of dimensions remains, at the cost of a redefinition of the bandwidth; see, for example [1],
p. 135.
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log, ¢ shannons per sample, which is the asymptotic value for large P/N. Coding is
only useful if the signal to noise ratio is small enough so that the capacity [1.37] is
definitely lower than this value. We will note that the capacity calculated supposing
an alphabet of finite size g is very close to [1.37] for the smallest values of the signal
to noise ratio; the curves representing it according to P/N are indeed tangential at
the origin. More refined means of distributing points in Euclidean space using codes
defined for finite alphabets will be shown in Chapter 4.

1.6.3.2. Demodulation, decision margin

The continuous character of the received signals requires detailed attention.
Indeed, let us suppose, for example, that the alphabet is binary (¢ = 2) and that the
process of modulation (known as “antipodal”, optimal for this alphabet) consists
of transmitting a signal of a certain form compatible with the properties of the
channel, in order to represent one of the symbols, for example 0, and the opposed
signal to represent the other, i.e. 1. Let s(¢) and —s(t) be the corresponding received
signals with energy £ = [ s%(t) dt, integration taking place on the support of s(t).
The optimal reception in the sense of maximum probability using a correlator or a
matched filter results in a real number called sufficient statistics which is a Gaussian
variable Y of probability density function py (y) = g[y — (—1)*VE; ¢?], where z is
the binary value 0 or 1 taken by the transmitted symbol X and where g(-; o) denotes
here the Gaussian probability density function [1.35]. Its variance is that of the
additive noise, that is 0> = Ny/2. For input symbols of equal probability, the ratio of
the probability that x = 0 has been transmitted to that of x = 1 being transmitted,
called the probability ratio, conditionally to the observation y of the channel output
(including the correlator or adapted filter), is equal to exp(4yv/E/Ny), so that
its logarithm is proportional to the observation y. The optimal decision for the
transmitted symbol is thus £ = 0, if y is positive, and & = 1 if y is negative (the case
y = 0 makes a decision impossible; we can merely arbitrarily choose a value of &
with a probability of error equal to 1/2).

With regard to decoding, two unequally effective and complex strategies are pos-
sible:

— make a hard decision regarding each binary symbol transmitted according to the
sign of received variable y. We are then brought back to the problem considered in
Paragraph 1.5.4, since the initial channel with continuous output is converted into a
binary symmetric channel;

— preserve and exploit in the decoder the real value y of the sufficient statistic
which, as we saw, is equal to the nearest positive factor to the logarithmic probability
ratio log E?gfg = log %, i.e. provides information on the prol.)al.:)ility of
the transmitted symbol. In this case we speak of a soft decision, although this is rather
a case of an absence of an explicit decision.
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The second strategy exploits information that the first strategy lacks (carried by the
margin |y| of each decision providing information on its reliability). It is thus more
effective in principle: the calculation of the corresponding channel capacity indeed
shows an advantage in its favor by a factor that varies according to the signal to noise
ratio, from 7 /2 (if E//Ny is very small) to 2, an asymptotic value when F /Ny tends
towards infinity. In practice, the same decoding error probability is obtained, with the
same code, for a difference of the signal to noise ratios of about 2 dB (for small values
of this ratio), in conformity with the ratio of the capacities (10log,y(7/2) = 1.96
dB). However, the implementation of this second strategy is more difficult, because it
requires the decoder to deal with real numbers: the logarithmic probability ratios as
they are given by the demodulator before any binary decision, and not the symbols
of the input alphabet; this is referred to as decoding with soft or balanced decisions.
However, an important branch of the studies of channel coding is based on the alge-
braic properties of finite bodies. The use of soft decisions prohibits treating decoding
as an algebra problem, even though the construction of the code makes use thereof.

1.6.4. Channel with fadings

We suppose now that the signal is received through a channel “with fadings”,
where its amplitude is multiplied by a random stationary variable A that follows the
Rayleigh law before the addition of a white Gaussian noise with one-sided spectral
density Ny. A random variable A of unitary variance following the Rayleigh law has
as a probability density function:

2 —a?), a>0,
pA(a) = { anXp( a ) Z< 0 [139]

It is the probability density function of the absolute value of a complex signal
whose real and imaginary parts are independent Gaussian random variables, centered
and with the same variance 1/2.

We suppose that the signal is transmitted with constant amplitude. It is, therefore,
modulated only in phase. The received average power is equal to P and we admit
that the signal band remains limited to B (this assumption is not rigorously exact,
but can be allowed by way of an approximation). An interleaving and disinterleaving
device provides the successive samples of the received signal, after disinterleaving
sufficiently distant in time in the channel to be regarded as independent.

These samples are none other than those of one of the two components in sig-
nal quadrature. Since the amplitude of the signal follows the Rayleigh law [1.39],
they have a centered Gaussian probability density function and, since they are made
independent by interlacing, we are brought back to the problem of a sequence of inde-
pendent Gaussian samples with power P received at the frequency 2B in the presence
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of additive Gaussian noise with variance Ny/2, i.e. to the same problem as that of a
Gaussian signal received in the presence of additive white Gaussian noise. We have
already calculated the capacity [1.38] of this channel.

The presence of fadings of Rayleigh thus does not modify the capacity, although it
complicates the reception notably and, in practice, often degrades the result. The con-
servation of the capacity of the channel with additive Gaussian noise in the presence
of Rayleigh fadings suggests that it must be possible to arbitrarily reduce the degra-
dation which they cause. In fact, rotation operators in Euclidean space R" achieve
that for sufficiently large n thanks to an effect of “diversity”* [17]. When auxiliary
devices, in particular, those of interleaving and diversity, make it possible to effec-
tively employ error correcting codes, we will note that the benefit of coding, measured
by the increase in the signal to noise ratio needed without coding to obtain the same
probability of error as with coding, is much more important for the channel with fad-
ings than where the only disturbance is the addition of Gaussian noise. Indeed, the
probability of error in the absence of coding decreases when the signal to noise ratio
increases a lot less quickly in the presence of signal fadings, and the benefit brought
by the system of coding is a reduction of the probability of error.

1 P
C=FE,4 {2log2 (1+A2N)}

1.7. Information theory and channel coding

The presence of disturbances in the channel limits the possible flow of information,
but not the quality with which the message can be restored: this lesson of information
theory created the basis for channel coding. The limitation of the flow of information
to a value smaller than the channel capacity is achieved by the introduction of redun-
dancy, but it is only one of the conditions necessary to control the error rate upon
decoding. The entire problem of channel coding lies in the manner of doing it.

The ultimate possible limit in information theory, i.e. channel capacity, has long
appeared inaccessible and the assertion “All codes are good, except those we can think
off” expresses in humorous form an opinion that was until recently dominant. Turbo-
codes and the extraordinary torrent of research that they unleashed have contradicted
this assertion and now it is in tenths of a decibel that we express the variation of the
best experimental results with respect to capacity, for a channel with additive white
Gaussian noise.

4. Which consists of jointly exploiting several supports of the same information.
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The key question of channel coding is the complexity of decoding. If we could
get rid of it, almost any code would be satisfactory. Indeed, not only random coding
is good on average, but it is known that almost all codes are good. Unfortunately, the
complexity of decoding for a random code increases exponentially with the length of
the code, which must be large in order to obtain small probabilities of error. Efficient
use of random coding is thus absolutely out of the question; we can only hope to
employ codes provided with a structure which facilitates their decoding. Coding being
incomparably easier than decoding, two extreme manners of undertaking the study of
channel coding were conceivable and both were actually tried out:

— to seek at first to build codes provided with good distance properties, deferring
to a later stage the more difficult problem of decoding them;

— to first resolve the problem of decoding, risking the properties of the codes to
remain unexploited; it is, of course, necessary that they have a minimum of structure,
but the linearity, whether they are block or convolutional codes, is enough for general
decoding algorithms to be designed.

Very schematically, the first tendency gave rise to algebraic codes and the second
led to the development of convolutional codes, for which the principal results are, in
fact, not families of codes, but decoding algorithms.

The results of these studies were initially confronted with reality in space com-
munication applications, where the channel is well modeled by the addition of white
Gaussian noise, and where the improvement of coding and decoding devices that the
immense progress of electronic technology now allows with reliability and economy
costs much less than the improvement of the energy cost of the connection. We saw
that the weighting of decoding avoids a costly loss of information. The ease of its
implementation in algorithms stemming from the second tendency is the main reason
for its success.

Research in channel coding in the simplest cases (binary symmetric channel and
channel with additive white Gaussian noise with a weak signal to noise ratio) have
produced an impressive arsenal of tools. Apart from the important exception of the
Reed-Solomon codes, these are mainly binary codes. For other, often much more
complicated, channels in general we still employ the means created in this manner,
but auxiliary techniques (interleaving diversity ...) are needed to adapt them to the
characteristics of the channel.

Regarding the channel with additive white Gaussian noise, the capacity C’ given
by [1.38] exceeds the limit of 2B shannons per second, intrinsic for the binary alpha-
bet, when the signal to noise ratio is large. Non-binary codes, or means of combining
binary codes with modulation processes with more than two states, such as “multi-
level” coding or lattice-coded modulations that will be seen in Chapter 4, must then
be used to increase the flow of information beyond this limit.
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Chapter 2

Block Codes

2.1. Unstructured codes
2.1.1. The fundamental question of message redundancy

We wish to transmit messages from point A to point B through space (transmission
channel), or from point A to point A through time (recording channel). Any transmis-
sion of information is a voluntary energy modulation. The channel which allows the
transmission is traversed by random energy impulses. This parasitic energy produces
transmission errors: noise. In a binary transmission, 1 is transformed into 0, and con-
versely. When we have difficulties transmitting a word or a message because of the
noise, we naturally tend to repeat the word or the message. It is then said that we add
redundancy to the information. Now, let us consider that the message to be transmitted
is coded into binary, i.e. it consists of a sequence of 1 and 0.

One of the first problems that had to be dealt with during World War I was how to
contact the American spies in hostile German territory. The spies could not ask for re-
transmission for fear of being discovered. If the message was short it was completely
destroyed by jamming if the jamming affected it. If the message was reinforced with
redundancy, there was more chance than it would be affected, but it was less suscepti-
ble. The question that would then arise was the following: was a lot or little redundancy
necessary for the security of these transmissions?

The answer was provided by C. Shannon (1948). He created the information the-
ory, which led him to formalize the problem, to define a mathematical measure of

Chapter written by Alain POLI.
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information, and to give an answer to the question at hand in the form of very fine the-
orems. His answer was: it is necessary to add “enough” redundancy to be statistically
sure of the effectiveness of protection. The lower bound of this quantity is determined
on the basis of a channel characteristic: capacity. C. Shannon proved that if we added
“enough” redundancy, there was a coding which made it possible to have a statistically
reliable transmission. The empirical proof was provided very quickly (before 1950) by
Hamming, Golay, and others who offered examples of codes constructions.

2.1.2. Unstructured codes

In the rest of this section we restrict ourselves to binary codes, i.e. with coefficients
in F, = {0, 1}, unless otherwise mentioned. Each codeword has the same length 7.
These are “block’ codes.

We wish to code a set of messages. Each message, or information word, is coded
by a binary word (codeword). The set of codewords is called the code.

DEFINITION 2.1 (HAMMING DISTANCE). Let there be two n-tuples x = (x1, x2, . . .,
Zn)andy = (Y1,Y2, - - -, Yn). The Hamming distance between x and y is the number
of positions where these two vectors are different. It is noted dp (., y).

DEFINITION 2.2 (HAMMING WEIGHT). The Hamming weight of x is equal to the
number of non-zero components. It is noted wy (X). It is also equal to dg(z,0,),
where 0,, indicates the vector (0, ...,0) € (Fz)™

DEFINITION 2.3 (SPHERE WITH A CENTER = AND RADIUS p). The sphere with
its center at x and radius p, noted B,(x), is defined by: B,(X) = {y € (F2)"/
dr(z,y) < p}.

DEFINITION 2.4 (EUCLIDEAN DISTANCE). Let there be two n-tuples x = (x1, T2, . . .
xn) and y = (y1,Y2,-..,Yn) whose components are real values in the interval
[—1,1). The Euclidean distance between them is equal to:

1/2

Z (zi — yi)2

i=1,n

2.1.2.1. Code parameters
A code is a set of codewords, characterized by a family of parameters:
1) the length n of each codeword. It is also said that the code has a length n,

2) the number M of codewords. It characterizes the transmission capacity of the
code,
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3) the minimum distance d of the code. It is related to the capacity of correction
of the code,

4) the maximum correction capacity per codeword, noted ¢,

5) the minimum weight of a code, noted w.

We speak of a code (n, M, d), or a (n, M,d) code.

EXAMPLE 2.1. In (F2)5 the family {10101, 00010,01111,11000} is a code (5,4,3).
Find w and d.

EXAMPLE 2.2. In (F3)?3 the family {102,110,200, 121} is a (3, 4, d) code. Find w
and d.

EXAMPLE 2.3. Is the family {01101, 10120, 11012, 00000, 11111} a (5, 4, d) code in
(F3)>? If yes, find w and d.

2.1.2.2. Code, coding and decoding

In this section we introduce the concepts of code, coding and decoding with max-
imum probability.

DEFINITION 2.5 (CODE). An unstructured binary code of length n is a family of vec-
tors included in (F)™.

DEFINITION 2.6 (CODING). Coding consists of associating a codeword, element of
(Fy)™, to an information word taken in (Fy)¥, for k < n. The most elementary coding
is done using a coding table.

DEFINITION 2.7 (MAXIMUM LIKELIHOOD DECODING). It will be admitted that, in
the usual cases we have:

Prob(0 error in a transmitted word) < Prob(1 error)
< Prob(2 errors)

This assumption means that the channel is not too bad with respect to the length of
codewords. We note that the distance from an transmitted codeword c to the received
word r = c + e is equal to the Hamming weight of the error vector e. The assumption
made is thus equivalent to supposing that it is more probable that the distance between
the transmitted word and the received word is O rather than 1, 1 rather than 2, eftc.
Maximum likelihood decoding thus implies decoding the word received by the nearest
codeword. If this codeword is not unique we do not decode.
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2.1.2.3. Bounds of code parameters

The parameters n, M and d are connected with each other by various constraints. If
two are fixed values, then the value of the third is limited by certain traditional inequal-
ities. In general, we cannot calculate the best possible value for this third parameter.

A bound on M is as follows. What is the largest number of words M of length n in
a code allowing the correction of ¢ errors per word? The disjoint spheres are counted
and total volume is calculated. It is necessary to have:

2 ) () ()

EXAMPLE 2.4 (n = 5,t = 1). We have 32 > M|[1 + 5] = 6M. Thus, M is less than
or equal to 5.

It should be noted that it may not be possible to obtain the value M.

Similarly, M being fixed, the best error correcting capability can be much lower
than the value of ¢ obtained from the previous formula.

2.2. Linear codes

As we can see it from the exercises in the preceding section, it is very difficult to
construct unstructured codes. A code is equivalent to the data of a family of spheres
with radius p, disjoint two by two. The number of spheres is M, and the code corrects
p errors per word (with maximum likelihood decoding). The best possible code is
equivalent to the best packing of spheres, which is a very complex problem. In order
to be able to build codes more easily, we agree to lose some freedom by imposing
an algebraic structure on the code. We will thus consider the binary codes with a
particular property: stability during addition.

2.2.1. Introduction

These codes have a structure of vector subspaces of (F3)™. If the code C'is a vector
subspace of dimension k, it is said that the dimension of the linear code C' is k. The
number of words in C is then 2*. From now on we will speak of a linear code (n, k, d)
instead of (n, M = 2% d).
2.2.2. Properties of linear codes

These codes have properties used for their decoding or construction.
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2.2.2.1. Minimum distance and minimum weight of a code
The following proposition makes it possible to simplify obtaining the minimum

distance when the code is linear.

PROPOSITION 2.1. The minimum weight of a code is equal to its minimum distance.

Proof. Indeed, the difference between two codewords of a linear code is a codeword
of this code, and in addition we have: dy (z,y) = wy(x — y). O

To know the correction capacity of a linear code of dimension £, it is enough to
explore the weights of 2% codewords instead of the 28~1(2% — 1) distances between
the codewords taken two by two.
2.2.2.2. Linear code base, coding

Let us simply demonstrate on an example a particular basic form of a code (sys-

tematic form).

EXAMPLE 2.5. In (Fy)® we take e; = 10110, e = 00101, e3 = 11011. It is a free
family. We note that {e; + ea, €1 + €2 + e3, €2} is another base of L(eq, ez, e3).

In systematic form this base is described as:

10011
01000
00101

DEFINITION 2.8 (GENERATOR MATRIX). We call a linear code generator matrix
C(n, k, d) any matrix whose rows are vector representations of a base of C.

This matrix is in systematic form when it is written in the form G = (I} R), where
(Iy) is the identity matrix of rank k, or when G = LI},

DEFINITION 2.9 (SYSTEMATIC CODING). Systematic coding corresponds to the fol-
lowing operation:

(ila 7:27 B ;Zk)G - (ihi?? s 7Zk)(IkR)
= (il,ig,...,ij,...,ik,T‘k+1,...77‘l,...,Tn)
The i; are information bits, and the r; are redundancy symbols.

EXAMPLE 2.6 (n = 6, e; = 101101, e = 111011, e3 = 101100). Construct G.
Put G in systematic form. Encode (101) with G. Encode (101) with (I3R). Encode
(a, b, ¢) with the two matrices, and compare.
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2.2.2.3. Singleton bound

The following proposition introduces the Singleton inequality and the Singleton
bound.

PROPOSITION 2.2. Let (n, k,d) be a linear code C(n, k,d). We have the inequality
(called Singleton inequality): d <n — k + 1.

Proof. Consider a generator matrix in systematic form. d

2.2.3. Dual code
The code C being a vector subspace it admits an orthogonal, noted C-.

PROPOSITION 2.3. If (I R) is a generator matrix of C, then H = (—RTI,,_}) is a
generator matrix of C, known as a parity check matrix of C.

Proof. The verification is direct. (I
A generator matrix of C* is referred to as a parity check matrix of C.

2.2.3.1. Reminders of the Gaussian method
To pass from a generator matrix of C' to a parity check matrix (and reciprocally)

we often use the method of Gaussian pivots.

EXAMPLE 2.7. In F5 we take:

111000
011101
011101
100111

110100
i = (110001)

We find:

with 1 permutation of columns.

EXAMPLE 2.8. In F3 we take:

21012
G = | 12101
20212
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We find:
21210
= (20001)
without permutation of columns.
EXAMPLE 2.9. In F3 we takes:
22021
G = | 22101
11022
We find:
21000
= (10001)

with 2 permutations of columns.

2.2.3.2. Lateral classes of a linear code C
We note by C,, the set {u + ¢/c € C}. The element w is called a representative of
the class C,,.

PROPOSITION 2.4. Ifb € C, then Cy = C,.

Proof. 1t is enough to prove the inclusion C, C C, (due to cardinals). If u = b + ¢,
sinceb=a+c thenu=a+b+c =a+b+c"cC, O

We can thus take as representative of each class the one whose weight is minimum
in its class. This is used in certain decodings.

PROPOSITION 2.5. The set of lateral classes of C forms a partition of (F2)", in parts
of the same cardinal.

Proof. Any u of (F»)™ is in its own class. The set of classes is thus a repetition of
(F»)™. It remains to prove that two distinct classes do not have common elements,
which stems from the previous proposition. (]

EXAMPLE 2.10. Let C' be a code of length n = 5, and generator matrix:

10111
G = [ 01110
11101
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The set of classes is the following (each line is a class, the first is the code, on the
left is a representative):

00000 101110111011101 11001 01010 10011 00100

1000000111 1111001101 01001 11010 00011 10100
0100011111 00110 10101 10001 00010 11011 01100
00001 1011001111 11100 11000 01011 10010 00101

We note that the 3rd line is equal to the following line:
0001010101 0110011111 11011 01000 10001 00110
This observation is important for decoding.

2.2.3.3. Syndromes

Now we introduce the concept of a vector syndrome.

PROPOSITION 2.6. Two elements a and b are in the same class if a — b € C.

Proof. The proof bears on the necessity and the sufficiency of the condition:
1) Let us suppose a € C,, for a certain v,and a — b € C. Thenb = a — ¢c =
(w+d)—c=v+" €Cy;

2)If a and b are in C, for a certain v then ¢ = v 4+ ¢1, b = v + c9,
a—b=c—cpeC. O

EXAMPLE 2.11. p = 2, and a code with generator matrix:

10111
G = [ 01110
11101

generates the code C:

1) Using the Gaussian method we find the parity check matrix H = <1(1)8(1)(1))

without changing the columns;
2) Let v = 11111 be a received word. Calculate H [v]T ([v]? is v transposed).

PROPOSITION 2.7. Let H be a parity check matrix of the code C':
1) Ifb € C,, then we have H[b] = Hla),
2) If H[d] = HJa), then we have d € C,.
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Proof.
Db=a+c¢,ce C.Then Hb| = Hla] + Hc] = H|al,
2) H[d — a] = [0], which is equivalentto d — a € C. O

In conclusion, the syndrome of a vector u characterizes the class to which u
belongs. This makes it possible to simplify the decoding practice.
2.2.3.4. Decoding and syndromes

Let v be a received word. The equality H [v]T = [s]T defines the vector [s]T called
the syndrome of v.
2.2.3.5. Lateral classes, syndromes and decoding

We use maximum likelihood decoding. Thus we decode by a codeword of C' which

is the closest to the received word in the sense of Hamming distance.

PROPOSITION 2.8. Ifv is the received word, then the error is any element of the class

of v.

Proof. For any u of C, we have v —u € C. (]

EXAMPLE 2.12. p = 2, and:

10111
G = | 01110
11101

Let us suppose receiving 11110. The error can be 10000, 00111, 11110, 01101,
01001, 11010, 00011, 10100. We will suppose maximum likelihood decoding and,
thus, that the error was 10000. The decoded word will then be 01110.

In fact, we calculate the syndrome of the received word v. This syndrome is the
same for any element of C,. We then suppose that the error is the word with the
smallest weight in C', (this is maximum likelihood decoding).

2.2.3.6. Parity check matrix and minimum code weight
The following proposition expresses a property of minimum code distance and

parity check matrix.

PROPOSITION 2.9. The minimum distance of a code is greater than or equal to d, if
there is no zero linear combination of d — 1 columns of a parity check matrix of C.
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Proof. Let (cg, ¢1, . .., cn—1) be a codeword. Writing:
Co
C1
H x .
Cn—1

is equivalent to making a linear combination of the columns of H. If there is no zero
linear combination with less that d — 1 columns of H, then the kernel of H (i.e the
code C') does not have a word with weight lower than d. (]

2.2.3.7. Minimum distance of C and matrix H

The study of the columns of H gives the minimum distance of C.

EXAMPLE 2.13. We take as code C' the code (known as the Hamming code) (7,4,3).
Its parity check matrix:

1010101
H = | 0110011
0001111

has neither a zero column, nor two equal columns. The minimum distance of C' is 3.

EXAMPLE 2.14. We take as code C' the Hsiao code (8,4,4) whose parity check matrix
is:

10000111
01001011
00101101
00011110

It is a code that corrects 1 error and detects 2 of them.

2.2.4. Some linear codes

The best known linear codes are the Hamming codes and the Reed-Muller codes
(known as RM codes). Hamming codes have a parity check matrix formed by all the
non-zero r-tuples. They are the (2" —1,2" —1—r, 3) codes. An RM code with a length
of 2™ and order r is built on the basis of vectors vg, vy, . . . , Uy, Where vg = (11---1)
and v; has 2/~ “0” then 2/~ “1” as components from left to right, in alternation. The
codewords of an RM code of length 2 and order r are all the products (component
by component) of a maximum of r codewords v;. An RM code of the order r has a

length g, a dimension 1 + (T) + (”21) 4+ (T), and a minimum distance 2™~ ".
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EXAMPLE 2.15 (m = 3, r = 2). We have vop = 11111111, v; = 01010101,
ve = 00110011, v3 = 00001111. The code has 11111111, 01010101, 00110011,
00001111, 00010001, 00000101, 00000011, 00000001, 00000000 as words.

2.2.5. Decoding of linear codes

There are various more or less complex decodings possible, such as, for example,
lattice decoding, studied by S. Lin and T. Kasami amongst others.

Step by step decoding
Let us now introduce a very easy algorithm that can be used for all linear codes.

Let there be a linear code C, of length n, corrector of ¢ errors by word, for which
we take a generator matrix G. We will suppose that C' is binary, although this decoding
extends directly to non-binary codes.

Preparation of decoding

The following steps must be performed before proceeding to decoding:
1) construction of the parity check matrix H on the basis of G;

2) construction of the table of pairs (weight, syndromes):
— we will take as vector x any vector whose Hamming weight (noted wg (z))
is less than or equal to Z,
— we will pose H[z]! = [2,]t,
— it is necessary to memorize in a table all the pairs (wg (), 2 ).

Decoding

Let c be an transmitted codeword, which is supposed to have been altered by an
error x satisfying wg (x) < t. For each received word ¢ + x we have an initialization
phase and an iterative phase.

Initialization phase

The initialization phase comprises three stages:
1) calculation of H|[c + z]* (equal to H[z]"), which we will call [2,]¢,
2) search for z, in the table of pairs, from which we deduce wg (z),

3) initialization of a variable P to the found value of wy (z).
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Iterative phase, for i = 1 withn

Let us use [; to indicate the binary vector of Hamming weight equal to 1, where 1
is in position ¢. The iterative stage comprises two stages:

1) calculation of H[c+ z + [;]*, and search for wy (z + 1;) in the table. If it is not
found, the error cannot be corrected. We pass to 5);
2) analysis of wy (z + 1;):
—ifwyg(x + 1;) > P, we do nothing,
—ifwyg(x+ 1) < P,then:c+z «—c+xz+1,and P — wy(z + 1;).

REMARK. We may stop the iterations as soon as wy (z + 1;) = 0, since the error is
then corrected.

EXAMPLE 2.16. Let C' be a BCH code (see section 2.4), with n = 15,¢ = 2, and
g(X) =1+ X*+ X4+ X7 + X8 Its generator matrix is:

100010111000000
010001011100000
001000101110000
G = | 000100010111000
000010001011100
000001000101110
000000100010111

We find the parity check matrix:

110000010000000
011000001000000
001100000100000
000110000010000
000011000001000
000001100000100
000000110000010
000000011000001

The table of pairs (wg(z),2,) contains 121 elements. Let us suppose that the
transmitted codeword is ¢ = 0 and the received codeword is = (000100010000000).

Initialization phase, we have H(c + )" = 2, = (10111011)*. We go through the
table of pairs and find wy (x) = 2. We pose P = 2.
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Iterative phase:
-i=1,2,3:
— we find nothing in the table,
— therefore, we do nothing;
-1 =4
— Hlc+z+14)" = [11100011]%, and the wg (z + 14) equals 1, lower than P,
—we thus replace P by 1 and the received vector by c + = + 14, i.e.
(000000010000000);
—1 = 5,6, 7: nothing changes;
—i = 8: Hlc+ z + 1g]* = [00000000]* and the wy (z + 1g) equals 0. The
corrected word is thus ¢ + x + 1g.

2.3. Finite fields

2.3.1. Basic concepts

We presume that the reader is already familiar with the notions of modulo n cal-
culations, Z/(p) field, p prime (also noted F,,) and Euclid and Bezout equalities. We
also presume that the concept of ring of polynomials on the [F), field is also known. An
important result concerning the ring of polynomials is the following.

PROPOSITION 2.10. Any non-zero polynomial of degree n has at most n roots in a
field.

Proof. The proof is outside the scope of this book. (]
A useful result for us is provided in the following proposition.

PROPOSITION 2.11. If 3 is a root of a polynomial f(X) of F2[X], then (32 is also a
root.

Proof. Letus pose f(X) = fo+ fiX +---+ fuX", fi € Fy. Since f7 = f;, we have

the equalities /(%) = fo+ 182+ -+ fulB2" = (fo+ 1B+ -+ fafB")2 = 02 = 0.
O

2.3.2. Polynomial modulo calculations: quotient ring

Let us suppose a polynomial a(X) € Fo[X]. The set noted Fo[X]/(a(X)) is
the set of polynomial expressions in X, with coefficients in Fy, where we add and
multiply two elements calculating in F3[X] then taking the remainder of the division
of the result by a(X). We easily prove that it is a ring.



54  Channel Coding in Communication Networks

EXAMPLE 2.17. Let us consider A = F3[X]/(a(X)), witha(X) = 1+ X + X2+ X3,
Let us pose u1 (X)=1+X+X? and up = X +X3. In F5[X] we have u1 (X)uz(X) =
X + X2 + X* + X5, the remainder of whose division by a(X) is 1 + X2, which is
the result of u; (X)uz(X) in A.

EXAMPLE 2.18. Letus pose a(X) = X°+1. Let us pose u; (X) = 1+ X + X2, Cal-
culate uq (X) = 1+ X+ X2, Xuy(X), X2uy(X), X3u1(X), X*u;(X), and examine
the representation in the form of binary vectors. We see that we obtain a circular shift
with each multiplication by X.

The ring Fo[X]/(a(X)) is called the quotient ring.

2.3.3. Irreducible polynomial modulo calculations: finite field

When p(X) is irreducible, of degree n, we demonstrate that Fo[X]/(p(X)) is a
(finite) field with 2™ elements. The field F2[X]/(p(X)) is also noted F, with ¢ = 2.
It is said that Fo[X]/(p(X)) is a representation of F,. If there are two irreducibles of
the same degree n, then we have two representations of the same F,, field.

It is sometimes necessary (for example for certain decodings) to seek the roots of
a polynomial in a given field. Let us give an example of such a search for the roots of
a polynomial b(Y") in a finite field.

EXAMPLE 2.19. InF5[X]/(1+ X + X*) we seek the roots of b(Y) = 14+Y + Y2

Disitl+ X?Wehave (1+X)?+ (1+X)+1=1+X+ X?#0.Itisnota
root;

2)isit X + X?? We have (X + X2)? + (X + X?) +1=1+ X + X* =0.1Itis
a root;

3)isit1+ X + X??Wehave (1+ X + X?)? + (1+ X + X?)+1=0.Itisa
root.

Wecanwrite 1 +Y + Y2 = (Y — (X + X?))(Y — (1 + X 4+ X?)) (verify it).
We will also verify that (X + X?)? = 1+ X + X? (see proposition 2.11).

2.3.4. Order and the opposite of an element of F2[ X ]/ (p(X))

We can study the order and the opposite of an element of a ring, but here we
place ourselves in a finite field. Let 8 € Fan, non-zero. Let us note that it is invert-
ible because it is in a field. We consider the family £ = {3, 3%, 33,...} of distinct
successive powers of 3.
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2.3.4.1. Order
The order of [ is the smallest positive integer e such that 3¢ = 1 (e depends on ().

PROPOSITION 2.12. |E| =e.

Proof. E is finite because it is part of a finite field. Let us pose E = {3, [?,
B3,...,B"}. This means that 3"*! was already obtained in the form of 3!, with
i < r. Let us suppose "1 = [3¢, with ¢ > 2. We then have 83" = 3¢~ !, and
since (3 is invertible, we have 37 = B'~!, which means that 3~! has already been
obtained, which contradicts the definition of E. Thus ™! = £, from where we
directly deduce that 5 = 1. The order of 3 is thus equal to 7. (]

EXAMPLE 2.20. In F5[X]/(1 + X + X?) the order of 1 + X is 3, the opposite of
1+ Xis X.

EXAMPLE 2.21. In the field Fo[X]/(1 + X + X?) let us pose 3 = X . We find that
its order is 5.

EXAMPLE 2.22. In the field Fo[X]/(1 + X + X*) let us pose 3 = 1 + X. We find
that its order is 15.

2.3.4.2. Properties of the order

The three following propositions express the properties of the order.
PROPOSITION 2.13. The order e of 3 divides 2™ 1.

Proof. The set of ¢ — 1 invertibles of the field forms a multiplicative group. The set of
powers of § forms a multiplicative subgroup. We know that the cardinal of a subgroup
divides the cardinal of the group which it contains. Lastly, e is the cardinal of the
subgroup. Thus, e divides ¢ — 1. (]

PROPOSITION 2.14. If z is of the order e, then x* = 1 involves e|u.

Proof. If u = e then z* = (2¢)* = 1. If 2% = 1, then by the Euclid equality
u=g¢ge+rr<e, andthus 1 = 2% = x%x" = (2¢)%2" = 2". Since e is the order of
2« we must have r = 0. O

PROPOSITION 2.15. If z is of the order e, then x" is of the order e/gcd(e, r).

Proof. Let us note (a, b) for pged(a, b). We have: (z7)¢/(¢7) = (2¢)7/(¢7) = 1. Thus,
the order of 2" divides e/(e,r) (see proposition 2.14). If we have (z")¥ = 1, then
e|rE, i.e. rE = )e for a certain A, from where [r/(e,r) x E = e/(e,r)] x A. Since
we see that (r/(e,r),e/(e,r)) = 1, E is a multiple of ¢/ (e, 7). O
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Let us provide a method to compute the order of a 3 of Fy, ¢ = 2.
1) make the lattice of the divisors of ¢ — 1;
2) to test 3¢ where 7 is a maximum divisor of ¢ — 1;

3) if for a maximum divider £ we have 3* = 1, then start again with the lattice of
dividers of k;

4y if B* £ 1 for any maximum divisor k of ¢ — 1, then the order of 3is ¢ — 1 (see
proposition 2.13).

EXAMPLE 2.23. Let Fys be represented by Fo[X]/(1 + X + X©). We seek the order
of =1+ X:

1) the lattice of divisors of 26 — 1 = 63 is as follows;

2) we must calculate 3° and 3%!. We find 3° = g+ 32 + 3* + 3° # 1 which
proves that its order does not divide 9. Moreover, we find 32! = 1. Thus, the order of

Bis 21 or 7. The calculation yields 37 = 3+ 3% + 8* + 3° # 1. Therefore, the order
of Bis21.

Figure 2.1. Lattice of divisors of 2° — 1 = 63

2.3.4.3. Primitive elements

An element of [, is called primitive if its order is ¢ — 1. We will see that there
always exists such an element in a field. We will prove the existence, then give the
number of such elements in F,,.

2.3.4.3.1. Existence

Propositions 2.16, 2.17 and 2.18 prove the existence of primitive. Let us pose
q—1=p" - p."* (primary decomposition of ¢ — 1).
PROPOSITION 2.16. There exists an element y, whose order is of the form p’f“pé2 e
Py
Proof. If not, the order of all 2 # 0 of the field would be the root of X (@—1/p1 _ 1,
which is not possible, because of the degree (see proposition 2.10). ]

Of course, there is also an element y5 whose order is of the form pil P2 pf;f S pfj

and so on. There thus exist particular elements y1, yo, . . . , Y.
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PROPOSITION 2.17. Let z1 = y; Px"Its order is p™.

Proof. Applying proposition 2.15 we see that the order of the element z; is equal to

(2 SRy I VAV O SRl JAly i Ry g B 0
Using the same argument we also obtain the elements 2o, . . . , zj, that have respec-
tive orders py'2, ..., pp*.

PROPOSITION 2.18. The element t = zy - - - ;. has as an order of ¢ — 1.

Proof. Let E be the order of t. E is of the form p}* - - - p;*, (see proposition 2.13), with

r; < m; for all i. We have 71 P> Px* = 1. Let us raise to the power of p52~"2 ...

o Ty, To Tk, Ma—T2  ME—Tk mo o mp p7'1pm2...p7"k
P F . We have: (tP1 P2" P P2 P =P P =t 2T =

Thus (see proposition 2.14) pi**|pi*p3** - - - p;**, and then m |71, which means that

r1 = m1. By symmetry we also obtain the equalities 7o = mo,...,r, = myg, and
thus the order of ¢ is equal to ¢ — 1. (]

We cannot formally construct a primitive, but if we know one of them we can find
them all, as indicated by the following proposition.

PROPOSITION 2.19. Let x be a primitive. The element x' is primitive, if (i,q—1) = 1.

Proof. The order of 2 is (¢ — 1) /(q — 1,14) (see proposition 2.15). O

If we are not in a field there may not exist a primitive for the group of invertibles,
as the following examples show. Let us recall that ¢ is the Euler indicator. The number
of integers smaller than m, and relatively preceding this m, is equal to ¢(m).

EXAMPLE 2.24. In Z/(9) we have ©(9) = 6. The group of invertibles thus has 6
elements. Element 2 has an order 6. It is a primitive from the group of invertibles.

EXAMPLE 2.25. In Z/(8) there are 4 invertibles. The invertibles 1, 3, 5, 7 have the

respective orders 1, 2, 2, 2. Thus, there are no primitives.

2.3.4.3.2. The number of primitives

The number of primitives is specified by the following result.

COROLLARY 2.1. The number of primitives in F, is ¢(q — 1).

Proof. By definition of the Euler function ¢, and by proposition 2.19. ]
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2.3.4.4. Use of the primitives

The primitive elements are often used in the application of error correcting codes.

2.3.4.4.1. The use of a primitive to represent the elements of a field

Any element 3 of Fo[X]/(p(X)), with irreducible p(X) of n*® degree, is a poly-
nomial expression in X with binary coefficients of a degree no more than n — 1. The
product of two elements 3 and (s is thus a product of two modulo p(X') polynomi-
als. It is a rather complex operation, both time and power consuming. Therefore, in
practice it is interesting to change the representation of the field. We choose a primi-
tive o and express any non-zero element of the field as a power of this primitive. The
advantage is as follows. Let 31 = o' and 2 = ;. The product is o*7 where i + j
is calculated modulo ¢ — 1, which is very easy and fast. Let us note that this represen-
tation renders the sum (37 + (B2 more difficult to calculate than with the polynomial
expression of the elements. This disadvantage can be mitigated by using a Zech table.

2.3.4.4.2. Zech’s log table to calculate the sum of two elements
If 1 = o' and By = o, with i > j, then 3' + 37 = af(a’~7 + 1). The Zech
table has 1 + o as input and o™ as output with 1 + o = o™.

EXAMPLE 2.26. InFo[X]/(1 + X + X*) we take as primitive « = X. We have the
following representation:

1=1 o® =a+a? al"=14+a+a?
a=q«w of =a?+a? al=a+a?+ad
o? = o? o"=14+a+a® a?=14+a+a’+a?
a3 = ad a®=1+a2 a3 =14+ a2+ a3
at=14a o’=a+d? al* =148

Let 31 = o +a? and B = 1 +a+a? +a3. The product is equal to o512 = 3.
The Zech table is presented as follows:

l4a=a* 14a2=a® 1+ =aM1+a*=a
1+a®=aP14+ab=a®1+a"=0a’

This is sufficient because we have the equality 1 + oit(9/2) = qita/2(1 4+
al9/2==1) We have §; = a?(1 +a) = a?(a*) = af as well as B = 1 +
al+a)+a®=1+a®+a®=1+a%8 = al?

2.3.4.5. How to find a primitive
We cannot find a primitive formally, but we can use the following algorithm:
1) create the lattice of the divisors of 2" 1;

2) choose a non-zero element J3;
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3) use the maximum divisors. If no maximum divisor d yields ﬂd = 1, then the
element (3 is primitive.

EXAMPLE 2.27. In Fg4 represented by Fo[X]/(1 + X + X©) let us consider the
non-zero element 3 = X. It is primitive. We finds 5 = X3 + X* # 1 and
B =1+ X + X3+ X* + X® # 1. Thus, the order of 3 is 63. It is primitive.

2.3.4.6. Exponentiation

We saw how to search for the order of an element, and how find out if it is primitive.
For large fields (i.e large ) we are led to calculate 3° for very large i. One of the best
methods is to proceed as follows:

1) break up 7 in base 2;
2) calculate the exponentiations by 2, i.e. 3, 82, 82", 8%, etc.;

3) calculate the necessary products (see example 2.28).

We prove that the complexity is in O(log ¢) instead of O(%).

EXAMPLE 2.28. Calculation of 32!, with the notations of example 2.9:

)21 =16+ 4 + 1;

)3 — % — p* — B8 — % whichyields 1 + X — 14+ X2 — 1+ X* —
1+ X2+ X3 - X + X%

3) 21 = B3B8 = (X + XH)(1+ X (1+ X) = 1.

This method is used, for example, for calculations necessary for the use of RSA in
cryptography.
2.3.5. Minimum polynomials

Let 3 € Fan. Let us consider the part C = (8,82,8%,8%,82",.. }.

PROPOSITION 2.20. There exists a polynomial with binary coefficients, which admits
all the elements of this part as the set of its roots. This polynomial is irreducible.

Proof. Let us examine Cl. It is a finite part, because it is included in a finite field. Let
us pose: Cg = {3, 3%, 3% ..., 32 "}. This means that 2" is an element of the form
B, with0 <i<t—1.

Let us suppose i # 0. We then have (32 )2 = (3% ')2. Thus, (3% ' /3% )% =
1. However, the polynomial Z2 — Z has only two roots (see proposition 2.10), which
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are 0 and 1. This leads to ﬁQt_l = ﬁQi_l. Thus, 2¢~! has been already obtained,
which goes against the definition of C'3. Therefore, ﬁzkl = (. A consequence of this
equality is that the class C is stable under exponentiation by 2.

Now, let us consider the polynomial (Y — 8)(Y — #2)(Y — %) - (Y — > ).
It has the symmetrical functions of its roots as coefficients. Thus, each of its coef-
ficients is invariant under exponentiation by 2. Each coefficient is, therefore, binary.
This polynomial is irreducible, since otherwise it would have a divisor of a strictly
smaller degree than it does. Moreover, this divisor would have at least one element
of C'z as root. As this class is invariant under exponentiation by 2, and according to
proposition 2.11, this polynomial should have all the elements of C3 as roots. This is
impossible according to proposition 2.10. Thus, this divisor strictly cannot exist. [

It is said that this irreducible polynomial is the minimum polynomial of 3, and we
note it by Mg(Y"). The part Cpg is called the cyclotomic class of (3.

EXAMPLE 2.29. Fo[X]/(1 + X + X3),8=1+ X:

1) the cyclotomic class of Bis {1+ X, 1+ X%, 1+ X + X2};

2)wehave Mg(Y) = (Y — (14+X))(Y -1+ X))V -1+ X + X?)) =
1+Y2+Y3.

When [ is primitive, the polynomial Mg(Y") is referred to as irreducible primitive,
or simply primitive.

2.3.6. The field of n*" roots of unity

When we study a cyclic code of length n, we are led to seek the smallest field
F,(g = 2) containing the n'" roots of unity (i.e.  such that 2 = 1). If z has as an
order n, it is said that it is a n*" primitive root of unity.

PROPOSITION 2.21. The smallest field F,(q = 2"), which contains the n*® roots of
unity, is such that r is the order of 2 modulo n.

Proof. F, has ¢ — 1 non-zero elements, which form a multiplicative group. The set of
n* roots of unity forms a subgroup thereof. Thus, n divides 2" —1. Written differently,
we have 2" — 1 = \n, or otherwise 2" = 1 modulo n, which shows that r is the order
of 2 modulo n. ([

PROPOSITION 2.22. Let 7y be an element of Iy (q = 27, 1 is of the order 2 modulo n),
which is a n'™ root of unity, primitive or not. We have:

D1+y+92 449" =0 v#1
D14y +yP2 4"t =1ify=1
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Proof. Indeed:

1) v is a root of the polynomial
of roots of the polynomial 1 + X";

2) n is odd, since it divides 2" — 1.

14X™
1+X

since the group of the n'*" roots is the set

2.3.7. Projective geometry in a finite field

We consider [Fm+1 as space vector of dimension m + 1 over F,;, with ¢ = 2°. Let
m—+1_ 1
« be a primitive of F;m+1 and 3 be a primitive of IF,. We have 3 = « T . We can

build a particular geometry, known as projective geometry. We define the “points” in
Fm+1, then the projective subspaces of the dimensions 1, 2, ... in the following way.
2.3.7.1. Points

A point, noted ('), is the subspace of F m+1 generated by o', deprived of 0. We
have (') = {at, Bat,..., 397 2at} = L(a*)\{0}. It is a subspace of dimension 1
deprived of 0.
2.3.7.2. Projective subspaces of order 1

If o/ ¢ ('), then a projective subspace of order 1, denoted (o, at), equals
L(a?,a%)\{0}. It is often called a “projective straight line”.
2.3.7.3. Projective subspaces of order t

It is a subspace of dimension ¢ + 1 deprived of 0, in other words it is L(a®, ...,
a’+1)\{0}. For t = 2, it often called a “projective plane”.
2.3.7.4. An example

Letus take ¢ = 2,5 = 1,m = 2,Fg = F3[X]/(1+ X + X?),a = X. The points

are as follows: (o) = {a®} because 8 = 1, (a), (a?), (a?), (a?), (®), (a®).

The projective straights are as follows:

(@®,a*) = {(a®), (a*), (a®)}, because a® + a* = a°

The only projective plane is the private field of 0.
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2.3.7.5. Cyclic codes and projective geometry

We note that we can pass from a point to another by multiplication by «. Indeed,
. . . m4l m—+1_ 1
the number 7 of points in the geometry is < T ! and1and o™ a1 belong to the

same point (1). The set of the points can thus be arranged like a cyclic sequence. This
suggests considering cyclic codes in F,[X]/(X™ — 1), which is what we will return
to in the description of PG-codes (see section 2.4).

2.4. Cyclic codes

After the theoretical results of C. Shannon and the first linear code constructions
(Hamming, Golay) American engineers were required to be able to obtain codes stable
not only under addition (linear codes), but also stable under circular sliding (or shift).
The codes obtained (cyclic codes) are linear codes with additional properties.

This new requirement led the mathematicians to exploit the structure of A =
Fy[X]/(X™ — 1), and, in particular, to study the ideal A. An ideal A is a non-empty
part, stable under addition, and stable under multiplication by any element of A. It is
a cyclic code of length n. Everywhere hereinafter n is odd.

2.4.1. Introduction
The following results express the properties of a cyclic code.

PROPOSITION 2.23. Any code C, stable under addition and circular shift may be
represented as an ideal A.

Proof. The circular shift on the right represents the multiplication by X in A. The code
C is thus stable under addition and multiplication by X. It is therefore stable under
addition and multiplication by any polynomial: thus, it is an ideal A. Conversely, an
ideal A is clearly a code stable under addition and circular shift. (]

PROPOSITION 2.24. Any cyclic code has the form (g(X)) (i.e. the set of multiples of
g (X)), with g(X) dividing X™ — 1. More precisely, there is between the cyclic codes
of length n and the set of divisors of X" — 1.

Proof. We know that the ring A = Fo[X]/(X™ — 1) is principal, i.e. it is the set of the
multiples of one of its elements.

Let C be a cyclic code in A. Let g(X) be a polynomial of minimum degree
in the code. In F3[X] we have: X" — 1 = ¢(X)g(X) + r(X). In A we deduce
r(X) = ¢(X)g(X), and, thus, 7(X) is in C'. Due to the minimality of the degree of
g(X) it necessarily follows that 7(X) = 0. Thus g(X) divides X™ — 1.
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Reciprocally, let (X) be a divisor of X™ — 1. It is straightforward to prove that
(g(X)) is a cyclic code.

It remains to be shown that two divisors distinct from X™ — 1 generate two dis-
tinct codes C; and Cs. Let us suppose C; = Cs. Then in F[X], we have go(X) =
q(X)g1(X) + MX)(X™ — 1), for a certain A(X). Thus g1 (X) divides go(X), since
g1(X) divides X™ — 1. Using symmetry, we prove the equality g1 (X) = g2(X). O

PROPOSITION 2.25. Any cyclic code (a(X)) where a (X)) is unspecified is still gen-
erated by PG(X), where PG(X) = (a(X), X™ —1).

Proof. Let us pose PG(X) = (a(X), X™ — 1). Using the Bezout equality we obtain
PG(X) = AM(X)a(X) + pu(X)(X™ — 1), for certain A\(X), 1(X). This proves that
PG(X)isin the code (a(X)). Any multiple of a(X) is thus a multiple of PG(X). In
(a(X)) there exists a generator of minimum degree. Because of the degrees, it must
necessarily be PG(X). O

2.4.2. Base, coding, dual code and code annihilator
We now develop the basic ideas on the cyclic codes.

2.4.2.1. Cyclic code base

Let there be a cyclic code of length n, with a generator g(X) of degree n — k, and
g(X)[X" —1.

PROPOSITION 2.26. Let h(X) = (X™ — 1)/g(X), that is to say k is the degree of
h(X). The family F = {g(X), Xg(X),...,X* 1g(X)} is one of the basis of the
code (g(X)).

Proof. Let the word a(X)g(X) belong to the code. Let us pose that a(X) =
¢(X)h(X) 4+ r(X), with r(X) = 0 or deg(r(X)) < deg(h(X)). In A we have
a(X)g(X) =r(X)g(X) since g(X)h(X) = 0, and thus the family F is a generating
one. Let us prove that it is of rank k.

Let us suppose agg(X) + a1 Xg(X) + -+ +ap_1 X 1g(X) = 0, in A. In F2[X]
we deduce it (g + oy X + -+ ap_1 X* 1g(X) = A(X)(X™ — 1), but the degree
of the first member is at the most n — 1. Thus two members are zero, and we have
Oé():al:"':ak_lzo. U

EXAMPLE 2.30 (n = 7, g(X) = 1+ X + X3). A base of (g(X)) is {1 + X + X3,
X+X24+ X4 X2+ X34+ X5, X3+ X4+ X6}, The code generator matrix g associated
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to this base is:

1101000
0110100
0011010
0001101

To build the code we make all the linear combinations of the lines of this generator
matrix G. We find 2* words.

2.4.2.2. Coding

The first coding can be derived from proposition 2.26.

We suppose to have information blocks of length k. Each block will be encoded
by means of a length n code. We thus add n — k symbols of redundancy to k bits of
information.

We will describe how two of classical codings for cyclic codes are performed.
Thus, let us suppose that the code considered here has a length n, and is gener-
ated by a polynomial g(X) of degree n — k. Information is a block of length %,
which is represented by a binary sequence, let’s say ig,%1,...,it—1. We will asso-
ciate the polynomial to this sequence (known as information polynomial) according
to: Z(X) =lg+ 11X+ + ’L.k;,leil.

The first coding consists of calculating the polynomial i(X )g(X). It is clearly in
the code, since it is a multiple of g(X): it is a codeword. This coding is referred to as
non-systematic.

The second coding consists of calculating first X™~*i(X). Then we calculate the
remainder 7(X) of the division of this new polynomial X"*i(X) by g(X). The
polynomial obtained is 7(X) + X" ~%i(X). The sequence of its coefficients is sent
through the transmission channel. Generally, we first send the largest degree.

The following proposition proves that we have indeed carried out a coding.
PROPOSITION 2.27. If (X) is an information polynomial, then the polynomial r(X )+
X"=Fi(X) is the corresponding codeword.

Proof. The polynomial (X ) + X" ~*i(X) is divisible by g(X), thus it belongs to the
code. (]

This second coding is known as systematic, because information appears in it
clearly. We sometimes speak of a “systematic code”. It is not correct, because a cyclic
code is an ideal in A. It does not depend at all on the performed coding.
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EXAMPLE 2.31 (n = 7,g(X) = 1+ X + X?). Let us take the information block equal
to 1011. The polynomial i(X) is equal to 1 + X2 + X 3. The polynomial X" ~%i(X)
is X3+ X+ X6, The remainder of the division of this polynomial by g(X) is 1. The
coded polynomial is, therefore, 1 + X3 + X® 4 X6, As the length of the code is 7, we
will send the following sequence of 7 binary symbols through the channel 1001011
(the first sent is on the right).

EXAMPLE 2.32 (n = 15, g(X) = 1+ X3 + X*%). Let us take the information block
equal to 10111110001. The polynomial i(X) is equal to 1 + X2 4+ X3 + X* + X5 +
X6+ X19 The polynomial X"~ %i(X)is X%+ X6+ X7+ X& + X%+ X10 + X,
The remainder of the division of this polynomial by g(X) is X2 + X3. The coded
polynomial is thus X2 + X3 + X% + X® + X7 + X® 4+ X9 + X10 + X4 We will
therefore send 001110111110001 (the first sent is on the right).

2.4.2.3. Annihilator and dual of a cyclic code C
Let there be a code C equal to (g(X)).

DEFINITION 2.10 (ANNIHILATOR). The annihilator of (¢(X)) is the set of polynomi-
als v(X) with a zero product with all the words of the code C. It is written Ann(C).

Let h(X) = (X" — 1)/g(X).

PROPOSITION 2.28. The annihilator of C is the cyclic code (h(X)).

Proof. Ann(C) is clearly a cyclic code and is therefore generated by a h(X) which
divides X™ — 1, which is of minimal degree, but h(X) is in the code Ann (C). Thus,
H(X) divides h(X). Since H(X)g(X) = 0, it means that the degree of H(X) is
equal to or higher than that of H(X). Thus, H(X) = H(X). O

DEFINITION 2.11 (ORTHOGONAL). The orthogonal (i.e. dual) of (¢(X)) is the set of
all the polynomials v (X)) with zero scalar product with all the codewords of the code

C. It is noted by (g(X))*, or C+.
PROPOSITION 2.29. The dual of C is the cyclic code ((h(X 1), X™ — 1)).
Proof. Let 7 be the application of A in A which sends all a(X) over a(X~1). We

prove (and we will admit it) that 7 is an automorphism. In addition we prove (and we
will also admit it) the equality:

a(X)b(X) = i: <a(X), X'7(b(X)) > X'
=0
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This equality implies that a(X)b(X) = 0, if we have Za(X), X7(b(X))) = 0
for all 2. We proceed in two stages:

1) a polynomial b(X) is thus in Ann(C)if 7(b(X)) € (g(X))*. Thus, A(X 1) €
(9(X))* and, thus, (h(X 1)) C (9(X)):

2) in addition, let u(X) € (g(X))*. Then (g(X),u(X)X?) = 0 and > imom=1
(g(X),u(X)X?*)X* = 0. This is equivalent to 7(u(X)) € Ann(g(X)). Thus, u(X) €
(h(X~1)), and finally (h(X~1)) 2 (g(X))*, which proves the equality. Thus,
T(u(X)) is a multiple of h(X), and consequently, according to proposition 2.25, the
code (h(X 1)) is equal to the code (h(X 1)), X™ —1). O

2.4.2.4. Cyclic code and error correcting capability: roots of g(X)

We consider a cyclic code of length n generated by a polynomial g(X ) with mini-
mum distance d.

One of the large advantages of cyclic codes is that we can have information on
their minimum distance, i.e. on their error correcting capability. More precisely, the
error correcting capability of a code is linked to the roots of the generator.

Let a be a primitive n'" root of unity.

2.4.2.5. The Vandermonde determinant

The following result expresses a property of the Vandermonde determinant.

PROPOSITION 2.30. Let us consider the determinant D with d — 1 undetermined
XOlea v 7Xd72~'

1 1 1 1 -+ 1
Xo X1 Xo X3z Xgo
p=| X6 Xt X3 X§--X7,
Xg—Q X{.i—Q X2£l—2 X{il—Q
It is equal to the product [[ ;- ;_o 4 3(Xi — Xj).
Proof. A determinant is an alternate form of its columns. We observe here that if it is

supposed that two variables are equal, the determinant D is zero. It is thus divisible
by the product P = Hj>i,i:0,...,d—3(Xi - X;).
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Let us consider the coefficient of Xg:zz in P. It is equal to Hj>i =0, a_a(Xi—

X ;). By arecurrence on the size of the determinant we easily prove that this coefficient
is equal to the determinant:

1 1 1 1 .- 1
Xo X1 Xo X3 Xys
X§ XP X3 X3 X3,

d—3 yd—3 yd—3 d—3
X33 xd3 xd=s .. X493

This proves that the determinant D is equal to the product P. (I
COROLLARY 2.2. Let j1,...,Jjd—1 be distinct integers in {0, ... ,n1}. Let there be

the determinant D defined by:

(ai)jl (ai)h - (ai)jd—l
(ai+1)j1 (ai+1)j2 (ai+1)jd—1
D =
(ai+é—2)j1 (az‘-s-(i—z)jz (ai"rd—-Q)jd—l

It is not zero.

Proof. One of the properties of the determinants is to be a multi-linear function of their
columns. We can thus write: D = o/ t2i+3i++(d=2)i )/ \ith:

1 1 ... 1
a1 a2 ... qdd-t
D' =
ald=2)1 o(d=2)j2 ... (d=2)jur
Since « is of the order n and we have d — 2 < n, the elements o/*, ..., ay, , are
all different from each other. We may thus apply proposition 2.30 and D’ is non-zero,
as well as D. (]

2.4.2.6. BCH theorem

We can provide a lower bound of the minimum distance from a cyclic code. This
result is based on corollary 2.2.
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PROPOSITION 2.31 (BCH THEOREM). Let there be a code C of length n admitting
among its roots the following elements: o', o/, ... o472 where o is a n'™™ root
of unity, whose order is greater than d — 2. Then the code has a minimum distance of
at least d.

Proof. A parity check matrix of the code is clearly:

1 o a2 Q... a(—1)i

1 aitl Q2041 o3G+1) ... o (n=1)(i+1)
1 a2 o (D)
1aitd—2 ... s (=D (+d=2)

Based on the corollary 2.2, for any choice of d — 1 columns of this matrix we
obtain a determinant resembling the one studied in corollary 2.2. Every element of the
kernel of H (that is, of the code considered) thus has a Hamming weight that cannot
be less or equal to d — 1. [

2.4.3. Certain cyclic codes

We provide here some of the most used classical codes. We will not speak of the
generalized RS codes, of the alternating codes, or of the Goppa codes. Among the
latter we find codes resulting from algebraic geometry, which is outside the scope of
our subject matter. Often we will present only binary codes, although they also exist
inIF,.

2.4.3.1. Hamming codes

Cyclic Hamming codes are equivalent to linear Hamming codes. They are very
simple codes, with error correcting capability equal to 1. Let there be the field I,
q = 2". Let « be a primitive of this field.

PROPOSITION 2.32. The binary code C having for roots the elements of the class of
ais a cyclic code (n = q — 1,k = n —r,3), called the Hamming code.

Proof. We take as a generator the minimum polynomial of «. Since « is of the order
q — 1, no polynomial in the form 1+ X! (i < ¢ — 1) can have « as root. The minimum
weight of the code is thus 3. ]

There exists a generalization of these Hamming codes. Let there be the field F;m,
g = 2". Let o be a primitive of [F;m. We pose 8 = a®. We seek a cyclic code with 3
for root, with a error correcting capability of 1, i.e. a code (n, k, 3).
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PROPOSITION 2.33. Such a code verifies the following properties:

1) we haven = (¢™ —1)/(¢™ —1,s), and k = g — 1 — w where w is the cardinal
of the class of 3;

2) such a code exists if ((¢™ —1)/(¢™ — 1,s),q— 1) = L.

Proof. Indeed:

1) the length is the order of 3. As the order of « is ¢"* — 1, we directly have the
order of (3;

2) since we want d = 3 no polynomial of the form 14 X" (u € Fy, 4 < n) should
admit 3 as a root. Thus 3% should only belong to F,, if it equals 1. Multiplicative groups
(8) and F,\ {0} must have an intersection reduced to {1}. As their respective cardinals
are (¢™ —1)/(¢™ — 1, s) and ¢ — 1, the proposition follows directly. O

PROPOSITION 2.34. The parameter s must be a multiple of ¢ — 1.
Proof. So that ((¢™ — 1)/(¢™ — 1, s),q — 1) = 1, it is necessary that (¢™ — 1, s) be
a multiple of ¢ — 1, since ¢"* — 1 is divisible by ¢ — 1. O

According to this proposition we see that the length of such a code cannot exceed
(g™ —1)/(g — 1). We will now demonstrate that this length can be reached.

PROPOSITION 2.35. There exists such a code of length (¢™ — 1)/(q — 1), if (m
g—1)=1

Proof. We pose 3 = a?~ . The length is indeed (¢™ — 1)/ (q — 1). The multiplicative
groups () and ]Fq\{()} have the respective cardinals ( 1)/(¢™ —1,qg—1) and
q—1,i.e.again (¢™—1)/(¢—1) and ¢ — 1. But we have (¢™ —1)/(¢g—1) = ¢™ 1 +

q™ 24 -4q+1.Since ¢ —1 = s;(¢—1) for certain s;, we have (¢ —1)/(q¢—1) =
A(g — 1) 4+ m. It follows that such a code exists if ((¢ — 1), m) = 1.

2.4.3.2. BCH codes

Let there be I, ¢ = 2" and a primitive element a.. A binary BCH code of length n
is a code admitting as roots the cyclotomic classes of elements o, o' 1, ... a/t20—1
for any 1.

PROPOSITION 2.36. This code has a minimum distance equal to at least 26 + 1.
Moreover, its dimension is at least n — Or.

Proof. The result for the minimum distance is a consequence of the BCH theorem.
The dimension stems from the fact that all the cyclotomic classes have a cardinal that
divides 7 (see proposition 2.46). ]
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2.4.3.3. Fire codes

These are binary codes directly defined by their generator g(X) = p(X)(X¢—1),
where p(X) is an irreducible polynomial of degree m, not dividing X ¢ — 1. The length
n of the code is the least common multiple (LCM) of ¢ and of the exponent e of p(X).

Such a code C can correct any packet of errors (or burst) of length b and detect all
bursts of length d, if the following conditions are verified:

d>b,
)b+d<c+1.

To prove this capacity it is enough to demonstrate that this code cannot contain the
sum of a burst of length b and a burst of length d.

A burst of length b can be represented by a polynomial B(X) of degree b — 1 and
constant 1.

PROPOSITION 2.37. C does not contain the sum of a burst of length b and of a burst
of length d.

Proof. Reduction and absurdum: let us suppose that C' contains a polynomial
X'B1(X) + X7 By(X). By the cyclicity of code this is equivalent to saying that C'
contains a polynomial in the form of By (X) + X*Ba(X) (with k = j — i modulo
n). Since g(X) is divisible by X°— 1, the latter must divide B;(X) + X*By(X).
Let us pose & = qc + r (Euclidean division). We deduce that X — 1 must divide
Bi(X) + X"By(X) + (X9 — 1)By(X), therefore, B1(X) + X" By(X). We may
write B1 X (X) + X"Ba(X) = (X°— 1)M(X). We proceed in two stages.

Let us suppose that M (X)) is not zero. We observe that we have r +d—1 > b— 1,
and that, therefore, r + d — 1 = ¢ + u, where u is the degree of M (X). Thus
r=c—d+1+u > b+ u. From this we deduce that r > b > b — 1 and that
r > u. From this we see that in the right-hand side term there exists a monomial X",
but that this monomial cannot exist in the right-hand side term. The contradiction is
obvious.

Thus, By (X)+X" Bz (X) = 0, which involves (because of the constant of By (X))
that r = 0 and By (X) = B2(X). Thus we are led to suppose that C' contains a
polynomial By (X)(1 + X9¢). Since g(X) is divisible by p(X), the latter must divide
B1(X)(1+ X%). Due to the degrees it cannot divide M (X). It thus divides 1+ X 9°.
Thus, 14+ X¢and 1+ X" must divide 1 + X 9¢, which is impossible since gc < n and
n is the LCM of e and c. g



Block Codes 71

2.4.3.4. RM codes

Let o be a primitive of F, ¢ = 2. Binary RM codes are defined by the expression
of the powers of a, which are roots of the code. Their roots is the o such that the
Hamming weight of the binary decomposition of ¢ is strictly lower that m — r. It is an
RM code of the order 7.

PROPOSITION 2.38. An RM code of the order r has length q — 1, dimension 1+ (T) +
(3) + -+ (), and minimum distance 2™~" — 1.

Proof. The proof is outside the scope of this work. (]

2.4.3.5. RS codes

RS codes are codes whose coefficients are in Fyr, with r > 2, of length 2" — 1.
There roots are o, o', ..., a’T9~1 where « is a primitive.

PROPOSITION 2.39. Suchacodeisa(q—1,q—1—0,0+ 1) code. Its BCH distance
is its true distance.

Proof. We have a deg g(X) = §, and Wy (g(X)) =d + 1. O

2.4.3.6. Codes with true distance greater than their BCH distance

In an exhaustive article! “One the minimum distance of cyclic codes”, J.H. van
Lint and R.M. Wilson provide all the binary codes with length not exceeding 61 that
have a true distance strictly larger than their BCH distance. Here are some examples;
each code is described in the form (length, dimension, true distance, BCH distance):

(31,20,6,4),(31,15,8,5),(39,12,12, 8), (45, 16, 10, 8),
(47,23,12,6), (55, 30, 10, 5), (55, 20, 16, 8)
They are decodable by the FG-algorithm which we provide hereafter.

2.4.3.7. PG-codes
2.4.3.7.1. Introduction

We recall (see section 2.3) that we regard F,m+: as a vector space of dimension

m + 1inFy, with ¢ = 2°. Let « be a primitive of Fm+: and 3 a primitive of IF,. We
m4+1_q

gt S . mtl_
have § = a7 . Wehave a projective geometry with n = < !

q—1

points.

We will construct codes in Fo[X]/(X™ — 1), but prior to this we will provide two
definitions.

1. VAN LINT J.H., WILSON R.M., “On the minimum distance of cyclic codes”.
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DEFINITION 2.12. Let there be 2 integers i and j, and their respective writings in
base 2 be (io, . ..,iy) and (jo, - - ., Ju). It will be said that j is under i, if (jo,- - ., ju)
is less than or equal to (i, . . . , iy, ) for the produced order.

For example, 7 = 25 and ¢« = 37. Then j is not under ¢. With j = 25 and ¢ = 29, j
is under :.
DEFINITION 2.13. We use W,(t(2° — 1)) to indicate the maximum number of integers
in the form i(2° — 1) disjoint two by two that are under t(2° — 1).

For example s = 2,1 = 5. Since 3 and 12 are under 15 and are disjoint, we have
Wa(5(2%2 — 1)) = 2.

2.4.3.7.2. PG-codes

We consider the code C' such that its orthogonal C* contains all the projective
subspaces of the order r of the field IF,m+:. This code C'is a code called a PG-code of
the order r. The code C* is characterized by the following proposition.
PROPOSITION 2.40. The C* code has for zeros all the elements in the form (21
where W, (t(2°5 — 1)) < r,t #0.

Proof. The proof is outside the scope of this work. O

There does not exist a formula giving the dimension of this code. It should be
constructed, so that the sought code C' can be deduced from it.

The minimum distance of C' is given in the following proposition.

PROPOSITION 2.41. The BCH distance of the code C'is given by:

s(m—r+1) _ 1
dpcu = A
p* =1
Proof. The proof is outside the scope of this work. O

The error correcting capability of the code C' stems from the following proposition.

PROPOSITION 2.42. We have the following results:

1) the number J of projective subspaces of rank r, containing a projective subspace
of a fixed rank r - 1, verifies: J = dpcu — 1;
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2) the J projective subspaces have a two by two intersection which is reduced to a
projective subspace of the order r — 1;

3) we can correct up to J/2 errors by majority decoding.

Proof. Indeed:

1) it is the number of subspaces of the field that contains a fixed subspace of
dimension 7;

2) two projective subspaces of order r cannot have an intersection of order  — 1
since they are distinct;

3) see section 2.6. O
PROPOSITION 2.43. The length of C'is equal to the number of points.
Proof. This is straightforward. (]

Since dpcy = J + 1, we can correct up to J/2 errors. The J projective subspaces
are disjoint two by two, apart from the projective subspace of order r — 1.

2.4.3.7.3. An application

Majority decoding makes it possible to carry out a cheap and fast electronic opera-
tion, especially when decoding is in one stage. If decoding has more than three stages,
the complexity becomes very high.

The Japanese needed to find a powerful code with a cheap decoder. They wanted
to use it for their Teletext. Constraints: length of information 81, number of errors to
be corrected: 8. The solution found uses an information length of 82. The code is then
shortened by one position. The respective values of the parameters are: p = 2, r = 1,
m = 2. Decoding has 1 stage. We deduce from it the dimension of C": 82, the length of
the code: 273, its error correcting capability: 8 (s = 4, because 273 = 24%2 124 1),
It is a (273, 82, 18) code shortened by 1 position, decodable by majority vote with 1
level. The price of an encoder/decoder was 175 FF in 1995.

2.4.3.8. OR codes

Binary quadratic residue codes (QR codes) have a length p, where p is a prime
number in the form 8m + 1 or 8m — 1. For each such p there are 4 QR codes. One has
all the modulo p squares as roots, another has all these squares and 1, another has all
the non squares, and the last one has all non squares and 1.

PROPOSITION 2.44. Ifp = 8m + 1, then d* > p, and if p = 8m — 1, then d(d — 1) >
p— 1

Proof. The proof is outside the scope of this work. |
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These codes have an important group of automorphisms. We can then think of
finding good algorithms of trapping isolated errors.

2.4.4. Existence and construction of cyclic codes

Faced with a list of tasks proposed by an industrialist, we are often led to seek if
there exists a code which fulfills the requirements. If one does exist, it then has to be
constructed. There are tables of known codes, for a certain number of values of the
parameters n, k and d.

2.4.4.1. Existence

It is often useful to simply know if there exists a cyclic code with the given param-
eters. It is the case when we are trying to satisfy a list of tasks. The first stage consists
of testing the existence of a code. More precisely, we are led to examine whether there
exists a polynomial g(X), divisor of X™ — 1, with a given degree.

PROPOSITION 2.45. There exists a generator g(X), divisor of X™ — 1, with a given
degree s, and only if there exists in Z/(n) a set of cyclotomic classes under multipli-
cation by 2, whose cardinal is equal to s.

Proof. Let Fy- be the smallest field containing the n'" roots of unity. Let o be a
primitive of this field, and 3 be a n'" primitive root of unity.

Let us suppose that the polynomial g(X) has a degree s. Its s roots are powers
of . The corresponding exponents are elements of Z/(n). According to proposition
2.11 (see section 2.3), these roots are grouped by cyclotomic classes, and, therefore,
by the powers.

The inverse is straightforward. The polynomial that admits cyclotomic classes as
a set of roots divides X™ — 1 and is binary (see proposition 2.20). (I

PROPOSITION 2.46. In Z/(2™ — 1) there exists a cyclotomic class with a cardinal s
if s divides n.

Proof. If there exists a class with a cardinal s, then s divides n. Let there be x in
Z /(2™ —1), whose class has a cardinal s. By definition of cyclotomic classes we have
2%z = x. In addition, there is also 2"x = x. We use the Euclidean equality between x
andn :n = gs+r,0 <r < s. From there we obtain (2°)¢ x 2"z = x, then 2°z = x,
which implies » = 0, otherwise the class of  would contain less than s elements.
Thus, s divides n.

If there exists an s such that s divides n, then there exists a class with a cardinal
s.Letx = (2™ — 1)/(2° — 1). We have (2° — 1)z = 0, and the cardinal of the class
of x is thus at most equal to s. Let us suppose that the cardinal is £(0 < ¢t < s).
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We then have: (28 — 1)z = 0, ie. in Z : (28 — 1)z = p x n. This implies:
(28 —1)((2™ —1)/(2* — 1)) = p(2™ — 1), from where 2 — 1 = (2% — 1), which is
impossible. (I
2.4.4.2. Construction

There exist various possibilities to construct a binary cyclic code with a given
length n:

— we can use the cyclotomic classes of Z/(n), then construct minimum polyno-
mials;
— we can directly seek g(X) by factorizing X" — 1;

— we may also be led to seek a code which contains given words.

2.4.4.2.1. Use of classes of Z/(n)
As soon as we ensure the existence of the generator of a cyclic code g(X) with

length n, we construct it using the following proposition.

PROPOSITION 2.47. Let g(X) be the generator of a cyclic code of length n with a
degree n — k. Let {C;,,C},,...,C; } be the family of cyclotomic classes found in
Z/(n). The polynomial g(X) has the elements of the forms o’ as roots, where j tra-
verses the joining of the classes {Cyi,, Cuiny - - - s Cai, }-

Proof. This is straightforward. This proposition simply indicates the link between
classes in Z/(n) and the roots of g(X). We will note that the cardinal of the join-
ing of classes must be equal n — k. (]

2.4.4.2.2. Factorization by the Berlekamp method

We use a linear algebra method introduced by E. Berlekamp. This method is based
on the following propositions describing and justifying the factorization of a polyno-
mial f(X) of the r degree. In the case of cyclic codes we are led to factorize polyno-
mials of the form X" — 1, for odd n.

PROPOSITION 2.48. In A = F5[X]/(f (X)) the elevation to the square, which we will
note h, is a linear endomorphism.

Proof. We have successively:
a(X) = h(a(X)) = a(X)? = ra(X) + ¢a(X) + qa(X) f(X)
b(X) — b(X)? = ry(X) + ¢ (X) f(X)
From this we deduce:
h(a(X) +b(X)) = (a(X) +b(X))? = r2(X) + 75 (X) + ¢(X) f(X)
=1,(X) + rp(X) O
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In F2[X] let us suppose that f(X) divides a?(X) — a(X), for a certain a(X) of a
degree strictly smaller than the degree of f(X).

PROPOSITION 2.49. The GCD (f(X),a(X)) is a non-trivial factor of f(X).

Proof. We have a?(X) —a(X) = a(X)(a(X)—1) = AM(X) f(X), for a certain \(X).
Any irreducible factor p(X) of f(X) divides either a(X) or a(X) — 1, but not both,
because otherwise it would divide their difference 1. Thus this PGCD (f(X), a(X))
is formed by a family of primary factors of f(X). It can be equal neither to f(X) nor
to 1, because of the hypotheses regarding the degree of a(X). O

To factorize f(X) it is enough to find a(X), which the Berlekamp method gives
us. The identical application is noted ¢d.

PROPOSITION 2.50. Any element of A, different from 1, which is in the kernel of h—id,
is such a polynomial a(X).

Proof. Indeed, a(X) € Ker(h — id) is equivalent to a®(X) — a(X) = 0in 4, i.e.
a?(X) —a(X) = MX) f(X) in F[X]. O

To find the kernel of h — ¢d we proceed as follows:

1) considering the base {1, X, X2, ..., X" "1} (r is the degree of f(X)) we
construct the matrix M of the endomorphism h, then we construct M — I,

2) using the Gaussian method we seek a base of the kernel of M — I;

3) if the only polynomial is 1, we cannot factorize. The polynomial f(X) has only
one primary factor. Otherwise, take a polynomial different from 1. It is the sought after
a(X);

4) we calculate (f(X), a(X)). We obtain a factor f;(X) of f(X), then the second
one by simple division of f(X) by f1(X). We then have f(X) = f1(X)f2(X), and
we reiterate with these two new polynomials.

EXAMPLE 2.33 (f(X) = 1+ X2 + X3 + X*). We have:

0010
0101
0101
0010

from where successively, by the Gaussian algorithm:

0010 1100 1100 1010 1010
1100 . 0010 _ 0010 . 0010 . 0100
1100 1100 0000 0000 0000

0010 0010 0010 0100 0000
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which yields the kernel matrix: ((1)(1)8(1)). It provides a(X) = X + X3, and we easily
find (f(X),a(X)) =1+ X. The second factor is 1 + X + X?3. Neither of these two

factors can be factorized further.
We can prove that the factorization of X2 — X gives all the irreducibles with a
degree dividing 7.

EXAMPLE 2.34. Let us factorize X7 — 1 in F5[X]. With the same notations as in the
previous example we have:

1000000 0000000
0000100 0100100
0100000 0110000
M =] 0000010 | and M — I = | 0001010
0010000 0010100
0000001 0000011
0001000 0001001

We notice the simplicity of the construction of this matrix. Using the Gaussian
method we obtain the needed matrix:

0110100
M = | 0001011
1000000

We take a(X) = X + X2 + X3 (first line) and we obtain f1(X) =1+ X + X3,
then fo(X) = 14+ X + X2+ X*. We factorize fo(X). The new matrix M — I equals:

0011
0111
0100
0000

M—-1I=

0011)_

The kernel matrix is (1000

We take a(X) = X%+ X3 and obtain 1+ X + X2+ X* = (1+X)(1+ X?+ X3).
We factorize f1(X). The new matrix M — I equals:

000
M—-1=|011
010

The kernel matrix is (1000).

We cannot factorize further. It can be easily verified that 1+ X + X3 is irreducible.
Finally we have X" — 1 = (1 + X)(1 + X + X3)(1 + X2 + X?3). Thus, there are
23 — 2 non-trivial cyclic codes (the trivial ones have a 0 or 1 generator).
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2.4.4.2.3. Construction of a cyclic code generated by given words

We may sometimes have to find the smallest cyclic code, which contains one or
more given codewords. Let m(X) be a given binary codeword of length n. We con-
sider it as an element of A = Fy[X]/(X™ — 1). We seek the smallest cyclic code of
A containing this codeword.

PROPOSITION 2.51. Let \(X) be the polynomial of the smallest degree, such that we
have \(X)m(X) = 0. The required code is the ideal (X" — 1)/X(X)).

Proof. Indeed:

1) the set of polynomials w(X), such that u(X)m(X) = 0 is an ideal of A. As
any ideal is principal, this ideal is generated by a polynomial with the smallest possible
degree. Thus, it is the polynomial A(X) of the statement;

2) the polynomial A(X) divides X™ — 1. Thus, m(X) is in the code ((X™ — 1)/
A(X)). We pose g(X) = (X™ — 1)/A(X);

3) everything under the strict code of the code (g(X)) is generated by a polyno-
mial of the form u(X) x g(X) (with u(X) # 1). If m(X) is in such a subcode, then
m(X) must be canceled by (X™ — 1)/u(X)g(X), which is impossible, because its
degree is strictly smaller than that of A(X).

Thus, the required code is ((X™ — 1)/A(X)). O

Using the Gaussian method pivots we easily find the required code. Let us note
that the pivots may be in any column.

EXAMPLE 2.35. Find the smallest cyclic code containing the following codeword:
110010100001110. By the Gaussian method we find, for example:

1100101000011101
011001010000111.X

0111100010011011 + X2
101111000100110X + X3
1001110000111011 + X2 + x*
0000000000000001 + X + X* 4+ X° = A\(X)

Each binary vector-row is followed on its right by a polynomial v(X). This trans-
lates the fact that the row is equal to v(X)m(X). These polynomials v(X) appear
during the application of the Gaussian method.
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We find g (X) = (X - 1)/AX) =14+ X + X2+ X4 4 X5 4 X8 4 X10,
The pivots are in columns 7, 8, 9, 10 and 11, and the first column is on the right with
number 1.

In the general case we want to determine the smallest cyclic code containing the
codewords mq(X), ma(X),...,ms(X). Using the previous construction we con-
struct the polynomials A(X), A2(X), ..., As. The polynomial with the smallest degree
canceling the m;(X) is clearly the LCM of the \;(X). Another method is to seek the
PGCD (m1(X), ma(X),...,ms(X)). It is the generator of the required code.

2.4.4.3. Shortened codes and extended codes
2.4.4.3.1. Shortened codes

We remove the s first components of information from each codeword of the code
C'. This amounts to considering only those codewords in C, which have these s com-
ponents equal to 0. A shortened cyclic code is a linear code.

2.4.4.3.2. Extended codes

We add a parity symbol to each codeword, which is such that the sum of the sym-
bols of each extended codeword is even. The following is an interesting question:
is it possible for an extended cyclic code to be cyclic? That is one of the suggested
exercises.

2.4.4.4. Specifications

A specification is a set of constraints that the system of coding must satisfy. The
principal parameters, which industry specialists make a point of taking into account,
are as follows:

— length L of the information string to be coded,

— maximum redundancy rate,

— maximum length of the codewords,

— gross flow (i.e. in terms of binary symbols),

— net flow (i.e. in terms of information bits),

— residual error rate for an input error rate (i.e. p,. for p.),

— average space without errors between two badly decoded consecutive words,

— electronic constraints (delicate).

2.4.4.5. How should we look for a cyclic code?

There is no general method. We can start by looking for the possible values of k:
those that divide the length of information strings. Then one can try associating the
possible values of n to each possible value of k. We will study the values of k£ and
n by ascending values, in order to have the shortest possible code (thus, a priori, the
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most economic). Then for fixed n and k£ we must examine whether there exists a cyclic
code. To that end we study the distribution of cyclotomic classes in Z/(n).

On the basis of this study we find what can be the error correcting capability of the
code. It is then necessary to use the formulae connecting p,. to p., as well as the BCH
theorem. We can have an idea of the decoding power of the code from the following
proposition.

PROPOSITION 2.52. Let there be a cyclic code of length n, dimension k, with error
correcting capability of t errors per word. Let p. be probability of channel error, and
pr be the residual probability per corrected word. We have the inequality:

npr < Zn: (t+1) <:.L)pi(1 —p)"

i=t+41

Proof. Since p,. is the probability of error per symbol of a received word, the expecta-
tion of the number of residual errors per corrected word is np,- (binomial distribution).
We will provide an increase of this expectation.

Let us consider the event “the word has been decoded incorrectly”. This event
is included in the following event F “for any value ¢ (i = ¢t + 1,t 4+ 2,...,n) of
the number of transmission errors occurring, the decoding algorithm decodes using
likelihood decoding”. This means that the number of errors in the “corrected” word
is at most equal to 7 + 1 (¢ comes from the channel, ¢ comes from decoding). The
expectation of the number of errors in this event F is:

- n
> (i) (7)ot pa

i=t+1

which yields the result announced in the statement. ]

It will be noted that p,. is also the probability of residual errors for the information
block recovered after decoding, provided that this decoding is systematic. Otherwise
the residual rate is much greater.

In practice, when p,. is not greater than 1072, we are able to take as a relation:

n i
np, = (2t + 1) <t N 1>pi+1(1 O L

It has to be well noted that the value p, obtained is the one provided by the code.
If we require a residual probability of p’, we must then check for the code considered,
the inequality:

n .
(2t +1) (t—l— 1)pi+1(1 —po)" T <y
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If it is satisfied, the code is acceptable.
Lastly, we are able to take into account the more delicate constraints on electronics.

EXAMPLE 2.36 (EXAMPLE OF CYCLIC SEARCH FOR CODE). Specifications:
— channel (i.e. input) error rate: 10~4,
— maximum redundancy rate: 0.18,
— maximum acceptable residual error rate: 1075,

— information strings of length 105.

We will look for a natural (i.e. not shortened) cyclic code:

1) The possible values for k are the divisors of 105:
{1,3,5,7,15,21,35,105}

2) Using the constraint on the redundancy rate we find the inequality n <k/(0.82).
This yields the possible values for n for a value of k:

k1357152135105
n1337151531127

We see that there exists, perhaps, a natural cyclic code of length 127. We examine
the classes of Z/(127). We will look for a joining of these classes, with a cardinal
127 — 105 = 22. The cardinals of classes are divisors of 7 (because 127 = 27 — 1).
There are, thus, cardinal classes 1, 7. Since 22 = 3 x 7 + 1, we conclude that there
exists a code whose roots contain {c, o, a®, a®}.

The apparent distance of the code is 8. It thus corrects 3 errors per codeword. If
we approximate the member on the right of the formula linking p,. to p. by (t + 1) x
((til)) x p!tl x (1 — pe)"~t~1, we must verify the inequality:

(t+1) x (?) s pt x (1= pe)"~t <127 x 1075,

We obtain: (4) x ("27) x 10716 x (0.9999)!2, to compare with 127 x 107°. We
also have: 4.084 x 10° to compare with 127 x 1075, It is acceptable, therefore there
exists a natural cyclic code that satisfies the required constraints.

2.4.4.6. How should we look for a truncated cyclic code?

We conduct the same study as before, but we allow ourselves to truncate the con-
sidered codes, which yields a greater choice.
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2.4.5. Applications of cyclic codes

Since the beginning of 1970s many applications of error correcting codes have
been introduced. Let us cite a few.

— transmissions of images by remote spacecrafts,
— satellite transmissions,

— underwater transmissions,

— optical discs,

— Hubble,

— bar-codes,

— computer memory,

— mobiles,

— CD readers,

— cryptography.

2.5. Electronic circuits

The implementation of error correction on board a satellite, a remote spacecraft, in
computer memory, on optical or magnetic discs, in CD readers, is carried using elec-
tronic circuits. These circuits primarily use shift registers, carrying out multiplications
or divisions of polynomials with coefficients in Fy or Fy-.

In this section, circuits are drawn without taking traditional standards into account,
as far as logical gates and oscillation are concerned. We will not represent connections
with the clock.

2.5.1. Basic gates for error correcting codes

There is the flip-flop, represented as follows, which contains a binary value. This
flip-flop is under the control of a clock. With each beat (or signal) of this clock the
flip-flop transmits the value that it contained and receives the value presented at input.
A flip-flop has an input and an output (see Figure 2.2).

Input I:I
Output

Figure 2.2. Flip-flop (or oscillation)

There are also logical gates, “OR”, “AND”, “exclusive OR” represented as follows
(see Figure 2.3).
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R

—
» OR ——»
-l AND——

——» NOT ——»

Figure 2.3. Logical gates

These logical gates are not under the control of the clock.

If two signals follow different sets of logical gates, the difference in propagation
time is one of the limitations of certain algorithms.

In transmissions binary vectors often represent binary polynomials. These always
circulate from the coefficient with the highest degree to the constant coefficient. When
a polynomial enters a register it enters starting with the monomial coefficient of the
highest degree. For example, if we take the polynomial 1 + X + X% 4+ X7 the set of
binary values associated to it is 11001001, and the first appearing at the input of the
register will be the coefficient on the right.

2.5.2. Shift registers

A shift register (Figure 2.4) is a succession of flip-flops connected to each other in
sequence. Such a register, in general, has one input and one output.

e B B e s e B o

Figure 2.4. Shift register

2.5.3. Circuits for the correct codes

From shift registers we construct increasingly complex circuits, used in encoders
and decoders.

2.5.3.1. Divisors

Such a circuit has an input and sometimes also an output. It divides the input by
the polynomial corresponding to the feedback connections.
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To a binary polynomial of degree n, p(X) = po+p1 X +-- - +p, X™ we associate
a feedback register formed by n flip-flops (or oscillator), modulo 2 adders (with 2 or
more inputs), and a feedback reproducing the polynomial coefficients. For example, if
p(X) =1+ X2+ X3+ X6 then the register is (Figure 2.5):

Input ‘Q‘D—D—g Y I:I I:I I:I
B—D—é Output

Figure 2.5. Divisor

PROPOSITION 2.53. Let there be a register with shifts with connections that cor-
respond to an irreducible polynomial p(X). Let us suppose that this register turns
autonomous (i.e. without input), and that the initial contents are not zero. A shift cor-
responds to the multiplication by X in the field F2[X]/(p(X)).

Proof. The register with shifts in fact translates into the inequality:
Po +p1X +o 4+ pn—an_l = ann

which is equivalent to calculating modulo p(X). Since a shift is equivalent to mul-
tiplying the contents of the register by X, the register with feedback multiplies the
contents of the register by X modulo p(X). O
2.5.3.2. Multipliers

The following circuit R in Figure 2.6 multiplies the entry by the polynomial asso-
ciated to connections. If we input 1, the contents of R are equal to the polynomial of
connections, i.e. 1 + X + X°.

T—D—éﬂ Output
Input -

Figure 2.6. Multiplier

2.5.3.3. Multiplier-divisors

The following circuit in Figure 2.7 multiplies the input by the polynomial of the
lower connections, and at the same time calculates the modulo result of the polynomial
of the upper connections.

2.5.3.4. Encoder (systematic coding)

It is a particular case of the multiplier-divisors. For a systematic coding we multi-
ply the information polynomial (at input) by X deg9(X),
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OOt 0e0 O O Do

Figure 2.7. Dividing multiplier

VA A

Figure 2.8. Encoder

[

Input

Input

2.5.3.5. Inverse calculation in IF,

Let us consider the field F, = F3[X]/(p(X)), where p(X) is an irreducible prim-
itive (meaning that X is a primitive of the field). Let a(X') be a non-zero element of
this field. We can express a(X) as a power of X : a(X) = X°. Its reverse, let us say
b(X), is equal to X9~ 1=% If we multiply a(X) by X9~1~¢ we then find 1. The cal-
culation of the inverse of a(X) can be carried out using the registers drawn hereunder
in Figure 2.9. In this example they calculate the inverse of 1 + X + X2 + X3 in the
field Fo[X]/(1 + X3 + X°).

S S Mo N iy S )

Figure 2.9. Calculation of the inverse

2.5.3.6. Hsiao decoder

This code is well adapted to computer read-write memories thanks to its decoding
speed.

As a parity check matrix of the Hsiao code we take the following matrix M:

10001110
01001101
00101011
00010111

We wish to transmit the following word m = (i, 1,42, 3,70, 71,72, 73), Where
the 7; are information bits, and r are the redundancy symbols. With the receiver we
calculate the syndromes (o, s1, S2, $3), obtaining the product M x m7T (i is on top).
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The set which makes it possible to find the syndromes is shown in Figure 2.10.
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Figure 2.10. Hsiao decoder

2.5.3.7. Meggitt decoder (natural code)

The chosen code is Hamming (7, 4, 3) with the generator g(X) = 1+ X + X 3.
This set up (see Figure 2.11) corrects bursts with a length of 1, (i.e. isolated errors).

R 0[]0 0 oo fo]
] R1

A

D
R ‘
| NS
o}&{o —sowd{o}-{o}{oHo oo o
R2 4 R3
OR NOT

Figure 2.11. Meggitt decoder (natural code)
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2.5.3.8. Meggitt decoder (shortened code)

The chosen code is the Hamming code, shortened by one position, i.e. the (6,3,3)
code. Let us note that we “enter” the register of division by g(X) by pre-multiplying
by X 1*deg9(X) — X4 which is equal to X + X2 modulo g(X).

This set up (see Figure 2.12) corrects bursts with a length of 1 for each word of
length 6.

[nput

AND

()
fan—

) oo [ o} o} o} [} o
R?2 f R3

>
L ¥ OrR—IeNOT

Figure 2.12. Meggitt decoder (truncated code)

2.5.4. Polynomial representation and representation to the power of a primitive rep-
resentation for a field

We take a register whose feedback is an irreducible primitive of the degree n. We
take v = X as the primitive element. We initialize the register with (1,0,0,...,0) and
make it turn 2™ — 2 times. We obtain two representations of the o field, one of them
polynomial (it is the sequence of the register’s contents), the other is the sequence of
the powers of the primitive a (it is the sequence of clock signal numbers).

In the following example (Figure 2.13) we give two representations of the non-
zero elements of 16 represented by Fo[X]/(1 + X + X4). The primitive selected is
X. The column on the right provides the powers of X corresponding to the polynomial
writing given on the left.
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VLA ][
Hpo oo o] o
0 1 0 0 1
0 0 1 0 2
0 0 0 1 3
1 1 0 0 4
0 1 1 0 5
0 0 1 1 6
1 1 0 1 7
1 0 1 0 8
0 1 0 1 9
1 1 1 0 10
0 1 1 1 11
1 1 1 1 12
1 0 1 1 13
1 0 0 1 14

Figure 2.13. Representation of the elements of the field

2.6. Decoding of cyclic codes
2.6.1. Meggitt decoding (trapping of bursts)

We can trap bursts with cyclic codes, but the Fire cyclic codes are particularly well
adapted to this kind of decoding. H. Imai has generalized this technique to the case of
Fire codes with two dimensions. We will, therefore, describe the trapping of bursts by
means of a binary Fire code, of length n and generator g(X).

We will suppose that the burst b(X ) has a maximum corrigible length b. The other
cases are directly derive from here. It is thus represented as a polynomial of the b — 1
degree, and with a constant 1.

2.6.1.1. The principle of trapping of bursts

The received word r(X) is equal to the transmitted word ¢(X), to which a burst
X'b(X) has been added during transmission. Simultaneously with calculating the
remainder of r(X) in an associated divisor register g(X), R, we memorize r(X)
in a register with shifts, R of length n. We wish to achieve that the burst also be at the
output of the register associated with g(X') when it is at the output of the register with
shifts. By simple addition we then eliminate the burst. The two following propositions
bring the solution.

2.6.1.2. Trapping in the case of natural Fire codes

The following proposition concerns the solution in the case of natural Fire codes.
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PROPOSITION 2.54. Pre-multiplying the input of Rg by Xdee9(X) ye will obtain the
burst at the output of R and the output of Ry simultaneously.

Proof. Let 7(X) be the remainder of the division of the burst X'b(X) by g(X).
After [n — (i + b)] clock beats the burst became X"~ °bh(X) (which is of the n — 1
degree). It is wedged against the register with shifts R. In the register associated to
g(X) we have b(X) after n — i signals. In this register there is the wedged burst after
[n— (i+b) +deg g(X)] clock beats. By pre-multiplying the input of R, by X¢&9(X)
we can correct the burst. ]

2.6.1.3. Trapping in the case of shortened Fire codes

In general, Fire codes have a very large length. We are thus led to shorten them.
We passes from n to a shortened length n'. The register R is shortened by a certain
number of oscillations. The Meggitt decoding adapts well to this truncation.

PROPOSITION 2.55. By pre-multiplying the input of Ry by X/ +deg g(X) e il
have the burst at the output of R and at the output of R, at the same time.

Proof. After [n’ — (i + b)] signals the burst became X™ ~b(X). It is wedged in R. In
R, we have b(X) after n — ¢ signals. In this register we thus have the burst wedged
after [n — (i + b) + deg g(X)] clock signals. To trap the burst we pre-multiply the
input of R, by X"~ +degg(X), O

2.6.2. Decoding by the DFT

The Fourier transform is used in many fields, such as signal processing. The dis-
crete Fourier transform (DFT) is used in finite bodies, for certain decodings.
2.6.2.1. Definition of the DFT

We consider the algebraic equation A = F,[X]/(X™ — 1)(¢ = 2"), odd n,
where [, is the smallest extension field of Iy containing the n*™® roots of unity (see
section 2.3.6). Let 3 be a primitive n'" root of unity. For all a(X) of A we pose
T(a(X)) = 1) a(#) X which defines the DFT, noted here 7.

2.6.2.2. Some properties of the DFT

The five following propositions express certain properties of the discrete Fourier
transform.

PROPOSITION 2.56. T is a bijective linear application of A in A.



90 Channel Coding in Communication Networks

Proof. Let us prove that T is linear. We have directly:

n—1

> (a(B) +b(5")) X’ = T(a(X)) + T(b(X))

=0

T(a(X) + b(X))

Moreover:
T(Aa(X)) = AT(a(X)), for all X of F,

Let us prove that 7" is bijective. Since A is finite, it is enough to prove that T is
injective, i.e. its kernel is reduced to {0}. Let there be a(X) such that T'(a(X)) = 0.
Then a(X) admits as roots the n distinct elements 3°, 3%, 3%,..., 3"~ L. Since its
degree does not exceed n — 1, a(X ) must be zero (see proposition 2.10). (]

PROPOSITION 2.57. We have the two following properties:
1)T? =,
2)T* =id.

Proof. Indeed:
1) Let us pose a(X) = Z?;Ol a;X7. We have:

T*(a(X)) =T

S a(ﬁwxi]

=0

n—1 n—1

= a(B) ) X

i=0 §=0

= Z [Za(mﬁﬂ] X0

i

i k=0

n—1
- ZXJ' Z ay [Z ymm]
j k

=0

However, Y7 " 3?0 +%) equals 0 unless k = —j (see proposition 2.22). We thus
also have T?(a(X)) = > XJa=i  which is equal to 7(a(X));
2) The proof of the second property is straightforward. O



Block Codes 91

Now we provide A with a second product, noted *, called component by compo-
nent product, defined as follows. For a(X) = 7" a; X; and b(X) = 321 b; X'
we pose:

n—1
a(X) #b(X) =Y ab X’
=0

It is easily proven that A provided with the two laws + and * is a ring.

PROPOSITION 2.58. T has the two following properties:
1) T(a(X)b(X)) = T(a(X)) x T(b(X)),
2) T(a(X) * b(X)) = T(a(X)T(B(X))

Proof. Indeed:

1) the proof of the first property is straightforward;

2) since T is surjective we have a(X) = T'(a’'(X)) and b(X) = T (V' (X)), for
certain o’ (X) and b'(X). We can write:

T(a(X) xb(X)) = T(T(a'(X)) + T(H'(X)))
(

But we also have o/ (X) = 7(T(a(X))) and b’ (X) = 7(T'(b(X))). Thus T'(a(X )*
b(X)) = T(a(X))T(b(X)), because 72 = id. O

PROPOSITION 2.59. Let s(X) € A. Let us note Wy (s) its Hamming weight:

1) the set E of the polynomials L(X) such that s(X) « T(L(X)) = 0 is an ideal
of A generated by a polynomial noted Lg(X);

2) the degree of Ls(X) is Wy (s).

Proof. Indeed:

D if s(X) « T(L1(X)) = s(X) * T(L2(X)) = 0, then s(X) * T(L1(X) +
L2(X)) = 0. Moreover, s(X) « T(X L1 (X)) = 0, which proves this point;

2)if s(X) * T(L(X)) = 0 then L(3") = 0 as long as s; is a non-zero coefficient
of s(X). The polynomial L¢(X) is thus that which has as roots 3' such that s; is a
non-zero coefficient of s(X). Its degree is thus the Hamming weight of s(X). t

PROPOSITION 2.60. Let s(X) € A and S(X) = T(s(X)). A polynomial L(X)
verifies (S(X), X'L(X)) =0,i =0,1,...,n— 1, if s(X) * T(L(X)) = 0.
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Proof. By assumption we deduce Z"il< S(X), X'L(X))X? = 0, ie. S(X)r
(L(X)) = 0 (see proof of proposition 2.29), or T'(S (X))TQ(L(X)) = 0. We deduce
from it:

(T s(X)T?(L(X)))

from where, finally, s(X) « T(L(X)) = 0. O

2.6.2.3. Decoding using the DFT

Let there be a cyclic code C, which we can suppose to be binary, length n. Let 5 a
primitive nt" root of unity. Let us suppose that the set of the roots of code contain the
sequence of powers 3, 32, 33, ..., 3!, which is equivalent to saying that the code is
at corrector.

A word ¢(X) of the code is transmitted. The received word (X)) is equal to
¢(X) + e(X) where e(X) is the error word. We calculate the syndromes of r(X),
i.e. a part of the Fourier transform of r(X) over the elements 3, 32, ..., 3. Since
c(B") = 0fori =0,1,2,...,2t we calculate, in fact, a part of the Fourier transform
of e(X). T(e(X)) is a polynomial whose coefficients from X to X 2! we know, which
are the respective syndromes S1, Sa, . .., S2:. We pose S(X) = T'(e(X)). Since we
want to calculate e(X ), we will seek the error positions. We are thus looking for the
polynomial L.(X), of minimum degree, no more that ¢.

PROPOSITION 2.61. Let us consider the following syndrome matrix:

S1 82 - S
Sy 83 -+ Spyo
St Seq1 - Sae

There exists a linear combination of the r first columns (starting from the left)
which is zero, if Lo.(X) is of the r degree.

Proof. If there exists such a zero linear combination, let us say m1.51 + moSo + - -+ +
My_1Sr—1+ S, = 0 then the polynomial m{ +maX +---+m,_1 X"~ + X" is the
polynomial of the lowest degree, which is orthogonal to S(X) in the corresponding
positions. It is thus the locator of e(X). The reverse is direct. ]

If the code is binary as we have supposed, it is enough to look for the roots of
L.(X). Otherwise, we calculate the complete polynomial S(X') using the relation of
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orthogonality (S(X), X'L.(X)) = 0, then we calculate T(S(X)) that is equal to
7(e(X)). Finally, we recover the error polynomial e(X), and perform the correction.

We propose the following decoding algorithm, for a binary or non-binary code of
length n:

1) calculate the 2t syndromes r(3),7(3%),...,7(8%*), which yield the 2¢ coeffi-
cients Si, ..., Sa of S(X);

2) look for the kernel (straight) of the matrix:

Sl SQ Stl
So S5 ... S
St St+1 ce Sgt

More precisely, we will look for the first zero combination of columns starting
from the left. Only one vector appears then in the kernel, and it is the vector of the
coefficients of L.(X);

3) calculate S(X) completely finding all the scalar products (S(X), X*L.(X)).
We obtain 7(e(X)) = T(S(X));

4) calculate the error polynomial e(X) using e(X) = 7(7(e(X)));

5) correct the received word by cutting off e(X) from it.

Let us give an example of decoding using the DFT.

EXAMPLE 2.37. Let there be a code of length n = 15, among the roots of which

we have {a,a?, a3, a*}, where « is a primitive of the Fy4 field represented by

Fo[X]/(1 + X + X*). The code thus corrects 2 errors.

We suppose that the error word is e(X) = X + X7. We have S; = a+a” = a'4,
Sy = a3, 53 = a?, Sy = a'l. We l