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Homage to Alain Glavieux 

To accomplish the sad duty of paying homage to Alain Glavieux, I have referred 
to his biography as much as my own memories. Two points of this biography struck 
me, although I had hardly paid attention to them until now. I first noted that Alain 
Glavieux, born in 1949, is the exact contemporary of information theory, since it 
was based on the articles of Shannon in 1948 and 1949. I also noted that his first 
research at the Ecole Nationale Supérieure de Télécommunications de Bretagne 
(ENST Brittany) related to underwater acoustic communications. 

To work on these communications, first of all, meant to be interested in concrete 
local problems linked to the maritime vocation of the town of Brest. It also meant 
daring to face extreme difficulties because the marine environment is one of the 
worst transmission channels there is. Carrying out effective underwater 
communications can be conceived only by associating multiple functions (coding, 
modulation, equalizing, synchronizing) that do not only have to be optimized 
separately, but must be conceived together. This experience, along with the need for 
general solutions, which are the only effective ones in overcoming such difficulties, 
has prepared him, I believe, for the masterpiece of the invention of turbocodes, born 
from his very fruitful collaboration with Claude Berrou. Better still, no one could 
understand better than him that iterative decoding, the principal innovation 
introduced apart from the actual structure of the turbocodes, implies a more general 
principle of exchange of information between elements with different functions but 
converging towards the same goal. Admittedly, the idea of dealing with problems of 
reception using values representing the reliability of symbols and thus lending 
themselves to such an exchange, instead of simple decisions, had already been 
exploited by some researchers, like Joachim Hagenauer and myself, but the 
invention of turbocodes brought the most beautiful illustration conceivable, paving 
the way for a multitude of applications. 
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Shannon had shown in 1948 that there exists a bound for the possible 
information flow in the presence of noise, the capacity of the channel, but had not 
clarified the means of dealing with it. If the asymptotic nature of the Shannon 
theorem did not leave any hope to effectively reach the capacity, the attempts to 
approach it had remained in vain despite the efforts of thousands of researchers. 
Turbocodes finally succeeded 45 years after the statement of the theorem. They 
improved the best performances by almost 3 decibels. What would we have read in 
the newspapers if an athlete had broken the 100 meters record by running it in 5 
seconds! If this development remained almost unknown to the general public, it 
resounded like a thunder clap in the community of information and coding 
theoreticians. 

This result and the method that led to it called into question well anchored 
practices and half-truths, which time had solidified into dogmas. They revealed that 
unimportant crude restrictions had in fact excluded the best codes from the field of 
research. The inventors of turbocodes looked again at the basic problem in the spirit 
of Shannon himself, not trying to satisfy the posed a priori criterion to maximize the 
minimal distance of the code, but to optimize its real performances. To imitate 
random coding, a process that is optimal, but unrealizable in practice that Shannon 
had employed to demonstrate the theorem, Berrou and Glavieux introduced an easily 
controllable share of risk into coding in the form of an interleaving, whose inversion 
did not present any difficulty. The turbocodes scheme is remarkably simple and their 
realization is easy using currently available means, but it should be noted that they 
would have been inconceivable without the immense progress of the technology of 
semi-conductors and its corollary, the availability of computers. In fact, computer 
simulations made it possible to choose the best options and to succeed, at the end of 
an unprecedented experimental study into the subject, with the first turbocode. Its 
announced performances were accommodated with an incredulous smile by experts, 
before they realized that they could easily reproduce and verify them. The shock that 
resulted from it obliged everyone to revise the very manner of conceiving and 
analyzing codes. The ways of thinking and the methods were completely renewed, 
as testified by the true metamorphosis of the literature in the field caused by this 
invention. 

It was certainly not easy to invent turbocodes. From a human point of view it 
was perhaps more difficult still to have invented them. How, indeed, could he handle 
the authority conferred by the abrupt celebrity thus acquired? Alain Glavieux was 
absolutely faithful to himself and very respectful of others. He preferred efficiency 
to glamour. He was very conscious of the responsibilities arising from this authority 
and avoided the peremptory declarations on the orientation of research, knowing 
that, set into dogmas, they were also likely to become blocked. He thus used this 
authority with the greatest prudence and, just as at the start when he had put his 
engineering talent to the service of people and of regional developments, he devoted 
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himself to employ it to the benefit of the students of the ENST Brittany and of the 
local economy, in particular, by managing the relations of the school with 
companies. He particularly devoted himself to help incipient companies, schooling 
them in “seedbed”. He was also concerned with making science and the technology 
of communication known, as testified, for example, by his role as the main editor 
this book. Some of these tasks entailed not very exciting administrative aspects. 
Others would have used their prestige to avoid them, but he fully accepted his 
responsibilities. In spite of the serious disease which was going to overpower him, 
he devoted himself to them until the very last effort. 

The untimely death of Alain Glavieux leaves an enormous vacuum. Fruits of an 
exemplary friendship with Claude Berrou, turbocodes definitively marked the theory 
and practice of communications, with all the scientific, economic, social and human 
consequences that it implies. Among those, the experimental sanction brought to 
information theory opens the way for its application to natural sciences. The name of 
Alain Glavieux will remain attached to a work with extraordinary implications in the 
future, which, alas, offers his close relations only meager consolation. 
 
 

Gérard Battail 
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Chapter 1

Information Theory

1.1. Introduction: the Shannon paradigm

The very title of this book is borrowed from the information theory vocabulary,
and, quite naturally, it is an outline of this theory that will serve as an introduction.
The subject of information theory is the scientific study of communications. To this
end it defines a quantitative measurement of the communicated content, i.e. informa-
tion, and deals with two operations essential for communication techniques: source
coding and channel encoding. Its main results are two fundamental theorems related
to each of these operations. The possibility of channel encoding itself has been essen-
tially revealed by information theory. That shows, to which point a brief summary of
this theory is essential for its introduction. Apart from some capital knowledge of its
possibilities and limits, the theory has, however, hardly contributed to the invention
of means of implementation: whereas it is the necessary basis for the understanding
of channel encoding, it by no means suffices for its description. The reader interested
in information theory, but requiring more information than is provided in this brief
introduction, may refer to [1], which also contains broader bibliographical references.

To start with, we will comment on the model of a communication, known as
the Shannon paradigm after the American engineer and mathematician Claude E.
Shannon, born in 1916, who set down the foundations for information theory and
established the principal results [2], in particular, two fundamental theorems. This
model is represented in Figure 1.1. A source generates a message directed to a recipi-
ent. The source and the recipient are two separated, and therefore distant, entities, but
between them there exists a channel, which, on the one hand, is the medium of the
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2 Channel Coding in Communication Networks

propagation phenomena, in the sense that an excitation of its receptor by the source
leads to a response observable by the recipient at the exit, and, on the other hand, of
the disturbance phenomena. Due to the latter, the excitation applied is not enough to
determine with certainty the response of the channel. The recipient cannot perceive
the message transmitted other than by observing the response of the channel.

Source Channel Recipient� �

�

Disturbances

Message

Figure 1.1. Fundamental communication diagram: Shannon paradigm

The source, is, for example, a person who speaks and the recipient is a person
who listens, the channel being the surrounding air, or two telephone sets connected
by a line; or the source may well be a person who writes, with the recipient being a
reader and the channel being a sheet of paper1, unless the script writer and the reader
are connected via a conducting circuit using telegraphic equipment. The diagram in
Figure 1.1 applies to a large variety of sources, channels and recipients. The slightly
unusual word “paradigm” indicates the general model of a certain structure, indepen-
dently of the interchangeable objects, whose relations it describes (for example in
grammar). This diagram was introduced by Shannon in 1948, in a slightly different
form, at the beginning of his fundamental article [2]. As banal as it may appear to us
now, this simple identification of partners was a prerequisite for the development of
the theory.

The principal property of the channel considered in information theory is the pres-
ence of disturbances that degrade the transmitted message. If we are surprised by the
importance given to phenomena, which often pass unnoticed in everyday life, it should
not be forgotten that the observation of the communication channel response, neces-
sary to perceive the message, is a physical measurement which can only be made with
limited precision. The reasons limiting the precision of measurements are numerous
and certain precautions make it possible to improve these. However, the omnipresence
of thermal noise is enough to justify the central role given to disturbances. One of the
essential conclusions of information theory, as we will see, identifies disturbances
as the factor which in the final analysis limits the possibilities of communication.
Neglecting disturbances would also lead to paradoxes.

1. The Shannon paradigm in fact applies to the recording of a message as well as to its trans-
mission, that is, in the case where the source and the recipient are separated in time and not only
in space, as we have supposed up until now.
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We will note that the distinction between a useful message and a disturbance is
entirely governed by the finality of the recipient. For example, the sun is a source
of parasitic radiation for a satellite communication system. However, for a radio-
astronomer who studies the electromagnetic radiation of the sun, it is the signal of
the satellite which disturbs his observation. In fact, it is convenient to locate in the
“source” block of Shannon’s scheme the events concerning the recipient, whereas the
disturbance events are located in the “channel” block.

Hereafter we will consider only a restricted category of sources, where each event
consists of the emission of a physical signal expressing the choice of one element,
known as a symbol, in a certain finite abstract set known as an alphabet. It could be a
set of decimal or binary digits, as well as an alphabet in the usual sense: Latin, Greek
or Arabic, etc. The message generated by the source consists of a sequence of symbols
and is then known as “digital”. In the simplest case the successive choices of a symbol
are independent and the source is said to be “without memory”. In information theory
we are not interested in the actual signals that represent symbols. Instead we consider
mathematical operations with symbols whose results also belong to a finite alphabet
physically represented in the same way. The operation, which assigns physical signals
to abstract symbols, stems from modulation techniques.

The restriction to numerical sources is chiefly interesting because it makes it pos-
sible to build a simple information theory, whereas considering sources known as
“analog” where the occurring events are represented by continuous values involves
fundamental mathematical difficulties that at the same time complicate and weaken
the theoretical postulates. Moreover, this restriction is much weaker than it appears,
since digitalization techniques based on sampling and quantification operations allow
an approximate digital representation, which may be tuned as finely as we wish, of
signals generated by an analog source. All modern sound (word, music) and image
processing in fact resorts to an analog/digital conversion, whether it is a question of
communication or recording. The part of the information theory dealing with analog
sources and their approximate conversion into digital sources is called distortion or
rate theory. The reader interested in this subject may refer to references [3-5].

To clarify the subject of information theory and to introduce its fundamental con-
cepts, before even considering quantitative measurement of information, a few obser-
vations on the Shannon paradigm will be useful. Let us suppose the source, channel
and recipient to be unspecified: nothing ensures a priori the compatibility between
the source and the channel, on the one hand, and the channel and the recipient, on the
other hand. For example, in radiotelephony the source and the recipient are human
but the immaterial channel symbolizes the propagation of electromagnetic waves. It is
therefore necessary to supplement the diagram in Figure 1.1 with blocks representing
the equipment necessary for the technical functions of conversion and adaptation. We
thus obtain the diagram in Figure 1.2a. It is merely a variation of Figure 1.1, since the
set formed by the source and the transmitting equipment, on the one hand, and the set
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of the receiving equipment and the recipient, on the other hand, may be interpreted as
a new source-recipient pair adapted to the initial channel (Figure 1.2b). We can also
consider the set of the transmitting equipment, the channel and the receiving equip-
ment to constitute a new channel, adapted to the source-recipient pair provided ini-
tially (Figure 1.2c); thus, in the preceding examples, we have regarded a telephonic or
telegraphic circuit as the channel, consisting in an transmitter, a transmission medium
and a receiver.

S AE C AR D� � � � a)

S AE C AR D� � � � b)

New source New recipient

S AE C AR D� � � � c)

New channel

S AE1 AE2
A

Standardized source Standardized channel Standardized recipient

C AR2 AR1
B

D� � � � � � d)

Figure 1.2. Variants of the Shannon paradigm.
S means “source”, C, “channel” and D “recipient”.

AE means “transmitter” and AR “receiver”

A more productive point of view, in fact, consists of dividing each transmitter
and receiver into two blocks: one particular to the source (or the recipient), the other
adapted to the channel input (or output). This diagram has the advantage of making it
possible to standardize the characteristics of the blocks in Figure 1.2 thus redefined:
new source aside from point A in Figure 1.2d; new channel between points A and
B; new recipient beyond B. The engineering problems may then be summarized as
separately designing the pairs of adaptation blocks noted AE1 and AR1 in the figure,
on the one hand, and AE2 and AR2 on the other hand. We will not specify what the
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mentioned standardization consists of until after having introduced the concepts of
source and channel coding.

Generally speaking we are free to redefine the borders of the blocks in Figure 1.2
for the purposes of analysis; the section of any circuit connecting a source to a recip-
ient in two points – such that the origin of the message useful for the recipient is on
the left of the figure, and all the links where disturbances are present are in its central
part – defines a new source-channel-recipient triplet.

We will often have to resort to a schematization of the blocks in Figure 1.2, which
sometimes may be very simplistic. However, the conclusions drawn will be general
enough to be applicable to the majority of concrete situations. Indeed, these simplifica-
tions will most often be necessary only to make certain fundamental values calculable,
whose existence remains guaranteed under relatively broad assumptions. Moreover,
even if these assumptions are not exactly satisfied (it is often difficult, even impossi-
ble, to achieve experimental certainty that they are), the solutions of communication
problems obtained in the form of device structures or algorithms generally remain
usable, perhaps at the cost of losing the exact optimality afforded by the theory when
the corresponding assumptions are satisfied.

1.2. Principal coding functions

The message transmitted by the source can be replaced by any other, provided that
it is deduced from it in a certain and reversible manner. Then there is neither creation
nor destruction of information, and information remains invariant with respect to the
set of messages that can be used to communicate it. Since it is possible to assign
messages with various characteristics to the same information, transformations of an
initial message make it possible to equip it with desirable properties a priori. We will
now examine what these properties are, and what these transformations, known as
coding procedures, consist of and how, in particular, to carry out the standardization
of the “source”, “channel” and “recipient” blocks introduced above.

We may a priori envisage transforming a digital message by source coding, chan-
nel coding and cryptography.

1.2.1. Source coding

Source coding aims to achieve maximum concision. Using a channel is more
expensive the longer the message is, “cost” being taken here to mean very generally
the requirement of limited resources, such as time, power or bandwidth. In order to
decrease this cost, coding can, thus, aim at substituting the message transmitted by the
source by the shortest possible message. It is required that the coding be reversible,
in the sense that the initial message can be restored exactly on the basis of its result.
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Let us take an example to illustrate the actual possibility that coding makes the
message more concise. Let us suppose that the message transmitted by the source is
binary and that the successive symbols are selected independently of each other with
very unequal probabilities, for example, Pr(0) = 0.99 and Pr(1) = 0.01. We can
transform this message by counting the number of zeros between two successive “1”
(supposing that the message is preceded by a fictional “1”) and, if it is lower than
255 = 28 − 1 (for example), we can represent this number by a word with 8 binary
digits. We also agree on a means of representing longer sequences of zeros by several
words with 8 binary digits. We thus replace on average 100 initial symbols by 8.67
coded symbols, that is, a saving factor of approximately 11.5 [1, p. 12].

1.2.2. Channel coding

The goal of channel coding is completely different: to protect the message against
channel noise. We insist on the need for taking channel noise into account to the point
of making their existence its specific property. If the result of this noise is a symbol
error probability incompatible with the specified restitution quality, we propose to
transform the initial message by such a coding that it increases transmission security
in the presence of noise. The theory does not even exclude the extreme case where
specified quality is the total absence of errors.

The actual possibility of protecting messages against channel noise is not obvious.
This protection will be the subject of this entire book; here we will provide a very
simple example of it, which is only intended to illustrate the possibility.

Let us consider a channel binary at its input and output, where the probabilities of
an output symbol conditioned by an input symbol, known as “transition”, are constant
(this channel is stationary), and where the probability that the output symbol differs
from the input symbol, i.e. of an error, is the same regardless of the input symbol
(it is symmetric). It is the binary symmetric channel represented in Figure 1.3. The
probability of error there is, for example, p = 10−3.
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Figure 1.3. Diagram of a binary symmetric channel with a probability of error p
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We wish to use this channel to transmit a message with a probability of error per
binary symbol lower than 3 · 10−6. This result can be achieved by repeating each
symbol of the message 3 times, the decision taken at the receiver end being based on
a majority. Indeed, the probability pe of this decision being erroneous is equal to the
probability of 2 or 3 errors out of the 3 received symbols, or:

pe = 3p2(1− p) + p3 = 3p2 − 2p3 = 2, 998 · 10−6

A lower probability of error would have been obtained by repeating each symbol
5, 7, etc. times, the decision rule remaining the majority vote.

This example simultaneously shows the possibility of coding protecting the mes-
sage against noise and the cost that it entails: a lengthening of the message. It is, how-
ever, a rudimentary process. Comparable results could have been obtained at a much
lower redundancy cost making use of more elaborated codes called “error correcting
codes”, to which a large part of this book will be dedicated. However, it is gener-
ally true that protection against noise is achieved only by introducing redundancy, as
demonstrated in section 1.5.3.

The objectives of source coding and channel coding thus appear to be incompat-
ible. They are even contradictory, since source coding increases the vulnerability to
errors while improving concision. Thus, in our example of source coding an error in
one of the binary digits of the coded message would cause a shift of the entire sequence
of the restored message, a much more serious error since it involves many symbols.
This simple observation shows that the reduction of redundancy and the reduction of
vulnerability to errors cannot be considered independently of each other in the design
of a communications chain.

1.2.3. Cryptography

Let us note, finally, that a coding procedure can have yet another function, in the-
ory without affecting redundancy or vulnerability to errors: ciphering the message,
i.e. making it unintelligible to anyone but its recipient, by operating a secret transfor-
mation that only he can reverse. Deciphering, i.e. the reconstruction of the message
by an indiscreet interceptor who does not know the “key” specifying the transforma-
tion making it possible to reverse it, must be difficult enough to amount to factual
impossibility. Other functions also involve cryptography, for example, providing the
message with properties making it possible to authenticate its origin (to identify the
source without ambiguity or error), or to render any deterioration of the message by
obliteration, insertion or substitution of symbols detectable. Generally speaking, it is
a question of protecting the message against indiscretions or fraudulent deteriorations.
Cryptography constitutes a discipline in its own right, but this will be outside the scope
of this book.
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1.2.4. Standardization of the Shannon diagram blocks

It is now possible for us to specify what the standardization of blocks in Figure 1.2
presented above consists of, still restricting ourselves to a digital source. The message
coming from the source initially undergoes source coding, ideally with a message
deprived of redundancy as a result, i.e. where successive symbols are independent and
where, moreover, all the symbols of the alphabet appear with an equal probability.
The coding operation realized in this manner constitutes an adaptation only to the
characteristics of the source. The result of this coding is very susceptible to noise,
since each of its symbols is essential to the integrity of information. It is therefore
necessary to carry out channel coding making the message emerging from the source
encoder (ideally) invulnerable to channel noise, which necessarily implies reintroduc-
ing redundancy.

We can suppose that source coding has been carried out in an ideal fashion; the
only role of channel coding is then to protect a message without redundancy from
channel noise. If the message being coded in this way is not completely rid of redun-
dancy, the protection obtained can only increase.

S
Ideal
source
encoder

Ideal
channel
encoder

Ideal
channel
decoder

Ideal
source
decoder

A

Standardized source Standardized channel Standardized recipient
without redundancy without errors without redundancy

C
B

D� � � � � �

Figure 1.4. Standardization of the “source”, “channel” and “recipient”
blocks of the Shannon diagram. S, C and D indicate
the initial source, channel and recipient respectively

We can then redraw Figure 1.2d as in Figure 1.4, where the standardized source
generates a message without redundancy and where the standardized channel contains
no errors.

The procedure consisting of removing the redundancy of the initial message by
source coding, then reintroducing redundancy by channel coding can appear contra-
dictory, but the redundant initial source is not a priori adapted to the properties of
the channel, to which we connect it. Rather than globally conceiving coding systems
to adapt a particular source to a particular channel, the standardization that we have
just defined makes it possible to treat the source and the channel separately, and no
longer the source-channel pair. This standardization also has a secondary advantage:
the alphabet of messages at points A and B of Figure 1.4 is arbitrary. We can suppose
it to be binary, for example, i.e. the simplest possible, without significantly restricting
the generality.
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1.2.5. Fundamental theorems

The examples above suggest that coding operations can yield the following results:

– for source coding, a coded message deprived of redundancy, although the initial
message comes from a redundant source;

– for channel coding, a message restored without errors after decoding, although
the coded message is received through a disturbed channel.

These possibilities are affirmed by the fundamental theorems of the information
theory, under conditions which they specify. Their demonstration does not require clar-
ifying the means of reaching these results. Algorithms approximating optimal source
coding have been known for a long time; on the contrary, the means of approximating
the fundamental limits with regards to channel coding remain unknown in general,
although the recent invention of turbo-codes constitutes a very important step in this
direction [6].

The fundamental theorems concern the ultimate limits of coding techniques and
are expressed according to the values used for quantitative measurement of infor-
mation that we now have to introduce. In particular, we will define source entropy
and channel capacity. The fundamental theorems confer an operational value to these
items, which confirms their adequacy for transmission problems and clarifies their
significance.

1.3. Quantitative measurement of information

1.3.1. Principle

The description of transmitted messages, of their transformation into signals suit-
able for propagation, as well as of noise, belongs to signal theory. Messages and sig-
nals undergo transformations necessary for their transmission (in particular, various
forms of coding and modulation), but they are merely vehicles of a more fundamental
and more difficultly definable entity, invariant in these transformations: information.
The invariance of information with respect to messages and signals used as its support
implies that it is possible to choose from a set of equivalent messages representing
the same information those which a priori have certain desirable properties. We have
introduced in section 1.2 coding operations, in the various senses of this word.

We will not try now to define information, contenting ourselves to introduce its
quantitative measurement that the theory proposes, a measure, which was a necessary
condition of its development. We will briefly reconsider the difficult problem of its
definition in the comments to section 1.3.6, in particular, to stress that, for the theory,
information is dissociated from the meaning of messages. As in thermodynamics, the
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values considered are statistical in nature and the most important theorems establish
the existence of limits.

The obvious remark that the transmission of a message would be useless if it were
known by its recipient in advance leads to:

– treating a source of information as being the seat of random events whose
sequence constitutes the transmitted message;

– defining the quantity of information of this message as a measure of its unpre-
dictability, compared to its improbability.

1.3.2. Measurement of self-information

Let X be an event occurring with a certain probability p. We measure its uncer-
tainty by f(1/p), f(·) being a suitably selected increasing function. The quantity of
information associated with the event x is thus

h(x) = f(1/p).

To choose the function f(·) it is reasonable to admit that the quantity of informa-
tion brought by the joint occurrence of two independent events x1 and x2 is the sum
of the quantities of information carried separately by each one of them. We thus wish
to have:

h(x1, x2) = h(x1) + h(x2),

which implies for the function f(·):

f(1/p1p2) = f(1/p1) + f(1/p2),

where p1 and p2 are the probabilities of x1 and x2 occurring, respectively. Indeed, the
probability of joint occurrence of x1 and x2 is the product p1p2 of their probabilities.
The continuous function that associates the sum of functions having each of its terms
as an argument to an argument formed by a product is the logarithm function. We are
consequently led to choose:

h(x) = log(1/p) = − log(p). [1.1]

This choice also implies that h(x) = 0, if p = 1, so that a certain event brings
a zero amount of information, which conforms to the initial observation, upon which
quantitative measurement of information is based.

The logarithm function is defined only to the nearest positive factor determined by
the base of the logarithms, whose choice thus specifies the unit of information. The
usually selected base is 2 and the unit of information is then called the bit, an acronym
of binary digit. This term is widely employed, despite the regrettable confusion that
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it introduces between the unit of information and a binary digit which is neither nec-
essarily carrying information, nor, if it is, has information equal to the binary unit.
Following a proposal of the International Standards Organization (ISO), we prefer to
indicate the binary unit of information by shannon, in tribute to Shannon who intro-
duced it [2]. It will often be useless for us to specify hereafter the unit of information,
and we will then also leave unspecified the logarithms base.

1.3.3. Entropy of a source

When the source is hosting repetitive and stationary events, i.e. if its operation is
independent of the origin of time, we can define an average quantity of information
produced by this source and carried by the message that it transmits: its entropy.

We then model the operation of a digital source by the regular, periodic emis-
sion of a random variable X , for example, subject to a certain finite number n of
occurrences x1, x2, . . . , xn, with the corresponding probabilities p1, p2, . . . , pn, with∑n

i=1 pi = 1. In the simplest case, the successive occurrences of X , i.e. the choices
of symbol, are independent and the source is known as “without memory”. Rather
than considering the quantity of information carried by a particular occurrence, we
consider the average information, in the statistical sense, i.e. the value called entropy
defined by:

H(X)
�
=

n∑
i=1

pih(xi) = −
n∑

i=1

pi log(pi). [1.2]

If the successive occurrences of X are not independent, we define the entropy by
symbol of a stationary source by the limit:

H = lim
s→∞

1

s
Hs, [1.3]

with
Hs = −

∑
c

p(c) log p(c)

where c is any sequence of length s, which the source transmits with probability p(c).
The sum is calculated for all the possible sequences c. The stationarity of the source
suffices for the existence of the limit in [1.3].

The entropy defined by [1.2] has many properties, among which:

– it is positive or zero, zero only if one of the probabilities of occurrence is equal
to 1, which leads the others to zero and the random variable X reduced to a given
parameter;

– its maximum is reached when all the probabilities of occurrence are equal, there-
fore if pi = 1/n regardless of i;
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– it is convex ∩, i.e. the replacement of the initial probability distribution by a dis-
tribution where each probability is obtained by taking an average of the probabilities of
the initial distribution increases entropy (it remains unchanged only if it is maximum
initially).

NOTE.– A notation such as H(X), is convenient but abusive, since X is not a true
argument there. It is only used to identify the random variable X whose entropy is H ,
which, in fact, depends only on its probability distribution. This note applies through-
out the remainder of the book, every time a random variable appears as a pseudo-
argument of a information measure.

1.3.4. Mutual information measure

Up until now we have considered self-information, i.e. associated to an event or
a single random variable. It is often interesting to consider pairs of events or random
variables, in particular, those relating to channel input and output. In this case it is
necessary to measure the average quantity of information that the data of a message
received at the output of a channel brings to the message transmitted at the input. As
opposed to entropy, which relates only to the source, this value depends simultane-
ously on the source and the channel. We will see that it is symmetric in the sense that
it also measures the quantity of information which the data of the transmitted message
brings to the received message. For this reason it is called average mutual information
(often shortened to just “mutual information”), “information” already being here an
acronym for “quantity of information”. This value is different from the entropy of the
message at the output of the channel and is smaller than it, since, far from bringing
additional information, the channel can only degrade the message transmitted by the
source, which suffers there from random noise.

In the simplest case, the channel is without memory like the source, in the sense
that each output symbol depends only on an input symbol, itself independent of oth-
ers, if the source is without memory. It can thus be fully described by the probabil-
ities of output symbols conditioned to input symbols, referred to as transition prob-
abilities, which are constant for a stationary channel. Let X be the random variable
at the channel input, that is, represent the source symbols with possible occurrences
x1, x2, . . . , xn, and probabilities p1, p2, . . . , pn, and Y be the random variable at the
output of the same channel, having occurrences y1, y2, . . . , ym, m being an integer,
perhaps, different from n, with probabilities p1, p2, . . . , pn and transition probabili-

ties pij
�
= Pr(yj |xi), i.e.:

Pr(yj) =

n∑
i=1

Pr(xi, yj) =

n∑
i=1

pipij . [1.4]
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Then, the average mutual information is defined, coherently with the self-information
measured by entropy, as the statistical average of the logarithmic increase in the prob-
ability of X , which stems from the given Y , i.e. by:

I(X;Y )
�
=

n∑
i=1

m∑
j=1

Pr(xi, yj) log[Pr(xi | yj)/Pr(xi)], [1.5]

where Pr(xi, yj) is the joint probability of xi and yj , equal to Pr(xi, yj) = Pr(xi)
Pr(yj |xi) = pipij , while Pr(yj |xi) is the conditional probability of yj knowing xi

is realized, and Pr(xi | yj) is that of xi, knowing yj is realized. In the indicated form
this measurement of information appears dissymmetric in X and Y , but it suffices to
express in [1.5] Pr(xi | yj) according to Bayes’ rule:

Pr(xi, yj) = Pr(xi | yj) Pr(yj)

to obtain the symmetric expression

I(X;Y ) =
n∑

i=1

m∑
j=1

Pr(xi, yj) log[Pr(xi, yj)/Pr(xi) Pr(yj)], [1.6]

where Pr(xi) = pi and where Pr(yj) is given by [1.4].

The definition of average mutual information and its symmetry in X and Y means
that we can write:

I(X;Y ) = H(X)−H(X |Y ) = H(Y )−H(Y |X) [1.7]

= H(X) + H(Y )−H(X,Y ),

where H(X) and H(Y ) are the entropies of the random variables X and Y of channel
input and output, respectively, and H(X,Y ) is the joint entropy of X and Y , defined
by

H(X,Y )
�
= −

n∑
i=1

m∑
j=1

Pr(xi, yj) log Pr(xi, yj), [1.8]

while H(X |Y ) is the entropy of X conditioned to Y , defined by:

H(X |Y )
�
= −

n∑
i=1

m∑
j=1

Pr(xi, yj) log Pr(xi | yj), [1.9]

H(Y |X) being obtained by a simple exchange of X and Y in this definition. We will
note that in expression [1.9] the argument of the logarithm is different from its factor,
whereas it is identical to it in the definition [1.8] of joint entropy.
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We demonstrate that conditioning necessarily decreases entropy, i.e. H(X |Y ) ≤
H(X), equality being possible only if X and Y are independent variables. It follows
that average mutual information I(X;Y ) is positive or zero, zero only if X and Y are
independent, a case where, indeed, the data of Y does not provide any information at
all on X .

Valid for a source and a channel without memory, both of them discrete, these
expressions are easily generalized to sources and/or channels where the successive
symbols are not mutually independent.

1.3.5. Channel capacity

The average mutual information does not only characterize the channel, but also
depends on the source. In order to measure the ability of a channel to transmit informa-
tion, the theory defines its capacity as the maximum of the average mutual information
between its input and output variables with respect to all the possible stationary and
ergodic sources connected to its input (their existence is demonstrated under certain
regularity conditions: the channel must be not only stationary, but also causal, in the
sense that its output cannot depend on input symbols which have not yet been intro-
duced, and of finite memory, in the sense that the channel output depends only on
a finite number of input symbols). Ergodism is a concept distinct from stationarity
and is a condition of homogeneity of the set of messages likely to be transmitted by
the source. For an ergodic source, an indefinitely prolonged observation of a single
message almost definitely suffices to characterize the set of the possible transmitted
messages statistically.

The capacity of a channel without memory is given simply by:

C = max
p

I(X;Y ), [1.10]

where I(X;Y ) has one of the expressions [1.5] to [1.7] and where p indicates the
probability distribution of the symbols at channel input, i.e., for an alphabet of size
n, the set of probabilities p1, p2, . . . , pn subject to the constraint

∑n
i=1 pi = 1. More

complicated expressions, yet without difficulty of principle, can be written in the case
of a causal channel with finite memory.

If the channel is symmetric, which implies that the set of translation probabilities
is independent of the input symbol considered, the calculation of the maximum of
I(X;Y ), in [1.10] is made a lot easier, because we then know that it is obtained by
assigning the same probability equal to 1/n to all input symbols, and the entropies
H(X) and H(Y ) are also maximal.
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1.3.6. Comments on the measurement of information

We have only used the observation from section 1.3.1 for the quantitative mea-
surement of information. Information defined in this manner is, thus, a very restrictive
concept compared to the current meaning of the word. It should be stressed, in par-
ticular, that at no time did we consider the meaning of messages: information theory
disregards semantics completely. Its point of view is that of a messenger whose func-
tion is limited to the transfer of information, about which it only needs to know a
quantitative external characteristic, a point of view that is also common to engineers.
Similarly, a physical subject has multiple attributes, such as its form, texture, color,
internal structure, etc., but its behavior in a force field depends only on its mass. The
significance of a message results from a prior agreement between the source and the
recipient, ignored by the theory due to its subjective character. This agreement lies
in the qualitative realm, which by hypothesis evades quantitative measurement. The
transfer of a certain quantity of information is, however, a necessary condition to com-
municate a certain meaning, since a message is the obligatory intermediary.

Literal and alien to semantics, information appears to us as a class of equivalence
of messages, such that the result of the transformation of a message pertaining to it,
by any reversible coding, also belongs to it. It is thus a much more abstract concept
than that of a message. The way in which we measure information involves its critical
dependence on the existence of a probabilistic set of events, but other definitions avoid
resorting to probabilities, in particular, Kolmogorov’s theory of complexity, which,
perhaps, makes it possible to base the probabilities on the concept of information by
reversing the roles [7,8].

1.4. Source coding

1.4.1. Introduction

It appeared essential to us to provide an outline of source coding and the corre-
sponding fundamental theorem for two main reasons: on the one hand, to avoid giving
a truncated image of information theory, and on the other hand, because, as we have
already observed, the two functions of source and channel coding cannot in fact be
dissociated in the concrete design of a communication system, as they might be con-
ceptually in a theoretical discourse.

A source is redundant if its entropy by symbol is lower than the possible maximum,
equal to log qs for an alphabet of size qs. This alphabet is then misused, from the point
of view of being economic with symbols. We can also say that the probabilistic set of
sequences transmitted by the source with a given arbitrary length does not correspond
to that of all the possible sequences formed by the symbols of the alphabet, with
equal probabilities assigned. The result is similar if successive symbols are selected
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either with unequal probabilities in the alphabet, or not independently from each other
(both cases may occur simultaneously). The fundamental theorem of source coding
affirms that it is possible to eliminate all redundancy from a message transmitted by a
stationary source. Coding must use the kth extension of this source for a sufficiently
large k, the announced result being only reachable asymptotically. The kth extension
of a source S whose alphabet has qs elements (we will call this source qs-ary) is the
source deduced from the initial source considering the symbols which it transmits
by blocks of k, each block interpreted as a symbol of the alphabet with qk

s symbols
(known as qk

s -ary). Noted Sk, this extension is simply another way of describing S,
not a different source. If coding tends towards optimality, the message obtained has
an average length per symbol of the initial source which tends towards the entropy of
this source expressed by taking the size q of the alphabet employed for coding as the
logarithms base.

1.4.2. Decodability, Kraft-McMillan inequality

The principal properties required of source coding are decodability, i.e. the possi-
bility of exploiting the coded message without ambiguity, allowing a unique way to
split it into significant entities, which will be referred to as codewords and the regu-
larity that prohibits the same codeword to represent two different symbols (or groups
of symbols) transmitted by the source. Among the means of ensuring decodability let
us mention, without aiming to be exhaustive:

– coding in blocks where all codewords resulting from coding have the same
length,

– addition of an additional symbol to the alphabet with the exclusive function of
separating the codewords,

– the constraint that no codeword is the prefix of another, that is to say, identical
to its beginning. Coding using this last means is referred to as irreducible.

Any decodable code regardless of the means used to render it such verifies the
Kraft-McMillan inequality, which is a necessary and sufficient condition for the exis-
tence of this property:

N∑
i=1

q−ni ≤ 1, [1.11]

where q denotes the size of the code alphabet, N is the number of codewords with
lengths n1, n2, . . . , nN symbols respectively. The demonstration of this inequality is
very easy for an irreducible code. Let nN be the largest length of codewords. It is
sufficient to note that the set of all the codewords of length nN written with an alphabet
of q symbols can be represented by all the paths of a tree where q branches diverge
from a single root, q branches then diverge from each end, and so on until the length
of the paths in the tree reaches nN branches. There are qnN paths of different lengths
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nN . When the ith codeword is selected as belonging to the code, the condition that no
codeword is the prefix of any other codeword interdicts the qnN−ni paths whose first
ni branches represent the ith codeword. Overall, the choice of all codewords (which
all must be different to satisfy the regularity condition) prohibits

∑N
i=1 qnN−ni paths,

a number at most equal to their total number qnN . We obtain [1.11] by dividing the
two members of this inequality by qnN .

1.4.3. Demonstration of the fundamental theorem

Let S be a source without memory with an alphabet of size N and entropy H; let
n be the average length of the codewords necessary for decipherable coding of the
symbols which it transmits, expressed in a number of q-ary code symbols. Then the
double inequality

H/ log(q) ≤ n < H/ log(q) + 1 [1.12]

is verified. We demonstrate it on the basis of Gibbs’ inequality, a simple consequence
of the convexity ∩ of the function y = −x log x for 1 < x ≤ 1:

N∑
i=1

pi log(qi/pi) ≤ 0,
N∑

i=1

pi =
N∑

i=1

qi = 1, [1.13]

the equality taking place if, and only if, pi = qi for all i. We apply this inequality to the
set of N codewords used to code the N source symbols, defining pi as the probability
of the ith symbol and posing

qi = q−ni/Q, [1.14]

with

Q =

N∑
i=1

q−ni . [1.15]

Applying [1.13] it follows:

−
N∑

i=1

pi log(pi) ≤ (

N∑
i=1

pini) log(q) + log(Q)

or, taking into account [1.2] and posing n =
∑N

i=1 pini:

H ≤ n log(q) + log(Q).

Having to be decipherable, the code satisfies the Kraft-McMillan inequality [1.11];
the definition of Q by [1.15] and [1.14] thus involves log(Q) ≤ 0.

Let us first examine the conditions under which the equality in [1.12] is verified.
Firstly, that implies Q = 1, i.e. equality in [1.11], which expresses that we use all
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possible codewords compatible with decodability, which we will suppose; and also
pi = qi for all i, that is

ni = − log(pi)/ log(q), 1 ≤ i ≤ N ;

if there are N integers verifying this condition, the coding is referred to as absolutely
optimal.

In general that is not so, but we can always find N integers satisfying [1.11] with
equality and such that:

− log(pi)/ log(q) ≤ ni < − log(pi)/ log(q) + 1, 1 ≤ i ≤ N,

To obtain [1.12] it is enough to multiply by pi and to sum up for i from 1 to N .

THEOREM 1.1 (THE FUNDAMENTAL THEOREM OF SOURCE CODING). For any sta-
tionary source there is a decodable coding process where the average length n of
codewords per source symbol is as close to its limit lower H/ log(q) as we wish.

If the source considered is without memory, we can write [1.12] for its kth exten-
sion. Then H is replaced by kH; dividing by k we obtain:

H/ log(q) ≤ nk/k < H/ log(q) + 1/k, [1.16]

where nk is the average length of codewords coding the blocks of k symbols of the
initial source, from where nk/k = n. The order k of the extension can be chosen to
be arbitrarily large, proving the assertion of the theorem for a source without memory.

This result is generalized directly to any stationary source, since we defined its
entropy by [1.3], as the limit for infinite s of Hs/s, Hs being the entropy of its sth

extension.

1.4.4. Outline of optimal algorithms of source coding

Optimal algorithms, i.e. those making it possible to reach this result, are available,
in particular the Huffman algorithm. Very roughly, it involves constructing the tree
representing the codewords of an irreducible code, which ensures its decodability, so
that shorter codewords are used for more probable symbols, and longer codewords are
used for less probable symbols [9]. If optimal coding can be achieved for a finite k,
this length is proportional to the inverse of the logarithm of the occurrence probability
of the corresponding symbol. Otherwise the increase in k makes it possible to improve
the relative precision of the approximation of real numbers by obviously integer code-
word lengths. Moreover, the increase in the number of symbols of the alphabet with
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k involving an increase in the number of codewords, the distribution of codeword
lengths can be adapted all the better to the probability distribution of these symbols.

Another family of source coding algorithms called “arithmetic coding” subtly
avoids taking recourse in an extension of the source to approximate the theoretical
limit of the average length after coding, i.e. the source entropy [10,11]. We make the
average length of the message after coding tend towards its limit H/ log(q) by indef-
initely reducing the tolerated variation between the probabilities of the symbols and
their approximation by a fraction with a coding parameter for denominator, which
must therefore grow indefinitely.

1.5. Channel coding

1.5.1. Introduction and statement of the fundamental theorem

The fundamental channel coding theorem is undoubtedly the most important result
of information theory, and is definitely so for this book. We will first state it and
then provide the Gallager demonstration simplified in the sense that it uses the usual
assumptions with respect to coding, and in particular that of coding by blocks. Like the
original Shannon demonstrations, it exploits the extraordinary idea of random coding
and in addition to the proof of the fundamental theorem achieves useful exponential
terminals showing how the probability of error varies after decoding according to the
length of codewords. But this demonstration hardly satisfies intuition, which is why
we will precede its explanation by less formal comments on the need for redundancy
and random coding. Based on a simple example, they are intended to reveal the fun-
damental theorem as a consequence of the law of large numbers. From there we will
gain an intuitive comprehension of the theorem, of random coding and also, hopefully,
of channel coding in general.

The fundamental theorem of channel coding can be stated as follows:

THEOREM 1.2 (THE FUNDAMENTAL THEOREM OF CHANNEL CODING). Using an
appropriate coding process involving sufficiently long codewords, it is possible to sat-
isfy a quality standard of message reconstruction, if it is severe, provided that the
entropy H of the source is either lower than the capacity C of the channel, or:

H < C [1.17]

In its most usual formulation, the reconstruction quality standard used is an upper
limit of the word error probability.

A converse theorem states that if the inequality [1.17] is not verified, it is impos-
sible to obtain an arbitrarily small probability of error under the same conditions (in
fact, the word error probability tends towards 1 when the length of the codewords
increases indefinitely).
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1.5.2. General comments

The fundamental theorem of channel coding is undoubtedly the most original
and the most important result of information theory: original in that it implies the
paradoxical possibility of a transmission without error via a disturbed channel, so con-
trary to apparent common sense that engineers had not even imagined it before Shan-
non; important in theory, but also in practice, because a transmission without error
is a highly desirable result. The absence of explicit means to carry it out efficiently,
just as the importance of the stake, were powerful incentives to perform research in
the field. Starting with Shannon’s publications, they have remained active since then.
Stimulated by the invention of turbo-codes, they are now more important than ever.

The mere possibility of transmitting a quantity of information through a channel,
which is at most equal to its capacity C, does not suffice at all to solve the problem of
communication through this channel: a message coming from a source with entropy
lower or equal to C. Indeed, let us consider the first of the expressions [1.7] of mutual
information for a channel without memory, rewritten here:

I(X;Y ) = H(X)−H(X |Y ). [1.18]

It appears as the difference between two terms: the average quantity of informa-
tion H(X) at the channel input minus the residual uncertainty with respect to X that
remains when its output Y is observed, measured by H(X |Y ), in this context often
referred to as “ambiguity” or “equivocation”. It is clear that the effective commu-
nication of a message imposes that this term be rendered zero or negligible when
H(X) measures the information stemming from the source that must be received by
the recipient. The messages provided to the recipient must indeed satisfy a reconsti-
tution quality standard, for example, a sufficiently low probability of error. However,
H(X |Y ) depends solely on the channel once the distribution of X has been chosen to
yield the maximum I(X;Y ) and, if the channel is noisy, generally does not satisfy the
specified criterion. The source thus cannot be directly connected to the channel input:
intermediaries in the shape of an encoder and a decoder must be interposed between
the source and channel input, on the one hand, and the output and the recipient, on
the other hand, according to the diagram in Figure 1.4. The source message must be
transformed by a certain coding, called channel coding, in order to distinguish it from
source coding, and channel output must undergo the opposite operation of decoding
intended to restore the message for the recipient.

1.5.3. Need for redundancy

Channel coding is necessarily redundant. Let us consider, on the one hand, the
channel, with its input and output variables X and Y , and, on the other hand, the
channel preceded by an encoder and followed by a decoder. We suppose that the
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alphabet used is the same everywhere: at the channel input and output as well as at the
encoder input and the decoder output. The random variables at the encoder input and
the decoder output are respectively noted U and V . The average mutual information
I(X;Y ) is expressed by [1.18] with positive H(X |Y ) dependent on the channel. For
U and V we have the homologous relation:

I(U ;V ) = H(U)−H(U |V )

but the reconstitution quality criterion now imposes H(U |V ) < ε, where ε is a given
positive smaller than H(X |Y ). Now the inequality:

I(U ;V ) ≤ I(X;Y )

is true. Indeed, the encoder and the decoder do not create information and the best
they can do is not to destroy it. The equality is obtained for a well conceived coding
system, i.e. without information loss. It follows that:

H(X)−H(U) ≥ H(X |Y )−H(U |V ) > 0.

The entropy H(U) is therefore smaller than H(X). Let X ′ be the variable at the
encoder output. The inequality H(U) ≥ H(X ′) where the equality is true if informa-
tion is preserved in the encoder involves H(X ′) < H(X), which expresses the need
for the redundancy.

1.5.4. Example of the binary symmetric channel

We will now develop certain consequences of the necessarily redundant nature of
channel coding in the simple, but important, case of a binary symmetric channel. Fur-
thermore, the main conclusions reached for this channel can be generalized to almost
any stationary channel. To deal with channel coding independently of the probabilities
of symbols transmitted by the source we will suppose that the necessary redundancy
is obtained by selecting admissible binary sequences at channel input. Moreover, we
will restrict ourselves to binary codewords of constant length n, the redundancy of the
code being expressed by its belonging to a subset of only 2k codewords among the 2n

codewords of length n, with k < n.

1.5.4.1. Hamming’s metric

Let En be the set of all binary codewords of length n. We define the Hamming
weight w(a) of a codeword a belonging to En by the number of its non-zero symbols.
We define the Hamming distance dH(a, b) between two codewords a and b of the same
length as the number of positions where the symbols of the two codewords differ. For
example, for n = 7, a = [1110010] and b = [0111001], we have dH(a, b) = 4. Let
us define the sum of two codewords by the modulo 2 sum of symbols occupying the
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same positions of the codewords. Its result is still a codeword with n binary symbols.
We then have:

dH(a, b) = w(a− b) = w(a + b), [1.19]

the second equality is due to subtraction and addition carried out in modulo 2 yielding
identical results.

We verify without difficulty on the basis of the definition of Hamming distance
that it satisfies the axioms of a metric, that is:

dH(a, b) ≥ 0,

dH(a, a) = 0,

dH(a, b) = dH(b, a),

dH(a, c) ≤ dH(a, b) + dH(b, c) ∀a, b, c ∈ En.

Let there be a code conforming to the specifications given at the beginning of this
section, employed on the binary symmetric channel with probability of error p illus-
trated in Figure 1.3. We can assume without loss of generality that we have p < 1/2.
Indeed, the way in which we make the numbers 0 and 1 correspond to the received
symbols is arbitrary. If a given channel has a probability of error p > 1/2, it suffices to
swap the numbers 0 and 1 indicating the output channel symbol to get to the channel
with a probability of error 1 − p < 1/2. The case p = 1/2 does not present inter-
est, because the received symbol does not provide any information on the transmitted
symbol and the observation of this channel output does not serve to make a decision
(it is verified that its capacity is zero).

1.5.4.2. Decoding with minimal Hamming distance

Applying of the operation of vectorial addition modulo 2 defined by [1.19] comes
naturally for the comparison of input and output codewords in a binary symmetric
channel. We can interpret their modulo 2 difference (or sum) as the “configuration of
errors” generated by the channel. Then the probability Pr(e) of a particular configu-
ration of errors e occurring is simply:

Pr(e) = pw(e)(1− p)n−w(e).

For p < 1/2,Pr(e) is a decreasing function of the weight w(e) of the configuration
of errors, since:

log[Pr(e)] = n log(1− p)− w(e) log
1− p

p

where the factor of −w(e) is positive for p < 1/2. This weight is by definition the
Hamming distance between the transmitted codeword x and the received codeword
y. The optimal reception at the output of a binary symmetric channel (in the sense of
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maximum probability, which guarantees a minimal probability of error, if the input
symbols are equally probable, as we have assumed) thus consists of seeking the code-
word x̂ belonging to the code, which is the closest to the received codeword y, in the
sense of the Hamming metric. This rule results, in particular, in accepting the received
codeword if it belongs to the code, since the assumption of an error of zero weight
is then the most probable.

1.5.4.3. Random coding

We will first consider the means of implementing random coding without ques-
tioning for the moment the motivations of its use. It will be enough for us to state here
that the use of random coding was justified for Shannon due to the lack of an opti-
mal or near-optimal channel coding technique (which, besides, is still the case after
50 years of research). By demonstrating the fundamental theorem for the average of a
probabilistic set of codes we guarantee the existence of a code in this set which satis-
fies it without having to clarify its construction. Besides, we will see this idea at work
in Gallager’s demonstration (see section 1.5.6). An a posteriori reflection will enable
us to better understand its significance.

As a simplifying hypothesis we will admit that the set of distances between the
codewords and a given word is the same regardless of what this word is, so that, if the
word formed by n zeros belongs to the code, as we will suppose, the distribution of
weights is identified with that of all the distances between its codewords. This property
is perfectly verified for the important class of linear codes, which will be defined in
Chapter 2.

In addition we only consider the average properties of random coding, admitting
that a code with an average distribution of distances of random coding is good. Let
us suppose initially that we randomly draw 2n binary codewords with a length n with
the same probability and independent of each other. We thus obtain on average all the
n-tuples, i.e. the average number of the codewords of weight w is equal to the number
of combinations of n objects w for w, that is Cw

n = n!/(w!(n − w)!). Since we have
demonstrated the need for redundancy obtained by selection of codewords, we only
need to draw 2k codewords, with k < n, from the 2n binary codewords of length n.
The average number aw of codewords of weight w then becomes aw = 2−(n−k)Cw

n ,
a smaller number than Cw

n , which is generally not an integer. Thus, there does not
exist a redundant code with a distribution of distances exactly equal to the average
distribution of weights obtained by random coding, but we can seek a code with a
distribution of weight close to it, where for example the number of codewords of
weight w would be the best integer approximation. Such a code that imitates random
coding in that it roughly preserves the average distribution of weight and which we will
refer to hereafter as quasi-random, can be interpreted as stemming from a decimation
of the set of n-tuples only allowing 2k of its 2n elements to remain.
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1.5.4.4. Gilbert-Varshamov bound

This method of construction of a quasi-random code, by decimation of the set of
n-tuples, supposes that its minimal weight wmin is at least equal to a limit, which
we will calculate as follows. For the smallest values of weight w, the number aw is
smaller than 1/2 so that its best integer approximation is 0. We are going to presume,
in fact, that the integer approximation of aw taken is equal to 0 if aw < λ, where λ is
an arbitrary positive constant, perhaps different from 1/2. Let us suppose large n and
n− k. Then, in the inequality:

2−(n−k)Cwmin

n ≥ λ,

which expresses that no codeword of the quasi-random code has a weight lower than
wmin, we can replace Cwmin

n by its approximation:

Cwmin

n ≈ 1√
2π

nn+1/2

w
wmin+1/2
min (n− wmin)n−wmin+1/2

,

deduced from the Stirling’s formula n! ≈ (n/e)n/
√

2πn, where e is the base of
Napierian logarithms, from where:

2−(n−k) nn+1/2

w
wmin+1/2
min (n− wmin)n−wmin+1/2

≥ λ
√

2π.

Taking base 2 logarithms dividing by n while having n tend towards infinity,
neglecting the terms in 1/n and in log2(n)/n and, finally, supposing that k/n tends
towards a non-zero limit, we obtain the important Gilbert-Varshamov inequality:

H2(wmin/n) ≥ 1− k/n, [1.20]

with

H2(x)
�
= −x log2 x− (1− x) log2(1− x), x < 1/2. [1.21]

This inequality is more usually demonstrated (as it was initially) on the basis of
the construction of random linear code [12]. We note that the obtained limit [1.20]
is independent of the constant λ, which serves to specify the approximation of the
number of codewords of a certain weight by an integer rendering it robust with
respect to this approximation. The weight wmin tends towards infinity with n in such
a way that the limit of wmin/n is strictly positive. The function H2 (x) is increasing
for 0 ≤ x < 1/2, and the right-hand side term of [1.20] is the proportion of the
redundancy symbols in the codeword. The wmin/n ratio is thus lower bounded by
an increasing function of the code redundancy rate, which tends towards 1/2 if k/n
tends towards 0.
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1.5.5. A geometrical interpretation

For a binary symmetric channel with a probability of error p and coding by blocks
where the codewords have the length n, the number of erroneous binary symbols per
codeword is a random variable F with Bernoulli distribution, that is:

Pr(F = i) = Ci
npi(1− p)n−i, 0 ≤ i ≤ n.

Its average is µ(F ) = np and its variance σ2(F ) = np(1 − p) (these results are
obtained by deriving (x + y)n, equalized with its development by the binomial for-
mula, once and twice with respect to x, and then making x = p and y = 1 − p).
The standard deviation σ(F ) is then only slightly less than

√
np. The probability

Pr(F > np + λ
√

np(1− p)), with λ > 0, is lower than 1/λ2 according to the
Bienaymé-Tchebychev inequality. As small as p may be, it is possible to choose n so
that µ(F ) = np is large. Then, the probability that the number f of errors actually
occurring exceeds µ(F )(1 + ε), where ε is a positive constant, is small, which is a
manifestation of the weak law of large numbers.

The set En of binary n-tuples can be considered, from a geometrical point of
view, as a space with n dimensions. Every n-tuple is a point of this space whose
coordinates are binary. The distances between these points are measured using the
Hamming metric introduced at the beginning of section 1.5.4. We will suppose that the
decimation carried out to pass from the set of 2n points of space to a subset comprising
only 2k points is such that its distribution of weight is close to the average weight
distribution of random coding, without further exploring the means of carrying it out.

To guarantee a small probability of error it is enough to choose a sufficiently redun-
dant code to achieve a minimum Hamming distance dmin between its codewords
slightly larger than 2µ(F ), i.e. dmin = 2(1 + δ)np where δ is a positive constant
independent of n. Indeed, as long as f < dmin/2, the actually transmitted codeword
can be identified without ambiguity as being closer to the received codeword than
any other. The probability of having f ≥ dmin/2 can be increased according to the
Bienaymé-Tchebychev inequality:

Pr(F ≥ dmin/2) ≤ 1− p

npδ2
=

p(1− p)

n(dmin/2n− p)2
, [1.22]

upper limit which we make as small as we want by choosing a sufficiently large n.
According to section 1.5.4, quasi-random coding guarantees that dmin/n satisfies the
Gilbert-Varshamov bound [1.20]. According to [1.22] we thus obtain that Pr(F ≥
dmin/2) decreases as 1/n following the length of the codewords. This probability is
greater than that of a decoding error, but in a coarsely exaggerated fashion because, if
f ≥ dmin/2, such an error occurs only if in a space with n dimensions provided by the
Hamming metric, the configuration of occurring errors goes exactly in the direction
of another codeword, which is at the minimum distance dmin from the transmitted
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codeword. However, the redundancy of code means that its codewords are rare in En,
and much more so are the codewords at a minimum distance from a given codeword,
which makes this occurrence highly improbable. We will obtain much better bounds
of the probability of error decreasing as a function of the exponential of n in the
following section.

In this geometrical interpretation, random coding appears as a means of distribut-
ing the points in En as regular as possible, whereas in general we know of no deter-
ministic means of obtaining this result. The improvement of the performance of the
code through an increase of the length n of the codewords can be surprising, since
it tends to render certain the presence of many errors in the codeword. The impor-
tant fact is that the law of large numbers also makes the received codeword almost
certainly localized on the surface of a Hamming sphere centered on the transmitted
codeword, with a known radius np. If the spheres with np radius centered on all the
transmitted codewords are not connected, it is enough to take an n large enough to
render the probability of error as small as we wish. We will encounter this property
again for the channel with additive white Gaussian noise considered in section 1.6.2,
but the relevant metric there will be Euclidean.

1.5.6. Fundamental theorem: Gallager’s proof

This section is dedicated to the proof of the fundamental theorem, introduced by
Gallager [13], simplified thanks to certain restrictive assumptions usual in coding. This
proof does not have a spontaneous nature, in the sense that it starts with an increase
of the probability of error chosen so as to lead to the already known result sought, but
it has the merit of providing very interesting details on the possible performances of
block codes. In addition, it implements random coding, a basic technique introduced
by Shannon for the proof of the theorem and already discussed in section 1.5.4. Here
is what the simplifying assumptions consist of:

– The source connected to channel input is without memory and of equal prob-
ability, i.e. it chooses with an equal probability and independently of others one of
the M possible messages. These messages may be the M = qk

s symbols of the kth

extension of a qs-ary source, itself deduced from the initial source by ideal source cod-
ing, in accordance with the standardization of blocks of the Shannon paradigm from
section 1.2.4.

– To each message selected by the source in this manner, the encoder associates
in a unique manner a codeword of n symbols belonging to the alphabet of channel
input, whose size is noted q. In other codewords, coding consists of an application of
integers from 1 to M = qk

s to the set of codewords with n symbols of this alphabet,
with qn > qk

s since coding must be redundant. This type of coding is called block
coding.
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– Less essentially, the channel is supposed to be without memory, this assumption
being introduced during the proof.

1.5.6.1. Upper bound of the probability of error

Let Xn be the set of possible codewords of length n at the channel input and Yn be
the set of codewords that can be received at its output. We suppose finite Xn and Yn.
The channel is characterized by the set of its transition probabilities, {Pr(y|x)}, each
one of them being the probability that to x ∈ Xn transmitted there must correspond
y ∈ Yn received.

A code of M words is used, defined by a bijective mapping of the set of mes-
sage indices, i.e. integers from 1 to M , in that of M codewords, of length n, that is,
{x1, x2, . . . , xM}, xi ∈ Xn regardless of i, 1 ≤ i ≤ n. The emission of the mth code-
word represents the mth message. We suppose that the reception occurs with maxi-
mum probability, i.e. the decoder associates the number m identifying the decoded
message to the received sequence y, if:

Pr(y|xm) > Pr(y|xm′) ∀m′ �= m, 1 ≤ m′ ≤M. [1.23]

An error occurs if for a transmitted m this decision rule leads to m′ which is
different from m. We can write the probability of an error by introducing the function
φm(y) defined as follows:

φm(y) =

{
1 if there exists m′ �= m such that Pr(y|xm) ≤ Pr(y|xm′),
0 if not,

that is:
Pem =

∑
y∈Yn

Pr(y|xm)φm(y), [1.24]

where Pem is the probability of an error when m is transmitted.

We now introduce an upper bound of φm(y), that is:

φm(y) ≤
[∑

m′ �=m Pr(y|xm′)1/(1+s)

Pr(y|y
m

)1/(1+s)

]s

, s > 0, [1.25]

where s is a positive parameter, which is arbitrary for the moment. It is indeed an
upper bound of φm(y), since:

– if φm(y) = 0, the right-hand side of the inequality is always positive;

– if φm(y) = 1, the numerator is by definition larger that the denominator, since
it is the sum of positive terms including one, which according to [1.23] is larger than
or equal to it. The expression between brackets is thus larger than 1, a property that
remains after the expression is taken to the positive power of s.
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According to [1.24], replacing φm(y) by its upper bound [1.25], we obtain:

Pem ≤
∑

y∈Yn

⎧⎨
⎩Pr(y|xm)1/(1+s)

⎡
⎣ ∑

m′ �=m

Pr(y|xm′)1/(1+s)

⎤
⎦

s⎫⎬
⎭ , s > 0. [1.26]

Naturally, the upper bound [1.25] does not come from a spontaneous idea but from
prior knowledge (by other means) of the result, at which we are trying to arrive. It
leads to [1.26], an upper bound dependent on the parameter s, which one can thus
adjust to obtain the tightest possible bound.

1.5.6.2. Use of random coding

This upper bound is valid for any code, but it is generally too complicated to be
useful directly. To go further it is necessary to draw on the method of random coding
already mentioned. We no longer consider a single code (how could code be specified
a priori which would minimize the probability of error?) but a probabilistic set of
codes. It will be easy to calculate an upper bound of its average probability of error.
It will then be shown that if the inequality [1.17] is satisfied, the upper bound of this
average error probability can be made lower than a certain positive ε. From that we
will deduce that this set contains at least one code whose error probability is in turn
lower than ε. That also means, less rigorously, that a code “close” to the average result
of random coding must be “good” in the sense of the fundamental theorem, which
legitimates the use of a quasi-random code introduced in section 1.5.4.

According to this method, random coding consists of choosing each codeword
independently of the others with a probability P (x) defined over the set of sequences
of input Xn. We will calculate an upper bound of the average P em of Pem with respect
to the set of codes constructed in this manner.

Conditional probabilities in the right-hand side of [1.26] then become random vari-
ables in the sense that they depend on the codewords xm and xm′ that have become
random. They have been selected independently of each other as belonging to the
code, so that these conditional probabilities are independent random variables. We
will represent the averages by superscript bars in the rest of this section.

We can then note that in [1.26]:

– the average of the sum with respect to y is equal to the sum of averages of the
terms between the curly brackets;

– as each one of these terms is the product of two independent factors, its average
is equal to the product of averages;

– restricting ourselves to s ≤ 1, the convexity ∩ of the zs function implies
zs ≤ zs;



Information Theory 29

– finally, we may still invert sum and average, after replacing the term in the form
zs by its upper bound zs.

We thus deduce from [1.26]:

P em ≤
∑

y∈Yn

⎧⎨
⎩Pr(y|xm)1/(1+s)

⎡
⎣ ∑

m′ �=m

Pr(y|xm′)1/(1+s)

⎤
⎦

s⎫⎬
⎭ , 0 < s ≤ 1.

[1.27]

The codewords xm being chosen by random coding with the probability P (x), by
the definition of the average we have:

Pr(y|xm)1/(1+s) =
∑

x∈Xn

P (x) Pr(y|x)1/(1+s), [1.28]

an expression independent of xm and thus also valid for xm′ . After substitution
according to [1.28], [1.27] becomes:

P em ≤ (M − 1)s
∑

y∈Yn

⎡
⎣ ∑

x∈Xn

P (x) Pr(y|x)1/(1+s)

⎤
⎦

1+s

, 0 < s ≤ 1. [1.29]

This bound is very general; it is valid regardless of the probability P (x) and for
channels “with memory” where errors for successive symbols are not independent.
In the case of a channel without memory, in the sense that the successive errors in it
are independent, this limit can be simplified. Let x1, x2, . . . , xn be the symbols of the
codeword at channel input and y1, y2, . . . , yn be their corresponding symbols at the
output. The independence of the successive transitions in the channel leads to:

Pr(y|x) =

n∏
i=1

Pr(yi|xi),∀ x ∈ Xn,∀ y ∈ Yn.

Restricting ourselves to codes where the successive codeword symbols are chosen
by random coding independently of each other, following the same law p(xi), we
have:

P (x) =

n∏
i=1

p(xi), x
�
= (x1, x2, . . . , xn)

and the expression in brackets in [1.29] can be transformed. The sum then relates to
the products in the form:

n∏
i=1

p(xi) Pr(yi |xi)
1/(1+s)
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corresponding to all the possible choices of x in Xn, i.e. with all the possible code-
words with n symbols in the channel input alphabet: the sum of all the products of n
terms is equal to the nth power of the sum of the terms written for all the symbols of
this alphabet.

Indicating by a1, a2, . . . , aq the symbols of the channel input alphabet (of size q),
and by b1, b2, . . . , bJ those of the output alphabet (of size J), we thus deduce from
[1.29] the limit:

P em ≤ (M − 1)s

⎧⎨
⎩

J∑
j=1

[
q∑

k=1

p(ak) Pr(bj |ak)1/(1+s)

]s+1
⎫⎬
⎭

n

, 0 < s ≤ 1.

Increasing M − 1 by M = 2nR, where R = (k/n) log2 q is the quantity of
information per symbol in shannons, we obtain:

P em < 2−n[−sR+E0(s,p)], 0 < s ≤ 1, [1.30]

where we have posed:

E0(s, p)
�
= − log2

⎧⎨
⎩

∑
j

[∑
k

p(ak) Pr(bj |ak)1/(1+s)

]1+s
⎫⎬
⎭ . [1.31]

This function depends, on the one hand, on the parameter s and, on the other
hand, on the vector p having the components p(a1), p(a2), . . . , p(aq). We note that
the bound obtained is independent of the transmitted message m.

1.5.6.3. Form of exponential limits

The bound [1.30] is important, because within the limits of its conditions of valid-
ity it leads to the existence of a code such that its word error probability is limited for
a given R by:

Pe < 2−nE(R), [1.32]

where n is the length of the codewords and where:

E(R)
�
= max

s,p
[−sR + E0(s, p)], 0 < s ≤ 1. [1.33]

E(R) is called the reliability function.

Without getting into detail of the discussion of [1.33] (which the reader will find
in [14]), we can say that the curve representing the exponent E(R) as a function of
R appears as the envelope of the straight lines of slope −s and ordinate at the origin
maxp[E0(s, p)] in the interval of variation of s, 0 < s ≤ 1 (E0(s, p) was defined in
[1.31]). Apart for the teratological exception, this envelope is decreasing and convex
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∪. For the smallest values of R, it merges with the straight line of slope −1, of the
equation E(R) = R0 − R, where R0 = maxp[E0(1, p)]. For example, in the case of
the binary symmetric channel, the largest upper bound of the probability of error is
obtained [1.32] for s = 1 (i.e. in the range of values of R where the envelope of the
straight lines E = −sR + E0 merges with the straight line of slope −1 and ordinate
at the origin R0) is written:

Pe < 2−n(R0−R),

where, according to [1.31], R0 = 1− log2(1 + 2
√

p(1− p)). This exponential upper
bound is much tighter than the one that can be deduced from [1.22].

Beyond a certain value of R, the absolute value s of the slope of the tangent to the
curve representing E(R), initially equal to 1, decreases and tends towards 0, the curve
becoming tangent with the x-axis at the point R = C for S = 0, where:

C = max
p

I(X;Y )

is the capacity of the channel, [13,14]. In the case of a binary symmetric channel
with probability of error p, an easy calculation shows that this capacity is equal to
1−H2(p), where the functionH2(·) has been defined by [1.21].

We see that the factor of n in the exponent of [1.32] is negative only if R < C,
which is thus necessary in order to obtain a probability of error tending towards 0
when n tends towards infinity. It is the statement of the fundamental theorem (with-
out the notations, but R = (k/n) log2 q is still entropy of the channel input variable
and, therefore, of the source). Moreover, in addition to this asymptotic result, it shows
how the word error probability varies according to their length n. It is clear that to
obtain the same word error probability (or rather the same bound [1.32] of this prob-
ability) n needs to be larger as R becomes closer to C. However, the length n of the
codewords measures the complexity of the coding and decoding operations, which for
block random coding is an increasing exponential function.

We can improve the bound [1.32] for the majority of channels, but only for the
smallest values of R, by operating a selection of the codes resulting from random
coding to preserve only the best (we are said to “expurgate” the set of codes). Then
the curve representing the function E(R) obtained is still decreasing and convex ∪.
It does not deviate from the straight line of the equation E(R) = R0 − R apart from
beyond a certain point where it is tangential to it and grows quicker than this straight
line when R decreases to, finally, tangentially reach the y-axis at R = 0.
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1.6. Channels with continuous noise

1.6.1. Introduction

Up until now we could satisfy ourselves with the description of a discrete channel
by its transition probabilities and took the example of the binary symmetric channel,
which is the simplest model there is. We will now consider some more realistic channel
models.

One of the principal restrictions made above relates to the finite character of the
channel input and output alphabets. For the input alphabet it stems naturally from the
choice made to limit ourselves to finite discrete, i.e. digital, sources. The omnipresence
of thermal noise, modeled well by the addition of white Gaussian noise, makes the
assumption of a finite output alphabet exaggeratedly restrictive. We will thus devote a
particular development to the channel with additive Gaussian noise. The noise will be
initially supposed to be white, but this restriction will be easily raised. More briefly,
we will also consider the channel with fadings where the received signal undergoes
fluctuations represented by a Rayleigh process multiplying its amplitude before adding
white Gaussian noise.

1.6.2. A reference model in physical reality: the channel with Gaussian additive
noise

Capacity of a channel with additive white Gaussian noise

Before examining the case of a finite number of input signals disturbed by addition
of white Gaussian noise, which interests us mainly, we will make a detour by the case
where the channel input variables are themselves continuous. Let X be a continuous
random variable with probability density function pX(x), i.e. the probability that the
value taken by X belongs to the infinitesimal interval (x, x+dx) is equal to pX(x)dx.
The definition [1.2] of the entropy of a discrete random variable is no longer usable
in this case but, by analogy, for the continuous variable X we define the differential
entropy:

Hd(X)
�
= −

∫
pX(x) log[pX(x)]dx, [1.34]

where the integral is calculated for the set of values taken by X , for example, the set
of real numbers. This value has some but not all of the properties of the entropy of a
discrete variable. Thus, it can be negative and loses certain properties of invariance. Its
principal interest lies in the fact that the mutual information generalized to continuous
variables is still expressed, as in [1.5] or [1.6], by a difference between two entropies
which are now differential.
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By analogy with the discrete case where the capacity of a binary symmetric chan-
nel is equal to mutual information for the probability distribution of the input sym-
bols making their entropy maximal, we will admit that the capacity of the channel
is obtained for the distribution of input variables, which is here continuous, which
renders the differential entropy maximal. It is demonstrated that for a given finite vari-
ance σ2 this distribution is Gaussian. To reach the capacity we will admit that the
distribution of the channel input variables must be such.

If X is a zero-mean Gaussian random variable σ2, by definition it has a probability
density function:

pX(x) =
1

σ
√

2π
exp(−x2/2σ2). [1.35]

The calculation by [1.34] of its differential entropy (in shannons) yields the result:

Hd(X) = log2 σ + (1/2) log2(2πe), [1.36]

where e is the base of the Napierian logarithms. It is thus equal, to the nearest con-
stant, to the logarithm of the standard deviation σ of X , i.e. to the half of the logarithm
of its variance σ2. The mutual information between the input and output variables
(both Gaussians) expressed by the difference between differential entropies at output,
respectively not conditional and conditional at input, is thus equal to half of the loga-
rithm of the ratio of the corresponding variances. However, the addition of Gaussian
noise to the channel input variable X gives a variable Y which is also Gaussian with
variance equal to the sum of those of channel noise and input signal. Indeed, the sum
of two Gaussian variables is a Gaussian, the noise and the signal are independent so
that their variances are added and, in addition, the differential entropy of Y condition-
ally to the input variable X is equal to the differential entropy of noise because it is
additive.

The assumption of a source without memory has its equivalent here in the limita-
tion of the band to a certain value B, so that the sampling theorem makes it possible to
represent exactly and reversibly any signal pertaining to the set of functions in a band
limited to B by the sequence of values which it takes with periodic intervals, known
as samples. The period of sampling must be T = 1/2B. These samples are random
statistically independent variables and, with our assumptions, Gaussian, centered and
of variance P/2B, where P is the power of the received signal. Thus, thanks to the
discretization of time realized by the sampling of interval T , we find the same dia-
gram of communication as in our introduction, with the difference that the channel
input alphabet has become the entire set of real numbers. Its symbols, the samples,
undergo the sole disturbance of the addition of noise present in the band B. If we
suppose that the one-sided power spectral efficiency of this noise has a constant value
N0 (the noise is then referred to as “white”) these are, as free-noise samples, Gaussian
variables, centered and mutually independent. Their variance is N0/2.
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The input samples have a variance of P/2B, those of additive noise N0/2 and the
output samples the sum of these variances or (P + N0B)/2B. The capacity of this
channel is thus equal to:

C =
1

2
log2

P + N0B

N0B
=

1

2
log2(1 +

P

N0B
) =

1

2
log2(1 +

P

N
). [1.37]

In this expression, the signal to noise ratio P/N appears in the argument of the

logarithm since N
�
= N0B is the total noise power in the band B. This is the capac-

ity by symbol (or sample); the capacity in shannons by second stems from that by
multiplying it by the frequency 2B of samples, that is:

C ′ = B log2

(
1 +

P

N

)
= B log2

(
1 +

EbR

N0B

)
[1.38]

where the notation C ′ is employed to indicate that the capacity is expressed here as
information flow, i.e. a quantity of information per unit of time.

Expression [1.38] of the capacity of an additive Gaussian channel is justly famous
but sometimes erroneously interpreted. It has paradoxical consequences for the role
of the bandwidth in communications through a channel with additive white Gaussian
noise. Indeed, [1.38] shows that, C ′ being an increasing function of B for P and N0

kept constant, it is necessary to increase the band to increase the capacity, although
that involves a reduction of the signal to noise ratio P/N0B. This conclusion is rad-
ically opposed to the dominant trend in traditional radio-electronics, where apparent
common sense suggests limiting the bandwidth as much as possible in order to reduce
the noise entering the receiver. It is true that the channel coding function2 was then
unknown, although it alone can exploit the increase in capacity due to band widening.

Generalization to the case where the noise power spectral density varies in the
signal band is easy (the noise is then known as colored). It suffices to divide the band
into infinitesimal intervals, each considered as defining a channel with additive white
Gaussian noise and to treat these channels in parallel. The total capacity is equal to
the sum of the capacities of the constituent channels. The calculation of variations
indicates how to maximize it when the total power of the useful signal is given: the
spectral density of this signal must be such that we obtain a constant by adding it to
that of the noise. This result can be expressed by an image: if we assimilate the noise
spectral density, variable in the band, to the thickness of the bottom of a container, all
occurs as if the optimal spectral density of the useful signal were to compensate for
the variable thickness of the bottom so that the total spectral density is represented

2. At least explicitly. The “modulation gain” brought by certain systems, such as frequency
modulation, at the cost of widening the band, in fact, results from a form of channel coding,
misunderstood by radio-electricians prior to the birth of information theory.
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by a horizontal, which we could obtain by pouring a liquid whose volume would
represent the total power of the signal (a result introduced by Shannon, often called
water-filling).

1.6.3. Communication via a channel with additive white Gaussian noise

We note that the capacity [1.37] or [1.38] is finite, although the alphabet of the
channel is continuous. Therefore, communicating via an additive white Gaussian noise
channel with a flow of information of R′ shannons per second (R′ < C ′), implies the
use of a repertory of M = 2R′T signals of band B and duration τ , where τ is large
compared with the signal interval. Each signal is associated by a bijective relation to
one of the M source messages. The set of samples (with real values) present in the time
interval τ can be regarded as a codeword which can itself be represented by a point in a
space withD = 2Bτ dimensions, having for coordinates all its samples in the interval
τ . We show that the relevant metric is then Euclidean [15], with an energy meaning.
The rule of optimal decision stays the choice of the codeword represented by the point
nearest to that representing the received signal, for this metric. Reasoning homologous
to that in section 1.5.5, with the exception that the Euclidean metric replaces that
of Hamming, leads to similar conclusions. In fact, this geometrical representation of
Shannon makes it possible to directly prove that a negligible probability of decoding
error can be achieved with random coding, when the number of dimensions D tends
towards infinity, if the flow of information remains smaller than the capacity given by
[1.38]. Thus we prove the fundamental theorem for this particular channel [16].

1.6.3.1. Use of a finite alphabet, modulation

The process of communication through a channel with additive white Gaussian
noise, which we have just considered, has only a theoretical interest, because its imple-
mentation would be exaggeratedly complicated. Indeed, it is necessary to employ a
repertory of M signals where, for a given flow of information R′,M varies as an
exponential function of the duration τ , which must be large so that a small probability
of error is obtained. In practice it is necessary to use an alphabet comprising q sym-
bols, the M necessary messages being obtained by combinations of n of them. To
satisfy the condition of redundancy we take M = qk with k < n, i.e. a block code of
the type that has been considered in section 1.5.4 for q = 2. Each symbol of the alpha-
bet is separately represented by a specific signal, which is the modulation operation3.
It makes it possible to use a code built on the basis of a finite alphabet in a channel
receiving continuous signals. The capacity of such a channel is obviously limited to

3. Even if the signal thus obtained does not rigorously conform with the assumption of band
limitation, the geometrical representation of signals in an Euclidean space with a finite number
of dimensions remains, at the cost of a redefinition of the bandwidth; see, for example [1],
p. 135.
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log2 q shannons per sample, which is the asymptotic value for large P/N . Coding is
only useful if the signal to noise ratio is small enough so that the capacity [1.37] is
definitely lower than this value. We will note that the capacity calculated supposing
an alphabet of finite size q is very close to [1.37] for the smallest values of the signal
to noise ratio; the curves representing it according to P/N are indeed tangential at
the origin. More refined means of distributing points in Euclidean space using codes
defined for finite alphabets will be shown in Chapter 4.

1.6.3.2. Demodulation, decision margin

The continuous character of the received signals requires detailed attention.
Indeed, let us suppose, for example, that the alphabet is binary (q = 2) and that the
process of modulation (known as “antipodal”, optimal for this alphabet) consists
of transmitting a signal of a certain form compatible with the properties of the
channel, in order to represent one of the symbols, for example 0, and the opposed
signal to represent the other, i.e. 1. Let s(t) and −s(t) be the corresponding received
signals with energy E =

∫
s2(t) dt, integration taking place on the support of s(t).

The optimal reception in the sense of maximum probability using a correlator or a
matched filter results in a real number called sufficient statistics which is a Gaussian
variable Y of probability density function pY (y) = g[y − (−1)x

√
E;σ2], where x is

the binary value 0 or 1 taken by the transmitted symbol X and where g(·;σ2) denotes
here the Gaussian probability density function [1.35]. Its variance is that of the
additive noise, that is σ2 = N0/2. For input symbols of equal probability, the ratio of
the probability that x = 0 has been transmitted to that of x = 1 being transmitted,
called the probability ratio, conditionally to the observation y of the channel output
(including the correlator or adapted filter), is equal to exp(4y

√
E/N0), so that

its logarithm is proportional to the observation y. The optimal decision for the
transmitted symbol is thus x̂ = 0, if y is positive, and x̂ = 1 if y is negative (the case
y = 0 makes a decision impossible; we can merely arbitrarily choose a value of x̂
with a probability of error equal to 1/2).

With regard to decoding, two unequally effective and complex strategies are pos-
sible:

– make a hard decision regarding each binary symbol transmitted according to the
sign of received variable y. We are then brought back to the problem considered in
Paragraph 1.5.4, since the initial channel with continuous output is converted into a
binary symmetric channel;

– preserve and exploit in the decoder the real value y of the sufficient statistic
which, as we saw, is equal to the nearest positive factor to the logarithmic probability
ratio log Pr(X=0)

Pr(X=1) = log Pr(X=0)
1−Pr(X=0) , i.e. provides information on the probability of

the transmitted symbol. In this case we speak of a soft decision, although this is rather
a case of an absence of an explicit decision.
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The second strategy exploits information that the first strategy lacks (carried by the
margin |y| of each decision providing information on its reliability). It is thus more
effective in principle: the calculation of the corresponding channel capacity indeed
shows an advantage in its favor by a factor that varies according to the signal to noise
ratio, from π/2 (if E/N0 is very small) to 2, an asymptotic value when E/N0 tends
towards infinity. In practice, the same decoding error probability is obtained, with the
same code, for a difference of the signal to noise ratios of about 2 dB (for small values
of this ratio), in conformity with the ratio of the capacities (10 log10(π/2) = 1.96
dB). However, the implementation of this second strategy is more difficult, because it
requires the decoder to deal with real numbers: the logarithmic probability ratios as
they are given by the demodulator before any binary decision, and not the symbols
of the input alphabet; this is referred to as decoding with soft or balanced decisions.
However, an important branch of the studies of channel coding is based on the alge-
braic properties of finite bodies. The use of soft decisions prohibits treating decoding
as an algebra problem, even though the construction of the code makes use thereof.

1.6.4. Channel with fadings

We suppose now that the signal is received through a channel “with fadings”,
where its amplitude is multiplied by a random stationary variable A that follows the
Rayleigh law before the addition of a white Gaussian noise with one-sided spectral
density N0. A random variable A of unitary variance following the Rayleigh law has
as a probability density function:

pA(a) =

{
2a exp(−a2), a > 0,
0, a ≤ 0.

[1.39]

It is the probability density function of the absolute value of a complex signal
whose real and imaginary parts are independent Gaussian random variables, centered
and with the same variance 1/2.

We suppose that the signal is transmitted with constant amplitude. It is, therefore,
modulated only in phase. The received average power is equal to P and we admit
that the signal band remains limited to B (this assumption is not rigorously exact,
but can be allowed by way of an approximation). An interleaving and disinterleaving
device provides the successive samples of the received signal, after disinterleaving
sufficiently distant in time in the channel to be regarded as independent.

These samples are none other than those of one of the two components in sig-
nal quadrature. Since the amplitude of the signal follows the Rayleigh law [1.39],
they have a centered Gaussian probability density function and, since they are made
independent by interlacing, we are brought back to the problem of a sequence of inde-
pendent Gaussian samples with power P received at the frequency 2B in the presence
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of additive Gaussian noise with variance N0/2, i.e. to the same problem as that of a
Gaussian signal received in the presence of additive white Gaussian noise. We have
already calculated the capacity [1.38] of this channel.

The presence of fadings of Rayleigh thus does not modify the capacity, although it
complicates the reception notably and, in practice, often degrades the result. The con-
servation of the capacity of the channel with additive Gaussian noise in the presence
of Rayleigh fadings suggests that it must be possible to arbitrarily reduce the degra-
dation which they cause. In fact, rotation operators in Euclidean space Rn achieve
that for sufficiently large n thanks to an effect of “diversity”4 [17]. When auxiliary
devices, in particular, those of interleaving and diversity, make it possible to effec-
tively employ error correcting codes, we will note that the benefit of coding, measured
by the increase in the signal to noise ratio needed without coding to obtain the same
probability of error as with coding, is much more important for the channel with fad-
ings than where the only disturbance is the addition of Gaussian noise. Indeed, the
probability of error in the absence of coding decreases when the signal to noise ratio
increases a lot less quickly in the presence of signal fadings, and the benefit brought
by the system of coding is a reduction of the probability of error.

C = EA

{
1

2
log2

(
1 + A2 P

N

)}

1.7. Information theory and channel coding

The presence of disturbances in the channel limits the possible flow of information,
but not the quality with which the message can be restored: this lesson of information
theory created the basis for channel coding. The limitation of the flow of information
to a value smaller than the channel capacity is achieved by the introduction of redun-
dancy, but it is only one of the conditions necessary to control the error rate upon
decoding. The entire problem of channel coding lies in the manner of doing it.

The ultimate possible limit in information theory, i.e. channel capacity, has long
appeared inaccessible and the assertion “All codes are good, except those we can think
off ” expresses in humorous form an opinion that was until recently dominant. Turbo-
codes and the extraordinary torrent of research that they unleashed have contradicted
this assertion and now it is in tenths of a decibel that we express the variation of the
best experimental results with respect to capacity, for a channel with additive white
Gaussian noise.

4. Which consists of jointly exploiting several supports of the same information.
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The key question of channel coding is the complexity of decoding. If we could
get rid of it, almost any code would be satisfactory. Indeed, not only random coding
is good on average, but it is known that almost all codes are good. Unfortunately, the
complexity of decoding for a random code increases exponentially with the length of
the code, which must be large in order to obtain small probabilities of error. Efficient
use of random coding is thus absolutely out of the question; we can only hope to
employ codes provided with a structure which facilitates their decoding. Coding being
incomparably easier than decoding, two extreme manners of undertaking the study of
channel coding were conceivable and both were actually tried out:

– to seek at first to build codes provided with good distance properties, deferring
to a later stage the more difficult problem of decoding them;

– to first resolve the problem of decoding, risking the properties of the codes to
remain unexploited; it is, of course, necessary that they have a minimum of structure,
but the linearity, whether they are block or convolutional codes, is enough for general
decoding algorithms to be designed.

Very schematically, the first tendency gave rise to algebraic codes and the second
led to the development of convolutional codes, for which the principal results are, in
fact, not families of codes, but decoding algorithms.

The results of these studies were initially confronted with reality in space com-
munication applications, where the channel is well modeled by the addition of white
Gaussian noise, and where the improvement of coding and decoding devices that the
immense progress of electronic technology now allows with reliability and economy
costs much less than the improvement of the energy cost of the connection. We saw
that the weighting of decoding avoids a costly loss of information. The ease of its
implementation in algorithms stemming from the second tendency is the main reason
for its success.

Research in channel coding in the simplest cases (binary symmetric channel and
channel with additive white Gaussian noise with a weak signal to noise ratio) have
produced an impressive arsenal of tools. Apart from the important exception of the
Reed-Solomon codes, these are mainly binary codes. For other, often much more
complicated, channels in general we still employ the means created in this manner,
but auxiliary techniques (interleaving diversity . . .) are needed to adapt them to the
characteristics of the channel.

Regarding the channel with additive white Gaussian noise, the capacity C ′ given
by [1.38] exceeds the limit of 2B shannons per second, intrinsic for the binary alpha-
bet, when the signal to noise ratio is large. Non-binary codes, or means of combining
binary codes with modulation processes with more than two states, such as “multi-
level” coding or lattice-coded modulations that will be seen in Chapter 4, must then
be used to increase the flow of information beyond this limit.
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Chapter 2

Block Codes

2.1. Unstructured codes

2.1.1. The fundamental question of message redundancy

We wish to transmit messages from point A to point B through space (transmission
channel), or from point A to point A through time (recording channel). Any transmis-
sion of information is a voluntary energy modulation. The channel which allows the
transmission is traversed by random energy impulses. This parasitic energy produces
transmission errors: noise. In a binary transmission, 1 is transformed into 0, and con-
versely. When we have difficulties transmitting a word or a message because of the
noise, we naturally tend to repeat the word or the message. It is then said that we add
redundancy to the information. Now, let us consider that the message to be transmitted
is coded into binary, i.e. it consists of a sequence of 1 and 0.

One of the first problems that had to be dealt with during World War II was how to
contact the American spies in hostile German territory. The spies could not ask for re-
transmission for fear of being discovered. If the message was short it was completely
destroyed by jamming if the jamming affected it. If the message was reinforced with
redundancy, there was more chance than it would be affected, but it was less suscepti-
ble. The question that would then arise was the following: was a lot or little redundancy
necessary for the security of these transmissions?

The answer was provided by C. Shannon (1948). He created the information the-
ory, which led him to formalize the problem, to define a mathematical measure of

Chapter written by Alain POLI.

41



42 Channel Coding in Communication Networks

information, and to give an answer to the question at hand in the form of very fine the-
orems. His answer was: it is necessary to add “enough” redundancy to be statistically
sure of the effectiveness of protection. The lower bound of this quantity is determined
on the basis of a channel characteristic: capacity. C. Shannon proved that if we added
“enough” redundancy, there was a coding which made it possible to have a statistically
reliable transmission. The empirical proof was provided very quickly (before 1950) by
Hamming, Golay, and others who offered examples of codes constructions.

2.1.2. Unstructured codes

In the rest of this section we restrict ourselves to binary codes, i.e. with coefficients
in F2 = {0, 1}, unless otherwise mentioned. Each codeword has the same length n.
These are “block” codes.

We wish to code a set of messages. Each message, or information word, is coded
by a binary word (codeword). The set of codewords is called the code.

DEFINITION 2.1 (HAMMING DISTANCE). Let there be two n-tuples x = (x1, x2, . . . ,
xn) and y = (y1, y2, . . . , yn). The Hamming distance between x and y is the number
of positions where these two vectors are different. It is noted dH(x, y).

DEFINITION 2.2 (HAMMING WEIGHT). The Hamming weight of x is equal to the
number of non-zero components. It is noted wH(X). It is also equal to dH(x, 0n),
where 0n indicates the vector (0, . . . , 0) ∈ (F2)

n.

DEFINITION 2.3 (SPHERE WITH A CENTER x AND RADIUS ρ). The sphere with
its center at x and radius ρ, noted Bρ(x), is defined by: Bρ(X) = {y ∈ (F2)

n/
dH(x, y) ≤ ρ}.

DEFINITION 2.4 (EUCLIDEAN DISTANCE). Let there be two n-tuples x=(x1, x2, . . . ,
xn) and y = (y1, y2, . . . , yn) whose components are real values in the interval
[−1, 1]. The Euclidean distance between them is equal to:

⎛
⎝ ∑

i=1,n

(xi − yi)
2

⎞
⎠

1/2

2.1.2.1. Code parameters

A code is a set of codewords, characterized by a family of parameters:

1) the length n of each codeword. It is also said that the code has a length n,

2) the number M of codewords. It characterizes the transmission capacity of the
code,



Block Codes 43

3) the minimum distance d of the code. It is related to the capacity of correction
of the code,

4) the maximum correction capacity per codeword, noted t,

5) the minimum weight of a code, noted w.

We speak of a code (n,M, d), or a (n,M, d) code.

EXAMPLE 2.1. In (F2)
5 the family {10101, 00010, 01111, 11000} is a code (5,4,3).

Find w and d.

EXAMPLE 2.2. In (F3)
3 the family {102, 110, 200, 121} is a (3, 4, d) code. Find w

and d.

EXAMPLE 2.3. Is the family {01101, 10120, 11012, 00000, 11111} a (5, 4, d) code in
(F3)

5? If yes, find w and d.

2.1.2.2. Code, coding and decoding

In this section we introduce the concepts of code, coding and decoding with max-
imum probability.

DEFINITION 2.5 (CODE). An unstructured binary code of length n is a family of vec-
tors included in (F2)

n.

DEFINITION 2.6 (CODING). Coding consists of associating a codeword, element of
(F2)

n, to an information word taken in (F2)
k, for k < n. The most elementary coding

is done using a coding table.

DEFINITION 2.7 (MAXIMUM LIKELIHOOD DECODING). It will be admitted that, in
the usual cases we have:

Prob(0 error in a transmitted word) ≤ Prob(1 error)

≤ Prob(2 errors)

≤ · · ·

This assumption means that the channel is not too bad with respect to the length of
codewords. We note that the distance from an transmitted codeword c to the received
word r = c + e is equal to the Hamming weight of the error vector e. The assumption
made is thus equivalent to supposing that it is more probable that the distance between
the transmitted word and the received word is 0 rather than 1, 1 rather than 2, etc.
Maximum likelihood decoding thus implies decoding the word received by the nearest
codeword. If this codeword is not unique we do not decode.
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2.1.2.3. Bounds of code parameters

The parameters n,M and d are connected with each other by various constraints. If
two are fixed values, then the value of the third is limited by certain traditional inequal-
ities. In general, we cannot calculate the best possible value for this third parameter.

A bound on M is as follows. What is the largest number of words M of length n in
a code allowing the correction of t errors per word? The disjoint spheres are counted
and total volume is calculated. It is necessary to have:

2n ≥
[
1 +

(
1

n

)
+

(
2

n

)
+ · · ·+

(
t

n

)]
M

EXAMPLE 2.4 (n = 5, t = 1). We have 32 ≥M [1 + 5] = 6M . Thus, M is less than
or equal to 5.

It should be noted that it may not be possible to obtain the value M .

Similarly, M being fixed, the best error correcting capability can be much lower
than the value of t obtained from the previous formula.

2.2. Linear codes

As we can see it from the exercises in the preceding section, it is very difficult to
construct unstructured codes. A code is equivalent to the data of a family of spheres
with radius ρ, disjoint two by two. The number of spheres is M , and the code corrects
ρ errors per word (with maximum likelihood decoding). The best possible code is
equivalent to the best packing of spheres, which is a very complex problem. In order
to be able to build codes more easily, we agree to lose some freedom by imposing
an algebraic structure on the code. We will thus consider the binary codes with a
particular property: stability during addition.

2.2.1. Introduction

These codes have a structure of vector subspaces of (F2)
n. If the code C is a vector

subspace of dimension k, it is said that the dimension of the linear code C is k. The
number of words in C is then 2k. From now on we will speak of a linear code (n, k, d)
instead of (n,M = 2k, d).

2.2.2. Properties of linear codes

These codes have properties used for their decoding or construction.
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2.2.2.1. Minimum distance and minimum weight of a code

The following proposition makes it possible to simplify obtaining the minimum
distance when the code is linear.

PROPOSITION 2.1. The minimum weight of a code is equal to its minimum distance.

Proof. Indeed, the difference between two codewords of a linear code is a codeword
of this code, and in addition we have: dH(x, y) = wH(x− y). �

To know the correction capacity of a linear code of dimension k, it is enough to
explore the weights of 2k codewords instead of the 2k−1(2k − 1) distances between
the codewords taken two by two.

2.2.2.2. Linear code base, coding

Let us simply demonstrate on an example a particular basic form of a code (sys-
tematic form).

EXAMPLE 2.5. In (F2)
5 we take e1 = 10110, e2 = 00101, e3 = 11011. It is a free

family. We note that {e1 + e2, e1 + e2 + e3, e2} is another base of L(e1, e2, e3).

In systematic form this base is described as:

10011
01000
00101

DEFINITION 2.8 (GENERATOR MATRIX). We call a linear code generator matrix
C(n, k, d) any matrix whose rows are vector representations of a base of C.

This matrix is in systematic form when it is written in the form G = (IkR), where
(Ik) is the identity matrix of rank k, or when G = LIk

DEFINITION 2.9 (SYSTEMATIC CODING). Systematic coding corresponds to the fol-
lowing operation:

(i1, i2, . . . , ik)G = (i1, i2, . . . , ik)(IkR)

= (i1, i2, . . . , ij , . . . , ik, rk+1, . . . , rl, . . . , rn)

The ij are information bits, and the rl are redundancy symbols.

EXAMPLE 2.6 (n = 6, e1 = 101101, e2 = 111011, e3 = 101100). Construct G.
Put G in systematic form. Encode (101) with G. Encode (101) with (I3R). Encode
(a, b, c) with the two matrices, and compare.
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2.2.2.3. Singleton bound

The following proposition introduces the Singleton inequality and the Singleton
bound.

PROPOSITION 2.2. Let (n, k, d) be a linear code C(n, k, d). We have the inequality
(called Singleton inequality): d ≤ n− k + 1.

Proof. Consider a generator matrix in systematic form. �

2.2.3. Dual code

The code C being a vector subspace it admits an orthogonal, noted C⊥.

PROPOSITION 2.3. If (IkR) is a generator matrix of C, then H = (−RT In−k) is a
generator matrix of C⊥, known as a parity check matrix of C.

Proof. The verification is direct. �

A generator matrix of C⊥ is referred to as a parity check matrix of C.

2.2.3.1. Reminders of the Gaussian method

To pass from a generator matrix of C to a parity check matrix (and reciprocally)
we often use the method of Gaussian pivots.

EXAMPLE 2.7. In F2 we take:

G =

⎛
⎜⎜⎝

111000
011101
011101
100111

⎞
⎟⎟⎠

We find:

H =

(
110100
110001

)

with 1 permutation of columns.

EXAMPLE 2.8. In F3 we take:

G =

⎛
⎝21012

12101
20212

⎞
⎠
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We find:

H =

(
21210
20001

)

without permutation of columns.

EXAMPLE 2.9. In F3 we takes:

G =

⎛
⎝22021

22101
11022

⎞
⎠

We find:

H =

(
21000
10001

)

with 2 permutations of columns.

2.2.3.2. Lateral classes of a linear code C

We note by Cu the set {u + c/c ∈ C}. The element u is called a representative of
the class Cu.

PROPOSITION 2.4. If b ∈ Ca then Cb = Ca.

Proof. It is enough to prove the inclusion Cb ⊆ Ca (due to cardinals). If u = b + c,
since b = a + c′ then u = a + b + c′ = a + b + c′′ ∈ Ca �

We can thus take as representative of each class the one whose weight is minimum
in its class. This is used in certain decodings.

PROPOSITION 2.5. The set of lateral classes of C forms a partition of (F2)
n, in parts

of the same cardinal.

Proof. Any u of (F2)
n is in its own class. The set of classes is thus a repetition of

(F2)
n. It remains to prove that two distinct classes do not have common elements,

which stems from the previous proposition. �

EXAMPLE 2.10. Let C be a code of length n = 5, and generator matrix:

G =

⎛
⎝10111

01110
11101

⎞
⎠
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The set of classes is the following (each line is a class, the first is the code, on the
left is a representative):

00000 10111 01110 11101 11001 01010 10011 00100

10000 00111 11110 01101 01001 11010 00011 10100
01000 11111 00110 10101 10001 00010 11011 01100
00001 10110 01111 11100 11000 01011 10010 00101

We note that the 3rd line is equal to the following line:

00010 10101 01100 11111 11011 01000 10001 00110

This observation is important for decoding.

2.2.3.3. Syndromes

Now we introduce the concept of a vector syndrome.

PROPOSITION 2.6. Two elements a and b are in the same class if a− b ∈ C.

Proof. The proof bears on the necessity and the sufficiency of the condition:

1) Let us suppose a ∈ Cv for a certain v, and a − b ∈ C. Then b = a − c =
(v + c′)− c = v + c′′ ∈ Cv;

2) If a and b are in Cv for a certain v then a = v + c1, b = v + c2,
a− b = c1 − c2 ∈ C. �

EXAMPLE 2.11. p = 2, and a code with generator matrix:

G =

⎛
⎝10111

01110
11101

⎞
⎠

generates the code C:

1) Using the Gaussian method we find the parity check matrix H =

(
11010
10001

)
without changing the columns;

2) Let v = 11111 be a received word. Calculate H[v]T ([v]T is v transposed).

PROPOSITION 2.7. Let H be a parity check matrix of the code C:

1) If b ∈ Ca, then we have H[b] = H[a],

2) If H[d] = H[a], then we have d ∈ Ca.
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Proof.

1) b = a + c, c ∈ C. Then H[b] = H[a] + H[c] = H[a],

2) H[d− a] = [0], which is equivalent to d− a ∈ C. �

In conclusion, the syndrome of a vector u characterizes the class to which u
belongs. This makes it possible to simplify the decoding practice.

2.2.3.4. Decoding and syndromes

Let v be a received word. The equality H[v]T = [s]T defines the vector [s]T called
the syndrome of v.

2.2.3.5. Lateral classes, syndromes and decoding

We use maximum likelihood decoding. Thus we decode by a codeword of C which
is the closest to the received word in the sense of Hamming distance.

PROPOSITION 2.8. If v is the received word, then the error is any element of the class
of v.

Proof. For any u of Cv we have v − u ∈ C. �

EXAMPLE 2.12. p = 2, and:

G =

⎛
⎝10111

01110
11101

⎞
⎠

Let us suppose receiving 11110. The error can be 10000, 00111, 11110, 01101,
01001, 11010, 00011, 10100. We will suppose maximum likelihood decoding and,
thus, that the error was 10000. The decoded word will then be 01110.

In fact, we calculate the syndrome of the received word v. This syndrome is the
same for any element of Cv . We then suppose that the error is the word with the
smallest weight in Cv (this is maximum likelihood decoding).

2.2.3.6. Parity check matrix and minimum code weight

The following proposition expresses a property of minimum code distance and
parity check matrix.

PROPOSITION 2.9. The minimum distance of a code is greater than or equal to d, if
there is no zero linear combination of d− 1 columns of a parity check matrix of C.
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Proof. Let (c0, c1, . . . , cn−1) be a codeword. Writing:

H ×

⎛
⎜⎜⎜⎝

c0

c1

...
cn−1

⎞
⎟⎟⎟⎠

is equivalent to making a linear combination of the columns of H . If there is no zero
linear combination with less that d − 1 columns of H , then the kernel of H (i.e the
code C) does not have a word with weight lower than d. �

2.2.3.7. Minimum distance of C and matrix H

The study of the columns of H gives the minimum distance of C.

EXAMPLE 2.13. We take as code C the code (known as the Hamming code) (7,4,3).
Its parity check matrix:

H =

⎛
⎝1010101

0110011
0001111

⎞
⎠

has neither a zero column, nor two equal columns. The minimum distance of C is 3.

EXAMPLE 2.14. We take as code C the Hsiao code (8,4,4) whose parity check matrix
is:

H =

⎛
⎜⎜⎝

10000111
01001011
00101101
00011110

⎞
⎟⎟⎠

It is a code that corrects 1 error and detects 2 of them.

2.2.4. Some linear codes

The best known linear codes are the Hamming codes and the Reed-Muller codes
(known as RM codes). Hamming codes have a parity check matrix formed by all the
non-zero r-tuples. They are the (2r−1, 2r−1−r, 3) codes. An RM code with a length
of 2m and order r is built on the basis of vectors v0, v1, . . . , vm, where v0 = (11 · · · 1)
and vi has 2i−1 “0” then 2i−1 “1” as components from left to right, in alternation. The
codewords of an RM code of length 2m and order r are all the products (component
by component) of a maximum of r codewords vi. An RM code of the order r has a
length q, a dimension 1 +

(
m
1

)
+

(
m
2

)
+ · · ·+ (

m
r

)
, and a minimum distance 2m−r.
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EXAMPLE 2.15 (m = 3, r = 2). We have v0 = 11111111, v1 = 01010101,
v2 = 00110011, v3 = 00001111. The code has 11111111, 01010101, 00110011,
00001111, 00010001, 00000101, 00000011, 00000001, 00000000 as words.

2.2.5. Decoding of linear codes

There are various more or less complex decodings possible, such as, for example,
lattice decoding, studied by S. Lin and T. Kasami amongst others.

Step by step decoding

Let us now introduce a very easy algorithm that can be used for all linear codes.

Let there be a linear code C, of length n, corrector of t errors by word, for which
we take a generator matrix G. We will suppose that C is binary, although this decoding
extends directly to non-binary codes.

Preparation of decoding

The following steps must be performed before proceeding to decoding:

1) construction of the parity check matrix H on the basis of G;

2) construction of the table of pairs (weight, syndromes):
– we will take as vector x any vector whose Hamming weight (noted wH(x))

is less than or equal to t,
– we will pose H[x]t = [zx]t,
– it is necessary to memorize in a table all the pairs (wH(x), zx).

Decoding

Let c be an transmitted codeword, which is supposed to have been altered by an
error x satisfying wH(x) ≤ t. For each received word c + x we have an initialization
phase and an iterative phase.

Initialization phase

The initialization phase comprises three stages:

1) calculation of H[c + x]t (equal to H[x]t), which we will call [zx]t,

2) search for zx in the table of pairs, from which we deduce wH(x),

3) initialization of a variable P to the found value of wH(x).
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Iterative phase, for i = 1 with n

Let us use li to indicate the binary vector of Hamming weight equal to 1, where 1
is in position i. The iterative stage comprises two stages:

1) calculation of H[c + x + li]
t, and search for wH(x + 1i) in the table. If it is not

found, the error cannot be corrected. We pass to 5);

2) analysis of wH(x + 1i):
– if wH(x + 1i) ≥ P , we do nothing,
– if wH(x + 1i) ≤ P , then : c + x← c + x + 1i and P ← wH(x + 1i).

REMARK. We may stop the iterations as soon as wH(x + 1i) = 0, since the error is
then corrected.

EXAMPLE 2.16. Let C be a BCH code (see section 2.4), with n = 15, t = 2, and
g(X) = 1 + X4 + X6 + X7 + X8. Its generator matrix is:

G =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

100010111000000
010001011100000
001000101110000
000100010111000
000010001011100
000001000101110
000000100010111

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

We find the parity check matrix:

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

110000010000000
011000001000000
001100000100000
000110000010000
000011000001000
000001100000100
000000110000010
000000011000001

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The table of pairs (wH(x), zx) contains 121 elements. Let us suppose that the
transmitted codeword is c = 0 and the received codeword is x = (000100010000000).

Initialization phase, we have H(c + x)t = zx = (10111011)t. We go through the
table of pairs and find wH(x) = 2. We pose P = 2.
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Iterative phase:

– i = 1, 2, 3:
– we find nothing in the table,
– therefore, we do nothing;

– i = 4:
– H[c+x+14]

t = [11100011]t, and the wH(x+14) equals 1, lower than P ,
– we thus replace P by 1 and the received vector by c + x + 14, i.e.

(000000010000000);
– i = 5, 6, 7: nothing changes;
– i = 8: H[c + x + 18]

t = [00000000]t and the wH(x + 18) equals 0. The
corrected word is thus c + x + 18.

2.3. Finite fields

2.3.1. Basic concepts

We presume that the reader is already familiar with the notions of modulo n cal-
culations, Z/(p) field, p prime (also noted Fp) and Euclid and Bezout equalities. We
also presume that the concept of ring of polynomials on the Fp field is also known. An
important result concerning the ring of polynomials is the following.

PROPOSITION 2.10. Any non-zero polynomial of degree n has at most n roots in a
field.

Proof. The proof is outside the scope of this book. �

A useful result for us is provided in the following proposition.

PROPOSITION 2.11. If β is a root of a polynomial f(X) of F2[X], then β2 is also a
root.

Proof. Let us pose f(X) = f0 + f1X + · · ·+ fnXn, fi ∈ F2. Since f2
i = fi, we have

the equalities f(β2) = f0+f1β
2+· · ·+fnβ2n = (f0+f1β+· · ·+fnβn)2 = 02 = 0.

�

2.3.2. Polynomial modulo calculations: quotient ring

Let us suppose a polynomial a(X) ∈ F2[X]. The set noted F2[X]/(a(X)) is
the set of polynomial expressions in X , with coefficients in F2, where we add and
multiply two elements calculating in F2[X] then taking the remainder of the division
of the result by a(X). We easily prove that it is a ring.
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EXAMPLE 2.17. Let us consider A = F2[X]/(a(X)), with a(X) = 1+X+X2+X3.
Let us pose u1(X)=1+X+X2 and u2 =X+X3. In F2[X] we have u1(X)u2(X) =
X + X2 + X4 + X5, the remainder of whose division by a(X) is 1 + X2, which is
the result of u1(X)u2(X) in A.

EXAMPLE 2.18. Let us pose a(X) = X5 +1. Let us pose u1(X) = 1+X +X2. Cal-
culate u1(X) = 1+X+X2,Xu1(X),X2u1(X),X3u1(X),X4u1(X), and examine
the representation in the form of binary vectors. We see that we obtain a circular shift
with each multiplication by X .

The ring F2[X]/(a(X)) is called the quotient ring.

2.3.3. Irreducible polynomial modulo calculations: finite field

When p(X) is irreducible, of degree n, we demonstrate that F2[X]/(p(X)) is a
(finite) field with 2n elements. The field F2[X]/(p(X)) is also noted Fq, with q = 2n.
It is said that F2[X]/(p(X)) is a representation of Fq. If there are two irreducibles of
the same degree n, then we have two representations of the same Fq field.

It is sometimes necessary (for example for certain decodings) to seek the roots of
a polynomial in a given field. Let us give an example of such a search for the roots of
a polynomial b(Y ) in a finite field.

EXAMPLE 2.19. In F2[X]/(1 + X + X4) we seek the roots of b(Y ) = 1 + Y + Y 2:

1) is it 1 + X? We have (1 + X)2 + (1 + X) + 1 = 1 + X + X2 �= 0. It is not a
root;

2) is it X + X2? We have (X + X2)2 + (X + X2) + 1 = 1 + X + X4 = 0. It is
a root;

3) is it 1 + X + X2? We have (1 + X + X2)2 + (1 + X + X2) + 1 = 0. It is a
root.

We can write 1 + Y + Y 2 = (Y − (X + X2))(Y − (1 + X + X2)) (verify it).
We will also verify that (X + X2)2 = 1 + X + X2 (see proposition 2.11).

2.3.4. Order and the opposite of an element of F2[X]/(p(X))

We can study the order and the opposite of an element of a ring, but here we
place ourselves in a finite field. Let β ∈ F2n , non-zero. Let us note that it is invert-
ible because it is in a field. We consider the family E = {β, β2, β3, . . .} of distinct
successive powers of β.
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2.3.4.1. Order

The order of β is the smallest positive integer e such that βe = 1 (e depends on β).

PROPOSITION 2.12. |E| = e.

Proof. E is finite because it is part of a finite field. Let us pose E = {β, β2,
β3, . . . , βr}. This means that βr+1 was already obtained in the form of βi, with
i ≤ r. Let us suppose βr+1 = βt, with t ≥ 2. We then have ββr = ββt−1, and
since β is invertible, we have βr = βt−1, which means that βt−1 has already been
obtained, which contradicts the definition of E. Thus βr+1 = β, from where we
directly deduce that βr = 1. The order of β is thus equal to r. �

EXAMPLE 2.20. In F2[X]/(1 + X + X2) the order of 1 + X is 3, the opposite of
1 + X is X .

EXAMPLE 2.21. In the field F2[X]/(1 + X + X4) let us pose β = X3. We find that
its order is 5.

EXAMPLE 2.22. In the field F2[X]/(1 + X + X4) let us pose β = 1 + X . We find
that its order is 15.

2.3.4.2. Properties of the order

The three following propositions express the properties of the order.

PROPOSITION 2.13. The order e of β divides 2n−1.

Proof. The set of q− 1 invertibles of the field forms a multiplicative group. The set of
powers of β forms a multiplicative subgroup. We know that the cardinal of a subgroup
divides the cardinal of the group which it contains. Lastly, e is the cardinal of the
subgroup. Thus, e divides q − 1. �

PROPOSITION 2.14. If x is of the order e, then xu = 1 involves e|u.

Proof. If u = λe then xu = (xe)λ = 1. If xu = 1, then by the Euclid equality
u = qe + r, r < e, and thus 1 = xu = xqexr = (xe)qxr = xr. Since e is the order of
x we must have r = 0. �

PROPOSITION 2.15. If x is of the order e, then xr is of the order e/gcd(e, r).

Proof. Let us note (a, b) for pgcd(a, b). We have: (xr)e/(e,r) = (xe)r/(e,r) = 1. Thus,
the order of xr divides e/(e, r) (see proposition 2.14). If we have (xr)E = 1, then
e|rE, i.e. rE = λe for a certain λ, from where [r/(e, r) × E = e/(e, r)] × λ. Since
we see that (r/(e, r), e/(e, r)) = 1, E is a multiple of e/(e, r). �
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Let us provide a method to compute the order of a β of Fq, q = 2n.

1) make the lattice of the divisors of q − 1;

2) to test βi where i is a maximum divisor of q − 1;

3) if for a maximum divider k we have βk = 1, then start again with the lattice of
dividers of k;

4) if βk �= 1 for any maximum divisor k of q− 1, then the order of β is q− 1 (see
proposition 2.13).

EXAMPLE 2.23. Let F26 be represented by F2[X]/(1 + X + X6). We seek the order
of β = 1 + X:

1) the lattice of divisors of 26 − 1 = 63 is as follows;

2) we must calculate β9 and β21. We find β9 = β + β2 + β4 + β5 �= 1 which
proves that its order does not divide 9. Moreover, we find β21 = 1. Thus, the order of
β is 21 or 7. The calculation yields β7 = β + β3 + β4 + β5 �= 1. Therefore, the order
of β is 21.

Figure 2.1. Lattice of divisors of 2
6
− 1 = 63

2.3.4.3. Primitive elements

An element of Fq is called primitive if its order is q − 1. We will see that there
always exists such an element in a field. We will prove the existence, then give the
number of such elements in Fq .

2.3.4.3.1. Existence

Propositions 2.16, 2.17 and 2.18 prove the existence of primitive. Let us pose
q − 1 = pm1

1 · · · pmk

k (primary decomposition of q − 1).

PROPOSITION 2.16. There exists an element y1 whose order is of the form pm1

1 pi2
2 · · ·

pik

k .

Proof. If not, the order of all x �= 0 of the field would be the root of X(q−1)/p1 − 1,
which is not possible, because of the degree (see proposition 2.10). �

Of course, there is also an element y2 whose order is of the form pi1
1 pm2

2 pi3
3 · · · pik

k

and so on. There thus exist particular elements y1, y2, . . . , yk.
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PROPOSITION 2.17. Let z1 = y
p2

m2p3
i3 ...p

i
k

k

1 . Its order is pm1

1 .

Proof. Applying proposition 2.15 we see that the order of the element z1 is equal to
(pm1

1 pi2
2 · · · pik

k )/(pm1

1 pi2
2 · · · pik

k , pm2

2 pi3
3 · · · pik

k ). �

Using the same argument we also obtain the elements z2, . . . , zk that have respec-
tive orders pm2

2 , . . . , pmk

k .

PROPOSITION 2.18. The element t = z1 · · · zk has as an order of q − 1.

Proof. Let E be the order of t. E is of the form pr1

1 · · · prk

k , (see proposition 2.13), with

ri ≤ mi for all i. We have tp
r1

1
p

r2

2
···p

r
k

k = 1. Let us raise to the power of pm2−r2

2 · · ·
pmk−rk

k . We have: (tp
r1

1
p

r2

2
···p

r
k

k )p
m2−r2

2
···p

m
k
−r

k

k = tp
m2

1
···p

m
k

k = z
p

r1

1
p

m2

2
···p

m
k

k

1 = 1.
Thus (see proposition 2.14) pm1

1 |pr1

1 pm2

2 · · · pmk

k , and then m1|r1, which means that
r1 = m1. By symmetry we also obtain the equalities r2 = m2, . . . , rk = mk, and
thus the order of t is equal to q − 1. �

We cannot formally construct a primitive, but if we know one of them we can find
them all, as indicated by the following proposition.

PROPOSITION 2.19. Let x be a primitive. The element xi is primitive, if (i, q−1) = 1.

Proof. The order of xi is (q − 1)/(q − 1, i) (see proposition 2.15). �

If we are not in a field there may not exist a primitive for the group of invertibles,
as the following examples show. Let us recall that ϕ is the Euler indicator. The number
of integers smaller than m, and relatively preceding this m, is equal to ϕ(m).

EXAMPLE 2.24. In Z/(9) we have ϕ(9) = 6. The group of invertibles thus has 6
elements. Element 2 has an order 6. It is a primitive from the group of invertibles.

EXAMPLE 2.25. In Z/(8) there are 4 invertibles. The invertibles 1, 3, 5, 7 have the
respective orders 1, 2, 2, 2. Thus, there are no primitives.

2.3.4.3.2. The number of primitives

The number of primitives is specified by the following result.

COROLLARY 2.1. The number of primitives in Fq is ϕ(q − 1).

Proof. By definition of the Euler function ϕ, and by proposition 2.19. �
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2.3.4.4. Use of the primitives

The primitive elements are often used in the application of error correcting codes.

2.3.4.4.1. The use of a primitive to represent the elements of a field

Any element β of F2[X]/(p(X)), with irreducible p(X) of nth degree, is a poly-
nomial expression in X with binary coefficients of a degree no more than n− 1. The
product of two elements β1 and β2 is thus a product of two modulo p(X) polynomi-
als. It is a rather complex operation, both time and power consuming. Therefore, in
practice it is interesting to change the representation of the field. We choose a primi-
tive α and express any non-zero element of the field as a power of this primitive. The
advantage is as follows. Let β1 = αi and β2 = αj . The product is αi+j where i + j
is calculated modulo q− 1, which is very easy and fast. Let us note that this represen-
tation renders the sum β1 + β2 more difficult to calculate than with the polynomial
expression of the elements. This disadvantage can be mitigated by using a Zech table.

2.3.4.4.2. Zech’s log table to calculate the sum of two elements

If β1 = αi and β2 = αj , with i > j, then βi + βj = αj(αi−j + 1). The Zech
table has 1 + αk as input and αm as output with 1 + αk = αm.

EXAMPLE 2.26. In F2[X]/(1 + X + X4) we take as primitive α = X . We have the
following representation:

1 = 1 α5 = α + α2 α10 = 1 + α + α2

α = α α6 = α2 + α3 α11 = α + α2 + α3

α2 = α2 α7 = 1 + α + α3 α12 = 1 + α + α2 + α3

α3 = α3 α8 = 1 + α2 α13 = 1 + α2 + α3

α4 = 1 + α α9 = α + α3 α14 = 1 + α3

Let β1 = α2 +α3 and β2 = 1+α+α2 +α3. The product is equal to α6+12 = α3.
The Zech table is presented as follows:

1 + α = α4 1 + α2 = α8 1 + α3 = α14 1 + α4 = α
1 + α5 = α10 1 + α6 = α13 1 + α7 = α9

This is sufficient because we have the equality 1 + αi+(q/2) = αi+q/2(1 +
α(q/2)−i−1). We have βi = α2(1 + α) = α2(α4) = α6, as well as β2 = 1 +
α(1 + α) + α3 = 1 + α5 + α3 = 1 + α3α8 = α12.

2.3.4.5. How to find a primitive

We cannot find a primitive formally, but we can use the following algorithm:

1) create the lattice of the divisors of 2n−1;

2) choose a non-zero element β;
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3) use the maximum divisors. If no maximum divisor d yields βd = 1, then the
element β is primitive.

EXAMPLE 2.27. In F64 represented by F2[X]/(1 + X + X6) let us consider the
non-zero element β = X . It is primitive. We finds β9 = X3 + X4 �= 1 and
β21 = 1 + X + X3 + X4 + X5 �= 1. Thus, the order of β is 63. It is primitive.

2.3.4.6. Exponentiation

We saw how to search for the order of an element, and how find out if it is primitive.
For large fields (i.e large q) we are led to calculate βi for very large i. One of the best
methods is to proceed as follows:

1) break up i in base 2;

2) calculate the exponentiations by 2, i.e. β, β2, β22

, β23

, etc.;

3) calculate the necessary products (see example 2.28).

We prove that the complexity is in O(log i) instead of O(i).

EXAMPLE 2.28. Calculation of β21, with the notations of example 2.9:

1) 21 = 16 + 4 + 1;

2) β → β2 → β4 → β8 → β16 which yields 1 + X → 1 + X2 → 1 + X4 →
1 + X2 + X3 → X + X4;

3) β21 = β16β4β1 = (X + X4)(1 + X4)(1 + X) = 1.

This method is used, for example, for calculations necessary for the use of RSA in
cryptography.

2.3.5. Minimum polynomials

Let β ∈ F2n . Let us consider the part Cβ = {β, β2, β22

, β23

, β24

, . . .}.

PROPOSITION 2.20. There exists a polynomial with binary coefficients, which admits
all the elements of this part as the set of its roots. This polynomial is irreducible.

Proof. Let us examine Cβ . It is a finite part, because it is included in a finite field. Let
us pose: Cβ = {β, β2, β22

, . . . , β2t−1}. This means that β2t

is an element of the form
β2i

, with 0 ≤ i ≤ t− 1.

Let us suppose i �= 0. We then have (β2t−1

)2 = (β2i−1

)2. Thus, (β2t−1

/β2i−1

)2 =
1. However, the polynomial Z2 − Z has only two roots (see proposition 2.10), which
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are 0 and 1. This leads to β2t−1

= β2i−1

. Thus, 2t−1 has been already obtained,
which goes against the definition of Cβ . Therefore, β2t−1

= β. A consequence of this
equality is that the class Cβ is stable under exponentiation by 2.

Now, let us consider the polynomial (Y − β)(Y − β2)(Y − β22

) · · · (Y − β2t−1

).
It has the symmetrical functions of its roots as coefficients. Thus, each of its coef-
ficients is invariant under exponentiation by 2. Each coefficient is, therefore, binary.
This polynomial is irreducible, since otherwise it would have a divisor of a strictly
smaller degree than it does. Moreover, this divisor would have at least one element
of Cβ as root. As this class is invariant under exponentiation by 2, and according to
proposition 2.11, this polynomial should have all the elements of Cβ as roots. This is
impossible according to proposition 2.10. Thus, this divisor strictly cannot exist. �

It is said that this irreducible polynomial is the minimum polynomial of β, and we
note it by Mβ(Y ). The part Cβ is called the cyclotomic class of β.

EXAMPLE 2.29. F2[X]/(1 + X + X3), β = 1 + X:

1) the cyclotomic class of β is {1 + X, 1 + X2, 1 + X + X2};
2) we have Mβ(Y ) = (Y − (1 + X))(Y − (1 + X2))(Y − (1 + X + X2)) =

1 + Y 2 + Y 3.

When β is primitive, the polynomial Mβ(Y ) is referred to as irreducible primitive,
or simply primitive.

2.3.6. The field of nth roots of unity

When we study a cyclic code of length n, we are led to seek the smallest field
Fq(q = 2r) containing the nth roots of unity (i.e. x such that xn = 1). If x has as an
order n, it is said that it is a nth primitive root of unity.

PROPOSITION 2.21. The smallest field Fq(q = 2r), which contains the nth roots of
unity, is such that r is the order of 2 modulo n.

Proof. Fq has q − 1 non-zero elements, which form a multiplicative group. The set of
nth roots of unity forms a subgroup thereof. Thus, n divides 2r−1. Written differently,
we have 2r − 1 = λn, or otherwise 2r = 1 modulo n, which shows that r is the order
of 2 modulo n. �

PROPOSITION 2.22. Let γ be an element of Fq (q = 2r, r is of the order 2 modulo n),
which is a nth root of unity, primitive or not. We have:

1) 1 + γ + γ2 + · · ·+ γn−1 = 0 if γ �= 1,

2) 1 + γ + γ2 + · · ·+ γn−1 = 1 if γ = 1.
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Proof. Indeed:

1) γ is a root of the polynomial 1+Xn

1+X , since the group of the nth roots is the set
of roots of the polynomial 1 + Xn;

2) n is odd, since it divides 2r − 1.

2.3.7. Projective geometry in a finite field

We consider Fqm+1 as space vector of dimension m + 1 over Fq, with q = 2s. Let

α be a primitive of Fqm+1 and β be a primitive of Fq. We have β = α
q

m+1
−1

q−1 . We can
build a particular geometry, known as projective geometry. We define the “points” in
Fqm+1 , then the projective subspaces of the dimensions 1, 2, . . . in the following way.

2.3.7.1. Points

A point, noted (αi), is the subspace of Fqm+1 generated by αi, deprived of 0. We
have (αi) = {αi, βαi, . . . , βq−2αi} = L(αi)\{0}. It is a subspace of dimension 1
deprived of 0.

2.3.7.2. Projective subspaces of order 1

If αj /∈ (αi), then a projective subspace of order 1, denoted (αj , αi), equals
L(αj , αi)\{0}. It is often called a “projective straight line”.

2.3.7.3. Projective subspaces of order t

It is a subspace of dimension t + 1 deprived of 0, in other words it is L(αi1 , . . . ,
αit+1)\{0}. For t = 2, it often called a “projective plane”.

2.3.7.4. An example

Let us take q = 2, s = 1,m = 2, F8 = F2[X]/(1 + X + X3), α = X . The points
are as follows: (α0) = {α0} because β = 1, (α1), (α2), (α3), (α4), (α5), (α6).

The projective straights are as follows:

(α0, α1) = {(α0), (α1), (α3)}, because α0 + α1 = α3

(α0, α2) = {(α0), (α2), (α5)}
(α0, α4) = {(α0), (α4), (α5)}, because α0 + α4 = α5

(α1, α2) = {(α1), (α2), (α4)}
(α1, α5) = {(α1), (α5), (α6)}
(α2, α3) = {(α2), (α3), (α5)}
(α3, α4) = {(α3), (α4), (α6)}, because α3 + α4 = α6

The only projective plane is the private field of 0.
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2.3.7.5. Cyclic codes and projective geometry

We note that we can pass from a point to another by multiplication by α. Indeed,

the number n of points in the geometry is qm+1−1
q−1 , and 1 and α

q
m+1

−1

q−1 belong to the
same point (1). The set of the points can thus be arranged like a cyclic sequence. This
suggests considering cyclic codes in Fq[X]/(Xn − 1), which is what we will return
to in the description of PG-codes (see section 2.4).

2.4. Cyclic codes

After the theoretical results of C. Shannon and the first linear code constructions
(Hamming, Golay) American engineers were required to be able to obtain codes stable
not only under addition (linear codes), but also stable under circular sliding (or shift).
The codes obtained (cyclic codes) are linear codes with additional properties.

This new requirement led the mathematicians to exploit the structure of A =
F2[X]/(Xn − 1), and, in particular, to study the ideal A. An ideal A is a non-empty
part, stable under addition, and stable under multiplication by any element of A. It is
a cyclic code of length n. Everywhere hereinafter n is odd.

2.4.1. Introduction

The following results express the properties of a cyclic code.

PROPOSITION 2.23. Any code C, stable under addition and circular shift may be
represented as an ideal A.

Proof. The circular shift on the right represents the multiplication by X in A. The code
C is thus stable under addition and multiplication by X . It is therefore stable under
addition and multiplication by any polynomial: thus, it is an ideal A. Conversely, an
ideal A is clearly a code stable under addition and circular shift. �

PROPOSITION 2.24. Any cyclic code has the form (g(X)) (i.e. the set of multiples of
g (X)), with g(X) dividing Xn − 1. More precisely, there is between the cyclic codes
of length n and the set of divisors of Xn − 1.

Proof. We know that the ring A = F2[X]/(Xn− 1) is principal, i.e. it is the set of the
multiples of one of its elements.

Let C be a cyclic code in A. Let g(X) be a polynomial of minimum degree
in the code. In F2[X] we have: Xn − 1 = q(X)g(X) + r(X). In A we deduce
r(X) = q(X)g(X), and, thus, r(X) is in C. Due to the minimality of the degree of
g(X) it necessarily follows that r(X) = 0. Thus g(X) divides Xn − 1.
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Reciprocally, let (X) be a divisor of Xn − 1. It is straightforward to prove that
(g(X)) is a cyclic code.

It remains to be shown that two divisors distinct from Xn − 1 generate two dis-
tinct codes C1 and C2. Let us suppose C1 = C2. Then in F2[X], we have g2(X) =
q(X)g1(X) + λ(X)(Xn − 1), for a certain λ(X). Thus g1(X) divides g2(X), since
g1(X) divides Xn − 1. Using symmetry, we prove the equality g1(X) = g2(X). �

PROPOSITION 2.25. Any cyclic code (a(X)) where a (X) is unspecified is still gen-
erated by PG(X), where PG(X) = (a(X),Xn − 1).

Proof. Let us pose PG(X) = (a(X),Xn − 1). Using the Bezout equality we obtain
PG(X) = λ(X)a(X) + µ(X)(Xn − 1), for certain λ(X), µ(X). This proves that
PG(X) is in the code (a(X)). Any multiple of a(X) is thus a multiple of PG(X). In
(a(X)) there exists a generator of minimum degree. Because of the degrees, it must
necessarily be PG(X). �

2.4.2. Base, coding, dual code and code annihilator

We now develop the basic ideas on the cyclic codes.

2.4.2.1. Cyclic code base

Let there be a cyclic code of length n, with a generator g(X) of degree n− k, and
g(X)|Xn − 1.

PROPOSITION 2.26. Let h(X) = (Xn − 1)/g(X), that is to say k is the degree of
h(X). The family F = {g(X), Xg(X), . . . ,Xk−1g(X)} is one of the basis of the
code (g(X)).

Proof. Let the word a(X)g(X) belong to the code. Let us pose that a(X) =
q(X)h(X) + r(X), with r(X) = 0 or deg(r(X)) < deg(h(X)). In A we have
a(X)g(X) = r(X)g(X) since g(X)h(X) = 0, and thus the family F is a generating
one. Let us prove that it is of rank k.

Let us suppose α0g(X)+α1Xg(X)+ · · ·+αk−1X
k−1g(X) = 0, in A. In F2[X]

we deduce it (α0 + α1X + · · ·+ αk−1X
k−1)g(X) = λ(X)(Xn − 1), but the degree

of the first member is at the most n − 1. Thus two members are zero, and we have
α0 = α1 = · · · = αk−1 = 0. �

EXAMPLE 2.30 (n = 7, g(X) = 1 + X + X3). A base of (g(X)) is {1 + X + X3,
X+X2+X4,X2+X3+X5,X3+X4+X6}. The code generator matrix g associated
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to this base is:

G =

⎛
⎜⎜⎝

1101000
0110100
0011010
0001101

⎞
⎟⎟⎠

To build the code we make all the linear combinations of the lines of this generator
matrix G. We find 24 words.

2.4.2.2. Coding

The first coding can be derived from proposition 2.26.

We suppose to have information blocks of length k. Each block will be encoded
by means of a length n code. We thus add n − k symbols of redundancy to k bits of
information.

We will describe how two of classical codings for cyclic codes are performed.
Thus, let us suppose that the code considered here has a length n, and is gener-
ated by a polynomial g(X) of degree n − k. Information is a block of length k,
which is represented by a binary sequence, let’s say i0, i1, . . . , ik−1. We will asso-
ciate the polynomial to this sequence (known as information polynomial) according
to: i(X) = i0 + i1X + · · ·+ ik−1X

k−1.

The first coding consists of calculating the polynomial i(X)g(X). It is clearly in
the code, since it is a multiple of g(X): it is a codeword. This coding is referred to as
non-systematic.

The second coding consists of calculating first Xn−ki(X). Then we calculate the
remainder r(X) of the division of this new polynomial Xn−ki(X) by g(X). The
polynomial obtained is r(X) + Xn−ki(X). The sequence of its coefficients is sent
through the transmission channel. Generally, we first send the largest degree.

The following proposition proves that we have indeed carried out a coding.

PROPOSITION 2.27. If (X) is an information polynomial, then the polynomial r(X)+
Xn−ki(X) is the corresponding codeword.

Proof. The polynomial r(X) + Xn−ki(X) is divisible by g(X), thus it belongs to the
code. �

This second coding is known as systematic, because information appears in it
clearly. We sometimes speak of a “systematic code”. It is not correct, because a cyclic
code is an ideal in A. It does not depend at all on the performed coding.
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EXAMPLE 2.31 (n = 7, g(X) = 1+X+X3). Let us take the information block equal
to 1011. The polynomial i(X) is equal to 1 + X2 + X3. The polynomial Xn−ki(X)
is X3 +X5 +X6. The remainder of the division of this polynomial by g(X) is 1. The
coded polynomial is, therefore, 1+X3 +X5 +X6. As the length of the code is 7, we
will send the following sequence of 7 binary symbols through the channel 1001011
(the first sent is on the right).

EXAMPLE 2.32 (n = 15, g(X) = 1 + X3 + X4). Let us take the information block
equal to 10111110001. The polynomial i(X) is equal to 1 + X2 + X3 + X4 + X5 +
X6 +X10. The polynomial Xn−ki(X) is X4 +X6 +X7 +X8 +X9 +X10 +X14.
The remainder of the division of this polynomial by g(X) is X2 + X3. The coded
polynomial is thus X2 + X3 + X4 + X6 + X7 + X8 + X9 + X10 + X14. We will
therefore send 001110111110001 (the first sent is on the right).

2.4.2.3. Annihilator and dual of a cyclic code C

Let there be a code C equal to (g(X)).

DEFINITION 2.10 (ANNIHILATOR). The annihilator of (g(X)) is the set of polynomi-
als v(X) with a zero product with all the words of the code C. It is written Ann(C).

Let h(X) = (Xn − 1)/g(X).

PROPOSITION 2.28. The annihilator of C is the cyclic code (h(X)).

Proof. Ann(C) is clearly a cyclic code and is therefore generated by a h(X) which
divides Xn − 1, which is of minimal degree, but h(X) is in the code Ann (C). Thus,
H(X) divides h(X). Since H(X)g(X) = 0, it means that the degree of H(X) is
equal to or higher than that of H(X). Thus, H(X) = H(X). �

DEFINITION 2.11 (ORTHOGONAL). The orthogonal (i.e. dual) of (g(X)) is the set of
all the polynomials v (X) with zero scalar product with all the codewords of the code
C. It is noted by (g(X))⊥, or C⊥.

PROPOSITION 2.29. The dual of C is the cyclic code ((h(X−1),Xn − 1)).

Proof. Let τ be the application of A in A which sends all a(X) over a(X−1). We
prove (and we will admit it) that τ is an automorphism. In addition we prove (and we
will also admit it) the equality:

a(X)b(X) =

n−1∑
i=0

< a(X),Xiτ(b(X)) > Xi
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This equality implies that a(X)b(X) = 0, if we have ∠a(X),Xiτ(b(X))〉 = 0
for all i. We proceed in two stages:

1) a polynomial b(X) is thus in Ann(C) if τ(b(X)) ∈ (g(X))⊥. Thus, h(X−1) ∈
(g(X))⊥ and, thus, (h(X−1)) ⊆ (g(X))⊥;

2) in addition, let u(X) ∈ (g(X))⊥. Then 〈g(X), u(X)Xi〉 = 0 and
∑

i=0,n=1

〈g(X), u(X)Xi〉Xi = 0. This is equivalent to τ(u(X))∈Ann(g(X)). Thus, u(X) ∈
(h(X−1)), and finally (h(X−1)) ⊇ (g(X))⊥, which proves the equality. Thus,
τ(u(X)) is a multiple of h(X), and consequently, according to proposition 2.25, the
code (h(X−1)) is equal to the code (h(X−1)), Xn − 1). �

2.4.2.4. Cyclic code and error correcting capability: roots of g(X)

We consider a cyclic code of length n generated by a polynomial g(X) with mini-
mum distance d.

One of the large advantages of cyclic codes is that we can have information on
their minimum distance, i.e. on their error correcting capability. More precisely, the
error correcting capability of a code is linked to the roots of the generator.

Let α be a primitive nth root of unity.

2.4.2.5. The Vandermonde determinant

The following result expresses a property of the Vandermonde determinant.

PROPOSITION 2.30. Let us consider the determinant D with d − 1 undetermined
X0,X1, . . . , Xd−2:

D =

∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1 · · · 1
X0 X1 X2 X3 · · · Xd−2

X2
0 X2

1 X2
2 X2

3 · · · X2
d−2

...
...

...
...

. . .
...

Xd−2
0 Xd−2

1 Xd−2
2 · · · · · · Xd−2

d−2

∣∣∣∣∣∣∣∣∣∣∣
It is equal to the product

∏
j>i,i=0,...,d−3(Xi −Xj).

Proof. A determinant is an alternate form of its columns. We observe here that if it is
supposed that two variables are equal, the determinant D is zero. It is thus divisible
by the product P =

∏
j>i,i=0,...,d−3(Xi −Xj).
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Let us consider the coefficient of Xd−2
d−2 in P . It is equal to

∏
j>i,i=0,...,d−4(Xi −

Xj). By a recurrence on the size of the determinant we easily prove that this coefficient
is equal to the determinant:

∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1 · · · 1
X0 X1 X2 X3 · · · Xd−3

X2
0 X2

1 X2
2 X2

3 · · · X2
d−3

...
...

...
...

. . .
...

Xd−3
0 Xd−3

1 Xd−3
2 · · · · · · Xd−3

d−3

∣∣∣∣∣∣∣∣∣∣∣
This proves that the determinant D is equal to the product P . �

COROLLARY 2.2. Let j1, . . . , jd−1 be distinct integers in {0, . . . , n1}. Let there be
the determinant D defined by:

D =

∣∣∣∣∣∣∣∣∣

(αi)j1 (αi)j2 · · · (αi)jd−1

(αi+1)j1 (αi+1)j2 · · · (αi+1)jd−1

...
...

. . .
...

(αi+d−2)j1 (αi+d−2)j2 · · · (αi+d−2)jd−1

∣∣∣∣∣∣∣∣∣
It is not zero.

Proof. One of the properties of the determinants is to be a multi-linear function of their
columns. We can thus write: D = αi+2i+3i+···+(d−2)iD′, with:

D′ =

∣∣∣∣∣∣∣∣∣

1 1 · · · 1
αj1 αj2 · · · αdd−1

...
. . .

...
α(d−2)j1 α(d−2)j2 · · · α(d−2)jd−1

∣∣∣∣∣∣∣∣∣
Since α is of the order n and we have d− 2 < n, the elements αj1 , . . . , αjd−1

are
all different from each other. We may thus apply proposition 2.30 and D′ is non-zero,
as well as D. �

2.4.2.6. BCH theorem

We can provide a lower bound of the minimum distance from a cyclic code. This
result is based on corollary 2.2.
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PROPOSITION 2.31 (BCH THEOREM). Let there be a code C of length n admitting
among its roots the following elements: αi, αi+1, . . . , αi+d−2, where α is a nth root
of unity, whose order is greater than d− 2. Then the code has a minimum distance of
at least d.

Proof. A parity check matrix of the code is clearly:

⎛
⎜⎜⎜⎜⎝

1 αi α2i α3i · · · α(n−1)i

1 αi+1 α2(i+1) α3(i+1) · · · α(n−1)(i+1)

1 αi+2 · · · · · · · · · α(n−1)(i+2)

1 · · · · · · · · · · · · · · ·
1 αi+d−2 · · · · · · · · · α(n−1)(i+d−2)

⎞
⎟⎟⎟⎟⎠

Based on the corollary 2.2, for any choice of d − 1 columns of this matrix we
obtain a determinant resembling the one studied in corollary 2.2. Every element of the
kernel of H (that is, of the code considered) thus has a Hamming weight that cannot
be less or equal to d− 1. �

2.4.3. Certain cyclic codes

We provide here some of the most used classical codes. We will not speak of the
generalized RS codes, of the alternating codes, or of the Goppa codes. Among the
latter we find codes resulting from algebraic geometry, which is outside the scope of
our subject matter. Often we will present only binary codes, although they also exist
in Fq .

2.4.3.1. Hamming codes

Cyclic Hamming codes are equivalent to linear Hamming codes. They are very
simple codes, with error correcting capability equal to 1. Let there be the field Fq ,
q = 2r. Let α be a primitive of this field.

PROPOSITION 2.32. The binary code C having for roots the elements of the class of
α is a cyclic code (n = q − 1, k = n− r, 3), called the Hamming code.

Proof. We take as a generator the minimum polynomial of α. Since α is of the order
q−1, no polynomial in the form 1+X1(i < q−1) can have α as root. The minimum
weight of the code is thus 3. �

There exists a generalization of these Hamming codes. Let there be the field Fqm ,
q = 2r. Let α be a primitive of Fqm . We pose β = αs. We seek a cyclic code with β
for root, with a error correcting capability of 1, i.e. a code (n, k, 3).



Block Codes 69

PROPOSITION 2.33. Such a code verifies the following properties:

1) we have n = (qm− 1)/(qm− 1, s), and k = q− 1−w where w is the cardinal
of the class of β;

2) such a code exists if ((qm − 1)/(qm − 1, s), q − 1) = 1.

Proof. Indeed:

1) the length is the order of β. As the order of α is qm − 1, we directly have the
order of β;

2) since we want d = 3 no polynomial of the form 1+µXi(µ ∈ Fq, i < n) should
admit β as a root. Thus βi should only belong to Fq if it equals 1. Multiplicative groups
(β) and Fq\{0}must have an intersection reduced to {1}. As their respective cardinals
are (qm − 1)/(qm − 1, s) and q − 1, the proposition follows directly. �

PROPOSITION 2.34. The parameter s must be a multiple of q − 1.

Proof. So that ((qm − 1)/(qm − 1, s), q − 1) = 1, it is necessary that (qm − 1, s) be
a multiple of q − 1, since qm − 1 is divisible by q − 1. �

According to this proposition we see that the length of such a code cannot exceed
(qm − 1)/(q − 1). We will now demonstrate that this length can be reached.

PROPOSITION 2.35. There exists such a code of length (qm − 1)/(q − 1), if (m,
q − 1) = 1.

Proof. We pose β = αq−1. The length is indeed (qm − 1)/(q− 1). The multiplicative
groups (β) and Fq\{0} have the respective cardinals (qm − 1)/(qm − 1, q − 1) and
q−1, i.e. again (qm−1)/(q−1) and q−1. But we have (qm−1)/(q−1) = qm−1 +
qm−2+· · ·+q+1. Since qi−1 = si(q−1) for certain si, we have (qm−1)/(q−1) =
λ(q − 1) + m. It follows that such a code exists if ((q − 1),m) = 1. �

2.4.3.2. BCH codes

Let there be Fq, q = 2r and a primitive element α. A binary BCH code of length n
is a code admitting as roots the cyclotomic classes of elements αi, αi+1, . . . , αi+2δ−1

for any i.

PROPOSITION 2.36. This code has a minimum distance equal to at least 2δ + 1.
Moreover, its dimension is at least n− δr.

Proof. The result for the minimum distance is a consequence of the BCH theorem.
The dimension stems from the fact that all the cyclotomic classes have a cardinal that
divides r (see proposition 2.46). �
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2.4.3.3. Fire codes

These are binary codes directly defined by their generator g(X) = p(X)(Xc−1),
where p(X) is an irreducible polynomial of degree m, not dividing Xc−1. The length
n of the code is the least common multiple (LCM) of c and of the exponent e of p(X).

Such a code C can correct any packet of errors (or burst) of length b and detect all
bursts of length d, if the following conditions are verified:

1) d ≥ b,

2) b + d ≤ c + 1.

To prove this capacity it is enough to demonstrate that this code cannot contain the
sum of a burst of length b and a burst of length d.

A burst of length b can be represented by a polynomial B(X) of degree b− 1 and
constant 1.

PROPOSITION 2.37. C does not contain the sum of a burst of length b and of a burst
of length d.

Proof. Reduction and absurdum: let us suppose that C contains a polynomial
XiB1(X) + XjB2(X). By the cyclicity of code this is equivalent to saying that C
contains a polynomial in the form of B1(X) + XkB2(X) (with k = j − i modulo
n). Since g(X) is divisible by Xc− 1, the latter must divide B1(X) + XkB2(X).
Let us pose k = qc + r (Euclidean division). We deduce that Xc − 1 must divide
B1(X) + XrB2(X) + (Xqc − 1)B2(X), therefore, B1(X) + XrB2(X). We may
write B1X(X) + XrB2(X) = (Xc − 1)M(X). We proceed in two stages.

Let us suppose that M(X) is not zero. We observe that we have r +d−1 > b−1,
and that, therefore, r + d − 1 = c + u, where u is the degree of M(X). Thus
r = c − d + 1 + u ≥ b + u. From this we deduce that r ≥ b > b − 1 and that
r > u. From this we see that in the right-hand side term there exists a monomial Xr,
but that this monomial cannot exist in the right-hand side term. The contradiction is
obvious.

Thus, B1(X)+XrB2(X) = 0, which involves (because of the constant of B1(X))
that r = 0 and B1(X) = B2(X). Thus we are led to suppose that C contains a
polynomial B1(X)(1 + Xqc). Since g(X) is divisible by p(X), the latter must divide
B1(X)(1+Xqc). Due to the degrees it cannot divide M1(X). It thus divides 1+Xqc.
Thus, 1+Xc and 1+Xn must divide 1+Xqc, which is impossible since qc < n and
n is the LCM of e and c. �
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2.4.3.4. RM codes

Let α be a primitive of Fq, q = 2m. Binary RM codes are defined by the expression
of the powers of α, which are roots of the code. Their roots is the αi such that the
Hamming weight of the binary decomposition of i is strictly lower that m− r. It is an
RM code of the order r.

PROPOSITION 2.38. An RM code of the order r has length q−1, dimension 1+
(
m
1

)
+(

m
2

)
+ · · ·+ (

m
r

)
, and minimum distance 2m−r − 1.

Proof. The proof is outside the scope of this work. �

2.4.3.5. RS codes

RS codes are codes whose coefficients are in F2r , with r ≥ 2, of length 2r − 1.
There roots are αi, αi+1, . . . , αi+δ−1 where α is a primitive.

PROPOSITION 2.39. Such a code is a (q− 1, q− 1− δ, δ + 1) code. Its BCH distance
is its true distance.

Proof. We have a deg g(X) = δ, and WH(g(X)) = δ + 1. �

2.4.3.6. Codes with true distance greater than their BCH distance

In an exhaustive article1 “One the minimum distance of cyclic codes”, J.H. van
Lint and R.M. Wilson provide all the binary codes with length not exceeding 61 that
have a true distance strictly larger than their BCH distance. Here are some examples;
each code is described in the form (length, dimension, true distance, BCH distance):

(31, 20, 6, 4), (31, 15, 8, 5), (39, 12, 12, 8), (45, 16, 10, 8),

(47, 23, 12, 6), (55, 30, 10, 5), (55, 20, 16, 8)

They are decodable by the FG-algorithm which we provide hereafter.

2.4.3.7. PG-codes

2.4.3.7.1. Introduction

We recall (see section 2.3) that we regard Fqm+i as a vector space of dimension
m + 1 in Fq, with q = 2s. Let α be a primitive of Fqm+i and β a primitive of Fq. We

have β = α
q

m+1
−1

q−1 . We have a projective geometry with n = qm+1−1
q−1 points.

We will construct codes in F2[X]/(Xn − 1), but prior to this we will provide two
definitions.

1. VAN LINT J.H., WILSON R.M., “On the minimum distance of cyclic codes”.
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DEFINITION 2.12. Let there be 2 integers i and j, and their respective writings in
base 2 be (i0, . . . , iu) and (j0, . . . , ju). It will be said that j is under i, if (j0, . . . , ju)
is less than or equal to (i0, . . . , iu) for the produced order.

For example, j = 25 and i = 37. Then j is not under i. With j = 25 and i = 29, j
is under i.

DEFINITION 2.13. We use Ws(t(2
s−1)) to indicate the maximum number of integers

in the form i(2s − 1) disjoint two by two that are under t(2s − 1).

For example s = 2, t = 5. Since 3 and 12 are under 15 and are disjoint, we have
W2(5(22 − l)) = 2.

2.4.3.7.2. PG-codes

We consider the code C such that its orthogonal C⊥ contains all the projective
subspaces of the order r of the field Fqm+i . This code C is a code called a PG-code of
the order r. The code C⊥ is characterized by the following proposition.

PROPOSITION 2.40. The C⊥ code has for zeros all the elements in the form αt(2s−1)

where Ws(t(2
s − 1)) ≤ r, t �= 0.

Proof. The proof is outside the scope of this work. �

There does not exist a formula giving the dimension of this code. It should be
constructed, so that the sought code C can be deduced from it.

The minimum distance of C is given in the following proposition.

PROPOSITION 2.41. The BCH distance of the code C is given by:

dBCH =
ps(m−r+1) − 1

ps − 1
+ 1

Proof. The proof is outside the scope of this work. �

The error correcting capability of the code C stems from the following proposition.

PROPOSITION 2.42. We have the following results:

1) the number J of projective subspaces of rank r, containing a projective subspace
of a fixed rank r - 1, verifies: J = dBCH − 1;
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2) the J projective subspaces have a two by two intersection which is reduced to a
projective subspace of the order r − 1;

3) we can correct up to J/2 errors by majority decoding.

Proof. Indeed:

1) it is the number of subspaces of the field that contains a fixed subspace of
dimension r;

2) two projective subspaces of order r cannot have an intersection of order r − 1
since they are distinct;

3) see section 2.6. �

PROPOSITION 2.43. The length of C is equal to the number of points.

Proof. This is straightforward. �

Since dBCH = J +1, we can correct up to J/2 errors. The J projective subspaces
are disjoint two by two, apart from the projective subspace of order r − 1.

2.4.3.7.3. An application

Majority decoding makes it possible to carry out a cheap and fast electronic opera-
tion, especially when decoding is in one stage. If decoding has more than three stages,
the complexity becomes very high.

The Japanese needed to find a powerful code with a cheap decoder. They wanted
to use it for their Teletext. Constraints: length of information 81, number of errors to
be corrected: 8. The solution found uses an information length of 82. The code is then
shortened by one position. The respective values of the parameters are: p = 2, r = 1,
m = 2. Decoding has 1 stage. We deduce from it the dimension of C: 82, the length of
the code: 273, its error correcting capability: 8 (s = 4, because 273 = 24×2 +24 +1).
It is a (273, 82, 18) code shortened by 1 position, decodable by majority vote with 1
level. The price of an encoder/decoder was 175 FF in 1995.

2.4.3.8. QR codes

Binary quadratic residue codes (QR codes) have a length p, where p is a prime
number in the form 8m+1 or 8m− 1. For each such p there are 4 QR codes. One has
all the modulo p squares as roots, another has all these squares and 1, another has all
the non squares, and the last one has all non squares and 1.

PROPOSITION 2.44. If p = 8m+1, then d2 > p, and if p = 8m− 1, then d(d− 1) ≥
p− 1.

Proof. The proof is outside the scope of this work. �
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These codes have an important group of automorphisms. We can then think of
finding good algorithms of trapping isolated errors.

2.4.4. Existence and construction of cyclic codes

Faced with a list of tasks proposed by an industrialist, we are often led to seek if
there exists a code which fulfills the requirements. If one does exist, it then has to be
constructed. There are tables of known codes, for a certain number of values of the
parameters n, k and d.

2.4.4.1. Existence

It is often useful to simply know if there exists a cyclic code with the given param-
eters. It is the case when we are trying to satisfy a list of tasks. The first stage consists
of testing the existence of a code. More precisely, we are led to examine whether there
exists a polynomial g(X), divisor of Xn − 1, with a given degree.

PROPOSITION 2.45. There exists a generator g(X), divisor of Xn − 1, with a given
degree s, and only if there exists in Z/(n) a set of cyclotomic classes under multipli-
cation by 2, whose cardinal is equal to s.

Proof. Let F2r be the smallest field containing the nth roots of unity. Let α be a
primitive of this field, and β be a nth primitive root of unity.

Let us suppose that the polynomial g(X) has a degree s. Its s roots are powers
of β. The corresponding exponents are elements of Z/(n). According to proposition
2.11 (see section 2.3), these roots are grouped by cyclotomic classes, and, therefore,
by the powers.

The inverse is straightforward. The polynomial that admits cyclotomic classes as
a set of roots divides Xn − 1 and is binary (see proposition 2.20). �

PROPOSITION 2.46. In Z/(2n − 1) there exists a cyclotomic class with a cardinal s
if s divides n.

Proof. If there exists a class with a cardinal s, then s divides n. Let there be x in
Z/(2n−1), whose class has a cardinal s. By definition of cyclotomic classes we have
2sx = x. In addition, there is also 2nx = x. We use the Euclidean equality between x
and n : n = qs + r, 0 ≤ r < s. From there we obtain (2s)q × 2rx = x, then 2sx = x,
which implies r = 0, otherwise the class of x would contain less than s elements.
Thus, s divides n.

If there exists an s such that s divides n, then there exists a class with a cardinal
s. Let x = (2n − 1)/(2s − 1). We have (2s − 1)x = 0, and the cardinal of the class
of x is thus at most equal to s. Let us suppose that the cardinal is t(0 < t < s).
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We then have: (2t − 1)x = 0, i.e. in Z : (2t − 1)x = µ × n. This implies:
(2t − 1)((2n − 1)/(2s − 1)) = µ(2n − 1), from where 2t − 1 = µ(2s − 1), which is
impossible. �

2.4.4.2. Construction

There exist various possibilities to construct a binary cyclic code with a given
length n:

– we can use the cyclotomic classes of Z/(n), then construct minimum polyno-
mials;

– we can directly seek g(X) by factorizing Xn − 1;

– we may also be led to seek a code which contains given words.

2.4.4.2.1. Use of classes of Z/(n)

As soon as we ensure the existence of the generator of a cyclic code g(X) with
length n, we construct it using the following proposition.

PROPOSITION 2.47. Let g(X) be the generator of a cyclic code of length n with a
degree n − k. Let {Ci1 , Ci2 , . . . , Cir

} be the family of cyclotomic classes found in
Z/(n). The polynomial g(X) has the elements of the forms αj as roots, where j tra-
verses the joining of the classes {Cαi1 , Cαi2 , . . . , Cαir

}.

Proof. This is straightforward. This proposition simply indicates the link between
classes in Z/(n) and the roots of g(X). We will note that the cardinal of the join-
ing of classes must be equal n− k. �

2.4.4.2.2. Factorization by the Berlekamp method

We use a linear algebra method introduced by E. Berlekamp. This method is based
on the following propositions describing and justifying the factorization of a polyno-
mial f(X) of the r degree. In the case of cyclic codes we are led to factorize polyno-
mials of the form Xn − 1, for odd n.

PROPOSITION 2.48. In A = F2[X]/(f(X)) the elevation to the square, which we will
note h, is a linear endomorphism.

Proof. We have successively:

a(X)→ h(a(X)) = a(X)2 = ra(X) + qa(X) + qa(X)f(X)

b(X)→ b(X)2 = rb(X) + qb(X)f(X)

From this we deduce:

h(a(X) + b(X)) = (a(X) + b(X))2 = r2
a(X) + r2

b (X) + q(X)f(X)

= ra(X) + rb(X) �
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In F2[X] let us suppose that f(X) divides a2(X)− a(X), for a certain a(X) of a
degree strictly smaller than the degree of f(X).

PROPOSITION 2.49. The GCD (f(X), a(X)) is a non-trivial factor of f(X).

Proof. We have a2(X)−a(X) = a(X)(a(X)−1) = λ(X)f(X), for a certain λ(X).
Any irreducible factor p(X) of f(X) divides either a(X) or a(X) − 1, but not both,
because otherwise it would divide their difference 1. Thus this PGCD (f(X), a(X))
is formed by a family of primary factors of f(X). It can be equal neither to f(X) nor
to 1, because of the hypotheses regarding the degree of a(X). �

To factorize f(X) it is enough to find a(X), which the Berlekamp method gives
us. The identical application is noted id.

PROPOSITION 2.50. Any element of A, different from 1, which is in the kernel of h−id,
is such a polynomial a(X).

Proof. Indeed, a(X) ∈ Ker(h − id) is equivalent to a2(X) − a(X) = 0 in A, i.e.
a2(X)− a(X) = λ(X)f(X) in F2[X]. �

To find the kernel of h− id we proceed as follows:

1) considering the base {1, X,X2, . . . , Xr−1} (r is the degree of f(X)) we
construct the matrix M of the endomorphism h, then we construct M − I;

2) using the Gaussian method we seek a base of the kernel of M − I;

3) if the only polynomial is 1, we cannot factorize. The polynomial f(X) has only
one primary factor. Otherwise, take a polynomial different from 1. It is the sought after
a(X);

4) we calculate (f(X), a(X)). We obtain a factor fi(X) of f(X), then the second
one by simple division of f(X) by f1(X). We then have f(X) = f1(X)f2(X), and
we reiterate with these two new polynomials.

EXAMPLE 2.33 (f(X) = 1 + X2 + X3 + X4). We have:

M − I =

⎛
⎜⎜⎝

0010
0101
0101
0010

⎞
⎟⎟⎠

from where successively, by the Gaussian algorithm:⎛
⎜⎜⎝

0010
1100
1100
0010

⎞
⎟⎟⎠→

⎛
⎜⎜⎝

1100
0010
1100
0010

⎞
⎟⎟⎠→

⎛
⎜⎜⎝

1100
0010
0000
0010

⎞
⎟⎟⎠→

⎛
⎜⎜⎝

1010
0010
0000
0100

⎞
⎟⎟⎠→

⎛
⎜⎜⎝

1010
0100
0000
0000

⎞
⎟⎟⎠
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which yields the kernel matrix:
(
0101
1000

)
. It provides a(X) = X + X3, and we easily

find (f(X), a(X)) = 1 + X . The second factor is 1 + X + X3. Neither of these two
factors can be factorized further.

We can prove that the factorization of X2r − X gives all the irreducibles with a
degree dividing r.

EXAMPLE 2.34. Let us factorize X7 − 1 in F2[X]. With the same notations as in the
previous example we have:

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1000000
0000100
0100000
0000010
0010000
0000001
0001000

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

and M − I =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0000000
0100100
0110000
0001010
0010100
0000011
0001001

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

We notice the simplicity of the construction of this matrix. Using the Gaussian
method we obtain the needed matrix:

M =

⎛
⎝0110100

0001011
1000000

⎞
⎠

We take a(X) = X + X2 + X3 (first line) and we obtain f1(X) = 1 + X + X3,
then f2(X) = 1+X +X2 +X4. We factorize f2(X). The new matrix M −I equals:

M − I =

⎛
⎜⎜⎝

0011
0111
0100
0000

⎞
⎟⎟⎠

The kernel matrix is
(
0011
1000

)
.

We take a(X) = X2+X3 and obtain 1+X+X2+X4 = (1+X)(1+X2+X3).
We factorize f1(X). The new matrix M − I equals:

M − I =

⎛
⎝000

011
010

⎞
⎠

The kernel matrix is (1000).

We cannot factorize further. It can be easily verified that 1+X +X3 is irreducible.
Finally we have X7 − 1 = (1 + X)(1 + X + X3)(1 + X2 + X3). Thus, there are
23 − 2 non-trivial cyclic codes (the trivial ones have a 0 or 1 generator).
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2.4.4.2.3. Construction of a cyclic code generated by given words

We may sometimes have to find the smallest cyclic code, which contains one or
more given codewords. Let m(X) be a given binary codeword of length n. We con-
sider it as an element of A = F2[X]/(Xn − 1). We seek the smallest cyclic code of
A containing this codeword.

PROPOSITION 2.51. Let λ(X) be the polynomial of the smallest degree, such that we
have λ(X)m(X) = 0. The required code is the ideal ((Xn − 1)/λ(X)).

Proof. Indeed:

1) the set of polynomials u(X), such that u(X)m(X) = 0 is an ideal of A. As
any ideal is principal, this ideal is generated by a polynomial with the smallest possible
degree. Thus, it is the polynomial λ(X) of the statement;

2) the polynomial λ(X) divides Xn − 1. Thus, m(X) is in the code ((Xn − 1)/
λ(X)). We pose g(X) = (Xn − 1)/λ(X);

3) everything under the strict code of the code (g(X)) is generated by a polyno-
mial of the form u(X)× g(X) (with u(X) �= 1). If m(X) is in such a subcode, then
m(X) must be canceled by (Xn − 1)/u(X)g(X), which is impossible, because its
degree is strictly smaller than that of λ(X).

Thus, the required code is ((Xn − 1)/λ(X)). �

Using the Gaussian method pivots we easily find the required code. Let us note
that the pivots may be in any column.

EXAMPLE 2.35. Find the smallest cyclic code containing the following codeword:
110010100001110. By the Gaussian method we find, for example:

1100101000011101

011001010000111X

0111100010011011 + X2

101111000100110X + X3

1001110000111011 + X2 + X4

0000000000000001 + X + X3 + X5 = λ(X)

Each binary vector-row is followed on its right by a polynomial v(X). This trans-
lates the fact that the row is equal to v(X)m(X). These polynomials v(X) appear
during the application of the Gaussian method.
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We find g (X) = (X15 − 1)/λ(X) = 1 + X + X2 + X4 + X5 + X8 + X10.
The pivots are in columns 7, 8, 9, 10 and 11, and the first column is on the right with
number 1.

In the general case we want to determine the smallest cyclic code containing the
codewords m1(X),m2(X), . . . , ms(X). Using the previous construction we con-
struct the polynomials λ(X), λ2(X), . . . , λs. The polynomial with the smallest degree
canceling the mi(X) is clearly the LCM of the λi(X). Another method is to seek the
PGCD (m1(X),m2(X), . . . ,ms(X)). It is the generator of the required code.

2.4.4.3. Shortened codes and extended codes

2.4.4.3.1. Shortened codes

We remove the s first components of information from each codeword of the code
C. This amounts to considering only those codewords in C, which have these s com-
ponents equal to 0. A shortened cyclic code is a linear code.

2.4.4.3.2. Extended codes

We add a parity symbol to each codeword, which is such that the sum of the sym-
bols of each extended codeword is even. The following is an interesting question:
is it possible for an extended cyclic code to be cyclic? That is one of the suggested
exercises.

2.4.4.4. Specifications

A specification is a set of constraints that the system of coding must satisfy. The
principal parameters, which industry specialists make a point of taking into account,
are as follows:

– length L of the information string to be coded,

– maximum redundancy rate,

– maximum length of the codewords,

– gross flow (i.e. in terms of binary symbols),

– net flow (i.e. in terms of information bits),

– residual error rate for an input error rate (i.e. pr for pe),

– average space without errors between two badly decoded consecutive words,

– electronic constraints (delicate).

2.4.4.5. How should we look for a cyclic code?

There is no general method. We can start by looking for the possible values of k:
those that divide the length of information strings. Then one can try associating the
possible values of n to each possible value of k. We will study the values of k and
n by ascending values, in order to have the shortest possible code (thus, a priori, the
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most economic). Then for fixed n and k we must examine whether there exists a cyclic
code. To that end we study the distribution of cyclotomic classes in Z/(n).

On the basis of this study we find what can be the error correcting capability of the
code. It is then necessary to use the formulae connecting pr to pe, as well as the BCH
theorem. We can have an idea of the decoding power of the code from the following
proposition.

PROPOSITION 2.52. Let there be a cyclic code of length n, dimension k, with error
correcting capability of t errors per word. Let pc be probability of channel error, and
pr be the residual probability per corrected word. We have the inequality:

npr ≤
n∑

i=t+1

(t + i)

(
n

i

)
pi

c(1− pc)
n−i

Proof. Since pr is the probability of error per symbol of a received word, the expecta-
tion of the number of residual errors per corrected word is npr (binomial distribution).
We will provide an increase of this expectation.

Let us consider the event “the word has been decoded incorrectly”. This event
is included in the following event E “for any value i (i = t + 1, t + 2, . . . , n) of
the number of transmission errors occurring, the decoding algorithm decodes using
likelihood decoding”. This means that the number of errors in the “corrected” word
is at most equal to i + 1 (i comes from the channel, t comes from decoding). The
expectation of the number of errors in this event E is:

n∑
i=t+1

(t + i)

(
n

i

)
pi

c(1− pc)
n−i

which yields the result announced in the statement. �

It will be noted that pr is also the probability of residual errors for the information
block recovered after decoding, provided that this decoding is systematic. Otherwise
the residual rate is much greater.

In practice, when pc is not greater than 10−3, we are able to take as a relation:

npr = (2t + 1)

(
n

t + 1

)
pt+1

c (1− pc)
n−t−1

It has to be well noted that the value pr obtained is the one provided by the code.
If we require a residual probability of p′, we must then check for the code considered,
the inequality:

(2t + 1)

(
n

t + 1

)
pt+1

c (1− pc)
n−t−1 ≤ np′
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If it is satisfied, the code is acceptable.

Lastly, we are able to take into account the more delicate constraints on electronics.

EXAMPLE 2.36 (EXAMPLE OF CYCLIC SEARCH FOR CODE). Specifications:

– channel (i.e. input) error rate: 10−4,

– maximum redundancy rate: 0.18,

– maximum acceptable residual error rate: 10−5,

– information strings of length 105.

We will look for a natural (i.e. not shortened) cyclic code:

1) The possible values for k are the divisors of 105:

{1, 3, 5, 7, 15, 21, 35, 105}

2) Using the constraint on the redundancy rate we find the inequality n≤k/(0.82).
This yields the possible values for n for a value of k:

k 1 3 5 7 15 21 35 105
n 1 3 3 7 15 15 31 127

We see that there exists, perhaps, a natural cyclic code of length 127. We examine
the classes of Z/(127). We will look for a joining of these classes, with a cardinal
127 − 105 = 22. The cardinals of classes are divisors of 7 (because 127 = 27 − 1).
There are, thus, cardinal classes 1, 7. Since 22 = 3 × 7 + 1, we conclude that there
exists a code whose roots contain {α, α3, α5, α0}.

The apparent distance of the code is 8. It thus corrects 3 errors per codeword. If
we approximate the member on the right of the formula linking pr to pe by (t + 1)×(

n
(t+1)

)× pt+1 × (1− pe)
n−t−1, we must verify the inequality:

(t + 1)×
(

n

t

)
× pt × (1− pe)

n−t ≤ 127× 10−5.

We obtain: (4)× (
127
4

)× 10−16 × (0.9999)123, to compare with 127× 10−5. We
also have: 4.084 × 109 to compare with 127 × 10−5. It is acceptable, therefore there
exists a natural cyclic code that satisfies the required constraints.

2.4.4.6. How should we look for a truncated cyclic code?

We conduct the same study as before, but we allow ourselves to truncate the con-
sidered codes, which yields a greater choice.
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2.4.5. Applications of cyclic codes

Since the beginning of 1970s many applications of error correcting codes have
been introduced. Let us cite a few.

– transmissions of images by remote spacecrafts,

– satellite transmissions,

– underwater transmissions,

– optical discs,

– Hubble,

– bar-codes,

– computer memory,

– mobiles,

– CD readers,

– cryptography.

2.5. Electronic circuits

The implementation of error correction on board a satellite, a remote spacecraft, in
computer memory, on optical or magnetic discs, in CD readers, is carried using elec-
tronic circuits. These circuits primarily use shift registers, carrying out multiplications
or divisions of polynomials with coefficients in F2 or F2r .

In this section, circuits are drawn without taking traditional standards into account,
as far as logical gates and oscillation are concerned. We will not represent connections
with the clock.

2.5.1. Basic gates for error correcting codes

There is the flip-flop, represented as follows, which contains a binary value. This
flip-flop is under the control of a clock. With each beat (or signal) of this clock the
flip-flop transmits the value that it contained and receives the value presented at input.
A flip-flop has an input and an output (see Figure 2.2).

Figure 2.2. Flip-flop (or oscillation)

There are also logical gates, “OR”, “AND”, “exclusive OR” represented as follows
(see Figure 2.3).
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OR

AND

NOT

Figure 2.3. Logical gates

These logical gates are not under the control of the clock.

If two signals follow different sets of logical gates, the difference in propagation
time is one of the limitations of certain algorithms.

In transmissions binary vectors often represent binary polynomials. These always
circulate from the coefficient with the highest degree to the constant coefficient. When
a polynomial enters a register it enters starting with the monomial coefficient of the
highest degree. For example, if we take the polynomial 1 + X + X4 + X7 the set of
binary values associated to it is 11001001, and the first appearing at the input of the
register will be the coefficient on the right.

2.5.2. Shift registers

A shift register (Figure 2.4) is a succession of flip-flops connected to each other in
sequence. Such a register, in general, has one input and one output.

Figure 2.4. Shift register

2.5.3. Circuits for the correct codes

From shift registers we construct increasingly complex circuits, used in encoders
and decoders.

2.5.3.1. Divisors

Such a circuit has an input and sometimes also an output. It divides the input by
the polynomial corresponding to the feedback connections.
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To a binary polynomial of degree n, p(X) = p0 +p1X + · · ·+pnXn we associate
a feedback register formed by n flip-flops (or oscillator), modulo 2 adders (with 2 or
more inputs), and a feedback reproducing the polynomial coefficients. For example, if
p(X) = 1 + X2 + X3 + X6, then the register is (Figure 2.5):

Figure 2.5. Divisor

PROPOSITION 2.53. Let there be a register with shifts with connections that cor-
respond to an irreducible polynomial p(X). Let us suppose that this register turns
autonomous (i.e. without input), and that the initial contents are not zero. A shift cor-
responds to the multiplication by X in the field F2[X]/(p(X)).

Proof. The register with shifts in fact translates into the inequality:

p0 + p1X + · · ·+ pn−1X
n−1 = pnXn

which is equivalent to calculating modulo p(X). Since a shift is equivalent to mul-
tiplying the contents of the register by X , the register with feedback multiplies the
contents of the register by X modulo p(X). �

2.5.3.2. Multipliers

The following circuit R in Figure 2.6 multiplies the entry by the polynomial asso-
ciated to connections. If we input 1, the contents of R are equal to the polynomial of
connections, i.e. 1 + X + X5.

Figure 2.6. Multiplier

2.5.3.3. Multiplier-divisors

The following circuit in Figure 2.7 multiplies the input by the polynomial of the
lower connections, and at the same time calculates the modulo result of the polynomial
of the upper connections.

2.5.3.4. Encoder (systematic coding)

It is a particular case of the multiplier-divisors. For a systematic coding we multi-
ply the information polynomial (at input) by Xdeg g(X).
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Figure 2.7. Dividing multiplier

Figure 2.8. Encoder

2.5.3.5. Inverse calculation in Fq

Let us consider the field Fq = F2[X]/(p(X)), where p(X) is an irreducible prim-
itive (meaning that X is a primitive of the field). Let a(X) be a non-zero element of
this field. We can express a(X) as a power of X : a(X) = Xi. Its reverse, let us say
b(X), is equal to Xq−1−i. If we multiply a(X) by Xq−1−i, we then find 1. The cal-
culation of the inverse of a(X) can be carried out using the registers drawn hereunder
in Figure 2.9. In this example they calculate the inverse of 1 + X + X2 + X3 in the
field F2[X]/(1 + X3 + X5).

Figure 2.9. Calculation of the inverse

2.5.3.6. Hsiao decoder

This code is well adapted to computer read-write memories thanks to its decoding
speed.

As a parity check matrix of the Hsiao code we take the following matrix M :⎛
⎜⎜⎝

10001110
01001101
00101011
00010111

⎞
⎟⎟⎠

We wish to transmit the following word m = (i0, i1, i2, i3, r0, r1, r2, r3), where
the ij are information bits, and r are the redundancy symbols. With the receiver we
calculate the syndromes (s0, s1, s2, s3), obtaining the product M ×mT (i0 is on top).
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The set which makes it possible to find the syndromes is shown in Figure 2.10.

Figure 2.10. Hsiao decoder

2.5.3.7. Meggitt decoder (natural code)

The chosen code is Hamming (7, 4, 3) with the generator g(X) = 1 + X + X3.
This set up (see Figure 2.11) corrects bursts with a length of 1, (i.e. isolated errors).

AND

NOTOR

AND

Figure 2.11. Meggitt decoder (natural code)
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2.5.3.8. Meggitt decoder (shortened code)

The chosen code is the Hamming code, shortened by one position, i.e. the (6,3,3)
code. Let us note that we “enter” the register of division by g(X) by pre-multiplying
by X1+deg g(X) = X4, which is equal to X + X2 modulo g(X).

This set up (see Figure 2.12) corrects bursts with a length of 1 for each word of
length 6.

NOT

AND

OR

AND

Figure 2.12. Meggitt decoder (truncated code)

2.5.4. Polynomial representation and representation to the power of a primitive rep-
resentation for a field

We take a register whose feedback is an irreducible primitive of the degree n. We
take α = X as the primitive element. We initialize the register with (1, 0, 0, . . . , 0) and
make it turn 2n− 2 times. We obtain two representations of the F2n field, one of them
polynomial (it is the sequence of the register’s contents), the other is the sequence of
the powers of the primitive a (it is the sequence of clock signal numbers).

In the following example (Figure 2.13) we give two representations of the non-
zero elements of F16 represented by F2[X]/(1 + X + X4). The primitive selected is
X . The column on the right provides the powers of X corresponding to the polynomial
writing given on the left.
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Figure 2.13. Representation of the elements of the field

2.6. Decoding of cyclic codes

2.6.1. Meggitt decoding (trapping of bursts)

We can trap bursts with cyclic codes, but the Fire cyclic codes are particularly well
adapted to this kind of decoding. H. Imai has generalized this technique to the case of
Fire codes with two dimensions. We will, therefore, describe the trapping of bursts by
means of a binary Fire code, of length n and generator g(X).

We will suppose that the burst b(X) has a maximum corrigible length b. The other
cases are directly derive from here. It is thus represented as a polynomial of the b− 1
degree, and with a constant 1.

2.6.1.1. The principle of trapping of bursts

The received word r(X) is equal to the transmitted word c(X), to which a burst
Xib(X) has been added during transmission. Simultaneously with calculating the
remainder of r(X) in an associated divisor register g(X), Rg we memorize r(X)
in a register with shifts, R of length n. We wish to achieve that the burst also be at the
output of the register associated with g(X) when it is at the output of the register with
shifts. By simple addition we then eliminate the burst. The two following propositions
bring the solution.

2.6.1.2. Trapping in the case of natural Fire codes

The following proposition concerns the solution in the case of natural Fire codes.
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PROPOSITION 2.54. Pre-multiplying the input of Rg by Xdeg g(X) we will obtain the
burst at the output of R and the output of Rg simultaneously.

Proof. Let r(X) be the remainder of the division of the burst Xib(X) by g(X).
After [n − (i + b)] clock beats the burst became Xn−bb(X) (which is of the n − 1
degree). It is wedged against the register with shifts R. In the register associated to
g(X) we have b(X) after n− i signals. In this register there is the wedged burst after
[n− (i+b)+deg g(X)] clock beats. By pre-multiplying the input of Rg by Xdeg g(X)

we can correct the burst. �

2.6.1.3. Trapping in the case of shortened Fire codes

In general, Fire codes have a very large length. We are thus led to shorten them.
We passes from n to a shortened length n′. The register R is shortened by a certain
number of oscillations. The Meggitt decoding adapts well to this truncation.

PROPOSITION 2.55. By pre-multiplying the input of Rg by Xn−n′+deg g(X) we will
have the burst at the output of R and at the output of Rg at the same time.

Proof. After [n′ − (i + b)] signals the burst became Xn′−bb(X). It is wedged in R. In
Rg we have b(X) after n − i signals. In this register we thus have the burst wedged
after [n − (i + b) + deg g(X)] clock signals. To trap the burst we pre-multiply the
input of Rg by Xn−n′+deg g(X). �

2.6.2. Decoding by the DFT

The Fourier transform is used in many fields, such as signal processing. The dis-
crete Fourier transform (DFT) is used in finite bodies, for certain decodings.

2.6.2.1. Definition of the DFT

We consider the algebraic equation A = Fq[X]/(Xn − 1)(q = 2r), odd n,
where Fq is the smallest extension field of F2 containing the nth roots of unity (see
section 2.3.6). Let β be a primitive nth root of unity. For all a(X) of A we pose
T (a(X)) =

∑n−1
i=0 a(βi)Xi which defines the DFT, noted here T .

2.6.2.2. Some properties of the DFT

The five following propositions express certain properties of the discrete Fourier
transform.

PROPOSITION 2.56. T is a bijective linear application of A in A.
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Proof. Let us prove that T is linear. We have directly:

T (a(X) + b(X)) =

n−1∑
i=0

(a(βi) + b(βi))Xi = T (a(X)) + T (b(X))

Moreover:

T (λa(X)) = λT (a(X)), for all λ of Fq

Let us prove that T is bijective. Since A is finite, it is enough to prove that T is
injective, i.e. its kernel is reduced to {0}. Let there be a(X) such that T (a(X)) = 0.
Then a(X) admits as roots the n distinct elements β0, β1, β2, . . . , βn−1. Since its
degree does not exceed n− 1, a(X) must be zero (see proposition 2.10). �

PROPOSITION 2.57. We have the two following properties:

1) T 2 = τ ,

2) T 4 = id.

Proof. Indeed:

1) Let us pose a(X) =
∑n−1

i=0 ajX
j . We have:

T 2(a(X)) = T

[
n−1∑
i=0

a(βi)Xi

]

=

n−1∑
i=0

a(βi)

n−1∑
j=0

βjiXj

=
∑

j

[∑
i

a(βi)βji

]
Xj

=
∑

j

[∑
i

n−1∑
k=0

akβikβji

]
Xj

=
∑

j

Xj
∑

k

ak

[
n−1∑
i=0

βi(j+k)

]

However,
∑n−1

i=0 βi(j+k) equals 0 unless k = −j (see proposition 2.22). We thus
also have T 2(a(X)) =

∑
j Xja−j , which is equal to τ(a(X));

2) The proof of the second property is straightforward. �
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Now we provide A with a second product, noted ∗, called component by compo-
nent product, defined as follows. For a(X) =

∑n−1
i=0 aiXi and b(X) =

∑n−1
i=0 biX

i

we pose:

a(X) ∗ b(X) =
n−1∑
i=0

aibiX
i

It is easily proven that A provided with the two laws + and ∗ is a ring.

PROPOSITION 2.58. T has the two following properties:

1) T (a(X)b(X)) = T (a(X)) ∗ T (b(X)),

2) T (a(X) ∗ b(X)) = T (a(X))T (b(X)).

Proof. Indeed:

1) the proof of the first property is straightforward;

2) since T is surjective we have a(X) = T (a′(X)) and b(X) = T (b′(X)), for
certain a′(X) and b′(X). We can write:

T (a(X) ∗ b(X)) = T (T (a′(X)) ∗ T (b′(X)))

= T (T (a′(X)b′(X)))

= τ(a′(X)b′(X))

= τ(a′(X))τ(b′(X)).

But we also have a′(X) = τ(T (a(X))) and b′(X) = τ(T (b(X))). Thus T (a(X)∗
b(X)) = T (a(X))T (b(X)), because τ2 = id. �

PROPOSITION 2.59. Let s(X) ∈ A. Let us note WH(s) its Hamming weight:

1) the set E of the polynomials L(X) such that s(X) ∗ T (L(X)) = 0 is an ideal
of A generated by a polynomial noted Ls(X);

2) the degree of Ls(X) is WH(s).

Proof. Indeed:

1) if s(X) ∗ T (L1(X)) = s(X) ∗ T (L2(X)) = 0, then s(X) ∗ T (L1(X) +
L2(X)) = 0. Moreover, s(X) ∗ T (XL1(X)) = 0, which proves this point;

2) if s(X) ∗ T (L(X)) = 0 then L(βi) = 0 as long as si is a non-zero coefficient
of s(X). The polynomial Ls(X) is thus that which has as roots βi such that si is a
non-zero coefficient of s(X). Its degree is thus the Hamming weight of s(X). �

PROPOSITION 2.60. Let s(X) ∈ A and S(X) = T (s(X)). A polynomial L(X)
verifies 〈S(X),XiL(X)〉 = 0, i = 0, 1, . . . , n− 1, if s(X) ∗ T (L(X)) = 0.
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Proof. By assumption we deduce
∑n−1

i=0 〈S(X),XiL(X)〉Xi = 0, i.e. S(X)τ
(L(X)) = 0 (see proof of proposition 2.29), or T (S(X))T 2(L(X)) = 0. We deduce
from it:

0 = T
(
T (s(X))T 2(L(X))

)
= T 2(s(X)) ∗ T 2 (T (L(X)))

= τ (S(X) ∗ T (L(X)))

from where, finally, s(X) ∗ T (L(X)) = 0. �

2.6.2.3. Decoding using the DFT

Let there be a cyclic code C, which we can suppose to be binary, length n. Let β a
primitive nth root of unity. Let us suppose that the set of the roots of code contain the
sequence of powers β, β2, β3, . . . , β2t, which is equivalent to saying that the code is
a t corrector.

A word c(X) of the code is transmitted. The received word r(X) is equal to
c(X) + e(X) where e(X) is the error word. We calculate the syndromes of r(X),
i.e. a part of the Fourier transform of r(X) over the elements β, β2, . . . , β2t. Since
c(βi) = 0 for i = 0, 1, 2, . . . , 2t we calculate, in fact, a part of the Fourier transform
of e(X). T (e(X)) is a polynomial whose coefficients from X to X2t we know, which
are the respective syndromes S1, S2, . . . , S2t. We pose S(X) = T (e(X)). Since we
want to calculate e(X), we will seek the error positions. We are thus looking for the
polynomial Le(X), of minimum degree, no more that t.

PROPOSITION 2.61. Let us consider the following syndrome matrix:⎛
⎜⎜⎜⎝

S1 S2 · · · St+1

S2 S3 · · · St+2

...
...

. . .
...

St St+1 · · · S2t

⎞
⎟⎟⎟⎠

There exists a linear combination of the r first columns (starting from the left)
which is zero, if Le(X) is of the r degree.

Proof. If there exists such a zero linear combination, let us say m1S1 + m2S2 + · · ·+
mr−1Sr−1 +Sr = 0 then the polynomial m1 +m2X + · · ·+mr−1X

r−1 +Xr is the
polynomial of the lowest degree, which is orthogonal to S(X) in the corresponding
positions. It is thus the locator of e(X). The reverse is direct. �

If the code is binary as we have supposed, it is enough to look for the roots of
Le(X). Otherwise, we calculate the complete polynomial S(X) using the relation of
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orthogonality 〈S(X),XiLe(X)〉 = 0, then we calculate T (S(X)) that is equal to
τ(e(X)). Finally, we recover the error polynomial e(X), and perform the correction.

We propose the following decoding algorithm, for a binary or non-binary code of
length n:

1) calculate the 2t syndromes r(β), r(β2), . . . , r(β2t), which yield the 2t coeffi-
cients S1, . . . , S2t of S(X);

2) look for the kernel (straight) of the matrix:⎛
⎜⎜⎜⎝

S1 S2 . . . St1

S2 S3 . . . St+1

...
...

. . .
...

St St+1 . . . S2t

⎞
⎟⎟⎟⎠

More precisely, we will look for the first zero combination of columns starting
from the left. Only one vector appears then in the kernel, and it is the vector of the
coefficients of Le(X);

3) calculate S(X) completely finding all the scalar products 〈S(X),XiLe(X)〉.
We obtain τ(e(X)) = T (S(X));

4) calculate the error polynomial e(X) using e(X) = τ(τ(e(X)));

5) correct the received word by cutting off e(X) from it.

Let us give an example of decoding using the DFT.

EXAMPLE 2.37. Let there be a code of length n = 15, among the roots of which
we have {α, α2, α3, α4}, where α is a primitive of the F16 field represented by
F2[X]/(1 + X + X4). The code thus corrects 2 errors.

We suppose that the error word is e(X) = X +X7. We have S1 = α+α7 = α14,
S2 = α13, S3 = α2, S4 = α11. We look for the zero combination of the columns of
the matrix: (

S1 S2 S3

S2 S3 S4

)

We find the relation:

α8

(
S1

S2

)
+ α14

(
S2

S3

)
+

(
S3

S4

)
= (0)

The polynomial Le(X) is thus α8 + α14X + X2. We deduce from it then, since
〈Le(X),XjS(X)〉 = 0, j = 0, 1, . . . , n− 1:

α8S3 + α14S4 + S5 = 0, α8S4 + α14S5 + S6 = 0, . . .
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then, finally:

S(X) = α14X + α13X2 + α2X3 + α11X4 + α4X6 + α3X7 + α7X8

+ αX9 + α9X11 + α8X12 + α12X13 + α6X14

Applying T we find:

T (S(X)) = T 2(e(X)) =

14∑
j=0

S(αj)Xj = X8 + X14

Applying τ we find X + X7, which is the error e(X).

We observe that this algorithm works because we know 2t consecutive syndromes
and that is sufficient to calculate Le(X).

2.6.3. FG-decoding

Just like in the previous decoding we will use the DFT but within a more general
framework. We suppose to be using a binary code of length n, whose true distance
dtrue is strictly larger than its apparent distance dBCH. We suppose that the sequence
of dBCH−1 consecutive roots starts in β, where β is an nth primitive root of unity. FG-
decoding can be also used if the sequence starts elsewhere than in β or if the code is not
binary. For example, let us consider the code (n = 21, k = 7, dtrue = 8, dBCH = 5).
The 21st roots of unity are in F64. Let α be a primitive, such that 1+α+α6 = 0. The
element β = α3 is a primitive 21st root of unity. The cyclotomic classes containing
the roots of the code are as follows:

Cβ = {β, β2, β4, β8, β16, β11}
Cβ3 = {β3, β6, β12}
ββ7 = {β7, β14}
Cβ9 = {β9, β18, β15}

The sequence of the dBCH−1 consecutive known syndromes is S1, S2, S3, S4. We
note that it does not make it possible to determine the locator, which can have a degree
of 3.

2.6.3.1. Introduction

The classical algorithms do not work because they require that the code has 2t
consecutive roots to be able to correct at most t errors per word. There exists a table
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of the 147 codes whose length is less than 63. Many current publications describe the
search for algorithms that make it possible to correct until ttrue.

The Gröbner bases and the algorithm of B. Buchberger (a recent chapter in the
theory of polynomials with n variables) gave birth to the famous algorithm of Chen
et al., but this algorithm is very complex. We have proposed a new algorithm, the
FG-algorithm, which also uses Gröbner bases, but less complex. The name of this
algorithm comes from Fourier (i.e. F) and Gröbner (G). We use the Fourier transform,
with a system of polynomial equations with several variables solved by the algorithm
of B. Buchberger.

The algorithm that we provide now is a simplified alternative of the general FG
algorithm. This simplified algorithm applies to 139 of the 147 codes given in the table.
The codes for which we must use the general FG are the following, each code being
indicated by a sequence (length, dimension, dtrue, dBCH):

(33, 13, 10, 5)

(43, 15, 13, 7)

(47, 24, 11, 5)

(47, 23, 12, 6)

(51, 25, 10, 5)

(51, 17, 12, 6)

(55, 30, 10, 5)

(57, 21, 14, 6)

We can correct until ttrue using a system of polynomial equations with several
variables.

2.6.3.2. Solving a system of polynomial equations with several variables

To treat polynomial equations with n variables over a finite field Fq(q = 2r), a
traditional method is as follows:

1) define a total order for the set of monomials. We can take the lexicographi-
cal order for the exponents of the monomial. We will then pose Xi

11Xi2
2 · · ·Xin

n ≤
Xj1

1 Xj2
2 · · ·Xjn

n , if (i1, i2, . . . , in) ≤ (j1, j2, . . . , jn) for the chosen lexicographic
order;

2) this total order makes it possible to order the sequence of the monomials of a
polynomial in ascending order, let us say, from left to right. The largest monomial of
f is called the head term, or Hterm (f). For F = 1 + X1X2 + X2

2 + X1X
3
2 we have

Hterm (f) = X1X
3
2 .
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2.6.3.3. Two basic operations

This concept of Hterm will make it possible to define two basic operations, which
will be used in the B. Buchberger algorithm.

2.6.3.3.1. Reduce (f1, f2)

If Hterm (f1) = Xi1
1 Xi2

2 · · ·Xin

n for the produced order is lower or equal to a
monomial Xj1

1 Xj2
2 · · ·Xjn

n of another polynomial f2, then we replace f2 by f2 −
Xj1−i1

1 Xj2−i2
2 · · ·Xjn−in

n f1. We remove the monomial of f2 in question and thus
modify the polynomial f2. We make this operation for all the possible monomials
in f2. The polynomial obtained at the end is indicated by Reduce (f1, f2). It should
be noted that this result depends on the sequence of simplifications which we have
chosen, but that does not obstruct the algorithm of decoding that we deal with. We
will say that we reduce f2 with f1.

EXAMPLE 2.38. Let f1 = 1 + X1X2 + X2
2 + X2

1X3
2 and f2 = 1 + X2

1 + X2
1X2

2 . We
have Reduce (f2, f1) = f1 + X2f2 = 1 + X2 + X1X2 + X2

1X2 + X2
2 . Let us note

that we cannot modify f2 using f2.

2.6.3.3.2. Spol (f1, f2)

Let f1 = f ′
1 + λ1Hterm(f1), λ11 ∈ Fq\{0}, f2 = f ′

2 + λ2Hterm(f2), λ2 ∈
Fq\{0}. We pose ([u, v] indicates the LCM of u and v):

Spol(f1, f2) = f1λ2
[Hterm(f1),Hterm(f2)]

Hterm(f1)
+ f2λ1

[Hterm(f1),Hterm(f2)]

Hterm(f2)

The result is determined clearly.

EXAMPLE 2.39 (f1 = 1+X1X2+X2
2 +X1X

3
2 , f2 = 1+X2

1 +X2+X2
1X2). We have

[Hterm(f1),Hterm(f2)] = [X1X
3
2 , X2

1X2] = X2
1X3

2 , as well as Spol(f2, f1) =
X1 + X2

1X2 + X2
2 + X1X

2
2 + X2

1X2
2 + X3

2 .

Let us note that the application Spol(f1, f2) and the construction Reduce(f1, f2)
have a very simple significance in the case of a single variable. It is the calculation of
a dividend in the division of f2 by f1 (if the degree of f2 is the greater).

2.6.3.4. The algorithm of B. Buchberger

We start with a family of polynomials with n variables F = {f1, . . . , fR}:
1) calculate all the Spol(fi, fj), i �= j. We associate all the Spol(fi, fj) obtained

to the family F . We obtain a new family F ′ = {g1, . . . , gs};
2) calculate all Reduce(gi, gj), for i �= j:

– if we transform gj into g′j , then we preserve only g′j and not gj . We obtain
a family F ′′ = {h1, . . . , hT },
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– if F ′′ = F , we stop and we preserve F , which is the result of the Buch-
berger algorithm. There is a very difficult demonstration that proves that the final
family is unique regardless of the transformations made,

– otherwise we return to 1) and reiterate.

We demonstrate that this algorithm is finite. The proof of this assertion is rather
complicated and we will not provide it here. We now will apply these general results
to the decoding of cyclic codes.

2.6.3.5. FG-decoding

2.6.3.5.1. Obtaining the initial system

To obtain the initial system we proceed as follows:

1) we pose L(X) = Y0 + Y1X + Y2X
2 + · · · + Yttrue−1X

ttrue−1 + Xttrue .
The polynomial L(X) thus has its coefficients expressed as unknown functions of
ttrueY0, Y1, Y2, . . . , Yttrue−1;

2) from the nullity of the following scalar product (i = 0, 1, . . . , dBCH−2−ttrue):

〈(Y0, Y1, Y2, . . . , Yttrue−1, 1), (S1+i, . . . , Sttrue+1 + i)〉

we deduce the s variables Yi1 , . . . , Yia
, making it possible to express all the others by

simple linear combinations. We obtain the following expression:

L(X) = A0(Yi1 , . . . , Yia
) + A1(Yi1 , . . . , Yia

)X + · · ·
+ Attrue−1(Yi1 , . . . , Yia

) + Xttrue−1 + Xttrue

The number s of the remaining unknowns is known, as indicated in the following
proposition.

PROPOSITION 2.62. Let us suppose ttrue + l ≤ dBCH− 1. The number s of necessary
unknowns is equal to 2ttrue − dBCH + 1.

Proof. The proof is outside the scope of this work. �

2.6.3.5.2. The FG-decoding algorithm

Now let us provide the algorithm of this decoding:

1) we calculate all the coefficients of S(X) which we know thanks to the roots of
the code;

2) we pose L(X) = Y0 + Y1X + Y2X
2 + · · ·+ Yttrue−1X

ttrue−1 + Xt where the
Yi are the unknowns. This polynomial is a multiple of the locator Le(X) whose roots
indicate here the positions in error (and not the reverse, as in the Berlekamp-Massey
algorithm);
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3) using the fact that L(X) is orthogonal to any sequence of ttrue + 1 consecutive
syndromes, we eliminate variables using the dBCH−1 known consecutive syndromes.
There remain s unknowns;

4) we calculate the following scalar product

Pi : Pi = 〈(A0, A1, A2, . . . , Attrue−1), (S1+i, . . . , Sttrue+i)〉
for i = dBCH − 1 − ttrue, . . . , n − 1. We will note that Pi is a polynomial in the s
remaining unknowns. At each step we deduce one of the two following results:

– if Sttrue+i is known, an equation Sttrue+i + Pi = 0,
– if Sttrue+i is not known, we pose Sttrue+i = −Pi;

5) at the end of stage 4), we have a family of equations {f1 =0, f2 =0, . . . , fR =
0}. We apply the Buchberger algorithm to the family of polynomials {f1, f2, . . . , fR};

6) we then find ourselves in one of the four cases described in the following propo-
sitions.

PROPOSITION 2.63. We have a constant if the error is incorrigible.

Proof. The proof is outside the scope of this work. �

In this case we cannot correct. We pass to the following word.

PROPOSITION 2.64. We have a family of polynomials with one variable, all linear,
{Yi1 − a1, . . . , Yis

− as} if the error is corrigible. In this case:

L(X) = A0(a1, . . . , as) + A1(a1, . . . , as)X + · · ·
+ Attrue−1(a1, . . . , as)X

ttrue−1 + Xttrue

is then the locator Le(X).

Proof. The proof is outside the scope of this work. �

In this case we obtain the required polynomial Le(X). We look for its roots and
we can then correct directly (for a binary code).

PROPOSITION 2.65. The family of equations may be empty, in which case we know
the degree of the locator. In all other cases we have a family of polynomials with
several variables. The error is corrigible, but L(X) is not the locator. We have
L(X) = XiLe(X) for an i ≥ 1.

Proof. The proof is outside the scope of this work. �

In this case we add the constant coefficient of L(X) to the family given by the
algorithm of B. Buchberger. The algorithm is re-applied.
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EXAMPLE 2.40. Let us consider the code (21, 7, 8, 5). Let us suppose that the error
polynomial is e(X) = 1 + X + X4. According to proposition 2.62 we will need 2
unspecified Y0, Y1. After stage 1 of the FG algorithm, we obtain L(X) = α9+α24Y0+
α30Y1 + Y0X + Y1X

2 + X3. At stage 6), we have {α28 + α39Y 0, α9 + α48Y1}.
This is the case where we are able to correct immediately. The obtained polyno-
mial L(X) is the error locator, Le(X). The weight of the error is 3. We directly
find Y0 = α52, Y1 = α24. We obtain L(X) = α9 + α24α52 + α30α24 + α52X +
α24X2 + X3. It has three roots, α0, α3, α12. Since β = α3, they correspond to the
positions indexed by β0, β, β4, which is correct.

EXAMPLE 2.41. Let us consider the same code, but supposing that the error is e(X) =
1+X4. At stage 3) we have L(X) = (α6 +α2Y0 +α52Y1)+Y0X +Y1X

2 +X3. At
stage 5), we obtain {α30 + α41Y0 + α43Y1}. It is not a constant, therefore, the error
is corrigible, but there we do not have 1st degree polynomials. The locator is thus of
a degree lower than 3. Let us add the constant α6 + α2Y0 + α52Y1 of L(X) to the
family obtained at stage 5), and re-use the B. Buchberger algorithm. We then obtain
{α54 + α52Y1, α

20 + α8Y0}, from where we obtain Y0 = α12, Y1 = α2. We have
L(X) is L(X) = X(α12 + α2X + X2). The locator is thus α12 + α2X + X2 whose
roots are 1, α12. The positions of the errors are thus indexed by β1 and β4, which is
exact.

2.6.4. Berlekamp-Massey decoding

2.6.4.1. Introduction

We consider a cyclic code of length n, with apparent odd distance dBCH = 2t+1,
where t is the apparent correction distance (i.e. tBCH). Let β be an nth primitive root
of unity. We will suppose that the zeros of the code are 1, β, β2, . . . , βdBCH−2. The
Si syndromes are classically Si = r(βi) (i = 0, . . . , dBCH − 2), where r(X) is the
received word equal to the transmitted word c(X) plus the error word e(X). We will
call the syndrome polynomial the polynomial S(X) =

∑d−2
i=0 SiX

i. In this algorithm
we call the error locator the polynomial L(X) the inverses of whose roots give the
positions of errors, and EV (X) is the errors evaluator defined by:

EV (X) =
∑

i

ei
L(X)

(1− αiX)

(
=

∑
i

eiUi(X)

)

We choose here to normalize the constant of L(X), i.e. to agree that L(0) = 1.

These two polynomials make it possible to reconstitute the error word. Indeed,
after factorizing L(X) we have all the error positions. Let αi be one of these positions
with an error value ei. We have LV (αi) = eiUi(α

i), which yields ei.
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2.6.4.2. Existence of a key equation

The polynomials S(X), L(X) and EV (X) are linked to each other.

PROPOSITION 2.66. The polynomials S(X), L(X) and EV (X) satisfy an equation,
known as the key equation:

L(X)S(X) = EV (X) (mod X2t)

Proof. We have:

S(X) =

dBCH−2∑
j=0

[∑
k

ekαjkXj

]

=
∑

k

ek

⎡
⎣∑

j

(αkX)j

⎤
⎦

=
∑

k

ek

[
1− (αkX)2t

(1− αkX)

]

From that we directly obtain L(X)S(X) =
∑

k ek
L(X)

(1−αkX)
modulo X2t. �

PROPOSITION 2.67. The couple of polynomials (L(X), EV (X)) is the only couple
(a(X), b(X)) satisfying the key equation with the conditions:⎧⎨

⎩
(a(X), b(X)) = 1
a(0) = 1
deg b(X) < deg (a(X)) ≤ t

Proof. Let us suppose to have the following two pairs (a1(X), b1(X)) and
(a2(X), b2(X)). We have: a1(X)S(X) = b1(X)(mod X2t), and a2(X)S(X) =
b2(X)(mod X2t). From that we deduce a2(X)b1(X) = a1(X)b2(X) modulo X2t,
but the degrees of each member are at most equal to 2t − 1. Thus, the congruence
is, in fact, an equality: a2(X)b1(X) = a1(X)b2(X). According to the assumption,
a1(X) is relatively prime to b1(X), then a1(X) divides a2(X). By symmetry we
deduce a1(X) = ka2(X), where k is a constant. Since, by assumption, a1(X) and
a2(X) have their constant equal to 1, k equals 1, b1(X) = b2(X) and the solution
pair is, therefore, unique. �

2.6.4.3. The solution by successive stages

We are going to build a pair which is the successive stages solution, for j =
0, 1, . . . , 2t. At each stage we will build two pairs (aj(X), bj(X)) and (a′

j(X), b′j(X)).
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At each stage (or each level) j any couple (uj(X), vj(X)), such that we have uj(X)
S(X) = vj(X) modulo Xj , will be referred to as a “solution”. Moreover, it will be
said that a solution is optimal if max(deg uj(X), 1 + deg vj(X)) is the smallest
possible among the solutions at level j. We will then indicate this maximum by dj .
The couple (aj(X), bj(X)) that we will build will be an optimal solution at the level
j. The second couple (a′

j(X), b′j(X)) will satisfy a′
j(X)S(X) = b′j(X)+Xj modulo

Xj+1, a′(0) = 0, and max(deg a′
j(X), 1 + deg b′j(X)) = j + 1− dj . Initialization

will be done posing (a0, b0) = (1, 0); (a′
0, b

′
0) = (0, 1), d0 = 0.

2.6.4.4. Some properties of dj

The following results express some properties of dj .

LEMMA 2.1. We have dj+1 ≥ dj .

Proof. If we have aj+1(X)S(X) = bj(X + 1) modulo Xj+1, then we also have
aj+1(X)S(X) = bj+1(X) modulo Xj . Thus, an optimal solution at the level j + 1 is
a solution at the row j. �

PROPOSITION 2.68. If we have 2dj ≤ j, then there exists at most one optimal solution
at stage j.

Proof. Let us suppose having two optimal solutions at stage j, (a1(X), b1(X)) and
(a2(X), b2(X)). We have a1(X)S(X)=b1(X) modulo Xj , and a2(X)S(X)=b2(X)
modulo Xj . From that we deduce: a2(X)b1(X)=a1(X)b2(X) modulo Xj . But dj =
max(deg a2(X), 1+deg b2(X)) = max(deg a1(X), 1+deg bi(X)). From that we
obtain: deg a2(X) ≤ dj ,deg b1(X) ≤ dj − 1, and deg a1(X) ≤ dj , deg b2(X) <
dj − 1. Thus, deg a2(X) + deg b1(X) < 2dj − 1 and deg a1(X) + deg b2(X) ≤
2dj−1. Since, by assumption, we have 2dj ≤ j we obtain deg (a2(X)b1(X)) < j and
deg (a1(X)b2(X))<j. Thus, the congruence is a polynomial equality a2(X)b1(X)=
a1(X)b2(X). Since a2(X) and b2(X) are relatively prime we see that the two solu-
tions are the same as in the proof of proposition 2.67. �

2.6.4.5. Property of an optimal solution (aj(X), bj(X)) at level j

The following result expresses a property of an optimal solution (aj(X), bj(X))
at level j.

PROPOSITION 2.69. If (aj(X), bj(X)) is an optimal solution at level j and if it is not
a solution at the level j + 1, then we have dj+1 ≥ j + 1− dj .

Proof. By assumption we have max(deg aj(X), 1 + deg bj(X)) = dj , as well as
the congruence aj(X)S(X) = bj(X) + δXj modulo Xj+1, δ �= 0. Let (cj+1(X),
dj+1(X)) be an optimal solution at the level j + 1. We have a second congruence
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cj+1(X)S(X) = dj+1(X) modulo Xj+1. Multiplying the first by cj+1(X) and the
second by aj(X) we obtain: aj(X)dj+1(X) = bj(X)cj+1(X) + cj+1(X)δXj mod-
ulo Xj+1. Since cj+1(X), by assumption, has a constant equal to 1, we still have
aj(X)dj+1(X) = bj(X)cj+1(X) + δXj modulo Xj+1.

We will now demonstrate by absurdity that we have:

max(deg aj(X), 1 + deg bj(X)) + max(deg cj+1(X), 1 + deg dj+1(X))

≥ j + 1

Let us suppose that we have:

max(deg aj(X), 1 + deg bj(X)) + max(deg cj+1(X), 1 + deg dj+1(X))

≤ j

It follows that:

deg aj(X) + deg dj+1(X)

< deg aj(X) + 1 + deg dj+1(X)

≤ max(deg aj(X), 1 + deg bj(X))

+ max(deg cj+1(X), 1 + deg dj+1(X))

≤ j

Thus, deg aj(X) + deg dj+1(X) < j, and we prove in the same way that
deg bj(X) + deg cj+1(X) < j. This contradicts the existence of a non-zero δ. Thus:

max(deg aj(X), 1 + deg bj(X)) + max(deg cj+1(X), 1 + deg dj+1(X))

≥ j + 1

Since dj+1 = max(deg cj+1(X), 1 + deg dj+1(X)) we obtain from it:

dj+1 ≥ j + 1−max(deg aj(X), 1 + deg bj(X)) = j + 1− dj �

2.6.4.6. Construction of the pair (a′
j+1(X), b′j+1(X)) at the j stage

The issue of constructing the pair (a′
j+1(X), b′j+1(X)) at the j stage is solved by

the following result.

PROPOSITION 2.70. If at the j stage we have an optimal solution (aj(X), bj(X)),
and a pair (a′

j(X), b′j(X)), then we can build a pair (a′
j+1(X), b′j+1(X)).
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Proof. Indeed:

1) if dj+1 = dj , then we pose a′
j+1(X) = Xa′

j(X), b′j+1(X) = Xb′j(X) and the
pair (a′

j+1(X), b′j+1(X)) is an appropriate pair;

2) if dj+1 > dj (see proposition 2.69) then dj+1 ≥ j + 1 − dj > dj , which
implies 2dj ≤ j, and thus the optimal solution at the j level is unique. Let (aj(X),
bj(X)) be this optimal solution at the j level. Since dj+1 �= dj , this solution is not a
solution at the j + 1 level. Thus, we have aj(X)S(X) = bj(X) + δXj modulo Xj+1

and δj �= 0. We pose a′
j+1(X) = Xδ−1aj(X), b′j + 1(X) = Xδ−1bj(X). This pair

(a′
j+1(X), b′j+1(X)) is a solution, since it verifies the polynomial equality, and, more-

over, we have max(deg a′(X), 1+deg b′(X)) = 1+max(deg a(X), 1+deg b(X)) =
j + 2− dj+1 = (j + 1) + 1− dj+1. �

2.6.4.7. Construction of an optimal solution (aj+1(X), bj+1(X))

This section covers the construction of an optimal solution.

PROPOSITION 2.71. If an optimal solution (aj(X), bj(X)) is a solution at the j + 1
level, then it is optimal at the j + 1 level, and we have dj+1 = dj .

Proof. This is straightforward, since dj+1 ≥ dj (see lemma 2.1). �

Propositions 2.72 and 2.73 give the construction of an optimal solution at the j +1
level, in the respective cases where 2dj > j and 2dj ≤ j.

PROPOSITION 2.72. If we have an optimal solution (aj(X), bj(X)) at the j level
which is not a solution at the j + 1 level, if we have a pair (a′

j(X), bj(X)) and if
2dj > j, then we can construct an optimal solution (aj+1(X), bj+1(X)) at the j + 1
level, and we have dj+1 = dj .

Proof. Let (aj(X), bj(X)) be an optimal solution at the j level. Since it is not a solu-
tion at the j +1 level, we then have: aj(X)S(X) = bj(X)+δXj modulo Xj+1, with
δ �= 0. Let us suppose having a pair (a′

j(X), b′j(X)) such that we have:

a′
j(X)S(X) = b′j(X) + Xj (mod Xj+1)

max(deg a′
j(X), 1 + deg b′j(X)) = j + 1− dj , a′

j(0) = 0

Let us pose aj+1(X) = aj(X)− δja
′
j(X) and bj+1(X) = bj(X)− δb′j(X). We

deduce that the pair (aj+1(X), bj+1(X)) is an optimal solution at the j + 1 level.
Indeed, we have aj(X)S(X) − bj(X) = δjX

j = δj(a
′
j+1(X)S(X) − b′j+1(X))

modulo Xj+1. From there: (aj(X) − δja
′
j(X))S(X) = bj(X) − δjb

′
j(X) modulo
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Xj+1. Let us pose A = aj(X) − δja
′
j(X) and B = bj(X) − δjb

′
j(X). We can

successively deduce:

max
(
deg (aj(X)− δja

′
j(X)), 1 + deg (bj(X)− δjb

′
j(X))

)
≤ max

(
max(deg aj(X),deg a′

j(X)),max(1 + deg bj(X), 1 + deg b′j(X))
)

= max
(
max(deg aj(X), 1 + deg bj(X)),max(deg a′

j(X), 1 + deg b′j(X))
)

≤ max(dj , j + 1− dj)

By the assumption 2dj > j it thus follows that max(dj , j + 1 − dj) = dj . Thus,
max(deg A(X), 1 + deg B(X)) ≤ dj , but max(deg A(X), 1 + deg B(X)) ≥
dj+1 ≥ dj . Thus dj+i = dj . �

PROPOSITION 2.73. If we have an optimal solution (aj(X), bj(X)) at the j level,
which is not solution at the j+1 level, as well as pair (a′

j+1(X), b′j+1(X)) and if
2dj ≤ j, then we can construct an optimal solution (aj+1(X), bj+1(X)) at the j + 1
level, and we have dj+1 = j + 1− dj .

Proof. As in proposition 2.70 we arrive at:

max(deg aj+1(X), 1 + deg bj+1(X)) ≤ max{dj , j + 1− dj}
But since here we have 2dj ≤ j, then:

dj+1 ≤ max(deg A(X), 1 + deg B(X)) ≤ j + 1− dj

Since (aj(X), bj(X)) is an optimal solution at the j level but not a solution at the
j + 1 level, by Proposition 2.69 we also have dj+1 ≥ j + 1 − dj , from where the
required equality dj+1 = j + 1− dj . �

2.6.4.8. The algorithm

The basic idea of the algorithm is as follows. We have j, dj , (aj(X), bj(X)),
(a′

j(X), b′j(X)), δj :

1) let (aj(X), bj(X)) be a solution at the j+1 level. In this case it is an optimal
solution at the j+1 level, dj+1 =dj , and (a′

j+1(X), b′j+1(X))=(Xa′
j(X),Xb′j(X));

2) if (aj(X), bj(X)) is not a solution at the j + 1 level, and:
– If 2dj > j then dj+1 = dj , and:

(aj+1(X), bj+1(X)) =
(
aj(X)− δja

′
j(X), bj(X)− δb′j(X)

)
(
a′

j+1(X), b′j+1(X)
)

=
(
Xa′

j(X),Xb′j(X)
)

– if 2dj ≤ j then dj+1 = j + 1− dj , and:

(aj+1(X), bj+1(X)) =
(
aj(X)− δja

′
j(X), bj(X)− δb′j(X)

)
(
a′

j+1(X), b′j+1(X)
)

=
(
Xδ−1aj(X),Xδ−1bj(X)

)
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Initialization is then performed as follows:⎧⎪⎪⎨
⎪⎪⎩

j = 0
(a0(X), b0(X)) = (1, 0)
(a′

0(X), b′0(X)) = (0, 1)
d0 = 0

EXAMPLE 2.42. Let e(X) = α2 + αX4. We easily find S(X) = α4 + α3X + X3.

We calculate following the algorithm. We obtain:

j dj (aj(X), bj(X)) (aj(X), bj(X)) δj 2dj > j?
0 0 (1, 0) (0, 1) α4 no
1 1 (1, α4) (α3X, 0) α3 yes
2 1 (1 + α6X,α4) (α3X2, 0) α2 no
3 2 (1 + α6X + α5X2, α4) (α5X + α4X2, 0) α3 yes
4 2 (1 + α5X + α4X2, α4 + α5X)

We obtain from that L(X) = 1+α5X +α4X2, and LV (X) = α4 +α5X , which
we can easily verify.

2.6.5. Majority decoding

Error trapping is a correction technique valid for linear or cyclic, binary or Fq ,
q = pr, codes. We will only consider cyclic, binary or Fq, q = 2r, codes of length n.

The basic idea of this type of decoding is to choose a position among the n of the
received word and to correct an error if it is there. It is clear that there is no statis-
tical reason for an error to occur here rather than there. But by circular shift (which
leaves the code unchanged) we can bring an error to a selected position. Fundamental
questions arise now:

1) what is the mechanism of trapping? What is the link between this mechanism
and the code used;

2) how can the trapping be performed efficiently?;

3) what are the bounds of this type of decoding?

2.6.5.1. The mechanism of decoding, and the associated code

Any error correction action must have an “empty” result when a word without error
is processed, i.e. a codeword. The code must be “transparent”. The basic mechanism
of error trapping respects this need: we produce scalar products between the received
word and the words of the dual of the used code C.
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2.6.5.2. Trapping by words of C⊥ incidents between them

We will say that words are incidents in a set of position S, if all these words have
non-zero components in S and if there is no other position where two of these words
have a non-zero coefficient.

When S is reduced to a position i, note that we can always make it so that the com-
ponent of the words in position i is equal to 1 (because the code is a vector subspace
in Fq).

2.6.5.2.1. Trapping in one position

In this case the unit S is reduced to one position. Since the code is cyclic, we can
suppose that this position is the first (i.e. in X0). In C⊥ we will look for words (i.e.
polynomials) with a constant equal to 1, and no other common monomial for any two
of these words.

EXAMPLE 2.43. Let us suppose that the code C is binary of length 5. The following
trapping polynomials would be appropriate: 1+X +X5, 1+X2 +X6, 1+X3 +X4.
In binary form we have:

1100010
1010001
1001100

We clearly see the incidence of these three words appearing.

2.6.5.2.2. Trapping in several positions

We can trap the error in several positions, instead of just one. In the following
example we show incident words in several positions.

EXAMPLE 2.44. Let us again take the case of a binary code C, but of length 7 this
time. Let us give the binary format of the words of C⊥ directly:

10110100
11101000
10100011

These words of C⊥ are incidents in positions 1 and 3 (i.e. in X0,X2).

2.6.5.3. Codes decodable in one or two stages

We will not speak about trappings with more than two stages because the associ-
ated decoders are too complex.
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2.6.5.3.1. Codes decodable in one stage

This is the case, for example, of a code C whose orthogonal contains word inci-
dents in the first position.

PROPOSITION 2.74. Let us suppose that C⊥ contains δ word incidents in the first
position. Then the code C can correct with error trapping up to [δ/2] errors in the
received word. Majority vote gives the value in position 1. If there is equality of votes,
we take 0 as value in position 1.

Proof. The worst case is if [δ/2] isolated errors occur.

If an error β is in position 1, then [δ/2] − 1 errors will be distributed in positions
different from 1. Thus, at most [δ/2]−1 words can give a vote equal to 0 (in the binary
case, these are the ones containing an odd number of errors in positions other than 1).
The others δ − [δ/2] + 1 will give a vote equal to β. It is easy to verify the (strict)
inequality δ − [δ/2] + 1 > [δ/2]− 1.

If there is no error in position 1, then at most [δ/2] words will give a non-zero vote.
If δ is odd, a majority of words will give a vote equal to 0. If δ is even, in the worst
case there can be an equality of votes. By assumption, we then say that the value in
position 1 is equal to 0, which is correct. In all cases, the value of the majority vote
gives the error value in position 1 (note that the word incidents are selected so that
they have a coefficient of 1 in position 1). �

A single stage is then needed to correct an error in position 1.

EXAMPLE 2.45. With q = 2, n = 7 let us take the extended Hamming code generated
by g(X), with g(X) = 1 + X + X2 + X4. The generator of its dual is 1 + X2 + X3.
The parity check matrix in reduced form is:

H =

⎛
⎜⎜⎝

1000101
0100111
0010110
0001011

⎞
⎟⎟⎠

We can find three words that are incidents in position 4 (i.e. in X3):

0001011
0101100
1011000

They correspond to the lines l4, l2 + l4 and l1 + l3 + l4.
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2.6.5.3.2. Codes decodable in two stages

This section covers codes decodable in two stages.

PROPOSITION 2.75. We have the two following results:

1) let us suppose that C⊥ contains δ′ words which are incidents in a set S of
positions. Then the code C can trap up to [δ′/2] errors in S. The majority vote gives
the value of the scalar product in S;

2) if we have δ′ sets S1, S2, . . . , Sδ′ and if these sets are incident in position 1 (for
example), then we can correct an error in position 1 by majority vote.

Proof. It is the same we argument as in the proof of proposition 2.74. In this case we
have a cascade of two majority votes. �

We can prove, and we will admit it, that we can expect to correct more errors with
a code decodable in two stages than with a code decodable in only one.

EXAMPLE 2.46. With q = 2, n = 7 let us take the Hamming code generated by g(X),
with g(X) = 1 + X2 + X3. The generator of its dual is 1 + X2 + X3 + X4. We can
find two words that are incidents in positions 1 and 3:

1100101
1110010

as well as two words that are incidents in positions 1 and 2:

1100101
1110010

The two families of cardinal 2 are incidents in position 1. We can trap an error in
this position, in two votes:

1) if the error is in position 1, the first vote will give 1 for {1, 3} and 1 for {1, 2}.
Thus the majority in position 1 is 1. Therefore, we correct it;

2) if the error is in position 2, the first vote will give 0 for {1, 3} and 1 for {1, 2}.
Thus, there is no majority in position for 1 is 1. We thus decide that it is 0, and that is
exact;

3) if the error is in position 4, the first vote will give 0 for {1, 3} and 0 for {1, 2}.
Thus the majority in position 1 is 0. We do not correct, and that is correct.

2.6.5.4. How should the digital implementation be prepared?

Since it does not appear obvious how to carry out the digitalization of this type of
decoding, we will develop this point.
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PROPOSITION 2.76. Let there be a code C = (g(X)) of length n, and dimension n−k.
Let us suppose that the parity check matrix H of the code C has the form (In−kR).
Then the product of the received word (r0, r1, . . . , rn−k−1, c0, c1, . . . , ck−1) by H
(which is the syndrome of the received word) is equal to the remainder of the divi-
sion of the received word by g(X).

Proof. The column i of H is the remainder of the division of Xi by g(X) (num-
bering the columns from 0 to n − 1, from left to right). The syndrome (s0, s1, . . . ,
sn−k−1) of the received word is thus equal to the remainder of division of the received
word by g(X). �

This proposition indicates a way of digital implementation. We look in C⊥ for
each word used as a voter. Considering one of them r, let us say that it is equal to
the sum of certain rows li of H , for example, li1 , li2 , . . . , lin

. We note that the scalar
product 〈r, lij

〉 is equal to sij
.

PROPOSITION 2.77. The vote of the word r considered is equal to the scalar product∑
j sij

.

Proof. The vote of the word considered is equal to 〈r,∑j lij
〉, and we have

〈r,∑j lij
〉 =

∑
j〈r, lij

〉 =
∑

j sij
. �

The remainder of division of the received word is easy to obtain with a register
dividing by g(X). To obtain the result of the majority vote, we thus know which sums
of oscillations in the dividing register have to be calculated.

We should take into account that the received word is often pre-multiplied while
entering the register. If it is pre-multiplied by Xn−k, we will take orthogonal voters
in position n− k (the position on the left is noted 0).

EXAMPLE 2.47. With the notations of example 2.45, we makes a decision regarding
position 1 by making a majority vote between the following syndrome components:
s1, s2 + s4, s1 + s3 + s4, which is easily done for the register dividing by g(X).

Among the codes that are particularly well adapted to majority decoding there are
the codes constructed using projective geometries: PG-codes.

PROPOSITION 2.78. A PG-code of the order r is decodable in r majority decoding
stages.

Proof. Let there be a distribution of no than J/2 errors in the received word. If we
take the common projective subspace, the others will be in at most more J/2−1 other
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subspaces. Thus, at most J/2 − 1 projective subspaces will be able not to signal an
error. There will remain at least J/2+1 that will present an error. We can thus perform
a majority decoding. �

In practice we fix a trapping position (i.e a point). This point is included in a certain
number of level 1 projective spaces, from which we can perform majority decoding.
Each projective subspace is included in a certain number of projective subspaces of
the order 2, using which we can perform a majority decoding. Thus we correct an
error placed at the selected point. To trap other errors we use the cyclic character of
the code.

2.6.6. Hard decoding, soft decoding and chase decoding

At the receiver level the demodulator is an essential device for the decoding stage.

2.6.6.1. Hard decoding and soft decoding

The demodulator is a device able to interpret the signal received during a certain
period of time. It can simply estimate that it is a “1”, or a “0”. It is a hard estimate.
It can sometimes associate a real numerical value to the estimate that it makes of a
received symbol. We can say that it associates a “confidence” to the binary value that
it proposes. It is then a soft (or “balanced”) estimate. If the values of confidence are
between 0 and 1, the lowest value of the confidence will be 0 and the highest 1.

EXAMPLE 2.48. We suppose to use a binary code of length 7. For example, the demod-
ulator will give (1011010) as a hard estimate of a received word, and (0.2; 0.9; 0.9; 0.7;
0.8; 0.1; 0.6) as the associated soft estimate. Using notation in real numbers we have
(0.2;−0.9; 0.9; 0.7;−0.8; 0.1;−0.6) The two symbols with the lowest probability are
in positions 1 and 6. The two with the highest probability are in positions 2 and 3.

A decoding whose strategy only takes into account the hard estimate of the demod-
ulator is known as hard decoding. If it takes into account the soft estimate, it is known
as soft decoding. It has been demonstrated by Chase decoding that a soft decoding for
a (n, k, 2t + 1) code makes it possible to correct approximately 2t errors per word, as
opposed to t for hard. Soft decoding is thus very powerful. Its disadvantage is the heav-
iness of associated hardware, and the lengthening of the time to decode each word.

2.6.6.2. Chase decoding

Let us suppose using a (n, k, 2t + 1) code. Let R(X) be the word received. Chase
decoding uses the soft estimate of the demodulator. The idea of Chase decoding is
simple. Since the demodulator is statistically reliable, we should count on the fact that
the errors are in positions with the lowest confidence values. Thus we will reverse
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some of the binary positions of R(X), which will give rise to R′(X), and we will
use a hard decoder to decode the newly obtained word R′(X). If we have selected
r positions with the lowest confidence, we can thus “mask” 0, 1, 2, . . . , 2r positions.
The most powerful strategy is to make 2r maskings, but often to save time we only
make some of the maskings among the 2r.

The general Chase algorithm is given below:

1) find the t lowest confidence values. n real values should be classified, let us say,
in ascending order. It is an expensive operation in terms of silicon surface, and rather
long;

2) reverse certain binary values of R(X), in the positions of lowest confidence;

3) for each mask perform a hard decoding of the transformed word. If this word
can be decoded, we calculate the Euclidean distance between the word proposed by
hard decoding and the received word;

4) once all maskings are made, as well as all the hard decodings, we choose to
say that the word suggested by Chase decoding is the one with the smallest Euclidean
distance from the received word R(X).

EXAMPLE 2.49. We suppose to receive (1011010), with the associated confidence
values (0.1; 0.8; 0.9; 0.2; 0.4; 0.8; 0.9). The (t = 2) two lowest confidence values are
in positions 1 and 4. We will thus successively add the words (0000000), (1000000),
(0001000), (1001000) to the received word. Let us suppose that the real error vector is
(0101001). Then the third mask will make it possible for the code to reconstitute the
transmitted codeword.

2.7. 2D codes

We calls 2D binary codes or codes with two variables the codes that are ideal in
A = F2[X]/(Xn − 1, Y m − 1). It is a generalization of cyclic codes that has been
known for a long time.

2.7.1. Introduction

Their algebraic structure is much more complex, because we can no longer use the
Euclidian or Bezout equalities. The ring A is no longer Euclidean. It is thus difficult,
except in particular cases, to know the performances of these codes well.

Any word of a 2D code can be represented as a polynomial with two variables
c(X,Y ). A 2D code can have a system of generators not reduced to a polynomial,
contrary to cyclic codes. The results of Gröbner and B. Buchberger are quite useful to
process these codes.
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2.7.2. Product codes

A very simple case of 2D codes is that of product codes. A product code is an ideal
of A generated by the generator g(X,Y ) = g1(X)g2(Y ), where g1(X) divides Xn−1
and g2(Y ) divides Y m − 1. This code is the set of the multiples of g(X,Y ) in A.

PROPOSITION 2.79. We have the two following results:

1) Its dimension is k1k2, where k1 is the dimension of the code (g1(X)) in F2[X]/
(Xn − 1) and k2 is that of (g2(X)) in F2[Y ]/(Y m − 1);

2) Its minimum distance is d1d2, where d1 is the minimum distance of (g1(X)),
and d2 is that of (g2(Y )).

Proof. The proof is outside the scope of this work. �

2.7.3. Minimum distance of 2D codes

We do not know much about this minimum distance in the general case. The BCH
theorem is no longer valid. A result of J. Jensen gives a lower bound of the minimum
distance, but we do not know if it is very good.

2.7.4. Practical examples of the use of 2D codes

At present it is primarily the product codes that are being used. In practice we often
take n = m, g1(X) = g2(X), i.e. the same code in rows and columns. The hardware
is then simplified compared to the case where the codes would be different.

2.7.5. Coding

Any word of a code g1(X)g1(Y ) is a square table n × n. We can arrange the
information in the bottom right square, and then code as in the case of cyclic codes.

EXAMPLE 2.50. Let us pose n = m = 7, g1(X) = 1+X+X3, g2(Y ) = 1+Y +Y 3.
Let us take as information polynomial 1 + Y + X2Y + XY 2 + X3Y 2 + X3Y 3. It is
pre-multiplied by X3Y 3 in order to place it in the bottom right square of the matrix.
We then obtain:

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 1 1 0 0
0 0 0 0 0 1 0
0 0 0 0 1 0 0
0 0 0 0 0 1 1
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We perform the coding in columns and obtain:

0 0 0 1 0 1 1
0 0 0 1 0 1 0
0 0 0 0 1 0 1
0 0 0 1 1 0 0
0 0 0 0 0 1 0
0 0 0 0 1 0 0
0 0 0 0 0 1 1

We then code in rows and obtain the codeword:

1 0 0 1 0 1 1
0 0 1 1 0 1 0
1 1 0 0 1 0 1
1 0 1 1 1 0 0
1 1 1 0 0 1 0
0 1 1 0 1 0 0
0 1 0 0 0 1 1

2.7.6. Decoding

There does not exist a concept of a polynomial locator, or of a polynomial evalua-
tor. The DFT does exist, but does not allow decoding, to our knowledge. FG-decoding
is possible, but is highly complex.

In practice we decode by columns, then by rows and reiterate several times. If for
each correction of a word in a row or a column we can create soft information, then
an iterative decoding is obtained (such as the famous Turbo decoding) which is very
powerful.

It should be noticed that rows-columns decoding is not a maximum probability
decoding, and that it gives astonishing results.

For example, the code in example 2.50 has a minimum distance of 9, therefore
it should correct 4 errors. However, it is unable to correct the error word equal to
1 + X + Y + XY for example. On the other hand, it can correct 1 + XY + X2Y 2 +
X3Y 3 + X4Y 4, although the weight of this error word is 5.

2.8. Exercises on block codes

2.8.1. Unstructured codes

The first series of exercises covers unstructured codes.
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EXERCISE 2.1. We pose x = (101101) and y = (011110). Calculate dH(x, y),
wH(X) and wH(y).

EXERCISE 2.2. Perform the following operations:

1) build Bρ(x) with ρ = 2 and x = (10111);

2) build B1(x) ∩B2(y) with x = (110111), y = (000110);

3) give the parameters of the following binary code:

{(1, 0, 0, 1, 1, 0, 1, 1), (0, 0, 1, 0, 1, 1, 1, 0), (1, 1, 0, 0, 1, 0, 1, 0),

(0, 0, 1, 0, 1, 0, 0, 1), (1, 1, 1, 1, 0, 0, 0, 1), (1, 1, 0, 0, 1, 0, 0, 1)}
4) give the parameters of the following ternary code:

{(1, 2, 1, 0, 1, 2, 0), (1, 0, 2, 0, 2, 0, 1), (2, 1, 1, 0, 1, 2, 1),

(0, 1, 2, 0, 1, 0, 2), (1, 1, 2, 1, 2, 0, 0)}
5) construct a binary code of length 5 with the largest possible cardinal that cor-

rects 2 errors per word;

6) construct a binary code of length 7 with the largest possible cardinal that cor-
rects 1 error per word.

EXERCISE 2.3. Let there be a binary code of length n with a cardinal M . What is the
volume of memory necessary to make a table decoding using class representatives (in
a number of binary positions)?

EXERCISE 2.4. How many elements are there in a sphere of radius r included in
(F2)

n?

EXERCISE 2.5. Let there be a binary code C of length n and cardinal M . Prove that
the greatest error correcting capability of the code is the largest integer r such that we
have M × [

∑r
i=0

(
n
i

)
] ≤ 2n, where

(
n
i

)
is the number of combinations of i objects

from n.

2.8.2. Linear codes

The second series of exercises covers linear codes.

EXERCISE 2.6. Let there be a binary code C of length 6, whose generator matrix is:

G =

⎛
⎝101111

011101
111010

⎞
⎠

Perform the following operations:
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1) construct the words of C;

2) give the lateral classes of C, with elements with the smallest weight in their
class as representatives;

3) give the parity check matrix H on the basis of G.

EXERCISE 2.7. Let C be a binary linear code of length 7, including a generator matrix:

G =

⎛
⎜⎜⎜⎜⎝

1100101
0111100
0101011
1001100
1000111

⎞
⎟⎟⎟⎟⎠

Perform the following operations:

1) use the Gauss method to deduce a parity check matrix H;

2) we suppose having received the word v = (1011011). Calculate its syndrome;

3) decode v according to the principle of maximum probability.

EXERCISE 2.8. Let C be the binary code whose generator matrix is:

G =

⎛
⎝010111

101101
100011

⎞
⎠

Perform the following operations:

1) construct the words of C. How many error(s) per word can we correct using
this code?;

2) construct the lateral classes of C;

3) construct H , then calculate all the possible syndromes;

4) deduct its possible decoding table. Take a received word and decode it.

EXERCISE 2.9. Demonstrate that the Hsiao code C whose parity check matrix H is
provided below:

H =

⎛
⎜⎜⎝

10000111
01001011
00101101
00011110

⎞
⎟⎟⎠

corrects one error per word and detects two of them.
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EXERCISE 2.10. Let C be the ternary code whose generator matrix is:

G =

⎛
⎜⎜⎝

100221
201010
001210
012021

⎞
⎟⎟⎠

Perform the following operations:

1) construct a parity check matrix H using the Gaussian method;

2) deduce the minimum distance of the code from the study of the columns of H .

EXERCISE 2.11. In [F2]
3, give all the linear codes of dimension 2. Clarify the formula

giving the number of these codes.

EXERCISE 2.12. We take the following parity check matrix H of C:

H =

⎛
⎜⎜⎜⎜⎜⎜⎝

00001001111
00010011101
00100111001
01000110011
10000100111
10101011010

⎞
⎟⎟⎟⎟⎟⎟⎠

Does C allow the correction of 2 errors per word?

EXERCISE 2.13. Use the Gaussian method to find a parity check matrix of the binary
code C generated by the generator matrix:

G =

⎛
⎝1011010

1101100
0011011

⎞
⎠

EXERCISE 2.14. Same exercise as above with:

G =

⎛
⎝1011011

0001010
1101100

⎞
⎠

EXERCISE 2.15. Let C1 and C2 be two codes of length n, in F2, given by their respec-
tive generating matrices G1 and G2. Find an algorithm to construct a generator matrix
of C1 ∩ C2.
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EXERCISE 2.16. Let C be a linear code of length n, in Fq , with a parity check matrix
test H . Let E ={e1, . . . , er} be a set of vector-errors (each ei is thus a n-tuple in Fq):

1) prove that C detects any element ei of C, if H[ei]
t �= 0;

2) prove that C corrects any element ei of C, if for all ej and ek of E we have
H[ej − ek]t �= 0.

EXERCISE 2.17. Let there be a Hamming code with a parity check matrix:⎛
⎝0001111

0110011
1010101

⎞
⎠

Write the equations which allow the correction of a codeword (a1, a2, . . . , a7)
using the syndrome.

EXERCISE 2.18. Let there be a binary linear code C whose generator matrix is in the
form G = (IkR). Prove that the number of shortened codes of C⊥ that have the same
dimension as C⊥ is equal to the number of lines (0 · · · 0) of the submatrix R.

EXERCISE 2.19. Let there be a linear binary code C of length n whose generator
matrix G consists of d rows. It is supposed that each row start with 1 and has a weight
of d. Finally, we suppose that the minimum distance d of C verifies d2 − d + 1 = n
and that the sum of the rows is the full vector of 1:

1) prove that n and d are odd;

2) prove that in columns 2, 3, . . . , n there is exactly one 1.

2.8.3. Finite bodies

The third series of exercises covers finite bodies.

EXERCISE 2.20. Perform the following operations:

1) in F2[X]/(1 + X + X3) compute the (multiplicative) order of 1 + X , then of
1 + X + X2;

2) in F2[X]/(1 + X + X2 + X3 + X4) compute the (multiplicative) order of X ,
of 1 + X , then of 1 + X2 + X3;

3) F2[X]/(1 + X3 + X6) compute the (multiplicative) order of X (use the lattice
of the divisors of 26 − 1, as well as the binary decomposition of powers). What is the
order of X + X3?

EXERCISE 2.21. Perform the following operations:

1) find a primitive element in F2[X]/(1 + X + X3);
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2) find a primitive element in F2[X]/(1 + X3 + X4);

3) let α be a primitive of F24 . Prove that αi = 1, if i is a multiple of 15, then that
αi is primitive, if (15, i) = 1;

4) let there be F2[X]/(1 + X + X2 + X3 + X4). Construct all the primitives;

5) let there be a field Fq and let there be two elements α and β of this field. Let i
and j be the respective orders of each of them. Is the order of the product αβ the LCM
of i and j?

EXERCISE 2.22. Perform the following operations:

1) in F2[X]/(1 + X2 + X3) construct the cyclotomic class of 1 + X , then that of
X + X2;

2) in F2[X]/(1+X+X4) construct the cyclotomic class of X , then that of 1+X2,
then that of X + X2 + X3;

3) in F2[X]/(1 + X + X3) construct all the cyclotomic classes.

EXERCISE 2.23. Perform the following operations:

1) in F2[X]/(1 + X2 + X5) construct the minimum polynomial of 1 + X , then
that of X + X3 + X4;

2) in F2[X]/(1+X +X3) construct the minimum polynomial of each element of
the field, then calculate their product;

3) in F2[X]/(1 + X3 + X5) construct the minimum polynomial of 1 + X2 + X3,
then of 1 + X .

EXERCISE 2.24. In [F3]
3 we define a relation of equivalence R, by R(x, y), if x =

λy, λ ∈ F3. The class of x will be noted (x):

1) how many such classes are there (they are called points)?;

2) let a and b be two representatives of two distinct points. We call straight the set
of non-zero elements in the form αa + βb (α and β in F3, simultaneously non-zero).
How many straights are there?;

3) how many points are there per straight? Provide a straight.

EXERCISE 2.25. Let us consider F2[X]/(P (X)), dgP (X) = 6, P (X) palindrome:

1) prove that X−1 = X5 + u(X), where dgu(X) ≤ 4;

2) prove that the family {X,X2, X3, (X + X−1), (X2 + X−2), (X3 + X−3)} is
a base.

EXERCISE 2.26. In Fqn we define a Trace application, noted Trq, defined by
Trq(β) = β + βq + · · ·+ βqn−1

:

1) for q = 2, n = 4, F24 = F2[X]/(1 + X + X4), β = 1 + X + X3, calculate
Trq(β);
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2) for q = 4, n = 2, F42 = F4[X]/(1 + αX + X2), β = 1 + (1 + α)X , where α
is a primitive of F4, calculate Trq(β);

3) for q = 3, n = 2, F32 = F3[X]/(2 + X + X2), β = 1 + 2X , calculate Trq(β).

EXERCISE 2.27. Let there be the field Fqn and the Norm function in F
∗
q defined by

Nq(β) = ββq · · ·βqn−1

:

1) for q = 2, n = 3, F8 = F2[X]/(1 + X2 + X3), β = 1 + X , calculate N2(β),

2) prove that Nq(β) is in Fq ,

3) prove that Nq is a multiplicative morphism of F
∗
qn in F

∗
q .

EXERCISE 2.28. Let F24 = F2[X]/(1 + X + X4):

1) calculate
∑

β β for β traversing the field;

2) calculate
∑

β β3 for β traversing the field;

3) calculate
∑

β βi for i non-divisible by 15;

4) calculate
∑

β β15i for any whole i.

EXERCISE 2.29. Let there be F2n , and let β be an element of this field:

1) consider the multiplication by 2 inZ/(2n−1), and prove that all the cyclotomic
classes have a cardinal dividing n;

2) prove that the degree of the minimum polynomial of any element of F2n is a
divisor of n.

EXERCISE 2.30. Let Fq2d be a finite field. Let there be an a such that aaqd

= 1. Prove

that there exists a b in Fq2d such that we have b + abqd �= 0.

EXERCISE 2.31. Show that there are (23 − 1)(23 − 2) ways of choosing a non-zero
vector and another that is not a multiple of the first one. Deduce the number of pairs
of vectors that are free. Deduce from this that the number of subspaces of dimension 2
is equal to (23− 1)(23− 2)/(22− 1)(22− 2). Generalize to the number of subspaces
of dimension k in F2n .

2.8.4. Cyclic codes

2.8.4.1. Theory

EXERCISE 2.32. Let g(X) = 1 + X2 + X3 + X4 be the generator of a cyclic code:

1) what is the length of the code?;

2) construct the generator matrix G of this code whose rows are the (right) shifts
of g(X);

3) code the information polynomial 1 + X + X2 with this matrix;



120 Channel Coding in Communication Networks

4) code the same information word using systematic coding;

5) construct the generator matrix G′ of the code that corresponds to systematic
coding. What is the relationship with G?

EXERCISE 2.33. Construct the binary cyclic code containing the two following ele-
ments:

x = (1011100)

y = (0100011)

Take the polynomial of the smaller degree, which appears in the code, and calculate
the remainder of division of X7 − 1 by this polynomial.

Construct the binary cyclic code that contains the two words:

x = (110110110110110)

y = (111111111111111)

Take the polynomial of the smaller degree, which appears in the code, and calculate
the remainder of division of X15 − 1 by this polynomial.

EXERCISE 2.34. Construct the cyclotomic classes of the field F23 , without using rep-
resentation. Deduce from that a factorization of X8 −X . Recall that any element of
this field different from 1 or 0 has an order equal to 7. Construct the generator of a
binary cyclic Hamming code of length 7 correcting 1 error per word.

EXERCISE 2.35. How many binary cyclic codes of length 7 correcting 1 error per
word are there (use the previous exercise)?

EXERCISE 2.36. Construct the generator of a cyclic binary BCH code of length 15
correcting 2 errors per word (use the cyclotomic classes in Z/(15)).

EXERCISE 2.37. Construct the generator of a cyclic binary BCH code of length 15
correcting 3 errors per word.

EXERCISE 2.38. Remember that a code RM of length n = 2r − 1 is referred to as of
order s if its roots αi are such that the Hamming weight of the binary expression of
i is less or equal to r − s. Construct the generator of an RM code of length 15, order
s = 2. According to the BCH theorem, how many errors does it correct per word?

EXERCISE 2.39. Construct the generator of an RS code of binary length 56 correcting
3 binary errors per word. What is its transmission rate?

EXERCISE 2.40. Is there a binary cyclic code of length 31, with a redundancy rate
strictly lower than 12% correcting 3 errors per word?
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EXERCISE 2.41. Let us consider the following problems:

1) let C be a cyclic code (n, k, d) in Fq of length n. We suppose having a generator
matrix in the systematic form (IkR). Examine the words in the rows of this matrix and
deduce from it the Singleton bound d ≤ n− k + 1;

2) it is said that a code is MSD (maximum separable distance) if it verifies
d = n − k + 1 (such codes exist, as the RS codes). Prove that there is not an MDS
code in F2 that corrects at least one error.

EXERCISE 2.42. We consider a binary cyclic code of length 7 with the generator
g(X) = 1 + X2 + X3:

1) construct the generator matrix G of the code;

2) using the Gaussian method put it in systematic form (I4R);

3) deduce the polynomial h(X) that generates the annihilator of g(X) as follows:
– deduce from (I4R) the parity check matrix (RtI7−4). Exchange its i

columns 2 by 2 with n− i + 2, for i �= 1. Leave column 1 unchanged,
– put the new matrix in the form (R′I3). Verify that the first row of (R′I3) is

h(X).

EXERCISE 2.43. According to the BCH bound:

1) Is there a BCH code (15, 7, 7)?;

2) Is there a BCH code (31, 12, 5)?

EXERCISE 2.44. Let g(X) = (X31 − 1)/(1 + X2 + X5):

1) calculate g(X);

2) calculate a generator matrix H of the code (g(X−1)). Put it in systematic form
(IR).

EXERCISE 2.45. Let (g(X)) be a (n, k, d) binary cyclic code C with g(X) that divides
Xn − 1. Let H = (IkR) be a parity check matrix of C. Let (r0, . . . , rn−1) be the
received word. Prove that H(r0, r1, . . . , rn−1)

t has as coefficients those of the remain-
der of the division of r0 + r1X + · · ·+ rn−1X

n−1 by g(X).

EXERCISE 2.46. Let C be a binary cyclic code of length 2r + l with a word of odd
weight. Prove that it contains the element j(X) = 1 + X + X2 + · · ·+ X2r.

EXERCISE 2.47. Let β be a primitive, nth root of 1. Let C be the code having among
its roots {βa0 , βa0+a1 , βa0+a2 , βa0+a1+a2}, a1 and a2 are relatively primes of n.
Prove that d ≥ 4.
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EXERCISE 2.48. Let C be a binary cyclic code verifying C⊥ ⊇ C. Prove that, if C
contains a generator of weight 4t, then all its words have a weight that is a multi-
ple of 4.

EXERCISE 2.49. Let there be a binary code (g(X)) of length n, such that g(X) =
g(X−1) and g(1) = 0:

1) prove that this code has a minimum distance at least equal to 6;

2) find such a cyclic binary code (33, 22, 6) (note that 1+X3 +X10 is primitive).

2.8.4.2. Applications

The following exercises relate to the applications of cyclic codes.

EXERCISE 2.50. Plot the curve giving the output of a Hamming code (15, 11, 3). Plot
the curve without coding. What benefit do we have in decibels with 10−5?

EXERCISE 2.51. We have a Hamming code decoder (7, 4, 3). We want to protect the
information passing through a channel with bursts of length 3. Propose a coding and
decoding system.

EXERCISE 2.52. We wish to code information blocks correcting two errors per word.
Is there a binary cyclic code of length 21 and dimension 11 that answers the question?

EXERCISE 2.53. We wish to transmit strings of length 75. The input (i.e. the channel)
error rate is 10−3. The redundancy rate r must be no larger than 0.2. Is there a code
which lowers the error rate?

EXERCISE 2.54. An industry specialist has a list of specifications to satisfy. It must
transmit strings of information of length 43307. The channel by the transmission is
carried has an error rate equal to 2× 10−3. For the application concerned the residual
rate must be with not more than 10−6. For reasons of transmission costs the redun-
dancy rate must be no more than 0.24:

1) give the possible lengths for the information blocks;

2) for each choice of k give the possible values of n;

3) does there exist a cyclic code which solves this problem?

EXERCISE 2.55. We wish to transmit strings of information of length 258. The trans-
mission line is an SBC (symmetrical binary channel), the errors are isolated with rate
(pc) equal to 10−3. We wish to bring this rate to (pr) equal to 10−4 at the output, but
we can accept only accept a redundancy rate of no more than 7%. See, if it is possible
to satisfy the customer who has required these specifications.
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EXERCISE 2.56. We wish to code information words of length 23. Is it possible to
find a corrector code enabling to obtain:

– a binary error correction of 1 symbol per codeword?;

– a redundancy rate strictly lower than 10%?

EXERCISE 2.57. Let us consider the following situations:

1) We have strings to be transmitted by satellite, which have an imposed length
equal here to 93. The error rate of the atmospheric channel equals 10−2. We wish to
obtain after decoding a residual error rate equal to 10−3. Find the generator of a binary
cyclic code (if it exists) making it possible to solve this problem.

2) We have strings for transmission via satellite of length equal to 217 in the appli-
cation concerned. The error rate of the channel is in this case equal to 3 × 10−2. We
wish to obtain after decoding a residual error rate equal to 7×10−3. Find the generator
of a binary cyclic code (if it exists) providing a solution.

3) In the following specifications there are the constraints. Study if there is a solu-
tion. If solutions exist, provide the shortest code;

– length of string: 126,
– channel rate: 10−2,
– requested residual rate: no more than 6× 10−4,
– redundancy rate no more than 0.1.

EXERCISE 2.58. We wish to transmit images through a disturbed channel (Gaussian
white noise inducing an error rate of 10−3). These images have 69 rows and 69
columns. We neglect the case where the error word is in the code. We wish that no
more than one residual error per image remains.

1) what are the two cases where decoding introduces errors?;

2) which cutting of each row must we perform to satisfy the specifications?;

3) find the generator of a cyclic code which solves the presented problem.

2.8.5. Exercises on circuits

The fifth series of exercises covers circuits.

We say that a register is associated to a polynomial, if it is a register with shifts
whose feedback strands represent the coefficients of the polynomial (there is a strand,
if the corresponding coefficient is 1).

EXERCISE 2.59. Let there be the register associated to 1 + X + X5, initialized at
(10000) (see Figure 2.14):

1) show that p(X) = 1 + X + X5 is not irreducible;
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2) the output sequence of the register is periodic. Write a period;

3) does the sequence 11111 appear at output?;

4) does the content (11111) appear?

Figure 2.14. Illustration of exercise 2.59

EXERCISE 2.60. Let there be the following circuit in Figure 2.15:

1) for an input representing 1 + X + X3 + X5 + X8 calculate the output, as well
as the final content of the register;

2) write the Euclidean equality between the input and the polynomial giving the
feedback. What is the relationship with question 1?

Figure 2.15. Illustration of exercise 2.60

EXERCISE 2.61. We initialize the following circuit in Figure 2.16 with 1111000:

1) how many clock signals are necessary to find the same contents?;

2) find the theoretical justification proving this result.

Figure 2.16. Illustration of exercise 2.61

EXERCISE 2.62. Consider the following circuit in Figure 2.17, initialized with (000):

1) input X7(1 + X + X2), and take at output the last 7 binary symbols (the 3 first
correspond to the emptying of the register and thus do not mean anything). What do
we obtain?;
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2) verify that the last 7 symbols s0, s1, . . . , s6 (first to come out on the right) corre-
spond to a polynomial s0+s1X + · · ·+s6X

6, which is divisible by 1+X +X2+X4.

Figure 2.17. Illustration of exercise 2.62

EXERCISE 2.63. Consider the following circuit in Figure 2.18, initialized with
(0000):

1) input X15(1 + X + X3). What does the output represent?;

2) calculate this output in the form of a polynomial;

3) demonstrate that the set of these polynomials is the binary cyclic code of length
15 generated by 1 + X + X2 + X3 + X5 + X7 + X8 + X11.

Figure 2.18. Illustration of exercise 2.63

EXERCISE 2.64. Supplement the Hsiao decoder given in the course representing the
outputs indicating whether there is an error, if an incorrigible error has been detected.

EXERCISE 2.65. Let p(X) be a binary primitive irreducible polynomial with
p(X) = p0 + · · ·+ pn−1X

n−1 + pnXn. Let us consider its associated register R:

1) prove that p0 = 1, and that p(1) = 1;

2) prove that any n-tuple binary appears exactly once in R;

3) let us note the contents of R by the power of the associated α : (10 · · · 0) =
α0, (010 · · · 0) = α1, etc. Calculate k, such that αk = (p0, p0 + p1, p0 + p1 + p2, . . . ,
p0 + p1 + · · ·+ pn−1).

EXERCISE 2.66. Let p(X) be an irreducible binary polynomial, p(X) = p0 + · · · +
pnXn, with p0 = pn = 1, and the associated register with shifts. Prove that at the
register output we find the n-tuple (1 . . . 1), if and only if the register contains at a
given time the sequence (p0, p0 + p1, . . . , p0 + p1 + · · ·+ pn−1).
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EXERCISE 2.67. We consider the register with shifts whose connections are the coef-
ficients of the minimum polynomial Mα(X) of a primitive element a of F2n with
2n − 1 prime. We considers the m positions on the left, m ≤ n:

1) prove that each m-tuple not equal to 0m (i.e. to the full m-tuple of 0) appears
2n−m times and that 0m appears 2n−m − 1 times;

2) calculate average space between two equal consecutive m-tuples;

3) take the example of 1 + X + X4,m = 2. Calculate the successive spaces and
compare them with the theoretical result.

EXERCISE 2.68. We have a cyclic binary code C of length 15. Its generator g(X)
equals 1 + X3 + X4 + X5 + X6:

1) using the circuit of division by g(X), examine whether 1+X+X7+X9 is in C;

2) draw the circuit giving the redundancy for the systematic coding of the infor-
mation word associated with 1 + X + X3 + X4 + X8. Give the codeword.

EXERCISE 2.69. Let there be the following double register in Figure 2.19:

1) Turn the double register until obtaining (10000) in R1,

2) Interpret the contents of R2 at that point.

Figure 2.19. Illustration of exercise 2.69

EXERCISE 2.70. Let there be the following set-up in Figure 2.20 (Meggitt decoder)
where we will admit that emptying of R2 into R′2 followed by a RTZ (reset to zero) of
R2 can be carried out without spending time (for example, on a raising clock face). The
dotted arrows descending towards R′2 indicate a parallel emptying of all the 7 signals
(i.e. when the remainder of division by 1 + X + X3 of the input word is calculated in
R2). Moreover, as soon as R2 is emptied, an RTZ is immediately performed. Simulate
the circuit with the sequence 011010011011111100111 at input (first input on the
right). What do we obtain?

EXERCISE 2.71. Let g(X) = g0 + g1X + · · ·+ g4X
4 + X5:

1) prove that at the register output associated with g(X) we find a sequence 11111,
whatever the initialization of the register;

2) what is the content of the register when we read the last 1 of the sequence
11111, expressed using the coefficients g0, g1, . . . , g4?;
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AND

NOOR

AND

Figure 2.20. Illustration of exercise 2.70

3) deduce from it a hardware set-up giving the coefficients of g(X) regardless of
the initialization.

EXERCISE 2.72. Let there be a register associated to 1+X +X4 = p(X), initialized
with (1101). We consider the sequence s0, s1, . . . , s14, (s14 output first) of 15 con-
secutive binary values, which we obtain at the register output. This sequence can be
regarded as a polynomial s0 + s1X + · · ·+ s14X

14, an element F2[X]/(X15 − 1):

1) prove that this polynomial belongs to the cyclic code generated by 1+X+X2+
X3 + X5 + X7 + X8 + X11 in F2[X]/(X15 − 1);

2) prove the result in the general case, when p(X) is an unspecified irreducible of
degree n and exhibitor m.

EXERCISE 2.73. Let there be a register associated with a primitive irreducible poly-
nomial p(X) of degree n. We initialize this register with arbitrary non-zero contents.
Prove that the output of each oscillation yields the same sequence to the nearest circu-
lar permutation.

EXERCISE 2.74. Let there be the PG-code (m = 4, s = 2, r = 1) with generator g(X)
equal to 1+X3+X5+X6+X9+X10+X11+X12+X13+X17+X18+X20+X21+
X22 + X24 + X26 that divides X31 − 1 (see section 2.4.3.7). We wish to produce a
decoder by majority decoding using the R2 register of the Meggitt set-up (see exer-
cise 2.70), but replacing R′2 by a majority gate.

1) verify that {1, α, α18}, {1, α2, α5}, {1, α3, α29}, {1, α4, α10}, {1, α6, α27},
{1, α7, α22}, {1, α8, α20}, {1, α9, α16}, {1, α11, α19}, {1, α12, α23}, {1, α13, α14},
{1, α15, α24}, {1, α17, α30}, {1, α21, α25}, {1, α26, α28} are the projective rows (or
1-flats) orthogonal in 1 (primitive α, such that 1 + α2 + α5 = 0);
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2) indicate the oscillations of the register associated to g(X) whose sum passes
into the majority gate.

EXERCISE 2.75. We consider the register associated to 1 + X2 + X3 initialized with
(111):

1) give a period of the output sequence;

2) perform step 2 decimation (i.e. take 1 output symbol in two). What do we
observe;

3) we know that the output represents a quotient q(X), the highest degree being
output the first. Verify that the 2) decimation transforms q(X) into q(X−4) to the
nearest circular shift;

4) justify the result of 3).



Chapter 3

Convolutional Codes

3.1. Introduction

Convolutional codes, invented in 1954 by P. Elias1, constitute a family of error
correcting codes whose decoding simplicity and good performances, in particular for
the Gaussian channel, are, without doubt, very much at the origin of their success.

For a convolutional code at every moment k the encoder delivers a block of N
binary symbols2 ck = (ck,1, ck,2, . . . , ck,N ), a function of the block of K information
symbols dk = (dk,1, dk,2, . . . dk,K) present at its input along with m preceding blocks.
convolutional codes consequently introduce an memory effect of the order m.

The quantity ν = m + 1 is called the constraint length of the code and the ratio
R = K/N is called the code rate. If K information symbols at the encoder input are
found explicitly in the coded block ck, that is:

ck = (dk,1, . . . , dk,K , ck,K+1, . . . , ck,N ) [3.1]

then the code is known as systematic. In the contrary case it is known as non-
systematic. The general diagram of an encoder with output K/N and memory m is
represented in Figure 3.1.

1. ELIAS P., “Error-free coding”, IEEE Transactions on Information Theory, p. 29–37,
September 1954.
2. The notations used in this chapter are represented in Table 3.1.
Chapter written by Alian GLAVIEUX and Sandrine VATON.
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Combinatory logics

Converter

Parallel

Serial

Output

symbols

Register with (m+1) levels

binary

Block of N 

Input

Block of K 

binary

symbols

Figure 3.1. General diagram of a convolution encoder
with an output of K/N and memory m

dk
∆
= (dk,1, . . . , dk,K), 1 ≤ k ≤ M Encoder input at the indexed moment k

d
∆
= (d1, . . . , dM ) Encoder input in the interval 1 ≤ k ≤ M

ck
∆
= (ck,1, . . . , ck,N ), 1 ≤ k ≤ M Encoder output at the indexed moment k

c
∆
= (c1, . . . , cM ) Encoder output in the interval 1 ≤ k ≤ M

Sk
∆
= (Sk,1, . . . , Sk,m) State of the encoder at the indexed moment k

S
∆
= (S0, . . . , SM ) Sequence of encoder states in the interval 0 ≤ k ≤ M

yk
∆
= (yk,1, . . . , yk,N ), 1 ≤ k ≤ M Channel output at the indexed moment k

y
∆
= (y1, . . . , yM ) Channel output in the interval 1 ≤ k ≤ M

d̂k
∆
= (d̂k,1, . . . , d̂k,K), 1 ≤ k ≤ M Estimate of dk calculated by the decoder

d̂
∆
= (d̂1, . . . , d̂M ) Estimate of d calculated by the decoder

Table 3.1. Notations

At every moment k, the encoder, has m blocks of K information symbols in mem-
ory. These m K binary symbols define the Sk state of the encoder:

Sk = (dk, dk−1, . . . , dk−m+1) [3.2]

If the input of the encoder is permanently fed by blocks of K information symbols,
then the encoder output consists of N infinite sequences of coded symbols, which, for
the output i, have the form:

(c1,i, c2,i, . . . , ck,i, . . .) i = 1, . . . , N [3.3]

Let us note that convolutional codes are well adapted to code transmissions with
continuous flow of data. Indeed, the sequences of data to be coded can have any length.

To each coded sequence i = 1, . . . , N we can associate its transform in D defined
by:

Ci(D) =
∑

k

ck,iD
k [3.4]
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where D (delay) is the operator delay, equivalent to the variable z−1 of the z-trans-
form.

Each coded symbol ck,i may be expressed as a linear combination of K informa-
tion symbols present at the encoder input and K m symbols contained in its memory:

ck,i =
K∑

l=1

m∑
j=0

gi
l,jdk−j,l [3.5]

where the gi
l,j coefficients take the values 0 or 1 and where the sum operations are

made modulo 2. Relation [3.5] is a convolutional product between the sequence of
symbols to be coded and the impulse response of the encoder defined by the gi

l,j

coefficients.

Taking into account expression [3.5], Ci(D) may also be expressed as:

Ci(D) =
K∑

l=1

Gi
l(D)dl(D) [3.6]

where Gi
l(D) and dl(D) are, respectively, the transforms in D of the encoder response

and the sequence to be coded for the input l, l = 1, . . . ,K:

Gi
l(D) =

m∑
j=0

gi
l,jD

j

dl(D) =
∑

p

dp,lD
p

[3.7]

The quantities Gi
l(D), 1 ≤ l ≤ K, 1 ≤ i ≤ N are called the generator polynomi-

als of the code.

Introducing matrix notations:

d(D) = (d1(D), . . . , dK(D))

C(D) = (C1(D), . . . , CN (D))
[3.8]

encoder output can be expressed as a function of its input by the following matrix
relation:

C(D) = d(D)G(D) [3.9]
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where G(D) is a matrix with K rows and N columns and the generator matrix of the
code:

G(D) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

G1
1(D) · · · · · · Gi

1(D) · · · · · · GN
1 (D)

...
. . .

. . .
...

. . .
. . .

...
G1

l (D) · · · · · · Gi
l(D) · · · · · · GN

l (D)
...

. . .
. . .

...
. . .

. . .
...

G1
K(D) · · · · · · Gi

K(D) · · · · · · GN
K(D)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

[3.10]

Let us consider two examples of convolutional codes and determine their respec-
tive generating matrices.

EXAMPLE 3.1. Let there be a non-systematic code with memory 2 (constraint length
ν = 3) and output 1/2 (K = 1, N = 2) whose encoder is represented in Figure 3.2.
The generator matrix of this code is of the form:

G(D) = (G1(D), G2(D)) [3.11]

We have omitted to index the generator polynomials in relation [3.11] since K = 1
for this code. Examining the diagram in Figure 3.2 it is easy to verify that:

g1
1,0 = g1

1,1 = g1
1,2 = 1

g2
1,0 = g2

1,2 = 1 g2
1,1 = 0

[3.12]

and, thus, the generator polynomials have the respective expressions:

G1(D) = 1 + D + D2

G2(D) = 1 + D2
[3.13]

D D

+

+

dk dk−1 dk−2

ck,2

ck,1

Figure 3.2. General diagram of a convolution encoder with
parameters m = 2, R = 1/2
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We can also associate a binary representation to the generator polynomials. For
example 3.1, we have:

G1(D)→ g1 = (1, 1, 1)

G2(D)→ g2 = (1, 0, 1)
[3.14]

Using an octal representation, the relations [3.14] can be also written as:

g1 = 7octal g2 = 5octal [3.15]

EXAMPLE 3.2. Let there be a systematic code with memory m = 1 (constraint length
ν = 2) and output 2/3 (K = 2, N = 3) whose encoder is represented in Figure 3.3.
Using the diagram in Figure 3.3 and taking into account the relations [3.5], [3.7] and
[3.10], the generator matrix of this code equals:

G(D) =

[
1 0 1 + D

0 1 D

]
[3.16]

This code has six generator polynomials. Two are zero, two are equal to 1 and the
two others equal to (1 + D) and D respectively.

D+D

dk,1

dk,2

ck,1

ck,2

ck,3

Figure 3.3. General diagram of a convolution encoder with
parameters m = 1, R = 2/3

In Chapter 2, it has been demonstrated that a code was entirely defined by its
generator matrix G and its parity check matrix H with:

GHt = 0 [3.17]

where t indicates the transposition.

For a convolutional code we can also define a parity check matrix verifying the
relation [3.17]. If the generator matrix G(D) is expressed in the reduced form (case
of systematic codes):

G(D) = [IK , P (D)] [3.18]
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where IK indicates the identity matrix of dimension K, then the matrix H(D) has the
form:

H(D) = [P t(D), IN−K ] [3.19]

If the matrix G is not in reduced form, the matrix H is obtained by solving equation
[3.17] or, similarly, solving:

C(D)Ht(D) = 0 [3.20]

where the vector C(D) is defined by relations [3.8] and [3.9].

For the code in example 3.1, the matrix H(D) is obtained by solving relation
[3.20]. According to relation [3.6] we can write:

C1(D) = d(D)G1(D)

C2(D) = d(D)G2(D)
[3.21]

In relation [3.21] we have omitted the indices noted l in relation [3.6], since K = 1
in this example. Multiplying C1(D) by G2(D) and C2(D) by G1(D) and then sum-
ming up the two expressions we obtain:

C1(D)G2(D) + C2(D)G1(D) = 0 [3.22]

We can also express the relation [3.22] in the form of a matrix:

[C1(D), C2(D)]

[
G2(D)

G1(D)

]
= 0 [3.23]

Taking into account relations [3.20] and [3.23], the parity check matrix H(D)
equals:

H(D) = [G2(D), G1(D)] [3.24]

Replacing the generator polynomials G1(D) and G2(D) by their expressions
[3.13] and using expression [3.20], the coded symbols verify the following parity
relation:

ck,1 + ck−2,1 + ck,2 + ck−1,2 + ck−2,2 = 0 ∀k [3.25]

This relation is sometimes used to synchronize the decoder, i.e. to locate in the
sequence of the symbols received by the decoder the beginning of each block of N
coded symbols transmitted by the encoder at every moment k.
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3.2. State transition diagram, trellis, tree

The operation of a convolution encoder may be represented by a graph called a
state transition diagram. This graph reveals the various states of the encoder and the
possible transitions between states. Let us recall that for an encoder with memory
m and output K/N , the number of states is equal to 2Km. We can show that the
succession of the states of the encoder is a Markov chain. The state transition diagram
of the convolutional code from example 3.1 is represented in Figure 3.4. A binary pair
whose first symbol is ck,1 and the second is ck,2 is associated with each branch of the
diagram.

Figure 3.4. State transition diagram of the convolutional code from example 3.1

The state of the encoder at the moment k noted Sk = (dk, dk−1) can take four
values regardless of k. We will note them here:

a = (00) b = (01) c = (10) d = (11) [3.26]

Two transitions are possible for each state according to the value of the symbol
presented at the encoder input.

Binary pairs carried by the transitions between states, or buckling on the same
state, correspond to the blocks transmitted by the encoder at every moment k. The
transitions in solid (respectively dotted) lines correspond to the presence of one “1”
(respectively “0”) at the encoder input.

Another representation of the encoder operation, revealing the evolution of its Sk

state through time, is possible. It is the trellis diagram. The interest of this representa-
tion compared to the state transition diagram will appear more clearly in the discussion
on the decoding of convolutional codes (see section 3.6).
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The lattice diagram of the convolutional code from example 3.1 is plotted in Fig-
ure 3.5 with the assumption that S0(k = 0) is a = (00) generally referred to as the
“all at zero” state. A binary pair whose first symbol is ck,1 and the second is ck,2 is
associated to each branch of the diagram.

00 00 00 00

11 11

1010 10

01 01

11 11

11 11

00

10 10

01 01

00

01

k=1 k=2 k=3 k=4k=0

a:(00)

b:(01)

c:(10)

d:(11)

Figure 3.5. Lattice diagram of the convolutional code from example 3.1

From each lattice node, corresponding to a value of the state Sk and noted by a
point in Figure 3.5, leave two branches associated to the presence of a “1” symbol
(solid) and of a “0” symbol (dotted) at the encoder input respectively.

The succession of branches constitutes a path in the lattice diagram; each path is
associated to particular sequence transmitted by the encoder (here, sequence indicates
the sequence of coded symbols transmitted by the encoder, placed in a series).

Examining Figure 3.5 we can notice that the encoder produces particular
sequences known by the decoder. If the sequence received by the decoder does not
correspond to a path of the lattice diagram, the decoder will be able to detect the
presence of transmission error(s). Moreover, as we will see later on, it will be able
to correct the error(s) by finding in the lattice diagram the sequence “nearest” to the
received sequence.

The complexity of the lattice diagram depends on the number of states of the
encoder (2Km) and the number of branches that leave (or merge towards) each node
(2K). Its complexity thus grows exponentially with the memory of the encoder but
also with the length K of the coded blocks.

For packet transmissions, the state of the encoder is generally initialized at zero at
the beginning of each coded block. That can be achieved by adding m K zero symbols
at the end of each coded block. All the paths of the lattice diagram then merge towards
the zero state. These m K symbols are called tail-biting symbols of the lattice diagram.



Convolutional Codes 137

The convolution encoder then associates a unique coded sequence with each infor-
mation sequence. Convolutional codes are in this case perfectly similar to block codes
and the coded sequences are codewords.

The lattice diagram is mainly used for the decoding of convolutional codes.

A last graph, called a tree diagram, also makes it possible to represent the operation
of a convolution encoder. This diagram is represented in Figure 3.6 for the convolution
encoder from example 3.1 making the assumption that its initial state S0 is equal to
a = (00). Two branches associated to the presence of the symbol “1” (respectively
“0”) at the encoder input leave from each state Sk of the tree diagram, just as for the
lattice diagram. This diagram is also used to decode convolutional codes, in particular,
when the encoder has a large memory m (typically more than 10).

Figure 3.6. Tree diagram of the convolutional code from example 3.1

3.3. Transfer function and distance spectrum

The performances of a convolutional code are functions of the Hamming distance
between the coded sequences associated to the paths of the lattice diagram that diverge
and then merge again. For a given coding output, the correction capacity of the code
is higher the greater these distances are.

The Hamming distance between two coded sequences is also equal to the Ham-
ming weight of their sum. Convolutional codes being linear, the sum of two coded
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sequences is a coded sequence and, thus, the evaluation of distances between coded
sequences can be reduced to determining the weight of the non-zero coded sequences
(we exclude the “all at zero” paths).

These weights can be obtained on the basis of the transfer function of the code. To
illustrate the calculation of the transfer function let us again consider the convolutional
code from example 3.1.

The state a = (00) of the state transition diagram is, first of all, divided into
two states; the input state ae = (00) and the output state as = (00). This operation
is carried out to stop the transition from state a to itself and thus to avoid taking
into account the “all at zero” path (corresponding to the emission of a succession
of zero symbols by the encoder). This new state transition diagram is represented in
Figure 3.7.

Figure 3.7. State transition diagram of the convolutional code from
example 3.1. The state has been divided into two states: ae and as

A label DjN i is attached to each branch (transition between states) where i and
j are respectively the Hamming weight of the block of K symbols at the encoder
input and the Hamming weight of the block of N coded symbols, corresponding to
this branch. For example, to pass from the state ae = (00) to the state c = (10), it is
necessary to place a symbol at 1 (i = 1) at the encoder, which will produce the coded
pair (11), that is, j = 2. The branch joining ae to c will thus receive the label D2N .

The transfer function T (D,N) of the code from example 3.1 is defined by:

T (D,N) = as/ae [3.27]



Convolutional Codes 139

For each state we can write:

c = D2Nae + Nb

b = Dc + Dd

d = DNc + DNd

as = D2b

[3.28]

By solving this system of four equations, we obtain:

T (D,N) = D5N/(1− 2DN) [3.29]

The transfer function can develop in series:

T (D,N) = D5N(1 + 2DN + 4D2N2 + 8D3N2 + · · · ) [3.30]

From relation [3.30], it is easy to see that the transfer function can be still put in
the form:

T (D,N) =
+∞∑
d=5

2d−5DdNd−4 [3.31]

The encoder can transmit a coded sequence of weight 5 generated by an informa-
tion sequence of weight 1, two sequences of weight 6 generated by two information
sequences of weight 2, etc.

More generally, the encoder can transmit n(d) = 2d−5 coded sequences of weight
d(d ≥ 5) generated by information sequences of weight d− 4.

The minimum weight of the non-zero coded sequences (in our case 5), also equal
to the minimum distance between the coded sequences, is called the free distance of
the code. It is generally noted df (“f” stands for free).

Examining the lattice diagram in Figure 3.5 we can verify that an information
sequence of weight 1 of the form:

(0 · · · · · · 0 1 0 · · · · · · 0)

generates a coded sequence of weight 5 equal to:

(0 0 · · · · · · 0 0 1 1 1 0 1 1 0 0 · · · · · · 0 0)

On the basis of relation [3.31] we can also write:

T (D, 1) =

+∞∑
d=df

n(d)Dd [3.32]
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Finally, deriving [3.31] with respect to N and taking N = 1 we obtain:

∂T (D,N)

∂N

∣∣∣
N=1

=
+∞∑
d=5

w(d)Dd [3.33]

with w(d) = (d − 4)2d−5. The w(d) coefficients constitute the distance spectrum of
the code involved in the calculation of the code performances.

The transfer function is calculated easily if the number of encoder states is not
high. Otherwise the calculations quickly become very tiresome and we limit ourselves
to evaluating the first terms of the serial development of the transfer function on the
basis of the lattice diagram using an adapted algorithm. Later we will see that these
first terms are enough to evaluate the performances of convolutional codes.

3.4. Perforated convolutional codes

For a convolutional code with output K/N there are 2K transitions starting at each
node. Thus, for a high-rate code, i.e. for which the coefficient K is large, the complex-
ity of the lattice diagram can quickly become rather great, and the code, consequently,
become rather complex to decode.

It is possible to build higher rate convolutional codes on the basis of codes with
1/2 output (K = 1). To obtain such codes we use the technique of perforation.

Perforation consists of not transmitting all the coded symbols delivered by the
encoder with 1/2 output; certain symbols are removed or punched out. Let us consider
an example illustrated in Figure 3.8. This figure represents the output of an encoder
with 1/2 output consisting of a succession of blocks of two coded symbols.

, , ,,,,

, , , , , , ,

, , ,,

,, , ,

, ,

,

Figure 3.8. Coded symbols at the output of a convolution encoder with 1/2 output

If we punch out one coded symbol in four, for example, the framed symbols in
Figure 3.8, then two information symbols of the encoder are associated to three coded
symbols, i.e. a rate of 2/3.



Convolutional Codes 141

The rule of perforation is defined on the basis of a mask M which, for our example,
can be represented by a matrix with two rows and two columns:

M =

[
1 1

1 0

]
[3.34]

The element of the matrix M equal to 0 indicates the coded symbol to punch out.
Here it is one in every two symbols delivered to the output number 2 of the encoder.

The lattice diagram of a perforated code with 2/3 output built on the basis of the
convolution encoder from example 3.1 and mask M defined by relation [3.34] is rep-
resented in Figure 3.9.

We can verify on the diagram in Figure 3.9 that the free distance of the perforated
code is 3 whereas it was 5 for the non-perforated code. Perforation increases the output
of the code but reduces its free distance.

More generally, for a perforated code of output p/(p+1), p > 1, built on the basis
of a code with 1/2 output, the perforation mask is represented by a matrix with 2 rows
and p columns with (p− 1) elements equal to 0.

Figure 3.9. Lattice diagram of a perforated code of 2/3 output built on the basis of the
convolutional code from example 3.1. x indicates the punched out symbol

Of course, the choice of the perforation mask is not indifferent. It must be selected
so as to optimize the properties of code distance and, in particular, to maximize its free
distance. The search for the best perforation mask is carried out using data-processing
programs that evaluate, for a given mask, the free distance of the perforated code on
the basis of its lattice diagram.

The performances of perforated codes are generally a little lower than those of
non-punctured codes of the same rate and of the same constraint length. It is the price
paid to have a simplified lattice diagram.
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3.5. Catastrophic codes

There are convolutional codes called catastrophic codes, for which a finite number
of errors at the decoder input can generate an infinite number of errors at the decoder
output.

For these codes there exists at least one information sequence of infinite weight,
which at the encoder output produces a coded sequence of finite weight. It follows
from this comment that systematic codes are never catastrophic.

We can show that a convolutional code of output R = 1/N is catastrophic if the
highest common factor (HCF) of its generator polynomials is different from one.

EXAMPLE 3.3. The code with rate R = 1/2 with generator polynomials G1(D) =
1 + D and G2(D) = 1 + D2 is catastrophic since the HCF of 1 + D and 1 + D2 is
equal to 1+D. Similarly, the code with generator polynomials G1(D) = 1+D +D2

and G2(D) = 1+D3 is catastrophic, since the HCF of G1(D) and of G2(D) is equal
to 1+D +D2. On the other hand, the convolutional code with generator polynomials
G1(D) = 1 + D + D2 and G2(D) = 1 + D2 is not catastrophic because the HCF of
G1(D) and G2(D) is equal to 1.

3.6. The decoding of convolutional codes

Let us consider a transmission under convolutional coding with K/N output, and
suppose that the decoder receives a sequence of M blocks yk = (yk,1 · · · yk,i · · · yk,N )
composed of disturbed symbols. The decoder exploits this information to make a
decision on the M information blocks dk = (dk,1 · · · dk,i · · · dk,K) introduced at the
encoder input.

Two approaches can be considered to decode. The first consists of looking for the
sequence of more probable M information blocks and the second of determining the
most probable information block at every moment k.

The first approach can be implemented rather simply using the Viterbi algorithm.
This approach makes it possible to guarantee a minimum error probability for the
decoded sequences and not a minimum error probability for the information blocks.
However, as soon as the signal to noise ratio exceeds a few decibels, the Viterbi algo-
rithm also leads, with good approximation, to a minimum error probability for the
information blocks.

The second approach that works at the level of information blocks is known as the
MAP (Maximum a posteriori) criterion, sometimes also referred to as the BCJR algo-
rithm (Bahl, Cock, Jelinek, Raviv; 1974). This approach guarantees a minimum prob-
ability of error for the information blocks. Its disadvantage is its complexity compared
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to the Viterbi algorithm, while its advantage is that it makes it possible to associate
reliability information to each decoded information block.

In the rest of this section we will note:

– d = (d1 · · · dk · · · dM ) the information sequence;

– c = (c1 · · · ck · · · cM ) the coded sequence;

– y = (y1 · · · yk · · · yM ) the noisy sequence (“observation”) used by the decoder.

3.6.1. Viterbi algorithm

This algorithm is used to look for the sequence d̂, such that:

p(d̂|y) ≥ p(d|y) ∀d [3.35]

where p(d|y) is the probability of the information sequence d conditionally to obser-
vation y. In an equivalent manner the criterion [3.34] can also be stated:

d̂ = Arg max
d

p(d/y) [3.36]

where Arg indicates the argument d of p(d|y).

By definition of conditional probability we have:

p(d | y) = p(d,y)/p(y) [3.37]

The standardization term, p(y) does not depend on d and the criterion [3.36] can
also be expressed in the form:

d̂ = Arg max
d

p(d,y) [3.38]

Let us introduce the sequence S = (S0 · · ·Sk · · ·SM ) where Sk = (dk, dk−1, . . . ,
dk−ν+2) is the state of the encoder at the moment k and ν is its constraint length.
Knowing the sequence S makes it possible to find the information sequence d.
Indeed, each transition Sk−1 → Sk depends only on one block dk. Thus, decoding
the sequence of blocks dk is equivalent to estimating the succession of Sk encoder
states.

Reasoning on the decoder states find the sequence Ŝ, such that:

Ŝ = Arg max
S

p(S,y) [3.39]

The complete probability p(S, y) can be factorized into a product of M condi-
tional probabilities. Indeed, by definition of conditional probability, we can write:

p(S,y) = p(yM , SM | yM−1, . . . , y1, SM−1, . . . , S0)

p(yM−1, . . . , y1, SM−1, . . . , S0)
[3.40]



144 Channel Coding in Communication Networks

We make the assumption of a source with mutually independent symbols and a
channel without memory. The first term of relation [3.40] can then be simplified:

p(yM , SM | yM−1, . . . , y1, SM−1, . . . , S0) = p(yM , SM | SM−1) [3.41]

From equations [3.40] and [3.41] we deduce a factorization of the complete prob-
ability as a product of two terms:

p(S,y) = p(yM , SM | SM−1) p(yM−1, . . . , y1, SM−1, . . . , S0) [3.42]

Reiterating the reasoning M times, we obtain a factorization of complete proba-
bility as a product of M terms:

p(S,y) = p(S0)
∏

k=1,M

p(yk, Sk | Sk−1) [3.43]

where p(S0) represents the distribution of the initial encoder state S0.

Taking the logarithm of relation [3.43] we obtain an additive form for the complete
log-probability:

log p(S,y) = log p(S0) +
∑

k=1,M

log p(yk, Sk | Sk−1) [3.44]

that is, also:

log p(S, y) = log p(S0) +
∑

k=1,M

(log p(yk | Sk−1, Sk) + log p(Sk | Sk−1)) [3.45]

since, by definition of conditional probability, we have:

p(yk, Sk | Sk−1) = p(yk | Sk−1, Sk) p(Sk | Sk−1) [3.46]

Let us analyze the terms that appear in equation [3.45] and give their respective
expressions under certain assumptions.

3.6.1.1. The term log p(S0)

If we suppose that the initial state of the encoder is the “all at zero” state, then:

p(S0) =

{
1 for S0 = (0 · · · 0 · · · 0)

0 otherwise
[3.47]

and thus:

log p(S0) =

{
0 for S0 = (0 · · · 0 · · · 0)

−∞ otherwise
[3.48]
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If the value of the initial encoder state is unknown, and if all the values of S0 a
priori have equal probability, we have:

p(S0) = 1/2(ν−1)K ∀S0 [3.49]

where 2(ν−1)K is the number of possible values for S0.

3.6.1.2. The term log p(Sk|Sk−1)

The transition between states Sk−1 → Sk depends only on the block dk placed at
the encoder input. If the transition Sk−1 = s → Sk = s′ is possible, then a single
value of dk corresponds to this transition, which we note d(s, s′).

p(Sk = s′ | Sk−1 = s) = p(dk = d(s, s′)) [3.50]

The transition probability p(Sk|Sk−1) thus translates a priori that we have on the
source of information. If the binary information symbols are mutually independent
and take values 0 and 1 with the same probability, we have:

p(Sk = s′ | Sk−1 = s) = 1/2K [3.51]

3.6.1.3. The term log p(yk|Sk, Sk−1)

The observation yk is a random function of the transition Sk−1 → Sk and only
of this transition, if the channel is without memory. The observation yk randomly
depends only on the coded block ck, which is a deterministic function of the transition
Sk−1 → Sk between the encoder states and, consequently:

log p(yk | Sk−1 = s, Sk = s′) = log p (yk | ck = c(s, s′)) [3.52]

where c(s, s′) represents the coded block at the encoder output when it passes from
state s to state s′.

3.6.1.3.1. The term log p(yk|Sk, Sk−1) in the case of the symmetric binary channel

For this channel with binary input and output the demodulator makes hard deci-
sions that can be affected with errors. The observation yk comprises N binary sym-
bols; we speak of hard decoding. We will note the bit error rate of this channel p, i.e.
the probability of inversion of a binary symbol. This channel having no memory, the
errors or binary inversions are mutually independent.

Conditionally to a transition Sk−1 = s→ Sk = s′ the law of yk has the probabil-
ity:

p(yk | Sk−1 = s, Sk = s′) = pdk

H
(s,s′)(1− p)N−dk

H
(s,s′) [3.53]
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where dk
H(s, s′) = dH(yk, c(s, s′)) is the Hamming distance between the observation

yk and the coded block c(s, s′). Taking the logarithm of relation [3.53] we obtain:

log p(yk | Sk−1 = s, Sk = s′) = dk
H(s, s′) log

p

1− p
+ N log(1− p) [3.54]

The second term of the right hand side of equation [3.54] is the same for all the
pairs (s, s′). Consequently, in the complete expression of log-probability log p(S, y)
this term will appear in the form of an additive constant that does not depend on S. The
problem of optimization of relation [3.39] will thus have the same solution whether
we take this term into account or not. This is why we neglect it in the calculation of
conditional log-probability [3.54]; we can thus write that:

log p(yk | Sk−1 = s, Sk = s′) = dk
H(s, s′) log

p

1− p
[3.55]

except for an additive constant.

3.6.1.3.2. The term log p(yk|Sk, Sk−1) in the case of the Gaussian channel with
binary input

For a Gaussian channel with binary input the observation yk has the form:

yk = c′k + nk [3.56]

where c′k results from the coded block ck through a modulation operation, which we
suppose to have 2 or 4 phase states. The block c′k thus contains N binary components
taking their values in {+1,−1} (c′k = 2ck − 1N noting 1N the vector line consisting
in N components at 1). The term nk is an N -dimensional Gaussian noise whose N
components are centered, not correlated and have the same variance σ2

n. Moreover,
the successive noise samples n0, n1, n2, . . . are independent. Let us recall that for this
channel the demodulator did not make hard decisions and that the N components of
yk are the sampled outputs of an adapted filter; the observation thus takes its values in
R

N . We then speak of soft decoding.

The probability of yk conditionally to the transition Sk−1 = s → Sk = s′ is
equal to:

p(yk | Sk−1 = s, Sk = s′)

= 1/
(√

2πσ2
n

)N

exp

(
− 1

2σ2
n

||yk − c′(s, s′)||2
) [3.57]

where ||yk − c′(s, s′)||2 indicates the square of the Euclidean distance between yk

and c′(s, s′), and where c′(s, s′) = 2c(s, s′) − 1N is the coded and modulated block
associated to the transition Sk−1 = s→ Sk = s′.
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Conditional log-probability easily results from expression [3.57]:

log p(yk | Sk−1 = s, Sk = s′) = −N

2
log(2πσ2

n)− 1

2σ2
n

||yk − c′(s, s′)||2 [3.58]

The first term of the right member of expression [3.58] can be neglected. Indeed,
it does not depend on the pair (s, s′) and the result of optimization [3.39] will be the
same, whether we take it into account in [3.58] or not. We can thus write that:

log p(yk | Sk−1 = s, Sk = s′) = − 1

2σ2
n

||yk − c′(s, s′)||2 [3.59]

to the nearest additive constant.

3.6.1.3.3. The term log p(yk|Sk, Sk−1) in the case of the Rayleigh channel with
binary input

For a Rayleigh channel with binary input, the observation yk has the form:

yk = ρkc′k + nk [3.60]

In equation [3.60] c′k and nk have the same definitions as in the case of the Gaus-
sian channel (see section 3.6.1.3.2). nk represents an additive noise, whose successive
samples are independent, Gaussian, have zero average and a variance σ2

n. We suppose
that ρk is an attenuation whose successive manifestations are constant over the dura-
tion of the coded block c′k, independent among themselves and with respect to the
additive noise nk and distributed according to a Rayleigh law with E(ρ2

k) = 2σ2
ρ.

The attenuation ρk has as a probability density:

p(ρk) =
1

σ2
ρ

ρk exp

(
− ρ2

k

2σ2
ρ

)
11ρk
≥ 0 [3.61]

where the term 11ρk
≥ 0 represents the indicating function of the unit {ρk ≥ 0} that

equals 1 if ρk ≥ 0 and 0 if not.

In the case of the Rayleigh channel with binary input, the term p(yk|Sk−1 = s,
Sk = s′) equals:

p(yk | Sk−1 = s, Sk = s′) = p(yk | c′k = c′(s, s′))

=
∫ ∞

0
p(ρk) p(yk | ρk, c′k = c′(s, s′)) dρk

[3.62]

The density of the observation yk conditionally to the attenuation ρk and the coded
and modulated symbol c′k = c′(s, s′) is Gaussian N -dimensional:

p(yk | c′k = c′(s, s′)) =
1√

2πσn

exp

(
− 1

2σ2
n

‖yk − ρkc′(s, s′)‖2
)

[3.63]
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Integrating [3.61] and [3.63] in [3.62] we obtain:

p(yk | Sk−1 = s, Sk = s′) [3.64]

=

∞∫
0

1/(σ2
ρ

√
2πσn) ρk exp(−ρ2

k/2σ2
ρ) exp(−‖yk − ρkc′(s, s′)‖2/2σ2

n) dρk

Relation [3.64] does not lead to a simple expression of conditional log-probability
log p(yk|Sk−1, Sk).

The approach adopted in practice does not consist of using expression [3.64]. It is
preferred to estimate the attenuation ρk for each coded block c′k. Thus, this attenuation
being known through its estimate, the Rayleigh channel can be treated as a Gaussian
channel.

Conditional log-probability is then, according to [3.59], equal, to the nearest addi-
tive factor, to:

log p(yk | Sk−1 = s, Sk = s′) = − 1

2σ2
‖yk − ρ̂kc′(s, s′)‖2 [3.65]

where ρ̂k is the estimate of the attenuation ρk.

We can verify that if the estimate of the ρk is found satisfactorily, the performances
of the decoder for a Rayleigh channel are better when using [3.65] than [3.64].

Let us reconsider the decoding rule [3.39] and take the particular, but very frequent,
case where the initial state of the encoder is the “all at zero” state (S0 = (0 · · · 0 · · · 0))
and where the binary information symbols take values 0 and 1 with an equal probabil-
ity.

Under these assumptions, the most probable sequence S has the initial value
S0 = (0, 0, . . . , 0) and the transition probability Sk−1 = s→ Sk = s′ is independent
of the pair (s, s′); it equals:

p(Sk = s′ | Sk−1 = s) = 1/2K [3.66]

provided that the transition Sk−1 = s → Sk = s′ is possible, which corresponds to
the presence of a branch of the state s reaching towards the state s′ in the lattice of the
code.

The complete log-probability log p(S, y) is then reduced, to the nearest additive
constant that we can neglect, to the sum of M conditional log-probabilities:

log p(S,y) =

M∑
k=1

log p(yk | Sk−1 = s, Sk = s′) [3.67]
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EXAMPLE 3.4 (SYMMETRIC BINARY CHANNEL). We suppose that the probability of
binary inversion of the symmetric binary channel is strictly less than 1/2: p < 1/2. In
this case log(p/(l−p)) < 0; according to relation [3.55] the most probable sequence Ŝ

is that which minimizes the Hamming distance between the sequence y at the decoder
input and the sequence c = (c1, . . . , cM ) of the coded words:

Ŝ = Arg min
S

∑
k=1,M

dH (yk, c(S(k − 1), S(k)))

= Arg min
S

dH(y, c(S))
[3.68]

noting c(S) the sequence of coded and modulated words corresponding to the
sequence S.

EXAMPLE 3.5 (GAUSSIAN CHANNEL WITH BINARY INPUT). According to relation
[3.59] the most probable sequence S is that minimizing the Euclidean distance
between y and c′(S):

Ŝ = Arg min
S

M∑
k=1

||yk − c′(Sk−1, Sk)||2

= Arg min
S
||y − c′(S)||2

[3.69]

In the case of the Gaussian channel with binary input, decoding according to
the most probable sequence S leads to choosing the sequence Ŝ that minimizes the
Euclidean distance between the decoder input y and the sequence of coded and mod-
ulated blocks c′(S).

An exhaustive search in the set of 2KM values that d can take would have a numer-
ical complexity exponentially increasing with M and K, which is not possible in prac-
tice as soon as K or M exceed a few units.

Several algorithms exist to circumvent this difficulty. Among these algorithms we
can cite the sequential Fano algorithm which uses the tree diagram to find the most
probable sequence S. This algorithm is generally reserved for the decoding of convo-
lutional codes with large constraint lengths (typically ν ≥ 10).

The Viterbi algorithm uses the lattice diagram to find the most probable sequence
S. The numerical complexity of this algorithm being proportional to 2νK ×M , it is
well adapted for the decoding of convolutional codes with constraint length lower than
ν = 10.

3.6.1.4. Viterbi algorithm

Let us introduce the quantity γk(s, s′) defined by:

γk(s, s′) = − log p(yk, Sk = s′ | Sk−1 = s) [3.70]
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With this notation the decoding rule [3.39], taking into account relation [3.44], is
stated:

Ŝ = Arg min
S
− log p(S0) +

M∑
k=1

γk(Sk−1, Sk) [3.71]

Rule [3.71] is interpreted as the search for a shorter path in the lattice code dia-
gram. Let us assign to the branch stemming from the node Sk−1 = s to the node
Sk = s′ a “length” γk(s, s′) called branch metric.

To the nearest term – log p(S0) the quantity minimized by the rule of decoding
[3.71] is the sum of branch metrics along the path corresponding to the sequence S

of encoder states. This sum can thus be interpreted as the length of the path S in the
lattice and the decoding according to [3.71] is thus reduced to finding the shortest path
in the lattice.

Before presenting the Viterbi algorithm, let us define two quantities:

1) Ms
k(s′) is equal to the sum of the branch metric of the shortest path from the

node S0 ending at the node Sk = s′. This path is called surviving in the terminology
of the Viterbi algorithm, from where the exhibitor s of Ms

k(s′); Ms
k(s′) is called the

cumulated metric of the surviving path;

2) Ak(s′) is called the previous better node for the node Sk = s′;Ak(s′) is the
node by which passes at the Sk−1 level the shortest (surviving) path among all the
paths starting at S0 and ending at the Sk = s′ node.

3.6.1.4.1. Initialization (k = 0)

Calculation of the cumulated metrics Ms
0 (s′):

Ms
0 (s′) = − log p(S0 = s′) [3.72]

For the calculation of this metric we generally make the assumption that the
encoder is in the “all at zero” state and thus:

Ms
0 (s′) =

{
0 for s′ = (0 · · · 0 · · · 0)

−∞ otherwise
[3.73]

3.6.1.4.2. Calculation of the branch metrics (k = 1, 2, . . . ,M)

For any moment k and any pair of nodes (Sk−1 = s, Sk = s′) that communi-
cate with each other, we calculate the metric γk(s, s′), that is 2ν K branch metrics to
evaluate at every moment k.
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3.6.1.4.3. Calculation of the Ms
k(s′) metrics of the surviving paths (k = 1, 2, . . . , M)

The Ms
k(s′) metric at the level of the node Sk = s′ is equal to the minimum value,

the minimum being taken among all the possible previous nodes Sk−1 = s of the node
Sk = s′, the sum of the branch metric γk(s, s′) and of the surviving metric Ms

k−1(s)
at the node Sk−1 = s:

Ms
k(s′) = min

s
(Ms

k−1(s) + γk(s, s′)) [3.74]

3.6.1.4.4. Determination of the best previous node (k = 1, 2, . . . ,M)

The best previous node of the node Sk = s′ is the Sk−1 node by which passes the
shortest path arriving at Sk = s′, i.e. the path with a cumulated metric Ms

k(s′):

Ak(s′) = Arg min
s

(Ms
k−1(s) + γk(s, s′)) [3.75]

At the level of the node Sk = s′, Ak(s′) points to the previous node Sk−1, by
which passes the shortest path among all the path arriving at the node Sk = s′.

The metrics of the surviving paths Ms
k(s′) and the best previous nodes Ak(s′)

must be memorized at each moment k and for all the nodes of the lattice diagram.

3.6.1.4.5. Determination of the shortest path by back tracing the lattice diagram

After the calculation of all the surviving metrics Ms
k(s′) and all the best previous

nodes Ak(s′), it is enough to choose the shortest path in k = M , that is the one whose
cumulated metric is the weakest. Let ŜM be the arrival node of this path:

ŜM = Arg min
s

Ms
M (s) [3.76]

This path comes from the node ŜM−1, which is the best previous node of ŜM , and
thus, gradually, we reassemble the lattice up to the S0:

Ŝk−1 = Ak(Ŝk) k = M, . . . , 1 [3.77]

Once the most probable path Ŝ = (Ŝ0, Ŝ1, . . . , ŜM ) has been determined, we
decode the information blocks dk.

To complete the presentation of the Viterbi algorithm, let us provide the expres-
sions of branch metrics in the case of the symmetric binary channel and in the case of
the Gaussian channel with binary input.

Let us recall that, by definition, the branch metric is equal to:

γk(s, s′) = − log p(yk, Sk = s′ | Sk−1 = s) [3.78]
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that can also be written:

γk(s, s′) =− log p(yk | Sk−1 = s, Sk = s′)

− log p(Sk = s′ | Sk−1 = s)
[3.79]

Symmetric binary channel
According to relations [3.50] and [3.55] the branch metric has the expression:

γk(s, s′) = −dk
H(s, s′) log

(
p

1− p

)
− log p(dk = d(s, s′)) [3.80]

Gaussian channel with binary input
According to relations [3.50] and [3.59], the branch metric has the expression:

γk(s, s′) =
1

2σ2
||yk − c′(s, s′)||2 − log p(dk = d(s, s′)) [3.81]

For these two channels the calculation of branch metrics requires knowing the
probability of bit inversion at output of the demodulator p (symmetric binary channel)
or the variance σ2 of the noise (Gaussian channel with binary input).

If we suppose that the source of information delivers binary symbols taking values
“0” or “1” with equal probability, then, for these two channels, the branch metric can
be simplified. Indeed, in this case, the term p(dk = d(s, s′)) equals 1/2 when the
branch (s, s′) belongs to the lattice; this term does not depend on the couple (s, s′)
and it is not necessary to take it into account in the calculation of the branch metric;
thus we obtain:

1) symmetric binary channel:

γk(s, s′) = dk
H(s, s′) [3.82]

2) Gaussian channel with binary input:

γk(s, s′) = ||yk − c′(s, s′)||2 [3.83]

where c′(s, s′) is the coded and modulated block associated to the transition Sk−1 =
s→ Sk = s′. We can thus again simplify the branch metric:

γk(s, s′) = 〈yk, c′(s, s′)〉 [3.84]

where 〈·, ·〉 indicates the scalar product. This quantity is the scalar product of the
observation yk and the coded and modulated block c′(s, s′). Expression [3.84] of the
metric was obtained using expression [3.83], omitting the terms independent of the
pair (s, s′) and multiplying the metric by −1. Consequently, with expression [3.84]
of the metric, minimization is transformed into maximization and it is necessary to
replace min by max in relations [3.74] and [3.75];
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3) Rayleigh channel with binary input: adopting the assumption that we have an
estimate ρ̂k of the attenuations ρk, the branch metric is equal to:

γk(s, s′) = ‖yk − ρ̂k c′(s, s′)‖2 [3.85]

This metric can be further simplified taking into account the observations made
previously (case of the Gaussian channel with binary input):

γk(s, s′) = ρ̂k 〈yk, c′(s, s′)〉 [3.86]

To illustrate the Viterbi algorithm, let us consider an example. Let us suppose
that the sequence to be coded is 1001 and that the convolution encoder is the one
represented in Figure 3.2. By making the assumption that the encoder is in the “all at
zero” state at the initial moment (k = 0) the coded sequence is 11 10 11 11. Let us
consider, for example, a symmetric binary channel introducing an error at position 3
so that the observation y is 11 00 11 11. The Viterbi algorithm develops as follows;
the lattice diagram of the convolutional code is repeated in Figure 3.10:

1) k = 1:
– Branch metrics:

γ1(a, a) = 2

γ1(a, c) = 0

– Cumulated surviving metrics and the best previous nodes:

Ms
1 (a) = 2 A1(a) = a

Ms
1 (c) = 0 A1(c) = a

2) k = 2:
– Branch metrics:

γ2(a, a) = 0 γ2(c, b) = 1

γ2(a, c) = 2 γ2(c, d) = 1

– Cumulated surviving metrics and the best previous nodes:

Ms
2 (a) = 2 A2(a) = a

Ms
2 (b) = 1 A2(b) = c

Ms
2 (c) = 4 A2(c) = a

Ms
2 (d) = 1 A2(d) = c
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3) k = 3:
– Branch metrics:

γ3(a, a) = 2 γ3(b, a) = 0 γ3(c, b) = 1 γ3(d, b) = 1

γ3(a, c) = 0 γ3(b, c) = 2 γ3(c, d) = 1 γ3(d, d) = 1

– Cumulated surviving metrics and the best previous nodes:

Ms
3 (a) = 1 A3(a) = b

Ms
3 (b) = 2 A3(b) = d

Ms
3 (c) = 2 A3(c) = a

Ms
3 (d) = 2 A3(d) = d

4) k = 4:
– Branch metrics:

γ4(a, a) = 2 γ4(b, a) = 0 γ4(c, b) = 1 γ4(d, b) = 1

γ4(a, c) = 0 γ4(b, c) = 2 γ4(c, d) = 1 γ4(d, d) = 1

– Cumulated surviving metrics and the best previous nodes:

Ms
4 (a) = 2 A4(a) = b

Ms
4 (b) = 3 A4(b) = c

Ms
4 (c) = 1 A4(c) = a

Ms
4 (d) = 3 A4(d) = d

The weakest cumulated metric is Ms
4 (c) = 1. The most probable sequence Ŝ thus

arrives at the node Ŝ4 = c; the node S4 = c has the node A4(c) = a as best previous
and thus Ŝ3 = a. Similarly, the node S3 = a has the node A3(a) = b as best previous
and, thus, Ŝ2 = b. By back-tracking up the lattice diagram in this manner, from right
to left, we obtain the most probable sequence Ŝ:

c, a, b, c, a Ŝ = (a, c, b, a, c)

which corresponds to the information sequence:

d = (1001)

The single error introduced by the channel has been corrected.
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Figure 3.10. Lattice diagram of the convolutional code from example 3.1

3.6.1.5. Viterbi algorithm for transmissions with continuous data flow

To finish this section on Viterbi decoding, let us say that for transmissions with
continuous data flow, it is generally difficult to wait until the entire coded sequence has
been received to begin decoding. Indeed, that would introduce a too large a delay into
the decoding, and would require to have a prohibitively large memory to memorize all
the surviving paths of the lattice.

Back-tracking the surviving paths arriving at t = n at each node Sn = s′ we
realize that these paths almost always merge towards the same node, in t = n − ∆
for sufficiently large ∆. This phenomenon is illustrated in Figure 3.11 where the four
paths surviving in t = n merge towards the node a = (00) in t = n − 4(∆ = 4). If
we retrace starting from the node Sn−4 = a = (00), along the single surviving path
we follow the branch Sn−5 = (00)→ Sn−4 = (00); binary data of information equal
to dn−4 = 0 corresponds to this branch, represented by a dotted line in the lattice
in Figure 3.11; the Viterbi algorithm with sliding window thus leads to the decision
d̂n−4 = 0.

To decode the information block dn−∆ it is not necessary to observe the received
sequence beyond t = n. In practice, memorizing the surviving paths can be limited to
a temporal window of depth ∆. The decoding delay thus remains finite for an infinite
or at least very large sequence to be decoded.

We can demonstrate by simulation that the window ∆ must be all the larger as the
code rate and its code constraint length are higher. Thus, for a code with an output,
for example, R = 1/2, we can take ∆ to be equal to 5 or 6 times the length of the
constraint ν.
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Figure 3.11. Convergence of the surviving paths towards a
single path in t = n − 4(∆ = 4)

3.6.2. MAP criterion or BCJR algorithm

For this decoding criterion, the decoder looks for the information given d̂k for any
k = 1, . . . , M , such that:

p(d̂k | y) ≥ p(dk | y) ∀dk [3.87]

where p(d̂k|y) is the probability of the information given d̂k conditionally to the obser-
vation y. In an equivalent fashion the criterion is also stated:

d̂k = Arg max
dk

p(dk | y) [3.88]

where Arg indicates the argument dk of p(dk|y).

Before presenting the BCJR algorithm let us introduce three quantities, which
make it possible to implement decoding using the MAP criterion:

– αkk(s) represents the joint probability of the observations y1, . . . , yk and of the
encoder state Sk = s:

αk(s) = p(y1, y2, . . . , yk, Sk = s) [3.89]

The quantity αk(s) is called the Front filter;

– βk(s) represents the joint probability of the observations yk+1, . . . , yM condi-
tionally to the Sk = s encoder state:

βk(s) = p(yk+1, . . . , yM | Sk = s) [3.90]

The quantity βk(s) is called the Back filter;

– ψk(s, s′) represents the joint probability of y = (y1, y2, . . . , yM ), of Sk−1 = s
and Sk = s′:

ψk(s, s′) = p(Sk−1 = s, Sk = s′, y) [3.91]
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The quantity ψk(s, s′) is proportional to the a posteriori probability of the branch
Sk−1 = s→ Sk = s′:

ψk(s, s′) ∝ p(Sk−1 = s, Sk = s′ | y) [3.92]

where the ∝ sign represents equality to the nearest proportionality factor.

3.6.2.1. BCJR algorithm (Bahl, Cock, Jelinek, Raviv; 1974)

The BCJR algorithm calculates the Front filter αk(s) and the Back filter βk(s)
iteratively:

αk+1(·) ← αk(·), yk+1

βk(·) ← βk+1(·), yk+1

[3.93]

In equation [3.93] the “·” in αk(·) means that we consider the quantities αk(s) for
the 2(ν−1)K possible values of s. Similarly, the “·” in βk(·) means that we consider the
quantities βk(s) for the 2(ν−1)K possible values of s, where s represents an encoder
state.

Relation [3.93] shows symbolically that the quantity αk+1(·) is obtained from the
observation yk+1 and from the quantity αk(·); similarly, the quantity βk(·) is obtained
from the observation yk+1 and from the quantity βk+1(·).

This makes it possible to represent the Front filter and the Back filter as a lattice.
We initialize α0(·), then calculate α1(·) using y1 and α0(·), the we calculate α2(·)
using y2 and α1(·) and so on until αM (·).

Similarly, we initialize βM (·), then we calculate βM−1(·) using yM and of βM (·);
we then calculate βM−2(·) using yM−1 and of βM−1(·), and so on until β0(·).

3.6.2.1.1. Initialization of the Front filter (k = 0)

We pose:
α0(s) = p(S0 = s) [3.94]

For example, if the encoder is initialized in the “all at zero” state, we have:

α0(s) =

{
1 for s = (0, 0, . . . , 0)

0 if not
[3.95]

If we have no a priori information on the initial state of the encoder, we decide
that all the states have equal probability at the start:

α0(s) = 1/2(ν−1)K , ∀s [3.96]
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3.6.2.1.2. Propagation of the Front filter (k = 1, 2, . . . ,M)

The event y1, y2, . . . , yk and Sk = s is also equal to the sum of the events
y1, y2, . . . , yk, Sk−1 = s′ and St = s, this sum being taken for all of the states s′,
such that the branch Sk−1 = s′ → Sk = s exists in the lattice. Moreover, this sum is
discrete.

From this reasoning and from definition [3.89] we get:

αk(s) =
∑

s′/s′→s

p(y1, . . . , yk, Sk−1 = s′, Sk = s) [3.97]

s′/s′ → s means that the sum [3.97] relates to all of the states s′, such that the node
Sk−1 = s′ communicates with the node Sk = s.

By definition of conditional probability we have:

p(y1, . . . , yk, Sk−1 = s′, Sk = s) [3.98]

= p(yk, Sk = s | y1, . . . , yk−1, Sk−1 = s′) p(y1, . . . , yk−1, Sk−1 = s′)

We recognize in the second term of the right hand side of equation [3.98] the
quantity:

αk−1(s
′) = p(y1, . . . , yk−1, Sk−1 = s′) [3.99]

Conditionally to Sk−1, the quantities yk and Sk do not depend on yk−1, yk−2,
. . . , y1. Consequently:

p(yk, Sk = s | y1, . . . , yk−1, Sk−1 = s′)

= p(yk, Sk = s | Sk−1 = s′)
[3.100]

From [3.100] and definition [3.70] of the branch metric it follows that:

p(yk, Sk = s | y1, . . . , yk−1, Sk−1 = s′) = exp(−γk(s′, s)) [3.101]

Using expressions [3.99] and [3.101] in [3.98] we obtain:

p(y1, . . . , yk, Sk−1 = s′, Sk = s) = αk−1(s
′) exp(−γk(s′, s)) [3.102]
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and using [3.102] in equation [3.97] we obtain the Front filter reinitialization equation:

αk(s) =
∑

s′/s′→s

αk−1(s
′) exp (−γk(s′, s)) [3.103]

Let us pose Ak as the vector line of the components αk(s) and Gk as the matrix
whose element on in row s′ and column s is gk(s′, s) = exp(−γk(s′, s)):

Gk = [gk(s′, s)]s,s′

gk(s′, s) = p(yk, Sk = s | Sk−1 = s′)
[3.104]

Equation [3.103] is also expressed in matrix form:

Ak = Ak−1Gk [3.105]

3.6.2.1.3. Initialization of the Back filter (k = M)

We pose:

βM (s) = 1∀s [3.106]

3.6.2.1.4. Propagation of the filter Back (k = M − 1, . . . , 0)

The event yk+1, . . . , yM equals the sum of the events yk+1, . . . , yM and Sk+1 =
s′, the sum being calculated for all encoder states, such that the branch Sk = s →
Sk+1 = s′ is a branch of the lattice:

βk(s) = p(yk+1, . . . , yM | Sk = s)

=
∑

s′/s→s′

p(yk+1, . . . , yM , Sk+1 = s′ | Sk = s)
[3.107]

By definition of conditional density we have:

p(yk+1, . . . , yM , Sk+1 = s′ | Sk = s) [3.108]

= p(yk+1, Sk+1 = s′ | Sk = s)p(yk+2, . . . , yM | yk+1, Sk+1 = s′, Sk = s)

Knowing that Sk+1 = s′ the variables yk+2, . . . , yM are independent of yk+1 and
Sk = s. Consequently:

p(yk+2, . . . , yM | yk+1, Sk+1 = s′, Sk = s)

= p(yk+2, . . . , yM | Sk+1 = s′)
[3.109]
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Substituting [3.109] in [3.108] and using definition [3.70] of the branch metric we
obtain:

p(yk+1, . . . , yM , Sk+1 = s′ | Sk = s) = exp(−γk+1(s, s
′))βk+1(s

′) [3.110]

By substituting [3.110] in [3.107] we obtain the reinitialization equation of the
Back filter:

βk(s) =
∑

s′/s→s′

exp(−γk+1(s, s
′))βk+1(s

′) [3.111]

Let us pose Bk as the vector column of the βk(s) components, relation [3.111] is
written in algebraic form:

Bk = Gk+1Bk+1 [3.112]

where Gk+1 is the matrix with 2(ν−1)K rows and 2(ν−1)K columns defined in [3.104].

OBSERVATION (ON THE INITIALIZATION OF THE BACK FILTER). The quantity βk(s)
is defined as:

βk(s) = p(yk+1, . . . , yM | Sk = s) [3.113]

The notation yk+1, . . . , yM only makes sense for k ≤M−1. If we apply equation
[3.111] of Back filter propagation, posing k = M−1 and initializing βM (s) according
to equation [3.106] we obtain:

βM−1(s) =
∑

s′/s→s′

exp(−γM (s, s′))

=
∑

s′/s→s′

p(yM , SM = s′ | SM−1 = s)

= p(yM | SM−1 = s) [3.114]

This result is coherent with definition [3.90] of the Back filter; this validates the
initialization [3.106] of the Back filter.

3.6.2.1.5. A posteriori calculation of branch probability

We will express the quantity ψk(s, s′) according to βk−1(s), of βk(s′) and of
γk(s, s′).

By definition:

ψk(s, s′) = p(y1, . . . , yk−1, Sk−1 = s, yk, Sk = s′, yk+1, . . . , yM ) [3.115]
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According to the definition of conditional probability we have:

ψk(s, s′) = p(y1, . . . , yk−1, Sk−1 = s)

p(yk, Sk = s′, yk+1, . . . , yM | y1, . . . , yk−1, Sk−1 = s)
[3.116]

and by applying the definition of conditional probability a second time:

ψk(s, s′) = p(y1, . . . , yk−1, Sk−1 = s)

p(yk+1, . . . , yM | yk, Sk = s′, y1, . . . , yk−1, Sk−1 = s)

p(yk, Sk = s′ | y1, . . . , yk−1, Sk−1 = s)

[3.117]

The first term of the right hand side of equation [3.117] is equal to αk−1(s):

p(y1, . . . , yk−1, Sk−1 = s) = αk−1(s) [3.118]

Knowing that Sk = s′, the quantities yk+1, . . . , yM are independent of Sk−1 = s
and y1, . . . , yk; from that we deduce that the second term of equation [3.117] is equal
to βk(s′):

p(yk+1, . . . , yM | yk, Sk = s′, y1, . . . , yk−1, Sk−1 = s)

= p(yk+1, . . . , yM | Sk = s′)

= βk(s′)

[3.119]

Knowing that Sk−1 = s, Sk = s′ and yk are independent of y1, y2, . . . , yk−1;
consequently, the third term of the right hand side of equation [3.117] is equal to:

p(yk, Sk = s′ | Sk−1 = s, y1, . . . , yk−1)

= p(yk, Sk = s′ | Sk−1 = s)

= exp(−γk(s, s′))

[3.120]

By integrating expressions [3.118], [3.119] and [3.120] in equation [3.117] we
obtain:

ψk(s, s′) = αk−1(s) exp (−γk(s, s′))βk(s′) [3.121]

3.6.2.1.6. Decision taken by the decoder according to the MAP criterion

The MAP criterion leads to the decision:

d̂k = Arg max
dk

p(dk | y) [3.122]
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The probability of the information block dk conditionally to the observations y
provided by the demodulator has the expression:

p(dk | y) = p(dk,y) / p(y) [3.123]

Since the term p(y) does not depend on dk, criterion [3.122] is also written:

d̂k = Arg max
dk

p(dk, y) [3.124]

Taking account the definition [3.91] of ψk(s, s′), the joint probability p(dk, y) is
written as the sum:

p(dk, y) =
∑

(s,s′)/dk=d(s,s′)

ψk(s, s′) [3.125]

The notation (s, s′)/dk = d(s, s′) means that the sum relates to all of the branches
Sk−1 = s→ Sk = s′ that correspond to an information block equal to dk.

From [3.124] and [3.125] it results that the decision taken according to the MAP
criterion is:

d̂k = Arg max
dk

∑
(s,s′)/dk=d(s,s′)

ψk(s, s′) [3.126]

3.6.2.1.7. Probability of the decision taken according to the MAP criterion

The probability of the decision d̂k conditionally to the data y provided by the
demodulator is expressed as:

p(d̂k | y) = p(d̂k,y) / p(y) [3.127]

It results from [3.125] that the probability of observations y has the expression:

p(y) =
∑
dk

p(dk, y)

=
∑
dk

∑
(s,s′)/dk=d(s,s′)

ψk(s, s′)

=
∑

(s,s′)

ψk(s, s′)

[3.128]

and we deduce from equations [3.125], [3.127] and [3.128] the expression of the prob-
ability of the decision d̂k:

p(d̂k | y) =

∑
(s,s′)/dk=d(s,s′)

ψk(s, s′)

∑
(s,s′)

ψk(s, s′)
[3.129]
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In conclusion, decoding using the MAP criterion at first recursively evaluates the
quantities αk(s) of the Front filter using relation [3.103] and the quantities βk(s) of
the Back filter using relation [3.111], then calculates the quantities ψk(s, s′) repre-
senting the a posteriori probabilities of branches according to relation [3.121]. The
joint probability of dk and y is calculated using relation [3.125] for each of the 2K

possible values of the information block dk, and, finally, we look for the value of dk

that maximizes this joint probability according to relation [3.126].

The major interest of decoding using the MAP criterion lies in the fact that it
makes it possible to associate reliability information in the form of probability of d̂k

to each decoded value d̂k conditionally to the sequence of observations y presented at
the input of the decoder; this soft decision is calculated according to relation [3.129].
This information on reliability can then be used for decoding with soft input of external
code in the case of a serial concatenation of two codes as illustrated in Figure 3.12,
or for iterative decoding of a turbocode. On the basis of this reliability information
we also work out the extrinsic information (see Chapter 5) used in iterative turbocode
decoding.

Deinterleaving

Interleaving

Figure 3.12. Use of a decoder with soft output for the decoding of internal code
in a serial concatenation of two codes

3.6.2.1.8. Normalization of the Front and Back filters

Definitions [3.89] and [3.90] of the Front and Back filters lead to the equations
of propagation [3.103] and [3.111], or, equivalently, to the equations of propagation
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[3.105] and [3.112]. Given the multiplicative form of these equations, it is clear that
the order of magnitude of the filters αk(·) and βk(·) decreases exponentially, along
the course of the iterations.

This would quickly lead αk(·) and βk(·) below the precision threshold of calcu-
lators. To circumvent this difficulty in practice we work not with αk(·) and βk(·) as
defined by relations [3.89] and [3.90], but with these same quantities standardized:

α̃k(s) = αk(s)/
∑
s′

αk(s′)

β̃k(s) = βk(s)/
∑
s′

βk(s′)
[3.130]

The interest to work with standardized filters α̃k(s) and β̃k(s) is that the order of
magnitude of these filters remains the same for any value of k; this makes it possible to
overcome the problem of overflow, which any programmer comes across when trying
to work with the recursions αk(s) and βk(s) without standardization.

The propagation of the standardized filter α̃k(s) is made similarly to that of the
non-normalized recursion αk(s) according to relation [3.103], with an additional stan-
dardization stage; for any index k−1, . . . , M and for any state s, we carry out the two
following operations:

– Propagation of the Front filter according to relation [3.103]:

α̃k(s) =
∑

s′/s′→s

α̃k−1(s
′) exp(−γk(s′, s)) [3.131]

– Standardization:

α̃k(s)← α̃k(s)∑
s

α̃k(s)
[3.132]

Similarly, the propagation of the standardized Back filter β̃k(s) for any temporal
index k = M − 1, . . . , 0 and for any state s is performed in two stages:

– Propagation of the Back filter according to relation [3.111]:

β̃k(s) =
∑

s′/s→s′

exp(−γk+1(s, s
′))β̃k+1(s

′) [3.133]

– Standardization:

β̃k(s)← β̃k(s)∑
s

β̃k(s)
[3.134]
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Once the propagation of the standardized Front and Back filters has been carried
out, the decoding algorithm develops further without modifications, simply replacing
the quantities αk(s) and βk(s) by their standardized counterparts α̃k(s) and β̃k(s).

EXAMPLE 3.6 (SYMMETRIC BINARY CHANNEL). By definition, the quantity gk(s, s′)
has the expression:

gk(s, s′) = p(yk, Sk = s′ | Sk−1 = s) [3.135]

From the definition of conditional probability it results that:

gk(s, s′) = p(yk | Sk−1 = s, Sk = s′)p(Sk = s′ | Sk−1 = s)

= p(yk | Sk−1 = s, Sk = s′)p(dk = d(s, s′))
[3.136]

In the case of the symmetric binary channel, the quantity p(yk|Sk−1 = s, Sk = s′)
according to relation [3.53] has the expression:

p(yk | Sk−1 = s, Sk = s′) = (
p

1− p
)dk

H
(s,s′)(1− p)N [3.137]

noting by dk
H(s, s′) = dH(yk, c(s, s′)) the Hamming distance between yk and the

coded block c(s, s′).

In [3.137] the term (1 − p)N is a multiplicative constant, which does not depend
on s or s′; we can therefore neglect it:

p(yk | Sk−1 = s, Sk = s′) =

(
p

1− p

)dk

H
(s,s′)

[3.138]

In the case of the symmetric binary channel we thus have:

gk(s, s′) =

(
p

1− p

)dk

H
(s,s′)

p (dk = d(s, s′)) [3.139]

Moreover, if the given units of information dk have equal probability:

p (dk = d(s, s′)) = 1/2K [3.140]

This term does not depend on the pair (s, s′); it can therefore be neglected in
[3.139]. Consequently, in the case of the symmetric binary channel, when the infor-
mation given is distributed with equal probability, we have:

gk(s, s′) =

(
p

1− p

)dk

H
(s,s′)

[3.141]
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EXAMPLE 3.7 (GAUSSIAN CHANNEL WITH BINARY INPUTS). In the case of the
Gaussian channel with binary inputs, the quantity p(yk|Sk−1 = s, Sk = s′) has the
expression:

p(yk | Sk−1 = s, Sk = s′)

= 1 /
√

2πσ2
N

exp

(
− 1

2σ2
||yk − c′(s, s′)||2

)
[3.142]

Since the term 1/
√

2πσ2
N

does not depend on (s, s′), it can be neglected:

p(yk | Sk−1 = s, Sk = s′) = exp

(
− 1

2σ2
||yk − c′(s, s′)||2

)
[3.143]

Using expression [3.143] in [3.136] we have:

gk(s, s′) = exp

(
− 1

2σ2
||yk − c′(s, s′)||2

)
p (dk = d(s, s′)) [3.144]

If, moreover, the binary information units have equal probability, the term
p(dk = d(s, s′)) does not depend on the pair (s, s′) and can be neglected; in [3.144];
in this case we obtain:

gk(s, s′) = exp

(
− 1

2σ2
||yk − c′(s, s′)||2

)
[3.145]

The square of the Euclidean distance between the observation yk and the coded
and modulated block c′(s, s′) breaks up into a sum of three terms:

||yk − c′(s, s′)||2 = ||yk||2 + ||c′(s, s′)||2 − 2〈yk, c′(s, s′)〉 [3.146]

||yk||2 does not depend on the pair (s, s′); thus, it can be neglected in [3.146].
For a modulation with binary symbols (+1 or −1) (case of the MDP-2 and MDP-4)
the quantity ||c′(s, s′)||2 does not depend on (s, s′) either and can therefore also be
neglected in [3.146]:

||yk − c′(s, s′)||2 = −2〈yk, c′(s, s′)〉 [3.147]

to the nearest additive constant. Using [3.147] in [3.145] we obtain:

gk(s, s′) = exp

(
1

σ2
〈yk, c′(s, s′)〉

)
[3.148]

3.6.2.2. Example

To illustrate decoding using the MAP criterion we consider the same example
as in section 3.6.1. We suppose that the sequence to be coded is 1001 and that the
convolution encoder is the one represented in Figure 3.2. Making the assumption that
the encoder is in the “all at zero” state at the initial moment (k = 0), the coded
sequence is 11 10 11 11. We consider a symmetric binary channel introducing an
error in position 3 so that the observation there is 11 00 11 11. We suppose that the
dk units are equal to 0 or 1 with equal probability.
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Decoding using the MAP criterion requires that the probability of error p be
known, which was not the case for the Viterbi algorithm. We suppose that p verifies:

p/(1− p) = 1/10 [3.149]

According to [3.141] we have:

gk(s, s′) =

(
p

1− p

)dk

H
(s,s′)

= 1/10dk

H
(s,s′) [3.150]

For this example, we work with the non-standardized Front and Back filters αk(s)
and βk(s). Indeed, M being small (M = 4), the problems of calculation’s precision
mentioned above do not appear in this academic case.

Decoding using the MAP criterion proceeds as follows:

3.6.2.2.1. Calculation of the gk(s, s′) quantities

For k = 1:

g1(a, a) = 1/102

g1(a, c) = 1

For k = 2:

g2(a, a) = 1 g2(c, b) = 1/10

g2(a, c) = 1/102 g2(c, d) = 1/10

For k = 3:

g3(a, a) = 1/102 g3(b, a) = 1 g3(c, b) = 1/10 g3(d, b) = 1/10

g3(a, c) = 1 g3(b, c) = 1/102 g3(c, d) = 1/10 g3(d, d) = 1/10

For k = 4:

g4(a, a) = 1/102 g4(b, a) = 1 g4(c, b) = 1/10 g4(d, b) = 1/10

g4(a, c) = 1 g4(b, c) = 1/102 g4(c, d) = 1/10 g4(d, d) = 1/10

3.6.2.2.2. Front filter

The encoder is initialized in the “all at zero” state:

α0(a) = 1 α0(b) = 0 α0(c) = 0 α0(d) = 0
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We then apply the propagation equation [3.103], or as an equivalent [3.105]:

α1(a) = 0.01 α1(b) = 0 α1(c) = 1 α1(d) = 0

α2(a) = 0.01 α2(b) = 0.1 α2(c) = 0.0001 α2(d) = 0.1

α3(a) = 0.1001 α3(b) = 0.01 α3(c) = 0.011 α3(d) = 0.01001

α4(a) = 0.011001 α4(b) = 0.002101 α4(c) = 0.1002 α4(d) = 0.002101

3.6.2.2.3. Back filter

Initialization:

β4(a) = 1 β4(b) = 1 β4(c) = 1 β4(d) = 1

We then apply the propagation equation [3.111], or equivalently [3.112]:

β3(a) = 1.01 β3(b) = 1.01 β3(c) = 0.2 β3(d) = 0.2

β2(a) = 0.2101 β2(b) = 1.0120 β2(c) = 0.1210 β2(d) = 0.1210

β1(a) = 0.21131 β1(b) = 0 β1(c) = 0.1133 β1(d) = 0

β0(a) = 0.1154131 β0(b) = 0 β0(c) = 0 β0(d) = 0

3.6.2.2.4. A posteriori probabilities of branches

We apply relation [3.121]. For k = 1:

ψ1(a, a) = 0.0021131

ψ1(a, c) = 0.1133

For k = 2:

ψ2(a, a) = 0.0021131 ψ2(c, b) = 0.1012

ψ2(a, c) = 1.21 · 10−5 ψ2(c, d) = 0.0121

For k = 3:

ψ3(a, a) = 0.0001 ψ3(b, a) = 0.1010

ψ3(c, b) = 1.01 · 10−5 ψ3(d, b) = 0.0101

ψ3(a, c) = 0.002 ψ3(b, c) = 0.0002

ψ3(c, d) = 2 · 10−6 ψ3(d, d) = 0.002

For k = 4:

ψ4(a, a) = 0.001 ψ4(b, a) = 0.01

ψ4(c, b) = 0.0011 ψ4(d, b) = 0.001

ψ4(a, c) = 0.1001 ψ3(b, c) = 0.0001

ψ4(c, d) = 0.0011 ψ4(d, d) = 0.001
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3.6.2.2.5. Hard decision and soft decision

We apply relation [3.125] to calculate the joint probability of y and of dk = d,
then by using the decision rule [3.126] we decode d̂k and evaluate the reliability of the
decision according to relation [3.129].

For k = 1:

p(d1 = 0, y) = 0.0021 p(d1 = 1, y) = 0.1133

Consequently:

d̂1 = 1 and p(d1 = 1 | y) = 0.9817

For k = 2:

p(d2 = 0, y) = 0.1033 p(d2 = 1, y) = 0.0121

Consequently,

d̂2 = 0 and p(d2 = 0 | y) = 0.8951

For k = 3:

p(d3 = 0,y) = 0.1112 p(d3 = 1,y) = 0.0042

Consequently:

d̂3 = 0 and p(d3 = 0 | y) = 0.9636

For k = 4:

p(d4 = 0,y) = 0.0131 p(d4 = 1,y) = 0.1023

Consequently:

d̂4 = 1 and p(d4 = 1 | y) = 0.8864

The sequence of binary information units estimated by the MAP is thus:

d̂ = (1001)

The single error introduced by the channel has been corrected.

3.6.3. SubMAP algorithm

The MAP algorithm is relatively complex to implement in a circuit and, therefore,
we try to define the sub-optimal algorithms derived from MAP, whose implementation
in a circuit would be simpler. One of the most powerful among these algorithms is
known by the name of subMAP and is presented immediately hereafter.
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Before presenting the subMAP algorithm we will define the following quantities:

– ᾱk(s) is equal to the logarithm of αk(s):

ᾱk(s) = log αk(s) [3.151]

Hereinafter we will call the quantity ᾱk(s) the Front filter;

– β̄k(s) is equal to the logarithm of β̄k(s):

β̄k(s) = log βk(s) [3.152]

Hereinafter we will call the quantity β̄k(s) the Back filter;

– ψ̄k(s, s′) is equal to the logarithm of ψk(s, s′):

ψ̄k(s, s′) = log ψk(s, s′) [3.153]

3.6.3.1. Propagation of the Front filter

From relation [3.103] it results that:

ᾱk(s) = log
∑

s′/s′→s

αk−1(s
′) exp (−γk(s′, s))

= log
∑

s′/s′→s

exp (ᾱk−1(s
′)) exp (−γk(s′, s))

= log
∑

s′/s′→s

exp (ᾱk−1(s
′)− γk(s′, s))

[3.154]

We can note that:

log(ex + ey) = log
(
emax(x,y)(1 + e−|y−x|)

)
= max(x, y) + log(1 + e−|y−x|)

[3.155]

If one of variables x or y is larger than the other one, we can neglect the second
term in the right hand side of equation [3.155]:

log(ex + ey) � max(x, y) when |y − x| 
 0 [3.156]

Equation [3.155] can be generalized to a sum of n terms:

log(ex1 + ex2 + · · ·+ exn)

= log(emax(x1,...,xn)(e−|x1−max(x1,...,xn)| + · · ·+ e−|xn−max(x1,...,xn)|))

= max(x1, . . . , xn)

+ log(e−|x1−max(x1,...,xn)| + · · ·+ e−|xn−max(x1,...,xn)|)
[3.157]



Convolutional Codes 171

If one of the variables x1, . . . , xn is large compared to the others, we can simplify
equation [3.157]:

log(ex1 + ex2 + · · ·+ exn) � max(x1, . . . , xn)

when ∃ i / xi 
 xj , ∀ j �= i
[3.158]

and using [3.158] in [3.154] we obtain:

ᾱk(s) = max
s′/s′→s

(ᾱk−1(s
′)− γk(s′, s)) [3.159]

Relation [3.159] is valid when the signal to noise ratio of the transmission is suffi-
ciently high, i.e., typically, higher than a few decibels.

3.6.3.2. Propagation of the Back filter

From relation [3.111] it stems that:

β̄k(s) = log
∑

s′/s→s′

exp(β̄k+1(s
′)− γk+1(s, s

′)) [3.160]

and using [3.158] in [3.160] we obtain:

β̄k(s) = max
s′/s→s′

(β̄k+1(s
′)− γk+1(s, s

′)) [3.161]

The approximation [3.161] is valid under the same conditions as [3.159].

3.6.3.3. Calculation of the ψ̄k(s, s′) quantities

From relation [3.121] it stems that:

ψ̄k(s, s′) = ᾱk−1(s)− γk(s, s′) + β̄k(s′) [3.162]

3.6.3.4. Calculation of the joint probability of dk and y

Using relation [3.125] and definition [3.153] we obtain:

log p(dk, y) = log
∑

(s,s′)/dk=d(s,s′)

exp(ψ̄k(s, s′)) [3.163]

Then using approximation [3.158] we obtain:

log p(dk, y) = max
(s,s′)/dk=d(s,s′)

ψ̄k(s, s′) [3.164]

Let us note φ̄k(dk) the joint log-probability of dk and y:

φ̄k(dk) = log p(dk,y) = max
(s,s′)/dk=d(s,s′)

ψ̄k(s, s′) [3.165]

The subMAP algorithm leads to the following decision:

d̂k = Arg max
dk

φ̄k(dk) [3.166]
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3.7. Performance of convolutional codes

The performance of convolutional codes is generally evaluated by calculating the
probability of error for the decoded information symbols.

Since convolutional codes are linear, we can demonstrate that the calculation of
the probability of error can be performed by arbitrarily choosing the transmitted coded
sequence. Thus, to simplify calculations, let us suppose that the encoder delivers the
sequence comprised of a sequence of zero symbols. This sequence, called the zero
sequence, is represented on the lattice diagram by the path noted p0.

Considering a decoding according to the most likely sequence (Viterbi algorithm),
a first error event will occur at the moment t = k, if the surviving path is not the p0

path but a pd path with the distance d ≥ df from p0. This situation occurs, if:

Mk(pd) < Mk(p0) [3.167]

where Mk(pi) is the cumulated metric at the moment t = k of the path pi, i = 0 or d.

The probability of this first error event is thus equal to:

Pk(pd) = P(Mk(pd) < Mk(p0)) [3.168]

where P(A) indicates the probability of event A.

We will show hereafter that this probability does not in fact depend on the path pd,
but only on the Hamming weight d of this path. Therefore, this probability is noted
hereafter Pk(d) (it is the same one for all the paths with a Hamming weight d that
diverge from the path p0, then merge again in t = k).

If n(d, i) is the number of paths of weight d generated by an information sequence
of weight i, then the average number of erroneous information symbols is upper
bounded by:

n̄k ≤
∞∑

d=df

∞∑
i=1

i n(d, i)Pk(d) [3.169]

It clearly is an upper bound, since the cumulated metrics appearing in expression
[3.169] relate to paths with common branches.

Posing:

w(d) =

∞∑
i=1

i n(d, i) [3.170]
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expression [3.169] can also be written:

n̄k ≤
∞∑

d=df

w(d)Pk(d) [3.171]

The set of terms w(d) is called the distance spectrum of the code. Its terms can be
determined on the basis of the transfer function T (D,N). Indeed, we can write:

T (D,N) =

∞∑
d=df

∞∑
i=1

n(d, i)DdN i [3.172]

Deriving the transfer function with respect to N and then making N = 1 we
obtain:

∂T (D,N)

∂N

∣∣∣∣
N=1

=

∞∑
d=df

w(d)Dd [3.173]

The coefficients of the monomials Dd are precisely the w(d) terms.

If the average number of error symbols gives a first outline of the code’s perfor-
mance, the probability of error for the decoded symbols is generally a more relevant
indicator.

Considering a code with output K/N and a transmission of L blocks of K infor-
mation symbols, the symbol error probability can be set an upper bound by:

Pe ≤ 1

LK

L∑
k=1

n̄k [3.174]

If the probability Pk(d) is independent of the moment k, which is roughly true for
large L, then the probability of error can also be bounded by:

Pe ≤ 1

K

∞∑
d=df

w(d)P (d) [3.175]

We will now evaluate the probability P (d) considering a channel with binary input
and continuous output and a channel with binary input and output.

3.7.1. Channel with binary input and continuous output

Let us consider for this channel that the coded symbols are transmitted using phase
modulation with 2 or 4 states. Thus, a block of N modulation symbols of the following
form is associated to a block of N coded symbols:

ak,i = 2ck,i − 1 i = 1, 2, . . . , N ck,i ∈ {0, 1} [3.176]
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Considering a coherent demodulation and a transmission disturbed by zero-mean
white Gaussian noise with double sided power spectral density equal to N0/2, the
decoder receives samples with the expression:

yk,i = ρk,iAak,i + nk,i [3.177]

where A is a constant amplitude, ρk,i is an attenuation introduced by the transmis-
sion medium and nk,i is a sample of zero-mean white Gaussian noise with a variance
σ2

n = N0/2.

For this channel the metrics Mk(pd) and Mk(p0) are respectively equal to:

Mk(pd) =
k∑

j=1

N∑
i=1

[yj,i −Aρj,iaj,i(pd)]
2

Mk(p0) =
k∑

j=1

N∑
i=1

[yj,i + Aρj,i]
2

[3.178]

where the symbols aj,i(pd) correspond to the coded sequence associated with the
path pd.

Replacing the metrics with their expression [3.178], the probability Pk(d) is
equal to:

Pk(d) = P

⎛
⎝ k∑

j=1

N∑
i=1

yj,iρj,i (1 + aj,i(pd)) > 0

⎞
⎠ [3.179]

The path pd being at a Hamming distance d from the path p0, the sequence
{aj,i(pd)} has d symbols at +1, the others being −1. Expression [3.179] is thus
reduced to a sum of d terms.

To continue the calculation let us distinguish between two situations. The first
corresponds to a channel where the attenuation ρj,i is constant (ρj,i = ρ); it is a
Gaussian channel. For the second the ρj,i are random independent Rayleigh variables;
it is a Rayleigh channel without memory.

3.7.1.1. Gaussian channel

For this channel the samples received by the decoder have the expression:

yj,i = −Aρ + nj,i [3.180]

since it is the zero sequence that has been transmitted so that aj,i(p0) = −1, ∀i,∀j.



Convolutional Codes 175

After replacing yj,i by its expression [3.180] in relation [3.179] the probability
Pk(d) is still equal to:

Pk(d) = P(Z > dρA) [3.181]

where Z is a sum of d random independent variables, distributed identically according
to lawN (0, σ2

n) so that Z follows a law N (0, dσ2
n). We may note that the probability

Pk(d) does not depend on k; it will, therefore, be hereafter noted P (d).

Introducing the additional error function,

erfc(x) =
2√
π

∫ ∞

x

exp(−u2) du [3.182]

we can finally express the probability P (d) as:

P (d) =
1

2
erfc

√
dρ2A2

N0
[3.183]

Let Eb be the average energy received by an information symbol and R be the
code output. The probability P (d) can then be written in the form:

P (d) =
1

2
erfc

√
d R Eb

N0
[3.184]

Finally, for a convolutional code with output K/N , the probability of error on a
Gaussian channel is greatly bounded by:

Pe ≤ 1

2K

∞∑
d=df

w(d) erfc

√
d R Eb

N0
[3.185]

The terms w(d) generally increase with d, whereas the complementary error func-
tion decreases with d all the faster the larger the Eb/N0 ratio is.

For low values of Eb/N0 (typically lower than 3 dB) the bound [3.185] is rather
rough and its use is not very precise. It is then preferable to evaluate code performance
by determining the error rate by simulation.

For an average Eb/N0 ratio, the complementary error function decreases suffi-
ciently quickly with d so that we can limit ourselves to the calculation of the first
terms (4 to 5 terms) of the bound [3.185].

With a strong Eb/N0 ratio the probability of error is approximated well by the
first term of the bound [3.185]:

Pe � 1

2K
w(df )erfc

√
Rdf

Eb

N0
Eb/N0
 1 [3.186]
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For a Gaussian channel without coding and phase modulation with 2 or 4 states
with coherent demodulation, the probability of error is equal to:

Pe =
1

2
erfc

√
Eb

N0
[3.187]

Neglecting at first approximation the term w(df )/K (which amounts to consider-
ing that it is close to 1) we see that expressions [3.186] and [3.187] lead to the same
probability of error if the Eb/N0 ratio without coding (expressed in dB) is greater
than 10 log10(Rdf ) as the same ratio with coding.

The difference between these two signal to noise ratios that makes it possible to
obtain the same probability of error with and without coding is called asymptotic cod-
ing gain (because we take a strong Eb/N0):

GdB = 10 log10(Rdf ) [3.188]

For the convolutional code of example 3.1 (R = 1/2, df = 5, w(df ) = 1) the
asymptotic coding gain is 4 dB.

Real coding gain is, of course, lower than asymptotic gain, since we need it to take
into account the term w(df )/K in the comparison of performances. In addition, if the
ratio Eb/N0 is not very large, we cannot limit ourselves to the first term of relation
[3.185] to evaluate the probability of error.

The product Rdf that fixes the asymptotic coding gain provides information on
the potentialities of a code in terms of error correction.

There exist expressions other than relation [3.185] to upper bound the probability
of error. Indeed, by taking into account the fact that:

erfc

√
R d

Eb

N0
< exp

(
−Rd

Eb

N0

)
[3.189]

and the relations [3.173] and [3.175], the probability of error can also be expressed in
the form:

Pe <
1

2K

∂T (D,N)

∂N

∣∣∣∣
N=1,D=exp(−R Eb / N0)

[3.190]

This new bound, which reveals the partial derivative of the transfer function is
obviously less fine (see relation [3.189]) than bound [3.185]. However, for a strong
signal to noise ratio these two bounds lead to equivalent results.

Another bound, finer than [3.190], can be obtained by replacing the complemen-
tary error function by:

erfc
√

x + y ≤ erfc
√

x exp(−y) [3.191]

The approximation used in [3.191] is better than that used in [3.189].
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Posing:

d = df + d− df [3.192]

and taking into account relation [3.191], the probability P (d) (see relation [3.184])
can be bounded by:

P (d) <
1

2
erfc

√
Rdf

Eb

N0
exp

(
Rdf

Eb

N0

)
exp

(
−Rd

Eb

N0

)
[3.193]

Thus, using expressions [3.173] and [3.175] and relation [3.193], the probability
of error is bounded by:

Pe <
1

2K
erfc

√
Rdf

Eb

N0
exp

(
Rdf

Eb

N0

)
∂T (D,N)

∂N

∣∣∣∣
N=1,D=exp(−R Eb/N0)

[3.194]

3.7.1.2. Rayleigh channel

For this channel the ρj,i attenuations are random independent Rayleigh variables
(channel without memory) of probability density:

p(ρj,i) =
1

σ2
ρ

ρj,i exp(−ρ2
j,i/(2σ2

ρ))11ρj,i≥0 [3.195]

where E(ρ2
j,i) = 2σ2

ρ and where 11ρj,i
≥ 0 is the indicator of the set {ρj,i ≥ 0}, which

equals 1 if ρj,i ≥ 0, and 0 if not.

Let us recall that it has been established (see relation [3.179]) that the probability
Pk(d) equals:

Pk(d) = P

⎛
⎝ k∑

j=1

N∑
i=1

yj,iρj,i(1 + aj,i(pd)) > 0

⎞
⎠ [3.196]

Let us note by I the set of pairs (i, j), for which aj,i(pd) = +1; these pairs number
d, because the path pd has a Hamming weight equal to d:

I = {(i, j); aj,i(pd) = +1} card (I) = d

Using the notation I the expression of Pk(d) is reduced to:

Pk(d) = P

⎛
⎝ ∑

(i,j)∈I

yj,iρj,i > 0

⎞
⎠ [3.197]
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The sequence transmitted by the encoder corresponds to the path p0, so that:

yj,i = −Aρj,i + nj,i [3.198]

Replacing yj,i with its expression [3.198] in [3.197] it follows:

Pk(d) = P

⎛
⎝ ∑

(i,j)∈I

nj,iρj,i > A
∑

(i,j)∈I

ρ2
j,i

⎞
⎠ [3.199]

Let us suppose initially that the series of the attenuations ρj,i is known; let us note
by αd the sum of the squares of the attenuations for the all the indices (i, j) in I:

αd =
∑

(i,j)∈I

ρ2
j,i [3.200]

The random variable αd follows a Chi-square law with 2d degrees of freedom, a
law whose density is given by:

p(αd) =
1

(2σρ)d(d− 1)!
αd−1 exp

(
− αd

2σρ

)
11αd≥0 [3.201]

where 11αd ≥ 0 is the indicator of the set {αd ≥ 0}.

Conditionally to the attenuations ρj,i the random variable is a sum of:

W =
∑

(i,j)∈I

nj,iρj,i [3.202]

independent Gaussian variables; thus it is also a random Gaussian variable, with a zero
mean and a variance σ2

nαd:

[W | (ρj,i)(i,j)∈I ] ∼ N (0, σ2
nαd) [3.203]

Conditionally to ρj,i the probability that the Viterbi decoder chooses the path pd

rather than the path p0 is thus equal to:

P(W > Aαd) = P(Z > A
√

αd / σn) =
1

2
erfc

√
A2αd / (2σ2

n) [3.204]

noting Z the random variable Z = W/(σn
√

αd) which follows a law N (0, 1).

This conditional probability can be expressed as a function of the output R of the
code, of the ratio Eb/N0 and of αd:

P(W > Aαd) =
1

2
erfc

√
R

Eb

N0
αd [3.205]
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Focusing on the various manifestations of the attenuation ρj,i we obtain the prob-
ability that the path pd be preferred to the path p0:

P (d) =

∫ +∞

0

1

2
erfc

√
R

Eb

N0
αd p(αd) dαd [3.206]

Taking into account [3.201] and after integration, the probability P (d) is, finally,
equal to:

P (d) =

(
1− λ

2

)d d−1∑
i=0

Ci
d−1+i

(
1 + λ

2

)i

[3.207]

with:

λ = [(RĒb/N0)/(1 + RĒbN0)]1/2 Ci
d−1+i =

(d− 1 + i)!

i!(d− 1)!

Ēb = E(ρ2
j,i)Eb = 2σ2

ρEb

The quantity Ēb represents the average energy received per symbol of transmitted
information.

For a strong signal to noise ratio (Ēb/N0
 1) expression [3.207] is well approx-
imated by:

P (d) � Cd
2d−1

(
1

4RĒb/N0

)d

Ēb/N0
 1 [3.208]

and thus the probability of error is bounded by:

Pe ≤ w(df )

K
C

df

2df−1

(
1

4RĒb/N0

)df

[3.209]

For a modulation with 2 or 4 states of phase and without coding and a coherent
demodulation, the probability of error for the Rayleigh channel is equal to:

Pe =
1

2

[
1−

√
Ēb/N0

1 + Ēb/N0

]
[3.210]

Still taking a strong signal to noise ratio (Ēb/N0
 1) expression [3.210] is well
approximated by:

Pe � 1

4Ēb/N0
[3.211]

For the Rayleigh channel the asymptotic coding gin is no longer expressed as a
function of the product Rdf . Besides, there is no analytical expression of this gain.
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To illustrate the performance of convolutional codes for the Rayleigh channel let
us consider the code from example 3.1 (R = 1/2,K = 1, df = 5, w(df ) = 1):

– With coding and a strong Ēb/N0:

Pe ≤ 126

(
1

2Ēb/N0

)5

– Without coding:

Pe � 1

4Ēb/N0

For example, for a probability of error of 10−5 the coding gain is 33 dB.

3.7.2. Channel with binary input and output

Now let us consider the performances of the Viterbi decoder in the case of the
symmetric binary channel (SBC). With this channel model, the demodulator makes
hard decisions; the decoder is thus supplied with binary symbols.

The metrics used by the Viterbi decoder are the Hamming distances between the
received sequence and the surviving sequences in each node of the lattice. In the same
way as before, we suppose that the sequence p0 has been transmitted. Moreover, we
suppose that the concurrent path of the p0 path in a certain node B – corresponding to
the moment t = k – is a path pd whose Hamming weight out in B equals d.

If d is odd, the path p0 will be selected correctly, if the error count in the received
sequence is strictly lower than (d + 1)/2; if not, it is the pd path that is selected. The
probability of the former error event thus equals:

P (d) =
d∑

k=(d+1)/2

Ck
d pk (1− p)d−k with Ck

d = d!
k!(d−k)! [3.212]

If d is even, the path pd is selected, if the error count exceeds d/2; if this error count
is exactly equal to d/2, the paths p0 and pd have an equal probability – the choice can
thus be arbitrary. The probability of the first error event thus has the expression:

P (d) =
d∑

k=d/2+1

Ck
d pk (1− p)d−k +

1

2
C

d/2
d pd/2 (1− p)d/2 [3.213]

The probability of error after decoding is still bounded by expression [3.175] with
the term P (d) substituted by one of the two expressions above (odd or even d).
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Instead of using one of the expressions [3.212] or [3.213] we can use the following
upper bound:

P (d) < [4p(1− p)]d/2 [3.214]

The use of this upper bound in [3.175] makes it possible to establish another upper
bound of the probability of error for the symmetric binary channel, less fine than that
obtained by combining the bound [3.175] with expressions [3.212] or [3.213]:

Pe <
∂T (D,N)

∂N

∣∣∣∣
N=1,D=

√
4p(1−p)

[3.215]

To illustrate the preceding calculations for the bounds of the probability of error, let
us again consider the code from example 3.1 and take, for example, a strong signal to
noise ratio. Under this assumption, every bound is as fine as another. We will thus use
the bound [3.190] for the Gaussian channel and the bound [3.215] for the symmetric
binary channel.

The transfer function of the code from example 3.1 is given by relation [3.29], and
its partial derivative with respect to N is equal to:

∂T (D,N)

∂N

∣∣∣∣
N=1

= D5 / (1− 2D)2 [3.216]

We then easily obtain:

Pe <
1

2

exp
(− 5 Eb

2 N0

)
(
1− 2 exp

(− Eb

2 N0

))2 (Gaussian channel) [3.217a]

Pe <
(2p(1− p))5/2

(1− 2
√

2p(1− p))2
(symmetric binary channel) [3.217b]

With a strong signal to noise ratio (Eb/N0 
 1 for the Gaussian channel, p � 1
for the symmetric binary channel) the expressions above can be simplified:

Pe <
1

2
exp

(
−5

2

Eb

N0

)
(Gaussian channel) [3.218a]

Pe < 25/2p5/2 (symmetric binary channel) [3.218b]

Let us suppose that for the symmetric binary channel we use phase modulation
with 2 or 4 states with coherent demodulation:

p =
1

2
erfc

√
Eb

2 N0
<

1

2
exp

(
− Eb

2 N0

)
[3.219]
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Under this assumption the [3.218b] bounds become:

Pe < exp(−5 Eb / (4 N0)) (symmetric binary channel) [3.220]

Comparing relations [3.220] (symmetric binary channel) and [3.218a] (Gaussian
channel) we realize that the coding gain for the Gaussian channel is 3 dB higher than
the coding gain for the symmetric binary channel. This result clearly shows the interest
of soft input decoding compared to hard input decoding. This conclusion, which we
have reached for a particular code, remains true for any code considered.

3.8. Distance spectrum of convolutional codes

We saw that the distance spectrum of convolutional codes was defined by the
sequence of terms w(d), d ≥ df . These terms can be evaluated using the transfer
function of the code.

For codes whose constraint length is greater than a few units (typically, ν ≥ 5),
the calculation of the transfer function can prove to be complex. We then prefer to
determine the spectrum of the code, or at least the first terms of this spectrum, using
an algorithm that explores the various paths of the lattice diagram.

Tables 3.2 and 3.3 contain the first terms of the distance spectrum of some system-
atic and non-systematic convolutional codes with output 1/2, for lengths of constraint
ranging from 3 to 9. While examining Tables 3.2 and 3.3 we can see that the coeffi-
cients w(d) increases with d, apart from the fact that for certain codes, these coeffi-
cients are periodically cancelled. We can also note that for a given constraint length the
free distance of systematic codes is always lower than that of non-systematic codes.

ν G2 in octal df w(d) d = df , df + 1, df + 2, . . .

3 (7) 4 3, 0, 15, 0, 58, 0, 201, 0, 655, 0, 2,052, 0, 6,255, 0, 18,687, . . .

4 (15) 4 1, 0, 16, 0, 62, 0, 360, 0, 1,502, 0, 6,870, 0, 28,555, 0, 120,347, . . .

5 (35) 5
4, 4, 6, 46, 79, 138, 488, 1,044, 2,016, 5,292, 12,053, 24,824, 130,206,
278,834, . . .

6 (73) 5 6, 0, 44, 0, 245, 0, 1,661, 0, 9, 508, 0, 53,394, 0, 302,811, 0, 1,642,869, . . .

7 (153) 6 4, 0, 28, 0, 158, 0, 1,311, 0, 7,433, 0, 48,102, 0, 282,803, 0, 1,675,543, . . .

8 (247) 6 1, 0, 33, 0, 133, 0, 1,165, 0, 7,110, 0, 44,344, 0, 273,751, 0, 1,628,601, . . .

9 (715) 7
4, 6, 17, 68, 110, 318, 917, 2,256, 6,276, 15,124, 36,890, 96,972, 240,104,
591,988, 1,478,753, . . .

Table 3.2. Spectrum of some systematic convolutional codes with output R = 1/2
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The performance of systematic codes is thus, for medium and strong signal to
noise ratio, lower than that of non-systematic codes (weaker asymptotic coding gain).
For values of d large when compared with df the coefficients w(d) are lower for
systematic codes than for non-systematic codes. Thus, for weak signal to noise ratios
systematic codes make it possible to achieve better performance that non-systematic
codes. In practice non-systematic codes are used, because they are more effective for
bit error rates corresponding to applications (bit error rates lower than 10−3).

To illustrate the performance evaluation of convolutional codes we traced the prob-
ability of error of the code with generator polynomials 133–171 and with output 1/2
using its spectrum w(d) provided in Table 3.3, and the bounds [3.185]. In Figure 3.13,
the performance of this code is traced using 1 coefficient then 15 coefficients w(d) at
the bound [3.185]. In this figure we have also traced the probability of error for the
uncoded case, as well as the bit error rate obtained on the basis of a simulation.

ν G1, G2 in octal df w(d) d = df , df + 1, df + 2, . . .

3 (5), (7) 5
1, 4, 12, 32, 80, 192, 448, 1,024, 2,304, 5,120, 11,264, 24,576,
53,248, 114,688, 245,760, . . .

4 (15), (17) 6
2, 12, 20, 48, 126, 302, 724, 1,732, 4,112, 9,714, 22,850, 53,538,
125,008, 393,635, 925,334, . . .

5 (23), (35) 7
4, 12, 20, 72, 225, 500, 1,324, 3,680, 8,967, 22,270, 57,403,
142,234, 348,830, 867,106, 2,134,239, . . .

6 (53), (75) 8
2, 36, 32, 62, 332, 701, 2,342, 5,503, 12,506, 36,234, 88,576,
225,685, 574,994, 1,400,192, 3,554,210, . . .

7 (133), (171) 10
36, 0, 211, 0, 1,404, 0, 11,633, 0, 77,433, 0, 502,690, 0, 3,322,763,
0, 21,292,910, . . .

8 (247), (371) 10
2, 22, 60, 148, 340, 1,008, 2,642, 6,748, 18,312, 48,478, 126,364,
320,062, 821,350, 2,102,864, 5,335,734, . . .

9 (561), (753) 12
33, 0, 281, 0, 2,179, 0, 15,035, 0, 105,166, 0, 692,330, 0,
4,138,761, 0, . . .

Table 3.3. Spectrum of some non-systematic convolutional codes of output R = 1/2

For a strong signal to noise ratio, the various curves merge and the coding gain,
with a 10−10 probability of error, is approximately 6.2 dB, i.e. very near the asymp-
totic gain that is equal to 10 log(Rdf ) = 10 log 5 = 7 dB.

With 15 w(d) coefficients, the bound [3.185] practically merges with the bit error
rate once the signal to noise ratio exceeds 3.5 dB, that is, for a probability of error of
around 10−4.

For low signal to noise ratios, the bound [3.185] no longer makes it possible to
reliably evaluate the performance of the code.
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3.9. Recursive convolutional codes

Recursive convolutional codes that have been scarcely discussed in books before
the invention of turbo codes were considered by coding specialists not to have partic-
ular advantages compared to non-systematic (non-recursive) codes.

To carry out concatenated codes it is a priori necessary to have elementary codes
with good distance properties. This has led the inventors of turbocodes, Berrou et al.,
to take an interest in systematic codes, for their good behavior with weak signal to
noise ratios. However, aware of their short free distance, they sought to define a new
family of codes, systematic but with the same free distances as non-systematic codes.
They then rediscovered the recursive convolutional codes in their systematic version.

Uncoded
Limit (1 coefficient)
Limit (15 coefficients)
Viterbi Bit Error Rate

 B
it 

Er
ro

r R
at

e

Figure 3.13. Performance of the convolutional code with parameters
133–171 and output 1/2

Below we will consider systematic recursive convolutional codes which are used
for the construction of the turbocodes.

Let us consider a non-systematic convolutional code with output R = 1/2 and
memory m (constraint length ν = m + 1).
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The encoder delivers two sequences represented by their transforms in D,C1(D)
and C2(D):

C1(D) = G1(D) d(D)

C2(D) = G2(D) d(D)
[3.221]

where d(D) is the transform in D associated to the sequence to be coded dk and where
G1(D) and G2(D) are the two generator polynomials of the code.

By standardizing relations [3.221] with respect to the polynomial G1(D) or the
polynomial G2(D), it is possible to define two systematic codes. For example, if we
standardize with respect to G1(D), we obtain:

C̃1(D) = d(D)

C̃2(D) = (G2(D)/G1(D)) d(D)
[3.222]

The systematic nature results from the first equation, while the second equation
implies the recursive character of the code specified in this manner. We will reconsider
this last point later on.

Let us now introduce the series ak defined by its transform in D:

A(D) = d(D) / G1(D) [3.223]

Relations [3.222] then become:

C̃1(D) = G1(D) A(D)

C̃2(D) = G2(D) A(D)
[3.224]

Relations [3.221] and [3.224] are similar; they represent the action of the same
code: the non-systematic and non-recursive code with generator polynomials G1(D)
and G2(D) for two different sequences. In the case of [3.221] the binary registers
(memories) receive the information sequence dk, whereas for [3.224] it is ak that
feeds the shift register of the code.

Thus, two codes with generator polynomials [G1(D), G2(D)] (non-systematic
non-recursive code) and [1, G2(D)/G1(D)] (systematic recursive code) have a
lattice diagram with the same structure. The coded sequences delivered by the two
coders are identical and, consequently, the two encoders have the same free distance.
The same coded sequence delivered by the two encoders corresponds to identical
sequences dk and ak, but the same coded sequence does not correspond to the same
information sequence at the encoder input.



186 Channel Coding in Communication Networks

Relation [3.223] is also written:

d(D) = G1(D)A(D) [3.225]

which in the temporal field becomes:

dk =

m∑
j=0

g1
j ak−j [3.226]

noting g1
j the coefficients of the generator polynomial G1(D). If we take into account

the fact that g1
0 = 1, it follows:

ak = dk +

m∑
j=1

g1
j ak−j [3.227]

At the moment t = k, ak is calculated, recursively, according to the information
symbol dk presented at the encoder input and according to the symbols ak−1, . . . ,
ak−m that are available at this moment in the shift register of the encoder.

To illustrate this, Figure 3.14 represents two systematic recursive encoders con-
structed on the basis of the convolution encoder from example 3.1. It follows from
relation [3.226] that the encoder of a systematic recursive code can be produced using
a binary register with register outputs sealed off towards its input. A systematic recur-
sive encoder thus operates similarly to a pseudo-random generator. Let us suppose that
the initial state of the encoder is zero and its input is fed with a binary sequence whose
first symbol is at 1, the following symbols being all equal to 0. The encoder will pass
through a succession of states different from the “all at zero” state.

,

,

,

,

Figure 3.14. Systematic recursive convolution encoders constructed on the basis of the
convolution encoder from example 3.1 (g1

= 7octal, g
2

= 5octal)
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Let us consider a systematic recursive code with memory m = 4, for which the
generator polynomials are:

G1(D) = 1 + D + D2 + D4

G2(D) = 1
[3.228]

The diagram of the corresponding encoder is represented in Figure 3.15.

,

,

Figure 3.15. Systematic recursive encoder with polynomials
G1

(D) = 1 + D + D2
+ D4 and G2

(D) = 1

In Table 3.4 we represented the succession of the encoder states when the sequence
of binary information units consists of 1 followed by an infinite number of zeros. The
study of table 3.4 reveals a period of L = 7 for the encoder.

Input State of the encoder

dk ak ak−1 ak−2 ak−3

1 1 0 0 0

0 1 1 0 0

0 0 1 1 0

0 1 0 1 1

0 0 1 0 1

0 0 0 1 0

0 0 0 1 0

0 0 0 0 1

0 1 0 0 0

Table 3.4. Sequence of the states entered by the systematic recursive
encoder G1

(D) = 1 + D + D2
+ D4 and G2

(D) = 1

It is easily understood that the problem of trellis termination (reset to the zero
encoder state) is a priori more difficult in the case of a recursive code than for a non-
recursive code. Indeed, for a recursive code it is not enough to place a sequence of
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m symbols at zero at the end of the sequence presented at the input of the encoder
to force its state to zero. For a systematic recursive code, the closing lattice symbols
will depend on the state of the encoder at the end of the sequence to be coded. In
our example, if this state is (1000), we would need to use a sequence of four symbols
(1101) to close the lattice, whereas if this state is (0001) it would be enough to use a
single symbol equal to 1.

Distance spectrum for systematic recursive convolutional codes

,

,

,

,

Figure 3.16. On the left: non-systematic code G1
(D) = 1 + D + D2, G2

(D) = 1 + D2.
On the right: systematic recursive code 1, G1

(D)/G2
(D)

To begin, let us start with an example. Let us consider the non-systematic codes
and the systematic recursive codes whose encoders are represented in Figure 3.16.

According to relation [3.29], the non-systematic code has the following transfer
function:

T (D,N) = D5N / (1− 2DN) [3.229]

The coefficients of serial development of T (D,N = 1) with respect to the variable
D are the n(d) coefficients, n(d) representing the number of paths with Hamming
weight d:

T (D, 1) = D5 / (1− 2D) =
∞∑

d=df

n(d)Dd [3.230]

Similarly, the coefficients of serial development with respect to D, of the partial
derivative with respect to N , of T (D,N) taken at the point N = 1 are the w(d)
coefficients:

∂T (D,N)

∂N

∣∣∣∣
N=1

= D5 / (1− 2D)2 =

∞∑
d=df

w(d)Dd [3.231]
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d 5 6 7 8 9 10 11 12 13 14 15 16

n(d) 1 2 4 8 16 32 64 128 256 512 1,024 2,048

w(d) 1 4 12 32 80 192 448 1,024 2,304 5,120 11,264 24,576

Table 3.5. n(d) and w(d) for the non-recursive non-systematic convolutional code with
generator polynomials G1

(D) = 7octal and G2
(D) = 5octal

The quantities n(d) and w(d) for d ≥ df (df = 5) are given in Table 3.5.

The calculation of the transfer function of the systematic recursive code is done in
the same manner as for the non-systematic code. In Figure 3.17 we have represented
the state transition diagram of the recursive code, the state a = (00) being divided
into two states ae and as.

Figure 3.17. State transition diagram of the systematic recursive convolutional code
whose encoder is represented in Figure 3.16

Compared to the diagram in Figure 3.7 we can notice that the labels of branches
are different only with regard to the exhibitor of N . Let us also note that the same
sequence of information symbols dk does not deliver the same coded sequence for the
non-systematic encoder and the systematic recursive encoder.

The transfer function of the systematic recursive code is easily obtained from Fig-
ure 3.17:

T (D,N) = D5N2(DN2 −D + 1) / (1−D2N2 + D2 − 2D) [3.232]
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We proceed in the same way as in the case of the non-systematic non recursive
code to evaluate the quantities n(d) and w(d).

T (D, 1) = D5/(1− 2D) =

∞∑
d=df

n(d)Dd [3.233]

∂T (D,N)

∂N

∣∣∣∣
N=1

= 2D5(1−D −D2)/(1− 2D)2 =

∞∑
d=df

w(d)Dd [3.234]

Table 3.6 contains the quantities n(d), w(d) and p(d) where p(d) is defined as the
relationship between the spectral coefficient of the systematic recursive code (SRC)
and the spectral coefficient of the non-systematic code (NSC):

ρ(d) = wCRS(d) / wCNS(d) [3.235]

Examining Tables 3.5 and 3.6 we can verify that the first term of the distance spec-
trum of the systematic recursive code is the double of that of the non-systematic code:
p(df ) = 2. That is due to the fact that the weight of the information sequence associ-
ated with the coded sequence of weight df = 5 is 2 for the systematic recursive code,
whereas it is only 1 for the non-systematic code. Thus, for high signal to noise ratios,
the probability of error of the systematic recursive code will be twice higher than
that of the non-systematic code, which, in a practical sense, is a perfectly negligible
degradation.

d 5 6 7 8 9 10 11 12 13 14 15 16

n(d) 1 2 4 8 16 32 64 128 256 512 1,024 2,048

w(d) 2 16 14 32 72 160 352 768 1,664 3,584 7,680 16,384

ρ(d) 2.00 4.00 1.67 1.00 0.90 0.83 0.79 0.75 0.72 0.70 0.68 0.67

Table 3.6. n(d), w(d) and p(d) for the systematic recursive convolutional code
whose encoder is represented in Figure 3.16

Reading these tables we can also note that the coefficients of the distance spectrum
of the systematic recursive code are lower than those of the non-systematic code since
d ≥ 9. Thus, for weak signal to noise ratios, the performances of the systematic
recursive code will be better than those of the non-systematic code.

The introduction of recursiveness thus made it possible to introduce a new system-
atic code with performance equivalent to that of the non-systematic code for strong
signal to noise ratios, and slightly improved performance for weak signal to noise
ratios. This extremely interesting result that we have verified on the example of a
particular code, is verified for all systematic recursive codes.

Table 3.7 provides the distance spectra of non-systematic codes and systematic
recursive codes with an output of R = 1/2 and for lengths of constraint ranging
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ν G1 df n(d) d = df , df + 1, df + 2, . . .
G2 wCRS(d) d = df , df + 1, df + 2, . . .

In octal wCNS(d) d = df , df + 1, df + 2, . . .
ρ(d) d = df , df + 1, df + 2, . . .

3 (5) 5 1, 2, 4, 8, 16, 32, 64, 128, 256, 1,024, 2,048, 4,096, 8,192, 16,384, . . .

(7)
2, 6, 14, 32, 72, 160, 352, 768, 1,664, 3,584, 7,680, 16,384, 34,816,
73,728, 155,648, . . .
1, 4, 12, 32, 80, 192, 448, 1,024, 2,304, 5,120, 11,264, 24,576, 53,248,
114,688, 245,760, . . .
2.0, 1.5, 1.17, 1.0, 0.9, 0.83, 0.79, 0.75, 0.72, 0.70, 0.68, 0.67, 0.65, 0.64,
0.63, . . .

4 (15) 6
1, 3, 5, 11, 25, 55, 121, 267, 589, 1,299, 2,865, 6,319, 13,937, 30,739,
67,797, . . .

(17)
4, 9, 20, 51, 124, 303, 728, 1,739, 4,134, 9,771, 22,990, 53,885, 125,858,
293,049, 680,440, . . .
2, 7, 18, 49, 130, 333, 836, 2,069, 5,060, 12,255, 29,444, 70,267, 166,726,
393,635, 925,334, . . .
2.0, 1.29, 1.11, 1.04, 0.95, 0.91, 0.87, 0.84, 0.82, 0.80, 0.78, 0.77, 0.76,
0.75, 0.74, . . .

5 (23) 7
2, 3, 4, 16, 37, 68, 176, 432, 925, 2,156, 5,153, 11,696, 26,868, 62,885,
145,085, . . .

(35)
8, 12, 16, 84, 213, 406, 1,156, 3,104, 7,021, 17,372, 44,427, 106,518,
257,200, 634,556, 1,537,281, . . .
4, 12, 20, 72, 225, 500, 1,324, 3,680, 8,967, 22,270, 57,403, 142,234,
348,830, 867,106, 2,134,239, . . .
2.0, 1.0, 0.8, 1.17, 0.95, 0.81, 0.87, 0.84, 0.78, 0.78, 0.77, 0.75, 0.74,
0.73, 0.72, . . .

6 (53) 8
1, 8, 7, 12, 48, 95, 281, 605, 1,272, 3,334, 7,615, 18,131, 43,197, 99,210,
237,248, . . .

(75)
4, 34, 32, 62, 288, 604, 1,884, 4,430, 9,926, 27,794, 67,380, 168,606,
424,768, 1,025,664, 2,570,672, . . .
2, 36, 32, 62, 332, 701, 2,342, 5,503, 12,506, 36,234, 88,576, 225,685,
574,994, 1,400,192, 3,554,210, . . .
2.0, 0.94, 1.0, 1.0, 0.87, 0.86, 0.80, 0.81, 0.79, 0.77, 0.76, 0.75, 0.74,
0.73, 0.72, . . .

7 (133) 10 11, 0, 38, 0, 193, 0, 1,331, 0, 7,275, 0, 40,406, 0, 234,969, 0, 1,337,714, . . .

(20)
60, 0, 223, 0, 1,368, 0, 10,963, 0, 66,171, 0, 408,918, 0, 2,619,965, 0,
16,222,096, . . .
36, 0, 211, 0, 1,404, 0, 11,633, 0, 77,433, 0, 502,690, 0, 3,322,763, 0,
21,292,910, . . .
1.67, 1.06, 0.97, 0.94, 0.86, 0.81, 0.79, 0.76, . . .

8 (247) 10
1, 6, 12, 26, 52, 132, 317, 730, 1, 823, 4, 446, 10, 739, 25, 358, 60,773,
146,396, 350,399, . . .

(19)
6, 28, 70, 182, 360, 984, 2,530, 6,156, 16,308, 41,924, 107,014, 265,396,
666,098, 1,677,978, 4,189,876, . . .
2, 22, 60, 148, 340, 1,008, 2,642, 6,748, 18,312, 48,478, 126,364,
320,062, 821,350, 2,102,864, 5,335,734, . . .
3.0, 1.27, 1.17, 1.23, 1.06, 0.98, 0.96, 0.91, 0.89, 0.87, 0.85, 0.83, 0.81,
0.80, 0.79, . . .

9 (561) 12 11, 0, 50, 0, 286, 0, 1,630, 0, 9,639, 0, 55,152, 0, 292,950, 0, . . .
(753) 67, 0, 349, 0, 2,295, 0, 14,575, 0, 96,680, 0, 606,538, 0, 3,504,145, 0, . . .

33, 0, 281, 0, 2,179, 0, 15,035, 0, 105,166, 0, 692,330, 0, 4,138,761, 0, . . .
2.03, 1.24, 1.05, 0.96, 0.92, 0.88, 0.85, . . .

Table 3.7. Distance spectrum of non-systematic convolutional codes and of recursive
systematic code with output R = 1/2 for lengths of constraint ν ranging from 3 to 9
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from 3 to 9. In this table we have also expressed the relationship between the spec-
tral coefficients of systematic recursive codes and the corresponding non-systematic
codes. This ratio is initially greater than 1, then it passes below 1, once d is a few units
greater than df .

To complete the presentation of systematic recursive convolutional codes in
Tables 3.8, 3.9, 3.10 and 3.11, we have presented the distance spectrum of some
perforated codes for lengths of constraint of 4, 5 and 6 and outputs ranging between
2/3 and 5/6. By way of comparison we have also indicated in these tables the distance
spectrum of non-systematic non recursive perforated codes with the same parameters.
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Initial convolutional code Perforated convolutional code

ν G1 df M R df n(d) d = df , df + 1, df + 2, . . .

G2 wCPR(d) d = df , df + 1, df + 2, . . .

In octal wCPNR(d) d = df , df + 1, df + 2, . . .

ρ(d) = wCPR(d)/wCPNR(d) d = df ,

df + 1, df + 2, . . .

4 (15) 6 1 1 2/3 4
3, 11, 35, 114, 378, 1,253, 4,147, 13,725,
45,428, 150,362, . . .

(17) 1 0
10, 33, 146, 538, 2,046, 7,595, 27,914,
101,509, 366,222, 1,312,170, . . .

10, 43, 200, 826, 3,314, 12,857, 48,834,
182,373, 672,324, 2,452,626, . . .

1.0, 0.77, 0.73, 0.65, 0.62, 0.60, 0.57, 0.56,
0.55, 0.54, . . .

5 (23) 7 1 1 2/3 4 1, 0, 27, 0, 345, 0, 4,515, 0, 59,058, 0, . . .

(35) 1 0
3, 0, 106, 0, 1,841, 0, 30,027, 0, 471,718,
0, . . .

1, 0, 124, 0, 2,721, 0, 659, 0, 858,436, 0, . . .

3.0, 0.86, 0.68, 0.60, 0.55, . . .

6 (53) 8 1 0 2/3 6
19, 0, 220, 0, 3, 089, 0, 42, 725, 0, 586,
592, 0, . . .

(75) 1 1
74, 0, 1,146, 0, 20,251, 0, 337,067, 0,
5,411,831, 0, . . .

96, 0, 1,094, 0, 35,936, 0, 637,895, 0, 10,640,

725, 0, . . .

0.77, 0.56, 0.53, 0.51, . . .

Table 3.8. Distance spectrum of non-systematic convolutional codes and of recursive
systematic code with output R = 1/2 for lengths of constraint ν ranging from 3 to 9
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It is interesting to note that there are several systematic recursive perforated codes
whose coefficients w(d) are always lower than those of non-systematic non-recursive
perforated codes with the same parameters. This comment is particularly true for per-
forated codes with high output. Thus, it is possible to find perforated recursive system-
atic codes whose performance, in terms of error probability, will always be better than
that of non-systematic non-recursive perforated codes. To illustrate this point we have
traced the bit error rate for the non-recursive perforated code with generator polyno-
mials 133–171 (in octal) and of its recursive version, with outputs of 2/3 and 4/5 in
Figure 3.18, and with outputs of 3/4 and 5/6 in Figure 3.19.

Initial convolutional code Perforated convolutional code

ν G1 df M R df n(d) d = df , df + 1, df + 2, . . .

G2 wCPR(d) d = df , df + 1, df + 2, . . .

In octal wCPNR(d) d = df , df + 1, df + 2, . . .

ρ(d) = wCPR(d)/wCPNR(d) d = df ,

df + 1, df + 2, . . .

4 (15) 6 1 1 0 3/4 4
29, 0, 532, 0, 9,853, 0, 182,372, 0,
3,375,764, 0, . . .

(17) 1 0 1
93, 0, 2,456, 0, 59,503, 0, 1,361,142, 0,
30,003,290, 0, . . .

124, 0, 4,504, 0, 124,337, 0, 3,059,796,

0, 70,674,219, 0, . . .

0.75, 0.55, 0.48, 0.45, 0.43, . . .

5 (23) 7 1 0 1 3/4 3
1, 2, 23, 124, 576, 2,847, 14,147, 69,954,
346,050, 1,711,749, . . .

(35) 1 1 0
2, 6, 86, 584, 3,086, 17,278, 96,394,
528,024, 2,865,512, 15,430,036, . . .

1, 7, 125, 936, 5, 915, 36, 580, 216, 612,

1, 246, 685, 7, 035, 254, 39, 092, 197, . . .

2.0, 0.86, 0.69, 0.52, 0.47, 0.45, 0.42, 0.41,

0.40, . . .

6 (53) 8 1 0 0 3/4 4
1, 15, 65, 321, 1,661, 8,388, 42,560,
215,586, 1, 091,757, 5,533,847, . . .

(75) 1 1 1
3, 58, 301, 1,734, 10,150, 57,422, 323,730,
1,800,528, 9,926,855, 54,442,646, . . .

3, 85, 490, 3,198, 20,557, 123,312, 724,657,

4,177,616, 23,720,184, 133,193,880, . . .

1.0, 0.68, 0.61, 0.54, 0.49, 0.47, 0.45, 0.43,

0.42, 0.41, . . .

Table 3.9. Distance spectrum for perforated convolution recursive and non-recursive
codes with output of 3/4 and lengths of constraint of 4, 5 and 6
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Initial convolutional code Perforated convolutional code

ν G1 df M R df n(d) d = df , df + 1, df + 2, . . .

G2 wCPR(d) d = df , df + 1, df + 2, . . .

In octal wCPNR(d) d = df , df + 1, df + 2, . . .

ρ(d) = wCPR(d)/wCPNR(d) d = df ,

df + 1, df + 2, . . .

4 (15) 6 1 0 1 1 4/5 3
5, 36, 200, 1,060, 5,795, 31,599,
171,969, 936,526, 5,099,930,
27,771,195, . . .

(17) 1 1 0 0
13, 120, 805, 5,125, 32,599, 202,213,
1,234,855, 7,456,754, 44,587,183,
264,479,172, . . .

14, 194, 1, 579, 11,257, 76,930, 502,739,

3,192,644, 19,869,572, 121,718,261,

736,426,298, . . .

0.93, 0.62, 0.51, 0.46, 0.42, 0.40, 0.39,

0.38, 0.37, 0.36, . . .

5 (23) 7 1 0 1 0 4/5 3
8, 50, 421, 3,290, 22,488, 155,980,
1,058,726, 7,128,484, 47,398,486,
313,148,273, . . .

(35) 1 1 0 1
11, 78, 753, 6,890, 51,597, 3,849,852,
729,430, 19,106,443, 130,719,110,
884,972,639, . . .

0.73, 0.64, 0.56, 0.48, 0.44, 0.41, 0.39,

0.37, 0.36, 0.35, . . .

6 (53) 8 1 0 0 0 4/5 4
7, 54, 307, 2,005, 12,962, 83,111,
532,859, 3,417,085, 21,921,778,
140,627,199, . . .

(75) 1 1 1 1
23, 224, 1,493, 11,367, 83,962, 604,061,
4,297,152, 30,280,003, 211,707,389,
1,470,048,693, . . .

40, 381, 3,251, 27,123, 213,366,

1,619,872, 11,986,282, 87,121,461,

624,743,990, 4,429,930,822, . . .

0.58, 0.59, 0.46, 0.42, 0.39, 0.37, 0.36,

0.35, 0.34, 0.33, . . .

Table 3.10. Distance spectrum for perforated convolution recursive and non-recursive
codes with output of 4/5 and lengths of constraint of 4, 5 and 6
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Initial convolutional code Perforated convolutional code

ν G1 df M R df n(d) d = df , df + 1, df + 2, . . .

G2 wCPR(d) d = df , df + 1, df + 2, . . .

In octal wCPNR(d) d = df , df + 1, df + 2, . . .

ρ(d) = wCPR(d)/wCPNR(d) d = df ,

df + 1, df + 2, . . .

4 (15) 6 1 0 1 0 0 5/6 3
15, 96, 601, 3,835, 24,365, 154,829,
984,015, 6,253,538, 39,742,
549,252, 571,973, . . .

(17) 1 1 0 1 1
40, 333, 2,559, 19,373, 142,498,
1,028,859, 7,322,715, 51,517,991,
359,064,087, 2,483, 109,821, . . .

63, 697, 6,367, 52,924, 415,068,

3,139,106, 23,134,480, 167,262,204,

1,191,612,583, 8,390,366,646, . . .

0.64, 0.48, 0.40, 0.37, 0.34, 0.33, 0.32,

0.31, 0.30, 0.30, . . .

5 (23) 7 1 0 1 1 1 5/6 3
5, 37, 309, 2,276, 16,553, 121,552,
893,147, 6,560,388, 48,185,069,
353,907,864, . . .

(35) 1 1 0 0 0
13, 128, 1,340, 11,681, 98,362,
822,267, 6,774,771, 55,136,003,
444,440,714, 3,554,300,708, . . .

20, 265, 3,248, 32,299, 297,308,

2,629,391, 22,591,098, 190,034,783,

1,572,790,875, 12,851,680,889, . . .

0.65, 0.48, 0.41, 0.36, 0.33, 0.31,

0.30, 0.29, 0.28, 0.28, . . .

6 (53) 8 1 0 0 0 0 5/6 4
19, 171, 1,251, 9,573, 75,097, 84,394,
4,543,202, 35,354,659,
275,053,493, . . .

(75) 1 1 1 1 1
62, 727, 6,354, 56,387, 505,451,
4,420,332, 38,136,726, 305, 026,
118, 2,387, 410,245, . . .

100, 1,592, 17,441, 166,331, 1,591,180,

14,610,169, 130,823,755,

1,152,346,496, 10,010,105,849, . . .

0.62, 0.46, 0.36, 0.34, 0.32, 0.30, 0.29,

0.27, 0.24, . . .

Table 3.11. Distance spectrum for perforated convolution recursive and non-recursive
codes with output of 5/6 and lengths of constraint of 4, 5 and 6
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Figure 3.18. Bit error rates of the non-recursive perforated code
with generator polynomials 133–171 (in octal) and of its recursive

version for outputs of 2/3 and 4/5
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Figure 3.19. Bit error rates of the non-systematic non-recursive
perforated code with generator polynomials 133–171 (in octal) and

of its systematic recursive version, for outputs of 3/4 and 5/6



Chapter 4

Coded Modulations

In traditional transmission systems, information symbols are protected by cod-
ing and then a carrier intervenes to modulate. The functions of modulation and cod-
ing, and, consequently, of demodulation and decoding, are treated independently. The
first examples of codes that combine modulation and coding and demodulation and
decoding – and which have led to the concept of coded modulation – are the “Trellis
Codes” introduced by Gottfried Ungerboeck in 1976. To transmit n bit/symbol with
a 2-dimensional modulation, the trellis-coded modulations (TCM) use a constellation
with 2n+1 points. The redundancy does not cause an expansion of band occupancy,
but merely an increase in the size of the constellation. This chapter deals with the most
important aspects of coded modulation.

4.1. Hamming distance and Euclidean distance

Binary codes presented in the preceding chapters had been selected for their prop-
erties of minimum Hamming distance. However, it is known that for a transmission on
a Gaussian channel, the criterion of choosing a modulation scheme is that of Euclidean
distance. Indeed, if the signal-to-noise ratio in the channel is sufficiently high, the
modulation diagram whose minimum Euclidean distance is the largest will have the
weakest probability of error. That leads to the decoding being “with soft decisions”,
i.e., that the “demodulator” calculates the Euclidean distance (metric) for each deci-
sion, while the decoder looks for the codeword with the best metric.

Chapter written by Ezio BIGLIERI.
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We can see that if the modulation is binary, the criterion of Hamming distance
is equivalent to that of Euclidean distance. Indeed, let us consider an antipodal binary
modulation, whose signals±s(t) have the same energy E . The square of the Euclidean
distance between these two signals is 4E . Euclidean distance and Hamming distance
are thus proportional. Let us now consider a 4PSK modulation, where the four signals
si(t), i = 1, 2, 3, 4, have the same energy E and are coded as follows in Table 4.1.

Signal Phase Binary characters

s1(t) 0 00

s2(t) π/2 01

s3(t) π 11

s4(t) 3π/2 10

Table 4.1. Coding of four signals of a 4PSK modulation

We can easily see that for this modulation with binary symbols the Euclidean dis-
tance also corresponds to the Hamming distance. Indeed, the signals that differ in only
one binary character and that thus have a Hamming distance equal to 1 (for example,
s1(t) and s2(t)) have a Euclidean distance of 2E , while signals that differ in two binary
characters and thus have a Hamming distance equal to 2 (for example, s1(t) and s3(t))
have a Euclidean distance of 4E .

This result cannot be generalized; it is enough to examine the 8PSK modulation
to realize that Euclidean distance and Hamming distance are not always dependant.
Therefore, the use of a code with a large minimum Hamming distance associated to
an 8PSK modulation can lead to a diagram whose minimum Euclidean distance is
not the largest. To obtain a system associating coding and powerful modulation for a
Gaussian channel it is necessary to code directly in the signals space, i.e. to use a code
whose alphabet is formed by signals (or vectors that represents them) and to work
directly with the Euclidean distance to optimize the system. It will be said then that
we consider the modulator and the encoder jointly: they are joined together in a single
block. In the same manner we will not separate the decoder of demodulator functions:
we will perform the demodulation and decoding simultaneously.

Introduction to trellis-coded modulation (TCM)

Let us consider a digital transmission via a channel with additive white Gaussian
noise. If a signal x is transmitted, the received signal is:

r = x + n

where n represents a vector whose K components are independent zero-mean random
variables with the same variance N0/2. The signal x has K components s0, . . . , sK−1
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whose values belong to a set S ′, called the elementary constellation, comprising M ′

signals s1, . . . , sM ′ . If the elementary signals have equal probability, the average
energy of the transmitted signal will be:

E ′ =
1

M ′

M ′∑
i=1

|si|2

Now let us consider the transmission of a codeword, comprising the sequence
x = (s0, . . . , sK−1) of K elementary signals. The receiver that minimizes the
average probability of error for the sequence at first observes the received sequence
r = (r0, . . . , rK−1), then decides that x = x̂ is transmitted if the square of the
Euclidean distance:

δ2
�

K−1∑
i=0

|ri − si|2

is minimized taking si = ŝi, i = 0, . . . , K − 1. This is equivalent to choosing the
codeword (ŝ0, . . . , ŝK−1) closest to the received sequence. As we saw in the previous
chapters, the probability of error for the sequence, as well as the probability of error
per symbol, is upper bounded for high signal-to-noise ratios by a decreasing function
of the ratio δ2

min/N0, where δ2
min is the minimum squared Euclidean distance between

two sets of signals compatible with the code. Without coding this distance is equal to
the minimum distance between the signals of the set S ′ (with coding it will be larger).

Coding in signal space consists of choosing the transmitted sequences among the
subsets of S ′K . Proceeding in this manner the rate of transmission is reduced, because
the number of sequences that we can use is also reduced. To avoid this disadvantage,
we can increase the size of S ′ by choosing a constellation S ⊃ S ′ whose size is
M > M ′. We will thus choose M

′K sequences that are subsets of SK . If this choice
is made well, these sequences will have a large minimum distance between them.

We then obtain a minimum distance δfree between two sequences that is larger than
the minimum distance δmin between the signals of S ′. The reception with maximum
likelihood would thus bring a “distance gain”: δ2

free/δ2
min.

In order to avoid a reduction of the bit rate, the size of the constellation has been
increased by choosing S instead of S ′. This increase can also involve an increase in
the energy needed for the transmission (E instead of E ′), and consequently a “loss of
energy” E/E ′. We thus define an asymptotic coding gain equal to:

γ �
δ2
free/E

δ2
min/E ′ [4.1]

where E and E ′ are average energies of the signals transmitted with and without cod-
ing.
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4.2. Trellis code

The most interesting representation of a code from the point of view of the decoder
is the trellis representation. It is a graph that represents the words of code as paths pass-
ing through nodes called encoder states. The paths consist of a succession of branches
where each branch is associated to elementary signal transmitted through the channel.
For example, the code with repetition of length 3 will be represented by the trellis
in Figure 4.1. The two codewords (s0, s0, s0) and (s1, s1, s1) are represented by two
paths of the trellis. The parity code (4,3), whose codewords comprise all the sequences
of vectors s0 and s1 with an even number of signals s1, will be represented by the trel-
lis in Figure 4.2. We see here that the encoder has two states, the first corresponding to
an even number of s0 and the second to an odd number. The transmission of a signal
s1 changes the state encoder.

s s0 0 s0

s1s1
s1

Figure 4.1. Trellis representation of the code with repetition (3, 1)

s0 s0 s0 s0

s0s0

s1s1 s1s1
s1

s1

Figure 4.2. Trellis representation of the parity code (4, 3)

In this context, we may say that a modulation without coding, such as 4PSK mod-
ulation, is described by a trellis in a single state. Indeed, the state of the encoder (here
of the modulator) does not change from one signal to another. We can also envisage
codes whose trellis has “parallel transitions”, that is, for which the production of a new
symbol does not modify the state of the encoder. An example of a trellis with parallel
transitions is represented in Figure 4.3. Here, for each state the encoder can transmit
four different signals: s0, s1, s2, s3.

s0s2

s1s3

s0s2 s0s2

s1s3

s1s3
s1s3

s0s2

Figure 4.3. Trellis representation of a code with parallel transitions
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4.3. Decoding

The trellis of a coded modulation, two very simple examples of which we have
provided above, describes the correlation between the symbols transmitted through
the channel. The process of demodulation/decoding can be understood if we use the
same trellis as the one describing coding.

Since there is a bijective correspondence between the sequences of transmitted
signals and the paths of the trellis, decoding with maximum likelihood is performed
for the channel with additive white Gaussian noise, looking for the path of the trellis
that has the shortest Euclidean distance from the received sequence. If we transmit a
succession of coded symbols of length K and observe the sequence r0, r1, . . . , rK−1

at the output of the channel, the decoder looks for the sequence s0, s1, . . . , sK−1 that
minimizes:

K−1∑
i=0

|ri − si|2

That can be done using the Viterbi algorithm.

The branch metrics to be used are obtained as follows. If the branch of the trellis
carries the label s, then in the discrete time i the metric associated to this branch is
|ri − s|2 if there are no parallel transitions. If two states are connected by parallel
transitions and if the branches have the labels, s′, s′′, . . . pertaining to the set S, then
for the purposes of decoding the trellis will be transformed into a new trellis where
the two states are connected by only one branch whose metric would be:

min
s∈S
|ri − s|2

If there are parallel transitions, the decoder first chooses the signal among
s′, s′′, . . . , which has the smallest distance from ri (this is a “demodulation”); then it
calculates the metric on the basis of the selected signal.

4.4. Some examples of TCM

Let us consider some examples of TCM diagrams and evaluate their coding gain.
Let there first be a transmission of 2 bits per symbol. Without coding, a constellation
with M ′ = 4 signals would be enough. Let us now examine TCM diagrams with
M = 2M ′ = 8 signals, i.e. where coding is obtained thanks to a doubling of the
constellation size.

With PSK signals and M ′ = 4 we obtain:

δ2
min

E ′ = 2
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a value which we will use as a reference to calculate the coding gain of TCM diagrams
based on the PSKM . Let us consider TCM diagrams using the 8PSK constellation,
whose signals are labeled {0, 1, 2, . . . , 7} as indicated in Figure 4.4. We have:

E ′ =
δ
′2

4 sin2 π/8

Figure 4.4. 8PSK constellation used in a TCM diagram

Two states

Let us first consider a diagram with two states (see Figure 4.5). If the encoder is in
the state S1, it uses the sub-constellation {0, 2, 4, 6}. If it is in the state S2, it then uses
the sub-constellation {1, 3, 5, 7}. The free distance of this TCM diagram is equal to
the shortest distance between the signals associated to parallel transitions (error events
of length 1) or between a pair of paths diverging in a node and converging again a few
moments after (error events of length 1). The pair of paths that yields the minimum
distance called free distance is indicated in bold in Figure 4.5. If δ(i, j) indicates the
Euclidean distance between signals i and j, we obtain:

δ2
free

E =
1

E [δ2(0.2) + δ2(0.1)] = 2 + 4 sin2 π

8
= 2.586

There will thus be an asymptotic coding gain with respect to the 4PSK equal to:

γ =
2.586

2
= 1.293⇒ 1.1 dB



Coded Modulations 203

s1

s2

Figure 4.5. TCM diagram with a trellis with two states, M ′

= 4, and M = 8

Four states

A more complex structure of the TCM trellis would yield a larger coding gain.
Still using the constellation in Figure 4.4, let us consider a trellis with 4 states (see
Figure 4.6). We can associate the sub-constellation {0, 2, 4, 6} to the states S1 and S3,
and {1, 3, 5, 7} to the states S2 and S4. In this case the error event that yields the free
distance δfree has a length of 1 (parallel transition) and is illustrated in Figure 4.6 in
bold. We obtain:

δ2
free

E = δ2(0.4) = 4

It follows that the asymptotic coding gain is:

γ =
4

2
= 2⇒ 3 dB

Eight states

A way of increasing the coding gain further consists in choosing a trellis with
eight states (see Figure 4.7). To simplify Figure 4.7, the four symbols associated to the
branches that diverge from a node are indicated at the node level. The first symbol of
the four is associated to the transition represented at the top of the figure, the second
to the transition immediately below, etc. The error event corresponding to δfree is
represented in bold. We obtain:

δ2
free

E =
1

E [δ2(0.6) + δ2(0.7) + δ2(0.6)] = 2 + 4 sin2 π

8
+ 2 = 4.586

and thus:

γ =
4.586

2
= 2.293⇒ 3.6 dB
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s1

s2

s3

s4

Figure 4.6. TCM diagram with a trellis with 4 states, M ′

= 4, and M = 8

Figure 4.7. TCM diagram with a trellis with 8 states, M ′

= 4, and M = 8

Coding gains of TCM diagrams

The values of δfree obtained using TCM diagrams of two-dimensional constella-
tions (PSK and QAM) are illustrated in Figure 4.8. The free distances are expressed in
dB with respect to the value δ2

min = 2 correspondent to the non-coded 4PSK. The free
distances of several diagrams are given according to Rs/W , spectral output expressed
in bits/Hz, for a bandwidth equal to the “Shannon band” 1/T . We can see that con-
siderable coding gains can be obtained using TCM diagrams with a small number of
states: 4, 8 and 16.
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Figure 4.8. Free distance according to the spectral output for several TCM
diagrams based on two-dimensional constellations

4.5. Choice of a TCM diagram

We can describe a coded modulation diagram on the basis of a trellis by associ-
ating each of its branches to an elementary signal. This choice must be made while
guaranteeing the largest minimum Euclidean distance.

Partition of a constellation

Let us consider the calculation of the free distance δfree, i.e. the Euclidean distance
between a pair of paths that diverge in a node then converge again after L moments
(see Figure 4.9).
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n+1 n+Ln+L-1n+1 nn

Figure 4.9. A pair of paths that diverge and convergent for L = 1

(parallel transitions), and L > 1

Let us first consider the case where the free distance is determined by the parallel
transitions, which implies L = 1. In this case the free distance δfree would be equal
to the shortest distance between the signals of the set associated to the branches that
diverge from a given node. Let us then consider the case where L > 1; if A, B, C and
D are the subsets of signals associated to each branch, and δ(X,Y ) is the minimum
Euclidean distance between a signal in X and a signal in Y, then δ2

free could be written
in the form:

δ2
free = δ2(A,B) + · · ·+ δ2(C,D)

This implies that for a good TCM, the subsets assigned to the same original state
(A and B for Figure 4.9) or to the same final state (C and D for Figure 4.9) must be
separated by the largest possible distance. These observations are at the foundation of
a technique suggested by Ungerboeck (1982), called set partitioning.

A set with M signals is successively divided into 2, 4, 8, . . . , sub-constellations
whose size is M/2,M/4,M/8, . . . , and the Euclidean distances in these sub-constel-
lations are gradually increasing: δ

(1)
min, δ

(2)
min, δ

(3)
min, . . . (see Figure 4.10).

Figure 4.10. Set partitioning 8PSK
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We will impose certain conditions, called Ungerboeck conditions (see conditions
4.1 and 4.2).

CONDITION 4.1 (CONDITION U1). The parallel transitions are associated to signals
belonging to the same sub-constellation.

CONDITION 4.2 (CONDITION U2). The branches diverging from the same state or
converging towards the same state are associated to the signals belonging to the same
sub-constellation of a level superior to that corresponding to condition 4.1.

The two conditions above, plus the condition of symmetry 4.3, lead to the best
diagrams of coded modulation.

CONDITION 4.3 (CONDITION U3). All the signals are used with the same frequency.

4.6. TCM representations

We consider here TCM encoders built on the basis of a convolution encoder and
a modulation without memory. The source binary symbols are grouped in blocks of
m bits, noted b

(1)
i , . . . , b

(m)
i , and presented at the output of a convolution encoder

whose rate of coding is m/(m + 1). The latter determines the trellis structure of the
TCM diagram (and, in particular, the number of its states). The modulation without
memory that follows the encoder generates a bijective correspondence between the
binary coded (m+1)-tuples and the signals of a constellation with M = 2m+1 signals
(see Figure 4.11).

si

bi

bi

bi

ci

ci

ci

m

(m+1)

(m)

m

m

m

Figure 4.11. General diagram of a TCM encoder

It is usually advisable to modify this representation in the manner indicated in
Figure 4.12, if certain bits are uncoded. The convolutional code has a rate m̃/(m̃+1).
The presence of uncoded bits generates parallel transitions; each branch in the trellis
of the code is now associated to 2m−m̃ signals. The correspondence between the coded
bits and the signals of the sub-constellation is indicated in Figure 4.10.
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m+1
m

m-m m
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m+1
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m+1

m+1 m+1

m+2
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bi

bi

bi

ci

ci

ci

ci

ci
Si

Figure 4.12. TCM encoder where the uncoded bits are indicated explicitly

EXAMPLE 4.1. Figure 4.13 shows a TCM encoder and the associated trellis. Here
m = 2 and m̃ = 1, therefore, the nodes of the trellis (corresponding to the encoder
states) are connected by parallel transitions, each one associated to two signals. The
structure of the trellis is determined by the code.

ci

ci

ci

bi

bi

Si

S n+1Sn

Figure 4.13. A TCM encoder with m = 2 and m̃ = 1.
The corresponding trellis is also indicated

TCM with multidimensional constellations

We saw that for a given constellation the performance of a TCM diagram can be
improved by increasing the number of states of the trellis. However, when this number
exceeds certain values, the coding gain increases by very little. We can then choose
to change the elementary constellation. One of the possibilities is to pass from two-
dimensional constellations to multidimensional constellations.

Let us consider the constellations generated by concatenating several two-dimen-
sional symbols, such as PSK or QAM symbols. A constellation with 2N dimensions
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can be generated taking N times the Cartesian product of a two-dimensional constel-
lation by itself. If N two-dimensional signals are transmitted in an interval of time of
duration T and if each one of them has a duration T/N , we then obtain a constellation
with 2N dimensions.

EXAMPLE 4.2. A TCM diagram with 4 dimensions can be obtained by concatenating
two 4PSK signals. The new constellation will be known as 2× 4PSK. With the labels
indicated in Figure 4.14, the 42 = 16 signals with 4 dimensions are:

{00, 01, 02, 03, 10, 11, 12, 13, 20, 21, 22, 23, 30, 31, 32, 33}

This constellation has the same minimum Euclidean distance as the 4PSK, i.e.:

δ2
min = δ2(00, 01) = δ2(0, 1) = 2

The following sub-constellation with 8 signals:

S = {00, 02, 11, 13, 20, 22, 31, 33}

has a squared minimum distance equal to 4. If S is divided into four subsets:

{00, 22} {20, 02} {13, 31} {11, 33}

for a trellis with four states, the TCM diagram represented in Figure 4.14 has a squared
free distance equal to 8.

Figure 4.14. A TCM diagram with two states based on a constellation 2 × 4PSK. The error
event that generates the free distance is indicated in bold

4.7. TCM transparent to rotations

We consider here a channel with phase offset, and we are interested in the choice
of the TCM for this channel.
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Let us consider the example of a PSKM transmission with coherent detection.
This detection mode is based on the estimate of the phase of the carrier before
demodulation. Several techniques to estimate this phase are based on the elimination
of phase jumps (“data noise”). These techniques restore a carrier with a phase
ambiguity depending on the constellation used: for example, the phase ambiguity
is π/2 for the QAM modulations and 2π/M for PSK modulations with M phase
states. This ambiguity can be modeled by a random phase jump that takes the values
k2π/M, k = 0, 1, . . . ,M − 1.

To solve this ambiguity, that is, to eliminate this phase displacement, differential
coding and decoding are often used. However, when a TCM diagram is used in a
transmission system we should ensure that it is transparent with phase rotations by
multiples of 2π/M . That means that any coded TCM sequence when affected by a
rotation by a multiple of 2π/M , must remain a TCM sequence. Otherwise, a phase
rotation can generate a long succession of errors, because, even if there is no noise,
the TCM decoder will not recognize the sequence as a TCM sequence.

EXAMPLE 4.3. Let us consider, for example, the trellis in Figure 4.15. It is supposed
here that the transmitted sequence is the one, in which all elements are 0. A rotation of
π causes the reception of the sequence, in which all elements are 2, which is a TCM
sequence. However, a rotation by π/2 generates the sequence, in which all elements
are 1: the latter will not be recognized as a TCM sequence by the Viterbi algorithm
(see section 4.2).

Figure 4.15. Diagram of a TCM transparent to a π rotation, but not a π/2 rotation

The receiver can solve the problem of the ambiguity of phase in several ways. One
of them consists of introducing a pilot sequence into the flow of transmitted symbols.
A second way consists of using a code whose words are not transparent to rotations. In
this case an error of phase could be detected, and thus corrected, by a decoder able to
distinguish a TCM sequence, even if it is affected by channel noise, from a sequence
invalidated by phase rotation. Finally, a third solution that we will examine consists of
using a transparent TCM diagram with rotations. Each sequence having undergone a
rotation by a multiple of 2π/M remains a TCM sequence; the decoder will thus not
be affected by this rotation.
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If we want a phase offset not to affect a TCM diagram, it is necessary that:

1) the TCM diagram be transparent to phase rotations introduced by the carrier
phase estimation circuit;

2) after any rotation, a coded TCM sequence be decoded by the same TCM se-
quence.

The first of these two properties is geometrical: coded sequences that can be inter-
preted as a set of points in a Euclidean space with an infinite number of dimensions
must be invariant with respect to a certain finite set of rotations. The second property
is rather a structural property of the encoder, because it relates to the input-output
correspondence determined by the encoder.

4.7.1. Partitions transparent to rotations

The first fundamental principle in the construction of a code transparent to rota-
tions is to have a transparent partition.

Let S be a constellation of signals with 2N dimensions, {Y1, . . . , YK} be its par-
tition in K subsets, and let us consider the rotations around the point of origin in two-
dimensional Euclidean space. Rotations in space with 2N dimensions are obtained by
considering a separate rotation in each two-dimensional subspace. Let us then consider
all of the rotations that leave S unchanged and note this set R(S). If R(S) leaves the
partition invariant, i.e. if the effect of each element of R(S) on the partition is simply
a permutation of its elements, then the partition is known as transparent to rotations.

EXAMPLE 4.4. Let us consider an 8PSK constellation and its partition into 4 signal
subsets (see Figure 4.16), and let R(S) be the set of rotations multiples of π/4, noted
ρ0, ρπ/4, ρπ/2, etc. This partition is transparent to rotations. For example, ρπ/4 corre-
sponds to the permutation (Y1Y3Y2Y4), ρπ/2 to the permutation (Y1Y2)(Y3Y4), ρπ to
the identity permutation, etc.

Figure 4.16. Partition of the 8PSK transparent to rotations
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EXAMPLE 4.5. Let us consider the set of signals of dimension 4 from example 4.2
(2× 4PSK), and its partition into four sub-constellations:

Y ={Y1, Y2, Y3, Y4, Y5, Y6, Y7, Y8} [4.2]

= {{00, 22}, {11, 33}, {02, 20}, {13, 31},
{01, 23}, {12, 30}, {03, 21}, {10, 32}} [4.3]

The elements of R(S) are the rotation pairs, each one a multiple of π/2, noted
ρ0, ρπ/2, ρπ and ρ3π/2. For example, we can see that the effect of ρπ/2 on the signal
xy, where x, y = 0, 1, 2, 3, is to change it into a signal (x + 1)(y + 1), where the
addition is done by modulo 4. This partition is transparent to rotations.

4.7.2. Transparent trellis with rotations

Now let us consider the effect of a rotation of phase on coded TCM sequences. If
the partition Y of X is transparent to rotations, the TCM becomes transparent to rota-
tions, if for any rotation ρ ∈ R(S) the sequences of sub-constellations are transformed
into sequences of sub-constellations compatible with the code.

Now let us examine a section of the trellis representing the TCM. If all the sub-
constellations that label the branches of the trellis are affected by the same rotation
ρ, a new section of the trellis is obtained. However, so that the TCM is transparent
to rotations, this new section of the trellis must be identical to the initial section (i.e.,
without rotation) except for a permutation of its states.

EXAMPLE 4.6. Let us consider a section of a trellis in two states (see Figure 4.17)
having a base partition:

Y = {Y1, Y2, Y3, Y4}

where the notations are the same as in example 4.4. This partition is transparent to
rotations. Let us note this section of the trellis by the set of its branches (si, Yj , sk),
where Yj is the sub-constellation, which labels the branch that joins the state sj with
the state sk. The trellis is thus described by the set:

T = {(A, Y1, A), (A, Y3, B), (B, Y4, A), (B, Y2, B)}

The rotations ρπ/2 and ρ3π/2 transform T into:

{(A, Y2, A), (A, Y4, B), (B, Y3, A), (B, Y1, B)}

which corresponds to the permutation (A,B) of the states of T . Similarly, ρ0 and ρπ

correspond to the identity permutation.
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Y1

2

3 4

Y

Y Y

Figure 4.17. Section of a trellis with two states

In conclusion, the TCM code is transparent to rotations.

It may be that a TCM satisfies the conditions of rotational transparency only with
respect to one subset of R(S), and not the entire R(S). In this case we say that S is
partially transparent to rotations.

EXAMPLE 4.7. Let us consider the TCM in Figure 4.18. It has 8 states and its sub-
constellations correspond to the partition Y = {Y1, Y2, Y3, Y4} from example 4.6.
This partition, as we know, is transparent to rotations. However, the TCM is not
transparent. To demonstrate it, let us consider the effect of a rotation by π/4 (see
Table 4.2); we can see that ρπ/4 generates a single simple permutation of the states of
the trellis. Indeed, let us take, for example, the branch (s1, Y3, s1); in the initial trellis
there are no states of the type (si, Y3, si). This TCM is, however, partially invari-
ant: indeed, it is transparent to rotations multiples of π/2. For example, the effect
of ρπ/2 is described in Table 4.2: it causes the following permutation of its states:
(s1s8)(s2s7)(s3s6)(s4s5).

Y

Y

Y

Y

S

Y

1
2

1

3

1

4

S8

S7

Y2

S1

S2
S2

S3 S3

S4 S4

S5
S5

S6 S6

S7

S8

Y4

Y3

Y2

Y1

Y3

Y4

Y1

Y2

Y3

Y4

Figure 4.18. TCM with 8 states non-transparent to rotations

4.7.3. Transparent encoder

Let us now consider the transparency of the encoder, i.e. the property accord-
ing to which any rotation of a TCM sequence corresponds to the same information
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ρ0 ρπ/4 ρπ/2

(s1, Y1, s1) (s1, Y3, s1) (s1, Y2, s1)

(s1, Y2, s2) (s1, Y4, s2) (s1, Y1, s2)

(s2, Y3, s3) (s2, Y2, s3) (s2, Y4, s3)

(s2, Y4, s4) (s2, Y1, s4) (s2, Y3, s4)

(s3, Y4, s5) (s3, Y1, s5) (s3, Y3, s5)

(s3, Y3, s6) (s3, Y2, s6) (s3, Y4, s6)

(s4, Y2, s7) (s4, Y4, s7) (s4, Y1, s7)

(s4, Y1, s8) (s4, Y3, s8) (s4, Y2, s8)

(s5, Y2, s1) (s5, Y4, s1) (s5, Y1, s1)

(s5, Y1, s2) (s5, Y3, s2) (s5, Y2, s2)

(s6, Y4, s3) (s6, Y1, s3) (s6, Y3, s3)

(s6, Y3, s4) (s6, Y2, s4) (s6, Y4, s4)

(s7, Y3, s5) (s7, Y2, s5) (s7, Y4, s5)

(s7, Y4, s6) (s7, Y1, s6) (s7, Y3, s6)

(s8, Y1, s7) (s8, Y3, s7) (s8, Y2, s7)

(s8, Y2, s8) (s8, Y4, s8) (s8, Y1, s8)

Table 4.2. Effect of π/4 and π/2 rotations on the TCM of example 4.7

sequence. If u is a sequence of source symbols and y is a corresponding sequence
of sub-constellations, then any rotation ρ(y) for which the TCM is transparent, must
correspond to the same sequence u.

We will be able to observe that this condition is sometimes satisfied by introducing
a differential encoder.

EXAMPLE 4.8. Let us again consider the TCM with 8 states and the 8PSK of exam-
ple 4.7. We saw that π/2 and 3π/2 rotations generate the permutation (Y1Y2)(Y3Y4).
If the encoder associates the source symbols to the sub-constellations according to the
rule:

00⇒ Y1 10⇒ Y2 01⇒ Y3 11⇒ Y4

then the only effect of ρπ/2 and ρ3π/2 is to change the first bit of the pair of binary
source symbols, while ρ0 and ρπ change nothing. Therefore, if the first bit is subjected
to differential coding, the TCM will be transparent to rotations multiple of π/2.
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4.7.4. General considerations

We can say in general that rotational transparency constraints may lead to a reduc-
tion of the coding gain of the two-dimensional TCM. The use of a decoder transparent
to rotations may require the use of a non-linear convolutional code. The loss of perfor-
mance caused by transparency constraints is generally weaker for multidimensional
constellations.

4.8. TCM error probability

This section is dedicated to the calculation of the probability of error of a TCM.
The assumption is that the transmission is carried out via a channel with additive
white Gaussian noise, and that the reception is at maximum probability. The reader
will not be surprised, if, asymptotically for a high signal-to-noise ratio, the upper and
lower bounds of the probability of error decrease as δfree increases. This proves that
the Euclidean free distance is the most relevant parameter for a comparison of TCM
in the Gaussian channel with a high signal-to-noise ratio. This also explains why the
parameter γ, the ratio between the free distance between the coded constellation and
the minimum distance from the uncoded constellation, is called asymptotic coding
gain.

Since there are no techniques that optimally choose a TCM, this choice will be
based on a study of a class of codes. It is thus very important to have a fast and
effective algorithm to calculate the free distance and the probability of error.

4.8.1. Upper bound of the probability of an error event

A convolutional code whose rate is m/(m + 1) simultaneously receives m binary
symbols from source bi, and transforms them into ci blocks with m + 1 binary sym-
bols, each constituting the entry to a non-linear system without memory (see Fig-
ure 4.11). This system generates at its output the elementary signals si. As of now, the
(m + 1)-tuple binary ci will be called label of the signal si.

There is a bijective correspondence between si and its label ci. Thus, two
sequences of L signals can be described equivalently by the two sequences of their
labels, i.e.:

ck, ck+1, . . . , ck+L−1

and:

c′k = ck ⊕ ek, c′k+1 = ck+1 ⊕ ek+1, . . . , c
′
k+L−1 = ck+L−1 ⊕ ek+L−1
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where ei, i = k, . . . , k + L− 1, form a series of binary vectors, that we will call error
vectors, and ⊕ indicates modulo-2 addition.

Let XL and X̂L be two sequences of L elementary signals. An error event of
length L occurs when the demodulator instead of the transmitted sequence XL

chooses a different sequence X̂L corresponding to a path in the trellis that diverges
from the correct path at a certain moment, and converges with it exactly L moments
later. The probability of error will thus be obtained by adding in L,L = 1, 2, . . . , the
probabilities of the error events of length L, i.e. the joint probabilities that XL is
transmitted and that X̂L is decided.

The union bound gives the following inequality for the probability of an error
event:

P (e) ≤ 1

Nσ

∞∑
L=1

∑
XL

∑
X̂L �=XL

P{XL}P{XL → X̂L} [4.4]

Division by Nσ , the number of states of the code trellis, makes it possible to obtain
the probability of error per state.

Once again exploiting the bijective correspondence between the output symbols
and the labels, if CL indicates a series of labels ci of length L, and EL designates a
series (still of length L) of error vector ei, we can write [4.4]:

P (e) ≤ 1

Nσ

∞∑
L=1

∑
CL

P{CL}
∑

ĈL �=CL

P{CL → ĈL}

=
1

Nσ

∞∑
L=1

∑
CL

P{CL}
∑

EL �=0

P{CL → CL ⊕EL}

=
1

Nσ

∞∑
L=1

∑
EL �=0

P{EL} [4.5]

where:

P{EL} �

∑
CL

P{CL}P{CL → CL ⊕EL} [4.6]

expresses the pair-wise error probability of particular error events of length L gener-
ated by the sequence of errors EL. The pair-wise error probability that appears in the
last equation can be calculated exactly. However, we will not do it and will rather use
a bound that leads to the Bhattacharyya bound.
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Let f(c) be the signal whose label is c, and f(CL) be the sequence of signals
whose label is CL. We then have:

P{CL → ĈL} =
1

2
erfc

(
|f(CL)− f(ĈL)|

2
√

N0

)

≤ 1

2
exp

{
− 1

4N0
|f(CL)− f(ĈL)|2

}

=
1

2
exp

{
− 1

4N0

L∑
n=1

|f(cn)− f(ĉn)|2
}

[4.7]

Let us now define the function:

W (EL) �

∑
CL

P{CL}e−|f(CL)−f(CL⊕EL)|2/4N0 [4.8]

If we observe that P{CL} = P{XL}, equation [4.4] can be written in the fol-
lowing form:

P (e) ≤ 1

2Nσ

∞∑
L=1

∑
EL �=0

W (EL) [4.9]

The expression [4.9] shows that P (e) is upper bounded by a sum of the functions
of EL vectors that generate error events, extended to all their possible lengths. We will
thus have to enumerate these vectors. Before continuing, let us note that a technique
often used for the calculation of the probability of error (in particular, for TCM codes
with a great number of states, or for the transmission in channels that are not Gaussian)
is to include in [4.9] a finite number of terms chosen among those with a small value
of L. Since we expect that these error events generate minimum distances, they will
contribute the most to the probability of error events. This technique will have to be
used with caution, because the truncation of the series associated to the upper bound
does not necessarily yield an upper bound.

4.8.1.1. Enumeration of error events

We can enumerate all the vectors of error by using the transfer function of a dia-
gram of the error states, i.e. a graph whose branch labels are matrices Nσ×Nσ , where
Nσ is the number of states of the trellis. In particular, let us recall that under our
assumptions all the source symbols have the same probability 2−m, and let us define
the matrix Nσ ×Nσ “of the error weights” G(en) in the following manner. The com-
ponent i, j of G(en) is equal to zero if there is no transition between states i and j of
the trellis; otherwise it has the expression:

[G(en)]i,j = 2−m
∑
ci→j

Z |f(ci→j)−f(ci→j⊕en)|2 [4.10]
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where ci→j are the vectors of the labels generated by the transition from state i to the
state j (the sum takes into account the parallel transitions that can exist between these
two states).

To each sequence EL = e1, . . . ,eL of labels in the diagram of error state there
corresponds a sequence of L matrices of error weights G(e1), . . . ,G(eL), with:

W (EL) = 1′

[
L∏

n=1

G(en)

]
1

∣∣∣∣∣
Z=e−1/4N0

[4.11]

where 1 is the column vector whose Nσ elements take the value 1, and 1′ is its trans-
pose. Consequently, if we call A a matrix Nσ × Nσ , then 1′A1 will be the sum of
all the elements of A. The element i, j of the matrix

∏L
n=1 G(en) enumerates the

Euclidean distances generated by the transitions from state i towards the state j in
exactly L stages.

Now, to calculate P (e) it is necessary to sum W (EL) for all the possible error
sequences EL using [4.9].

4.8.1.1.1. The error state diagram

Since the convolutional code that generates the TCM is linear, the set of the pos-
sible sequences e1, . . . ,eL is identical to the set of coded sequences. Therefore, the
error sequences can be described using the trellis associated to the encoder and can be
enumerated using a diagram of state that is a copy of the one describing the code. We
call this diagram the error state diagram. Its structure is only determined by the con-
volutional code, and differs from the code state diagram only in so far as the branch
labels, which are now the G(ei) matrices.

4.8.1.1.2. The bound resulting from the transfer function

Using [4.11] and [4.9] we can write:

P (e) ≤ 1

2Nσ
T (Z)

∣∣∣∣
Z=exp(−1/4N0)

[4.12]

where:

T (Z) = 1′G1 [4.13]

and the matrix:

G �

∞∑
L=1

∑
EL �=0

L∏
n=1

G(en) [4.14]

is the transfer function of the error state diagram. We will call T (Z) the scalar transfer
function of the error state diagram.
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G G

G

Figure 4.19. Trellis diagram of a TCM with two states and m = 1

and the error state diagram

EXAMPLE 4.9. Let us consider the TCM whose section of the trellis diagram is rep-
resented in Figure 4.19 where m = 1 and M = 4 (binary source, signals at 4 levels).
The error state diagram is also represented in this figure. If we note by e = (e2e1)
the error vector and if ē = 1⊕ e (ē is the complement of e), we can write the general
shape of the matrix G(e) in the following fashion:

G(e2e1) =
1

2

[
Z‖f(00)−f(e2e1)‖

2

Z‖f(10)−f(ē2e1)‖
2

Z‖f(01)−f(e2ē1)‖
2

Z‖f(11)−f(ē2ē1)‖
2

]
[4.15]

The transfer function of the error state diagram is:

G = G(10) [I −G(11)]−1 G(01) [4.16]

where I symbolizes the identity matrix 2× 2.

We can observe that [4.15] and [4.16] can be written without knowing the signals
used by the TCM. Indeed, providing the constellation of the signals amounts to pro-
viding the four values of the function f(·). In turn, these values yield those of the
elements of G(e2e1), for which the transfer function T (Z) is calculated.

First of all let us consider a pulse amplitude modulation (IAM) with four states,
with the following correspondence:

f(00) = +3 f(01) = 1 f(10) = −1 f(11) = −3

In this case we have:

G(00) =
1

2

[
1 1

1 1

]
[4.17]

G(01) =
1

2

[
Z4 Z4

Z4 Z4

]
[4.18]

G(10) =
1

2

[
Z16 Z16

Z16 Z16

]
[4.19]



220 Channel Coding in Communication Networks

and:

G(11) =
1

2

[
Z36 Z4

Z4 Z36

]
[4.20]

which enables us to obtain from [4.16]:

G =
1

2

Z20

1− 1
2 (Z4 + Z36)

[
1 1

1 1

]
[4.21]

and finally the transfer function has the expression:

T (Z) =
1

2
1′G1 =

Z20

1− 1
2 (Z4 + Z36)

[4.22]

If we consider a 4PSK constellation with unitary energy as represented in
Figure 4.20, we will have:

f(00) = 1 f(01) = j f(10) = −1 f(11) = −j

and thus:

G(00) =
1

2

[
1 1

1 1

]
[4.23]

G(01) =
1

2

[
Z2 Z2

Z2 Z2

]
[4.24]

G(10) =
1

2

[
Z4 Z4

Z4 Z4

]
[4.25]

and:

G(11) =
1

2

[
Z2 Z2

Z2 Z2

]
[4.26]

Finally:

G =
1

2

Z6

1− Z2

[
1 1

1 1

]
[4.27]

and, thus, the transfer function is equal to:

T (Z) =
1

2
1′G1 =

Z6

1− Z2
[4.28]
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Figure 4.20. Constellation of signals (4PSK) and its partition

4.8.1.2. Interpretation and symmetry

Examining the matrix G defined in [4.14] we may observe that its element i, j
provides us with an upper bound of the probability than an error event starts at node
i and finishes at node j. Similarly, G1 is a vector whose element i is a bound of the
probability of an error event that starts at node i, and 1′G is a vector whose element j
is a bound of the probability of all the error events that end at node j.

In matrix G we can observe various degrees of symmetry implicated in a TCM. It
may so occur that all the elements of the matrix G are equal: such is the case of the
example of 4PSK above. This fact can be interpreted by saying that all the paths in the
trellis contribute equally to the probability of error (more precisely, we should say that
they contribute equally to the upper bound of the probability of error). In the context of
the analysis of a TCM we will be able to take a single path as reference and calculate
the probability of error knowing that the transmitted signal is the one corresponding
to this path. A sufficient condition for this to occur is that all the matrices G(e) have
equal components. However, this condition is not necessary, as we may by considering
the example of IAM with four states: the matrix G has equal elements although the
components of G(11) are not identical.

If all the matrices G(e) have equal components, the branches of the error state
diagram in the calculation of the bound based on the transfer function can be simply
labeled by the common component of these matrices, leading to a scalar transfer func-
tion. However, to obtain this result it is not necessary that the degree of symmetry of
the code be high. All that is needed is to have a weaker symmetry: the sum of all the
elements of a row (or column) of G is identical for all the rows (or columns).
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With this symmetry, all the states playing the same part, for the calculation of the
probability of error we can choose as reference a single state rather than all the pairs
of states. It will be necessary to consider only the error events that start in a certain
state (when we have the same sum for all the rows) or that end in the same state (when
we have the same sum for all the columns).

Algebraic conditions to obtain a scalar transfer function

We will establish simple conditions that generate a graph whose labels are scalars
and not matrices.

If A is a square matrix N × N and 1 is the eigen-vector of its transpose A′, that
is:

1′A = α1′

where α is a constant, the sum of the components of any column of A does not depend
on the column order. It will be said that A is uniform by columns. Similarly, if 1 is an
eigen-vector of the square matrix B, i.e. if:

B1 = β1

where β is a constant, then the sum of the components of any row does not depend on
the row. In this case it is said that B is uniform by rows.

However, the product and the sum of two uniform matrices (by lines or by
columns) are uniform matrices. For example, if B1 and B2 are uniform by rows with
respective eigen-values β1 and β2, then B3 � B1 + B2 and B4 � B1B2 verifies
the following relations:

B31 = (β1 + β2)1

and:

B41 = β1β21

which shows that B3 and B4 are also uniform by rows, with respective eigen-values
β1 + β2 and β1β2. Moreover, for a matrix A of a uniform order N (by rows or by
columns) we have:

1′A1 = Nα

It follows from the above that if all the matrices G(e) are uniform by rows, or uni-
form by columns, the transfer function (which is a sum of products of error matrices,
as we can see from [4.14]) can be calculated using only scalar labels in the error state
diagram. These labels are the sums of the components of a row (or a column), and we
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say that the TCM is uniform. According to the definition of matrices G(e), we can
observe that G(e) is uniform by rows if the transitions that diverge from any trellis
node carry the same set of labels (the order of transitions is not have important). G(e)
is uniform by columns if the transitions leading to any node of the trellis carry the
same set of labels.

4.8.1.3. Asymptotic considerations

The i, j element of the matrix G is equal to a series of powers of Z. Let νij(δ�)Z
δ2

�

be the general term of the series, where:

νij(δ�) =
1

ML1

n1 +
1

ML2

n2 + · · ·

and nh, h = 1, 2, . . . , is the number of erroneous paths that start at node i at the
moment 0 (for example) and after Lh moments finish at the node j, the distance asso-
ciated with which is δ�. Since 1/MLh is the probability of a series of symbols of
length Lh, νij(δ�) can be interpreted as the average number of paths competing with
the reference path diverging at the node i, and converging at the node j, and being at
a distance of δ� from it. Consequently, the quantity:

νi(δ�) �

∑
j

νij(δ�)

can be interpreted as the average number of paths competing with the reference path,
diverging at node i, converging in any node, and being at the distance of δ� from it.
Similarly:

N(δ�) �
1

N2
σ

∑
i,j

νij(δ�)

is the average number of competition paths at a distance δ�.

For high signal-to-noise ratios, i.e., when N0 → 0, the only terms of the matrix
G that contribute to the probability of error, while differing from zero to a significant
degree, will be of the type νij(δfree)Z

δ2

free . Thus, asymptotically, we will have:

P (e) ∼ 1

2
N(δfree)e

−δ2

free
/4N0

4.8.1.4. A tighter upper bound

An upper bound tighter than [4.12] can be obtained using a more precise expres-
sion that the Bhattacharyya bound in [4.7]. Let us recall that we have exactly:

P{CL → C ′
L} =

1

2
erfc

( |f(CL)− f(C ′
L)|

2
√

N0

)
[4.29]
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Since the minimum value taken by |f(CL) − f(C ′
L)| is equal to δfree, using the

inequality:

erfc
(√

x + y
) ≤ erfc

(√
x
)
ey, x ≥ 0, y ≥ 0 [4.30]

we obtain the bound:

P{CL → C ′
L}

≤ 1

2
erfc

(
δfree

2
√

N0

)
eδfree/4N0 · exp

{
− 1

4N0
|f(CL)− f(C ′

L)|2
}

[4.31]

In conclusion, we obtain the following bound for the probability of error:

P (e) ≤ 1

2
erfc

(
δfree

2
√

N0

)
eδ2

free
/4N0T (Z)

∣∣∣∣
Z=e−1/4N0

[4.32]

We also have, approximately, for strong signals to noise ratios:

P (e) ∼= N(δfree)
1

2
erfc

(
δfree

2
√

N0

)
[4.33]

4.8.1.5. Bit error probability

A bound of the probability of error per bit can be obtained by modifying the error
matrices. The components of the matrix G(e) associated to the transitions from state
i to the state j of the error state diagram must be multiplied by the W ε factor, where
ε is the Hamming weight (i.e., the number of “1”) of the vector b associated to the
transition i→ j.

With this new definition of the error matrices, the component i, j of the matrix G

can now be expressed as a series of powers of unspecified Z and W . The general term
of the series will be µpq(δ�, εh)Zδ2

� W εh , where µpq(δ�, εh) can be interpreted as the
average number of paths with εh errors in bits and at a distance δ� from any path in the
trellis diverging from node i and converging at node j. If we calculate the derivative
of these terms with respect to W and if we pose W = 1, each one of them would yield
the average number of errors in bits by branch generated by the incorrect paths from i
to j. If we divide these quantities by m, the number of source bits by transition in the
trellis, and if the series is summed, we obtain a bound for the bit error probability in
the form:

Pb(e) ≤ 1

2m

∂

∂W
T2(Z,W )

∣∣∣∣
W=1, Z=e−1/4N0

[4.34]

Another upper bound can be determined using the finer inequality obtained above
in [4.7]. We then have:

Pb(e) ≤ 1

2m
erfc

(
δfree

2
√

N0

)
exp(δ2

free/4N0)
∂

∂W
T2(Z,W )

∣∣∣∣
W=1, Z=e−1/4N0

[4.35]
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4.8.1.6. Lower bound of the probability of error

We can also calculate a lower bound of the probability of an error event. Our
calculations are based on the fact that the probability of error for a real decoder is
larger than that obtained for an ideal decoder using collateral information brought
by a “benevolent genius”. The decoder helped by this genius functions as follows.
The genius observes a long series of transmitted symbols, or, which is equivalent, the
sequence:

C = (ci)
K−1
i=0

of labels, and informs the decoder that the transmitted sequence is C or the sequence:

C ′ = (c′i)
K−1
i=0

where C ′ is randomly selected among the possible transmitted sequences that are at
the smallest Euclidean distance from C (not necessarily δfree, because C may not
have a sequence C ′ at the free distance).

The probability of error of this decoder helped by the “genius” is the one obtained
on the basis of a binary transmission diagram, in which the only sequences that can be
transmitted are C and C ′:

PG(e | C) =
1

2
erfc

( |f(C)− f(C ′)|
2
√

N0

)
[4.36]

Let us now consider the probabilities PG(e). We have:

PG(e) =
∑
C

P (C)
1

2
erfc

( |f(C)− f(C ′)|
2
√

N0

)

≥
∑
C

I(C)P (C)
1

2
erfc

(
δfree

2
√

N0

)
[4.37]

where I(C) = 1 if C admits a sequence a the δfree distance:

min
C′

d[f(C), f(C ′)] = δfree

and I(C) = 0 otherwise. In conclusion:

P (e) ≥ ψ
1

2
erfc

(
δfree

2
√

N0

)

where:

ψ =
∑
C

P (C)I(C) [4.38]
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represent the probability that at every moment a path in the trellis of the code, selected
randomly, has another path that diverges from that of this moment, and converges
with it later, and such that the Euclidean distance between them be equal δfree. If all
the sequences have this property, the following lower bound is obtained:

P (e) ≥ 1

2
erfc

(
δfree

2
√

N0

)
[4.39]

but that, in general, is not always true. For [4.39] to be valid, it is necessary that all the
paths in the trellis be equivalent, and that each of them has a path at the δfree distance.
This result is obtained if the elements of each error matrix are equal.

We can finally obtain a lower bound of the probability of error per bit noting that
the average fraction of erroneous information bits in the first branch of an error event
cannot be lower than 1/m. Thus:

Pb ≥ ψ

m

1

2
erfc

(
δfree

2
√

N0

)

4.8.2. Examples

Let us now consider some examples of calculations of error probabilities for the
TCM. According to the theory developed above, this calculation comprises two stages.
The first is the evaluation of the transfer function of the error state diagram with formal
labels (here we would have to remember that matrix operations are not commutative
if the TCM is not uniform). In the second we replace formal labels with real labels
(matrices or scalars) and calculate the matrix G.

Code with four states

A TCM with four states is represented in Figure 4.21 with the corresponding dia-
gram of error state. Tα, Tβ and Tγ represent respectively the transfer function of the
error state diagram from the starting node towards the nodes α, β and γ. We can write:

Tα = G(10) + TγG(00)

Tβ = TαG(11) + TβG(01)

Tγ = TαG(01) + TβG(11)

T (Z) = TγG(10)

To simplify, we only examine here the case where the labels are scalar and thus the
property of commutation is verified. Defining g0 � G(00), g1 � G(01), g2 � G(10)
and g3 � G(11), we obtain the following result:

T (Z) =
g2
2(g1 − g2

1 + g2
3)

(1− g0g1)(1− g1)− g0g2
3

[4.40]
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G
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Figure 4.21. Trellis diagram for a TCM with four states with m = 1,
and the corresponding error state diagram

IAM with 4 states

Using equation [4.40] we can obtain an upper bound of the probability of an error
event by replacing gi with the values obtained on the basis of the calculation of the
error matrices G(·). We will perform this operation for a constellation IAM4 with:

f(00) = +3, f(01) = +1, f(10) = −1, f(11) = −3

The matrices G for this constellation have been calculated in [4.17]–[4.20]. Since
these matrices are uniform by lines, the transfer function can be obtained on the basis
of equation [4.40]:

T (Z) = Z36 4− 3Z4 + 2Z36 + Z68

4− 8Z8 + 3Z8 − 2Z40 − Z72

= Z36 +
5

4
Z40 +

7

4
Z44 + · · · [4.41]

We see that we have δ2
free = 36, value obtained for an average energy E =

(9 + 1 + 1 + 9)/4 = 5. A binary IAM (±1) without coding would have a minimum
distance δ2

min = 4 and an energy E ′ = 1, and thus the coding gain of this TCM is:

γ =
36

20
= 1.8⇒ 2.55 dB

4PSK

With a 4PSK with unitary energy and for:

f(00) = 1, f(01) = j, f(10) = −1, f(11) = −j

we obtain the G matrices on the basis of the equations [4.23]–[4.26]. Here we have a
uniformity, and, thus, the transfer function obtained from [4.40] becomes:

T (Z) =
Z10

1− 2Z2
= Z10 + 2Z12 + 4Z14 + · · · [4.42]
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where δ2
free = 10 (value obtained with E = 1). A binary PSK with antipodal signals

±1 will have a distance of δ2
min = 4 and an energy E ′ = 1. Thus, the coding gain

obtained with this TCM is:

γ =
10

4
= 2.5⇒ 4 dB

If we express the probabilities of error explicitly revealing the ratio Eb/N0 of
[4.42], it follows that (observing that E = Eb = 1):

P (e) ≤ 1

2

e−5Eb/2N0

1− 2e−Eb/2N0

The improved upper bound [4.32] yields:

P (e) ≤ 1

2
erfc

(√
5

2

Eb
N0

)
· 1

1− 2e−Eb/2N0

The lower bound [4.39] yields:

P (e) ≥ 1

2
erfc

(√
5

2

Eb
N0

)

These probabilities of error should be compared with those of 2PSK modulation
without coding equal to:

P (e) =
1

2
erfc

(√ Eb
N0

)

These four probabilities of error are represented in Figure 4.22. On the basis of
Figure 4.22 we can observe that the lower bound and the improved upper bound are
very close to each other and very close to the exact value of the probability of error.
Unfortunately that happens only for TCM built on the basis of constellations with a
small number of points and for trellis with a low number of states. Moreover, if we
compare the probability P (e) for a 2PSK modulation without coding with the two
TCM bounds, we explicitly see that the coding gain is very close to 5/2, as has been
mentioned previously.

4.8.3. Calculation of δfree

The results obtained for the upper and lower bounds of probability of error of
a TCM show than δfree plays a central part in determining its performances. Conse-
quently, if we need to retain only one parameter to evaluate the performance of a TCM,
it is its free distance δfree. It is thus normal to look for an algorithm to determine this
distance.
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Use of the error state diagram

The first technique that we will describe for the calculation of δfree is based on
the error state diagram. We have already observed that the transfer function T (Z)
contains information on the δfree distance. In the preceding examples we saw that the
value of δ2

free can be obtained on the basis of the serial development of this function:
the smallest exhibitor of Z in this series is δ2

free. However, it should be known that an
exact expression of T (Z) cannot be determined.

Figure 4.22. Probabilities of error of a TCM with 4 states with 4PSK modulation. BST: upper
bound based on the transfer function. BSTA: improved upper bound based on the transfer

function. BI: lower bound. The probability of error of the 2PSK without coding is also
represented. Here ηb = Eb/N0

For this reason we will describe an algorithm for the numerical calculation of δfree.
Let us consider the trellis associated to the TCM; each pair of branches in a section
of the trellis corresponds to a distance between the signals that label the branches.
If there are parallel transitions, each branch will be associated to a sub-constellation.
In the latter case, we will use only the minimum distance between two signals: one
belonging to the first sub-constellation, the other belonging to the second. The square
of the distance between the sequences of signals associated to the two paths in the
trellis is obtained by summing up the squares of the distances individually.

The algorithm is based on the update of the components of a D(n) = (δ
(n)
ij ) matrix,

which is equal to the squares of the minimum distances between all the pairs of paths
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that diverge from an initial state and reach the i and j states at a discrete moment n.
Two pairs of this type of path are represented in Figure 4.23. We can observe there
that the matrix D(n) is symmetric, and that its components on the principal diagonal
are the distances between the paths that converge in a single state (“error events”).

The algorithm is described below.

Figure 4.23. Two pairs of paths that diverge at the moment n = 0

and reach the i, j states at the same moment

Stage 1

For each state i find the 2m states (“predecessors”) by which a transition to i is
possible and record them in a table. Let δij = −1 for any i and j ≥ i. If there
are parallel transitions, for each i let δii be equal to the smallest Euclidean distance
between the signals associated with the parallel transitions that lead to the state i.

Stage 2

For each pair of states (i, j), j ≥ i find the minimum Euclidean distance between
the pairs of paths that diverge from the same (any) starting states and join the same
pair of states i, j at the same moment. Two pairs of this kind are shown in Figure 4.24.
This distance is δ

(1)
ij .

Stage 3

For the two states of the pair (i, j), j > i find in the table defined at Stage 1 the
2m predecessors i1, . . . , i2m and j1, . . . , j2m (see Figure 4.25). In general, there will
be 22m possible paths at the moment n− 1 that pass by i and j at the moment n. They
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pass by the pairs:

(i1, j1), (i1, j2), . . . , (i1, j2m)

· · ·
(i2m , j1), (i2m , j2), . . . , (i2m , j2m)

n

i

j

Figure 4.24. Two pairs of paths that start from two different
states and rejoin the same pair of states at the same moment

The minimum distance between all the paths that pass by (i, j) at the moment n
is:

δ
(n)
ij = min

{
δ
(n−1)
i1j1

+ δ2(i1 → i, j1 → j),

δ
(n−1)
i1j2

+ δ2(i1 → i, j2 → j),

· · ·
δ
(n−1)
i1j2m

+ δ2(i1 → i, jM → j),

· · · [4.43]

δ
(n−1)
i2m j2m

+ δ2(i2m → i, j2m → j)
}

In [4.43], the distances δ(n−1) stem from the calculations at Stage 2, where, for
example, δ(i1 → i, j1 → j) is the Euclidean distance between the two signals asso-
ciated to the transitions i1 → i and j1 → j. These can be calculated only once, at
the beginning. When one of the already calculated distances δ

(n−1)
�m is equal to −1,

the corresponding term in the second member of [4.43] disappears. Indeed, the value
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δ
(n−1)
�m = −1 tells us that there are no pairs of paths that pass by the states � and m

at moment n− 1. When i = j, δ
(n)
ii represents the square of the distance between two

paths that meet at the stage n and state i. It is an error event. If δ
(n)
ii < δ

(n−1)
ii , then

δ
(n)
ii replaces δ

(n−1)
ii in the matrix D(n).

j

j

j

i

i

i

n+1 n

Figure 4.25. Predecessors of states i, j

Stage 4

If:

δ
(n)
ij < min

i
δ
(n)
ii [4.44]

for at least one pair (i, j), then we change n to n + 1 and return to Stage 3. In other
words, it is necessary to stop the iterations and to define:

δ2
free = min

i
δ
(n)
ii

4.9. Power spectral density

Let us consider here the calculation of the power spectral density of a TCM. We
will determine the sufficient conditions for the spectrum of this TCM signal to be
equal to that of an uncoded signal. To simplify, we will consider two-dimensional
linear modulations: thus the signal transmitted on the channel has the following form:

y(t) =
∞∑

n=−∞

ans(t− nT ) [4.45]
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where s(t) is a signal defined in the interval (0, T ) of the Fourier transform S(f),
and (an) is a series of complex coded symbols produced by the TCM. If the source
symbols are independent and have equal probability, it stems from the regular and
invariant in time structure of the TCM trellis that the sequence (an) is stationary.
Under these conditions we obtain the following result. If:

E[an] = µa

and:

E[a�a
∗
m] = σ2

aρ�−m + |µa|2

it results from this that ρ0 = 1 and ρ∞ = 0, and consequently the power spectral
density of y(t) is equal to:

G(f) = G(c)(f) + G(d)(f) [4.46]

where G(c)(f), the continuous part of the spectrum, has an expression:

G(c)(f) =
σ2

a

T
|S(f)|2

∞∑
�=−∞

ρke−j2πf�T [4.47]

and G(d)(f), the discrete part of the spectrum (the “striped spectrum”) is equal:

G(d)(f) =
|µa|2
T 2
|S(f)|2

∞∑
�=−∞

δ

(
f − �

T

)
[4.48]

If the symbols an are not correlated (i.e. ρ� = δ0,l with δ being the Kronecker
symbol) we obtain the following particular result:

G(c)(f) =
σ2

a

T
|S(f)|2 [4.49]

We have obtained the power spectral density without coding at the output of a
modulator that uses the same signal s(t) as the TCM. We will now examine the con-
ditions for a TCM to have the same power spectral density as an uncoded signal (in
particular, it does not lead to an expansion of the bandwidth).

Let us admit that µa = 0, which implies that there are no spectral stripes. We
are not restrictive, if we make the assumption that σ2

a = 1. Let σn be the state of
the encoder when the symbol xn is transmitted, and σn+1 be the following state. The
correlation coefficients ρ� can be expressed in the form:

ρk =
∑
ak

∑
σk

∑
σ1

∑
a0

aka∗
0P [ak, σk, σ1, a0]
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with:

P [ak, σk, σ1, a0] = P [ak | σk] · P [σk, σ1] · P [a0 | σ1]

which becomes:

ρk =
∑
σk

∑
σ1

E[ak | σk] · P [σk, σ1] · E[a∗
0 | σ1]

Therefore, for ρ� = 0, � 
= 0 it is enough that E[an|σn] = 0 or E[an−1|σn] = 0,
for each σn. The first condition is equivalent to saying that for all the encoder states the
transmitted symbols have a zero mean. The second condition is equivalent to affirming
that for each encoder state the mean of the symbols that make it possible to the encoder
to reach this state is zero. This condition is verified for many good TCM.

Let us, finally, consider the spectral stripes. A sufficient condition so that there are
none is that µa = 0, i.e. the mean of the symbols at the output of the encoder is equal
to zero.

4.10. Multi-level coding

Let us consider, for example, the 8PSK signals. The partition of this constellation
is represented in Figure 4.10, where δ0, δ1, and δ2 are the Euclidean distances between
the signals of the sub-constellations corresponding to the various partition levels. We
suppose signals to have a unitary energy, and thus:

δ2
0 = 4 sin2 π/8 ≈ 0.5858 δ2

1 = 2 δ2
2 = 4

We observe that the three bits are protected unequally. That is due to the fact that
bit 3 is protected from the noise by the Euclidean distance δ0, bit 2 by the Euclidean
distance δ1, and bit 1 by the Euclidean distance δ2. The unequal protection of the three
bits follows from δ0 < δ1 < δ2.

If we want to increase the reliability of the transmission, the use of the same code
to protect the three bits is thus not an effective solution. A better solution consists of
using three different codes:

– the most powerful code, C0, to protect bit 3;

– the C1 code, less powerful than C0, to protect bit 2;

– the C2 code, less powerful than C1, to protect bit 1.

Proceeding thus we generate a coded modulation: indeed, we can see the coded
modulation as a technique that combines the Euclidean distances (generated by the
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constellation of signals) with the Hamming distances (generated by the codes). There-
fore, if we note d0, d1, and d2 the minimum Hamming distances of the codes C0, C1,
and C2, we obtain a good coding efficiency choosing:

d0 > d1 > d2

Figure 4.26 shows the diagram of multi-level coded modulation obtained following
this principle. Coded binary symbols are used, by triplet, to choose a signal of the
“elementary” 8PSK constellation.

f
C

C

C

Figure 4.26. Coded modulation system with three levels

We observe here that trellis-coded modulation can be seen as a particular case of
the multi-level modulation, for which certain bits are coded by a convolutional code,
while other bits are uncoded. If we use block codes, the construction that follows is
called block coded modulation (BCM).

4.10.1. Block coded modulation

We will describe the principal properties of BCM. Figure 4.27 shows a general
outline with L levels.

The starting point is an “elementary” constellation (8PSK of the example above)
with M signals, and a partition with L levels. At the 0 level the elementary constel-
lation is split into M0 sub-constellations, each with M/M0 signals. At level 1 each
sub-constellation is split into M1 sub-constellations, each with M/(M0M1) signals,
etc, until the L−1 level with M sub-constellations, each with one signal. If we number
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C
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L-1

1 Sn

Figure 4.27. Construction of a BCM diagram with L levels

the sub-constellations at the level of the � partition, we obtain a bijective correspon-
dence between the set of integers {0, 1, . . . ,M� − 1} and the sub-constellations of
this level. If the alphabets of L linear codes are formed by these sets, each L-tuple
(a0i, . . . , a(L−1)i) exactly defines an elementary signal. The L linear block encoders
have the same block length n and have respectively the dimensions k0, . . . , kL−1 and
Hamming distances d0, . . . , dL−1. The modulator f(·) generates an n-tuple of ele-
mentary signals at its output.

The number of different signals is equal to the number of codewords:

M =
L−1∏
�=0

qki

i

where qi is the number of symbols in the alphabet of code Ci. The minimum Euclidean
distance between the n-tuples of elementary signals is bounded less well by:

δ2
min ≥ min (δ2

0 d0, δ
2
1 d1, . . . , δ

2
L dL), [4.50]

where δ� is the minimum Euclidean distance between the signals of the sub-constel-
lations of the level � partition. To demonstrate [4.50] it is sufficient to note that at the
� level where the minimum Euclidean distance is d� two words of the C� code differ
in at least d� positions; consequently, both n-tuples corresponding to the elementary
signals will be at least at an Euclidean distance whose square is equal to δ2

� d�.

OBSERVATION. If we impose the value of the square of the minimum Euclidean
distance, we will be able to choose the minimum Hamming distances in the following
manner:

d� = �δ2
min/δ2

� 
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where �x
 is the smallest integer that is not inferior to x.

EXAMPLE 4.10. Let us consider L = 3, n = 7 and the 8PSK as an elementary constel-
lation with a correspondence between the binary symbols and the signals of the con-
stellation illustrated in Figure 4.28. Let C2 be the non-redundant binary code (7,7,1),
C1 be the binary parity code (7,6,2), and C0 the binary code with repetition (7,1,7).
The resulting BCM diagram will have 21+6+7 = 214 signals, 14 dimensions, and thus
1 bit per dimension (like the 4PSK). Its minimum Euclidean distance, standardized
with respect to average energy E of the signals, is upper bounded by [4.50]:

d2
min

E ≥ min {4× 1, 2× 2, 0.586× 7} = 4

In this case we can demonstrate that it is exactly equal to 4 (or an asymptotic
coding gain of 3 dB with respect to 4PSK).

S0

f

f

f

f

f

f

f

f

S7
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S1

S2

S3

S4

S5

S6

S7

Figure 4.28. Elementary constellation: 8PSK

4.10.2. Decoding of multilevel codes by stages

We will describe the principle of decoding by stages of a multilevel code. In certain
cases (for example, when L = 2 and C1 is a non-redundant code) decoding by stages
is optimal. However, in the general case, it is a sub-optimal algorithm, albeit of a much
lower complexity than the optimal algorithm.

The basic idea of the stages algorithm is as follows: the codes C0, . . . , CL−1 are
decoded the ones after the other. First of all, we decode C0, the most powerful code;
then we decode C1 supposing that the C0 code was decoded correctly; then we decode
C2 supposing that the two preceding codes were decoded correctly, etc.
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Figure 4.29. Decoder by stages for a block coded modulation with three levels

The block diagram of a multilevel decoder is illustrated in Figure 4.29 for L = 3.
If the received signal is:

r = F (c0, c1, c2) + n

where c0, c1, c2 are the words of code and n is the vector of noise, the receiver must
estimate the three words of code c0, c1, c2 to demodulate r. In theory, the metrics of
all the possible vectors F (c0, c1, c2) should be calculated before finding their mini-
mum value. This process is not practical for signal constellations of a large size. In
decoding by stages, the D0 decoder estimates c0 for all the possible choices of c1, c2;
then theD1 decoder estimates c1 for all the possible choices of c2, supposing a correct
choice of c0. Finally, the D2 decoder estimates c2 supposing a correct choice of c0

and c1. We observe here that the decoding of D� yields an estimate of k� source sym-
bols, and at each level of this algorithm we obtain a block of source symbols, which
is sent to a parallel/serial converter.

4.11. Probability of error for the BCM

We will now describe a procedure of calculation of the BCM performances. In par-
ticular, we will calculate the probabilities of error per symbol and bit. Our description
will be based on trellis, where a path corresponds to a series of source symbols, and,
also, to a series of elementary signals. This trellis can be used for optimal decoding,
i.e. with maximum likelihood (using the Viterbi algorithm), just as for the calculation
of the probability of error. The trellis will have n levels where n is the common length
of the elementary words of codes, and can be generated by taking the direct product
of the L trellis of the codes C0, . . . , CL−1.

Let x = (s1, . . . , sn) be a n-tuple of block coded signals. If we use the union
bound with the assumption that the coded symbols have equal probability, we obtain:

P (e) =
1

M
M∑
i=1

P (e|xi) ≤ 1

M
M∑
i=1

∑
j �=i

P [xi → xj ] [4.51]
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where M is the total number of coded signals, noted x1, . . . ,xM, and P [xi → xj ]
is the pair-wise error probability. The exact calculation of this expression requires
enumerating all the pairs xi 
= xj , or, which is equivalent, all the pairs of words of
the code C = C0 × . . .× CL−1.

If T0, T1, . . . , TL−1 are the trellis of C0, C1, . . . , CL−1, the trellis representing the
code will be the trellis produced:

T = T0 ⊗ T1 ⊗ . . .⊗ TL−1

Each state of T is a L-tuple of code states, and each of its branches is labeled by
the corresponding value of the vector c. Thus, each word x is represented by a path in
T .

If we do not make an assumption on the symmetry of the BCM diagram, we need
to consider the product T 2 of the two trellis, the first representing the sequence of
symbols transmitted via the channel and the second the sequence of symbols received.

Probability of error per bit

To obtain the probability of error per bit we multiply each branch label of the T 2

trellis by Iα, where I is unspecified and α is the number of bits where the two signals
associated with the branch differ. Let T (Z, I) be the new transfer function of the T 2

trellis; in a Gaussian channel the probability of error per symbol will be upper bounded
by:

Pb(e) ≤ 1

M
1

m

∂

∂I
T (Z, I)

∣∣∣∣
I=1,Z=exp(−1/4N0)

where m is the number of information bits associated to each coded symbol.

4.11.1. Additive Gaussian channel

If the transmission takes place through channel with additive Gaussian noise of
power spectral density N0/2, the Bhattacharyya bound yields:

P [x→ x̂] ≤
n∏

�=1

Zδ2(x�,x̂�) [4.52]

where Z = exp(−1/4N0), and δ represents the Euclidean distance.

If the quantity Zδ2(x�,x̂�) labels the branch of the trellis product T 2 associated
with the pair (x�, x̂�), the transfer function T (Z) of T 2 enumerates all the possible
P [x→ x̂]. Among these quantities we also obtain those where x = x̂, which number
M; we will thus write on the basis of [4.51]:

P (e) ≤ 1

M [T (Z)−M] [4.53]
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4.11.2. Calculation of the transfer function

The calculation of the transfer function of T 2 can be performed by representing
each section of the trellis by a matrix. Let us consider the case of additive Gaussian
noise, and suppose that the �th section of the trellis has ν1 input nodes and ν2 output
nodes. We will note by s one of its input nodes and by t one of its output nodes, so
that the pair (s, t) corresponds to a transition between these two nodes. This section is
described by a T � matrix of size ν1 × ν2 whose element (s, t) is zero if there are no
branches connecting s to t, and equal to Zd2(x�,x̂�) if the transition (s, t) corresponds
to the �th branch of the trellis associated with the pair (x�, x̂�) of coded signals. By
calculating the product

∏n
�=1 T � we obtain the required transfer function.

EXAMPLE 4.11. Let us again consider the BCM diagram described in example 4.10.
The trellis T1, T2, T3 and T are represented in Figure 4.30. For the additive Gaussian
channel we obtain the following bound for the symbol error probability:

P (e) ≤91Z8 + 64Z8,2 + 448Z13,86 + 1001Z16

+ 1344Z19,52 + 3003Z24 + 2240Z25,18

+ 2240Z30,82 + 3003Z32 + 1344Z36,48

+ 1001Z40 + 448Z42,14 + 64Z47,8

+ 91Z48 + Z56
∣∣
Z=exp(−Eb/4N0)

whereas the bit error probability is equal to:

Pb(e) ≤235

14
Z8 +

184

7
Z8,2 + 200Z13,86

+
2321

7
Z16 + 648Z19,52 +

18513

14
Z24

+ 1160Z25,18 + 1240Z30,82 +
10758

7
Z32

+ 792Z36,48 +
7645

14
Z40 + 280Z42,14

+
296

7
Z47,8 +

345

7
Z48 +

1

2
Z56

∣∣∣∣
Z=exp(−Eb/4N0)

These error probabilities are illustrated in Figures 4.31 and 4.32 These figures also
show a bound that improves [4.53] using the inequality [4.30].
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Figure 4.30. Trellis produced for the BCM diagram of example 4.10

4.12. Coded modulations for channels with fading

For the Gaussian channel considered in this chapter until now the received signal
is affected only by constant attenuation and delay.

We will now consider a channel affected by fading, i.e. whose attenuation is vari-
able in time. This situation corresponds to channels with multiple paths with move-
ments of the transmitter with respect to the receiver. That causes a variation in the
time of the amplitude and the phase of the received signal, effects that can seriously
deteriorate the performance of a communication system and justify the use of channel
coding.

4.12.1. Modeling of channels with fading

The propagation by multiple paths takes place when the electromagnetic energy
that carries the information signals propagates between the transmitter and the receiver
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Figure 4.31. Probability of error per symbol of a BCM diagram
in an additive Gaussian channel

following a multiple-paths model. This situation occurs, for example, in the case
of transmissions inside a building, or communications terrestrial radio-mobile. The
waves are reflected from fixed or mobile obstacles (buildings, hills, cars, etc.) and
lead to multiple paths.

4.12.1.1. Delay spread

The components of the signal that passes along several paths, direct or indirect,
have different delays. They combine to generate a deformed version of the transmitted
signal. If an ideal impulse had been transmitted and if the bandwidth of the channel
is rather broad, the received signal will consist of several impulses whose delays and
phases are different. These impulses each correspond to a propagation path. We call
delay spread the difference in time between the first impulse received and the last. If
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Figure 4.32. Probability of error per bit of a BCM
diagram in an additive Gaussian channel

the band of the channel is not sufficiently broad, the impulses are widened and super-
imposed. In the context of this chapter we will say that the delay spread introduces a
temporal dispersion and selective frequency fading.

If Bx is the bandwidth of the transmitted signal and if it is small compared to the
channel bandwidth, the signal is not deformed, and there is no selectivity in frequen-
cies. As Bx increases, the shape of the signal will deteriorate. A measurement of the
band of the signal beyond which this deformation becomes considerable is generally
given according to the channel coherence band, noted Bc and defined as the inverse
of the delay spread. The coherence band is equal to the frequency separation of two
components of the signal that undergo two independent attenuations. A signal with
Bx � Bc is prone to selective frequency fading; more precisely, the envelope and
the phase of two non-modulated carriers transmitted through a channel with fading
will be very different if the instantaneous frequency deviation between these carriers
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is greater than Bc. The term “selective frequency fading” expresses this independence
of correlation between the various components of the transmitted signal.

4.12.1.2. Doppler-frequency spread

When the transmitter and the receiver are moving with respect to each other, the
received signal is subjected to a constant frequency shift (Doppler shift) proportional
to the difference in relative speeds and the frequency of the carrier. This Doppler effect
combined with the propagation along multiple paths causes a dispersion in frequencies
and selective fading in time. The dispersion in frequencies, which causes a widening of
the signal band, occurs when the channel changes characteristics during signal prop-
agation. We will demonstrate that the Doppler-frequency spread corresponds to the
delay spread.

To simplify, let us suppose that the transmitted signal consists of a pure carrier of
infinite duration, whose spectrum is an ideal impulse (Dirac). The power spectrum of
the received signal is equal to a sum of impulses, each with a frequency shift corre-
sponding to a path. This is a frequency dispersion. We define Doppler spread as the
difference between smallest and largest of these frequency shifts corresponding to the
various paths.

Let Tx be the duration of the transmitted signal: if it is sufficiently large, there is
no temporal selectivity. As it decreases, the spectrum of the signal widens, and the
Doppler effect modifies the signal deforming its waveform. It is said that the channel
is selective in time.

The duration of the signal, above which this deformation becomes considerable, is
called the coherence time of the channel. We note it by Tc, and define it as the inverse
of the Doppler spread. If Tx is the duration of an impulse, and if it is short to the point
that the channel does not change to a significant degree during the transmission, the
signal will be received without deformation. Its deformation, on the contrary, becomes
perceptible, if Tx is much larger than Tc, the coherence time of the channel.

4.12.1.3. Classification of channels with fading

The description above has demonstrated that the two quantities Bc and Tc describe
how the channel behaves with respect to the transmitted signal. In particular:

– if Bx � Bc, there is no selective fading in frequencies, and thus no temporal
dispersion. The transfer function of the channel is constant, and the channel is known
as flat, or non-selective, in frequency;

– if Tx � Tc, there is no selective fading in time, and the channel is called flat,
or non-selective, in time.
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4.12.1.4. Examples of radio channels with fading

4.12.1.4.1. Propagation along to two paths: effect of movement

Let us consider the situation represented in Figure 4.33. The vehicle moves at a
constant speed v; the transmitted signal is non-modulated carrier with the frequency
f0 propagated along two paths, which, for simplicity’s sake, we suppose to have the
same delay and the same attenuation. The angles of reception of the two paths are
noted 0 and γ. The Doppler effect generates the following received signal:

y(t) = A exp
[
j2πf0

(
1− v

c

)
t
]

+ A exp
[
j2πf0

(
1− v

c
cos γ

)
t
]

[4.54]

We observe according to [4.54] that the received signal includes a pair of complex
sinusoids: this effect can be interpreted as a dilation of the signal spectrum, and thus
a frequency dispersion caused by the channel and due to the combined effects of the
Doppler shift and the propagation along multiple paths.

Figure 4.33. Propagation along two paths: effect of movement

The equation [4.54] can be written in the form:

y(t) = A
[
exp

(
−j2πf0

v

c
t
)

+ exp
(
−j2πf0

v

c
cos γt

)]
ej2πf0t [4.55]

The absolute value of the term inside the square brackets is the instantaneous enve-
lope of the received signal:

R(t) = 2A

∣∣∣∣cos

[
2π

v

c
f0

1− cos γ

2
t

]∣∣∣∣
The last equation shows an important effect: the envelope of the received signal

varies with time as a sinusoid. Its frequency is:

v

c
f0

1− cos γ

2

We have at the same time a selective fading and a frequency dispersion.

4.12.1.4.2. Propagation along multiple paths: effect of movement

Let us suppose now that the transmitted signal is received along N paths, as
depicted in Figure 4.34. The receiver is moving with a speed v and Ai, θi and γi are
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respectively the amplitude, the phase and the angle of incidence of the vector of the
ith path. The received signal contains contributions affected by various Doppler shifts,
i.e.:

fi � f0
v

c
cos γi, i = 1, 2, . . . , N

The received analytical signal can be written in the form:

y(t) =

N∑
i=1

Ai exp j[2π(f0 − fi)t + θi] [4.56]

The complex envelope of the received signal is:

R(t)ejΘ(t) =

N∑
i=1

Aie
−j(2πfit−θi)

If the number N of paths is sufficiently large, we can suppose that the attenuations
Ai and the phases 2πfit − θi are independent random variables. Using the central
bound theorem we obtain the following result: at every moment, since N → ∞, the
resulting sum tends towards a random Gaussian variable. The complex envelope of
the received signal is a random process in base band, whose real and imaginary parts
are independent; they have a zero mean and the same variance σ2. In this case, R(t)
and Θ(t) are two independent random processes, where Θ(t) has a uniform density in
the (0, 2π) interval, and R(t) has a Rayleigh density, i.e.:

fR(r) =

⎧⎨
⎩

r

σ2
e−r2/2σ2

, 0 ≤ r <∞
0, r < 0

[4.57]

We can also modify this channel model supposing that, as it often happens in
practice, there exists a path, whose power is much greater than that of other paths. We
can thus express the complex envelope of the received signal in the form:

R(t)ejΘ(t) = u(t)ejα(t) + v(t)ejβ(t)

where u(t) has a Rayleigh probability density function, α(t) is uniform in (0, 2π),
and v(t) and β(t) are non-random signals. In this model, R(t) has a Rice probability
density function:

fR(r) =
r

σ2
exp

{
−r2 + v2

2σ2

}
I0

( rv

σ2

)
[4.58]

where r ≥ 0, and I0(·) is related to the modified Bessel of the order zero and first
type. Here R(t) and Θ(t) are not independent.

In [4.58] v is the envelope of the fixed path component, while 2σ2 is the power of
the Rayleigh component. The “Rice factor”:

K =
v2

2σ2
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Figure 4.34. Propagation along multiple paths: effect of movement

is equal to the relationship between the power of the fixed component and the power of
the Rayleigh component. When K → 0, i.e., the power of the fixed path tends towards
zero, since I0(0) = 1 the density of Rice probability becomes a Rayleigh density. In
addition, if K → ∞, i.e., if the power of the fixed path is dominating with respect
to the power of other random paths, the Rice density becomes equal to a Gaussian
density.

4.12.2. Rayleigh fading channel: Euclidean distance and Hamming distance

The models of channel that we have examined are based on a narrow band trans-
mission, which is equivalent to supposing that the duration of a symbol is much larger
than the delay spread caused by the propagation by multiple paths. If such is the case,
all the frequency components of the transmitted signal undergo the same attenuation
and the same phase offset; the channel is therefore flat in frequency. If, moreover, the
channel changes very slowly with respect to the duration of a symbol (very slow move-
ment of the transmitter and the receiver) the fading R(t) exp[jΘ(t)] remains almost
constant during the transmission of a symbol.

This flat in frequency and slow in time model of fading will be studied more thor-
oughly later on. If the fading is non-selective, we can model it as a multiplicative
process, whereas if it is slow it can be modeled by a random variable with a constant
value for the duration of the symbol. If we also admit the presence of Gaussian noise,
and if x̃(t) is the complex envelope of the signal transmitted during the time interval
(0, T ), then the complex envelope of the signal received at the output of a channel
affected by a fading that is slow and flat in frequency can be written in the form:

r̃(t) = R ejΘx̃(t) + ñ(t) [4.59]
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where ñ(t) represents complex Gaussian noise and R ejΘ is a random Gaussian vari-
able, with Θ having a uniform probability distribution and R is a Rice or Rayleigh
probability distribution.

If, moreover, we suppose that the fading is sufficiently slow so that phase Θ can be
estimated with a sufficient precision, a coherent detection becomes possible, and thus
the model [4.59] may be simplified in the following path:

r̃(t) = Rx̃(t) + ñ(t) [4.60]

We can see that with this model the only difference that remains with the Gaussian
channel is that R, instead of being a constant attenuation, is now a random variable,
whose value balances the amplitude and, consequently, the power of the received sig-
nal. Let us suppose then that the value of R (which we will call here the state of the
channel) is known exactly by the receiver. Optimal detection would consist in this case
of minimizing the Euclidean distance:

∫ T

0

[r(t)−Rx(t)]2 dt or |r −Rx|2 [4.61]

with respect to the transmitted signal x(t) (or to the transmitted vector x).

Let us consider the transmission of a coded sequence x = (s1, s2, . . . , sn), whose
components are elementary signals belonging to a constellation S. Here we do not
distinguish between block codes and convolutional codes (with soft decoding) or
coded modulation. Moreover, we suppose that due to perfect interleaving (i.e., of infi-
nite depth), the random variables representing the fading that affects the sk signals
are independent. We are able to write for the components of the received sequence
(r1, r2, . . . , rn):

rk = Rksk + nk [4.62]

where Rk are independent and, with the assumption of white noise, the noise compo-
nents nk are also independent.

Coherent detection of the coded sequence is based on the search for the sequence
x = (s1, . . . , sn) that minimizes the distance:

n∑
k=1

|rk −Rksk|2 [4.63]

The pair-wise error probability can be written in the form:

P{x→ x̂} = P (X < 0) [4.64]
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where:

X �

n∑
k=1

[|rk −Rkŝk|2 − |rk −Rksk|2
]

=
n∑

k=1

[|Rk(sk − ŝk) + nk|2 − |nk|2
]

=
n∑

k=1

[
R2

k|sk − ŝk|2 + 2Rk(nk, sk − ŝk)
]

[4.65]

Using the Chernoff bound, valid for any random continuous variable X:

P (X < 0) ≤ min
z>0

ΦX(z) [4.66]

where Φ(z) is the bilateral Laplace transform of the probability density of X , i.e.:

ΦX(z) � E
[
e−zX

]
[4.67]

With the preceding assumptions, all the terms in the sum (4.65) are independent,
and noting that Rk observations are independent and distributed identically we obtain:

ΦX(z) =

n∏
k=1

ERk
[exp z(N0z − 1)R2

k|sk − ŝk|2] [4.68]

=
∏
k∈K

ERk
[exp z(N0z − 1)R2

k|sk − ŝk|2] [4.69]

where the last equality differs from the one above, since the set where k takes its
values is reduced from {1, . . . , n} to K, the set of k, such that sk 
= ŝk. That can be
done, because for values of k that yield sk = ŝk, the exponentials in [4.69] take the
value of 1 and thus do not contribute to ΦX(z) at all.

The number of elements in the set K is equal to the Hamming distance between x

and x̂, i.e. the number of components, for which x and x̂ differ. We note this Hamming
distance by dH(x, x̂).

The ΦX(z) function then takes the value:

ΦX(z) =
∏
k∈K

1

1− z(N0z − 1)|sk − ŝk|2 [4.70]

Since the choice z = 1/2N0 minimizes each term of the product, and thus ΦX(z)
for real z, using [4.66] we obtain the upper bound:

P{x→ x̂} ≤
∏
k∈K̂

1

1 + |sk − ŝk|2/4N0

[4.71]
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EXAMPLE 4.12. Let us calculate the upper Chernoff bound for the probability of error
considering a block code with a rate of Rc. Let us suppose that we use an antipodal
binary constellation with waveforms whose energy is E , and that the demodulation
is coherent with a perfect knowledge of the state of the channel. Here we use [4.71],
noting that for ŝk 
= sk we have:

|sk − ŝk|2 = 4Ē = 4RcĒb
where Ēb is the average energy per bit. For two words of code x, x̂ of Hamming
distance dH(x, x̂) we obtain:

P{x→ x̂} ≤
(

1

1 + RcĒb/N0

)dH(x, x̂)

and thus, for a linear code:

P (e) = P (e | x) ≤
∑

d

Ad

(
1

1 + RcĒb/N0

)d

where the exponent of the sum takes its values in the set of non-zero Hamming weights
of the code, and Ad is the number of words of code whose Hamming weight is d.
We can see that for sufficiently high signal-to-noise ratios the term dominating in
the expression of P (e) is the one whose exhibitor is dmin, the minimum Hamming
distance of the code. The fact that the probability of error is inversely proportional
to the signal-to-noise ratio to the power of dmin can be seen as a diversity of code of
the order dmin. In this context, the various diagrams of diversity can be interpreted as
the manifestations of a code with repetition, whose Hamming distance is equal to the
diversity.

How should a code for the Rayleigh channel be chosen?

We can take a bound of [4.71] writing:

P{x→ x̂} ≤
∏
k∈K

1

|sk − ŝk|2/4N0

=
1

[δ2(x, x̂)/4N0]dH(x, x̂)
[4.72]

(which is close to the Chernoff bound for sufficiently small values of N0). The quan-
tity:

δ2(x, x̂) �

[∏
k∈K

|sk − ŝk|2
]1/dH(x,x̂)
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is the geometric mean of the squares of Euclidean distances between the components
of x and x̂. The latter result shows that the probability of error is (approximately)
inversely proportional to the product of the squared Euclidean distances between the
components of x, x̂ that are different, and to a power of the signal-to-noise ratio whose
exhibitor is the Hamming distance between x and x̂.

We know that the bound by union of the probability of error of a system with cod-
ing can be obtained by summing the probabilities of error per pair associated with all
the various “error events”. For small values of power spectral density of the N0 noise,
i.e., for strong signal-to-noise ratios, a small number of terms contribute a dominant
share to the bound. Within the framework of this discussion this corresponds to error
events whose Hamming distance dH(x, x̂) is minimum. We note this quantity as Lc

to underline the fact that it corresponds to the diversity brought by the code. We have:

P{x→ x̂} ∼

�
ν

[δ2(x, x̂)/4N0]Lc

[4.73]

where ν is the number of error events that dominate the bound. For error events having
the same Hamming distance, the values taken by δ2(x, x̂) and by ν are also consider-
able. This observation can be used to choose the codes for the Rayleigh channel with
a high signal-to-noise ratio. The Euclidean distance, which plays a central part in the
choice of a code for the Gaussian channel, plays a secondary part here, and we can
verify that, in general, codes optimized for the Gaussian channel will not be optimal
for the Rayleigh channel.

We will also be able to note that for “conventional” systems that separate
binary modulation from binary coding, the Hamming distance is proportional to the
Euclidean distance and, thus, a system optimized for the Gaussian channel will also be
optimal for the Rayleigh channel. This solution offers the advantage of being robust,
i.e. to be powerful for the Rayleigh channel as well as for the Gaussian channel.

4.13. Bit interleaved coded modulation (BICM)

We observed at the end of the previous section that a code powerful for the Gaus-
sian channel and the Rayleigh channel must lead to a large Euclidean distance and
have a large Hamming distance. We can obtain this result using bit interleaved coded
modulations. Such a system can be obtained by carrying out a code diversity equal
to the number of bits, rather than the number of signals in an error event, as is the
case for trellis-coded modulations. It is initially necessary to interleave the bits at the
output of the binary encoder, and to use a suitable metric in the soft decoder.

The result is that for certain channels we obtain no advantage by combining coding
and modulation.
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This solution is robust, because changes of behavior of the physical channel do not
affect the performances of the coded system.

The performance of BICM depend separately on the Euclidean distance between
the signals of the constellation used and the Hamming distance of the selected code.
The metric to be used here differs from the usual metric: with TCM the metric associ-
ated to the transmitted signal s is p(r|s), while for BICM the metric is:

∑
s∈Si(b)

p(r | s) [4.74]

where Si(b) is the subset of signals in the constellation S whose binary label is
b(b ∈ {0, 1}) in the ith position. We see then that the performance of BICM will
depend on the labeling used: in particular, Gray coding is more powerful than coding
coming from the Ungerboeck partition.

Figure 4.35. Block diagram of a transmission system with traditional coded modulation and
BICM. For the traditional coded modulation π represents the interleaver at the signal level,

while in the case of BICM π is the interlacer at the bit level

Figure 4.36. 16QAM signals with UNGERBOECK and GRAY coding

BICM increases the Hamming distance to the detriment of the Euclidean distance:
see Table 4.3.
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Encoder BICM TCM
Memory δ2

free
dH δ2

free
dH

2 1.2 3 2.0 1
3 1.6 4 2.4 2
4 1.6 4 2.8 2
5 2.4 6 3.2 2
6 2.4 6 3.6 3
7 3.2 8 3.6 3
8 3.2 8 4.0 3

Table 4.3. Euclidean and Hamming distances of certain BICM and TCM
for a 16QAM constellation and a rate of transmission of 3 bits per pair

of dimensions (average energy being standardized to 1)
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Chapter 5  

Turbocodes 

5.1. History of turbocodes  

The invention of turbocodes does not derive from a linear and limpid theory, 
much less a beautiful mathematical development. It is the product of a long search, 
whose origin is to be found in the intuitions and work of some European researchers: 
Gerard Battail, Joachim Hagenauer and Peter Hoeher who, at the end of the 1980s 
[BAT 87, BAT 89, HAG 89a, HAG 89b], announced the promise of probabilistic 
treatment in communication systems. Others before, in particular in the United 
States, such as Michael Tanner [TAN 81] and Robert Gallager [GAL 62], had earlier 
come up with coding and decoding processes that were the precursors of turbocodes. 

In the laboratories of the Ecole Nationale Supérieure de Telecommunications de 
Bretagne (Brittany National Telecommunications Graduate School) some sought the 
simplest way possible to translate the Viterbi algorithm with soft output (SOVA: 
Soft-output Viterbi Algorithm) proposed in [BAT 87], in MOS transistors. A suitable 
solution [BER 93a] was found after two years, which made it possible for the 
researchers to form an opinion on probabilistic decoding. Thus, they observed 
following Battail and Hagenauer that a decoder with soft input and output could be 
regarded as an amplifier of signal-to-noise ratio, which encouraged them to 
implement concepts commonly used in amplifiers, in particular, negative feedback. 
We must, however, note that this parallel with amplifiers only makes sense if the 
values considered at the input and the output of the decoder provide information on 

                                   
Chapter written by Claude BERROU, Catherine DOUILLARD, Michel JÉZÉQUEL and 
Annie PICART.   



256     Channel Coding in Communication Networks 

the same data, i.e. in practice, if the code is systematic, which was not the case for 
convolutional codes used hitherto. 

The development of turbocodes passed through many very pragmatic stages, just 
as the introduction of neologisms, such as “parallel concatenation” or “extrinsic 
information”, now integrated in the jargon of the information theory. Here in a few 
words are the reflections that marked out this work. 

5.1.1. Concatenation 

With the simplified version of the SOVA it became possible to cascade the 
“signal-to-noise ratio amplifiers” and to carry out the experiments reported in [HAG 
89b], namely to decode a classical (i.e. serial) concatenation of two normal (i.e. non-
systematic, non-recursive) convolutional codes, or even more than two. 
Concatenation is a simple means of obtaining high distances and thus large 
asymptotic gains [FOR 66], but performance with a low signal-to-noise ratio is 
degraded by the obligation to distribute redundant energy between the various 
constituent codes. This apparent antagonism between increased distance and good 
behavior with strong noise seemed to be impossible to circumvent in the search for 
good corrector codes. 

Figure 5.1 represents the first diagram of concatenated coding and corresponding 
decoding, developed to highlight the contribution (approximately 1.5 dB) of 
pondering the internal code at the decoder output. 

5.1.2. Negative feedback in the decoder 

The use of information in the receiver in Figure 5.1 is far from optimal. Indeed, 
the first elementary decoder benefits only from Y1 redundancy symbols produced by 
the internal encoder. The second decoder in turn benefits from Y2 redundancy 
symbols and the work of the decoder that precedes it. This dissymmetry in the use of 
received information suggests re-injecting the result of the operation of the outer 
decoder into the inner decoder in a form to be defined. This re-injection of the 
output into the input is similar to the principle of the turbo engine, which gave its 
prefix to the turbocode1, although would have been more rigorous to speak only of 
turbodecoding, since no negative feedback intervenes in concatenated coding. 

 

                                   
1. This can also be written as turbo-code as well as turbo code, according to the local custom. 



Turbocodes     257 

 

Figure 5.1. Serial concatenation of two convolutional codes with 3/4 (external code) and 2/3 
(internal code) outputs, leading to a total output of 1/2. Decoding of the internal code using a 
Viterbi algorithm with soft output (SOVA). It is on the basis of this diagram suggested by G. 

Battail [BAT 89, BAT 87], J. Hagenauer and P. Hoeher [HAG 89a, HAG 89b] that the 
turbocodes have been developed through successive improvements 

Digital information processing has at least one great disadvantage: it does not 
easily deal with the technique of negative feedback, which is simple to implement in 
analog circuits. Due to delays (trellis, interleaving, etc.), an iterative procedure must 
be used2. This procedure increases the latency of the decoder, but the constant 
progress of micro-electronics makes it possible today to do that which would not 
have been reasonable a little while ago. Two material solutions are possible 
depending on the flow of processed information. If this flow is low, a single 
decoding processor functioning at high clock frequency can carry out all the 
iterations necessary with a tolerable added delay. If the flow is high, a cascade of 
decoding modules can be implemented as a monolith to allow pipe line processing at 
a high speed (in this case, which is typically that of the diffusion, the problems of 
latency are generally less crucial). 

                                   
2. Perhaps one day analog electronics will remove this handicap [LOE 98]. 
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5.1.3. Recursive systematic codes 

Since the various inputs/outputs of the composite decoder in Figure 5.1 do not 
represent information of comparable nature (the codes are not systematic), in order 
to implement the desired feedback, it is necessary to build soft estimates of the 
symbols X2 and Y2 at the output of the outer decoder (which must thus also be of the 
SOVA type). It was a great surprise to observe that the bit error rates of these 
reconstructed symbols were lower than those of the decoded information d̂ . 

An intense bibliographic search did not make it possible to find the explanation 
for this strange behavior. Why, indeed, have useful information be carried by the 
contents of the register of the convolutional encoder and not by one of its output 
symbols, if the performance at reception is worse?  

Immediately the recursive systematic codes were (re)invented to benefit from 
this property not covered in other works. A detailed presentation of the recursive 
convolutional codes may be found in [THI 93]. 

5.1.4. Extrinsic information 

The SOVA decoder of a systematic code provides a good estimate of the 
Logarithm of Likelihood Ratio (LLR) with respect to di unit coded to the moment i, 
that is naturally seen as the sum of two contributions. The first, intrinsic information 
resulting from the transmission channel directly linked to di, is already available 
before any decoding; the second, extrinsic information, is brought by the decoding 
of the link (convolutional, parity, etc.) that exists between the data di and other 
symbols of the codeword. 

In a turbo decoder it is the extrinsic information, in the form of a probability or a 
LLR, that must be exchanged between the various (typically two) processors seeking 
to converge towards the same decision on the transmitted codeword.  

Indeed, intrinsic information, which is already exploited by each of these 
processors, should not be used a second time as new information, for fear of missing 
the errors (an instability, as would be said in electronics).  

This principle, in a certain fashion, has already been posed by Gallager in [GAL 
62]. It has also been used by Lodge et al. [LOD 93]. 
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5.1.5. Parallel concatenation 

 

Figure 5.2. Parallel concatenation: a symmetric structure of coding (and decoding) that 
makes it possible to obtain, with a given coding output, more redundancy symbols  

than serial concatenation, and thus a better diversity 

It is not by analogy with the code-products that the idea of concatenation known 
as parallel was born. More trivially, it was necessary to simplify the problems of 
clock distribution in the broadband integrated circuit, which was the aim of the 
study, and traditional (serial) concatenation obliges to consider different clocks for 
internal and outer decoders. Parallel concatenation (Figure 5.2) simplifies the 
architecture of the system because the two encoders and the two decoders associated 
with it function with the same clock, which is the data clock. However, what is the 
general principle of correct error coding? Distribute the energy available for 
transmission between various redundant symbols in such a way that the decoder can 
best benefit from a diversity effect. Moreover, the lower the output of coding is, the 
more the effect of diversity is important. With the same total coding output, the 
external encoder of a parallel concatenation functions with a lower output than that 
of serial concatenation. For example, to obtain a total output of 1/2, serial 
concatenation can associate two elementary codes with outputs 3/4 and 2/3, as in 
Figure 5.1, whereas parallel concatenation associates two codes with the same 
output 2/3. The decoder with a low signal-to-noise ratio is then favored by this 
addition of diversity. That explains why the threshold of convergence (i.e. the 
signal-to-noise ratio, at which the corresponding decoder starts to correct the 
majority of errors) is more favorable when concatenation is parallel. 



260     Channel Coding in Communication Networks 

The results of the first simulations were very encouraging and disappointing at 
the same time: encouraging because for low signal-to-noise ratios exceptional 
performances were obtained, disappointing because the BER (Bit Error Rates) had 
hardly fallen below from 10-4. 

5.1.6. Irregular interleaving 

By observing on the screen of a computer simulating decoding the patterns of 
residual errors at the output of the turbo decoder, which generally adopted regular 
configurations (at the four corners of a rectangle, for example), the idea emerged 
that some disorder had to be instilled into the traditional regular permutation. The 
random permutation is an extremely important concept in information theory, for 
example, in cryptology where we look for the longest distance between the original 
message and the encrypted message. In channel coding, it is between two codewords 
that we try to obtain the longest distance. 

This problem of irregular permutation is conceptually captivating because it uses 
algebra, geometry and coding. With a serial concatenated encoder, regular 
interleaving can be enough to obtain a large minimum distance, but – as has already 
been highlighted – the threshold of convergence of the algorithm of “turbo” 
decoding is further removed than that of parallel concatenation. Perhaps, the 
composite code, which will join together the advantageous properties of each of the 
two concatenation paradigms will be found quickly. 

5.2. A simple and convincing illustration of the turbo effect 

It is only interesting to apply retroactive processing to a reception chain if the 
data to be estimated there is correlated and/or redundant. Let us consider the simple 
case of a phase modulation at 2 items3 (PSK2), preceded by a convolutional coding 
with output 1/2 (Figure 5.3). This slightly magical example is proposed by 
Narayanan and Stüber [NAR 99]. 

The receiver performs a demodulation operation followed by corrector decoding. 
The demodulator provides estimates xi and yi of the transmitted symbols, treated as 
independent, although they come from the same encoder, which the demodulator 
does not take into account. That is an important loss of information. 

                                   
3. We prefer speaking of constellations with M points than of constellations with M states. 
The two names coincide only if the point is addressed exactly by the contents of a coding 
register. 
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Figure 5.3. A simple diagram of convolutional coding and modulation at 2 points 

Let us modify the transmission chain intercalating between encoder and 
modulator an interleaver of size k and a recursive pre-coder (Figure 5.4). 

In the receiver, a trellis pre-decoder with 2 states and a de-interleaver are also 
inserted between the demodulator and the corrector decoder. 

We have thus quite simply replaced PSK2 modulation by a differential 
modulation at 2 points and introduced a temporal permutation by means of the 
interleaver. 

 
The modifications made to the transmission diagram are rather simple. However, 

they confer remarkable properties on it: 

– the number of states for the transmitter of the first system is 4; for the second, 
it is 2k+3; 
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– the impulse response4 of the first transmitter is finite; that of the second 
transmitter is infinite; 

– in the second system, it is a double dependence (convolutional coding and pre-
coding) that binds the successive points of the constellation, instead of a single 
dependence (coding) in the first system. It thus becomes a two-dimensional 
problem. 

 

Figure 5.4. Differential modulation with traditional convolutional coding and an interleaver 

These three properties constitute the three keys of “turbo” processing. Let us 
cover them one by one. 

The number of states of a system is characteristic of its complexity, not 
necessarily of its performance. However, by judiciously choosing a permutation of 
interleaving, the trellis representative of the transmitter, which can be gigantic (for 
example a trellis with 2103 states for k = 100), can be good, i.e. the minimum 
Hamming distance between the series associated to two competing paths of the 
trellis can be large. 

                                   
4. The impulse response of a linear binary system is the signal delivered at its output when its 
input is fed by the “all-zero” sequence except for one position. 
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The impulse response of the modified system is infinite because of the recursive 
character of the pre-coder. In what is that a remarkable property, for this transmitter 
in particular and for any coding system in general? Let us suppose that the binary 
sequence at the transmitter input has infinite length. If the receiver makes a mistake 
in its decision, it will be mistaken at least by two binary values (only one difference 
between its decisions and the good sequence would correspond to a transmitted 
signal indefinitely different from the good signal). These two false values will at 
least be delivered to a downstream processor. It is clear that if this processor is 
authorized to act retroactively on the decisions of the receiver, the information 
feedback will be more negative (antagonist) that in the case of a single error. The 
downstream processor using its own information will thus say “no” twice rather than 
once, questioning the decisions of the receiver more strongly. 

The argument is also valid if instead of considering the information feedback of 
a downstream processor towards the receiver, we implement retroactive processing 
inside the receiver itself. In the case of Figure 5.4, for example, it is the corrector 
decoder, which in the event of an error opposes its “dissent” to the demodulator at 
least twice. 

Lastly, and the latter point is not unrelated to the previous one, the successive 
points of the constellation are determined by a register with feedback. There is a 
recursive relation between the current data (Ui) and the contents (Ai) of the pre-
coder’s register: 2) (mod   1 iii UAA += −  (Figure 5.5). Of course, without 
information on the current data Ui the pre-decoder can only deliver estimates ai 
independent from each other for the transmitted points. But if the pre-decoder 
receives the feedback ui on the Ui data from the corrector decoder, it itself becomes 
a corrector. Indeed, at every moment i it has an information pair (ai, ui) similar to 
that, which a systematic encoder with output 1/2 would provide, and that without 
having to add redundancy to the transmission! The double dependence of the 
symbols transmitted by the modulator is used profitably in the receiver by the 
feedback of the decoder towards the pre-decoder. This is the “turbo” effect. 

Figure 5.6 provides the performance (BER according to the signal-to-noise ratio 
Eb/N0) of the system with additive white Gaussian noise (AWGN). We notice the 
extreme simplicity of the receiver: a demodulator, a pre-decoder with 2 states, a de-
interleaver and a decoder with 4 states. Even if, strictly speaking, it is necessary to 
multiply this complexity by 7 (the number of iterations carried out), that remains 
very reasonable compared to the traditional concatenated system (convolutional 
code with 64 states and Reed-Solomon code correcting t = 8 symbols), whose 
correction capacity appears lower than the BER considered. 
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Figure 5.5. The pre-decoder becomes corrector through feedback 

 

Figure 5.6. (a) BER obtained with the system in Figure 5.4 and turbo processing (MAP 
algorithm, 7 iterations, k = 3392). (b) BER obtained with a convolutional encoder with 64 
states concatenated with a Reed-Solomon code (204, 188, t = 8) and a PSK2 modulation. 

Simulations carried out with AWGN, according to [NAR 99] 

BER
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The principle of this modulator-encoder couple and the associated receiver can 
easily be extended to constellations with a larger number of points to so increase 
spectral efficiency, and by adopting codes with 8 or 16 states, its performance can be 
rendered close to the theoretical limit. 

The example that we chose to illustrate the “turbo” effect is significant in more 
than one way. First of all, it shows that excellent performance can be obtained with a 
simple system. That goes against the pessimism exhibited until the recent years 
regarding the possibility of reconciling theory and practice of the Shannon 
paradigm. Then, it obviously attests the need for considering any reception problem 
“in two senses”. If we removed feedback by ui from Figure 5.5, we would lose 
approximately 4 dB in the resulting link for a BER of 10-5! Finally, it highlights all 
the importance of the interleaving function, at the same time powerful, because it 
increases the minimum distance from the transmitter5, and simple, because its 
implementation (writing and reading from memory) is rudimentary. 

The downstream information feedback in a reception chain, which is the guiding 
principle of turbo decoding, has been generalized to various types of processing, 
such as detection and equalization [DOU 95, GLA 97], multi-user detection [ALE 
99], reception with multiple antennae [LEK 00], etc., and proves to be essential each 
time we wish to exploit all the information available in a sequence of probabilistic 
treatments. 

5.3. Turbocodes 

5.3.1. Coding 

Random codes have always, since the precursory work of Shannon [SHA 48], 
constituted a reference for correct error coding. Systematic random coding of a 
block of k bits of information, leading to a codeword of length n, at the first stage 
and once and for all, consists of randomly drawing and memorizing k binary 
“markers” of n – k bits, whose memorizing address is noted i (1 ≤ i ≤ k). The 
redundancy associated to any information block is then formed by the modulo 2 
summing up of all the markers whose address i is such that the ith bit of information 
equals “1”. The codeword, finally, consists of the concatenation of k information 
bits and n – k redundancy bits. The output R of the code is k/n. 

                                   
5. The minimal distance of the system in Figure 5.4 without interlacing is 10 (5, for the code 
with generators 5,7 in octal, times 2 for the pre-coder). The asymptotic gain would thus only 
be 7 dB, whereas Figure 5.6 makes it possible to observe a gain already higher than 8 dB for a 
BER of 10-6. 
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This very simple construction of the codeword is based on the property of 
linearity of addition and leads to increased minimum distances for sufficiently large 
values of n – k. Since two codewords differ in at least one bit of information and the 

redundancy bits are drawn randomly, the average minimum distance is 
2

1 kn −+ . 

However, the minimum distance of this code being a random variable, its various 
manifestations may be lower than this average size. A realistic approximation of the 

effective minimum distance is 
4

kn −  (an approximation deduced from the Gilbert-

Varshamov limit). A way of building an almost random encoder is represented in 
Figure 5.7. It is a multiple parallel concatenation of Recursive Systematic Circular 
Convolutional (RSCC) codes [BER 99a]. The sequence of k binary data is coded N 
times by N RSCC encoders, each time in a different order. The Πj permutations are 
drawn randomly (except for the first one, which can be the identity permutation). 

Each elementary encoder produces 
N
k  redundancy symbols (N being a divider of k), 

the total output of the concatenation being 1/2. 

The proportion of input sequences of a recursive encoder constructed on the 
basis of a pseudo-random generator with memory ν, initially positioned in the state 
0, that replace the register in the same state at the end of coding, is 

ν−= 21p   [5.1] 

because there are 2ν possible return states. These sequences, called RTZ (Return to 
Zero) [POD 95], are linear combinations of the minimum RTZ sequence, given by 
the recursiveness polynomial of the generator (1 + D + D3 in the case of Figure 5.7). 

The proportion of RTZ sequences for the multidimensional encoder is lowered 
to: 

ν−= N
Np 2   [5.2] 

because it is necessary that the sequence remains RTZ for the N encoders after each 
randomly drawn permutation. 
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Other sequences, of 1 – pN proportion, produce codewords which have a 
minimum distance at least equal to 

N
kd

2min =   [5.3] 

 

Figure 5.7. Multiple parallel concatenation of recursive systematic circular convolutional 
codes (RSCC). Each encoder produces k/N redundancy symbols regularly distributed around 

each trellis. The total coding output is 1/2 

This value supposes that only one permuted sequence is not RTZ (in the worst 
case) and that the redundancy Y once takes the value “1” on average on out of two 
times in the corresponding circle. If we take, for example, N = 8 and n = 3, we 
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obtain p8 ≈ 10-7, and for sequences to be coded of length k = 1024, we have  
dmin = 64, which is quite a sufficient minimum distance. 

Extremely fortunately, from the point of view of complexity, it is not necessary 
to retain such a large dimension N. 

In fact, by replacing the random permutation Π2 by a judiciously elaborate 
permutation, good performance can be obtained while limiting ourselves to a 
dimension N = 2. It is the turbocode principle. 

 

Figure 5.8. A binary turbocode with memory ν = 3 using identical elementary RSC encoders 
(polynomials 15, 13). The output of natural turbocode coding, 

 without puncturing, is 1/3 

Figure 5.8 represents a turbocode in its most traditional version [BER 93b]. The 
input binary message of length k is coded in its natural order and in an upset order 
by two RSC encoders called C1 and C2, which may be circular or not. In this 
example the two elementary encoders are identical (generating 15 polynomials for 
recursiveness and 13 for the construction of redundancy), but that is not essential. 
The output of natural coding, without puncturing, is 1/3. To obtain higher outputs, a 
puncturing of symbols, generally the redundancy ones, is carried out. Another means 
of achieving higher outputs is to adopt m-binary codes (see section 5.5). 
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The permutation function (Π) bearing on a message of finite size k, the 
turbocode is by construction a block code. However, to distinguish it from 
concatenated algebraic codes decoded in the “turbo” fashion, such as the product 
codes and the ones later referred to as “block turbocodes”, this turbocoding scheme 
is known as “convolutional” or, more technically, PCCC (Parallel Concatenated 
Convolutional Code). 

The arguments in favor of this coding scheme (some of which have already been 
introduced in the previous chapters) are as follows: 

a) A decoder of convolutional code is vulnerable to the errors occurring in 
bursts. To code the block twice following two different orders (before and after 
permutation) is to make somewhat improbable the simultaneous appearance of error 
bursts at the input of the decoders of C1 and C2. If grouped errors occur at the input 
of the decoder of C1, the permutation disperses them in time and they become 
isolated, easily corrigible, errors for the decoder of C2. The reasoning also holds for 
error bursts at the input of the second decoder, which before permutation correspond 
to isolated errors. Thus, two-dimensional coding clearly reduces, in at least one of 
two dimensions, the vulnerability of convolutional coding with respect to burst 
disturbances. But, which of the two decoders should be trusted when making the 
final decision? No criterion makes it possible to grant a greater confidence to one or 
the other. The answer is provided by the “turbo” algorithm that avoids having to 
make this choice. This algorithm implements probability exchanges between the two 
decoders and using these exchanges constrains them to converge towards the same 
decisions. 

b) Parallel concatenation associates two codes with elementary outputs R1 (C1 
code, with possible puncturing) and R2 (C2 code, with possible puncturing) and the 
total output is  

)1)(1(1 21

21

2121

21
RR

RR
RRRR

RR
R p −−−

=
−+

=   [5.4] 

This output is higher than the total output of a serially concatenated code 
( 21RRRs = ), for same values of R1 and R2, and the difference is all the greater the 
lower the coding outputs. From that we deduce that for the same correction capacity 
of the elementary codes, parallel concatenation offers a better coding output, but this 
advantage is reduced when the outputs considered tend towards 1. 

c) Parallel concatenation employs systematic codes. At least one of these codes 
must be recursive, for a fundamental reason related to the minimum input weight 
wmin, which is only 1 for non-recursive codes but is equal to 2 for recursive codes 
(see convolutional codes). For confirmation, let us observe Figure 5.9, which 
represents two non-recursive systematic codes, concatenated in parallel. The input 
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sequence is “all-zero” (sequence of reference) except for one position. This single 
“1” disturbs the output of the C1 encoder for a short period of time, equal to the 
constraint length 4 of the encoder. The redundant information Y1 is poor, relative to 
this particular sequence, because it contains only 3 values different from “0”. Upon 
permutation, whatever it is, the sequence is still “all-zero”, except for only one 
position. Again, this “1” disturbs the output of the C2 encoder during a period of 
time equal to the constraint length, and the redundancy Y2 delivered by the second 
code is as poor as the first. In fact, the minimum distance of this two-dimensional 
code is not higher than that of a single code with the same output as that of the 
concatenated code. If we replace at least one of the two non-recursive encoders by a 
recursive encoder, the “all-zero” sequence except for one position is no longer a RTZ 
sequence for this recursive encoder, and the redundancy that it produces then has a 
much higher weight. 

 

Figure 5.9. Parallel concatenation of non-recursive systematic codes constitutes a poor code 
with respect to information sequences of weight 1. In this example, the redundancy symbols Y1 

and Y2 each contain only 3 values different from “0” 

d) As we saw at the beginning of this chapter, it is possible to increase the 
dimension of the code using more than two elementary encoders. The result is a 
significant increase in the minimum distance. Beyond the 4th or 5th dimension with a 
set of randomly drawn permutations, the turbocode is almost comparable to a 
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random code, with very high minimum distances. Unfortunately, the threshold of 
convergence of the turbo decoder, i.e. the signal-to-noise ratio, at which this one can 
start to correct the majority of the errors, is degraded as the dimension grows. 

Indeed, the very principle of turbo decoding consists of considering elementary 
codes one after another, iteratively. Since their redundancy rate decreases as the 
dimension of the composite code grows, the first stages of decoding are penalized 
with respect to a dimension 2 code. 

This antagonism between increased minimum distance and convergence 
threshold, which we have already discussed previously, is found in almost all the 
coding and decoding structures that can be imagined6. We can sometimes gain in 
one of the two behaviors, but it is almost always at the expense of the other. 

The parameters defining a particular turbocode are as follows: 

a) m is the number of bits in the symbols applied to the turboencoder. The 
applications known to date consider binary (m = 1) or double-binary (m = 2) 
symbols (see section 5.5). 

b) Each of the two elementary encoders C1 and C2 is characterized by: 

– its code memory ν; 

– its recursiveness and redundancy generating polynomials; 

– its output. 

The values of ν are in practice lower than or equal to 4. The generating 
polynomials are generally those used for the traditional convolutional codes and 
were the subject of numerous works from the 1980s to the 1990s. 

c) The way in which we carry out the permutation is important when the target 
BER is lower than approximately 10-5. Above this value, performance is not very 
sensitive to the permutation, under the condition, of course, that it at least respects 
the dispersion principle (that can, for example, be a regular permutation). For low or 
very low target error rates, performance is dictated by the minimum distance of the 
code, and the latter strongly depends on the permutation Π (see section 5.4). 

d) The puncturing pattern must be as regular as possible, similarly to the normal 
practice for classical convolutional codes. Apart from this rule, the puncturing 
pattern is defined in close relationship with the permutation function, when we look 
for very low error rates. 

                                   
6. A typical example is the Reed-Solomon code concatenated with a convolutional code. The 
minimal distance is high, but we can only benefit from it sufficiently far from the theoretical 
limit. 
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Puncturing is performed traditionally on the redundancy symbols. In certain 
cases, it may rather be possible to puncture the information symbols, in order to 
increase the minimum distance of the code. That is done at the expense of the 
convergence threshold of the turbo decoder. Indeed, from this point of view, 
puncturing data shared by the two decoders is more penalizing than puncturing data 
that is useful only for one of the decoders. 

5.3.2. The termination of constituent codes 

The use of a convolutional code to protect an information block reveals 
discontinuities during decoding at both ends of this block. Indeed, the decoding of a 
symbol, whatever it is, must use all of the information, prior and post this symbol. 
The ends of the block thus cannot simultaneously benefit from the past and the 
future during the decoding process, and the performance is degraded by a greater 
vulnerability of information at the beginning and the end of the block7. This problem 
can be circumvented if the decoder knows the initial state and the final state of the 
encoder. Thus, it is easy to force the initial state of the encoder by a resetting of the 
register. It is also possible either to transmit the final state of the coding register, or 
to force it to a value known by the decoder, by the addition of additional bits called 
tail bits to the initial message. We can also adopt the principle of circularity (tail-
biting) which ensures the continuity of the states at both ends. These various 
techniques are known under the name of trellis closing. 

For a turbocode, the closing of two trellises should be considered and several 
solutions can be considered: 

– Do nothing in particular concerning the final states: the information located at 
the end of the block, in the natural order as well as in the permutated order, is then 
less well protected. This leads to a reduction in the asymptotic gain, but this 
degradation, which depends on the size of the block, can be compatible with certain 
applications. It should be noted that not-closing the trellis more strongly penalizes 
the PER (Package Error Rate) that the BER. 

– Close the trellises of one or two elementary codes: the CCSDS [CCS 98] and 
UMTS [3GPP 99] standards use this technique. The bits ensuring the closing of one 
of the two trellises are not used in the other encoder. These bits are, therefore, not 
turbocoded which leads, although to a lesser extent, to the same disadvantages as 
those presented in the previous case. Moreover, the transmission of the closing bits 
involves a reduction in the coding output and thus spectral effectiveness. 

                                   
7. Neglecting information brought by what precedes or by what follows in the decoding of a 
symbol protected by a convolutional code leads, on average, to a loss of 3 dB from the coding 
gain.  
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– Use an interleaving allowing an automatic closing of the trellis: it is possible to 
close the trellis of a turbocode automatically, without adding closing bits, by slightly 
transforming the coding diagram (autoconcatenation) and by using an interleaving 
complying with certain periodicity rules. This solution described in [BER 96] does 
not decrease the spectral efficiency but imposes constraints on interleaving, which 
make it difficult to control the performance for low error rates. 

– Adopt a circular coding: a circular convolutional code encoder guarantees that 
the initial state and the final state of the register are identical. The trellis then takes 
the shape of a circle, which, from the point of view of the decoder, can be regarded 
as a trellis of infinite length [BET 98]. This process of closing, already known as 
tail-biting for non-recursive codes, makes it possible to combine spectral efficiency 
and good performance for strong and low error rates for turbocodes. This technique 
was retained in the DVB-RCS and DVB-RCT [DVB 00, DVB 01] standards, for 
example, and is presented in detail in the following section. 

5.3.2.1. Recursive convolutional circular codes  

An example of a recursive systematic convolutional encoder (double-binary code 
with 3 memory elements) is provided in Figure 5.10. At the moment i the state Si of 
register is a function of the preceding state Si-1 and of the previous input vector Ti-1: 

11 −− += iii TGSS   [5.5] 

where G is the generator matrix of the considered wedged register. 

 

Figure 5.10. Example of a double-binary recursive convolutional encoder with code memory 
v = 3. The encoder outputs, as well as the temporal index i, are not represented 
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The vectors and the matrix in the example in Figure 5.10 are: 
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More generally, for a code of memory ν, the vectors S and T contain ν 
components and the matrix G has the size ν × ν. 

From [5.5], Si can be expressed according to the initial state S0 and of the data T 
applied to the encoder: 

∑
=

−
−+=

i

p
p

pii
i

1
10 TGSGS  

If k is the length of the sequence, it is possible to find a state of circulation, noted 
Sc, such that: Sc = S0 = Sk. We must then have: 

∑
=

−
−+=

k

p
p

pkk

1
1cc TGSGS   [5.6] 

which yields: 

( ) ∑ −
−

+=
k

p=
p

k-pk

1
1

1
c TGGIS   [5.7] 

where I is the unitary matrix ν × ν. 

Sc exists if I + Gk is invertible. This condition is not verified, if k is a multiple of 
the period L of the generating sequence of the recursive encoder, since GL = I. As an 
example, the encoder in Figure 5.10 has a period L = 7. 

If the encoder is initialized at the state Sc it will return to this state once the given 
k have been coded. The final state and the initial state can then be fused and the 
coding trellis can be compared to a circle. 



Turbocodes     275 

The calculation of Sc requires pre-processing. First of all, the encoder is 
initialized to the “all zero” state, then the message to be coded is applied to it for the 
first time, ignoring the redundancy produced during this stage. Using equation [5.6], 
the final state, noted S 0

k , is given by: 

∑
=

−
−=

k

p
p

pk
k

1
1

0 TGS   [5.8] 

The circulation state can then be given as follows: 

( ) 01
c k

k SGIS
−

+=   [5.9] 

In practice, the use of a table makes it possible to determine Sc on the basis of 
S 0

k . Finally, the encoder having been initialized to the circulation state, the message 
to be coded is applied to it again to generate the redundancy sequence. 

This elegant and efficient method of transforming a convolutional code into a 
block code nonetheless has a disadvantage that is the pre-processing stage to find 
out S 0

k . This introduces latency, which is not, however, a major handicap, because 
the encoder with a simpler structure than the decoder can function at a higher clock 
frequency. 

The state of circulation not being known by the decoder a priori, it must be 
estimated through a preliminary data processing stage preceding this state. This 
operation, known as “prolog”, relates to a certain amount of data located at the end 
of the block and the prolog starts by assigning uniform (or metric) probabilities to 
the initial states of the trellis. The estimate of the circulation state is good as soon as 
around ten redundancy symbols have been exploited in the prolog. 

5.3.3. Decoding 

The decoding of a turbocode is based on the general diagram in Figure 5.11. The 
loop makes it possible for each decoder to benefit from all of the available 
information. The values considered for each node of the set-up are LLRs. 

The LLR at the output of a systematic code decoder can be seen as the sum of 
two terms: intrinsic information, stemming from the transmission channel, and 
extrinsic information, which this decoder adds to the former to carry out its 
correction work.  
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Since intrinsic information is used by the two decoders (at different moments), it 
is the extrinsic information produced by each decoder that must be transmitted to the 
other one as new information to ensure joint convergence.  

Section 5.3.4 describes the operations performed for the calculation of extrinsic 
information, by implementation of the MAP algorithm or of its simplified Max-Log-
MAP version. 

 

 

Figure 5.11. Turboencoder with 8 states and basic structure of the corresponding turbo 
decoder. The two elementary decoders of the SISO type (soft input/soft output) exchange 

probabilistic information, known as extrinsic (z) 
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The exchange of extrinsic information, in a digital processing circuit, must be 
implemented through an iterative process: the first decoding by DEC1 and the 
memorization of extrinsic information z1, the second decoding by DEC2 and the 
memorization of extrinsic information z2 (end of the first iteration), new call for 
DEC1 and memorization of z1, etc. Various material architectures with more or less 
elevated degrees of parallelism are possible to accelerate iterative decoding. 

Had we wanted to decode the turbocode using only one decoder, which would 
take into account all the possible states of the encoder, for each element of the 
decoded message we would obtain one, and only one, probability of having a binary 
value equal to “0” or “1”. The composite structure in Figure 5.11 in turn employs 
two decoders working jointly. By analogy with the result that the single decoder 
would provide, it is necessary for them to converge towards the same decisions with 
the same probabilities for each unit of data considered. It is the guiding principle of 
“turbo” processing, which justifies the structure of the decoder, as the following 
reasoning demonstrates. 

The role of a SISO decoder (soft input/soft output; see section 5.3.4) is to treat 
the LLR to try to increase their signal-to-noise ratio, thanks to the energy brought by 
the redundancy symbols (i.e. y1 for DEC1, y2 for DEC2). The LLR produced by a 
binary code decoder with respect to the data unit d can be written simply as 

LLRoutput (d) = LLRinput (d) + z(d) [5.10] 

where )(dz  is the extrinsic information with respect to d. The LLR is improved if z 
is negative, if d is “0”, or positive, if d is “1”. 

After p iterations, the output of DEC1 is 

LLRoutput,1
p

 (d) = (x+z2
p-1

 (d)) + z1
p (d) 

and the output of DEC2 is 

LLRoutput,2
p

 (d) = (x+z1
p-1

 (d)) + z2
p (d) 

If the iterative process converges towards a stable solution, )()( 1
11 dzdz pp −−  

and )()( 1
22 dzdz pp −−  tend towards zero when p tends towards infinity. 

Consequently, the two LLRs with respect to d become identical, which satisfies the 
fundamental criterion stated higher. As for the proof of convergence in itself, which 
is not trivial, the reader may refer to [WEI 01, DUA 01], for example. 
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Apart from the permutation and inverse permutation functions, Figure 5.12 
details the operations performed during turbo decoding: 

 

Figure 5.12. Detailed operations (peaking, quantification, attenuation of extrinsic 
information) in the turbo decoder in Figure 5.11 

a) Analog-to-digital conversion (A/D) transforms information coming from the 
demodulator into samples exploitable by the digital decoder. Two parameters are 
involved in this operation: nq, the number of quantification bits and Q, the scale 
factor, i.e. the relation between the average absolute value of the quantified signal 
and its maximum absolute value. nq is fixed at a compromise value between the 
required precision, which depends on the type of modulation, and the decoder 
complexity: typically 3 or 4 for an PSK4, 5 or 6 for an QAM16, for example. The 
value of Q depends on the modulation, the coding output and the type of channel. 
For example, it is larger for a Rayleigh channel than for a Gaussian channel. 

b) SISO decoding increases the signal-to-noise ratio equivalent of the LLR, i.e. it 
provides extrinsic information zoutput which is more reliable at the output than at the 
input (zinput). The convergence of the iterative process will depend on the transfer 
function SNR(zoutput) = G(SNR(zinput)) of each decoder (see [DIV 01] for example). 

When information is not available at the input of a SISO decoder due to 
puncturing, a neutral value (analog zero) replaces this missing information. 
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c) When the elementary decoding algorithm is not the optimal algorithm 
(MAP)8, but a simplified version, extrinsic information must undergo some 
transformations before being used by a decoder: 

– the multiplication of extrinsic information by the factor γ, less than 1, 
guarantees the stability of the wedged structure. γ may vary along the iterations, for 
example of 0.7 at the start of the iterative process to 1 for the last iteration; 

– the clipping of extrinsic information simultaneously responds to the need to 
limit the size of the memories and also to take part in the stability of the process. A 
typical value of maximal dynamic of extrinsic information is twice the dynamic of 
the decoder input. 

d) Binary decision-making is carried out by a comparison with the analog 
threshold 0. 

The number of iterations required by turbo decoding depends on the size of the 
block and coding output. The larger the decoded block, the longer the cycles 
enclosed inside the graph that could be associated to the concatenated code, and 
convergence is slower. It is the same when coding outputs are low. In practice, we 
limit the number of iterations to a value ranging between 4 and 10, depending on the 
constraints of speed, latency and consumption imposed by the material received. 

Figure 5.13 gives an example of binary turbocode performance drawn from the 
UMTS standards [3GPP 99]. We may observe a decrease of the PER, very close to 
the theoretical limit (given by the method of sphere stacking), but also a rather 
marked change of slope, due to a minimum distance which is not extraordinary  
(dmin = 26) for an output of 1/3. 
 

                                   
8. If the MAP algorithm is used, it is preferable that extrinsic information be expressed by a 
probability and not an LLR, which avoids having to calculate a useless variance [ROB 94]. 
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Figure 5.13. Performance in PER of the turbocode from the UMTS standards for 
 k = 640 and R = 1/3 in a Gaussian channel. Decoding according to  

the Max-Log-MAP algorithm with 6 iterations 

5.3.4. SISO decoding and extrinsic information 

Here we develop the processing carried out in practice in a SISO decoder using 
the MAP algorithm (Maximum A Posteriori) [BAH 74] or its simplified version 
Max-Log-MAP [ROB 97] to decode RSC codes with m binary inputs and to 
implement iterative decoding. 

5.3.4.1. Notations 

A sequence of data d is defined by ( )10
1

0 −
− =≡ ki

k ddddd "" , where id  is 
the vector of m-binary data applied to the encoder input at the moment i: 

( )miliii ddd ,,1, ""=d . The value of id  could also be represented by the whole 

scalar value ∑
=

−=
m

l
li

l dj
1

,
12  ranging between 0 and 2m-1, and we will then write 

di ≡ j. 
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In the case of a BPSK or QPSK modulation, the coded and modulated sequence 
( )10

1
0 −
− =≡ ki

k uuuuu ""  consists of vectors iu  of the size m + m': 
( )',,1, mmiliii uuu += ""u , where ui,l = +1 for l = 1 … m + m' and m' is the number 

of redundancy bits added to the m information bits. The liu , symbol is representative 
of a systematic bit for l ≤ m and of a redundancy bit for l > m. 

The sequence observed at the demodulator output is 
noted ( )10

1
0 −
− =≡ ki

k vvvvv "" , with ( )',,1, mmiliii vvv += ""v . The series of 

encoder states between moments 0 and k is noted )( 00 ki
k SSSSS ""== . The 

decoding equations described hereafter are based on the results presented in Chapter 
3. 

5.3.4.2. Decoding using the MAP criterion 

At time instant i the soft (probabilistic) estimates provided by the MAP decoder 
are the 2m a posteriori probabilities (APP) ( )vd ji ≡Pr , 120 −= mj " . The 
corresponding hard decision id̂  is the binary representation of the value j that 
maximizes the APP. 

Each APP can be expressed according to the joint probabilities ( )vd ,jp i = : 

( ) ( )
( )

( )

( )∑
−

=
≡

≡=≡=≡
12

0
,

,,Pr m

l
i

ii
i
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vd
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v

vdvd   [5.11] 

In practice, we calculate the joint probabilities ( )vd ,jp i ≡  for 120 −= mj " , 
then each APP is obtained by normalization. 

The trellis representative of a code with memory ν has ν2  states, taking their 
scalar value s in (0, 12 −ν ). Joint probabilities are calculated on the basis of forward 

)(siα  and backward )(siβ  probabilities and of branch probabilities ),( ssgi ′ : 
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[5.12] 

where jssss ≡′′ ),(/),( d  designates the set of state to state transitions ss →′  
associated to the m-binary information unit j. This unit is, of course, always the 
same in a trellis that is invariant in time. 
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The value ),( ssgi ′  has the expression: 

( ) ( )iiii pjssjssg uvdd .),(,Pr),( a ≡′≡=′   [5.13] 

where ( )jssji ≡′≡ ),(,Pra dd  is the a priori probability of transmission of the m-
tuple of information corresponding to the transition ss →′  of the trellis at time 
instant i and iu  is the set of symbols of systematic and redundant information 
associated to this transition. If the transition ss →′  does not exist for di ≡ j, 
then ( ) 0),(,Pra =≡′≡ jssji dd , otherwise it is given by the source statistics, which 
are generally uniform in practice. 

In the case of a Gaussian channel with binary input, the value )( iip uv  is 
written: 
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where 2σ  is the variance of the additive white Gaussian noise. 

In practice, we retain only the terms specific to the transition considered and not 
eliminated by division in the expression [5.11]: 
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The front and back probabilities are deduced from the following recurrence 
relations: 

∑
−

=′
−−

ν

′′α=α
12

0
11 ),()()(

s
iii ssgss  for ki "1=  [5.16] 
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and 

∑
−

=′
+

ν

′′β=β
12

0
1 ),()()(

s
iii ssgss  for 01"−= ki  [5.17] 

To avoid all the problems of precision or overflow in the representation of these 
values, it is advisable in practice to standardize them regularly. The initialization of 
the recursions depends on the availability or absence of knowledge regarding the 
encoder state at the beginning and the end of coding. If the initial state of the 
encoder 0S  is known, then 0 0( ) 1α =S  and 0)(0 =α s  for any other state, otherwise 
all )(0 sα  are initialized to the same value. The same rule applies to the probabilities 

kβ  with respect to the final state kS . For circular codes, initialization is carried out 
automatically after the prolog stage, which starts on the basis of identical values for 
all the trellis states. 

In the context of iterative decoding, the composite decoder uses two elementary 
decoders exchanging extrinsic probabilities. Consequently, the building block of 
decoding described previously must be reconsidered: 

a) to take into account an extrinsic probability ( )vd ′≡ ji
ext
ePr  at the input in 

the expression [5.13], calculated by the other elementary decoder of the composite 
decoder, on the basis of its own input sequence v’; 

b) to produce its own extrinsic probability ( )vd ji ≡
ext
sPr , which will be used 

by the other elementary decoder. 

In practice, for each value of j 120 −= mj " : 

– a) in expression [5.13], the a priori probability ( )jssji ≡≡ ),'(,Pra dd  is 

replaced by the modified a priori probability ( )jssji ≡≡ ),'(,Pr@ dd , with the 
expression, to the nearest standardization factor: 

( ) ( ) ( )vddddd ′≡≡≡=≡≡ jjssjjssj iii
ext
e

a@ Pr.),'(,Pr),'(,Pr   [5.18] 

– b) ( )vd ji ≡
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sPr  is given by: 
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The terms ),(* ssgi ′  are non-nil if the transition ss →′  exists in the code trellis. 
They are then deduced from the expression of )( iip uv  by eliminating the terms 
relating to systematic symbols. In the case of a transmission via a Gaussian channel 
with binary input, on the basis of the simplified expression [5.15] of )( iip uv′ , we 
have: 
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5.3.4.3. The simplified Max-Log-MAP algorithm 

Decoding using the MAP criterion requires a great number of operations, among 
which calculations of exponentials and multiplications. The rewriting of the 
decoding algorithm in the logarithmic domain simplifies processing. Balanced 
estimates provided by the decoder are then values proportional to the logarithms of 
the APP, known as Log-APP and noted L: 

( )vd jjL ii ≡σ−= Prln
2

)(
2

, 120 −= mj "  [5.21] 

We define the forward and backward metrics relating to the node s at the 
moment i, )(sM i

α  and )(sM i
β , as well as the branch metric relating to the 

transition ss →′  from the trellis at the moment i, ),( ssMi ′ , by: 
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Let us introduce the size )( jAi  defined by: 
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)( jLi  may then be written, with reference to [5.11] and [5.12], in the form: 
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The expressions [5.23] and [5.24] can be simplified by applying the 
approximation known as Max-Log:  

),max())exp()ln(exp( baba ≈+   [5.25] 

We then obtain for )( jAi  
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and for )( jLi  
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The hard decision taken by the decoder is the value of j, 120 −= mj " , which 
minimizes )( jAi  or, in other words, annuls )( jLi . 

Let us introduce the La values proportional to the logarithms of the a priori 
probabilities aPr : 

( )jjL ii ≡σ−= da
2

a Prln
2

)(   [5.28] 

The branches metrics ),( ssMi ′  are written, according to [5.13] and [5.22]: 

)(ln)),((2),( 2a
iiii pssLssM uvd σ−′=′   [5.29] 

If the statistics a priori transmission of the m-tuples di are uniform, the term 
)),((2 a ssLi ′d  can be removed from the above relation, because the same value then 

appears in all the branch metrics. 
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In the case of a transmission via a Gaussian channel with binary input, we have, 
according to [5.15]: 
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The simplifying Max-Log application in the expressions [5.16] and [5.17] leads 
to the calculation of metrics before and back by the following recurrence relations: 
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The application of the Max-Log-MAP algorithm in fact amounts to carrying out 
a double Viterbi decoding, in the forward and backward directions. For that reason it 
is also called the dual Viterbi algorithm. 

If the starting state of the encoder 0S  is known, then 0)( 00 =α SM  and 

+∞=α )(0 sM  for any other state, otherwise all the )(0 sM α are initialized to the same 
value. The same rule applies for the initialization of back metrics with respect to the 
final state kS . For circular codes all the metrics are initialized to the same value at 
the start of the prolog. 

We will note that the presence of the coefficient 2σ  in the definition [5.21] of 
)( jLi  makes it possible to dispense with the knowledge of this parameter for the 

calculation of the metrics and, consequently, for all decoding. It is an important 
advantage of the Max-Log-MAP algorithm compared to the original MAP 
algorithm. 

In the context of iterative decoding the term )(a jLi  is modified in order to take 

into account the extrinsic information input )(ext
e, jLi  coming from the other 

elementary decoder: 

)()()( ext
e,

a@ jLjLjL iii +=   [5.33] 
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In addition, the extrinsic information produced at output of the decoder is 
obtained by eliminating the terms containing direct information on di in )( jLi , i.e. 
intrinsic information and a priori:  
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Let us note 0j  the value of j that minimizes the term 
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The expression of )( jLi can then be reformulated as follows: 
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This expression shows that in practice extrinsic information )(ext
s, jLi  can be 

extracted from )( jLi  by a simple subtraction. Since the term 

⎟
⎠
⎞

⎜
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⎛ −

≡≡ 0
,, jlijli

ii
uu

dd
 is equal to either 0 or ± 2 in practice, the factor 

2
1  in the 

definition [5.21] of )( jLi  makes it possible to obtain a soft decision and outgoing 
extrinsic information on the same scale as the disturbed samples liv , . 

5.4. The permutation function 

Called interleaving or permutation, the technique that consists of dispersing data 
in time proves extremely useful in numerical communications. It is used to an 
advantage, for example, to reduce the effects of the more or less large attenuations in 
transmissions affected by fading, and, more generally, in situations where noise can 
deteriorate consecutive symbols. In the case of turbocodes, the permutation also 
makes it possible to effectively counter the appearance of error packages in at least 
one of the dimensions of the composite code. However, its role does not stop there: 
it also determines, in close connection with the properties of the constituent codes, 
the minimum distance of the concatenated code. 
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Let us consider the turbocode represented in Figure 5.8. The worst of the 
permutations that could be used is naturally the identity permutation, which 
minimizes the diversity of coding (we then have Y1 = Y2). On the other hand, the best 
imaginable but probably-non existent [SVI 95] permutation would allow the 
concatenated code to be equivalent to a sequential machine whose number of 
irreducible states would be 2k+6. There are indeed k + 6 binary memorization 
characters in the structure: k for the permutation memory and 6 for the two 
convolutional codes.  

Assimilating this sequential machine to a convolutional encoder, and for the 
usual values of k, the corresponding number of states would be very large; in any 
case, large enough to guarantee a large minimum distance. For example, a 
convolutional encoder with a code memory of 60 (1018 states!) exhibits a free 
distance of around 100 (for R = 1/2), which is quite sufficient. 

Thus, from the worst to the best of permutations, the choice is broad and we still 
lack a solid and unifying theory on the design of permutations in a turbocode. That 
said, good permutations could, nevertheless, be defined to prepare standardized 
turbocoding diagrams. 

5.4.1. The regular permutation 

The starting point in the design of an interleaving is the regular permutation 
described in Figure 5.14 in two different forms. The first supposes that the block 
containing k bits can be organized as a table of M rows and N columns.  

Interleaving then consists of writing the data to an ad hoc memory row by row 
and reading it column by column (Figure 5.14a). The second form is applied without 
an assumption regarding the value of k. After writing the data in a linear memory 
(address i, 0 ≤ i ≤ k – 1) the block becomes akin to a circle, the two ends  
(i = 0 and i = k – 1) then being contiguous (Figure 5.14b).  

Binary data is then extracted so that the jth unit read had been written to the 
position i, with the value: 

kjPi  mod.   .=   [5.36] 
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where P is an integer prime to k. To maximize the spread after permutation, between 
two consecutive bits in a natural order, whatever they are, and vice versa, P must be 
close to k2  and such that 

PPk .mod    
2

≈   [5.37] 

 

 

Figure 5.14. Regular permutation in rectangular or circular form 
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5.4.2. Statistical approach 

The overall performance of a code obtained by parallel concatenation of two 
codes separated by an interleaver in terms of error probability simultaneously 
depends on the elementary codes and the interleaver used. Generally speaking, for a 
Gaussian channel and a binary symbol modulation, the upper bound of the 
probability of error with respect to the spectral multiplicities or coefficients and of 
the minimum distance of the concatenated code can be expressed in the form: 

∑
∞

=

−
≤

min

0

dd

N
ERd

de

b

eMP   [5.38] 

The performance is all the better the larger the minimum distance mind  is and 
the lower the multiplicities dM  are. It is precisely the fact of using an interleaver 
that under certain conditions makes it possible to reduce the multiplicities and to 
increase the minimum distance. 

Actually, it is difficult to calculate the multiplicities and the minimum distance 
of the concatenated code, even when the two elementary codes are known, because 
the redundancy introduced by the second encoder depends not only on the original 
message, but also on the way in which the data is interleaved before coding. For an 
interleaver of a given size it would be necessary to take into account exhaustively all 
the possibilities of data interleaving. For long messages this method quickly 
becomes too complex. For this reason Benedetto and Montorsi [BEN 96] proposed 
to use a uniform (or statistical) interleaver model whose advantage lies in making 
possible the evaluation of the upper bound of the probability of error for any type of 
code concatenation (parallel or serial) and for any type of elementary code (block or 
convolutional). 

The uniform interleaver of size k is an abstract device that associates one of the 
w
kC  messages obtained by permutation of w in k bits to a message of k bits and 

Hamming weight w. The w
kC  interleaved messages have equal probability, a 

message of weight w and length k has a probability 
w
kC
1  to be coded by the second 

encoder. This interleaver model provides performances equal to that of an 
interleaver obtained by taking the average of the performances for all the possible 
deterministic interleavers of the same size (here equal to k). Thus, there is at least 
one deterministic interleaver, i.e. whose interleaving rule is fixed, that makes it 
possible to reach the performances of the uniform interleaver. For low error rates, it 
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is in fact easy to find permutations that lead to much better performances than those 
obtained with the uniform interleaver. 

Let us suppose that without the interleaver there are wdA  codewords at the 
distance d (the “all-zero” reference word implied) generated on the basis of a 
message of weight w. It is then demonstrated in [BEN 96] that the uniform 
interleaver associates only wd

w Akw −1!  messages of weight w and distance d. 
Thanks to the uniform interleaver, the number of messages of weight w associated to 
a codeword at the distance d can be reduced, if the factor wkw −1!  is less than 1. 
Consequently, for large interleavers (large k), the reduction factor is the more 
considerable the larger the weight of the message generating a sequence at the 
distance d is. For the lowest value of minww =  the factor min1 wk − , called 
“interleaving gain”, makes it possible to evaluate the minimum reduction of wdA  
obtained using the interleaver. 

Let us recall that minw  is the minimum weight of a message generating a 
codeword with distance d. For block and convolutional non-recursive codes, this 
parameter minw  being equal to 1, the interleaver does not reduce the multiplicities 
of code concatenated in parallel and does not bring interleaving gain. On the other 
hand, the parameter minw  of the recursive convolutional codes is equal to 2 and the 

interleaving gain is 
k

k 121 =− . The reduction of the multiplicities of the 

concatenated code is thus proportionate to the size of the interleaver. 

In conclusion, the statistical approach to permutation confirms the need to use 
RSC codes as constituent codes of a turbocode, and makes it possible to observe and 
evaluate an interleaving gain, as a function of the size of the interleaver and of the 
minimum weight of a message with distance d. 

Coding gain is mainly visible for strong error rates. For low error rates, the 
minimum distance that should be maximized remains the main parameter. The 
statistical interleaver does not ensure a maximum minimum distance. 

5.4.3. Real permutations 

The traditional dilemma in the design of good permutations lies in the need to 
obtain a large minimum distance for two distinct classes of input sequences that 
require opposite processing. To highlight this problem, let us consider a turbocode 
with output 1/3, with a regular rectangular permutation (writing along the M rows, 
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reading along the N columns) bearing on blocks of k = M.N bits (Figure 5.15). The 
elementary encoders are encoders with 8 states whose period is 7 (recursiveness 
generator 15 in octal). 

The first pattern (A) in Figure 5.15 describes a possible information sequence of 
weight w = 2: “10000001” for the C1 code, which we will also call horizontal code. 
In fact, it is a minimum RTZ sequence of weight 2 for the encoder considered. The 
redundancy sequence produced by this encoder has a weight of 6 (exactly: 
“11001111”). The redundancy sequence produced by the vertical encoder C2, for 
which the considered information sequence is also RTZ, is also richer as it is 
delivered in seven columns. Admitting that Y2 is equal to “1” on average every other 

time, the weight of this redundancy sequence is approximately 
2

7)( 2
MYw ≈  

leading to a large minimum distance. When we have k tend towards infinity through 
the values of M and N )( kNM ≈≈ , the weight of the redundancy sequence 
produced by one of the two codes for this type of pattern also tends towards infinity. 
We then say that the code is good for this type of pattern. 

The second pattern (b) is that of minimum RTZ sequence of weight 3. There too, 
the redundancy sequence is poor for the first dimension and has a much higher 
weight for the second one. The conclusions are the same as previously. 

The two other designs (c) represent examples of short RTZ sequences, in each of 
the two dimensions, combined into composite RTZ patterns with a total weight of 6 
and 9. The minimum distances associated to these patterns (30 and 27 respectively 
for this code with output 1/3) are generally insufficient to ensure a good 
performance with a low error rate. Moreover, these distances are independent of the 
size of the block and thus, with respect to the patterns considered, the code is not 
good. 
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Figure 5.15. Possible information patterns for weights 2, 3, 6 or 9 with a turbocode whose 
elementary encoders have a period of 7 and a regular permutation 

As for the sequences that are not RTZ, in at least one dimension, they correspond 
to sufficiently long redundancy messages so that their weights are not taken into 
account in the evaluation of the minimum code distance. This is particularly the case 
if circular codes are used, which are constructed so that any input sequence that is 
not RTZ influences all of the encoder’s redundant output. 

Regular permutation is thus a good permutation for the class of RTZ error 
patterns with a weight of w ≤ 3, as well as for the patterns with greater weights, 
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which are, however, not elementary pattern combinations. On the other hand, 
regular permutation is not suitable for these latter.  

A good permutation must “break” the regularity of rectangular composite 
patterns, such as those in Figure 5.15c, by introducing a certain disorder.  

However, that should not be done at the expense of the patterns, for which the 
regular permutation is good. The disorder must be well managed! That is the essence 
of the problem of the search for the permutation leading to a sufficiently large 
minimum distance. A good permutation cannot be found independently of the 
properties of elementary codes, their RTZ patterns, their periodicities, etc. 

When elementary codes are m-binary codes, presented in detail in the following 
chapter, we can introduce a certain disorder into the permutation without, however, 
disturbing its regularity.  

To this end, in addition to a traditional intersymbol permutation, we implement 
an intrasymbol permutation, i.e. a non-regular modification of the contents of the 
symbols of m bits, before coding by the second code [BER 99b]. We briefly develop 
this idea for the example of double-binary turbocodes (m = 2). 

Figure 5.16a represents the minimum information pattern of weight w = 4, still 
with the code from Figure 5.15. It is a square pattern whose side is equal to the 
period of the pseudo-random generator of polynomial 15, i.e. 7. It has already been 
said that a certain disorder has to be introduced into the permutation “to break” this 
kind of possible error pattern, but without altering the properties of regular 
permutation with respect to the patterns for weight 2 and 3, which is not easy. 

If we replace the binary encoder by a double-binary encoder as an elementary 
encoder, the error patterns to be considered are no longer formed by bits, but by 
pairs of bits. Figure 5.16b provides an example of a double-binary encoder, supplied 
by bit pairs (A, B) and possible error patterns, when the permutation is regular. The 
(A, B) pairs are numbered from 0 to 3, according to the following correspondence: 

(0,0): 0; (0,1): 1; (1,0): 2; (1,1): 3. 
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Figure 5.16. Possible error patterns with low weights, with binary (a) and double-binary (b) 
turbocodes with 8 states and a regular permutation. The elementary 

turbocode encoder is represented for each of the two cases 

The periodicities of the double-binary encoder are summarized by the diagram in 
Figure 5.17. There we find all the combinations of pairs of couples of the RTZ type. 
For example, if the encoder initialized to the 0 state is supplied by the successive 
pairs 1 and 3, it immediately enters the 0 state. It is the same for 201, 2003 or 
3000001 sequences, for example. 

 

Figure 5.17. Periodicities of the double-binary encoder from Figure 4.3b. Four input pairs 
(A, B,) = (0,0), (0,1), (1,0) and (1,1) are noted 0, 1, 2 and 3, respectively. This diagram 

provides all the combinations of pairs of couples of the RTZ type 
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Figure 5.16b provides two examples of rectangular error patterns of a minimum 
size. First of all, let us observe that the perimeter of these patterns is larger than half 
of the perimeter of the square in Figure 5.16a. However, for the same coding output, 
the redundancy of a double-binary code is twice denser than that of a binary code. 
From that we deduce that the distances of double-binary error patterns will naturally 
be larger, all else being equal, that those of binary error patterns. Moreover, using a 
simple tool we can eliminate these elementary patterns. 

 

Figure 5.18. The couples of the gray boxes are inversed before the second coding (vertical). 
 1 becomes 2, 2 becomes 1; 0 and 3 remain unchanged. The patterns in Figure 5.16b, 

redrawn in (a), are no longer the possible error patterns. Those in (b) still are,  
with distances 24 and 26, for a coding output of 1/2 

Let us suppose, for example, that one in every two couples is inversed (1 
becomes 2 and reciprocally) before being applied to the vertical encoder. Then the 
error patterns represented in Figure 5.18a no longer exist; for example, if 30002 
does represent an RTZ sequence for the encoder considered, 30001 no longer does. 
Thus, many error patterns, in particular the smallest ones, disappear due to the 
disorder introduced inside the symbols. Figure 5.18b provides two examples of 
patterns that are not “broken” by the periodic inversion. The corresponding distances 
are sufficiently high (24 and 26) so as not to pose a problem for small or average 
block sizes. For long blocks (several thousands of bits), an additional intersymbol 
disorder of low intensity can be added to intrasymbol non-uniformity in order to 
obtain even greater minimum distances. An example of small “controlled” disorder 
is provided by the relation [5.36] modified in the following manner: 
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kQjPi  mod.   . +=   [5.39] 

with 

1

2

3

0     if  0   mod. 4
  if  1   mod. 4
  if  2   mod. 4
  if  3   mod. 4

Q j
Q Q j
Q Q j
Q Q j

= =
= =
= =
= =

 

where Q1, Q2 and Q3 are small integers, multiples of 4 and, if possible, such that  
Q1 ≠ | Q3 – Q2 |. This technique makes it possible to break the error patterns such as 
those drawn in Figure 5.18b and, more generally, the rectangular patterns whose 
lengths and widths are both not multiples of 4. The turbocodes retained in the DVB-
RCS and DVB-RCT standards [DVB 00, DVB 01] have permutations worked out 
following this method. 

5.5. m-binary turbocodes 

m-binary turbocodes are constructed on the basis of recursive systematic 
convolutional codes with m binary inputs (m ≥ 2)9. The advantages of this 
construction compared to the traditional turbocodes diagram (m = 1) are varied: 
better convergence of the iterative process, large minimum distances, reduced 
sensitivity with respect to the possible puncturing patterns, lower latency, robustness 
to the sub-optimality of the decoding algorithm, in particular, when the MAP 
algorithm is simplified in its Max-Log-MAP version. 

The m = 2 case has already been adopted for the European standards of satellite 
and ground network feedback channels: DVB-RCS and DVB-RCT [DVB 00, DVB 
01]. Combined with the circular trellises technique these double-binary turbocodes 
with 8 states offer good average performances and a great flexibility of adaptation to 
different block sizes and different outputs, while keeping a reasonable decoding 
complexity. 

                                   
9. There are at least two ways to construct an m-binary convolutional code: either on the basis 
of the Galois body GF(2m) or of the Cartesian product (GF(2))m. Here we only consider the 
latter, more convenient, construction method. Indeed, a code worked out in GF(2m), with a 
memory depth v, has 2vm possible states, whereas the number of states for the code defined in 
(GF(2))m, for the same depth, can be limited to 2v.  
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5.5.1. m-binary RSC encoders 

Figure 5.19 represents the general structure of an m-binary RSC encoder.  

It uses a pseudo-random generator with code memory ν and a generator matrix 
of a wedged register G  (sized n × n).  

The input vector d with m components is connected to the various possible 
sockets via a grid of interconnections whose binary matrix, sized n × m, is noted C .  

The vector T applied to ν possible takes of the register at the moment i is given 
by: 

ii dCT .=   [5.40] 

with ( )T1=d …i ,i m,id d . 

 

Figure 5.19. General structure of an m-binary RSC encoder with code memory ν. 
 Neither the temporal index nor the encoder output are represented here 

If we wish to avoid parallel transitions in the trellis code, the condition m ≤ ν 
must be observed.  
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Except for very particular cases, this encoder is not equivalent to an encoder with 
a single input where we would successively present d1, d2, ... dm. An m-binary 
encoder is thus generally not decomposable. 

The redundant machine output (not represented in the figure) is calculated at the 
moment i by the expression:  

i
mj

iji dy SR T

...1
, += ∑

=
  [5.41] 

where iS  = (s1,i, s2,i, ... , sν,i)T is the state vector at the moment i and TR  is the 
transposed redundancy vector. The pth component of R equals “1”, if the pth 

component of Si is used in the construction of yi, and equals “0” otherwise. We can 
demonstrate that yi can also be expressed in the form: 

1
-1T

...1
, +

=
+= ∑ i

mj
iji dy SGR   [5.42] 

provided that: 

0CGR ≡−1T   [5.43] 

The expression [5.41] ensures, on the one hand, that the Hamming weight of the 
vector (d1,i, d2,i, ... dm,i, yi) is at least equal to two, when we deviate from the 
reference path (“all-zero” path), in the trellis. Indeed, inversing a single component 
of di modifies the value of yi.  

In addition, expression [5.42] indicates that the Hamming weight of the same 
vector is also at least equal to two, when the reference path has been retaken.  

In conclusion, relations [5.41] and [5.42] together guarantee that the free 
distance of the code, whose output is R = m/(m + 1), is at least equal to 4, regardless 
of m. 

Since the minimum distance of a concatenated code is much larger than that of 
each constituent elementary code, we can imagine being able to obtain large 
minimum distances, for the low as well as for strong outputs.  

The choice of large values for m could, of course, imply a great complexity of 
decoding, since the trellis representing the code has 2m paths per node.  
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However, recent work on the decoding of m-binary convolutional codes by 
means of the dual code has shown that the complexity of decoding can be reduced to 
that of binary codes [BER 98]. 

5.5.2. m-binary turbocodes 

 

Figure 5.20. M-binary turboencoder 

We consider a parallel concatenation of two RSC m-binary encoders associated 
to an interleaving function of words with m bits (Figure 5.20). The blocks of k bits (k 
being a multiple of m) are coded twice by this two-dimensional code, whose output 
is m/(m + 2). The principle of circular trellises is adopted to enable the coding of 
blocks without termination sequences and edge effects. 

The advantages of this construction with respect to the traditional turbocodes are 
the following: 

– Better convergence. This point was first observed in [BER 97] and commented 
on in [BER 99c]. A better convergence in a two-dimensional iterative process is 
explained by a lower density of erroneous paths in each dimension, thus reducing 
the correlation effects between the constituent decoders. Figure 5.21 compares, for 
the same block size (k bits of information), a possible situation after a certain 
number of iterations, for a binary turbo decoder and a double-binary turbo decoder. 
To simplify matters, each block is presented as a square and a regular permutation is 
used. The lines in each square symbolize the places where the elementary decoders, 
for each of the two dimensions, made mistakes (erroneous paths in the trellises). 
Figure 5.21a depicts a particular case of severe error locking, schematized by the 
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four dashes forming a rectangle. This kind of situation is typical of the difficulties 
faced by the turbo decoder in its exchange of probabilities; the correlation between 
the noises over extrinsic information in this short cycle is then a serious barrier to 
convergence. 

The length of error patterns in the double-binary case is on average divided by 2, 
since the density of redundancy symbols in the corresponding trellis is twice larger 
than that of the binary code. The ratio between the sides of the two squares is 
only 2 , which explains this low density of erroneous paths for each of the two 

dimensions. The gain for each density is exactly 2
2

. We can note, for example, 

that the rectangle initially present in Figure 5.21a has disappeared. 

The advantage of the reduction of density of errors is pronounced when we 
replace binary codes with double-binary codes, but the additional gain is less 
considerable for m > 2. 

 

Figure 5.21. Examples of erroneous paths in the elementary decoders of a turbocode.  
The density of errors is lower in the case of a double-binary turbocode (b) 

 than in the case of a traditional binary turbocode (a) 

– Larger minimum distances. In addition to the argument developed previously 
for the m-binary convolutional codes and their minimum distance at least equal to 4 
regardless of the output, the composite m-binary code adds another degree to the 
construction of permutations: the intrasymbol permutation. This point is developed 
in section 5.4.3. 
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– Reduced sensitivity with respect to punctured sequences. To obtain coding 
outputs higher than m/(m + 1) on the basis of the encoder in Figure 5.19, it is not 
necessary to remove as many redundancy symbols as with a binary encoder. It is the 
same for m-binary turbocodes. 

– Reduced latency. From the point of view of coding as well as of decoding, 
latency is divided by m, since the data is treated by groups of m bits. 

– Robustness of the decoder. For binary turbocodes the difference in 
performance between the MAP algorithm and its simplified versions, or between the 
MAP and the SOVA algorithms, varies from 0.2 to 0.6 dB, according to the size of 
the blocks and the coding outputs. This difference is divided by two when we use 
double-binary turbocodes and can be even smaller for m > 2. This favorable (and 
slightly surprising) property can be explained in the following manner: for a block 
of a given size (k bits), the smaller the number of stages in the trellis is, the closer is 
the decoder, regardless of the algorithm on which it is based, to the Maximum 
Probability (MP) decoder. In extreme cases, a trellis reduced to a single stage and 
thus containing all the possible codewords is equivalent to an MP decoder.  

5.5.3. Double-binary turbocodes with 8 states 

Figure 5.22a provides some examples of performances obtained with the 
turbocode of [DVB 00], for an output of 2/3. The parameters of the constituent 
encoders are: 
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The permutation function simultaneously using inter- and intrasymbol disorder is 
described in [DVB 00]. In particular, we may observe: 

– good average performances for this code, whose decoding complexity remains 
very reasonable (approximately 18,000 gates per iteration + memory); 

– a certain coherence with respect to performance variation with the size of the 
blocks (according to [DOL 98], for example). The same coherence could also be 
observed for performance variation with coding output; 

– quasi-optimality of decoding for low error rates. The theoretical asymptotic 
curve for 188 bytes was calculated using only the knowledge of the minimum code 
distance (13 in this case) and not using the total spectrum of distances. Despite that, 
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the difference between the asymptotic curve and the curve obtained by simulation is 
merely 0.2 dB for a PER of 10-7. 

 

Figure 5.22. (a) Performance, expressed in PER, of a double-binary turbocode with 8 states 
for blocks of 12, 14, 16, 53 and 188 bytes. PSK4, AWGN noise and output 2/3. Max-Log-MAP 
decoding with input samples of 4 bits and 8 iterations. (b) Performance, expressed in PER, of 
a double-binary turbocode with 16 states for blocks of 188 bytes (PSK4 and PSK8) and 376 
bytes (PSK8). AWGN noise and output 2/3. Max-Log-MAP decoding with input samples of 4 

bits (PSK4) or 5 bits (PSK8) and 8 iterations 

5.5.4. Double-binary turbocodes with 16 states 

The extension of the preceding diagram to elementary encoders with 16 states 
clearly makes it possible to increase minimum distances. For example, we may 
choose: 
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For the turbocode of output 2/3, still with blocks of 188 bytes, the minimum 
distance obtained is equal to 18 instead of 13 for the code with 8 states. Figure 5.22b 
shows the gain obtained for a low error rate: approximately 1 dB for a PER of 10-7, 
and 1.4 dB asymptotically considering the respective minimum distances. We may 
note that the convergence threshold is approximately the same for decoders with 8 
and 16 states, the curves being practically identical for PER superior to 10-4. The 
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theoretical limits (TL) for R = 2/3, block size of 188 bytes and target PER of 10-4 
and 10-7 are 1.9 and 2.2 dB respectively. The performances of the decoder with 16 
states, in this example, are therefore: TL plus 0.6 dB for a PER of 10-4 and TL plus 
0.7 dB for a PER of 10-7. These variations are typical of what we obtain in the 
majority of output and block size configurations. 

The replacement of PSK4 modulation by PSK8 modulation, following the 
approach referred to as pragmatic [GOF 94], yields the results presented in Figure 
5.22b, for blocks of 188 and 376 bytes. Again, excellent performances of the 
double-binary code can be observed there, with losses with respect to the theoretical 
limits (that are approximately 3.5 and 3.3 dB, respectively) close to those obtained 
with PSK4 modulation. 

For a particular system, the choice between a turbocode with 8 or 16 states 
depends on the target error rate in addition to the desired decoder complexity. To 
simplify let us say that a turbocode with 8 states is enough for PER greater than 10-4. 
It is generally the case for transmissions with possibility of repetition (ARQ: 
Automatic Repeat reQuest). For lower PER, typical for diffusion or mass memory 
applications, the code with 16 states is largely preferable. 
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Chapter 6   

Block Turbocodes  

6.1. Introduction 

The turbocode principle was introduced by C. Berrou during the ICC Geneva 
congress in 1993 [BER 93] where, for the first time, an error correcting code 
operating within less than 0,5 dB of the Shannon limit [SHA 48] was announced. 
These results have initially surprised all the specialists in the field who were 
persuaded that it was not possible to reach this level of performance with a 
reasonable complexity. Very quickly many researchers, such as Hagenauer, 
Benedetto, Divsalar [HAG 96, BEN 96, DIV 95, ROB 94, WIB 95] and a number of 
others confirmed the results of Berrou and within a few years the turbocode became 
essential in the field of the error corrector coding as the 21st century solution.  

The principle described by Berrou consists of carrying out iterative decoding of 
two CRS (convolutional recursive systematic) codes concatenated in parallel 
through a random or non-uniform interleaver. This iterative processing is based on 
SISO (soft input soft output) decoding and on the optimal transfer of the decoding 
information from one decoder to the next. To that end he has introduced the concept 
of extrinsic information, which plays a fundamental part in the operation of the 
convolutional turbocode (CTC).  
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In view of the first results of Berrou it was obvious that it became possible to 
obtain performances comparable to block codes. To get to that point several 
problems had to be solved:  

– which type of concatenation should be adopted? 

– how should a SISO decoder of reasonable complexity for block codes be 
produced? 

– how should information be transmitted in an optimal way from one decoder to 
the next? 

 
The first results for the BTC were presented during the San Francisco Globecom 

conference in 1994 [PYN 94], that is, 18 months after Berrou’s publication. This 
chapter presents the various concepts used in BTC.  

After a study of the various types of concatenation for block codes, we will 
successively approach SISO decoding, iterative decoding used for the BTC and the 
performances of the BTC for a Gaussian and Rayleigh channel in the case of MDP4 
or MAQ modulations with M states.  

6.2. Concatenation of block codes 

The general principle of coding retained for the turbocode consists of associating 
(or concatenating) two or more elementary codes in order to build a more powerful 
code than the elementary codes used. In the case of BTC the concatenated code is 
constructed on the basis of elementary codes [MAC 78] of the BCH (Bose-
Chandhuri-Hocquenghen), RS (Reed-Solomon) or other types.  

In practice we distinguish between two types of concatenation, which are 
respectively parallel and serial concatenation of elementary codes. The principles of 
parallel and serial concatenation are illustrated by Figures 6.1 and 6.2 respectively, 
where Π indicates the interlacing function.  

Codeur 1

Codeur 2

Π

E S1

S2

 

Figure 6.1. General diagram of parallel concatenation of two codes 

Encoder 1 

Encoder 2 
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Codeur 1 Π Codeur 2
E S

 

Figure 6.2. General diagram of serial concatenation of two codes 

In addition, the concatenated code also depends on the nature of the interleaver, 
noted Π in Figures 6.1 and 6.2, which can be uniform or pseudo-random.  

Thus, there are four different ways to construct a concatenated block code, 
according to the type of concatenation (parallel or serial) and to the nature of the 
interleaver used (uniform or pseudo-random).  

We will examine these various possibilities and provide some results that will 
enable us to justify the choice of the concatenated code used for the BTC. To 
simplify this discourse, we will limit ourselves to the case of concatenation of two 
BCH codes.  

Moreover, we will only consider the case of codes in systematic form. This 
restriction makes it possible to simplify the placement of the decoder and in practice 
we almost exclusively use systematic block codes. 

6.2.1. Parallel concatenation of block codes 

First of all, we will consider the parallel concatenation of two BCH codes using 
uniform interlacing.  

The term uniform interlacing refers to an interleaver where the data is written 
into a matrix by rows and then read by columns. Let us consider the concatenation 
of two BCH codes noted 1C  and 2C  with the parameters 1 1 1( , , )n k δ  and 

2 2 2( , , )n k δ , where in  is the length, ik  is the dimension and iδ  is the minimum 
distance (Hamming) of the code iC . Initially, the data is placed in a matrix of size 

1 2k k× , which is the size of the concatenated code, noted pK . The columns of the 
matrix are coded by the first code 1C  and we obtain the matrix (see Figure 6.3) of 
size 1 2n k× .  

Encoder 1 Encoder 2 
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n2

n1

[ M ]
[ P2 ]

[ P1 ]

k2

k1

 

Figure 6.3. Example of a coded matrix in the case of parallel concatenation 

The 1k  rows of this matrix are then coded by the second code 2C  and we obtain 
the concatenated code illustrated in Figure 6.3. This code has a length 

1 2 1 2 2(( ) ( ))pN n k k n k= × + −  and from it we deduce its output, which is given by:  

1 2

1 2 1 2

p
p

p

K R R
R

N R R R R
⎛ ⎞ ⎛ ⎞

= =⎜ ⎟ ⎜ ⎟⎜ ⎟ + −⎝ ⎠⎝ ⎠
  [6.1] 

where i i iR k n=  is the output of the code iC . Let us consider the case where the 
two codes have the same output. Table 6.1 shows the evolution of pR  following the 
output of the elementary codes. We note that the ratio between the output of the 
elementary code and that of the concatenated code decreases and tends towards one 
when the former is increased. We will now consider the third parameter of the 
concatenated code, which is the minimum (Hamming) distance noted pΔ . In the 
case of block codes concatenated in parallel this minimum distance is given [PYN 
97] by the relation:  

( )1 2 1p δ δΔ = + −   [6.2] 

This result is obtained very simply by using the linearity and the weight 
spectrum of the 1C  and 2C  codes. Since 1C  and 2C  are linear, the code 
concatenated in parallel is also linear.  
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The minimum distance of the concatenated code is given by the weight of the 
codeword with a minimum weight different from zero [MAC 78]. Let us consider 
the weight of the various codewords of the code concatenated in parallel, which we 
classify according to the growing weight of pK  binary information symbols 
contained in the matrix 1 2k k×  in Figure 6.3, which we will note [M]. For a matrix 
of weight P([M]) = 1, the codeword with the lowest weight is such that (see Figure 
6.4) the column of the coded matrix containing the binary information symbol at 
“one” has a weight of 1δ  and the row of the coded matrix containing the binary 
symbol of information at “one” has a weight of 2δ .  

Indeed, the 2k  columns of the coded matrix must verify the coding equation 1C  
and the 1k  rows of the coded matrix must verify that of 2C . The weight of this 
codeword is provided by relation [6.2]. For P([M]) = 2, the codeword with the 
lowest weight is such that two columns of the coded matrix containing binary 
symbols at “one” have a weight of 1δ  and the row of the coded matrix containing 
the two binary information symbols at “one” has a weight of 2δ , if 1 2δ δ< . The 
weight of this codeword is given by:  

( ) ( )2 1 12 2 1p pδ δ δ+ − = Δ + − ≥ Δ   [6.3] 

Considering the weight of the codewords with P([M]) binary information 
symbols at one with P([M]) > 1, we show that these weights are always ≥ pΔ . The 
codeword with a weight of pΔ  exists because the majority of block codes contain at 
least one codeword with a minimum weight associated with a message with the 
weight of one. 

If we consider the case of two Hamming codes concatenated in parallel, the 
minimum distance is ( )3 3 1 5Δ = + − =p . In the case of two codes concatenated in 
parallel with the same minimum distance, the ratio between the minimum distance 
of the concatenated code and that of the elementary codes tends towards two when 
the latter tends towards infinity. 
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n2 

n1

k2

k1

X

X

X

X X

 

Figure 6.4. Example of codeword with a minimum weight of a code  
concatenated in parallel with uniform interlacing for 1 2 3δ δ= =   

(X: indicates the position of binary symbols at “one”) 

Now let us consider the parallel concatenation of two BCH codes with random 
pseudo interlacing. The data is arranged in a 1 2k k×  size matrix that we note [M]. 
The 2k  columns of the matrix are coded by the code 1C . The data is then interlaced 
in a pseudo-random fashion (hence the term: pseudo-random interlacing) and 
arranged in a matrix of size 1 2k k×  noted [M’]. The matrix [M’] contains the same 
data as [M] but it is arranged in a different order. The 1k  rows of the matrix are 
coded by the code 2C . The parameters N and K of this concatenated code are the 
same as previously. Consequently, the coding output R is not modified. On the other 
hand, the minimum Hamming distance is no longer given by the relation of equality 
[6.2] which is transformed into a lower limit:  

Δ p ≥ δ1 +δ2 −1( )  [6.4] 

In practice, for the majority of known codes (BCH or RS) this lower limit is 
reached and, thus, in the case of BTC it does not make sense to use pseudo-random 
interlacing.  
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This is explained by the fact that the majority of block codes have a codeword 
with a minimum weight associated with a message with a weight of one.  

A comparison of the performances of BTC with the two types of interleavings 
carried out by Hagenauer [HAG 96] shows that they are nearly identical.  

However, the conclusion should not be drawn that the limit is always reached, 
because this issue has not been fully explored. The discovery of block codes with all 
the codewords with minimum weights associated with messages of weight higher 
than one could call the above conclusions into question.  

6.2.2. Serial concatenation of block codes 

Serial concatenation is distinguished from parallel concatenation by the fact that 
the second code 2C  is also applied to the binary parity symbols generated by the 
first code 1C  (see Figure 6.2). As previously, let us first consider the case of 
uniform interlacing. 

The data is placed in the matrix [M] of size 1 2k k× . The 2k  columns of the 
matrix are coded by code 1C  and then the 1n  rows of the 1 2n k×  matrix are coded 
by code 2C  (see Figure 6.5). The size of the concatenated code is 1 2sK k k= × , its 
length is 1 2sN n n= ×  and its coding output is 1 2sR R R= × . For identical elementary 
codes s pR R< . On the other hand, as the output of elementary codes increases, the 
ratio 1s pR R ≤  tends towards 1. 

To prove the inequality it suffices to show that ( 1) 0s pR R − ≤ . For that we use 
the following relation:  

( ) ( )( )1 21 1 1 0s pR R R R− = − − ≤   [6.5] 

Thus, it is enough that at least one of the two terms (R1 or R2) tends towards 1 for 
the ratio to become 1s pR R → . 
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n2 

n1

[ M ] [ P 2 ]

[ P 1 ]

k2

k1

[ P 12 ]

 

Figure 6.5. Example of a code matrix concatenated serially 

Table 6.1 illustrates this evolution for ( )1 2R R= . 
 

1 2R R=  1/2 2/3 3/4 4/5 5/6 6/7 

Rp
 1/3 2/4 3/5 4/6 5/7 6/8 

Rs  1/4 4/9 9/16 16/25 25/36 36/49 

/s pR R  3/4 8/9 15/16 24/25 35/36 48/49 

Table 6.1. Evolution of the concatenated code output  
according to the elementary codes output 

We observe that for 1 2= 2/3R R >  the output is 0.9s pR R≥  and that there is no 
significant advantage in using parallel concatenation from the point of view of 
coding output. 

We will now demonstrate that the minimum distance of a serially concatenated 
code with uniform interlacing is equal to the product of the minimum distance of the 
two codes: 1 2s δ δΔ = × . To establish this result we must first show that the 2n  
columns of the coded matrix respect the coding equation 1C  and the 1n  rows respect 

2C . The second point is verified very easily using the fact that the 1n  rows of the 
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coded matrix have been generated by code 2C . In addition, the 2k  columns of the 
coded matrix verify the coding equation 1C  because they have been generated by 
code 1C . It suffices to show that the last 2 2( )n k−  columns of the coded matrix 
verify the coding equation 1C .  

Let [Gi] be the generator matrix, of size i ik n× , of the iC  code. In the case of a 
systematic code, this matrix has the form:  

i i

i i
k k×

⎡ ⎤⎡ ⎤ =⎣ ⎦ ⎣ ⎦G I Q   [6.6] 

where the ik  first columns constitute the identity matrix of size ik  and [Qi] is the 
sub-matrix of size ( ( ))i i ik n k× − , generating the binary parity symbols. The parity 
sub-matrices [P1] [P2] and [P12] of the coded matrix are provided by the following 
equations:  

[ ]1 1 1 [ ]
T TT⎡ ⎤⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦⎣ ⎦P M Q Q M   [6.7] 

[ ]2 2⎡ ⎤= ⎣ ⎦P M Q   [6.8] 

12 1 2 1 2[ ]
T

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦P P Q Q M Q   [6.9] 

We will now verify that the last 2 2( )n k−  columns of the coded matrix verify the 
coding equation 1C . To this end it suffices to demonstrate that the sub-matrix 
obtained by encoding the sub-matrix [P2] using the 1C  code is equal to [P12]. 

2 1 2 1 1 2 12[ ] [ ]
TT TT T⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= = =⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

P Q M Q Q Q M Q P  [6.10] 

The relation [6.10] shows that the sub-matrix [P12] associated with the sub-
matrix [P2] verifies the 1C  coding constraint.  

In the case of serial concatenation of two linear and systematic block codes 
(BCH, RS or other) using uniform interlacing, the 2n  columns respect the coding 
equation 1C  and the 1n  rows respect 2C . Thus, we can define a codeword as a 

1 2n n×  matrix, such that the 2n  columns verify the coding equation 1C and the 1n  
rows verify 2C . Moreover, we can permute the coding order (rows followed by 
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columns instead of columns followed by rows) without modifying the result. This 
property will be exploited hereafter together with iterative decoding. 

To show that, in the case of serial concatenation with uniform interlacing, the 
minimum distance of the code is given by 1 2s δ δΔ = × , we will use the linearity 
properties of the concatenated code and the weight of the codewords of 1C  and 2C . 
The operations used to carry out concatenated serial coding being linear operations 
(linear coding and permutation), we deduce from it that the concatenated code is a 
linear code.  

To determine its minimum distance it is enough to know the codeword with a 
non-zero minimum weight. We will consider the binary matrices of size 1 2n n×  
noted [A], which we will classify according to the weight of the Hamming matrix 
P([A]). It is easy to demonstrate that there is no matrix with weight lower than 

1 2( )δ δ×  (other that that of zero weight), such that the 2n  columns verify the coding 
equation 1C  and the 1n  rows verify 2C .  

For P([A]) = 1 2( )δ δ×  there is at least one matrix [A] that verifies the coding 
equation of the concatenated code (see Figure 6.6), which is where the announced 
result stems from. This codeword of minimum (Hamming) weight contains 1δ  
“one” along the columns and 2δ  “one” along the rows (see example in Figure 6.6). 

n2 

n1

k2

k1

X X X

X X X

X X X

 

Figure 6.6. Illustration of a minimum weight word of a serially  
concatenated code with uniform interlacing for 1 2 3δ δ= =  



Block Turbocodes     317 
 

Thus, the minimum (Hamming) distance for a serially concatenated code with 
uniform interlacing makes it possible to obtain a greater minimum distance than that 
of a parallel concatenation, using the same elementary codes. For example, let us 
consider the concatenation of two Hamming codes ( 1 2 3= =δ δ ), 5pΔ =  and 9sΔ = . 
On the other hand, parallel concatenation makes it possible to obtain a larger coding 
output than that obtained with the serial concatenation. In order to compare these 
two types of concatenation we will use the product of the coding output with the 
minimum distance of the concatenated code, which yields an upper limit of the 
asymptotic coding gain: 

( ) ( )10loga i ii
G R≤ × Δ   [6.11] 

with i = s or p. Table 6.2 makes it possible to compare serial and parallel 
concatenation of the four BCH codes. We note that serial concatenation offers a 
better asymptotic coding gain for the various cases considered and the variation lies 
between 2 and 4 decibel. It is thus preferable to use serial concatenation when we 
are looking to maximize asymptotic gain. In the general case, relation [6.11] is the 
upper limit for asymptotic coding gain. The serial concatenated code, which has 
been initially proposed by Elias in 1954 [ELI 54], is also called a product code or 
iterative code and will be studied hereafter. 

 

 Parallel Serial 

C1 = C2  Rp Δp (Ga)p Rs Δs (Ga)s 

(15,11,3) 0.579 5 ≤4.6 dB 0.538 9 ≤6.8 dB 

(63,57,3)  0.826 5 ≤6.2 dB 0.818 9 ≤8.7 dB 

(15,7,5) 0.304 9 ≤4.4 dB 0.218 25 ≤7.4 dB 

(63,51,5) 0.680 9 ≤7.9 dB 0.655 25 ≤12.1 dB 

Table 6.2. Comparison of serial and parallel concatenation 

Lastly, we consider the case of a serial concatenation of two block codes with 
pseudo-random interlacing. In this case the data of the matrix obtained after coding 
by 1C  undergoes pseudo-random interlacing. The n1 rows of the matrix of interlaced 
data are then coded by the code 2C . The size of the code 1 2sK k k= × , its length 

1 2sN n n= ×  and its coding output 1 2sR R R= ×  are unchanged with respect to 
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uniform interlacing. On the other hand, its minimum distance depends on 
interlacing, as for the convolutional turbocode [BEN 96]. In this case, it has not been 
shown that the last ( )2 2n k−  columns of the coded matrix respect the coding 
equation 1C . In the worst case ( )1 2sup ,s δ δΔ =  and this situation occurs when the 
interlacing groups some 1δ  “one” of a codeword in a column of weight 1δ  in the 
same line and when this row generates a codeword of weight 2δ . The optimization 
of interlacing is very complex and has been barely studied until now. In addition, the 
fact that the ( )2 2n k−  last columns of the coded matrix do not respect the coding 
equation 1C  will have negative consequences on the operation of iterative decoding 
thereafter. Lastly, on a practical level, the implementation of pseudo-random 
interlacing can, in certain cases (large-sized blocks), lead to prohibitive complexity. 

We realize that serial concatenation of block codes with uniform interlacing (or 
product codes) constitutes the best concatenated code for the BTC.  

6.2.3. Properties of product codes and theoretical performances 

The product code was introduced by Elias [ELI 54] in 1954 for the case of 
Hamming codes. The process of coding described in section 6.2.2 can be applied to 
any systematic linear block codes. The systematic nature of the elementary code is 
necessary in order to show that for any word of a product code 1 2n n× , the 2n  
columns verify the coding equation 1C  and the 1n  lines verify 2C . Thus, this 
property is true for any systematic linear block code (BCH, RS or others). This 
result remains true when the number of elementary codes is higher than two. As a 
result, the parameters of a product code noted ( ), ,N K Δ  are expressed as the 
product of the parameters of the elementary codes.  

In the remainder of this section we will limit ourselves to the case of BCH codes 
in order to simplify the discussion. Generally, primitive BCH codes have a length of 

2 1mn = − , with a whole positive m. The minimum distance of the code is odd and 
its correction capacity is given by:  

1
2

t δ −⎢ ⎥= ⎢ ⎥⎣ ⎦
  [6.12] 

where ⎢ ⎥⎣ ⎦ indicates the whole part. In practice we will limit ourselves to BCH codes 
with correction power 2t ≤ , which make it possible to obtain a good compromise 
between complexity and performances. Let us consider the case of product codes 
formed by two identical elementary codes. Thus, for t = 1 and 2, the minimum 
distance of the product code is Δ = 9 and 25 (see Table 6.2) respectively. We can 
increase the minimum distance of the product code significantly by adding a binary 
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parity symbol to the elementary codes, following the principle known as code 
extension.  

Let us consider a code C with parameters ( ), ,n k δ . This code has 2k  codewords 
( )1 2, ,...., nc c c  of length n. The extension of the code consists of adding a binary 
symbol given by:  

cn+1 = ci
i =1

n
∑   [6.13] 

This binary symbol equals “one” if the word contains an odd number of “one” 
and equals “zero” otherwise. The weights of all the words with odd weights are 
incremented by “one”. Thus, the minimum distance from the extended code is 
incremented by a unit and all the codewords have even weights. The parameters of 
the extended code constructed on the basis of the primitive BCH code C are 
( )1, , 1n k δ+ + . The extension of the code makes it possible to increase its minimum 
distance at the price of a slight reduction in coding output. If we replace the 
elementary code by its extended code, the minimum distance of the product code 
increases from 9 to 16 for a code with parameter t = 1 and from 25 to 36 for a code 
with parameter t = 2 (see Table 6.3). 

In addition, we note that the upper limit of the asymptotic coding gain increases 
considerably (> 2 dB for t = 1 and > 1 dB for t = 2), when we pass from the 
primitive code to the extended code. The impact on the complexity of the decoder 
will be discussed later on. 

We will now consider the theoretical performances of product codes. For a 
transmission by phase shift keying (PSK) with two or four states in a channel with 
additive white Gaussian noise with optimal decoding (MAP: maximum a posteriori 
probability), the upper limit of the probability of error per block [PROA1] is given 
by:  

( )
0

1 erfc
2

N
b

e mblock
m

RmE
P w

N=Δ

⎛ ⎞⎛ ⎞≤ × ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
∑   [6.14] 

where mw  is the number of codewords of weight m, bE  is the energy received by 
the binary symbol and 0N  is the one-sided spectral density of the noise. 
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 Primitive BCH code Extended BCH code 

Code R Δ Ga
 R Δ Ga

 

(31,26,3) 0.70 9 ≤ 8.0 dB 0.66 16 ≤ 10.2 dB 

(31,21,5) 0.46 25 ≤ 10.6 dB 0.43 36 ≤ 11.9 dB 

Table 6.3. Comparison of product codes constructed on  
the basis of primitive BCH and extended BCH codes 

Let us first consider the product codes constructed on the basis of two Hamming 
codes with identical parameters (n, k, 3). The minimum distance of this product code 
is 2 9δΔ = = . Taking into account the constraint imposed by the product code (all 
the rows and columns are codewords of the Hamming code) we can verify that there 
is not a product codeword of weight m with ( )2 1mδ δ δ< < × + , that is,  
9 < m < 12 in our case. We may also verify that there is at least one product 
codeword of weight m = 12 that corresponds to a rectangular pattern in the coding 
matrix (see Figure 6.7). Thus, 0mw =  for 9 < m < 12. We may also verify that 

13 0w = , as well as a certain number of other terms. Thus, for a high signal-to-noise 
ratio ( 0bRE N>> ) we can limit ourselves to the contribution of the first non-nil term 
of relation [6.14]. We then obtain a lower limit of the probability of error per block:  

( )
0

erfc
2

b
e block

R Ew
P

N
ΔΔ

⎛ ⎞⎛ ⎞≥ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
  [6.15] 
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X X X
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X

 

Figure 6.7. Example of a codeword of weight 12 of a product  
code constructed on the basis of two Hamming codes 
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This limit becomes finer as the signal-to-noise ratio increases. For a given signal-
to-noise ratio, it will be finer as the variation between 2δ  and ( )1δ δ +  grows and 
the ( ) 21w wδ δ δ+  ratio becomes smaller. For a Hamming code ( ) 21 3δ δ δ δ+ − = = .  

We will now calculate the first two terms 0mw ≠  to verify if the low 

( ) 21w wδ δ δ+  condition is met. These words of product code correspond to 
rectangular or square patterns of “one” (see Figure 6.7), formed by words of the 
Hamming code with a weight of ( )iδ +  for the rows and ( )jδ +  for the columns 

with 0 ,i j n< <  and ( ) ( )m i jδ δ= + × + . To simplify the notation we will indicate 
by ( ) ( )i jw δ δ+ × +  the number of codewords of the product code with a weight of 

( ) ( )m i jδ δ= + × +  and ( )iw δ +  the number of codewords of the Hamming code 

with a weight of ( )iδ + . The number of codewords of the product code is then 
given by:  

 w δ +i( )× δ+ j( ) = w δ +i( ) × w δ+ j( )  [6.16] 

When the code comprises few codewords, we can determine ( )iw δ +  in an 
exhaustive manner. In the opposite case we can estimate ( )iw δ +  by using the 
following relation [MAC 78]:  

( )
( )   
2

i
n

i n kw
δ

δ

+

+ −=   [6.17] 

Let us consider two examples, for instance, the Hamming codes (15,11,3) and 
(31, 26, 3). Using relation [6.17] we obtain 3 4 4 3 3 33w w w× × ×= ≈  for the first code and 

3 4 4 3 3 37w w w× × ×= ≈  for the second. Thus, the contribution of the second non-zero 
term in relation [6.14] very quickly becomes negligible compared to the first term 
and the approximation [6.15] is justified.  

With a high signal-to-noise ratio 0bRE N> , the probability of error per block is 
very low and it is given by relation [6.15]. When there are decoding errors, there is a 
very high probability that the decoded word will be a codeword with minimum 
(Hamming) distance from the transmitted word. From this we deduce a lower limit 
for the probability of error per binary symbol equal to:  

0

erfc
2

b
eb

R Ew
P

N N
Δ

⎛ ⎞ΔΔ ⎛ ⎞⎛ ⎞≥ × × ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠
  [6.18] 
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Now let us consider the case of product codes elaborated on the basis of two 
extended Hamming codes with the parameters ( )1, ,3 1n k+ + . The minimum 
distance of this product code is ( )23 1 16Δ = + = . By taking into account the 
constraint imposed by the product code (all the lines and columns are words of the 
extended Hamming code), there is at least one codeword with a rectangular pattern 
with a weight of 4 6m = × . We can verify that there is no word of the product code 
of weight m with 16 24m< <  (the number of “one” per row and column is even and 
always higher than (δ + 1) = 4). We notice that the difference between the indices of 
the first two terms 0mw ≠  is greater (24 – 16 = 8) for an extended code. 

The number of codewords of the product code in the case of the extended 
elementary code has the form:  

 w δ +1+i( )× δ +1+ j( ) = w δ +1+i( ) × w δ +1+ j( )  [6.19] 

with i and j being positive and even integers, and:  

( )
( ) ( )1

    
1 

2 2

i i
n n

i n k n kw
δ δ

δ

+ + +

+ + − −= +   [6.20] 

since the codewords with an even weight in the form of 4 2 1i n≤ ≤ +  of the 
extended Hamming code are given by the sum of the codewords of weight ( )2 1i −  
and the codewords of weight 2i.  

For a Hamming code (16,11,4), 4 6 6 4 4 44w w w× × ×= ≈  and for a code (32,26,4), 
4 6 6 4 4 425w w w× × ×= ≈ .  

From this we deduce that the contribution of the codewords of weight 24 will be 
negligible in relation [6.14] as soon as 0bRE N> . Thus, the lower limit of the 
probability of error per block will be finer in the case of product codes constructed 
on the basis of extended codes.  

Product codes elaborated on the basis of extended codes provide a higher limit of 
asymptotic gain and this limit is reached quicker. It is thus advisable to use extended 
codes to construct product codes.  

We can also increase the minimum (Hamming) distance of a BCH primitive 
code by using the version known as expurgated. In this case we remove the 
codewords of odd weight among the 2k  codewords and the parameters of the 
expurgated code are ( , 1, 1)n k δ− + . A binary information symbol is replaced by a 
binary parity symbol. The properties of product codes constructed on the basis of 
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expurgated codes have the same nature as those of extended codes. They therefore 
constitute an interesting alternative. 

6.3. Soft decoding of block codes 

The decoding of product codes can be carried out iteratively. Indeed, let us take 
the case of a product code obtained on the basis of the serial concatenation of two 
BCH codes. Let 1C  be the code applied along the columns and 2C  along the rows. 
Iterative decoding consists of decoding the columns (using the decoder of the code 

1C ) followed by a decoding of the rows (using 2C ) and then reiterating the process. 
The decoding of columns possibly leads to codewords 1C  (along the columns) but 
the rows are not necessarily codewords 2C . The decoding of rows may lead to 
codewords 2C  (along the rows), but the columns are not necessarily codewords 1C . 
By reiterating the process we converge towards a codeword of the product code, 
such that all the columns are codewords 1C and all the rows are codewords 2C . The 
problem consists of finding the good criterion and the associated algorithms to carry 
out this iterative decoding. This section is devoted to the decoding of block codes 

1C or 2C . 

Optimal decoding of block codes can be carried out using two criteria according 
to the nature of observations presented at the decoder. In the case of binary decoder 
input, optimal decoding consists of finding the codeword with the minimum 
observation Hamming distance. This type of decoder is also called binary decoding 
or hard decoding.  

Much work has been carried out on binary decoding of block codes in order to 
reduce its complexity. We may cite the contributions of Berlekamp [BER 68, MAC 
78] in the case of cyclic codes. These decoders are of relatively low complexity but 
their coding gain is lower than that brought by decoding known as soft or flexible 
decoding. 

Soft decoding is often used in the case of a transmission of the codewords by 
linear modulation of the PSK or QAM (quadrature amplitude modulation of two 
carriers) type in a channel with additive white Gaussian noise (Gaussian channel). 
Let us consider the case of a transmission by BPSK in a Gaussian channel associated 
with a coherent receiver. The observations at the output of the optimal receiver have 
the form:  

ri = ei + bi   [6.21] 
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where ie  is the transmitted binary symbol taking its values in {–1,+ 1} and ib  is the 
sample of noise with a standard deviation σ. It is demonstrated that optimal 
decoding of the observations consists of determining the codeword with the 
minimum Euclidean distance (this quantity will be developed hereafter) of 
observations. This decoder makes it possible to significantly improve the coding 
gain (between 1.5 dB and 2.5 dB), compared to binary decoding. On the other hand, 
its implementation proves to be more complex, as we will see further on in the 
chapter. 

In the 1970s Reddy and Robinson [RED 70, RED 72] have studied the iterative 
decoding of product codes using binary decoders. This process proves to be sub-
optimal for soft data at the decoder input. Indeed, when the data input has real 
values, the decoder carries out a thresholding of the data to transform it into binary 
before carrying out decoding. We then have a loss of information because the 
transformation of real into binary is equivalent to a quantification of the data for a 
binary symbol, which simply indicates the sign of real observation. As an indication, 
the first binary decoding of the rows led to a loss ranging between 1.0 and 2.0 dB, as 
we will see hereafter. It is thus necessary to use soft decoding of the elementary 
codes. The following section deals with the soft decoding of block codes, which 
provides a binary decision for soft data at the input.  

6.3.1. Soft decoding of block codes  

Let us consider the transmission of words of a binary block code C with the 
parameters ( ), ,n k δ  by BPSK modulation in a Gaussian channel. The transmitted 
codeword 1 2( , ,..., )nE e e e=  is one of the codewords 1 2( , ,..., )i i i i

nC c c c=  with 
1 2ki≤ ≤ . The operation of coding is defined for the binary symbols {0, 1} and the 
modulation carries out the following transformation: { }0 1,1 1↔ − ↔ + . In order to 
simplify notations, we will consider that the binary symbols of the codewords have a 
value of { 1, 1}− + . 

The transmission of the ie  elements is governed by relation [6.21] and at the 
decoder input we have an observation vector 1 2( , ,..., )nR r r r=  associated with the 
transmitted codeword E. The system is supposed to be ideal and perfectly 
synchronized. On the basis of observation R the decoder must work out an optimal 
decision in the sense of a criterion to be defined. The most natural criterion is that of 
minimization of the probability of error per binary information symbol ( )bit

Pe . This 
criterion is relatively complex to implement and will be treated in section 6.4. In 
practice, we prefer to use the criterion of minimization of the probability of error per 
codeword ( )block

Pe  (or block), which is simpler to realize. These two criteria lead to 
almost identical results asymptotically (with low probability of error). Thus, we will 



Block Turbocodes     325 
 

consider the decoding of R for the minimization of ( )block
Pe . We demonstrate that 

the minimization of ( )block
Pe  is achieved with MAP stated as follows:  

{ }{ }arg max Pr /
i

i

C
D E C R

∈
= =

C
  [6.22] 

where 1 2( , ,..., )nD d d d=  and P{ }X  indicates the probability of X. This decision 
rule is very general and is therefore not limited to the Gaussian channel. Using the 
relation of Bayes we can express this rule in the following form:  

{ } { }
{ }

P / Pr
arg max

Pi

i i

C

R E C E C
D

R∈

⎧ ⎫= =⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭C

  [6.23] 

where P{ }X  indicates the probability density of X. Supposing that the transmitted 
data is mutually independent and has equal probabilities, the binary blocks of k 
information symbols are independent and have the same probability of 2 k− . Coding 
is a bijective application between the messages and the codewords, the latter are also 
independent and of probability 2 k− . As the probability density of R is independent 
of the codewords, the decision rule can be also written:  

{ }{ }arg max P /
i

i

C
D R E C

∈
= =

C
  [6.24] 

In the case of a Gaussian channel, the probability density of R conditionally to 
the transmission of a codeword Ci  is given by:  

{ } ( ) ( )2
2

1
2 2

1

1 1P / exp exp
2 22 2

n
i

i n l ln
l li l

l

r cr c
R E C

σ σπσ πσ
=

=

⎧ ⎫− −⎛ ⎞⎧ ⎫ ⎪ ⎪− − ⎛ ⎞⎪ ⎪ ⎪ ⎪⎜ ⎟= = =⎨ ⎬ ⎨ ⎬⎜ ⎟⎜ ⎟ ⎝ ⎠⎜ ⎟⎪ ⎪ ⎪ ⎪⎩ ⎭⎝ ⎠ ⎪ ⎪⎩ ⎭

∑
∏  [6.25] 

By transferring relation [6.24] to [6.25] we show very easily that the optimal 
decision is given by:  

( ) ( )( ){ }22

E
1

arg min arg min d ,
i i

n
i i

l l
C Cl

D r c R C
∈ ∈=

⎧ ⎫= − =⎨ ⎬
⎩ ⎭
∑

C C

  [6.26] 
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where Ed ( , )X Y  indicates the Euclidean distance between two variables X and Y. 
The quantity to be minimized is a measurement of the distortion introduced by the 
transmission channel, called square of the Euclidean distance, between the 
observation and the codeword Ci. This decision rule makes it possible to minimize 
the probability of error per word of decoded code. It is also known under the term 
soft decoding. In the case of a BPSK (or QPSK) modulation we may easily show 
that the minimization of the Euclidean distance amounts to finding the codeword 
which maximizes the correlation:  

( ) ( ) ( ) ( )22

1 1 1 1

arg min 2 arg max
i i

n n n n
i i i

l l l l l l
C Cl l l l

D r c r c r c
∈ ∈= = = =

⎧ ⎫ ⎧ ⎫= + − × = ×⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎩ ⎭
∑ ∑ ∑ ∑

C C
 [6.27] 

This function is simpler to implement and is the one used in practice. It 
corresponds to the codeword having maximum correlation with the observation. If 
we apply an exhaustive search for the most probable word of the code, the 
complexity of decoding is given by the number of codewords, that is 2k . The 
complexity of decoding remains reasonable for codes with a small size, i.e. 
( 8 2 256kk ≤ ⇔ ≤ ). For example, the extended Hamming code (16,11,4) contains 
2,048 codewords and an exhaustive search is relatively complex.  

Block codes used are often large in order to obtain high coding outputs. 
Exhaustive search for the most probable word of the code is not possible for these 
codes and the first applications of block codes have primarily used binary decoding.  

6.3.2. Soft decoding of block codes (Chase algorithm) 

In 1972, Chase [CHA 72] proposed a slightly sub-optimal algorithm of reduced 
complexity to carry out the soft decoding of block codes. This algorithm is based on 
the fact that the required codeword is the one with the minimum Euclidean distance 
from the observation, and one that can restrict the search to the codewords that are 
the closest to the observation in the sense of Euclidean distance. It is thus necessary 
to generate a subset of codewords with a short Euclidean distance of observation and 
this subset must contain the word with the minimum distance with a probability 
close to one.  

The vector of observation R can be regarded as a point in the space of real 
numbers of dimension n. Each component of R is associated with a dimension of 
space and the value of this component indicates the projection of the point on the 
axis associated with this dimension in space. The codewords iC  are vectors with n 
components where each component has a value in {–1,+1}. They are also points in 
the space with the restriction that the components can only take two possible values 
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{–1,+1}. There are thus 2k  points in space associated with the codewords. Let us 
note that all the vectors of size n with a value in {–1,+1} are not codewords and 
there are (2 2 )n k>>  of them. We can show that the Euclidean distance between two 
binary vectors with value in {–1,+1} is related to the Hamming distance by relation:  

( ) ( )E Hd , 4 d ,i j i jC C C C= ×   [6.28] 

On the basis of this representation of the problem we can define the zone 
containing the codewords closest to the observation in the sense of Euclidean 
distance. This zone is defined by a sphere in the space of size n. The coordinates of 
the center of the sphere are given by the vector ( )1 2, ,..., nY y y y=  with ( )sgni iy r=  
and its radius is equal to ( )4 1δ − . The vector Y corresponds to the binary vector 
with a minimum Euclidean distance of R because it presents the maximum 
correlation with R. If the Hamming distance between E and Y is less than ( 1)δ − , 
then E belongs to the sphere. When ( ) ( )Hd , 1E Y δ> − , E is outside the sphere but 
we then show that the codeword with the minimum Euclidean distance of R is 
different from E. In this case, exhaustive search and the Chase algorithm yield 
erroneous resulted. Thus, the Chase algorithm makes it possible to correct ( 1)δ −  
errors at the most. 

Y

R

2(δ-1)1/2

2(t)1/2

C1

C2 C3

C4

 

Figure 6.8. Principle of decoding by the Chase algorithm 

We now will tackle the construction of the subset of codewords Ω contained in 
the sphere with a radius of ( )4 1δ −  centered in Y. For that we use a binary 
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decoder (with binary input) and we start by the binary decoding of the vector Y. The 
decoder behaves as a codeword detector, which scans the sphere of radius 4t  
centered in Y. We demonstrate that there is at most only one codeword in this sphere 
and the decoder provides this codeword if it exists. To find all of the codewords 
contained in the sphere of radius ( )4 1δ −  centered in Y, it is enough to present the 

set of the binary vectors contained in the sphere of radius 4t  centered in Y to the 
binary decoder. This operation makes it possible to scan a sphere of radius 

( ) ( ) ( ) ( )4 4 4 2 4 1t t t δ+ = = −  (see Figure 6.8). Let us note that the square of 
the radius of the scanned sphere is given by the sum of the squares of the radii of the 
two spheres because the radii are not co-linear, contrary to what Figure 6.8 may lead 
to believe. Indeed, this figure is merely a projection onto a plane of a volume 
defined in a space with n dimensions. The number of binary vectors contained in the 
sphere of radius 4t  centered in Y determines the extent of binary decodings that 
need be performed and is given by:  

( )
1

1
t

i
dec n

i
N

=

= +∑   [6.29] 

The number of decodings to be carried out is in the order of ( )tn /t!  and, thus, 
this algorithm is limited to codes with a low correction capacity and low length. 

 
First Chase algorithm: 
Start 
Loading the observation data ( )1 2, ,..., nR r r r= . 

Calculating the vector ( )1 2, ,..., nY y y y=  with ( )sgni iy r= . 
Determining the codewords in Ω:  
For I = 0 with  deci N<  

( )1 2

 if 
, ,..., :

otherwise
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j ji i i i
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( ) Binary decodingi iX Z=  
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i
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met i R X

⎧Ω = Ω ∪⎪
⎨ =⎪⎩

 

( )1 2, ,..., nD d d d= : codeword in Ω associated with the smallest Euclidean 
distance. 
End. 
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This algorithm is called the first Chase algorithm and above we provide a 
description of this algorithm in the case of a Hamming code (t = 1). If we consider 
the case of the code (63,57,3), the exhaustive method carries out a search among 

57 172 1.5 10≈ ×  codewords, whereas the first Chase algorithm considers only 63. In 
the case of a Hamming code the complexity of the first Chase algorithm grows 
linearly with the length of code and it is applicable only to codes with a small length 
(n ≤ 15).  

To reduce the complexity of decoding, Chase proposed an algorithm with a 
reduced search zone in order to minimize the number of binary decodings. Among 
the binary vectors contained in the sphere of radius 4t  centered in Y we use only a 
subset of them to construct the subset of codewords Ω. This subset of binary vectors 
uses the measurement of reliability of binary data jy  which is defined on the basis 
of the log of probability jλ  associated with the decision jy  and using the rule of 
Bayes and relation [6.21] in the case of BPSK (QPSK) in a Gaussian channel we 
demonstrate that:  

{ }
{ } 2

Pr 1/ 2ln
Pr 1/

j j
j j

j j

e r
r

e r
λ

σ

⎛ ⎞= + ⎛ ⎞⎜ ⎟= = ⎜ ⎟⎜ ⎟= − ⎝ ⎠⎝ ⎠
  [6.30] 

Let us write Pr{ 1/ } and Pr{ 1/ }j j j jP e r P e r+ −= = + = = − . Let us note that 

0 , 1P P+ −≤ ≤ , 1P P+ −+ =  and that j jrλ ∝ . When 0jλ > , P P+ −> and the 

decision is 1je = + . When 0jλ < , P P+ −<  and the decision is 1je = − . Thus, the 

sign jλ  makes it possible to make a decision on the value of je . When 0jλ = , 

1/ 2P P+ −= = , the two values of je  have equal probability and the probability of 
error when we base the decision on the sign of jλ  is 1/2. On the other hand, 

when  (or )jλ → +∞ − ∞ , (or )P P P P+ − + −>> <<  the probability of error tends 
towards zero and the decision is made with greater reliability. | |jλ  is a 
measurement of the reliability of the decision yi. We can thus classify the 
components of Y by ascending order of reliability and we note 1 2( , ,..., )qi i i  the 
position of the q least reliable binary symbols in Y. 

For the simplified algorithm, also called second Chase algorithm [CHA 72], 
among the binary vectors contained in the sphere of radius 4t  centered in Y we 
preserve only those obtained by permuting the binary symbols taken from the q least 
reliable binary symbols. When we reduce the search zone by decreasing q, the 
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probability that the transmitted word is outside the search zone increases and we 
degrade the performance of the decoder. It is therefore necessary to find a 
compromise between the reduction of the search zone and degrading the 
performance of the decoder. Chase proposes to use the following empirical relation:  

2
q δ⎢ ⎥= ⎢ ⎥⎣ ⎦

  [6.31] 

to determine q. The number of binary vectors used to build Ω and thus the number 
of binary decodings are then given by:  

( )2 q
decN =   [6.32] 

In the case of a Hamming code, q = 1 and the number of binary decodings passes 
from n to two using only the least reliable component of the decision vector Y. The 
complexity of this algorithm no longer depends on n and thus there are no more 
restrictions on the length of code used which then grows exponentially with q (see 
relation [6.32]). Let us note that this algorithm requires the search for the least 
reliable components of Y, but the complexity of this search is negligible compared to 
the considerable reduction in the number of binary decodings that need to be carried 
out. In addition, the degradation of performance is relatively low. A thorough study 
of the impact of q on the performances of the decoder has been carried out by S. 
Jacq [JAC 95]. Figure 6.9 shows the evolution of the binary error rate (BER) 
according to b 0E /N  for three various values of the number of binary vectors used in 
the second Chase algorithm applied to the code (64,57,4). We note that the coding 
gain increases with decN  but that the increase in gain with each time that we double 

decN  decreases and tends towards zero.  

A description of the second Chase algorithm is given below in the case of a 
Hamming code (t = 1).  
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Figure 6.9. Evolution of the BER according to b 0E /N  according to the  

number of binary vectors used in the simplified Chase algorithm 

In the case of product codes, we have shown in section 6.2 that it was more 
advantageous to use as an elementary code the extended code obtained by adding a 
binary parity symbol to the word of primitive code (the parity of the word of 
primitive code). It is thus important to evaluate the impact of this binary parity 
symbol on the complexity of the Chase algorithm. Looking again at relation [6.31] 
we note that the value of q increases by one. Thus, the number of binary decodings 
to be carried out is multiplied by two. In addition, binary decoding is carried out in 
two stages. We start by considering only the data of the primitive code to which we 
apply:  

– thresholding of the data R;  

– the search for the q least reliable components of Y;  

– the binary decoding of binary vectors i iZ X⇒ ; 

– the construction of the subset of codewords Ω. 
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Second Chase algorithm: 
Start 
Loading the observation data ( )1 2, ,..., nR r r r= . 

Calculating the vector ( )1 2, ,..., nY y y y=  with ( )sgni iy r= . 

Searching for the position of the least reliable component of Y: 1i  

Determining the codewords in Ω: 
For I = 0 with  deci N<  

( ) ( )1
1 2

if  and 0
, ,..., :

 otherwise

i
j ji i i i

n i
j j

z y j i i
Z z z z

z y

⎧ = − = ≠⎪= ⎨
=⎪⎩

 

( ) Binary decodingi iX Z=  

( ) ( )E

If  is a codeword, then 
d ,

⎧Ω = Ω ∪⎪
⎨ =⎪⎩

i
i

i

X
X

met i R X
 

( )1 2, ,..., nD d d d= : codeword in Ω associated with the smallest Euclidean 
distance. 
End. 

Ω then contains codewords belonging to the primitive code of length n. 
Afterwards, we introduce the contribution of the binary parity symbol in the 
following manner:  

– for each codeword of Ω  we calculate the parity of the word that is 
concatenated, then use the latter to form the extended codeword of length n+1; 

– we calculate the Euclidean distance between the extended codewords and R; 

– we search for the word of extended code associated with the smallest 
Euclidean distance. 

This last modification of the algorithm induces a negligible increase in 
complexity.  

In short, the complexity of decoding of the extended codes is twice greater than 
that of the primitive code. However, it should be noted that the complexity of the 
(second) Chase algorithm is very low in the case of codes with a short minimum 
distance (Hamming for example). Indeed, the complexity of decoding changes from 
two binary decodings to four, regardless of the length of the code. 
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Figure 6.10 represents the BER according to the b 0E /N  ratio for a transmission 
by BPSK in a Gaussian channel for two extended BCH codes of length n = 64. We 
note that Chase decoding applied to the code (64,57,4) yields better performances 
than binary decoding applied to the code (64,51,6). The difference, in terms of 
coding gain, is approximately 1 dB for a BER of 10-6 and the coding output is higher 
by more than 10% (0.89 instead of 0.80). In addition, we note that Chase decoding 
applied to the code (64,51,6) makes it possible to improve its coding gain by 
approximately 1.7 dB, with a BER of 10-6. 

l

 

Figure 6.10. Evolution of the BER according to b 0E /N   
for different BCH codes of length 64 

There are other algorithms for the soft decoding of block codes. We will discuss 
them further on briefly because the Chase algorithm is the one offering the best 
complexity/performance compromise. The latter will be the one used as starting 
point to build the SISO decoder, which is a fundamental function in the decoding of 
the BTC. 
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6.3.3. Decoding of block codes by the Viterbi algorithm 

The Viterbi algorithm [SAW 77], also known as the Djikstra algorithm, makes it 
possible to considerably reduce the complexity of the search of the minimum (or 
maximum) cost path in a graph. This algorithm is very effective when the number of 
states of the graph is reasonable (< 100) and its complexity increases linearly with 
the length of the graph. The most widespread application of this algorithm, in the 
field of the digital communications, relates to optimal decoding (ML) of 
convolutional codes. Other applications of this algorithm in digital communications 
have appeared over the last years. We can cite the example of the optimal detection 
of signals in the presence of multiple paths, as well as turbo-detection [DOU 95].  

These various applications have the common symbolistic that the problem being 
solved can be represented in the form of a graph or trellis with a reasonable number 
of states. In 1978 Wolf proposed a method to describe the codewords of a block 
code using a trellis graph [WOL 78], thus allowing the decoding of block codes by 
the Viterbi algorithm. We will study this method to establish its limits in terms of 
complexity. 

Let us consider a systematic linear block code C defined for the Galois field with 
two elements {0, 1} and parameters ( ), ,n k δ . Its generator matrix [G] has a size 
k n×  and the form:  

[ ] k kG I Q×= ⎡ ⎤⎣ ⎦   [6.33] 

where [ ]k kI ×  is the identity matrix with a size k and [Q] is the matrix used to 
generate the binary parity symbols. We demonstrate that the parity-check matrix has 
the size p n× , with p = n – k, and is given by relation:  

[ ] T
p pH Q I ×

⎡ ⎤= ⎣ ⎦   [6.34] 

This matrix makes it possible to verify if a binary vector ( )1 2, ,...., nU u u u=  
verifies the coding equation of the code C. For that it suffices to calculate the 
syndrome of U:  

TS U H⎡ ⎤= × ⎣ ⎦   [6.35] 
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The syndrome S is a binary vector with p components. We demonstrate that S is 
zero, if and only if U is a codeword. Each component of S makes it possible to 
verify one of the p parity equations of the code. If the calculation of the syndrome is 
developed, the following relations are obtained:  

s j = ui × hji
i=1

n
∑ mod2( )  [6.36] 

with 1 j p≤ ≤  and jih  is an element of [H] located at the intersection of the row j 
and the column i of the matrix. By adopting a condensed notation, we can write the 
above relation in the form:  

  
S = ui ×

I 
h i mod2( )

i=1

n
∑   [6.37] 

where ih
I

 is the vector of size p obtained by transposing the ith column of the matrix 
[H]. The sum modulo-2 is applied to each component of the vectors as indicated by 
relation [6.36].  

We will now use the equations of the syndrome to define the graph associated 
with the code C. For that it is necessary to define the states of the graph and the 
transitions between states. The states of the graph are defined by the various values 
taken by the syndrome. The number of states of the graph associated with the code is 
thus equal to 2 2p n k−= . In order to define the transitions between the states of the 
graph we introduce the syndrome of the L first binary symbols of U by:  

( ) ( )
1

mod 2
l

i i
i

S l u h
=

= ×∑
I

  [6.38] 

The syndrome for l = 0 is initialized to zero. Then the following binary symbol 
can take two values: ul+1 = 0 or 1. The transitions are then given by relation:  

( )
( )
( ) ( )

1

1 1

 if 0
1

mod2  if 1
l

l l

S l u
S l

S l h u
+

+ +

=⎧⎪+ = ⎨
⊕ =⎪⎩

I   [6.39] 
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It suffices then to apply the constraint S(n) = (0, 0, .., 0) and all the paths in the 
graph starting at the zero state in l = 0 and arriving at the zero state in l = n verify 
the equations of coding of C.  

The binary sequences associated with the paths of the graph are codewords.  

To illustrate the principle, let us consider the example of the Hamming code 
(7,4,3). The matrices [G] and [H] of this code are provided below:  

[ ]

1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1

G

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

  [6.40] 

[ ]
0 1 1 1 1 0 0
1 0 1 1 0 1 0
1 1 0 1 0 0 1

H
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

  [6.41] 

The number of syndromes is 2 2 8p n k−= =  which we number from 0 to 7 by 
transforming the binary triplet of the syndrome into an integer.  

By adopting the method described above we obtain the graph in Figure 6.11 for 
the code (7,4,3). The data 0lu =  are indicated by branches in dotted lines and 1lu =  
by branches in solid lines.  

The paths making it possible to pass from S(0) = 0 to S(n) = 0 are shown in bold 
lines. We verify that there are 2 16k =  paths verifying S(0) = S(n) = 0. It suffices 
then to apply the Viterbi algorithm to the received data to find the codeword with 
the minimum Euclidean distance.  

We can thus reduce the complexity of decoding compared to an exhaustive 
search. Indeed, the Viterbi algorithm does only take into account at most 2n k−  
codewords closest to the observation instead of considering 2k  codewords. In the 
case of the code (7,4,3) this gain is relatively low, as it is two. 
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Figure 6.11. Graph describing the codewords of the Hamming code (7,4,3) 

If we consider the Hamming codes, the number of states of the graph grows to 

2m  and the gain in complexity grows to ( )2 1 22
m m− −  and increases very quickly. In the 

case of a BCH code (15,11,3) the increase in complexity is 128 for a number of 
states of the graph that is 16. On the other hand, for codes with a correction capacity 
higher than 1 the number of states of the graph increases very quickly. In the case of 
the BCH (15,7,5) the number of states of the graph is 128 and the complexity of 
decoding by the Viterbi algorithm becomes prohibitive. 

Finally, let us consider the case of extended Hamming codes used to construct 
the product codes. The introduction of an additional binary parity symbol multiplies 
the number of states of the graph by two. For iterative decoding of product codes by 
the Viterbi algorithm, we must limit ourselves to Hamming codes with a number of 
states lower than 64.  
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6.3.4. Decoding of block codes by the Hartmann and Rudolph algorithm 

In 1976 Hartmann and Rudolph [HAR 76] proposed an algorithm of soft 
decoding for block codes. This algorithm makes it possible to minimize the 
probability of error per bit instead of the probability of error per codeword.  

Let us consider the transmission of codewords of a binary block code C with 
parameters ( ), ,n k δ  by BPSK modulation via a Gaussian channel. The transmitted 
codeword ( )1 2, ,..., nE e e e=  is one of the codewords ( )1 2, ,...,i i i i

nC c c c=  with 
1 2ki≤ ≤ . The operation of coding is defined over the binary symbols {0,1} and we 
apply then the following association: { }0 1,1 1↔ + ↔ −  in order to carry out the 
transmission. The transmission of the ei  elements is governed by relation [6.1] and 
at the decoder input we have an observation vector ( )1 2, ,..., nR r r r=  associated with 
the transmitted codeword E.  

In order to minimize the probability of error per bit, Hartmann and Rudolph 
propose to use the following rule decision:  

( ) { } { }( )isgn  with Pr 1/ Pr 1/i i i id e R e Rμ μ= = = + − = −   [6.42] 

where id  is the decision associated with the transmitted symbol ie . This decision 
rule makes it possible to minimize the probability of error per bit and the difficulty 
consists of evaluating the quantity 1μ . It is shown (see [HAR 76]) that 1μ  is given 
by the following relation:  

,2

1 1

1
1

j
n k i llun

l
i

j l l

δ
ϕμ
ϕ

− ⊕

= =

⎛ ⎞⎛ ⎞−⎜ ⎟= ⎜ ⎟⎜ ⎟+⎝ ⎠⎝ ⎠
∑∏   [6.43] 

where ( )1 2, ,...,j j j j
nU u u u=  is the codeword number j of the dual code of C with 

1 2n kj −≤ ≤ . Let us recall that the dual code of C is obtained using the generator 
matrix [H] of the code C. This code has a length n and size n-k. ,i lδ  is the Kronecker 
symbol, which is equal to “one” for l = i and zero otherwise. The term lϕ  is given 
by:  

{ }
{ }

{ }
{ }

( ) ( )( )2 2

2

1 1Pr / 1 Pr / 1
exp

Pr / 0 Pr / 1 2
l ll l l l

l
l l l l

r rr c r e
r c r e

ϕ
σ

⎧ ⎫− − +⎛ ⎞ ⎛ ⎞= = − ⎪ ⎪= = =⎜ ⎟ ⎜ ⎟ ⎨ ⎬⎜ ⎟ ⎜ ⎟= = + ⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎩ ⎭

  [6.44] 
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in the case of a BPSK transmission via a Gaussian channel. The calculation of the 
quantity 1μ  is relatively complex because we have to sum 2n k−  terms formed by the 
product of n terms. In practice, this complexity can be slightly reduced because a 
certain number of terms that form part of the product are neutral elements for it, i.e. 
“one” (case where , 0j

l i lu δ⊕ = ). To illustrate the principle let us consider the case 
of the Hamming code (7,4,3). The matrices [G] and [H] of this code are given in 
section 6.3.3. Let us write:  

( )
( )

{ } { }
{ } { }

1 Pr / 1 Pr / 1
1 Pr / 1 Pr / 1

l l l l l
l

l l l l l

r e r e
r e r e

ϕ
ρ

ϕ
⎛ ⎞ ⎛ ⎞− = + − = −

= =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟+ = + + = −⎝ ⎠ ⎝ ⎠
   [6.45] 

and let us consider the decoding of the first binary symbol given by the sign of 1μ . 
The eight codewords of the dual code are enumerated in Table 6.4. 

If we develop the expression of 1μ  using the codewords of the dual code, we 
find the expression:  

( )
( )

1 2 3 4 5 3 4 6 2 4 7 2 5 6
1

3 5 7 1 2 3 6 7 1 4 5 6 7 1

ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ
μ

ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ
+ + + +⎧⎪= ⎨

+ + +⎪⎩
   [6.46] 

To decode the following binary symbol we use the cyclic property of the 
Hamming codes. It is enough to apply a circular shift of order one to the received 
data and to use relation [6.46] in order to decode the second binary symbol. We 
reiterate the process to decode the other binary symbols. We note that the number of 
terms involved in the product is lower than n, which reduces the complexity of the 
decoder. 

Generally, the complexity of this algorithm is given by 2n k−  products with more 
than n terms and the sum of 2n k−  terms per decoded binary symbol. If we consider 
the extended version of the primitive code, complexity is multiplied by two. As for 
the Viterbi algorithm, it is limited mainly to the extended Hamming codes with a 
length less or equal to 32. 
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l 1 2 3 4 5 6 7 

δ0,l 1 0 0 0 0 0 0 

U1 0 1 1 1 1 0 0 

U2 1 0 1 1 0 1 0 

U3 1 1 0 1 0 0 1 

U4 1 1 0 0 1 1 0 

U5 1 0 1 0 1 0 1 

U6 0 1 1 0 0 1 1 

U7 0 0 0 1 1 1 1 

U8 0 0 0 0 0 0 0 

Table 6.4. Words of the dual code of the code (7,4,3) 

6.4. Iterative decoding of product codes 

The principle of the BTC rests on the iterative decoding of concatenated block 
codes. In section 6.2 we have demonstrated that serial concatenation of block codes 
was more advantageous in terms of asymptotic coding gain than parallel 
concatenation and that uniform interlacing was preferable to non-uniform 
interlacing. Similarly, we have shown that it was more interesting to use the 
extended (or expurgated) version of the primitive codes in order to increase the 
asymptotic coding gain. The code retained for the BTC is, finally, obtained by serial 
concatenation of extended block codes with uniform interlacing. This code called 
product code was proposed by Elias in 1954 [ELI 54]. It lends itself ideally to 
iterative decoding, which consists of sequentially decoding the rows and the 
columns of the matrix and reiterating the process. 

In addition, in section 6.3 we have demonstrated that it is preferable to use a soft 
decoding algorithm that increases the asymptotic coding gain (between 1.5 and 2.0 
dB) compared to a binary decoding. The second Chase algorithm makes it possible 
to solve the problem of soft decoding with a very good performance/complexity 
compromise. However, the Chase algorithm provides a binary decision at output. In 
a process of iterative decoding the following decoder will benefit from binary input, 
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which is certainly more reliable, but will not have the soft data. Thus, it will not be 
able to exploit soft decoding and that applies to the following decodings of the 
iterative process.  

So that iterative decoding can benefit from soft decoding at each iteration, it is 
essential to associate a weighting to the decisions provided by the Chase algorithm. 
The modification of the Chase algorithm to carry out decoding with SISO is the 
subject of the following section. 

6.4.1. SISO decoding of a block code 

To simplify, we will consider the decoding of a systematic block code with 
parameters ( ), ,n k δ . The codewords defined over {0,1} are transmitted via 
Gaussian channel by an amplitude modulation with two states {–1,+1} using the 
following association: 0 1 and 1 1→ − → + . In order to simplify the notation, we will 
suppose that the codewords are directly defined in {–1,+1}. The observation 

( )1,..., nR r r=  at the channel output for a transmitted codeword ( )1,...., nE e e=  is 
given by:  

R = E + B  [6.47] 

where ( )1,...., nB b b=  is a vector of additive white Gaussian noise. SISO decoding 
of the data R can be performed using the logarithm likelihood ratio (LLR) of the 
transmitted symbol je  [PYN 94, PYN 98]:  

{ }
{ }

Pr 1/
ln

Pr 1/
j

j
j

e R

e R
λ

⎛ ⎞= +
⎜ ⎟=
⎜ ⎟= −⎝ ⎠

  [6.48] 

The sign jλ  provides the optimal decision in the sense of minimization of the 
probability of error per binary symbol and its absolute value yields a weighting of 
this decision according to its reliability. The numerator of the LLR can be written in 
the following way:  

{ } { }
1

Pr 1/ Pr 1, /i
j j

i N

e R e E C R
≤ ≤

= + = = + =∑   [6.49] 
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where ( )1 ,....,i i i
nC c c=  is the codeword number i with { }1, 1i

jc ∈ − +  and 2kN =  is 
the number of the codewords. Using the Bayes rule we can put [6.49] in the form:  

{ } { } { }
1

Pr 1/ Pr 1/ , Pr /i i
j j

i N

e R e E C R E C R
≤ ≤

= + = = + = × =∑   [6.50] 

Using the fact that:  

{ } { } 1 if 1
Pr 1/ , Pr 1/

0 if 1

i
ji i

j j i
j

c
e E C R e E C

c

⎧ = +⎪= + = = = + = = ⎨
= −⎪⎩

  [6.51] 

we can rewrite [6.50] in the form:  

{ } { }
( )1

Pr 1/ Pr /
ji

i
j

C S

e R E C R
+∈

= + = =∑   [6.52] 

where ( )1 jS +  is the set of codewords with a +1 in position j. Similarly, we show that 
the denominator of [6.48] is equal to:  

{ } { }
( )1

Pr 1/ Pr /
ji

i
j

C S

e R E C R
−∈

= − = =∑   [6.53] 

where ( )1 jS −  is the set of codewords having a –1 in position j. Using the Bayes rule 
again, we show that:  

{ } { } { }
{ }

P / Pr
Pr /

P

i i
i

R E C E C
E C R

R

= × =
= =   [6.54] 

where P{ }•  indicates a probability density. Supposing that the binary symbols of 
the message are mutually independent and identically distributed (i.i.d), we have:  

{ } 1Pr iE C
N

= =   [6.55] 
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Taking again relation [6.48] and the equations above, we show that the LLR is 
given by the following equation:  

{ }
( )

{ }
( )

1

1

P /
ln

P /
ji

ji

i

C S
j i

C S

R E C

R E C
λ

+

−

∈

∈

⎛ ⎞=
⎜ ⎟

= ⎜ ⎟=⎜ ⎟
⎝ ⎠

∑

∑
  [6.56] 

where:  

{ } { }( ) ( )2

2
1 1

1P / P / exp
22

in n
l li i

l l l
l l

r c
R E C r e c

σπσ= =

⎛ ⎞⎛ ⎞−⎜ ⎟⎜ ⎟= = = = −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∏ ∏  [6.57] 

is the probability density of R for an transmitted word E = Ci and σ represents the 
standard deviation of the noise. By transferring [6.57] into [6.56] we obtain:  

( )

( )

1

1

2

2

2

2

exp
2

ln

exp
2

ji

ji

i

C S

j
i

C S

R C

R C

σ
λ

σ

+

−

∈

∈

⎛ ⎞⎛ ⎞−⎜ ⎟⎜ ⎟−⎜ ⎟⎜ ⎟
⎝ ⎠⎜ ⎟= ⎜ ⎟⎛ ⎞−⎜ ⎟⎜ ⎟−⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑

∑
  [6.58] 

where:  

( )2 2

1

n
i

l l
l

i r cR C
=

= −− ∑   [6.59] 

represents the square of the Euclidean distance between R and Ci. Let ( )1 jC+  be the 
codeword belonging to ( )1 jS +  with a minimum Euclidean distance of R and ( )1 jC−  
the codeword belonging to ( )1 jS −  with a minimum Euclidean distance of R. We 
demonstrate that the LLR can be expressed in the form:  

( ) ( )( )2 21 1
2

1 ln
2

i
j j i

j
i

i

A
R C R C

B
λ

σ
− +

⎛ ⎞
⎜ ⎟= − − − + ⎜ ⎟
⎜ ⎟
⎝ ⎠

∑
∑

  [6.60] 
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where:  

( )
( )1

2 21

2exp 1;  with 
2

ji
i

j i

A C S
R C R C

σ
+

+⎛ ⎞
⎜ ⎟

= ≤ ∈⎜ ⎟
⎜ ⎟
⎝ ⎠

− − −
  [6.61] 

and:  

( )
( )

2 21

1
2exp 1;  with 

2

j i
ji

i

R C R C
B C S

σ

−

−
⎛ ⎞− − −⎜ ⎟= ≤ ∈⎜ ⎟
⎜ ⎟
⎝ ⎠

   

[6.62] 

Supposing that the codewords are distributed uniformly in the space of the 
codewords, we show that i i

i i

A B≈∑ ∑  and that the ratio of the two terms tends 

towards one. Thus, the second term of [6.60] becomes negligible compared to the 
first and the LLR is approximated well by:  

( ) ( )( )2 21 1
2

1
2

j j
j R C R Cλ

σ
− += − − −   [6.63] 

Developing [6.63] we obtain:  

( )1
2

1;

2 n
j

j j l l l
l l j

r r c pλ
σ

+

= ≠

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
∑   [6.64] 

with:  

( ) ( )

( ) ( )

1 1

1 1

0 if 

1 if 

j j
l l

l j j
l l

c c
p

c c

+ −

+ −

⎧ =⎪= ⎨
≠⎪⎩

  [6.65] 



Block Turbocodes     345 
 

In the case of a Gaussian channel, σ is constant. By normalizing relation [6.64] 
with respect to 2/σ2  we obtain the following equation:  

jjjj wrr +=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=′ λσ

2

2
  [6.66] 

with:  

w j = rlcl
+1 j( )pl

l=1;l≠ j

n
∑   [6.67] 

The quantity jr′  represents the soft output of the SISO decoder. Relation [6.66] 
shows that the soft output is expressed as the sum of the soft input and a quantity 

jw , which we call extrinsic information given by relation [6.67]. This extrinsic 
information plays a fundamental part in the operation of a turbo decoder.  

We note that jw  is a linear combination of the soft input data of the decoder. It 
depends on the two codewords with a minimum Euclidean distance of R with a +1 
and a – 1 in position j respectively. In addition, jw  does not depend on jr .  

The term jw  in [6.66] is the contribution of the SISO decoder to the soft 
decision jr′ . Since it does not depend on jr , it is also independent of the latter. It 
contains information on the sign of the binary symbol je  contained in the other 
binary symbols of the codeword and which stems from the correlation between these 
binary symbols introduced by coding.  

In a turbo decoder, extrinsic information jw  makes it possible to transmit to the 
decoder following the information on the sign of the je  bit contained in the other 
binary symbols of the decoded codeword.  

6.4.2. Implementation of the weighting algorithm 

We will now consider the implementation of the SISO decoder on the basis of 
the Chase algorithm. The principle consists of generating a set Ω of codewords with 
minimum Euclidean distance from the observation R. To simplify, we write that R is 
the LLR vector (normalized) of the binary symbols of the codeword transmitted at 
the decoder input. Among this set of codewords, the decision provided by the Chase 
algorithm is D.  
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From this decision we will calculate the weighting of the components jd  of this 
decision. To calculate this weighting on the basis of [6.63] we need the two 
codewords ( )1 jC+  and ( )1 jC− . It is obvious that D is one of these two codewords. Let 
C be the codeword in Ω (if it exists) with a minimum Euclidean distance of R and 
verifying j jc d≠ . We easily deduce from it that C is the second codeword among 
the two cited above. We can then write the equation of normalized SISO decoder 
output in the following way:  

2 2

4j jr d
R C R D⎛ ⎞

⎜ ⎟′ = ×
⎜ ⎟
⎝ ⎠

− − −
  [6.68] 

We note that the sign of the soft output is given by jd , which is the decision 
provided by Chase and that the amplitude of the output depends on the difference 
between the two metrics 2R C− and 2R D− . This difference is always positive 

according to the definition of D and C: 2 2R C R D− ≥ − . When 
2 2R C R D− → − , the two codewords C and D have equal probability and the 

probability of error of jd  tends towards 0.5. This results then in an amplitude of the 
soft output, which tends towards zero according to [6.68]. We then say that the 
reliability of the decision is zero. As the difference of the two metrics increases, the 
probability of D a posteriori tends towards one and that of C towards zero. The 
decision dj becomes increasingly reliable and that results in an amplitude of the soft 
output, which increases and tends towards infinity. For the moment we suppose that 
there exists a codeword C in Ω called codeword concurrent with D. But for this 
assumption to be always verified it would be necessary to generate a set of words of 
a very large Ω code. We would then face prohibitive complexity. A simple and 
relatively effective solution consists of generating a set Ω on the basis of a 
reasonable number of test sequences (8, 16 or 32). For the components of D without 
a concurrent word code we apply the empirical relation:  

j jr dβ′ = ×   [6.69] 

This empirical solution is justified by the fact that we know the optimal decision 
(sign of jd ) but not its reliability, which depends on C. When C is not in the set Ω, 
that implies that it is outside the search zone defined in the Chase algorithm by the 
test sequences. Consequently, the concurrent C is relatively distant from R (in the 
sense of Euclidean distance) and the decision is relatively reliable, hence we get a 
relatively high value of β. However, it is necessary to be careful and not assign too 
high a reliability to erroneous decisions, which can occur during the first iterations. 
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This reliability is thus according to the probability of errors at the output of the SISO 
decoder. One can determine the value of β using the following relation [PYN 98]:  

{ }
{ }

Pr
ln

Pr
j j

j j

d e

d e
β

⎛ ⎞=
⎜ ⎟∝
⎜ ⎟≠⎝ ⎠

  [6.70] 

This modification of the Chase algorithm makes it possible to carry out SISO 
decoding of block codes with relatively low complexity if we limit ourselves to 
codes with a Hamming distance lower or equal to 8. We will now approach the 
iterative decoding of product codes. 

6.4.3. Iterative decoding of product codes 

Let us consider the iterative decoding of product codes formed by serial 
concatenation of two extended and systematic BCH codes. Each column of the 
coded matrix is a word of the code 1C  and each row is a word of the code 2C . 
Iterative decoding consists of carrying out a decoding of the rows followed by a 
decoding of the columns (or vice versa) using the corresponding SISO decoder 
described above and reiterating this procedure several times. With each iteration the 
decoder exploits the observation stemming from the transmission channel, as well as 
the extrinsic information provided by the preceding decoder. It delivers the 
corresponding extrinsic information to the current decoding. Nevertheless, it is 
necessary to take some precautions concerning the information exchanged between 
the decoders. Indeed, it is necessary to avoid the propagation of errors that can 
induce an increase in the number of errors during iterations and force the algorithm 
to diverge. 

W(k)

R R
R

α(k) β(k)

R(k) W(k+1)

Delayed row

Decoding of a line
(or column) of the

matrix [P]

 
Figure 6.12. Synoptic of the elementary decoder 
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The synoptic of the elementary decoder used to carry out the iterative decoding 
of a product code is illustrated in Figure 6.12. This decoder has two inputs and two 
outputs. The first input receives the extrinsic information matrix [W(m)] from the 
previous decoding. During the first decoding this matrix is initialized to zero. The 
second input receives the matrix of normalized LLR [R] calculated on the basis of 
the observations at the output of the transmission channel. The decoder carries out 
SISO decoding of the rows or the columns of the matrix and delivers a new matrix 
with extrinsic information [W(m+1)] obtained by the difference between the LLR at 
the output and the data at the input of the calculation unit. The second output 
delivers a copy of the matrix [R].  

We note (see Figure 6.12) that the input of the calculation unit that carries out 
SISO decoding of the row and the columns is:  

( ) [ ] ( ) ( )R m R m W mα= +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦   [6.71] 

The coefficient ( )mα  takes into account the fact that the components of [R] and 
[W(m)] are random variables with the same law but with different parameters. 
Indeed, if we consider the case of a phase modulation with two states in a Gaussian 
channel, we demonstrate that the observations at the output of the transmission 
channel follow a Gaussian law of average ±1 with the same standard deviation σ as 
the additive noise. On the other hand, the components of the matrix [W(m)] are 
linear combinations of the observations at the decoder input [6.67]. They are also 
random variables according to a Gaussian law, but with a different average and 
standard deviation. This point will be illustrated by an example later on.  

In practice, the coefficient ( )mα  is optimized by successive approximation and 
it moves from one iteration to the next. For the first iterations it takes a value close 
to zero and grows with the iterations to reach a value close to one with the last. This 
strategy is justified by the fact that the BER at the decoder output is relatively high 
for the first iteration and the calculated extrinsic information is not highly reliable. 
We minimize its contribution to the following decoding using a value of ( )mα  
close to zero. Even if this extrinsic information is not very reliable for the first 
iterations, it remains, however, very important in the process of iterative decoding. 
Indeed, it brings information on the binary considered symbol which is independent 
of that at the channel output and makes it possible to benefit from an effect of 
diversity. Over the iterations, the BER at the SISO decoder output generally 
decreases and the reliability of extrinsic information increases, which justifies an 
increase in ( )mα .  

The coefficient ( )mβ  follows an evolution similar to that of ( )mα . Indeed, 
( )mβ  is a function of the BER at the SISO decoder output [6.70]. When the BER is 

high, ( )mβ  takes a value close to zero and grows along the iterations. The 
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optimization of the two coefficients is relatively complicated because they are not 
independent and the solution is not unique. In addition, they also depend on the 
codes used. A manner of reducing the dependence between the two coefficients 
consists of normalizing to one the average of the absolute value of the components 
of [W(m)] calculated from [6.66] [PYN 98].  

6.4.4. Comparison of the performances of BTC 

We will now consider the performances of different block turbocodes 
constructed on the basis of extended BCH codes. We will limit ourselves to product 
codes constructed on the basis of two identical codes with a correction capacity ≤ 2. 
Table 6.5 provides the parameters of the various product codes considered. The first 
column indicates the parameters of two BCH codes used and the following columns 
indicate the length, size, minimum distance, coding output and asymptotic coding 
gain of the product code.  

We note that for a BCH code with a given minimum (Hamming) distance, the 
coding output and the coding gain increase with the length of the code. We can thus 
construct product codes with very high output with considerable coding gain on the 
basis of Hamming codes of length 256 or 512. In addition, the minimum distance of 
the product code does not depend on the dimension of the product code K. Thus, we 
can obtain a relatively high minimum distance even for product codes of small sizes.  

 
Product code  Ν K Δ R Gain (dB) 

(16,11,4) × (16,11,4) 256 121 16 0.473 8.80 

(16,7,6) × (16,7,6) 256 49 36 0.191 8.40 

(32,26,4) × (32,26,4) 1,024 676 16 0.660 10.25 

(32,21,6) × (32,21,6) 1,024 441 36 0.431 11.90 

(64,57,4) × (64,57,4) 4,096 3,249 16 0.793 11.05 

(64,51,6) × (64,51,6) 4,096 2,601 36 0.635 13.60 

(128,120,4) × (128,120,4) 16,384 14,440 16 0.879 11.50 

(128,113,6) × (128,113,6) 16,384 12,769 36 0.779 14.50 

(256,247,4) × (256,247,4) 65,536 61,009 16 0.931 11.75 

(512,502,4) × (512,502,4) 262,144 252,004 16 0.961 11.87 

Table 6.5. Parameters of product BCH codes 
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In order to objectively compare the performances of various BTC, we use the 
same set of coefficients for all simulations. The number of test sequences is fixed at 
16 and they are built on the basis of the four least reliable bits. These test sequences 
are obtained by commutating all the combinations of one, two, three and four binary 
symbols among the four least reliable binary symbols in the input. The average of 
the absolute value of the components of [W(m)], calculated on the basis of [6.66], is 
normalized to one after decoding (row or column) of the matrix. The number of 
iterations (an iteration corresponds to the decoding of the rows then columns or vice 
versa) is more than six. The values used for α and β in simulations are as follows:  

( ) [ ]

( ) [ ]

0.0,  0.2,  0.3,  0.5,  0.7,  0.9,  1.0,  1.0,  1.0,  1.0 ;

0.2,  0.4,  0.6,  0.8,  1.0,  1.0,  1.0,  1.0,  1.0,  1.0

m

m

α

β

=

=
  [6.72] 

We now will consider the performances of the BTC in various cases of figures. 

a) Performance of BTC in a Gaussian channel with QPSK modulation 

Figure 6.13 makes it possible to compare the evolution of the BER according to 
the b 0E /N  ratio for the first six iterations of the product code (64,51,6) × (64,51,6). 
We note that the BER decreases after each iteration. For a b 0E /N  ratio of 2.7 dB, the 
BER is 23 10−×  after the first iteration, 39 10−×  after the second, 45 10−×  after the 
third, 53 10−×  after the fourth and 75 10−×  after the sixth. Each additional iteration 
makes it possible to decrease the BER thanks to the extrinsic information taken at 
the decoder output and reintroduced at the input. It is the effect known as of 
turbodecoding. In practice, for a given BER we note that the gain brought by each 
additional iteration decreases and tends towards zero and that we can limit ourselves 
to four or maybe five iterations. 
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Figure 6.13. Evolution of the BER according to b 0E /N  for various iterations  
in the case of the product code (64,51,6) × (64,51,6) 

Figure 6.14 shows the evolution of the BER according to b 0E /N  to the fourth 
iteration, for various product codes. We note that the decrease of the BER according 
to b 0E /N  increases with the length of code, but also with its minimum distance. In 
addition, we observe that the fast decrease of the BER occurs beyond a (threshold) 
value of b 0E /N . In the lower part of the threshold the turbo effect does not kick in. 
In this area, the relationship between the BER in the input and output of the SISO 
decoder is not sufficient to initiate the avalanche phenomenon leading to turbo 
decoding. 
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Figure 6.14. Evolution of the BER according to b 0E /N  after  

the fourth iteration of the product codes of Table 6.5 

Figure 6.15 makes it possible to compare the performances of different 
turbocodes with the Shannon limit in the case of a QPSK modulation in a Gaussian 
channel and supposing the use of a code of infinite size. The curve represented in 
Figure 6.15 indicates the b 0E /N  ratio necessary to ensure a zero probability of error 
for a given coding output. The rhombuses and the triangles indicate the b 0E /N  ratio 
necessary to obtain a BER of 10-5 after four iterations for various BTC. We note that 
the performances of the BTC with high output are very close to the Shannon limit  
(# 0.7 dB). For BTC of poor output the variation compared to the Shannon limit is 
explained by the fact that the size K of the codes decreases. 

Figure 6.16 makes it possible to compare the probability distribution of the 
observations at the output of the transmission channel with that of extrinsic 
information for various iterations. As indicated previously, the average of the 
absolute value of extrinsic information calculated according to [6.68] has been 
normalized to one. We observe that extrinsic information follows a Gaussian 
distribution and that its variance decreases with iterations. For the first iteration we 
notice a higher dispersion of samples around the average compared to the samples 
coming from the transmission channel. That justifies the use of the coefficient α in 
[6.71]. Along the iterations, the dispersion of the samples of extrinsic information 
around the average value decreases and becomes increasingly reliable. We are then 
brought to increase the value of α. 
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Figure 6.16. Distribution of samples in the matrices [R], [W(1)], [W(2)]  
and [W(3)] in the case of a product code (64,57,4) × (64,57,4) 
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Row decoding iteration 1: (254) Column decoding iteration 1: (170)

Row decoding iteration 2: (96)

Row decoding iteration 3: (06)

Column decoding iteration 2: (48)Column decoding iteration 2: (48)

Column decoding iteration 3: (00)

 

Figure 6.17. Example of the evolution of errors during  
iterative decoding of the matrix (64,51,6) × (64,51,6) 
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Figure 6.17 makes it possible to visualize the evolution of errors in a coded 
matrix during iterations in the case of the code (64,51,6) × (64,51,6). The black 
background indicates the zone containing binary information symbols and the gray 
background contains binary parity symbols. The light points against the black 
background and the black spots against the gray background indicate the position of 
errors.  

In this example the error count at the output of the transmission channel is 263 
for a total of 4,096 binary symbols, which leads to a BER of 6.4 × 10-2. During the 
first iteration, the error count passes successively to 254 then 170. The efficiency of 
the decoder in the first iterations is very low.  

At the second iteration, the error count passes to 96 and then 48. The 
improvement is more sensitive because the error count has been divided by three 
and five respectively. Finally, at the third iteration, the error count passes to 6 and 
then 0.  

It is important to note that, as opposed to traditional codes, in certain cases 
turbocodes are able to correct error counts much higher than its minimum distance.  

In the above example the decoder made it possible to correct a pattern with 263 
errors, whereas its minimum distance is only 36. This property of the turbo decoder 
stems directly from the process of iterative decoding. Indeed, during the first 
iteration, this latter corrects only certain errors, making it possible to initialize the 
process of correction which develops during the following iterations and produces 
an “avalanche” effect.  

We can also observe that after the decoding of rows (or columns), the errors 
form patterns along the rows (or columns) containing an even number of errors 
higher than or equal to 6. Indeed, the SISO decoder delivers codewords along the 
rows (or columns) of the matrix. Thus, all the rows (or columns) after decoding of 
rows (or columns) are codewords. 

However, if the columns and the rows of the matrix are codewords, then the 
latter is a codeword of the product code. We can use this property to detect the 
convergence of the algorithm after each iteration. It suffices to calculate the 
syndrome of the columns after the decoding of rows (or vice versa).  

If the syndromes are all zero, the decoding algorithm has converged and we can 
stop the iterative process. If the syndromes are non-nil at the last iteration, the 
algorithm has not converged and we detect the presence of errors (see [PYN 97]). 



356    Channel Coding in Communication Networks 

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

2 2.5 3 3.5 4

 Fixed Beta
Variable Beta
Lower Bound

BER

Eb/No (dB)  

Figure 6.18. Comparison between the performances of a simulation and the  
theoretical performances in the case of the product code (32,26,4)2 

Figures 6.18 and 6.19 compare the results of a simulation of a BTC with its 
theoretical performances. We notice that the results of simulation are very close to 
the theoretical performances established in section 6.2.3 [6.18].  

The gap is lower than 0.5 dB for the code (32,26,4)2 and 0.7 dB for the code 
(32,21,6)2. In order to improve the performances of the iterative decoder with low 
BER we can use the mean of the absolute value of the least reliable samples at the 
decoder input for the variable β, and this can be done for each row or column of the 
matrix [ADD 00].  

This average value is multiplied by a scale factor in order to be optimized. In 
Figures 6.18 and 6.19 we notice that the results with the β variable improve the 
performances of the decoder and reduce the variation to 0.25 dB and 0.12 dB 
respectively. The improvement is even more spectacular in the case of the code 
(32,21,6)2. 
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Figure 6.19. Comparison between the performances of a simulation and  
the theoretical limit in the case of the product code (32,21,6)2 

b) Performance of BTC associated with the QPSK in a Rayleigh channel 

The performances of BTC associated with QPSK modulation in a Rayleigh 
channel have been evaluated using the following model for the channel:  

i i i ir e bρ= × +   [6.73] 

where { }1, 1ie ∈ − +  is the symbol transmitted via the phase or quadrature path, iρ  is 
the attenuation brought by the channel according to a Rayleigh law and ib  is the 
additive white Gaussian noise (AWGN). We demonstrate that optimal decoding 
consists of using the same algorithm as for the Gaussian channel by replacing ir  by 

i irρ ×  insofar as we use the correlation instead of the Euclidean distance as a metric 
(see [6.27]). Finally, we can use the same decoder to treat the case of the Gaussian 
and Rayleigh channels.  
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Figure 6.20. Performances of the code (64,51,6)2  

associated with QPSK modulation in a Rayleigh channel 
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Figure 6.21. Performances at the fourth iteration of the different  
product codes associated with QPSK modulation in a Rayleigh channel 
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Figure 6.20 represents BER according to b 0E /N  for the product code (64,51,6)2 
associated with a QPSK modulation in a Rayleigh channel. We observe that the 
performances improve with each new iteration and that the improvement becomes 
negligible after 4 iterations.  

For comparison we have also indicated in Figure 6.20 the curve (dotted) of the 
BER according to b 0E /N  for a Gaussian channel to the fourth iteration. We note a 
degradation of performances in the Rayleigh channel but the curves are parallel to 
the low BER (<10-2). Figure 6.21 shows the curves of the BER according to b 0E /N  
to the fourth iteration for various product codes associated with the QPSK in a 
Rayleigh channel. 

c) Performance of BTC associated with QAM modulations in a Gaussian channel 

In general, other works [UNG 82] recommend using the coded modulation when 
we associate a corrector coding to modulations with a large number of states. In the 
particular case of turbocodes, the best performance/complexity compromise is 
provided by the approach known as pragmatic Viterbi [SAW 89] and that is the 
approach, which we will consider.  
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Figure 6.22. Synoptic of the pragmatic transmission system 

The pragmatic Viterbi approach makes it possible to use the same decoder 
described in the case of binary modulations to treat all the M-ary modulations with 

2mM = , where m is a positive and even integer. The principle consists of coding the 
binary data with a product code then de-multiplexing the binary flow at the encoder 
output according to m binary streams which will address the modulator (see Figure 
6.22). The labeling of the modulator symbols is generally carried out using a Gray 
code. The output of the coherent receiver is then given by relation [6.73] where the 
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ie  symbols are the M-ary symbols of the modulator considered and the attenuation 
iρ  is constant and equal to 1 (Gaussian channel).  

From the observations we calculate the LLR of the m binary symbols associated 
with each M-ary symbol; LLRs are then used as the turbo decoder input [PYN 95].  

To illustrate the principle we will consider the case of a QAM modulation with 
16 states. In this case the constellation may be considered as the superposition of 
two independent amplitude modulations (4-PAM); one following the phase path and 
the other following the quadrature path.  

The labeling of the symbols of a 4-PAM according to a Gray code is illustrated 
in Figure 6.23.  

e = -3 -1 +1 +3

x = -1 -1 +1 +1

y = +1 -1 -1 +1
 

Figure 6.23. Labeling of a 4-PAM constellation 

We may then calculate the LLR of the two binary symbols of the phase and 
quadrature paths independently. The two cases are treated identically. Considering 
Figure 6.23, the LLR of the binary symbols noted x and y are defined by:  

λl = ln
Pr l = +1/ r{ }
Pr l = −1/ r{ }

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟   [6.74] 

with l=x or y. Let us take the case of the binary symbol called x. Taking into account 
the notations used we show that:  

λ x = ln
Pr e = +1/ r{ }+ Pr e = +3/ r{ }
Pr e = −1/ r{ }+ Pr e = −3/ r{ }

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟   [6.75] 
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Supposing that the data to be transmitted are independent and have mutually 
equal probabilities we shows using Bayes and preserving only the dominating term 
in the numerator and the denominator of the sum that:  

( )
( )

2

  if 2
2 2 1   if 2

2 1   if 2
x

r r

r r

r r

λ
σ

⎧ ≤
⎪⎛ ⎞≈ × − >⎨⎜ ⎟

⎝ ⎠ ⎪ + <⎩

  [6.76] 

Similarly, for the binary symbol called y we show that:  

( )
( )2

2   if 02
2   if 0y

r r

r r
λ

σ
+ − >⎧⎪⎛ ⎞≈ ×⎨⎜ ⎟ − + <⎝ ⎠ ⎪⎩

   [6.77] 

Relations [6.76] and [6.77] make it possible to very easily determine the LLR of 
the binary symbols x and y of the component in phase and quadrature on the basis of 
the observation R at the output of the coherent receiver.  

These LLR are supplied to the iterative decoder described previously.  

The curves of BER according to b 0E /N  for the product code (128,113,6)2 
associated with a 16-QAM modulation are given in Figure 6.24.  

We observe that each additional iteration makes it possible to improve the BER 
for a b 0E /N > 6.0 dB.  

Figure 6.25 compares the performances of the 16-QAM associated with various 
product codes. The curves of BER according to b 0E /N  are plotted up to iteration-4.  

By way of comparison we also provide the performances of the TCM (trellis 
coded modulation) with 64 states associated with a 16-QAM for a spectral efficiency 
of 3 bits/s/Hz. We notice that the BTC yields better performances for low BER. 
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Figure 6.24. Curves of BER according to b 0E /N  in the case of the 
 product code (123,113,6)2 associated with a 16-QAM modulation 
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Figure 6.25. Curves of BER according to b 0E /N  in the case of  
a 16-QAM modulation associated with various product codes 
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Figure 6.26. Comparison of the performances of turbocodes  
associated with QAM modulations with their Shannon limit.  
The performances of the TCM are also given for comparison 

The method described for 16-QAM applies to other QAM modulations. Figure 
6.26 carries out a comparison of the performances of turbocodes associated with 
QAM modulations with the Shannon limit. The performances are given for a BER of 
10-5 and four iterations. The TCM performances are also provided by way of 
comparison. We note that turbocodes make an improvement of more than 1 dB 
compared to the TCM. The performances of turbocodes are located approximately 
2.5 dB from the Shannon limit. We notice that this limit is optimistic because it 
supposes a Gaussian modulation and a coding of infinite size. 

Lastly, Figure 6.27 compares the performances of a traditional concatenated 
coding scheme with those of a turbocode. The traditional concatenated code 
comprises an external code of the RS type (204,188) concatenated by a two-
dimensional TCM associated with a 128-QAM. This coding scheme is currently 
normalized for digital television broadcasting. The turbocode solution consists of a 
product code (256,247,4)2 associated with a 64-QAM using the pragmatic approach. 
The performances of the turbocode are given for four iterations. The spectral 
efficiency of the turbocode solution is slightly higher (5.59 bit/s/Hz instead of 5.53 
bit/s/Hz) than that of the concatenated code recommended by the standard. The BTC 
solution makes it possible to improve the connection balance by approximately 1 



364    Channel Coding in Communication Networks 

dB. In addition, as we will see later on, the complexity of the turbocode circuit is 
even lower, leading to an excellent complexity/performances compromise. 
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Figure 6.27. Comparison of the performances of a traditional  
concatenated coding scheme (RS+TCM) with those of a turbocode 

d) Performance of BTC in a binary symmetric channel (BSC) 
Certain digital systems do not have a reliability measurement associated with the 

binary symbols in the receiver, mainly for technological or economic reasons. By 
way of an example we can cite optical transmission, data storage or network layer 
coding. The channel is then called a BSC and is modeled by:  

i i ir e ε= ⊕   [6.78] 

where ,   and {0,1}i i ir e ε ∈ ; ie  is the transmitted binary symbol, ir  is the received 
binary symbol and iε  is a variable that takes the value “one” when the received 
binary symbol is wrong. In this case we do not have the reliability measurement at 
the decoder input and we will have a degradation of the performances.  

For the traditional codes, the optimal decision consists of finding the codeword 
with the minimum Hamming distance from the observation, which leads to a 
degradation from 2 to 2.5 dB.  
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In the case of turbocodes we can use SISO decoding after having applied the 
transformation { } { }0,1 1, 1→ − +  to the received binary symbols.  

The first decoding is based only on binary data and the performances are 
identical to those of binary decoding.  

For the following decodings the decoder benefits from the contribution of 
extrinsic information which tends towards a Gaussian distribution and SISO 
decoding then acquires its full significance.  

Figure 6.28 provides the performances of three BTC (128,120,4)2, (128,113,6)2 
and (128,108,8)2. We note that degradation in the SBC channel is relatively low 
(between 1 and 1.5 dB) compared to the optimal case (Gauss).  

We can reduce this degradation in the case of the SBC channel with deletion 
(SBCD) and the loss lies between 0.5 and 1 dB.  

Also, let us note that degradation results in a simple shift of the curves of BER 
according to b 0E /N  to the right without notable change of slope. 

Figure 6.29 presents a comparison of the performances of BTC in a Gaussian 
channel and SBC with the iteration 8 for a BER of 10-5 with their Shannon limit.  

We notice that the variation with respect to Shannon is relatively low even in the 
case of the SBC channel (1 to 1.5 dB).  

In addition, the difference between the theoretical performances in a Gaussian 
and a SBC channel decreases and tends towards “zero” when the output of the code 
tends towards “one”. Thus, the BTC with high output can be used in a channel SBC 
with a very light loss of performance. This result is very important and paves the 
way for many BTC applications. 
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Figure 6.28. Comparison of the performances of BTC (128, K, δ) 2 for  

different channels (Gaussian, SBC and SBC with deletion) with iteration 8 
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Figure 6.29. Comparison of the performances of BTC for  
different channels (Gaussian and SBC) with the Shannon limit 
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6.5. Conclusion 

In this chapter we have tried to present as simply and clearly as possible the 
concept of BTC. At first, we have considered the theoretical aspects, such as the 
concatenation of block codes and the theoretical optimal performances. We then 
dealt with the soft decoding of block codes considering various algorithms and 
emphasized that the Chase algorithm [CHA 72] offers the best compromise between 
complexity and performance. We then introduced the concept of SISO decoding of 
block codes and described an algorithm of weighting of the decisions provided by 
the Chase algorithm. Let us note that this algorithm of weighting can be exploited by 
other algorithms of soft decoding [FOS 98, FAN 00]. Lastly, we have described the 
iterative decoding of product codes, which constitutes the heart of turbocode and 
provided several results of simulation considering various product codes, 
modulations (PSK and QAM) and channels (Gaussian and Rayleigh). 

Certain points evoked in this chapter deserve to be underlined. In addition to the 
exceptional performances of the BTC, we have error probability limits that are very 
precise for low BER. The comparison between simulated performances and the 
lower limit of the probability of error shows than the limit is reached for low BER 
and than the BTC does not present an effect known as flattening. This result shows 
that the proposed process of iterative decoding of the product codes is quasi-optimal 
for low BER. Moreover, we can predict the performances of the BTC for very low 
BER (lower than 10-9) thanks to the limit of the probability of error.  

In conclusion, the BTC is a very promising technology and complementary to 
the CTC. It is very attractive for certain applications, such as: data transmission by 
packages of small size, transmission with high yield and large spectral efficiency 
and transmission with a very broad band. At present many transmission systems 
consider the use of the BTC, and the IEEE-802.16 standard has already adopted it as 
an option. This choice is justified by the fact that the BTC not only demonstrates 
very good performances, but also has a very low implementation complexity [ADD 
97, GOA 97] and that it has many other qualities such as flexibility and error 
detection. These aspects are considered in the following chapter.  
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Chapter 7  

Block Turbocodes in a Practical Setting 

7.1. Introduction 

The turbodecoding algorithm of product codes (iterative decoding algorithm with 
soft input and output of product codes) described previously offers remarkable 
performances in terms of correction of transmission errors (residual bit error rates 
(BER) for a given level of noise). Its complexity of integration onto microchips and 
DSP is the subject of this chapter. 

The impact of integration constraints and the quantification of data on theoretical 
performances obtained previously are evaluated first. The number of quantification 
bits directly conditions the complexity of the circuit, in particular with respect to the 
size of the memories. Two types of architecture are then presented before proposing 
a decomposition of the elementary decoder into blocks and evaluating its 
complexity. 

7.2. Implementation of BTC: structure and complexity  

7.2.1. Influence of integration constraints [RAO 97] 

7.2.1.1. Quantification of data 

In a digital circuit, data is represented by discrete values coded with a finite 
number q of binary characters. The higher this number is, the more precise the data 
representation is and the better its performances are. On the other hand, the 
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complexity of the circuit increases with the value of the parameter q (size of the 
memories and the processing unit). It should be optimized in order to obtain the best 
performances/complexity compromise.  

Using simulation we may study the evolution of the BER for the product code 
( ) ( )BCH 64,57, 4 BCH 64,57, 4⊗  according to the signal-to-noise ratio 0bE N . For 

four decoding iterations the degradation of the BER at the decoder output was 
measured according to the number of quantification levels used. In these simulations 
the data was coded successively for q = 3, 4 then 5 bits (sign bit included). The 
coefficients α and β, used respectively in the iterative algorithm to modulate the 
negative feedback and to calculate extrinsic information were optimized according 
to the value of q and for a BER close to 10-6.  

The transmission used is a QPSK in a Gaussian channel. Figure 7.1 depicts the 
results obtained. The BER curve of an iterative decoding using the binary data  
(q = 1) is also provided. It makes it possible to appreciate the improvement of the 
performances brought around by balanced decoding (gain higher than 2 dB for a 
BER of 10-5).  

The simulation results show that a quantification of the samples at the 
demodulator output for q = 4 bits is sufficient to ensure quasi-optimal operation of 
the decoder. Indeed, the degradation of the coding gain remains below 0.1 dB and 
the BER curve merges quickly with that of the real data. The best 
performances/complexity compromise is obtained for this value.  

We find virtually identical variation with the product codes constructed on the 
basis of block codes, such as the BCH (32,26,4) corrector of t = 1 error or the BCH 
(32,21,6) corrector of t = 2 errors.  

This low degradation is explained by the approximations introduced into the 
calculation of the Logarithm Likelihood Ratio (LLR). They mask the negative effect 
of the quantification.  

For q ≤ 3 the degradation of performances is no longer negligible. The coding 
gain for a BER of 10-5 is thus decreased by 0.3 dB when q equals 3. We also note 
that beyond q = 3 the slope of the curves practically does not vary any longer when 
the number of the quantification levels increases.  



Block Turbocodes in a Practical Setting     375 

BCH(64,57,4)⊗ BCH(64,57,4)

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.75 2 2.25 2.5 2.75 3 3.25 3.5 3.75 4 4.25 4.5 4.75 5

Eb/N0 en dB

TE
B

Valeurs réelles

q=3

q=4

q=5

Décisions fermes

 
Figure 7.1. Influence of quantification on performances 

7.2.1.2. Choice of the scaling factor  

The “scaling factor” makes it possible to balance the quantified data presented at 
the circuit input. It acts as a multiplicative coefficient applied to the received data. In 
practice, it is a purely combinative block functioning as a conversion chart placed 
after the Analog-to-Digital Converter (ADC). Strictly speaking, it does not form part 
of the turbo decoder.  

Hard decisions

Residual values 

in

B
E

R
 



376     Channel Coding in Communication Networks 

Along the iterations the reliability of the majority of the samples tends towards 
its maximum value, equal to 2q-1-1 for a quantification on q bits. A saturation 
phenomenon manifests itself when the number of iterations or the signal-to-noise 
ratio increases.  

The data being increasingly reliable in the two cases, it becomes difficult to 
detect and correct the residual transmission errors still present in the matrix. When 
reliabilities saturate, the matrix no longer evolves from one half-iteration to the 
other; the decoder then behaves as a binary decoder. The scaling factor, lower than 
one, shifts input reliabilities towards the binary decision threshold, which delays 
saturation and supports unreliable data tagging, leading to the improvement of the 
performances of the decoder.  

However, if the selected value is too low, the performances are degraded 
(especially for low signal-to-noise ratios); too high a value renders the determination 
of the least reliable symbols delicate. The optimal value of the scaling factor 
depends mainly on the output of the code but also, to a lesser extent, on the number 
of quantification levels and the signal-to-noise ratio. This optimal value approaches 
unity when the output increases. For the BCH product code (64,57,4)⊗BCH 
(64,57,4) with an output of 0.79, the optimal scaling factor is estimated at 0.85. It 
equals 0.75 for the BCH (32,26,4)⊗BCH (32,26,4) with an output of 0.66 (in both 
cases the samples are quantified on 16 levels). Figure 7.2 shows the evolution of the 
BER for various values of the scaling factor for this second code.  

7.2.2. General architecture and organization of the circuit 

The functional analysis of the algorithm made it possible to identify two possible 
architectures for a product code turbo decoder circuit [ADD 95, ADD 96a, RAO 95], 
one modular and the other taking as a starting point the Von Neumann machine. 
These two structures are described below.  

7.2.2.1. Modular structure 

From the operation scheme of the algorithm we can imagine a modular structure 
for the turbo decoder, in which each sub-circuit carries out a half-iteration of 
decoding (i.e. a decoding of the rows or columns of a data matrix, [R] or [R']).  
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Figure 7.2. Influence of the scaling factor on the performances of a block turbocode  
(QPSK modulation, Gaussian channel) 

Scale factor equal to 0.5 

Scale factor equal to 0.75 

Scale factor equal to 1 

Residual values 

in

B
E

R
 



378     Channel Coding in Communication Networks 

 

Figure 7.3. Functional diagram of the modular structure 

The complete circuit then consists of cascaded identical modules. For 4 
iterations, for example, the circuit uses 8 elementary modules or decoders.  

With modular architecture the data is treated sequentially (symbol by symbol). 
This treatment is well adapted to the algorithm insofar as many decoding functions 
are classically presented in a sequential manner and are, therefore, simple to 
implement. This is the case, in particular, for the search for the least reliable samples 
of an input vector, for the calculation of the syndrome, binary decoding, as well as 
for the reading and the writing of data in and out of memory. In this configuration 
the time needed to decode a sample should not exceed the inverse of the data flow. 

Each module introduces a latency of n2+ lat samples. Latency is the number of 
samples that separate the sample at the output from the sample present at the input at 
a given moment. In this expression, the first n2 samples correspond to the filling of a 
data matrix and the following lat to the actual decoding of a row (or column) of this 
matrix. The design of the elementary decoder shows that it is necessary to reserve n 
clock periods for the processing of the codeword read during the n previous periods: 
the new values R and W are thus transmitted after lat = 2n clock periods. Latency is 
perceived by the user as a decoding delay, whose value grows with the number of 
cascaded modules.  

7.2.2.2. Von Neumann architecture 

The second architecture is linked to the Von Neumann sequential machine. It 
uses the same processing unit to carry out several iterations. Compared to the 
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previous architecture, this solution mainly aims at reducing the obstruction of the 
turbo decoder. Moreover, it has the advantage of limiting to a maximum of 2n2 
symbols the total latency introduced by the circuit, independently of the number of 
iterations carried out (n2 samples to fill an additional matrix and n2 for decoding).  

This time the data can be processed either sample by sample, i.e. sequentially, or 
on the contrary, vector by vector (row or column of a matrix) described hereafter as 
“block processing”. In both cases, each sample must be decoded in a time not 
exceeding the inverse of the product of the data flow by the number of half-iterations 
to be performed. Thus, for four iterations, the data flow can only exist at a rhythm at 
least eight times lower than that of their treatment. In the case of sequential 
treatment this implies that between the modular and the Von Neumann architectures 
the maximum data flow is divided by a factor equal to the number of half-iterations 
used. Latency is less for the Von Neumann architecture (2n2 samples at most for the 
first case against 8n2 + 16n for the other) but the flow is lower for the same speed of 
data processing. 

Generally, for both types of treatment the maximum number of iterations that 
can be integrated in the circuit is limited by the flow that we wish to achieve on the 
one hand, and by the maximum frequency of operation that the technology used 
allows on the other hand. This frequency conditions the maximum speed, at which 
the processing unit can function. To reduce the processing time of a matrix we could 
possibly decode several rows or columns in parallel. This multiplication of the 
resources (in a number of processing units) certainly makes it possible to achieve 
higher flows, but increases the obstruction of the circuit by an equal amount (see 
section 7.2.5). If we consider the BCH product code (64,57,4)2, the complexity of 
the elementary decoder is approximately 5,000 gates and the memory size is 64 
Kbits (for samples quantified for 4 bits including the sign bit), which gives a gate 
equivalent of 100,000. The sequential structure for 4 iterations is of 840,000 gates, 
whereas the Von Neumann architecture requires only 205,000 gates. It should be 
noted that more than 95% of total surface is occupied by the memories. 

The second possibility, called “block processing”, is specific to block codes. 
More complex to implement than the previous possibility, it combines a high data 
flow with the limitation of latency inherent for the Von Neumann architecture. This 
time we work directly with the vectors of n coded samples and no longer 
sequentially with each of them, which makes it possible to reduce the average time 
needed for the decoding of data.  

In the case of the Von Neumann architecture, the maximum value of the data 
flow in block processing is higher for the same iteration count than that which can 
be achieved with sequential treatment. Reciprocally, if the flow is fixed, we can 
carry out more iterations using block processing than using sequential treatment. 
However, block processing requires, as we will see, a particular architecture of the 
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memories in order to preserve a high user frequency. It also induces increased 
complexity and obstruction of the processing unit. 

The solution consisting of associating block processing with modular 
architecture is not of practical interest except for very high flows. 

7.2.3. Memorizing of data and results 

The obstruction of the circuit stems primarily from the size and the number of 
the memories used. Regardless of the general architecture selected it is, indeed, 
essential to memorize the matrices [R] and [R'] (or [W]) during half-iteration in 
progress (a half-iteration corresponds to a decoding of the rows or columns of a data 
matrix). Data processing in rows then in columns forces the use of a first memory 
unit to receive the data and a second unit to treat it. These two memories work 
alternatively in writing and reading mode with an automaton managing the 
sequencing. Each memory is organized as a matrix and composed, for a code of 
length n and a quantification of the data for q bits, of q memory planes of n2 bits 
each.  

7.2.3.1. Modular structure  

In the case of the modular structure, the general organization of the circuit for a 
half-iteration is that of Figure 7.4 below. 

The data coded for q bits that arrive at the decoding module is arranged by rows 
of a first memory A functioning in writing mode. In parallel, the data of the matrix 
received previously is taken by columns from the second memory B functioning in 
reading mode. Once memory A fills and the contents of memory B are read, the 
operating modes are inverted. Memory A passes to reading – we then start to decode 
it – while memory B passes to the writing mode in order to store the data 
corresponding to the following codeword. Cascading two modules, one for the 
decoding of columns and the other for the decoding of rows of a coded matrix, we 
carry out a complete iteration.  
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Figure 7.4. Diagram of a decoding module 

The memories used can be easily conceived on the basis of classical RAM 
(Random Access Memory), that can be addressed by row and column. Other 
solutions can be considered (shift registers, etc.) but they are more cumbersome.  

From a practical point of view the modular solution has the advantages of 
allowing a high operational frequency and having great usage flexibility. On the 
other hand, setting several modules in cascade involves an increase in latency and 
obstruction of the circuit. These parameters quickly become crippling as the iteration 
count and/or the length of the code increase.  

7.2.3.2. Von Neumann architecture 

This time the circuit performs several iterations using only one memory unit and 
only one processing unit for the whole of the iterative process.  

We short a decoding module in on itself. With this architecture the complete 
circuit includes only four memories regardless of the number of iterations 
performed. These memories must, however, be able to be read and written by rows 
as well as by columns.  

7.2.3.2.1. Sequential processing 

The memory used is classical RAM organized in a matrix where we can read or 
write data located by its address. As we reach each symbol directly, it is possible to 
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decode the matrix indifferently by its rows or its columns. These memories are 
similar to those used for the modular solution, but as the complete circuit only 
contains four of them (Figure 7.5), the gain in surface is considerable (80% for four 
iterations). However, it should be noted that this reduction of surface is obtained at 
the expense of the data flow (divided by eight for four iterations).  
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Figure 7.5. Von Neumann architecture with sequential treatment 

7.2.3.2.2. Block processing  

This time the data is decoded directly by blocks of n samples rather than 
sequentially. The principal advantage of this solution is to cumulate an increased 
flow with the reduction of latency inherent to Von Neumann’s structure. The 
memories, for reading and writing by row or column, must give access a complete 
data vector in only one clock period instead of n. Such memories are a priori more 
cumbersome and more complex to implement that those used in sequential 
treatment. However, we still need only four of them to memorize [R] and [R'] 
(Figure 7.6).  

In the case of the product code BCH(64,57,4) ⊗ BCH(64,57,4) integrated over 
four iterations we have 4,096 symbol-times (the time of filling the following matrix) 
to decode 4 times the 64 rows and the 64 columns of a data matrix, which leaves a 
maximum of eight symbol-times per codeword.  

Since the standard libraries of the founders do not have such memories 
accessible by block, they should be especially conceived for this application. 
Complex and delicate to manufacture, their production cost is necessarily higher 
than that of conventional memories. The various solutions envisaged to carry them 
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out are divided into two families. They impose constraints on data processing, as 
well as on topology of the circuits used. 

 

Figure 7.6. Von Neumann architecture with block processing 

The first possibility again uses the principle of data shift. The structure obtained 
is comparable to a set of shift registers by row and column. The second solution uses 
the technique of address shift. The memory point then consists of oscillators and has 
a particular device to address the rows and columns. We can also use a memory 
point comparable with that found in traditional RAM, but whose more complex 
addressing system here uses the row and column address amplifiers.  

In all the cases, the elementary memory point can be of static or dynamic type 
[PUC 88]. With a dynamic cell the information stored in the form of an electric 
charge in a stray capacity tends to disappear because of the escape resistances of this 
capacity. The dynamic memory point does not have a durable state and the 
information which it contains must be restored (or “refreshed”) periodically in order 
not to be lost. If it is compact (3 transistors, or even just one), the dynamic cell 
consumes more electric power than its static equivalent. In a static cell, the output 
signal is looped on to the input making it possible to preserve the data without 
having to regenerate it (at least as long as the memory is fed). Because of this defect, 
the static memory point is more cumbersome than its dynamic counterpart 
(approximately 10 transistors). It also has a slightly more elaborate design, but, on 
the other hand, remains simpler to use. In order to be freed of the cooling problem, it 
is preferable to use only the memories of the static type. These memories, moreover, 
make it possible to reach higher flows than dynamic memories (they have faster 
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access [WES 93]). Let us note that it would nevertheless be fully possible to use 
dynamic cells while avoiding having to regenerate their contents. For that it would 
be necessary that the interval of time separating the reading and writing operations 
of a memory point should be small compared to the time-constant of the memory, 
which amounts to considering only high flows.  

7.2.4. Elementary decoder 

7.2.4.1. Decoding of BCH codes with soft inputs and outputs 

The decoders work with soft decisions. The input comprises analog samples 
coded for q bits: q – 1 reliability bits and a sign bit. The sign bit gives the binary 
value of the symbol (“0” or “1”) and reliability gives the degree of confidence with 
which this bit is received. 

The established algorithm uses the decoding Chase algorithm [CHA 72] and the 
weighting algorithm of Pyndiah [PYN 94, PYN 98]. It delivers at output the most 
probable transmitted binary sequence. It comprises 9 stages [ADD 96, ADD 97a, 
ADD 97b]:  

– reception of the codeword of input R' K; 

– search for the least reliable samples; 

– construction of the test vectors; 

– calculation of the syndrome S1 (and S3 for a code with correction power t = 2) 
of the first test vector; 

– calculation of the syndromes S1' (and possibly S3') of the other test vectors; 

– calculation of the metrics of each test vector and selection of the “decided” and 
“competitor” vectors; 

– calculation of the new reliability for each sample of the decided codeword; 

– calculation of extrinsic information; 

– addition to the codeword received from the channel and correction of this 
codeword. 

Example of the choice of test vectors, calculation of the corresponding 
syndromes and calculation of the metrics: 

Let us consider 8 test vectors comprising 32 samples in the case of extended 
BCH code (32,21,6). The first C0 vector simply comprises the sign bits of the 
received codeword. The 7 other vectors (C1 to C7) are constructed, for example, on 
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the basis of this one by reversing the positions of the 4 least reliable samples (LRSi, 
i = 1.., 4):  

– C1 to 4 where the LRS1 to 4 sample is reversed; 

– C5 to 7 where the 2 samples LRS1 and LRSi (i=2 to 4) are reversed. 

The syndromes of each of these vectors are then calculated in the following 
manner:  

– S1' = S1 ⊕ (1st reversed position) ⊕ (1st reversed position) 

– S3' = S3 ⊕ (1st reversed position)3 ⊕ (1st reversed position)3 where S1 and S3 are 
the syndromes of C0 and the reversed positions are located in the Galois field GF 
(25). 

S1' and S3' allow the algebraic decoding of each test vector and give positions 
PC1 and PC2 that have to be corrected: the calculation of the syndromes after the 
corrections verifies that the word obtained is a codeword. 

The calculation of the Euclidean distances between each test vector and the input 
vector take into account only the positions where the symbols are different:  
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= R CK L
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7.2.4.2. Functional structure and sequencing 

After the analysis of the various functions of the decoding algorithm, the 
functional diagram of the decoder can be defined [ADD 99a, ADD 99b]. It consists 
of several parts:  

– the sequential part at input, which gathers all the blocks whose calculation 
progresses at the same rate as the arrival of each sample of the received codeword 
(S1 and S3 syndromes, parity and positions of the least reliable samples); 

– the non-sequential part where calculations are carried out after complete 
reception of the codeword, and thus do not require any synchronization with respect 
to the arrival of the samples (binary decoding, calculation of metrics and choice of 
the decided and competitor vectors). This block is connected on the outside to a 
combinatory function (ROM) which gives the positions of the symbols to be 
corrected according to the syndromes. This function is useless for Hamming codes 
(the S1 syndrome indicates the position to be corrected in the Galois field); 
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Figure 7.7. Block diagram of the decoder 

– the sequential part at output, which groups the blocks working at the same rate 
as the transmission of new samples (calculation of the reliability of each sample and 
its extrinsic information, construction of the following codeword); 

– the memory part, consisting of two RAM inserted between each half-iteration 
propagating the samples [R] and [R'] (or [W]) and compensating for the latency due 
to decoding. 

The processing of each codeword is thus divided overall into three parts: a 
sequential part at the input, a non-sequential codeword processing part and a 
sequential part at the output. 

The “word processing” part consists of a processing for each test vector: 
calculation of the syndromes and metrics of each vector and calculation of the 
positions to be corrected for each vector. 
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Figure 7.8. Temporal cutting 

The time necessary for the processing is n clock periods.  

Thus, for a decoder working with L vectors, n/L clock periods are allocated to 
each vector.  

At the end of this processing, we can select the vectors giving the “Decided” and 
“Competitor” codewords that make it possible to calculate the reliability of the data 
at the output of the half-iteration.  

The latency of the decoder, i.e. the time that passes between the reception of the 
first symbol of the codeword Rk' at the input and the transmission of the first symbol 
of the codeword Rk'+ at the output, is 2n clock periods. 
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Figure 7.9. Processing of each codeword (16 test vectors) 

7.2.4.3. Installation of a decoder on a silicon microchip 

Among the blocks requiring a lot of resources we may cite those seeking the 
least reliable samples, those calculating the metrics and those selecting the decided 
and the competitor codewords.  

For the latter, in particular, it is possible to reduce the number of competitors 
necessary for the calculation of reliability while minimizing the degradation of 
decoding performances [ADD 97a, ADD 97b]. 

Figure 7.10 below represents the BER of the product code BCH(128,120,4)⊗ 
BCH(128,120,4) for various values of the number of competitors [KER 99]. 

We may realize that degradation is minimum (0.1 to 0.2 dB) when there is one 
competitor whereas complexity can be reduced by a ratio of 10. The following table 
shows the increase in surface and the performance gain when the number of 
competitors varies (the reference is the decoder with soft input and outputs 
BCH(128,120,4) with one competitor and 16 test vectors).  
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Figure 7.10. Number of competitors and performances 

 1 competitor 3 competitors 16 competitors 

Performance gain 
(at 10-6) Ref. 0.06 dB 0.13 dB 

Increase in surface Ref. 13.5% 90% 

Table 7.1. Performance gain and increase in surface according to the  
number of competitors for turbocode BCH(128,120,4)2  
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This simplification is essential for all microchip applications. The selection of 
the competitor codeword is unique for the vector considered and is used for the 
calculation of reliability of all the bits of this codeword, which is not the case in the 
initial algorithm.  

A good performance/complexity compromise consists of taking 2, even 3, 
competitors. 

The following table gives the complexity of the elementary decoders for an 
iteration [ADD 99c] with only one competitor. 

 

Product code Number of gates 

BCH (32,21,6) ⊗ BCH (32,26,4) 4,800 + 3,800 = 8,600 

BCH (64,51,6) ⊗ BCH (16,11,4) 5,000 + 3,500 = 8,500 

BCH (32,26,4) ⊗ BCH (32,26,4) 3,800 + 3,800 = 7,600 

Table 7.2. Complexity for an iteration of the elementary decoders  
adopting only one competitor 

This complexity is low compared to the level of integration that can be obtained 
with modern CMOS technologies (300,000 gates in CMOS 0.09µm,  
50,000 gates/mm2 in CMOS 0.18µm). These decoders can be easily integrated in 
programmable circuits of the FPGA (Field Programmable Gate Arrays) type. 

However, this solution uses reliability β with many positions j. β is taken by 
default in the absence of a competitor; it is constant, optimized by simulation and 
depends on the current half-iteration. A better estimate of this reliability Λ'(dj) is 
given by the following equation [ADD 00a]:  

Λ' (dj) = | rj | + ∑
=

b

ak
| rk | 

where a and b are selected among the least reliable positions of the vector considered 
[R' m]. Λ' (dj) then depends on this vector. 

The following curves compare the results when β is fixed and variable for the 
same half-iteration. 
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Figure 7.11. BER function of the Eb/N0 ratio when β is fixed  

and variable for two product codes 

When β is variable, the results are close to the theoretical curve obtained with the 
union bound [ADD 00a] (variation of 0.1dB to 0.2dB). Its implementation does not 
influence the low complexity of the elementary decoder [KER 00]. 

Another estimate of Λ' (dj) is given by the following expression:  

Λ' (dj) = | rj | + (∑
=

n

k 0
| rk |)/A where A is a constant (A is optimized by 

simulation). 
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7.2.5. High flow structure [ADD 00b, ADD 01, CUE 02, CUE 03a, CUE 03b] 

7.2.5.1. Introduction 

The critical path in architectures of turbo decoders is in the processing units. For 
a given technology target, we will consider that the processing units function at a 
maximum frequency FUTmax, the latter being given by the maximum frequency of 
operation of the elementary decoders. If the flow frequency FFlow is higher it is 
necessary to duplicate the turbo decoders in order to treat a greater number of data at 
the same time. This amounts to paralleling the flood of data (Figure 7.12). 

 

Figure 7.12. High flow structure (FFlow = m.FUTmax) 

We have seen that product codes had the property of having codewords in all the 
rows (or columns) of the initial matrix C. We may thus, in the same manner as has 
just been seen (Figure 7.12), parallel the decoding of the matrix samples by 
duplicating the number of elementary decoders of the C1 code (or C2). We can thus 
process a maximum number n1 (or n2) of codewords under the condition, however, 
that the memory access during reading or writing takes place at different moments 
(several memory points of a matrix cannot be read or written at the same time, 
unless using “multiport” RAM). If this constraint is respected, it is possible to 
increase a factor n2 (or n1) in the FFlow/FUTmax ratio, since there can be n2 (or n1) 
samples processed at a given moment. 
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Figure 7.13. High flow structure decoding several columns at the same moment 

The major disadvantage of this architecture is that the memory must function at a 
frequency n2. FUTmax, if there are n2 elementary parallel decoders. 

If we wish to keep the same speed of operation for the memory and increase the 
flow, we can memorize several data units at the same address. However, it is 
necessary to use these data by row as well as by column. Hence the following 
organization: at this address will be found the data adjacent in reading (or writing), 
by row as well as by column. 

Let us consider two adjacent rows and two adjacent columns of the initial matrix. 
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The 4 samples (i, j), (i, j+1), (i+1, j) and (i+1, j+1) constitute a codeword of the 
new matrix which has 4 times less addresses (i, j), but 4 times larger codewords. If 
n1 and n2 are even, then, if 1≤ I ≤ n1/2, i=2 * I-1. Similarly, if 1≤ J ≤ n2/2, j=2 * J-1. 

For row decoding the samples (i, j), (i, j+1) are assigned to a processing unit 
UT1, (i+1, j) and (i+1, j+1) to a processing unit UT2. For column decoding it is 
necessary to take (i, j), (i+1, j) for UT1 and (i, j+1), (i+1, j+1) for UT2. If the 
processing units make it possible to process these pairs of samples at input (reading 
of RAM) and at output (writing of RAM) in same time 1/FUTmax, the processing time 
of the matrix will be 4 times faster than for the initial matrix (Figure 7.15). 

 

Figure 7.15. Example of “cutting” of the memory into 4 parts 

In general, if a codeword of the new matrix contains m samples of a row and l 
samples of a column, the processing time of the matrix is m.l times faster with only 
m processing units of “row” decoding and l processing units of “column” decoding. 

If the codes C1 and C2 are identical, “row” and “column” processing units are as 
well: then m=l and m processing units are necessary (Figure 7.16). This organization 
of data matrices requires neither particular memory architectures nor greater speed. 
In addition, if the complexity of the processing unit remains lower than m times that 
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of the preceding processing unit, the total complexity is less for a m2 times greater 
speed (the latter result could have been obtained using m2 processing units, as 
indicated in Figure 7.12). 

 

Figure 7.16. Block diagram when C1 and C2 are identical. The speed of decoding  
is m2 times faster using m elementary decoders 

The memory comprises m2 times fewer codewords than the initial matrix. Since 
the technology is identical, its access time will therefore be less. 

7.2.5.2. High flow turbo decoder in a practical setting 

Using the method described previously, it is possible to increase the 
turbodecoding flow of product codes by a factor of m2 if m decoders are used. In the 
results given hereafter we will consider an elementary decoder studied in [KER 00]. 
The selected product code was code BCH(32,26,4) ⊗ BCH(32,26,4). The 
characteristics of the practical setting were as follows:  

– 5 levels of quantification; 

– 16 test vectors for the Chase algorithm [CHA 72]; 

– 3 “competitor” vectors for the implementation of the Pyndiah weighting 
algorithm [PYN 94]. 

With 7.5 iterations this turbo decoder was close to the theoretical bound 
described in [ADD 00a]. The decoding of a codeword (a row or a column of the 
matrix C) breaks up into 3 parts: reception, decoding and transmission. Each one of 
them requires 32 clock periods and the latency of each elementary decoder is 64 
clock periods. 

In order to estimate this new architecture, it was necessary to model elementary 
decoders which simultaneously process m data units (2, 4 or 8) using 32/m clock 
periods (16, 8 or 4 respectively) for the decoding of a codeword. The design of these 

Memory plane with  
Elementary decoder

Elementary decoder

Elementary decoder m

n1.n2/m2
 samples of 

q.m2 bits 
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3 elementary decoders (CU) is an extension of the initial model, written in VHDL 
language. The synthesis was made using the Synopsis Design Compiler tool for each 
decoder. 

The results given in Table 7.3 show the complexity of each CU. The evaluation 
of surface stems from the logical synthesis of VHDL models with the library of pre-
characterized CMOS 0.18µm networks of ST Microelectronics as a technological 
target. Table 7.3 shows the complexity in gates and the critical path of each decoder 
accepting 1, 2, 4 and 8 input data. 

 

 Number of gates 

Except RAM 

Critical  

path 

CU-1data 5,400 11.5 ns 

CU-2data 6,750 10.5 ns 

CU-4data 11,000 12.5 ns 

CU-8data 18,800 11.5 ns 

Table 7.3. Surface and critical path of various decoders 

These results show that critical path is virtually identical for each of the 4 CU. 
New syntheses were made with FTumax = 100Mhz (clock period =10ns). The results 
are provided in Table 7.4. The decoder CU-1data noted CU1 is the reference, CU2, 
CU4 and CU8 are respectively the decoders CU-2data, CU-4data and CU-8data. 

 

CU m Flow Latency Surface 

(gates) 

Surface m CU 

(gates) 

CU1 1 D1 L 5,500=S S 

CU 2 2 4 D1 L/2 7,000 1.25x2xS 

CU 4 4 16 D1 L/4 11,200 2.0x4xS 

CU 8 8 64 D1 L/8 21,800 3.95x8xS 

Table 7.4. Principal characteristics of various decoders 
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The latency of CUm is divided by m. The flow of CUm is multiplied by m2 and 
the surface necessary to set up m CUm is multiplied roughly by m.m/2. The memory 
size (RAM) used to store [Rk] and [Wk] is the same in all the cases. 

Thus, with a CU8 decoder the flow is 6.4 Gbits/s and the surface necessary is 
multiplied by 32. To obtain the same flow with a decoder CU1 it would be necessary 
to use 64 decoders and 64 RAMs. In Table 7.5 a turbo decoder using CUm is 
compared with that obtained on the basis of a CU1 decoder, both functioning with a 
flow m2 D1. 

 

 CUm CU1 

Flow m2.D1 m2.D1 

CU numbers m m2 

Surface ≈ S. m2/2 S.m2 

Latency L/m L 

Cut RAM SRAM m2. SRAM 

Table 7.5. Comparison of the characteristics of a turbo decoder using CUm  
with that using CU1, and functioning at m2 D1 

This architecture of decoding of the product codes allows a high flow operation. 
It can be applied to convolutional codes or linear block codes. It consists of 
modifying the initial organization of the memory C in order to accelerate the 
decoding time. During a time 1/FUTmax m samples are treated by each of the m 
elementary decoders, which enables an increase of m2 in flow, latency then being 
divided by m. If the processing of these m samples does not increase the surface of 
the elementary decoder considerably, the surface increase is close to m when we 
compare this solution with the one requiring m2 decoders (Figure 7.12). In addition, 
the number of memory samples being fewer, the access time to this memory is 
reduced. The flows achieved provide hope for applications in optics and data 
storage. 

7.3. Flexibility of turbo block codes 

It has been seen how product codes are constructed using elementary extended 
BCH codes. Let C1 and C2 be two systematic block codes with respective parameters 
(n1, k1, d1) and (n2, k2, d2), where ni indicates the length of the codewords Ci, ki is the 
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length of its messages and di is its minimum Hamming distance. The product code 
C=C1⊗C2 is composed of all the matrices [C] with n1 rows and n2 columns, in 
which:  
the binary information symbols form a sub-matrix [M] with k1 rows and k2 columns; 

– each of the k1 rows of [M] is coded by the C2 code; 
– each one of n2 columns of [C] is coded by the C1 code. 

 

Figure 7.17. Coding principle of the product code C 

[BUR 65] has demonstrated that the parameters (n, k, d) of the product code C 
result from those of C1 and C2 through: n = n1 × n2, k = k1 × k2, d = d1 × d2 and a 
remarkable property of these codes, obtained on the basis of linear block codes, is 
that if n2 columns of a [C] codeword are, by construction, C1 codewords, the n1 rows 
of [C] are in turn C2 codewords.  

The coding output of C is also given by R = R1 × R2 = (k1 × k2)/(n1 × n2), where 
Ri = Ki/ni indicates the rate of code Ci. The parameters of a product code are thus 
expressed overall as the product of the respective parameters of the elementary 
codes used.  
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In practice, it is desirable to have a programmable BTC circuit that makes it 
possible to process storage blocks of different sizes with a variable number of 
redundancy bits (in order to adjust the output, for example). We may thus use the 
same BTC circuit for various applications. 

Two techniques can be used to meet this need: shortening and puncturing [PYN 
96a, PYN 96b, PYN 97]. The latter technique is very often used to adapt the rate of 
convolutional codes [YAS 83, YAS 84]. 

The shortening of a block code is a well-known technique to modify the 
parameter k of a block code. The programming of the encoder consists of providing 
the number X representing the difference between the number of bits k of the matrix 
[M], to which the product code is applied, and the number of bits k-X to be coded 
per block.  

Using this number X the encoder determines X positions in the matrix [M] 
containing bits of given values (for example, 0), which are found in corresponding 
positions of the matrix [C] during the processing of each block and are excluded 
from the transmitted bits. Several techniques can be used: uniform distribution in the 
matrix [M] (Figure 7.18) or removal of rows and/or columns in the matrix [C] 
(Figure 7.19). 

 

Figure 7.18. Shortening by uniform distribution in the matrix [M]  
(the positions noted 1 have an a priori known value) 
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Figure 7.19. Shortening by removal of rows and columns in the matrix [C]  
(the positions noted 1 have an a priori known value) 

Shortening by removal of rows (and/or columns) and insertion of “0” avoids the 
transmission of the corresponding redundancy and thus also avoids “decreasing” this 
redundancy.  

Figure 7.20 shows the results of shortening using this technique for the product 
code BCH(32,21,6)⊗BCH(32,26,4).  

Shortening of the product code causes the coding rate to decrease without 
modifying the minimum distance from the BTC. On the other hand, it leads to a 
reduction in the asymptotic gain.  

Thus, in order to preserve the good performances of the BTC, the predefined bits 
should be exploited as well as possible. To that end it is necessary to make the 
following modifications to the iterative decoding algorithm:  

– we assign an increased reliability to the predefined bits that have not been 
transmitted; 
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– we grant an increased value to the extrinsic information associated to 
predefined bits; 

– in the case of shortening by row (or column), these rows are not decoded. 

1.00E-09

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02
2 2.25 2.5 2.75 3 3.25 3.5

Eb/N0

21x26

19x24

16x22

16x20

16x16

 

Figure 7.20. Performances of various shortening codes obtained on the basis the product 
code BCH(32,21,6)⊗BCH(32,26,4) by the technique of removal of rows (and columns).  

The channel is Gaussian, the number of iterations is 7 and the data is quantified for 5 bits.  
21*26 data. output = 0.53 --- 19*24 data. output = 0.51 --- 16*22 data.  

output = 0.47 --- 16*20 data. output = 0.46 --- 16*16 data. output = 0.43 

The difference in slope between these curves is explained by the reductions in 
asymptotic gain and the size of the code.  

B
ER

 

Shortening of the code 32.21 × 32.26 



402     Channel Coding in Communication Networks 

With respect to puncturing, programming consists of providing the encoder and 
the decoder with a number Y that represents the difference between the n-X number 
of unknown bits of the matrix [C] resulting from the application of the product code 
(X=0, if code shortening is not carried out) and the number of n-X-Y bits transmitted 
by the encoder for each record.  

From this number Y the encoder determines Y positions in the matrix [C] for bits, 
which will be excluded from the transmitted bits. The shortened or punctured bits 
are bits which are not transmitted by the encoder.  

The value of a shortened bit is known a priori, which is not the case of a 
punctured bit: thus, it is better to use shortening for data bits (the output decreases) 
and puncturing for redundancy bits (the output grows). 

The increase in coding output is obtained at the expense of the minimum 
distance from the code, which decreases.  

There is thus a degradation of the BTC performances, which has to be limited in 
order to preserve the initial good performances.  

To optimize the performances of the punctured BTC, we have noted that it is 
advantageous not to puncture the bits belonging to the redundancy of the 
redundancy and to uniformly distribute the punctured bits among the remaining 
redundancy bits. 

It is necessary to make the following modifications to the decoding algorithm:  

– assign a zero reliability to the punctured bits; 

– attenuate extrinsic information associated to these bits. 

To illustrate puncturing we provide an example of codes built on the basis of the 
product code [BCH(32,26,4)]2 and for a matrix [C] with parameter n = 380 bits with 
three values for k (190, 253 and 285), which yields an output of 1/2, 2/3 and 3/4 
respectively.  

The parameters of shortening and puncturing are indexed in the table below. 
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n k R 
No. of rows 
with zero 

weight 
No. of columns 

with zero weight
No. of bits with 0 
on the diagonal 

No. of 
punctured bits 

380 190 1/2 12 12 6 14 

380 253 2/3 10 10 3 101 

380 285 3/4 9 9 4 145 

Table 7.6. Input parameters of the BTC considered 

 

Figure 7.21. Example of distribution of the punctured bits  
in the matrix [C] (located by “2”) 
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Figure 7.22. Performances of product codes (Table 7.6) after 4 iterations  
in a Gaussian channel and QPSK modulation 

7.4. Hybrid turbocodes 

We have seen that turbocodes can be constructed on the basis of elementary 
convolutional [BER 93a] or block (BCH and Reed Solomon) [PYN 94] codes. In 
addition, for these two types of code it is possible to use parallel or serial 
concatenation. We can also associate the two types of code and construct codes 
known as “hybrid” [ADD 96b]. Their construction (here, an extended BCH 
concatenated serially with a recursive convolutional code) and their performances 
are presented in this chapter. 

7.4.1. Construction of the code 

Let us consider the extended BCH code (n, k, δ). The hybrid turbocode is 
obtained placing Nc.k information bits in a matrix with k rows and Nc columns. The 

B
ER
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Nc columns are coded using an extended BCH code. The new matrix with Nc 
columns of n symbols is used as a uniform interleaving matrix.  

Each row is coded with a recursive systematic convolutional (RSC) code with a 
memory depth ν as indicated in Figure 7.23. The redundancy Y of this code can be 
punctured: it is organized in Ny columns with N symbols 

 
Figure 7.23. Construction of the hybrid turbocode 

The output of coding R of the hybrid turbocode is:  

( )
c

c y

K .N
R

N. N N
=

+
 

where  is the output of the BCH code

and  is the output of the RSC code
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N N
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n rows

Nc columns Ny columns 

Redundancy of 
the SRC 
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7.4.2. Binary error rates (BER) function of the signal-to-noise ratio in a Gaussian 
channel  

Iterative decoding requires reliability information at the output of each 
elementary decoder. For the RSC code, the Viterbi algorithm described in [BER 
93b] may be used or, more generally, the MAP (maximum a posteriori) algorithm 
[BAH 74] or its simplified version SUB-MAP [ROB 97]. For an extended BCH 
code the measure of reliability is obtained on the basis of the estimate of the LLR 
[PYN 98]. Figure 7.23 shows the performances in terms of BER of the hybrid 
turbocode constructed using the extended code BCH(32,26,4) and the code 
RSC(23,35). 
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Figure 7.23. Bit error rates (BER) for the product code BCH(32,26,4)⊗RSC(23,35) 
with q = 4 quantification bits, R = 1/2 and after 2, 3 and 4 iterations 
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The symbols are coded with 4 bits (a sign bit and 4 reliability) and the total 
coding output is 0.5. The results are shown in Figure 7.24. 

Taking the same total output we can associate different extended BCH codes to a 
RSC code ν  = 4 (23,35) or ν  = 6 (133,171). The results are shown in Figure 7.24. 
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Figure 7.24. Performances of different hybrid turbocodes 
(q = 4, R = 1/2 and after 4 iterations) 

The signal-to-noise ratio necessary for a BER of 10-5 to the 4th iteration has a 
1.7dB theoretical Shannon bound [SHA 48] for the concatenation of code 
BCH(64,57,4) and the code RSC(133,171). We have compared this association with 
the serial concatenation of a Reed-Solomon code (255,223, t = 16) and a 

B
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convolutional code (133,171) [POL 89] (in this case the rate is lower: 0.43). The 
coding gain is approximately 0.5dB for the hybrid turbocode. 

7.4.3. Variation of the size of the blocks 

The size of the blocks can be modified by changing Nc. Figure 7.25 provides the 
hybrid BER for two turbocodes:  

– BCH(32,26,4) and RSC(23,35) with 416 (52 bytes) and 832 (104 bytes) bits 
block size; 

– BCH(16,11,4) and RSC(23,35) with 88 (11 bytes), 176 (22 bytes) and 264 (33 
bytes) bits of block size. 

For a size of 176 bits, the curve giving the block error rate FER has been added. 
Note that hybrid turbocodes can be used with short blocks. 
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Figure 7.25. BER function of the block size and the signal-to-noise ratio 

in
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(q = 4, R = 1/2 and after 4 iterations). 

7.4.4. Variation of the total rate  

By puncturing the redundancy Y of the RSC code it is possible to change RRSC 
(and R). Figure 7.26 provides the BER of the concatenation of BCH(32,26,4) and 
RSC(23,35) according to various outputs. The results of this turbocode hybrid are 
compared with the serial concatenation of a convolutional code (ν = 6, R = 3/4) and 
RS code (255, 239, t = 8), used in high definition digital television [MOR 93]. 
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Figure 7.26. BER function of the output and signal-to-noise ratio obtained  
by concatenating the code BCH(32,26,4) and the code RSC(23,35)  

with q = 4 and after 4 iterations (R = 1/2, 2/3 and 3/4) 

7.5. Multidimensional turbocodes  

The product turbocodes are constructed on the basis of two elementary block 
codes. We have seen that in terms of performances, their minimum distance, which 
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fixes the asymptotic gain, is equal to the product of the minimum distances from the 
elementary codes. This result can, of course, be extended to product codes 
constructed with a number of elementary codes higher than two. The minimum 
distance can become very large (43 = 64 or 63 = 216, for example, for a three-
dimensional structure). Their principal disadvantages are low output and 
considerable block sizes. It is possible to remedy that using the techniques of 
shortening and puncturing demonstrated previously. Another solution can be 
envisaged in order to deteriorate the output to the smallest possible extent: it consists 
of using a parity code in the third dimension. This code has an output close to 1 (4/5, 
6/7, 7/8, or more). The total output changes little compared to that of the two-
dimensional code, but the total minimum distance is multiplied by 2, distance from 
the parity code. In Figure 7.27 the performances of such a code are represented: the 
two-dimensional code is a code BCH(32,26,4)⊗BCH(32,26,4). The size of the 
blocks varies with the parity code. The decoding of the parity code is based on the 
same principles as that of extended BCH codes considered previously. 
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Figure 7.27. Performance of a three-dimensional turbocode in a  
Gaussian channel using a parity code 
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It is possible to construct two-dimensional product codes using a parity code in 
its second dimension. These codes will have high outputs. An example is provided 
in Figure 7.28 (the output is 0.87, close to 6/7 and 7/8). 
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Figure 7.28. Performance of a product code BCH(128,120,4)⊗P(14,13,2) 

in a Gaussian channel  

output = 0.87 and bloc size = 188 bytes. 
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