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Preface

Aperture antennas are a class of antennas in common daily use and some have even become
synonymous with areas of science and technology. Typical examples include reflectors, horns,
lenses, waveguides, slits, and slots. Other antennas can be conveniently described by means of
aperture concepts. Some of these include microstrip patches and reflectarrays. In this book we
describe the underlying theory and application of these antennas as well as their use in arrays.

The history of aperture antennas is inextricably linked with historical developments in wire-
less and also the verification of Maxwell’s equations. The very first waveguide was demon-
strated by Lodge in 1894 and in 1895 Bose used circular waveguides as an antenna along
with pyramidal horns for experiments on the polarization properties of crystals. About thirty
years later a 10 m diameter reflector became the first radiotelescope when it detected emissions
from electrons in interstellar space. In the 1960s aperture antennas accompanied the first
humans on the moon and more recently they have contributed to the wireless revolution that
is presently underway.

Aperture antennas are normally associated with directional beams and, indeed, this is their
role in many applications. They can also occur on non-planar or curved surfaces such as on
aircraft or ground-based vehicles. These antennas may consist of a single radiator or in arrays.
In this form they are often used to provide directional or shaped beams.

Directional beams are needed in terrestrial and satellite microwave links to efficiently use the
available power as well as to reduce interference and noise. Radar systems also require direc-
tional antennas to identify targets. As well, arrays of aperture antennas can produce almost
omnidirectional radiation.

A limitation of a directional planar antenna is that when it is scanned from broadside the beam
broadens and the pattern deteriorates. When the antenna is conformal to a convex surface, such as a
cylinder or a cone, the beam can be scanned in discrete steps through an arc while maintaining a
constant pattern. Of importance in the design of low sidelobe antenna arrays, both planar and con-
formal, is predicting the effect of mutual coupling between the array elements. Maximum perfor-
mance is achieved from arrays when the coupling between elements is fully taken into account.

This book gives an introduction to the techniques that are used to design common aperture
antennas as well as some approaches to their fabrication and testing. The intention is for it to be
a single textbook for a course in antennas in the final year undergraduate or in a master’s degree
by coursework. It assumes that the reader has undertaken a course on Maxwell’s equations,
fields and waves. Some of these topics are reviewed in the early few chapters to provide con-
tinuity and background for the remainder of the book. The antennas covered in later chapters
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include horns, reflectors and arrays. Some examples are pyramidal and corrugated horns, par-
abolic and spherical reflectors, reflectarrays, planar lenses and coaxial waveguide array feeds.
To provide more than a simplified treatment of arrays, the topic of mutual coupling is covered
in more detail than most similar books on this topic. Also included is an introduction to sources
and arrays on non-planar surfaces, which is of importance for applications involving aerody-
namic surfaces and for making aperture antennas unobtrusive. A chapter is included on modern
aperture antennas that extend the concepts introduced in earlier chapters. This is to show where
advances have been made in the past and how they could be made in the future. Also included
are some topics of a practical nature detailing some techniques for fabrication of aperture anten-
nas and their measurement.
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1

Introduction

The topic of this book covers a class of antenna in common use today as well as a way of
describing many others. Examples include waveguides, horns, reflectors, lenses, slits, slots
and printed antennas. Some examples are illustrated in Figure 1.1. In the following chapters,
the background theory and application of some basic forms of these antennas are described as
well as how they can be designed, fabricated and tested. Additionally, detail will be provided on
some of the individual antennas pictured in Figure 1.1.

Aperture antennas are normally associated with directional radiation beams and, indeed, this
is their purpose in many applications. They can also create other types of beams such as shaped
or contoured beams either separately or combined as arrays as will be shown. Aperture anten-
nas can also occur on non-planar or conformal surfaces such as on aircraft or missile bodies
where airflow and aerodynamic performance are paramount. Conformal antennas can consist
of a single radiator or arrays in the surface where they can be used to provide directional and
shaped beams.

Aperture antennas can be used to produce omnidirectional radiation patterns, which are
important if the antenna platform is unstable or the user direction is unknown, for all-round
electronic surveillance and monitoring or where the location of another user cannot be guar-
anteed such as in mobile radio systems. A 360-degree coverage can be achieved with a con-
formal antenna or with electronic switching between planar elements.

Directional beams are required in terrestrial and satellite microwave links to efficiently use
the available power as well as to reduce interference and noise. Directional antennas are also
required in radar systems to identify targets. A limitation of a directional planar antenna is that
when it is scanned from broadside (typically boresight) the beam broadens and the pattern dete-
riorates. When the antenna is conformal to a convex surface, such as a cylinder or a cone, the
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2 Fundamentals of Aperture Antennas and Arrays

(e)

Figure 1.1 Examples of aperture antennas. (a) Open-ended waveguide antennas (right to left) coaxial,
circular and rectangular. (b) Circular waveguide (diameter 32.7 mm) with three ring-slots designed for
operation at 9 GHz. (c) Feed array of pyramidal horns for 12.25-12.75 GHz. (d) 11-14.5 GHz high-
performance circular corrugated feed horn, diameter 273 mm, and flare angle 11.8°. (¢) Small
paraboloidal reflector and rear waveguide feed designed for a 15 GHz microwave link. (f) 64 m Parkes
radio telescope is a front-fed paraboloid (/D =0.408). This versatile instrument has been used for
frequencies from 30 MHz to >90 GHz. Source: Reproduced with permission from CSIRO (a—f)



Introduction 3

Figure 1.1 (continued) (g) Two multibeam earth station antennas at Danish Radio’s multimedia
house in Orestad in Copenhagen, Denmark, covering different segments of the geostationary satellite arc.
(h) Multibeam feed system for the Parkes radio telescope. Source: Reproduced with permission from
CSIRO. (i) On-board Ku-band satellite antennas under test on an outdoor test range prior to launch.
(j) Dual-offset Cassegrain antenna with a waveguide array feed cluster under test in anechoic chamber
(Bird & Boomars, 1980). (k) Series-fed microstrip patch array for a microwave landing system.
Source: Reproduced from INTERSCAN International Ltd. (1) Conformal array of rectangular
waveguides (22.86 x 10.16 mm) on a cylinder of radius 126.24 mm. Source: Picture courtesy of Plessey
Electronic Systems
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beam can be scanned in discrete steps through an arc while maintaining a constant pattern.
Recent developments in microwave and optical components have simplified the design of feed
networks, thereby making conformal antennas and arrays attractive alternatives for directive
applications as well as for scanned beam and in ultra-low sidelobe antennas. Of importance
in the design of the latter, both planar and conformal antenna arrays are often employed,
and in this application predicting the effect of mutual coupling between the array elements
should be undertaken. Maximum performance is achieved from arrays when the effects of cou-
pling are known and included in the design. Otherwise, the full potential of the array flexibility
may not be realized.

Aperture antennas may be analysed in much the same way as the conceptually simpler wire
antennas. First, the designer needs to find the currents on the conductors or in other materials
from which the antenna is constructed. To do this exactly is usually impossible except in a few
idealized cases, and numerical methods are required to obtain approximate solutions. After the
currents are known, the radiated fields are obtained from Maxwell’s equations. Sometimes,
however, adequate design information may be obtained from simplified approximations to
the current, similar in some regards to adopting a sinusoidal current approximation on a linear
wire antenna. This approach is especially valuable for analysing the far-field radiation charac-
teristics, which are relatively insensitive to second-order variations in the current distribution.
However, for more detailed information or quantities such as the input impedance, reflection
coefficient at the input of horns or the effects of mutual coupling from nearby antennas, an
accurate representation of the currents is usually required to properly take account of the current
variations and near-field behaviour.

The representation of actual currents on the antenna structure may be difficult, or impossible,
to achieve analytically because of the geometry and materials involved. It is convenient, and
also physically allowable, to replace the actual sources by equivalent sources at the radiating
surface, the antenna ‘aperture’, which need not lie on the actual antenna surface but on another
often fictitious surface close by. For example, the aperture of a paraboloid reflector may be the
projection of the rim onto a suitable plane. These equivalent sources are used in the same way as
actual sources to find the radiated fields. Once these fields are known, an assessment of the
antenna’s performance can be made.

For the engineer wishing to specialize in the area of communications systems, some knowl-
edge is needed of the theory and design of aperture antennas. The intention of this book is to
provide some of this basic information. Today, compared with prior to the 1980s and even ear-
lier, a variety of full wave computer solvers are now available and are particularly valuable for
final design and analysis. The fundamental material available in this book is important as a
starting point and for understanding the physical nature of the antenna structure before more
detailed design is undertaken. It is intended that readers should be able to move from the present
material to more specialized topics and to the research literature. In addition, the details pro-
vided herein should help the non-specialist in antennas to critically assess aperture antenna spe-
cifications. Where possible, useful design information has also been included. An underlying
assumption is that the reader is familiar with the basic concepts of electromagnetic fields, waves
and radiation, as presented, in a variety of excellent textbooks (Harrington, 1961; Jones, 1964;
Jordan & Balmain, 1968; Kraus & Carver, 1973; Johnk, 1975). Some topics of a more
advanced nature have also been included here, beyond those of a typical introductory course.
These are indicated by an asterisk () after the section heading. They have been included as
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possible extensions from standard material for more specialized courses, research or possibly
part of a project.

The material included here is based on notes for several courses in antennas given to fourth
year students in Electrical Engineering at James Cook University of North Queensland and also
at the University of Queensland in the 1980s. At that time there was no suitable modern text-
book available on antennas for undergraduate teaching. Since then, several excellent textbooks
have appeared (Balanis, 1982). In addition, the notes were found useful over the years by mem-
bers of my research group at CSIRO. Other relevant material had been developed on mutual
coupling for presentation at several symposia held in the 1990s, and some of this information
has been included here. As might be anticipated, practical topics of relevance that were encoun-
tered during my research career have been included as well.

The purpose of this book is to provide a stand-alone textbook for a course in antennas, pos-
sibly in the final undergraduate years or in a master’s degree by coursework. It should also be
useful for Ph.D. candidates and practising engineers. For continuity, some background electro-
magnetics, fields and waves are included.

The antennas described in detail include horns, reflectors, lenses, patch radiators and arrays
of some of these antennas. Because of its importance and to provide more than a superficial
treatment of arrays, the topic of mutual coupling is covered in greater detail than most similar
books in the area. Also included is an introduction to sources and arrays on non-planar surfaces,
which is important for applications involving aerodynamic surfaces and for making aperture
antennas unobtrusive. An introduction to the fabrication and test of aperture antennas is
included as well as some recent examples of them.

The theory needed for analysing aperture antennas is given in Chapter 3. Material is also
included for handling conformal aperture antennas. Starting with the concept of equivalent
sources, the equations for radiation from an aperture are developed from the fields radiated by
a small electric dipole and a small loop of current. The basic theory that is needed for more
detailed development is also provided. This includes details of the far-field radiation from
uniformly illuminated rectangular and circular apertures and also how phase aberrations on the
aperture impact the far-fields. The radiation from waveguide and horn aperture antennas are
described in Chapter 4, and material is included for the radiation from rectangular waveguide
antenna. This model is used as a basis for detailed description of the pyramidal horn. The radiation
properties of circular waveguides and horns are reviewed in this chapter and details are provided
on the corrugated horn. A simple model of the microstrip patch antenna is given in Chapter 5
along with details of the radiation properties of these antennas. The purpose is to describe another
form of aperture antenna and as background for reflectarrays. The properties of reflector antennas
in common use are described in Chapter 6, including the paraboloid the Cassegrain, and spheroid
geometries as well as some offset counterparts. Planar arrays of aperture antennas and mutual
coupling in arrays are detailed in Chapter 7. This is followed in Chapter 8 by similar details
for apertures on conformal surfaces. The areas of arrays and reflectors come together in the
reflectarray antenna, which is introduced in Chapter 9. This chapter also includes details of some
other aperture antennas not treated elsewhere, in particular, lenses, and the Fabry-Pérot cavity
antennas. Finally, some possible approaches for the fabrication and testing of aperture antennas
are described in Chapter 10. In addition it includes examples of some aperture antennas that make
use of many of the techniques covered earlier in the book. At all times, the intention is an emphasis
on fundamentals and, where possible, practical information for design is also included.
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2

Background Theory

In this chapter, some background theory is provided and notation is introduced in preparation
for use throughout the remainder of this text. The equations that were devised by Maxwell and
placed in differential form by Heaviside and Hertz are introduced. Throughout this book, all
field and sources are assumed to be time harmonic and the formulation of the field equations
and their consequences will be explored under this limitation. The important concepts of field
duality, equivalent sources and image theory are summarized. Finally, radiation from elemen-
tary sources is investigated, and this allows a description of some basic radiation parameters as
well as an introduction to mutual coupling.

2.1 Maxwell’s Equations for Time-Harmonic Fields

The instantaneous vector field quantity .A(r,7) may be expressed in terms of a complex vector
field, A(r), where all fields and sources have a time-harmonic dependence, as follows:

A(r,7)=Re{A(r)exp(jwr) }, (2.1)

where bold type face indicates vector quantities, w=2zf is the angular frequency (rad/s),
t denotes time (s) and f is the frequency (Hz) of the harmonic oscillation.
Field and source quantities are defined as follows (MKS units given in square brackets):

E(r) = Electric field intensity [V m™']
H(r) = Magnetic field intensity [A m™']
J(r) = Electric current density [A m™]
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M(r) = Magnetic current density [V m™]
pe(r) = Electric charge density [C m™]
pm(r) = Magnetic charge density [Wb m™],

where V is the volt, A is the Ampere, m is metre, Wb is Weber and C is the Coulomb.

The equations governing the interaction of these fields and sources are known as Maxwell’s
equations, after James Clerk Maxwell (1831-1879), who first presented them in component
form and in terms of potentials from the earlier results of Faraday, Oersted, Ampere, Weber
and others. Oliver Heaviside (1850-1925), and independently Heinrich Hertz (1857-1894),
reduced these 20 equations to the four vector field equations that are essentially used today
(Sarkar et al., 2006). For Heaviside, the concepts of fields, symmetry and vector notation were
vital. With the present assumption that fields and sources vary harmonically with time,
Maxwell’s equations are expressed as follows:

VxE=M-jouH (2.2a)

V xH=J +jweE (2.2b)

V-E="e (2.2¢)
&

v.H="m, (2.2d)
U

where V is the gradient operator, V x is the curl operation, V- denotes divergence, ¢ is the
electric permittivity [Fm™'] and y is the magnetic permeability [Hm™].

A general field may be considered as the superposition of the fields due to two types of
sources, respectively, electric () and magnetic (m) as follows:

E=E.+E, and H=H.+H,,.

The partial field pairs, (E., H.) and (E,,, H,,,) satisfy separate sets of Maxwell’s equations as
shown in Table 2.1 and originate from electric or magnetic sources. The former is due to phys-
ical electric currents and charges, while the latter is due to magnetic currents and charges, which
are of an equivalent type and were introduced to maintain the symmetry of Maxwell’s equations
(Harrington, 1961; Jones, 1964). More will be said about equivalent sources in the following
sections.

Table 2.1 Maxwell’s equations for electric and magnetic sources

Electric: J#£0 M=0 Magnetic: J=0 M #0
VX E, = —jouH, V xHy, =jweEy
V><HE=J+ja)€Ee V)(Em:M—ja)”Hm
VEc=p./e V-Hn=pn/u

V-H.=0 V-E,=0
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2.1.1 Field Representation in Terms of Axial Field Components
in Source-Free Regions

In problems involving sections of uniform structures that guide electromagnetic waves such
as waveguides and transmission lines when J and M are absent, it is convenient to represent
all field components in terms of the field components in the direction of propagation, that is, in
the direction of uniformity. By convention this direction is usually taken as the z-component in
a cylindrical co-ordinate system with directions denoted by (u,v,z). It is recognized that the field
components E,(u,v,z) and H,(u,v,z) satisfy Helmholtz wave equations, where (u,v) are trans-
verse co-ordinates. The guiding structures are assumed to exhibit reflection symmetry and,
therefore, it is sufficient to represent the total field as the superposition of forward and reverse
travelling wave solutions in the z-direction. For time harmonic fields of the type defined by
Eq. 2.1, a forward travelling wave (in the +z-direction) has the following fields:

E(u,v,z) = (E((u,v) + 2E,(u,v) Jexp(—jrz) (2.3a)

H(u,v,z) = (H(u,v) + 2H,(u,v))exp(—jyz), (2.3b)

where E(u, v) and H(, v) are the transverse electric and magnetic field vectors and y = f—ja is
the complex propagation constant. f is the phase shift per unit length and « is the attenuation
constant. For lossless structures a=0. With the field represented by Eqs. 2.3, the transverse
field components can be obtained from Maxwell’s equations in the following form:

kgE[(u, v) =jouzx ViH,—jyV\E, (2.4a)
KH, (u,v) = —jowez x V,E,—jyV.H,, (2.4b)

where k2 =w?eu—y? is the axial wave number, and V, is the transverse gradient operator.
For homogeneous materials, the permittivity and permeability are e=¢ge¢e, and p=pp,,
respectively, where ¢, is the relative permittivity, y, is the relative permeability, &, =8.854 x
1072 F/m and p, =4z x 10~7 H/m are the permittivity and permeability of free-space. The first
term on the right-hand side of kf, namely, k=w, /ey, is the propagation constant of a plane
wave in the homogeneous medium. In free-space &, =1 and k=27/1=k,=w\/U,e;=w/c
where c=1/, /€., is the free-space wave velocity and equals ¢ =2.99859 x 103ms~!. Ratios
of components of E and H in Eqs. 2.4 have dimensions of impedance and are referred to as the
wave impedance. In a general medium, the intrinsic impedance is 77 = m Q. By substituting
Eqgs. 2.4 into Egs. 2.2b and 2.2d, it can be shown that the axial field components satisfy the
following scalar wave equations:

(v§+k§){f;(”’v) - 0. (2.5)

L (u,v)

It is seen from Eq. 2.5 that k? is also the transverse wavenumber. If the co-ordinates u and
v are separable there will be separation constants in these directions as well. For fields that
are TE to the propagation direction, E, =0, and the simultaneous pair of wave equations
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simplify to a solution of the wave equation in H, only and Egs. 2.4a and 2.4b become
as follows:

KBy (u,v) =jwuz x V. H, (2.6a)

ICH, (u,v) = —jyViH,, (2.6b)

where now k2 is constant for a fixed geometry and is the cut-off wavenumber of the guiding
structure. For example, for the TE modes of circular cylindrical waveguide of radius a, k, is a
root of the derivative of the Bessel function (see Appendix B), namely, J,;(kza) =0, where n is
the azimuthal period that arises in the solution of the wave equation in the azimuthal co-ordinate
@ in the transverse plane. Similarly, a field that is transverse magnetic (TM) to the propagation
direction is obtained by setting H,=0 and an equivalent simplification occurs in Eqs. 2.4,
namely,

KB (u,v) = —jyV,E, (2.7a)

KH, (u,v) = —jwez x VE,. (2.7b)

2.1.2  Boundary Conditions

Consider a volume that is divided into two regions 1 and 2 by a surface S as shown in Figure 2.1.
There are currents on this surface, namely, an electric surface current J [A m_l] and a magnetic
surface current M [V m™']. On either side of a surface of discontinuity the field pairs (E;, H;)
and (E,, H,) satisfy the following continuity conditions:

Js=nx(Hy—H,) (2.8a)
M, = —iix (E,~E,). (2.8b)

Thus the tangential components are discontinuous by an amount equal to the current at the
surface. The associated boundary conditions for the normal components to the surface are as
follows:

Figure 2.1 Fields on either side of a boundary surface S
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Pes =N (e2Er—€1E7) (2.9a)
. (H, H

Prms =1 (— - —1> , (2.9b)
Hy Wy

where p., is the electric surface charge in [C m™2] and py is the magnetic surface charge
[Wb m™]. In many physical problems Pes=0 and so 71+ (e2E;—¢1E;)=0. No physical
magnetic surface charges have been detected and, therefore, Eq. 2.9b is usually
expressed 7i-(Ha/u,—H; /pt,) =0.

2.1.3 Poynting’s Theorem

The time-averaged conservation of energy in the electromagnetic field is given by Poynting’s
theorem. In an isotropic medium of volume V with permeability u, permittivity € and conduc-
tivity o, this is

1 1
Eﬁ ExH*-ﬁdS:EJ” jo((uH-H* —¢E-E*) + 6E-E*)dV, (2.10)
z |4

where X is the surface bounding V. On left-hand side, 7 is the normal to the surface and is direc-
ted into . The quantity P=1/2 E x H* is the power density entering V that is called the com-
plex Poynting vector. The integral of this vector over the closed surface X is the power input, P;.
On the right-hand side, the three terms are related to, from left to right, the energy stored in
the magnetic field, Wy, the energy stored in the electric field, W, and the power lost due to
conduction loss, Pr. Expressed succinctly, Eq. 2.10 is Py =2jw(Wy,—We) + PL, where

ol )

1
Wez—Re{ JJ eE-E*dV} and
4 v

1
P = —GJ“ uE-E*dV.
v

In an ideal lossless medium, ¢=0 and, as a consequence, P =0. Therefore, P;=2jw
(Wm—W,). This says that the input power converts totally to energy in the fields, which is
totally reactive, and is the difference of the energies stored in the magnetic and electric fields.

2.1.4  Reciprocity

Of importance in all types of antenna systems is the relationship between the receiving and
transmitting fields. In more general terms, the response in the vicinity of one source due to
fields from a second source and the relationships when the roles are reversed are of particular
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significance. Suppose there are two sources in a region denoted by a and b. Thus the source
pairs are (J¢,M¢) and (J?,M?). These produce fields (E*, H*) and (E”, H"), respectively, that
satisfy their own sets of Maxwell’s equations as shown in Table 2.1. Making use of the vector
identity
V-(E“xH”)=H’.VxE‘~E*V x H
and the Maxwell curl relations, it follows that
V-(E‘xH") =H’-M! - jouH* H’ -E*.J? - joe E* E". (2.11a)
Similarly,
V-(E’ xH") =H*M? - jouH* H" -E’.J - joe E* E". (2.11b)
Subtraction of Eq. 2.11b from Eq. 2.11a results in
V-(E‘xH"-E’xH*) = -E“J? +E".J¢ + H*M? -H" M{.
At any point within the region where the sources are not present, the right-hand side is zero:
V-(E“xH"-E"xH") =0 (2.12)

This result is called the Lorentz reciprocity theorem. When Eq. 2.12 is integrated throughout
the source-free region X, the divergence theorem allows it to be expressed as follows:

ﬁE(E“ xH"-E’xH*)-2dS =0, (2.13)

where the integral sign refers to a closed surface with volume V. When sources are contained
within the surface the result is

ﬂZ(E“ xH’-E"xH*) -idS = ”J (-E“J.+E*.J¢+H M. -H M) av.  (2.14)
14

If the surface is a sphere with a very large radius, as the fields decay as 1/r, the integral on the
left-side limits to zero. As a result, the right-side of Eq. 2.14 gives

[ teat-wesyav= [ rarwaa. s

where V is now all space. The two integrals on the left and right side of Eq. 2.15 are termed
reaction integrals. Eq. 2.15 is sometimes expressed as the reaction of field a on source b is the
same as the reaction of field b on source a. When a and b are the same the integral is called self-
reaction. Although not immediately obvious, Eq. 2.13 is also applicable when the volume, V,
contains all sources.
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Table 2.2 Field duality

Electric dipole Magnetic dipole
E — H

H — -E

k — k

€ - u

H o €

n — 1/n

J - M

2.1.5 Duality

The symmetry of Maxwell’s equations as summarized in Table 2.1 indicates that mathemati-
cally there may be equivalence between the extension of Faraday’s law and Maxwell’s exten-
sion of Ampere’s equation and similarly between the divergence equations arising from
Gauss’s laws. This is, in fact, the case if there were physically a magnetic current and a mag-
netic charge density, which like the electric charge and divergence of the electric current,
are related through a magnetic current continuity equation. This correspondence between
Maxwell’s equations and the field sources is referred to as duality and is summarized in
Table 2.2. There will be occasions when a magnetic current is adopted, although physically
it is fictitious, as it can simplify some of working and produce fields as if such a source or
to construct field solutions as if these sources were actually present.

2.1.6  Method of Images

Adjacent to plane electric and magnetic conductors, the boundary conditions (Eqs. 2.8 and 2.9)
on the electric and magnetic fields imply the presence of an ‘image’ field on the other side of the
conductor. A summary of image theory is illustrated in Figure 2.2.

An electric field that is perpendicular to a perfect conductor has an image, which is parallel to
the original field. On the other hand, an electric field that is parallel to the conductor has an
image that is oppositely directed. A magnetic field that is perpendicular to a perfect conductor
has an image that is anti-parallel to the original field, while a parallel field creates a parallel
image. For electric and magnetic fields above a perfect magnetic conductor the roles reverse
as shown in Figure 2.2b.

2.1.7 Geometric Optics

The basis of geometric optics is that the wavefronts of incident waves are equiphase level sur-
faces represented by the function L(x,y,z). In an inhomogeneous medium with a refractive index
n(x,y,z) these surfaces satisfy the eikonal equation (Born & Wolf, 1965), which is expressed by

\VL|=n=—, (2.16)
Yp
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Electric Magnetic
________ I_,___T_»___ Physical
source
d
Electric conductor o=00
d
e T— ----- S e R l ----- - - |mage
(a)
Electric Magnetic
T T Physical
g —_— e dieed —_— s source
d
d Magnetic conductor
- ---l----—b------- ------T----«— ------------- - |mage
(b)

Figure 2.2 Field components and their images. Above a perfect (a) electric conductor and
(b) magnetic conductor

where v;, is the phase velocity. The eikonal equation can be used to determine the ray paths for a

given refractive index as will now be shown.
Suppose § is a unit vector tangent to the ray path and is, therefore, normal to the wavefront.

Consequently,

VL VL

S=rm—=—.
VL] n

(2.17)

From differential geometry, the curvature of this unit vector is (by Frenet’s formula),

ds ~
d—jz—gx(VxS)z%, (218)

where 71, is the principal unit-normal vector and p is the radius of curvature. Therefore, by
means of Eq. 2.17

j—i:—&x (Vx%) =-5§x {V(%) xVL] =35x[V(Inn) x3$].
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Thus,
il ds \Y
Fl'fll= d—zfll =f1l-V(lnn) =fll-7n.
That is,
1 \Y
Z=p 22 (2.19)
P n

In a homogenous medium, n(x, y, z) is a constant and, therefore, the ray curvature of the
ray path is zero and the ray paths are straight lines. However, the ray paths in inhomogeneous
media are generally curved.

2.2 Equivalent Sources

Suppose the fields E;, H; are produced by electric and magnetic current sources J; and M,
respectively. Now surround these sources by a surface S to form a volume V as shown in
Figure 2.3a. Outside S, in the volume Vj, the fields are unchanged. Now replace the original
fields and sources in V with fields E,, H, and also introduce surface currents Js and Mg in V; as
shown in Figure 2.3b. For continuity, surface currents must exist on S; otherwise, the boundary
conditions would require a null field everywhere. These surface currents are given by

Js=nx (H;—Hy) (2.20a)

M;=-nx(E;-E,), (2.20b)

where 7 is the outward normal to the surface S. The replacement of a set of fields and sources

by another equal set of fields and sources is known as the field equivalence principle. Sources
produced by this technique are called equivalent sources.

Several special cases of the equivalent problem can be devised. These are illustrated in
Figure 2.4.

E H
E v 15 T
V1 1!H1 1

Jg =i (Hy—Hy)

M, =i (E; - Ey)
(a) (b)

Figure 2.3 Equivalent sources. (a) Original fields and sources. (b) Equivalent sources to maintain
the same external fields
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vy EnHy v, EnHi
FJ, = AxH, Jg=—Ax(H;—Hy)
A 2
Mg =-AxE; Mg=-nXxE,4
(a) (b)
v, EnH
Jg =nxH,
s*A

MS= —-nx (E1 —E2)
(©

Figure 2.4 Special cases of equivalent sources and fields. (a) Null internal field to S. (b) Zero
internal electric field. (c) Zero internal magnetic field

Electric
_-conductor "

Ms=—ﬁ>< E1

(a) (b)

Figure 2.5 Null field internal to S with introduced media. (a) Electric conductor (o = o) internal
to S. (b) Internal magnetic conductor

When there is a null field inside S (as shown in Figure 2.4a), the contents of the medium in V
can be changed without altering the field inside. There are two particular cases of interest, and
these are illustrated in Figure 2.5. The first case shown in Figure 2.5a is useful as it can apply to
many aperture antennas. A perfect electric conductor (¢ =0) is introduced into V without affect
due to the null field. However, at the surface, the currents are affected because the conductor
shorts out the electric surface current leaving only the magnetic surface current. The problem of
finding the fields E;, H; is modified now to determine My in the presence of a perfect electric
conductor, the solution to which may be just as elusive as the original problem (Figure 2.3a).

The dual problem to the one in Figure 2.5a is illustrated in Figure 2.5b where a magnetic
conductor is introduced into V. This shorts out the magnetic surface current leaving only an
electric current acting in the presence of the magnetic conductor.
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2.2.1 Aperture in a Ground Plane

Suppose that the surface chosen for the equivalent sources is an infinite plane (Figure 2.6a). As
in Figure 2.5a, let a perfect electric conductor be introduced into the space V in which there is a
null field. There is now a plane sheet of magnetic current acting near a perfect conductor. Image
theory tells us that a magnetic source induces an identical image source, as shown in
Figure 2.6b, in the conductor. The field produced in V; is the one due to Mg and its image
source, which is also M. That is, the field produced is due to an equivalent source of twice
the strength of the original source as illustrated in Figure 2.6c.

2.2.2 Conformal Surfaces

It is common for antennas and sources to be located on or near non-planar surfaces. A special
case is when the source is on the surface and conformal to it. The simplifications found for
planar surfaces do not arise for curved surfaces, either concave or convex ones. Many of
the other principles described earlier, such as equivalent sources, are still valid although the
geometry for conformal surfaces is more complex. To demonstrate this, consider two examples

E,, H,
Original
problem Js=0
0=
M,=-nxE;
Electric o —
conductor
(a)
8 E;, H,
X Original
— Image $ [ $ source
1
source M, M,
|
I .
| Equivalent
(b) | source Ey, H
1
— |
? M =-2/ xE,

(©)

Figure 2.6 Magnetic source near an infinite plane electric conductor. (a) Original problem.
(b) Equivalent problem. (c) Image replaced with equivalent source
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M,=E,xn

2
s
o
(6%

(a) (b)

Figure 2.7 Equivalent sources on convex surfaces. (a) Magnetic current source. (b) Electric line
source. (c) Image source on sphere

of sources on convex surfaces as shown in Figure 2.7. The first is an aperture in a cylinder in
Figure 2.7a. Modes are excited in the aperture, and the radiated field is equivalent to the radi-
ation from a magnetic current source on the cylinder. The second is a line source that is parallel
to a conducting cylinder in Figure 2.7b. A cylinder does not create images from point sources as
occurring on a plane, but it produces images for line sources. When the line source is parallel to
a cylinder as in Figure 2.7b, an image line is produced inside the cylinder. It does this in such a
way that the cylinder surface is an equiphase surface for the image. Finally, a sphere produces
images from point sources as illustrated in Figure 2.7c. These are special cases but often pro-
blems with a complicated geometry can be replaced by means of the method of images to a
simpler problem, which may be more amenable to detailed analysis.

2.3 Radiation

Consider a very short wire of length dz that is excited by a time-harmonic electric current
as shown in Figure 2.8 in a homogeneous medium. It is convenient to express the electric
and magnetic fields due to this current element in terms of its magnetic vector potential, A,
as follows:

1
E=—joA+—V(V-A) (2.21a)
Jjoue

1
H=-VxA, (2.21b)
"

where
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y

Figure 2.8 Radiation from an electric current element

A= ilidze'jkr.
drr

The resulting non-zero electric field components are given by

Idz _; 1 1
E. = HE it cos 0 [ 1+ — (2.22a)
2 r? Jjkr
Idz _.,. 1 1
Ey="2 0" sing— Jkr+1+—|. (2.22b)
T r? Jjkr

The related magnetic field can be obtained from Eq. 2.21b from which the only non-zero
component is

Idz _ 1
Hy= 4—;e—f"' sin 0 jr + 1. (2.22¢)

Observations on Egs. 2.22 are as follows:

a. The instantaneous fields are found from Eq. 2.1. Contour plots of the instantaneous fields
given by Egs. 2.22 with nldf /4z =1 have been made in the vicinity of a current element at
instants of times t=0, T/8, T/4, 3 T/8, where T =2x/w is the period of the source and these
are shown in Figure 2.9. Because of symmetry, only one quadrant is shown in Figures 2.9 for
0<0O<n/2, with 0<kz<15.

b. It can be seen that Ep=0 and Hs=0 in the plane of the element, while E, and H, are
maximum in the plane perpendicular to the element.

c. Theradial field component vanishes, that is, E. =0, in the plane perpendicular to the element
and it is maximum in the plane of the element.

d. All non-zero field components of Egs. 2.22 contain terms involving powers of 1/r.
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e \: \- ) \ \!
x:,.‘ 3 \kx;x
i %\HW\\

t=0T t=1/8T

Figure 2.9 (a) Instantaneous electric field intensity in the vicinity of a short dipole at time instants 0 7,
1/8 T, 1/4 T and 3/8 T, where T is the period of the oscillation. 3 dB contours are plotted in a

single quadrant to a distance from the dipole kr=15. (b) Instantaneous magnetic field intensity

in the vicinity of a short dipole (vertical) under same conditions as (a).
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2.3.1 Near-Field

The near-field region is defined by kr << 1, which implies that r << 4. Neglecting all terms but
the highest power of r in Eq. 2.22 results in

jnldz
E.=- 2.2
Sk cosd (2.23a)
Jnldz .
Eg=- Ak sind. (2.23b)
ldz .
H(/) = Wslne. (223C)

where u=n/k.
It is noted that:

a. H,isidentical to the field produced by a short wire carrying a constant current. Also, as the

electric field contains terms proportional to 1/r°, the near-field is predominantly electric in
nature, and is the gradient of a scalar quantity. Thus,

1d
E=-V| - Jez cos6
471'80)}”2 (2.24)

=-VO,

where

jldz
4rewr?

This scalar is the potential due to equal and opposite charges a distance dz apart, that is,
a dipole, which is oscillating at a frequency .
b. The electric and magnetic fields are out of phase as they are with a standing wave. As a result
the average power flow/unit area is zero. However, since the complex Poynting vector is
non-zero, the near-field stores energy and is reactive.

2.3.2 Far-Field

At distances very far from the current element, in the far-field region, kr >> 1. That is, r>> 4.
In this case, Eqs. 2.22 reduce to

E =0 (2.25a)
inkldz _.
Ep="T"% ¢=itr sing (2.25b)

dnr
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jkld
Hy= ]—Ze

f “*rsing. (2.25¢)

4rr

Regarding Egs. 2.25, it is observed that:

a. AsE, is negligibly small the far-field is predominantly a spherical wave. The remaining field
components, Ey and H, are tangential to the surface of this radiation sphere of radius r and,
hence, both are perpendicular to the direction of propagation.

b. The ratio of the two non-zero field components is

E
=0 —y= \/E (2.26)
H¢ &

For a current element radiating in free-space, the wave impedance is n=#,=
376.73 =120z ohms, is called the free-space wave impedance. In the light of comment (a),
Eq. 2.26 is generalized to

1
H=-7xE. (2.27)
n

c. As the non-zero field components are in phase, the far-field has a non-zero power density.
The power density for time harmonic far-fields is given by

_
P=7 Re{ExH'}

1 1, .
=5 Re{ExE(er )} (2.28)
__EE

Eq. 2.28 is a general result for the far-field radiation, and it shows that the power density is in
the radial direction, which is normal to the surface of the propagating spherical wave. In the
present case,

_|E,)
p-ilfol
2n

o (Kdz . \?
_r32( po sinf | .

The units of power density are in watts/m”.
The fields due to a magnetic current element of length dz can be obtained in the same way.
However, instead of following a similar development, use is made of duality given in Table 2.2.
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As a result, the fields due to a magnetic current element, Mdz, are obtained directly from the
electric current element results. Therefore, by means of Table 2.2 and Egs. 2.25, the far-fields
due to a magnetic dipole are expressed as follows:

H,=0 (2.29a)
YkMdz
Hy=1"""% ¢ §ing (2.29b)
drr
kMdz .
E,= _Jthrze_]kr sin6 (2.29¢)

where Y =1/5. Similar, to Eq. 2.26, for this dual problem, Eq. 2.26 gives E,;/Hg= —1.

2.3.3 Mutual Coupling Between Infinitesimal Current Elements

Two or more current elements interact with each other depending on their orientation. This
interaction is referred to as mutual coupling. To provide an initial insight into mutual coupling
and its effects, consider two infinitesimally short electric dipoles of length dl; and dl, that are
located in free-space and are supporting time harmonic currents of amplitude /; and I, with
angular frequency w. Dipole 2 is rotated at an angle « in the same plane (z—y plane) relative to
dipole 1, as shown in Figure 2.10 The theory of a short electric dipole given by Eqs. 2.22
allows the elemental electric and magnetic fields of dipole 1 to be expressed as follows:

ndat, _, [ ik 1 2
dE,; = Hol1GTL —jkr [91 sin#, (j + 2) + T cosf 2] (2.30a)
4r rnon 1

Dipole 1

Figure 2.10 Geometry for coupling between two short electric dipoles
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I,
dH; = —r; xdE;, (2.30b)
Mo
where (11, 01,¢) are the spherical polar co-ordinates at the centre of dipole 1. Similar expres-
sions apply to dipole 2 where the subscript 2 replaces the subscript 1 in the above equations.
Now let the electric field produced on dipole 2 due to dipole 1 be given by dE,;. In turn

this field induces an electromotive force (emf) across the element in the following form
(Schelkunoff & Friis, 1952):

dVyy = —dEyy- 2, dl. (2.31)

Since /; is the current producing this emf, the mutual impedance of element 2 due to element
1 is defined as follows:

dVy  dEy-iydls
L I .

Zp = (2.32)

Similarly, the current /; induces an emf in dipole 1 allowing the mutual impedance at dipole 1
due to dipole 2 to be given by

_dViy_ dEq-gydl,

Z
12 A A

(2.33)

A relationship between these two mutual impedances is found by applying Lorentz’s reci-
procity theorem Eq. 2.12 to the two sets of fields and sources. This theorem results in

1, dVi, =5LdVy,, (2.34)

which is the reciprocity theorem for elementary dipoles. Furthermore, Eq. 2.34 along with
Eqs. 2.28 and 2.29 requires that

Zin=2. (235)

Extending this result, when there a number of elements, reciprocity requires the mutual
impedance matrix for these elements to be symmetric.

A formal expression for the mutual impedance can be obtained from Egs. 2.30a and 2.33.
Using some vector identities, this mutual impedance of the dipoles is given by

dtidt, _. 14 1
= To@C1a%2 ks J—sinezl sin(62 —a) + — (cosa(1-3cos’6>; )

4z 1 5 (236)

+sinasind,; cos 61 (2cos by — 1))} .

2y

As shown in Figure 2.10, 8, is the angle subtended at dipole 1 by dipole 2 and r,; is the
distance between the dipole’s centres. In the special case of parallel dipoles (@=0), that is
in a broadside arrangement, 6,; =90° (i.e. in the H-plane), Eq. 2.36 simplifies to
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dédt, _, k1
7o _No 4711 2 ok (J_ + T) . (2.37)

1 r 21
When the dipoles are in an echelon arrangement, that is end-to-end (6, =0° and in E-plane),
the mutual impedance is

_ nodzl d[z e—jki”z]

Zy1=
2
273,

(2.38)

Therefore, for a broadside configuration (H-plane coupling) of dipoles, the mutual imped-
ance is inversely proportional to the distance between the dipoles, while in the echelon config-
uration (E-plane coupling), the distance dependence is inverse square.

In the same way, the coupling of short magnetic dipoles can be studied. However, the fields
due to electric and magnetic dipoles are duals of each other and, therefore, the corresponding
results for the magnetic dipole may be obtained by inspection from the above results. For mag-
netic dipoles the dipole moments are, respectively, dm; =Z; V,d?; and dm, =2, V,d?,, where
V| and V, are the applied voltages. Now from the duality summarized in Table 2.1, the mutual
admittance of elemental magnetic dipoles is

_d121 =_dH21-22d[2 (2 39)

21—71 Vi

Therefore,

Y, dt,dt, _. ik 1
= JOTTITR2 ke J—sin6'21 sin(6y; —a) + — (cosa(1-3cos’0 )

4r I 53 (2.40)
+sinasinfy; cos @y (2cos ¢y, — 1))} )

21

Equation 2.40 shows that when magnetic dipoles are arranged broadside to each other (i.e.
E-plane), the mutual admittance varies inversely with the distance between them while, in an
echelon arrangement (i.e. H-plane), the dependence is as the square of the distance.

There is a general relationship between the mutual impedance and admittances of electric
and magnetic dipoles that finds widespread use. Let the mutual impedance for electric dipoles
in free-space, Eq. 2.33, be written as ZS! and the admittance for magnetic dipoles also in free-
space, given by Eq. 2.39, be Y;‘{f. The ratio of these quantities is

Zef 5
é =n. (2.41)
Eq. 2.41 is similar to Booker’s relation for complementary antennas in free space (Booker,
1946). Similar expressions can be found for other arrangements such as for dipoles backed by
plane conducting sheets. For example, the mutual admittance of a magnetic dipole located adja-
cent to a plane electric conductor can be shown to be YJ1¢ =2Y where the superscript ‘e’ on
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the right side refers to an electric wall. Booker’s relation between this mutual admittance and
the mutual impedance of an electric dipole in free space is, therefore,

zZ
2 Mo 2.42
yme ~ 2 (2.42)

The more common form of Booker’s formula (Kraus & Carver, 1973) gives the relation
between the input impedance of a half-wave dipole in free-space and its complementary struc-
ture, which is a slot in a ground plane. For that case, the right side of Eq. 2.42 is further divided
by 2 to give Z{***/y3ot=y2 /4,

From the simple theory given in this section, four principles may be stated for assessing, in a
qualitative fashion, the likely impact of mutual coupling between antennas. These are:

a. Mutual coupling is a function of distance between the antennas. Although there is a general
downward trend in the level of coupling with increasing distance, this dependence is not
monotonic. The level goes through a series of maxima and minima in the same manner
as the radiation pattern.

b. Coupling depends on the radiation pattern of the elements.

c. Coupling depends on the antennas’ polarization. Highest coupling occurs when the radiated
fields have the same polarization and are aligned, for example, for electric dipoles in ech-
elon. If the interaction is predominantly electric dipole related, strongest coupling occurs in
the H-plane, while for antennas that are predominantly magnetic dipole type, strongest cou-
pling occurs in the E-plane.

d. Booker’s relation can be used to convert an unknown coupling problem to one that may
have a simpler, or known, solution.

2.4 Problems

P2.1 Two different current sheets overlay a plane aperture with dimensions a x b on an inter-
face located at z=0. The current sheets are J;=%/5, and Mg =ycos(zy/b). If a plane
wave in region 1, given by E;=xexp(—jkz), is incident on the interface, determine
the fields in region 2 on the other side of this interface (z > 0).

P2.2 A thin dielectric layer of thickness d where d << and relative permittivity €, covers a
metal plate (or large cylinder). A plane wave is normally incident on this plate. Verify that
the field at the top surface of the dielectric has a reflection coefficient approximately
given by ~ —1exp(2jkd) and the total field ~O0.

P2.3 A narrow slot antenna of length L resonates in its fundamental mode. Show that the equiv-
alent magnet current is the dual of the electric current excited on a thin dipole also of
length L.

P2.4 An infinite conducting plane separates a half-space (region 1) with constitutive para-
meters €y, 4, from a metallic enclosed region (region 2) with constitutive parameters
&, do. Harmonic sources J;, M; exist in each region i=1,2. The two regions are coupled
by a common aperture.
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a. Use the equivalence theorem to divide the problem into two separate parts.
b. Obtain expressions for the tangential magnetic and electric fields to ensure continuity
across the aperture.

P2.5 A coaxial aperture with inner and outer radii b and a is located in a cylinder that extends a
height g above an infinite ground plane as shown in Figure P2.1. The aperture is excited
in the TEM mode only.

a. Obtain equivalent sources over the coax.
b. Use the sources in (a) to represent a possible approach to a solution using equivalence.

Aperture

D

Figure P2.1 Protruding coaxial aperture in a ground plane

P2.6 Use Booker’s relation and the input impedance a half-wave dipole in free-space, to obtain
an expression for the input admittance of the complementary structure, which is a slotin a
ground plane.
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3

Fields Radiated by an Aperture

The previous chapter has provided the background for examining radiation from an aperture.
Special cases of interest to the topic will be examined, and parameters related to radiation that
are used to describe the characteristics of radiation will be defined.

3.1 Radiation Equations

Suppose the aim is to determine the fields at a point P arising from fields excited on an aperture A.
Itis convenient to do this in a spherical co-ordinate system as shown in Figure 3.1. In the previous
section, it was shown that fields E,, H,, on a surface, may be replaced by equivalent sources

Jo=nxH, (3.1a)
M, = —ii X E,. (3.1b)

where 11 is the normal to the surface.

These equivalent currents imply the situation described in Section 2.2 where there is now a
null field inside A. Our aim is to find the fields radiated by these sources using a simpli-
fied model.

Initially consider an infinitesimally small element dS’ of the surface A. On this surface element,
suppose there are electric and magnetic dipole sources with electric and magnetic dipole moments
dp and dm, respectively. These dipole moments are related to the surface currents as follows:

dp=1J.dS' (3.2a)
dm=M,ds'. (3.2b)
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P(r,0.9)

Figure 3.1 Geometry for fields radiated by an aperture A. P is an observation or field point;
P’ is a source point

V4
4
dp )
dE¢= ndH, xR
X
y
(@)
oE,, _g e—JKFrd~ XE‘
dHp=1 R xdE,,

Figure 3.2 Models of electric and magnetic dipoles. (a) Elementary electric dipole. (b) Elementary
magnetic dipole

Representations of both dipoles are shown in Figure 3.2. A short wire of length d¢’ directed
along the z-axis (Figure 3.2a) carrying a uniform current / along its length has an electric dipole
moment dp =zId?. At distance R such that kR >> 1 from the wire, the non-zero field compo-
nents are given by Eqgs. 2.25. In vector form, these fields are expressed as follows:

dH, - K e JkR
7T

dE, =7,,dH, xR, (3.3b)

dp xR (3.3a)
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where the identity z x R= ¢ sin 0 has been used. The subscript e is introduced on the fields in
Egs. 3.3 to indicate they are due to an electric dipole. For a magnetic dipole the fields may be
obtained from Eqgs. 2.29. The fields due to dm are, therefore,

ik e JkR .
dEm:—i—ﬂ ——dm xR (3.4a)
1 A
dM,, = —dEp xR, (3.4b)
Mo

The subscript m in Egs. 3.4 indicates a magnetic dipole source. Eq. 3.4 is equivalent to the
fields due to a wire loop of cross section dS’ supporting a harmonic current, I, as depicted in
Figure 3.2b. The loop has a magnetic dipole moment

dm =Zzjwpu,ldS' . (3.5)

Thus, a model of the sources at each point P’ on aperture A is a small electric dipole acting in
conjunction with a small loop of current. The electric field at P due to both dipole sources is

dE =dE. +dE,, (3.6a)
and
dH=dH, + dH,,. (3.6b)

Thus, the total electric field due to both sources is

o —jkR
dE=7*¢
4r R

Jk e /R
"4z R

[~dm xR+, (dpx R) x R]
(3.7)

[~MxR+n,(JsxR) xR]dS'.

Adding all contributions from such sources on aperture A through integration results in the
electric field

Jjk
E=—
vi¥ys

| [ (Rx M) 41, (1) x RS (3.80)
A

where R=r-r' as shown in Figure 3.1. The integral in Eq. 3.8a is with respect to the primed co-
ordinates, that is the source co-ordinates on aperture A. The magnetic field is obtained similarly
and is

jk [ ek . 1 N .
HzﬂL 7 [(JSxR)+n—(MSxR)xR ds’. (3.8b)
o
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As a consequence of the assumptions leading to Eqgs. 3.3 and 3.4, Eqgs. 3.8 are valid for all
field points P such that kR >> 1 and thus they are applicable at intermediate distances from the
aperture as well as in the far-field, that is, at distances that are comparable in size to the aperture
itself and beyond (Silver, 1946).

3.2 Near-Field Region

Consider the case when the distance r is close to the aperture where r is comparable to the largest
dimension of A. No simplifying approximations can be made to Egs. 3.8. What is required is a
return to the basic sources and to make approximations that are valid close to the source.
A summation is still required across all infinitesimal sources although there is little to be gained
from this compared with using Eqgs. 3.8 directly. In the near-field region, the field differs little
from that in the aperture field itself although there are fluctuations due to diffraction from any
nearby edges or rim and the phase will have become slightly non-uniform. The field rapidly falls
away from the edge in the aperture plane. If required, this field decay can be predicted by means
of Eqgs. 3.8. The field is typically concentrated in the region of the normal to the aperture.

3.3 Fresnel Zone

At greater distances from the aperture, the intermediate-field region is encountered, which is also
called the Fresnel zone after a similar region in optics. For the Fresnel zone approximation to apply,
the distance r should be > {/D*/1/3. Several simplifying approximations can be introduced into
Egs. 3.8 by virtue that the distance r is now assumed to be larger than the largest dimension in
the region A. With this assumption, R = [r—r’| can be approximated by the binomial series in r.
The first three terms of this series are (1+x)"~1+nx+ ((n(n—1))/2!)x*. This allows simpli-
fications to be made to the integrals in Eqs. 3.8. Thus,

R=|r-v|

= \/,,2 —2r-r + (r'-r')?

(rr) 1(rr)?
NV(l— 2 +§r—2

This approximation is used in the exponential phase function and

and R~7

~
~

x| -
N =

in the amplitude of the integral. Therefore, in the Fresnel zone the electric field can be expressed
as follows:

jk eIk
T4z or

J e K [(?XMS)+no(Jsx?)x? as’ (3.10)
A
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where F =71+ (1/2) ((r’ ')/ r) comes about from the Fresnel phase approximation. When

r is orthogonal to 1’ as in the case of Figure 3.1 when =0°, F = (1/2) (r’ 2/ r) . The exponential

factor inside the integral contributes to a phase variation across the aperture, which is signif-
icant. The main impact of this is to introduce a quadratic phase error across the aperture, which
broadens the central beam and fills in the sidelobe nulls. Computation with Eq. 3.10 is quite
feasible and, therefore, is often chosen for applications such as reflector antennas where feeds
and subreflectors can be in the Fresnel zone of each other. Quadratic phase error will be dis-
cussed in greater detail in Section 3.6

3.4 Far-Field Region

Attention is now turned to distances, r, that are large compared with the dimensions of the aper-
ture. A minimum distance commonly specified is the Rayleigh distance criterion. According
to this criterion,

S 2(largest aperture dimension)*
wavelength

(3.11)

At the Rayleigh distance a field illuminating the antenna produces a maximum phase var-
iation of +7/8 radian across the largest dimension. This distance is sufficient for measuring the
first few sidelobes down to about —30 dB of the main beam. A greater distance is required for
accurately measuring lower level near-in sidelobes. When the distances from the aperture are
large |r|> >|r’|, the distance R can be approximated as follows:

R=I|r-r/|
VAT oo (3.12)

rr—irr,

where use has been made of the first two terms of the binomial series expansion. The term 7-r’
accounts for the path-length difference from the source to the far-field point and from the origin
to the same point.

On rectangular apertures, the following applies:

#r’ = sin O(x' cos ¢p +y' sin ) + 7' cos 6, (3.13)
where the primed co-ordinates refer to the source point while on circular apertures it is
7r' =p'sin@cos(p—¢') +7 cos 0. (3.14)

To obtain approximations to Egs. 3.8 in the far-field, the exponential is far more sensitive to
approximation than the complex amplitude of the integrand. Therefore, Eq. 3.12 is used in the
exponential, but in the amplitude let

Q
~N =
o
=]
o
=
R
~>

(3.15)

x|
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Making these approximations, Egs. 3.8 and 3.9 give

]k e_jkrA ~ A ] /

E~x=— Fx | [Ms—1n,(Js x7)]exp(jkrr')dS (3.16a)
Az r A

and

1
H=—rxE. (3.16b)
"o

Eq. 3.16a implies that the field radiated by the aperture is a wave with a spherical wavefront.
The field is polarized tangential to the sphere, there being no radial components
(i.e. E.=0=H,).

For a plane aperture situated in the x—y plane, the surface currents are

Js=nxH, and My=-nxE,. (3.17)

From Eq. 3.16a, the field is
Ez-ﬁe_jkrij [ x Eq + 17 (2 x Hy) x 7] exp(jki-r')dS'. (3.18)

4z r A
Now making use of

%=17sin 6 cos ¢ +6 cos 6 cos p—gp sin ¢ (3.19a)
$=7sin 6 sin ¢ + 6 cos 0 sin ¢ + ¢ cos ¢ (3.19b)
z=7cos @—0sin 6, (3.19¢)

the spherical components of Eq. 3.18 are found to be

E=0 (3.20a)
jk ek . .

Egza - [(N cos ¢+ Ny sin ) +1, cos (—Ly sin ¢p+ Ly cos ¢) | (3.20b)
Jjk e~ . .

Ed,zE . [cos O( =N, sin ¢ + Ny cos ) =1, (L cos ¢+ Ly sin )], (3.20c)

where N,, N, and L,, L, are rectangular components of the following transforms:
N(6,¢,4) =J E, exp(jkr-r')dS’ (3.21)
A

L(0.4.4) = JAHa exp(jki-r')ds'. (3.22)
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To help interpret these vectors, consider a plane aperture situated at 7/ =0. Also let

1

u= Esinecosq‘) (3.23a)
1. .

v=-sin 0sin ¢ (3.23b)

so that (jki-r') =2z (ux’ +vy’). As a result define
N(u,v) = J E,(X,y")exp(j2a(ux' +vy'))dx'dy (3.24a)
A
L(u,v)= J H, (X,y) exp(i2z(ux’ +vy'))dxX'dy’. (3.24b)
A

It is observed from Egs. 3.24 that the components of N and L are two-dimensional Fourier
transforms of the aperture field components. Therefore, the far-zone electric and magnetic
fields, via Eqgs. 3.20 and 3.16b, are proportional to Fourier transforms of the aperture field
distributions. Conversely, the aperture fields are related to inverse Fourier transforms of the
far-fields. This relationship is particularly useful as results in later sections can be interpreted
from a knowledge of Fourier transforms (Oppenheim & Schafer, 1975). The transforms in
Eqs. 3.24 can also be evaluated numerically by means of the fast Fourier transform (FFT)
(Brigham, 1974).

Two special cases of practical importance are now considered. The first is when the electric
current is located close to a magnetic ground plane. In this case, Js =271 xH, and Mg =0. It is
easy to show that the far-field components are now

_jknge

E
927[

cos O( =Ly sin g+ Ly cos ) (3.252)

and

PR L

PR (Lycos ¢ +Lysing). (3.25b)

The second case is when the magnetic current is above a conducting surface, Mg = —2n X E,
and Js=0. Therefore,

jk eIk
ar

Ey (Ny cos ¢+ Ny sin ¢b) (3.26a)

and

Ik ek
T 2r

E, cos O(—N, sin ¢+ Ny cos ¢). (3.26b)
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Aperture distribution Far-field pattern
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Figure 3.3 Fourier transform relationship between the aperture field distribution and the far-field
pattern. (a) Step. (b) Delta function. (c) Triangular. (d) Cosine. (e) Cosine squared. (f) Gaussian.
(g) Inverse taper
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In Figure 3.3, several Fourier transforms of one-dimensional aperture distributions are illus-
trated. For apertures with a separable co-ordinate system (e.g. rectangular co-ordinates), the
two-dimensional Fourier transform is a product of two one-dimensional transforms and, there-
fore, Figure 3.3 can be used as a guide in the general case as well. In particular, it is noted that a
uniform aperture distribution gives rise to a more directive far-field pattern than a tapered dis-
tribution, for example, the cosine or cosine-squared distributions. However, the sidelobe levels
are higher for a uniform distribution than for a tapered distribution. Also, the sharper the taper
the broader the main lobe but the lower the sidelobes. Transforms of three aperture distributions
of particular interest in the sections to follow are plotted in Figure 3.4. These correspond to a
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Power (dB)

zuD
Figure 3.4 Transforms of some aperture illuminations. —— $?(x) uniformly illuminated
rectangular aperture; - - - - - - - - - C?(x) cosine illuminated rectangular aperture; — — — — — — —

2(J; )01 uniformly illuminated circular aperture
uniform aperture distribution on a rectangular aperture, a cosine distribution on a rectangular
aperture and a uniform distribution on a circular aperture. The transforms of these respective

distributions on apertures of dimension D are as follows:

Uniform distribution on rectangular aperture

D)2
J exp(j2nux’)dx' = DS(zuD). (3.27)
-p/2

Cosine taper on rectangular aperture

D/2 / 2D
J cos (%) exp(j2rux')dx' = —C(zuD). (3.28)

-D/2 T

Uniform distribution on circular aperture

2w (D)2 D)2
J d¢/ J dp’ exp(jkp' sin 0 cos (p—¢')) = 277,"[ dp'Jo(kp' sin 6)
0

o =ﬂ<9)22M (3.29)
S ) 27
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where w= (zD/) sin 6 and the identity Eq. B.3 in Appendix B has been used. The functions J,
and J; are Bessel functions of order 0 and 1, respectively. The new functions involved are
defined as follows:

(3.30)

C(x)= P (3.31)

Plots of the square of the functions S(x), C(x) and 2J;(x) /x are shown in Figure 3.4. The first
sidelobe level relative to the peak in each case is, respectively, —13.3, -23. 0 and —17.6 dB. The
3 dB points occur at x = 1.39, 1.88 and 1.60, respectively (Silver, 1946). Hence the half-power
beamwidths (HPBWs) are approximately 0.884/D for the uniformly illuminated rectangular
aperture, 1.24/D for a cosine distribution on a rectangular aperture and 1.024/D for the
uniformly illuminated circular aperture.

The power radiated in any of the three regions identified above is obtained using the
Poynting vector. The power traversing an area X is given by

P= ;Re{JLExH*ﬁdS}, (3.32)

where 7 is the normal to X. In the Fresnel and far-field regions, the magnetic field is given by
Eq. 3.16b. Therefore, the Poynting vector is

_ 1
P=—E (rxE)".
21,

In the far-field E. =0 and, therefore,

7
P=—EE"
21,

which indicates the power radiates in a radial direction.

3.4.1 Example of a Uniformly Illuminated Rectangular Aperture

The fields radiated by the rectangular aperture shown in Figure 3.5 are to be determined when
uniform electric and magnetic fields in the aperture are assumed. Outside the aperture in the
aperture plane the field is zero. From these fields find the maximum power gain.

Referring to Figure 3.5, let

b b
E,=3%E,; —g<x’<§; —§<y'<§
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Figure 3.5 Rectangular aperture

1 1
Hy,=—2zZxE;= ﬂ_j)Eo,

Mo

where E, is a constant. The fields are zero elsewhere on the aperture plane. The radiated fields
are calculated from Eqgs. 3.20 and 3.24 with the assumed aperture field, which is uniform in both

amplitude and phase.
The only non-zero component of Eq. 3.24a in this example is

b/2 a/2
Ny(u,v) =E0J dx’J dy' exp(j2z(ux' +vy'))
-b2 J-ap

=abE,S(zua)S(zvD),

where S is the sinc function defined by Eq. 3.30. Also
1
Ly(u,v)=—DN,(u,v).
o

The radiated fields are, therefore, given by

kabE, e~
J Z OeT(l + cos 0)S(zua)S(xvb) cos ¢
v 1

~
~

0

jkabEy e~

E,~
¢ 4 r

(1+ cos 6)S(zua)S(zvb)sin ¢.

(3.33)

(3.34)

(3.35a)

(3.35b)

The S function (which is called the sinc function) is plotted in Figure 3.4. If the aperture is
large in terms of wavelengths (a, b>> 1), S varies much faster than the term (1 + cos 6)~2
when 0 is small, and hence S predicts the pattern close to the normal of the aperture, the bore-

sight direction.
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Of particular importance is the power radiated in a particular direction and especially in the
boresight direction 6 =0° where the radiated fields are maximum. The total power radiated by
the uniform aperture field is found by means of Poynting’s theorem and is given by

1
Pr= 7” E x Hx-3dS'
2)Ja

1 (/2 b/2 B
= EJ dy'J dx' =2 (3.36)
—a/2 -b/2 Mo
= ﬂEz
21,

On the other hand, by means of Eq. 2.28, the maximum power density at 8=0° is

1 [kabEy]*
Pilog_o=— . 3.37
|9—0 n0r2|: 4 v :| ( )
Now suppose it is possible to radiate this density over a sphere of radius r. This means
Eq. 3.37 should be multiplied by the area of the sphere, that is, 4zr*. The maximum gain of
the radiating aperture is defined as the ratio of this apparent power evaluated at the peak of
the beam and the total power available. That is,

2
B Arr-P, 9=0

max = 3.38
o (3.38)

Substituting in the quantities for the uniformly illuminated rectangular aperture given by
Egs. 3.36 and 3.37, then it follows

b
Gunax = 47rj—2 . (3.39)

In general, the maximum gain of a uniformly illuminated aperture with physical area A is
A
G, = 47:/1—2. (3.40)

An approximate expression for maximum gain is discussed in more detail in the next section.
Eq. 3.37 can be generalized in terms of system quantities as P, = GP;, /L where G is the antenna

gain, Py, is the power input and L= (4nr//1)2 is the free-space loss factor.

3.5 Radiation Characteristics

The performance of an antenna is usually described in terms of its far-field radiation character-
istics and its terminal impedance. Some terms have been introduced in the previous sections.
However, this section will detail most of the important terms applied to antennas. A typical
radiation pattern of an aperture antenna is illustrated in Figure 3.6.
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Figure 3.6 Antenna radiation patterns. (a) Radiation sphere enclosing an antenna showing the (linear)
field polarization on a cap about the direction of the main beam (boresight). (b) Co-polar radiation
pattern cut. (c) Cross-polar radiation pattern cut.

3.5.1 Radiation Pattern

In the far-field or radiation zone of an antenna, the amplitude of electromagnetic fields are pro-
portional to //r, where r is the distance from the antenna. Plots of the magnitude of the electric
and magnetic fields at a constant distance are called field strength patterns. Plots of the radiated
power at a constant distance or radius r are called radiation power patterns. These are illustrated
in Figure 3.6. The power pattern is defined:

P(0,¢)=P,(r,0,¢)r* = power density per unit solid angle. (3.41)

Power density (W/m?) is the radial component of the Poynting vector which is

1
P,(r0.) = sRe[ExH']

L (3.42)
=—|E|
21,

i
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where E is the electric field intensity (V/m), H is the magnetic field intensity (A/m) transverse

to the direction of wave propagation in the radial (r) direction and 5, = /p, /¢, is the wave
impedance of free-space where €, and yu, are the permittivity and permeability of free-space.
Equation 3.42 assumes that the fields are in the far-field of the source of radiation.

Usually the power pattern is normalized relative to its maximum value P,,,,. The normalized
power pattern is

Pa0.9) =" 1(99’ 2 (3.43)

For example, the normalized pattern of a small current element is P, (0, ) = sin@.

3.5.2 Half-Power Beamwidth

The HPBW is the angle subtended at the —3 dB points of the normalized power pattern (see
Figure 3.6b). The beamwidth between first nulls (BWFN) and the tenth-power beamwidth
are also used, for example, the HPBW of an elemental dipole is 90° and for a half-wave dipole
it is approximately 78°. The HPBW of a uniformly illuminated aperture of width a can be
shown to be ~ 1.24/a radians.

3.5.3 Front-to-Back Ratio

The front-to-back ratio (FTBR) gives a measure of the isolation provided by a directional
antenna from or to sources in the direction opposite the direction of maximum gain 6,,.
Expressed in dB, the FTBR is

P
FTBR:lOlogm[ n(Omax, #) ]

Py (Omax =7, )

=- IOIOg]()[Pn(gmax iﬂ"¢)]'

(3.44)

For example, a half-wave dipole has FTBR of 0 dB. A reflector antenna typically has a
FTBR >20dB.

3.5.4 Polarization

At distances far from the antenna, the radiated fields are tangential to the surface of a sphere
centred on the antenna (see Figure 3.6a). In general, the field on the sphere has components in
both the & and ¢ directions. It is linearly polarized if the components Ey and E, are in-phase
everywhere, and if they are =90 out of phase, the field is circularly polarized. The field is
elliptically polarized for an arbitrary phase difference.

Radiation patterns measured in the two principal planes of linearly polarized antennas are
referred to as the E- and H-plane patterns. As shown in Figure 3.7, the E-plane pattern is
the cut taken parallel to the electric field, and the H-plane pattern is the cut taken perpendicular
to the electric field.
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E-plane

Figure 3.7 Principal plane radiation pattern cuts

The polarization generally varies over the surface of the sphere, and as a consequence, there
is also an unwanted field component polarized in the opposite direction. For example, although
an antenna is required to produce right-hand circularly polarized (RHCP) radiation, a practical
antenna also produces a small amount of the opposite polarization (LHCP) as well. This orthog-
onally polarized field is called cross-polarization. If E is the radiated field, p is a unit vector in
the direction of the reference polarization, or the co-polarized component, and q is a unit vector
in the cross-polarized direction, then

E-p is the co-polar component of the electric field.
E-q is the cross-polar component of the electric field.

The choice of vectors p and q is somewhat arbitrary. For predominantly linearly polarized
fields, however, one definition is preferred. With this definition, the co-polar antenna field com-
ponent is found by conventional far-field measurement with the polarization of the distant
source antenna initially aligned with the test antenna on boresight. Maintaining this alignment,
the test antenna is rotated about a chosen origin, the phase centre. The signal received by the test
antenna is the co-polar radiation pattern. If the polarization of the distant source antenna is now
rotated through 90 degrees and the radiation pattern measurement repeated, the received signal
is the cross-polar radiation pattern. If the antenna has its principal electric field vector parallel to
the x-axis, as in Figure 3.7, in the E-plane, the co-polar component is E4, while the cross-polar
component is E,. In the H-plane, E; is the co-polar component, and E, is the cross-polar
component. In general, with the electric field polarized in the ¢, direction, the co-polar and
cross-polar components in the ¢ direction are given by

{Ep(ﬁéb)]_ cos(p=¢p,) sin(¢p—g,) | | Eo(6:9)

E,(6.) _[sin(cp—gbo) —cos(¢—¢o)} {E,,,(a,(/))} (3.45)
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For example, if the reference polarization is at ¢, =0° as in Figure 3.7, the co-polar and
cross-polar components of the field in the ¢ =45° plane are

6 (05) = 5 [60) v (03

£ (05) = lee0) (o).

In addition, the E-plane corresponds to the ¢ =0° plane where
E,(0,0)=Ey(0,0) and E,(0,0)=—E4(0,0)
and the H-plane occurs in ¢ =90° plane where

T
, —

£(0.5)-5(05) w 5(0)-5(02)

3.5.5 Phase Centre

The phase centre of an antenna is the apparent location of emanating spherical waves when it is
transmitting.

One approach is to estimate the phase centre from the two-dimensional discrete patterns
using the method of least squares (Froberg, 1974). It can be shown that in the p-th azimuth

plane, the phase centre for a symmetric radiator in the plane p (=1, ..., NP) is approximately
given by
bi—aib
ke = =10 (3.46)
ax—ay

where k=27/1, a, = (Zﬁi 1 cos"H,-) /M and b, = (Z”ﬁ ®(0:.4,) cos” 9,-) /M, q=0,1,2,0,
is angle i (=1, ..., M) in the n-th pattern cut through the plane ¢, which is symmetric about
boresight, M is the number of angular directions in the pattern and ®(6;, ¢,,) is the continuous
(unwrapped) phase function expressed in radians. An improved estimate of phase centre is
obtained by averaging several pattern cuts.

3.5.6 Antenna Gain and Directivity

The power gain of an antenna in a given direction (6, ¢) may be defined as the ratio of power
intercepted by a sphere enclosing the antenna if the same power density at (6, ¢) is radiated
isotropically and the total radiated power. The power density at (0, ¢) is given by Eq. 3.42.
If this power were radiated isotropically, the power that would be radiated at a large sphere
of radius r is P, x 4zr’. The total power radiated, Pr, is given by
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Pr= %ReJL(E « H*) dS. (3.47)

S may be any surface enclosing the field. For aperture antennas it is common to let S=A
where A is the aperture surface because it is easier to integrate over this surface than over
the far-zone sphere. From these definitions the power gain function is

4nr*P.(r,0, )

G(0.¢)= b (3.48)

in the far-field and using Eq. 3.42,

2712 |E(r,0,0))?

G(g,d)): Mo PT

The maximum value of gain is a parameter often used to describe the performance of an
antenna. However, sometimes when the term ‘gain’ is used, it is the maximum power gain that
is being referred to. Gain is referred to another antenna with the same input power. Here the
reference is the isotropic radiator although any convenient reference antenna may be used. For
example, the maximum gain of a short dipole relative to an isotropic radiator is 3/2 or 1.76 dBi,
where dBi indicates the gain is in decibels above the gain of an isotropic radiator, which has a
gain of unity.

The gain of an antenna with respect to the gain of a uniformly illuminated aperture of the
same dimensions is known as the aperture efficiency. This is defined as

(3.49)

where G, = (47A)/A? is the gain of a uniformly illuminated aperture, in both amplitude and
phase, over an area A. A useful rough approximation for the maximum gain of an aperture with
HPBWs @ radians in the E-plane and 6y radians in the H-plane is

4r
Gmax &
ma 0.0,
- 41253
- 0z (deg)0x(deg)’

where 0 y(deg) refer to the HPBW expressed in degrees.
A related quantity to gain is the directivity D. This is defined as

_ peakradiated power
~ power in radiated field (W)

_ 4ﬂr2pr(r’9’¢)|peak (350)

”P,(r, 9,¢)r2d9d¢.

4r
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The directivity always exceeds unity, that is, D > 1. The directivity of an ideal short dipole is
the same as its gain. In general, gain is related to directivity through various conversion factors.
These include the efficiency of feeding and efficiency of conversion of power to radiation.

The gain of a uniformly illuminated aperture is not the maximum gain that is physically pos-
sible. Bouwkamp & de Bruijn (1946) and also Riblet (1948) showed that there is no theoretical
limit to directivity, for an antenna of given size, if the current distribution is unconstrained, that
is, the amplitude and phase is non-uniform. As a result, efficiencies in excess of 100% are
achievable. Translating this to aperture antennas means that the effective radiating aperture
is greater than the physical area. This effect is called a supergain and it occurs when the gain
is greater than that produced by an aperture distribution which is uniform in both amplitude and
phase. It has been shown (Bird & Granet, 2013) that for rectangular and circular apertures, for
example, it is possible to achieve efficiencies close to 100%. Thus, as the number of modes in
the aperture goes to infinity,

. 8 L1
Rectangular aperture : 7, ~ ;n_; o) =1 a N— o0

geue

N
1 1
Circular aperture : 7, .« = €om E = ( ) as N— oo,
ma = (alznn—m2) 8(2—¢egm)+m

where a,,, = k¢ una, a is the radius, &g, =1 if m =0 and is 2 otherwise, k.. ,,,,, is the cut-off wave-
number of the TE,,,, mode and the subscript n runs over the number of modes in the aperture
where N is the largest integer satisfying a,,y < ka, that is, all modes that propagate. It has been
shown that only the TE modes contribute directly to the above summations. Also the above
assumes that there no mode coupling or mismatch at the aperture. For example, apertures that
contain TE modes with a single period (m = 1) (i.e. TE,,) can achieve a maximum efficiency of
100%, while for the axisymmetric TE modes (m =0), the maximum efficiency is limited to
12.5% and for the double period TE modes (m =2), it is 50%. However, a combination of
modes in the aperture can produce higher maximum efficiencies. How such an efficiency could
be achieved is a subject for further design. One approach will be described in Section 4.5.3.

3.5.7 Effective Aperture

A receiving antenna is characterized by the equivalent area over which it collects energy from
an incident wave. The receiving cross section of the antenna is defined as follows:

received power

A(0.) (3.51)

~ power density of incident wave

It is possible to show that when the receiving antenna is oriented to receive maximum signal
and the antenna is matched to the terminating load, then

/12
AL0.0)=1-G(0.8). (3.52)
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The maximum aperture is known as the effective aperture, A., and it is given by

A= "Gy (3.53)
T

where G, 1S the maximum value of gain (Eq. 3.48). For example, the effective aperture of a
short dipole is A, =31%/8x.

3.5.8 Radiation Resistance

Assuming no conduction losses, the total power radiated by an antenna is equal to the total
power at the input terminals. If I, is the peak value of the current, then

1
Pr=[l]’R;.

where R, is the radiation resistance associated with the power that is radiated. That is,

_ 2

e (3.54)

For an example, the radiation resistance of a short dipole of length d? is
2r (df\?
Rr = ?710 (7) .

3.5.9 Input Impedance

The input impedance of an antenna is the impedance presented to the feeder. It is usually a
complex quantity. The real part is due to the energy losses associated with the antenna. For
practical antennas these losses are not only due to power transfer into the far-field but also
due to loss mechanisms such as lossy ground and finite conductivity of the antenna structure.

The reactive part of the impedance is due to near-field energy storage, and its value is highly
dependent upon the antenna geometry.

Assuming a lossless antenna radiating into free-space, the power transferred through a
surface ¥ enclosing the antenna and very close to its surface is

p:“ P-dS =Pr+jOr, (3.55)
x

where P=1/2E x H* is the complex Poynting vector. At very large distances, the reactive
power Ot becomes very small, but close to the antenna it makes a significant contribution
and its size depends on the antenna. The input impedance is defined as follows:
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2P
Zi =—F =Ri + 'Xi , 3.56
n |_[inJ2 n tJAin ( )

where [, is the current at the input terminals of the antenna, for example, for a dipole antenna
of length L the input current is Iy, =1, sin?(L/2) where I, is the peak value of the current.
Therefore, for a A/2 dipole R;, =R, =73.1 ohms.

3.5.10 Antenna as a Receiver

Reciprocity and in particular Eq. 2.13 can be used to show the behaviour of an antenna when
used as a receiver in terms of its characteristics as a transmitter. To do this, in Eq. 2.13, the fields
of (E%, HY) that are taken are those emitted when the antenna transmits and (Eb, Hb) are the
fields of a plane wave at the same frequency which is incident on the antenna. If F(6, ¢) is
the transmitting radiation pattern where E.,q =F(0,¢) exp(—jkr)/r is the radiated electric field
on a large sphere of radius r, then the received field in the feeder is proportional to

Erec O(EO'F(el’d)/)?

where E, is a constant vector giving the direction and magnitude of the incident plane wave and
the primed co-ordinates refer to receiver direction.

3.6 Aberrations

The radiation pattern of an aperture antenna is sensitively dependent upon the phase distribution of
the aperture field. Variation from the ideal uniform phase distribution causes phase aberrations.
These aberrations occur inadvertently during antenna design and manufacture. Sometimes they
arise intentionally when, for example, beam shaping or for beam steering. Due to aberrations, the
aperture field, E,, can be considered to have a phase distribution superimposed on it; thus,

E, exp(j@(x',y)),

where ®(x’, y) is the aberration function. To simplify the discussion of aberrations consider a
circular aperture of unit radius. Then it is convenient to define polar co-ordinates, so that
X' =tcos £ and y' =rsin £, Without loss of generality, the aberration function is assumed to
be an even function of £. Moreover, it may be shown (Born and Wolf, 1959) that the aberration
function can be represented as follows:

D(,E)= Y Aput" cosmé, (3.57)

0

o0
n,m=
where A,,, are the aberration coefficients and are non-zero when m + n is even.

It is possible to see the effect of each term in Eq. 3.57 by letting all coefficients apart from

one be zero. The primary aberrations are illustrated in Figure 3.8. They are referred to as linear
(n=1, m=1), quadratic (n=2, m=0), coma (n=3, m=1), astigmatic (n=2, m=2) and
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Figure 3.8 Phase distributions (left) and radiation patterns (right) associated with aberrations in

a circular aperture of unit radius. (a) Linear ® = Ay . (b) Quadratic @ = Ag#2. (c) Coma ® = Az, 3 cos &.
(d) Astigmatic ® = A, 7> cos 2£. (e) Spherical aberrations ® = A4y r* (after Masterman, 1973)

spherical (n =4, m =0) aberration. Linear aberration in Figure 3.8a shifts the direction of the
main beam by the angle a = sin™' (A}, /k) without changing the structure of the beam. Quad-
ratic phase error in Figure 3.8b causes a reduction in antenna gain and increases both the beam-
width and sidelobe level. Another effect is that the nulls in the pattern are filled in. Cubic phase
error, or coma, in Figure 3.8¢c causes the beam to shift an angle a = arsin(2A3;a*/3k) and also
reduces gain. In addition, the pattern is asymmetrical in the plane containing the shifted beam
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and the central axis (the plane of ‘scan’). The sidelobes closest to the central axis are lower than
the sidelobes without coma, and those in the direction of scan are higher than without coma.
The effect of astigmatism in Figure 3.8d is similar to a quadratic phase error. When astigmatism
and quadratic phase error occur together, the width of the main beam and the sidelobes are dif-
ferent in the two principal planes. Finally, in Figure 3.6e, spherical aberration produces a sym-
metrical distortion of the radiation pattern with an effect similar to quadratic phase error.

The gain of a uniformly illuminated aperture affected by aberration is approximately given
by (Bracewell, 1961)

1
2= 1+1<A§G’ (3.58)
where G, is the gain with aberration, G is the gain without aberration and A, is the phase error in
radians at the edge of the aperture. k is a constant that depends on the type of aberration and
equals O for linear, 1/12 for quadratic, 1/72 for coma, 1/6 for astigmatism and 4/45 for spherical
aberration.

In any practical antenna, all types of aberrations can occur, some to a greater extent than
others. For example, a method commonly used to scan the beam of a reflector antenna is to
displace the feed laterally from the reflector axis in order to produce a linear phase shift across
the aperture. In this situation, as well as the desired linear aberration (beam shift), coma is
strongly represented in the radiation pattern. Astigmatism is also produced but it is of lesser
importance than coma for small lateral shifts. When the feed is moved from the focus in the
axial direction, either towards or away from the reflector vertex, quadratic and spherical aberra-
tions are created. This is often used to improve the pattern of the reflector when the feed has a
diffuse phase centre.

3.7 Power Coupling Theorem™

A corollary of Lorentz reciprocity that finds use in aperture antennas is the power coupling
theorem (Robieux, 1959, Wood, 1980). Suppose an antenna is defined by surfaces
S1=81+S] and S,. Power is coupled into the antenna through surface S, as shown in
Figure 3.9. Inside the antenna, the surface S’1 covers the receiving port.

Other parts of the inside surface, indicated as S, are perfect conductors. Let (E, H?) be the
fields on S, and S, when the antenna transmits. Also let (E?, H) be the fields on these surfaces
when the antenna receives. Under these conditions, with no sources being present in V, the
reciprocity theorem, Eq. 2.13, gives

” (E“be-beHa)-ﬁdS=—” (E“xH’-E’ xH")-AdS. (3.59)
S[ SZ

On S, the fields are zero except on S. This is because tangential components of the electric
field are zero on S. Assuming that the impedance of the load in S} in the receiving case is the
complex conjugate of the impedance seen in the transmitting situation by virtue of the fields
propagating in opposite directions, the field on S| must be related as follows: E’=cE* and
H’ = —cH", where c is a complex constant. Introducing these into Eq. 3.59, the result is
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Figure 3.10 Power coupling theorem for a reflector and feed
c” (E“xH* +E“ xH)-1dS = —” (E“xH’-E’ xH")-AdS. (3.60)
s 52

The integral on the left is a real quantity, and the right-hand integral is complex. Multiplying

together Eq. 3.60 and its complex conjugate, it follows that

2
cc*(JJ (E“xH“*+E”*xH“)~ﬁdS> ='” (E“xH’-E’ xH")-2dS)| .
S S

1

The received power is, therefore, given by (Figure 3.10)

1
Prec = 1” (E* xH* +E** xH’) -tdS
Sy

CcCx

4

—“ (E*x H* + E* x H%)-AdS.
SI

(3.61)
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Substituting the received power into Eq. 3.61 results in

2
IUJ (E“xH"-E"xH")-7idS
Prec= 3 52 (362)
Re{” (B X H )-iidS}.
M

Eq. 3.62 is one form of the power coupling theorem, which is also called field correlation.
There are several variations of this theorem, which are useful in specific applications (Poulton
et al., 1972; Wood, 1980). For example, if field a is due to a feed antenna (which could also be
the field scattered by a subreflector) and b is due to an incident wave on a large reflector, the
power coupled into the feed is from Eq. 3.62:

2

HJ (E“xH")-ndS
1 Srefl

Prec=
4Re{“ (E“x H )-idS}.
S

Letting Jyen = 272 x H? be the current induced on the reflector due to the incident wave (shown
as b in Figure 3.9) and Pt be the total power transmitted by the feed, then

2

_ ‘JJSrefl(Ea'Jrefl(g’ @))dS

Prec = 6Py (3.63)
The efficiency of the reflector system is then
2
. [, guaoas
B, =M0.9)= = , (3.64)

where P, is the power contained in the incident wave.

The radiation pattern of the antenna can be calculated from Eq. 3.64 by changing the angle of
incidence (6, ¢) of the plane wave. This has the advantage in calculations, such as for a complex
antenna made up of several reflectors, as the field from the feed through the reflector system
except the final one. The integration of this field with the induced current on the final reflector
usually need only be computed once by numerical integration by employing techniques such as
Simpson’s rule or Gaussian quadrature (Froberg, 1974).

3.8 Field Analysis by High-Frequency Methods™

In many situations involving aperture antennas, the size of the aperture and distance to the
radiated field are large in terms of wavelengths. This means that approximate high frequency
methods can be adopted and will often yield accurate results. Two main techniques for aperture
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antennas are described in this section. One technique involves a direct approximation of the
physical optics integrals and the method limits in the extreme of very large apertures and dis-
tances, which is called asymptotic physical optics (APO) (James, 1986). The second approach
uses techniques from geometric optics as well as particular high-frequency solutions to partic-
ular or canonical problems. These can derive from APO or as limits of known mathematical
solutions such as electromagnetic scattering from a metallic wedge.

3.8.1 Asymptotic Physical Optics™

The radiation from line or ring sources is expressed in terms of the single integral (van
Kampen, 1949)

b
1=j dEF (&) explike(2)) (3.65)

where g(£) is the argument of the phase function on the aperture domain D : £ = (a,b). When the
phase function exp(jkg) varies rapidly over the integral domain, integrals of this type can be
evaluated asymptotically, which means the result applies at very high frequencies or the aper-
ture dimensions are large compared with the wavelength. In that case, the value of the integral is
given in the vicinity of the stationary points of the function g. That is, the integrals are given at
the points of stationary phase. Near the stationary phase points, the function f and the exponen-
tial are expanded in Taylor series and these series can be arranged in descending powers of kR
where R is related to the aperture dimensions. When kR is large, sufficient accuracy for practical
applications is possible by taking only the leading terms of the asymptotic expansion.

Of the possible stationary points yielding contributions to an asymptotic expansion of
Eq. 3.65, there are critical points of the first kind defined as

8:(£)=0, (3.66)

where g;=0g(&,y)/0¢. Critical points of the second kind, or edge points, are defined by
(van Kampen, 1949)

ge(a)=0 or gg(b)=0. (3.67)
The critical points of the first kind produce a geometric optics type of contribution to the
integral, while those of the second kind represent diffraction from the edge of the aperture.

Now let &, denote a critical point in general. In the vicinity of this point the functions g and
f may be represented by their Taylor expansions

1
8(8) = go+ g+ Szt + -+

and

1
FE)=fo+feu Sfeer + -+,
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where u=£&-£,, go=g(&,) and f, =f(&,). If g and f are assumed to be single-valued in the
domain D, the limits of the integrals can be extended infinitely as the remainder of the integral
cancels out by virtue of rapid oscillation with argument. Also at any critical point it is possible
to reverse the order of integration. The integrals in Eq. 3.65 become

1=J: déf---—deé--—Edéf(—ﬁ)exp(ikg(—é)

b

=lo—1p—-1_,.

Consider the integral of infinite extent, /,, if the interval contains a critical point of the first
kind, then

1
g(é)zgo+§gg¢u2 and f(&)~f,

and

[e]

auexp )] (3.68)

I ~fo exp(]'kgo)J )

— 00

The integral in Eq. 3.68 can be expressed in terms of a complex Fresnel integral, /C(z), with
zero argument, which has a simple value (see Appendix E). Thus,

o 2 2
J_ duexp |}kg§§(fo)%:| = /mexp (ngn(géé) %)»

where use has been made use of the symmetry of the integral and the identity

J dexp|+ji’] = \/—Eexp(tjz)
0 2 4

Note that if f, or g¢+(&,) are zero then the next terms in the Taylor series should be taken. The
former involves little extension from the above. However, the latter involves the use of Airy
functions. For this extension, the reader is directed to the references (James, 1986; Felsen &
Marcuvitz, 1973).

The remaining two integrals are evaluated similarly. If the stationary points are not at the end
points a or b, a first-order approximation for large arguments can be obtained by integration by
parts. Thus, consider integral /:

].ikr’ ae " (jkg) explikg(®)

1h=fd§f(§)exp[ikg(§)]= Jaet

(3.69)
1 f(b)

Njkw explik g(b)].
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A stronger result that applies whether the stationary point is at the end point or not is
(James, 1986)

2
I~H (=81 +3f(b)exp|jkg(b) —upp*]  [-——Fu(v), (3.70)
k|ge:(b))|
where p=sgn(gz(b)), 6=sgn(b—-¢&,), H(x) is Heaviside step function, F,(x) is a Fresnel
integral, which has upward extending limits, and a positive or negative argument depending
on the sign of y as defined in Appendix E, and

v £ |}g§(b)|.

) 2|gee(b)

3.8.1.1 Example: Scattering Radiation from Large Conducting Wire Loop™

A large circular wire loop is illuminated by a plane wave that is polarized in the x—z plane as
shown in Figure 3.11.

The loop has a large radius R>>1 and small cross section 7>>1 to the incident wave.
The incident wave direction is

S;=—-Xxsin@;—zcos 6;

and the incident field

E; =E, (X cos 0;—% sin 0;) exp(—jks;).

P(r,0,0)

E

. Plane wave

Figure 3.11 Circular loop illuminated by a plane wave
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The current induced on loop is

2 2
JS =2ﬁXH1 =—ZX (3‘1 xE,)exp(—jks,) =— )ACEO exp(—jks,).
Mo Mo

The radiated field can be calculated from

21 , R+7/2 2Eo . . L
Le=| d¢ exp(—jk(p"-#)=s1)p'dp

0 R-7/2 \ Mo

where p’=R(x cos ¢’ +y sin ¢') and 7 << R. Therefore,

2E 2 R+17/2
L=2Zexp(jis) | "t exp(-ikRoos (¢ ~))p'dy

UM 0 R-1/2
(3.71)
E.R 27
~ 0 Texp(—ijI)J dd exp(—jkRcos (¢ — ).
o 0
The integral in Eq. 3.71 can be evaluated in closed form and the result is
E,R
Ly =~ exp(=jks;) (210 (kR)). (3.72)
o
Therefore, the scattered fields are expressed as
—jkr—jk.
Ep~— onerMJo(kR) sin ¢ (3.73a)
r
—jkr—jk
Eyjokie SPT)  cos g, (3.73b)
r

Alternatively, the integral in Eq. 3.71 could be evaluated asymptotically, and this provides a
physical interpretation of the result. This approach is equivalent to finding the critical points of
the second kind on the periphery because of the narrow width of the loop. Thus,

L= E,Rt

2
awmmwmwwx

o

where g(¢')= —Rcos (¢’ —¢).
Now,

8y(#))=Rsin(¢'~¢) and gy (¢')=0.
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When ¢’ =¢p and ¢’ = p + 7. Also g4 (¢') =R cos (¢’ —¢p). Therefore, there are two station-
ary point contributions to the integral. As well, because of the periodicity of the integral extend
the region over an infinite domain as follows:

E.Rt

Ly~

exp(—jksor dep exp(iks (). (3.74)

(] — 00

There are two contributions to the integral of the type Eq. 3.65, one obtained in the vicinity of
@' =¢ and the other at ¢' =¢ + z. Thus,

E,Rt . 2 . T 2w . T
L.~ —jksy) [y/ = (—kR+ —)+,/— (kR— —)
. exp(—j &)[ REP\ KR+ RSP AR=]7

[}

Esx [2

_ noT’ /éexp(—jks;) [exp(—ij + j%) +exp (ij—j%)} (3.75)
Esx 2

= WL: k—;exp(—jks1)2cos (kR—%).

This is equivalent to expressing Jo in Eq. 3.73 asymptotically as

2 7
Jo(z) ~y/— <,——),
0(z) Zcos =7

which is a standard large argument approximation to this function (Abramowitz & Stegun,
1965) (see Appendix B). The physical interpretation of this radiated field can therefore be given
as consisting of two edge ray contributions that are 180° apart as illustrated in Figure 3.11.

3.8.1.2 Special Case: APO in Two Dimensions™

Many of the integrals involved in calculating radiation from circular apertures such as reflectors
can be expressed (Jones & Kline, 1958)

1=j0”dsjw"dwf<f,w> explikg (&), (3.76)

0

The quantity y =y, defines the upper rim of the aperture. Let (y,, &,) denote a critical point
on the surface. In the vicinity of this point, the functions g and f are expanded in their Taylor
series once again as follows:

1
g&w)=go+geu+gyv+ 3 (ggguz +2gz,uv + g.,,l,,vz) o (3.77)

and
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1
FEy) =fofutfyv+ (feetl® + 2fsyuav +fi V) + -+, (3.78)

where u=£—¢&,, v=y—y,, g8o=8(&,,w,) and f,=f(&,,w,). The integral is now re-written
to take advantage of the various critical points. Note that at any critical point it is possible
to reverse the order of integration. The integrals in Eq. 3.76 become

2r W, o0 oo o o0
0 0 —00 —00 Ve —

Also Eq. 3.77 is re-expressed as

2 2
+ 1 1
g(g,[[/):go_'_g&f u+ (M) +va+_v2ﬂ__(g§) ,
2 8ee 2 2 gee

where a =g, —g:8¢,/8z: and f=A/ge where

8ey Bwy

Completing the square in v gives

2 2 2 2
" 1 1
g(Ey)=go+ X u+<7g5+g@,v> +é(v+g) _la® 1(g) _

Hence, the argument of the integral is

. (12 2
F(& ) explikg(&w)] ~ (f 4+ )-explike,) - exp [;" <ﬁ : (2)]

. 2 . 2

If f neither varies too rapidly in the vicinity of the critical point nor vanishes there, as it would
for zero edge illumination, the first term of its Taylor series is usually sufficiently accu-
rate. Thus,

= 2 2 oo T o0 it
I ~fy.exp(jkgo) - exp lTJk (% +—(§2 )] J d¢ J dy/—J dy J de
-0 v,
e e (3.79)

X exp [jkiff <u + (gé -;gaﬂ) 2)] - exp [ﬂ%ﬂ (v+ %) 21 :
&
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Considerable simplification results if the integral with respect to £ is evaluated first. With the

substitution
k +
- }g¢¢|{u+<g: g:w)}
2 8ee

the integral in £ is expressed as

[So] 'k
J déexp it (gg +g§l,,v dl‘ expljsgn(ges)1 ]
—co 2 8zt gé€|

exp ]o

(3.80)

k|g§§

where o = sgn(gg). Therefore,

2 —jk (a* &
I~ ‘—ﬂexp[joﬂfo-exp(jkgo) expl / (a + g5>1

k|gee B g
X(LJJ,)"""’"" 7( ﬂ)]

The integral with respect to y is now evaluated with the substitution

The result is dependent upon the region of integration. When the domain is infinite, as it is for
the first integral, the evaluation is similar to the integral in £. Thus,

203

2 exp(j n)
el u=),
k|| 4

J dyexp

— 00

(3.81)

where y = sgn(f3). The second integral with respect to y is bounded on one side and this leads
to a functionally different result. Making use of the same substitution, the integral simplifies to

ro dwexp 7ﬂ< + B) ] = %J:) dsexp [jus*]. (3.82)

c
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where s.=+/k|f|/2(w.—w, + a/B). Finally, combining all the above results, the initial expres-
sion in Eq. 3.79 is expressed asymptotically as

5 5 o . —jk ()
. \/%\/%exp (](;Z)fo.exp(]kgo).exp [T <ﬂ+ g—ﬁ)] x

{\/J_ICXp (Jﬂg) _Fﬂ(SC)}’

(3.83)

where the function F,(x) is a Fresnel integral (refer to Appendix E) with sign u on the expo-
nential in the integrand.

Four special cases can be identified for the term in the curly braces of Eq. 3.83 for the
instance when the critical point lies on the boundary or rim of the surface, that is, y, =y

and s, =a/p/k|B|/2. The result depends on the signs of @ and f, which in turn are functions
of the derivatives of the phase function g. To do this use is made of the identify Eq. E.5 in
Appendix E.

Case 1. >0 and <0

{\/Eexp (jﬂ%) -F,,(sc)} =F_ (a k'f') (3.84)

Case 2. a<0 and <0
{Vaexp(jug) ~Fulso) | = vaexp(~7) ~F- <|a| ﬁ) . (3.85)

Case 3. a<0 and >0
{Vaexp(juZ) ~Fuls) }=F. <|a| %) - (3.86)

Case 4. >0 and >0

{Vaexp(jug) ~Fulse) } = Vaexp(j%) ~F- <a\/§> . (3.87)

Each case given by Eqs. 3.84-3.87 can be interpreted as a diffracted ray contribution
emanating from a point on the boundary or rim of a surface not unlike the loop example
in Figure 3.11. An extension of the ray diffraction interpretation is given in the following
section.
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3.8.2  Geometrical Theory of Diffraction”

The method of geometrical theory of diffraction (GTD) is a ray-based method of analysis,
which assumes a high operating frequency compared with the size of the objects in the analysis.
The wavefront and surfaces are fully described through geometric optics. The diffraction from
other objects such as wedges or corners can be represented approximately in a ray-based sys-
tem. The joining together of geometric optics and such canonical solutions is the essence of
GTD. Initially consider the representation of a propagating wave in geometric optics. Suppose
the direction of propagation is given by the vector s;. The rays and ray paths are subject to
Fermat’s principle. This states that the path taken by rays from a source to an observation point
is stationary with respect to small variations in that path, that is, with respect to a neighbouring
path, the chosen path has a maximum or minimum value.

Around each ray as shown in Figure 3.12, there is a bundle of rays called a ray pencil.
Consider the wavefronts (1) and (2) of the incident ray. Let there be an element of area dA;
around the incident ray. The wavefront will generally be curved and described by two radii
of curvature p;; and pj,. For this element dA; = ap, p, where a is a constant for a propagating
wave. As the wave propagates, the power flow is entirely through the ray pencil. From position A
to B, conservation of energy requires

|Epa|*dAp = [Esp|*dAsg, (3.88)
where E;4 and E; are the vector field values at A and B with wavefront areas dA;, and dAz,

respectively. If s is the distance between the two wavefronts as the wave propagates along s;,
then the wavefront areas are related by

dAis _ (pn +5) (pp +5)

= . (3.89)
dAa P npn
From Eq. 3.88, this gives
Pnbn
|Eg|= [ 7———=7———|Eas|
(P11 +5) (P2 +5)

Figure 3.12 Representation of wavefront on same bundle of rays
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and the application of the phase factor from position A to B gives

E;p= Pnpr )EAB exp(—jkis). (3.90)

(P +5) (P +s

A reflected field could be given by Eq. 3.90 multiplied by the reflection matrix R as the ray
pencil is modified by the interface. Similarly, the transmitted field is given by Eq. 3.90 multi-
plied by a transmission matrix T. These matrices apply at the reflection/transmission point and
are given by

R° 0
R= [ 0 Rm] (3.91a)
and
T¢ 0
T= { 0 Tm}’ (3.91b)

where R® and R™ are the reflection coefficients for electric and magnetically polarized reflected
fields and similarly 7° and T™ for the transmitted field. These are standard expressions for a
plane interface (Kraus & Carver, 1973).

Reflection and refraction at a plane dielectric interface are shown in Figure 3.13. Medium 1
has a relative permittivity (dielectric constant) £,; and a relative permeability y,; and similarly
for medium 2. The refractive index of medium i is defined as n; = /€. Tables of relative
permittivity and permeability of various materials are found listed in the references
(Harrington, 1961; Bodnar, 2007). Implementation of Fresnel’s principle results in two laws
each for reflection and refraction. These laws are as follows:

1. The incident and reflected rays lie in the same plane as the normal to the interface, that is,
7i-(s; x sg ) = 0. From Figures 3.13 and 3.14, it is seen # is the normal to the surface while s;
and sy are vectors in the incident and reflected ray directions.

Reflected wave

SR

n

-
k1=%4/ﬂr1 €1
S|
n1=1/.“r1 €n

Incident wave

Figure 3.13 Geometric optics representation of reflection and refraction at an interface
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Plane of wavefront

Material 1
E1=€n0 |
HA=Hr1Ho
Ny=pr1én

|

I Material 2
i €2=E€r280
|

H2=Hr2t0
No= pro€r

Figure 3.14 Reflection and refraction at a plane interface

2. The incident and reflected rays are at equal angles to the normal, that is, (sy+sg)-72=0.

3. The refracted ray is diverted closer to the normal of the surface as the refractive index of the
output media increases, that is, (n1 8y —nys7) X 7=0. This latter equation is a vector form of
Snell’s law. It indicates also that at a dielectric interface the vectors perpendicular to the
plane of refraction are continuous on either side of the boundary.

4. The result in reflection law 2 applies for refraction as well.

The reflection coefficient for a wave incident on the interface depends on whether the E-field
is parallel (||) or perpendicular (L) to the plane of incidence and also on the material properties.
From a consideration of a plane wave incident on the interface of lossy isotropic media, it can
be shown (Jackson, 1999) that the reflection coefficient for the E-field parallel to the interface
(i.e. |]) is given by

2 2_ 22
(#y1/Hy2)m3 €OS O =y [n3 —nisin“6)

2 [ 22y
(#,1/H2) 5 cOS O + 124 /n5—nisin“6,

In the case when the E-field perpendicular to the interface (i.e. L) the reflection coefficient is

rll= (3.92a)

n ny cos 0, — (/’lrl /ﬂrZ) l”l% —l’l% Sinzel

. (3.92b)
ny cos 0 + (1 /o )/ n3—n? sin®6),

0, is the angle from the normal direction into region 1. The corresponding transmission
coefficients are

Tl = (1 +FH)% (3.93a)
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and
TH=1+T", (3.93b)

where 6, is the angle from the normal direction in region 2. It can be shown that since sy, sg
and 7 lie in the same plane sg = —s;—27 X (71 x 1) = 81— 2(7-81)71. Also np st =n; s1. For example,
suppose the interface of a dielectric with refractive index lies in the x—z plane and 7=3. A wave
that is incident from air with a direction s;=-0.67x—0.5y, then sg =—-0.67x+0.5y and
st=0.5(=0.67x+0.5y). Egs. 3.93 are known collectively as the Fresnel equations for isotropic
media. When the materials are lossless and non-magnetic (1,; = 1=p,,), the reflection coeffi-
cients simplify to

I‘” (8,2/8,1)008 91— (s,z/srl)— sin261

(8,2/8,1)008 0, + (8,2/8,1)— Sil‘lzgl

and

. cos 01—/ (e,2/€,1) — sin6),
I—=

cos 0y + 1/ (e,2/€,1) — sin’0;

Continuing with the description of the wavefront, Eq. 3.90 is the field of a spherical wave.
However, when one of the wave’s radii of curvature is large, say, p;, — oo, the wavefront is
cylindrical. A cylindrical wave is represented by

[ Pn :
Ep=,/—E —jkys). 3.94
1B (o +9) B exp(—jki s) ( )

When a wave is incident on a metallic wedge as shown in Figure 3.15, there is a diffracted ray
depending on the observation position (p , ¢ ). The type of field produced depends on whether the
observation angle is inside the reflection boundary, that is, ¢ <7—¢,, or is beyond the shadow
boundary, that is, ¢ > ¢, + z. In the same way as for reflection and refraction, Fresnel’s prin-
ciple provides two laws for diffraction. Once again the incident and diffracted rays lie in the
same plane and also the optical path length from the source to the observation point is stationary
with respect to small variations in the path. The ray bundle can be represented in the same way
as described above for the previous cases. Thus, the diffracted field is represented as

n

EDBZDEIA (p +s) exp(—jks), (395)
11

where D is the edge diffraction matrix. The elements of the matrix are obtained from rigorous
solutions for fields produced by electric or magnetic oriented sources in the form

D® 0
D=\ onl.
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Reflection boundary

N A
N ﬂ Incident wave
. S
Diffracted wave AN k=w | Ho€o
4 \\ ¢o
S X
p
Shadow boundary

(a)

Diffracted wave

Sp

V/%

Incident wave
(b)

Figure 3.15 Plane wave illumination of a metallic wedge. (a) Incidence in plane of wedge angle f3;
and (b) incidence in plane of edge.

7

One of the first rigorous solutions for the wedge was obtained by Macdonald (1902), and the
first rigorous uniform asymptotic series solution was obtained by Pauli (1938) of quantum
exclusion principle fame. A field solution can be expressed as the sum of four terms: incident
and reflected geometric optics fields and also a diffracted field associated with each optical
term. As a result, the elements of the diffraction matrix for the metallic wedge can be expressed
as (James, 1986)

D™= [h(®) +h(~ )] F [A(D") +h(- ")), (3.96)

where @ =g F ¢,, h(®"") = —e>" Vo' M_(v>") A", 6'= 6" = p for a straight edge, M_(x)
is a modified Fresnel integral (see Appendix E) and v©»" =+v/ko">"|a""|sin 6, where 0, is the
incident angle to the edge. The modified Fresnel integral is given by (refer to Appendix E)

o

J exp (= jxt*)dt. (3.97)

X

. (o) SR /)

: v
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The step function
. . +1 insource region
e" = sgn(a"") = {

—1 inshadow region

In addition,

(3.98)

; &4 +2paN
a®"=+/2cos (—pﬂ )

2

with N=(2z-p)/x. Eq. 3.98 is independent of p for source and observation points removed
from the optical boundaries ¢ = 7 = ¢,. On these boundaries, p is chosen to satisfy the following
conditions:

|®"" +2paN|=x (3.99a)
where
A" =1 (3.99b)
; ab’ OLURY .
AP = cot . 3.99¢
V2N ( 2N ) 3.9%)

The expressions in Egs. 3.99 enable continuity to be achieved with the geometric optics field.
They show that the correct behaviour across the two reflection boundaries is obtained by setting
p=0in h(—®") and p=—1 in h(D"). When a shadow boundary falls in visible space, the func-
tion /(+®') |p= , is used with a value that depends on whether ®'= T lies on the shadow

boundary. The remaining term in Eq. 3.96 will be h(q:dbi) ’p:—l'

For large arguments of the modified Fresnel integral, v, in Eq. 3.96, the leading term of the
asymptotic expansion given in Appendix E results in

—cscB,cot((z+D"") /2N)

h(®) ~ N/Bink '

(3.100)

In the special case of a metallic half-plane where N =2, the diffraction coefficients Eq. 3.96
simplify to

D®™M=— (si\/oj) M_(V))F (" Vo )M_(v").

Diffraction coefficients can be derived for other geometries such as a dielectric wedge, a
corner or a curved surface. It remains to say that the solution summarized here is sufficiently
useful for applications described here such as diffraction by the edge of ground plane or the rim
of a reflector antenna.
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3.9 Problems

P3.1 a. Using field equivalence and the method of images show that when A is an aperture in
a perfectly conducting ground plane containing the fields E, H (see Figure P3.1) the
radiated electric field is given by

jk [ e /MR .
E(r,6’,¢)=ﬂL 2 [(ExEq) xR]dS'

whereR=r-1'.

P(r.0.¢)

Figure P3.1 Arbitrary aperture in a ground plane

b. From Eq. P3.1 show that far from the aperture the non-zero electric field
components are

jk e—jkr )
Ey= P (Nx cos ¢+ N, sin d))
k —jkr
Ey=- éﬂe p, cos H(Nx sin ¢—N, cos ¢),

where
N =J E, exp(jki-r)dS'.
A

P3.2 A coaxial transmission line with inner conductor radii a and b, respectively, is terminated
in an infinite ground plane. Assume that the electric field in the aperture is

. \% 1
o=~ nto)a) »
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P3.3

P3.4

P3.5

P3.6

P3.7

P3.8

P3.9

where V is the voltage between the conductors and g, is the dielectric constant of the
material separating the conductors. Obtain the far-zone spherical components of the
electric field radiated by the aperture.

Determine the effect on the radiation pattern of a linear phase shift across a uniformly illu-
minated rectangular aperture with dimensions a x b. Assume the aperture field is given by

E,=XE,e™; |x|<a; |y|<b.

Repeat P3.3 to determine effect of a small quadratic phase error on the radiation of a
uniformly illuminated aperture. Assume that

E,=xE,e ™ ; |x|<a; |y|<b

and aa® < 1. Sketch the E-plane pattern when aa® = /8 and compare this with the pattern
for the case a=0.

Find the effect on the radiation pattern of a small random phase variation across a
uniformly illuminated aperture. Assume that

E,=%E,eN; |x|<a; |y|<b

and 2za << 1. The function @ is a uniformly distribution random process, where 0 < 0 < 27x.
From first principles show that the maximum gain of a uniformly illuminated circular

aperture of diameter D is
2
nD
Gmax = (T) .

Compare the far-zone fields radiated by a circular aperture containing a constant linearly
polarized field when the aperture is

a. located in an infinite ground plane

b. located in free-space.

What is the major difference between the E-plane patterns and the H-plane patterns in
each case?

Compare the half-power beamwidth, the location of the first null and first sidelobe level
of the radiation from a uniformly illuminated rectangular aperture, a cosine illuminated
rectangular aperture and a uniformly illuminated circular aperture. Refer to Figure 3.4 for
details of each type of illumination.

An aperture antenna has been proposed for a microwave link application at 4 GHz where
the distance between transmitter and receiver is 30 km. At a distance of 15 km there is a
hill of height 30 m. The link consists of two identical antennas with diameter D that are
mounted on towers 100 m high. Ignoring atmospheric effects, but including the curvature
of the earth, estimate the minimum diameter of antennas required to ensure that the beam
is unblocked out to the 6-dB point of the main beam. Assume a uniform aperture distri-
bution and earth radius R. =6371km.

Answer: D > 1484.
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P3.10

P3.11

Obtain the radiated electric field in the Fresnel zone of a uniformly illuminated aperture
of radius a and therefore the radiated power per unit solid angle. Show that the gain
is G=G,[S(ka®/4R)]" where G, =4x(na®)/A is the far-field gain and R is the distance
from the aperture origin to the observation point. Show that at R=2a/1, G/G,=0.81
and at the far-field distance R=8a%/A, G/G,=0.99.

Show that in the Fresnel zone of an aperture of radius a (see Figure P3.2), the phase from
one annulus of width 4/2 to the next on the aperture changes sign so that the total con-
tribution is almost zero. Assume that the aperture illumination is uniform. What happens
to the field at P on the axis as R is increased?

Figure P3.2 Fresnel zones on an aperture due to a source at P

P3.12 A circular aperture antenna has a far-field pattern function A() in the E-plane and B(0)

P3.13

in the H-plane. Based on this information, obtain expressions for the far-fields. From
these show that the co-polar pattern in the 45°-plane is given by |A(0) + B(6)|/2 and
the cross-polar pattern in this plane is |A(0)-B(6)|/2.

A commonly occurring integral in radiation problems is of the form

I(h)= J f(z)e"®@ gz
C

where £ is a large positive parameter, ®(z) = — cos (0—z), f(z) is a complex illumination
function and C is a contour in the z-plane.
a. Show that at the stationary point z; an asymptotic expansion of I(h) is

eIh®(zs) & an

O~ 2
n=0

where a,, are expressed in terms of derivatives of f{z) and ®(z).
b. Verify the first coefficient of the expansion is ag = v/2zf(0)e/™/*.
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P3.14 Obtain the radiation pattern of a uniformly illuminated circular aperture of diameter D,
in the near-field region, the Fresnel zone and the far-field region. Plot and compare the
patterns for an aperture of diameter D =504 when the distance r is
(a) r=104; (b) r=1004; and (c) r=50004.

P3.15 Suppose an x-directed aperture distribution in a rectangular aperture with dimensions
a x b is symmetric but triangular in the x-direction and uniform in the y-direction. Obtain
the far-field radiation pattern of this distribution.
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4

Waveguide and Horn Antennas

4.1 Introduction

Waveguide and horn antennas are based on the method of generating an electromagnetic wave
from an exciter, or probe, at one end of a guiding structure with an open aperture. The wave travels
to this aperture where it is mostly transmitted as radiation, and if the transition is well matched,
only a small fraction of the wave is reflected back towards the source. The objective of the design
is to obtain a smooth transition from the probe to free-space with as little reflection as possible and
to produce a suitably directive beam. The first waveguide was first experimentally demonstrated
by Oliver Lodge in 1894 and theoretically described by Rayleigh alittle later (Sarkar etal., 2006).
For experiments on polarization properties of crystals in 1895, Bose used a circular waveguide as
aradiator as well as pyramidal horns in 1897 for further investigations on polarization as well as
index of refraction. The set-up he used is shown in Figure 4.1 (Bose, 1927).

There appear to have been few developments on aperture antennas beyond this early work
until the 1930s when given impetus for communications and radar. The Radiation Laboratory
book by Silver (1946) provided many new horn designs and concepts for future work. Incre-
mental progress continued until the 1960s when the theory of matched feeds for reflectors
was developed (Minnett & Thomas, 1966; Rumsey, 1966). At that time it was realized that
a corrugated waveguide or horn was a way of achieving conjugate matching to the focal field
of a reflector. Further demanding requirements in communications (e.g. satellite) and radar
resulted in further new horn designs, some of which will be described here. In this chapter,
the basic properties of horns will be examined, and horns in common use will be described.
As well, the material developed here will be used in following chapters as feeds for reflectors
in Chapter 6, as elements of aperture arrays in Chapter 7 and in the design of applications
outlined in Chapter 10.

Fundamentals of Aperture Antennas and Arrays: From Theory to Design, Fabrication and Testing,
First Edition. Trevor S. Bird.

© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.

Companion website: www.wiley.com/go/bird448
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K, crystal-holder; S, a piece of stratified rock; C, a crystal; J, jute polariser; W, wire-
grating polarsier; D, vertical graduated disc, by which the rotation is measured.

Figure 4.1 Apparatus used by Bose to measure polarization and double refraction at an evening
lecture at the Royal Society in January 1897. Source: Reproduced from collected Physical Papers,
Longmans, Green & Co. 1927 (Bose, 1927)

4.2 Radiation from Rectangular Waveguide

Suppose a rectangular waveguide of width a and height b (Figure 4.2) is excited only in its
fundamental mode, the TE;y mode. The transverse fields of this mode are

E,=E, cos (ﬂ) eI (4.1a)
a
Hy=Y, Ey; (4.1b)

where E, is a constant, f=/k2— (r/a)* is the propagation constant of the TE,, mode in the

z-direction and Y,, = #/kn,, is the wave admittance of the mode. When the TE, mode is incident
on the open waveguide, some energy is reflected and some is stored in the aperture (as evanes-
cent fields of higher-order modes). Typically, the reflection coefficient is less than —10 dB. The
calculation of the self admittance of TE;y mode is detailed in Section 7.3.5.2. Reflection at the
aperture tends to have only secondary effects on the radiation. Therefore, assume the fields in
the aperture (z =0) are approximately

a

H,=Y,2xE,. (4.2b)

/
E,=XE, cos <Q), (4.2a)

The calculation of the radiated fields proceeds in the same way as for a uniformly illumi-
nated rectangular aperture that was described in Section 3.4.1. Following from Eq. 4.2a, N, is
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Figure 4.2 Geometry for radiating rectangular waveguide

the only non-zero component of Eq. 3.21, while the only non-zero component of Eq. 3.22
is given by

L,=Y,N,. (4.3)

The result differs from the uniform case, however, because the field in the y-direction is
cosine distributed and the transform given as Eq. 3.28 is required. Therefore, for the TE;, mode
only in the aperture, it follows that

2
Ne=Eo 222 S (zub) C (va), (4.4)
V3

where u= sin 6 cos ¢p/4 and v=sin 0 sin ¢/A.
Using Eqgs. 4.3 and 4.4 in the field expressions Eq. 3.20 gives the fields radiated by the wave-
guide as follows:

jkabEy e

Eo(r,0,¢) ~ S

(1 + é cos 9> S(mub)C(zva)cos ¢ (4.5a)

E¢ (l", 9, ¢) ~

jkabE, e
k

5 b + cos 6’) S(zub)C(zva)sin ¢. (4.5b)
27 r
Also the magnetic field components are as follows:
1
Hy(r,0,¢)=— ZE¢(r,6,¢), (4.5¢)

H¢(r,9,¢)=%E9(r,9,¢). (45d)

The bracketed terms, (1+ (8/k)cos ) and ((B/k)+ cos 0), are referred to as Huygens or
obliquity factors and are typically slowly varying functions compared to the pattern functions
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S and C. Note that for frequencies well above cut-off f~k, identical Huygens factors result for
the two field components.

The principal plane radiation patterns occur in the x—z (¢ =0) and the y—z planes (¢ = +90°)
and correspond to the E- and H-plane patterns, respectively.

E-plane (¢ =0):

ikabE, e~/ kb
Ep 7 ;7[2 ¢ " (1 +§cos€)5(7sin9>. (4.6)

The normalized power pattern is

po=(1+Pews)s (o) w)

which is dominated by the > function (see Figure 3.4). This dependence is expected because
the E-plane aperture field is constant.
H-plane (¢p= +90°):

kabE, e~ k
E(/,=—] ; . er ('Z+cos€)€(§sin9>. (4.3)
n

The normalized power pattern is

Py = [(§+ cos 0>C<%Sin e)r. (4.9)

As the aperture field in the H-plane is cosine distributed, the H-plane radiation pattern is
dominated by the C? function (refer to Figure 3.4).
The maximum gain of a TE;y mode excited rectangular waveguide is

32ab

e (4.10)

Grax =

where it is assumed that f~k. By means of Eq. 3.49, the aperture efficiency of this aperture is
n,=8/7*~0.811. That is, the gain of a rectangular waveguide is 81.1% compared to the gain of
a uniformly illuminated rectangular aperture with uniform phase.

4.3 Pyramidal Horn

Flaring the rectangular waveguide into a pyramidal horn, Figure 4.3a, provides not only a more
directive radiation pattern but also a better transition from the feeding waveguide to free-space.
The fields in the aperture of the horn may be found by treating the horn as a radial waveguide.
As a first approximation, however, one may assume a TE;y mode is maintained in the flared
section all the way to the aperture. This approximation works well providing the flare angle is
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E-plane
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Figure 4.3 The pyramidal horn antenna. (a) Geometry; (b) E-plane; (c) H-plane; (d) quadratic

phase factor in E-plane

not too great (<10°). For uniformity of notation, flare angle is defined as the angle between the

aw¢ +“—/PH—>| g

* l
(©

centre-line and the linear taper. The angle between the two tapered sides will be called the full

flare angle. An improved approximation is needed for greater flare angles because the wave

phase-front at the aperture is no longer uniform. An accurate method for modeling flares

and steps along the horn is described in a later section.

Consider the E-plane section of the horn, Figure 4.3d. When the TE,( mode in the waveguide
reaches the flare, it expands outwards in order to satisfy the boundary conditions and forms a
cylindrical wave. In what follows a TE;, mode is assumed as the basis of the representation of
the field in the aperture. The TE;; mode is the fundamental mode of a rectangular waveguide
with width a and height b such that a>b. When the waveguide is flared as shown in
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Figure 4.3d, the phase of the field varies across the aperture. The difference is given by the extra
distance from the wavefront to the aperture plane, dz. It can be shown that this distance is
approximately given by

127

Sp==—,
"2

(4.11)

where p’E is the radial distance from the apex to a point on the aperture, x, in the E-plane as

shown in Figure 4.3d. Similarly, in the H-plane, the distance from the cylindrical wavefront
of radius pj; to the aperture is

ly2

. 4.12
20y (4.12)

o=

By the nature of Egs. 4.11 and 4.12, the horn is said to have a quadratic phase dependence
across its aperture. The radial distances are related to the basic geometry of the horn. Let the
width and height of the input waveguide be a,, and by, respectively. If the length of the pyram-
idal section is A, by similar triangles, it follows that p}. = hb/(b—by) and pj, =ha/(a-ay,).

To account for the quadratic phase from the pyramidal section, an additional phase factor is
applied to the TE;y mode transverse fields. At z=0, this results in approximate aperture fields
of a pyramidal horn given by

k(X y?
E, =XE, cos (Q) exp {—]— (—, + y_/)} , (4.13a)
a 2\PE Pu
1

H,=—:xE,, (4.13b)

o

where compared with Egs. 4.5, the aperture is now assumed to be well above cut-off. Once
again the radiated fields can be found from Eq. 3.20. The Fourier transforms of the aperture
fields are found from Eq. 3.24:

a/2 / /2 b/2 kx/Z
Ny (u,v) =EOJ dy' cos (Q> exp |j| 2zvy' - ky, xj dx'exp |j| 2mux’ - ——-
-a/2 a 20y ~b/2 2p%
= Bl {1y (v)
(4.14a)
and
1
Ly=—N,, (4.14b)
o
where
b/2 ,
L (u) = J dx’ exp [j(27zux’—s§x’ )} (4.15)
~b/2
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and

a2 !
L(v)= J dy cos <Q> exp [j(Zrzvy’—sf,yﬂ)] (4.16)
i -a/2 a

where sg = \/k/2p}; and sy = \/k/2p},. The above integrals can be evaluated by several means
such as by numerical integration (e.g. Simpson’s rule) (Froberg, 1974) or equivalently with a
fast Fourier transform (FFT) algorithm (Oppenheim & Shafer, 1975). There is also a closed
form solution in terms of cosine or sine integrals (Balanis, 1982, p. 583f) and another where
the integrals are expressed in terms of complex Fresnel integrals. To obtain the latter, first
consider I, and complete the square in the exponential in the integrand as follows:

b/2 , b/2 a0\ (2
I(u) =J dx' exp [j(Zrzux’—s%x’ )} =J dx exp|—j (sEx’ ——) - (—) :
-b/2 -b/2 SE SE

Substitute &= (sgx’ —zu/sg) so that I, can be simplified as follows:

déexp(—j&*)

L(u)=

exp {j(ﬂu/sE)Z} rEb/z—nu/sE

SE —sgb/2—nu/sg

S e 2) ().

Z
where IC(z) = J exp(— jéz)df is the complex Fresnel integral (see Appendix E). The approach
0

to evaluate I, is similar except that initially the cosine in the integrand is expanded in its expo-
nential components. Then the square is completed on both components. Thus,

L(v)= J“/z/ dy' cos (7) exp {j(Zﬂvy’—ﬁ,y’z)}
—a2
= %Ji/:/z dy'{ exp {j(y/ (Zﬂv + Z) —sHy/Z)} + exp [j(y/ <2nv— g) _ Syy/z)] }
1 (42 ) ‘ o ox : 2 o | ,
= EJ_a/zdy {exp [—J ((SHy T (v+ Z)) >1 exp |:](; <v+ 2_a>) 1

oo (22 oo}

(4.17)
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Let a. (v)=(n/sg)(vx(1/2a)). Then,

Iy(v)=i eXp[jaa—][K:(SHg—(Z+(V))+K:(SH%I+(,¥+(1)))}
| om0+ 0

Therefore, Eq. 4.14a can be expressed as

s o (e 2) o)
o efoan )+ 0
+el [IC (sﬂg -a- (v)) +7€<ng + a_(v))} }

(4.18)

The electric field components in the far-field are then obtained from Eq. 3.20, giving

]k ek

Ey(r,0,¢)= NX(H,d))(l + cos 0) cos ¢ (4.19a)

]k e—]kr

Ey(r.0,¢)=

N:(6,0)(1 + cos 0)sin ¢ (4.19b)

where N, is given by Eq. 4.18. The total radiated power from the TE;, mode excited pyramidal

horn is
E 2 (b2 a/2 /
Pr= QJ dx’J dy' cos? <Q>
2’70 -b/2 -a/2 a

(4.20)
-2 P
Mo
Assuming the maximum gain occurs on axis, by Egs. 3.48 and 4.20
8772 (|E(,(o,0)|2 +|E4(0,0) |2)
Gmax = )

ablE,| (4.21)
2K [N,(0,0)
" mab| E,

When u=0=v is set in Eq. 4.18, Eq. 4.21 becomes

2

Gmax:ﬁ |7C 552 M’C(SHE—SZ) +7C( ZCZSH) . (4.22)




Waveguide and Horn Antennas 79

It may be shown that the maximum gain is a product of the gains of E- and H-plane sectoral
horns times a geometric factor (see Problem P4.3).

A horn of given aperture and waveguide feed dimensions has an optimum length for maximum
gain. The reason there is an optimum length is that as the horn length is increased, the gain increases
initially until quadratic phase error dominates in the aperture field. Maximum gain occurs when
the gain increases, due to an initial increase in length that is cancelled by quadratic phase error.
After this maximum, gain falls with increasing length. A maximum gain pyramidal horn is often
referred to as a standard gain horn (SGH) because accurate reproducible gain is achieved by accu-
rately setting the horn dimensions. The SGH is widely used as a reference antenna for all types of
measurements ranging from electromagnetic interference (EMI) tests to calibration of other anten-
nas. Over the years, a considerable amount of work has gone into deriving accurate formulae for the
gain. One of the reasons is that the gain of these horns is moderately high and predictable.

The SGH is sometimes referred to as an optimum gain horn. The usual definition of an
optimum gain horn in relation to a pyramidal profile is a horn that has a maximum gain for
a given length of horn. The greatest departure from uniform phase occurs at the edge of the
aperture. For a horn with a linear profile, this occurs along the slope through any section of
the horn be it rectangular, circular, or any other general cross section. In general, the phase error
is in the form of Eq. 4.11, that is, a= ka? /2L, where L is the slant length from the apex.

A solution for the optimum geometry for maximum gain can be obtained as described by Bird and
Love (2007). In this solution, it is assumed that the aperture dimensions are related to the long dimension
of the flare in the E- and H-planes, ¢z and £, respectively, througha = \/a; £y and b=/, £k, and the

required gain is given by G, =g ab/A* where the quantities a;, #, and g; have been obtained
from experience or through optimization. Typical values are g, =2z, a; =67z /k and , =4x /k.
However, from optimization, improved design results are obtained if instead g; =1.992x,
a1 =6.101/k, and a; =4.141/k is chosen.

4.3.1 Design of a Standard Gain Pyramidal Horn

The steps for designing an optimum gain pyramidal horn are listed by Bird & Love (2007).
The design commences from a specified gain G, (initially specified in dBi, but converted to
its dimensionless ratio for the calculations), and dimensions a,, and by, of the input rectangular
waveguide feed. The aim is to determine the remaining dimensions (a, b, p, p};, {g, £z and h) that
leads to the required gain. The reader should refer to the geometry in Figure 4.3.

1. The horn geometry needs to satisfy the following geometric constraint to be physically
realizable:

Pi (1—%) =P (l—agw)’ (423)

where pl.= /02— (b/2)* and p}, = \/t%—(a/2)* are the distances to the vertex from the

aperture in the E- and H-planes, respectively. Eq. 4.23 specifies that the length of the horn
flared section should be the same in the two orthogonal planes. When all quantities are
expressed in terms of one aperture dimension only (in this case, a). Eq. 4.23 results in a
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quartic polynomial for which in this case there is only one solution of interest (i.e. real solu-
tion and 0 < ay, < a). This solution is expressed as follows:

(2
a:\/A1+A2—W+%W, (4.24)

where ¢ =((G.4%)/g1)(a1/B,), A1=\/A§+3(U+(P/U))2, Ay =(U-(P/U))+ (d%/8)

1/3
and U=‘Q+\/Q2+P3’ L P=(c/12)(((G,22) /g1) - (awbw/4)), Q= (c3/128)(a2(B,/
ar)=b%), g1=2x, a; =6x/k and B, =4z /k.
2. Calculate the remaining horn parameters in Figure 4.3 from b= (G,AZ) /814, ly=ad* [,

te=b /Py, piy =/ B~ (b/2)%. ply =/ G~ (a/2)? and h=p}y(1-ay/a).

3. Refine the design as required with your favourite horn analysis software to take account of wall
geometry effects over the required bandwidth to obtain the desired pattern and input match.
Example: A standard gain X-band horn is to be designed using the procedure described
above. A maximum gain of 22.6dBi is required at 11 GHz. The input waveguide has
dimensions a,, =2.286 cm (0.9 inch) and by, = 1.016 cm (0.4 inch). A solution can be found
to Eq. 4.23 as a = 16.563 cm from which it follows that b = 12.988 cm, £ = 30.949 cm, £, =
33.553 cm, pf; = 30.260 cm, pf; =32.514 cm and h =28.027 cm. The computed E- and H-
plane patterns of this antenna design are given in Figure 4.4. The gain computed from
Eq. 4.22 is 22.62 dBi.

——E-plane
— — H-plane

Power (dB)

10 20 30 40 50 60 70 80 90
Angle (°)

Figure 4.4 Principal plane patterns of a pyramidal horn (a =16.563 cm, 5 =12.988 cm,
h=28.027 cm, a,,=2.286 cm, b, =1.016 cm) at 11 GHz
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Although SGHs maximize gain for given aperture dimensions, there is no guarantee
of the quality of the radiation pattern. High sidelobes may occur and, in addition, the peak
field may not be on axis (i.e. §=0°). Other horns such as smooth wall and corrugated conical
horns to be discussed in the next section have similar maximum gain conditions. In some
applications maximum gain is less important and emphasis of design is on pattern shape,
sidelobes, etc. One example is when horns are used as feeds for reflectors. Then the aim
is to illuminate the reflector efficiently and to minimize power loss due to spillover at
the reflector edge (see Section 6.2.2). To achieve this, the pattern should have low sidelobes
and the skirt of the pattern should decrease rapidly at the reflector edge. Efficient feeds for
parabolic reflectors include rectangular, circular and corrugated waveguides as well as their
more directive flared counterparts. Feed design for reflectors is discussed in Chapter 9.

4.3.2 Dielectric-Loaded Rectangular Horn

In some applications it is advantageous to have identical E- and H-plane patterns. This is not
possible with a conventional pyramidal horn because of the difference in the aperture field dis-
tribution in the two principal directions, namely, uniform and cosine distributed. However, by
placing a dielectric on the walls in the E-plane, the field can be made more uniform albeit over a
limited frequency range (Tsandoulous & Fitzgerald, 1972). This type of horn is illustrated in
Figure 4.5. The introduction of the dielectric leads to a set of hybrid modes in the horn where
both longitudinal (in the direction of propagation) field components are present. In the dielec-
tric-loaded waveguide, mode sets can be identified that can be either TE or TM to the surface of
the dielectric that is, the x-direction in Figure 4.5. The component of field either E, or H, are
zero. Hence the modes are referred to as TE, or TM,, respectively. An alternative terminology
is to refer to these modes as either longitudinal section electric (LSE) or longitudinal
section magnetic (LSM). The interested reader should consult the references for further details
(Collin, 1960; Harrington, 1961).

]

2

oy

Region 2

€r2

@
/

Figure 4.5 Dielectric slab-loaded pyramidal horn
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The slabs in regions 1 and 3 have a thickness d and a dielectric constant €., while region 2,
between the slabs, has width 2w and dielectric constant &,,. With the identification of the fun-
damental mode and its field distribution, an aperture field representation can be constructed in
the same way as for unfilled pyramidal horn. The fundamental mode is the LSE;y mode. The
transverse electric field of this mode is

EV =E,C, sin (kl (gm)); —ngs—w (4.252)
EP) =E, coskyx; —ws<xs<w (4.25b)
Ey3> =E,C, sin (k1 (; —x)); w<x< g, (4.25¢)

where C, = cos (kow)/ sin ki d pertains to requiring continuity of the field at |x| = (a/2—-d) =w.
The wavenumbers in regions 1 and 2 are

ki =+/K2e; -2 and k = /K2en—72,

where y is the propagation constant. The LSE;y mode propagation constant varies with fre-
quency that is governed by the transcendental equation

k> tan kow =k cot kid. (4.26)

The roots may be found by means of conventional root finding techniques such as Newton—
Raphson (Froberg, 1974). A good approximation to the propagation constant for LSE,,,,, modes
can be obtained from a perturbation formula derived from an approach provided by Gabriel and
Bodwin (1965). This formula can been applied to many different types of dielectric-loaded

waveguides and is expressed as
. 3 ” d5Dq (e~ 1),
(}/)2_1_(]{<0)> + i=1 s
k /e ” dS®d, @,
S
where €,4; is the relative permittivity of region i (i=1, ..., N), N is the number of dielectric

regions, @, is the first-order trial field solution and k) is the approximation to the wave number
that occurs as in the solution to the wave equation Vfd)o + k(zo)CI)0 =0. Another possible

(4.27)

approach is to use a variational expression as described by Berk (1956). In the present case
of slab-loaded waveguide, to find the propagation constant of the LSE,,, mode select the trial

functions ®, = E, = E,, sin (mzx/a) cos (nzy/b) and k(o) = \/ (mr/a)* + (nz/b)” as these corre-
spond to related quantities of empty waveguide and can be expected to have the desired phys-

ical properties. After carrying out the required integrations in Eq. 4.26, an approximation to the
propagation constant is

S R I 2 W= N =
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where it has been assumed that ¢;, = 1. Eq. 4.28 can be used directly or as an estimate for Eq. 4.26
to obtain a more accurate answer. As an example, a rectangular waveguide with aperture dimen-
sions 6.1 cm x 6.1 cm has dielectric slabs lining the E-plane walls (region 1 as in Figure 4.5). The
slab thickness is d = 4.1 mm and dielectric constant is &, =3.07. At a frequency of 12.5 GHz,
Eq. 4.28 predicts y =2.5795 rad/cm while the exact result obtained from Eq. 4.26 is y =2.61302
rad/cm. The error in this example is typical of what is achieved.

When the wavenumber in region 2 is zero, that is, k, = 0, the field in central region is uniform.
From Eq. 4.25, this occurs when

d= A (4.29)

4\/ Er1 —€n

and where y =k, /en.

A quadratic phase function can be applied to the LSE;; mode field as in Eq. 4.13a to model a
flared horn except that this time the phase factor is exp (—j(y/2) ((x*/p}) + (v*/p})))- In addi-
tion, on this occasion, it is assumed that the aperture is located in a large ground plane. The
result, using the same notation as used for Eq. 4.5, is

Jjk eIk
Ey(r,0,¢)= . Ny(u,v)sin ¢ (4.30a)
T r
jk e
Ey(r,0,¢)= Z—TNV(M,V) cos 0 cos ¢, (4.30b)
o )

where on this occasion Ny(u,v)=1I(v)I,(u). The function /,(u) is a result of the integration
over the y-co-ordinate in the aperture, which transforms a uniform field and is identical to
Eq. 4.17 except for some changes of notation. That is,

b= e ) () s

SE SE 2 SE

where sg = /y/2p}. Similarly for the H-plane let sy = +/y/2p},. The second integral for the
function in u can be shown to give

+

"2 (4.32)
=jCo (e (FY (=)= FO (=) ) + e (FO )= FO w)) ),

L) = —— [F@) () + FO (=) + F (u) + F) (~u)

where
P = exp (00 0 (00 )

(1o (5 + o w)) w6 (s (=l @)
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and

F@(u) = exp (j(sHaf)(u)y) (IC (SH (g +a<t2)(u)>) +7C(SH (w—a(iz)(u)))),

where a¥ (i) = (ru=k;/2) /53,
At the condition for uniform field in the aperture as specified by Eq. 4.29, the maximum gain
of the slab-loaded horn is given by

Gmax=”(j—fd) [kw (1+v2v—‘j[)]2. (4.33)

As an example of the radiation patterns obtained by slab loading a pyramidal horn, Figure 4.6
shows the results in the H-plane at 12.5 GHz of one of the horns pictured in Figure 1.1c. The
horn has aperture dimensions a=»b=61.0 mm and a height of #=23 cm. The input is WR-90
waveguide with dimensions 1.16 cm x 0.95 cm. Tapered dielectric slabs with &, =3.07 and loss
tangent tan 0=0.005 were placed on the narrow (E-plane) walls where the thickness varies
linearly from zero up to the required thickness of d =4.1 mm over about 60% of the tapered
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Figure 4.6 H-plane radiation pattern of a dielectric-loaded pyramidal horn at 12.5 GHz.
Aperture dimensions ¢ =6.1cm, b=6.1cm, d=0.41 and &,; =3.07
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wall to give a uniform aperture field at a frequency of 12.7 GHz. The measured results at 12.5
GHz are in good agreement with the predictions given by Eq. 4.30 although the impact of the
taper is seen by the slight discrepancy. The dielectric taper has to be sufficiently long to ensure
that the sidelobes agree with the theory. The gain at this frequency was measured and found to
be 17.89 dBi. This compares with a computed gain of 18.12 dBi obtained from Egs. 4.30a,
4.30b,4.31 and 4.32. The difference in theory and experiment is due mainly to dielectric losses,
which were estimated to be 0.17 dB. This loss in the dielectric slabs as well as the adhesive used
to fix them to the side walls can be a cause of significant loss, which may preclude the use
of dielectric-loaded horns from some applications where gain is at a premium (e.g. satellite
communications) unless a low loss dielectric with suitable properties can be found. The mis-
match due to the dielectric loading is relative small for dielectric placed on the walls parallel to
the E-plane as in this case (Bird & Hay, 1990).

4.4 Circular Waveguides and Horns

Antennas radiating from circular waveguides and horns find application in communications,
radar and radio astronomy as feeds for reflectors, as reference antennas or for microwave links.
Their geometrical symmetry and low cross-polarization are important factors in their wide-
spread use. Examples of this type of antenna are illustrated in Figure 4.7.

Figure 4.7 Circular waveguides and horns. (a) Circular waveguide; (b) circular waveguide
with parasitic ring; (c) coaxial waveguide; (d) coaxial waveguide with extended central conductor;
(e) conical horn and (f) corrugated waveguide
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Circular waveguide (Figure 4.7a) is an efficient feed for moderately deep reflectors, and it
has almost equal E- and H-plane patterns (pattern symmetry) for pipe diameters in the range
0.7-1.2 wavelengths depending on the size of the flange. Higher efficiencies are possible with
the addition of parasitic rings as shown in Figure 4.7b. Coaxial waveguide, Figure 4.7c, has
potentially greater flexibility in available radiation patterns due to the extra degree of freedom
provided by the internal conductor. However, a large mismatch occurs at the aperture when the
ratio of inner to outer conductor radii is greater than about 1/3. Figure 4.7d shows a self-
supporting rear-radiating coaxial waveguide (‘tomato can’) feed for a reflector. Here the inner
conductor that extends all the way to the vertex of the reflector allowing the feed to be driven
from a transmission line in the centre conductor. Flaring a circular waveguide produces the
conical circular horn shown in Figure 4.7e. Finally, the waveguide and horn side walls may
be corrugated or covered with an anisotropic surface or material. This structure may be flared
as in Figure 4.7e. With corrugations, when the depth of the corrugations, d, is about /4, almost
pure polarized radiation patterns result. In this section, various circular aperture horns will be
discussed and particularly those shown in Figure 4.7.

4.4.1 Circular Waveguide

The smooth wall circular waveguide Figure 4.7a antenna is usually excited in its funda-
mental TE;; mode. The transverse fields of this mode in cylindrical polar co-ordinates

(p, ¢, z) are

J kc ~ . —if3
E=E,|p IIE ) cos ¢ — @ J; (kep)sin | e, (4.34a)
P
Ht = YW szt, (434b)

where k.a=1.84118 is the cut-off wavenumber of the TE;; mode in a circular waveguide of
radius a, Y,, is the mode admittance and f is the propagation constant. The properties of the
Bessel function, J,(x), and its first derivative, J (x), are summarized in Appendix B.

Assume that the TE;; mode is the only one produced in the aperture. Coupling at the aperture
will generate other modes, but their effect on the radiated field is usually of second-order except
close to cut-off. Expressing the field components in rectangular co-ordinates and making use of
Bessel function recurrence relations for J,,(z)/z and JI’,(z) given in Appendix B, the aperture
fields at z=0 are expressed as follows:

E . . .
E.=— [0 (kep) + J2(kep) cos 2¢p + 372 (kep) sin 2¢)], (4.35a)
H,=7, :xE,. (4.35b)

Unlike the TE, mode of rectangular waveguide, the TE;; mode has both x and y field com-
ponents and, therefore, so has its vector transform. Eq. 4.35 and Figure 4.8a indicate that the
principal aperture field polarization is x-polarized, the y-component has non-zero values away
from the principal planes (¢ =0,z and ¢ = +7/2).
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(b)

Figure 4.8 Electric and magnetic fields in (a) smooth wall circular waveguide and
(b) corrugated waveguide. Solid curve: electric; dashed curve: magnetic

To determine the radiated field for circular waveguide using Eq. 3.30, the transforms N,
Eq. 3.24a, are required. To evaluate these integrals that involve Bessel functions use is made
of Egs. B.3 and B.5. From these equations,

- 721an keJy (kea)Jo(wa)—wly(kea)Ji (wa) ] (4.36a)
ks - —cos 2¢p (W (kea)J1 (wa) —keJy (kea)Jo(wa))
Ny = kz" sin 2¢p[wis (kea)J; (wa) —keJ, (kea)J>(wa)), (4.36b)

where w =k sin 6. Substitute Eq. 4.36 into Eq. 3.20 and, by means of Bessel function recurrence
relations, the far-zone fields are found to be given by

jkaE,e ™" ~fkr B Ji(kea)Ji (wa)
Eo(r,0.0) =05 s¢<1+ “c 9) e (4.37a)
jkr !
Ey(r.0.4)= ]]“;E e’ 1n¢(ﬁ + cos 9)11 (ke )k;;l_(zj). (4.37b)

Comparing Eq. 4.37 with Eq. 4.5 it is seen that J,(wa)/wa and J| (kca)/(k?—w?) perform
corresponding functions as S(kb sin 6/2) and C(ka sin 6/2) do in the principal planes of rectan-
gular waveguide. Plots of the E- and H-patterns are shown in Figure 4.9 for several different
waveguide radii.

The power radiated by the TE;; mode is

PT:E?,ﬂcﬂéjz(kca) (1_(1_2) (4.38)

4’70 k : kca)

From Eq. 3.48 the maximum gain is
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Figure 4.9 Radiation patterns of circular waveguide (E—H field model). The radius of the
waveguide is a parameter

(1/2) (ka)* (1+ (B/k))° (k/P)
[(kca)z—l}

Gunax = . (4.39)

At frequencies well above cut-off, f~k and Eq. 4.39 simplifies to

Gmax =0.837 (ka)?,

which corresponds to an aperture efficiency of 83.7%.

Equations 4.37 approximate the field components of radiated by a thin wall waveguide that has
no currents flowing on the outside wall. This is because they were derived for an aperture containing
both electric and magnetic currents, which in turn are governed by both the electric and magnetic
fields. Asaresult, Eqs. 4.37 are referred to as the E—H field model. In practice the wall currents have
asignificant effect on the radiation pattern. This model contrasts with an exact solution (Weinstein,
1969) which is obtained with the Wiener—Hopf method that has external currents on an infinitely
thin waveguide wall. To demonstrate differences due to changed aperture conditions, consider a
circular waveguide that is terminated in an infinite ground plane. The radiated field in this case is
obtained from Eq. 3.26, and where N, and N,, are given by Eq. 4.36. Thus,

—jkr
Eolr,0,) = jkEyC—— cos 7" (IZW) Ji(wa) (4.40a)
r

¢ wa

—jkr kc]/
¢ sin ¢ cos 0 (kea) =~ (wa)

Ey(r.0,¢) = —JKkE, ; kg——wz

(4.40b)
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Figure 4.11 Effect of flange on circular waveguide radiation patterns

Because Eq. 4.40 was determined from magnetic currents, and hence electric field in the
aperture, they are sometimes referred to as the E-field model.

Comparing Eqgs. 4.37 and 4.40, the effect of the ground plane is to only change the Huygens’
factors. The 6 dB half-beamwidth (half the angle between the 6 dB points of the pattern) of the
E- and H-plane patterns is given in Figure 4.10 for both models. In Figure 4.11, the E- and
H-plane patterns are plotted for a waveguide of radius @ =0.374. Also shown is the computed
pattern for the same pipe but this time terminated in a finite flange (as shown in Figure 4.1a) of
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Figure 4.12 Matching techniques for circular apertures. (a) Irises and (b) stepped sections
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Figure 4.13 Radiation from a coaxial aperture in a ground plane. The 12 dB half-power beamwidth
is plotted versus normalized frequency given as a function of a/b. Solid line: E-plane; dashed line: H-plane

radius 1.374. These last results agree quite well with measured results. They were obtained using
an E-field model in conjunction with the geometrical theory of diffraction (James, 1986) to take
into account the effect of the finite flange. In Figure 4.12, it is observed that the E—H field model
gives a reasonable approximation to the E-plane pattern but not so in the H-plane. On the other
hand, the E-field model approximates the E- and H-plane patterns quite well. These conclusions
are fairly typical of the methods described here.

4.4.1.1 Matching at a Circular Aperture

Well above cut-off, circular waveguides and horns have an inherently low reflection coeffi-
cient, which may be sufficient for many applications. Better matching may be required
in more demanding applications such as for low noise and broadband operation. Two basic
methods are employed for improving the match at a circular aperture, and these are
illustrated in Figure 4.12. Most techniques are axially symmetric to ensure the matching does
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not increase cross-polarization. The first approach is to use several circular irises of varying
depth from the inner wall into the centre of the circular pipe, annular windows or annular
rings. The iris provides a mainly capacitive reactance and for small hole radii, 7, and thickness
t << A, relative to the guide wavelength. The susceptance for when the TE;; mode only propa-
gates, that is, 1.841 <ka <2.404, is approximately given by (Marcuvitz, 1986)

Yy [ 1.995
B o (W—3.666>, (4.41)

where f is the propagation constant of the TE;; mode and Yy, is the wave admittance. This
expression is only approximate and has best accuracy for frequencies close to TE;; cut-off
and at higher frequencies when r/a <0.5. For more accurate design, computer programs such
as mode matching should be used.

A second approach is to introduce a series of steps of different length and height as shown in
Figure 4.12b. This approach enables matching over a broad frequency band. The availability of
computer packages allows accurate analysis of the structures chosen for matching. For broad-
banding a design, a computer simulator is required, preferably one with an optimizer. One
approach that has proved especially effective in waveguide is the mode-matching method. This
is described in a following section.

The traditional approach was to interpolate the susceptance from curves generated from
measurement (e.g. Marcuvitz, 1986) or computed results (e.g. James, 1987; Sharstein &
Adams, 1988). These data provide an estimate of the available susceptances for matching.
The same can be done with Eq. 4.41. An approximate formula for the admittance of a circular
aperture is given by Eq. 7.88. To proceed with matching using a Smith chart, locate the aper-
ture admittance for the waveguide dimension and operating frequency on the chart. Move
back from the aperture towards the source to cancel out, or partly cancel, the susceptance
shown with an iris of selected dimensions. The first iris aims to allow the transfer by rotation
of this cancelled admittance to a location where a second iris is able to further transfer the
resulting admittance close to the centre of the chart to achieve a good match. By judicious
choice of the iris susceptances, it is possible to obtain a trajectory on the Smith chart that
is insensitive to frequency so as to achieve a moderate bandwidth. This design should be
checked by trial and error.

4.4.2 Coaxial Waveguide

The coaxial waveguide illustrated in Figure 4.7c¢ is particularly useful as a feed for a reflector
with a short focal length, and it potentially has the additional flexibility of a central conductor
which can be used for self-support. For convenience, the inner conductor radius is defined here
as a and the outer conductor radius is b. Shorted coaxial apertures are also used in the flange
of a circular waveguide to improve the pattern symmetry and reduce cross-polarization (see
Figure 4.8b). An advantage of coaxial waveguide antennas that operate predominantly in
the TE|; mode is that the beamwidth is broader than the equivalent open-ended circular wave-
guide radiation. This characteristic can be achieved also with excellent pattern symmetry and
low cross-polarization, all of which are important for many applications. For example,
TE,;-mode coaxial waveguide antennas can be used as a single feed or array element for
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reflectors with short focal lengths and also as an element in closely spaced directly radiating
arrays for radio astronomy (see Section 10.3.3). In multibeam feed applications, the TE;;-mode
coaxial waveguide antenna has the advantage that the outer diameter is smaller than equivalent
circular feeds that use external choke rings or set-back flanges to achieve wide beamwidth and
pattern symmetry.

There are some significant differences with circular waveguide, however, caused principally
by the central conductor. The first difference is that the fundamental mode, the TEM mode,
does not radiate very well but is strongly reflected from the open end. The mode that is used
for antenna applications is the TE;; mode, and the cut-off and field distribution is very similar
to the TE;; mode of circular waveguide, which is the limiting mode when the radius of the
central conductor becomes small. The field distribution of the TE;; mode of coaxial waveguide
is similar to the one for circular waveguide except that now the central field lines curve to
accommodate the additional boundary condition on the central conductor. As a result, the prop-
erties of the radiation pattern are different as shown in Figure 4.13. The width of the H-plane
pattern tends to narrow as the radius of the centre conductor increases. This means that there is
thus an optimum range of conductor radii in which the E- and H-plane patterns are similar.

The radiation pattern of the TE;; mode of coaxial waveguide can be obtained in the same
way as for circular waveguide. The electric field of the TE;; mode in coaxial waveguide at z=0
is expressed as

Zl (kas kca)

‘o cos (p—y) —pZ, (kep,kea) sin (p—y) |, (4.42)

El(p?¢) =A11 :5

where H, = Y,z X E;, y is the reference phase angle relative to the initial line (x-axis) and the
function Z,(x, y) is a compound Bessel function that is defined in Appendix B. A prime on this
function indicates the first derivative with respect to the first argument. It also has the property
that as the second argument approaches zero, then Z,(x,y) ’ =J,(x). Thus, Eq. 4.42 reduces
to Eq. 4.34a in the limit of zero centre conductor radius. The cut-off wavenumber k. of the TE,,,
modes is given by Z| (k.b,k.a) =0. A useful approximation to the cut-off for small inner con-
ductor radii is

y—0

2
keb T (4.43)

In rectangular components, the aperture field of a coaxial waveguide is

Aul X(Zo(kep,kea) + Zy (kep,kea)) cos (2p—y)

E.(p. ¢
9 2 + 37, (kep,kea) sin (2¢p—y)

(4.44)

In many applications, the coaxial waveguide will have a flange or thick wall. Therefore, in what
follows it will be assumed here that the coaxial aperture terminates in an infinite ground plane. By
means of Egs. 3.26, it can be shown that the far-zone fields of coaxial waveguide are

e 7, (keb,k.a) J; (wh)
r

Eg<7,9,¢) ijbA“ X wh

cos(p—y), (4.45a)
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—jkr k J/ b
e 7 (kcb,kca)w

Ey(r,0,¢)=—jkbA
(.b(r’ ¢) ] 11 r kg_wz

cos Osin (p—wy). (4.45b)

These equations are similar to Eq. 4.40 and are identical in the limit as ka — 0. However, for
the coaxial case there are significant differences as will be described in the following.

The radiation properties of the TE;; mode from coaxial waveguide in a large ground plane
are summarized in Figures 4.13 and 4.14. The former shows the half-angle between the beams
at the 12 dB level as a function of the normalized frequency kb with the inner to outer conductor
ratio a/b as a parameter, while the latter shows the maximum cross-polar level in the 45°-plane.
The 12-dB semi-angle in the H-plane is approximately 65124 = —10 (kb) +92 degrees. For a
given outer conductor radius a there is always a frequency at which the 12-dB semi-angle is
identical in the E- and H-planes. At frequencies below the optimum kb for pattern symmetry,
the E-plane 12-dB semi-angle is greater than 8,4, and when the frequency is above the opti-
mum kb, the E-plane 12-dB semi-angle is smaller than 0y,45. At the frequency for pattern
symmetry, the E- and H-plane patterns are almost identical over the main beam and, therefore,
low cross-polarization is obtained. The frequency where the minimum of the cross-polar pat-
tern occurs is kb~ 1.25(a/b)*~3.3(a/b) +3.6. Figure 4.15 also shows that the level of the
cross-polar maxima increases with increasing a/b.

As a first example, suppose an application at 1.5 GHz requires a 12 dB beamwidth of 140°.
From Figure 4.13, it is estimated that this beamwidth could be achieved with kb=2.05 and
a/b=0.6. For this choice of parameters, the peak cross-polarization level from Figure 4.14 will
be approximately —30dB relative to the peak co-polar level. Thus, at the specified centre
frequency, the outer conductor radius should be 65.2 mm, while the inner conductor radius
should be 39.1 mm.

As a second example, consider the radiation patterns in the 45° plane of a coaxial waveguide
with a large metallic flange that are shown in Figure 4.15. The antenna is required to operate ata
frequency of 4.5 GHz (i.e. ka=2.54), and for this the outer conductor has a radius b=2.7 cm
and a centre conductor radius of a =1.44 cm. Figure 4.15 shows that at this frequency and for
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Figure 4.14 Maximum cross-polarization level radiated by a coaxial aperture in the 45° plane
versus normalized frequency as a function of a/b
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Figure 4.15 Principal plane radiation patterns in the 45° plane of a TE;; mode coaxial waveguide
at 4.5 GHz. The aperture dimensions are =27 mm and a =14.4 mm. Solid line: theory; dashed
line: experiment

the selected waveguide dimensions the peak cross-polar level is about —22 dB, which is close to
the level predicted in Figure 4.14.

It is important also to understand some of the basic radiation properties of the fundamental
TEM mode. This mode radiates poorly as the aperture is not well matched to free-space and the
radiation efficiency is low. The transverse electric field distribution of this mode is

Eu(p) = “ P rcos (=) +Fsin (=) (4.46)

The reflection coefficient of this mode at the end of the waveguide is

1-
'~ YTEM ’
1+ ytEM

where

1 J ©dw
T nb/a) o Wi/
for the aperture radiating into free-space. When the conductor radii are small in terms of the

wavelength, that is, a,b/A<<1, then the Bessel functions can be replaced by series which
can then be integrated term by term. The resulting normalized admittance is (Galejs, 1969)

(Jo(kbw) —Jo (kaw))* (4.47)
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(kD)* (kD)*\ kD 8D\ 1 2
360 (1_T> */ 60 (1“ ((b—a)) N §<"D)2>

where Y.=2z[n,In(b/a)]”" is the characteristic admittance of the coaxial line and
D=(b+a)/2. Typically, the value of yrgy is such that the reflection coefficient is very close
to unity as the admittance value is quite small. This is due mainly to the abrupt termination of
the current on the inner conductor at the aperture.

The far-field radiation pattern due to TEM mode in infinite ground plane is

yrEM~ Ye , (4.48)

Eg =kETEM

i) [t )4 sin) (4.49)

ksin @
E;=0.

The pattern given by Eq. 4.49 is omnidirectional and has a null on axis at & =0. This can be
easily seen from the Bessel function series for small arguments. As sin § — 0, the factor in the

square brackets approaches (—b/4) (1 —(a/ b)4> (kbsin6)*.

4.4.2.1 Matching of a Coaxial Aperture

The coaxial waveguide modes have a significant mismatch at the aperture. As described above,
the fundamental TEM mode is the worst affected, while the other modes are only well matched
over a relatively narrow band of frequencies. Extending the conductor into free-space improves
the match somewhat but this tends to narrow the beamwidth in the H-plane. Several common
methods are normally used for improving the input match of TE;;-mode coaxial waveguide
antennas, such as tuning screws and irises. The latter approach is especially effective as broad-
band matching is possible through a combination of ‘inductive’ and ‘capacitive’ irises
(Bird et al., 1986) as shown in Figure 4.16. An inductive iris is achieved in coaxial waveguide
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Figure 4.16 Matching the aperture of a TE;; mode coaxial waveguide antenna
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Figure 4.17 Rear-radiating feeds. (a) dipole and disk fed by coaxial cable (after Silver, 1946);

(b) the same with ring backed by a small reflector; (c) waveguide excited cup feed with ring-slot
(i.e. annular ring) flange (Poulton & Bird, 1986); (d) waveguide with radiating slots (Cutler, 1947) and
(e) hat feed (Kildal, 1987)

by an iris that extends down from the outer conductor producing a gap between the inner con-
ductor and the inner diameter of the iris (Iris 2 in Figure 4.17). Conversely, a capacitive iris (Iris
3 in Figure 4.16) is produced by extending the iris upwards from the inner conductor leaving a
gap between the outer conductor and the outer diameter of the iris. This simple matching
method using two irises can achieve a 20 dB return-loss bandwidth of about 30%. It has been
found that the method is most effective when a/b < 0.35. The method to be described is based on
two simple concepts: (i) alternate capacitive and inductive irises extending back from the aper-
ture and (ii) step the inner conductor diameter at the aperture down to moderate value so that
(i) can affect a broadband match. The matching method is illustrated in Figure 4.16. The thick-
ness of the iris is assumed to be 7 <<b.

Assuming a coaxial aperture with a/b < 0.3, the approach using two irises is easily explained
with the aid of the Smith chart. The admittance presented by the iris-aperture combination fol-
lows a clockwise trajectory on the Smith chart with increasing frequency. The first length of
waveguide from the load to the source, 515, should transfer the aperture admittance so that it lies
inside the unit conductance circle with the real part in the vicinity of 1.5-2 and the imaginary
part (y;) is positive. The inductive iris (Iris 2) is chosen to approximately cancel the imaginary
part of the admittance (y;) at the centre frequency. The second length of waveguide, s,3, trans-
fers the admittance to the unit conductance circle with a negative susceptance (y,). The final
capacitive iris (Iris 3) is chosen to cancel the negative susceptance (y,) and to bring the locus
near to the centre of the Smith chart (i.e. y3~1 +j0).

For larger inner conductors, a third iris (Iris 1) is placed at the aperture to improve the match
but this is usually possible only over a narrower frequency band. The approach described above
for a/b < 0.3 is then used to match the iris at the aperture as illustrated in Figure 4.16.

It has been found that Iris 3 influences the low end of the frequency band. If the susceptance
of Iris 3 is increased, the bottom end of the 20 dB band moves lower in frequency, while if the
susceptance is decreased, the bottom end of the band moves higher. The radius a; has a similar
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Table 4.1 Two iris matching of TE;; mode coaxial waveguide

alb 0.3 04 0.5 0.6 0.7
Centre frequency (kb) 2.73 2.46 2.24 2.05 1.92
$12/b 0.585 0.526 0.457 0.398 0.300
ax/b 0.495 0.463 0.430 0.390 0.356
$23/b 0.300 0.199 0.184 0.182 0.205
as/b 0.419 0.486 0.572 0.662 0.729
tb 0.07 0.07 0.07 0.07 0.07
aolb 0.3 03 0.3 0.3 0.3
% bandwidth 25.6 19.5 17.4 12.6 9.0

effect. If the length s, is reduced, the upper-band edge increases, while if s;, is increased, this
frequency reduces. The spacing s,3 has an effect on the level of the mid-band reflection coef-
ficient. If 5,3 is reduced, the mid-band level increases, and when s,3 is increased, the mid-band
level reduces. A slight displacement of the band occurs also with a shift towards lower frequen-
cies as s,3 is reduced. Table 4.1 lists the combination of lengths and iris dimensions to achieve a
broadband match at coaxial apertures with various ratios b/a. The percentage bandwidth is also
shown in each case.

4.4.2.2 Coaxial Apertures with an Extended Central Conductor

A coaxial aperture from which the inner conductor extends outwards far beyond it (Figure 4.7d)
has several important applications. It can be used as a prime-focus feed that is self-supporting
from the vertex of the reflector, or it can be used as part of a probe in medical applications. In the
first example, strut blockage can be eliminated while in the second the centre conductor may
support another instrument such as a hypodermic needle. Several types of rear-radiating feed
are shown in Figure 4.17. One configuration uses a cup at the end of the central circular con-
ductor. Resonant slots, dipoles or a waveguide in the cup are used to excite an annular aperture
principally in the TE;; mode. The design of a rear-radiating feed may be considered in two
independent stages, namely, (i) the transition from the central transmission line support to
the radiating element and (ii) radiation in the presence of the central conductor. It is usually
the first stage that sets the various feed types in Figure 4.17 apart and provides the name.
For instance, one of the first feeds of this type is called the Cutler feed. This usually consists
of several radiating slots that are excited from the transmission line by a resonant cavity, which
was invented by C.C. Cutler (1947). A tuning screw can be used to improve the match to the
input. This feed is a very narrowband design. As its appearance can look like a ‘tomato can’, it
sometimes goes by that name as well. A modification to this design uses coaxial waveguide
sections at the back of the cup to improve the match. These sections can be easily designed
to operate over a modest bandwidth (typically 5%). Wider bandwidth can sometimes be
achieved with a TEM transmission line in the centre conductor that is connected to dipoles
in the cup. Another form of a cup feed (Poulton & Bird, 1986) uses waveguide transitions
to achieve matching from a TE;; circular waveguide input to the coaxial aperture.
A simplified picture of the operation of the transition is shown in Figure 4.18. The transition
is potentially capable of bandwidths in excess of 10% with suitable optimization. Importantly,
the symmetry of the transition allows the polarization properties to be conserved. In this
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Figure 4.18 Two mode representation of the cup feed waveguide transition. Source: Reproduced
by permission of The Institution of Engineers, Australia

transition, a TE;; mode incident in the central waveguide will excite TE;,, and TM;,, modes in
the cup region, although the cup diameter is chosen so that only the first TE;; and TM;; modes
propagate. By making a,/b~0.5 and choosing the lengths s; and s, appropriately the sum of
the TE;; and TM; modes in the cup waveguide can be made to approximate the TE;; mode of
coaxial waveguide at the output leading to the aperture. Wideband operation is possible
because the phase velocity of the TE;; and TM;; modes are approximately the same in the cup.

Another successful design is the Kildal hat feed (Kildal, 1987). This uses a circumferential
aperture instead of transverse apertures as for the Cutler feed. The brim of the hat is a smooth or a
corrugated flange, and further improvement is achieved using a number of axial slots placed
symmetrically around the waveguide between the aperture and the flange (refer to
Figure 4.17d). The bandwidth of operation depends on achieving wideband coupling from
the central waveguide to the aperture and various methods are used in practice.

The predominant radiating mechanism of most cup feeds is due to the TE; coaxial wave-
guide mode that is created in the cup. This mode radiates through slots or from the waveguide
aperture itself in the presence of the supporting central conductor. The radiation from an annu-
lar aperture is shown in Figure 4.19. It shows a coaxial waveguide with an infinite flange and a
central conductor of infinite extent. In the region z > 0, the radiated field is equivalent to that
produced by an annulus of magnetic current transverse to the axis of the central conductor. The
electric field radiated from the coaxial waveguide aperture in the presence of the conductor is
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(b)

Figure 4.19 Radiation of a coaxial waveguide aperture terminated in an infinite flange
with central conductor of infinite extent. (a) Original problem and (b) equivalent
representation. Source: Reproduced by permission of The Institution of Engineers, Australia

E(r,0,¢)= ” I .-mads, (4.50)

where it is assumed the aperture is located in an infinite conducting plane and M =2E, x 7 is the
magnetic current on the aperture. The quantity I_“<"’) is the Greens dyadic for the electric field,

and this corresponds to a solution for an infinitesimal magnetic source in the vicinity of an infi-
nite cylinder, the central conductor. Sums of TE and TM coaxial modes can be used to approx-
imate aperture fields in a annular aperture. Rectangular slot apertures can be treated the same
way with rectangular mode functions. For coaxial modes, the orthogonality of the sinusoidal
azimuthal functions ensures that a mode with an azimuthal period p couples only to modes with
the same period. Thus, TE,,, and TM,,,, modes incident on the aperture excite only TE,, and
TM,,, modes at the aperture, where integers m and n can be same or different.

A far-field approximation to Eq. 4.50 can be obtained for the TE and TM modes for the geom-
etry shown in Figure 4.20. For the TE,, mode, which is the m-th modal contribution of the
radiated field (e.g. m=1 corresponds to TE,;), the radiated fields are given by Bird (1987)

kr)

Ey(r0.) ~ Coi”p p( M, (ksin0,b,a)

cos(Ph=¢o) 1 sina

(4.51a)

k2L, (k sin 6.b,
E¢(r,9,¢)~-cmk1’eXp( )sm(p(/) o) cos 6 gkl (K sin 0.b.a) s 2“), (4.51b)
k2, —(ksin®)

where C,, is a constant, ¢, is the polarization angle relative to ¢ =0, k,,, is the cut-off wavenum-
ber of coaxial mode m (given approximately by Eq. 4.27). The remaining two functions M,,, and
L,, are defined by
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Figure 4.20 Radiation from a coaxial aperture with an extended centre conductor

Mm(é’x»y) = [Zp(kmx’kma) (fx §a0) ( mys ma) (5}}’5‘10)]

=

1
Lm(f,X,y) = k— [xzp(kinxakma) (gx éao) ( mys ma) (é:yvéao):|

where q, is the radius of the central conductor, which, in general, is different from the inner
conductor radius of the aperture a. The functions U,,(x, y) and V,(x,y) are compound Bessel
functions and are defined in Appendix B. A prime on these functions indicates the first deriv-
ative with respect to the first argument. When the external conductor becomes small, that is,
a,— 0, U,(x,y) — J,(x) and similarly V,(x,y) — J,(x). Thus, Egs. 4.51 are generalizations of
Egs. 4.45 for the TE;; coaxial waveguide (p = 1 =m). The functions M, L, U and V all include
factors that take into account the external conductor. Furthermore, as a, — 0 the expressions
reduce to the those for an empty circular waveguide.

Compared with the radiation from circular or coaxial waveguide apertures, the presence of
the external central conductor increases the beamwidth in the E-plane and at the same time
reduces the H-plane beamwidth. The phase centres are widely separated in the principal planes,
and cross-polarization is quite high. For cross-polar levels less than —20 dB, the central con-
ductor radius a=0=a, should be kept relatively small, typically kb>2.5 and a/b<0.3.
A cup feed that s excited by circular waveguide requires ka,/e, < 1.85, where ¢, is the dielectric
constant of the material in the centre of the waveguide, which is required to ensure propagation
occurs. To use the stepped waveguide transition, the inner—outer conductor diameter should be
about half the outer conductors’, that is, a/b~0.5 and correspondingly kb >3.9/, /€. For this
range of parameters, the H-plane beamwidth is relatively narrow. This means the best gain with
areflector is achieved with f/D ~ 0.45. When the surrounding flange is finite, diffraction from
the rim can be used to improve the radiation performance. The dependence of the beamwidth
and peak cross-polar level on the flange diameter can be predicted by methods such as GTD
as shown in Figure 4.21. These are compared with some measured results. The addition of a
coaxial ring slot in the flange, which is excited by parasitic coupling from the main aperture,
improves the radiation performance over a narrowband (typically 8%).
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Figure 4.21 Computed beamwidth in the principal planes and maximum cross-polar in the 45°
plane of a cup feed versus flange radius (o) for a coaxial waveguide with extended centre conductor
(b=0.364, a,/b=0.533) shown in Figure 4.14c. The symbols o, x and A correspond to measured values

As an example of the improvements that are possible, Figure 4.22 shows the properties of a
cup feed (see Figure 4.17c) with aperture dimensions given by b =27 mm, a/b=0.533 with a
ring slot as in Figure 4.17c¢ that is located a distance 7= 17.6 mm away with a width w="7.5 mm
and depth d =15 mm. The reflection coefficient of the model (infinite length centre conductor)
obtained from theory is shown in Figure 4.22a along with experimental results for a conductor
length of 4 =990 mm. The radiation patterns of a C-band cup feed in the 45° plane at 4 GHz are
shown in Figure 4.22b with and without a ring-slot in the flange. A 7 dB reduction in the peak
cross-polar level is achieved by having a ring-slot in the flange. Another benefit is that the ring-
slot flange brings the phase centres in the principal planes closer together, which in a feed appli-
cation improves antenna efficiency and reduces aberrations. Adding a second ring slot was
shown to make little further improvement to the radiation performance, although it considerably
reduces the operating bandwidth.

4.4.3 Conical Horn

If a circular aperture is flared into a conical horn as in Figure 4.7e, the spherical wavefront pro-
duced in the aperture can be included in the aperture field by the method described for the pyram-
idal horn in Section 4.3. For a conical horn, the distance from the wavefront to the aperture plane is

1p”
o=-—, 4.52
p'=+/x'* +y? is the radial distance to the source point and L is the distance from the horn

apex to the aperture (see Figure 4.7¢). In this formulation it is assumed that the flared aperture
terminates in an infinite conducting plane. Multiplying Eq. 4.34a by Eq. 4.52 and carrying out
the transformation required in polar co-ordinates that is necessary to obtain the far-field
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Figure 4.22 Characteristics of the cup feed shown in Figure 4.17¢ with =27 mm,

alb=0.533, t=17.6 mm, w="7.5 mm and d =15 mm. (a) Input reflection coefficient — full line:
theory with infinite length centre conductor; dashed line: experiment with 990 mm long conductor

(b) Co- and cross-polar radiation patterns and at 4 GHz — full line, theory with ring-slot flange; short dash
X, experiment with ring-slot and flange (6 = 80 mm); dash & triangle, theory with flange only (6 =33 mm)
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components from Eq. 3.26 in the following approximate far-zone electric fields of a
conical horn:

E, _ JkEye : i cos ¢
{E¢ (r,0,¢)= = > (Qo(ke, ksin 0,k /2L, a) F Qa(ke, ksin 0, k/2L, a)) cos Osin b’
(4.53)
where
On(a.p,y.a)= J In(ap’) T (Bp" sin 6) exp (—jrp’z)p’dp’ (4.54)
0

and k.a=1.841184. Eq. 4.53 is usually quite accurate providing the flare angle, 6,, is less than
about 30°. Eq. 4.54 can be expressed in closed form as shown in Eq. B.6. The conical horn can
be modeled more accurately for general flare angles through the mode matching method as
described in Section 4.5.2. The maximum gain of a conical horn can be obtained from
Eqgs. 3.48 and 4.38 and is

2|(k/a)Qo(ke,0,k/2L,a)

ntkea 107 1= (1 ()|

As an illustration of the results given by Egs. 4.53, the E- and H-plane patterns were calcu-
lated for a horn with a=1.74 and L=3.54. The results are shown in Figure 4.23 along with

Grax =

0 \ 7

H-plane / ! D

-plane
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Figure 4.23 Theoretical (Eq. 4.53) and measured (King, 1950) radiation patterns of a conical
horn of aperture radius a=1.74 and length L=3.51
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some classic measured results (King, 1950). The computed E-plane pattern agrees reasonably
well with the measured data, but the H-plane pattern is slightly narrower at wider angles pos-
sibly due to how the aperture is terminated. The computed gain is 17.53 dBi which agrees well
with the 17.7 dBi quoted by King.

The phase centre of the conical horn is different in the two principal planes due mainly to
the differences in how the aperture fields terminate at the wall. These phase centres has
been computed from Eqgs. 4.53 and 3.46 as a function of the cone angle, 6,. As the phase
is available as a function the phase centre calculation is easily modified to replace the sum-
mations with integrals, so that by Eq. 3.46 the phase centre in the azimuth plane ¢p=¢,
becomes

bi—aib
kz0(¢p) =L120’

ax—aj

where z,(¢,) is the phase centre location on the z-axis relative to the aperture in the plane,

0./2 0./2
ag= (J cosq6’d9> /QL, by = (J ‘D(g,fﬁp)cosque) /9L, (0, ¢p) is the phase
-0./2 ~0./2

function of the pattern and 6, is a symmetrical angular range. In this case, the angular range
chosen is the 12 dB beamwidth, and the phase function is computed from the field given in
Eq. 4.53. The phase centres shown in Figure 4.24 are for a conical horn of radius
a=54 and have been normalized to the height of the cone. Note that when 1+z,/L=0,
Zo=—L, the phase centre is at the apex of the cone inside the horn. Furthermore, when
A>0.6, it is seen that phase centre can be just in front of or behind the apex.

-0.2
0 0.2 0.4 0.6 0.8 1

A = atan(0o/2) (1)

Figure 4.24 Phase centre of a conical of aperture radius a =541 versus the cone angle 6,. The
height of the cone is L=a/tan (6,)
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4.4.4 Corrugated Radiators

As has been observed previously, smooth-wall circular waveguides and horns have, in general,
different E- and H-plane patterns. It is desirable for some application to have very similar patterns.
Radiators with equal principal plane patterns are said to be axisymmetric. The reason they are not
axisymmetric for smooth waveguides is because the electric and magnetic field components in the
pipe satisfy different boundary conditions on the wall. The tangential electric field experiences a
short circuit, while the magnetic field contends with an open circuit. One result of this is that the
electric field lines are curved as in Figure 4.8a. By introducing corrugations or metamaterials on the
inside wall, as, for example, in Figure 4.7f, the impedance experienced by the tangential field
components may be modified. The principal surface impedance and admittance are given by

1E . H,
Xy=— ]—F"j and Y.=jy, E"’ , (4.55)
Z Z p=a

o zlp=a

where the Egs. 4.55 are determined by the width (w), depth (d) and pitch of the slots (p). When
there are many corrugations per guide wavelength (in practice >5 per guide wavelength is usually
sufficient) and the corrugation depth is approximately /4 (a quarter free-space wavelength) (i.e.
d=~0.54), the parallel plate transmission lines formed by the slots in the wall transform the
apparent short circuit on the surface into an open circuit, that is, ¥, ~0. This allows a non-zero
axial electric field on the corrugated surface, p = a, while still giving a zero circumferential
component, that is, X4 ~0. Consequently, the modes of corrugated waveguide are no longer
TE or TM to the longitudinal (propagation) direction as in dielectric-lined waveguides. As both
axial field components are present (i.e. non-zero), the modes are called hybrid modes. Starting
from the axial field components

E.(p,¢) =noaiJi(kip)cos ¢ (4.56a)

and
H.(p,$)=d\Ji(kip)cos ¢, (4.56b)

where k; = \/k2e,—#* is the transverse wavenumber in the region at centre of the waveguide
with dielectric constant ¢, the remaining field components can be obtained from Maxwell’s
equations. Satisfaction of the impedance wall conditions results in

a'=di (%) (aa)Y:+ Li k1)),

where

ﬁ 2
<k> =((k1a)X¢ +1, (kla))((kla)YZ+Ll(kla))

is the characteristic equation in which L;(x)= —xJi(x)/J1(x). This equation provides the
transverse wavenumber and thereby the propagation constant as a function of frequency.
For a corrugated surface with ¥, =0 and X4 =0
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al=af (%) Li(kia) (4.57a)
and
2
(g) = (L (kia))>. (4.57b)

There are two roots to Eq. 4.57b. Of interest here is the positive root which gives the principal
mode of corrugated waveguide that is used for aperture antennas. This is the HE;; mode, which
has the field distribution illustrated in Figure 4.8b. The root corresponding to this mode is

p= (g) =Li(kia). (4.58)

Equation 4.58 has to be solved to find kja. The rectangular components of the transverse
electric field of HE; mode are approximately given by (Clarricoats & Olver, 1984)

Ed(p.d)= (%) [(B+ Aolkip) + (= A)a(kip) cos 2] (4.59)
B00)== (5 ) (=Nt )sin 201 (4.59)

where k| = \/k%e,— % and E, = —ja$ (k/k; ). The function A = L; (kya) /B s related to the ratio of
longitudinal electric and magnetic field components and is the inverse of the so-called hybrid
factor. The magnetic field can be obtained from Maxwell’s equations.

In antenna feed applications, optimum operation occurs when a circularly symmetric radi-
ation pattern is achieved. Equation 4.59b shows that this occurs when A =1/~ 1, which is
known as the balanced hybrid condition, where the y-component of the aperture field vanishes
and there is zero cross-polarization. At the balanced hybrid condition, S~k and L;(xg;) =1,
where kja=xp =2.40482. An approximation to Eq. 4.58 based on the Taylor series in the
vicinity of xo; is

Li(x)~ [1 +x01 (x—x01) + ()%) (x=xo1 )2} . (4.60)

This approximation has an error less than 10% for most values of x of practical interest. At
the balanced hybrid condition, Eq. 4.56 shows that apart from the free-space wave impedance
factor, the amplitude of the longitudinal field components is identical. Also, from Eq. 4.60, an
approximation to the operating condition is

2
= 1—% ~ [1+x01((k1a)—x01)+ ()%)((kla)—ml)z ’

Eaa SN
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which gives an estimate that is accurate within 1% or better for ka > x,; and has the advantage
of not requiring Bessel function evaluations. As an example, consider a corrugated waveguide
with a 2 cm inner diameter (a = 1 cm), operating at a frequency of 30 GHz giving ka =6.287.
The approximation above estimates kja =2.374, while Eq. 4.58 gives kja=2.373. The smallest
real root of the approximate equation for ka >3 is accurately given by

k](l%X()](l—A),

[(1+1/K2) = /T+ (2=x01 —x5,) /K?]
()C()] +)C(2)l + I/Kz)

where A =

where K =kaand A — 0 as K — oo in accordance with the exact solution.

An improved approximation to the transverse fields in the vicinity of the balanced hybrid
condition of the HE;; mode that takes into account the bell-shape amplitude, which tapers from
the axis to vanish at the corrugations, is

E =xEJo (k,p), (4.61a)
1

H = —:xE, (4.61b)
Mo

where k, =xo1 /a. As seen in Figure 4.8b the electric (and magnetic) field lines are parallel vir-
tually everywhere in the transverse plane. It is left as an exercise to the reader to show from
Eqgs. 4.61a and 3.20 the far-zone electric fields radiated by the HE;; mode at the balanced
hybrid condition are

Eg jk e~ cos
0,¢p) =+ — 1+ cos @)N, , 4.62
{wop =i 0vamon{ (4.62)
27Z'E1 . . ..
where N, = e (k,a)J1 (kpa)Jo(wa) and w=k sin 6. As noted earlier, the radiation patterns
»

in the E- and H-planes are identical. These patterns are governed by the Bessel function of zero
order, and several examples are shown in Figure 4.25. It is observed that a simple approximation

to the Bessel function in Eq. 4.62 over most of the main beam is Jo(z) ~ exp [— (z/ 2)2} and this

can be used to study possible designs and radiation patterns.
The total power radiated by the HE; mode at the balanced hybrid condition is

p Elna®
T =
2n

Ji (kpa),

o

from which the maximum gain of corrugated waveguide can be shown to be
Gnax =0.692 (ka)?.

This gives a maximum aperture efficiency 7, of 69.2%.
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Figure 4.25 Radiation pattern of circular corrugated waveguide. The parameter is the waveguide
radius in wavelengths

As an alternative approach, consider a corrugated waveguide terminated in a large ground
plane. To determine the radiated fields from Eq. 3.26, substitute Eqs. 4.59a and 4.59b into

the transform vector N. Making use of the Bessel integral identities in Appendix B, the
result is

Eo(r,0,¢) =jk%e_jkr ((B+A)N, cos ¢+ (f—A)N, sin ¢) (4.63a)
JKEo e 2 . —
Ey(r,0,¢)=—- 5 cos O(—(B+A)N; sin ¢+ (B—A)N, cos ¢), (4.63b)

where

N1 (0,¢) =[Qo(kia,wa) + Q; (kja,wa) cos 2]

Nz(g,(ﬁ) = —Qz (kla,wa) sin 2¢

a2

Qo(a.pp) j(afl (@)Jo(B)=po(@)]i(B))

a?
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Figure 4.26 Conical corrugated horn. The nominal corrugation depth is /4 but near the throat
region the depth is reduced gradually from A/2 to /4 for good matching to the smooth wall input waveguide

a2

Q(a,p) = rﬂz

(B2 ()1 () - a1 (@) 12(B))

and w=ka sin 6.

Terminating the periodic corrugated waveguide at an aperture results in reflections and the
presence of higher order modes. This transition to free-space can obviously be improved by
either extending the corrugations into the aperture plane with a smooth curve (see Thomas,
1978) or by means of a taper (see Figure 4.26). Conical corrugated horns may be treated in
the same way as smooth wall conical horns. Approximate aperture fields are obtained by multi-
plying Eq. 4.61a with the quadratic phase factor exp(—jk§), where §is given by Eq. 4.52. Atthe
balanced hybrid condition, the radiated fields of a conical corrugated horn with a linear taper of
length L and aperture radius a are approximately given by

(1+ cos ) Qo (ky. ksin 0,k/2L.a) { %, (4.64)

(r,0,¢)= +——

E, 2 r sin

{ Ey JKE; e~k
where Qy is given by Eqgs. 4.54 and B.6. Assuming negligible reflection at the aperture, the
maximum gain that is predicted by Eq. 4.64 is

2k\*
Gmax = ( )
ay

where a; is the radius of the input waveguide. Egs. 4.59 and 4.64 are helpful for the design of
horns with a moderate flare angle (<30°) and linear profile. For example, some results are
shown in Figure 4.27 for ahorn witha=2.14, L=204 and 6, = 6° obtained from Eq. 4.64 where
there is excellent in excellent agreement with experiment (Loefer et al., 1976). Also, there is
similarly good agreement with experiments at 12.5 GHz when Eq. 4.64 is applied to the

0o (kp,0.k/2L,) >

J] (kcal)
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Figure 4.27 Radiation pattern of corrugated horn a=2.1 A, L=20 4, 6, =6° slot depth 0.2284,
theory (Eq. 4.64) versus experiment (Loefer et al., 1976)

corrugated feed horn shown in Figure 1.1d, which has a wider flare angle 8,=11.8°, L=65.33
cm and diameter 2a=27.3 cm. In both designs 4-5 corrugations per wavelength were used
along the length of the horn, which is usually sufficient to represent a periodic surface. Match-
ing of corrugated horns and wideband design of corrugated horns is described in the references
(Thomas, 1978; Thomas et al., 1986; Olver et al., 1994). An approach that provides a good
match over moderate bandwidth is to have a uniform waveguide input section where the cor-
rugations commence from a depth with a depth of 4/2 in order to simulate an electric wall. As
the horn is flared, the depth of the corrugations are gradually reduced until a depth of 4/4 is
reached, whereupon they are continued at this depth until the aperture is reached as shown
in Figure 4.26.

4.4.5 Cross-Polarization

Cross-polarization became important in antenna design with the introduction of terrestrial and
satellite radio systems using two orthogonal polarizations. Signals may be transmitted either
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linearly polarized in vertical and horizontal components or in circular polarization where the
signals can rotate in a right- or left-hand sense. Frequency ‘re-use’ by dual polarization effec-
tively doubles the system bandwidth. Circular waveguides and horns are desirable for dual
polarized applications because of their geometrical symmetry. However, as has been seen, this
does not ensure low cross-polarization and hence low interference. For example, in Figure 4.8a,
the TE;; mode in smooth wall waveguide has a radial-oriented electric field at the wall, and
therefore ‘cross-polarization’, occurs to satisfy the boundary conditions. Cross-polarization
is transferred to the far-fields, but this can be reduced by the excitation of other suitable modes
or with parasitically excited slots in the flange.

Most of the circular waveguides and horns described in Section 4.4 radiate a total electric
field of the general form

e—]kr

E(r,0,¢) =c——[0A(0) cos ¢ + pB(0) sin ¢], (4.65)

r

where A(0) and B(6) are the E- and H-plane pattern functions, and c is a constant. In some cir-
cumstances, only the E- and H-plane patterns may be known and Eq. 4.65 is a reasonable start-
ing point for design. The form of Eq. 4.65 is a consequence of geometrical symmetry and the
aperture fields having only a single period in azimuth (i.e. cos ¢ or sin ¢p dependence).

Eq. 4.65 can be resolved into components parallel and perpendicular to a reference field as
described in Section 3.5.4. The parallel component (p) is the co-polar field, and the cross-polar
field is the orthogonal component (g). The reference polarization is the one that gives an electric
field parallel to the x—z (E-) plane for all angles @ and also perpendicular to the y—z (H-) plane.
That is, the reference field is

p=0cos ¢ +¢sin . (4.66a)
The orthogonal cross-polar field vector is
g=rxp=—0sin ¢+ cos . (4.66b)

Resolving Eq. 4.65 into co-polar and cross-field components results in

E,=E-p= ce_:kr [A(6) cos’p + B(0) sin*¢| (4.67a)
and
E,=Eq= -ce_:kr sin 2¢ {fw} . (4.67b)

When A(0) = B(0), Eq. 4.67a indicates that the co-polar component is independent of ¢, that
is, the radiation pattern is axisymmetric. An antenna with this property is called a Huygens
source. Also, the cross-polar component, given by Eq. 4.67b, is zero. Some antennas, such
as corrugated waveguides and horns operate close to these conditions. Generally for smooth
wall circular radiators A(6) # B(0) although the phase of the pattern functions is approximately
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Figure 4.28 Circular waveguide cross-polar patterns in 45° plane (E—H field model)

the same. Eq. 4.67b shows that peak cross-polarization occurs between the principal planes at
0= +45° and equals |A(6)—B(0)| /2. Therefore, cross-polarization due to antennas of the type
described by Eq. 4.65 depends on the difference of the E- and H-plane pattern functions. Fur-
ther, as the phase of these functions is approximately the same, the peak cross-polar level is
approximately given by the difference in the E- and H-plane patterns. On the other hand,
the co-polar pattern in the inter-cardinal planes is |A(6) + B(8)|/2, that is, the average of the
E- and H-plane patterns.

Cross-polar patterns have a characteristic null on axis. Some examples are shown in
Figure 4.28 for circular waveguides with E- and H-plane patterns given in Figure 4.10. The
patterns that are computed with the simple E—H and E-field models are sometimes too inaccu-
rate for design because of the importance of wall currents in cross-polarization. More sophis-
ticated models that include the effects of the flange can predict cross-polarization quite
accurately, as illustrated in Figure 4.29.

Now consider the case of corrugated waveguide once again in a little more detail.
The field components in the p and ¢ directions as derived from Eq. 4.63 are in the
following form:

E,=E}

e—jkr

~C

. [(B+N)(Qo + K, cos 2¢) cos?p—(f—A)Q; sin 2¢ sin ¢ cos ¢

= [(B+A)(Q0+ cos 2¢) sin’ ¢+ (B—A)Q; sin 2¢ cos ¢ sin ¢].
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Figure 4.29 Patterns of circular waveguide with a flange (James, 1979). Source: Reproduced
by permission of The Institution of Engineers, Australia

That is,
e—jkr _ _ -

E,~rc . ((B+N)(Qo+Q; cos 2¢) — (B—A)Q,sin"24).
Also,

e—jkr _ _

E,=E-gm~c ((B+A)(Qo+ Qs cos 2¢) cos ¢ sin p— (B~ A)Q sin 24 sin’eh)
r
= [(B+NA)(Q0+Q cos 2¢), cos ¢ sin ¢+ (B—A)Q; sin 2¢pcos?¢p).
That is,
e—jkr B
E,=E-gr~-c sin 2¢(f—A)Q,.

Clearly the peak cross-polarization occurs in the +45° planes. Of interest is this value

relative to the peak co-polar level. Thus, for the corrugated waveguide,

E,(peak) L (BN

N 4.68
Ep  posase (B+A)(Q0+) (4.68)
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This ratio is zero at the balanced hybrid condition. At frequencies close to the balanced
hybrid condition, the approximation Eq. 4.60 applies and also f~k. Hence

X Qz

E, (peak) ~ (xm (x=x01) + (%) (x—xm)Z) OPENE

EP ‘¢=:45°

Equality of the E- and H-plane patterns may be difficult or impossible to achieve in practice.
However, by ensuring the E- and H-plane patterns cross-over at around the 8—13 dB level
reasonably low cross-polarization may be realized for feed applications. Parasitic rings
(Figure 4.7b) are also useful for tailoring the radiation pattern to minimize cross-polarization
(James, 1979).

4.5 Advanced Horn Analysis Topics*

Among the possible further topics to discuss in relation to waveguide and horn antennas, three
important aspects have been selected for further study because of their important conse-
quences for practical design. These topics are flange effects, modelling of stepped horns
through mode matching and the design of horns with a general profile in order to achieve
specific performance requirements. These advanced topics will be considered in the following
sections.

4.5.1 Flange Effects*

As has been seen from Figure 4.29 and elsewhere, the flange surrounding the aperture of a
waveguide or horn can have a significant effect on the principal radiation patterns as well as
cross-polarization. The flange tends to have a second-order effect on the input reflection coef-
ficient although it can be significant for small aperture horns. When a horn radiates, the field
is scattered by any obstacle nearby in the 360° space surrounding it. Because the field is

(X1,Yy) (X4,Ya)

L Yy

(Xo,Yo) (X3,Ys)

Figure 4.30 Layout of a finite flange and the vertices defining its shape
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usually small at the rear of the horn, the amount scattered directly back to the aperture is
usually small, except when there are other external objects, and therefore its influence on
other parts of the pattern is secondary. A flange or aperture rim can occur very near the actual
source of radiation as they are often in the same plane (i.e. at 90°). Currents are set up on these
nearby objects, and they radiate in all directions including back towards the aperture which in
turn influences the radiation from the horn. Usually, it is a good approximation to assume the
edges and rims are secondary radiators that are superimposed on the direct radiation from the
aperture.

There are several approximate methods by which to calculate corrections for the flange. The
methods are geometrical theory of diffraction (GTD) (James, 1986) and the physical theory of
diffraction (PTD) (Hay et al., 1996) which can be employed to correct the radiation patterns for
the effect of diffraction from a finite flange (such as in Figure 4.30). While GTD is based on the
laws of geometric optics, PTD uses the assumptions of physical optics in conjunction with the
field equations. Although GTD is normally computationally faster than PTD, PTD tends to be
more accurate and the pattern obtained is a continuous function.' It is recommended that PTD
be used if the edge of the flange is close to an aperture.

In both methods the flange can be assumed to be circular, polygonal or a general shape.
Within the accuracy of the methods used a rectangular co-ordinate system such as in
Figure 4.30 is convenient for describing most flanges. The edge of the flange is treated as a
vertex of two planes (see Figure 4.31) with an internal angle f. To treat a flange with finite
thickness it is best to choose f=90° (Figure 4.31a). A thin flange is treated by setting
p=~0°. This means the edge will have a profile like that in Figure 4.31b. Note that a wedge angle
of #=90" models the rear of the antenna as an infinite conductor extending behind the aperture,
and the fields normal and tangential to the conductor will satisfy the usual boundary conditions.
The fields are unspecified inside the conductor and, therefore, to estimate the horn’s front-to-
back ratio it is preferable in that case to use a thin flange approximation. Although these models
are approximations, they often give satisfactory corrections to the radiation pattern, providing
the flange is not too near the aperture (>0.14).The alignment of the field with the edge of the
flange is an important factor in assessing the likely effect of the flange on the radiation pattern.
For example, in the E-plane, the electric field is normal to the edge and this results in a larger
scattered field due to a larger diffraction coefficient than in the H-plane. Therefore, the E-plane
pattern is more greatly impacted by a finite flange. The reader should consult the references for
further details (Balanis, 1982; James, 1986; Hay et al., 1996).

4.5.2 Mode Matching in Horns*

The representation of the field in a tapered, stepped or a more general profiled structure can
be handled in several ways. One of these is the method of mode matching, which is quite accurate
and has an appealing physical description that is given in this section. A general model of a simple
electromagnetic horn, shown in Figure 4.32, radiates into a multi-dielectric semi-infinite region.
Transition sections may be employed in the horn for matching purposes along with choke rings in

! Discontinuities cause problems when the data are used to compute secondary radiation from reflectors.
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Figure 4.31 Modelling the edge of a finite flange (a) 90° corner; and (b) wedge of angle

order to control the radiation. There are essentially two types of approach needed to handle the
transverse discontinuities in the closed waveguide and semi-infinite regions, and each approach
requires knowledge of the modes in the waveguide region. A prototype section for mode match-
ing in a closed waveguide is shown in Figure 4.33. Modal field solutions may be obtained by
analytical methods for waveguides with circular, elliptical and rectangular cross section, while
structures with more general cross sections can be analysed with a numerical method, such as
the finite elements. Whatever technique is used to obtain the transverse fields, it is assumed that
a set of known modes with transverse fields is available in the form (e,,;, hy,; ), where the subscript
p refers to the mode and i is the section number. These forward and reverse travelling waves have
coefficients a,; and l_api resulting in column vectors ay, by, a, and b,. Note that in conventional
scattering wave notation, on the input port a; =a; and by = by, and on the output port a; = b,
and b2 =aj.

In section i of the horn, the total transverse field <E,(i),H,(i)) is approximated as a finite sum

of M(i) modes as follows:

B =S (@pe % + bye %) eyi(x,) Y, 12 (4.69a)
p=1
M@ o
HO =3 (ae 5~ Bye () 22 (4.69b)
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where y,,; = f,;—ja,i = propagation constant of mode p in region i

hpi = 2 X epi
and
JJ dSe,,,- thl"%:z(qu. (470)
Si

Y,,; is the wave admittance of mode p and 6, is the Kronecker delta. By enforcing continuity
of the fields at z=0 and by vector post-multiplying EED :EEZ) by h,; and pre-multiplying
HEI) = HEZ) by e, and integrating across the junction taking into account orthogonality
Eq. 4.70 results in the following mode-matching equations:

Dl_l(i_il +f)1) =CD2_1(52+52)

N B (4.71)
C'D;(a;-b;)=D,(a-b,)

After rearranging

b, =[Sll Slz} [%:11]
a, So1 S| | b2

where Sy, S, and so on are scattering parameters of the junction given by

S = -(I+XY) ' (I-XY),
Si=2(1+XY)'X,

S5 =2(I+YX) 'Y, and
Sy =(1+YX) ™' (I-YX).

In addition, I is the unit matrix, X=D; C*D;! and Y=D;'CD; =X", where
1/2
Y11/,12 0 0

o Y2 o

D= 21,22
1/2

0 0 Y31/,32

The elements of the matrix C are given by
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Figure 4.34 Concatenation of two scattering matrices

1
Cpg= 5”5 dSe, xhy-z. (4.72)

Two further fundamental operations are needed to analyse more than a single step in cross
section. Uniform waveguide interconnections are treated by a reference plane extension, and
the other is the combining scattering matrices of many sections in cascade by concatenating the
scattering matrices of each section.

The cascading is illustrated in Figure 4.34 for two sections in scattering matrix notation.

Let M(i) be the number of modes present at port i. To find the equivalent scattering matrix
for a cascade of two two-port networks that have known scattering matrices S and S®, let the
scattering matrix for network i be partitioned as follows:

[ e .
o) Lsy sa) Lag

Continuity is enforced between the networks when
aél) :bg2> and af) =b;1).
The reflected wave amplitude at the input of network 2 is
p? =g y®@ (2)

2
1 =911 a1 +Siz)az
(2)
= Su '+ Slz a
2),2)
—Su (521 al + Szz > +Spa; .
That is,

b? =AsPsVall) + AsPal?)
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-1
where A = (I—Sﬁ) Sg)) . This last equation is now substituted into bgl) and b<22) to produce

the scattering matrix equations for the combined network

1 1 1 2 1 1 1 2) (2
b= (s + SBASE L) ! + sl sal?

2) _ @ (1 DAc@e).(1 2) @ Ac®).2
b; '= Sgl) (S;I) + S(zz) AS;I) ng) a(1 '+ (ng) + S(Zl) ng)ASL)) ag . (4.74)
That is,
1 DAc@cl A2
Sgl) + S§2>AS<11> Sgl) ng)Asiz)
S= . (4.75)

2 1 N all) o2 2) (1 2
S;1> (I + S;2>AS§1)) Sgl) ng) + S(Zl) S§2>AS§2)

Eq. 4.75 is the scattering matrix of concatenated uniform sections 1 and 2.

As an illustration of the results obtained from the mode-matching method, consider transverse steps
in rectangular waveguides in the H- and E-planes, respectively. The results will be used to demonstrate
the convergence of the mode-matching solution with an increasing numbers of modes. The question
of convergence of the mode-matching method has been debated in the literature (Lee et al., 1971;
Masterman & Clarricoats, 1971). In the examples to follow, consider a square waveguide input with
side length 0.74 and output waveguide with dimensions of 0.74 by 11. Two cases arise corresponding
to this step occurring in the E- or the H-plane. A TE;y mode is incident at the input and the reflection
coefficient in the square waveguide is plotted in Figs. 4.36 and 4.37 as a function of the number of
modes in the output waveguide. In the H-plane case, TE,,o (m=1, 3, 5, ...) modes are only excited,
while in the E-plane case, TE,,, and TM;,, (n =0, 2, 4, ...) modes are excited in the output. Results are
shown for each case in Figures 4.35 and 4.36 under two situations: (a) M(1) = M(2) i.e. mode num-
ber is the same in each region, and (b) M(1)/M(2) = (input dimension)/(output dimension). The
latter (b) has the potential advantage of requiring fewer modes, which offers substantial reduc-
tion in computation time for structures composed of many steps. Most importantly, it ensures
the edge condition is satisfied at the step as M(2) increases exponentially (Lee et al., 1971;
Hockham, 1975). Figures 4.35 and 4.36 show that there is little advantage in accuracy of
(b) over (a) for single steps in waveguide cross section. However, if a thin iris were to separate
the two waveguides, (b) would ensure convergence to the correct solution.

A mode-matching method is now described for modelling the radiation from a horn. In the
exterior region, the fields may be represented as integrals of a suitable Green’s function and the
equivalent electric and magnetic currents on the aperture surface. This will be described in
Section 7.3 for apertures located in a large ground plane that is parallel to z=0. Continuity
of the transverse fields at the aperture and then an application of Galerkin’s method results in

b0 =g 4(©) (4.76)

where S is the mode scattering matrix at the aperture for modes transitioning to free-space,
a? is the vector of incident mode amplitudes and b® is the amplitude of the reflected mode
amplitudes at the apertures.
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Figure 4.35 Reflection coefficient at an H-plane step in rectangular waveguide

The number of modes required for an accurate representation of the aperture field
depends on the operating frequency. If the waveguide or horn operates in the fundamental
mode and all other modes are well below cut-off, a good estimate of reflection is obtained
from a few modes only. Use of several high-order modes is recommended, however, for
accurate predictions. Satisfaction of the edge condition is not critical except when there
is a thin iris at the aperture, although Hockham (1975) showed that for rectangular wave-
guide, inclusion of TE,, (m=3, 5, ...) and TE,, (n=2, 4, ...) modes improve solution
convergence.

The final part of the analysis combines the mode scattering matrices of the horn transitions
with the mode scattering matrix of the aperture. A network model for an array of horns that
combines radiation and horn steps is shown in Figures 7.12 and 4.37 where for simplicity only
horn (1) is shown. Assume modes of amplitude aj are input to all horns which is represented by
a combined mode scattering matrix S. Separately, at the input of element p of the array there are

forward and backward waves with amplitudes aﬁp) and bﬁp). These amplitudes are related to the
forward and backward waves at the aperture through

|:bI:| B [Sn Slz} |:aI:| 477)
ap Sa1 Sa2] Lbo)’ '
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Figure 4.37 Network representation of a horn

where ag) ) and bg’ ) are the amplitudes of incident and reflected modes at the aperture and where

the sub-matrices of the scattering matrix are partitioned as follows:
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(m)
ij
tionship is obtained between the reflected mode amplitudes and the incident mode amplitudes,
as follows,

where S..” refers to the scattering matrix for horn n. By means of Eqs. 4.76 and 4.77, a rela-

r -1
b= Sll + SuS(O) (I—Szzs(o)> 821:| ar

[ -1
a(°>= (I—Szzs(())) SZI:| ar (478)

-1
b©® = |S© (I_Szzs(o)) SZl]aI

From Eq. 4.78 it is seen that all coefficients depend on the matrix (I—SZZS<0>), which is

almost unity for large apertures as they are reasonably well matched to the external aperture
and the remainder of the horn. This occurs for horns with gentle linear tapers. In that instance,
the reflection coefficient is determined by the mismatch at the horn input and the mode distri-
bution in the aperture is determined by the transmission within the horn itself.

4.5.3 Profiled Horns*

The design of a horn is usually a compromise of several competing performance options such as
efficiency, low sidelobes and cross-polar levels as well as achievement of a minimum reflection
coefficient. To do this in a systematic manner, it is advisable to use a structured approach such
as a numerical optimization method and to profile the horn accordingly. In the method to be
outlined here, an initial horn profile is represented by a cubic spline passing through a series of
node-points (Bird & Granet, 2013). Thus approximated, the horn can then be modelled by
means of several techniques for the purpose of analysis. If the mode-matching technique is
adopted, short uniform waveguide sections are selected between the node points.

The traditional approach is to select a horn geometry and a representation of it and to model
its performance compared with a reference structure. However, the availability of accurate and
fast analysis methods, coupled with optimization methods, has made automatic geometry deter-
mination possible with fast computers. The geometry can be changed in a systematic way to
improve the horn’s performance. These changes, and the design approach itself, should have
physical basis such as limits on the maximum gain and sidelobe level for a given aperture taper.

An alternative design approach is to fix the basic structure such as the geometry, any sub-
strate thicknesses and dielectric constants. Other constraints can be implemented in the method
by setting limits on the input reflection coefficient, minimum or maximum gain, efficiency,
peak cross-polarization, sidelobe levels, radiation pattern symmetry, half-power beamwidth,
and minimum or maximum dimensions such as the wall thickness and the total length. In feed
applications, the reflector edge illumination may need to have limits.

A simple way to implement these constraints is through a penalty function and optimizer,
which is a well-established optimization strategy. The process then modifies/changes the geom-
etry in three-dimensional space while at the same time checks to determine how these changes
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Figure 4.38 Diagrammatic representation of geometry optimization

alter the performance. This process is shown diagrammatically in Figure 4.38. The process
amounts to modifying the geometry in one space while applying constraints in other spaces.

The actual implementation of a penalty function and numerical optimization is described in
the function Section 6.9.2. The techniques adopted here are very similar to the optimization of
the excitation coefficients for arrays and the approach has been adapted for horn profiling. In
the remainder of this section, aspects of the optimization related to profiling horns are discussed
and some results are described.

A penalty function approach commences with creating a performance index. This index is
constructed usually from a sum of constraint functions. Let L stand for function to be mini-
mized. Initially L is set equal to zero. At each frequency f; a contribution to L(i) is obtained
at all NF frequency points (i =1, ..., NF) in the band. For example, let constraints be applied
to RL(7) = return loss, XP(i) = peak cross-polar, and CP(i) = co-polar level at frequency i. Sup-
pose the target limits of each of these is designated by a “T’. Thus, RLT(7), XPT(i) and so on are
the targets. Let NRL, NXP etc. be integer powers on each constraint and wRL, wXP etc. be
weighting functions on them. Therefore, at frequency i, L(i) is formed as follows:

Let L(i) =0, then

If RL(i) < RLT(i), let L(i) = wRL(RLT(i) — RL(i))"}".

If XP(i) > XPT(i), let L(i) = L(i) + wXP(XP(@i) — XPT())"*F.

If CP(i) < CPUB(i), let L(i) = L(i) + wCP1(CP(i) - CPUB(i))N°F.

If CP(i) > CPLB(i), let L(i) = L(i) + wCP2(CPLB() — CP(i))™" and so on as required.

Note that if all constraints are satisfied, then the index L(i) is zero.
Once a penalty function has been created, it can be minimized or maximized using standard
techniques as described in the next sub-section. In profiling, it can be beneficial to employ a
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(a)

Figure 4.39 Spline representation of (a) Bezier surfaces with control polygons a;; and (b) general
two dimensional surface made up of panels

combination of optimization methods. For example, particle swarm optimization (PSO) could
be used to get into the vicinity of a global optimum, and this could be followed by a gradient
search technique for faster convergence to the minimum.

When using optimizers, usually a first trial design is made with the constraints deliberately
relaxed to ensure convergence. Then the requirements are tightened until converge fails. Dur-
ing this process, care must be taken as the result may not be optimum in any sense. If the prob-
lem is well formulated, good results are nearly always obtained. Any uncertainty may
correspond to the problem of local versus global extrema in optimization.

Representation of the surface depends on whether it is to be rotationally symmetric or not.
For rotational symmetric surfaces such as horns or dielectric rods, a cubic spline with knot
points uniformly distributed along the z-axis can be used to represent the profile. This ensures
a smooth and continuous profile while minimizing the number of parameters to optimize. In

this case, p(u) = Z:n: ONi(u) p;» where Ny(u) is the spline function (de Boor, 1978). For general
surfaces, the surface is discretized into panels as shown in Figure 4.39. The shape function on

the panel is specified by a B-spline surface, and the coefficients of these shape functions are
optimized. Such a shape function is

n

1) =3 D Ny Ny (), (479)

where the p; are optimized (de Boor, 1978). The design objectives for profiled horns often
involves minimizing the overall length for a given diameter horn. This has benefits in applica-
tions with weight and space limitations. In some reflector systems, the space available is very
limited and a shorter horn would be convenient and possibly less expensive as long as the per-
formance was not compromised. For an axisymmetric horn, the profile is initially represented
by a series of points. Cubic splines are then fitted to these points. The coefficients of the spline
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a0

Figure 4.40 Horn profile representation in two planes. In a circular symmetric horn b; = q;

functions are then optimized. This usually means a smaller number of optimizer variables com-
pared with a point-wise representation. The basis of the approach is optimization based on
minimizing a penalty function usually over a band of frequencies. Further details of the format
of a penalty function are provided in Section 6.9.2.

Most horns in common use can be represented by one or two profiles as illustrated in
Figure 4.40. The single profile corresponds to the axisymmetric horn. The two profiles corre-
spond to a rectangular (Bird & Granet, 2007) or elliptical horn. In each plane there are design
parameters on which the optimizer is required to satisfy where possible.

4.5.3.1 Optimization*

The coefficients of the spline functions are adjusted to satisfy the required constraints. For
example, a gradient search or a genetic algorithm could be used to minimize the performance
index over a band of frequencies. A flow chart of the optimization approach is shown in
Figure 4.41. The length of the horn could be part of the numerical optimization, but often it
is simpler instead to do this manually and run the software several times to adjust it. The vari-
ables involved in a typical single horn profile optimization are listed in Table 4.2.

4.5.3.2 Parametric Profiles*

It is great assistance for convergence to choose an initial profile at the start of the optimization
that is a good approximation to the final result. Some useful starting profiles are defined below
for a small number of parameters including the input radius a;, aperture radius a, length L of the
profiled section and a shape function (Figure 4.42).
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Figure 4.41 Flow chart of optimization

Table 4.2 Typical variables involved in a horn profile optimization

a; Input width/height — the first extreme node in each plane (fixed values)

ae Output width/height — the second extreme node in each plane

dy Allowed displacement of the output width/height (usually set as a % of a,) since the
required beamwidth of the radiation pattern is known beforehand and a, can be
estimated

ay, a, as, dq, as  Width/height of the five inner nodes

dy, d», d3, dy, ds  Allowed displacements of each of the inner nodes (making a,, a,, as, a4, as
constrained variables)

Ly, Ly, Ly, Ly, Ls  Positions of each of the inner nodes as % of the horn’s length




128 Fundamentals of Aperture Antennas and Arrays

4
Radius

aO
&
» 7
L
Figure 4.42 Geometry for parametric profiles
Linear:
Z
p(z)=ai+(ao~ai); (4.80a)

Gaussian (or hyperbolic):

p)=ai |1+ ({)2 ((2—)2—1> (4.80b)

Sine to the power p:
p(2) =a;+ (a—a;) sin” (%) . (4.80¢)

The parametric profiles given by Eq. 4.80 can provide suitable results by themselves.
For example, the corrugated horn shown in Figure 4.43 was designed with a sine raised to
the power p profile by adjusting the parameter p in Eq. 4.80c in order to give low sidelobes
which was required in order to avoid interference with neighbouring satellites in a space-borne
application (Granet et al., 2000). The radix p=0.8 gave the best predicted results. Further
details of this horn are given in Section 10.3.1.

As an example of a horn with a profile designed by optimization is the two wavelength diam-
eter circularly symmetric horn shown in Figure 4.44. The horn profile was designed for maxi-
mum gain and a peak cross-polarization less than —25 dB in the frequency band 11.7-12.2 GHz.
This horn was designed by the techniques described previously and was fabricated as shown in
Figure 4.44. The profile is plotted in Figure 4.45. The computed and measured results across the
band are given in Table 4.3. Two different computer simulations were used to analyse the horn.
One method was mode matching (MM) and the other was with CST Microwave Studio
(MS). There is generally good agreement between the two methods and also with experiment
(Expt) as is seen in Table 4.3. Measured and computed patterns at 11.95 GHz are shown in
Figure 4.46. The reflection coefficient was less than —25 dB at frequencies above 11.7 GHz.
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Figure 4.43 Profiled corrugated circular horn with sine-to-power p = 0.8

Figure 4.44 Smooth wall circular horn with aperture diameter 24 designed for maximum gain
and low cross-polarization
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Figure 4.45 Profile of smooth wall circular horn shown in Figure 4.44
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Figure 4.46 Radiation patterns at 11.95 GHz of a profiled 24 diameter circular horn designed
for maximum gain. (a) E-plane and (b) 45-degree plane patterns. Solid curve is measured and dashed
curve is computed using the mode-matching method

The predicted maximum aperture efficiency was about 95%, while in practice the highest
efficiency realised was about 92%. This compares with 84% for an ideal circular horn with a
uniform aperture field. More will be said in Section 10.3.1 about horn profile optimization
for maximum efficiency.

4.6
P4.1

P4.2

P43

P4.4

Problems

Follow the procedure given in Section 4.3.1 to design a standard gain pyramidal horn
with a gain of 24dBi at 13.6 GHz. The feed waveguide input dimensions are
ay, =1.905cm and b, =0.9525 cm.

(Answer: a=15.657 cm, b =12.408 cm, {r=34.92 cm, pg’ =34.365 cm, £z = 37.068 cm,
pu' =36.232 cm, and £ =31.823 cm.) Note: A commercially available standard gain
horn from the Scientific Atlanta Company with a measured gain of 24 dB at 13.6 GHz
has aperture dimensions a =15.189 cm and b =12.470 cm.

Show that Eq. 4.23 for a pyramidal horn leads to a quartic polynomial in either aperture
dimensions a or b. To do this, express all geometric quantities in terms of the required
dimension, for example, p}, =a*/a;. From this polynomial, verify that only one solution
is a valid solution for this application.

Use the results of Section 4.3 to obtain far-field expressions for sectoral horns that are
flared in either the E- or H-planes but are uniform in the orthogonal direction. Use these
results to obtain the maximum gain for both horns. Verify the product of these expres-
sions results in Eq. 4.21 times a geometric factor (2/7r)3k2(awbw) where a,, and b,, are
width and height of the input waveguide.

Follow the steps described in Section 4.4.3 of the text to obtain the far-fields for the
smooth wall conical horn (given in Eq. 4.53). At the aperture assume that the propagation
constant of the TE;; mode is f~k.
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P4.5

P4.6

P4.7

P4.8

P4.9

P4.10

P4.11

P4.12

P4.13
P4.14

Repeat P4.4 for a corrugated horn operating in the HE;; mode at the balanced hybrid

condition. Show that the far-field radiation pattern is given by Eq. 4.64.

For a Ku-band conical corrugated horn operating from 11.7 to 12.5 GHz, determine

a. the corrugation depths at the lowest and upper frequencies and also choose a suitable
slot depth for this band with reasons; and

b. estimate the required width of the corrugations to approximate a long periodic
surface.

Assume the transverse electric field of the LSE or the TEx;o mode in a slab-loaded

dielectric waveguide is given by Eq. 4.25. Use Maxwell’s equations and the boundary

conditions to obtain the remaining field components.

Starting from the perturbation expression Eq. 4.27, show that for an air-filled rectangu-

lar waveguide (g = 1), width a and height b, centrally loaded with a slab of dielectric of

width ¢ and dielectric constant ., and with the interfaces parallel to the narrow wall, the

propagation constant of the LSE,,,, modes in this type of dielectric loaded waveguide is

approximately given by

el o bl )2 )

Show that for a large aperture, the thickness of dielectric required to make the propa-
gation constant of the LSE;y mode in slab-loaded dielectric waveguide in Figure 4.5
equal to the free-space wavenumber, that is, y =k, is

6 1/3
=3 [(ka)2(er—l)] ’

where a is the width of the rectangular waveguide and &, is the dielectric constant of the
material.

Obtain the approximate phase centre of an antenna with the complex far-field E- and
H-plane patterns given by Pr=A(6) cos ¢ and Py = B(6) sin ¢, respectively, when

a. A(9)=C=B(6), and

b. A(0)=C exp(—jad) and B(0) =C exp(—jp0),

where C, a, and f are constants.

Use the mode-matching approach to obtain the scattering parameters for a symmetrical
E-plane step in rectangular waveguide. Assume a single mode approximation on both
sides of the junction.

The susceptance of a thin iris in circular waveguide is given by Eq. 4.41. Use
this expression to select parameters to obtain a low reflection coefficient at the aperture
of a circular waveguide of one wavelength in diameter. The TE,; mode aperture admit-
tance normalized to the free-space wave admittance is 1.0105-70.0189 (calculated
from Eq. 7.88).

Design a conical horn to produce a gain of 25 dBi at a frequency of 10 GHz.

The peak gain of a conical horn is a compromise between the aperture diameter 2a
and its length L (King, 1950). Use the equation for the maximum gain of a conical horn
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to estimate the diameter that achieves the peak gain for a horn of length (a) L=3.54
and (b) L=54.
Answer: (a) a=1.651 and (b) a=1.972A.

P4.15 Design a linearly tapered circular horn with the same aperture dimensions as the
horn shown in Figures 4.44, 4.45 and 4.46 (24 at 11.95 GHz) to achieve a minimum
first sidelobe in the E-plane. How long is this horn, what is the minimum first sidelobe
level and what is the peak gain?

P4.16 A rectangular horn with dimensions a=2.7 cm and b=3 cm is to be used as the basis
of a slab-loaded horn for operation at 12 GHz. A material with a dielectric constant
of 3.6 is to be placed on the sidewalls. What thickness of slab is required to obtain a
uniform field in both the E- and H-planes? Plot the radiation pattern in the H-plane.

P4.17 Design a linearly tapered corrugated horn by means of Eq. 4.64 for operation at 30 GHz
to produce a half-power beamwidth of 40°.

P4.18 Design a coaxial horn with minimum cross-polarization at 7.5 GHz and a 12 dB half-
beamwidth in the H-plane of 120° and an inner conductor that is large enough to include
a circular waveguide feed for 30 GHz.

P4.19 The axial field components of the fundamental HE;; mode of a dielectric rod of radius a
with relative permittivity €, are given by

.y BiJi(kip); p<a
E.(p,p,z) = sin pe™/"*
(P 9,2) P B:K,(hop): p2a

H.(p,,7) = cos pe™"*
(p.0.2) ¢ {CzKl(th): pza

where ky = \/k2e,—y2, ky = —jhy = —j\/y*—k?, J,(x) is the ordinary Bessel function and
K;(x) is the modified Bessel function of the second kind of order 1,B;, C;and so on are
constants that may be obtained from the boundary conditions at p=a, y =f—ja is the
propagation constant and (p, ¢ ) is cylindrical polar-co-ordinate. Describe how the
far-field radiation patterns may be calculated when the rod is terminated.

P4.20 Obtain an expression for the maximum gain of a coaxial waveguide aperture.

P4.21 A rectangular pyramidal horn has its aperture covered by a radome of uniform thickness
d << A. Assume the radome is illuminated by a uniform spherical wave radiating from
the phase centre of the horn. Use geometric optics to obtain the aperture field on the
outside surface of the radome and the equivalent currents.

a. Use the equivalent currents to calculate the radiated far-fields.

b. Determine the effect on the radiation patterns and gain of the horn shown in
Figure 4.4 when radome material with dielectric constant of 1.4 and d=0.5mm is
placed over the aperture.
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Microstrip Patch Antenna

5.1 Introduction

The microstrip patch and other printed antennas shown in Figure 5.1 are now commonplace as
they are readily combined with electronic components and integrated circuits. The feed line can
be incorporated into existing microstrip line circuitry branching to amplifiers, mixers, down-
converters and semiconductor sources (Gupta et al., 1979). Another major advantage of the
microstrip patch is that it can be flush-mounted planar or conformal with other surfaces, such
as an aerofoil, with only a minimum of space required for the feed line. The patch may be fed by
a transmission line also etched on the dielectric sheet (substrate) as shown in Figure 5.1 or by a
probe through the back of the ground plane. The shape of the patch varies significantly although
the basic radiation mechanism is similar. In the examples shown in Figure 5.1, one or more
resonances can be established in part of the geometry that is coupled to the input. From these
resonances, radiation can be created with different radiation characteristics depending on the
geometry, and this has resulted in a variety of useful designs (Sainati, 1996). Printed antennas
were discovered in the 1950s (Deschamps & Sichak, 1953) and their success in portable equip-
ment generated much research interest and improvements (Munson, 1974). These advances led
to a greater understanding of the radiation mechanism. The fundamental mode of the microstrip
line is quasi-TEM, and this is the one assumed in the antennas shown in Figure 5.1. Other
higher modes are excited to a limited extent although these make a small contribution to the
overall radiation. In other microstrip structures they can become more important and some
can radiate as leaky modes. In this chapter, a simple model of radiation is developed and some
basic properties of a rectangular patch are described with the added incentive of describing
another aperture antenna.

Fundamentals of Aperture Antennas and Arrays: From Theory to Design, Fabrication and Testing,
First Edition. Trevor S. Bird.

© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.

Companion website: www.wiley.com/go/bird448
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(d)

Figure 5.1 Typical microstrip patch antennas. (a) Rectangular. (b) Annular ring. (c) Triangular. (d) E-shaped

5.2 Microstrip Patch Aperture Model

The rectangular microstrip shown in Figure 5.2 consists of a thin metallic patch separated by a
dielectric substrate of thickness % and dielectric constant &, from a ground plane. The patch has
width w and length ¢ when referred to the connecting input line. A signal assumed initially
travelling down the microstrip line encounters a change of width initially at z=—¢/2 and char-
acteristic impedance where the patch appears as a low impedance parallel plate transmission
line with characteristic impedance Zy, ~nh/w./e;. After some reflection, the signal continues
until it encounters the open circuit at z=¢/2. At this discontinuity, the signal undergoes a large
reflection and travels back along the length of the patch to the transition where it also radiates.
As described, two slot radiators are formed at each end of the patch with the ground plane as
illustrated in Figure 5.2 with a separation £. As a result, they can be interpreted as a two-element
aperture array. The slots are separated by a length £. In addition, if the patch height is small, the
field in each slot will be approximately uniform as shown in Figure 5.2a. Further, each slot has
an image as shown. Therefore, the aperture model has a height 2A. Consider first a single slot in
the x—y plane as shown in Figure 5.3.
The aperture field is approximated by

Eaz{XE(’; —hsx<h —w/2<ysw/2 (5.1a)

0; elsewhere

and

H,= \f_sza. (5.1b)
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Figure 5.2 Rectangular patch antenna (a) with microstrip feed and definition of far-field point P and
under the patch

(b) approximate electric field in parallel plate region

Figure 5.3 Model of microstrip patch radiation
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Since the electric field is assumed to be zero everywhere except over the slot, this situation is
similar to the problem of a uniformly excited aperture in an infinite ground plane. There is,
however, a small field in the region z < 0. Therefore by the methods of Section 2.2, a perfect
electric conductor can be introduced behind the aperture. The equivalent sources on the
aperture in Figure 5.3 are in the form

M,=-2z,xE, (5.2a)
Js=0. (5.2b)

The far-fields radiated by these sources are obtained directly from Egs. 3.26 as

& oIk
Ep= JRe Nycos¢ (5.3a)
2z ¥
Ey= &e_jkrcosHN sing (5.3b)
YT or * ’ ’
where
Ny (u,v) =2hwE,S(2ruh)S(zvw); (5.4)

is the only non-zero component and as usual u = 1/(sin #cos ¢) and v=1/A(sin Osin ¢). If, as
in many applications, & << A then

N, (u,v) ~2hwE,S(zvw). (5.5)

Returning to the original geometry, the field radiated from the microstrip patch is the super-
position of two radiators given by Eqs. 5.3 and phased according to the length ¢. Assuming
¢ << r, the distance to the far-zone region, the combined radiation may be found by the principle
of superposition. Combining the radiation from the apertures at the ends 1 and 2 of the patch

Ey=Eg +Ep . i
~ %hwEoS(”VW> cos ¢ (6;;’;1?1 + 6‘;/;&)
and
Ey=E4 +Ep

k —JkRy p—jkRy
~ —j—hwE,S Osi +
J_hwE, (mvw) cos s1n¢( Rl % )

where R; and R, are the distances from each end to the far-field. At large distances from
the apertures, r>> ~¢/2 the angles are 0,~0~0, and similarly ¢, ~¢=~¢,. Therefore,
Ry~r—(¢/2)cos 6 and Ry~r+ (£/2)cos§. By making these approximations into the phase
functions and also approximating 1/R; ~1/r=1/R, in the amplitudes of the fields, the electric
field components become
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e—jkr

2
Eo(r,0,¢)~ ;khwEoS (l%v sin #sin d)) cos (%[ cos 9) cos ¢ (5.6a)

and

e—jkr

2k kw kt
Ey(r,0,¢)~ —j—hwE,S (7 sin @sin ¢) cos (5 cos 6) cos @sin ¢ (5.6b)
n

This result can be visualized as the product of the element pattern due to a single aperture
multiplied by an array factor that is due to free-space phasing and the phase of the radiation to
the observation point.

As an example, consider a patch with length £=1/2,/€,=1,/2 so that k\/e;{=7. In the

principal planes, the patterns are as follows:

E-plane (¢ =0)
2jkhwE, e~
Eo(r,0,¢) = LT228 — cos (g cosH) (5.7a)
© r

H-plane (0= +x/2)

EQ(T,Q,QS) =

2jkhwEy e~
Chadaud Oe—S(%sindJ)cosqﬁ. (5.7b)

The E- and H-plane patterns of a microstrip patch of width w=0.251 on a substrate of thick-
ness h=0.11 and dielectric constant &, =2.54 are shown in Figure 5.4.

The maximum gain from a microstrip fed patch can be estimated using Eq. 3.48. To do this,
the power input is assumed to come from a uniform TEM field in the line of width wy as given
by Eq. 3.36. Thus,

\/aw1h|E1
n

o

2
PTN

: (5.8)

where in Eq. 5.8 Ej is the peak of the uniform electric field at the input. This peak field is related
to the peak field in the patch E, by the input reflection coefficient, in the usual way by

F‘ — ZOp_ZOI
! Z()p +Zor

(5.9)

Zyy, is the characteristic impedance of the parallel plate transmission line of the patch, which
is given by Zy,~n,h/w,/€;, and Z, is the characteristic impedance of the input microstrip,
which is approximately (Gupta et al., 1979; Sainati, 1996)

Mo
V& (1+1.393+0.6671n(7 +1.444))’

Zoy = (5.10)
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Figure 5.4 Microstrip patch E- and H-plane radiation patterns for a patch with dimension w=0.254,
h=0.12; £=0.84, & =2.54. Solid: E-plane; dashed: H-plane

where

_WI T 2h
T= 7 +O.398h <1+ln<T>>,

and T is the thickness of the microstrip. The characteristic impedance given by Eq. 5.10

is accurate to within 1% for wy/h>1. Combining Egs. 5.8 and 5.9 with Egs. 5.7 in
Eq. 3.48 results in a maximum gain of

Gmaxz% (j—f) (WKI) (1—|r1|2). (5.11)

The final term in the square brackets of Eq. 5.11 is the power transmission coefficient. Typ-
ically, |7 <0.25 (i.e. =6 dB) and w > 2wy. Suppose this is the case in the previous example for
w=0.254, h=0.14 and & =2.54. For this microstrip patch, the maximum gain estimate given
by Eq. 5.11 is Gmax > 1.7 dBi.

An equivalent circuit for the patch antenna has been developed based on a transmission line
model as shown in Figure 5.5 (Sainati, 1996). According to Figure 5.2a, the transmission line has
a characteristic impedance Z, is of length £ and has a slot radiator at each end. The slots are
modelled by a conductance G, and a capacitance C, in parallel to represent, respectively, radiation
and energy storage. The input impedance depends on where the patch is fed such as at one end
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Figure 5.5 Circuit model of patch antenna

with a microstrip line input or an asymmetrically located probe. An approximate value for the

conductance is found from G, =P,/ |E0h\2 where P, is the total radiated power by a single slot,
which can be found from Eq. 5.3, and E A is the peak voltage across the slot. The result is

G, = 2’7—‘/8“ (%)1: d6sin0[Mo(0) - sin’0 My(0)] (5.12)

where

21
M,(0)= J desin® S? (? sinGsind)) 52 <ﬂ72h sinfcos (1)) .

0

The edge capacitance at a given frequency is given by C.=tan(fle)/ (a)Zop), where
.t is the effective increase in length of the parallel plate region due to fringing; typically,
Lot ~0.1-0.152.

Equation 5.11 in particular emphasizes four important aspects of patch design. These are the
physical extent of the patch, the matching at the input from the feed line to the patch, the effi-
cient transition of power to the patch and, of course, these often have to be achieved over a
reasonable bandwidth. Other more sophisticated models of the microstrip patch can be devised
and are required for accurate design including the effects of mutual coupling in an array envi-
ronment (e.g. James et al., 1982; Sainati, 1996; Jackson, 2007). For details of other patch geo-
metries, the reader should also consult the references. The topic of mutual coupling in patch
arrays is left until Chapter 7.

5.3 Microstrip Patch on a Cylinder

In some applications, it is desirable to locate the patch on a curved surface. The simple model
described in the previous section can be used in a non-planar geometry as will be described
here. Other models could be adapted to a curved surface in the same way by following the same
approach. Suppose the microstrip patch is to be mounted on a large conducting cylinder as illus-
trated in Figure 5.6. The radius of the cylinder R, is assumed very much greater than the
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Figure 5.6 Radiation model of a microstrip antenna mounted on a large cylinder

microstrip dimensions, that is, R, >>w, h,{. For simplicity, it will be assumed that the axis of the
patch is in the circumferential direction as shown in Figure 5.6. Once again two radiating aper-
tures are assumed as in the planar case. From the figure, the electric field is polarized in the
radial direction and the normal to the aperture is ¢. Therefore, this time the magnetic current

is given by My = —(;S x (pE,) at each aperture. The substrate thickness will be assumed to be
small and, therefore, the apertures appear as two uniform magnetic line sources of length w
which are parallel to the axis of the cylinder and separated by a distance ¢. For simplicity, these
sources are assumed on the cylinder and to be separated by the angle A¢p=¢/R,.

As the method of images cannot be used for a source on a cylinder, the sources must be con-
sidered to radiate in the presence of a large cylinder. This is done by adopting a high frequency
approximation for the elemental field radiated by a line source on the axis of a cylinder as
described in Section 8.2. This field is given by Eq. 8.1 (Wait, 1959) as

_ U exp(—jkr) o~ eXpin(¢—¢'))
dEy(t,0) ~ —dM, 2R, . exp(jkz’ cos 0)":2_00] e = (5.13a)

dEy(1,0) =0=dE,(1,), (5.13b)

where H,Sz)/ (y) is the derivative of the Hankel function of the second kind order n with argument
y =kR,sin 6 and the primed co-ordinates are the source co-ordinates.

Initially consider the field radiated by the uniform line source at ¢’ = +A¢/2.
Eq. 5.13a gives

hE, —jkr) (*/? o~ Jj"exp (jn(p—Ap/2
_ 20 exp( J r)J CXp(ij/COS g)dZ/X Z J exp(/n((j% ¢/ ))
272R, )2 n=—eo HY (7)
o hE,w exp(—jkr)S @cosé ij”exp(jn(q%—A¢/2)).
272R, r 2 s H? (7)

E)(r.0.4) ~
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Figure 5.7 Radiation patterns of a microstrip patch on a cylinder of radius R, =504. Solid: E-plane
0=90° plane; dashed: H-plane ¢=0° plane. Microstrip parameters w=41/4, {=14/2, h=0.0051
and g, =2.54

The field due to the line source at ¢’ = —A¢/2 is similar. Combining the contributions of
both uniform line sources results in
—jnAg
2

Ey(r,0,¢)~ - ZI;‘;ZW;XP (r k) S < ) Z I exp (]n¢) <exp <]n#) +exp

n=-oco H ]/)

_hEgwexp(=jkr) . (kw J" exp (]n¢) ny/el
——=S 5 ¢ > Z cos

2
7°R, r },) 2R,

(5
__hEqwexp(—jkr) S<kw >( 1 +22‘°: I oy <n\/€—r€>cos(n¢)).

) A 7 7
R, r 2 (2) () n=1H1§2) () 2R,

(5.14)

The maximum of the field occurs normal to the patch. As the electric field is circumferential
with the cylinder, the E-plane direction corresponds to the plane & =90° while the orthogonal
H-plane occurs in the plane ¢ =0° through the centre of the patch.
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The patch antenna that is described in Figure 5.4 for a planar geometry is now mounted on
a cylinder of radius R,=504. This patch has dimensions w=21/4, {=0.84, & =2.54 and
h=0.11. The principal plane patterns were calculated from Eq. 5.14 and are shown plotted
in Figure 5.7. There are significant differences in the patterns compared with the same patch
close to a ground plane. In particular, the patterns are seen to contain significant ripples at all
levels due to the interference between the field radiated directly by the patch and creeping
waves that are excited on the cylinder. The H-plane pattern is similar to the planar case as
it is along the axis of the cylinder and apparently this appears similar to a ground plane.
Nevertheless, there is still interference from nearby creeping waves. More will be said
about the creeping wave in connection with mutual coupling on conformal surfaces in
Chapter 8.

5.4 Problems

P5.1 Show that the radiation pattern of a two-element array of identical slots symmetrically
located along the x-axis a distance s in each direction from the origin as shown in
Figure 5.3 is 2cos(ssin@cos¢) x (slot pattern).

P5.2 Suppose a rectangular patch antenna has dimensions 2=0.124, w=0.451and £ =0.871 is
mounted on a dielectric substrate with relative permittivity of 3. It is fed from a microstrip
line with a centre conductor of width 0.154. The conductor thickness of the input line and
the patch is 107/,

a. Find the direction (0, ¢) of the radiation maximum.
b. Identify the E-plane and compute the half-power beamwidth.
c. Identify the H-plane and compute the half-power beamwidth.

P5.3 For the patch antenna described in P5.2, calculate the characteristic impedance of the
patch and, therefore, estimate the input reflection coefficient viewed by the microstrip.
Estimate the maximum gain of the patch.

Answer: Z,, =588, I'1= —24.55 dB and Gp.x =6.71 dBi.

P5.4 An expression for the conductance G, in the transmission line model of a patch antenna

shown in Figure 5.5 is given in Eq. 5.12.

a. Verify this expression and

b. Calculate the conductance of the patch antenna described in P5.2.
Answer: (b) G,=0.013 S.

P5.5 From the equivalent circuit for the patch antenna shown in Figure 5.5, obtain an approximate
expression for the input admittance when it is fed from one end.

G, +j(B+Yoptan )
Yop +j(G; +jB) tan "

Answer: Yip =G, +jB+ Y, where B=wC..

P5.6 Repeat exercise P5.5 this time with a feed placed at a distance ¢; from one end of the
parallel plate section.

P5.7 Plot the radiation pattern at a frequency of 9 GHz for a patch of dimensions 1 cm x 1 cm
on a substrate of thickness 1 mm and dielectric constant 2.4 that is mounted on a cylinder
of radius R, =100 cm.
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Reflector Antennas

6.1 Introduction

In transmission, a reflector antenna concentrates energy received from another antenna, called a
feed, into a narrow beam of radiation. In reception, the reflector re-directs the impinging field
and concentrates it in a smaller volume, called the focal region, where it can be collected.
Figure 6.1 shows, in cross-section, several basic reflector configurations. Most reflector anten-
nas are designed to maximize the signal in one direction, that is, for the examples given in
Figure 6.1 parallel to the ray paths at the aperture. In some cases, for example, in satellite anten-
nas, it may be desirable to design the antenna for approximately constant gain over a chosen
extended angular region. This is often achieved by ‘shaping’ the main reflector profile or using
an array of horns as the feed.

The front-fed paraboloid in Figure 6.1a is the most common type of reflector configura-
tion. Use of a subreflector in a Cassegrain configuration in Figure 6.1b can give improved
performance and is widely used in large earth stations. The two reflector profiles can be
defined to enhance the gain while at the same time reducing antenna noise temperature.
The unwanted random signals (‘noise’) that an antenna receives from the sky and the earth
is expressed as an equivalent antenna noise temperature T, (in Kelvin). A major contribution
to T, arises from feed ‘spillover’ at the edges of the reflectors. Spillover past the main reflec-
tor edge is especially important, since this allows energy to be received from the earth which
is a good radiator of noise. In a front-fed paraboloid, the feed sees the ‘hot’ earth directly
through its sidelobes, while in a Cassegrain, the feed sees the ‘cold’ sky. The ratio of gain to
overall temperature, denoted by G/T (expressed in dB K™), is an important parameter
for receiving antennas. Here, Tsys =T, + Tioss + T1x Where T, arises from feed spillover, Togs
is the noise temperature due to losses in the feed and reflector and 7, is the contribution from

Fundamentals of Aperture Antennas and Arrays: From Theory to Design, Fabrication and Testing,
First Edition. Trevor S. Bird.
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Figure 6.1 Reflector antenna configurations. For receiving, the ray paths are reversed.
(a) Symmetric paraboloid. (b) Cassegrain. (c) Offset paraboloid and (d) Offset Cassegrain

the receiver that is connected to the antenna. A Cassegrain geometry can be designed to
maximize G/Tys.

A disadvantage of any axisymmetric reflector system is the blockage created by the feed or
subreflector and associated strut supports. These obstructions have a deleterious effect on
the antenna gain and, more importantly on the sidelobe levels, particularly for small antennas
(DI2 < 150). Blockage can be avoided by using offset-fed reflector configurations as illustrated
in Figure 6.1c and d. Although the lack of symmetry creates a number of design problems, these
antennas are capable of performance that is usually superior to that of their axisymmetrical
counterparts. One problem is that the offset-paraboloid Figure 6.1c has high cross-polarization.
This is substantially reduced by means of a subreflector which is adjusted to a correct offset
angle a (Fig. 6.1d). In this chapter details are given of the front-fed paraboloid along with some
properties of the offset-parabolic reflector and Cassegrain antennas.

6.2 Radiation from a Paraboloidal Reflector

A fundamental property of the paraboloid in transmission is that it converts a wave with a
spherical wave-front from a source, which is situated at the geometric focus, O, into a wave
emanating from the aperture with a plane wave-front. This is possible because the path length
of any ray from the focus, which arrives perpendicular to the aperture, Figure 6.2, is constant
and equal to 2f, where f'is the focal length. As a result, p + s, =2f.
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Figure 6.2 Geometry of paraboloidal reflector

In spherical polar co-ordinates (p, y, ¢) that are defined at the focus of the paraboloid, the
radial distance is

c —fseczg. (6.1)

p=1+cosy/_

From the focus, the reflector rim subtends a half-cone angle given by

. =2arctan 6.2
C

)

On the surface of the paraboloid, S, the outward unit normal in the various co-ordinate sys-
tems defined in Figure 6.2 are given by

. L f .

n=———=(Xx+yy)+4 /-2 6.3a
N >\/; (6.32)

i=— smlg(x cos E+sin ) + cos %2 (6.3b)

ﬁ:—ﬁcosgﬂﬁsing. (6.3¢)

2 2
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Consider a feed antenna located at the focus with the reflector is in its far-field region. There-
fore, the field from the feed is represented by

—Jjkp
Ef(p’l//7§) = EOF(V/7§) T
) ot (6.4a)
=Eo [JF, (y.6) + EFely8)] =
H = jxE,. (6.4b)

Mo

where E, is a constant scale factor. An approximate surface current on the reflector is given
by Ji~2 ixH¢|g. The vector function F(y, &) gives the spatial distribution of the field
(i.e. the radiation characteristics) due to the feed. A special case of this feed function is when
the power pattern is axisymmetric, in which case Fy, (y,&) =P(y)cos(£-&,) and Fe(y,&) =
P(y)sin(E—-¢,) where P(y) is the radiation pattern and &, is the reference polarization direction
relative to the initial line. In many practical cases, the reflector diameter is very large in terms of
wavelength; typically D/A> 100. In that instance, for large reflectors, geometric optics (GO)
can be used, which simplifies the reflector analysis. Geometric optics is used in the next
section to find approximate aperture fields.

6.2.1 Geometric Optics Method for a Reflector

In a homogeneous medium, waves described by geometric optics propagate in straight lines, as
verified in Section 2.1.7. The ray paths for input and reflected rays are as shown in Figure 6.3.
At a perfect conductor of the type illustrated, the boundary conditions require zero net tangen-
tial electric field at the surface as well as continuity in the tangent plane of the normal compo-
nents of the electric field. Again referring to Figure 6.3, suppose E; is the incident electric field
and E, is the reflected field. The boundary conditions on S require that

(Ei+E,)x7i=0 (6.5a)
and
(Ei-E;)7=0, (6.5b)
where 7 is the normal at the reflector. Taking the cross-product of Eq. 6.5a with 7 results in
(Ei + Ey) —ii[(E; + E;)-11] = 0.
This is further simplified by means of Eq. 6.5b to

E, =24 (A-E)-E;. (6.6)
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Figure 6.3 Reflection at a conducting surface S

Equation 6.6 gives the resulting reflected electric field from a conducting surface in terms of
the incident field. This is incomplete because an additional phase factor is required to account
for the path length from the reflector to the aperture as shown in Figure 6.2, which is given by
sp=2f—p. As aresult, according to GO, a feed located at the focus o radiating an electric field
E; produces an aperture field, given by

E, = [27 (i-Ey) - Eg|e ¥ =) (6.7a)
1,

H,= —?xE,, (6.7b)
Mo

where Ey is the electric field due to the feed that is incident at the reflector surface. In spherical
polar co-ordinates relative to the feed, the normal to the reflector is given by Eq. 6.3c.
Using Eqgs. 6.4a and 6.3c in Eq. 6.7a results in

. —jk2,
E,=—E,[pF, siny +yF, cosy+£EF:] (1+ cos w)%}{ﬁ. (6.8)

Alternatively, in rectangular components,

E,=-E, [}E (Fv/ cos £+ F, sin 1//) +§(Fl,, sin £+ F¢ cos 5)}

. 6.
x (1+ cosy) exp(=/k2f) . (©9)

2f
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From these aperture fields, the field radiated by the paraboloid is obtained from Eqs. 3.20 are

jk e=*r .
Eo(r,0,¢) = e (1+ cos 0) (Nx cos ¢+ Ny sin ¢) (6.10a)
jk ek .
E¢(r,9,¢)=ﬂ - (1+ cos 6) (=N, sin ¢+ Ny cos ¢), (6.10b)
where
2 D/2
N(6,9) =J déj E.(t,&) exp(jwecos (¢p—&))tdt (6.11)
o Jo

with w=k sin 8 and ¢ = p sin . When the aperture field is axisymmetric, the integral over & can
be completed by means of Eq. B.3 allowing Eq. 6.11 to be simplified to

N(0,¢) = ZnJ:/z E, (1)Jo(wt)tdt, (6.12)

where J;, is the zero-order Bessel function of the first kind. Eq. 6.12 is axisymmetric as it is now
independent of ¢. To investigate the above results a little further, some specific feed antenna
examples are considered firstly the half-wave dipole and then circular waveguides and horns.

6.2.1.1 Dipole Feed

One of the simplest feeds to fabricate and, therefore, one of the most frequently used feeds is
the half-wave dipole. An attractive feature of this feed is that the input transmission line can
also be used to support the feed at the focus. The approximate electric field radiated by a thin
half-wave dipole that is oriented parallel to the x-direction is given by

—jkr

Ef=E, . A(0,9) [écosﬁcos b- sin ¢, (6.13)

where A(0,¢) = sin ((z/2)cos 6).
In the E-plane (¢ =0 or x), the field is

—jkr

E;=0E, sin (g cos 0) cos 0 (6.14a)
r
and in the H-plane (¢ = +7/2), it is
. e—jkr T
E= THE, " sin (5 cos 9). (6.14b)
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Figure 6.4 Half-wave dipole radiation patterns and dipole in front of a conducting plate (dark line)

The radiation patterns corresponding to Eqgs. 6.14 are plotted in Figure 6.4.
The aperture field created by a half-wave dipole located at the focus of the paraboloid is
found from Egs. 6.9 and 6.13 to be

E.= —E,A(y,&) [#(cos ycos’é + sin*y) + ¥ cos & sin &]
x (1 + cosy) e)(p(z_]{sz).

Clearly it is seen that the radiation pattern is strongly influenced by the pattern function
Ay, &). In the E-plane (x—z plane), the field is

x oikf
E,(¥',0) = —=XE,(1 + cos y)cos y sin (— cos y/)

6.15
and in the H-plane (y—z plane), it is

n e
E.(0,y') = —XE,(1 + cos y) sin (f cos y/) T (6.15b)
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It is seen from Egs. 6.15 that the aperture field in the principal planes is simply the feed radi-
ation in that plane divided by the distance to the reflector from the feed, namely,
p=2f/(1+ cos ). This latter factor reduces the aperture field towards the edge of the aperture
and, therefore, it is more ‘tapered’ towards the reflector rim than the feed radiation pattern alone
would indicate as the latter is usually measured on a sphere of constant radius. However, there
is significant radiation in all directions and a loss of efficiency.

In practice the dipole has a backing plate as illustrated in Figure 4.17a to reduce rear-directed
radiation and the back lobe. If a backing plate is employed and the dipole is located a distance s
from the plate, from image theory (see Figure 2.2a) there is now a pair of dipoles spaced 2s
apart. Therefore, the feed radiation is approximately equivalent to that of a two element array,
in which case Eq. 6.13 is then multiplied by the factor 2 j sin(ks cos ). Typically a spacing of
s=0.18-0.254 is selected to achieve the desired performance, which also makes the feed radi-
ation more directive as shown in Figure 6.4. The presence of a backing plate improves the input
match and provides an additional variable (s) with which to account for the thickness of the
dipole element and the characteristic impedance of the input line. This line can be a coaxial
cable (with a balun transformer) (Silver, 1946) where typically the characteristic impedance
is close to 50 Q or it could be an open-wire transmission line where typically the dipole ele-
ments need to be longer to achieve an acceptable match.

The polarization of the field in the aperture has distinctive characteristics and this is illustrated
in Figure 6.5. The field is polarized mainly in the x-direction, but there is also a cross-polarized

0° plane

45° plane 135° plane

E-plane, !vertical
polarization

Cross-polar, horizontal
polarization

Cross-polar, horizontal
polarization

Electric fie‘ald lines
in aperture region

7 Co-polar, vertical polarization

Figure 6.5 Electric field in the aperture of a paraboloid due to a linearly polarized feed (after
Jones, 1954)
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Figure 6.6 Principal plane radiation patterns of a paraboloid with D=1.5m, f/D=0.33 and a
half-wave dipole feed and one with a backing reflector (dipole + disk). Frequency 10 GHz

component in the orthogonal y-direction. This cross-polar component takes power from the co-
polar direction and could interfer with adjacent systems operating in the y-directed polarization. It
is shown in Figure 6.5 that the maxima of the cross-polarized field occurs at 45° to the principal
directions (either x or y directions) (Jones, 1954).

The field radiated by the paraboloid with a dipole feed is obtained by substituting Egs. 6.15
in Egs. 6.10 via Eq. 6.12. In this case, the transform of the aperture field is best found numer-
ically. Since the field in the E-plane is more tapered than for the H-plane, the far-zone radiation
pattern is broader in the E-plane than in the H-plane. Furthermore, the radiation pattern side-
lobes are lower in the E-plane than in the H-plane due the cos 0 factor. Principal plane radiation
patterns are shown in Figure 6.6 for a 1.5m (D =50 A) reflector with /D =0.33 at 10 GHz
clearly demonstrates these properties. Also, shown in Figure 6.6 are the corresponding radia-
tion patterns of the same reflector with a half-wave dipole backed by an ideal ground plane to
approximate a disk reflector. The spacing between the dipole and the backing reflector was
chosen to be s=0.254. The principal plane patterns of the reflector with the dipole and disk
are more comparable and there is a significant improvement in the gain (>2 dB).

6.2.1.2 Circular Waveguides and Horn Feeds

Smooth wall and corrugated circular waveguides or horns are widely used as feeds for reflec-
tors, and are capable of higher performance than the dipole. Some properties of circular feeds
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were described in Section 4.4. For horns excited in the TE;; or HE;; modes, the radiated field
has a single period in azimuth and, in terms of Eq. 6.4a,

Fy(w.&)=A(w)cos & Fe(w,5)=-B(y)siné, (6.16)

where A(y) and B(y) are pattern functions. As a result, the field created in the aperture of the
paraboloid due to a circular feed is

E, = ~Eo[%(A(y) cos® £+ B(y) sin®y) + cos & sin E(A(w) ~B(y)]

—j 6.17
x(1+cosy/)%;k2f). (617)

In common with the half-wave dipole, this aperture field has, in general, two non-zero field
components present in regions away from the two principal planes. This is because Eq. 6.16 is
not pure polarized as discussed in Section 4.4.5. However, if A(y)=B(y), the aperture field
produced by a circular horn is purely polarized and the radiation pattern is axisymmetric about
the z-axis. For an axisymmetric feed, Eq. 6.17 simplifies to

exp(—jk2f)

E,=—-XEA(y)(1+ cosy) o

, (6.18)

which produces a linearly polarized aperture field. This aperture field can be used in Eq. 6.12 so
that the transformation integral becomes

N, (u,v)=-E,x

o=ik2f (D)2
J Jo(wOA(y)(1+ cos ). (6.19)

f

0

In general, Eq. 6.19 must be evaluated numerically although there are several types of feeds
that have distributions with special functions that enable a closed-form solution. It is seen that
the integrand function

1) =A(w) (1 + cos /) (6.20)

determines the aperture illumination. Uniform illumination corresponds to /() = constant and
could be achieved if the feed function, A(y), had an inverse taper to compensate for the free-
space path loss. In particular, when /(w) =1 Eq. 6.19 simplifies to

D>2e—jk2f Fh(WD/ 2)} ’ (6.21)

N (u,v)=—Eom (5 7 WwD)2

where Eq. B.5 has been used to evaluate the integral. The function 2 Jy(x)/x is plotted in
Figure 3.4. Near the antenna boresight (the z-axis in Figure 6.2), the beam of the reflector is
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narrow and @~0°. Therefore (1+ cos)/2~1 so that the radiated fields near boresight are
approximately

jk e~k
Ey(r,0,¢p) ~=———N,(0,¢)cos ¢ (6.22a)
27 r
and
]k e—jkr ]
Ey(r,0,¢)~— i N,(6,¢)sin ¢. (6.22b)

In the case of a uniformly illuminated aperture, Eqgs. 6.21 and 6.22 show that the function
2J,(x)/x determines the width of the main lobe of the electric and magnetic fields and the side-
lobe levels. As a result, the half-power beamwidth is ~ 58.41/D degrees and the first sidelobe is
~17.6 dB below the peak (see Figure 3.4). With tapered aperture illumination functions A(y)
the beamwidth is wider, and the first sidelobe level is lower than for uniform illumination. To
illustrate this, radiation patterns are shown in Figure 6.7 for a feed with an axisymmetric Gaus-
sian pattern function given by

Aw) = exp(-ay?) (6.23)

—— —10dB Edge illumination

— — —-16dB Edge illumination

Power (dB)

Angle (°)

Figure 6.7 Radiation pattern of paraboloid reflector with D=1.5m and f/D =0.33 at a frequency
of 10 GHz. The feed pattern is a Gaussian function chosen to give a selected edge illumination
at y,=74.2°
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where «a is a constant that is chosen to give a specified feed illumination at the reflector edge
w =y.. As has been seen in Section 4.4.4, the main lobe of the Gaussian function, Eq. 6.23,is a
good approximation to the feed function of corrugated waveguide at the balanced hybrid con-
dition, which is given in Eq. 4.61. If the field illumination at the reflector rim is
Eqp = —20log,,(JA(y.)|) dB, then from Eq. 6.23,

Eg

q=—— . (6.24)
we(20log ge)

The results given in Figure 6.7 are for the same conditions as for the dipole feed example
above. Patterns are shown for reflector edge illumination levels of —10 and —16 dB. Main lobe
broadening is evident particularly in the latter case as compared to the half-wave dipole (see
Figure 6.6).

6.2.2 Edge Taper and Edge lllumination

As the feed radiates a spherical wave, the distance to the reflector rim, or edge, is greater than to
the centre of the paraboloid as shown in Figure 6.8. It has been shown that, in any plane, the
radiation pattern is closely related to the aperture illumination in that plane and particularly how
it rolls-off, or tapers, at the edge. Therefore, it is common practice to refer to the level of the
field at the reflector edge to provide a ‘rule-of-thumb’ description of beamwidth and sidelobe
levels. Two different terms are used, often interchangeably, and these are now defined. The first
term is ‘edge illumination’; that is the level of illumination directed at the edge. Edge

Figure 6.8 Edge taper
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illumination is the ratio of the field strength radiated by the feed in the direction of the edge and
its level at the reflector vertex, where both are measured on a circle of radius equal to the focal
length. The second term is edge taper. This is the ratio of the feed field strength at the actual
reflector edge and its level at the vertex. The difference between edge illumination and edge
taper is the free-space loss due to the distance A (shown in Figure 6.8) from the sphere to the
reflector. If E is the edge illumination, by definition, edge taper is

f
T=E
fra (6.25)

where L. is the edge taper loss factor. The free-space loss reduces the amplitude of the spherical
wave as it propagates towards the edge. The loss is

f+A
L.= ra (6.26)
For a paraboloid, the extra distance is
= f 5 (6.27)
(4//D)
and, therefore,
Le=1+ ! 5 (6.28)
(4f/D)
It is usual practice to express Eq. 6.25 in dB, namely,
(Edge taper, dB) = (edge illumination, dB) — (path loss, dB). (6.29)

Some values of L, for different (f/D) ratios of a paraboloid are listed in Table 6.1.

Table 6.1 Edge taper loss factor versus

parabolic reflector f/D

fiD L (dB)
0.2 8.17
0.25 6.02
0.3 4.58
0.33 3.94
0.4 2.86

0.5 1.94
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As an example, consider the half-wave dipole feed example described in Section 6.2.1.1 fora
parabolic reflector with f/D = 0.33. At the reflector edge at . = 74.29°, the edge illumination is
—13.2 dB in the E-plane and 0 dB in the H-plane. The path loss for this reflector is L. =4 dB.
The respective edge tapers are, therefore, —17.2 and —4 dB.

A term related to edge taper that is used in signal processing applications in which the aper-
ture illumination is tailored to achieve a desired outcome is apodization. It was originally used
in optics to refer to the modification of the central illumination of a lens to suppress secondary
maxima, that is, sidelobes, to improve the dynamic range of a telescope. Often the central illu-
mination is non-linear and approaches zero at the edges of the aperture. While the term apo-
dization occurs occasionally in the antenna area, it is more commonly used in other related
imaging areas such as optics, audio and photography.

6.2.3 Induced Current Method

In the previous sections, the radiation from a paraboloidal reflector has been described in terms
of the aperture field method. Another approach that is widely used for reflector antenna analysis
is the induced current method, which is also a more accurate method. In this approach, the
radiated field is determined from an electric surface current set up on the reflector by the feed.
The problem is to find this current and generally numerical methods must be used.

An approximate approach, which yields good results, is to assume that, at any point on the
reflector, the current that is induced is the same as on an infinite plane conductor. Thus, if the
feed radiates a magnetic field Hy at the reflector, this surface current is given by

Js =27 x Hy| (6.30)

reflector X°
where 7 is the unit outward normal to the reflector surface X. This representation of the surface
current is called the physical optics approximation. The factor of two occurs in Eq. 6.30
because, it will be recalled, the total magnetic field at the reflector is twice the incident field.

Equation 6.30 may be used in Eq. 3.24 to calculate the radiated fields. There is no magnetic
surface current at the reflector and, therefore, the radiated electric field is

E(r.0.0)= -2 7(0,9)~#(F(0.0) ), (631)
where
F(0,4) =J Jsexp(jki-r')ds'. (6.32)
z

The primed co-ordinates relate to co-ordinates on the reflector surface. Notice that the second
term inside the square brackets of Eq. 6.31 cancels out a radial vector component that is intro-
duced by the first term. For example, in rectangular components, the vector in the square braces
becomes

£(Fx—F, sin @ cos ¢) +y(Fy—F, sin @ sin ) + Z(F.—F, cos 6),
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where F, =F-F. The contributions from the radial terms in the above directly cancel identical
terms in F,, F, and F; when these are expressed in spherical polar co-ordinates as given in the
vector identities in Appendix A.2.

The fields predicted by the induced current method (given by Eq. 6.31) and the aperture field
method (Eq. 6.10) are very similar for large reflectors (D > 1004), but there are important dif-
ferences. These differences affect the co-polar radiation pattern the least but become significant
several beamwidths from boresight. The main differences are as follows:

a. The z-component of the current in Eq. 6.31 gives a term in the far-field that is not predicted
by the aperture field method.
b. The phase function in the two methods is different due to the use of different path lengths.

Both (a) and (b) become important as € increases from boresight. The z-component in (a)
is particularly important for accurate prediction of the antenna cross-polarization. However,
if the reflector is reasonably large and the feed introduces a significant amount of its own
cross-polarization, the effect of (a) is small. As a result of the limitations mentioned, the
induced current method is usually preferred to the aperture field method in reflector calcula-
tions. Historically, the latter has the advantage that the integral over the aperture
(in Eq. 6.11) may be evaluated directly by means of the fast Fourier transform (FFT) algorithm.
However, research in the 1980s showed that the current transform Eq. 6.32 can also be eval-
uated by means of the FFT, after some modification (see, e.g. Franceschetti & Mohsen, 1986).
One such approach is to express the current transform, as a series of Fourier transforms. To do
this, in the phase of Eq. 6.32 let 71’ = ux’ + vy + cos 07'. In addition, on the reflector surface X,
the 7’ co-ordinates are expressed as a function of the co-ordinates x’ and y'. This allows Eq. 6.32
to be written as an integral over an aperture A consisting of the area projected by X onto the
x' =y plane; thus,

F(0,¢)= LJSW(x’,y’) exp(jk(ux' + vy + cos 07'))dx'dy’ (6.33)

with

wie)= i () (). (634

The exponential in the integrand, exp(jkcos 67’), can be expanded in its Taylor series. With
this substitution, Eq. 6.33 can be expressed as follows:

o0

F(0,¢)= Zl%!(jkcos 0)Y'F,(u,v), (6.35a)

p=0

where

F,(u,v) =J JsW(X,y)Z" exp(jk(ux’ +vy'))dx' dy'. (6.35b)
A
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Each Fourier transform F,, may now be evaluated for each value of p by means of the effi-
cient FFT algorithm (see, e.g. Brigham, 1974). In practice, it has been found that very good
accuracy is achieved with most common types of reflectors by taking only the first two terms
of the series; that is p=0 & 1 in Eq. 6.35a.

6.2.3.1 Radiation from Symmetrical Reflectors with General Profile

A common situation is to have a main reflector with a general profile that is symmetric about the

z-axis as illustrated in Figure 6.9. Consider such a symmetrical reflector that is excited by a feed

located on its axis of symmetry a distance f;, from the vertex. Suppose that the profile can be

specified by the function p(y), where p is the radial distance from the origin to the reflector sur-

face and y is the angle from the axis to a point on the reflector. The feed is located a distance

Az=d~—f, from the origin where d =p(0) is the distance from the origin to the reflector vertex.
The normal to the reflector is given by

iz [_ny(fcos £+ sin £)+5n, (6.36)

\/PEEPL

where p,, of p(y) and the coefficients are

ng=p, cosy—psinyandn,=p, siny +p cosy.

Figure 6.9 Geometry of radiation from a prime focus reflector with a general profile. Surface
element shown in bottom right
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The feed radiates an electric field in the primed co-ordinate system (o', y/, &) given by

e_jkp, / ~ ! £ . /
Br=——AWy) (i cos ¢ ~Esin &)

and

|
Hi=—(p' xEy),

o

where the pattern function A(y’) can be arbitrary, p'=+/p*+Az2-2pAzcosy, y'=
sin~! <5/ sin 1//), E=¢and p'=p-ZAz.

Following physical optics assumptions, the current induced on the reflector by this feed is

2.
Jszn—nx(prf)
2A —Jjk,
= —M%LJ’D) [¥'(—nq sinysin®&+n, (cos*é + cos ysin®é)
Mo P

+y' cos &sin &(n, siny +n,(1-cos y)) +2'n, cos &.

The incremental surface element for a general surface is dS= pLsinydydé, where
L=,/p*+ pgl is the segment length as shown in the inset to Figure 6.9. This cancels with

the term in the denominator of J,. Substituting this and the current into Egs. 6.31 and 6.32
results in far-field components

Eo(r,0,¢)= %e—:kr [cos O(F.(0,¢) cos ¢+ Fy(0,¢) sin ¢p) —F.(6,¢) sin 6] (6.37a)
jk eIk )
Ey(r,0.¢)= ~5. [—Fy(0,¢)sin ¢+ Fy(0,¢)cos ¢]. (6.37b)

The transforms can be evaluated in the -direction in closed form using Eq. B.3. Thus,
WC p
F.(0,¢)= 27rJ dypsiny [p/A(y/')] Jo(w)exp[—jk(p' +p cos O cos y)] (6.38a)
0

Fy(6,¢) =2 sin 2¢J:C dysin yr EA(WI)} J2(w)) (pv/ cos (%) ~psin (%)) (6.38b)

X sin (%) exp[—jk(p' +p cos O cos y)]

Ve

dy [SA(V/)] Ji(w)psin’ (%) x exp[—jk(p' +p cos O cos )],

(6.38c¢)

F.(6,¢)=—4xjcos ¢J

0
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where w=kpsin 6 and J,, is the ordinary Bessel function of order n. The first quantity in the
square brackets on the right-side of Egs. 6.38 reduces to A(y) when Az=0 and also f, =f,
the reflector focal length. The integrals in Eqgs. 6.38 are readily integrated providing p(w)
and its derivative are known either in closed form or through interpolation of a set of data
points.

As an example of the former, consider a paraboloid defined by p=2f/(1+ cosy) and p,, =

ptan (y/2). The surface element for a paraboloid is, therefore, expressed as dS = p*sec(iy/2)
siny dy dé. With these substitutions and the same feed defined above, Eqgs. 6.38 reduce to

Fo(0,9)= ZHfJ:C dwA(y)Jo(w)tan (%) exp[—jkp(1+ cos O cos )] (6.39a)

Fy(0.9)=0 (6.39b)
F,(6,¢) = —4xjf cos ¢ch dyA(yp)J; (w) tan (%) x exp[—jkp(1 + cos@cosy)].  (6.39¢)
0

The far-fields then follow from Eqgs. 6.37. For instance, Figure 6.10 shows the radiation pat-
tern of a paraboloid with dimensions D= 1004 and f /D = 0.4 and a Gaussian feed function with
an edge illumination of —10 dB. Other examples of the use of Eqs. 6.38 using discrete data
points in the calculation of radiation pattern are given in the next section and later in this chapter
in Section 6.9 in relation to shaped reflectors.

Power (dB)

AL UNIAY

-2 -15 -1 -0.5 0 0.5 1 1.5 2

Angle (°)

Figure 6.10 Principal radiation pattern of a paraboloid with dimensions D =1004 and f/D = 0.4 with
a feed having an axisymmetric Gaussian pattern function that results in a —10 dB edge illumination
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6.2.3.2 Spherical Reflector

Another reflector type that is used in a variety of applications because of its ease of use in
scanned beams is the spherical reflector that is illustrated in Figure 6.11 (Li, 1959). The surface
is obtained by taking a section of a sphere of radius R,. Unlike the paraboloid, the spherical
reflector does not have a perfect focus. Typically, a focus is taken on the line of symmetry
at a distance f, =R, /2 from the reflector vertex. However, this does not take account of other
rays near the axis of symmetry, and as a result, the best feed location tends to be closer to the
reflector, the actual distance depending on the requirement of the antenna. For example, to keep
the phase error in the aperture to within +1/16, the diameter, D, of the aperture should not
exceed D=256A(f,/ D)3. Common methods for feeding a spherical reflector are an array of
dipoles or waveguides, a correcting concave reflector, which results in a Gregorian-corrected
dual-reflector configuration, or alternatively a line source provided by a travelling wave feed
along the axis, which radiates a field towards the reflector.

To examine the spherical reflector geometry further, consider a possible location of a single
feed as shown in Figure 6.11. The distance from the focal point to the aperture plane at z=0is
given by

L=FP' +PA= \/s2 + [\/pz—sz—(p—fo)} ’ +/p2—s2, (6.40)

where p =R, the radius of the spheroid, s is the radial distance from the z-axis and f; is the
distance from the vertex to the focal point at F. The path difference between a paraxial ray
and a non-axial ray is given by

NY

Figure 6.11 Spherical reflector geometry



168 Fundamentals of Aperture Antennas and Arrays

A=R,+fo—L.

This path difference in wavelengths is

2
A R, fo s\2 s\? o %
Tl R (R—) 1‘(@)‘(“@) - 1‘(17) - 64

The total phase error over a prescribed aperture is least when the phase error at the aperture
edge is zero. If the aperture radius is D/2, which describes a cone of angle y, = sin~! (D/2R,) at
O, the optimum focal length when A/A=0 is given by

1 D\
=R+ [R2=(2) . 42
fo= 7| Ro+ [ RS (2> (6.42)

While this is the optimum location for a uniform illumination, it is not necessarily the most
suitable location for a tapered feed pattern when the feed needs to be moved further away from
the reflector vertex. Correspondingly, there is a given aperture dimension for a minimum total
phase error. Thus, the phase error tolerance limits the aperture size. It has been determined that
the maximum allowable total phase error (A/A),.x for a given aperture diameter in wavelengths
D/Z is

A _ D/,
()T 4

The radiation pattern of a spheroid can be obtained by means of the expressions given by
Eqgs. 6.37 and 6.38. As an example, a spheroid is chosen with a radius of R, =504. According
to Eq. 6.43, the maximum diameter of the spherical segment for a phase error of /16 is
D/A=36.384. Assuming an approximate uniform illumination, Eq. 6.42 gives a focal distance
of f, =24.1211. At this distance, the feed-cone angle is 6, =56.78°. A feed pattern function
given by A(y) = cos®y was chosen for this reflector to provide an edge taper of —8.21 dB.
The resulting radiation pattern that was computed is shown in Figure 6.12, and the maximum
gain is 37.64 dBi, which results in an aperture efficiency of 41.2%. These results were obtained
from a discrete data representation of the reflector and are comparable with those obtained from
the closed-form expressions for the spheroid. The first sidelobe level is seen to occur at —25 dB,
and the maximum cross-polar level is —44.3 dB. This sidelobe level is significantly lower than
what might be expected from the edge taper with a paraboloid of the same diameter.

6.2.4 Receive-Mode Method

In the previous section, the radiation pattern of the reflector was obtained by assuming that
the feed antenna was transmitting. The reflector can also be easily analysed by adopting a
receive-mode method. In the receive-mode approach, the reflector antenna is assumed under
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Figure 6.12 Radiation patterns of a spherical reflector with D=36.8344, R, =504 and f, =24.1214,
edge illumination —6.41 dB

illumination from a distant point source. The illumination is by a plane wave from a fixed direc-
tion. The wave can be linearly or circularly polarized. For a distributed source, the illumination
could be created from a superposition of plane waves from all relevant angles of incidence.
Recalling reciprocity, the receive-mode method should give the same results as in transmission.
Its advantage is that for a fixed incident beam the feed need not enter the calculation until after
the current on the nearest reflector has been computed. In addition, with little difficulty, the same
computer program can determine both the focal region fields, knowledge of which is important
for designing the feed excitation and the far-field radiation patterns. In the latter calculation, the
methods of Section 3.7 can be used. When there are two or more reflectors, it is usual to integrate
over the reflector nearest the feed as the latter’s surface is usually the smallest one of the two.
Both calculations are feasible once the current on the relevant reflector is known. The current is
often stored as this is usually the most complicated calculation. The radiation efficiency can then
be compared relatively quickly for a variety of feeds or feed element locations.

The field finally reaching the feed is usually subject to several approximations. It is common
practice to ignore either a direct component into the feed from the incident field or an indirect
diffracted component from the subreflector. Similarly, multiple reflections from the subreflec-
tor, or feed, which reach the main reflector, are excluded. This latter assumption eliminates the
reaction between the reflectors and the reflectors and feed. On the whole, practice with sym-
metrical reflectors has shown that these assumptions do not significantly affect the main beam
and the first few sidelobes. In the case of the dual offset reflector, these approximations are
likely to have less effect.
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y

Figure 6.13 Linearly polarized plane wave incident in direction s;

The direction of arrival of an incident linearly polarized plane wave can be described by three
angles 6y, ¢; and {; as shown in Figure 6.13. Suppose s; is the beam direction and E; is the
electric field associated with the wave. As may be verified from Figure 6.13

s;= — (X cos ¢; + y sin ¢, ) sin ;—Z cos 0;. (6.44)

As well, E; has a polarization angle ;, which is defined relative to an initial line that is in the
z—OA plane which is defined by ¢,. A field defined in the co-polarized direction is

E; =x(cos {; cos ¢, cos O;—sin {; sin ¢;) (6.452)
A45a
+y(cos ; sin ¢, cos O; + sin {; cos ¢p;) —Z cos £; sin 6;.

An orthogonal cross-polarized field can similarly be defined by simply replacing
C]—>C]+ﬂ'/2. That iS,

E; = —x(sin {; cos ¢, cos 67 + cos {; sin
I A( 'Cl ¢ 1 ¢r ¢’1A) . . (6.45b)
—¥(&; sin ¢, cos ;— cos £ cos ¢y ) +Z sin {; sin 6;.

The field arriving at the point P(7,, 8,, ¢,) that is scattered from a paraboloid is shown in
Figure 6.14. The reflector is oriented with its axis of symmetry along the z-axis. The field
can be computed using the induced current method or by some other technique such as the
geometrical theory of diffraction (GTD). In the latter, the resulting field consists of field con-
tributions arising from specular reflection that is a geometric optics contribution plus partial
fields that are due to diffraction from several points Q’L‘) (k=1, 2) on the reflector rim. All points
are determined from Fermat’s principle of finding the least path length from incidence to the
reflection or diffraction points. The field obtained close to the focus is the focal region field.
This field is an indicator of the best feed aperture distribution with which to excite the reflector.
It may also be used to calculate the radiation pattern by means of the power coupling theorem
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Figure 6.14 Reflection point QR and sites of edge diffraction Q% (k= 1, 2) on an offset paraboloid

(Wood, 1980) or field correlation as described in Section 3.7. The version of the power cou-
pling theorem given here includes the assumption that physical optics is applicable at the reflec-
tor or a subreflector. In addition, it is assumed that the scattered field does not influence the feed
radiation. With these assumptions, the fraction of the power in the field scattered from the main
reflector that is coupled into the feed is given by Eq. 3.64 as

2

Uj (Er-Jren (6.09))dS
Srefl
16P¢Pjpc ’

n(6.¢)= (6.46)

where Ey is the electric field radiated by the feed independently of the reflector, Py is the power
radiated by the feed and P;, is the power in the wave incident on the reflector. The current on
the reflector is

Jrett =2Y0 x (SI XEI), (647)

where Y, is the wave admittance of the incident plane wave, 7 is the normal to the reflector in
rectangular co-ordinates and for the paraboloid it is given by Eq. 6.3. The incident electric field
E,is given by Eqs. 6.45a and 6.45b for determining the co- and cross-polar efficiencies, respec-
tively. Eq. 6.46 represents the fraction of the power radiated by the feed in the direction of the
incoming wave. Its maximum value is the peak antenna efficiency or beam efficiency and when
the antenna radiates multiple pencil beams, its maximum value in each beam direction is the
beam efficiency. Far-field radiation patterns can be determined by evaluating Eq. 6.46 over
solid angles around each incident wave direction. The integrals in Eq. 6.46 are usually
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evaluated numerically using methods such as trapezoidal quadrature or the Gauss-Legendre
quadrature rule (Froberg, 1974).
As an example of the possible simplification of Eq. 6.46, consider the special case of a sym-
metrical paraboloid. This reflector is fed by a Huygens source with a radiated field of
N o —jkr
E;=A(6) (0 cos ¢p—¢ sin ¢) exp ;

where A(0) is the Gaussian function given by Eq. 6.23. The radiated power is

/2
Pi= ﬁj dO|A(0),
7]0 0

while the power in the incident plane wave is P, = (zD) /5, where D is the diameter of the
paraboloid. Assume an incident plane wave that is parallel to the z-axis (i.e. 6; =0° and ¢, =0°)
that is polarized parallel to the x-axis (i.e. {; =0°). The maximum efficiency given by Eq. 6.46 is

/2
| dwiawcostw/2?
Mmax = 0 7/2

2(aD)[ vl

For a paraboloid with D=100 4 and f/D=0.35 that is fed with a Huygens source with an
edge illumination of —16 dB, Eq. 6.23, the maximum efficiency predicted by power coupling is
77%. The induced current method gives 74% for the same geometry.

6.3 Focal Region Fields of a Paraboloidal Reflector

An understanding of the fields excited in the vicinity of the focus of a reflector by an incident
signal is very useful for designing suitable feed antennas. By making the aperture fields of the
feed a good match to the focal region fields, high gain and low cross-polarization may be
achieved. To calculate the focal region fields for far-field operation either in reception or trans-
mission, the reflector is illuminated by a uniform plane wave from infinity. In this section, the
fields in the focal region (at z=0 in Figure 6.15) are found by means of the induced current
method. Other approximate methods such as GTD can be used. A high frequency approxima-
tion will also be described later in this section.

A paraboloidal reflector is illuminated by a plane wave linearly polarized in the x-direction,
as illustrated in Figure 6.15. To make the result more general, the wave is incident at an angle to
the axis of symmetry and its electric field is

E; = E, (% cos 0;—Z sin §; ) /Kxsini+zcos6) (6.48)

where 6; is the angle of incidence relative to the negative z-direction. This field induces the
current on the reflector surface as follows:
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Figure 6.15 Geometry for focal region field analysis for on-axis incidence 6;.

Jo =27 x Hy|

reflector £

1 (6.49)
=2iix —[(—%sin 6;—Z cos 0;) xE;],
Mo

where 7 is given by Eq. 6.3. In rectangular co-ordinates the current is expressed as follows:

2E5 (rsi
Ji= 7031"(”1“9"”&56’") ()E cos % +Zsin % cos .’;) . (6.50)

As focal plane is not generally in the far-field of the reflector and, therefore, Eqs. 3.8 are
required to evaluate the fields. Only the electric field in the focal region is considered.
Eq. 3.8a gives

o—IkR

R

Br(r0.0) =2t [ (1= RUIR) a5 (6.51)

z

As shown in Figure 6.15 for on-axis incidence ,, the vector R =t—p is from P’ on the reflec-
tor to P in the focal region and t is a vector in the focal plane. Near the focus |t| <<|p|, and this
allows approximations to be made in a similar fashion to estimating the far-fields. Accord-
ingly, let

R=|R|~|p|=p-t in the phase function of the integrand and
R~ inside the square brackets in the amplitude function of the integrand.
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The amplitude function in the integral of Eq. 6.51 is now

1 D ) ! N A
R0 RS = 00y
=- %eﬂ‘(”i"ai +zc0s6;) {)2(1 - tanzg cos 25) sin y (6.52)

—ysin y/tanzg sin 2 + 22 sin y tan % cos E}pdpdy/.
Also, the combined phase function is given by

@' =R—(cos ;7 + sin O;x)

~ (xp cos £+ yp sin &) sin y + 2f sin 6; tan % cos E+f cos 0; seczg =2f (6.53)

=t(y)siny cos ({—&) +f cos §; se02%—2f,

where 1(y)= \/ (xp +fsin@; sec?(y/ 2))2 +y%. With these approximations, Eq. 6.51 gives
(Minnett & Thomas, 1968)

. 21 7 0
Ep,= _IKEo J d(fJ (1 —tan*Z cos 25) sinye *® dy (6.54a)
271' 0 0 2
ik 271 W o
Epy :Jﬁj d&J sin ytan?? sin 267 dys (6.54b)
27[ 0 0 2
k 271 /8 o
Ep,= -/ fE"J ng sin y tan % cos Ee P dy. (6.54c)
7T Jo 0

The integration with respect to £ can be completed by means of Eq. B.3 allowing Egs. 6.54 to
be reduced to

Ep(xr,yr,0;) =Ao(xr,yr) + A2 (xF,yF) (6.55a)
Ery(xr,YF,0;) = By (xr,yr) (6.55b)
Er;(xr,yr,0i) = =2jA1 (xp,YF), (6.55¢)
where
Ay (xp,yr) =k : J (ktsin y) tan"% sin y cosn{ exp (—jkaZ tan’ %) dy (6.56a)
and
B, (xp,yr) =K :[ J(ktsin yr) tan”% sin y sin né’exp(—jkaz tan’ %) dy (6.56b)
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in which a,=2fsin*(8;/2); k= —jkfE, exp(—jk2f cos?6;/2) and tan{=yr/(xp +f sin @;sec?
(¥/2)).

For on-axis incidence (6;=0), Egs. 6.55 become

Ep(xp,yr,0) = Ag(2) + A (t) cos 2¢ (6.57a)
Epy(xp.yp0) = Ay () sin 22 (6.57b)
Ep;(xp,yr,0) = =2jA; (1) cos £, (6.57¢)
where
Anl) = KJ: Jo(ktsiny) tan"% sinydy (6.57d)

and k= —jkfE,e/*?. Further insight to these equations is possible by now considering a
paraboloid with a long focal length. Suppose the angle to the rim, y, is small allowing the
functions in Egs. 6.57 to be approximated as follows

Ao(f) K/ [2LUU)] (6.58a)
Ay (1) =K {%JZEJU)} (6.58b)
Ay (1) =0, (6.58¢)

where U =ktsiny, and &’ =2ksin*(y,/2). Note that sin(y,/2)~ tan(y,/2)~D/2f so that
K~ —jkE,e* D? /8f and therefore

Epd(t,0) ~K [2J1 g}U)} (6.59)
Ery(1,0)~0 (6.59b)

and
Er(t,0) ~ —j2«’ {wc ngj)] . (6.59¢)

Therefore, the dominant field amplitude in the focal plane is

2
|Ep| ~E, (@) [2%} . (6.60)

Equation 6.60 is the scalar solution obtained by the mathematician and Astronomer Royal
George Biddell Airy in the early part of the nineteenth century when he investigated the
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distribution of light in the focal region of a lens. He observed that the focal region field consists
of bright (‘Airy”) and dark rings. Eq. 6.60 shows that these rings occur when J; (U) =0, result-
ing in a first dark ring when U =3.832.

Even for paraboloids with a short focal length, the field in the focal region has similar char-
acteristics through the expressions given in Egs. 6.57. Figure 6.16 shows the field distribution
in the focal plane of the Parkes radio telescope (. =63° and f /D =0.41). In the central region,
the field is nearly linearly polarized. It changes sign at the first zero, which occurs at a radius of
t1 =0.6104/ sin y_, = 0.554, which is indicated as a dotted line in Figure 6.16. For optimum per-
formance, a feed should have an aperture field distribution that closely matches the focal fields.
A corrugated waveguide operating in the HE;; mode (see Eq. 4.61a) provides a good match to
the focal field when the waveguide, a, is approximately equal to ¢, in both the co- and cross-
polar directions. The TE;; mode of circular waveguide is also quite a good feed for a parab-
oloid, but it does not have zero cross-polarization as required in Figure 6.16b. For maximum
gain, its radius should be slightly greater than ¢, (see Figure 6.21). This is because the TE,;
mode aperture field is more uniformly polarized near the centre of the waveguide than at its
walls and is, therefore, a better match to the focal fields. A circular waveguide with a diameter
of about 1.11 would be a reasonable option. If a beam is required off-axis, a small array can also
be used (Poulton & Bird, 1988).

6.3.1 Asymptotic Representation of the Scattered Field*

The field scattered from the offset reflector to the focal region can be approximated for large
reflectors or for high frequencies by means of asymptotic methods. The basic technique was
described in Section 3.8.1. The focal fields or radiation pattern can then be obtained either by
correlating this field with the field of the horn on the aperture or using the field to approximate
the current on a subreflector if one is present. Consider the situation illustrated in Figure 6.17. The
magnetic field scattered to a point P from paraboloid due to plane wave incidence is given by

H(R) =%JL(JS><SR)%§]CW61& (6.61)

where Js=(2/n,)[7 x (§; x Ej)] exp(—jksi-p).

E; is the incident electric field;

$y is a unit vector in the direction of the incident plane wave;

§;=—(Xcos ¢; +y cos ;) sin O + Z cos Oy;

p=p(Xcosésiny +ysinésiny +Zcosy) is a vector from the focus to the reflector surface
and for a paraboloid p=2f/(1+ cosy);

7 is the normal to the surface of the reflector

hi= ;\/7 [(Xcos E+ysiné)(p, cosy—psiny)—2(p, siny +pcosy)];

Pr+py,

sr=|p—R] is a vector from the source point to P and §g =Sg/sg is a unit vector and s is the
magnitude; and R is a vector from O to P the observation point
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Figure 6.16 Contour plots of the electric field amplitude in the focal plane of a paraboloid with diameter
D=3004 and f /D =0.41 which corresponds to a half-cone angle y, =63° (a) Co-polar |E,|; and (b) cross-
polar |E,l. The dashed circle at the centre has a radius of 0.554
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5, Incident
wave

Figure 6.17 Incident plane wave on a shaped symmetrical reflector

R=R(Xcos ¢ sin @+ y sin & sin § + Z cos 0).

For convenience, this field is expressed as follows:

HOR) = [ [ F(Rp)expliks(RIp))as. (6.62)

2::7,, s t;’” “ and 8(R|p)=—(S-p+sg).

This field can be evaluated asymptotically by methods described in Section 3.8.1. In brief, there
will, typically, be three contributions to the asymptotic solution, namely, a stationary point from
the surface of the reflector corresponding to specular reflection, two or more edge contributions
due to stationary points on the peripheries due to edge diffraction and a contribution from any
discontinuities on the boundary of S.

In the case of an axisymmetric reflector, the components of the integral in Eq. 6.62 are
integrals of the form

where F(R|p) =

21 W
I=J d&EJ dy f(&.w)exp(jkg(&,w)), (6.63)

0 we(8)

where f(€, ) is a component of Eq. 6.62. w =y (&) is the inner boundary of the surface S and
corresponds to shadowing by a subreflector in a dual reflector or a feed in a prime focus con-
figuration. y =y, defines the outer rim of the reflector.

As has been mentioned, there are potentially three different types of critical points relating to
the domain S. The critical point of the first kind, or spectral point, at (£, y) on the reflector
surface is defined by
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I8
dE|é=¢

Y=y,

=ge(Erw1)=0=gy(1.y1)- (6.64a)

As well, there may be up to four critical points of the second kind, or edge points, from the
two boundaries of S, which are defined by

I8
dE|é=¢

W=y,

=g:(6w(£))=0 (6.64b)

on the inner and outer boundaries of S. Finally, there could potentially be two critical points of a
third kind due to a discontinuously turning tangent on the inner boundary. However, for sim-
plicity, it is assumed here that y4(£) is a smooth function with no discontinuities. The critical
points of the first kind yield a geometric optics type of contribution to Eq. 6.63 and those of the
second kind give diffraction contributions from the edges. For large reflectors with a relatively
small inner hole defined by w (), the contributions to Eq. 6.63 from the inner boundary edge
points are small compared with the other terms.

When the functions f and g are expanded in their Taylor series about the critical points, as
described in Section 3.8.1, and at each critical point the first term of the asymptotic expansion
of Eq. 6.63 is taken into account, an asymptotic representation of this equation is given by

I~ 0'[1 (51 W ) _Zgui]2(§u27l//2) + Z‘guj[Z(éfZ’l//(éfZ))' (665)
i J

The subscripts u and £ refer to the upper and lower limits of y and i,j=1,2 is a
summation over the critical points of a second kind on the two boundaries. To define the other
variables in Eq. 6.65, let

V(&w)=8,- (ﬁi;‘”) (6.66a)
A 2

U(é‘,l//)=—=gyn,/— (gﬂ>, (666b)
8ee 8ee

where g,,, g and so on refer to derivatives of g with respect to y, £ and

8wy 8&y
8wt 8&

A=

is the determinant of the Hessian matrix of g(¢, w). For a general critical point denoted by g;,
representing boundary ¢ of S, point i (which is set equal to 1 for the stationary point) then
in Eq. 6.65

(6.67a)



180 Fundamentals of Aperture Antennas and Arrays

and also

euis whensgn(V(&,1,y,1) = sgn(V(Snsw,n) & sgn(V(Ee,y ) # sgn(V(Enswe)
0; otherwise
(6.67b)

is a step function that distinguishes whether there is a geometric optics contribution to the integral
based on a test of the derivatives of g at the edge points. This test can be made before a search is
undertaken to find a stationary point on S and this can help shorten computation time. In addition,

Li(ELy,) =AW (E Ly ) exp (J”T”>

k
L (gqivl//qi) = W(ﬁqi’y/qi)Fﬂ < 2|—U|V|> ’

where
u=sen(U)

and

2 .
W(fqisll’qi) = % \/%f(éqi,y/ql’) exp (] sgn (gw) %)

, 1(g Vv?
X exp [Jk <g<5qi’l//qi) ) <g_55 * T

F,(z) is a Fresnel integral, which is defined in Appendix E. It can have a positive or negative
exponential in the argument of the integral depending on the sign of y. A particular feature of the
asymptotic solution given above is that the critical points need only be approximate. The reason is
that Eq. 6.65 includes compensating terms that involve the derivative g and g,,, which are set to
zero in some asymptotic forms. In the present formulation, the stationary point (£, ) is a simul-
taneous solution of g and g,, such that ’ 8¢ gl,,‘ <& while the edge points are solutions to

Eq. 6.64b with | g5{ <& where ¢ and ¢, are assumed to be small. Approximate solutions of
the critical points in the range 0.001 <e&,e, <1 have been tried and only small variations to
the overall value of the integral have been observed. The critical points can be found by a vari-
ety of root finding methods. For example, the two-dimensional Newton—Raphson (Dixon,
1972) is particularly apt for finding the stationary point on the reflector in present application.
The i-th Newton—Raphson step towards a minimum of Igl given by Eq. 6.64a is given by

;= (H'])

i

- __ 1
where @, = [5’ }, Ji= [gﬂ ,and H - [ 8 8y ‘1 is the inverse Hessian matrix.
Vi 8y ]; Al -8y 8wy
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Figure 6.18 Feed illuminating subreflector

As mentioned earlier, the present solution for the scattered field can be used to find the focal
region fields or the radiation of a reflector. In a dual reflector application, the radiation pattern
or focal region fields can be obtained from the physical optics currents induced on the
subreflector as shown in Figure 6.18. The current at point P on the surface X is given by
Js(r,0,¢) =21, xH(r,0,¢) where H is given by the asymptotic form of Eq. 6.62 and 7, is
the normal at P. The radiation from a dual reflector could be obtained by field correlation from
Eq. 6.46 by integrating the asymptotic field with the electric field from the feed E¢ over the
subreflector surface as indicated. The feed field needs to be transformed from the local feed
co-ordinate system to the global co-ordinate (x, y, z) system. In the simpler prime focus appli-
cation, field correlation can also be used, but in this case, the integration of the asymptotic solu-
tion should be done over the aperture of the feed with both the electric and magnetic fields
present as given by the alternative Eq. 3.62.

6.4 Blockage

The feed and its support structure in a front-feed paraboloid scatter energy away from the
aperture producing a shadow as illustrated in Figure 6.19. To a first approximation, shadowing,
or blockage as it is known, may be included in field calculations by eliminating the blocked
parts from the integration over the aperture or reflector surface. For example, in the aperture
field method, blockage from a feed of diameter D,, is included by removing a circle of radius
D,/2 from the centre of the aperture. Eq. 6.11 would then be replaced by

2 D/2

N(6.¢) =J deJ E (1,£) exp(jwtcos (¢ —&) . (6.68)
0 Do/2

The effect of blockage on the radiation pattern is demonstrated by the one-dimensional exam-

ple illustrated in Figure 6.20. The Fourier transform of the aperture distribution in this figure is

g | fyermer
| s

a? b2
— J e/2rmx’dxl — J e/Z/mx dx/ (669)
—a/2 ~b/2

=aS(zua)—bS(zub).
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I NN

Strut

Figure 6.19 Aperture blockage by feed and supporting struts
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Figure 6.20 TIllustration of blockage effects in terms of Fourier distributions

The result is illustrated in Figure 6.20. It is seen that the subtracted transform due to the cen-
tral blockage is wider than the transform due to the main aperture distribution. Therefore,
the central lobe and the even-numbered sidelobes of the main aperture are out of phase with
the blockage. Therefore, blockage reduces the on-axis gain and increases the nearby odd-
numbered sidelobes extending out from the central beam. As well it decreases the even-
numbered sidelobes. Blockage can also have an important effect on the sidelobes far from
the main lobe, sometimes increasing them to unacceptably high levels. This will depend on
the size and shape of the blockage as well as the illumination.
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6.5 Reflector Antenna Efficiency

Under normal operating conditions, a reflector antenna has maximum gain for a uniform,
equiphase aperture distribution. Then from Eq. 3.40, a reflector with a diameter D has maxi-
mum gain of

e (). 6

If the reflector illumination is tapered, as it usually is in practice to keep sidelobes at accept-
able levels, the maximum is less than that given Eq. 6.70. To accommodate this, in
Section 3.5.6 maximum gain' was defined as

Gmax =7]uG0, (671)

where 77, is the aperture efficiency. Eq. 6.71 neglects power losses in the reflector system due to

feed spillover, mismatch, conductor losses and so on. These power losses may be accounted for

in the calculation of gain by modifying Eq. 6.71 as is now demonstrated for reflector spillover.
The power density radiated by the feed is

1 2
Pi=— |E 6.72
=5 B (672)
giving a total radiated power
27 T
Pr= J dé J Prpsiny dy. (6.73)
0 0

Not all this power is intercepted by the reflector. Some of it falls outside the reflector causing
a power loss. This power loss is called spillover. The power collected by a reflector subtending
an angle . is

1 21 Ve
P.= 2—J dé J |E¢|*p siny dy. (6.74)
MJo 0

Therefore, the power loss due to spillover is

1 2 4 )
PS:PT_PC:ZJ déJ |Ex|*p siny dy. (6.75)
0 Ve

! Higher gains than Eq. 6.70 are possible with non-uniform aperture phase distributions. This supergain phenomenon
can be difficult to achieve and obtain in practice because of losses and often the improvement is very narrowband.
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The spillover efficiency can be defined as

P, P,
PR LY 6.76
=5 e (6.76)

By means of Egs. 6.73 and 6.75, the spillover efficiency is

21 /s
J déJ |E¢|* psiny dy
0 0 (6.77)

2 T .
J dij Eg|* psiny dy
0 0

s =

Ideally, 75 should be close to 1 although typically it is 0.6<#,<0.95 depending on the
feed taper.
Let the power density in the far-field region of the reflector be

|-
Pr= E|". 6.78
v=5, 1B (678)

By means of Eq. 3.48, the gain function becomes

47r?P,
Go.9)= "
6.79
_ Axr*P, ( )
=1 P.
Therefore, the maximum gain is
2
D
Gmax =Nals (7) = naﬂsGO' (680)

Equation 6.80 is the extension of Eq. 6.71 to account for spillover.
For a paraboloidal reflector and a feed with an axisymmetric pattern A(y), the power density
on boresight is found from Eqgs. 6.19 and 6.78, to be given by

)
Mo \ T

To obtain this result from Eq. 6.19 the substitution #=p cos y was made. The power col-
lected by the reflector from the feed is

2

J%A(l//) tanydy| . (6.81)

0

T Ve ) .
P.= . |A(w)|” sinydy. (6.82)
0J0
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Hence,
W 12
A(yp)t 2)d
D\2. L () tan (y/2)dy
Gmax =7 R 2cot 5 v (6.83)
|} 14 P sinpay
The aperture efficiency is, therefore,
Ve 12
|| A2
N, = 2cot? ) 0 (6.84)

Y. ) .
|} 1400 sinyat

In a similar fashion, efficiency factors may also be defined to account for feed mismatch,
1y, and reflector and feed conductor losses, 7. These efficiencies are then incorporated in an
overall efficiency factor

1t = Nl (6.85)

The maximum antenna gain is, therefore, expressed as
Gmax =11Go.- (6.86)

The theoretical aperture efficiency of a paraboloid with a circular waveguide feed is plotted
in Figure 6.21 as a function of feed radius. Curves are given for a typical range of feed radii for a
reflector of diameter 100 A for various half-cone angles, y .. The circular waveguide operates in
the TE;; mode and results are given for two types of aperture terminations: namely, the wave-
guide terminates at an infinite metallic flange, and secondly the circular waveguide has no
flange and the waveguide walls are infinitely thin. Radiation characteristics of the first type
were discussed in Section 4.4. For the second type of circular feed, an exact solution is available
(Weinstein, 1969) which, in contrast with the E~H model (Eq. 4.37), accurately represents the
currents on thin waveguide walls. Efficiency values presented in Figure 6.21 include mismatch
loss at the feed aperture and correspond to Eq. 6.85 with 5, =1. Blockage, however, is not
included, but its effect on the efficiency in most instances will be small. Figure 6.21 indicates
there is an optimum feed diameter for maximum efficiency for every half-cone angle. Effi-
ciency increases as . decreases because the pattern narrows in one plane which lowers spill-
over loss but the beam is asymmetric and the cross-polarization will be high. In undertaking
design with these feeds, there is a compromise between the competing requirements of high
gain, sidelobe level, pattern symmetry and cross-polarization.

A third type of circular waveguide feed, which is in common use in satellite earth stations, is
illustrated in Figure 1.1b. It has an aperture flange that contains a number of ring-slots or corru-
gations. The feed pattern function has good axial symmetry, and low cross-polarization can be
achieved by optimizing the slot width and depth as well as the slot spacing relative to the aperture
(James, 1979). A design strategy that maximizes reflector antenna efficiency results in a feed
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Figure 6.21 Aperture efficiency of paraboloidal reflector of diameter 100 A versus radius a of a circular
waveguide feed. Parameter is . (degree). Solid: thin-wall waveguide; dashed: --- Infinite flange

consisting of central waveguide and ring-slots that approximately coincide with the Airy rings in
the focal plane. As in the case of the circular waveguide feeds in Figure 6.21, there is an optimum
reflector half-cone angle, ., that maximizes reflector efficiency, for a given feed. This is shown
in Figure 6.22 for a waveguide of radius 0.37 1. A maximum efficiency occurs in this case
because of the trade-off between energy loss due to spillover and the uniformity of illumination
of the reflector. As . increases, spillover efficiency increases but the reflector is less uniformly
illuminated. In the plots shown in Figure 6.22, the flange has a varying number of rings-slots. The
lowest feed cross-polarization occurs for three ring-slots with a slot spacing of 0.05 4, width 0.13
A and depth 0.26 A. Curve (a) in Figure 6.22 gives the paraboloid efficiency for this feed. The
maximum efficiency reduces slightly with a single ring-slot, as shown by curve (b). In common
with the three ring case the slot dimensions were chosen to minimize feed cross-polarization.

The remaining curves in Figure 6.22, labelled (c)—(f ), illustrate the importance of conditions
at the flange. For a waveguide of radius 0.37 4, they show that the efficiency falls as the flange
width, o (see Figure 6.22), reduces to zero. This waveguide is obviously not optimum with a
small flange. Higher efficiencies are possible with thin wall waveguides, as shown in
Figure 6.21, when the waveguide radius is increased to about 0.5-0.6 1. Coincidently, this size
also gives lowest feed cross-polarization.

Maximum efficiency for the three slot-ring case (curve (a) in Figure 6.22) occurs when
w.=57°. Principal plane radiation patterns in this case are plotted in Figure 6.23. Blockage
is not included and the peak is plotted relative to a uniformly illuminated aperture, giving
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Figure 6.22 Aperture efficiency of a paraboloidal reflector of diameter 100 A with a flanged

circular waveguide feed of radius 0.37 4. (a) Flange with three ring-slots, spacing 0.05 4, width 0.13 A and
depth 0.26 1. (b) Flange with one ring-slot spacing 0.18 4, width 0.13 4, and depth 0.26 A. (c) Infinite
flange (6 = o). (d) Flange-width o = 14. (¢) Flange-width 6=4/4. (f) Thin-wall waveguide (o <<21)
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Figure 6.23 Radiation patterns of a paraboloidal reflector and a circular waveguide feed with a flange
containing 3 ring-slots (see Figure 6.15). Reflector parameters: y,=57°, D =100 1. Solid line: E-plane;
short dash: H-plane; long dash: 45° plane cross-polar
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an efficiency of —1.16 dB (76.6%). The peak cross-polarization in the 45° plane is —35.8 dB.
This is 5.4 dB below the peak cross-polar level of the feed in isolation. This is fairly typical for
the peak cross-polarization in the radiation pattern of a paraboloid. Depending on the half-cone
angle and the feed cross-polar peak, the paraboloid has lower peak cross-polarization by about
3-5dB in the 45° plane.

Although efficiencies of 75% and higher are predicted in Figures 6.21 and 6.22, practical efficien-
cies for the cases considered seldom exceed 60—65%; that is, there is usually a loss of gain of about
1-0.6 dB in implementation. This can occur due to manufacturing errors, surface finish and various
ohmic losses. The effect of surface errors on the antenna gain is considered in the next section.

6.6 Reflector Surface Errors

In the manufacture of a reflector, various systematic and random errors occur causing the final
surface to depart from the ideal shape. Systematic errors may be minimized by proper attention
to detail during the design and construction phases. The latter type of error is determined mainly
by the accuracy of manufacture and gives the upper limit of performance when all systematic
error is eliminated. Random error modifies the aperture field and, if the surface error is small,
this results in a random aperture phase error.

Random error modifies the aperture field as will be demonstrated. If the surface error is
relatively small, a random aperture phase error results that can be approximated by

E, =E,e™, (6.87)

where « is a small random variable and E, is the aperture field with no reflector surface errors.
Since a < 1, let exp(—ja) = 1—a?/2 +ja. Without any loss of generality, consider a paraboloid
with a feed having an axisymmetric pattern. With a small phase error, the aperture efficiency
Eq. 6.84 is modified to

27 w, 12
L dgL A(y)tan (w/2)(1-(a?/2) +ja)dy

2727 2 J Ve (6.88)

A(y) [ sinydy
0

17 is the aperture efficiency with no surface error, while @ and & are the mean-square phase
error and mean phase error weighted by the compound aperture illumination function A(y)tan
(w/2). The weighted mean square phase deviation is

12

2 ¢
J dgjw Aly)tan Z (a—a)2dy
0 0 2

@) =oay = 5
|| a0 anay (6.89)
0 0
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Therefore,

né%na(l —@) R, eXP<—52). (6.90)

Other more sophisticated models of surface errors have been developed. One, in particular,
that is in wide use is due to Ruze (1966). This model is valid for large errors that are Gaussian
distributed. If the errors are completely correlated in small regions of the aperture with diameter
much less than D, the aperture efficiency is

TN exp(—@)- (6.91)

5 is the mean square error of the Gaussian distribution. For small errors Eq. 6.91 is similar to

Eq. 6.90 with the exception that Aisa weighted mean. The two means converge for small
errors and uniform illumination.
A useful parameter in practice is the rms surface error defined by

A /-
— 52

=— . 6.92
8477 (6.92)

The exponential factor in Egs. 6.91 and 6.90 indicates that an rms surface error of /37 results
in a 0.5 dB loss, while an error of /24 gives a loss of 1.19 dB.

An important implication of Eq. 6.91 for several applications and especially for radio astron-
omy is that there is a maximum operating frequency for a given reflector surface error beyond
which any further increase in frequency causes the gain to decrease. Initially, gain increases as
the square of the frequency until reflector errors take over causing the gain to decrease. In the
presence of surface errors the maximum gain occurs at the frequency

C
max = > 6.93
[ (6.9

where a loss of 4.3 dB is incurred. For example, a reflector with rms surface error of 0.5 mm has
a maximum operating frequency of 48 GHz.

6.7 Offset-fed Parabolic Reflector

As has been seen in the previous section, blockage by the feed and feed support struts reduces
the gain and increases the sidelobe level. This can be overcome by adopting the offset-fed
configurations as illustrated in Figure 6.24 for the paraboloid (Rudge & Adatia, 1978). A fur-
ther advantage of offset parabolic antenna is that the interaction between the feed and reflector
is quite small. Offset-fed reflectors are widely used as satellite and radar antennas because the
often complicated feed systems can be placed close to bulky feed networks.
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b—>

(b)

Figure 6.24 The offset paraboloid. (a) Projected aperture. (b) Elliptical rim. (c) Rotated co-ordinate
system {X/}

The offset parabolic reflector is formed by rotating the feed through an angle y, as shown in
Figure 6.24, and illuminating only part of the paraboloid. The feed and reflector are contained
within a cone of half-angle . with the feed at its apex and the reflector rim lying on its surface.
The projection of the rim onto the x—y plane (Figure 6.24a) is a circle of diameter

p=_ Asinwe (6.94)
COS Y, + COS Y,

and centre (x,,, 0), where

2f sin
o Hsinw, (6.95)
COS Y, + COS Y/,
fis the focal length of the original paraboloid and , is the angle of rotation (‘offset angle’)
of the axes about the focus. The effective focal length of an offset parabolic reflector is
defined to be
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(6.96)

which is the distance from the focus to the vertex in the offset geometry. The inverse of
Eqgs. 6.94 and 6.95 is sometimes useful. That is,

v = tan-! Xm+D/2 + tan-! Xm—D/2
T x )

Feed blockage is avoided if the largest feed extremity in the positive x-direction is less than
the clearance distance, x;, between the paraboloid’s rim and the z-axis, where

x1=2f tan (%) . (6.97)

The reflector rim lies on the projected cone and is an ellipse, Figure 6.24b having major and
minor axes of length

D D
>

a= 2 sin y;
where y = tan~!(2f /x,,). The centre of the ellipse is (x,,,0, z,,) wherein

sin®y, + sin’y,

(cosy, + cosy,)*

Xm =

-11.

(6.98)

In terms of the spherical polar co-ordinates (p, y, &) in the rotated co-ordinate system { Xy}
relative to the focus, a point P on the paraboloid has rectangular co-ordinates

Xp=psinycosé; yp=psinysiné; zp=pcosy, (6.99)
where

o

= - . . (6.100)
1—cosésiny siny, + cos y cos iy,

p

The global co-ordinates of this point are

Xp =Xp, COS Y, + Zp, SIN Y5
Yp ==Y (6.101)

Zp =Xpp SIN Y, —Zp COS Y.

The geometric optics approximation to the aperture field can be obtained by the method
described in Section 6.2.1 for the symmetrical paraboloid. The main geometrical difference
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is feed rotation although this does not alter the paraboloid’s basic properties; namely, the
distance from the focus to the aperture plane at z=0 is 2f, and the z-component of the
aperture field is zero as, in general, because the output wave is planar. These properties
allow the aperture field expressions to be simplified. For the incident field from the feed
expressed by Eq. 6.4, the components of the electric field in the projected aperture are from
Egs. 6.7

Ea=go[c1Fy (y,&) +diFe(y,8)] (6.102a)

Euy=8[~diF, (y.&) + 1 Fe(y.8)], (6.102b)

where

¢y =siny siny, + cos &(1 + cos y cosy,,),
dy = sin &(cos y + cos ), and

8o=exp(—jk2f)/2f.

The far-fields can be obtained from Eqs. 6.102 by applying Eq. 3.26 to the aperture plane
shown in Figure 6.24a. To do this, define polar co-ordinates (, { ) centred on (x,,, 0) such that
x=x,+tcosl, y=tsin{ and z=(x*+y*—4f>)/4f then carry out the integration over
the projected circle, Figure 6.24. To obtain the angle co-ordinates relative to the rotated
feed co-ordinates, use the standard co-ordinate relations to express i = sin™! (zf / p) and
E=tan"! (yr/x;), where p= /x> +y> +z2. For a feed with an axisymmetric pattern (i.c.
F,(w,E)=A(y)cos £ and F:(y,&) = —A(y) sin £), the aperture fields will be symmetric about
the vertical (x) axis. Study of these aperture fields shows that while they may be symmetric
about the x-axis, by contrast with the symmetrical paraboloid, there is cross-polarization. This
is maximum in the plane of asymmetry (i.e. £=90°, 270°), and it occurs because the feed rota-
tion causes the illumination of the reflector to be no longer linearly polarized. For a general
feed, the plane of maximum cross-polarization normally occurs between the 90° and 45°
planes, depending on the level of feed cross-polarization. Special feeds have been designed
to cancel the cross-polarization in the offset paraboloid (Rudge & Adatia, 1978). The radiation
field can be obtained in the usual way by substituting Eqs. 6.102 into Eqs. 6.10. As in the case
of the symmetrical paraboloid, the resulting integral transform, N, can be evaluated by numer-
ical integration, or by means of the FFT (Brigham, 1974).

The method of physical optics can also usefully applied to the offset reflector as is briefly
outlined below. A feed antenna is assumed to radiate an electric field given by

Ef(l//’ é:) = (lpEflI/ (W’ 5) _éEff(W’ é:)) exp[—]kp(y/, 5)]//’(11/’ é:),

where the co-ordinates (p, y, £) are in the co-ordinate system {X;}. The reflector rim subtends
an angle . to the axis zas shown in Figure 6.24c. The feed illumination induces a current on
the surface given by
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3(.8) = 20(r.&) x ”i [p X Ex(,)]

exp(—jkp) (

:2A R
Ay, €) x nop

£cosy, +Zsiny, ) (E:(y, &) cos y cos E—Eyp, (w, &) sin €)
— $(Eye (1, €)cos y sin &+ Epy (yr,£) cos £) — (& sin yro — 2 c0s o) By (y, &) sin ]

where (&) = = (1/(2+/p(w.E)f) ) (£x, + ¥yp) +\/(f/ (p(w.€)))Z in which x,,, y, are given by
Eqgs. 6.101. That is,

exp(—jkp)

s 5 =2A B
Js(w, &) =27 (y, &) x "y

[X(cos w, (Ere cos y cos E—Ep, siny,)

—siny Epe siny) —}7<Ef§ cos y sin &+ Ey,, cos 5) (6.103)

+Z(siny, (Epe cos y cos E—Ey,, siny,) +Z cos woEpe siny].

Equation 6.103 is then substituted into Eq. 6.32 and the integrals evaluated over the feed
angular co-ordinates as follows:

2T (Y,
F<9,¢>=L jo Jo(.) explik®(yr. &)] o2 (v, )T (., £)sin e,

where

. . 2
cos £ cos y sin y, + sin y cos
F(w,§)=\/1+[p< 2; OH ,

and
Oy, &) = (x5 cos w, + 2 Siny,, ) sin 6 cos h—yy, sin 0 sin ¢ + (xp, sin y, —z COs 7, ) cos 6.

The field components are then obtained from Eq. 6.31.

Due to the asymmetry, the radiation pattern of the offset paraboloid is often assessed from
two-dimensional plots, and Figure 6.25 illustrates typical examples. The figure shows contour
plots of patterns for an offset reflector obtained from the method of physical optics. The reflec-
tor is defined by y,=40°, w,=30° and D =100 4, and results are given with two different
feeds. The contours are in dB, in increments above the —60 dBi level. The reference field polar-
ization is parallel to the x (vertical) direction’, that is, ¢, =0 in Eq. 3.45. In Figure 6.25a, the
radiation patterns given are for an axisymmetric feed, which has a Gaussian pattern function
with an edge illumination of —10 dB (see Eq. 6.23). In Figure 6.25b the patterns are for an offset
reflector with an asymmetric feed that has different £- and H-plane patterns both of which are
Gaussian functions, giving edge illuminations of —10 dB and —16 dB, in the two planes, respec-
tively. For the axisymmetric feed, in Figure 6.25a, the gain is 48.92 dBi (efficiency 76.0%), and
for Figure 6.25b, the peak gain reduces to 48.74 dBi (efficiency 75.8%) when the principal
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Figure 6.25 Radiation patterns of an offset reflector antenna with y,=40°, w,=30° and D=1004.
Contours are in dBi, at increments above —60 dB. (a) Axisymmetric feed pattern, —10 dB edge
illumination. Cross-polar peak —25.1 dB; (b) Asymmetric edge illumination: —10 dB in E-plane and
—16 dB in H-plane. Cross-polar peak at —25.8 dB

plane patterns of the feed are different. In the first case the main beam is almost circular with a
HPBW of 0.65°. The narrower H-plane feed pattern in the second case broadens the reflector’s
H-plane pattern giving a HPBW in this plane of 0.73°, while maintaining virtually the same
E-plane HPBW. A useful estimate of the HPBW of a pattern cut of an offset parabolic
reflector is

HPBW (deg.) = (0.9Ey5 +58) (%) (6.104)

where Egp is the edge illumination in dB in the same plane.

When the principal plane feed patterns are different, the peak cross-polarization occurs near
the 45° plane and usually is at a higher level than in the axisymmetric case. However, the max-
imum cross-polar level in the plane of asymmetry (horizontal) is approximately the same for
both types of feed.
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The focal region fields of an offset paraboloid can be obtained by the method described in
Section 6.3. For on-axis plane wave incidence with the electric field polarized parallel to the
plane of symmetry (z—x plane), the focal field components in the {X;} plane are given by
(Bem, 1969)

Efx=A0(U)+2jtan%Bl(U)cos ¢ (6.105a)
Ej=-2jtan %Bl(u) sin ¢’ (6.105b)
Ep=-2jB(U)cos (', (6.105¢)
where
A(U) —o)! E;U) (6.106a)
Bi(U) =« Cjzng) (6.106b)

in which U =kt siny,, and ¥’ ~ (jkD’E) / 8feffe_jk(f°”+ ’sing) g oand ¢’ are polar co-ordinates
in the {X/} plane (located at z; =0 in Figure 6.24) of the offset parabola. The solution for the
field polarized parallel to the y-axis is obtained from Eqs. 6.105 by interchanging the
co-ordinates x and y, changing the sign of A, in Eq. 6.105a and replacing ¢’ with ¢’ + 7 /2.
It is observed that Egs. 6.105 reduce to Egs. 6.57 when the offset angle is zero (y,=0). Also,
as the offset angle is increased, the quadrature term of the principal field component increases,
as does the cross-polar field component.

As an example, consider the focal region fields of an offset parabola with D =504, y, =40°
and y, =30°. The amplitude contour plots are given Figure 6.26 for a wave incident parallel to
the z-axis and polarized in the x—z plane. The co-polar component has highly circular Airy
rings, which occur in long focal length reflectors, while the cross-polar component has lobes
that peak in the plane of offset.

In the design of offset parabolic reflectors, the concept of the ‘effective paraboloid’ is help-
ful for establishing initial design information prior to more detailed analysis. The offset reflec-
tor is assumed identical to a symmetrical paraboloid of the same diameter that is given by
Eq. 6.94 with an effective focal length f.;; given by Eq. 6.96. For the effective paraboloid,
the focal length to diameter ratio is given by f./D. As an example, consider the design of
an offset paraboloid to produce a beam in the far-field at the elevation and azimuth angles
6, and ¢;. Often required is an estimate of where to place the feed to transmit to or receive
from this direction. Assume 6, is close to reflector boresight and consider an incoming ray
from (6,, ¢,,). In the effective paraboloid the reflected ray makes an angle # with respect to
the axis, where

1
ﬂw0b<1 +W>. (6.107)
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Figure 6.26 Amplitude of the focal region fields of an offset parabolic reflector with D =504,
w,=40° and w_,=30°. The incident field is polarized parallel to the x-axis. (a) Principal component |E,l.
(b) Cross-polar component |E||

Equation 6.107 is a formula obtained from considerations of a paraboloidal reflector. An
estimate for the location of a single feed in the focal plane is

Xoeft =fefr SIN J COS s Voett =fetr SIN J Sin Py,. (6.108)

6.8 Cassegrain Antenna
6.8.1 Classical Cassegrain

The Cassegrain antenna (see Figure 6.1b) had its origins in an optical telescope that was
invented during the seventeenth century. In its classical form it consists of a paraboloidal main
reflector and a smaller hyperboloidal subreflector, the geometry of which is shown in
Figure 6.27. Some geometrical relationships for the hyperboloid are summarized in
Table 6.2. The Cassegrain geometry is shown in Figure 6.28.

A hyperboloid with an eccentricity e has both real and virtual foci, labelled F and F’ in
Figure 6.27, and it is symmetric about the axis FF'. The profile from either foci is defined
in the first row of Table 6.2. In the Cassegrain, the virtual focus F” of the hyperboloid is placed
coincident with the paraboloid’s focus, while the feed is placed at the real focus F. If a source of
spherical waves is located at the focus, the hyperboloid reflects the wave to the paraboloid in
such a way that the wave appears to emanate from a source located at F’.

The equivalent parabola approximation is also useful for the analysis of the Cassegrain. This
is possible because of the properties of the hyperboloid and is illustrated in Figure 6.28. As in
the case of the offset paraboloid, the feed remains at the focus F, but both reflectors are replaced
by another paraboloid with a longer focal length, f’. The equivalent parabola has the same
diameter as the main reflector and the feed half-cone angle, 6., at the subreflector rim is the
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Figure 6.27 Geometry of a hyperboloid reflector

Table 6.2 Geometrical relationships of hyperboloid with reference to Figure 6.27
i

Profile _ —ef _
A1 l-ecosy, P2 1+ecosy,
Intermediate tan 2L = M tan P2 _2
2 2 “=D,
1 a
f.=tan"! | —— +cos_l( )
¢ ( a) eva+1

Cone angles cotf +coty = Di

ﬂ=fH(1—12)fH+aH=e—/’
e e—1

Eccentricity M_6+1 oot
Te-1"" " ay
\‘ R
Equivalent
] parabola — D
F VN F’
Ds
I
f/

Figure 6.28 The Cassegrain and the equivalent parabola
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half-cone angle at the rim of the equivalent paraboloid. This is used to show that the effective
focal length of the equivalent paraboloid for the Cassegrain is

f=Mf. (6.109)

where M is the magnification factor which is defined in Table 6.2 and for a Cassegrain it is
typically greater than 1 (usually 2.5-5). Cassegrain antennas have, therefore, similar properties
to long focal length paraboloids. The equivalent parabola can be used to estimate the
Cassegrain antenna efficiency and the sidelobe levels, the focal region fields (from
Eq. 6.57) and the effect of scanning the beam off-axis through Eq. 6.107 (in which f” replaces
ferp)- Although a useful design aid, the equivalent paraboloid is not a substitute for more detailed
analysis, which is required to achieve best performance.

The main advantages of a Cassegrain over a single reflector antenna are that the feed can be
situated close to the main reflector and to the receiver. In earth station antennas, the feed spill-
over is directed towards the cold sky. A disadvantage of the classical symmetrical Cassegrain
(Figure 6.1b) is the decrease in antenna efficiency due to blockage and diffraction by the sub-
reflector and the subreflector supports. However, if the reflector profiles are shaped, the impact
of subreflector blockage can be reduced. Reflector shaping applied to both surfaces allows the
aperture illumination to be selected to enhance performance. This makes the symmetrical shaped
Cassegrain superior in every respect to front-fed reflectors and is a major reason for their wide-
spread use in large earth stations. Blockage can be reduced by tailoring the feed illumination or
avoided entirely with the offset Cassegrain configuration that is illustrated in Figures 6.1d and
6.29. Feed spillover at the subreflector is an important contributor to the far-out sidelobes of all
types of Cassegrain antennas and, to minimize this, the feed sidelobes should be small. Typi-
cally, subreflector edge illumination needs to be —16 to —20 dB in order to keep the spillover
contributions to the sidelobes of the Cassegrain at an acceptably low level.

The properties of Cassegrain antennas can be analysed by means of the techniques described
in Section 6.2.1. Geometric optics (GO) ray tracing can be applied to both reflectors to find the
aperture field. This approach is not accurate for small subreflectors (diameter less than about
30 2) because of diffraction at the rim. GO is sufficiently accurate for most purposes when the
diameter of the reflectors is several hundred wavelengths. Considerable improvement in accu-
racy results for smaller reflectors when diffraction is included through methods such as the
GTD (James, 1986). Accurate results are also possible by applying the physical optics approx-
imation at both reflectors or combining the techniques of GTD and physical optics.

6.8.2 Offset Cassegrain Antenna

Blockage in the classical symmetrical Cassegrain impacts the performance, particularly in
reduced gain and increased sidelobes, although cross-polarization can remain low due to axial
symmetry. By adopting the offset Cassegrain configuration shown in Figure 6.29, both gain
and sidelobe performance can be improved. Cross-polarization can increase due to the offset
geometry but, through the selection of the feed and subreflector rotation angles, it can be sig-
nificantly reduced below the level of a single offset.

A GO analysis of the offset Cassegrain configuration shown in Figure 6.29 provides an
approximate description of the aperture fields. For a feed with an axisymmetric pattern with
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Figure 6.29 Offset Cassegrain antenna

the electric field polarized parallel to the plane of symmetry (x—z plane), the aperture fields are
given by

Ew(v'.0")=8,/D(y'.¢")[Asiny’ cos ¢ +B(sin’¢’ + cos y' cos’¢’) + C(1 + cos y)]
(6.110a)

Ey(y'.()=—-g,/D(y',{')sin {'[A siny’ + B(cosy'—1)cos {'], (6.110b)

where
—2jkf+aH)
=Fy')— (7

8o=F(y')—exp o

D(y',{'Y=Bcosy' +Asiny’ cos ' + Bcosy' +C(1+ cosy'),
A=Lsin acos 0,—sin 0,(K + cos a)

B=Lsinasin 8, + cos 0,(K + cosa)—C,

C=1+Kcosa, K=(1-M?)/(1+M?), L=2M/(1+M?), where M and other hyperboloid
subreflector parameters are defined in Table 6.2. Notice that L> + K> =1. As well (y/, £') are
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the elevation and azimuth angles of a spherical co-ordinate system that is located at the feed
phase centre and F(y') is the feed pattern. Eq. 6.110 are in identical form as for a single offset
reflector (Eq. 6.102) except that in the latter the following replacements are required: A = sin 6,
B=1-cos6,, C=-1 and g,=F(y’)exp(—2jkf)/2f. The aperture fields of a symmetrical
Cassegrain are obtained by setting ¢, =0, 8,=0 and a=0.

Unlike the single-offset paraboloid, GO predicts the offset Cassegrain can have zero cross-
polarization. From an inspection of Eq. 6.110 this occurs when the feed and hyperboloid offset
angles satisfy the condition

0
tanf:Mtang. (6.111)

When Eq. 6.111 is satisfied, the aperture field is axisymmetric also as illustrated in Figure 6.30
for an offset Cassegrain with D=1504, f=166.794, y,=59.553°, v.=20.511°, 6,=28",
0.=11°, e=2.4575, fy=41.0544 and a=12.045°. When the feed pattern is asymmetric,

Figure 6.30 Principal field component in aperture plane of offset Cassegrain antenna with 6y =28°,
0.=11°, f=166.794, e=2.475, fy =41.0544, a=12.054° obtained by geometric optics. Feed is a
Huygen’s source having a Gaussian feed pattern with a 10 dB beamwidth of 22°. The electric field is
polarized parallel to plane of symmetry
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0.00

Figure 6.31 Principal (a) and cross-polar (b) field components in aperture plane of an offset Cassegrain
antenna with 8y =28°, 8,=11°, f=166.794, e=2.475, fy =41.0541, a=23.054° obtained by
geometric optics. The feed has 10 dB beamwidths in E- and H-planes of 22° and 24°, respectively

Eq. 6.111 corresponds to the condition for zero cross-polarization in the plane of asymmetry
(the y-axis). Furthermore, for this case the principal component of the aperture field is elliptical
and maximum cross-polarization occurs between the 45° and 90° planes. Figure 6.31 shows the
aperture fields of an antenna that satisfies Eq. 6.111, but where the feed pattern is asymmetric.
The geometry in this case is identical to the previous one except that @ =23.054°. The feed pat-
tern is a Gaussian function which gives a subreflector edge illumination of —2.5 and -2.1 dB,
respectively, in the E- and H-planes. As could be expected, the co-polar contours are almost
uniform and peak cross-polarization occurs in 90° and 270° planes.

The radiation patterns can be obtained by substituting the aperture fields into Eqs. 3.20.
A sequence of co-ordinate changes are required from the aperture plane through to the local
co-ordinate system of the feed. An example of the principal plane patterns obtained in the plane
of asymmetry is shown in Figure 6.32 for an offset Cassegrain with a geometry given by
D=8494, w,=38.5° v.=257°, ¢=2.8, 6,=22.8°, 0.=15.2°, fy=12.0281 and a=6.0".
Note that the co-polar pattern in the 90° plane is the H-plane pattern. This antenna is pictured
in Figure 1.1j. The beamwidth and first sidelobe levels agree approximately with measured
results (Bird & Boomars, 1980) although the measured cross-polarization is higher than shown
in Fig. 6.32. The differences are most likely due to incorrect alignment of the subreflector
and feed.
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Figure 6.32 Radiation patterns of a dual-offset reflector antenna computed from geometric optics.
D=84.91, y,=38.5% y.=25.7°, =28, 6,=22.8°, 6, =15.2°, fy =12.0284 and a=6.0°. Feed has
Gaussian pattern with —3 dB subreflector edge illumination

The GO formulation described above does not take into account diffraction from the subre-
flector, which, in particular, increases the cross-polarization. For example, in the plane of asym-
metry (i.e. ¢ = £90°), a rigorous analysis of the antenna described in Figure 6.30 by means of
physical optics at the subreflector and GTD at the main reflector (Bird & Boomars, 1980) has
shown that the cross-polarization varies as demonstrated in Figure 6.33 (Bird, 1981). The sub-
reflector diameter in each case is given approximately by Ds~2(fy + ay ) tan 0... For the curves
given in Figure 6.33, the results correspond to subreflectors with major axial lengths of 404, 204
and 104. These result in subreflector diameters of about Dg~9.74, Dg~5.84 and Dg~3.84,
respectively.

6.9 Shaped Reflectors

While simple surfaces such as the paraboloid, cylinder and spheroid are in common use for
reflectors, shaped reflectors can often provide significantly improved performance. In this sec-
tion, the shaping of the reflector surface is described in order to achieve a prescribed radiation
pattern. Three techniques are outlined. The first and oldest technique is based on geometrical
optics and was initially used in the 1940s (Silver, 1946). It creates a set of coupled differential
equations, which need to be solved to determine the reflector profile. The second approach is
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Figure 6.33 Maximum cross-polar level relative to peak co-polar in the plane of asymmetry of a
dual offset reflector antenna versus feed offset angle a in degrees. The parameter is the hyperboloid major
axial length in wavelengths. Also shown are the corresponding values for a single offset reflector and
the geometric optics (GO) result (Bird, 1981)

more recent and is based on computer numerical optimization techniques. This latter approach
is potentially more useful because it can include the effects of diffraction as well as limitations
due to the reflector structure or the feed antenna. More accurate methods can also be employed
such as physical optics or even some numerical methods, such as the method of moments, as
long as their implementation is fast enough for use with a standard optimizer. A third shaping
technique that is briefly outlined employs an algorithm specially developed for reflector shap-
ing, which is fast and is based on the method of successive projections.

6.9.1 Reflector Synthesis by Geometric Optics

A geometric optics technique is presented for the shaping of a single reflector to achieve max-
imum gain over an angular range. This approach is often referred to as reflector synthesis in the
literature. It can be extended to two (Galindo, 1964) or more reflectors by continued application
of methods of geometric optics.

Consider the geometry shown in Figure 6.34. The z;-axis is taken as the axis of rotation of the
reflector whose profile is to be determined and F is its focus. The reflector has a maximum
dimension in the vertical direction given by xj,.x. Let pi(€;) be the radial distance from
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Figure 6.34 Ray paths at a shaped axisymmetric reflector fed from the focus F

F to a point on the reflector at an elevation angle of 8;. A ray from a source at the focus under-
goes reflection and exits at an angle 6, to the z;-axis. The second law of reflection requires the
angle between the normal to the reflector surface and the incident and reflected rays to be
(6,—061)/2 as illustrated in Figure 6.23. An incremental application of Snell’s law results in
the differential equation

d.X1 1 3p1 <91 —92)
—= =t . 6.112
dZ1 P1 391 an 2 ( )

Integrating both sides of Eq. 6.112 with respect to 8, gives

01 1 apl O 91—92
—=—df,=| t de
Jo P10, : JO an( 2 ) :

)

resulting in

o 0,6
=J tan (]Tz> de. (6.113)

0

The solution to Eq. 6.113 results in the profile of the reflector. To achieve this, a relationship
between 6, and 6, is required.

As a simple example, suppose 6, =6, = constant, which means the exit ray is at a constant
angle to the z;-axis. Substituting this relation into Eq. 6.113 results in In[(p,(6))/f]=
21n|sec[(01—6))/2]|-21n|sec(6,/2)|, which gives the profile as p,(0;)=f(1+ cosb,)/
[1+ cos(8;—6,)]. This shape gives a beam at an angle 6, for a feed located at the focus F. When
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the exit ray is parallel to the z-axis, that is, 8,=0, the profile simplifies to Eq. 6.1,
namely, p,(61)=2f/(1+ cos 0;).

In general, the angles 6, and 8, should be chosen to enable the energy incident on the
reflector to disperse into the secondary radiation pattern. This can be achieved by ensuring
conservation of energy from the feed into the aperture field. This energy is contained in the
angular wedges d6@ and df, shown in Figure 6.34. Therefore, if P(6,) df, is the energy incident
from a primary feed located at F and 1(6,) df, is the power emanating from the reflector where
1(0) is the power density per unit solid angle in this output field, conservation of energy
requires that

P(Q])Sil’l 91 d91 =I(92) sin 926[92.

Integrating this requirement over the angles subtended in the input and output leads to

0, X1

1(6,)sin 6’2d92=KJ I(x'z)xlzdx'z, (6.114)

X2min

0,
J P(Ql)sin91d9|=J
0 €2mm

where 6, = tan~!(x,—x;) /(22 —z1) and K is a constant. The angles 6, i, and 0, .., are the min-
imum and maximum angles over which /(6,) has been specified. 6, ,.x can be chosen from
zero to several beamwidths. The constant K is found by evaluating Eq. 6.114 at the upper limits
of the angular range, thus 8 =60 and 8, =6, . This results in

glmax

J P(6’])sin 916[9]
K=20— . (6.115)
J 1(92) sin 92d92

O2min

Equation 6.115 is then substituted into Eq. 6.114 to give

0, 0,
J P(6,)sin 6, d6, J 1(6,)sin 6,d6,

0 _ Y 02min
elmax - gimax ’ (6.116)
J P(Gl)sineldel J I(Gz)sin92d92
0 O2min

Equation 6.116 is the relationship that is required between 6, and 8, which can be used in
conjunction with Eq. 6.113 to determine p(6,). In principle, either P(6,) or 1(8,) could be spe-
cified by theoretical or measured data from which a relationship can be obtained.

A feed pattern that is quite useful for many practical feeds is P(0;) = cos"0; where n is the
power of the cosine-shaped radiation pattern. For this pattern function Eq. 6.116 gives

0>

01
J cos"*10, sin 0, d0, J 1(6,)sin 6,d0,
0 2 min

02 max

glmax :
J cos"+16 sin 0, dO, J 1(0,) sin 6,d6,

0 02min
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Evaluating the integrals on the left-side gives

0
1(6,)sin 0,dO
1-cos"*16, _Lzmm @) 22 (6.117)
1—cos" 10 pax  [P2mne . . |
J 1(0,)sin 6,d0,
92min

In general, Eq. 6.117 results in a transcendental equation of the form F(6,(0;)) =0 where F
is an arbitrary function, which can be solved iteratively for 8,. As an example assume /(6,) =1
for the angular range 65 yin < 07 < 02 max- With these specifications in Eq. 6.117 followed by car-
rying out the integrations and reorganizing the result is

1—cos"*1g,

— -1 . _ .
02(01) = cos™" | coS Oz min + (€OS O2max — €OS Or i) o™ 10,

(6.118)

This relation can be used in conjunction with Eq. 6.113 to determine the reflector profile.

Consider the design of the profile of reflector with diameter 80 A and focal length f =321
which is required to give a field-of-view of about +4°, which is a typical shaped beam require-
ment. A cosine-shaped feed pattern function with n = 1.5 was chosen to give an edge illumina-
tion of about —10 dB. Suppose a uniform illumination function is needed over the symmetrical
field-of-view defined by /20D < 6 <5.61/D. The shaped reflector profile obtained from a solu-
tion of Eq. 6.113 along with Eq. 6.118 is shown in Figure 6.35a and the resulting radiation
pattern obtained from physical optics is given in Figure 6.35b. The peak value of the gain over

45
———- Shaped
—— Parabola
3
s % _
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3 z
2 =
[0
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S 35
=]
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o
30 — - - - - - -
0 10 20 30 40 50 60 70
() Angle 6 (°) (b) Angle (°)

Figure 6.35 Shaped reflector design for uniform illumination over 1/20D <0<5.64/D where
D=804, f/D=0.4, n=1.5. (a) Reflector profile radial distance versus angle shaped reflector
compared with parabola. (b) Radiation patterns of both reflectors. Dashed curves: parabola; solid curves:
shaped
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Figure 6.36 Shaped reflector designed for uniform illumination over 24/D where D=1004, f/D=0.4,
n=1.5 and sidelobes < —20 dB. (a) Envelope of desired beam. (b) Reflector profile radial distance
versus angle-shaped reflector compared with parabola. (c) Radiation patterns of both reflectors. Dashed
curves: parabola; solid curves: shaped

the field of view is 28.75 dBi. The profile of a parabolic reflector with the same diameter, focal
length f /D =0.4 and same feed pattern is also shown in Figure 6.35a. Its radiation pattern has a
maximum gain of 47.07 dBi and is shown in Figure 6.35b. The shape of the two profiles in
Figure 6.35a is similar although they diverge as the edge is approached. Observe that when
Ormax 18 reduced, the synthesized profile approaches the parabolic profile.

As a further example, consider the design of a reflector to achieve the radiation pattern
envelope shown in Figure 6.36a with a cosine to the power n feed pattern. It can be shown that
Eq. 6.117 gives

Fi(0ap) + F2(02); 02> 04,

> [Fl (62bp) +F2<92max)] = { , (6119)

( 1—cos"*1g,
Fi(0,); 0, <02,

1—cos"* 101 max

where F(0)=—cos 6 + cos Orpmin and F»(60) = —k; (sin 0 sin 02, —60 cos 0 + Oy, €08 Oy ),
6,,, 1s the breakpoint angle and —k; is the slope of the outer envelope as shown in Figure 6.36a.
The relationship for 8, in terms of € is obtained as the root of Eq. 6.119. Suppose the reflector is
required to have a diameter D= 1004 and focal length f =404. Also, the extent of the output
field is O, =21 /D with sidelobes less than —20 dB. To achieve the latter let k; = —100.
The reflector profile that is obtained is shown in Figure 6.36b and the resulting radiation pattern
is shown in Figure 6.36c.
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Equation 6.117 could be used in reverse to estimate a desired pattern function needed to
achieve a desired radiation pattern. For example, in the design of a reflector for a radar appli-
cation it is desirable to reduce reflections from the ground. Such an illumination function is
1(6,) =cosec’d,. In normal use, when this function is substituted into Eq. 6.116, it can be
shown that

0,
P(91 ) sin 91 d91

cosec; = cosec B min — (€0sects min —C0SeCHr max ) (6.120)

01 max
J P(Q])Sin 01d91
0

The feed pattern can be in the form of measured data or be represented as a modal summation
through which 6, can be expressed in terms of 8;. Eq. 6.113 along with Eq. 6.120 can be used to
synthesize the reflector profile.

Shaped beams in two-dimensions can also be created from shaped reflectors that are
designed by means of Eqs. 6.113 and 6.116 as illustrated in Figure 6.37. This is providing
the reflector contour lies in any of the transverse plane passing through the point O as shown
in Figures 6.34 and 6.37. For example, an elliptical shaped beam could be created with a feed
with an axisymmetric pattern by shaping the reflector contour in selected transverse planes. In

Elevation
=90
’ . §=45°
//
//
////
s Azimuth
S $=0°
\\
\\\
\\\
(a) N\ p=—45°
Elevation

Figure 6.37 Elliptical-shaped beam design in elevation and azimuth with elliptically contoured reflector
and circular feed horn. (a) Coverage region. (b) Transverse segments of reflector. (c) Elliptical beam
produced
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Figure 6.37a these planes occur at 45° intervals in the azimuthal direction about O. By this
approach, Eq. 6.118 could be applied to each section as illustrated in Figure 6.37. A sequence
of reflector profiles is produced and these form a continuous reflector in the azimuth direction.
When illuminated by the original axisymmetric feed, an elliptical beam results.

The approach described above for a single reflector is readily extended to a dual reflector
(Galindo, 1964). A second differential equation results from GO requirements on the second reflec-
tor and this differential equations couples with the one from the first. It is found that in the integral
expression for conservation of energy for the second reflector, which is equivalent to Eq. 6.114,
when its upper limit is chosen to be positive, a Cassegrain-type solution results. When this upper
limit is negative, a Gregorian-type reflector geometry is created with a concave subreflector.

6.9.2 Reflector Synthesis by Numerical Optimization

The geometric optics approach described above has limitations on accuracy as well as utility as
the number of physical constraints and additional requirements increase. As with a profiled
horn design that was described in Section 4.5.3, the synthesis problem can be broadened by
means of numerical methods. There are several ways of doing this both directly and indirectly.
There are direct improvements for reflector shaping such as the inclusion of diffraction, block-
age and accurate feed models. One such technique is the method of successive projections
(Poulton & Hay, 1991). The indirect approach is to use a numerical representation of the surface
and to use this with accurate radiation and feed models to meet the various system require-
ments. Reflector synthesis with standard optimization methods is described initially, and this
is followed by a short overview of successive projections.

A basic requirement in reflector synthesis is that the reflector surface should be represented numer-
ically. One approach that has proved very effective and accurate for reflector synthesis and compu-
tation is to use basis-spline or B-spline functions that are briefly outlined in Section 4.5.3 for an axi-
symmetric surface. The degree of the spline function can be selected as required although, in reflector
synthesis, third order has been found sufficient in both accuracy and efficient in computation time.
The reflector surface z=(x,y) is represented by Eq. 4.79 (de Boor, 1978) in this case written

m n

Fey) =) > aNix)N,(), (6.121)

i=0 j=0

where N,(x) and N,(x) are standard cubic B-spline functions which have m+1 and n + 1 control
points, respectively. The expansion coefficients a;; are the unknowns here and as in Section 4.5.3
they are determined through optimization. A B-spline polynomial in the variable x is a piecewise
function of degree p, = 3. It is defined over a range t; < x < t,,, with m =p, + 2. The points where
x=t are called knots or break-points, which are arranged in ascending order. The number of
knots is the minimum for the degree of the B-spline, which has a non-zero value only in the range
between the first and last knot. Each piece of the function is a polynomial of degree p, between
and including adjacent knots. The surface given by Eq. 6.121 has a set of (m+ 1)(n+ 1) control
points, which is in common with other interpolation methods, except that the major difference is
the surface does not generally pass through the central control points. Expressions for the poly-
nomial pieces are easily generated by means of recursion formulae (de Boor, 1978). If there is
more than one reflector, the remaining surfaces are expressed in a similar form to Eq. 6.121 where
the coefficients of each series for the new reflector surfaces are included in the optimization.
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Figure 6.38 Constraints on the far-field radiation patterns

There are several ways of progressing from here. One way is to use Eq. 6.121 in conjunction
with an analysis method and to adjust the unknown coefficients to achieve the system require-
ments based on the pattern and feed mismatch. Within the optimizer, the reflector-shaping pro-
cedure could use a transmit-mode radiation-pattern analysis based on physical-optics, which uses
anumerical integration of the current. This could be performed within a gradient search algorithm
for optimum reflector shapes via the expansion coefficients such as a;;. This was used earlier to
design a dual-reflector feed for a radio telescope (Granet et al., 1997). A similar approach is used
in the design of array feeds where the array coefficients are found instead of the reflector surface
coefficients. Both cases could employ either constrained or unconstrained variables that are opti-
mized with a standard numerical optimizer. This technique for arrays will be described in
Chapter 7. The intention of this approach is to use the power of standard numerical optimization.

In order to specify pattern constraints, consider a cut through the far-field as shown in
Figure 6.38. At point P in the radiation pattern, define the following limits and weight para-
meters on these limits:

¢y = the maximum co-polar level

¢y, = the minimum co-polar level

X, = the maximum cross-polar level

w,,, = the weighting factor on co-polar maximum
wy, = the weighting factor on co-polar minimum

In the same way, specifications on the input match and gain can also be included through
constraints and weight parameters. For example, constraints could be placed on the input reflec-
tion coefficient of the feed over a range of frequencies. At a frequency k, specify

7ux = the maximum feed reflection level;
w, = the weighting factor on reflection coefficient.
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All constraints can be included in a single index as follows (Bandler & Charalambous, 1972).
If the co- and cross-polar efficiencies of the reflector antenna over the field of view are
optimized, respectively, 7, and 7, are both obtained via Eq. 6.46. A number of positive dis-
crete differences can be formed as follows:

-wi(ng—cw); k=p; p=12,....N
Wy ek —Cuk)s k=N+ ; =1,2’“.’N

e ! por s (6.122)
wa(l—cw); k=2N+p; p=1,2,...,N

Wi (Cuk=vu)s k=3N+p; p=1,2,.. Ny

Ay

where N is the number of sample points in the radiation pattern and Ny is the number of fre-
quency points. The objective of the optimization is to find the vector of coefficients for which
Ap<Oforallk=1,2,...,3N + N;. A single performance index that incorporates all constraints is

the least p-th index (Bandler & Charalambous, 1972)

AN 1/p
k

I=H — , 6.123
=) (6123

kek

where H=max(Ay), p=sgn(A;)q and « is the set of specifications

{ select all Ay if H<0
K= .
select only positive Ay if H>0

Any integer index g can be chosen in p although ¢=2,4, 10 and 100 have been found most
useful in antenna designs. Eq. 6.123 can be minimized with most standard optimization methods
(Dixon, 1972). One such method that has proved reliable in several antenna applications is based
on gradient search and numerically calculated differentials (Fletcher, 1972). Techniques such as
the genetic algorithm (Goldberg, 1989) and particle swarm optimization (Kennedy & Eberhart,
1995) can be very effective at the commencement of the search for the minimum.

The method of successive projections is a general iterative technique that can be used to
determine a common intersection point among a number of conflicting requirements or sets.
Related to aperture antennas it has been used to obtain array excitation coefficients
(Poulton, 1986), to adjust the shape of a reflector antenna from measured data and in specifying
the shapes of single and dual reflector antennas (Hay, 1999). The aim is to achieve a reflector
shape that produces a beam that has directivity constrained between lower and upper bounds,
respectively, Gy and Gy. The approach is illustrated in Figure 6.39.

The first step is to specify a collection of sets of {X}, which consist of complex valued func-
tions on a rectangular region containing the projected aperture, a weighting function w con-
strained to have a unit magnitude (i.e. |w|=1), and a weight with continuous phase, for
example, w=exp(jp); p € {P}. The next step is to provide an approximate solution for the
reflector. It is usual to choose a suitable function that represents a smooth reflector, which is
of the required size that radiates over a specified coverage region, that has approximate direc-
tivity bounds, and phase centres that lie between the feed and the reflector. The method that fol-
lows is illustrated in Figure 6.39. This iterative process designs a suitable smooth reflector by
first commencing with a stepped reflector that satisfies the directivity bounds. This is done
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Smooth reflector Array projections Stepped reflector
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Smoothing projections

Start

Finish
Figure 6.39 Method of successive projections

by dividing the last reflector surface obtained into an array of elements and then projecting these
onto sets within the space of complex weights for the radiation patterns of the elements. These are
often obtained by Fourier transforms. In this way, a vector ®; is determined, which is a vector of
the elementary field components involving the integral of the PO currents, to obtain the far-field
radiation at points i=1,2,---, M in a number of specified far-field directions (8;, ¢;). To eval-
uate ®; the integral may be approximated by summing integrated samples on a rectangular grid
in the x—y plane. In this process, weights are applied that represent a stepped weight distribution
for the current on the surface of the last obtained reflector surface. The phase of the weight
distribution represents the surface of the stepped reflector relative to the last reflector, and
the intersection of the collection of sets represents weights that satisfy both the specified direc-
tivity bounds and also the constraint on the magnitude of each weight equals unity. Next, these
functions are projected onto the first two sets of requirements. The formula to do this is simple
to compute and, therefore, the process can be very fast. A sequence of iterations {x"} is gen-
erated in the following form:

< = (y_l » o y_~> (6.124)
il 2l ywl
VG, Fr .
y:x”+r<’Fn| —1) (d) :D*)q)i’ i=1,...,N, (6.125)

where N=4P,P,, r~4 is a relaxation factor, F]'=x"-®; where n=1,2,... is the iteration
number and,

colG if |[Fi|* <GL
"\ Gy if|Fi*2 Gy

The parameters P, and P, are limits on the Fourier series that are used to ensure any solution
is sufficiently smooth. In each direction, the series have 2P, +1 and 2P, + 1 terms, which are
chosen so that the minimum of the harmonic periods is usually taken to about two times the
side length of an element in the stepped phase distributions. A smooth reflector is found by
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Figure 6.40 Shaped reflector designed by successive projections aperture diameter of 112 in.

(a) Difference 0z of the initial and final reflector surfaces in inches. (b) One shaped beam for a composite
coverage requirement (indicated by + and x) for continental USA showing directivity at 4.2 GHz (Hay,
Private communication). Source: Reproduced with permission from CSIRO

projecting the stepped weight distribution onto a set of weight functions w each with suffi-
ciently smooth phase and unity magnitude. This projection comprises a finite-term Fourier
series. If the smooth reflector is a suitable solution to the problem, then the iterative process
terminates; otherwise, it repeats until convergence is achieved. To optimize a directivity pattern
with respect to upper or lower bounds, the bounds are tightened until they can be tightened no
further.

An example of a shaped reflector design, Figure 6.40b, shows a beam shaped that was
designed to cover continental USA at C-band transmit and receive frequencies (Hay, Private
communication). An offset reflector was chosen for the antenna with a projected circular aper-
ture diameter of 112 in. (i.e. 2845 mm). The reflector surface was designed using the method of
successive projections to achieve the directivities of 27.7 dBi in zone I (shown in Figure 6.40b)
and 28.7 dBi in zone II (indicated by x in Figure 6.40b). The starting reflector had a parabolic
surface and following the synthesis process the difference in the height in the axial direction, dz,
between the initial and final reflector surfaces is shown in Figure 6.40a. The radiation pattern
given by the shaped reflector at 4.2 GHz is shown in Figure 6.40b.

6.10 Problems

P6.1 For a parabolic reflector show that the half-cone angle v is given by

PO
Ve =2tn <4f/D)’

where fis the focal length and D is the diameter of the reflector.
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P6.2

P6.3

P6.4

P6.5

P6.6

P6.7

P6.8

Using geometric optics, obtain the aperture field of a paraboloidal reflector excited by an
elementary source with
a. Radiated far-fields

e—jkr

E9g=E | cos0cos ¢
E;=0=E,.

bl
r

b. A second elementary source is available with radiated fields

e—jkr
Ey=—E, cosfsin¢ s
r

Ey=0=E,.

Find the aperture fields that this source produces.
c. Hence, find the total aperture field from a source with both contributions and the com-
plex amplitudes required to yield zero cross-polarization in the aperture.
A half-wave dipole illuminates a 3 m parabolic reflector antenna at a frequency of 10 GHz.
If the reflector has an f/D=0.433, what is the level in the E- and H-planes of the:
a. edge illumination; and
b. edge taper?
Verify that the field radiated by a half-wave dipole given initially by Eq. 6.13 when
placed a distance d in front of a large conducting plate now has an amplitude approxi-
mately given by A(6,¢)=2jsin((x/2)cos 8)sin (kdcos ).
At 3 GHz the total input power to a feed antenna situated at the focus of 3 m paraboloid is
1 W. Measurements have shown that the efficiency of the feed is 82%. The reflector has a
calculated spillover efficiency of 98% and an aperture efficiency of 63%. Calculate the
antenna gain and the power density at a receiver situated 5 km away.
This problem verifies some equations for the normal to a paraboloidal surface.
a. Show that the equation for the normal to general surface, Eq. 6.36, reduces to Eq. 6.3b
for a paraboloid.
b. Given the equation for a paraboloid in Eq. 6.1, show that the normal to the surface in
spherical polar co-ordinates is given by Eq. 6.3c.
Use Egs. 6.39 to obtain an expression for the fields radiated by a paraboloidal reflector
that is fed by a corrugated waveguide and operates in its HE;; mode at the balanced
hybrid condition.
Blockage of a reflector by a feed or a subreflector is examined in this problem. Radiation
from a circular aperture of diameter X is blocked by a centrally placed object of diameter D.
Assume a uniform linearly polarized field distribution in the aperture.
a. Find the radiated field. You may need the identity:

21
J exp(jucos ¢)du=2xJo(u)
0

b. Demonstrate the effect of central blockage is to (i) reduce the gain, (ii) to increase the
odd numbered sidelobes and (iii) to decrease the even numbered sidelobes.
c. Suggest a way of reducing the impact of blockage.
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P6.9

P6.10

P6.11

P6.12

P6.13

P6.14

P6.15

P6.16

P6.17

A feed is moved axially a distance s from the focus towards the vertex of a paraboloid
reflector. Assuming s is very much smaller than the focal length (i.e. s << f) and the feed
uniformly illuminates the reflector, determine the dominant aberrations produced by the
axial feed movement.

A feed for a paraboloidal reflector has an axisymmetric pattern and pattern function

_Jcos"y; O<y<m/2
Alw)= {O; elsewhere

where n=1. Obtain expressions for

a. the aperture efficiency, and

b. the spillover efficiency. Hence

c. determine the reflector half-cone angle that gives maximum gain with this feed,
assuming there are no other losses.

Show that the spillover efficiency, 7, of a feed with an axisymmetric pattern and pattern

function given in P6.10, which illuminates a reflector with cone angle v, is given

by n,=1-cos**ly_.

A half-wave dipole antenna is to be used as a feed for a paraboloidal reflector. Describe

the principal plane patterns of a paraboloid with a half-wave dipole feed.

What are the advantages and disadvantages of this feed compared with a circular

waveguide?

Describe some extensions of the basic half-wave dipole structure that are better feeds,

giving reasons for the improved performance.

A rectangular waveguide is chosen as a feed for a paraboloidal reflector antenna with

diameter D=3 m and f/D =0.35. At the design frequency of 12.5 GHz, an edge taper

of —12dB is needed to satisfy sidelobe requirements. Assuming the reflector is in
the far-zone region of the waveguide:

a. Calculate the reflector half-cone and the desired edge illumination;

b. Calculate approximately the waveguide dimension needed in the E-plane to produce
a far-zone pattern with the attributes calculated in (a) and, hence, satisfy the design
edge illumination.

Use field correlation at the surface of a parabolic reflector between an incident

linearly polarized plane wave and an axisymmetric feed to determine the aperture

efficiency as a function of incident angle. The reflector has a diameter D and focal

length f.

Approximate the effect of the blockage of quad-struts supporting the feed in a reflector

of diameter D by approximating the blockage at 90° apart by segments with an internal

angle € = 6. The field is uniform and polarized parallel to the x-direction and the struts
are at 45° to this direction. Determine the loss of gain and the change in level of the first
sidelobe in the two principal planes.

For an offset reflector antenna, what type of aperture field is required to cancel out the

cross-polarization in the far-field.

Determine the efficiency of a parabolic reflector with surface errors, which have arisen

in manufacturing the profile template. The surface error is circularly symmetric and

sinusoidal in the radial direction with amplitude e << 1 and with a period 2z/p which
is comparable to the wavelength.
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P6.18

P6.19

P6.20

P6.21

P6.22

P6.23

For a paraboloidal reflector of diameter, what proportion of power is in the sidelobes
compared with that in the main beam. As an example, consider a reflector of diameter
D=1002, and focal length given by f/D=0.4 with a feed having a Gaussian pattern
function to provide an edge taper of —10 dB.

Apply the field correlation theorem to determine an expression for the contribution to
the input reflection coefficient of a feed due to reflection from the surface of a

paraboloid.
2

JJ ET XHTﬁdS
S

”
feed and P is the total radiated power.

For a symmetrical parabolic reflector with a diameter of 1004, and focal length
f/D=0.4, calculate the diameter of a corrugated waveguide operating at the balanced
hybrid condition to obtain the best match to the focal region. What is the maximum aper-
ture efficiency of the resulting antenna?

Solve the equations for single reflector shaping described in Section 6.9.1, assuming
that the incident and exit angles 8, and 8, are identical over the full range of angles avail-
able. Describe the solution that results for the reflector surface.

Using the approach described in Section 6.9.1, obtain the differential equations describ-
ing the shaping of dual axisymmetric reflector antennas.

Describe the aperture field of symmetrical reflector antenna due to a circular cup feed as
shown in Figure P.6.1. The circular cup is excited from a circular waveguide of diameter
h in a TE;; mode and the location of the phase centre is as indicated.

SR |
H1nt.l“—2

where E7 and H7 are the incident fields on S due to the

TE h D
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ?,,,,,,, — e — —
.'\
|
i<—S—> Phase centre
1
1

Figure P6.1 Cup feed junction
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Arrays of Aperture Antennas

7.1 Introduction

Arrays of aperture antennas find wide application because of their flexibility and their ability to
provide shaped patterns with low sidelobes. They can be power efficient and provide signif-
icant gain. They can be used to scan the beam in almost any direction of three-dimensional
space. They can be placed conformal to surfaces to provide gain over wide scan angles. In
two- or three-dimensional grid arrangements, a wider variety of radiation patterns can be
obtained ranging from hemispherical to a full spherical coverage. Examples include the shaped
beam patterns employed on satellites to cover specific regions or countries on the earth’s sur-
face or providing selected 360 degree coverage as a wireless access antenna. Often in these
applications, high-performance aperture elements are the basis of the array.

The topics in this chapter include the basic radiation patterns of arrays with aperture anten-
nas. One of the implications in the use of an array is the mutual coupling that occurs between
elements, and the analysis of this effect in aperture antennas is covered in some detail because
of its importance. The physical aspects of mutual coupling are described by means of an asymp-
totic approach, and also a general approach for arbitrary shapes is outlined. Radiation in the
presence of mutual coupling is described as are some mitigation measures if its effect must
be avoided. Examples are given throughout to illustrate the techniques.

7.2 Two-Dimensional Planar Arrays

Suppose initially a finite array of aperture antennas is located in a plane. It is assumed that there
is no coupling between the elements in the array. The M x N elements of the array are arranged
on a regular grid in the x—y plane with a constant excitation amplitude for each element and a
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steering phase that allows a beam to be formed in the hemisphere above the plane. Consider a
single element of this array and obtain its far-field. Based on Section 3.4, the mnth element
(m,n=0,1,2, ..., M, N) radiates an electric field given by

Epn(r,6.0) =EOM

F(0.¢)

where F(6, ¢) is the element pattern, E, is the polarization of the electric field, and A,,, is the
excitation and from Eq. 3.12 R~r— (r/,,-7) where r/,, is a vector in the x—y from the origin to
the mnth element. The total field is obtained by summing the contributions from all
elements. Thus

exp(—jkr) M. . R
E(r.60.¢)~Eo——F(6.¢) > A exp(jk (¥, 7)) (7.1)

myn=0

The summation over m and n is called the array factor (AF). Its form depends on the layout
of the elements in the x—y plane as will be shown in the next sections for the special cases of
rectangular and hexagonal grids.

Now define
M,N
AF(0,¢)= > Ay exp(jk(x), 7)) (7.2)
myn=0
so that
E(r,9,¢)zEOMF(e,@AF(e,(p) (7.3)

The gain function is given by Eq. 3.48, where

_ 4, [EF(0.0)AF(0.9))

o (7.4)

G(6.4)

where Pr is the total power input to the array. As a special case, suppose the apertures are fed by
identical rectangular waveguides that operate only in the TE;y mode at frequencies well above
cut-off. In that case,

P~E2abM’NA 2 75
TN|0|ZZ|mn‘~ ()

myn=0

If the array excitation is uniform so that |A,,,| = 1, the summation in Eq. 7.5 equals (M + 1)
(N +1) and, therefore,

b
PTz|EO|2aZ(M+ D(N+1).
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The gain is

GOP) = F0.0) AR(O.) (76)

b(M+1)(N+1)

The AF dominates the directivity of an array. It is useful to calculate the directivity of the
array using the AF alone. By means of Eq. 3.50, the directivity is given by

[AFpea |

D=4z (7.7)

2z

J d¢Jd95in 0|AF(0,)|*
0

0

where AF,, is the maximum value of the AF.

7.2.1 Rectangular Planar Array

A particular case of the array lattice is a planar rectangular grid as shown in Figure 7.1. Suppose
the spacing of the M + 1 elements in the x-direction is A,, while in the y-direction the N + 1 ele-
ments are spaced A, apart. It is assumed that the origin of the co-ordinate systems occurs at the
centre of the array (Figure 7.1). Let the vector to the mnth element in the x—y plane from the
origin be r;,m =xmA,+3ynA,. Therefore, from Eq. 7.1, the AF contribution comes from

r,,, =mAu+nA,v where u = sin 6 cos ¢ and v = sin 8 sin ¢. In addition, suppose the element
excitation be given by A,,, = exp (jml;/x + jm//y). Therefore, the AF for a rectangular array is

P(1,6,¢)

Figure 7.1 Regular planar rectangular array geometry
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M,N

AF(0,9)= Y explim(kAu+y,) +jn(kAyw+y,)] (78)
myn=0 :

=P(M,T,).P(N,Ty)

where P(M,T,) = ZZ: 0 €XP mTy], Te=kAwu+y,, Ty=kAyv+ . and as defined previously
u=sinfcos¢ and v = sinfsing.

It is noted that the phases y, and y, steer the pointing direction of the radiation pattern and
are, therefore, referred to as steering angles. Thus, the direction of the beam is usually given at

| 2 N2 )
0p=sin™! % (%) + (%) and ¢, = tan™! <Z—> (7.9)
X y x

because the AF pattern is usually significantly narrower than the element pattern.
The two exponential series in Eq. 7.8 are geometric series and can be summed easily. Thus, if
x" is the nth power in a series of N+ 1 terms, their sum is S= (x¥*!-1)/(x—1). Then

P(M,T.) =) exp|jmT]

:FZP(J'(M+ DT, - 1]
§XP(ij) —.1
ol 2125

=(M+1)exp (J’MZTX) {SK(A;(;:/) 2/)2)TX] }

(7.10)

where § is the sinc function. And similarly for the series in n where N and T, in Eq. 7.10, replace
M and T,, respectively. Therefore, the AF in Eq. 7.8 is expressed as

~ J(MT+NT,)] (S[(M+1)/2)T]\ | S[(N+1)/2)T,]
AF(9,¢)—(M+1)(N+1)exp[ > }{ S(T.2) }{ ST,)2) }

(7.11)

It is emphasized that this AF is for a co-ordinate system that is located at the centre of the
rectangular lattice (see Figure 7.1). Otherwise, an additional phase factor would be present
for each summation giving the grid centre relative to the origin. Thus, if the origin is located
at (x,, yo), the additional phase factor applied to Eq. 7.11 would be exp [j(xoTx + yoTy)}.

The periodicity of the AF means that images of the main beam and its associated sidelobes
are repeated at intervals A/A, and A/A, in u—v space. A repetition of the main beam in this way
creates grating lobes. As the beam is steered, in directions determined by y, and y,, the main
beam lies in the visible range, that is, real space. Real space corresponds to the interior of the
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unit circle given by u? +v? = 1. Values of u and v outside of real space, that is, > +v* > 1, lie in
imaginary space. As the beam is steered, parts of the beam lying in imaginary space can transfer
into real space, and this includes any grating lobes, which are related to the lattice geometry. To
avoid this happening, the element spacing should be chosen such that

A A, 1
A 1 + | sin f(max)|

(7.12)

where f(max) is the maximum scan angle. Eq. 7.12 shows that under all conditions grating
lobes are avoided if the spacing between array elements is less than half a wavelength.

Equation 7.10 predicts that the major beam and grating lobes are located at
kAysinf@cos ¢ +y, = +2px and similarly kA, sin@sin¢+y, = +2gr where p,g=0,1,....
Eqgs. 7.10 and 7.11 can be used to determine @ and ¢ at the beam maxima. Examples of AF
given by Eq. 7.11 are shown in Figure 7.2a is A,=1/2=A, and M+1=N+1=8. Also in
Figure 7.2b is the case when the spacing has been increased to A,=0.7A=A, and
M+1=N+1=11. In this latter array, the first set of sidelobes are about 17.5 dB below the
peak, while the second set are about 4 dB lower.

The directivity of the AF for the rectangular array is given by Eq. 7.7 as

4n
D= p— (7.13)
i gl TS D 2T,
L d¢L dOsin 0175 oy~ 5(7,2)

The directivity predicted by Eq. 7.13 for A, =A,=4/2 when M =N is plotted in Figure 7.3.
The directivity increases smoothly with increasing M as the area occupied by the array
increases.

7.2.2 Hexagonal Array

A hexagonal array geometry is illustrated in Figure 7.4. This lattice structure, which is also
called an equiangular triangle array, along with the rectangular array considered in the previous
section, are the most commonly used types of planar lattice geometries. The hexagonal array is
often preferred with circular elements as they can be packed most efficiently in this layout. In
principle, the hexagonal array could be decomposed into two overlapping rectangular grids,
which are then considered as the superposition of these grids. However, here this array geom-
etry is considered from first principles.

In the nth ring from centre of the hexagonal lattice, there are six n elements. As a result, the
AF for the hexagonal array consists of summations of lattice points at azimuth angles
Ay =m/3n apart and at radial increments spaced A, apart. The perpendicular to the mth side
is at an angle 7(2m—1)/6 to the initial line as shown in Figure 7.5. The vector to the /th lattice
point on the mth side of the nth ring (n=1,2,...,N,) is

2l/n—1 -1 l -1 I
rim,=nApsec((/n6)ﬂ> {fccos [(m3 )ﬂ+37;] +y sin {(mg) )ﬂ+,;’j }; (7.14)
n=1,..,.N,; m=1,...,6; I=1,...,n.
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-0.4 -0.2 0 0.2 0.4
(b) u

Figure 7.2 Array factor for a rectangular array with uniform excitation at 10 GHz plotted in the u—v
plane from the beam maximum. (a) 8 x 8 elements with spacing A,=4/2=A,. Contours are in 5.5 dB
decrements below the peak value. (b) 11 x 11 elements with A, =0.74=A,. Contours are in 5.7 dB
decrements below the peak
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Figure 7.4 Example of a hexagonal array with 91 elements. A 19-element sub-array is shown
shaded. The number of elements in this sub-array is (1 +3 N(N + 1)) where N is the number of rings
around the central element
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(21/3n—1)n/6 Point / on side m
inringn

(2m-1)7/6

Figure 7.5 Geometry for definition of hexagonal lattice array factor

As F=Xxsin 6 cos ¢+ ysin @ sin ¢ +zcos 6, then

r,,,-F=nA,sec ((21/”6_])7[) Sinﬁ{cos <¢_ (m;I)”_;T)} .

The AF for a hexagonal lattice is therefore

N, 6 n
r 2 _1 —1
AF(0.¢)=1 +Z A exp{jnkAp sin @sec [(Z/HT)”} cos [qﬁ_w_;_ﬂ }
n

(7.15)

As a check on the validity of Eq. 7.15, let #=0=¢, and with A,,, =1, it is found that
AF(0,0) =1+ 3N,(N, + 1). This is the number of point radiators in N rings of a hexagonal array.
Contour plots of Eq. 7.15 are shown in Figure 7.6 with uniform excitation for A,=4/2 and
N,=2 (i.e. 19 elements) and also N,=8 (217 elements). The AF patterns shown in
Figure 7.6 are typical of a hexagonal array. The pattern consists of a central beam with six radial
lobes 60° apart. The height of the lobes decrease in amplitude with increasing nkA,. In
Figure 7.6a, the first six sidelobes surrounding the main beam are about 4.5 dB below the peak
value, while in Figure 7.6b they are about 17.6 dB down.

The gain can be calculated from Eq. 7.4. Suppose p, is the power radiated by one waveguide.
In the absence of mutual coupling and |A,,| =1, the total radiated power from a hexagonal
array is

b
PTz|E0|2aZ(l+3Nr(N,+1)).

resulting in the gain function

167
b(1+3N,(N, +1))

G(0.¢)=— [F(0.¢)AF(0, )" (7.16)



Figure 7.6 Array factor of a hexagonal array with uniform excitation plotted in the #—v plane from the
beam maximum. (a) 19 elements in two rings contour at 5.7 dB decrements below the peak, and (b) 217
elements in eight rings contour at 5.2 dB decrements below the peak. Frequency is 10 GHz and
spacing A, =4/2
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The AF directivity is obtained from Eq. 7.7 as

D27 |(1+3N,(N, +1))[*

(7.17)

3 (#/3 4 5
J dqu dfsin 6|AF(6,¢))|
0 0

where AF(, ¢) is given by Eq. 7.15 and in Eq. 7.17 the hexagonal lattice’s sixfold symmetry
has also been used. The directivity for the hexagonal array given by Eq. 7.17 as a function of
number of rings up to N, = 12 is plotted in Figure 7.3 for closer comparison with the directivity
of a square array. It is seen that the directivity is not strongly dependent on the type of lattice
although the number of elements in a hexagonal array increases more rapidly with ring number
N, compared with row number N = M in the square array and the directivity is higher. However,
in particular cases, the reverse occurs. For example, a rectangular 8 x 8 array with 4/2 element
spacing has an area of 12.25 A for a directivity of 19.7 dBi, while a hexagonal lattice of four
rings spaced 4/2 apart has 61 elements occupies a slightly larger area of 12.57 4%, has a lower
directivity of 18.31 dBi.

7.3 Mutual Coupling in Aperture Antennas

The mutual coupling between small dipoles has been described in Section 2.3.3. Its prediction for
an array of aperture antennas is important for accurate design and performance. The interaction
between antenna elements modifies the overall radiation pattern as well as the individual aperture
reflection characteristics. On some occasions, mutual coupling can reduce the overall system
performance, for example, by enhancing the generation of grating lobes (Hansen, 1998). How-
ever, unraveling the details behind its effect can help to understand mutual coupling and how it
may even be used to improve overall performance. Because of the importance of mutual cou-
pling, it is valuable to review its cause, physical properties and some of the techniques used to
predict it.

Mutual coupling was recognized by the early pioneers in antennas as important for design.
Brillouin (1922) was probably one of the earliest to detail a method of analysis, and like many
early workers, he was concerned with calculating radiation resistance rather than the complex
impedance at the input of array elements. A systematized approach that developed, called the
emf method, was applied by Pistolkors (1929) to find the radiation resistance of various dipole
array configurations. Another approach adopted by the pioneer antenna designers was the
Poynting vector method, which is the present-day standard method of calculating radiation
resistance from the integrated normal energy flow through a surface surrounding the antenna.
This second approach was used, for example, by Bontsch-Bruewitsch (1926) and Knudsen
(1952) to analyse coupling in dipoles. Both approaches mentioned above are equivalent and
can be converted into the other by means of Gauss’ law, as shown by Bechmann (1931).
The emf method gained wide acceptance after the work of Carter (1932), who used reciprocity
and the emf method to determine expressions for self and mutual impedances for a variety of
two-dipole arrangements. Carter’s paper profoundly influenced much of the subsequent liter-
ature on antenna coupling because for the first time the coupling problem was expressed as an
equivalent circuit. All the aforementioned papers were concerned with dipole elements.

Aperture antenna coupling such as between waveguides and slots were investigated initially
in detail by Booker (1946), who derived the admittance of a slot from the impedance of its dual,
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Figure 7.7 Relationships of methods for analysing mutual coupling in arrays

the dipole. The variational nature of the impedance formula was established by Miles (1949)
and Storer (1952). General methods of obtaining admittances in ground planes were described
by Harrington (1961). An early impetus for analysing mutual coupling effects in aperture anten-
nas came from the need to counter blind spots in arrays, which subsequently was found to be
due to surface waves on the array excited by coupling. Other more detailed methods came from
the extension of methods for solving integral equations as well as others based on modal meth-
ods or periodic structures with Floquet modes. The range of methods used for analysing mutual
coupling and their relationships are summarized in Figure 7.7.

The methods of periodic structures such as applied in solid-state physics (e.g. Floquet
method) were not used in antennas until the 1960s. The Floquet approach found favour for
a range of array structures and provided an early means of understanding coupling effects in
large arrays. Array edge effects were seen to be important for small- and medium-sized arrays
where the infinite array solution became a poor approximation to reality. This led in the 1960s
and 1970s to the development of methods of analysing mutual coupling in finite arrays. These
methods were improved throughout the 1980s and 1990s as computer technology became more
capable. At the same time, the development of numerical methods and computer codes allowed
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the analysis of more complicated antennas such as arrays and their supporting structures. The
computer codes available today allow mutual coupling to be included in the design as a matter
of course. Nevertheless, the physical aspects of mutual coupling need to be understood to min-
imize its disadvantages and maximize the advantages. Mutual coupling can even provide ben-
efits in some designs. For example, in an array used to feed a reflector antenna used to create a
shaped beam, the gain achievable across the beam can be 0.2-0.3 dB higher if mutual coupling
is properly incorporated in the initial design. This increase appears relatively modest except
when you realize in some applications, such as in satellite communications, small gain increases
of 0.1 dB are generally achieved at great expense (Bird & Sroka, 1992).

There are two basic approaches for analysing mutual coupling in arrays are as follows:
through analysis methods for finite arrays and those for infinite arrays. Some techniques are
common to both, as indicated in Figure 7.7. However, the end solution is usually different
because the impedance and pattern characteristics of infinite periodic arrays are identical from
one unit cell to the next. In the next section, mutual coupling in an infinite array is described and
in the following section the element-by-element approach is detailed for finite arrays.

7.3.1 Infinite Periodic Arrays

When the array contains identical elements and the element spacing is regular, a solution can be
expressed in terms of Floquet modes. Since the array geometry is a periodic function of the
geometry, the field representation is periodic also except for a phase function which varies
linearly across each cell of the array. This periodic function with phase progression is called
a Floquet mode. Periodicity allows considerable simplification of the computing problem
because once a solution is obtained for one cell, the solution for other cells is the same except
for a progressive phase factor. By means of this representation, large arrays have been analysed
with some success. Historically, in the analysis of mutual coupling in antennas, infinite periodic
arrays were analysed first in detail. The literature on infinite arrays is substantial, and for details,
the reader should consult the references (Hansen, 1966, 1998; Diamond, 1968; Farrell & Kuhn,
1968; Amitay et al., 1972; Rudge et al., 1983).

Consider an infinite array of identical aperture as shown in Figure 7.8. The location of an
element in the transverse plane is specified by the vector

Pumn =md; +ndy; |m|<Mand |n| <N

where d; and d, are vectors, which define the array lattice. In general, these vectors are not
orthogonal. The electric field in the mnth unit cell is

Emﬂ (ptmn) = EO (p_ ptmn)e_jkw'p/m"

where W =Xxu + yv with u = sin 8 cos ¢ and u = sin sin ¢. The total electric field in the trans-
verse aperture plane z=0 is found by summing these individual contributions:

N
E, (p’m") = Z Z E, (p - ptmn) e_jkw.p""" .

=-Mn=-N
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