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Preface

Aperture antennas are a class of antennas in common daily use and some have even become
synonymous with areas of science and technology. Typical examples include reflectors, horns,
lenses, waveguides, slits, and slots. Other antennas can be conveniently described by means of
aperture concepts. Some of these include microstrip patches and reflectarrays. In this book we
describe the underlying theory and application of these antennas as well as their use in arrays.
The history of aperture antennas is inextricably linked with historical developments in wire-

less and also the verification of Maxwell’s equations. The very first waveguide was demon-
strated by Lodge in 1894 and in 1895 Bose used circular waveguides as an antenna along
with pyramidal horns for experiments on the polarization properties of crystals. About thirty
years later a 10 m diameter reflector became the first radiotelescope when it detected emissions
from electrons in interstellar space. In the 1960s aperture antennas accompanied the first
humans on the moon and more recently they have contributed to the wireless revolution that
is presently underway.
Aperture antennas are normally associated with directional beams and, indeed, this is their

role in many applications. They can also occur on non-planar or curved surfaces such as on
aircraft or ground-based vehicles. These antennas may consist of a single radiator or in arrays.
In this form they are often used to provide directional or shaped beams.
Directional beams are needed in terrestrial and satellite microwave links to efficiently use the

available power as well as to reduce interference and noise. Radar systems also require direc-
tional antennas to identify targets. As well, arrays of aperture antennas can produce almost
omnidirectional radiation.
A limitation of a directional planar antenna is that when it is scanned from broadside the beam

broadens and the pattern deteriorates.When the antenna is conformal to a convex surface, such as a
cylinder or a cone, the beam can be scanned in discrete steps through an arc while maintaining a
constant pattern. Of importance in the design of low sidelobe antenna arrays, both planar and con-
formal, is predicting the effect of mutual coupling between the array elements. Maximum perfor-
mance is achieved from arrays when the coupling between elements is fully taken into account.
This book gives an introduction to the techniques that are used to design common aperture

antennas as well as some approaches to their fabrication and testing. The intention is for it to be
a single textbook for a course in antennas in the final year undergraduate or in a master’s degree
by coursework. It assumes that the reader has undertaken a course on Maxwell’s equations,
fields and waves. Some of these topics are reviewed in the early few chapters to provide con-
tinuity and background for the remainder of the book. The antennas covered in later chapters



include horns, reflectors and arrays. Some examples are pyramidal and corrugated horns, par-
abolic and spherical reflectors, reflectarrays, planar lenses and coaxial waveguide array feeds.
To provide more than a simplified treatment of arrays, the topic of mutual coupling is covered
in more detail than most similar books on this topic. Also included is an introduction to sources
and arrays on non-planar surfaces, which is of importance for applications involving aerody-
namic surfaces and for making aperture antennas unobtrusive. A chapter is included on modern
aperture antennas that extend the concepts introduced in earlier chapters. This is to show where
advances have been made in the past and how they could be made in the future. Also included
are some topics of a practical nature detailing some techniques for fabrication of aperture anten-
nas and their measurement.
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1
Introduction

The topic of this book covers a class of antenna in common use today as well as a way of
describing many others. Examples include waveguides, horns, reflectors, lenses, slits, slots
and printed antennas. Some examples are illustrated in Figure 1.1. In the following chapters,
the background theory and application of some basic forms of these antennas are described as
well as how they can be designed, fabricated and tested. Additionally, detail will be provided on
some of the individual antennas pictured in Figure 1.1.
Aperture antennas are normally associated with directional radiation beams and, indeed, this

is their purpose in many applications. They can also create other types of beams such as shaped
or contoured beams either separately or combined as arrays as will be shown. Aperture anten-
nas can also occur on non-planar or conformal surfaces such as on aircraft or missile bodies
where airflow and aerodynamic performance are paramount. Conformal antennas can consist
of a single radiator or arrays in the surface where they can be used to provide directional and
shaped beams.
Aperture antennas can be used to produce omnidirectional radiation patterns, which are

important if the antenna platform is unstable or the user direction is unknown, for all-round
electronic surveillance and monitoring or where the location of another user cannot be guar-
anteed such as in mobile radio systems. A 360-degree coverage can be achieved with a con-
formal antenna or with electronic switching between planar elements.
Directional beams are required in terrestrial and satellite microwave links to efficiently use

the available power as well as to reduce interference and noise. Directional antennas are also
required in radar systems to identify targets. A limitation of a directional planar antenna is that
when it is scanned from broadside (typically boresight) the beam broadens and the pattern dete-
riorates. When the antenna is conformal to a convex surface, such as a cylinder or a cone, the
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(a) (b)

(e) (f)

(c) (d)

Figure 1.1 Examples of aperture antennas. (a) Open-ended waveguide antennas (right to left) coaxial,
circular and rectangular. (b) Circular waveguide (diameter 32.7 mm) with three ring-slots designed for
operation at 9 GHz. (c) Feed array of pyramidal horns for 12.25–12.75 GHz. (d) 11–14.5 GHz high-
performance circular corrugated feed horn, diameter 273 mm, and flare angle 11.8 . (e) Small
paraboloidal reflector and rear waveguide feed designed for a 15 GHz microwave link. (f ) 64 m Parkes
radio telescope is a front-fed paraboloid (f/D = 0.408). This versatile instrument has been used for
frequencies from 30MHz to >90 GHz. Source: Reproduced with permission from CSIRO (a–f)
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(g) (h)

(l)

(i) (j)

(k)

Figure 1.1 (continued) (g) Two multibeam earth station antennas at Danish Radio’s multimedia
house in restad in Copenhagen, Denmark, covering different segments of the geostationary satellite arc.
(h) Multibeam feed system for the Parkes radio telescope. Source: Reproduced with permission from
CSIRO. (i) On-board Ku-band satellite antennas under test on an outdoor test range prior to launch.
(j) Dual-offset Cassegrain antenna with a waveguide array feed cluster under test in anechoic chamber
(Bird & Boomars, 1980). (k) Series-fed microstrip patch array for a microwave landing system.
Source: Reproduced from INTERSCAN International Ltd. (l) Conformal array of rectangular
waveguides (22.86 × 10.16 mm) on a cylinder of radius 126.24 mm. Source: Picture courtesy of Plessey
Electronic Systems

3Introduction



beam can be scanned in discrete steps through an arc while maintaining a constant pattern.
Recent developments in microwave and optical components have simplified the design of feed
networks, thereby making conformal antennas and arrays attractive alternatives for directive
applications as well as for scanned beam and in ultra-low sidelobe antennas. Of importance
in the design of the latter, both planar and conformal antenna arrays are often employed,
and in this application predicting the effect of mutual coupling between the array elements
should be undertaken. Maximum performance is achieved from arrays when the effects of cou-
pling are known and included in the design. Otherwise, the full potential of the array flexibility
may not be realized.
Aperture antennas may be analysed in much the same way as the conceptually simpler wire

antennas. First, the designer needs to find the currents on the conductors or in other materials
from which the antenna is constructed. To do this exactly is usually impossible except in a few
idealized cases, and numerical methods are required to obtain approximate solutions. After the
currents are known, the radiated fields are obtained from Maxwell’s equations. Sometimes,
however, adequate design information may be obtained from simplified approximations to
the current, similar in some regards to adopting a sinusoidal current approximation on a linear
wire antenna. This approach is especially valuable for analysing the far-field radiation charac-
teristics, which are relatively insensitive to second-order variations in the current distribution.
However, for more detailed information or quantities such as the input impedance, reflection
coefficient at the input of horns or the effects of mutual coupling from nearby antennas, an
accurate representation of the currents is usually required to properly take account of the current
variations and near-field behaviour.
The representation of actual currents on the antenna structure may be difficult, or impossible,

to achieve analytically because of the geometry and materials involved. It is convenient, and
also physically allowable, to replace the actual sources by equivalent sources at the radiating
surface, the antenna ‘aperture’, which need not lie on the actual antenna surface but on another
often fictitious surface close by. For example, the aperture of a paraboloid reflector may be the
projection of the rim onto a suitable plane. These equivalent sources are used in the same way as
actual sources to find the radiated fields. Once these fields are known, an assessment of the
antenna’s performance can be made.
For the engineer wishing to specialize in the area of communications systems, some knowl-

edge is needed of the theory and design of aperture antennas. The intention of this book is to
provide some of this basic information. Today, compared with prior to the 1980s and even ear-
lier, a variety of full wave computer solvers are now available and are particularly valuable for
final design and analysis. The fundamental material available in this book is important as a
starting point and for understanding the physical nature of the antenna structure before more
detailed design is undertaken. It is intended that readers should be able to move from the present
material to more specialized topics and to the research literature. In addition, the details pro-
vided herein should help the non-specialist in antennas to critically assess aperture antenna spe-
cifications. Where possible, useful design information has also been included. An underlying
assumption is that the reader is familiar with the basic concepts of electromagnetic fields, waves
and radiation, as presented, in a variety of excellent textbooks (Harrington, 1961; Jones, 1964;
Jordan & Balmain, 1968; Kraus & Carver, 1973; Johnk, 1975). Some topics of a more
advanced nature have also been included here, beyond those of a typical introductory course.
These are indicated by an asterisk (∗) after the section heading. They have been included as
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possible extensions from standard material for more specialized courses, research or possibly
part of a project.
The material included here is based on notes for several courses in antennas given to fourth

year students in Electrical Engineering at James Cook University of North Queensland and also
at the University of Queensland in the 1980s. At that time there was no suitable modern text-
book available on antennas for undergraduate teaching. Since then, several excellent textbooks
have appeared (Balanis, 1982). In addition, the notes were found useful over the years by mem-
bers of my research group at CSIRO. Other relevant material had been developed on mutual
coupling for presentation at several symposia held in the 1990s, and some of this information
has been included here. As might be anticipated, practical topics of relevance that were encoun-
tered during my research career have been included as well.
The purpose of this book is to provide a stand-alone textbook for a course in antennas, pos-

sibly in the final undergraduate years or in a master’s degree by coursework. It should also be
useful for Ph.D. candidates and practising engineers. For continuity, some background electro-
magnetics, fields and waves are included.
The antennas described in detail include horns, reflectors, lenses, patch radiators and arrays

of some of these antennas. Because of its importance and to provide more than a superficial
treatment of arrays, the topic of mutual coupling is covered in greater detail than most similar
books in the area. Also included is an introduction to sources and arrays on non-planar surfaces,
which is important for applications involving aerodynamic surfaces and for making aperture
antennas unobtrusive. An introduction to the fabrication and test of aperture antennas is
included as well as some recent examples of them.
The theory needed for analysing aperture antennas is given in Chapter 3. Material is also

included for handling conformal aperture antennas. Starting with the concept of equivalent
sources, the equations for radiation from an aperture are developed from the fields radiated by
a small electric dipole and a small loop of current. The basic theory that is needed for more
detailed development is also provided. This includes details of the far-field radiation from
uniformly illuminated rectangular and circular apertures and also how phase aberrations on the
aperture impact the far-fields. The radiation from waveguide and horn aperture antennas are
described in Chapter 4, and material is included for the radiation from rectangular waveguide
antenna. Thismodel is used as a basis for detailed description of the pyramidal horn. The radiation
properties of circular waveguides and horns are reviewed in this chapter and details are provided
on the corrugated horn. A simple model of the microstrip patch antenna is given in Chapter 5
along with details of the radiation properties of these antennas. The purpose is to describe another
form of aperture antenna and as background for reflectarrays. The properties of reflector antennas
in common use are described in Chapter 6, including the paraboloid the Cassegrain, and spheroid
geometries as well as some offset counterparts. Planar arrays of aperture antennas and mutual
coupling in arrays are detailed in Chapter 7. This is followed in Chapter 8 by similar details
for apertures on conformal surfaces. The areas of arrays and reflectors come together in the
reflectarray antenna, which is introduced in Chapter 9. This chapter also includes details of some
other aperture antennas not treated elsewhere, in particular, lenses, and the Fabry-Pérot cavity
antennas. Finally, some possible approaches for the fabrication and testing of aperture antennas
are described in Chapter 10. In addition it includes examples of some aperture antennas that make
use ofmany of the techniques covered earlier in the book.At all times, the intention is an emphasis
on fundamentals and, where possible, practical information for design is also included.
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2
Background Theory

In this chapter, some background theory is provided and notation is introduced in preparation
for use throughout the remainder of this text. The equations that were devised by Maxwell and
placed in differential form by Heaviside and Hertz are introduced. Throughout this book, all
field and sources are assumed to be time harmonic and the formulation of the field equations
and their consequences will be explored under this limitation. The important concepts of field
duality, equivalent sources and image theory are summarized. Finally, radiation from elemen-
tary sources is investigated, and this allows a description of some basic radiation parameters as
well as an introduction to mutual coupling.

2.1 Maxwell’s Equations for Time-Harmonic Fields

The instantaneous vector field quantity r, t may be expressed in terms of a complex vector
field, A(r), where all fields and sources have a time-harmonic dependence, as follows:

r, t =Re A r exp jωt , 2 1

where bold type face indicates vector quantities, ω= 2πf is the angular frequency (rad/s),
t denotes time (s) and f is the frequency (Hz) of the harmonic oscillation.
Field and source quantities are defined as follows (MKS units given in square brackets):

E(r) = Electric field intensity [V m−1]
H(r) = Magnetic field intensity [A m−1]
J(r) = Electric current density [A m−2]
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M(r) =Magnetic current density [V m−2]
ρe(r) = Electric charge density [C m−3]
ρm(r) = Magnetic charge density [Wbm−3],

where V is the volt, A is the Ampere, m is metre, Wb is Weber and C is the Coulomb.
The equations governing the interaction of these fields and sources are known as Maxwell’s

equations, after James Clerk Maxwell (1831–1879), who first presented them in component
form and in terms of potentials from the earlier results of Faraday, Öersted, Ampere, Weber
and others. Oliver Heaviside (1850–1925), and independently Heinrich Hertz (1857–1894),
reduced these 20 equations to the four vector field equations that are essentially used today
(Sarkar et al., 2006). For Heaviside, the concepts of fields, symmetry and vector notation were
vital. With the present assumption that fields and sources vary harmonically with time,
Maxwell’s equations are expressed as follows:

∇×E=M− jωμH 2 2a

∇×H= J+ jωεE 2 2b

∇ E=
ρe
ε

2 2c

∇ H=
ρm
μ
, 2 2d

where ∇ is the gradient operator, ∇× is the curl operation, ∇ denotes divergence, ε is the
electric permittivity [F m−1] and μ is the magnetic permeability [H m−1].
A general field may be considered as the superposition of the fields due to two types of

sources, respectively, electric (e) and magnetic (m) as follows:

E=Ee +Em and H =He +Hm

The partial field pairs, (Ee,He) and (Em,Hm) satisfy separate sets of Maxwell’s equations as
shown in Table 2.1 and originate from electric or magnetic sources. The former is due to phys-
ical electric currents and charges, while the latter is due to magnetic currents and charges, which
are of an equivalent type andwere introduced to maintain the symmetry ofMaxwell’s equations
(Harrington, 1961; Jones, 1964). More will be said about equivalent sources in the following
sections.

Table 2.1 Maxwell’s equations for electric and magnetic sources

Electric: J 0 M= 0 Magnetic: J= 0 M 0

∇×Ee = − jωμHe ∇×Hm = jωεEm

∇×HE = J+ jωεEe ∇×Em =M− jωμHm

∇ Ee = ρe ε ∇ Hm = ρm μ
∇ He = 0 ∇ Em = 0

8 Fundamentals of Aperture Antennas and Arrays



2.1.1 Field Representation in Terms of Axial Field Components
in Source-Free Regions

In problems involving sections of uniform structures that guide electromagnetic waves such
as waveguides and transmission lines when J and M are absent, it is convenient to represent
all field components in terms of the field components in the direction of propagation, that is, in
the direction of uniformity. By convention this direction is usually taken as the z-component in
a cylindrical co-ordinate system with directions denoted by (u,v,z). It is recognized that the field
components Ez(u,v,z) and Hz(u,v,z) satisfy Helmholtz wave equations, where (u,v) are trans-
verse co-ordinates. The guiding structures are assumed to exhibit reflection symmetry and,
therefore, it is sufficient to represent the total field as the superposition of forward and reverse
travelling wave solutions in the z-direction. For time harmonic fields of the type defined by
Eq. 2.1, a forward travelling wave (in the +z-direction) has the following fields:

E u,v,z = Et u,v + zEz u,v exp − jγz 2 3a

H u,v,z = Ht u,v + zHz u,v exp − jγz , 2 3b

where Et(u, v) andHt(u, v) are the transverse electric and magnetic field vectors and γ = β− jα is
the complex propagation constant. β is the phase shift per unit length and α is the attenuation
constant. For lossless structures α= 0. With the field represented by Eqs. 2.3, the transverse
field components can be obtained from Maxwell’s equations in the following form:

k2zEt u,v = jωμz ×∇tHz− jγ∇tEz 2 4a

k2zHt u,v = − jωεz×∇tEz− jγ∇tHz, 2 4b

where k2z =ω
2εμ−γ2 is the axial wave number, and ∇t is the transverse gradient operator.

For homogeneous materials, the permittivity and permeability are ε = εrεo and μ= μrμo,
respectively, where εr is the relative permittivity, μr is the relative permeability, εo = 8 854 ×
10−12 F/m and μo = 4π × 10

−7 H/m are the permittivity and permeability of free-space. The first
term on the right-hand side of k2z , namely, k =ω εμ, is the propagation constant of a plane
wave in the homogeneous medium. In free-space εr = 1 and k = 2π λ = ko =ω μoεo =ω c

where c= 1 εoμo is the free-space wave velocity and equals c = 2 99859 × 108ms−1. Ratios
of components of E andH in Eqs. 2.4 have dimensions of impedance and are referred to as the

wave impedance. In a general medium, the intrinsic impedance is η= μ ε Ω. By substituting
Eqs. 2.4 into Eqs. 2.2b and 2.2d, it can be shown that the axial field components satisfy the
following scalar wave equations:

∇2
t + k

2
z

Ez u,v

Hz u,v
= 0 2 5

It is seen from Eq. 2.5 that k2z is also the transverse wavenumber. If the co-ordinates u and
v are separable there will be separation constants in these directions as well. For fields that
are TE to the propagation direction, Ez = 0, and the simultaneous pair of wave equations
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simplify to a solution of the wave equation in Hz only and Eqs. 2.4a and 2.4b become
as follows:

k2zEt u,v = jωμz ×∇tHz 2 6a

k2zHt u,v = − jγ∇tHz, 2 6b

where now k2z is constant for a fixed geometry and is the cut-off wavenumber of the guiding
structure. For example, for the TE modes of circular cylindrical waveguide of radius a, kz is a
root of the derivative of the Bessel function (see Appendix B), namely, Jn kza = 0, where n is
the azimuthal period that arises in the solution of the wave equation in the azimuthal co-ordinate
Φ in the transverse plane. Similarly, a field that is transverse magnetic (TM) to the propagation
direction is obtained by setting Hz = 0 and an equivalent simplification occurs in Eqs. 2.4,
namely,

k2zEt u,v = − jγ∇tEz 2 7a

k2zHt u,v = − jωεz×∇tEz 2 7b

2.1.2 Boundary Conditions

Consider a volume that is divided into two regions 1 and 2 by a surface S as shown in Figure 2.1.
There are currents on this surface, namely, an electric surface current Js [A m−1] and a magnetic
surface currentMs [V m−1]. On either side of a surface of discontinuity the field pairs (E1,H1)
and (E2,H2) satisfy the following continuity conditions:

Js = n× H2−H1 2 8a

Ms = −n × E2−E1 2 8b

Thus the tangential components are discontinuous by an amount equal to the current at the
surface. The associated boundary conditions for the normal components to the surface are as
follows:

n̂

E2, H2

E1, H1

S

Figure 2.1 Fields on either side of a boundary surface S
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ρes = n ε2E2−ε1E1 2 9a

ρms = n
H2

μ2
−
H1

μ1
, 2 9b

where ρes is the electric surface charge in [C m−2] and ρms is the magnetic surface charge
[Wb m−2]. In many physical problems ρes = 0 and so n ε2E2−ε1E1 = 0. No physical
magnetic surface charges have been detected and, therefore, Eq. 2.9b is usually
expressed n H2 μ2−H1 μ1 = 0.

2.1.3 Poynting’s Theorem

The time-averaged conservation of energy in the electromagnetic field is given by Poynting’s
theorem. In an isotropic medium of volume V with permeability μ, permittivity ε and conduc-
tivity σ, this is

1
2 Σ

E×H∗ ndS =
1
2 V

jω μH H�−εE E� + σE E� dV , 2 10

where Σ is the surface bounding V. On left-hand side, n is the normal to the surface and is direc-
ted into Σ. The quantity P= 1 2 E×H∗ is the power density entering V that is called the com-
plex Poynting vector. The integral of this vector over the closed surface Σ is the power input, PI.
On the right-hand side, the three terms are related to, from left to right, the energy stored in
the magnetic field, Wm, the energy stored in the electric field, We, and the power lost due to
conduction loss, PL. Expressed succinctly, Eq. 2.10 is PI = 2jω Wm−We +PL, where

Wm =
1
4
Re

V
μH H�dV ,

We =
1
4
Re

V
εE E�dV and

PL =
1
2
σ

V
μE E�dV

In an ideal lossless medium, σ = 0 and, as a consequence, PL = 0. Therefore, PI = 2jω
Wm−We . This says that the input power converts totally to energy in the fields, which is
totally reactive, and is the difference of the energies stored in the magnetic and electric fields.

2.1.4 Reciprocity

Of importance in all types of antenna systems is the relationship between the receiving and
transmitting fields. In more general terms, the response in the vicinity of one source due to
fields from a second source and the relationships when the roles are reversed are of particular

11Background Theory



significance. Suppose there are two sources in a region denoted by a and b. Thus the source
pairs are Jas ,M

a
s and Jbs ,M

b
s . These produce fields (Ea,Ha) and (Eb,Hb), respectively, that

satisfy their own sets of Maxwell’s equations as shown in Table 2.1. Making use of the vector
identity

∇ Ea ×Hb =Hb ∇×Ea−Ea ∇×Hb

and the Maxwell curl relations, it follows that

∇ Ea ×Hb =Hb Ma
s − jωμH

a Hb−Ea Jbs − jωεE
a Eb 2 11a

Similarly,

∇ Eb ×Ha =Ha Mb
s − jωμH

a Hb−Eb Jas − jωεE
a Eb 2 11b

Subtraction of Eq. 2.11b from Eq. 2.11a results in

∇ Ea ×Hb−Eb ×Ha = −Ea Jbs +E
b Jas +H

a Mb
s −H

b Ma
s

At any point within the region where the sources are not present, the right-hand side is zero:

∇ Ea ×Hb−Eb ×Ha = 0 2 12

This result is called the Lorentz reciprocity theorem. When Eq. 2.12 is integrated throughout
the source-free region Σ, the divergence theorem allows it to be expressed as follows:

Σ
Ea ×Hb−Eb ×Ha ndS= 0, 2 13

where the integral sign refers to a closed surface with volume V. When sources are contained
within the surface the result is

Σ
Ea ×Hb−Eb ×Ha ndS=

V
−Ea Jbs +E

b Jas +H
a Mb

s −H
b Ma

s dV 2 14

If the surface is a sphere with a very large radius, as the fields decay as 1/r, the integral on the
left-side limits to zero. As a result, the right-side of Eq. 2.14 gives

V
Ea Jbs −H

a Mb
s dV =

V
Eb Jas −H

b Ma
s dV , 2 15

where V is now all space. The two integrals on the left and right side of Eq. 2.15 are termed
reaction integrals. Eq. 2.15 is sometimes expressed as the reaction of field a on source b is the
same as the reaction of field b on source a. When a and b are the same the integral is called self-
reaction. Although not immediately obvious, Eq. 2.13 is also applicable when the volume, V,
contains all sources.
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2.1.5 Duality

The symmetry of Maxwell’s equations as summarized in Table 2.1 indicates that mathemati-
cally there may be equivalence between the extension of Faraday’s law and Maxwell’s exten-
sion of Ampere’s equation and similarly between the divergence equations arising from
Gauss’s laws. This is, in fact, the case if there were physically a magnetic current and a mag-
netic charge density, which like the electric charge and divergence of the electric current,
are related through a magnetic current continuity equation. This correspondence between
Maxwell’s equations and the field sources is referred to as duality and is summarized in
Table 2.2. There will be occasions when a magnetic current is adopted, although physically
it is fictitious, as it can simplify some of working and produce fields as if such a source or
to construct field solutions as if these sources were actually present.

2.1.6 Method of Images

Adjacent to plane electric and magnetic conductors, the boundary conditions (Eqs. 2.8 and 2.9)
on the electric and magnetic fields imply the presence of an ‘image’ field on the other side of the
conductor. A summary of image theory is illustrated in Figure 2.2.
An electric field that is perpendicular to a perfect conductor has an image, which is parallel to

the original field. On the other hand, an electric field that is parallel to the conductor has an
image that is oppositely directed. A magnetic field that is perpendicular to a perfect conductor
has an image that is anti-parallel to the original field, while a parallel field creates a parallel
image. For electric and magnetic fields above a perfect magnetic conductor the roles reverse
as shown in Figure 2.2b.

2.1.7 Geometric Optics

The basis of geometric optics is that the wavefronts of incident waves are equiphase level sur-
faces represented by the function L(x,y,z). In an inhomogeneous medium with a refractive index
n(x,y,z) these surfaces satisfy the eikonal equation (Born & Wolf, 1965), which is expressed by

∇L = n =
c

vp
, 2 16

Table 2.2 Field duality

Electric dipole Magnetic dipole

E H
H −E
k k
ε μ
μ ε
η 1/η
J M
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where vp is the phase velocity. The eikonal equation can be used to determine the ray paths for a
given refractive index as will now be shown.
Suppose ŝ is a unit vector tangent to the ray path and is, therefore, normal to the wavefront.

Consequently,

s=
∇L
∇L

=
∇L
n

2 17

From differential geometry, the curvature of this unit vector is (by Frenet’s formula),

ds

ds
= −s × ∇ × s =

n⊥
ρ
, 2 18

where n⊥ is the principal unit-normal vector and ρ is the radius of curvature. Therefore, by
means of Eq. 2.17

ds

ds
= −s× ∇ ×

∇L
n

= −s× ∇
1
n

×∇L = s× ∇ lnn × s

Electric conductor σ = ∞

Magnetic conductor

Electric

Electric

Magnetic

Magnetic

Physical
source

Physical
source

Image

Image

d

d

d

d

(a)

(b)

Figure 2.2 Field components and their images. Above a perfect (a) electric conductor and
(b) magnetic conductor
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Thus,

n⊥
ρ

n⊥ =
ds

ds
n⊥ = n⊥ ∇ lnn = n⊥

∇n
n

That is,

1
ρ
= n⊥

∇n
n

2 19

In a homogenous medium, n(x, y, z) is a constant and, therefore, the ray curvature of the
ray path is zero and the ray paths are straight lines. However, the ray paths in inhomogeneous
media are generally curved.

2.2 Equivalent Sources

Suppose the fields E1,H1 are produced by electric and magnetic current sources J1 and M1,
respectively. Now surround these sources by a surface S to form a volume V as shown in
Figure 2.3a. Outside S, in the volume V1, the fields are unchanged. Now replace the original
fields and sources in Vwith fields E2,H2 and also introduce surface currents Js andMs in V1 as
shown in Figure 2.3b. For continuity, surface currents must exist on S; otherwise, the boundary
conditions would require a null field everywhere. These surface currents are given by

Js = n × H1−H2 2 20a

Ms = −n × E1−E2 , 2 20b

where n is the outward normal to the surface S. The replacement of a set of fields and sources
by another equal set of fields and sources is known as the field equivalence principle. Sources
produced by this technique are called equivalent sources.
Several special cases of the equivalent problem can be devised. These are illustrated in

Figure 2.4.

(a) (b)

E1, H1

E1, H1

M1

J1

V1

V

S n̂

V1

V

S n̂

E1, H1

E2, H2
Js = n × (H1− H2)

Ms = – n × (E1− E2)

ˆ

ˆ

Figure 2.3 Equivalent sources. (a) Original fields and sources. (b) Equivalent sources to maintain
the same external fields
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When there is a null field inside S (as shown in Figure 2.4a), the contents of the medium in V
can be changed without altering the field inside. There are two particular cases of interest, and
these are illustrated in Figure 2.5. The first case shown in Figure 2.5a is useful as it can apply to
many aperture antennas. A perfect electric conductor (σ = 0) is introduced into V without affect
due to the null field. However, at the surface, the currents are affected because the conductor
shorts out the electric surface current leaving only the magnetic surface current. The problem of
finding the fields E1, H1 is modified now to determine Ms in the presence of a perfect electric
conductor, the solution to which may be just as elusive as the original problem (Figure 2.3a).
The dual problem to the one in Figure 2.5a is illustrated in Figure 2.5b where a magnetic

conductor is introduced into V. This shorts out the magnetic surface current leaving only an
electric current acting in the presence of the magnetic conductor.

Js = n × H1

Ms= −n × E1

(a) (b)

E1, H1 E1, H1

E1, H1

E1= 0 E2= 0

H2= 0
E2

H1= 0 H2

V1 V1

V1

V

S
n̂

ˆ

ˆ

V

S n̂

ˆ

ˆ

(c)

V

S n̂

ˆ

ˆJs = n × H1

Ms = −n × E1

Js= −n × (H1 – H2)

Ms= −n × (E1 – E2)

Figure 2.4 Special cases of equivalent sources and fields. (a) Null internal field to S. (b) Zero
internal electric field. (c) Zero internal magnetic field

(a) (b)

V

S

V

S
Electric
conductor

Magnetic
conductor

E1, H1V1
E1, H1V1

E2= 0
H2= 0

E2= 0
H2= 0

Ms= −n × E1
Ms= 0

Js= 0 Js= n × H1ˆ

n̂

ˆ

n̂

Figure 2.5 Null field internal to S with introduced media. (a) Electric conductor (σ = ∞ ) internal
to S. (b) Internal magnetic conductor
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2.2.1 Aperture in a Ground Plane

Suppose that the surface chosen for the equivalent sources is an infinite plane (Figure 2.6a). As
in Figure 2.5a, let a perfect electric conductor be introduced into the space V in which there is a
null field. There is now a plane sheet of magnetic current acting near a perfect conductor. Image
theory tells us that a magnetic source induces an identical image source, as shown in
Figure 2.6b, in the conductor. The field produced in V1 is the one due to Ms and its image
source, which is also Ms. That is, the field produced is due to an equivalent source of twice
the strength of the original source as illustrated in Figure 2.6c.

2.2.2 Conformal Surfaces

It is common for antennas and sources to be located on or near non-planar surfaces. A special
case is when the source is on the surface and conformal to it. The simplifications found for
planar surfaces do not arise for curved surfaces, either concave or convex ones. Many of
the other principles described earlier, such as equivalent sources, are still valid although the
geometry for conformal surfaces is more complex. To demonstrate this, consider two examples

S

(a)

(c)

Electric
conductor

S

σ = ∞

(b)

Image
source

Original
source

Equivalent
source

Original
problem

E1, H1

E1, H1

E1, H1

Js= 0

Ms Ms

Ms= −n × E1 

n̂

ˆ

Ms= –2n × E1 ˆ

Figure 2.6 Magnetic source near an infinite plane electric conductor. (a) Original problem.
(b) Equivalent problem. (c) Image replaced with equivalent source
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of sources on convex surfaces as shown in Figure 2.7. The first is an aperture in a cylinder in
Figure 2.7a. Modes are excited in the aperture, and the radiated field is equivalent to the radi-
ation from a magnetic current source on the cylinder. The second is a line source that is parallel
to a conducting cylinder in Figure 2.7b. A cylinder does not create images from point sources as
occurring on a plane, but it produces images for line sources. When the line source is parallel to
a cylinder as in Figure 2.7b, an image line is produced inside the cylinder. It does this in such a
way that the cylinder surface is an equiphase surface for the image. Finally, a sphere produces
images from point sources as illustrated in Figure 2.7c. These are special cases but often pro-
blems with a complicated geometry can be replaced by means of the method of images to a
simpler problem, which may be more amenable to detailed analysis.

2.3 Radiation

Consider a very short wire of length dz that is excited by a time-harmonic electric current
as shown in Figure 2.8 in a homogeneous medium. It is convenient to express the electric
and magnetic fields due to this current element in terms of its magnetic vector potential, A,
as follows:

E = − jωA+
1

jωμε
∇ ∇ A 2 21a

H =
1
μ
∇×A, 2 21b

where

Ms= Ea× n

n
Ea

I

I

I

JR

J'

(a) (b)

(c)
ˆ

ˆ

Figure 2.7 Equivalent sources on convex surfaces. (a) Magnetic current source. (b) Electric line
source. (c) Image source on sphere

18 Fundamentals of Aperture Antennas and Arrays



A= z
μIdz

4πr
e− jkr

The resulting non-zero electric field components are given by

Er =
μIdz

2π
e− jkr cosθ

1
r2

1 +
1
jkr

2 22a

Eθ =
μIdz

4π
e− jkr sinθ

1
r2

jkr + 1+
1
jkr

2 22b

The related magnetic field can be obtained from Eq. 2.21b from which the only non-zero
component is

Hϕ =
Idz

4π
e− jkr sinθ

1
r2

jkr + 1 2 22c

Observations on Eqs. 2.22 are as follows:

a. The instantaneous fields are found from Eq. 2.1. Contour plots of the instantaneous fields
given by Eqs. 2.22 with ηIdℓ 4π = 1 have been made in the vicinity of a current element at
instants of times t = 0, T/8, T/4, 3 T/8, where T = 2π ω is the period of the source and these
are shown in Figure 2.9. Because of symmetry, only one quadrant is shown in Figures 2.9 for
0 < θ < π 2, with 0 < kz < 15.

b. It can be seen that Eθ = 0 and Hϕ = 0 in the plane of the element, while Eθ and Hϕ are
maximum in the plane perpendicular to the element.

c. The radial field component vanishes, that is, Er = 0, in the plane perpendicular to the element
and it is maximum in the plane of the element.

d. All non-zero field components of Eqs. 2.22 contain terms involving powers of 1/r.

z

x

y

P(r,θ,ϕ)

ϕ

θ

So
I

r

Figure 2.8 Radiation from an electric current element
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t = 0T

(a)

(b)

t = 1/8T

t = 1/4T t = 3/8T

t = 0T t = 1/8T

t = 1/4T t = 3/8T

Figure 2.9 (a) Instantaneous electric field intensity in the vicinity of a short dipole at time instants 0 T,
1/8 T, 1/4 T and 3/8 T, where T is the period of the oscillation. 3 dB contours are plotted in a
single quadrant to a distance from the dipole kr = 15. (b) Instantaneous magnetic field intensity
in the vicinity of a short dipole (vertical) under same conditions as (a).

20 Fundamentals of Aperture Antennas and Arrays



2.3.1 Near-Field

The near-field region is defined by kr << 1, which implies that r << λ. Neglecting all terms but
the highest power of r in Eq. 2.22 results in

Er = −
jηIdz

2πkr3
cosθ 2 23a

Eθ = −
jηIdz

4πkr3
sinθ 2 23b

Hϕ =
Idz

4πkr2
sinθ 2 23c

where μ= η k.
It is noted that:

a. Hϕ is identical to the field produced by a short wire carrying a constant current. Also, as the
electric field contains terms proportional to 1/r3, the near-field is predominantly electric in
nature, and is the gradient of a scalar quantity. Thus,

E= −∇ −
jIdz

4πεωr2
cosθ

= −∇Φ,

2 24

where

Φ = −
jIdz

4πεωr2
cosθ

This scalar is the potential due to equal and opposite charges a distance dz apart, that is,
a dipole, which is oscillating at a frequency ω.

b. The electric and magnetic fields are out of phase as they are with a standing wave. As a result
the average power flow/unit area is zero. However, since the complex Poynting vector is
non-zero, the near-field stores energy and is reactive.

2.3.2 Far-Field

At distances very far from the current element, in the far-field region, kr >> 1. That is, r >> λ.
In this case, Eqs. 2.22 reduce to

Er = 0 2 25a

Eθ =
jηkIdz

4πr
e− jkr sinθ 2 25b
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Hϕ =
jkIdz

4πr
e− jkr sinθ 2 25c

Regarding Eqs. 2.25, it is observed that:

a. As Er is negligibly small the far-field is predominantly a spherical wave. The remaining field
components, Eθ and Hϕ, are tangential to the surface of this radiation sphere of radius r and,
hence, both are perpendicular to the direction of propagation.

b. The ratio of the two non-zero field components is

Eθ

Hϕ
= η=

μ

ε
2 26

For a current element radiating in free-space, the wave impedance is η= ηo =
376 73≈120π ohms, is called the free-space wave impedance. In the light of comment (a),
Eq. 2.26 is generalized to

H =
1
η
r ×E 2 27

c. As the non-zero field components are in phase, the far-field has a non-zero power density.
The power density for time harmonic far-fields is given by

P=
1
2
Re E×H∗

=
1
2
Re E×

1
η
r ×E∗

= r
E E∗

2η

2 28

Eq. 2.28 is a general result for the far-field radiation, and it shows that the power density is in
the radial direction, which is normal to the surface of the propagating spherical wave. In the
present case,

P= r
Eθ

2

2η

= r
η

32
k I dz

πr
sinθ

2

The units of power density are in watts/m2.
The fields due to a magnetic current element of length dz can be obtained in the same way.

However, instead of following a similar development, use is made of duality given in Table 2.2.
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As a result, the fields due to a magnetic current element, Mdz, are obtained directly from the
electric current element results. Therefore, by means of Table 2.2 and Eqs. 2.25, the far-fields
due to a magnetic dipole are expressed as follows:

Hr = 0 2 29a

Hθ =
jYkMdz

4πr
e− jkr sinθ 2 29b

Eϕ = −
jkMdz

4πr
e− jkr sinθ 2 29c

where Y = 1 η. Similar, to Eq. 2.26, for this dual problem, Eq. 2.26 gives Eϕ Hθ = −η.

2.3.3 Mutual Coupling Between Infinitesimal Current Elements

Two or more current elements interact with each other depending on their orientation. This
interaction is referred to as mutual coupling. To provide an initial insight into mutual coupling
and its effects, consider two infinitesimally short electric dipoles of length dl1 and dl2 that are
located in free-space and are supporting time harmonic currents of amplitude I1 and I2 with
angular frequency ω. Dipole 2 is rotated at an angle α in the same plane (z–y plane) relative to
dipole 1, as shown in Figure 2.10 The theory of a short electric dipole given by Eqs. 2.22
allows the elemental electric and magnetic fields of dipole 1 to be expressed as follows:

dE1 =
ηoI1dℓ1
4π

e− jkr1 θ1 sinθ1
jk

r1
+
1
r21

+ r1 cosθ1
2
r21

2 30a

I2

I1

θ21

Dipole 1

Dipole 2

α
z, z1

x, x1
x02

z02

x2

z2

θ2

r21

r2

dℓ1

dℓ2

Figure 2.10 Geometry for coupling between two short electric dipoles
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dH1 =
1
ηo
r1 ×dE1, 2 30b

where (r1, θ1,ϕ1) are the spherical polar co-ordinates at the centre of dipole 1. Similar expres-
sions apply to dipole 2 where the subscript 2 replaces the subscript 1 in the above equations.
Now let the electric field produced on dipole 2 due to dipole 1 be given by dE21. In turn
this field induces an electromotive force (emf) across the element in the following form
(Schelkunoff & Friis, 1952):

dV21 = −dE21 z2dℓ2 2 31

Since I1 is the current producing this emf, the mutual impedance of element 2 due to element
1 is defined as follows:

Z21 =
dV21

I1
= −

dE21 z2dℓ2
I1

2 32

Similarly, the current I2 induces an emf in dipole 1 allowing the mutual impedance at dipole 1
due to dipole 2 to be given by

Z12 =
dV12

I2
= −

dE12 z1dℓ1
I2

2 33

A relationship between these two mutual impedances is found by applying Lorentz’s reci-
procity theorem Eq. 2.12 to the two sets of fields and sources. This theorem results in

I1dV12 = I2dV21, 2 34

which is the reciprocity theorem for elementary dipoles. Furthermore, Eq. 2.34 along with
Eqs. 2.28 and 2.29 requires that

Z12 = Z21 2 35

Extending this result, when there a number of elements, reciprocity requires the mutual
impedance matrix for these elements to be symmetric.
A formal expression for the mutual impedance can be obtained from Eqs. 2.30a and 2.33.

Using some vector identities, this mutual impedance of the dipoles is given by

Z21 =
ηodℓ1dℓ2

4π
e− jkr21

jk

r21
sinθ21 sin θ21−α +

1

r221
cosα 1−3cos2θ21

+ sinαsinθ21 cosθ21 2cosθ21−1

2 36

As shown in Figure 2.10, θ21 is the angle subtended at dipole 1 by dipole 2 and r21 is the
distance between the dipole’s centres. In the special case of parallel dipoles (α= 0), that is
in a broadside arrangement, θ21 = 90 (i.e. in the H-plane), Eq. 2.36 simplifies to
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Z21 =
ηodℓ1dℓ2

4π
e− jkr21

jk

r21
+

1
r221

2 37

When the dipoles are in an echelon arrangement, that is end-to-end (θ21 = 0 and in E-plane),
the mutual impedance is

Z21 = −
ηodℓ1dℓ2
2πr221

e− jkr21 2 38

Therefore, for a broadside configuration (H-plane coupling) of dipoles, the mutual imped-
ance is inversely proportional to the distance between the dipoles, while in the echelon config-
uration (E-plane coupling), the distance dependence is inverse square.
In the same way, the coupling of short magnetic dipoles can be studied. However, the fields

due to electric and magnetic dipoles are duals of each other and, therefore, the corresponding
results for the magnetic dipole may be obtained by inspection from the above results. For mag-
netic dipoles the dipole moments are, respectively, dm1 = z1V1dℓ1 and dm2 = z2V2dℓ2, where
V1 and V2 are the applied voltages. Now from the duality summarized in Table 2.1, the mutual
admittance of elemental magnetic dipoles is

Y21 =
dI21
V1

= −
dH21 z2dℓ2

V1
2 39

Therefore,

Y21 =
Yodℓ1dℓ2

4π
e− jkr21

jk

r12
sinθ21 sin θ21−α +

1

r221
cosα 1−3cos2θ21

+ sinαsinθ21 cosθ21 2cosϕ21−1

2 40

Equation 2.40 shows that when magnetic dipoles are arranged broadside to each other (i.e.
E-plane), the mutual admittance varies inversely with the distance between them while, in an
echelon arrangement (i.e. H-plane), the dependence is as the square of the distance.
There is a general relationship between the mutual impedance and admittances of electric

and magnetic dipoles that finds widespread use. Let the mutual impedance for electric dipoles
in free-space, Eq. 2.33, be written as Zef

21 and the admittance for magnetic dipoles also in free-
space, given by Eq. 2.39, be Ymf

21 . The ratio of these quantities is

Zef
21

Yef
21

= η2o 2 41

Eq. 2.41 is similar to Booker’s relation for complementary antennas in free space (Booker,
1946). Similar expressions can be found for other arrangements such as for dipoles backed by
plane conducting sheets. For example, the mutual admittance of a magnetic dipole located adja-
cent to a plane electric conductor can be shown to be Yme

21 = 2Ymf
21 where the superscript ‘e’ on
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the right side refers to an electric wall. Booker’s relation between this mutual admittance and
the mutual impedance of an electric dipole in free space is, therefore,

Zef
21

Yme
21

=
η2o
2

2 42

The more common form of Booker’s formula (Kraus & Carver, 1973) gives the relation
between the input impedance of a half-wave dipole in free-space and its complementary struc-
ture, which is a slot in a ground plane. For that case, the right side of Eq. 2.42 is further divided

by 2 to give Zdipole
11 Y slot

11 = η2o 4.
From the simple theory given in this section, four principles may be stated for assessing, in a

qualitative fashion, the likely impact of mutual coupling between antennas. These are:

a. Mutual coupling is a function of distance between the antennas. Although there is a general
downward trend in the level of coupling with increasing distance, this dependence is not
monotonic. The level goes through a series of maxima and minima in the same manner
as the radiation pattern.

b. Coupling depends on the radiation pattern of the elements.
c. Coupling depends on the antennas’ polarization. Highest coupling occurs when the radiated

fields have the same polarization and are aligned, for example, for electric dipoles in ech-
elon. If the interaction is predominantly electric dipole related, strongest coupling occurs in
the H-plane, while for antennas that are predominantly magnetic dipole type, strongest cou-
pling occurs in the E-plane.

d. Booker’s relation can be used to convert an unknown coupling problem to one that may
have a simpler, or known, solution.

2.4 Problems

P2.1 Two different current sheets overlay a plane aperture with dimensions a × b on an inter-
face located at z = 0. The current sheets are Js = x ηo and Ms = ycos πy b . If a plane
wave in region 1, given by E1 = xexp − jkz , is incident on the interface, determine
the fields in region 2 on the other side of this interface (z > 0).

P2.2 A thin dielectric layer of thickness d where d << λ and relative permittivity εr covers a
metal plate (or large cylinder). A plane wave is normally incident on this plate. Verify that
the field at the top surface of the dielectric has a reflection coefficient approximately
given by ≈ −1exp 2jkd and the total field ≈0.

P2.3 A narrow slot antenna of length L resonates in its fundamental mode. Show that the equiv-
alent magnet current is the dual of the electric current excited on a thin dipole also of
length L.

P2.4 An infinite conducting plane separates a half-space (region 1) with constitutive para-
meters ε1, μ1 from a metallic enclosed region (region 2) with constitutive parameters
ε2, μ2. Harmonic sources Ji,Mi exist in each region i= 1,2. The two regions are coupled
by a common aperture.
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a. Use the equivalence theorem to divide the problem into two separate parts.
b. Obtain expressions for the tangential magnetic and electric fields to ensure continuity

across the aperture.
P2.5 A coaxial aperture with inner and outer radii b and a is located in a cylinder that extends a

height g above an infinite ground plane as shown in Figure P2.1. The aperture is excited
in the TEM mode only.
a. Obtain equivalent sources over the coax.
b. Use the sources in (a) to represent a possible approach to a solution using equivalence.

P2.6 Use Booker’s relation and the input impedance a half-wave dipole in free-space, to obtain
an expression for the input admittance of the complementary structure, which is a slot in a
ground plane.
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3
Fields Radiated by an Aperture

The previous chapter has provided the background for examining radiation from an aperture.
Special cases of interest to the topic will be examined, and parameters related to radiation that
are used to describe the characteristics of radiation will be defined.

3.1 Radiation Equations

Suppose the aim is to determine the fields at a pointP arising from fields excited on an aperture A.
It is convenient to do this in a spherical co-ordinate systemas shown inFigure 3.1. In the previous
section, it was shown that fields Ea,Ha, on a surface, may be replaced by equivalent sources

Js = n ×Ha 3 1a

Ms = −n ×Ea 3 1b

where n is the normal to the surface.
These equivalent currents imply the situation described in Section 2.2 where there is now a

null field inside A. Our aim is to find the fields radiated by these sources using a simpli-
fied model.
Initially consider an infinitesimally small element dS of the surfaceA. On this surface element,

suppose there are electric andmagnetic dipole sourceswith electric andmagnetic dipolemoments
dp and dm, respectively. These dipole moments are related to the surface currents as follows:

dp= JsdS 3 2a

dm=MsdS 3 2b
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Representations of both dipoles are shown in Figure 3.2. A short wire of length dℓ directed
along the z-axis (Figure 3.2a) carrying a uniform current I along its length has an electric dipole
moment dp= zIdℓ . At distance R such that kR >> 1 from the wire, the non-zero field compo-
nents are given by Eqs. 2.25. In vector form, these fields are expressed as follows:

dHe =
jk

4π
e− jkR

R
dp×R 3 3a

dEe = ηodHe ×R, 3 3b
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x

θ

R
dp
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=
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Figure 3.2 Models of electric and magnetic dipoles. (a) Elementary electric dipole. (b) Elementary
magnetic dipole
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Figure 3.1 Geometry for fields radiated by an aperture A. P is an observation or field point;
P is a source point
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where the identity z ×R=ϕ sin θ has been used. The subscript e is introduced on the fields in
Eqs. 3.3 to indicate they are due to an electric dipole. For a magnetic dipole the fields may be
obtained from Eqs. 2.29. The fields due to dm are, therefore,

dEm = −
jk

4π
e− jkR

R
dm×R 3 4a

dMm =
1
ηo
dEm ×R 3 4b

The subscript m in Eqs. 3.4 indicates a magnetic dipole source. Eq. 3.4 is equivalent to the
fields due to a wire loop of cross section dS supporting a harmonic current, I, as depicted in
Figure 3.2b. The loop has a magnetic dipole moment

dm = z jωμoIdS 3 5

Thus, a model of the sources at each point P on aperture A is a small electric dipole acting in
conjunction with a small loop of current. The electric field at P due to both dipole sources is

dE = dEe + dEm 3 6a

and

dH =dHe + dHm 3 6b

Thus, the total electric field due to both sources is

dE=
jk

4π
e− jkR

R
−dm ×R+ ηo dp×R ×R

=
jk

4π
e− jkR

R
−Ms ×R+ ηo Js ×R ×R dS

3 7

Adding all contributions from such sources on aperture A through integration results in the
electric field

E=
jk

4π A

e− jkR

R
R×Ms + ηo Js ×R ×R dS , 3 8a

whereR= r−r as shown in Figure 3.1. The integral in Eq. 3.8a is with respect to the primed co-
ordinates, that is the source co-ordinates on aperture A. The magnetic field is obtained similarly
and is

H =
jk

4π A

e− jkR

R
Js ×R +

1
ηo

Ms ×R ×R dS 3 8b
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As a consequence of the assumptions leading to Eqs. 3.3 and 3.4, Eqs. 3.8 are valid for all
field points P such that kR >> 1 and thus they are applicable at intermediate distances from the
aperture as well as in the far-field, that is, at distances that are comparable in size to the aperture
itself and beyond (Silver, 1946).

3.2 Near-Field Region

Consider the case when the distance r is close to the aperture where r is comparable to the largest
dimension of A. No simplifying approximations can be made to Eqs. 3.8. What is required is a
return to the basic sources and to make approximations that are valid close to the source.
A summation is still required across all infinitesimal sources although there is little to be gained
from this compared with using Eqs. 3.8 directly. In the near-field region, the field differs little
from that in the aperture field itself although there are fluctuations due to diffraction from any
nearby edges or rim and the phase will have become slightly non-uniform. The field rapidly falls
away from the edge in the aperture plane. If required, this field decay can be predicted by means
of Eqs. 3.8. The field is typically concentrated in the region of the normal to the aperture.

3.3 Fresnel Zone

At greater distances from the aperture, the intermediate-field region is encountered, which is also
called the Fresnel zone after a similar region in optics. For the Fresnel zone approximation to apply,

the distance r should be > D4 λ3 3. Several simplifying approximations can be introduced into
Eqs. 3.8 by virtue that the distance r is now assumed to be larger than the largest dimension in
the region A. With this assumption, R= r−r can be approximated by the binomial series in r.
The first three terms of this series are 1 + x n≈1 + nx+ n n−1 2 x2. This allows simpli-
fications to be made to the integrals in Eqs. 3.8. Thus,

R= r−r

= r2−2r r + r r 2

≈r 1−
r r
r2

+
1
2
r r 2

r2

3 9

This approximation is used in the exponential phase function and

1
R
≈
1
r

and R≈r

in the amplitude of the integral. Therefore, in the Fresnel zone the electric field can be expressed
as follows:

E≈
jk

4π
e− jkr

r A
e− jkF r ×Ms + ηo Js × r × r dS 3 10
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where F = r r + 1 2 r r 2 r comes about from the Fresnel phase approximation. When

r is orthogonal to r as in the case of Figure 3.1 when θ = 0∘, F = 1 2 r 2 r . The exponential

factor inside the integral contributes to a phase variation across the aperture, which is signif-
icant. The main impact of this is to introduce a quadratic phase error across the aperture, which
broadens the central beam and fills in the sidelobe nulls. Computation with Eq. 3.10 is quite
feasible and, therefore, is often chosen for applications such as reflector antennas where feeds
and subreflectors can be in the Fresnel zone of each other. Quadratic phase error will be dis-
cussed in greater detail in Section 3.6

3.4 Far-Field Region

Attention is now turned to distances, r, that are large compared with the dimensions of the aper-
ture. A minimum distance commonly specified is the Rayleigh distance criterion. According
to this criterion,

r >
2 largest aperture dimension 2

wavelength
3 11

At the Rayleigh distance a field illuminating the antenna produces a maximum phase var-
iation of ± π 8 radian across the largest dimension. This distance is sufficient for measuring the
first few sidelobes down to about −30 dB of the main beam. A greater distance is required for
accurately measuring lower level near-in sidelobes. When the distances from the aperture are
large r > > r , the distance R can be approximated as follows:

R = r−r

= r2 + r 2−2r r

≈r−r r ,

3 12

where use has been made of the first two terms of the binomial series expansion. The term r r
accounts for the path-length difference from the source to the far-field point and from the origin
to the same point.
On rectangular apertures, the following applies:

r r = sin θ x cos ϕ + y sin ϕ + z cos θ, 3 13

where the primed co-ordinates refer to the source point while on circular apertures it is

r r = ρ sin θ cos ϕ−ϕ + z cos θ 3 14

To obtain approximations to Eqs. 3.8 in the far-field, the exponential is far more sensitive to
approximation than the complex amplitude of the integrand. Therefore, Eq. 3.12 is used in the
exponential, but in the amplitude let

1
R
≈
1
r

and R≈r 3 15
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Making these approximations, Eqs. 3.8 and 3.9 give

E≈
jk

4π
e− jkr

r
r ×

A
Ms−ηo Js × r exp jkr r dS 3 16a

and

H=
1
ηo
r×E 3 16b

Eq. 3.16a implies that the field radiated by the aperture is a wave with a spherical wavefront.
The field is polarized tangential to the sphere, there being no radial components
(i.e. Er = 0 =Hr).
For a plane aperture situated in the x–y plane, the surface currents are

Js = n ×Ha and Ms = −n×Ea 3 17

From Eq. 3.16a, the field is

E≈ −
jk

4π
e− jkr

r
r ×

A
z ×Ea + ηo z ×Ha × r exp jkr r dS 3 18

Now making use of

x = r sin θ cos ϕ + θ cos θ cos ϕ−ϕ sin ϕ 3 19a

y = r sin θ sin ϕ+ θ cos θ sin ϕ +ϕ cos ϕ 3 19b

z = r cos θ−θ sin θ, 3 19c

the spherical components of Eq. 3.18 are found to be

Er = 0 3 20a

Eθ≈
jk

4π
e− jkr

r
Nx cos ϕ +Ny sin ϕ + ηo cos θ −Lx sin ϕ+ Ly cos ϕ 3 20b

Eϕ≈
jk

4π
e− jkr

r
cos θ −Nx sin ϕ +Ny cos ϕ −ηo Lx cos ϕ +Ly sin ϕ , 3 20c

where Nx,Ny and Lx, Ly are rectangular components of the following transforms:

N θ,ϕ,λ =
A
Ea exp jkr r dS 3 21

L θ,ϕ,λ =
A
Ha exp jkr r dS 3 22
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To help interpret these vectors, consider a plane aperture situated at z = 0. Also let

u =
1
λ
sin θ cos ϕ 3 23a

v =
1
λ
sin θ sin ϕ 3 23b

so that jkr r = 2π ux + vy . As a result define

N u,v =
A
Ea x ,y exp j2π ux + vy dx dy 3 24a

L u,v =
A
Ha x ,y exp j2π ux + vy dx dy 3 24b

It is observed from Eqs. 3.24 that the components of N and L are two-dimensional Fourier
transforms of the aperture field components. Therefore, the far-zone electric and magnetic
fields, via Eqs. 3.20 and 3.16b, are proportional to Fourier transforms of the aperture field
distributions. Conversely, the aperture fields are related to inverse Fourier transforms of the
far-fields. This relationship is particularly useful as results in later sections can be interpreted
from a knowledge of Fourier transforms (Oppenheim & Schafer, 1975). The transforms in
Eqs. 3.24 can also be evaluated numerically by means of the fast Fourier transform (FFT)
(Brigham, 1974).
Two special cases of practical importance are now considered. The first is when the electric

current is located close to a magnetic ground plane. In this case, Js = 2n ×Ha and Ms = 0. It is
easy to show that the far-field components are now

Eθ≈
jkηo
2π

e− jkr

r
cos θ −Lx sin ϕ + Ly cos ϕ 3 25a

and

Eϕ≈ −
jkηo
2π

e− jkr

r
Lx cos ϕ + Ly sin ϕ 3 25b

The second case is when the magnetic current is above a conducting surface,Ms = −2n ×Ea

and Js = 0. Therefore,

Eθ≈
jk

2π
e− jkr

r
Nx cos ϕ +Ny sin ϕ 3 26a

and

Eϕ≈
jk

2π
e− jkr

r
cos θ −Nx sin ϕ +Ny cos ϕ 3 26b
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In Figure 3.3, several Fourier transforms of one-dimensional aperture distributions are illus-
trated. For apertures with a separable co-ordinate system (e.g. rectangular co-ordinates), the
two-dimensional Fourier transform is a product of two one-dimensional transforms and, there-
fore, Figure 3.3 can be used as a guide in the general case as well. In particular, it is noted that a
uniform aperture distribution gives rise to a more directive far-field pattern than a tapered dis-
tribution, for example, the cosine or cosine-squared distributions. However, the sidelobe levels
are higher for a uniform distribution than for a tapered distribution. Also, the sharper the taper
the broader the main lobe but the lower the sidelobes. Transforms of three aperture distributions
of particular interest in the sections to follow are plotted in Figure 3.4. These correspond to a

Step

Aperture distribution Far-field pattern

Delta function ∞− ∞

1

Ea(x′)

x’

∞

N(u)

u

First sidelobe

Triangular

Cosine

Cosine squared

Gaussian

Inverse taper

(a)

(b)

(c)

(d)

(e)

(f)
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Figure 3.3 Fourier transform relationship between the aperture field distribution and the far-field
pattern. (a) Step. (b) Delta function. (c) Triangular. (d) Cosine. (e) Cosine squared. (f ) Gaussian.
(g) Inverse taper
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uniform aperture distribution on a rectangular aperture, a cosine distribution on a rectangular
aperture and a uniform distribution on a circular aperture. The transforms of these respective
distributions on apertures of dimension D are as follows:

Uniform distribution on rectangular aperture

D 2

−D 2
exp j2πux dx =DS πuD 3 27

Cosine taper on rectangular aperture

D 2

−D 2
cos

πx

D
exp j2πux dx =

2D
π
C πuD 3 28

Uniform distribution on circular aperture

2π

0
dϕ

D 2

0
dρ exp jkρ sin θ cos ϕ−ϕ = 2π

D 2

0
dρ J0 kρ sin θ

= π
D

2

2

2
J1 w

w
,

3 29
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Figure 3.4 Transforms of some aperture illuminations. ————— S2(x) uniformly illuminated
rectangular aperture; - - - - - - - - - C2(x) cosine illuminated rectangular aperture; _ _ _ _ _ _ _

[2(J1(x)/x)]
2 uniformly illuminated circular aperture
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where w= πD λ sin θ and the identity Eq. B.3 in Appendix B has been used. The functions J0
and J1 are Bessel functions of order 0 and 1, respectively. The new functions involved are
defined as follows:

S x =
sin x
x

3 30

C x =
cos x

1− 2x π 2 3 31

Plots of the square of the functions S(x), C(x) and 2J1(x) /x are shown in Figure 3.4. The first
sidelobe level relative to the peak in each case is, respectively, −13.3, −23. 0 and −17.6 dB. The
3 dB points occur at x = 1.39, 1.88 and 1.60, respectively (Silver, 1946). Hence the half-power
beamwidths (HPBWs) are approximately 0.88λ/D for the uniformly illuminated rectangular
aperture, 1.2λ/D for a cosine distribution on a rectangular aperture and 1.02λ/D for the
uniformly illuminated circular aperture.
The power radiated in any of the three regions identified above is obtained using the

Poynting vector. The power traversing an area Σ is given by

P=
1
2
Re

Σ
E×H∗ ndS , 3 32

where n is the normal to Σ. In the Fresnel and far-field regions, the magnetic field is given by
Eq. 3.16b. Therefore, the Poynting vector is

P=
1
2ηo

E r ×E �

In the far-field Er = 0 and, therefore,

P=
r

2ηo
E E∗

which indicates the power radiates in a radial direction.

3.4.1 Example of a Uniformly Illuminated Rectangular Aperture

The fields radiated by the rectangular aperture shown in Figure 3.5 are to be determined when
uniform electric and magnetic fields in the aperture are assumed. Outside the aperture in the
aperture plane the field is zero. From these fields find the maximum power gain.
Referring to Figure 3.5, let

Ea = xEo; −
a

2
< x <

a

2
; −

b

2
< y <

b

2
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Ha =
1
ηo
z×Ea =

1
ηo
yEo,

where Eo is a constant. The fields are zero elsewhere on the aperture plane. The radiated fields
are calculated from Eqs. 3.20 and 3.24 with the assumed aperture field, which is uniform in both
amplitude and phase.
The only non-zero component of Eq. 3.24a in this example is

Nx u,v =Eo

b 2

−b 2
dx

a 2

−a 2
dy exp j2π ux + vy

= abEoS πua S πvb ,

3 33

where S is the sinc function defined by Eq. 3.30. Also

Ly u,v =
1
ηo
Nx u,v 3 34

The radiated fields are, therefore, given by

Eθ≈
jkabEo

4π
e− jkr

r
1 + cos θ S πua S πvb cos ϕ 3 35a

Eϕ≈ −
jkabEo

4π
e− jkr

r
1 + cos θ S πua S πvb sin ϕ 3 35b

The S function (which is called the sinc function) is plotted in Figure 3.4. If the aperture is
large in terms of wavelengths (a, b >> λ), S varies much faster than the term 1 + cos θ ≈2
when θ is small, and hence S predicts the pattern close to the normal of the aperture, the bore-
sight direction.
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z

a/2

–a/2
b/2

–b/2

Ea= 0
Ha= 0

Figure 3.5 Rectangular aperture
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Of particular importance is the power radiated in a particular direction and especially in the
boresight direction θ = 0 where the radiated fields are maximum. The total power radiated by
the uniform aperture field is found by means of Poynting’s theorem and is given by

PT =
1
2 A

E ×H∗ zdS

=
1
2

a 2

−a 2
dy

b 2

−b 2
dx

E2
o

ηo

=
ab

2ηo
E2
o

3 36

On the other hand, by means of Eq. 2.28, the maximum power density at θ = 0 is

Pr θ = 0 =
1

ηor2
kabE0

4π

2

3 37

Now suppose it is possible to radiate this density over a sphere of radius r. This means
Eq. 3.37 should be multiplied by the area of the sphere, that is, 4πr2. The maximum gain of
the radiating aperture is defined as the ratio of this apparent power evaluated at the peak of
the beam and the total power available. That is,

Gmax =
4πr2Pr θ = 0

PT
3 38

Substituting in the quantities for the uniformly illuminated rectangular aperture given by
Eqs. 3.36 and 3.37, then it follows

Gmax = 4π
ab

λ2
3 39

In general, the maximum gain of a uniformly illuminated aperture with physical area A is

Go = 4π
A

λ2
3 40

An approximate expression for maximum gain is discussed in more detail in the next section.
Eq. 3.37 can be generalized in terms of system quantities as Pr =GPin LwhereG is the antenna

gain, Pin is the power input and L= 4πr λ 2 is the free-space loss factor.

3.5 Radiation Characteristics

The performance of an antenna is usually described in terms of its far-field radiation character-
istics and its terminal impedance. Some terms have been introduced in the previous sections.
However, this section will detail most of the important terms applied to antennas. A typical
radiation pattern of an aperture antenna is illustrated in Figure 3.6.

40 Fundamentals of Aperture Antennas and Arrays



3.5.1 Radiation Pattern

In the far-field or radiation zone of an antenna, the amplitude of electromagnetic fields are pro-
portional to l/r, where r is the distance from the antenna. Plots of the magnitude of the electric
and magnetic fields at a constant distance are called field strength patterns. Plots of the radiated
power at a constant distance or radius r are called radiation power patterns. These are illustrated
in Figure 3.6. The power pattern is defined:

P θ,ϕ =Pr r,θ,ϕ r2 = power density per unit solid angle 3 41

Power density (W/m2) is the radial component of the Poynting vector which is

Pr r,θ,ϕ =
1
2
Re E×H�

=
1
2ηo

E 2,
3 42

(a)

(b) (c)
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Figure 3.6 Antenna radiation patterns. (a) Radiation sphere enclosing an antenna showing the (linear)
field polarization on a cap about the direction of the main beam (boresight). (b) Co-polar radiation
pattern cut. (c) Cross-polar radiation pattern cut.
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where E is the electric field intensity (V/m), H is the magnetic field intensity (A/m) transverse

to the direction of wave propagation in the radial (r) direction and ηo = μo εo is the wave
impedance of free-space where εo and μo are the permittivity and permeability of free-space.
Equation 3.42 assumes that the fields are in the far-field of the source of radiation.
Usually the power pattern is normalized relative to its maximum value Pmax. The normalized

power pattern is

Pn θ,ϕ =
P θ,ϕ
Pmax

3 43

For example, the normalized pattern of a small current element is Pn θ,ϕ = sin2θ.

3.5.2 Half-Power Beamwidth

The HPBW is the angle subtended at the −3 dB points of the normalized power pattern (see
Figure 3.6b). The beamwidth between first nulls (BWFN) and the tenth-power beamwidth
are also used, for example, the HPBW of an elemental dipole is 90 and for a half-wave dipole
it is approximately 78 . The HPBW of a uniformly illuminated aperture of width a can be
shown to be 1 2λ a radians.

3.5.3 Front-to-Back Ratio

The front-to-back ratio (FTBR) gives a measure of the isolation provided by a directional
antenna from or to sources in the direction opposite the direction of maximum gain θmax.
Expressed in dB, the FTBR is

FTBR= 10log10
Pn θmax,ϕ

Pn θmax ± π,ϕ

= −10log10 Pn θmax ± π,ϕ

3 44

For example, a half-wave dipole has FTBR of 0 dB. A reflector antenna typically has a
FTBR > 20 dB.

3.5.4 Polarization

At distances far from the antenna, the radiated fields are tangential to the surface of a sphere
centred on the antenna (see Figure 3.6a). In general, the field on the sphere has components in

both the θ and ϕ directions. It is linearly polarized if the components Eθ and Eϕ are in-phase
everywhere, and if they are ± 90 out of phase, the field is circularly polarized. The field is
elliptically polarized for an arbitrary phase difference.
Radiation patterns measured in the two principal planes of linearly polarized antennas are

referred to as the E- and H-plane patterns. As shown in Figure 3.7, the E-plane pattern is
the cut taken parallel to the electric field, and the H-plane pattern is the cut taken perpendicular
to the electric field.
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The polarization generally varies over the surface of the sphere, and as a consequence, there
is also an unwanted field component polarized in the opposite direction. For example, although
an antenna is required to produce right-hand circularly polarized (RHCP) radiation, a practical
antenna also produces a small amount of the opposite polarization (LHCP) as well. This orthog-
onally polarized field is called cross-polarization. If E is the radiated field, p is a unit vector in
the direction of the reference polarization, or the co-polarized component, and q is a unit vector
in the cross-polarized direction, then

E p is the co-polar component of the electric field.
E q is the cross-polar component of the electric field.

The choice of vectors p and q is somewhat arbitrary. For predominantly linearly polarized
fields, however, one definition is preferred.With this definition, the co-polar antenna field com-
ponent is found by conventional far-field measurement with the polarization of the distant
source antenna initially aligned with the test antenna on boresight. Maintaining this alignment,
the test antenna is rotated about a chosen origin, the phase centre. The signal received by the test
antenna is the co-polar radiation pattern. If the polarization of the distant source antenna is now
rotated through 90 degrees and the radiation pattern measurement repeated, the received signal
is the cross-polar radiation pattern. If the antenna has its principal electric field vector parallel to
the x-axis, as in Figure 3.7, in the E-plane, the co-polar component is Eθ, while the cross-polar
component is Eϕ. In the H-plane, Eϕ is the co-polar component, and Eθ is the cross-polar
component. In general, with the electric field polarized in the ϕo direction, the co-polar and
cross-polar components in the ϕ direction are given by

Ep θ,ϕ
Eq θ,ϕ

=
cos ϕ−ϕo sin ϕ−ϕo

sin ϕ−ϕo − cos ϕ−ϕo

Eθ θ,ϕ
Eϕ θ,ϕ

3 45
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E

Figure 3.7 Principal plane radiation pattern cuts
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For example, if the reference polarization is at ϕo = 0 as in Figure 3.7, the co-polar and
cross-polar components of the field in the ϕ = 45 plane are

Ep θ,
π

4
=

1

2
Eθ θ,

π

4
+Eϕ θ,

π

4

Eq θ,
π

4
=

1

2
Eθ θ,

π

4
−Eϕ θ,

π

4

In addition, the E-plane corresponds to the ϕ = 0 plane where

Ep θ, 0 =Eθ θ,0 and Eq θ, 0 = −Eϕ θ,0

and the H-plane occurs in ϕ= 90 plane where

Ep θ,
π

2
=Eϕ θ,

π

2
and Eq θ,

π

2
=Eθ θ,

π

2

3.5.5 Phase Centre

The phase centre of an antenna is the apparent location of emanating spherical waves when it is
transmitting.
One approach is to estimate the phase centre from the two-dimensional discrete patterns

using the method of least squares (Fröberg, 1974). It can be shown that in the p-th azimuth
plane, the phase centre for a symmetric radiator in the plane p (= 1, …, NP) is approximately
given by

kdp =
b1−a1b0
a2−a21

, 3 46

where k = 2π λ, aq =
M

i= 1
cosqθi M and bq =

M

i= 1
Φ θi,ϕp cosqθi M, q = 0, 1, 2, θi

is angle i (= 1, …, M) in the n-th pattern cut through the plane ϕp which is symmetric about
boresight, M is the number of angular directions in the pattern and Φ(θi, ϕp) is the continuous
(unwrapped) phase function expressed in radians. An improved estimate of phase centre is
obtained by averaging several pattern cuts.

3.5.6 Antenna Gain and Directivity

The power gain of an antenna in a given direction (θ, ϕ) may be defined as the ratio of power
intercepted by a sphere enclosing the antenna if the same power density at (θ, ϕ) is radiated
isotropically and the total radiated power. The power density at (θ, ϕ) is given by Eq. 3.42.
If this power were radiated isotropically, the power that would be radiated at a large sphere
of radius r is Pr × 4πr2. The total power radiated, PT, is given by
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PT =
1
2
Re

S
E×H� dS 3 47

S may be any surface enclosing the field. For aperture antennas it is common to let S=A
where A is the aperture surface because it is easier to integrate over this surface than over
the far-zone sphere. From these definitions the power gain function is

G θ,ϕ =
4πr2Pr r, θ,ϕ

PT
3 48

in the far-field and using Eq. 3.42,

G θ,ϕ =
2πr2

ηo

E r,θ,ϕ 2

PT

The maximum value of gain is a parameter often used to describe the performance of an
antenna. However, sometimes when the term ‘gain’ is used, it is the maximum power gain that
is being referred to. Gain is referred to another antenna with the same input power. Here the
reference is the isotropic radiator although any convenient reference antenna may be used. For
example, the maximum gain of a short dipole relative to an isotropic radiator is 3/2 or 1.76 dBi,
where dBi indicates the gain is in decibels above the gain of an isotropic radiator, which has a
gain of unity.
The gain of an antenna with respect to the gain of a uniformly illuminated aperture of the

same dimensions is known as the aperture efficiency. This is defined as

ηa =
Gmax

Go
, 3 49

where Go = 4πA λ2 is the gain of a uniformly illuminated aperture, in both amplitude and
phase, over an area A. A useful rough approximation for the maximum gain of an aperture with
HPBWs θE radians in the E-plane and θH radians in the H-plane is

Gmax≈
4π

θEθH

≈
41253

θE deg θH deg
,

where θE,H(deg) refer to the HPBW expressed in degrees.
A related quantity to gain is the directivity D. This is defined as

D =
peak radiated power

power in radiated field W

=
4πr2Pr r,θ,ϕ peak

4π

Pr r,θ,ϕ r2dθdϕ

3 50
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The directivity always exceeds unity, that is, D ≥ 1. The directivity of an ideal short dipole is
the same as its gain. In general, gain is related to directivity through various conversion factors.
These include the efficiency of feeding and efficiency of conversion of power to radiation.
The gain of a uniformly illuminated aperture is not the maximum gain that is physically pos-

sible. Bouwkamp & de Bruijn (1946) and also Riblet (1948) showed that there is no theoretical
limit to directivity, for an antenna of given size, if the current distribution is unconstrained, that
is, the amplitude and phase is non-uniform. As a result, efficiencies in excess of 100% are
achievable. Translating this to aperture antennas means that the effective radiating aperture
is greater than the physical area. This effect is called a supergain and it occurs when the gain
is greater than that produced by an aperture distribution which is uniform in both amplitude and
phase. It has been shown (Bird & Granet, 2013) that for rectangular and circular apertures, for
example, it is possible to achieve efficiencies close to 100%. Thus, as the number of modes in
the aperture goes to infinity,

Rectangular aperture ηa,max≈
8
π2

N

n = 1,3,…

1
n2

1 as N ∞

Circular aperture ηa max≈ε0m
N

n = 1

1

α2mn−m
2

1
8 2−ε0m +m

as N ∞ ,

where αmn = kc,mna, a is the radius, ε0m = 1 if m = 0 and is 2 otherwise, kc,mn is the cut-off wave-
number of the TEmn mode and the subscript n runs over the number of modes in the aperture
where N is the largest integer satisfying αmN < ka, that is, all modes that propagate. It has been
shown that only the TE modes contribute directly to the above summations. Also the above
assumes that there no mode coupling or mismatch at the aperture. For example, apertures that
contain TE modes with a single period (m = 1) (i.e. TE1n) can achieve a maximum efficiency of
100%, while for the axisymmetric TE modes (m = 0), the maximum efficiency is limited to
12.5% and for the double period TE modes (m = 2), it is 50%. However, a combination of
modes in the aperture can produce higher maximum efficiencies. How such an efficiency could
be achieved is a subject for further design. One approach will be described in Section 4.5.3.

3.5.7 Effective Aperture

A receiving antenna is characterized by the equivalent area over which it collects energy from
an incident wave. The receiving cross section of the antenna is defined as follows:

Ar θ,ϕ =
received power

power density of incident wave
3 51

It is possible to show that when the receiving antenna is oriented to receive maximum signal
and the antenna is matched to the terminating load, then

Ar θ,ϕ =
λ2

4π
G θ,ϕ 3 52
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The maximum aperture is known as the effective aperture, Ae, and it is given by

Ae =
λ2

4π
Gmax, 3 53

where Gmax is the maximum value of gain (Eq. 3.48). For example, the effective aperture of a
short dipole is Ae = 3λ

2 8π.

3.5.8 Radiation Resistance

Assuming no conduction losses, the total power radiated by an antenna is equal to the total
power at the input terminals. If I0 is the peak value of the current, then

PT =
1
2
I0

2Rr,

where Rr is the radiation resistance associated with the power that is radiated. That is,

Rr =
2PT

I0
2 3 54

For an example, the radiation resistance of a short dipole of length dℓ is

Rr =
2π
3
ηo

dℓ

λ

2

3.5.9 Input Impedance

The input impedance of an antenna is the impedance presented to the feeder. It is usually a
complex quantity. The real part is due to the energy losses associated with the antenna. For
practical antennas these losses are not only due to power transfer into the far-field but also
due to loss mechanisms such as lossy ground and finite conductivity of the antenna structure.
The reactive part of the impedance is due to near-field energy storage, and its value is highly

dependent upon the antenna geometry.
Assuming a lossless antenna radiating into free-space, the power transferred through a

surface Σ enclosing the antenna and very close to its surface is

P =
Σ
P dS=PT + jQT, 3 55

where P= 1 2E×H∗ is the complex Poynting vector. At very large distances, the reactive
power QT becomes very small, but close to the antenna it makes a significant contribution
and its size depends on the antenna. The input impedance is defined as follows:
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Zin =
2P

Iin
2 =Rin + jXin, 3 56

where Iin is the current at the input terminals of the antenna, for example, for a dipole antenna
of length L the input current is Iin = Io sin

2 βL 2 where Io is the peak value of the current.
Therefore, for a λ/2 dipole Rin =Rr = 73 1 ohms.

3.5.10 Antenna as a Receiver

Reciprocity and in particular Eq. 2.13 can be used to show the behaviour of an antenna when
used as a receiver in terms of its characteristics as a transmitter. To do this, in Eq. 2.13, the fields
of (Ea,Ha) that are taken are those emitted when the antenna transmits and (Eb,Hb) are the
fields of a plane wave at the same frequency which is incident on the antenna. If F(θ, ϕ) is
the transmitting radiation pattern where Erad =F θ,ϕ exp − jkr r is the radiated electric field
on a large sphere of radius r, then the received field in the feeder is proportional to

Erec Eo F θ ,ϕ ,

whereEo is a constant vector giving the direction and magnitude of the incident plane wave and
the primed co-ordinates refer to receiver direction.

3.6 Aberrations

The radiation pattern of an aperture antenna is sensitively dependent upon the phase distribution of
the aperture field. Variation from the ideal uniform phase distribution causes phase aberrations.
These aberrations occur inadvertently during antenna design and manufacture. Sometimes they
arise intentionally when, for example, beam shaping or for beam steering. Due to aberrations, the
aperture field, Ea, can be considered to have a phase distribution superimposed on it; thus,

Ea exp jΦ x ,y ,

where Φ(x , y ) is the aberration function. To simplify the discussion of aberrations consider a
circular aperture of unit radius. Then it is convenient to define polar co-ordinates, so that
x = t cos ξ and y = t sin ξ. Without loss of generality, the aberration function is assumed to
be an even function of ξ. Moreover, it may be shown (Born andWolf, 1959) that the aberration
function can be represented as follows:

Φ t,ξ =
∞

n,m = 0

Δnmt
n cosmξ, 3 57

where Δnm are the aberration coefficients and are non-zero when m + n is even.
It is possible to see the effect of each term in Eq. 3.57 by letting all coefficients apart from

one be zero. The primary aberrations are illustrated in Figure 3.8. They are referred to as linear
(n = 1, m = 1), quadratic (n = 2, m = 0), coma (n = 3, m = 1), astigmatic (n = 2, m = 2) and

48 Fundamentals of Aperture Antennas and Arrays



spherical (n = 4, m = 0) aberration. Linear aberration in Figure 3.8a shifts the direction of the
main beam by the angle α= sin−1 Δ11 k without changing the structure of the beam. Quad-
ratic phase error in Figure 3.8b causes a reduction in antenna gain and increases both the beam-
width and sidelobe level. Another effect is that the nulls in the pattern are filled in. Cubic phase
error, or coma, in Figure 3.8c causes the beam to shift an angle α= arsin 2Δ31a2 3k and also
reduces gain. In addition, the pattern is asymmetrical in the plane containing the shifted beam

∆11

(b)

(c)

(d)

(e)

α

(a)

0

–20

α
dB

α

∆20

∆21

∆22

∆40

Linear

Quadratic

Coma

Astigmatism

Spherical

t
ξ

z

1

α = tan−1(2∆21/3k)

α = sin−1(2∆11/k)

Figure 3.8 Phase distributions (left) and radiation patterns (right) associated with aberrations in
a circular aperture of unit radius. (a) Linear Φ=Δ11 t. (b) Quadratic Φ=Δ20 t2. (c) Coma Φ=Δ31 t3 cos ξ.
(d) Astigmatic Φ=Δ22 t2 cos 2ξ. (e) Spherical aberrations Φ=Δ40 t4 (after Masterman, 1973)
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and the central axis (the plane of ‘scan’). The sidelobes closest to the central axis are lower than
the sidelobes without coma, and those in the direction of scan are higher than without coma.
The effect of astigmatism in Figure 3.8d is similar to a quadratic phase error. When astigmatism
and quadratic phase error occur together, the width of the main beam and the sidelobes are dif-
ferent in the two principal planes. Finally, in Figure 3.6e, spherical aberration produces a sym-
metrical distortion of the radiation pattern with an effect similar to quadratic phase error.
The gain of a uniformly illuminated aperture affected by aberration is approximately given

by (Bracewell, 1961)

Ga =
1

1 + κΔ2
e

G, 3 58

whereGa is the gain with aberration,G is the gain without aberration andΔe is the phase error in
radians at the edge of the aperture. κ is a constant that depends on the type of aberration and
equals 0 for linear, 1/12 for quadratic, 1/72 for coma, 1/6 for astigmatism and 4/45 for spherical
aberration.
In any practical antenna, all types of aberrations can occur, some to a greater extent than

others. For example, a method commonly used to scan the beam of a reflector antenna is to
displace the feed laterally from the reflector axis in order to produce a linear phase shift across
the aperture. In this situation, as well as the desired linear aberration (beam shift), coma is
strongly represented in the radiation pattern. Astigmatism is also produced but it is of lesser
importance than coma for small lateral shifts. When the feed is moved from the focus in the
axial direction, either towards or away from the reflector vertex, quadratic and spherical aberra-
tions are created. This is often used to improve the pattern of the reflector when the feed has a
diffuse phase centre.

3.7 Power Coupling Theorem�

A corollary of Lorentz reciprocity that finds use in aperture antennas is the power coupling
theorem (Robieux, 1959, Wood, 1980). Suppose an antenna is defined by surfaces
S1 = S1 + S1 and S2. Power is coupled into the antenna through surface S2 as shown in
Figure 3.9. Inside the antenna, the surface S1 covers the receiving port.
Other parts of the inside surface, indicated as S1, are perfect conductors. Let (E

a,Ha) be the
fields on S1 and S2 when the antenna transmits. Also let (Eb,Hb) be the fields on these surfaces
when the antenna receives. Under these conditions, with no sources being present in V, the
reciprocity theorem, Eq. 2.13, gives

S1

Ea ×Hb−Eb ×Ha ndS= −
S2

Ea ×Hb−Eb ×Ha ndS 3 59

On S1 the fields are zero except on S1. This is because tangential components of the electric
field are zero on S1. Assuming that the impedance of the load in S1 in the receiving case is the
complex conjugate of the impedance seen in the transmitting situation by virtue of the fields
propagating in opposite directions, the field on S1 must be related as follows: Eb = cEa∗ and
Hb = −cHa∗, where c is a complex constant. Introducing these into Eq. 3.59, the result is
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c
S1

Ea ×Ha∗ +Ea∗ ×Ha ndS= −
S2

Ea ×Hb−Eb ×Ha ndS 3 60

The integral on the left is a real quantity, and the right-hand integral is complex. Multiplying
together Eq. 3.60 and its complex conjugate, it follows that

cc∗
S1

Ea ×Ha∗ +Ea∗ ×Ha ndS

2

=
S2

Ea ×Hb−Eb ×Ha ndS
2

3 61

The received power is, therefore, given by (Figure 3.10)

Prec =
1
4 S1

Eb ×Hb∗ +Eb∗ ×Hb ndS

=
cc∗
4 S1

Ea ×Ha∗ +Ea∗ ×Ha ndS

S2S1ʹ

S1ʹʹ

Perfect 
conductor

Uniform 
medium

V

(Eb, Hb)

(Ea, Ha)

Figure 3.9 Power coupling theorem geometry

S2

Srefl

Jrefl

Ea

Figure 3.10 Power coupling theorem for a reflector and feed
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Substituting the received power into Eq. 3.61 results in

Prec =
1
8

S2

Ea ×Hb−Eb ×Ha ndS
2

Re
S2

Ea ×Ha∗ ndS
3 62

Eq. 3.62 is one form of the power coupling theorem, which is also called field correlation.
There are several variations of this theorem, which are useful in specific applications (Poulton
et al., 1972; Wood, 1980). For example, if field a is due to a feed antenna (which could also be
the field scattered by a subreflector) and b is due to an incident wave on a large reflector, the
power coupled into the feed is from Eq. 3.62:

Prec =
1
4

Srefl
Ea ×Hb ndS

2

Re
S2

Ea ×Ha∗ ndS

Letting Jrefl = 2n ×Hb be the current induced on the reflector due to the incident wave (shown
as b in Figure 3.9) and PT be the total power transmitted by the feed, then

Prec =
Srefl

Ea Jrefl θ,ϕ dS
2

16PT
3 63

The efficiency of the reflector system is then

Prec

Pb
= η θ,ϕ = Srefl

Ea Jrefl θ,ϕ dS
2

16PTPb
, 3 64

where Pb is the power contained in the incident wave.
The radiation pattern of the antenna can be calculated from Eq. 3.64 by changing the angle of

incidence (θ, ϕ) of the plane wave. This has the advantage in calculations, such as for a complex
antenna made up of several reflectors, as the field from the feed through the reflector system
except the final one. The integration of this field with the induced current on the final reflector
usually need only be computed once by numerical integration by employing techniques such as
Simpson’s rule or Gaussian quadrature (Fröberg, 1974).

3.8 Field Analysis by High-Frequency Methods�

In many situations involving aperture antennas, the size of the aperture and distance to the
radiated field are large in terms of wavelengths. This means that approximate high frequency
methods can be adopted and will often yield accurate results. Two main techniques for aperture
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antennas are described in this section. One technique involves a direct approximation of the
physical optics integrals and the method limits in the extreme of very large apertures and dis-
tances, which is called asymptotic physical optics (APO) (James, 1986). The second approach
uses techniques from geometric optics as well as particular high-frequency solutions to partic-
ular or canonical problems. These can derive from APO or as limits of known mathematical
solutions such as electromagnetic scattering from a metallic wedge.

3.8.1 Asymptotic Physical Optics∗

The radiation from line or ring sources is expressed in terms of the single integral (van
Kampen, 1949)

I =
b

a
dξ f ξ exp jkg ξ , 3 65

where g(ξ) is the argument of the phase function on the aperture domainD ξ= a,b . When the
phase function exp(jkg) varies rapidly over the integral domain, integrals of this type can be
evaluated asymptotically, which means the result applies at very high frequencies or the aper-
ture dimensions are large compared with the wavelength. In that case, the value of the integral is
given in the vicinity of the stationary points of the function g. That is, the integrals are given at
the points of stationary phase. Near the stationary phase points, the function f and the exponen-
tial are expanded in Taylor series and these series can be arranged in descending powers of kR
where R is related to the aperture dimensions.When kR is large, sufficient accuracy for practical
applications is possible by taking only the leading terms of the asymptotic expansion.
Of the possible stationary points yielding contributions to an asymptotic expansion of

Eq. 3.65, there are critical points of the first kind defined as

gξ ξ = 0, 3 66

where gξ = ∂g ξ,ψ ∂ξ. Critical points of the second kind, or edge points, are defined by
(van Kampen, 1949)

gξ a = 0 or gξ b = 0 3 67

The critical points of the first kind produce a geometric optics type of contribution to the
integral, while those of the second kind represent diffraction from the edge of the aperture.
Now let ξo denote a critical point in general. In the vicinity of this point the functions g and
f may be represented by their Taylor expansions

g ξ = go + gξu+
1
2
gξξu

2 +

and

f ξ = fo + fξu +
1
2
fξξu

2 + ,
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where u= ξ−ξo, go = g ξo and fo = f ξo . If g and f are assumed to be single-valued in the
domain D, the limits of the integrals can be extended infinitely as the remainder of the integral
cancels out by virtue of rapid oscillation with argument. Also at any critical point it is possible
to reverse the order of integration. The integrals in Eq. 3.65 become

I =
∞

−∞
dξ −

∞

b
dξ −

∞

−a
dξ f −ξ exp jkg −ξ

= I∞ − Ib− I−a

Consider the integral of infinite extent, I∞ , if the interval contains a critical point of the first
kind, then

g ξ ≈go +
1
2
gξξu

2 and f ξ ≈ fo

and

I∞ fo exp jkgo
∞

−∞
du exp jkgξξ ξo

u2

2
3 68

The integral in Eq. 3.68 can be expressed in terms of a complex Fresnel integral,K z , with
zero argument, which has a simple value (see Appendix E). Thus,

∞

−∞
duexp jkgξξ ξo

u2

2
=

2π

k gξξ ξo
exp jsgn gξξ

π

4
,

where use has been made use of the symmetry of the integral and the identity

∞

0
dt exp ± jt2 =

π

2
exp ± j

π

4

Note that if fo or gξξ(ξo) are zero then the next terms in the Taylor series should be taken. The
former involves little extension from the above. However, the latter involves the use of Airy
functions. For this extension, the reader is directed to the references (James, 1986; Felsen &
Marcuvitz, 1973).
The remaining two integrals are evaluated similarly. If the stationary points are not at the end

points a or b, a first-order approximation for large arguments can be obtained by integration by
parts. Thus, consider integral Ib:

Ib =
∞

b
dξ f ξ exp jkg ξ =

1
jk

∞

b
dξ

f ξ

gξ
jkgξ exp jkg ξ

1
jk

f b

gξ b
exp jk g b

3 69
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A stronger result that applies whether the stationary point is at the end point or not is
(James, 1986)

Ib≈H −δ I∞ + δ f b exp jkg b −μjv2
2

k gξξ b
Fμ v , 3 70

where μ = sgn gξξ b , δ = sgn b−ξo , H(x) is Heaviside step function, Fμ(x) is a Fresnel
integral, which has upward extending limits, and a positive or negative argument depending
on the sign of μ as defined in Appendix E, and

v =
k

2 gξξ b
gξ b

3.8.1.1 Example: Scattering Radiation from Large Conducting Wire Loop�

A large circular wire loop is illuminated by a plane wave that is polarized in the x–z plane as
shown in Figure 3.11.
The loop has a large radius R>> λ and small cross section τ >> λ to the incident wave.

The incident wave direction is

sI = −x sin θI −z cos θI

and the incident field

EI =Eo x cos θI −z sin θI exp − jksI

P(r,θ,ϕ)

Edge
ray

Plane wave

y

xR

z

θ
θI

EI

Figure 3.11 Circular loop illuminated by a plane wave
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The current induced on loop is

Js = 2n ×HI =
2
ηo
z× sI ×EI exp − jksI =

2
ηo
xEo exp − jksI

The radiated field can be calculated from

Lx =
2π

0
dϕ

R+τ 2

R−τ 2

2Eo

ηo
exp − jk ρ r −sI ρ dρ

where ρ =R x cos ϕ + y sin ϕ and τ <<R. Therefore,

Lx =
2Eo

ηo
exp − jksI

2π

0
dϕ

R+τ 2

R−τ 2
exp − jkRcos ϕ −ϕ ρ dρ

≈
EoRτ

ηo
exp − jksI

2π

0
dϕ exp − jkRcos ϕ −ϕ

3 71

The integral in Eq. 3.71 can be evaluated in closed form and the result is

Lx =
EoRτ

ηo
exp − jksI 2πJ0 kR 3 72

Therefore, the scattered fields are expressed as

Eθ≈ − jEokRτ
exp − jkr− jksI

r
J0 kR sin ϕ 3 73a

Eϕ≈ jEokRτ
exp − jkr− jksI

r
J0 kR cos ϕ 3 73b

Alternatively, the integral in Eq. 3.71 could be evaluated asymptotically, and this provides a
physical interpretation of the result. This approach is equivalent to finding the critical points of
the second kind on the periphery because of the narrow width of the loop. Thus,

Lx =
EoRτ

ηo
exp − jksI

2π

0
dϕ exp jkg ϕ ,

where g ϕ = −R cos ϕ −ϕ .
Now,

gϕ ϕ =R sin ϕ −ϕ and gϕ ϕ = 0
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When ϕ =ϕ and ϕ =ϕ + π. Also gϕ ϕ ϕ =R cos ϕ −ϕ . Therefore, there are two station-
ary point contributions to the integral. As well, because of the periodicity of the integral extend
the region over an infinite domain as follows:

Lx
EoRτ

ηo
exp − jksI

∞

−∞
dϕ exp jkg ϕ 3 74

There are two contributions to the integral of the type Eq. 3.65, one obtained in the vicinity of
ϕ =ϕ and the other at ϕ =ϕ + π. Thus,

Lx
EoRτ

ηo
exp − jksI

2π
kR

exp − jkR + j
π

4
+

2π
kR

exp jkR− j
π

4

=
Eoτ

ηo

2π
kR

exp − jksI exp − jkR+ j
π

4
+ exp jkR− j

π

4

=
Eoτ

ηo

2π
kR

exp − jksI 2cos kR−
π

4

3 75

This is equivalent to expressing J0 in Eq. 3.73 asymptotically as

J0 z
2
πz

cos z−
π

4
,

which is a standard large argument approximation to this function (Abramowitz & Stegun,
1965) (see Appendix B). The physical interpretation of this radiated field can therefore be given
as consisting of two edge ray contributions that are 180 apart as illustrated in Figure 3.11.

3.8.1.2 Special Case: APO in Two Dimensions�

Many of the integrals involved in calculating radiation from circular apertures such as reflectors
can be expressed (Jones & Kline, 1958)

I =
2π

0
dξ

ψ c

0
dψ f ξ,ψ exp jkg ξ,ψ 3 76

The quantity ψ =ψc defines the upper rim of the aperture. Let (ψo, ξo) denote a critical point
on the surface. In the vicinity of this point, the functions g and f are expanded in their Taylor
series once again as follows:

g ξ,ψ = go + gξu + gψv +
1
2

gξξu
2 + 2gξψuv+ gψψv

2 + 3 77

and
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f ξ,ψ = fo + fξu + fψv+
1
2

fξξu
2 + 2fξψuv+ fψψv

2 + , 3 78

where u= ξ−ξo, v=ψ −ψo, go = g ξo,ψo and fo = f ξo,ψo . The integral is now re-written
to take advantage of the various critical points. Note that at any critical point it is possible
to reverse the order of integration. The integrals in Eq. 3.76 become

2π

0
dξ

ψ c

0
dψ =

∞

−∞
dξ

∞

−∞
dψ −

∞

ψ c

dψ
∞

−∞
dξ

Also Eq. 3.77 is re-expressed as

g ξ,ψ = go +
gξξ
2

u +
gξ + gξψv

gξξ

2

+ vα+
1
2
v2β−

1
2
gξ

2

gξξ
,

where α= gψ −gξgξψ gξξ and β =Δ gξξ where

Δ=
gξξ gξψ
gξψ gψψ

Completing the square in v gives

g ξ,ψ = go +
gξξ
2

u +
gξ + gξψv

gξξ

2

+
β

2
v+

α

β

2

−
1
2
α2

β
−
1
2
gξ

2

gξξ

Hence, the argument of the integral is

f ξ, ψ exp jkg ξ, ψ fo + fξu + fψ v exp jkgo exp
− jk

2
α2

β
+

gξ
2

gξξ

× exp
jkgξξ
2

u +
gξ + gξψv

gξξ

2

exp
jkβ

2
v +

α

β

2

If f neither varies too rapidly in the vicinity of the critical point nor vanishes there, as it would
for zero edge illumination, the first term of its Taylor series is usually sufficiently accu-
rate. Thus,

I fo exp jkgo exp
− jk

2
α2

β
+

gξ
2

gξξ

∞

−∞
dξ

∞

−∞

dψ −
∞

ψc

dψ

∞

−∞

dξ

× exp
jkgξξ
2

u +
gξ + gξψv

gξξ

2

exp
jkβ

2
v +

α

β

2
3 79
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Considerable simplification results if the integral with respect to ξ is evaluated first. With the
substitution

t =
k gξξ
2

u +
gξ + gξψv

gξξ
,

the integral in ξ is expressed as

∞

−∞
dξ exp

jkgξξ
2

u+
gξ + gξψv

gξξ

2

=
2

k gξξ

∞

−∞
dt exp jsgn gξξ t2

=
2π

k gξξ
exp jσ

π

4
,

3 80

where σ = sgn gξξ . Therefore,

I
2π

k gξξ
exp jσ

π

4
fo exp jkgo exp

− jk

2
α2

β
+
g2ξ
gξξ

×
∞

−∞
−

∞

ψ c

dψ exp
jkβ

2
v +

α

β

2

The integral with respect to ψ is now evaluated with the substitution

s=
k β

2
v +

α

β

The result is dependent upon the region of integration.When the domain is infinite, as it is for
the first integral, the evaluation is similar to the integral in ξ. Thus,

∞

−∞
dψ exp

jkβ

2
v +

α

β

2

=
2

k β

∞

−∞
exp jμs2

=
2π
k β

exp jμ
π

4
,

3 81

where μ= sgn β . The second integral with respect to ψ is bounded on one side and this leads
to a functionally different result. Making use of the same substitution, the integral simplifies to

∞

ψc

dψ exp
jkβ

2
v +

α

β

2

=
2

k β

∞

sc

dsexp jμs2 , 3 82
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where sc = k β 2 ψc−ψo + α β . Finally, combining all the above results, the initial expres-
sion in Eq. 3.79 is expressed asymptotically as

I
2

k gξξ

2
k β

exp jσ
π

4
fo exp jkgo exp

− jk

2
β +

gξ
2

gξξ
×

π exp jμ
π

4
−Fμ sc ,

3 83

where the function Fμ(x) is a Fresnel integral (refer to Appendix E) with sign μ on the expo-
nential in the integrand.
Four special cases can be identified for the term in the curly braces of Eq. 3.83 for the

instance when the critical point lies on the boundary or rim of the surface, that is, ψo =ψc

and sc = α β k β 2. The result depends on the signs of α and β, which in turn are functions
of the derivatives of the phase function g. To do this use is made of the identify Eq. E.5 in
Appendix E.

Case 1. α > 0 and β < 0

π exp jμ
π

4
−Fμ sc =F− α

k β

2
3 84

Case 2. α < 0 and β < 0

π exp jμ
π

4
−Fμ sc = π exp − j

π

4
−F− α

k

2 β
3 85

Case 3. α < 0 and β > 0

π exp jμ
π

4
−Fμ sc =F+ α

k

2β
3 86

Case 4. α > 0 and β > 0

π exp jμ
π

4
−Fμ sc = π exp j

π

4
−F + α

k

2β
3 87

Each case given by Eqs. 3.84–3.87 can be interpreted as a diffracted ray contribution
emanating from a point on the boundary or rim of a surface not unlike the loop example
in Figure 3.11. An extension of the ray diffraction interpretation is given in the following
section.
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3.8.2 Geometrical Theory of Diffraction∗

The method of geometrical theory of diffraction (GTD) is a ray-based method of analysis,
which assumes a high operating frequency compared with the size of the objects in the analysis.
The wavefront and surfaces are fully described through geometric optics. The diffraction from
other objects such as wedges or corners can be represented approximately in a ray-based sys-
tem. The joining together of geometric optics and such canonical solutions is the essence of
GTD. Initially consider the representation of a propagating wave in geometric optics. Suppose
the direction of propagation is given by the vector sI. The rays and ray paths are subject to
Fermat’s principle. This states that the path taken by rays from a source to an observation point
is stationary with respect to small variations in that path, that is, with respect to a neighbouring
path, the chosen path has a maximum or minimum value.
Around each ray as shown in Figure 3.12, there is a bundle of rays called a ray pencil.

Consider the wavefronts (1) and (2) of the incident ray. Let there be an element of area dAI

around the incident ray. The wavefront will generally be curved and described by two radii
of curvature ρI1 and ρI2. For this element dAI = αρ1ρ2 where α is a constant for a propagating
wave. As the wave propagates, the power flow is entirely through the ray pencil. From position A
to B, conservation of energy requires

EIA
2dAIA = EIB

2dAIB, 3 88

where EIA and EIB are the vector field values at A and B with wavefront areas dAIA and dAIB,
respectively. If s is the distance between the two wavefronts as the wave propagates along sI,
then the wavefront areas are related by

dAIB

dAIA
=

ρI1 + s ρI2 + s
ρI1ρI2

3 89

From Eq. 3.88, this gives

EIB =
ρI1ρI2

ρI1 + s ρI2 + s
EAB

O1

O2

dA1

dA2
𝜌1

𝜌2

(1) (2)

s

Figure 3.12 Representation of wavefront on same bundle of rays
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and the application of the phase factor from position A to B gives

EIB =
ρI1ρI2

ρI1 + s ρI2 + s
EAB exp − jk1 s 3 90

A reflected field could be given by Eq. 3.90 multiplied by the reflection matrix R as the ray
pencil is modified by the interface. Similarly, the transmitted field is given by Eq. 3.90 multi-
plied by a transmission matrix T. These matrices apply at the reflection/transmission point and
are given by

R =
Re 0
0 Rm 3 91a

and

T=
T e 0
0 Tm , 3 91b

where Re and Rm are the reflection coefficients for electric and magnetically polarized reflected
fields and similarly Te and Tm for the transmitted field. These are standard expressions for a
plane interface (Kraus & Carver, 1973).
Reflection and refraction at a plane dielectric interface are shown in Figure 3.13. Medium 1

has a relative permittivity (dielectric constant) εr1 and a relative permeability μr1 and similarly
for medium 2. The refractive index of medium i is defined as ni = μriεri. Tables of relative
permittivity and permeability of various materials are found listed in the references
(Harrington, 1961; Bodnar, 2007). Implementation of Fresnel’s principle results in two laws
each for reflection and refraction. These laws are as follows:

1. The incident and reflected rays lie in the same plane as the normal to the interface, that is,
n sI × sR = 0. From Figures 3.13 and 3.14, it is seen n is the normal to the surface while sI
and sR are vectors in the incident and reflected ray directions.

y

x

sI

sR

sT

Reflected wave

Incident wave

c
ωk1 =

μr1 εr1

μr1 εr1 μr2 εr2

μr2 εr2n1=

c
ωk2 =

n2 =

n̂

τ

Transmitted wave

Figure 3.13 Geometric optics representation of reflection and refraction at an interface
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2. The incident and reflected rays are at equal angles to the normal, that is, sI + sR n= 0.
3. The refracted ray is diverted closer to the normal of the surface as the refractive index of the

output media increases, that is, n1 sI −n2 sT × n= 0. This latter equation is a vector form of
Snell’s law. It indicates also that at a dielectric interface the vectors perpendicular to the
plane of refraction are continuous on either side of the boundary.

4. The result in reflection law 2 applies for refraction as well.

The reflection coefficient for a wave incident on the interface depends on whether the E-field
is parallel ( ) or perpendicular (⊥) to the plane of incidence and also on the material properties.
From a consideration of a plane wave incident on the interface of lossy isotropic media, it can
be shown (Jackson, 1999) that the reflection coefficient for the E-field parallel to the interface
(i.e. ) is given by

Γ =
μr1 μr2 n22 cos θ1−n1 n22−n

2
1 sin

2θ1

μr1 μr2 n22 cos θ1 + n2 n22−n
2
1 sin

2θ1
3 92a

In the case when the E-field perpendicular to the interface (i.e. ⊥) the reflection coefficient is

Γ⊥ =
n1 cos θ1− μr1 μr2 n22−n

2
1 sin

2θ1

n1 cos θ1 + μr1 μr2 n22−n
2
1 sin

2θ1
3 92b

θ1 is the angle from the normal direction into region 1. The corresponding transmission
coefficients are

T = 1 +Γ
μr2n1
μr1n2

3 93a

θI θR

θT

Plane of incidence
Material 1

Interface

Plane of wavefront

sI

sR

sT

Material 2

n̂
ε1= εr1ε0

μ1= μr1μ0

n1= μr1εr1

ε2= εr2ε0

μ2= μr2μ0

n2= μr2εr2

Figure 3.14 Reflection and refraction at a plane interface
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and

T⊥ = 1+Γ⊥, 3 93b

where θ2 is the angle from the normal direction in region 2. It can be shown that since sI, sR
and n lie in the same plane sR = −sI−2n× n × sI = sI−2 n sI n. Also n2 sT = n1 sI. For example,
suppose the interface of a dielectric with refractive index lies in the x−z plane and n= y. A wave
that is incident from air with a direction sI = −0 67x−0 5y, then sR = −0 67x+ 0 5y and
sT = 0 5 −0 67x + 0 5y . Eqs. 3.93 are known collectively as the Fresnel equations for isotropic
media. When the materials are lossless and non-magnetic (μr1 = 1 = μr2), the reflection coeffi-
cients simplify to

Γ =
εr2 εr1 cos θ1− εr2 εr1 − sin2θ1

εr2 εr1 cos θ1 + εr2 εr1 − sin2θ1

and

Γ⊥ =
cos θ1− εr2 εr1 − sin2θ1

cos θ1 + εr2 εr1 − sin2θ1

Continuing with the description of the wavefront, Eq. 3.90 is the field of a spherical wave.
However, when one of the wave’s radii of curvature is large, say, ρI2 ∞ , the wavefront is
cylindrical. A cylindrical wave is represented by

EIB =
ρI1

ρI1 + s
EAB exp − jk1 s 3 94

When a wave is incident on a metallic wedge as shown in Figure 3.15, there is a diffracted ray
dependingon the observationposition (ρ , ϕ ). The typeof field produceddependsonwhether the
observation angle is inside the reflection boundary, that is, ϕ ≤ π−ϕo, or is beyond the shadow
boundary, that is, ϕ ≥ϕo + π. In the same way as for reflection and refraction, Fresnel’s prin-
ciple provides two laws for diffraction. Once again the incident and diffracted rays lie in the
same plane and also the optical path length from the source to the observation point is stationary
with respect to small variations in the path. The ray bundle can be represented in the same way
as described above for the previous cases. Thus, the diffracted field is represented as

EDB =DEIA
ρI1

ρI1 + s
exp − jks , 3 95

where D is the edge diffraction matrix. The elements of the matrix are obtained from rigorous
solutions for fields produced by electric or magnetic oriented sources in the form

D=
De 0
0 Dm
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One of the first rigorous solutions for the wedge was obtained by Macdonald (1902), and the
first rigorous uniform asymptotic series solution was obtained by Pauli (1938) of quantum
exclusion principle fame. A field solution can be expressed as the sum of four terms: incident
and reflected geometric optics fields and also a diffracted field associated with each optical
term. As a result, the elements of the diffraction matrix for the metallic wedge can be expressed
as (James, 1986)

De,m = h Φi + h −Φi h Φr + h −Φr , 3 96

where Φi,r =ϕ ϕo, h Φi,r = −εi,r σ i,rM− vi,r Λi,r , σ i = σ r = ρ for a straight edge, M− x

is a modified Fresnel integral (see Appendix E) and vi,r = kσ i,r ai,r sin θo where θo is the
incident angle to the edge. The modified Fresnel integral is given by (refer to Appendix E)

M ± x =
exp j x2 + π 4

π

∞

x

exp ± jxt2 dt 3 97

y

x

SI

Incident wave

Reflection boundary

Shadow boundary

(a)

(b)

k = ω
𝜙o

Diffracted wave

z

SI

SD

Diffracted wave

Incident wave

𝜽o

𝜙
𝜌

β

μo 𝜀o

Figure 3.15 Plane wave illumination of a metallic wedge. (a) Incidence in plane of wedge angle β;
and (b) incidence in plane of edge.
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The step function

εi,r = sgn ai,r =
+1 in source region

−1 in shadow region

In addition,

ai,r = 2cos
Φi,r + 2pπN

2
3 98

with N = 2π−β π. Eq. 3.98 is independent of p for source and observation points removed
from the optical boundaries ϕ= π ±ϕo. On these boundaries, p is chosen to satisfy the following
conditions:

Φi,r + 2pπN = π 3 99a

where

Λi,r = 1 3 99b

Λi,r =
ai,r

2N
cot

Φi,r + π
2N

3 99c

The expressions in Eqs. 3.99 enable continuity to be achieved with the geometric optics field.
They show that the correct behaviour across the two reflection boundaries is obtained by setting
p = 0 in h −Φr and p = −1 in h(Φr). When a shadow boundary falls in visible space, the func-
tion h ±Φi

p= 0 is used with a value that depends on whether Φi = π lies on the shadow

boundary. The remaining term in Eq. 3.96 will be h Φi
p =−1

.

For large arguments of the modified Fresnel integral, vi,r, in Eq. 3.96, the leading term of the
asymptotic expansion given in Appendix E results in

h Φi,r −cscθo cot π +Φi,r 2N

N 8jπk
3 100

In the special case of a metallic half-plane where N = 2, the diffraction coefficients Eq. 3.96
simplify to

De,m = − εi σ i M− vi εr σ r M− vr

Diffraction coefficients can be derived for other geometries such as a dielectric wedge, a
corner or a curved surface. It remains to say that the solution summarized here is sufficiently
useful for applications described here such as diffraction by the edge of ground plane or the rim
of a reflector antenna.
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3.9 Problems

P3.1 a. Using field equivalence and the method of images show that when A is an aperture in
a perfectly conducting ground plane containing the fields E, H (see Figure P3.1) the
radiated electric field is given by

E r,θ,ϕ =
jk

2π A

e− jkR

R
z×Ea ×R dS

where R = r− r

b. From Eq. P3.1 show that far from the aperture the non-zero electric field
components are

Eθ =
jk

2π
e− jkr

r
Nx cos ϕ+Ny sin ϕ

Eϕ = −
jk

2π
e− jkr

r
cos θ Nx sin ϕ−Ny cos ϕ ,

where

N=
A
Ea exp jkr r dS

P3.2 A coaxial transmission line with inner conductor radii a and b, respectively, is terminated
in an infinite ground plane. Assume that the electric field in the aperture is

Ea = −ρ
V

εr ln b a

1
ρ
,

R

r

P'

x

y z

A

r'

P(r,θ,ϕ)

Figure P3.1 Arbitrary aperture in a ground plane
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where V is the voltage between the conductors and εr is the dielectric constant of the
material separating the conductors. Obtain the far-zone spherical components of the
electric field radiated by the aperture.

P3.3 Determine the effect on the radiation pattern of a linear phase shift across a uniformly illu-
minated rectangular aperture with dimensions a × b. Assume the aperture field is given by

Ea = xEoe− jαx; x ≤ a; y ≤ b

P3.4 Repeat P3.3 to determine effect of a small quadratic phase error on the radiation of a
uniformly illuminated aperture. Assume that

Ea = xEoe− jαx
2
; x ≤ a; y ≤ b

and αa2 < 1. Sketch the E-plane pattern when αa2 = π 8 and compare this with the pattern
for the case α= 0.

P3.5 Find the effect on the radiation pattern of a small random phase variation across a
uniformly illuminated aperture. Assume that

Ea = xEoe− jαθ x ; x ≤ a; y ≤ b

and2πα<< 1. The function θ is a uniformly distribution random process, where 0 ≤ θ ≤ 2π.
P3.6 From first principles show that the maximum gain of a uniformly illuminated circular

aperture of diameter D is

Gmax =
πD

λ

2

P3.7 Compare the far-zone fields radiated by a circular aperture containing a constant linearly
polarized field when the aperture is
a. located in an infinite ground plane
b. located in free-space.
What is the major difference between the E-plane patterns and the H-plane patterns in
each case?

P3.8 Compare the half-power beamwidth, the location of the first null and first sidelobe level
of the radiation from a uniformly illuminated rectangular aperture, a cosine illuminated
rectangular aperture and a uniformly illuminated circular aperture. Refer to Figure 3.4 for
details of each type of illumination.

P3.9 An aperture antenna has been proposed for a microwave link application at 4 GHz where
the distance between transmitter and receiver is 30 km. At a distance of 15 km there is a
hill of height 30 m. The link consists of two identical antennas with diameter D that are
mounted on towers 100 m high. Ignoring atmospheric effects, but including the curvature
of the earth, estimate the minimum diameter of antennas required to ensure that the beam
is unblocked out to the 6-dB point of the main beam. Assume a uniform aperture distri-
bution and earth radius Re = 6371km.
Answer: D ≥ 148λ.
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P3.10 Obtain the radiated electric field in the Fresnel zone of a uniformly illuminated aperture
of radius a and therefore the radiated power per unit solid angle. Show that the gain

is G=Go S ka2 4R
2
where Go = 4π πa2 λ is the far-field gain and R is the distance

from the aperture origin to the observation point. Show that at R= 2a2 λ, G Go = 0 81
and at the far-field distance R= 8a2 λ, G Go = 0 99.

P3.11 Show that in the Fresnel zone of an aperture of radius a (see Figure P3.2), the phase from
one annulus of width λ/2 to the next on the aperture changes sign so that the total con-
tribution is almost zero. Assume that the aperture illumination is uniform.What happens
to the field at P on the axis as R is increased?

P3.12 A circular aperture antenna has a far-field pattern function A(θ) in the E-plane and B(θ)
in the H-plane. Based on this information, obtain expressions for the far-fields. From
these show that the co-polar pattern in the 45 -plane is given by A θ +B θ 2 and
the cross-polar pattern in this plane is A θ −B θ 2.

P3.13 A commonly occurring integral in radiation problems is of the form

I h =

C

f z ejhΦ z dz

where h is a large positive parameter, Φ z = − cos θ−z , f(z) is a complex illumination
function and C is a contour in the z-plane.
a. Show that at the stationary point zs an asymptotic expansion of I(h) is

I h
ejhΦ zs

h

∞

n= 0

an
hn

where an are expressed in terms of derivatives of f(z) and Φ(z).
b. Verify the first coefficient of the expansion is a0 = 2πf θ ejπ 4.

z

x

y P
R

Zone 1
2
3

a

R + 3λ/2

R + λ
R + λ/2

Figure P3.2 Fresnel zones on an aperture due to a source at P
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P3.14 Obtain the radiation pattern of a uniformly illuminated circular aperture of diameter D,
in the near-field region, the Fresnel zone and the far-field region. Plot and compare the
patterns for an aperture of diameter D= 50λ when the distance r is
(a) r = 10λ; (b) r = 100λ; and (c) r = 5000λ.

P3.15 Suppose an x-directed aperture distribution in a rectangular aperture with dimensions
a× b is symmetric but triangular in the x-direction and uniform in the y-direction. Obtain
the far-field radiation pattern of this distribution.
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4
Waveguide and Horn Antennas

4.1 Introduction

Waveguide and horn antennas are based on the method of generating an electromagnetic wave
fromanexciter, or probe, at one endof aguiding structurewith anopenaperture.Thewave travels
to this aperture where it is mostly transmitted as radiation, and if the transition is well matched,
only a small fraction of thewave is reflected back towards the source. The objective of the design
is to obtain a smooth transition from theprobe to free-spacewith as little reflection aspossible and
to produce a suitably directive beam. The first waveguide was first experimentally demonstrated
byOliver Lodge in 1894 and theoretically described byRayleigh a little later (Sarkar et al., 2006).
For experiments on polarization properties of crystals in 1895,Bose used a circularwaveguide as
a radiator as well as pyramidal horns in 1897 for further investigations on polarization as well as
index of refraction. The set-up he used is shown in Figure 4.1 (Bose, 1927).
There appear to have been few developments on aperture antennas beyond this early work

until the 1930s when given impetus for communications and radar. The Radiation Laboratory
book by Silver (1946) provided many new horn designs and concepts for future work. Incre-
mental progress continued until the 1960s when the theory of matched feeds for reflectors
was developed (Minnett & Thomas, 1966; Rumsey, 1966). At that time it was realized that
a corrugated waveguide or horn was a way of achieving conjugate matching to the focal field
of a reflector. Further demanding requirements in communications (e.g. satellite) and radar
resulted in further new horn designs, some of which will be described here. In this chapter,
the basic properties of horns will be examined, and horns in common use will be described.
As well, the material developed here will be used in following chapters as feeds for reflectors
in Chapter 6, as elements of aperture arrays in Chapter 7 and in the design of applications
outlined in Chapter 10.

Fundamentals of Aperture Antennas and Arrays: From Theory to Design, Fabrication and Testing,
First Edition. Trevor S. Bird.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
Companion website: www.wiley.com/go/bird448



4.2 Radiation from Rectangular Waveguide

Suppose a rectangular waveguide of width a and height b (Figure 4.2) is excited only in its
fundamental mode, the TE10 mode. The transverse fields of this mode are

Ex =Eo cos
πy

a
e− jβz 4 1a

Hy =YwEx; 4 1b

where Eo is a constant, β = k2− π a 2 is the propagation constant of the TE10 mode in the

z-direction and Yw = β kηo is the wave admittance of the mode.When the TE10 mode is incident
on the open waveguide, some energy is reflected and some is stored in the aperture (as evanes-
cent fields of higher-order modes). Typically, the reflection coefficient is less than –10 dB. The
calculation of the self admittance of TE10 mode is detailed in Section 7.3.5.2. Reflection at the
aperture tends to have only secondary effects on the radiation. Therefore, assume the fields in
the aperture (z = 0) are approximately

Ea = xEo cos
πy

a
, 4 2a

Ha = Ywz×Ea 4 2b

The calculation of the radiated fields proceeds in the same way as for a uniformly illumi-
nated rectangular aperture that was described in Section 3.4.1. Following from Eq. 4.2a, Nx is

K

S
C J

W

D

K, crystal-holder; S, a piece of stratified rock; C, a crystal; J, jute polariser; W, wire-
grating polarsier; D, vertical graduated disc, by which the rotation is measured.  

Figure 4.1 Apparatus used by Bose to measure polarization and double refraction at an evening
lecture at the Royal Society in January 1897. Source: Reproduced from collected Physical Papers,
Longmans, Green & Co. 1927 (Bose, 1927)
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the only non-zero component of Eq. 3.21, while the only non-zero component of Eq. 3.22
is given by

Ly =Yw Nx 4 3

The result differs from the uniform case, however, because the field in the y-direction is
cosine distributed and the transform given as Eq. 3.28 is required. Therefore, for the TE10 mode
only in the aperture, it follows that

Nx =Eo
2ab
π

S πub C πva , 4 4

where u= sin θ cos ϕ λ and v= sin θ sin ϕ λ.
Using Eqs. 4.3 and 4.4 in the field expressions Eq. 3.20 gives the fields radiated by the wave-

guide as follows:

Eθ r,θ,ϕ ≈
jkabEo

2π2
e− jkr

r
1 +

β

k
cos θ S πub C πva cos ϕ 4 5a

Eϕ r,θ,ϕ ≈
jkabEo

2π2
e− jkr

r

β

k
+ cos θ S πub C πva sin ϕ 4 5b

Also the magnetic field components are as follows:

Hθ r,θ,ϕ = −
1
η
Eϕ r,θ,ϕ , 4 5c

Hϕ r,θ,ϕ =
1
η
Eθ r,θ,ϕ 4 5d

The bracketed terms, 1 + β k cos θ and β k + cos θ , are referred to as Huygens or
obliquity factors and are typically slowly varying functions compared to the pattern functions

x

y

z
a

E

0

b

Figure 4.2 Geometry for radiating rectangular waveguide
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S and C. Note that for frequencies well above cut-off β≈k, identical Huygens factors result for
the two field components.
The principal plane radiation patterns occur in the x–z (ϕ= 0) and the y–z planes ϕ= ±90

and correspond to the E- and H-plane patterns, respectively.
E-plane (ϕ = 0):

Eθ =
jkabEo

2π2
e− jkr

r
1 +

β

k
cos θ S

kb

2
sin θ 4 6

The normalized power pattern is

PE = 1+
β

k
cos θ S

kb

2
sin θ

2

, 4 7

which is dominated by the S2 function (see Figure 3.4). This dependence is expected because
the E-plane aperture field is constant.
H-plane (ϕ = ± 90 ):

Eϕ = −
jkabEo

2π2
e− jkr

r

β

k
+ cos θ C

ka

2
sin θ 4 8

The normalized power pattern is

PH =
β

k
+ cos θ C

ka

2
sin θ

2

4 9

As the aperture field in the H-plane is cosine distributed, the H-plane radiation pattern is
dominated by the C2 function (refer to Figure 3.4).
The maximum gain of a TE10 mode excited rectangular waveguide is

Gmax =
32
π

ab

λ2
, 4 10

where it is assumed that β≈k. By means of Eq. 3.49, the aperture efficiency of this aperture is
ηa = 8 π2≈0 811. That is, the gain of a rectangular waveguide is 81.1% compared to the gain of
a uniformly illuminated rectangular aperture with uniform phase.

4.3 Pyramidal Horn

Flaring the rectangular waveguide into a pyramidal horn, Figure 4.3a, provides not only a more
directive radiation pattern but also a better transition from the feeding waveguide to free-space.
The fields in the aperture of the horn may be found by treating the horn as a radial waveguide.
As a first approximation, however, one may assume a TE10 mode is maintained in the flared
section all the way to the aperture. This approximation works well providing the flare angle is
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not too great (<10 ). For uniformity of notation, flare angle is defined as the angle between the
centre-line and the linear taper. The angle between the two tapered sides will be called the full
flare angle. An improved approximation is needed for greater flare angles because the wave
phase-front at the aperture is no longer uniform. An accurate method for modeling flares
and steps along the horn is described in a later section.
Consider the E-plane section of the horn, Figure 4.3d.When the TE10 mode in the waveguide

reaches the flare, it expands outwards in order to satisfy the boundary conditions and forms a
cylindrical wave. In what follows a TE10 mode is assumed as the basis of the representation of
the field in the aperture. The TE10 mode is the fundamental mode of a rectangular waveguide
with width a and height b such that a > b. When the waveguide is flared as shown in

(b)

bw bρE′

ℓE

(c)

aw aρH′

ℓH

(d)

x′

z

2
δE ρ′E

1 x′2
=

ρE′

h

x

z
y

E

a

(a)

E-plane

H-plane

b

Figure 4.3 The pyramidal horn antenna. (a) Geometry; (b) E-plane; (c) H-plane; (d) quadratic
phase factor in E-plane

75Waveguide and Horn Antennas



Figure 4.3d, the phase of the field varies across the aperture. The difference is given by the extra
distance from the wavefront to the aperture plane, δE. It can be shown that this distance is
approximately given by

δE =
1
2
x2

ρE
, 4 11

where ρ
E
is the radial distance from the apex to a point on the aperture, x, in the E-plane as

shown in Figure 4.3d. Similarly, in the H-plane, the distance from the cylindrical wavefront
of radius ρH to the aperture is

δH =
1
2
y2

ρH
4 12

By the nature of Eqs. 4.11 and 4.12, the horn is said to have a quadratic phase dependence
across its aperture. The radial distances are related to the basic geometry of the horn. Let the
width and height of the input waveguide be aw and bw, respectively. If the length of the pyram-
idal section is h, by similar triangles, it follows that ρE = hb b−bw and ρH = ha a−aw .
To account for the quadratic phase from the pyramidal section, an additional phase factor is

applied to the TE10 mode transverse fields. At z = 0, this results in approximate aperture fields
of a pyramidal horn given by

Ea = xEo cos
πy

a
exp −

jk

2
x2

ρE
+
y2

ρH
, 4 13a

Ha =
1
ηo
z ×Ea, 4 13b

where compared with Eqs. 4.5, the aperture is now assumed to be well above cut-off. Once
again the radiated fields can be found from Eq. 3.20. The Fourier transforms of the aperture
fields are found from Eq. 3.24:

Nx u,v =Eo

a 2

−a 2
dy cos

πy

a
exp j 2πvy −

ky 2

2ρH
×

b 2

−b 2
dx exp j 2πux −

kx 2

2ρE

=EoIx u Iy v

4 14a

and

Ly =
1
ηo
Nx, 4 14b

where

Ix u =
b 2

−b 2
dx exp j 2πux −s2Ex

2 4 15

76 Fundamentals of Aperture Antennas and Arrays



and

Iy v =
a 2

−a 2
dy cos

πy

a
exp j 2πvy −s2Hy

2 4 16

where sE = k 2ρE and sH = k 2ρH . The above integrals can be evaluated by several means
such as by numerical integration (e.g. Simpson’s rule) (Fröberg, 1974) or equivalently with a
fast Fourier transform (FFT) algorithm (Oppenheim & Shafer, 1975). There is also a closed
form solution in terms of cosine or sine integrals (Balanis, 1982, p. 583f ) and another where
the integrals are expressed in terms of complex Fresnel integrals. To obtain the latter, first
consider Ix and complete the square in the exponential in the integrand as follows:

Ix u =
b 2

−b 2
dx exp j 2πux −s2Ex

2 =
b 2

−b 2
dx exp − j sEx −

πu

sE

2

−
πu

sE

2

Substitute ξ = sEx −πu sE so that Ix can be simplified as follows:

Ix u =
exp j πu sE

2

sE

sEb 2−πu sE

−sEb 2−πu sE

dξexp − jξ2

=
exp j πu sE

2

sE
K sE

b

2
−
πu

sE
+K sE

b

2
+
πu

sE
,

4 17

whereK z =
z

0
exp − jξ2 dξ is the complex Fresnel integral (see Appendix E). The approach

to evaluate Iy is similar except that initially the cosine in the integrand is expanded in its expo-
nential components. Then the square is completed on both components. Thus,

Iy v =
a 2

−a 2
dy cos

πy

a
exp j 2πvy −s2Hy

2

=
1
2

a 2

−a 2
dy exp j y 2πv+

π

a
−sHy

2 + exp j y 2πv−
π

a
−sHy

2

=
1
2

a 2

−a 2
dy exp − j sHy −

π

sH
v +

1
2a

2

exp j
π

sH
v +

1
2a

2

+ exp − j sHy −
π

sH
v−

1
2a

2

exp j
π

sH
v−

1
2a

2
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Let α± v = π sH v ± 1 2a . Then,

Iy v =
1
2sH

exp jα2+ K sH
a

2
−α+ v +K sH

a

2
+ α+ v

+ exp jα2− K sH
a

2
−α− v +K sH

a

2
+ α− v

Therefore, Eq. 4.14a can be expressed as

Nx u,v =
Eo

2sEsH
exp j

πu

sE

2

K sE
b

2
−
πu

sE
+K sE

b

2
+
πu

sE

× ejα
2
+ K sH

a

2
−α+ v +K sH

a

2
+ α+ v

+ ejα
2
− K sH

a

2
−α− v +K sH

a

2
+ α− v

4 18

The electric field components in the far-field are then obtained from Eq. 3.20, giving

Eθ r,θ,ϕ =
jk

4π
e− jkr

r
Nx θ,ϕ 1 + cos θ cos ϕ 4 19a

Eϕ r,θ,ϕ = −
jk

4π
e− jkr

r
Nx θ,ϕ 1 + cos θ sin ϕ 4 19b

where Nx is given by Eq. 4.18. The total radiated power from the TE10 mode excited pyramidal
horn is

PT =
Eo

2

2ηo

b 2

−b 2
dx

a 2

−a 2
dy cos2

πy

a

=
ab

4ηo
Eo

2

4 20

Assuming the maximum gain occurs on axis, by Eqs. 3.48 and 4.20

Gmax =
8πr2 Eθ 0,0 2 + Eϕ 0,0

2

ab Eo
2

=
2k2

πab

Nx 0,0
Eo

2
4 21

When u= 0 = v is set in Eq. 4.18, Eq. 4.21 becomes

Gmax =
8k2

πab

K sE b
2 K sH a

2 −
π

2asH
+K sH a

2 +
π

2asH

sEsH

2

4 22
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It may be shown that the maximum gain is a product of the gains of E- and H-plane sectoral
horns times a geometric factor (see Problem P4.3).
A horn of given aperture andwaveguide feed dimensions has an optimum length for maximum

gain.The reason there is anoptimumlength is that as thehorn length is increased, the gain increases
initially until quadratic phase error dominates in the aperture field. Maximum gain occurs when
the gain increases, due to an initial increase in length that is cancelled by quadratic phase error.
After this maximum, gain falls with increasing length. A maximum gain pyramidal horn is often
referred to as a standard gain horn (SGH) because accurate reproducible gain is achieved by accu-
rately setting the horn dimensions. The SGH is widely used as a reference antenna for all types of
measurements ranging from electromagnetic interference (EMI) tests to calibration of other anten-
nas.Over theyears, a considerable amountofworkhasgone intoderiving accurate formulae for the
gain. One of the reasons is that the gain of these horns is moderately high and predictable.
The SGH is sometimes referred to as an optimum gain horn. The usual definition of an

optimum gain horn in relation to a pyramidal profile is a horn that has a maximum gain for
a given length of horn. The greatest departure from uniform phase occurs at the edge of the
aperture. For a horn with a linear profile, this occurs along the slope through any section of
the horn be it rectangular, circular, or any other general cross section. In general, the phase error
is in the form of Eq. 4.11, that is, α= ka2 2L, where L is the slant length from the apex.
A solution for the optimum geometry for maximum gain can be obtained as described by Bird and

Love(2007). In thissolution, it isassumedthat theaperturedimensionsare related to the longdimension
of the flare in theE-andH-planes, ℓEandℓH, respectively, througha = α1 ℓH and b = β1 ℓE, and the

required gain is given by Gr = g1ab λ2 where the quantities α1, β1 and g1 have been obtained
from experience or through optimization. Typical values are g1 = 2π, α1 = 6π k and β1 = 4π k.
However, from optimization, improved design results are obtained if instead g1 = 1 992π,
α1 = 6 10λ k, and α1 = 4 14λ k is chosen.

4.3.1 Design of a Standard Gain Pyramidal Horn

The steps for designing an optimum gain pyramidal horn are listed by Bird & Love (2007).
The design commences from a specified gain Gr (initially specified in dBi, but converted to
its dimensionless ratio for the calculations), and dimensions aw and bw of the input rectangular
waveguide feed.Theaim is todetermine the remainingdimensions (a,b,ρE, ρH , ℓE, ℓH and h) that
leads to the required gain. The reader should refer to the geometry in Figure 4.3.

1. The horn geometry needs to satisfy the following geometric constraint to be physically
realizable:

ρE 1−
bw
b

= ρH 1−
aw
a

, 4 23

where ρE = ℓ
2
E − b 2 2 and ρH = ℓ

2
H − a 2 2 are the distances to the vertex from the

aperture in the E- and H-planes, respectively. Eq. 4.23 specifies that the length of the horn
flared section should be the same in the two orthogonal planes. When all quantities are
expressed in terms of one aperture dimension only (in this case, a). Eq. 4.23 results in a
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quartic polynomial for which in this case there is only one solution of interest (i.e. real solu-
tion and 0 ≤ aw ≤ a). This solution is expressed as follows:

a = A1 +A2−
bwc1− a2w 8

4A1
+
aw
4
, 4 24

where c1 = Grλ
2 g1 α1 β1 , A1 = A2

2 + 3 U + P U 2, A2 = U− P U + a2w 8

and U = Q+ Q2 +P3
1 3

, P= c 12 Grλ
2 g1 − awbw 4 , Q= c21 128 a2w β1

α1 −b2w , g1 = 2π, α1 = 6π k and β1 = 4π k.
2. Calculate the remaining horn parameters in Figure 4.3 from b = Grλ

2 g1a, ℓH = a2 α1,

ℓE = b2 β1, ρE = ℓ
2
E − b 2 2, ρH = ℓ

2
H − a 2 2 and h = ρH 1−aw a .

3. Refine the design as requiredwith your favourite horn analysis software to take account ofwall
geometry effects over the required bandwidth to obtain the desired pattern and input match.
Example: A standard gain X-band horn is to be designed using the procedure described

above. A maximum gain of 22.6 dBi is required at 11 GHz. The input waveguide has
dimensions aw = 2.286 cm (0.9 inch) and bw = 1.016 cm (0.4 inch). A solution can be found
to Eq. 4.23 as a = 16.563 cm from which it follows that b = 12.988 cm, ℓE = 30.949 cm, ℓH =
33.553 cm, ρE = 30.260 cm, ρH = 32.514 cm and h = 28.027 cm. The computed E- and H-
plane patterns of this antenna design are given in Figure 4.4. The gain computed from
Eq. 4.22 is 22.62 dBi.
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Figure 4.4 Principal plane patterns of a pyramidal horn (a = 16.563 cm, b = 12.988 cm,
h = 28.027 cm, aw = 2.286 cm, bw = 1.016 cm) at 11 GHz
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Although SGHs maximize gain for given aperture dimensions, there is no guarantee
of the quality of the radiation pattern. High sidelobes may occur and, in addition, the peak
field may not be on axis (i.e. θ = 0 ). Other horns such as smooth wall and corrugated conical
horns to be discussed in the next section have similar maximum gain conditions. In some
applications maximum gain is less important and emphasis of design is on pattern shape,
sidelobes, etc. One example is when horns are used as feeds for reflectors. Then the aim
is to illuminate the reflector efficiently and to minimize power loss due to spillover at
the reflector edge (see Section 6.2.2). To achieve this, the pattern should have low sidelobes
and the skirt of the pattern should decrease rapidly at the reflector edge. Efficient feeds for
parabolic reflectors include rectangular, circular and corrugated waveguides as well as their
more directive flared counterparts. Feed design for reflectors is discussed in Chapter 9.

4.3.2 Dielectric-Loaded Rectangular Horn

In some applications it is advantageous to have identical E- and H-plane patterns. This is not
possible with a conventional pyramidal horn because of the difference in the aperture field dis-
tribution in the two principal directions, namely, uniform and cosine distributed. However, by
placing a dielectric on the walls in the E-plane, the field can be made more uniform albeit over a
limited frequency range (Tsandoulous & Fitzgerald, 1972). This type of horn is illustrated in
Figure 4.5. The introduction of the dielectric leads to a set of hybrid modes in the horn where
both longitudinal (in the direction of propagation) field components are present. In the dielec-
tric-loaded waveguide, mode sets can be identified that can be either TE or TM to the surface of
the dielectric that is, the x-direction in Figure 4.5. The component of field either Ex or Hx are
zero. Hence the modes are referred to as TEx or TMx, respectively. An alternative terminology
is to refer to these modes as either longitudinal section electric (LSE) or longitudinal
section magnetic (LSM). The interested reader should consult the references for further details
(Collin, 1960; Harrington, 1961).
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εr2

Region 1

Region 2

Region 3
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X
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Figure 4.5 Dielectric slab-loaded pyramidal horn
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The slabs in regions 1 and 3 have a thickness d and a dielectric constant εr1, while region 2,
between the slabs, has width 2w and dielectric constant εr2. With the identification of the fun-
damental mode and its field distribution, an aperture field representation can be constructed in
the same way as for unfilled pyramidal horn. The fundamental mode is the LSE10 mode. The
transverse electric field of this mode is

E 1
y =EoCo sin k1

a

2
+ x ; −

a

2
≤ x ≤ −w 4 25a

E 2
y =Eo cos k2x; −w ≤ x ≤w 4 25b

E 3
y =EoCo sin k1

a

2
−x ; w ≤ x ≤

a

2
, 4 25c

where Co = cos k2w sin k1d pertains to requiring continuity of the field at x = a 2−d =w.
The wavenumbers in regions 1 and 2 are

k1 = k2εr1−γ2 and k2 = k2εr2−γ2,

where γ is the propagation constant. The LSE10 mode propagation constant varies with fre-
quency that is governed by the transcendental equation

k2 tan k2w= k1 cot k1d 4 26

The roots may be found by means of conventional root finding techniques such as Newton–
Raphson (Fröberg, 1974). A good approximation to the propagation constant for LSEmnmodes
can be obtained from a perturbation formula derived from an approach provided by Gabriel and
Bodwin (1965). This formula can been applied to many different types of dielectric-loaded
waveguides and is expressed as

γ

k

2
= 1−

k o

ω c

2

+

N

i= 1
S
dSΦo εri−1 Φo

S
dSΦoΦo

, 4 27

where εrai is the relative permittivity of region i (i = 1, …, N), N is the number of dielectric
regions,Φo is the first-order trial field solution and k(o) is the approximation to the wave number
that occurs as in the solution to the wave equation ∇2

tΦo + k2o Φo = 0. Another possible

approach is to use a variational expression as described by Berk (1956). In the present case
of slab-loaded waveguide, to find the propagation constant of the LSEmn mode select the trial

functions Φo =Ey =Eo sin mπx a cos nπy b and k o = mπ a 2 + nπ b 2 as these corre-

spond to related quantities of empty waveguide and can be expected to have the desired phys-
ical properties. After carrying out the required integrations in Eq. 4.26, an approximation to the
propagation constant is

γ≈ k2 1 + εr1−1
2d
a

1−
a

2mπd
sin

2mπd
a

−
mπ

a

2
−

nπ

n

2
, 4 28

82 Fundamentals of Aperture Antennas and Arrays



where it has been assumed that εr2 = 1. Eq. 4.28 can be used directly or as an estimate for Eq. 4.26
to obtain a more accurate answer. As an example, a rectangular waveguide with aperture dimen-
sions 6.1 cm × 6.1 cm has dielectric slabs lining theE-plane walls (region 1 as in Figure 4.5). The
slab thickness is d = 4.1 mm and dielectric constant is εr1 = 3 07. At a frequency of 12.5 GHz,
Eq. 4.28 predicts γ = 2 5795 rad/cm while the exact result obtained from Eq. 4.26 is γ = 2 61302
rad/cm. The error in this example is typical of what is achieved.
When the wavenumber in region 2 is zero, that is, k2 = 0, the field in central region is uniform.

From Eq. 4.25, this occurs when

d =
λ

4 εr1−εr2
4 29

and where γ = k εr2.
A quadratic phase function can be applied to the LSE10 mode field as in Eq. 4.13a to model a

flared horn except that this time the phase factor is exp − j γ 2 x2 ρH + y2 ρE . In addi-
tion, on this occasion, it is assumed that the aperture is located in a large ground plane. The
result, using the same notation as used for Eq. 4.5, is

Eθ r,θ,ϕ =
jk

2π
e− jkr

r
Ny u,v sin ϕ 4 30a

Eϕ r,θ,ϕ =
jk

2π
e− jkr

r
Ny u,v cos θ cos ϕ, 4 30b

where on this occasion Ny u,v = Ix v Iy u . The function Iy(u) is a result of the integration
over the y-co-ordinate in the aperture, which transforms a uniform field and is identical to
Eq. 4.17 except for some changes of notation. That is,

Iy v =
exp j πv sE

2

sE
K sE

b

2
−
πv

sE
+K sE

b

2
+
πv

sE
, 4 31

where sE = γ 2ρE. Similarly for the H-plane let sH = γ 2ρH . The second integral for the
function in u can be shown to give

Ix u =
1
2sH

F 2
+ u +F 2

+ −u +F 2
− u +F 2

− −u

− jCo ejπua F 1
+ −u −F 1

− −u + e− jπua F 1
+ u −F 1

− u ,

4 32

where

F 1
± u = exp js2Hα

1
± u a+ α 1

± u

× K sH
a

2
+ α 1

± u +K sH −w−α 1
± u
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and

F 2
± u = exp j sHα

2
± u

2
K sH

a

2
+ α 2

± u +K sH w−α 2
± u ,

where α i
± u = πu± ki 2 s2H .

At the condition for uniform field in the aperture as specified by Eq. 4.29, the maximum gain
of the slab-loaded horn is given by

Gmax =
4b

π a−d
kw 1 +

2d
wπ

2

4 33

As an example of the radiation patterns obtained by slab loading a pyramidal horn, Figure 4.6
shows the results in the H-plane at 12.5 GHz of one of the horns pictured in Figure 1.1c. The
horn has aperture dimensions a= b = 61 0 mm and a height of h = 23 cm. The input is WR-90
waveguide with dimensions 1.16 cm × 0.95 cm. Tapered dielectric slabs with εr = 3 07 and loss
tangent tan δ= 0 005 were placed on the narrow (E-plane) walls where the thickness varies
linearly from zero up to the required thickness of d = 4.1 mm over about 60% of the tapered
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Figure 4.6 H-plane radiation pattern of a dielectric-loaded pyramidal horn at 12.5 GHz.
Aperture dimensions a = 6.1 cm, b = 6.1 cm, d = 0.41 and εr1 = 3 07

84 Fundamentals of Aperture Antennas and Arrays



wall to give a uniform aperture field at a frequency of 12.7 GHz. The measured results at 12.5
GHz are in good agreement with the predictions given by Eq. 4.30 although the impact of the
taper is seen by the slight discrepancy. The dielectric taper has to be sufficiently long to ensure
that the sidelobes agree with the theory. The gain at this frequency was measured and found to
be 17.89 dBi. This compares with a computed gain of 18.12 dBi obtained from Eqs. 4.30a,
4.30b, 4.31 and 4.32. The difference in theory and experiment is due mainly to dielectric losses,
which were estimated to be 0.17 dB. This loss in the dielectric slabs as well as the adhesive used
to fix them to the side walls can be a cause of significant loss, which may preclude the use
of dielectric-loaded horns from some applications where gain is at a premium (e.g. satellite
communications) unless a low loss dielectric with suitable properties can be found. The mis-
match due to the dielectric loading is relative small for dielectric placed on the walls parallel to
the E-plane as in this case (Bird & Hay, 1990).

4.4 Circular Waveguides and Horns

Antennas radiating from circular waveguides and horns find application in communications,
radar and radio astronomy as feeds for reflectors, as reference antennas or for microwave links.
Their geometrical symmetry and low cross-polarization are important factors in their wide-
spread use. Examples of this type of antenna are illustrated in Figure 4.7.
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Figure 4.7 Circular waveguides and horns. (a) Circular waveguide; (b) circular waveguide
with parasitic ring; (c) coaxial waveguide; (d) coaxial waveguide with extended central conductor;
(e) conical horn and (f) corrugated waveguide
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Circular waveguide (Figure 4.7a) is an efficient feed for moderately deep reflectors, and it
has almost equal E- and H-plane patterns (pattern symmetry) for pipe diameters in the range
0.7–1.2 wavelengths depending on the size of the flange. Higher efficiencies are possible with
the addition of parasitic rings as shown in Figure 4.7b. Coaxial waveguide, Figure 4.7c, has
potentially greater flexibility in available radiation patterns due to the extra degree of freedom
provided by the internal conductor. However, a large mismatch occurs at the aperture when the
ratio of inner to outer conductor radii is greater than about 1/3. Figure 4.7d shows a self-
supporting rear-radiating coaxial waveguide (‘tomato can’) feed for a reflector. Here the inner
conductor that extends all the way to the vertex of the reflector allowing the feed to be driven
from a transmission line in the centre conductor. Flaring a circular waveguide produces the
conical circular horn shown in Figure 4.7e. Finally, the waveguide and horn side walls may
be corrugated or covered with an anisotropic surface or material. This structure may be flared
as in Figure 4.7e. With corrugations, when the depth of the corrugations, d, is about λ/4, almost
pure polarized radiation patterns result. In this section, various circular aperture horns will be
discussed and particularly those shown in Figure 4.7.

4.4.1 Circular Waveguide

The smooth wall circular waveguide Figure 4.7a antenna is usually excited in its funda-
mental TE11 mode. The transverse fields of this mode in cylindrical polar co-ordinates
(ρ, ϕ, z) are

Et =Eo ρ
J1 kcρ

kcρ
cos ϕ − ϕ J1 kcρ sin ϕ e− jβz, 4 34a

Ht =Yw z ×Et, 4 34b

where kca = 1 84118 is the cut-off wavenumber of the TE11 mode in a circular waveguide of
radius a, Yw is the mode admittance and β is the propagation constant. The properties of the
Bessel function, J1(x), and its first derivative, J1 x , are summarized in Appendix B.
Assume that the TE11 mode is the only one produced in the aperture. Coupling at the aperture

will generate other modes, but their effect on the radiated field is usually of second-order except
close to cut-off. Expressing the field components in rectangular co-ordinates and making use of
Bessel function recurrence relations for Jp(z)/z and Jp z given in Appendix B, the aperture
fields at z = 0 are expressed as follows:

Ea =
Eo

2
xJ0 kcρ + J2 kcρ cos 2ϕ + yJ2 kcρ sin 2ϕ , 4 35a

Ha =Yw z ×Ea 4 35b

Unlike the TE10 mode of rectangular waveguide, the TE11 mode has both x and y field com-
ponents and, therefore, so has its vector transform. Eq. 4.35 and Figure 4.8a indicate that the
principal aperture field polarization is x-polarized, the y-component has non-zero values away
from the principal planes (ϕ = 0, π and ϕ = ± π 2).
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To determine the radiated field for circular waveguide using Eq. 3.30, the transforms N,
Eq. 3.24a, are required. To evaluate these integrals that involve Bessel functions use is made
of Eqs. B.3 and B.5. From these equations,

Nx =
πaEo

k2c −w
2

kcJ1 kca J0 wa −wJ0 kca J1 wa

− cos 2ϕ wJ2 kca J1 wa −kcJ1 kca J2 wa
4 36a

Ny =
πaEo

k2c −w
2
sin 2ϕ wJ2 kca J1 wa −kcJ1 kca J2 wa , 4 36b

wherew= k sin θ. Substitute Eq. 4.36 into Eq. 3.20 and, by means of Bessel function recurrence
relations, the far-zone fields are found to be given by

Eθ r,θ,ϕ =
jkaEo

2
e− jkr

r
cos ϕ 1 +

β

k
cos θ

J1 kca

kc

J1 wa

wa
, 4 37a

Eϕ r,θ,ϕ = −
jkaEo

2
e− jkr

r
sin ϕ

β

k
+ cos θ J1 kca

kcJ1 wa

k2c −w
2

4 37b

Comparing Eq. 4.37 with Eq. 4.5 it is seen that J1(wa)/wa and J1 kca k2c −w
2 perform

corresponding functions as S(kb sin θ/2) and C(ka sin θ/2) do in the principal planes of rectan-
gular waveguide. Plots of the E- and H-patterns are shown in Figure 4.9 for several different
waveguide radii.
The power radiated by the TE11 mode is

PT =
E2
oπa

2

4ηo

β

k
J21 kca 1−

1

kca
2 4 38

From Eq. 3.48 the maximum gain is

HE11
TE11

(a) (b)

Figure 4.8 Electric and magnetic fields in (a) smooth wall circular waveguide and
(b) corrugated waveguide. Solid curve: electric; dashed curve: magnetic
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Gmax =
1 2 ka 2 1 + β k 2 k β

kca
2−1

4 39

At frequencies well above cut-off, β≈k and Eq. 4.39 simplifies to

Gmax = 0 837 ka 2,

which corresponds to an aperture efficiency of 83.7%.
Equations 4.37 approximate the field components of radiated by a thin wall waveguide that has

nocurrents flowingon theoutsidewall.This isbecause theywerederived foranaperturecontaining
both electric and magnetic currents, which in turn are governed by both the electric and magnetic
fields.Asa result, Eqs.4.37 are referred toas theE–H fieldmodel. Inpractice thewall currentshave
a significant effect on the radiationpattern. Thismodel contrastswith an exact solution (Weinstein,
1969) which is obtained with the Wiener–Hopf method that has external currents on an infinitely
thin waveguide wall. To demonstrate differences due to changed aperture conditions, consider a
circular waveguide that is terminated in an infinite ground plane. The radiated field in this case is
obtained from Eq. 3.26, and where Nx and Ny are given by Eq. 4.36. Thus,

Eθ r,θ,ϕ = jkEo
e− jkr

r
cos ϕ

J1 kca

kc

J1 wa

wa
, 4 40a

Eϕ r,θ,ϕ = − jkEo
e− jkr

r
sin ϕ cos θJ1 kca

kcJ1 wa

k2c −w
2

4 40b
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Figure 4.9 Radiation patterns of circular waveguide (E–H field model). The radius of the
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Because Eq. 4.40 was determined from magnetic currents, and hence electric field in the
aperture, they are sometimes referred to as the E-field model.
Comparing Eqs. 4.37 and 4.40, the effect of the ground plane is to only change the Huygens’

factors. The 6 dB half-beamwidth (half the angle between the 6 dB points of the pattern) of the
E- and H-plane patterns is given in Figure 4.10 for both models. In Figure 4.11, the E- and
H-plane patterns are plotted for a waveguide of radius a = 0.37λ. Also shown is the computed
pattern for the same pipe but this time terminated in a finite flange (as shown in Figure 4.1a) of
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radius 1.37λ. These last results agree quite well withmeasured results. Theywere obtained using
an E-field model in conjunction with the geometrical theory of diffraction (James, 1986) to take
into account the effect of the finite flange. In Figure 4.12, it is observed that theE–H field model
gives a reasonable approximation to the E-plane pattern but not so in the H-plane. On the other
hand, the E-field model approximates the E- andH-plane patterns quite well. These conclusions
are fairly typical of the methods described here.

4.4.1.1 Matching at a Circular Aperture

Well above cut-off, circular waveguides and horns have an inherently low reflection coeffi-
cient, which may be sufficient for many applications. Better matching may be required
in more demanding applications such as for low noise and broadband operation. Two basic
methods are employed for improving the match at a circular aperture, and these are
illustrated in Figure 4.12. Most techniques are axially symmetric to ensure the matching does
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Figure 4.12 Matching techniques for circular apertures. (a) Irises and (b) stepped sections
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not increase cross-polarization. The first approach is to use several circular irises of varying
depth from the inner wall into the centre of the circular pipe, annular windows or annular
rings. The iris provides a mainly capacitive reactance and for small hole radii, r, and thickness
t << λ, relative to the guide wavelength. The susceptance for when the TE11 mode only propa-
gates, that is, 1 841 < ka< 2 404, is approximately given by (Marcuvitz, 1986)

B≈
Yw
βa

1 995

r a 3 −3 666 , 4 41

where β is the propagation constant of the TE11 mode and Yw is the wave admittance. This
expression is only approximate and has best accuracy for frequencies close to TE11 cut-off
and at higher frequencies when r a < 0 5. For more accurate design, computer programs such
as mode matching should be used.
A second approach is to introduce a series of steps of different length and height as shown in

Figure 4.12b. This approach enables matching over a broad frequency band. The availability of
computer packages allows accurate analysis of the structures chosen for matching. For broad-
banding a design, a computer simulator is required, preferably one with an optimizer. One
approach that has proved especially effective in waveguide is the mode-matching method. This
is described in a following section.
The traditional approach was to interpolate the susceptance from curves generated from

measurement (e.g. Marcuvitz, 1986) or computed results (e.g. James, 1987; Sharstein &
Adams, 1988). These data provide an estimate of the available susceptances for matching.
The same can be done with Eq. 4.41. An approximate formula for the admittance of a circular
aperture is given by Eq. 7.88. To proceed with matching using a Smith chart, locate the aper-
ture admittance for the waveguide dimension and operating frequency on the chart. Move
back from the aperture towards the source to cancel out, or partly cancel, the susceptance
shown with an iris of selected dimensions. The first iris aims to allow the transfer by rotation
of this cancelled admittance to a location where a second iris is able to further transfer the
resulting admittance close to the centre of the chart to achieve a good match. By judicious
choice of the iris susceptances, it is possible to obtain a trajectory on the Smith chart that
is insensitive to frequency so as to achieve a moderate bandwidth. This design should be
checked by trial and error.

4.4.2 Coaxial Waveguide

The coaxial waveguide illustrated in Figure 4.7c is particularly useful as a feed for a reflector
with a short focal length, and it potentially has the additional flexibility of a central conductor
which can be used for self-support. For convenience, the inner conductor radius is defined here
as a and the outer conductor radius is b. Shorted coaxial apertures are also used in the flange
of a circular waveguide to improve the pattern symmetry and reduce cross-polarization (see
Figure 4.8b). An advantage of coaxial waveguide antennas that operate predominantly in
the TE11 mode is that the beamwidth is broader than the equivalent open-ended circular wave-
guide radiation. This characteristic can be achieved also with excellent pattern symmetry and
low cross-polarization, all of which are important for many applications. For example,
TE11-mode coaxial waveguide antennas can be used as a single feed or array element for
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reflectors with short focal lengths and also as an element in closely spaced directly radiating
arrays for radio astronomy (see Section 10.3.3). In multibeam feed applications, the TE11-mode
coaxial waveguide antenna has the advantage that the outer diameter is smaller than equivalent
circular feeds that use external choke rings or set-back flanges to achieve wide beamwidth and
pattern symmetry.
There are some significant differences with circular waveguide, however, caused principally

by the central conductor. The first difference is that the fundamental mode, the TEM mode,
does not radiate very well but is strongly reflected from the open end. The mode that is used
for antenna applications is the TE11 mode, and the cut-off and field distribution is very similar
to the TE11 mode of circular waveguide, which is the limiting mode when the radius of the
central conductor becomes small. The field distribution of the TE11 mode of coaxial waveguide
is similar to the one for circular waveguide except that now the central field lines curve to
accommodate the additional boundary condition on the central conductor. As a result, the prop-
erties of the radiation pattern are different as shown in Figure 4.13. The width of the H-plane
pattern tends to narrow as the radius of the centre conductor increases. This means that there is
thus an optimum range of conductor radii in which the E- and H-plane patterns are similar.
The radiation pattern of the TE11 mode of coaxial waveguide can be obtained in the same

way as for circular waveguide. The electric field of the TE11 mode in coaxial waveguide at z = 0
is expressed as

Et ρ,ϕ =A11 ρ
Z1 kcρ,kca

kcρ
cos ϕ−ψ −ϕZ1 kcρ,kca sin ϕ−ψ , 4 42

where Ht =Ywz ×Et, ψ is the reference phase angle relative to the initial line (x-axis) and the
function Zp(x, y) is a compound Bessel function that is defined in Appendix B. A prime on this
function indicates the first derivative with respect to the first argument. It also has the property
that as the second argument approaches zero, then Zp x,y

y 0 = Jp x . Thus, Eq. 4.42 reduces

to Eq. 4.34a in the limit of zero centre conductor radius. The cut-off wavenumber kc of the TE1n

modes is given by Z1 kcb,kca = 0. A useful approximation to the cut-off for small inner con-
ductor radii is

kcb≈
2

1 + a b
4 43

In rectangular components, the aperture field of a coaxial waveguide is

Ea ρ,ϕ =
A11

2

x Z0 kcρ,kca + Z2 kcρ,kca cos 2ϕ−ψ

+ yZ2 kcρ,kca sin 2ϕ−ψ
4 44

Inmany applications, the coaxial waveguidewill have a flange or thickwall. Therefore, inwhat
follows it will be assumed here that the coaxial aperture terminates in an infinite ground plane. By
means of Eqs. 3.26, it can be shown that the far-zone fields of coaxial waveguide are

Eθ r,θ,ϕ = jkbA11
e− jkr

r

Z1 kcb,kca
kc

J1 wb

wb
cos ϕ−ψ , 4 45a
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Eϕ r,θ,ϕ = − jkbA11
e− jkr

r
Z1 kcb,kca

kcJ1 wb

k2c −w
2

cos θ sin ϕ−ψ 4 45b

These equations are similar to Eq. 4.40 and are identical in the limit as ka 0. However, for
the coaxial case there are significant differences as will be described in the following.
The radiation properties of the TE11 mode from coaxial waveguide in a large ground plane

are summarized in Figures 4.13 and 4.14. The former shows the half-angle between the beams
at the 12 dB level as a function of the normalized frequency kbwith the inner to outer conductor
ratio a/b as a parameter, while the latter shows the maximum cross-polar level in the 45 -plane.
The 12-dB semi-angle in the H-plane is approximately θH12dB = −10 kb + 92 degrees. For a
given outer conductor radius a there is always a frequency at which the 12-dB semi-angle is
identical in the E- and H-planes. At frequencies below the optimum kb for pattern symmetry,
the E-plane 12-dB semi-angle is greater than θH12dB, and when the frequency is above the opti-
mum kb, the E-plane 12-dB semi-angle is smaller than θH12dB. At the frequency for pattern
symmetry, the E- and H-plane patterns are almost identical over the main beam and, therefore,
low cross-polarization is obtained. The frequency where the minimum of the cross-polar pat-

tern occurs is kb≈1 25 a b 2−3 3 a b + 3 6. Figure 4.15 also shows that the level of the
cross-polar maxima increases with increasing a/b.
As a first example, suppose an application at 1.5 GHz requires a 12 dB beamwidth of 140 .

From Figure 4.13, it is estimated that this beamwidth could be achieved with kb= 2 05 and
a b= 0 6. For this choice of parameters, the peak cross-polarization level from Figure 4.14 will
be approximately −30dB relative to the peak co-polar level. Thus, at the specified centre
frequency, the outer conductor radius should be 65.2 mm, while the inner conductor radius
should be 39.1 mm.
As a second example, consider the radiation patterns in the 45 plane of a coaxial waveguide

with a large metallic flange that are shown in Figure 4.15. The antenna is required to operate at a
frequency of 4.5 GHz (i.e. ka= 2 54), and for this the outer conductor has a radius b= 2 7 cm
and a centre conductor radius of a = 1 44 cm. Figure 4.15 shows that at this frequency and for
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the selected waveguide dimensions the peak cross-polar level is about −22 dB, which is close to
the level predicted in Figure 4.14.
It is important also to understand some of the basic radiation properties of the fundamental

TEMmode. This mode radiates poorly as the aperture is not well matched to free-space and the
radiation efficiency is low. The transverse electric field distribution of this mode is

Ea ρ =
ETEM

ρ
x cos ϕ−ψ + y sin ϕ−ψ 4 46

The reflection coefficient of this mode at the end of the waveguide is

Γ≈
1−yTEM
1 + yTEM

,

where

yTEM =
1

ln b a

∞

0

dw

w 1−w2
J0 kbw −J0 kaw 2 4 47

for the aperture radiating into free-space. When the conductor radii are small in terms of the
wavelength, that is, a, b λ<< 1, then the Bessel functions can be replaced by series which
can then be integrated term by term. The resulting normalized admittance is (Galejs, 1969)
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Figure 4.15 Principal plane radiation patterns in the 45 plane of a TE11 mode coaxial waveguide
at 4.5 GHz. The aperture dimensions are b= 27 mm and a= 14 4 mm. Solid line: theory; dashed
line: experiment
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yTEM≈Yc
kD 4

360
1−

kD 2

5
+ j

kD

60π
ln

8D
b−a

−
1
2
+
2
3
kD 2 , 4 48

where Yc = 2π ηo ln b a −1 is the characteristic admittance of the coaxial line and
D= b + a 2. Typically, the value of yTEM is such that the reflection coefficient is very close
to unity as the admittance value is quite small. This is due mainly to the abrupt termination of
the current on the inner conductor at the aperture.
The far-field radiation pattern due to TEM mode in infinite ground plane is

Eθ = kETEM
exp − jkr

r

Jo kb sin θ −Jo ka sin θ
k sin θ

4 49

Eϕ = 0

The pattern given by Eq. 4.49 is omnidirectional and has a null on axis at θ = 0. This can be
easily seen from the Bessel function series for small arguments. As sin θ 0, the factor in the

square brackets approaches −b 4 1− a b 4 kbsinθ 3.

4.4.2.1 Matching of a Coaxial Aperture

The coaxial waveguide modes have a significant mismatch at the aperture. As described above,
the fundamental TEMmode is the worst affected, while the other modes are only well matched
over a relatively narrow band of frequencies. Extending the conductor into free-space improves
the match somewhat but this tends to narrow the beamwidth in the H-plane. Several common
methods are normally used for improving the input match of TE11-mode coaxial waveguide
antennas, such as tuning screws and irises. The latter approach is especially effective as broad-
band matching is possible through a combination of ‘inductive’ and ‘capacitive’ irises
(Bird et al., 1986) as shown in Figure 4.16. An inductive iris is achieved in coaxial waveguide

t s23 s12

a3 a2 a b
a0

Iris 1Iris 2Iris 3

Figure 4.16 Matching the aperture of a TE11 mode coaxial waveguide antenna
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by an iris that extends down from the outer conductor producing a gap between the inner con-
ductor and the inner diameter of the iris (Iris 2 in Figure 4.17). Conversely, a capacitive iris (Iris
3 in Figure 4.16) is produced by extending the iris upwards from the inner conductor leaving a
gap between the outer conductor and the outer diameter of the iris. This simple matching
method using two irises can achieve a 20 dB return-loss bandwidth of about 30%. It has been
found that the method is most effective when a/b < 0.35. Themethod to be described is based on
two simple concepts: (i) alternate capacitive and inductive irises extending back from the aper-
ture and (ii) step the inner conductor diameter at the aperture down to moderate value so that
(i) can affect a broadband match. The matching method is illustrated in Figure 4.16. The thick-
ness of the iris is assumed to be t << b.
Assuming a coaxial aperture with a/b < 0.3, the approach using two irises is easily explained

with the aid of the Smith chart. The admittance presented by the iris-aperture combination fol-
lows a clockwise trajectory on the Smith chart with increasing frequency. The first length of
waveguide from the load to the source, s12, should transfer the aperture admittance so that it lies
inside the unit conductance circle with the real part in the vicinity of 1.5–2 and the imaginary
part (y1) is positive. The inductive iris (Iris 2) is chosen to approximately cancel the imaginary
part of the admittance (y1) at the centre frequency. The second length of waveguide, s23, trans-
fers the admittance to the unit conductance circle with a negative susceptance (y2). The final
capacitive iris (Iris 3) is chosen to cancel the negative susceptance (y2) and to bring the locus
near to the centre of the Smith chart (i.e. y3≈1 + j0).
For larger inner conductors, a third iris (Iris 1) is placed at the aperture to improve the match

but this is usually possible only over a narrower frequency band. The approach described above
for a/b < 0.3 is then used to match the iris at the aperture as illustrated in Figure 4.16.
It has been found that Iris 3 influences the low end of the frequency band. If the susceptance

of Iris 3 is increased, the bottom end of the 20 dB band moves lower in frequency, while if the
susceptance is decreased, the bottom end of the band moves higher. The radius a3 has a similar

sτ

Slot 
apertures

Input/output 
waveguide

(a) (b) (c)

(d) (e)

y σ

z

xRing
Disk

b
TTT

ao

Slot width w
and depth d

Corrugated reflectorSlot in waveguide

Figure 4.17 Rear-radiating feeds. (a) dipole and disk fed by coaxial cable (after Silver, 1946);
(b) the same with ring backed by a small reflector; (c) waveguide excited cup feed with ring-slot
(i.e. annular ring) flange (Poulton & Bird, 1986); (d) waveguide with radiating slots (Cutler, 1947) and
(e) hat feed (Kildal, 1987)
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effect. If the length s12 is reduced, the upper-band edge increases, while if s12 is increased, this
frequency reduces. The spacing s23 has an effect on the level of the mid-band reflection coef-
ficient. If s23 is reduced, the mid-band level increases, and when s23 is increased, the mid-band
level reduces. A slight displacement of the band occurs also with a shift towards lower frequen-
cies as s23 is reduced. Table 4.1 lists the combination of lengths and iris dimensions to achieve a
broadband match at coaxial apertures with various ratios b/a. The percentage bandwidth is also
shown in each case.

4.4.2.2 Coaxial Apertures with an Extended Central Conductor

A coaxial aperture fromwhich the inner conductor extends outwards far beyond it (Figure 4.7d)
has several important applications. It can be used as a prime-focus feed that is self-supporting
from the vertex of the reflector, or it can be used as part of a probe in medical applications. In the
first example, strut blockage can be eliminated while in the second the centre conductor may
support another instrument such as a hypodermic needle. Several types of rear-radiating feed
are shown in Figure 4.17. One configuration uses a cup at the end of the central circular con-
ductor. Resonant slots, dipoles or a waveguide in the cup are used to excite an annular aperture
principally in the TE11 mode. The design of a rear-radiating feed may be considered in two
independent stages, namely, (i) the transition from the central transmission line support to
the radiating element and (ii) radiation in the presence of the central conductor. It is usually
the first stage that sets the various feed types in Figure 4.17 apart and provides the name.
For instance, one of the first feeds of this type is called the Cutler feed. This usually consists
of several radiating slots that are excited from the transmission line by a resonant cavity, which
was invented by C.C. Cutler (1947). A tuning screw can be used to improve the match to the
input. This feed is a very narrowband design. As its appearance can look like a ‘tomato can’, it
sometimes goes by that name as well. A modification to this design uses coaxial waveguide
sections at the back of the cup to improve the match. These sections can be easily designed
to operate over a modest bandwidth (typically 5%). Wider bandwidth can sometimes be
achieved with a TEM transmission line in the centre conductor that is connected to dipoles
in the cup. Another form of a cup feed (Poulton & Bird, 1986) uses waveguide transitions
to achieve matching from a TE11 circular waveguide input to the coaxial aperture.
A simplified picture of the operation of the transition is shown in Figure 4.18. The transition
is potentially capable of bandwidths in excess of 10% with suitable optimization. Importantly,
the symmetry of the transition allows the polarization properties to be conserved. In this

Table 4.1 Two iris matching of TE11 mode coaxial waveguide

a/b 0.3 0.4 0.5 0.6 0.7
Centre frequency (kb) 2.73 2.46 2.24 2.05 1.92
s12/b 0.585 0.526 0.457 0.398 0.300
a2/b 0.495 0.463 0.430 0.390 0.356
s23/b 0.300 0.199 0.184 0.182 0.205
a3/b 0.419 0.486 0.572 0.662 0.729
t/b 0.07 0.07 0.07 0.07 0.07
ao/b 0.3 0.3 0.3 0.3 0.3
% bandwidth 25.6 19.5 17.4 12.6 9.0
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transition, a TE11 mode incident in the central waveguide will excite TE1n and TM1n modes in
the cup region, although the cup diameter is chosen so that only the first TE11 and TM11 modes
propagate. By making ao b≈0 5 and choosing the lengths s1 and s2 appropriately the sum of
the TE11 and TM11 modes in the cup waveguide can be made to approximate the TE11 mode of
coaxial waveguide at the output leading to the aperture. Wideband operation is possible
because the phase velocity of the TE11 and TM11 modes are approximately the same in the cup.
Another successful design is the Kildal hat feed (Kildal, 1987). This uses a circumferential

aperture instead of transverse apertures as for the Cutler feed. The brim of the hat is a smooth or a
corrugated flange, and further improvement is achieved using a number of axial slots placed
symmetrically around the waveguide between the aperture and the flange (refer to
Figure 4.17d). The bandwidth of operation depends on achieving wideband coupling from
the central waveguide to the aperture and various methods are used in practice.
The predominant radiating mechanism of most cup feeds is due to the TE11 coaxial wave-

guide mode that is created in the cup. This mode radiates through slots or from the waveguide
aperture itself in the presence of the supporting central conductor. The radiation from an annu-
lar aperture is shown in Figure 4.19. It shows a coaxial waveguide with an infinite flange and a
central conductor of infinite extent. In the region z > 0, the radiated field is equivalent to that
produced by an annulus of magnetic current transverse to the axis of the central conductor. The
electric field radiated from the coaxial waveguide aperture in the presence of the conductor is

TE11

TE11

TM11

TE11 b
ao

s1 s2

1. Input

2. Output

TE11

TE11

TE11

TM11

TE11 (coax)TM11

=
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+

Figure 4.18 Two mode representation of the cup feed waveguide transition. Source: Reproduced
by permission of The Institution of Engineers, Australia
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E r,θ,ϕ =
D
Γ
=

e MdS, 4 50

where it is assumed the aperture is located in an infinite conducting plane andM= 2Ea × z is the
magnetic current on the aperture. The quantity Γ

=

e is the Greens dyadic for the electric field,

and this corresponds to a solution for an infinitesimal magnetic source in the vicinity of an infi-
nite cylinder, the central conductor. Sums of TE and TM coaxial modes can be used to approx-
imate aperture fields in a annular aperture. Rectangular slot apertures can be treated the same
way with rectangular mode functions. For coaxial modes, the orthogonality of the sinusoidal
azimuthal functions ensures that a mode with an azimuthal period p couples only to modes with
the same period. Thus, TEpm and TMpm modes incident on the aperture excite only TEpn and
TMpn modes at the aperture, where integers m and n can be same or different.
A far-field approximation to Eq. 4.50 can be obtained for the TE and TMmodes for the geom-

etry shown in Figure 4.20. For the TEpn mode, which is the m-th modal contribution of the
radiated field (e.g. m = 1 corresponds to TE11), the radiated fields are given by Bird (1987)

Eθ r,θ,ϕ Cmkj
pp

exp − jkr

r
cos pϕ−ϕo

Mm k sin θ,b,a
k sin θ

4 51a

Eϕ r,θ,ϕ −Cmkj
p exp − jkr

r
sin pϕ−ϕo cos θ

k2mLm k sin θ,b,a

k2m− k sinθ 2 , 4 51b

where Cm is a constant, ϕo is the polarization angle relative to ϕ = 0, km is the cut-off wavenum-
ber of coaxial mode m (given approximately by Eq. 4.27). The remaining two functionsMm and
Lm are defined by

M = 2Ea × z
z

ˆ

z
EEaaEa

(a)

(b)

Figure 4.19 Radiation of a coaxial waveguide aperture terminated in an infinite flange
with central conductor of infinite extent. (a) Original problem and (b) equivalent
representation. Source: Reproduced by permission of The Institution of Engineers, Australia
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Mm ξ,x,y =
1
km

Zp kmx,kma Up ξx,ξao −Zp kmy,kma Up ξy,ξao

Lm ξ,x,y =
1
km

xZp kmx,kma Vp ξx,ξao −yZp kmy,kma Vp ξy,ξao ,

where ao is the radius of the central conductor, which, in general, is different from the inner
conductor radius of the aperture a. The functions Un(x, y) and Vn(x, y) are compound Bessel
functions and are defined in Appendix B. A prime on these functions indicates the first deriv-
ative with respect to the first argument. When the external conductor becomes small, that is,
ao 0,Un x,y Jn x and similarly Vn x,y Jn x . Thus, Eqs. 4.51 are generalizations of
Eqs. 4.45 for the TE11 coaxial waveguide (p = 1 =m). The functions M, L, U and V all include
factors that take into account the external conductor. Furthermore, as ao 0 the expressions
reduce to the those for an empty circular waveguide.
Compared with the radiation from circular or coaxial waveguide apertures, the presence of

the external central conductor increases the beamwidth in the E-plane and at the same time
reduces theH-plane beamwidth. The phase centres are widely separated in the principal planes,
and cross-polarization is quite high. For cross-polar levels less than −20 dB, the central con-
ductor radius a = 0 = ao should be kept relatively small, typically kb> 2 5 and a b < 0 3.
A cup feed that is excited by circular waveguide requires ka εr < 1 85, where εr is the dielectric
constant of the material in the centre of the waveguide, which is required to ensure propagation
occurs. To use the stepped waveguide transition, the inner–outer conductor diameter should be
about half the outer conductors’, that is, a b≈0 5 and correspondingly kb> 3 9 εr. For this
range of parameters, theH-plane beamwidth is relatively narrow. This means the best gain with
a reflector is achieved with f D 0 45. When the surrounding flange is finite, diffraction from
the rim can be used to improve the radiation performance. The dependence of the beamwidth
and peak cross-polar level on the flange diameter can be predicted by methods such as GTD
as shown in Figure 4.21. These are compared with some measured results. The addition of a
coaxial ring slot in the flange, which is excited by parasitic coupling from the main aperture,
improves the radiation performance over a narrowband (typically 8%).
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Figure 4.20 Radiation from a coaxial aperture with an extended centre conductor
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As an example of the improvements that are possible, Figure 4.22 shows the properties of a
cup feed (see Figure 4.17c) with aperture dimensions given by b = 27 mm, a/b = 0.533 with a
ring slot as in Figure 4.17c that is located a distance τ = 17 6 mm away with a widthw = 7 5 mm
and depth d = 15 mm. The reflection coefficient of the model (infinite length centre conductor)
obtained from theory is shown in Figure 4.22a along with experimental results for a conductor
length of h = 990 mm. The radiation patterns of a C-band cup feed in the 45 plane at 4 GHz are
shown in Figure 4.22b with and without a ring-slot in the flange. A 7 dB reduction in the peak
cross-polar level is achieved by having a ring-slot in the flange. Another benefit is that the ring-
slot flange brings the phase centres in the principal planes closer together, which in a feed appli-
cation improves antenna efficiency and reduces aberrations. Adding a second ring slot was
shown to make little further improvement to the radiation performance, although it considerably
reduces the operating bandwidth.

4.4.3 Conical Horn

If a circular aperture is flared into a conical horn as in Figure 4.7e, the spherical wavefront pro-
duced in the aperture can be included in the aperture field by the method described for the pyram-
idal horn in Section 4.3. For a conical horn, the distance from thewavefront to the aperture plane is

δ =
1
2
ρ 2

L
, 4 52

ρ = x 2 + y 2 is the radial distance to the source point and L is the distance from the horn
apex to the aperture (see Figure 4.7e). In this formulation it is assumed that the flared aperture
terminates in an infinite conducting plane. Multiplying Eq. 4.34a by Eq. 4.52 and carrying out
the transformation required in polar co-ordinates that is necessary to obtain the far-field
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Figure 4.21 Computed beamwidth in the principal planes and maximum cross-polar in the 45
plane of a cup feed versus flange radius (σ) for a coaxial waveguide with extended centre conductor
(b= 0 36λ, ao b= 0 533) shown in Figure 4.14c. The symbols o, x and Δ correspond to measured values
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Figure 4.22 Characteristics of the cup feed shown in Figure 4.17c with b = 27 mm,
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components from Eq. 3.26 in the following approximate far-zone electric fields of a
conical horn:

Eθ

Eϕ
r,θ,ϕ = ±

jkEo

2
e− jkr

r
Q0 kc, ksin θ, k 2L, a Q2 kc ksin θ k 2L a

cos ϕ
cos θ sin ϕ

,

4 53

where

Qm α,β, γ,a =
a

0
Jm αρ Jm βρ sin θ exp − jγρ 2 ρ dρ 4 54

and kca = 1 841184. Eq. 4.53 is usually quite accurate providing the flare angle, θo, is less than
about 30 . Eq. 4.54 can be expressed in closed form as shown in Eq. B.6. The conical horn can
be modeled more accurately for general flare angles through the mode matching method as
described in Section 4.5.2. The maximum gain of a conical horn can be obtained from
Eqs. 3.48 and 4.38 and is

Gmax =
2 k a Q0 kc,0,k 2L,a 2

J1 kca
2 1− kc k 2 1− 1 kca

2

As an illustration of the results given by Eqs. 4.53, the E- and H-plane patterns were calcu-
lated for a horn with a = 1 7λ and L= 3 5λ. The results are shown in Figure 4.23 along with
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Figure 4.23 Theoretical (Eq. 4.53) and measured (King, 1950) radiation patterns of a conical
horn of aperture radius a= 1 7λ and length L= 3 5λ
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some classic measured results (King, 1950). The computed E-plane pattern agrees reasonably
well with the measured data, but the H-plane pattern is slightly narrower at wider angles pos-
sibly due to how the aperture is terminated. The computed gain is 17.53 dBi which agrees well
with the 17.7 dBi quoted by King.
The phase centre of the conical horn is different in the two principal planes due mainly to

the differences in how the aperture fields terminate at the wall. These phase centres has
been computed from Eqs. 4.53 and 3.46 as a function of the cone angle, θo. As the phase
is available as a function the phase centre calculation is easily modified to replace the sum-
mations with integrals, so that by Eq. 3.46 the phase centre in the azimuth plane ϕ =ϕp

becomes

kzo ϕp =
b1−a1b0
a2−a21

,

where zo(ϕp) is the phase centre location on the z-axis relative to the aperture in the plane,

aq =
θL 2

−θL 2
cosqθdθ θL, bq =

θL 2

−θL 2
Φ θ,ϕp cosqθdθ θL, Φ(θ, ϕp) is the phase

function of the pattern and θL is a symmetrical angular range. In this case, the angular range
chosen is the 12 dB beamwidth, and the phase function is computed from the field given in
Eq. 4.53. The phase centres shown in Figure 4.24 are for a conical horn of radius
a = 5λ and have been normalized to the height of the cone. Note that when 1 + zo L= 0,
zo = −L, the phase centre is at the apex of the cone inside the horn. Furthermore, when
Δ> 0 6, it is seen that phase centre can be just in front of or behind the apex.
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Figure 4.24 Phase centre of a conical of aperture radius a= 5λ versus the cone angle θo. The
height of the cone is L= a tan θo
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4.4.4 Corrugated Radiators

As has been observed previously, smooth-wall circular waveguides and horns have, in general,
differentE- andH-plane patterns. It is desirable for some application to have very similar patterns.
Radiators with equal principal plane patterns are said to be axisymmetric. The reason they are not
axisymmetric for smoothwaveguides is because the electric andmagnetic field components in the
pipe satisfy different boundary conditions on the wall. The tangential electric field experiences a
short circuit, while the magnetic field contends with an open circuit. One result of this is that the
electric field lines are curved as inFigure4.8a.By introducingcorrugations ormetamaterials on the
inside wall, as, for example, in Figure 4.7f, the impedance experienced by the tangential field
components may be modified. The principal surface impedance and admittance are given by

Xϕ = − j
1
ηo

Eϕ

Hz ρ=a

and Yz = jηo
Hϕ

Ez ρ=a

, 4 55

where the Eqs. 4.55 are determined by the width (w), depth (d) and pitch of the slots (p). When
there aremanycorrugations per guidewavelength (in practice >5per guidewavelength is usually
sufficient) and the corrugation depth is approximately λ/4 (a quarter free-space wavelength) (i.e.
d≈0 5λ), the parallel plate transmission lines formed by the slots in the wall transform the
apparent short circuit on the surface into an open circuit, that is, Yz≈0. This allows a non-zero
axial electric field on the corrugated surface, ρ = a, while still giving a zero circumferential
component, that is, Xϕ≈0. Consequently, the modes of corrugated waveguide are no longer
TE or TM to the longitudinal (propagation) direction as in dielectric-lined waveguides. As both
axial field components are present (i.e. non-zero), the modes are called hybrid modes. Starting
from the axial field components

Ez ρ,ϕ = ηoa
e
1J1 k1ρ cos ϕ 4 56a

and

Hz ρ,ϕ = ah1J1 k1ρ cos ϕ, 4 56b

where k1 = k2εr−β
2 is the transverse wavenumber in the region at centre of the waveguide

with dielectric constant εr, the remaining field components can be obtained from Maxwell’s
equations. Satisfaction of the impedance wall conditions results in

ah1 = a
e
1

k1
β

k1a Yz + L1 k1a ,

where

β

k

2

= k1a Xϕ + L1 k1a k1a Yz +L1 k1a

is the characteristic equation in which L1 x = −xJ1 x J1 x . This equation provides the
transverse wavenumber and thereby the propagation constant as a function of frequency.
For a corrugated surface with Yz = 0 and Xϕ = 0
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ah1 = a
e
1

k21a

β
L1 k1a 4 57a

and

β

k

2

= L1 k1a
2 4 57b

There are two roots to Eq. 4.57b. Of interest here is the positive root which gives the principal
mode of corrugated waveguide that is used for aperture antennas. This is the HE11 mode, which
has the field distribution illustrated in Figure 4.8b. The root corresponding to this mode is

β =
β

k
=L1 k1a 4 58

Equation 4.58 has to be solved to find k1a. The rectangular components of the transverse
electric field of HE11 mode are approximately given by (Clarricoats & Olver, 1984)

Ex ρ,ϕ =
Eo

2
β +Λ J0 k1ρ + β−Λ J2 k1ρ cos 2ϕ 4 59a

Ey ρ,ϕ = −
Eo

2
β−Λ J2 k1ρ sin 2ϕ , 4 59b

where k1 = k2εr−β
2 and Eo = − jae1 k k1 . The functionΛ = L1 k1a β is related to the ratio of

longitudinal electric and magnetic field components and is the inverse of the so-called hybrid
factor. The magnetic field can be obtained from Maxwell’s equations.
In antenna feed applications, optimum operation occurs when a circularly symmetric radi-

ation pattern is achieved. Equation 4.59b shows that this occurs when Λ = 1 β≈1, which is
known as the balanced hybrid condition, where the y-component of the aperture field vanishes
and there is zero cross-polarization. At the balanced hybrid condition, β≈k and L1 x01 = 1,
where k1a= x01 = 2 40482. An approximation to Eq. 4.58 based on the Taylor series in the
vicinity of x01 is

L1 x ≈ 1 + x01 x−x01 +
x01
2

x−x01
2 4 60

This approximation has an error less than 10% for most values of x of practical interest. At
the balanced hybrid condition, Eq. 4.56 shows that apart from the free-space wave impedance
factor, the amplitude of the longitudinal field components is identical. Also, from Eq. 4.60, an
approximation to the operating condition is

β

k
= 1−

k1
k

2

≈ 1 + x01 k1a −x01 +
x01
2

k1a −x01
2 ,
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which gives an estimate that is accurate within 1% or better for ka > x01 and has the advantage
of not requiring Bessel function evaluations. As an example, consider a corrugated waveguide
with a 2 cm inner diameter (a = 1 cm), operating at a frequency of 30 GHz giving ka= 6 287.
The approximation above estimates k1a = 2 374, while Eq. 4.58 gives k1a= 2 373. The smallest
real root of the approximate equation for ka> 3 is accurately given by

k1a≈x01 1−Δ ,

whereΔ=
1 + 1 K2 − 1 + 2−x01−x201 K2

x01 + x201 + 1 K2

where K = ka andΔ 0 asK ∞ in accordance with the exact solution.
An improved approximation to the transverse fields in the vicinity of the balanced hybrid

condition of the HE11 mode that takes into account the bell-shape amplitude, which tapers from
the axis to vanish at the corrugations, is

Et = xE1J0 kρρ , 4 61a

Ht =
1
ηo
z×Et, 4 61b

where kρ = x01 a. As seen in Figure 4.8b the electric (and magnetic) field lines are parallel vir-
tually everywhere in the transverse plane. It is left as an exercise to the reader to show from
Eqs. 4.61a and 3.20 the far-zone electric fields radiated by the HE11 mode at the balanced
hybrid condition are

Eθ

Eϕ
r,θ,ϕ = ±

jk

4π
e− jkr

r
1 + cos θ Nx

cos

sin
ϕ, 4 62

where Nx =
2πE1

k2ρ −w
2
kρa J1 kρa J0 wa and w= k sin θ. As noted earlier, the radiation patterns

in the E- and H-planes are identical. These patterns are governed by the Bessel function of zero
order, and several examples are shown in Figure 4.25. It is observed that a simple approximation

to the Bessel function in Eq. 4.62 over most of the main beam is J0 z exp − z 2 2 and this

can be used to study possible designs and radiation patterns.
The total power radiated by the HE11 mode at the balanced hybrid condition is

PT =
E2
1πa

2

2ηo
J21 kρa ,

from which the maximum gain of corrugated waveguide can be shown to be

Gmax = 0 692 ka 2

This gives a maximum aperture efficiency ηa of 69.2%.

107Waveguide and Horn Antennas



As an alternative approach, consider a corrugated waveguide terminated in a large ground
plane. To determine the radiated fields from Eq. 3.26, substitute Eqs. 4.59a and 4.59b into
the transform vector N. Making use of the Bessel integral identities in Appendix B, the
result is

Eθ r,θ,ϕ =
jkEo

2
e− jkr

r
β +Λ N1 cos ϕ + β−Λ N2 sin ϕ 4 63a

Eϕ r,θ,ϕ = −
jkEo

2
e− jkr

r
cos θ − β +Λ N1 sin ϕ + β−Λ N2 cos ϕ , 4 63b

where

N1 θ,ϕ = Ω0 k1a,wa +Ω2 k1a,wa cos 2ϕ

N2 θ,ϕ = −Ω2 k1a,wa sin 2ϕ

Ω0 α,β =
a2

α2−β2
αJ1 α J0 β −βJ0 α J1 β
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Figure 4.25 Radiation pattern of circular corrugated waveguide. The parameter is the waveguide
radius in wavelengths
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Ω2 α,β =
a2

α2−β2
βJ2 α J1 β −αJ1 α J2 β

and w= ka sin θ.
Terminating the periodic corrugated waveguide at an aperture results in reflections and the

presence of higher order modes. This transition to free-space can obviously be improved by
either extending the corrugations into the aperture plane with a smooth curve (see Thomas,
1978) or by means of a taper (see Figure 4.26). Conical corrugated horns may be treated in
the same way as smooth wall conical horns. Approximate aperture fields are obtained by multi-
plying Eq. 4.61a with the quadratic phase factor exp − jkδ , where δ is given by Eq. 4.52. At the
balanced hybrid condition, the radiated fields of a conical corrugated horn with a linear taper of
length L and aperture radius a are approximately given by

Eθ

Eϕ
r,θ,ϕ = ±

jkE1

2
e− jkr

r
1 + cos θ Q0 kρ,k sin θ,k 2L,a

cos

sin
ϕ, 4 64

where Q0 is given by Eqs. 4.54 and B.6. Assuming negligible reflection at the aperture, the
maximum gain that is predicted by Eq. 4.64 is

Gmax =
2k
aI

2 Q0 kρ, 0,k 2L,a

J1 kcaI

2

,

where aI is the radius of the input waveguide. Eqs. 4.59 and 4.64 are helpful for the design of
horns with a moderate flare angle ( < 30 ) and linear profile. For example, some results are
shown in Figure 4.27 for a horn with a = 2 1λ, L= 20λ and θo = 6 obtained from Eq. 4.64 where
there is excellent in excellent agreement with experiment (Loefer et al., 1976). Also, there is
similarly good agreement with experiments at 12.5 GHz when Eq. 4.64 is applied to the

θo

2a

𝝀/4

L

Figure 4.26 Conical corrugated horn. The nominal corrugation depth is λ/4 but near the throat
region the depth is reduced gradually from λ/2 to λ/4 for good matching to the smooth wall input waveguide
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corrugated feed horn shown in Figure 1.1d, which has a wider flare angle θo = 11 8 , L= 65 33
cm and diameter 2a = 27 3 cm. In both designs 4–5 corrugations per wavelength were used
along the length of the horn, which is usually sufficient to represent a periodic surface. Match-
ing of corrugated horns and wideband design of corrugated horns is described in the references
(Thomas, 1978; Thomas et al., 1986; Olver et al., 1994). An approach that provides a good
match over moderate bandwidth is to have a uniform waveguide input section where the cor-
rugations commence from a depth with a depth of λ/2 in order to simulate an electric wall. As
the horn is flared, the depth of the corrugations are gradually reduced until a depth of λ/4 is
reached, whereupon they are continued at this depth until the aperture is reached as shown
in Figure 4.26.

4.4.5 Cross-Polarization

Cross-polarization became important in antenna design with the introduction of terrestrial and
satellite radio systems using two orthogonal polarizations. Signals may be transmitted either
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Figure 4.27 Radiation pattern of corrugated horn a = 2.1 λ, L = 20 λ, θo = 6 slot depth 0.228λ,
theory (Eq. 4.64) versus experiment (Loefer et al., 1976)
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linearly polarized in vertical and horizontal components or in circular polarization where the
signals can rotate in a right- or left-hand sense. Frequency ‘re-use’ by dual polarization effec-
tively doubles the system bandwidth. Circular waveguides and horns are desirable for dual
polarized applications because of their geometrical symmetry. However, as has been seen, this
does not ensure low cross-polarization and hence low interference. For example, in Figure 4.8a,
the TE11 mode in smooth wall waveguide has a radial-oriented electric field at the wall, and
therefore ‘cross-polarization’, occurs to satisfy the boundary conditions. Cross-polarization
is transferred to the far-fields, but this can be reduced by the excitation of other suitable modes
or with parasitically excited slots in the flange.
Most of the circular waveguides and horns described in Section 4.4 radiate a total electric

field of the general form

E r,θ,ϕ = c
e− jkr

r
θA θ cos ϕ+ϕB θ sin ϕ , 4 65

where A(θ) and B(θ) are the E- and H-plane pattern functions, and c is a constant. In some cir-
cumstances, only the E- and H-plane patterns may be known and Eq. 4.65 is a reasonable start-
ing point for design. The form of Eq. 4.65 is a consequence of geometrical symmetry and the
aperture fields having only a single period in azimuth (i.e. cos ϕ or sin ϕ dependence).
Eq. 4.65 can be resolved into components parallel and perpendicular to a reference field as

described in Section 3.5.4. The parallel component (p) is the co-polar field, and the cross-polar
field is the orthogonal component (q). The reference polarization is the one that gives an electric
field parallel to the x–z (E-) plane for all angles θ and also perpendicular to the y–z (H-) plane.
That is, the reference field is

p= θ cos ϕ +ϕ sin ϕ 4 66a

The orthogonal cross-polar field vector is

q= r × p = −θ sin ϕ +ϕ cos ϕ 4 66b

Resolving Eq. 4.65 into co-polar and cross-field components results in

Ep =E p = c
e− jkr

r
A θ cos2ϕ+B θ sin2ϕ 4 67a

and

Eq =E q = −c
e− jkr

r
sin 2ϕ

A θ −B θ

2
4 67b

When A θ =B θ , Eq. 4.67a indicates that the co-polar component is independent of ϕ, that
is, the radiation pattern is axisymmetric. An antenna with this property is called a Huygens
source. Also, the cross-polar component, given by Eq. 4.67b, is zero. Some antennas, such
as corrugated waveguides and horns operate close to these conditions. Generally for smooth
wall circular radiators A θ B θ although the phase of the pattern functions is approximately

111Waveguide and Horn Antennas



the same. Eq. 4.67b shows that peak cross-polarization occurs between the principal planes at
θ = ± 45 and equals A θ −B θ 2. Therefore, cross-polarization due to antennas of the type
described by Eq. 4.65 depends on the difference of the E- and H-plane pattern functions. Fur-
ther, as the phase of these functions is approximately the same, the peak cross-polar level is
approximately given by the difference in the E- and H-plane patterns. On the other hand,
the co-polar pattern in the inter-cardinal planes is A θ +B θ 2, that is, the average of the
E- and H-plane patterns.
Cross-polar patterns have a characteristic null on axis. Some examples are shown in

Figure 4.28 for circular waveguides with E- and H-plane patterns given in Figure 4.10. The
patterns that are computed with the simple E–H and E-field models are sometimes too inaccu-
rate for design because of the importance of wall currents in cross-polarization. More sophis-
ticated models that include the effects of the flange can predict cross-polarization quite
accurately, as illustrated in Figure 4.29.
Now consider the case of corrugated waveguide once again in a little more detail.

The field components in the p and q directions as derived from Eq. 4.63 are in the
following form:

Ep =E p

≈c
e− jkr

r
β +Λ Ω0 +Ω2 cos 2ϕ cos2ϕ− β−Λ Ω2 sin 2ϕ sin ϕ cos ϕ

− β +Λ Ω0 +Ω2 cos 2ϕ 1 sin
2ϕ + β−Λ Ω2 sin 2ϕ cos ϕ sin ϕ
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Figure 4.28 Circular waveguide cross-polar patterns in 45 plane (E–H field model)
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That is,

Ep≈c
e− jkr

r
β +Λ Ω0 +Ω2 cos 2ϕ − β−Λ Ω2 sin

22ϕ

Also,

Eq =E q≈c
e− jkr

r
β +Λ Ω0 +Ω2 cos 2ϕ cos ϕ sin ϕ− β−Λ Ω2 sin 2ϕsin

2ϕ

− β +Λ Ω0 +Ω2 cos 2ϕ 1 cos ϕ sin ϕ + β−Λ Ω2 sin 2ϕcos2ϕ

That is,

Eq =E q≈ −c
e− jkr

r
sin 2ϕ β−Λ Ω2

Clearly the peak cross-polarization occurs in the ±45 planes. Of interest is this value
relative to the peak co-polar level. Thus, for the corrugated waveguide,

Eq peak
Ep ϕ=±45

≈
β−Λ Ω2

β +Λ Ω0 +Ω2
4 68
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Figure 4.29 Patterns of circular waveguide with a flange (James, 1979). Source: Reproduced
by permission of The Institution of Engineers, Australia

113Waveguide and Horn Antennas



This ratio is zero at the balanced hybrid condition. At frequencies close to the balanced
hybrid condition, the approximation Eq. 4.60 applies and also β≈k. Hence

Eq peak
Ep ϕ=±45

≈ x01 x−x01 +
x01
2

x−x01
2 Ω2

2 Ω0 +Ω2

Equality of the E- and H-plane patterns may be difficult or impossible to achieve in practice.
However, by ensuring the E- and H-plane patterns cross-over at around the 8–13 dB level
reasonably low cross-polarization may be realized for feed applications. Parasitic rings
(Figure 4.7b) are also useful for tailoring the radiation pattern to minimize cross-polarization
(James, 1979).

4.5 Advanced Horn Analysis Topics�

Among the possible further topics to discuss in relation to waveguide and horn antennas, three
important aspects have been selected for further study because of their important conse-
quences for practical design. These topics are flange effects, modelling of stepped horns
through mode matching and the design of horns with a general profile in order to achieve
specific performance requirements. These advanced topics will be considered in the following
sections.

4.5.1 Flange Effects∗

As has been seen from Figure 4.29 and elsewhere, the flange surrounding the aperture of a
waveguide or horn can have a significant effect on the principal radiation patterns as well as
cross-polarization. The flange tends to have a second-order effect on the input reflection coef-
ficient although it can be significant for small aperture horns. When a horn radiates, the field
is scattered by any obstacle nearby in the 360 space surrounding it. Because the field is

(X1,Y1)

(X2,Y2) (X3,Y3)

(X4,Y4)

Figure 4.30 Layout of a finite flange and the vertices defining its shape
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usually small at the rear of the horn, the amount scattered directly back to the aperture is
usually small, except when there are other external objects, and therefore its influence on
other parts of the pattern is secondary. A flange or aperture rim can occur very near the actual
source of radiation as they are often in the same plane (i.e. at 90 ). Currents are set up on these
nearby objects, and they radiate in all directions including back towards the aperture which in
turn influences the radiation from the horn. Usually, it is a good approximation to assume the
edges and rims are secondary radiators that are superimposed on the direct radiation from the
aperture.
There are several approximate methods by which to calculate corrections for the flange. The

methods are geometrical theory of diffraction (GTD) (James, 1986) and the physical theory of
diffraction (PTD) (Hay et al., 1996) which can be employed to correct the radiation patterns for
the effect of diffraction from a finite flange (such as in Figure 4.30). While GTD is based on the
laws of geometric optics, PTD uses the assumptions of physical optics in conjunction with the
field equations. Although GTD is normally computationally faster than PTD, PTD tends to be
more accurate and the pattern obtained is a continuous function.1 It is recommended that PTD
be used if the edge of the flange is close to an aperture.
In both methods the flange can be assumed to be circular, polygonal or a general shape.

Within the accuracy of the methods used a rectangular co-ordinate system such as in
Figure 4.30 is convenient for describing most flanges. The edge of the flange is treated as a
vertex of two planes (see Figure 4.31) with an internal angle β. To treat a flange with finite
thickness it is best to choose β = 90∘ (Figure 4.31a). A thin flange is treated by setting
β≈0∘. This means the edge will have a profile like that in Figure 4.31b. Note that a wedge angle
of β = 90∘ models the rear of the antenna as an infinite conductor extending behind the aperture,
and the fields normal and tangential to the conductor will satisfy the usual boundary conditions.
The fields are unspecified inside the conductor and, therefore, to estimate the horn’s front-to-
back ratio it is preferable in that case to use a thin flange approximation. Although these models
are approximations, they often give satisfactory corrections to the radiation pattern, providing
the flange is not too near the aperture ( > 0 1λ).The alignment of the field with the edge of the
flange is an important factor in assessing the likely effect of the flange on the radiation pattern.
For example, in the E-plane, the electric field is normal to the edge and this results in a larger
scattered field due to a larger diffraction coefficient than in the H-plane. Therefore, the E-plane
pattern is more greatly impacted by a finite flange. The reader should consult the references for
further details (Balanis, 1982; James, 1986; Hay et al., 1996).

4.5.2 Mode Matching in Horns∗

The representation of the field in a tapered, stepped or a more general profiled structure can
be handled in several ways. One of these is the method ofmodematching, which is quite accurate
and has an appealing physical description that is given in this section. A generalmodel of a simple
electromagnetic horn, shown in Figure 4.32, radiates into a multi-dielectric semi-infinite region.
Transition sectionsmay be employed in the horn for matching purposes along with choke rings in

1Discontinuities cause problems when the data are used to compute secondary radiation from reflectors.

115Waveguide and Horn Antennas



order to control the radiation. There are essentially two types of approach needed to handle the
transverse discontinuities in the closed waveguide and semi-infinite regions, and each approach
requires knowledge of the modes in the waveguide region. A prototype section for mode match-
ing in a closed waveguide is shown in Figure 4.33. Modal field solutions may be obtained by
analytical methods for waveguides with circular, elliptical and rectangular cross section, while
structures with more general cross sections can be analysed with a numerical method, such as
the finite elements. Whatever technique is used to obtain the transverse fields, it is assumed that
a set of knownmodes with transverse fields is available in the form (epi, hpi ), where the subscript
p refers to the mode and i is the section number. These forward and reverse travelling waves have
coefficients api and bpi resulting in column vectors a1, b1, a2 and b2. Note that in conventional
scattering wave notation, on the input port a1 = a1 and b1 = b1, and on the output port a2 = b2
and b2 = a2.

In section i of the horn, the total transverse field E i
t ,H

i
t is approximated as a finite sum

of M(i) modes as follows:

E i
t =

M i

p= 1

apie
− jγpiz + bpie

+ jγpiz epi x,y Y −1 2
pi 4 69a

H i
t =

M i

p = 1

apie
− jγpiiz−bpie

+ jγpiz hpi x,y Y + 1 2
pi 4 69b

(b)

(a)

ß ≥ 0°

ß = 90°

Figure 4.31 Modelling the edge of a finite flange (a) 90 corner; and (b) wedge of angle β
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Figure 4.32 Geometry of a typical electromagnetic horn
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Figure 4.33 Prototype section for mode matching in waveguides
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where γpi = βpi− jαpi = propagation constant of mode p in region i

hpi = z× epi

and

Si

dSepi × hqi z = 2δpq 4 70

Ypi is the wave admittance of mode p and δpq is the Kronecker delta. By enforcing continuity

of the fields at z = 0 and by vector post-multiplying E 1
t =E 2

t by hq1 and pre-multiplying

H 1
t =H 2

t by eq2 and integrating across the junction taking into account orthogonality
Eq. 4.70 results in the following mode-matching equations:

D−1
1 a1 +b1 =CD−1

2 a2 + b2

CTD1 a1−b1 =D2 a2−b2
4 71

After rearranging

b1

a2
=

S11 S12
S21 S22

a1
b2

where S11, S12 and so on are scattering parameters of the junction given by

S11 = − I+XY −1 I−XY ,

S12 = 2 I +XY −1X,

S21 = 2 I+YX −1Y,and

S22 = I+YX −1 I−YX

In addition, I is the unit matrix, X=D1CTD−1
2 and Y=D−1

2 CD1 =XT, where

D1,2 =

Y1 2
11,12 0 0

0 Y1 2
21,22 0

0 0 Y1 2
31,32

The elements of the matrix C are given by
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Cpq =
1
2 Si

dS ep1 ×hq2 z 4 72

Two further fundamental operations are needed to analyse more than a single step in cross
section. Uniform waveguide interconnections are treated by a reference plane extension, and
the other is the combining scattering matrices of many sections in cascade by concatenating the
scattering matrices of each section.
The cascading is illustrated in Figure 4.34 for two sections in scattering matrix notation.
Let M(i) be the number of modes present at port i. To find the equivalent scattering matrix

for a cascade of two two-port networks that have known scattering matrices S(1) and S(2), let the
scattering matrix for network i be partitioned as follows:

b i
1

b i
2

=
S i
11 S i

12

S i
21 S i

22

a i
1

a i
2

4 73

Continuity is enforced between the networks when

a 1
2 = b 2

1 and a 2
1 = b 1

2

The reflected wave amplitude at the input of network 2 is

b 2
1 = S 2

11 a
2
1 + S 2

12 a
2
2

= S 2
11 b

1
2 + S 2

12 a
2
2

= S 2
11 S 1

21 a
1
1 + S 1

22 b
2
1 + S 2

12 a
2
2

That is,

b 2
1 =ΔS 2

11 S
1
21 a

1
1 +ΔS 2

12 a
2
2 ,

S(1) S(2)

 a
1

(1)
a1

(2) a1
(1)

a1
(2)

b2
(2)

b2
(1)

b1
(2)

b1
(1)

Figure 4.34 Concatenation of two scattering matrices
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where Δ= I−S 2
11 S 1

22

−1
. This last equation is now substituted into b 1

1 and b 2
2 to produce

the scattering matrix equations for the combined network

b 1
1 = S 1

11 + S 1
12 ΔS

2
11 S 1

21 a 1
1 + S 1

12 ΔS 2
12 a

2
2

b 2
2 = S 2

21 S 1
21 +S 1

22 ΔS
2
11 S

1
21 a 1

1 + S 2
22 + S 2

21 S
1
22 ΔS

2
12 a 2

2 4 74

That is,

S=
S 1
11 + S 1

12 ΔS
2
11 S

1
21 S 1

12 ΔS
2
12

S 2
21 I+ S 1

22 ΔS
2
11 S 1

21 S 2
22 + S 2

21 S
1
22 ΔS

2
12

4 75

Eq. 4.75 is the scattering matrix of concatenated uniform sections 1 and 2.
As an illustration of the results obtained from themode-matchingmethod, consider transverse steps

in rectangularwaveguides in theH- andE-planes, respectively. The resultswill be used to demonstrate
the convergence of the mode-matching solution with an increasing numbers of modes. The question
of convergence of the mode-matching method has been debated in the literature (Lee et al., 1971;
Masterman & Clarricoats, 1971). In the examples to follow, consider a square waveguide input with
side length 0.7λ and output waveguide with dimensions of 0.7λ by 1λ. Two cases arise corresponding
to this step occurring in the E- or theH-plane. A TE10 mode is incident at the input and the reflection
coefficient in the square waveguide is plotted in Figs. 4.36 and 4.37 as a function of the number of
modes in the output waveguide. In the H-plane case, TEm0 (m = 1, 3, 5,…) modes are only excited,
while in theE-plane case, TE1n and TM1n (n = 0, 2, 4,…) modes are excited in the output. Results are
shown for each case in Figures 4.35 and 4.36 under two situations: (a)M 1 =M 2 i.e. mode num-
ber is the same in each region, and (b)M(1)/M(2) = (input dimension)/(output dimension). The
latter (b) has the potential advantage of requiring fewer modes, which offers substantial reduc-
tion in computation time for structures composed of many steps. Most importantly, it ensures
the edge condition is satisfied at the step as M(2) increases exponentially (Lee et al., 1971;
Hockham, 1975). Figures 4.35 and 4.36 show that there is little advantage in accuracy of
(b) over (a) for single steps in waveguide cross section. However, if a thin iris were to separate
the two waveguides, (b) would ensure convergence to the correct solution.
A mode-matching method is now described for modelling the radiation from a horn. In the

exterior region, the fields may be represented as integrals of a suitable Green’s function and the
equivalent electric and magnetic currents on the aperture surface. This will be described in
Section 7.3 for apertures located in a large ground plane that is parallel to z = 0. Continuity
of the transverse fields at the aperture and then an application of Galerkin’s method results in

b 0 = S 0 a 0 , 4 76

where S(0) is the mode scattering matrix at the aperture for modes transitioning to free-space,
a(0) is the vector of incident mode amplitudes and b(0) is the amplitude of the reflected mode
amplitudes at the apertures.
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The number of modes required for an accurate representation of the aperture field
depends on the operating frequency. If the waveguide or horn operates in the fundamental
mode and all other modes are well below cut-off, a good estimate of reflection is obtained
from a few modes only. Use of several high-order modes is recommended, however, for
accurate predictions. Satisfaction of the edge condition is not critical except when there
is a thin iris at the aperture, although Hockham (1975) showed that for rectangular wave-
guide, inclusion of TEm0 (m = 3, 5, …) and TE0n (n = 2, 4, …) modes improve solution
convergence.
The final part of the analysis combines the mode scattering matrices of the horn transitions

with the mode scattering matrix of the aperture. A network model for an array of horns that
combines radiation and horn steps is shown in Figures 7.12 and 4.37 where for simplicity only
horn (1) is shown. Assume modes of amplitude aI are input to all horns which is represented by
a combined mode scattering matrix S. Separately, at the input of element p of the array there are

forward and backward waves with amplitudes a p
I and b p

I . These amplitudes are related to the
forward and backward waves at the aperture through

bI
aO

=
S11 S12
S21 S22

aI
bO

, 4 77

M(1) = M(2)

M(1) = 0.7M(2)
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Figure 4.35 Reflection coefficient at an H-plane step in rectangular waveguide
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where a p
O and b p

O are the amplitudes of incident and reflected modes at the aperture and where
the sub-matrices of the scattering matrix are partitioned as follows:

Sij =

S 1
ij 0 0 …

0 S 2
ij 0 …

0 0 S 3
ij …

… … …

bO

(1)

a(0)

b(0)

S(0)

Radiation
network

Horn 

S
(1)

aI

(1)

bI
(1)

aO

(1)

Figure 4.37 Network representation of a horn
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Figure 4.36 Reflection coefficient at an E-plane step in rectangular waveguide
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where S n
ij refers to the scattering matrix for horn n. By means of Eqs. 4.76 and 4.77, a rela-

tionship is obtained between the reflected mode amplitudes and the incident mode amplitudes,
as follows,

bI = S11 + S12S 0 I−S22S 0
−1
S21 aI

a 0 = I−S22S 0
−1
S21 aI 4 78

b 0 = S 0 I−S22S 0
−1
S21 aI

From Eq. 4.78 it is seen that all coefficients depend on the matrix I−S22S 0 , which is

almost unity for large apertures as they are reasonably well matched to the external aperture
and the remainder of the horn. This occurs for horns with gentle linear tapers. In that instance,
the reflection coefficient is determined by the mismatch at the horn input and the mode distri-
bution in the aperture is determined by the transmission within the horn itself.

4.5.3 Profiled Horns∗

The design of a horn is usually a compromise of several competing performance options such as
efficiency, low sidelobes and cross-polar levels as well as achievement of a minimum reflection
coefficient. To do this in a systematic manner, it is advisable to use a structured approach such
as a numerical optimization method and to profile the horn accordingly. In the method to be
outlined here, an initial horn profile is represented by a cubic spline passing through a series of
node-points (Bird & Granet, 2013). Thus approximated, the horn can then be modelled by
means of several techniques for the purpose of analysis. If the mode-matching technique is
adopted, short uniform waveguide sections are selected between the node points.
The traditional approach is to select a horn geometry and a representation of it and to model

its performance compared with a reference structure. However, the availability of accurate and
fast analysis methods, coupled with optimization methods, has made automatic geometry deter-
mination possible with fast computers. The geometry can be changed in a systematic way to
improve the horn’s performance. These changes, and the design approach itself, should have
physical basis such as limits on the maximum gain and sidelobe level for a given aperture taper.
An alternative design approach is to fix the basic structure such as the geometry, any sub-

strate thicknesses and dielectric constants. Other constraints can be implemented in the method
by setting limits on the input reflection coefficient, minimum or maximum gain, efficiency,
peak cross-polarization, sidelobe levels, radiation pattern symmetry, half-power beamwidth,
and minimum or maximum dimensions such as the wall thickness and the total length. In feed
applications, the reflector edge illumination may need to have limits.
A simple way to implement these constraints is through a penalty function and optimizer,

which is a well-established optimization strategy. The process then modifies/changes the geom-
etry in three-dimensional space while at the same time checks to determine how these changes
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alter the performance. This process is shown diagrammatically in Figure 4.38. The process
amounts to modifying the geometry in one space while applying constraints in other spaces.
The actual implementation of a penalty function and numerical optimization is described in

the function Section 6.9.2. The techniques adopted here are very similar to the optimization of
the excitation coefficients for arrays and the approach has been adapted for horn profiling. In
the remainder of this section, aspects of the optimization related to profiling horns are discussed
and some results are described.
A penalty function approach commences with creating a performance index. This index is

constructed usually from a sum of constraint functions. Let L stand for function to be mini-
mized. Initially L is set equal to zero. At each frequency fi a contribution to L(i) is obtained
at all NF frequency points (i = 1, …, NF) in the band. For example, let constraints be applied
to RL(i) = return loss, XP(i) = peak cross-polar, and CP(i) = co-polar level at frequency i. Sup-
pose the target limits of each of these is designated by a ‘T’. Thus, RLT(i), XPT(i) and so on are
the targets. Let NRL, NXP etc. be integer powers on each constraint and wRL, wXP etc. be
weighting functions on them. Therefore, at frequency i, L(i) is formed as follows:

Let L(i) = 0, then
If RL(i) < RLT(i), let L(i) = wRL(RLT(i) − RL(i))NRL.
If XP(i) > XPT(i), let L(i) = L(i) + wXP(XP(i) − XPT(i))NXP.
If CP(i) < CPUB(i), let L(i) = L(i) + wCP1(CP(i) − CPUB(i))NCP.
If CP(i) > CPLB(i), let L(i) = L(i) + wCP2(CPLB(i) − CP(i))NCP and so on as required.

Note that if all constraints are satisfied, then the index L(i) is zero.
Once a penalty function has been created, it can be minimized or maximized using standard

techniques as described in the next sub-section. In profiling, it can be beneficial to employ a

Geom 1 Geom 2 Geom 3

Geom N

Geometry
selection

Performance
parameter

EM model

Figure 4.38 Diagrammatic representation of geometry optimization
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combination of optimization methods. For example, particle swarm optimization (PSO) could
be used to get into the vicinity of a global optimum, and this could be followed by a gradient
search technique for faster convergence to the minimum.
When using optimizers, usually a first trial design is made with the constraints deliberately

relaxed to ensure convergence. Then the requirements are tightened until converge fails. Dur-
ing this process, care must be taken as the result may not be optimum in any sense. If the prob-
lem is well formulated, good results are nearly always obtained. Any uncertainty may
correspond to the problem of local versus global extrema in optimization.
Representation of the surface depends on whether it is to be rotationally symmetric or not.

For rotational symmetric surfaces such as horns or dielectric rods, a cubic spline with knot
points uniformly distributed along the z-axis can be used to represent the profile. This ensures
a smooth and continuous profile while minimizing the number of parameters to optimize. In

this case, p u =
m

i= 0
Ni u pi, where Ni(u) is the spline function (de Boor, 1978). For general

surfaces, the surface is discretized into panels as shown in Figure 4.39. The shape function on
the panel is specified by a B-spline surface, and the coefficients of these shape functions are
optimized. Such a shape function is

p u,v =
m

i= 0

n

j= 0

Nip u Njq v pij, 4 79

where the pij are optimized (de Boor, 1978). The design objectives for profiled horns often
involves minimizing the overall length for a given diameter horn. This has benefits in applica-
tions with weight and space limitations. In some reflector systems, the space available is very
limited and a shorter horn would be convenient and possibly less expensive as long as the per-
formance was not compromised. For an axisymmetric horn, the profile is initially represented
by a series of points. Cubic splines are then fitted to these points. The coefficients of the spline

a1,2

a0,1

a1,0

a0,2

a0,0

a2,0

a2,2

(a)

Panel

(b)

Figure 4.39 Spline representation of (a) Bezier surfaces with control polygons ai,j and (b) general
two dimensional surface made up of panels
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functions are then optimized. This usually means a smaller number of optimizer variables com-
pared with a point-wise representation. The basis of the approach is optimization based on
minimizing a penalty function usually over a band of frequencies. Further details of the format
of a penalty function are provided in Section 6.9.2.
Most horns in common use can be represented by one or two profiles as illustrated in

Figure 4.40. The single profile corresponds to the axisymmetric horn. The two profiles corre-
spond to a rectangular (Bird & Granet, 2007) or elliptical horn. In each plane there are design
parameters on which the optimizer is required to satisfy where possible.

4.5.3.1 Optimization�

The coefficients of the spline functions are adjusted to satisfy the required constraints. For
example, a gradient search or a genetic algorithm could be used to minimize the performance
index over a band of frequencies. A flow chart of the optimization approach is shown in
Figure 4.41. The length of the horn could be part of the numerical optimization, but often it
is simpler instead to do this manually and run the software several times to adjust it. The vari-
ables involved in a typical single horn profile optimization are listed in Table 4.2.

4.5.3.2 Parametric Profiles�

It is great assistance for convergence to choose an initial profile at the start of the optimization
that is a good approximation to the final result. Some useful starting profiles are defined below
for a small number of parameters including the input radius ai, aperture radius ao length L of the
profiled section and a shape function (Figure 4.42).
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bi

ai

a1

a3

a2

a4

a5

a0

b1

L1

L2

L3

L4

L5

b2 b3
b4

b5
b0

Figure 4.40 Horn profile representation in two planes. In a circular symmetric horn bi = ai
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Initialize geometry:
Initialize fixed quantities {F}

Initialize variables {X}
Set no. of sections (Ns) and step size  (Ds) length L=Ns*Ds

Compare performance parameters (eg. efficiency, reflection)
with user-specified targets.

Let optimizer modify {X} ensuring variables lie 
within user-defined limits

Final geometry:
Optimized variables {X}

Final analysis by mode-matching method

Compare performance parameters with user-specified targets. 
Calculate objective function L. 

Has the minimum or exit condition been reached?

Yes

Fit cubic splines to the horn profile(s) 

Analyze using mode-matching method

End

Fit cubic-splines to the horn profile(s) 

Analyse using mode-matching method

No

Figure 4.41 Flow chart of optimization

Table 4.2 Typical variables involved in a horn profile optimization

ai Input width/height – the first extreme node in each plane (fixed values)
ao Output width/height – the second extreme node in each plane
do Allowed displacement of the output width/height (usually set as a % of ao) since the

required beamwidth of the radiation pattern is known beforehand and ao can be
estimated

a1, a2, a3, a4, a5 Width/height of the five inner nodes
d1, d2, d3, d4, d5 Allowed displacements of each of the inner nodes (making a1, a2, a3, a4, a5

constrained variables)
L1, L2, L3, L4, L5 Positions of each of the inner nodes as % of the horn’s length
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Linear:

ρ z = ai + ao−ai
z

L
4 80a

Gaussian (or hyperbolic):

ρ z = ai 1 +
z

L

2 ao
ai

2

−1 4 80b

Sine to the power p:

ρ z = ai + a−ai sinp
πz

2L
4 80c

The parametric profiles given by Eq. 4.80 can provide suitable results by themselves.
For example, the corrugated horn shown in Figure 4.43 was designed with a sine raised to
the power p profile by adjusting the parameter p in Eq. 4.80c in order to give low sidelobes
which was required in order to avoid interference with neighbouring satellites in a space-borne
application (Granet et al., 2000). The radix p = 0 8 gave the best predicted results. Further
details of this horn are given in Section 10.3.1.
As an example of a horn with a profile designed by optimization is the two wavelength diam-

eter circularly symmetric horn shown in Figure 4.44. The horn profile was designed for maxi-
mum gain and a peak cross-polarization less than –25 dB in the frequency band 11.7–12.2 GHz.
This horn was designed by the techniques described previously and was fabricated as shown in
Figure 4.44. The profile is plotted in Figure 4.45. The computed andmeasured results across the
band are given in Table 4.3. Two different computer simulations were used to analyse the horn.
One method was mode matching (MM) and the other was with CST Microwave Studio
(MS). There is generally good agreement between the two methods and also with experiment
(Expt) as is seen in Table 4.3. Measured and computed patterns at 11.95 GHz are shown in
Figure 4.46. The reflection coefficient was less than –25 dB at frequencies above 11.7 GHz.

Radius

ai

ao

Z

L

ρ

Figure 4.42 Geometry for parametric profiles
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Figure 4.44 Smooth wall circular horn with aperture diameter 2λ designed for maximum gain
and low cross-polarization
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Figure 4.43 Profiled corrugated circular horn with sine-to-power p = 0.8
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Figure 4.45 Profile of smooth wall circular horn shown in Figure 4.44



T
ab

le
4.
3

M
ea
su
re
d
an
d
co
m
pu
te
d
ga
in

of
th
e
pr
of
ile
d
ci
rc
ul
ar

ho
rn

sh
ow

n
in

F
ig
ur
es

4.
44

an
d
4.
45

M
M

M
S

E
xp
t

F
re
qu
en
cy

R
ef
le
ct
io
n

co
ef
fi
ci
en
t
(d
B
)

C
om

pu
te
d

ga
in

(d
B
i)

C
om

pu
te
d

ef
fi
ci
en
cy

(%
)

R
ef
le
ct
io
n

co
ef
fi
ci
en
t

(d
B
)

C
om

pu
te
d

ga
in

(d
B
i)

C
om

pu
te
d

ef
fi
ci
en
cy

(%
)

R
ef
le
ct
io
n

co
ef
fi
ci
en
t

(d
B
)

G
ai
n
(d
B
i)

E
ff
ic
ie
nc
y

(%
)

11
.7

−
25
.5

15
.5
1

93
.9
6

−
23
.5

15
.5
5

94
.8
3

−
26
.7

15
.5
±
0.
3

92
.9

11
.9
5

−
26
.4

15
.7
2

94
.5
3

−
24
.2

15
.7
4

94
.9
7

−
28
.2

15
.6
±
0.
3

91
.1

12
.2

−
27
.1

15
.9
5

95
.6
3

−
25
.4

15
.9
6

95
.8
5

−
28
.7

15
.8
±
0.
3

92
.0



The predicted maximum aperture efficiency was about 95%, while in practice the highest
efficiency realised was about 92%. This compares with 84% for an ideal circular horn with a
uniform aperture field. More will be said in Section 10.3.1 about horn profile optimization
for maximum efficiency.

4.6 Problems

P4.1 Follow the procedure given in Section 4.3.1 to design a standard gain pyramidal horn
with a gain of 24 dBi at 13.6 GHz. The feed waveguide input dimensions are
aw = 1.905 cm and bw = 0.9525 cm.
(Answer: a = 15.657 cm, b = 12.408 cm, ℓE = 34.92 cm, ρE = 34.365 cm, ℓH = 37.068 cm,
ρH = 36.232 cm, and h = 31.823 cm.) Note: A commercially available standard gain
horn from the Scientific Atlanta Company with a measured gain of 24 dB at 13.6 GHz
has aperture dimensions a = 15.189 cm and b = 12.470 cm.

P4.2 Show that Eq. 4.23 for a pyramidal horn leads to a quartic polynomial in either aperture
dimensions a or b. To do this, express all geometric quantities in terms of the required
dimension, for example, ρH = a2 α1. From this polynomial, verify that only one solution
is a valid solution for this application.

P4.3 Use the results of Section 4.3 to obtain far-field expressions for sectoral horns that are
flared in either the E- or H-planes but are uniform in the orthogonal direction. Use these
results to obtain the maximum gain for both horns. Verify the product of these expres-
sions results in Eq. 4.21 times a geometric factor (2/π)3k2(awbw) where aw and bw are
width and height of the input waveguide.

P4.4 Follow the steps described in Section 4.4.3 of the text to obtain the far-fields for the
smooth wall conical horn (given in Eq. 4.53). At the aperture assume that the propagation
constant of the TE11 mode is β≈k.

(a) (b)
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Figure 4.46 Radiation patterns at 11.95 GHz of a profiled 2λ diameter circular horn designed
for maximum gain. (a) E-plane and (b) 45-degree plane patterns. Solid curve is measured and dashed
curve is computed using the mode-matching method
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P4.5 Repeat P4.4 for a corrugated horn operating in the HE11 mode at the balanced hybrid
condition. Show that the far-field radiation pattern is given by Eq. 4.64.

P4.6 For a Ku-band conical corrugated horn operating from 11.7 to 12.5 GHz, determine
a. the corrugation depths at the lowest and upper frequencies and also choose a suitable

slot depth for this band with reasons; and
b. estimate the required width of the corrugations to approximate a long periodic

surface.
P4.7 Assume the transverse electric field of the LSE10 or the TEx10 mode in a slab-loaded

dielectric waveguide is given by Eq. 4.25. Use Maxwell’s equations and the boundary
conditions to obtain the remaining field components.

P4.8 Starting from the perturbation expression Eq. 4.27, show that for an air-filled rectangu-
lar waveguide (εr2 = 1), width a and height b, centrally loaded with a slab of dielectric of
width c and dielectric constant εr1 and with the interfaces parallel to the narrow wall, the
propagation constant of the LSEmn modes in this type of dielectric loaded waveguide is
approximately given by

γ = k2 1 + εr1−1
c

a
1 +

a

mπc
sin mπ 1−

c

a
−

mπ

a

2
−

nπ

b

2

P4.9 Show that for a large aperture, the thickness of dielectric required to make the propa-
gation constant of the LSE10 mode in slab-loaded dielectric waveguide in Figure 4.5
equal to the free-space wavenumber, that is, γ = k, is

d≈
a

2
6

ka 2 εr−1

1 3

,

where a is the width of the rectangular waveguide and εr is the dielectric constant of the
material.

P4.10 Obtain the approximate phase centre of an antenna with the complex far-field E- and
H-plane patterns given by PE =A θ cos ϕ and PH =B θ sin ϕ, respectively, when
a. A θ =C =B θ , and
b. A θ =C exp − jαθ and B θ =C exp − jβθ ,
where C, α, and β are constants.

P4.11 Use the mode-matching approach to obtain the scattering parameters for a symmetrical
E-plane step in rectangular waveguide. Assume a single mode approximation on both
sides of the junction.

P4.12 The susceptance of a thin iris in circular waveguide is given by Eq. 4.41. Use
this expression to select parameters to obtain a low reflection coefficient at the aperture
of a circular waveguide of one wavelength in diameter. The TE11 mode aperture admit-
tance normalized to the free-space wave admittance is 1 0105− j0 0189 (calculated
from Eq. 7.88).

P4.13 Design a conical horn to produce a gain of 25 dBi at a frequency of 10 GHz.
P4.14 The peak gain of a conical horn is a compromise between the aperture diameter 2a

and its length L (King, 1950). Use the equation for the maximum gain of a conical horn
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to estimate the diameter that achieves the peak gain for a horn of length (a) L= 3 5λ
and (b) L= 5λ.
Answer: (a) a = 1 65λ and (b) a = 1 972λ.

P4.15 Design a linearly tapered circular horn with the same aperture dimensions as the
horn shown in Figures 4.44, 4.45 and 4.46 (2λ at 11.95 GHz) to achieve a minimum
first sidelobe in the E-plane. How long is this horn, what is the minimum first sidelobe
level and what is the peak gain?

P4.16 A rectangular horn with dimensions a= 2 7 cm and b = 3 cm is to be used as the basis
of a slab-loaded horn for operation at 12 GHz. A material with a dielectric constant
of 3.6 is to be placed on the sidewalls. What thickness of slab is required to obtain a
uniform field in both the E- and H-planes? Plot the radiation pattern in the H-plane.

P4.17 Design a linearly tapered corrugated horn by means of Eq. 4.64 for operation at 30 GHz
to produce a half-power beamwidth of 40 .

P4.18 Design a coaxial horn with minimum cross-polarization at 7.5 GHz and a 12 dB half-
beamwidth in theH-plane of 120 and an inner conductor that is large enough to include
a circular waveguide feed for 30 GHz.

P4.19 The axial field components of the fundamental HE11 mode of a dielectric rod of radius a
with relative permittivity εr are given by

Ez ρ,φ,z = sin φe− jγz
B1J1 k1ρ ; ρ ≤ a
B2K1 h2ρ ρ ≥ a

Hz ρ,φ,z = cos φe− jγz
C1J1 k1ρ ; ρ ≤ a
C2K1 h2ρ ρ ≥ a

where k1 = k2εr−γ2, k2 = − jh2 = − j γ2−k2, J1(x) is the ordinary Bessel function and
K1(x) is the modified Bessel function of the second kind of order 1,B1, C1and so on are
constants that may be obtained from the boundary conditions at ρ = a, γ = β− jα is the
propagation constant and (ρ, ϕ ) is cylindrical polar-co-ordinate. Describe how the
far-field radiation patterns may be calculated when the rod is terminated.

P4.20 Obtain an expression for the maximum gain of a coaxial waveguide aperture.
P4.21 A rectangular pyramidal horn has its aperture covered by a radome of uniform thickness

d << λ. Assume the radome is illuminated by a uniform spherical wave radiating from
the phase centre of the horn. Use geometric optics to obtain the aperture field on the
outside surface of the radome and the equivalent currents.
a. Use the equivalent currents to calculate the radiated far-fields.
b. Determine the effect on the radiation patterns and gain of the horn shown in

Figure 4.4 when radome material with dielectric constant of 1.4 and d = 0 5mm is
placed over the aperture.
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5
Microstrip Patch Antenna

5.1 Introduction

The microstrip patch and other printed antennas shown in Figure 5.1 are now commonplace as
they are readily combined with electronic components and integrated circuits. The feed line can
be incorporated into existing microstrip line circuitry branching to amplifiers, mixers, down-
converters and semiconductor sources (Gupta et al., 1979). Another major advantage of the
microstrip patch is that it can be flush-mounted planar or conformal with other surfaces, such
as an aerofoil, with only a minimum of space required for the feed line. The patch may be fed by
a transmission line also etched on the dielectric sheet (substrate) as shown in Figure 5.1 or by a
probe through the back of the ground plane. The shape of the patch varies significantly although
the basic radiation mechanism is similar. In the examples shown in Figure 5.1, one or more
resonances can be established in part of the geometry that is coupled to the input. From these
resonances, radiation can be created with different radiation characteristics depending on the
geometry, and this has resulted in a variety of useful designs (Sainati, 1996). Printed antennas
were discovered in the 1950s (Deschamps & Sichak, 1953) and their success in portable equip-
ment generated much research interest and improvements (Munson, 1974). These advances led
to a greater understanding of the radiation mechanism. The fundamental mode of the microstrip
line is quasi-TEM, and this is the one assumed in the antennas shown in Figure 5.1. Other
higher modes are excited to a limited extent although these make a small contribution to the
overall radiation. In other microstrip structures they can become more important and some
can radiate as leaky modes. In this chapter, a simple model of radiation is developed and some
basic properties of a rectangular patch are described with the added incentive of describing
another aperture antenna.
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5.2 Microstrip Patch Aperture Model

The rectangular microstrip shown in Figure 5.2 consists of a thin metallic patch separated by a
dielectric substrate of thickness h and dielectric constant εr from a ground plane. The patch has
width w and length ℓ when referred to the connecting input line. A signal assumed initially
travelling down the microstrip line encounters a change of width initially at z = −ℓ 2 and char-
acteristic impedance where the patch appears as a low impedance parallel plate transmission
line with characteristic impedance Z0p≈ηh w εr. After some reflection, the signal continues
until it encounters the open circuit at z= ℓ 2. At this discontinuity, the signal undergoes a large
reflection and travels back along the length of the patch to the transition where it also radiates.
As described, two slot radiators are formed at each end of the patch with the ground plane as
illustrated in Figure 5.2 with a separation ℓ. As a result, they can be interpreted as a two-element
aperture array. The slots are separated by a length ℓ. In addition, if the patch height is small, the
field in each slot will be approximately uniform as shown in Figure 5.2a. Further, each slot has
an image as shown. Therefore, the aperture model has a height 2h. Consider first a single slot in
the x–y plane as shown in Figure 5.3.
The aperture field is approximated by

Ea =
xEo; −h ≤ x ≤ h; −w 2 ≤ y ≤w 2
0; elsewhere

, 5 1a

and

Ha =
εr
η

z×Ea 5 1b

(a) (b)

(c)

(d)

Figure 5.1 Typicalmicrostrip patch antennas. (a)Rectangular. (b)Annular ring. (c)Triangular. (d)E-shaped
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Since the electric field is assumed to be zero everywhere except over the slot, this situation is
similar to the problem of a uniformly excited aperture in an infinite ground plane. There is,
however, a small field in the region z < 0. Therefore by the methods of Section 2.2, a perfect
electric conductor can be introduced behind the aperture. The equivalent sources on the
aperture in Figure 5.3 are in the form

Ms = −2za ×Ea 5 2a

Js = 0 5 2b

The far-fields radiated by these sources are obtained directly from Eqs. 3.26 as

Eθ =
jk

2π
e− jkr

r
Nx cosϕ 5 3a

Eϕ =
jk

2π
e− jkr

r
cosθNx sinϕ, 5 3b

where

Nx u,v = 2hwEoS 2πuh S πvw ; 5 4

is the only non-zero component and as usual u = 1 λ sin θcos ϕ and v = 1 λ sin θ sin ϕ . If, as
in many applications, h << λ then

Nx u,v ≈2hwEoS πvw 5 5

Returning to the original geometry, the field radiated from the microstrip patch is the super-
position of two radiators given by Eqs. 5.3 and phased according to the length ℓ. Assuming
ℓ << r, the distance to the far-zone region, the combined radiation may be found by the principle
of superposition. Combining the radiation from the apertures at the ends 1 and 2 of the patch

Eθ =Eθ1 +Eθ2

≈
k

π
hwEoS πvw cos ϕ

e− jkR1

R1
+
e− jkR2

R2

and

Eϕ =Eϕ1 +Eϕ2

≈ − j
k

π
hwEoS πvw cosθ sinϕ

e− jkR1

R1
+
e− jkR2

R2

where R1 and R2 are the distances from each end to the far-field. At large distances from
the apertures, r >> ≈ℓ 2 the angles are θ1≈θ≈θ2 and similarly ϕ1≈ϕ≈ϕ2. Therefore,
R1≈r− ℓ 2 cos θ and R2≈r + ℓ 2 cos θ. By making these approximations into the phase
functions and also approximating 1 R1≈1 r≈1 R2 in the amplitudes of the fields, the electric
field components become
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Eθ r,θ,ϕ ≈
2k
π
hwEoS

kw

2
sin θ sin ϕ cos

kℓ

2
cos θ cos ϕ

e− jkr

r
5 6a

and

Eϕ r,θ,ϕ ≈ − j
2k
π
hwEoS

kw

2
sin θ sin ϕ cos

kℓ

2
cos θ cos θ sin ϕ

e− jkr

r
5 6b

This result can be visualized as the product of the element pattern due to a single aperture
multiplied by an array factor that is due to free-space phasing and the phase of the radiation to
the observation point.
As an example, consider a patch with length ℓ = λ 2 εr = λg 2 so that k εrℓ = π. In the

principal planes, the patterns are as follows:

E-plane (ϕ = 0)

Eθ r,θ,ϕ =
2jkhwEo

π

e− jkr

r
cos

π

2
cosθ 5 7a

H-plane (θ = ± π 2)

Eθ r,θ,ϕ =
2jkhwEo

π

e− jkr

r
S

πw

λ
sinϕ cosϕ 5 7b

The E- and H-plane patterns of a microstrip patch of width w= 0 25λ on a substrate of thick-
ness h= 0 1λ and dielectric constant εr = 2 54 are shown in Figure 5.4.
The maximum gain from a microstrip fed patch can be estimated using Eq. 3.48. To do this,

the power input is assumed to come from a uniform TEM field in the line of width wI as given
by Eq. 3.36. Thus,

PT≈
εr

2ηo
wIh EI

2, 5 8

where in Eq. 5.8 EI is the peak of the uniform electric field at the input. This peak field is related
to the peak field in the patch Eo by the input reflection coefficient, in the usual way by

Γi =
Z0p−Z0I
Z0p + Z0I

5 9

Z0p is the characteristic impedance of the parallel plate transmission line of the patch, which
is given by Z0p≈ηoh w εr, and Z0I is the characteristic impedance of the input microstrip,
which is approximately (Gupta et al., 1979; Sainati, 1996)

Z0I =
ηo

εr τ + 1 393 + 0 667ln τ + 1 444
, 5 10
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where

τ =
wI

h
+ 0 398

T

h
1 + ln

2h
T

,

and T is the thickness of the microstrip. The characteristic impedance given by Eq. 5.10
is accurate to within 1% for wI h > 1. Combining Eqs. 5.8 and 5.9 with Eqs. 5.7 in
Eq. 3.48 results in a maximum gain of

Gmax≈
16π
εr

wh

λ2
w

wI
1− ΓI

2 5 11

The final term in the square brackets of Eq. 5.11 is the power transmission coefficient. Typ-
ically, ΓI < 0 25 (i.e. −6 dB) and w> 2wI. Suppose this is the case in the previous example for
w= 0 25λ, h= 0 1λ and εr = 2 54. For this microstrip patch, the maximum gain estimate given
by Eq. 5.11 is Gmax > 1 7 dBi.
An equivalent circuit for the patch antenna has been developed based on a transmission line

model as shown in Figure 5.5 (Sainati, 1996). According to Figure 5.2a, the transmission line has
a characteristic impedance Zop, is of length ℓ and has a slot radiator at each end. The slots are
modelled by a conductanceGr and a capacitanceCe in parallel to represent, respectively, radiation
and energy storage. The input impedance depends on where the patch is fed such as at one end
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Figure 5.4 Microstrip patch E- and H-plane radiation patterns for a patch with dimension w= 0 25λ,
h= 0 1λ; ℓ = 0 8λ, εr = 2 54. Solid: E-plane; dashed: H-plane
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with a microstrip line input or an asymmetrically located probe. An approximate value for the

conductance is found from Gr =Pr Eoh
2 where Pr is the total radiated power by a single slot,

which can be found from Eq. 5.3, and Eoh is the peak voltage across the slot. The result is

Gr =
2 εr
ηo

w

λ

2 π

0
dθsinθ M0 θ − sin2θ M2 θ 5 12

where

Mp θ =
2π

0
dϕ sinpϕ S2

πw

λ
sinθ sinϕ S2

π2h
λ

sinθcosϕ

The edge capacitance at a given frequency is given by Ce = tan βℓeff ωZop , where
ℓeff is the effective increase in length of the parallel plate region due to fringing; typically,
ℓeff 0 1−0 15λ.
Equation 5.11 in particular emphasizes four important aspects of patch design. These are the

physical extent of the patch, the matching at the input from the feed line to the patch, the effi-
cient transition of power to the patch and, of course, these often have to be achieved over a
reasonable bandwidth. Other more sophisticated models of the microstrip patch can be devised
and are required for accurate design including the effects of mutual coupling in an array envi-
ronment (e.g. James et al., 1982; Sainati, 1996; Jackson, 2007). For details of other patch geo-
metries, the reader should also consult the references. The topic of mutual coupling in patch
arrays is left until Chapter 7.

5.3 Microstrip Patch on a Cylinder

In some applications, it is desirable to locate the patch on a curved surface. The simple model
described in the previous section can be used in a non-planar geometry as will be described
here. Other models could be adapted to a curved surface in the same way by following the same
approach. Suppose the microstrip patch is to be mounted on a large conducting cylinder as illus-
trated in Figure 5.6. The radius of the cylinder Ro is assumed very much greater than the

Gr GrCe

ℓ

Ce

Zop

Figure 5.5 Circuit model of patch antenna
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microstrip dimensions, that is, Ro >>w,h,ℓ. For simplicity, it will be assumed that the axis of the
patch is in the circumferential direction as shown in Figure 5.6. Once again two radiating aper-
tures are assumed as in the planar case. From the figure, the electric field is polarized in the

radial direction and the normal to the aperture is ϕ. Therefore, this time the magnetic current

is given by Ms = −ϕ × ρEo at each aperture. The substrate thickness will be assumed to be
small and, therefore, the apertures appear as two uniform magnetic line sources of length w
which are parallel to the axis of the cylinder and separated by a distance ℓ. For simplicity, these
sources are assumed on the cylinder and to be separated by the angle Δϕ = ℓ Ro.
As the method of images cannot be used for a source on a cylinder, the sources must be con-

sidered to radiate in the presence of a large cylinder. This is done by adopting a high frequency
approximation for the elemental field radiated by a line source on the axis of a cylinder as
described in Section 8.2. This field is given by Eq. 8.1 (Wait, 1959) as

dEϕ t,θ −dMz
1

2π 2Ro

exp − jkr

r
exp jkz cosθ

∞

n=−∞
jn
exp jn ϕ−ϕ

H 2
n γ

5 13a

dEθ t,θ = 0 = dEr t,θ , 5 13b

whereH 2
n γ is the derivative of the Hankel function of the second kind order nwith argument

γ = kRo sin θ and the primed co-ordinates are the source co-ordinates.
Initially consider the field radiated by the uniform line source at ϕ = +Δϕ 2.

Eq. 5.13a gives

E 1
ϕ r,θ,ϕ −

hEo

2π2Ro

exp − jkr

r

w 2

−w 2
exp jkz cos θ dz ×

∞

n=−∞

jn exp jn ϕ−Δϕ 2

H 2
n γ

≈ −
hEow

2π2Ro

exp − jkr

r
S

kw

2
cos θ

∞

n=−∞

jn exp jn ϕ−Δϕ 2

H 2
n γ

Ro

z

ρ

w/2
–w/2

𝜙

Figure 5.6 Radiation model of a microstrip antenna mounted on a large cylinder
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The field due to the line source at ϕ = −Δϕ 2 is similar. Combining the contributions of
both uniform line sources results in

Eϕ r,θ,ϕ ≈ −
hEohw

2π2Ro

exp − jkr

r
S

kw

2
cos θ

∞

n = −∞

jn exp jnϕ

H 2
n γ

× exp
jnΔϕ
2

+ exp
− jnΔϕ

2

= −
hEow

π2Ro

exp − jkr

r
S

kw

2
cos θ

∞

n= −∞

jn exp jnϕ

H 2
n γ

cos
n εrℓ

2Ro

= −
hEow

π2Ro

exp − jkr

r
S

kw

2
cos θ

1

H 2
0 γ

+ 2
∞

n= 1

jn

H 2
n γ

cos
n εrℓ

2Ro
cos nϕ

5 14

The maximum of the field occurs normal to the patch. As the electric field is circumferential
with the cylinder, the E-plane direction corresponds to the plane θ = 90 while the orthogonal
H-plane occurs in the plane ϕ = 0 through the centre of the patch.
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Figure 5.7 Radiation patterns of a microstrip patch on a cylinder of radius Ro = 50λ. Solid: E-plane
θ = 90 plane; dashed: H-plane ϕ = 0 plane. Microstrip parameters w= λ 4, ℓ = λg 2, h= 0 005λ
and εr = 2 54
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The patch antenna that is described in Figure 5.4 for a planar geometry is now mounted on
a cylinder of radius Ro = 50λ. This patch has dimensions w= λ 4, ℓ = 0 8λ, εr = 2 54 and
h = 0 1λ. The principal plane patterns were calculated from Eq. 5.14 and are shown plotted
in Figure 5.7. There are significant differences in the patterns compared with the same patch
close to a ground plane. In particular, the patterns are seen to contain significant ripples at all
levels due to the interference between the field radiated directly by the patch and creeping
waves that are excited on the cylinder. The H-plane pattern is similar to the planar case as
it is along the axis of the cylinder and apparently this appears similar to a ground plane.
Nevertheless, there is still interference from nearby creeping waves. More will be said
about the creeping wave in connection with mutual coupling on conformal surfaces in
Chapter 8.

5.4 Problems

P5.1 Show that the radiation pattern of a two-element array of identical slots symmetrically
located along the x-axis a distance s in each direction from the origin as shown in
Figure 5.3 is 2cos ssinθcosϕ × slot pattern .

P5.2 Suppose a rectangular patch antenna has dimensions h= 0 12λ, w= 0 45λ and ℓ = 0 87λ is
mounted on a dielectric substrate with relative permittivity of 3. It is fed from amicrostrip
line with a centre conductor of width 0.15λ. The conductor thickness of the input line and
the patch is 10−3λ.
a. Find the direction (θ, ϕ) of the radiation maximum.
b. Identify the E-plane and compute the half-power beamwidth.
c. Identify the H-plane and compute the half-power beamwidth.

P5.3 For the patch antenna described in P5.2, calculate the characteristic impedance of the
patch and, therefore, estimate the input reflection coefficient viewed by the microstrip.
Estimate the maximum gain of the patch.
Answer: Zop = 58Ω, Γi = −24 55 dB and Gmax = 6 71 dBi.

P5.4 An expression for the conductance Gr in the transmission line model of a patch antenna
shown in Figure 5.5 is given in Eq. 5.12.
a. Verify this expression and
b. Calculate the conductance of the patch antenna described in P5.2.
Answer: (b) Gr = 0.013 S.

P5.5 From the equivalent circuit for the patch antenna shown in Figure 5.5, obtain an approximate
expression for the input admittance when it is fed from one end.

Answer: Yin =Gr + jB+ Yop
Gr + j B+Yop tan βℓ

Yop + j Gr + jB tanβℓ
, where B=ωCe.

P5.6 Repeat exercise P5.5 this time with a feed placed at a distance ℓ1 from one end of the
parallel plate section.

P5.7 Plot the radiation pattern at a frequency of 9 GHz for a patch of dimensions 1 cm × 1 cm
on a substrate of thickness 1 mm and dielectric constant 2.4 that is mounted on a cylinder
of radius Ro = 100 cm.
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6
Reflector Antennas

6.1 Introduction

In transmission, a reflector antenna concentrates energy received from another antenna, called a
feed, into a narrow beam of radiation. In reception, the reflector re-directs the impinging field
and concentrates it in a smaller volume, called the focal region, where it can be collected.
Figure 6.1 shows, in cross-section, several basic reflector configurations. Most reflector anten-
nas are designed to maximize the signal in one direction, that is, for the examples given in
Figure 6.1 parallel to the ray paths at the aperture. In some cases, for example, in satellite anten-
nas, it may be desirable to design the antenna for approximately constant gain over a chosen
extended angular region. This is often achieved by ‘shaping’ the main reflector profile or using
an array of horns as the feed.
The front-fed paraboloid in Figure 6.1a is the most common type of reflector configura-

tion. Use of a subreflector in a Cassegrain configuration in Figure 6.1b can give improved
performance and is widely used in large earth stations. The two reflector profiles can be
defined to enhance the gain while at the same time reducing antenna noise temperature.
The unwanted random signals (‘noise’) that an antenna receives from the sky and the earth
is expressed as an equivalent antenna noise temperature Ta (in Kelvin). A major contribution
to Ta arises from feed ‘spillover’ at the edges of the reflectors. Spillover past the main reflec-
tor edge is especially important, since this allows energy to be received from the earth which
is a good radiator of noise. In a front-fed paraboloid, the feed sees the ‘hot’ earth directly
through its sidelobes, while in a Cassegrain, the feed sees the ‘cold’ sky. The ratio of gain to
overall temperature, denoted by G/Tsys (expressed in dB K–1), is an important parameter
for receiving antennas. Here, Tsys = Ta + Tloss + Trx where Ta arises from feed spillover, Tloss
is the noise temperature due to losses in the feed and reflector and Trx is the contribution from
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the receiver that is connected to the antenna. A Cassegrain geometry can be designed to
maximize G/Tsys.
A disadvantage of any axisymmetric reflector system is the blockage created by the feed or

subreflector and associated strut supports. These obstructions have a deleterious effect on
the antenna gain and, more importantly on the sidelobe levels, particularly for small antennas
(D/λ < 150). Blockage can be avoided by using offset-fed reflector configurations as illustrated
in Figure 6.1c and d. Although the lack of symmetry creates a number of design problems, these
antennas are capable of performance that is usually superior to that of their axisymmetrical
counterparts. One problem is that the offset-paraboloid Figure 6.1c has high cross-polarization.
This is substantially reduced by means of a subreflector which is adjusted to a correct offset
angle α (Fig. 6.1d). In this chapter details are given of the front-fed paraboloid along with some
properties of the offset-parabolic reflector and Cassegrain antennas.

6.2 Radiation from a Paraboloidal Reflector

A fundamental property of the paraboloid in transmission is that it converts a wave with a
spherical wave-front from a source, which is situated at the geometric focus, O, into a wave
emanating from the aperture with a plane wave-front. This is possible because the path length
of any ray from the focus, which arrives perpendicular to the aperture, Figure 6.2, is constant
and equal to 2f, where f is the focal length. As a result, ρ+ sr = 2f .
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(c)

.

Phase
centre

(d)

(b)
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.

Paraboloid
Hyperboloid

Paraboloid

Offset

Symmetric

Figure 6.1 Reflector antenna configurations. For receiving, the ray paths are reversed.
(a) Symmetric paraboloid. (b) Cassegrain. (c) Offset paraboloid and (d) Offset Cassegrain
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In spherical polar co-ordinates (ρ, ψ , ϕ) that are defined at the focus of the paraboloid, the
radial distance is

ρ=
2f

1 + cos ψ
= f sec2

ψ

2
6 1

From the focus, the reflector rim subtends a half-cone angle given by

ψc = 2arctan
1

4 f D
6 2

On the surface of the paraboloid, S, the outward unit normal in the various co-ordinate sys-
tems defined in Figure 6.2 are given by

n = −
1

2 ρf
xx+ yy +

f

ρ
z 6 3a

n= − sin
ψ

2
x cos ξ + y sin ξ + cos

ψ

2
z 6 3b

n= −ρ cos
ψ

2
+ψ sin

ψ

2
6 3c

z
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Figure 6.2 Geometry of paraboloidal reflector
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Consider a feed antenna located at the focus with the reflector is in its far-field region. There-
fore, the field from the feed is represented by

Ef ρ,ψ ,ξ =EoF ψ ,ξ
e− jkρ

ρ

=Eo ψFψ ψ ,ξ + ξFξ ψ ,ξ
e− jkρ

ρ

6 4a

Hf =
1
ηo
ρ×Ef , 6 4b

where Eo is a constant scale factor. An approximate surface current on the reflector is given
by Js≈2 n ×Hf S. The vector function F(ψ , ξ) gives the spatial distribution of the field
(i.e. the radiation characteristics) due to the feed. A special case of this feed function is when
the power pattern is axisymmetric, in which case Fψ ψ ,ξ =P ψ cos ξ−ξo and Fξ ψ ,ξ =
P ψ sin ξ−ξo where P(ψ) is the radiation pattern and ξo is the reference polarization direction
relative to the initial line. In many practical cases, the reflector diameter is very large in terms of
wavelength; typically D λ> 100. In that instance, for large reflectors, geometric optics (GO)
can be used, which simplifies the reflector analysis. Geometric optics is used in the next
section to find approximate aperture fields.

6.2.1 Geometric Optics Method for a Reflector

In a homogeneous medium, waves described by geometric optics propagate in straight lines, as
verified in Section 2.1.7. The ray paths for input and reflected rays are as shown in Figure 6.3.
At a perfect conductor of the type illustrated, the boundary conditions require zero net tangen-
tial electric field at the surface as well as continuity in the tangent plane of the normal compo-
nents of the electric field. Again referring to Figure 6.3, suppose Ei is the incident electric field
and Er is the reflected field. The boundary conditions on S require that

Ei +Er × n = 0 6 5a

and

Ei−Er n = 0, 6 5b

where n is the normal at the reflector. Taking the cross-product of Eq. 6.5a with n results in

Ei +Er −n Ei +Er n = 0

This is further simplified by means of Eq. 6.5b to

Er = 2n n Ei −Ei 6 6
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Equation 6.6 gives the resulting reflected electric field from a conducting surface in terms of
the incident field. This is incomplete because an additional phase factor is required to account
for the path length from the reflector to the aperture as shown in Figure 6.2, which is given by
sr = 2f −ρ. As a result, according to GO, a feed located at the focus o radiating an electric field
Ef produces an aperture field, given by

Ea = 2n n Ef −Ef e
− jk 2f −ρ 6 7a

Ha =
1
ηo
z×Ea, 6 7b

where Ef is the electric field due to the feed that is incident at the reflector surface. In spherical
polar co-ordinates relative to the feed, the normal to the reflector is given by Eq. 6.3c.
Using Eqs. 6.4a and 6.3c in Eq. 6.7a results in

Ea = −Eo ρFψ sin ψ +ψFψ cos ψ + ξFξ 1 + cos ψ
exp − jk2f

2f
6 8

Alternatively, in rectangular components,

Ea = −Eo x Fψ cos ξ+Fψ sin ψ + y Fψ sin ξ+Fξ cos ξ

× 1 + cos ψ
exp − jk2f

2f

6 9

Ei
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n̂
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S

n̂ × (ŝr – ŝi) = 0 

n̂ · (ŝr + ŝi) = 0

ŝr = ŝ i – 2n̂ (n̂ · ŝi)

Figure 6.3 Reflection at a conducting surface S
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From these aperture fields, the field radiated by the paraboloid is obtained from Eqs. 3.20 are

Eθ r,θ,ϕ =
jk

4π
e− jkr

r
1 + cos θ Nx cos ϕ+Ny sin ϕ 6 10a

Eϕ r,θ,ϕ =
jk

4π
e− jkr

r
1 + cos θ −Nx sin ϕ+Ny cos ϕ , 6 10b

where

N θ,ϕ =
2π

0
dξ

D 2

0
Ea t,ξ exp jwt cos ϕ−ξ tdt 6 11

with w = k sin θ and t = ρ sin ψ . When the aperture field is axisymmetric, the integral over ξ can
be completed by means of Eq. B.3 allowing Eq. 6.11 to be simplified to

N θ,ϕ = 2π
D 2

0
Ea t J0 wt tdt, 6 12

where J0 is the zero-order Bessel function of the first kind. Eq. 6.12 is axisymmetric as it is now
independent of ϕ. To investigate the above results a little further, some specific feed antenna
examples are considered firstly the half-wave dipole and then circular waveguides and horns.

6.2.1.1 Dipole Feed

One of the simplest feeds to fabricate and, therefore, one of the most frequently used feeds is
the half-wave dipole. An attractive feature of this feed is that the input transmission line can
also be used to support the feed at the focus. The approximate electric field radiated by a thin
half-wave dipole that is oriented parallel to the x-direction is given by

Ef =Eo
e− jkr

r
A θ,ϕ θ cos θ cos ϕ−ϕ sin ϕ , 6 13

where A θ,ϕ = sin π 2 cos θ .
In the E-plane (ϕ = 0 or π), the field is

Ef = θEo
e− jkr

r
sin

π

2
cos θ cos θ 6 14a

and in the H-plane (ϕ= ± π 2), it is

Ef = +−ϕEo
e− jkr

r
sin

π

2
cos θ 6 14b

154 Fundamentals of Aperture Antennas and Arrays



The radiation patterns corresponding to Eqs. 6.14 are plotted in Figure 6.4.
The aperture field created by a half-wave dipole located at the focus of the paraboloid is

found from Eqs. 6.9 and 6.13 to be

Ea = −EoA ψ ,ξ x cos ψ cos2ξ + sin2ψ + y cos ξ sin ξ

× 1+ cos ψ
exp − jk2f

2f

Clearly it is seen that the radiation pattern is strongly influenced by the pattern function
A(ψ , ξ). In the E-plane (x–z plane), the field is

Ea x ,0 = −xEo 1 + cos ψ cos ψ sin
π

2
cos ψ

e− jk2f

2f
6 15a

and in the H-plane (y–z plane), it is

Ea 0,y = −xEo 1 + cos ψ sin
π

2
cos ψ

e− jk2f

2f
6 15b
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Figure 6.4 Half-wave dipole radiation patterns and dipole in front of a conducting plate (dark line)
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It is seen from Eqs. 6.15 that the aperture field in the principal planes is simply the feed radi-
ation in that plane divided by the distance to the reflector from the feed, namely,
ρ = 2f 1 + cos ψ . This latter factor reduces the aperture field towards the edge of the aperture
and, therefore, it is more ‘tapered’ towards the reflector rim than the feed radiation pattern alone
would indicate as the latter is usually measured on a sphere of constant radius. However, there
is significant radiation in all directions and a loss of efficiency.
In practice the dipole has a backing plate as illustrated in Figure 4.17a to reduce rear-directed

radiation and the back lobe. If a backing plate is employed and the dipole is located a distance s
from the plate, from image theory (see Figure 2.2a) there is now a pair of dipoles spaced 2s
apart. Therefore, the feed radiation is approximately equivalent to that of a two element array,
in which case Eq. 6.13 is then multiplied by the factor 2 j sin(ks cos ψ). Typically a spacing of
s= 0 18−0 25λ is selected to achieve the desired performance, which also makes the feed radi-
ation more directive as shown in Figure 6.4. The presence of a backing plate improves the input
match and provides an additional variable (s) with which to account for the thickness of the
dipole element and the characteristic impedance of the input line. This line can be a coaxial
cable (with a balun transformer) (Silver, 1946) where typically the characteristic impedance
is close to 50 Ω or it could be an open-wire transmission line where typically the dipole ele-
ments need to be longer to achieve an acceptable match.
The polarization of the field in the aperture has distinctive characteristics and this is illustrated

in Figure 6.5. The field is polarized mainly in the x-direction, but there is also a cross-polarized

H-plane, vertical polarization

E-plane, vertical
polarization

Electric field lines
in aperture region

Cross-polar, horizontal
polarization

Cross-polar, horizontal
polarization

Co-polar, vertical polarization

Co-polar, vertical polarization

45° plane

0° plane

90° plane

135° plane

Figure 6.5 Electric field in the aperture of a paraboloid due to a linearly polarized feed (after
Jones, 1954)
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component in the orthogonal y-direction. This cross-polar component takes power from the co-
polar direction and could interfer with adjacent systems operating in the y-directed polarization. It
is shown in Figure 6.5 that the maxima of the cross-polarized field occurs at 45 to the principal
directions (either x or y directions) (Jones, 1954).
The field radiated by the paraboloid with a dipole feed is obtained by substituting Eqs. 6.15

in Eqs. 6.10 via Eq. 6.12. In this case, the transform of the aperture field is best found numer-
ically. Since the field in the E-plane is more tapered than for theH-plane, the far-zone radiation
pattern is broader in the E-plane than in the H-plane. Furthermore, the radiation pattern side-
lobes are lower in the E-plane than in theH-plane due the cos θ factor. Principal plane radiation
patterns are shown in Figure 6.6 for a 1.5 m (D = 50 λ) reflector with f/D = 0.33 at 10 GHz
clearly demonstrates these properties. Also, shown in Figure 6.6 are the corresponding radia-
tion patterns of the same reflector with a half-wave dipole backed by an ideal ground plane to
approximate a disk reflector. The spacing between the dipole and the backing reflector was
chosen to be s= 0 25λ. The principal plane patterns of the reflector with the dipole and disk
are more comparable and there is a significant improvement in the gain (>2 dB).

6.2.1.2 Circular Waveguides and Horn Feeds

Smooth wall and corrugated circular waveguides or horns are widely used as feeds for reflec-
tors, and are capable of higher performance than the dipole. Some properties of circular feeds
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Figure 6.6 Principal plane radiation patterns of a paraboloid with D = 1.5 m, f/D = 0.33 and a
half-wave dipole feed and one with a backing reflector (dipole + disk). Frequency 10 GHz
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were described in Section 4.4. For horns excited in the TE11 or HE11 modes, the radiated field
has a single period in azimuth and, in terms of Eq. 6.4a,

Fψ ψ ,ξ =A ψ cos ξ; Fξ ψ ,ξ = −B ψ sin ξ, 6 16

where A(ψ ) and B(ψ) are pattern functions. As a result, the field created in the aperture of the
paraboloid due to a circular feed is

Ea = −Eo x A ψ cos2 ξ+B ψ sin2ψ + y cos ξ sin ξ A ψ −B ψ

× 1+ cos ψ
exp − jk2f

2f

6 17

In common with the half-wave dipole, this aperture field has, in general, two non-zero field
components present in regions away from the two principal planes. This is because Eq. 6.16 is
not pure polarized as discussed in Section 4.4.5. However, if A ψ =B ψ , the aperture field
produced by a circular horn is purely polarized and the radiation pattern is axisymmetric about
the z-axis. For an axisymmetric feed, Eq. 6.17 simplifies to

Ea = −xEoA ψ 1 + cos ψ
exp − jk2f

2f
, 6 18

which produces a linearly polarized aperture field. This aperture field can be used in Eq. 6.12 so
that the transformation integral becomes

Nx u,v = −Eoπ
e− jk2f

f

D 2

0
J0 wt A ψ 1 + cos ψ tdt 6 19

In general, Eq. 6.19 must be evaluated numerically although there are several types of feeds
that have distributions with special functions that enable a closed-form solution. It is seen that
the integrand function

I ψ =A ψ 1 + cos ψ 6 20

determines the aperture illumination. Uniform illumination corresponds to I ψ = constant and
could be achieved if the feed function, A(ψ), had an inverse taper to compensate for the free-
space path loss. In particular, when I ψ = 1 Eq. 6.19 simplifies to

Nx u,v = −Eoπ
D

2

2 e− jk2f

f

2J1 wD 2
wD 2

, 6 21

where Eq. B.5 has been used to evaluate the integral. The function 2 J1(x)/x is plotted in
Figure 3.4. Near the antenna boresight (the z-axis in Figure 6.2), the beam of the reflector is
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narrow and θ≈0 . Therefore 1 + cos θ 2≈1 so that the radiated fields near boresight are
approximately

Eθ r,θ,ϕ ≈
jk

2π
e− jkr

r
Nx θ,ϕ cos ϕ 6 22a

and

Eϕ r,θ,ϕ ≈ −
jk

2π
e− jkr

r
Nx θ,ϕ sin ϕ 6 22b

In the case of a uniformly illuminated aperture, Eqs. 6.21 and 6.22 show that the function
2J1(x)/x determines the width of the main lobe of the electric and magnetic fields and the side-
lobe levels. As a result, the half-power beamwidth is 58.4λ/D degrees and the first sidelobe is
17.6 dB below the peak (see Figure 3.4). With tapered aperture illumination functions A(ψ )

the beamwidth is wider, and the first sidelobe level is lower than for uniform illumination. To
illustrate this, radiation patterns are shown in Figure 6.7 for a feed with an axisymmetric Gaus-
sian pattern function given by

A ψ = exp −αψ2 6 23
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Figure 6.7 Radiation pattern of paraboloid reflector with D = 1.5 m and f/D = 0.33 at a frequency
of 10 GHz. The feed pattern is a Gaussian function chosen to give a selected edge illumination
at ψc = 74 2
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where α is a constant that is chosen to give a specified feed illumination at the reflector edge
ψ =ψ c. As has been seen in Section 4.4.4, the main lobe of the Gaussian function, Eq. 6.23, is a
good approximation to the feed function of corrugated waveguide at the balanced hybrid con-
dition, which is given in Eq. 4.61. If the field illumination at the reflector rim is
EdB = −20log10 A ψc dB, then from Eq. 6.23,

α=
EdB

ψ2
c 20log10e

6 24

The results given in Figure 6.7 are for the same conditions as for the dipole feed example
above. Patterns are shown for reflector edge illumination levels of −10 and −16 dB. Main lobe
broadening is evident particularly in the latter case as compared to the half-wave dipole (see
Figure 6.6).

6.2.2 Edge Taper and Edge Illumination

As the feed radiates a spherical wave, the distance to the reflector rim, or edge, is greater than to
the centre of the paraboloid as shown in Figure 6.8. It has been shown that, in any plane, the
radiation pattern is closely related to the aperture illumination in that plane and particularly how
it rolls-off, or tapers, at the edge. Therefore, it is common practice to refer to the level of the
field at the reflector edge to provide a ‘rule-of-thumb’ description of beamwidth and sidelobe
levels. Two different terms are used, often interchangeably, and these are now defined. The first
term is ‘edge illumination’; that is the level of illumination directed at the edge. Edge

Δ

Ψc

D/2

f

Figure 6.8 Edge taper
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illumination is the ratio of the field strength radiated by the feed in the direction of the edge and
its level at the reflector vertex, where both are measured on a circle of radius equal to the focal
length. The second term is edge taper. This is the ratio of the feed field strength at the actual
reflector edge and its level at the vertex. The difference between edge illumination and edge
taper is the free-space loss due to the distance Δ (shown in Figure 6.8) from the sphere to the
reflector. If E is the edge illumination, by definition, edge taper is

T =E
f

f +Δ

=
E

Le
,

6 25

where Le is the edge taper loss factor. The free-space loss reduces the amplitude of the spherical
wave as it propagates towards the edge. The loss is

Le =
f +Δ
f

6 26

For a paraboloid, the extra distance is

Δ=
f

4f D 2 6 27

and, therefore,

Le = 1 +
1

4f D 2 6 28

It is usual practice to express Eq. 6.25 in dB, namely,

Edge taper , dB = edge illumination , dB − path loss , dB 6 29

Some values of Le for different (f/D) ratios of a paraboloid are listed in Table 6.1.

Table 6.1 Edge taper loss factor versus
parabolic reflector f/D

f/D Le (dB)

0.2 8.17
0.25 6.02
0.3 4.58
0.33 3.94
0.4 2.86
0.5 1.94
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As an example, consider the half-wave dipole feed example described in Section 6.2.1.1 for a
parabolic reflector with f/D = 0.33. At the reflector edge at ψc = 74.29 , the edge illumination is
−13.2 dB in the E-plane and 0 dB in the H-plane. The path loss for this reflector is Le = 4 dB.
The respective edge tapers are, therefore, −17.2 and −4 dB.
A term related to edge taper that is used in signal processing applications in which the aper-

ture illumination is tailored to achieve a desired outcome is apodization. It was originally used
in optics to refer to the modification of the central illumination of a lens to suppress secondary
maxima, that is, sidelobes, to improve the dynamic range of a telescope. Often the central illu-
mination is non-linear and approaches zero at the edges of the aperture. While the term apo-
dization occurs occasionally in the antenna area, it is more commonly used in other related
imaging areas such as optics, audio and photography.

6.2.3 Induced Current Method

In the previous sections, the radiation from a paraboloidal reflector has been described in terms
of the aperture field method. Another approach that is widely used for reflector antenna analysis
is the induced current method, which is also a more accurate method. In this approach, the
radiated field is determined from an electric surface current set up on the reflector by the feed.
The problem is to find this current and generally numerical methods must be used.
An approximate approach, which yields good results, is to assume that, at any point on the

reflector, the current that is induced is the same as on an infinite plane conductor. Thus, if the
feed radiates a magnetic field Hf at the reflector, this surface current is given by

Js = 2n ×Hf reflector Σ, 6 30

where n is the unit outward normal to the reflector surface Σ. This representation of the surface
current is called the physical optics approximation. The factor of two occurs in Eq. 6.30
because, it will be recalled, the total magnetic field at the reflector is twice the incident field.
Equation 6.30 may be used in Eq. 3.24 to calculate the radiated fields. There is no magnetic

surface current at the reflector and, therefore, the radiated electric field is

E r,θ,ϕ = −
jkηo
2π

e− jkr

r
F θ,ϕ −r F θ,ϕ r , 6 31

where

F θ,ϕ =
Σ
Js exp jkr r dS 6 32

The primed co-ordinates relate to co-ordinates on the reflector surface. Notice that the second
term inside the square brackets of Eq. 6.31 cancels out a radial vector component that is intro-
duced by the first term. For example, in rectangular components, the vector in the square braces
becomes

x Fx−Fr sin θ cos ϕ + y Fy−Fr sin θ sin ϕ + z Fz−Fr cos θ ,
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where Fr =F r. The contributions from the radial terms in the above directly cancel identical
terms in Fx, Fy and Fz when these are expressed in spherical polar co-ordinates as given in the
vector identities in Appendix A.2.
The fields predicted by the induced current method (given by Eq. 6.31) and the aperture field

method (Eq. 6.10) are very similar for large reflectors (D> 100λ), but there are important dif-
ferences. These differences affect the co-polar radiation pattern the least but become significant
several beamwidths from boresight. The main differences are as follows:

a. The z-component of the current in Eq. 6.31 gives a term in the far-field that is not predicted
by the aperture field method.

b. The phase function in the two methods is different due to the use of different path lengths.

Both (a) and (b) become important as θ increases from boresight. The z-component in (a)
is particularly important for accurate prediction of the antenna cross-polarization. However,
if the reflector is reasonably large and the feed introduces a significant amount of its own
cross-polarization, the effect of (a) is small. As a result of the limitations mentioned, the
induced current method is usually preferred to the aperture field method in reflector calcula-
tions. Historically, the latter has the advantage that the integral over the aperture
(in Eq. 6.11) may be evaluated directly by means of the fast Fourier transform (FFT) algorithm.
However, research in the 1980s showed that the current transform Eq. 6.32 can also be eval-
uated by means of the FFT, after some modification (see, e.g. Franceschetti & Mohsen, 1986).
One such approach is to express the current transform, as a series of Fourier transforms. To do
this, in the phase of Eq. 6.32 let r r = ux + vy + cos θz . In addition, on the reflector surface Σ,
the z co-ordinates are expressed as a function of the co-ordinates x and y . This allows Eq. 6.32
to be written as an integral over an aperture A consisting of the area projected by Σ onto the
x −y plane; thus,

F θ,ϕ =
A
JsW x ,y exp jk ux + vy + cos θz dx dy 6 33

with

W x ,y = 1+
∂z

∂x

2

+
∂z

∂y

2

6 34

The exponential in the integrand, exp( jkcos θz ), can be expanded in its Taylor series. With
this substitution, Eq. 6.33 can be expressed as follows:

F θ,ϕ =
∞

p = 0

1
p

jk cosθ pFp u,v , 6 35a

where

Fp u,v =
A
JsW x ,y z p exp jk ux + vy dx dy 6 35b
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Each Fourier transform Fp may now be evaluated for each value of p by means of the effi-
cient FFT algorithm (see, e.g. Brigham, 1974). In practice, it has been found that very good
accuracy is achieved with most common types of reflectors by taking only the first two terms
of the series; that is p = 0 & 1 in Eq. 6.35a.

6.2.3.1 Radiation from Symmetrical Reflectors with General Profile

A common situation is to have a main reflector with a general profile that is symmetric about the
z-axis as illustrated in Figure 6.9. Consider such a symmetrical reflector that is excited by a feed
located on its axis of symmetry a distance fo from the vertex. Suppose that the profile can be
specified by the function ρ(ψ), where ρ is the radial distance from the origin to the reflector sur-
face and ψ is the angle from the axis to a point on the reflector. The feed is located a distance
Δz= d− fo from the origin where d = ρ 0 is the distance from the origin to the reflector vertex.
The normal to the reflector is given by

n =
1

ρ2 + ρ2ψ
−na x cos ξ+ y sin ξ + znz , 6 36

where ρψ of ρ(ψ) and the coefficients are

na = ρψ cos ψ −ρ sin ψ and nz = ρψ sin ψ + ρ cos ψ
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Figure 6.9 Geometry of radiation from a prime focus reflector with a general profile. Surface
element shown in bottom right
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The feed radiates an electric field in the primed co-ordinate system (ρ , ψ , ξ ) given by

Ef =
e− jkρ

ρ
A ψ ψ cos ξ −ξ sin ξ

and

Hf =
1
ηo

ρ ×Ef ,

where the pattern function A(ψ ) can be arbitrary, ρ = ρ2 +Δz2−2ρΔz cos ψ , ψ =

sin−1 ρ

ρ
sin ψ , ξ = ξ and ρ = ρ−zΔz.

Following physical optics assumptions, the current induced on the reflector by this feed is

Js≈
2
ηo
n × ρ ×Ef

= −
2A ψ

ηo

exp − jkρ

ρL
x −na sin ψ sin2ξ+ nz cos2ξ + cos ψ sin2ξ

+ y cos ξ sin ξ na sin ψ + nz 1− cos ψ + z na cos ξ

The incremental surface element for a general surface is dS= ρL sin ψdψ dξ, where

L= ρ2 + ρ2ψ is the segment length as shown in the inset to Figure 6.9. This cancels with

the term in the denominator of Js. Substituting this and the current into Eqs. 6.31 and 6.32
results in far-field components

Eθ r,θ,ϕ =
jk

2π
e− jkr

r
cos θ Fx θ,ϕ cos ϕ +Fy θ,ϕ sin ϕ −Fz θ,ϕ sin θ 6 37a

Eϕ r,θ,ϕ = −
jk

2π
e− jkr

r
−Fx θ,ϕ sin ϕ+Fy θ,ϕ cos ϕ 6 37b

The transforms can be evaluated in the ξ-direction in closed form using Eq. B.3. Thus,

Fx θ,ϕ = 2π
ψc

0
dψρsin ψ

ρ

ρ
A ψ J0 w exp − jk ρ + ρ cos θ cos ψ 6 38a

Fy θ,ϕ = 2π sin 2ϕ
ψc

0
dψ sin ψ

ρ

ρ
A ψ J2 w ρψ cos

ψ

2
−ρ sin

ψ

2

× sin
ψ

2
exp − jk ρ + ρ cos θ cos ψ

6 38b

Fz θ,ϕ = −4πjcos ϕ
ψc

0
dψ

ρ

ρ
A ψ J1 w ρsin2

ψ

2
× exp − jk ρ + ρ cos θ cos ψ ,

6 38c
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where w= kρsin θ and Jn is the ordinary Bessel function of order n. The first quantity in the
square brackets on the right-side of Eqs. 6.38 reduces to A(ψ) when Δz = 0 and also fo = f ,
the reflector focal length. The integrals in Eqs. 6.38 are readily integrated providing ρ(ψ)
and its derivative are known either in closed form or through interpolation of a set of data
points.
As an example of the former, consider a paraboloid defined by ρ= 2f 1 + cos ψ and ρψ =

ρ tan ψ 2 . The surface element for a paraboloid is, therefore, expressed as dS= ρ2 sec ψ 2
sin ψ dψ dξ. With these substitutions and the same feed defined above, Eqs. 6.38 reduce to

Fx θ,ϕ = 2πf
ψc

0
dψA ψ J0 w tan

ψ

2
exp − jkρ 1 + cos θ cos ψ 6 39a

Fy θ,ϕ = 0 6 39b

Fz θ,ϕ = −4πjf cos ϕ
ψc

0
dψA ψ J1 w tan2

ψ

2
× exp − jkρ 1 + cos θ cos ψ 6 39c

The far-fields then follow from Eqs. 6.37. For instance, Figure 6.10 shows the radiation pat-
tern of a paraboloid with dimensionsD= 100λ and f D= 0 4 and a Gaussian feed function with
an edge illumination of −10 dB. Other examples of the use of Eqs. 6.38 using discrete data
points in the calculation of radiation pattern are given in the next section and later in this chapter
in Section 6.9 in relation to shaped reflectors.
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Figure 6.10 Principal radiation pattern of a paraboloid with dimensions D = 100λ and f D = 0 4 with
a feed having an axisymmetric Gaussian pattern function that results in a −10 dB edge illumination
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6.2.3.2 Spherical Reflector

Another reflector type that is used in a variety of applications because of its ease of use in
scanned beams is the spherical reflector that is illustrated in Figure 6.11 (Li, 1959). The surface
is obtained by taking a section of a sphere of radius Ro. Unlike the paraboloid, the spherical
reflector does not have a perfect focus. Typically, a focus is taken on the line of symmetry
at a distance fo =Ro 2 from the reflector vertex. However, this does not take account of other
rays near the axis of symmetry, and as a result, the best feed location tends to be closer to the
reflector, the actual distance depending on the requirement of the antenna. For example, to keep
the phase error in the aperture to within ± λ 16, the diameter, D, of the aperture should not

exceed D= 256λ fo D 3. Common methods for feeding a spherical reflector are an array of
dipoles or waveguides, a correcting concave reflector, which results in a Gregorian-corrected
dual-reflector configuration, or alternatively a line source provided by a travelling wave feed
along the axis, which radiates a field towards the reflector.
To examine the spherical reflector geometry further, consider a possible location of a single

feed as shown in Figure 6.11. The distance from the focal point to the aperture plane at z = 0 is
given by

L=FP +P A= s2 + ρ2−s2− ρ− fo
2
+ ρ2−s2, 6 40

where ρ=Ro the radius of the spheroid, s is the radial distance from the z-axis and fo is the
distance from the vertex to the focal point at F. The path difference between a paraxial ray
and a non-axial ray is given by
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ξ

Figure 6.11 Spherical reflector geometry
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Δ=Ro + fo−L

This path difference in wavelengths is

Δ
λ
=
Ro

λ
1 +

fo
Ro

−
s

Ro

2

+ 1−
s

Ro

2

− 1−
fo
Ro

2

− 1−
s

Ro

2

6 41

The total phase error over a prescribed aperture is least when the phase error at the aperture
edge is zero. If the aperture radius isD/2, which describes a cone of angle ψ c = sin−1 D 2Ro at
O, the optimum focal length when Δ λ= 0 is given by

fo =
1
4

Ro + R2
o−

D

2

2

6 42

While this is the optimum location for a uniform illumination, it is not necessarily the most
suitable location for a tapered feed pattern when the feed needs to be moved further away from
the reflector vertex. Correspondingly, there is a given aperture dimension for a minimum total
phase error. Thus, the phase error tolerance limits the aperture size. It has been determined that
the maximum allowable total phase error (Δ/λ)max for a given aperture diameter in wavelengths
D/λ is

Δ
λ max

=
D λ 4

max

75π Ro λ 3 6 43

The radiation pattern of a spheroid can be obtained by means of the expressions given by
Eqs. 6.37 and 6.38. As an example, a spheroid is chosen with a radius of Ro = 50λ. According
to Eq. 6.43, the maximum diameter of the spherical segment for a phase error of λ/16 is
D λ = 36 384. Assuming an approximate uniform illumination, Eq. 6.42 gives a focal distance
of fo = 24 121λ. At this distance, the feed-cone angle is θo = 56 78 . A feed pattern function
given by A ψ = cos6ψ was chosen for this reflector to provide an edge taper of −8 21 dB.
The resulting radiation pattern that was computed is shown in Figure 6.12, and the maximum
gain is 37.64 dBi, which results in an aperture efficiency of 41.2%. These results were obtained
from a discrete data representation of the reflector and are comparable with those obtained from
the closed-form expressions for the spheroid. The first sidelobe level is seen to occur at −25 dB,
and the maximum cross-polar level is −44 3 dB. This sidelobe level is significantly lower than
what might be expected from the edge taper with a paraboloid of the same diameter.

6.2.4 Receive-Mode Method

In the previous section, the radiation pattern of the reflector was obtained by assuming that
the feed antenna was transmitting. The reflector can also be easily analysed by adopting a
receive-mode method. In the receive-mode approach, the reflector antenna is assumed under
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illumination from a distant point source. The illumination is by a plane wave from a fixed direc-
tion. The wave can be linearly or circularly polarized. For a distributed source, the illumination
could be created from a superposition of plane waves from all relevant angles of incidence.
Recalling reciprocity, the receive-mode method should give the same results as in transmission.
Its advantage is that for a fixed incident beam the feed need not enter the calculation until after
the current on the nearest reflector has been computed. In addition, with little difficulty, the same
computer program can determine both the focal region fields, knowledge of which is important
for designing the feed excitation and the far-field radiation patterns. In the latter calculation, the
methods of Section 3.7 can be used.When there are two or more reflectors, it is usual to integrate
over the reflector nearest the feed as the latter’s surface is usually the smallest one of the two.
Both calculations are feasible once the current on the relevant reflector is known. The current is
often stored as this is usually the most complicated calculation. The radiation efficiency can then
be compared relatively quickly for a variety of feeds or feed element locations.
The field finally reaching the feed is usually subject to several approximations. It is common

practice to ignore either a direct component into the feed from the incident field or an indirect
diffracted component from the subreflector. Similarly, multiple reflections from the subreflec-
tor, or feed, which reach the main reflector, are excluded. This latter assumption eliminates the
reaction between the reflectors and the reflectors and feed. On the whole, practice with sym-
metrical reflectors has shown that these assumptions do not significantly affect the main beam
and the first few sidelobes. In the case of the dual offset reflector, these approximations are
likely to have less effect.
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Figure 6.12 Radiation patterns of a spherical reflector with D= 36 834λ, Ro = 50λ and fo = 24 121λ,
edge illumination −6 41 dB
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The direction of arrival of an incident linearly polarized plane wave can be described by three
angles θI, ϕI and ζI as shown in Figure 6.13. Suppose sI is the beam direction and EI is the
electric field associated with the wave. As may be verified from Figure 6.13

sI = − x cos ϕI + y sin ϕI sin θI −z cos θI 6 44

As well, EI has a polarization angle ζI, which is defined relative to an initial line that is in the
z−OA plane which is defined by ϕI. A field defined in the co-polarized direction is

EI = x cos ζI cos ϕI cos θI − sin ζI sin ϕI

+ y cos ζI sin ϕI cos θI + sin ζI cos ϕI −z cos ζI sin θI
6 45a

An orthogonal cross-polarized field can similarly be defined by simply replacing
ζI ζI + π 2. That is,

EIx = −x sin ζI cos ϕI cos θI + cos ζI sin ϕI

−y ζI sin ϕI cos θI − cos ζI cos ϕI + z sin ζI sin θI
6 45b

The field arriving at the point P(rp, θp, ϕp) that is scattered from a paraboloid is shown in
Figure 6.14. The reflector is oriented with its axis of symmetry along the z-axis. The field
can be computed using the induced current method or by some other technique such as the
geometrical theory of diffraction (GTD). In the latter, the resulting field consists of field con-
tributions arising from specular reflection that is a geometric optics contribution plus partial
fields that are due to diffraction from several pointsQk

D (k = 1, 2) on the reflector rim. All points
are determined from Fermat’s principle of finding the least path length from incidence to the
reflection or diffraction points. The field obtained close to the focus is the focal region field.
This field is an indicator of the best feed aperture distribution with which to excite the reflector.
It may also be used to calculate the radiation pattern by means of the power coupling theorem

EI

sI

θI

ϕI

ζI

A

O

x

y

z

Figure 6.13 Linearly polarized plane wave incident in direction sI
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(Wood, 1980) or field correlation as described in Section 3.7. The version of the power cou-
pling theorem given here includes the assumption that physical optics is applicable at the reflec-
tor or a subreflector. In addition, it is assumed that the scattered field does not influence the feed
radiation. With these assumptions, the fraction of the power in the field scattered from the main
reflector that is coupled into the feed is given by Eq. 3.64 as

η θ,ϕ = Srefl
Ef Jrefl θ,ϕ dS

2

16PfPinc
, 6 46

where Ef is the electric field radiated by the feed independently of the reflector, Pf is the power
radiated by the feed and Pinc is the power in the wave incident on the reflector. The current on
the reflector is

Jreff = 2Yon × sI ×EI , 6 47

where Yo is the wave admittance of the incident plane wave, n is the normal to the reflector in
rectangular co-ordinates and for the paraboloid it is given by Eq. 6.3. The incident electric field
EI is given by Eqs. 6.45a and 6.45b for determining the co- and cross-polar efficiencies, respec-
tively. Eq. 6.46 represents the fraction of the power radiated by the feed in the direction of the
incoming wave. Its maximum value is the peak antenna efficiency or beam efficiency and when
the antenna radiates multiple pencil beams, its maximum value in each beam direction is the
beam efficiency. Far-field radiation patterns can be determined by evaluating Eq. 6.46 over
solid angles around each incident wave direction. The integrals in Eq. 6.46 are usually
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•

SIQR
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1
DQ

2
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P(rp,θp,ϕp)

ρ

Figure 6.14 Reflection point QR and sites of edge diffraction Qk
D (k = 1, 2) on an offset paraboloid
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evaluated numerically using methods such as trapezoidal quadrature or the Gauss-Legendre
quadrature rule (Fröberg, 1974).
As an example of the possible simplification of Eq. 6.46, consider the special case of a sym-

metrical paraboloid. This reflector is fed by a Huygens source with a radiated field of

Ef =A θ θ cos ϕ−ϕ sin ϕ exp
− jkr

r

where A(θ) is the Gaussian function given by Eq. 6.23. The radiated power is

Pf =
π

ηo

π 2

0
dθ A θ 2,

while the power in the incident plane wave is Pinc = πD 2 ηo, where D is the diameter of the
paraboloid. Assume an incident plane wave that is parallel to the z-axis (i.e. θI = 0 and ϕI = 0 )
that is polarized parallel to the x-axis (i.e. ζI = 0 ). Themaximum efficiency given by Eq. 6.46 is

ηmax =

π 2

0
dψ A ψ cos ψ 2 2

2 πD 2
π 2

0
dψ A ψ 2

For a paraboloid with D = 100 λ and f D = 0 35 that is fed with a Huygens source with an
edge illumination of −16 dB, Eq. 6.23, the maximum efficiency predicted by power coupling is
77%. The induced current method gives 74% for the same geometry.

6.3 Focal Region Fields of a Paraboloidal Reflector

An understanding of the fields excited in the vicinity of the focus of a reflector by an incident
signal is very useful for designing suitable feed antennas. By making the aperture fields of the
feed a good match to the focal region fields, high gain and low cross-polarization may be
achieved. To calculate the focal region fields for far-field operation either in reception or trans-
mission, the reflector is illuminated by a uniform plane wave from infinity. In this section, the
fields in the focal region (at z = 0 in Figure 6.15) are found by means of the induced current
method. Other approximate methods such as GTD can be used. A high frequency approxima-
tion will also be described later in this section.
A paraboloidal reflector is illuminated by a plane wave linearly polarized in the x-direction,

as illustrated in Figure 6.15. To make the result more general, the wave is incident at an angle to
the axis of symmetry and its electric field is

Ei =Eo x cos θi−z sin θi e
jk xsinθi + zcosθi , 6 48

where θi is the angle of incidence relative to the negative z-direction. This field induces the
current on the reflector surface as follows:
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Js = 2n×Hi reflector Σ

= 2n×
1
ηo

−x sin θi−z cos θi ×Ei ,
6 49

where n is given by Eq. 6.3. In rectangular co-ordinates the current is expressed as follows:

Js =
2Eo

ηo
ejk xsinθi + zcosθi x cos

ψ

2
+ z sin

ψ

2
cos ξ 6 50

As focal plane is not generally in the far-field of the reflector and, therefore, Eqs. 3.8 are
required to evaluate the fields. Only the electric field in the focal region is considered.
Eq. 3.8a gives

EF r,θ,ϕ =
jkη

4π
Σ

e− jkR

R
Js−R Js R dS 6 51

As shown in Figure 6.15 for on-axis incidence θi, the vectorR= t−ρ is from P on the reflec-
tor to P in the focal region and t is a vector in the focal plane. Near the focus t << ρ , and this
allows approximations to be made in a similar fashion to estimating the far-fields. Accord-
ingly, let

R= R ≈ ρ = ρ t in the phase function of the integrand and
R≈ρ inside the square brackets in the amplitude function of the integrand.
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Figure 6.15 Geometry for focal region field analysis for on-axis incidence θi.
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The amplitude function in the integral of Eq. 6.51 is now

1
R

Js−R Js R dS ≈ Js−ρ Js ρ ρdψdξ

= −
2fEo

η
ejk xsinθi + zcosθi x 1− tan2

ψ

2
cos 2ξ sin ψ

−y sin ψ tan2
ψ

2
sin 2ξ+ z2 sin ψ tan

ψ

2
cos ξ ρdρdψ

6 52

Also, the combined phase function is given by

Φ =R− cos θiz + sin θix

≈ xF cos ξ + yF sin ξ sin ψ + 2f sin θi tan
ψ

2
cos ξ + f cos θi sec

2ψ

2
−2f

= t ψ sin ψ cos ζ−ξ + f cos θi sec2
ψ

2
−2f ,

6 53

where t ψ = xF + f sinθi sec2 ψ 2 2 + y2F . With these approximations, Eq. 6.51 gives

(Minnett & Thomas, 1968)

EFx = −
jkfEo

2π

2π

0
dξ

ψc

0
1− tan2

ψ

2
cos 2ξ sin ψe− jkΦ dψ 6 54a

EFy =
jkfEo

2π

2π

0
dξ

ψ c

0
sin ψ tan2

ψ

2
sin 2ξe− jkΦ dψ 6 54b

EFz = −
jkfEo

π

2π

0
dξ

ψ c

0
sin ψ tan

ψ

2
cos ξe− jkΦ dψ 6 54c

The integration with respect to ξ can be completed by means of Eq. B.3 allowing Eqs. 6.54 to
be reduced to

EFx xF ,yF ,θi =A0 xF ,yF +A2 xF ,yF 6 55a

EFy xF ,yF ,θi =B2 xF ,yF 6 55b

EFz xF ,yF ,θi = −2jA1 xF ,yF , 6 55c

where

An xF ,yF = κ
ψ c

0
Jn kt sin ψ tann

ψ

2
sin ψ cosnζ exp − jkaz tan

2ψ

2
dψ 6 56a

and

Bn xF ,yF = κ
ψ c

0
Jn kt sin ψ tann

ψ

2
sin ψ sinnζ exp − jkaz tan

2ψ

2
dψ 6 56b
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in which az = 2f sin
2 θi 2 ; κ = − jkfEo exp − jk2f cos2θi 2 and tan ζ = yF xF + f sin θisec2

ψ 2 .
For on-axis incidence θi = 0 , Eqs. 6.55 become

EFx xF ,yF ,0 =Λ0 t +Λ2 t cos 2ζ 6 57a

EFy xF ,yF ,0 =Λ2 t sin 2ζ 6 57b

EFz xF ,yF ,0 = −2jΛ1 t cos ζ, 6 57c

where

Λn t = κ
ψc

0
Jn kt sin ψ tann

ψ

2
sinψdψ 6 57d

and κ = − jkfEoe− jk2f. Further insight to these equations is possible by now considering a
paraboloid with a long focal length. Suppose the angle to the rim, ψc, is small allowing the
functions in Eqs. 6.57 to be approximated as follows

Λ0 t ≈κ 2
J1 U

U
6 58a

Λ1 t ≈κ ψ c
J2 U

U
6 58b

Λ2 t ≈0, 6 58c

where U = kt sin ψc and κ = 2κ sin2 ψc 2 . Note that sin ψc 2 ≈ tan ψc 2 ≈D 2f so that
κ ≈ − jkEoe− jk2f D2 8f and therefore

EFx t,ζ ≈κ 2
J1 U

U
6 59a

EFy t,ζ ≈0 6 59b

and

EFz t,ζ ≈ − j2κ ψc
J2 U

U
6 59c

Therefore, the dominant field amplitude in the focal plane is

EFx ≈Eo
kD2

8f
2
J1 ktψc

ktψc
6 60

Equation 6.60 is the scalar solution obtained by the mathematician and Astronomer Royal
George Biddell Airy in the early part of the nineteenth century when he investigated the
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distribution of light in the focal region of a lens. He observed that the focal region field consists
of bright (‘Airy’) and dark rings. Eq. 6.60 shows that these rings occur when J1 U = 0, result-
ing in a first dark ring when U = 3 832.
Even for paraboloids with a short focal length, the field in the focal region has similar char-

acteristics through the expressions given in Eqs. 6.57. Figure 6.16 shows the field distribution
in the focal plane of the Parkes radio telescope (ψ c = 63 and f D = 0 41). In the central region,
the field is nearly linearly polarized. It changes sign at the first zero, which occurs at a radius of
t1 = 0 610λ sin ψc = 0 55λ, which is indicated as a dotted line in Figure 6.16. For optimum per-
formance, a feed should have an aperture field distribution that closely matches the focal fields.
A corrugated waveguide operating in the HE11 mode (see Eq. 4.61a) provides a good match to
the focal field when the waveguide, a, is approximately equal to t1 in both the co- and cross-
polar directions. The TE11 mode of circular waveguide is also quite a good feed for a parab-
oloid, but it does not have zero cross-polarization as required in Figure 6.16b. For maximum
gain, its radius should be slightly greater than t1 (see Figure 6.21). This is because the TE11

mode aperture field is more uniformly polarized near the centre of the waveguide than at its
walls and is, therefore, a better match to the focal fields. A circular waveguide with a diameter
of about 1.1λwould be a reasonable option. If a beam is required off-axis, a small array can also
be used (Poulton & Bird, 1988).

6.3.1 Asymptotic Representation of the Scattered Field∗

The field scattered from the offset reflector to the focal region can be approximated for large
reflectors or for high frequencies by means of asymptotic methods. The basic technique was
described in Section 3.8.1. The focal fields or radiation pattern can then be obtained either by
correlating this field with the field of the horn on the aperture or using the field to approximate
the current ona subreflector if one is present.Consider the situation illustrated inFigure 6.17.The
magnetic field scattered to a point P from paraboloid due to plane wave incidence is given by

H R =
jk

4π S
JS × sR

exp − jksR
s2R

dS, 6 61

where JS = 2 ηo n × sI ×EI exp − jksI ρ .

EI is the incident electric field;
sI is a unit vector in the direction of the incident plane wave;
sI = − x cos ϕI + y cos ϕi sin θI + z cos θI ;
ρ= ρ x cos ξ sin ψ + y sin ξ sin ψ + z cos ψ is a vector from the focus to the reflector surface
and for a paraboloid ρ = 2f 1 + cos ψ ;

n is the normal to the surface of the reflector

n=
1

ρ2 + ρ2ψ
x cos ξ + y sin ξ ρψ cos ψ −ρ sin ψ −z ρψ sin ψ + ρ cos ψ ;

sR = ρ−R is a vector from the source point to P and sR = sR sR is a unit vector and sR is the
magnitude; and R is a vector from O to P the observation point
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R=R x cos ϕ sin θ + y sin ξ sin θ + z cos θ

For convenience, this field is expressed as follows:

H R =
S
F R ρ exp jkg R ρ dS, 6 62

where F R ρ =
jk

2πηo

n × sI ×EI × sR
s2R

and g R ρ = − sI ρ+ sR .

This field can be evaluated asymptotically bymethods described in Section 3.8.1. In brief, there
will, typically, be three contributions to the asymptotic solution, namely, a stationary point from
the surface of the reflector corresponding to specular reflection, two or more edge contributions
due to stationary points on the peripheries due to edge diffraction and a contribution from any
discontinuities on the boundary of S.
In the case of an axisymmetric reflector, the components of the integral in Eq. 6.62 are

integrals of the form

I =
2π

0
dξ

ψu

ψℓ ξ
dψ f ξ,ψ exp jkg ξ,ψ , 6 63

where f(ξ, ψ) is a component of Eq. 6.62. ψ =ψℓ ξ is the inner boundary of the surface S and
corresponds to shadowing by a subreflector in a dual reflector or a feed in a prime focus con-
figuration. ψ =ψu defines the outer rim of the reflector.
As has been mentioned, there are potentially three different types of critical points relating to

the domain S. The critical point of the first kind, or spectral point, at (ξ1, ψ1) on the reflector
surface is defined by

y
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(ρ, ξ, ψ)
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Figure 6.17 Incident plane wave on a shaped symmetrical reflector
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∂g

∂ξ ξ= ξ1
ψ =ψ i

= gξ ξ1,ψ1 = 0 = gψ ξ1,ψ1 6 64a

As well, there may be up to four critical points of the second kind, or edge points, from the
two boundaries of S, which are defined by

∂g

∂ξ ξ= ξ1
ψ =ψ c

= gξ ξ2,ψ ξ2 = 0 6 64b

on the inner and outer boundaries of S. Finally, there could potentially be two critical points of a
third kind due to a discontinuously turning tangent on the inner boundary. However, for sim-
plicity, it is assumed here that ψℓ(ξ) is a smooth function with no discontinuities. The critical
points of the first kind yield a geometric optics type of contribution to Eq. 6.63 and those of the
second kind give diffraction contributions from the edges. For large reflectors with a relatively
small inner hole defined by ψℓ(ξ), the contributions to Eq. 6.63 from the inner boundary edge
points are small compared with the other terms.
When the functions f and g are expanded in their Taylor series about the critical points, as

described in Section 3.8.1, and at each critical point the first term of the asymptotic expansion
of Eq. 6.63 is taken into account, an asymptotic representation of this equation is given by

I σI1 ξ1,ψ1 −
i

εuiI2 ξu2,ψ2 +
j

εujI2 ξℓ2,ψ ξℓ2 6 65

The subscripts u and ℓ refer to the upper and lower limits of ψ and i, j= 1, 2 is a
summation over the critical points of a second kind on the two boundaries. To define the other
variables in Eq. 6.65, let

V ξ,ψ = gψ −
gξgξψ
gξξ

6 66a

U ξ,ψ =
Δ
gξξ

= gψψ −
g2ξψ
gξξ

, 6 66b

where gψ, gξ and so on refer to derivatives of g with respect to ψ , ξ and

Δ=
gψψ gξψ
gψξ gξξ

is the determinant of the Hessian matrix of g(ξ, ψ ). For a general critical point denoted by qi,
representing boundary q of S, point i (which is set equal to 1 for the stationary point) then
in Eq. 6.65

εqi = sgn
V ξqi,ψqi

U ξqi,ψqi

6 67a
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and also

σ =
εui; when sgn V ξu1,ψu1 = sgn V ξu2,ψu2 & sgn V ξℓ1,ψℓ1 sgn V ξℓ2,ψℓ2

0; otherwise

6 67b

is a step function that distinguisheswhether there is a geometric optics contribution to the integral
based on a test of the derivatives of g at the edge points. This test can be made before a search is
undertaken to find a stationary point on S and this can help shorten computation time. In addition,

I1 ξ1,ψ1 = πW ξ1,ψ1 exp
jμπ

4

I2 ξqi,ψqi =W ξqi,ψqi Fμ
k

2 U
V ,

where

μ= sgn U

and

W ξqi,ψqi =
2
k

π

Δ
f ξqi,ψqi exp jsgn gψψ

π

4

× exp jk g ξqi,ψqi −
1
2

g2ξ
gξξ

+
V2

U

Fμ(z) is a Fresnel integral, which is defined in Appendix E. It can have a positive or negative
exponential in the argument of the integral depending on the sign of μ. A particular feature of the
asymptotic solutiongiven above is that the critical points needonlybe approximate. The reason is
that Eq. 6.65 includes compensating terms that involve the derivative gξ and gψ, which are set to
zero in some asymptotic forms. In the present formulation, the stationary point (ξ1, ψ1) is a simul-
taneous solution of gξ and gψ such that gξ , gψ < ε1 while the edge points are solutions to

Eq. 6.64b with gξ < ε2 where ε1 and ε2 are assumed to be small. Approximate solutions of
the critical points in the range 0 001 < ε1,ε2 < 1 have been tried and only small variations to
the overall value of the integral have been observed. The critical points can be found by a vari-
ety of root finding methods. For example, the two-dimensional Newton–Raphson (Dixon,
1972) is particularly apt for finding the stationary point on the reflector in present application.
The i-th Newton–Raphson step towards a minimum of |g| given by Eq. 6.64a is given by

Φi + 1 =Φi− H−1J
i

where Φi =
ξi
ψ i

, Ji =
gξ
gψ i

, and H−1 =
1
Δ

gξξ gψξ
−gξψ gψψ

is the inverse Hessian matrix.
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As mentioned earlier, the present solution for the scattered field can be used to find the focal
region fields or the radiation of a reflector. In a dual reflector application, the radiation pattern
or focal region fields can be obtained from the physical optics currents induced on the
subreflector as shown in Figure 6.18. The current at point P on the surface Σ is given by
Js r,θ,ϕ = 2np ×H r,θ,ϕ where H is given by the asymptotic form of Eq. 6.62 and np is
the normal at P. The radiation from a dual reflector could be obtained by field correlation from
Eq. 6.46 by integrating the asymptotic field with the electric field from the feed Ef over the
subreflector surface as indicated. The feed field needs to be transformed from the local feed
co-ordinate system to the global co-ordinate (x, y, z) system. In the simpler prime focus appli-
cation, field correlation can also be used, but in this case, the integration of the asymptotic solu-
tion should be done over the aperture of the feed with both the electric and magnetic fields
present as given by the alternative Eq. 3.62.

6.4 Blockage

The feed and its support structure in a front-feed paraboloid scatter energy away from the
aperture producing a shadow as illustrated in Figure 6.19. To a first approximation, shadowing,
or blockage as it is known, may be included in field calculations by eliminating the blocked
parts from the integration over the aperture or reflector surface. For example, in the aperture
field method, blockage from a feed of diameter Do is included by removing a circle of radius
Do/2 from the centre of the aperture. Eq. 6.11 would then be replaced by

N θ,ϕ =
2π

0
dξ

D 2

Do 2
Ea t,ξ exp jwt cos ϕ−ξ tdt 6 68

The effect of blockage on the radiation pattern is demonstrated by the one-dimensional exam-
ple illustrated in Figure 6.20. The Fourier transform of the aperture distribution in this figure is

E =
∞

−∞
f x ej2πux

=
a 2

−a 2
ej2πux dx =

b 2

−b 2
ej2πux dx

= aS πua −bS πub

6 69
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Figure 6.18 Feed illuminating subreflector
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The result is illustrated in Figure 6.20. It is seen that the subtracted transform due to the cen-
tral blockage is wider than the transform due to the main aperture distribution. Therefore,
the central lobe and the even-numbered sidelobes of the main aperture are out of phase with
the blockage. Therefore, blockage reduces the on-axis gain and increases the nearby odd-
numbered sidelobes extending out from the central beam. As well it decreases the even-
numbered sidelobes. Blockage can also have an important effect on the sidelobes far from
the main lobe, sometimes increasing them to unacceptably high levels. This will depend on
the size and shape of the blockage as well as the illumination.
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Figure 6.20 Illustration of blockage effects in terms of Fourier distributions
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Figure 6.19 Aperture blockage by feed and supporting struts
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6.5 Reflector Antenna Efficiency

Under normal operating conditions, a reflector antenna has maximum gain for a uniform,
equiphase aperture distribution. Then from Eq. 3.40, a reflector with a diameter D has maxi-
mum gain of

Go =
πD

λ

2

6 70

If the reflector illumination is tapered, as it usually is in practice to keep sidelobes at accept-
able levels, the maximum is less than that given Eq. 6.70. To accommodate this, in
Section 3.5.6 maximum gain1 was defined as

Gmax = ηaGo, 6 71

where ηa is the aperture efficiency. Eq. 6.71 neglects power losses in the reflector system due to
feed spillover, mismatch, conductor losses and so on. These power losses may be accounted for
in the calculation of gain by modifying Eq. 6.71 as is now demonstrated for reflector spillover.
The power density radiated by the feed is

Pf =
1
2η

Ef
2 6 72

giving a total radiated power

PT =
2π

0
dξ

π

0
Pf ρ sin ψ dψ 6 73

Not all this power is intercepted by the reflector. Some of it falls outside the reflector causing
a power loss. This power loss is called spillover. The power collected by a reflector subtending
an angle ψc is

Pc =
1
2η

2π

0
dξ

ψ c

0
Ef

2ρ sin ψ dψ 6 74

Therefore, the power loss due to spillover is

Ps =PT−Pc =
1
2η

2π

0
dξ

π

ψc

Ef
2ρ sin ψ dψ 6 75

1Higher gains than Eq. 6.70 are possible with non-uniform aperture phase distributions. This supergain phenomenon
can be difficult to achieve and obtain in practice because of losses and often the improvement is very narrowband.
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The spillover efficiency can be defined as

ηs =
Pc

PT
= 1−

Ps

PT
6 76

By means of Eqs. 6.73 and 6.75, the spillover efficiency is

ηs =

2π

0
dξ

ψ c

0
Ef

2ρ sin ψ dψ

2π

0
dξ

π

0
Ef

2ρ sin ψ dψ

6 77

Ideally, ηs should be close to 1 although typically it is 0 6 < ηs < 0 95 depending on the
feed taper.
Let the power density in the far-field region of the reflector be

PT =
1
2ηo

E 2 6 78

By means of Eq. 3.48, the gain function becomes

G θ,ϕ =
4πr2Pr

PT

= ηs
4πr2Pr

Pc

6 79

Therefore, the maximum gain is

Gmax = ηaηs
πD

λ

2

= ηaηsGo 6 80

Equation 6.80 is the extension of Eq. 6.71 to account for spillover.
For a paraboloidal reflector and a feed with an axisymmetric pattern A(ψ), the power density

on boresight is found from Eqs. 6.19 and 6.78, to be given by

Pr =
2
ηo

kf

r

2 ψc

0
A ψ tanψdψ

2

6 81

To obtain this result from Eq. 6.19 the substitution t = ρ cos ψ was made. The power col-
lected by the reflector from the feed is

Pc =
π

ηo

ψ c

0
A ψ 2 sinψdψ 6 82
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Hence,

Gmax = ηs
πD

λ

2

2cot2
ψc

2

ψ c

0
A ψ tan ψ 2 dψ

12

ψc

0
A ψ 2 sinψdψ

6 83

The aperture efficiency is, therefore,

ηa = 2cot
2ψc

2

ψc

0
A ψ tan ψ 2 dψ

12

ψ c

0
A ψ 2 sinψdψ

6 84

In a similar fashion, efficiency factors may also be defined to account for feed mismatch,
ηf, and reflector and feed conductor losses, ηc. These efficiencies are then incorporated in an
overall efficiency factor

ηT = ηaηSηfηc 6 85

The maximum antenna gain is, therefore, expressed as

Gmax = ηTGo 6 86

The theoretical aperture efficiency of a paraboloid with a circular waveguide feed is plotted
in Figure 6.21 as a function of feed radius. Curves are given for a typical range of feed radii for a
reflector of diameter 100 λ for various half-cone angles, ψc. The circular waveguide operates in
the TE11 mode and results are given for two types of aperture terminations: namely, the wave-
guide terminates at an infinite metallic flange, and secondly the circular waveguide has no
flange and the waveguide walls are infinitely thin. Radiation characteristics of the first type
were discussed in Section 4.4. For the second type of circular feed, an exact solution is available
(Weinstein, 1969) which, in contrast with the E–H model (Eq. 4.37), accurately represents the
currents on thin waveguide walls. Efficiency values presented in Figure 6.21 include mismatch
loss at the feed aperture and correspond to Eq. 6.85 with ηc = 1. Blockage, however, is not
included, but its effect on the efficiency in most instances will be small. Figure 6.21 indicates
there is an optimum feed diameter for maximum efficiency for every half-cone angle. Effi-
ciency increases as ψc decreases because the pattern narrows in one plane which lowers spill-
over loss but the beam is asymmetric and the cross-polarization will be high. In undertaking
design with these feeds, there is a compromise between the competing requirements of high
gain, sidelobe level, pattern symmetry and cross-polarization.
A third type of circular waveguide feed, which is in common use in satellite earth stations, is

illustrated in Figure 1.1b. It has an aperture flange that contains a number of ring-slots or corru-
gations. The feed pattern function has good axial symmetry, and low cross-polarization can be
achieved by optimizing the slot width and depth as well as the slot spacing relative to the aperture
(James, 1979). A design strategy that maximizes reflector antenna efficiency results in a feed
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consisting of central waveguide and ring-slots that approximately coincide with the Airy rings in
the focal plane. As in the case of the circular waveguide feeds in Figure 6.21, there is an optimum
reflector half-cone angle, ψc, that maximizes reflector efficiency, for a given feed. This is shown
in Figure 6.22 for a waveguide of radius 0.37 λ. A maximum efficiency occurs in this case
because of the trade-off between energy loss due to spillover and the uniformity of illumination
of the reflector. As ψc increases, spillover efficiency increases but the reflector is less uniformly
illuminated. In the plots shown in Figure 6.22, the flange has a varying number of rings-slots. The
lowest feed cross-polarization occurs for three ring-slots with a slot spacing of 0.05 λ, width 0.13
λ and depth 0.26 λ. Curve (a) in Figure 6.22 gives the paraboloid efficiency for this feed. The
maximum efficiency reduces slightly with a single ring-slot, as shown by curve (b). In common
with the three ring case the slot dimensions were chosen to minimize feed cross-polarization.
The remaining curves in Figure 6.22, labelled (c)–(f ), illustrate the importance of conditions

at the flange. For a waveguide of radius 0.37 λ, they show that the efficiency falls as the flange
width, σ (see Figure 6.22), reduces to zero. This waveguide is obviously not optimum with a
small flange. Higher efficiencies are possible with thin wall waveguides, as shown in
Figure 6.21, when the waveguide radius is increased to about 0.5–0.6 λ. Coincidently, this size
also gives lowest feed cross-polarization.
Maximum efficiency for the three slot-ring case (curve (a) in Figure 6.22) occurs when

ψc = 57 . Principal plane radiation patterns in this case are plotted in Figure 6.23. Blockage
is not included and the peak is plotted relative to a uniformly illuminated aperture, giving
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an efficiency of −1.16 dB (76.6%). The peak cross-polarization in the 45 plane is −35.8 dB.
This is 5.4 dB below the peak cross-polar level of the feed in isolation. This is fairly typical for
the peak cross-polarization in the radiation pattern of a paraboloid. Depending on the half-cone
angle and the feed cross-polar peak, the paraboloid has lower peak cross-polarization by about
3–5 dB in the 45 plane.
Although efficiencies of 75%andhigher are predicted inFigures 6.21 and6.22, practical efficien-

cies for the cases considered seldom exceed 60–65%; that is, there is usually a loss of gain of about
1–0.6 dB in implementation. This can occur due tomanufacturing errors, surface finish and various
ohmic losses. The effect of surface errors on the antenna gain is considered in the next section.

6.6 Reflector Surface Errors

In the manufacture of a reflector, various systematic and random errors occur causing the final
surface to depart from the ideal shape. Systematic errors may be minimized by proper attention
to detail during the design and construction phases. The latter type of error is determined mainly
by the accuracy of manufacture and gives the upper limit of performance when all systematic
error is eliminated. Random error modifies the aperture field and, if the surface error is small,
this results in a random aperture phase error.
Random error modifies the aperture field as will be demonstrated. If the surface error is

relatively small, a random aperture phase error results that can be approximated by

Ea =Eae
− jα, 6 87

where α is a small random variable and Ea is the aperture field with no reflector surface errors.
Since α 1, let exp − jα ≈1−α2 2 + jα. Without any loss of generality, consider a paraboloid
with a feed having an axisymmetric pattern. With a small phase error, the aperture efficiency
Eq. 6.84 is modified to

ηa =
1
2π2

cot2
ψ

2

2π

0
dξ

ψc

0
A ψ tan ψ 2 1− α2 2 + jα dψ

12

ψ c

0
A ψ 2 sinψdψ

≈ηa 1− α2 + α 2 ,

6 88

ηa is the aperture efficiency with no surface error, while α2 and α are the mean-square phase
error and mean phase error weighted by the compound aperture illumination function A(ψ)tan
(ψ /2). The weighted mean square phase deviation is

α2 = α−α 2 =

2π

0
dξ

ψc

0
A ψ tan

ψ

2
α−α 2dψ

12

2π

0
dξ

ψ c

0
A ψ 2 tan

ψ

2
dψ

= α2 − α 2

6 89
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Therefore,

ηa≈ηa 1− α2 ≈ηa exp −Δ2 6 90

Other more sophisticated models of surface errors have been developed. One, in particular,
that is in wide use is due to Ruze (1966). This model is valid for large errors that are Gaussian
distributed. If the errors are completely correlated in small regions of the aperture with diameter
much less than D, the aperture efficiency is

ηa≈ηa exp − α2 6 91

δ
2 is the mean square error of the Gaussian distribution. For small errors Eq. 6.91 is similar to

Eq. 6.90 with the exception that Δ2 is a weighted mean. The two means converge for small
errors and uniform illumination.
A useful parameter in practice is the rms surface error defined by

ε=
λ

4π
δ
2 6 92

The exponential factor in Eqs. 6.91 and 6.90 indicates that an rms surface error of λ/37 results
in a 0.5 dB loss, while an error of λ/24 gives a loss of 1.19 dB.
An important implication of Eq. 6.91 for several applications and especially for radio astron-

omy is that there is a maximum operating frequency for a given reflector surface error beyond
which any further increase in frequency causes the gain to decrease. Initially, gain increases as
the square of the frequency until reflector errors take over causing the gain to decrease. In the
presence of surface errors the maximum gain occurs at the frequency

fmax =
c

4πε
, 6 93

where a loss of 4.3 dB is incurred. For example, a reflector with rms surface error of 0.5 mm has
a maximum operating frequency of 48 GHz.

6.7 Offset-fed Parabolic Reflector

As has been seen in the previous section, blockage by the feed and feed support struts reduces
the gain and increases the sidelobe level. This can be overcome by adopting the offset-fed
configurations as illustrated in Figure 6.24 for the paraboloid (Rudge & Adatia, 1978). A fur-
ther advantage of offset parabolic antenna is that the interaction between the feed and reflector
is quite small. Offset-fed reflectors are widely used as satellite and radar antennas because the
often complicated feed systems can be placed close to bulky feed networks.
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The offset parabolic reflector is formed by rotating the feed through an angle ψo as shown in
Figure 6.24, and illuminating only part of the paraboloid. The feed and reflector are contained
within a cone of half-angle ψc with the feed at its apex and the reflector rim lying on its surface.
The projection of the rim onto the x–y plane (Figure 6.24a) is a circle of diameter

D=
4f sin ψc

cos ψo + cos ψc
6 94

and centre (xm, 0), where

xm =
2f sin ψo

cos ψo + cos ψc
6 95

f is the focal length of the original paraboloid and ψo is the angle of rotation (‘offset angle’)
of the axes about the focus. The effective focal length of an offset parabolic reflector is
defined to be
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Figure 6.24 The offset paraboloid. (a) Projected aperture. (b) Elliptical rim. (c) Rotated co-ordinate
system {Xf}
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feff =
2f

1 + cos ψo
, 6 96

which is the distance from the focus to the vertex in the offset geometry. The inverse of
Eqs. 6.94 and 6.95 is sometimes useful. That is,

ψo,c = tan−1 xm +D 2
2f

± tan−1 xm−D 2
2f

Feed blockage is avoided if the largest feed extremity in the positive x-direction is less than
the clearance distance, xL, between the paraboloid’s rim and the z-axis, where

xL = 2f tan
ψo−ψc

2
6 97

The reflector rim lies on the projected cone and is an ellipse, Figure 6.24b having major and
minor axes of length

a =
D

2 sin γ
; b =

D

2
,

where γ = tan−1 2f xm . The centre of the ellipse is (xm , 0 , zm) wherein

xm = f
sin2ψo + sin2ψc

cosψo + cosψ c
2 −1 6 98

In terms of the spherical polar co-ordinates (ρ, ψ , ξ) in the rotated co-ordinate system {Xf}
relative to the focus, a point P on the paraboloid has rectangular co-ordinates

xfp = ρ sin ψ cos ξ; yfp = ρ sin ψ sin ξ; zfp = ρ cos ψ , 6 99

where

ρ=
2f

1− cos ξ sin ψ sin ψo + cos ψ cos ψo
6 100

The global co-ordinates of this point are

xp = xfp cos ψo + zfp sin ψo;

yp = −yfp;

zp = xfp sin ψo−zfp cos ψo

6 101

The geometric optics approximation to the aperture field can be obtained by the method
described in Section 6.2.1 for the symmetrical paraboloid. The main geometrical difference
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is feed rotation although this does not alter the paraboloid’s basic properties; namely, the
distance from the focus to the aperture plane at z = 0 is 2f, and the z-component of the
aperture field is zero as, in general, because the output wave is planar. These properties
allow the aperture field expressions to be simplified. For the incident field from the feed
expressed by Eq. 6.4, the components of the electric field in the projected aperture are from
Eqs. 6.7

Eax = go c1Fψ ψ ,ξ + d1Fξ ψ ,ξ 6 102a

Eay = go −d1Fψ ψ ,ξ + c1Fξ ψ ,ξ , 6 102b

where

c1 = sin ψ sin ψo + cos ξ 1 + cos ψ cos ψo ,

d1 = sin ξ cos ψ + cos ψo ,and

go = exp − jk2f 2f

The far-fields can be obtained from Eqs. 6.102 by applying Eq. 3.26 to the aperture plane
shown in Figure 6.24a. To do this, define polar co-ordinates (t, ζ ) centred on (xm, 0) such that
x = xm + t cos ζ, y = t sin ζ and z= x2 + y2−4f 2 4f then carry out the integration over
the projected circle, Figure 6.24. To obtain the angle co-ordinates relative to the rotated
feed co-ordinates, use the standard co-ordinate relations to express ψ = sin−1 zf ρ and

ξ= tan−1 yf xf , where ρ = xf 2 + yf 2 + zf 2. For a feed with an axisymmetric pattern (i.e.
Fψ ψ ,ξ =A ψ cos ξ and Fξ ψ ,ξ = −A ψ sin ξ), the aperture fields will be symmetric about
the vertical (x) axis. Study of these aperture fields shows that while they may be symmetric
about the x-axis, by contrast with the symmetrical paraboloid, there is cross-polarization. This
is maximum in the plane of asymmetry (i.e. ξ= 90 , 270 ), and it occurs because the feed rota-
tion causes the illumination of the reflector to be no longer linearly polarized. For a general
feed, the plane of maximum cross-polarization normally occurs between the 90 and 45
planes, depending on the level of feed cross-polarization. Special feeds have been designed
to cancel the cross-polarization in the offset paraboloid (Rudge & Adatia, 1978). The radiation
field can be obtained in the usual way by substituting Eqs. 6.102 into Eqs. 6.10. As in the case
of the symmetrical paraboloid, the resulting integral transform, N, can be evaluated by numer-
ical integration, or by means of the FFT (Brigham, 1974).
The method of physical optics can also usefully applied to the offset reflector as is briefly

outlined below. A feed antenna is assumed to radiate an electric field given by

Ef ψ ,ξ = ψEfψ ψ ,ξ −ξEf ξ ψ ,ξ exp − jk ρ ψ ,ξ ρ ψ ,ξ ,

where the co-ordinates (ρ, ψ , ξ) are in the co-ordinate system {Xf}. The reflector rim subtends
an angle ψc to the axis zf as shown in Figure 6.24c. The feed illumination induces a current on
the surface given by
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Js ψ ,ξ = 2n ψ ,ξ ×
1
ηo

ρ×Ef ψ ,ξ

= 2n ψ ,ξ ×
exp − jkρ

ηoρ
x cos ψo + z sin ψo Ef ξ ψ ,ξ cos ψ cos ξ−Efψ ψ ,ξ sin ξ

−y Ef ξ ψ ,ξ cos ψ sin ξ +Efψ ψ ,ξ cos ξ − x sin ψo−z cos ψo Ef ξ ψ ,ξ sin ψ

where n ψ ,ξ = − 1 2 ρ ψ ,ξ f xxp + yyp + f ρ ψ ,ξ z in which xp, yp are given by
Eqs. 6.101. That is,

Js ψ ,ξ = 2n ψ ,ξ ×
exp − jkρ

ηoρ
x cos ψo Ef ξ cos ψ cos ξ−Efψ sin ψo

− sin ψoEf ξ sin ψ −y Ef ξ cos ψ sin ξ+Efψ cos ξ

+ z sin ψo Ef ξ cos ψ cos ξ−Efψ sin ψo + z cos ψoEf ξ sin ψ

6 103

Equation 6.103 is then substituted into Eq. 6.32 and the integrals evaluated over the feed
angular co-ordinates as follows:

F θ,ϕ =
2π

0

ψ c

0
Js ψ ,ξ exp jkΦ ψ ,ξ ρ2 ψ ,ξ Γ ψ ,ξ sin ψdψdξ,

where

Γ ψ ,ξ = 1+ ρ
cos ξ cos ψ sin ψo + sin ψ cos ψo

2f

2

,

and

Φ ψ ,ξ = xfp cos ψo + zfp sin ψo sin θ cos ϕ−yfp sin θ sin ϕ + xfp sin ψo−zfp cos ψo cos θ

The field components are then obtained from Eq. 6.31.
Due to the asymmetry, the radiation pattern of the offset paraboloid is often assessed from

two-dimensional plots, and Figure 6.25 illustrates typical examples. The figure shows contour
plots of patterns for an offset reflector obtained from the method of physical optics. The reflec-
tor is defined by ψo = 40 , ψc = 30 and D = 100 λ, and results are given with two different
feeds. The contours are in dB, in increments above the −60 dBi level. The reference field polar-
ization is parallel to the x (vertical) direction’, that is, ϕο = 0 in Eq. 3.45. In Figure 6.25a, the
radiation patterns given are for an axisymmetric feed, which has a Gaussian pattern function
with an edge illumination of −10 dB (see Eq. 6.23). In Figure 6.25b the patterns are for an offset
reflector with an asymmetric feed that has different E- and H-plane patterns both of which are
Gaussian functions, giving edge illuminations of −10 dB and −16 dB, in the two planes, respec-
tively. For the axisymmetric feed, in Figure 6.25a, the gain is 48.92 dBi (efficiency 76.0%), and
for Figure 6.25b, the peak gain reduces to 48.74 dBi (efficiency 75.8%) when the principal
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plane patterns of the feed are different. In the first case the main beam is almost circular with a
HPBW of 0.65 . The narrower H-plane feed pattern in the second case broadens the reflector’s
H-plane pattern giving a HPBW in this plane of 0.73 , while maintaining virtually the same
E-plane HPBW. A useful estimate of the HPBW of a pattern cut of an offset parabolic
reflector is

HPBW deg = 0 9EdB + 58
λ

D
, 6 104

where EdB is the edge illumination in dB in the same plane.
When the principal plane feed patterns are different, the peak cross-polarization occurs near

the 45 plane and usually is at a higher level than in the axisymmetric case. However, the max-
imum cross-polar level in the plane of asymmetry (horizontal) is approximately the same for
both types of feed.
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Figure 6.25 Radiation patterns of an offset reflector antenna with ψo = 40 , ψo = 30 and D= 100λ.
Contours are in dBi, at increments above −60 dB. (a) Axisymmetric feed pattern, −10 dB edge
illumination. Cross-polar peak −25.1 dB; (b) Asymmetric edge illumination: −10 dB in E-plane and
−16 dB in H-plane. Cross-polar peak at −25.8 dB
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The focal region fields of an offset paraboloid can be obtained by the method described in
Section 6.3. For on-axis plane wave incidence with the electric field polarized parallel to the
plane of symmetry (z–x plane), the focal field components in the {Xf} plane are given by
(Bem, 1969)

Efx =A0 U + 2j tan
ψo

2
B1 U cos ζ 6 105a

Efy = −2j tan
ψo

2
B1 U sin ζ 6 105b

Efz = −2jB1 U cos ζ , 6 105c

where

A0 U = 2κ
J1 U

U
6 106a

B1 U = κ ψc
J2 U

U
6 106b

in which U = kt sin ψc, and κ ≈ jkD2E 8feffe
− jk feff + t sin ζ . t and ζ are polar co-ordinates

in the {Xf} plane (located at zf = 0 in Figure 6.24) of the offset parabola. The solution for the
field polarized parallel to the y-axis is obtained from Eqs. 6.105 by interchanging the
co-ordinates x and y, changing the sign of A0 in Eq. 6.105a and replacing ζ with ζ + π 2.
It is observed that Eqs. 6.105 reduce to Eqs. 6.57 when the offset angle is zero ψo = 0 . Also,
as the offset angle is increased, the quadrature term of the principal field component increases,
as does the cross-polar field component.
As an example, consider the focal region fields of an offset parabola with D= 50λ, ψo = 40

and ψ c = 30 . The amplitude contour plots are given Figure 6.26 for a wave incident parallel to
the z-axis and polarized in the x–z plane. The co-polar component has highly circular Airy
rings, which occur in long focal length reflectors, while the cross-polar component has lobes
that peak in the plane of offset.
In the design of offset parabolic reflectors, the concept of the ‘effective paraboloid’ is help-

ful for establishing initial design information prior to more detailed analysis. The offset reflec-
tor is assumed identical to a symmetrical paraboloid of the same diameter that is given by
Eq. 6.94 with an effective focal length feff given by Eq. 6.96. For the effective paraboloid,
the focal length to diameter ratio is given by feff/D. As an example, consider the design of
an offset paraboloid to produce a beam in the far-field at the elevation and azimuth angles
θb and ϕb. Often required is an estimate of where to place the feed to transmit to or receive
from this direction. Assume θb is close to reflector boresight and consider an incoming ray
from (θb, ϕb). In the effective paraboloid the reflected ray makes an angle β with respect to
the axis, where

β≈θb 1 +
1

32 feff D 2 6 107
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Equation 6.107 is a formula obtained from considerations of a paraboloidal reflector. An
estimate for the location of a single feed in the focal plane is

xoeff = feff sin β cos ϕb; yoeff = feff sin β sin ϕb 6 108

6.8 Cassegrain Antenna

6.8.1 Classical Cassegrain

The Cassegrain antenna (see Figure 6.1b) had its origins in an optical telescope that was
invented during the seventeenth century. In its classical form it consists of a paraboloidal main
reflector and a smaller hyperboloidal subreflector, the geometry of which is shown in
Figure 6.27. Some geometrical relationships for the hyperboloid are summarized in
Table 6.2. The Cassegrain geometry is shown in Figure 6.28.
A hyperboloid with an eccentricity e has both real and virtual foci, labelled F and F in

Figure 6.27, and it is symmetric about the axis FF . The profile from either foci is defined
in the first row of Table 6.2. In the Cassegrain, the virtual focus F of the hyperboloid is placed
coincident with the paraboloid’s focus, while the feed is placed at the real focus F. If a source of
spherical waves is located at the focus, the hyperboloid reflects the wave to the paraboloid in
such a way that the wave appears to emanate from a source located at F .
The equivalent parabola approximation is also useful for the analysis of the Cassegrain. This

is possible because of the properties of the hyperboloid and is illustrated in Figure 6.28. As in
the case of the offset paraboloid, the feed remains at the focus F, but both reflectors are replaced
by another paraboloid with a longer focal length, f . The equivalent parabola has the same
diameter as the main reflector and the feed half-cone angle, θc, at the subreflector rim is the
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Figure 6.26 Amplitude of the focal region fields of an offset parabolic reflector with D= 50λ,
ψo = 40 and ψc = 30 . The incident field is polarized parallel to the x-axis. (a) Principal component |Ex|.
(b) Cross-polar component |Ey|
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Figure 6.27 Geometry of a hyperboloid reflector

Table 6.2 Geometrical relationships of hyperboloid with reference to Figure 6.27

Profile
ρ1 =

−eβ

1−e cos ψ1
ρ2 =

eβ

1 + e cos ψ2

Intermediate tan
ψ1

2
=M tan

ψ2

2 α =
2β
Ds

Cone angles
cotθc + cotγ =

fH
Ds

θc = tan−1 −
1
α

+ cos−1
α

e α+ 1

Eccentricity
M =

e+ 1
e−1

,e=
fH
aH

β = fH 1−
1
e2

fH + aH =
eβ

e−1

D

f′

Equivalent
parabola

Ds

f

2fH

F F′ψc

Figure 6.28 The Cassegrain and the equivalent parabola



half-cone angle at the rim of the equivalent paraboloid. This is used to show that the effective
focal length of the equivalent paraboloid for the Cassegrain is

f =Mf 6 109

where M is the magnification factor which is defined in Table 6.2 and for a Cassegrain it is
typically greater than 1 (usually 2.5–5). Cassegrain antennas have, therefore, similar properties
to long focal length paraboloids. The equivalent parabola can be used to estimate the
Cassegrain antenna efficiency and the sidelobe levels, the focal region fields (from
Eq. 6.57) and the effect of scanning the beam off-axis through Eq. 6.107 (in which f replaces
feff). Although a useful design aid, the equivalent paraboloid is not a substitute for more detailed
analysis, which is required to achieve best performance.
The main advantages of a Cassegrain over a single reflector antenna are that the feed can be

situated close to the main reflector and to the receiver. In earth station antennas, the feed spill-
over is directed towards the cold sky. A disadvantage of the classical symmetrical Cassegrain
(Figure 6.1b) is the decrease in antenna efficiency due to blockage and diffraction by the sub-
reflector and the subreflector supports. However, if the reflector profiles are shaped, the impact
of subreflector blockage can be reduced. Reflector shaping applied to both surfaces allows the
aperture illumination to be selected to enhance performance. This makes the symmetrical shaped
Cassegrain superior in every respect to front-fed reflectors and is a major reason for their wide-
spread use in large earth stations. Blockage can be reduced by tailoring the feed illumination or
avoided entirely with the offset Cassegrain configuration that is illustrated in Figures 6.1d and
6.29. Feed spillover at the subreflector is an important contributor to the far-out sidelobes of all
types of Cassegrain antennas and, to minimize this, the feed sidelobes should be small. Typi-
cally, subreflector edge illumination needs to be −16 to −20 dB in order to keep the spillover
contributions to the sidelobes of the Cassegrain at an acceptably low level.
The properties of Cassegrain antennas can be analysed by means of the techniques described

in Section 6.2.1. Geometric optics (GO) ray tracing can be applied to both reflectors to find the
aperture field. This approach is not accurate for small subreflectors (diameter less than about
30 λ) because of diffraction at the rim. GO is sufficiently accurate for most purposes when the
diameter of the reflectors is several hundred wavelengths. Considerable improvement in accu-
racy results for smaller reflectors when diffraction is included through methods such as the
GTD (James, 1986). Accurate results are also possible by applying the physical optics approx-
imation at both reflectors or combining the techniques of GTD and physical optics.

6.8.2 Offset Cassegrain Antenna

Blockage in the classical symmetrical Cassegrain impacts the performance, particularly in
reduced gain and increased sidelobes, although cross-polarization can remain low due to axial
symmetry. By adopting the offset Cassegrain configuration shown in Figure 6.29, both gain
and sidelobe performance can be improved. Cross-polarization can increase due to the offset
geometry but, through the selection of the feed and subreflector rotation angles, it can be sig-
nificantly reduced below the level of a single offset.
A GO analysis of the offset Cassegrain configuration shown in Figure 6.29 provides an

approximate description of the aperture fields. For a feed with an axisymmetric pattern with

198 Fundamentals of Aperture Antennas and Arrays



the electric field polarized parallel to the plane of symmetry (x–z plane), the aperture fields are
given by

Eax ψ ,ζ = go D ψ ,ζ A sin ψ cos ζ +B sin2ζ + cos ψ cos2ζ +C 1 + cos ψ

6 110a

Eay ψ ,ζ = −go D ψ ,ζ sin ζ A sin ψ +B cos ψ −1 cos ζ , 6 110b

where

go =F ψ − exp
−2jk f + aH

2fl
,

D ψ ,ζ =B cos ψ +A sin ψ cos ζ +B cos ψ +C 1 + cos ψ ,

A= L sin α cos θo− sin θo K + cos α

B =L sin α sin θo + cos θo K + cos α −C,

C = 1 +K cos α, K = 1−M2 1 +M2 , L= 2M 1 +M2 , where M and other hyperboloid
subreflector parameters are defined in Table 6.2. Notice that L2 +K2 = 1. As well (ψ , ξ ) are

fH

α z

xθc

θo

Hyperboloid

Paraboloid

D

ψo

ψc

f

Figure 6.29 Offset Cassegrain antenna
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the elevation and azimuth angles of a spherical co-ordinate system that is located at the feed
phase centre and F(ψ ) is the feed pattern. Eq. 6.110 are in identical form as for a single offset
reflector (Eq. 6.102) except that in the latter the following replacements are required: A= sin θo,
B= 1− cos θo, C = −1 and go =F ψ exp −2jkf 2f . The aperture fields of a symmetrical
Cassegrain are obtained by setting ϕo = 0, θo = 0 and α= 0.
Unlike the single-offset paraboloid, GO predicts the offset Cassegrain can have zero cross-

polarization. From an inspection of Eq. 6.110 this occurs when the feed and hyperboloid offset
angles satisfy the condition

tan
θo
2
=M tan

α

2
6 111

When Eq. 6.111 is satisfied, the aperture field is axisymmetric also as illustrated in Figure 6.30
for an offset Cassegrain with D= 150λ, f = 166 79λ, ψo = 59 553 , ψc = 20 511 , θo = 28 ,
θc = 11 , e= 2 4575, fH = 41 054λ and α= 12 045 . When the feed pattern is asymmetric,

0.
00

– 6.00

– 3.00

– 9.00

Figure 6.30 Principal field component in aperture plane of offset Cassegrain antenna with θ0 = 28 ,
θc = 11 , f = 166 79λ, e= 2 475, fH = 41 054λ, α= 12 054∘ obtained by geometric optics. Feed is a
Huygen’s source having a Gaussian feed pattern with a 10 dB beamwidth of 22 . The electric field is
polarized parallel to plane of symmetry
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Eq. 6.111 corresponds to the condition for zero cross-polarization in the plane of asymmetry
(the y-axis). Furthermore, for this case the principal component of the aperture field is elliptical
and maximum cross-polarization occurs between the 45 and 90 planes. Figure 6.31 shows the
aperture fields of an antenna that satisfies Eq. 6.111, but where the feed pattern is asymmetric.
The geometry in this case is identical to the previous one except that α= 23 054 . The feed pat-
tern is a Gaussian function which gives a subreflector edge illumination of −2.5 and −2.1 dB,
respectively, in the E- and H-planes. As could be expected, the co-polar contours are almost
uniform and peak cross-polarization occurs in 90 and 270 planes.
The radiation patterns can be obtained by substituting the aperture fields into Eqs. 3.20.

A sequence of co-ordinate changes are required from the aperture plane through to the local
co-ordinate system of the feed. An example of the principal plane patterns obtained in the plane
of asymmetry is shown in Figure 6.32 for an offset Cassegrain with a geometry given by
D= 84 9λ, ψo = 38 5 , ψ c = 25 7 , e= 2 8, θo = 22 8 , θc = 15 2 , fH = 12 028λ and α= 6 0 .
Note that the co-polar pattern in the 90 plane is the H-plane pattern. This antenna is pictured
in Figure 1.1j. The beamwidth and first sidelobe levels agree approximately with measured
results (Bird & Boomars, 1980) although the measured cross-polarization is higher than shown
in Fig. 6.32. The differences are most likely due to incorrect alignment of the subreflector
and feed.

(a) (b)
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5.
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00
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00

–6.1

–3.1
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Figure 6.31 Principal (a) and cross-polar (b) field components in aperture plane of an offset Cassegrain
antenna with θ0 = 28 , θc = 11 , f = 166 79λ, e= 2 475, fH = 41 054λ, α= 23 054 obtained by
geometric optics. The feed has 10 dB beamwidths in E- and H-planes of 22 and 24 , respectively
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The GO formulation described above does not take into account diffraction from the subre-
flector, which, in particular, increases the cross-polarization. For example, in the plane of asym-
metry (i.e. ϕ= ± 90 ), a rigorous analysis of the antenna described in Figure 6.30 by means of
physical optics at the subreflector and GTD at the main reflector (Bird & Boomars, 1980) has
shown that the cross-polarization varies as demonstrated in Figure 6.33 (Bird, 1981). The sub-
reflector diameter in each case is given approximately by DS≈2 fH + aH tan θc. For the curves
given in Figure 6.33, the results correspond to subreflectors with major axial lengths of 40λ, 20λ
and 10λ. These result in subreflector diameters of about DS≈9 7λ, DS≈5 8λ and DS≈3 8λ,
respectively.

6.9 Shaped Reflectors

While simple surfaces such as the paraboloid, cylinder and spheroid are in common use for
reflectors, shaped reflectors can often provide significantly improved performance. In this sec-
tion, the shaping of the reflector surface is described in order to achieve a prescribed radiation
pattern. Three techniques are outlined. The first and oldest technique is based on geometrical
optics and was initially used in the 1940s (Silver, 1946). It creates a set of coupled differential
equations, which need to be solved to determine the reflector profile. The second approach is
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Figure 6.32 Radiation patterns of a dual-offset reflector antenna computed from geometric optics.
D= 84 9λ, ψo = 38 5 , ψ c = 25 7 , e= 2 8, θo = 22 8 , θc = 15 2 , fH = 12 028λ and α = 6 0 . Feed has
Gaussian pattern with −3 dB subreflector edge illumination
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more recent and is based on computer numerical optimization techniques. This latter approach
is potentially more useful because it can include the effects of diffraction as well as limitations
due to the reflector structure or the feed antenna. More accurate methods can also be employed
such as physical optics or even some numerical methods, such as the method of moments, as
long as their implementation is fast enough for use with a standard optimizer. A third shaping
technique that is briefly outlined employs an algorithm specially developed for reflector shap-
ing, which is fast and is based on the method of successive projections.

6.9.1 Reflector Synthesis by Geometric Optics

A geometric optics technique is presented for the shaping of a single reflector to achieve max-
imum gain over an angular range. This approach is often referred to as reflector synthesis in the
literature. It can be extended to two (Galindo, 1964) or more reflectors by continued application
of methods of geometric optics.
Consider the geometry shown in Figure 6.34. The z1-axis is taken as the axis of rotation of the

reflector whose profile is to be determined and F is its focus. The reflector has a maximum
dimension in the vertical direction given by x1max. Let ρ1(θ1) be the radial distance from
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Figure 6.33 Maximum cross-polar level relative to peak co-polar in the plane of asymmetry of a
dual offset reflector antenna versus feed offset angle α in degrees. The parameter is the hyperboloid major
axial length in wavelengths. Also shown are the corresponding values for a single offset reflector and
the geometric optics (GO) result (Bird, 1981)
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F to a point on the reflector at an elevation angle of θ1. A ray from a source at the focus under-
goes reflection and exits at an angle θ2 to the z1-axis. The second law of reflection requires the
angle between the normal to the reflector surface and the incident and reflected rays to be
θ2−θ1 2 as illustrated in Figure 6.23. An incremental application of Snell’s law results in
the differential equation

dx1
dz1

=
1
ρ1

∂ρ1
∂θ1

= tan
θ1−θ2

2
6 112

Integrating both sides of Eq. 6.112 with respect to θ1 gives

θ1

0

1
ρ1

∂ρ1
∂θ1

dθ1 =
θ1

0
tan

θ1−θ2
2

dθ1

resulting in

ln
ρ1 θ1

f
=

θ1

0
tan

θ1−θ2
2

dθ1 6 113

The solution to Eq. 6.113 results in the profile of the reflector. To achieve this, a relationship
between θ1 and θ2 is required.
As a simple example, suppose θ2 = θb = constant, which means the exit ray is at a constant

angle to the z1-axis. Substituting this relation into Eq. 6.113 results in ln ρ1 θ1 f =
2ln sec θ1−θb 2 −2ln sec θb 2 , which gives the profile as ρ1 θ1 = f 1 + cosθb
1 + cos θ1−θb . This shape gives a beam at an angle θb for a feed located at the focus F. When
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Figure 6.34 Ray paths at a shaped axisymmetric reflector fed from the focus F
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the exit ray is parallel to the z-axis, that is, θb = 0, the profile simplifies to Eq. 6.1,
namely, ρ1 θ1 = 2f 1 + cos θ1 .
In general, the angles θ1 and θ2 should be chosen to enable the energy incident on the

reflector to disperse into the secondary radiation pattern. This can be achieved by ensuring
conservation of energy from the feed into the aperture field. This energy is contained in the
angular wedges dθ1 and dθ2 shown in Figure 6.34. Therefore, if P(θ1) dθ1 is the energy incident
from a primary feed located at F and I(θ2) dθ2 is the power emanating from the reflector where
I(θ) is the power density per unit solid angle in this output field, conservation of energy
requires that

P θ1 sin θ1dθ1 = I θ2 sin θ2dθ2

Integrating this requirement over the angles subtended in the input and output leads to

θ1

0
P θ1 sin θ1dθ1 =

θ2

θ2min

I θ2 sin θ2dθ2 =K
x1

x2min

I x2 x2dx2, 6 114

where θ2 = tan−1 x2−x1 z2−z1 and K is a constant. The angles θ2 min and θ2 max are the min-
imum and maximum angles over which I(θ2) has been specified. θ2 max can be chosen from
zero to several beamwidths. The constant K is found by evaluating Eq. 6.114 at the upper limits
of the angular range, thus θ1 = θ1max and θ2 = θ2max. This results in

K =

θ1max

0
P θ1 sin θ1dθ1

θ2max

θ2min

I θ2 sin θ2dθ2

6 115

Equation 6.115 is then substituted into Eq. 6.114 to give

θ1

0
P θ1 sin θ1dθ1

θ1max

0
P θ1 sin θ1dθ1

=

θ2

θ2min

I θ2 sin θ2dθ2

θ2max

θ2min

I θ2 sin θ2dθ2

6 116

Equation 6.116 is the relationship that is required between θ2 and θ1 which can be used in
conjunction with Eq. 6.113 to determine ρ1(θ1). In principle, either P(θ1) or I(θ2) could be spe-
cified by theoretical or measured data from which a relationship can be obtained.
A feed pattern that is quite useful for many practical feeds is P θ1 = cosnθ1 where n is the

power of the cosine-shaped radiation pattern. For this pattern function Eq. 6.116 gives

θ1

0
cosn + 1θ1 sin θ1dθ1

θ1max

0
cosn + 1θ1 sin θ1dθ1

=

θ2

θ2min

I θ2 sin θ2dθ2

θ2max

θ2min

I θ2 sin θ2dθ2
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Evaluating the integrals on the left-side gives

1− cosn + 1θ1
1− cosn+ 1θ1max

=

θ2

θ2 min

I θ2 sin θ2dθ2

θ2 max

θ2 min

I θ2 sin θ2dθ2

6 117

In general, Eq. 6.117 results in a transcendental equation of the form F θ2 θ1 = 0 where F
is an arbitrary function, which can be solved iteratively for θ2. As an example assume I θ2 = 1
for the angular range θ2min ≤ θ2 ≤ θ2max. With these specifications in Eq. 6.117 followed by car-
rying out the integrations and reorganizing the result is

θ2 θ1 = cos−1 cos θ2min + cos θ2max− cos θ2min
1− cosn + 1θ1

1− cosn+ 1θ1max
6 118

This relation can be used in conjunction with Eq. 6.113 to determine the reflector profile.
Consider the design of the profile of reflector with diameter 80 λ and focal length f = 32λ

which is required to give a field-of-view of about ± 4 , which is a typical shaped beam require-
ment. A cosine-shaped feed pattern function with n = 1.5 was chosen to give an edge illumina-
tion of about −10 dB. Suppose a uniform illumination function is needed over the symmetrical
field-of-view defined by λ 20D ≤ θ ≤ 5 6λ D. The shaped reflector profile obtained from a solu-
tion of Eq. 6.113 along with Eq. 6.118 is shown in Figure 6.35a and the resulting radiation
pattern obtained from physical optics is given in Figure 6.35b. The peak value of the gain over
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Figure 6.35 Shaped reflector design for uniform illumination over λ 20D ≤ θ ≤ 5 6λ D where
D= 80λ, f D= 0 4, n = 1.5. (a) Reflector profile radial distance versus angle shaped reflector
compared with parabola. (b) Radiation patterns of both reflectors. Dashed curves: parabola; solid curves:
shaped
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the field of view is 28.75 dBi. The profile of a parabolic reflector with the same diameter, focal
length f D= 0 4 and same feed pattern is also shown in Figure 6.35a. Its radiation pattern has a
maximum gain of 47.07 dBi and is shown in Figure 6.35b. The shape of the two profiles in
Figure 6.35a is similar although they diverge as the edge is approached. Observe that when
θ2max is reduced, the synthesized profile approaches the parabolic profile.
As a further example, consider the design of a reflector to achieve the radiation pattern

envelope shown in Figure 6.36a with a cosine to the power n feed pattern. It can be shown that
Eq. 6.117 gives

1− cosn+ 1 θ1
1− cosn+ 1 θ1max

F1 θ2bp +F2 θ2max =
F1 θ2bp +F2 θ2 ; θ2 > θ2bp

F1 θ2 ; θ2 ≤ θ2bp
, 6 119

where F1 θ = − cos θ + cos θ2min and F2 θ = −k1 sin θ− sin θ2bp−θ cos θ + θ2bp cos θ2bp ,
θ2b is the breakpoint angle and −k1 is the slope of the outer envelope as shown in Figure 6.36a.
The relationship for θ2 in terms of θ1 is obtained as the root of Eq. 6.119. Suppose the reflector is
required to have a diameter D= 100λ and focal length f = 40λ. Also, the extent of the output
field is θ2bp = 2λ D with sidelobes less than −20 dB. To achieve the latter let k1 = −100.
The reflector profile that is obtained is shown in Figure 6.36b and the resulting radiation pattern
is shown in Figure 6.36c.
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Equation 6.117 could be used in reverse to estimate a desired pattern function needed to
achieve a desired radiation pattern. For example, in the design of a reflector for a radar appli-
cation it is desirable to reduce reflections from the ground. Such an illumination function is
I θ2 = cosec2θ2. In normal use, when this function is substituted into Eq. 6.116, it can be
shown that

cosecθ2 = cosecθ2min− cosecθ2min−cosecθ2max

θ1

0
P θ1 sin θ1dθ1

θ1max

0
P θ1 sin θ1dθ1

6 120

The feed pattern can be in the form of measured data or be represented as a modal summation
through which θ2 can be expressed in terms of θ1. Eq. 6.113 along with Eq. 6.120 can be used to
synthesize the reflector profile.
Shaped beams in two-dimensions can also be created from shaped reflectors that are

designed by means of Eqs. 6.113 and 6.116 as illustrated in Figure 6.37. This is providing
the reflector contour lies in any of the transverse plane passing through the point O as shown
in Figures 6.34 and 6.37. For example, an elliptical shaped beam could be created with a feed
with an axisymmetric pattern by shaping the reflector contour in selected transverse planes. In
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Figure 6.37 Elliptical-shaped beam design in elevation and azimuth with elliptically contoured reflector
and circular feed horn. (a) Coverage region. (b) Transverse segments of reflector. (c) Elliptical beam
produced
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Figure 6.37a these planes occur at 45 intervals in the azimuthal direction about O. By this
approach, Eq. 6.118 could be applied to each section as illustrated in Figure 6.37. A sequence
of reflector profiles is produced and these form a continuous reflector in the azimuth direction.
When illuminated by the original axisymmetric feed, an elliptical beam results.
The approach described above for a single reflector is readily extended to a dual reflector

(Galindo,1964).Aseconddifferential equation results fromGOrequirementson the second reflec-
tor and this differential equations couples with the one from the first. It is found that in the integral
expression for conservation of energy for the second reflector, which is equivalent to Eq. 6.114,
when its upper limit is chosen to be positive, a Cassegrain-type solution results. When this upper
limit is negative, a Gregorian-type reflector geometry is created with a concave subreflector.

6.9.2 Reflector Synthesis by Numerical Optimization

The geometric optics approach described above has limitations on accuracy as well as utility as
the number of physical constraints and additional requirements increase. As with a profiled
horn design that was described in Section 4.5.3, the synthesis problem can be broadened by
means of numerical methods. There are several ways of doing this both directly and indirectly.
There are direct improvements for reflector shaping such as the inclusion of diffraction, block-
age and accurate feed models. One such technique is the method of successive projections
(Poulton &Hay, 1991). The indirect approach is to use a numerical representation of the surface
and to use this with accurate radiation and feed models to meet the various system require-
ments. Reflector synthesis with standard optimization methods is described initially, and this
is followed by a short overview of successive projections.
Abasic requirement in reflector synthesis is that the reflector surface shouldbe representednumer-

ically. One approach that has proved very effective and accurate for reflector synthesis and compu-
tation is to use basis-spline or B-spline functions that are briefly outlined in Section 4.5.3 for an axi-
symmetric surface.Thedegreeof the spline function canbe selected as required although, in reflector
synthesis, third order has been found sufficient in both accuracy and efficient in computation time.
The reflector surface z= f x,y is represented by Eq. 4.79 (de Boor, 1978) in this case written

f x,y =
m

i= 0

n

j = 0

αijNi x Nj y , 6 121

where Ni(x) and Nj(x) are standard cubic B-spline functions which have m+ 1 and n+ 1 control
points, respectively. The expansion coefficients αij are the unknowns here and as in Section 4.5.3
they are determined through optimization. A B-spline polynomial in the variable x is a piecewise
function of degree px = 3. It is defined over a range t1 ≤ x ≤ tm, withm= px + 2. The points where
x = t are called knots or break-points, which are arranged in ascending order. The number of
knots is theminimum for the degree of theB-spline, which has a non-zero value only in the range
between the first and last knot. Each piece of the function is a polynomial of degree px between
and including adjacent knots. The surface given by Eq. 6.121 has a set of m + 1 n+ 1 control
points, which is in common with other interpolation methods, except that the major difference is
the surface does not generally pass through the central control points. Expressions for the poly-
nomial pieces are easily generated by means of recursion formulae (de Boor, 1978). If there is
more than one reflector, the remaining surfaces are expressed in a similar form to Eq. 6.121 where
the coefficients of each series for the new reflector surfaces are included in the optimization.
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There are several ways of progressing from here. One way is to use Eq. 6.121 in conjunction
with an analysis method and to adjust the unknown coefficients to achieve the system require-
ments based on the pattern and feed mismatch. Within the optimizer, the reflector-shaping pro-
cedure could use a transmit-mode radiation-pattern analysis based on physical-optics, which uses
a numerical integration of the current. This could be performedwithin a gradient search algorithm
for optimum reflector shapes via the expansion coefficients such as αij. This was used earlier to
design a dual-reflector feed for a radio telescope (Granet et al., 1997). A similar approach is used
in the design of array feeds where the array coefficients are found instead of the reflector surface
coefficients. Both cases could employ either constrained or unconstrained variables that are opti-
mized with a standard numerical optimizer. This technique for arrays will be described in
Chapter 7. The intention of this approach is to use the power of standard numerical optimization.
In order to specify pattern constraints, consider a cut through the far-field as shown in

Figure 6.38. At point P in the radiation pattern, define the following limits and weight para-
meters on these limits:

cup = the maximum co-polar level
clp = the minimum co-polar level
xup = the maximum cross-polar level
wup = the weighting factor on co-polar maximum
wlp = the weighting factor on co-polar minimum

In the same way, specifications on the input match and gain can also be included through
constraints and weight parameters. For example, constraints could be placed on the input reflec-
tion coefficient of the feed over a range of frequencies. At a frequency k, specify

γuk = the maximum feed reflection level;
wrk = the weighting factor on reflection coefficient.

Angle

Power (dB)

Cross-polar

Co-polar

Co-polar
upper limit

Co-polar
lower limit

Cross-polar
upper limit

Negative
constraint

Positive
constraint

Figure 6.38 Constraints on the far-field radiation patterns
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All constraints can be included in a single index as follows (Bandler &Charalambous, 1972).
If the co- and cross-polar efficiencies of the reflector antenna over the field of view are
optimized, respectively, ηcp and ηxp are both obtained via Eq. 6.46. A number of positive dis-
crete differences can be formed as follows:

Δk =

−wlk ηck −clk ; k = p; p = 1,2,…,N

wuk ηck −cuk ; k =N + p; p = 1,2,…,N

wxk ηck −clk ; k = 2N + p; p = 1,2,…,N

wrk Γuk −γuk ; k = 3N + p; p = 1,2,…,Nf

, 6 122

where N is the number of sample points in the radiation pattern and Nf is the number of fre-
quency points. The objective of the optimization is to find the vector of coefficients for which
Δk ≤ 0 for all k = 1,2,…,3N +Nf . A single performance index that incorporates all constraints is
the least p-th index (Bandler & Charalambous, 1972)

I =H
k κ

Δk

H

p 1 p

, 6 123

where H =max Δk , p= sgn Δk q and κ is the set of specifications

κ =
select all Δk if H ≤ 0

select only positive Δk if H > 0

Any integer index q can be chosen in p although q = 2, 4, 10 and 100 have been found most
useful in antenna designs. Eq. 6.123 can be minimized with most standard optimizationmethods
(Dixon, 1972). One suchmethod that has proved reliable in several antenna applications is based
on gradient search and numerically calculated differentials (Fletcher, 1972). Techniques such as
the genetic algorithm (Goldberg, 1989) and particle swarm optimization (Kennedy & Eberhart,
1995) can be very effective at the commencement of the search for the minimum.
The method of successive projections is a general iterative technique that can be used to

determine a common intersection point among a number of conflicting requirements or sets.
Related to aperture antennas it has been used to obtain array excitation coefficients
(Poulton, 1986), to adjust the shape of a reflector antenna frommeasured data and in specifying
the shapes of single and dual reflector antennas (Hay, 1999). The aim is to achieve a reflector
shape that produces a beam that has directivity constrained between lower and upper bounds,
respectively, GL and GU. The approach is illustrated in Figure 6.39.
The first step is to specify a collection of sets of {X}, which consist of complex valued func-

tions on a rectangular region containing the projected aperture, a weighting function w con-
strained to have a unit magnitude (i.e. w = 1), and a weight with continuous phase, for
example, w= exp jp ; p P . The next step is to provide an approximate solution for the
reflector. It is usual to choose a suitable function that represents a smooth reflector, which is
of the required size that radiates over a specified coverage region, that has approximate direc-
tivity bounds, and phase centres that lie between the feed and the reflector. The method that fol-
lows is illustrated in Figure 6.39. This iterative process designs a suitable smooth reflector by
first commencing with a stepped reflector that satisfies the directivity bounds. This is done
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by dividing the last reflector surface obtained into an array of elements and then projecting these
onto setswithin the space of complexweights for the radiation patterns of the elements. These are
often obtained by Fourier transforms. In this way, a vectorΦi is determined, which is a vector of
the elementary field components involving the integral of the PO currents, to obtain the far-field
radiation at points i= 1,2, ,M in a number of specified far-field directions (θi , ϕi ). To eval-
uateΦi the integral may be approximated by summing integrated samples on a rectangular grid
in the x–y plane. In this process, weights are applied that represent a stepped weight distribution
for the current on the surface of the last obtained reflector surface. The phase of the weight
distribution represents the surface of the stepped reflector relative to the last reflector, and
the intersection of the collection of sets represents weights that satisfy both the specified direc-
tivity bounds and also the constraint on the magnitude of each weight equals unity. Next, these
functions are projected onto the first two sets of requirements. The formula to do this is simple
to compute and, therefore, the process can be very fast. A sequence of iterations {xn} is gen-
erated in the following form:

xn+ 1 =
y1
y1

,
y2
y2

,…,
yN
yN

6 124

y= xn + r
Gi

Fn
i

−1
Fn
i

Φi Φ
∗
i

Φ∗
i , i= 1,…,N, 6 125

where N = 4PxPy, r 4 is a relaxation factor, Fn
i = x

n Φi where n = 1,2,… is the iteration
number and,

Gi =
GL if Fi

2 ≤GL

GU if Fi
2 ≥GU

The parameters Px and Py are limits on the Fourier series that are used to ensure any solution
is sufficiently smooth. In each direction, the series have 2Px + 1 and 2Py + 1 terms, which are
chosen so that the minimum of the harmonic periods is usually taken to about two times the
side length of an element in the stepped phase distributions. A smooth reflector is found by

Smooth reflector

Finish

Start

Stepped reflectorArray projections

Smoothing projections

Figure 6.39 Method of successive projections
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projecting the stepped weight distribution onto a set of weight functions w each with suffi-
ciently smooth phase and unity magnitude. This projection comprises a finite-term Fourier
series. If the smooth reflector is a suitable solution to the problem, then the iterative process
terminates; otherwise, it repeats until convergence is achieved. To optimize a directivity pattern
with respect to upper or lower bounds, the bounds are tightened until they can be tightened no
further.
An example of a shaped reflector design, Figure 6.40b, shows a beam shaped that was

designed to cover continental USA at C-band transmit and receive frequencies (Hay, Private
communication). An offset reflector was chosen for the antenna with a projected circular aper-
ture diameter of 112 in. (i.e. 2845 mm). The reflector surface was designed using the method of
successive projections to achieve the directivities of 27.7 dBi in zone I (shown in Figure 6.40b)
and 28.7 dBi in zone II (indicated by × in Figure 6.40b). The starting reflector had a parabolic
surface and following the synthesis process the difference in the height in the axial direction, δ z,
between the initial and final reflector surfaces is shown in Figure 6.40a. The radiation pattern
given by the shaped reflector at 4.2 GHz is shown in Figure 6.40b.

6.10 Problems

P6.1 For a parabolic reflector show that the half-cone angle ψc is given by

ψc = 2tan
−1 1

4f D
,

where f is the focal length and D is the diameter of the reflector.
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Figure 6.40 Shaped reflector designed by successive projections aperture diameter of 112 in.
(a) Difference δ z of the initial and final reflector surfaces in inches. (b) One shaped beam for a composite
coverage requirement (indicated by + and ×) for continental USA showing directivity at 4.2 GHz (Hay,
Private communication). Source: Reproduced with permission from CSIRO
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P6.2 Using geometric optics, obtain the aperture field of a paraboloidal reflector excited by an
elementary source with
a. Radiated far-fields

Eθ =E1 cos θ cos ϕ
e− jkr

r
,

Eϕ = 0=Er

b. A second elementary source is available with radiated fields

Eϕ = −E2 cos θ sin ϕ
e− jkr

r
,

Eθ = 0 =Er

Find the aperture fields that this source produces.
c. Hence, find the total aperture field from a source with both contributions and the com-

plex amplitudes required to yield zero cross-polarization in the aperture.
P6.3 A half-wave dipole illuminates a 3 m parabolic reflector antenna at a frequency of 10 GHz.

If the reflector has an f D = 0 433, what is the level in the E- and H-planes of the:
a. edge illumination; and
b. edge taper?

P6.4 Verify that the field radiated by a half-wave dipole given initially by Eq. 6.13 when
placed a distance d in front of a large conducting plate now has an amplitude approxi-
mately given by A θ,ϕ = 2j sin π 2 cos θ sin kdcos θ .

P6.5 At 3 GHz the total input power to a feed antenna situated at the focus of 3 m paraboloid is
1W.Measurements have shown that the efficiency of the feed is 82%. The reflector has a
calculated spillover efficiency of 98% and an aperture efficiency of 63%. Calculate the
antenna gain and the power density at a receiver situated 5 km away.

P6.6 This problem verifies some equations for the normal to a paraboloidal surface.
a. Show that the equation for the normal to general surface, Eq. 6.36, reduces to Eq. 6.3b

for a paraboloid.
b. Given the equation for a paraboloid in Eq. 6.1, show that the normal to the surface in

spherical polar co-ordinates is given by Eq. 6.3c.
P6.7 Use Eqs. 6.39 to obtain an expression for the fields radiated by a paraboloidal reflector

that is fed by a corrugated waveguide and operates in its HE11 mode at the balanced
hybrid condition.

P6.8 Blockage of a reflector by a feed or a subreflector is examined in this problem. Radiation
from a circular aperture of diameter Σ is blocked by a centrally placed object of diameterD.
Assume a uniform linearly polarized field distribution in the aperture.
a. Find the radiated field. You may need the identity:

2π

0
exp jucos ϕ du= 2πJ0 u

b. Demonstrate the effect of central blockage is to (i) reduce the gain, (ii) to increase the
odd numbered sidelobes and (iii) to decrease the even numbered sidelobes.

c. Suggest a way of reducing the impact of blockage.
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P6.9 A feed is moved axially a distance s from the focus towards the vertex of a paraboloid
reflector. Assuming s is very much smaller than the focal length (i.e. s << f) and the feed
uniformly illuminates the reflector, determine the dominant aberrations produced by the
axial feed movement.

P6.10 A feed for a paraboloidal reflector has an axisymmetric pattern and pattern function

A ψ =
cosnψ ; 0 ≤ψ ≤ π 2
0; elsewhere

where n = 1. Obtain expressions for
a. the aperture efficiency, and
b. the spillover efficiency. Hence
c. determine the reflector half-cone angle that gives maximum gain with this feed,

assuming there are no other losses.
P6.11 Show that the spillover efficiency, ηs, of a feed with an axisymmetric pattern and pattern

function given in P6.10, which illuminates a reflector with cone angle ψc, is given
by ηs = 1− cos2n + 1ψ c.

P6.12 A half-wave dipole antenna is to be used as a feed for a paraboloidal reflector. Describe
the principal plane patterns of a paraboloid with a half-wave dipole feed.
What are the advantages and disadvantages of this feed compared with a circular
waveguide?
Describe some extensions of the basic half-wave dipole structure that are better feeds,
giving reasons for the improved performance.

P6.13 A rectangular waveguide is chosen as a feed for a paraboloidal reflector antenna with
diameter D = 3 m and f/D = 0.35. At the design frequency of 12.5 GHz, an edge taper
of −12 dB is needed to satisfy sidelobe requirements. Assuming the reflector is in
the far-zone region of the waveguide:
a. Calculate the reflector half-cone and the desired edge illumination;
b. Calculate approximately the waveguide dimension needed in the E-plane to produce

a far-zone pattern with the attributes calculated in (a) and, hence, satisfy the design
edge illumination.

P6.14 Use field correlation at the surface of a parabolic reflector between an incident
linearly polarized plane wave and an axisymmetric feed to determine the aperture
efficiency as a function of incident angle. The reflector has a diameter D and focal
length f.

P6.15 Approximate the effect of the blockage of quad-struts supporting the feed in a reflector
of diameter D by approximating the blockage at 90 apart by segments with an internal
angle θ = θs. The field is uniform and polarized parallel to the x-direction and the struts
are at 45 to this direction. Determine the loss of gain and the change in level of the first
sidelobe in the two principal planes.

P6.16 For an offset reflector antenna, what type of aperture field is required to cancel out the
cross-polarization in the far-field.

P6.17 Determine the efficiency of a parabolic reflector with surface errors, which have arisen
in manufacturing the profile template. The surface error is circularly symmetric and
sinusoidal in the radial direction with amplitude ε<< λ and with a period 2π/p which
is comparable to the wavelength.
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P6.18 For a paraboloidal reflector of diameter, what proportion of power is in the sidelobes
compared with that in the main beam. As an example, consider a reflector of diameter
D= 100λ, and focal length given by f D = 0 4 with a feed having a Gaussian pattern
function to provide an edge taper of −10 dB.

P6.19 Apply the field correlation theorem to determine an expression for the contribution to
the input reflection coefficient of a feed due to reflection from the surface of a
paraboloid.

Hint: Γ= 1
2

S
ET ×HT ndS

2

P2
T

where ET and HT are the incident fields on S due to the

feed and PT is the total radiated power.
P6.20 For a symmetrical parabolic reflector with a diameter of 100 λ, and focal length

f D = 0 4, calculate the diameter of a corrugated waveguide operating at the balanced
hybrid condition to obtain the best match to the focal region.What is the maximum aper-
ture efficiency of the resulting antenna?

P6.21 Solve the equations for single reflector shaping described in Section 6.9.1, assuming
that the incident and exit angles θ1 and θ2 are identical over the full range of angles avail-
able. Describe the solution that results for the reflector surface.

P6.22 Using the approach described in Section 6.9.1, obtain the differential equations describ-
ing the shaping of dual axisymmetric reflector antennas.

P6.23 Describe the aperture field of symmetrical reflector antenna due to a circular cup feed as
shown in Figure P.6.1. The circular cup is excited from a circular waveguide of diameter
h in a TE11 mode and the location of the phase centre is as indicated.

TE11

Phase centre

D

ℓ

s

h

Figure P6.1 Cup feed junction
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7
Arrays of Aperture Antennas

7.1 Introduction

Arrays of aperture antennas find wide application because of their flexibility and their ability to
provide shaped patterns with low sidelobes. They can be power efficient and provide signif-
icant gain. They can be used to scan the beam in almost any direction of three-dimensional
space. They can be placed conformal to surfaces to provide gain over wide scan angles. In
two- or three-dimensional grid arrangements, a wider variety of radiation patterns can be
obtained ranging from hemispherical to a full spherical coverage. Examples include the shaped
beam patterns employed on satellites to cover specific regions or countries on the earth’s sur-
face or providing selected 360 degree coverage as a wireless access antenna. Often in these
applications, high-performance aperture elements are the basis of the array.
The topics in this chapter include the basic radiation patterns of arrays with aperture anten-

nas. One of the implications in the use of an array is the mutual coupling that occurs between
elements, and the analysis of this effect in aperture antennas is covered in some detail because
of its importance. The physical aspects of mutual coupling are described bymeans of an asymp-
totic approach, and also a general approach for arbitrary shapes is outlined. Radiation in the
presence of mutual coupling is described as are some mitigation measures if its effect must
be avoided. Examples are given throughout to illustrate the techniques.

7.2 Two-Dimensional Planar Arrays

Suppose initially a finite array of aperture antennas is located in a plane. It is assumed that there
is no coupling between the elements in the array. TheM × N elements of the array are arranged
on a regular grid in the x–y plane with a constant excitation amplitude for each element and a
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steering phase that allows a beam to be formed in the hemisphere above the plane. Consider a
single element of this array and obtain its far-field. Based on Section 3.4, the mnth element
(m, n = 0, 1, 2, …, M, N) radiates an electric field given by

Emn r,θ,ϕ =Eo
exp − jkR

R
F θ,ϕ

where F(θ, ϕ) is the element pattern, Eo is the polarization of the electric field, and Amn is the
excitation and from Eq. 3.12 R≈r− rmn r where rmn is a vector in the x–y from the origin to
the mnth element. The total field is obtained by summing the contributions from all
elements. Thus

E r,θ,ϕ ≈Eo
exp − jkr

r
F θ,ϕ

M,N

m,n= 0
Amn exp jk rmn r 7 1

The summation over m and n is called the array factor (AF). Its form depends on the layout
of the elements in the x–y plane as will be shown in the next sections for the special cases of
rectangular and hexagonal grids.
Now define

AF θ,ϕ =
M,N

m,n= 0
Amn exp jk rmn r 7 2

so that

E r,θ,ϕ ≈Eo
exp − jkr

r
F θ,ϕ AF θ,ϕ 7 3

The gain function is given by Eq. 3.48, where

G θ,ϕ = 4π
EoF θ,ϕ AF θ,ϕ 2

PT
7 4

where PT is the total power input to the array. As a special case, suppose the apertures are fed by
identical rectangular waveguides that operate only in the TE10 mode at frequencies well above
cut-off. In that case,

PT≈ Eo
2 ab

4

M,N

m,n= 0
Amn

2 7 5

If the array excitation is uniform so that Amn = 1, the summation in Eq. 7.5 equals (M + 1)
(N + 1) and, therefore,

PT≈ Eo
2 ab

4
M + 1 N + 1
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The gain is

G θ,ϕ =
16π

ab M + 1 N + 1
F θ,ϕ AF θ,ϕ 2 7 6

The AF dominates the directivity of an array. It is useful to calculate the directivity of the
array using the AF alone. By means of Eq. 3.50, the directivity is given by

D= 4π
AFpeak

2

2π

0

dϕ

π

0

dθ sin θ AF θ,ϕ 2

7 7

where AFpeak is the maximum value of the AF.

7.2.1 Rectangular Planar Array

A particular case of the array lattice is a planar rectangular grid as shown in Figure 7.1. Suppose
the spacing of theM + 1 elements in the x-direction is Δx, while in the y-direction the N + 1 ele-
ments are spaced Δy apart. It is assumed that the origin of the co-ordinate systems occurs at the
centre of the array (Figure 7.1). Let the vector to the mnth element in the x–y plane from the
origin be rmn = xmΔx + ynΔy. Therefore, from Eq. 7.1, the AF contribution comes from
r rmn =mΔxu+ nΔyvwhere u= sin θ cos ϕ and v = sin θ sin ϕ. In addition, suppose the element
excitation be given by Amn = exp jmψx + jnψy . Therefore, the AF for a rectangular array is

y

z

x

θ

𝜙

r

P(r,θ,𝜙)

Figure 7.1 Regular planar rectangular array geometry

221Arrays of Aperture Antennas



AF θ,ϕ =
M,N

m,n = 0
exp jm kΔxu +ψ x + jn kΔyv +ψ y

=P M,Tx P N,Ty

7 8

where P M,Tx =
M

m = 0
exp jmTx , Tx = kΔxu+ψx, Ty = kΔyv +ψy, and as defined previously

u = sinθcosϕ and v= sinθ sinϕ.
It is noted that the phases ψx and ψy steer the pointing direction of the radiation pattern and

are, therefore, referred to as steering angles. Thus, the direction of the beam is usually given at

θb = sin−1 1
k

ψ x

Δx

2

+
ψ y

Δy

2

and ϕb = tan−1 ψy

ψx
7 9

because the AF pattern is usually significantly narrower than the element pattern.
The two exponential series in Eq. 7.8 are geometric series and can be summed easily. Thus, if

xn is the nth power in a series of N + 1 terms, their sum is S= xN+1−1 x−1 . Then

P M,Tx =
M

m = 0

exp jmTx

=
exp j M + 1 Tx −1

exp jTx −1

= exp
jMTx
2

sin M + 1 2 Tx
sin Tx 2

= M + 1 exp
jMTx
2

S M + 1 2 Tx
S Tx 2

7 10

where S is the sinc function. And similarly for the series in nwhereN and Ty in Eq. 7.10, replace
M and Tx, respectively. Therefore, the AF in Eq. 7.8 is expressed as

AF θ,ϕ = M + 1 N + 1 exp
j MTx +NTy

2
S M + 1 2 Tx

S Tx 2

S N + 1 2 Ty
S Ty 2

7 11

It is emphasized that this AF is for a co-ordinate system that is located at the centre of the
rectangular lattice (see Figure 7.1). Otherwise, an additional phase factor would be present
for each summation giving the grid centre relative to the origin. Thus, if the origin is located
at (xo, yo), the additional phase factor applied to Eq. 7.11 would be exp j xoTx + yoTy .
The periodicity of the AF means that images of the main beam and its associated sidelobes

are repeated at intervals λ/Δx and λ/Δy in u–v space. A repetition of the main beam in this way
creates grating lobes. As the beam is steered, in directions determined by ψx and ψy, the main
beam lies in the visible range, that is, real space. Real space corresponds to the interior of the
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unit circle given by u2 + v2 = 1. Values of u and v outside of real space, that is, u2 + v2 > 1, lie in
imaginary space. As the beam is steered, parts of the beam lying in imaginary space can transfer
into real space, and this includes any grating lobes, which are related to the lattice geometry. To
avoid this happening, the element spacing should be chosen such that

Δx,Δy

λ
<

1
1 + sin θ max

7 12

where θ(max) is the maximum scan angle. Eq. 7.12 shows that under all conditions grating
lobes are avoided if the spacing between array elements is less than half a wavelength.
Equation 7.10 predicts that the major beam and grating lobes are located at

kΔx sin θ cos ϕ +ψx = ± 2pπ and similarly kΔy sin θ sin ϕ+ψy = ± 2qπ where p,q= 0, 1,….
Eqs. 7.10 and 7.11 can be used to determine θ and ϕ at the beam maxima. Examples of AF
given by Eq. 7.11 are shown in Figure 7.2a is Δx = λ 2 =Δy and M + 1 =N + 1 = 8. Also in
Figure 7.2b is the case when the spacing has been increased to Δx = 0 7λ =Δy and
M + 1 =N + 1 = 11. In this latter array, the first set of sidelobes are about 17.5 dB below the
peak, while the second set are about 4 dB lower.
The directivity of the AF for the rectangular array is given by Eq. 7.7 as

D =
4π

2π

0
dϕ

π

0
dθ sin θ S M + 1 2 Tx

S Tx 2

S N + 1 2 Ty

S Ty 2

2 7 13

The directivity predicted by Eq. 7.13 for Δx =Δy = λ 2 whenM =N is plotted in Figure 7.3.
The directivity increases smoothly with increasing M as the area occupied by the array
increases.

7.2.2 Hexagonal Array

A hexagonal array geometry is illustrated in Figure 7.4. This lattice structure, which is also
called an equiangular triangle array, along with the rectangular array considered in the previous
section, are the most commonly used types of planar lattice geometries. The hexagonal array is
often preferred with circular elements as they can be packed most efficiently in this layout. In
principle, the hexagonal array could be decomposed into two overlapping rectangular grids,
which are then considered as the superposition of these grids. However, here this array geom-
etry is considered from first principles.
In the nth ring from centre of the hexagonal lattice, there are six n elements. As a result, the

AF for the hexagonal array consists of summations of lattice points at azimuth angles
Δϕ = π 3n apart and at radial increments spaced Δρ apart. The perpendicular to the mth side
is at an angle π 2m−1 6 to the initial line as shown in Figure 7.5. The vector to the lth lattice
point on the mth side of the nth ring n = 1, 2,…,Nr is

rmn = nΔρ sec
2l n−1 π

6
x cos

m−1 π

3
+
lπ

3n
+ y sin

m−1 π

3
+
lπ

3n
;

n = 1,…,Nr; m= 1,…,6; l= 1,…,n

7 14
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Figure 7.2 Array factor for a rectangular array with uniform excitation at 10 GHz plotted in the u−v
plane from the beam maximum. (a) 8 × 8 elements with spacing Δx = λ 2 =Δy. Contours are in 5.5 dB
decrements below the peak value. (b) 11 × 11 elements with Δx = 0 7λ =Δy. Contours are in 5.7 dB
decrements below the peak
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Figure 7.4 Example of a hexagonal array with 91 elements. A 19-element sub-array is shown
shaded. The number of elements in this sub-array is (1 + 3N(N + 1)) where N is the number of rings
around the central element
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Figure 7.3 Directivity versus size of planar array. Solid curve, rectangular array versus number of
elements per side M = N with spacing Δx =Δy = λ 2 and dashed curve, hexagonal array versus ring
number Nr with ring spacing Δρ = λ 2

225Arrays of Aperture Antennas



As r = x sin θ cos ϕ + y sin θ sin ϕ + z cos θ, then

rmn r = nΔρ sec
2l n−1 π

6
sin θ cos ϕ−

m−1 π

3
−
lπ

3n

The AF for a hexagonal lattice is therefore

AF θ,ϕ = 1 +
Nr

n=1

6

m=1

n

l=1

Amn exp jnkΔρ sin θ sec
2l n−1 π

6
cos ϕ−

m−1 π

3
−
lπ

3n

7 15

As a check on the validity of Eq. 7.15, let θ = 0 =ϕ, and with Amn = 1, it is found that
AF 0,0 = 1 + 3Nr Nr + 1 . This is the number of point radiators inN rings of a hexagonal array.
Contour plots of Eq. 7.15 are shown in Figure 7.6 with uniform excitation for Δρ = λ 2 and
Nr = 2 (i.e. 19 elements) and also Nr = 8 (217 elements). The AF patterns shown in
Figure 7.6 are typical of a hexagonal array. The pattern consists of a central beamwith six radial
lobes 60 apart. The height of the lobes decrease in amplitude with increasing nkΔρ. In
Figure 7.6a, the first six sidelobes surrounding the main beam are about 4.5 dB below the peak
value, while in Figure 7.6b they are about 17.6 dB down.
The gain can be calculated from Eq. 7.4. Suppose po is the power radiated by one waveguide.

In the absence of mutual coupling and Amn = 1, the total radiated power from a hexagonal
array is

PT≈ Eo
2 ab
4

1 + 3Nr Nr + 1

resulting in the gain function

G θ,ϕ =
16π

ab 1 + 3Nr Nr + 1
F θ,ϕ AF θ,ϕ 2 7 16

Point l on side m
in ring n

(2m –1)π/6

(m –1)π/3 + lπ/3n

(2l/3n –1)π/6

nΔρ

Figure 7.5 Geometry for definition of hexagonal lattice array factor
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The AF directivity is obtained from Eq. 7.7 as

D =
2π
3

1 + 3Nr Nr + 1
2

π 3

0
dϕ

π

0
dθ sin θ AF θ,ϕ 2

7 17

where AF(θ, ϕ) is given by Eq. 7.15 and in Eq. 7.17 the hexagonal lattice’s sixfold symmetry
has also been used. The directivity for the hexagonal array given by Eq. 7.17 as a function of
number of rings up to Nr = 12 is plotted in Figure 7.3 for closer comparison with the directivity
of a square array. It is seen that the directivity is not strongly dependent on the type of lattice
although the number of elements in a hexagonal array increases more rapidly with ring number
Nr compared with row numberN =M in the square array and the directivity is higher. However,
in particular cases, the reverse occurs. For example, a rectangular 8 × 8 array with λ/2 element
spacing has an area of 12.25 λ2 for a directivity of 19.7 dBi, while a hexagonal lattice of four
rings spaced λ/2 apart has 61 elements occupies a slightly larger area of 12.57 λ2, has a lower
directivity of 18.31 dBi.

7.3 Mutual Coupling in Aperture Antennas

Themutual coupling between small dipoles has been described in Section 2.3.3. Its prediction for
an array of aperture antennas is important for accurate design and performance. The interaction
between antenna elementsmodifies the overall radiation pattern aswell as the individual aperture
reflection characteristics. On some occasions, mutual coupling can reduce the overall system
performance, for example, by enhancing the generation of grating lobes (Hansen, 1998). How-
ever, unraveling the details behind its effect can help to understand mutual coupling and how it
may even be used to improve overall performance. Because of the importance of mutual cou-
pling, it is valuable to review its cause, physical properties and some of the techniques used to
predict it.
Mutual coupling was recognized by the early pioneers in antennas as important for design.

Brillouin (1922) was probably one of the earliest to detail a method of analysis, and like many
early workers, he was concerned with calculating radiation resistance rather than the complex
impedance at the input of array elements. A systematized approach that developed, called the
emf method, was applied by Pistolkors (1929) to find the radiation resistance of various dipole
array configurations. Another approach adopted by the pioneer antenna designers was the
Poynting vector method, which is the present-day standard method of calculating radiation
resistance from the integrated normal energy flow through a surface surrounding the antenna.
This second approach was used, for example, by Bontsch-Bruewitsch (1926) and Knudsen
(1952) to analyse coupling in dipoles. Both approaches mentioned above are equivalent and
can be converted into the other by means of Gauss’ law, as shown by Bechmann (1931).
The emf method gained wide acceptance after the work of Carter (1932), who used reciprocity
and the emf method to determine expressions for self and mutual impedances for a variety of
two-dipole arrangements. Carter’s paper profoundly influenced much of the subsequent liter-
ature on antenna coupling because for the first time the coupling problem was expressed as an
equivalent circuit. All the aforementioned papers were concerned with dipole elements.
Aperture antenna coupling such as between waveguides and slots were investigated initially

in detail by Booker (1946), who derived the admittance of a slot from the impedance of its dual,
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the dipole. The variational nature of the impedance formula was established by Miles (1949)
and Storer (1952). General methods of obtaining admittances in ground planes were described
byHarrington (1961). An early impetus for analysing mutual coupling effects in aperture anten-
nas came from the need to counter blind spots in arrays, which subsequently was found to be
due to surface waves on the array excited by coupling. Other more detailed methods came from
the extension of methods for solving integral equations as well as others based on modal meth-
ods or periodic structures with Floquet modes. The range of methods used for analysing mutual
coupling and their relationships are summarized in Figure 7.7.
The methods of periodic structures such as applied in solid-state physics (e.g. Floquet

method) were not used in antennas until the 1960s. The Floquet approach found favour for
a range of array structures and provided an early means of understanding coupling effects in
large arrays. Array edge effects were seen to be important for small- and medium-sized arrays
where the infinite array solution became a poor approximation to reality. This led in the 1960s
and 1970s to the development of methods of analysing mutual coupling in finite arrays. These
methods were improved throughout the 1980s and 1990s as computer technology became more
capable. At the same time, the development of numerical methods and computer codes allowed

Antenna arrays

Finite arrays Infinite arrays

Integral equation methodsMinimum 
scattering methods

Element-by-
element method

Direct solvers

Periodic methods

Asymptotic 
field solutions

Periodic ray 
structure methods

Mode matching
Moment methods

Fourier series
formulation

Scattering matrix
formulation

Impedance/admittance
matrix formulation

Asymptotic methods

Figure 7.7 Relationships of methods for analysing mutual coupling in arrays
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the analysis of more complicated antennas such as arrays and their supporting structures. The
computer codes available today allow mutual coupling to be included in the design as a matter
of course. Nevertheless, the physical aspects of mutual coupling need to be understood to min-
imize its disadvantages and maximize the advantages. Mutual coupling can even provide ben-
efits in some designs. For example, in an array used to feed a reflector antenna used to create a
shaped beam, the gain achievable across the beam can be 0.2–0.3 dB higher if mutual coupling
is properly incorporated in the initial design. This increase appears relatively modest except
when you realize in some applications, such as in satellite communications, small gain increases
of 0.1 dB are generally achieved at great expense (Bird & Sroka, 1992).
There are two basic approaches for analysing mutual coupling in arrays are as follows:

through analysis methods for finite arrays and those for infinite arrays. Some techniques are
common to both, as indicated in Figure 7.7. However, the end solution is usually different
because the impedance and pattern characteristics of infinite periodic arrays are identical from
one unit cell to the next. In the next section, mutual coupling in an infinite array is described and
in the following section the element-by-element approach is detailed for finite arrays.

7.3.1 Infinite Periodic Arrays

When the array contains identical elements and the element spacing is regular, a solution can be
expressed in terms of Floquet modes. Since the array geometry is a periodic function of the
geometry, the field representation is periodic also except for a phase function which varies
linearly across each cell of the array. This periodic function with phase progression is called
a Floquet mode. Periodicity allows considerable simplification of the computing problem
because once a solution is obtained for one cell, the solution for other cells is the same except
for a progressive phase factor. By means of this representation, large arrays have been analysed
with some success. Historically, in the analysis of mutual coupling in antennas, infinite periodic
arrays were analysed first in detail. The literature on infinite arrays is substantial, and for details,
the reader should consult the references (Hansen, 1966, 1998; Diamond, 1968; Farrell & Kuhn,
1968; Amitay et al., 1972; Rudge et al., 1983).
Consider an infinite array of identical aperture as shown in Figure 7.8. The location of an

element in the transverse plane is specified by the vector

ρtmn =md1 + nd2; m ≤M and n ≤N

where d1 and d2 are vectors, which define the array lattice. In general, these vectors are not
orthogonal. The electric field in the mnth unit cell is

Emn ρtmn =Eo ρ−ρtmn e− jkW ρtmn

where W= xu+ yv with u = sin θ cos ϕ and u= sin θ sin ϕ. The total electric field in the trans-
verse aperture plane z= 0 is found by summing these individual contributions:

Et ρtmn =
M

m=−M

N

n=−N

Eo ρ−ρtmn e− jkW ρtmn
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In turn, the total radiated field is obtained by integrating over the infinite aperture. That is,

E r,u,v =
1
4π2

∞

−∞

∞

−∞

M

m=−M

N

n=−N

Eo ρ−ρtmn e− jkW ρttmndxdy 7 18

The summations can be completed in closed form, and the Fourier transform of the aperture
field of the unit cell identified. This results in

E r,u,v =E r,u,v
sin M + 1 2 κt d1

sin 1 2κt d1

sin N + 1 2 κt d2
sin 1 2κt d2

7 19

where

E r,u,v =
1
4π2 unit cell

Eo x,y e− jk ux+vy dxdy

is the transform of the aperture field in the unit cell and κt = k x 1−u + y 1−v .
The assumption of an infinite periodic array simplifies the analysis of mutual coupling. Such

an approach is useful for analysing the performance of large arrays of identical elements. In the
following, it is assumed that the elements are identical, the spacing is regular, and there is a
uniform phase shift across the array, which is applied with a linear phase shift from one element
to the next. The analysis of mutual coupling in a periodic array is facilitated bymeans of the unit
cell. A close view of a single unit cell of a planar array is shown in Figure 7.9.
Consider a field that is TE to the z-direction in the region above the aperture shown in

Figure 7.9. The z-directed magnetic field is a solution of Helmholtz’s equation of the form

∇2
t + k2 + γ2 hz x,y = 0

Unit cell

z

x
y

dxdy

Figure 7.8 Infinite array of apertures and identification of a unit cell
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where Hz x,y,z = hz x,y exp − jγz and ∇2
t = ∂

2 ∂2x + ∂2 ∂2y is the Laplacian in the trans-
verse components. The array is periodic in the x- and y-directions with spacing dx in the x-
direction and dy in the y-direction. If hz(x, y) is a periodic function in x and y, a general solution
is of the form

f x+ dx,y + dy = hz x,y exp − j kxdx + kydy

where kx and ky are the propagation constants in the x- and y-directions. This statement is a
particular form of Floquet’s theorem. Now let hz x,y =X x Y y where X and Y satisfy scalar
wave equations with separation constants κ2x and κ2y such that

γ2 = k2−κ2x −κ
2
y

As well, assume that the scan phase is a progressive on the excitation from cell to cell, which
for element mn is of the form Vmn exp j2π mψ x + nψy where steering phases are given by

ψx =
dx
λ
sin θd cos ϕd and ψ y =

dy
λ
sin θd sin ϕd

where θd, ϕd are the drive angles. Thus, a general displacement Δ in the x-direction is
X x+Δ =X x exp j2πmψxΔ dx , and similarly for Y(y) in the y-direction. Furthermore,
X(x) can be represented by a Fourier series of the form

X x =
∞

m=−∞
Am exp

j2πmx

dx
exp

j2πmψxx

dx
=

∞

n=−∞
An exp

j2πm 1 +ψ x x

dx

z

x

y
dx

dy

Figure 7.9 Unit cell of periodic planar array
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Similarly in the y-direction, it is shown that

Y y =
∞

n=−∞
Bn exp

j2πn 1 +ψ y y

dy

Thus, the axial magnetic field can be expressed as a double summation of plane waves in
the form

Hz =
∞

m=−∞

∞

n=−∞
Dmn exp − jγmnz exp jκmxx exp jκnyy 7 20

where κmx = kx = 2mπ 1 +ψx dx, κny = ky = 2nπ 1 +ψy dy, and γ2mn = k
2−κ2mx−κ

2
ny.

Dmn are currently unknown coefficients. The transverse field components can be obtained
from Eq. 7.20 and Maxwell’s equations in their reduced form for transverse electric (TE) fields
as given by Eqs. 2.6. In the present instance of a rectangular geometry, let κt = xkx + yky and
therefore κ2t =κt κt = k2x + k

2
y . From Maxwell’s equations, Eq. 7.20 results in

Et = −kηo

∞

m=−∞

∞

n=−∞
Dmn exp − jγmnz

z×κt

κ2t
exp jκmxx exp jκnyy 7 21a

Ht =
∞

m=−∞

∞

n=−∞
γmn Dmn

κt

κ2t
exp − jγmnz exp jκmxx exp jκnyy 7 21b

Suppose the aperture at z= 0 is located in a ground plane and the electric field in the aperture
is given by Et x,y,0 =EA over the domain of the unit cell denoted by D. With this boundary
constraint, and after crossmultiplying both sides with z, Eq. 7.21a becomes

z×EA = kηo
∞

m=−∞

∞

n=−∞
Dmn

κt

κ2t
exp jκmxx exp jκnyy

Taking the inverse transform of this complex series, then

Dmn
κt

κ2t
=

1
kηodxdy D

z×EA x ,y exp − jκmxx exp − jκnyy dx dy 7 22

Let the aperture field components be given by EA =
N

p= 1
Vpep and HA =Ht x,y,0 =

N

p=1
Ip z × ep where ep(x, y) are shape functions that satisfy the boundary conditions as well

as orthogonality. These are often chosen to be the modes of the domain D, and N is the number
of shape functions used. The term in the braces in Eq. 7.21b is replaced by Eq. 7.22. The expan-
sions of the aperture fields are substituted into the result. With these substitutions, Eq. 7.21b
now becomes
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N

p= 1

Ip z × ep =
1

kηodxdy

∞

m= −∞

∞

n= −∞
γmn exp jκmxx exp jκnyy

×
N

q= 1

VqFq m,n, −κmx, −κny

where Fp m,n,κmx,κny =
D

z × ep x ,y exp jκmxx exp jκnyy dx dy .

The vector z× ep p = 1,…N is projected onto both sides of the linear equation and the
result integrated in the unprimed co-ordinates across the domain D. Because of orthogonality,
the equation simplifies to

IpNp =
Yo

dxdyk

N

q = 1

γmnFp m,n,κmx,κny Fq m,n, −κmx, −κny Vq

where Yo = 1 ηo and Np =
D
ep epdx dy . That is,

Ip =
N

q= 1

Ypq ψ x,ψ y Vq

or, alternatively, in matrix form I=Y V where Y is the admittance matrix with coefficients

Ypq ψx,ψy =
2Yo

dxdykNp

∞

m=−∞

∞

n= −∞
γmnFp m,n,κmx,κny Fq m,n, −κmx, −κny 7 23

for a rectangular periodic array. The series in Eq. 7.23 converges rapidly with increasing indices
m and n. As a first approximation, consider an infinite periodic array of rectangular apertures
supporting only the TE10 mode. When only one mode is used in Eq. 7.23, the result is called a
‘grating lobe’ series (Amitay et al., 1972; Hansen, 1998). This can be a useful approach for
understanding coupling problems as well as the impact of mutual coupling on the grating lobes
although care is required and also sometimes the single mode approximation is not very accu-
rate. Continuing, let N = 1 and e1 = y cos πx a over part of the domain given by a 2 ≥ x,
b 2 ≥ y and be zero elsewhere. It can be shown that

F1 ψx,ψy = −
2ab
π

C
κmxa

2
S

κnyb

2

where the functions C(x) and S(x) are defined in Appendix A. Also, the normalization
is N1 = ab 2.
Therefore,

Y11 ψx,ψ y =
Yo8ab
π2dxdyk

∞

m=−∞

∞

n=−∞
γmnC

κmxa

2
C

−κxa

2
S

κyb

2
S

−κyb

2
7 24
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The series converges reasonably quickly if the summation inm has limitsM ≥ ± 4 1 + 1 5dx a
and similarly for n. Eq. 7.24 is similar to a result given by Diamond (1968) for the element
driving admittance, which can be also written as

Y11 ψx,ψy =
∞

m=−∞

∞

n=−∞
Y m,n

where

Y m,n =
Yo8ab
π2dxdyk

k2−κ2mx−κ
2
nyC

κmxa

2
C

−κxa

2
S

κyb

2
S

−κyb

2

When all sources are turned on with the selected steering angles, an active reflection
coefficient can be defined, which in the presence of only one mode is

Γa ψx,ψy =
1−Y11 ψx,ψ y

1 +Y11 ψ x,ψ y

The coupling coefficients are given by the following complex Fourier series:

Γa ψ x,ψ y =
∞

m=−∞

∞

n=−∞
S0mn exp jmψx exp jnψy 7 25

where S0mn is the coupling coefficient from the mnth element to the driven element. When the
Fourier series is inverted, it is found that

S0mn =
1
4π2

π

−π

π

−π
Γa ψx,ψy exp − jmψx exp − jnψ y dψxdψy

As an example, a single-mode estimate of the active reflection coefficient of a periodic
array of square waveguides on a square grid with dimensions dx = dy = 0 5714λ is shown in
Figure 7.10. Also shown is the magnitude from a multimode solution (Galindo & Wu,
1966). The calculated active reflection coefficient with a single mode at a scan angle of 20∘

is found to be Γa = 0 30∠−80 . This compares with the value of Γa = 0 32∠149 4 quoted
by Amitay et al. (1972), which was obtained with a basis of 30 pulse functions.

7.3.2 Finite Arrays

Ideally, the designer of arrays would wish to analyse a finite array as it can take into account
factors such as edge elements and an irregular element arrangement and have different types of
elements. Most arrays can be analysed as finite arrays although the computational effort can be
considerable. The most common way of analysing mutual coupling in arrays of a finite number
of elements is the element-by-element method (as indicated in Figure 7.7). This technique
involves constructing an impedance or admittance matrix by considering each element of
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the array in turn in the presence of another element, with all other elements of the array removed
either by physical means or by means of open- or short-circuiting the terminals. In the case of
wire antennas, all except the two elements under consideration are open-circuited, when the
mutual impedance is calculated. For slot and waveguide antennas, the mutual admittance of
these two elements is obtained with the remaining elements short-circuited. (The special case
of an element in isolation yields the diagonal or self-terms of the matrices.) How the mutual
impedance or admittance is calculated depends on the type of antenna elements, and several
formulae are in common use. To outline some of these formulae, initially consider arrays of
wire antennas. Expressions for the admittance of arrays of slots are easily obtained by replacing
field quantities in the usual way (see Table 2.2).
The theory given in Section 2.2 is readily extended to antennas with distributed currents

from the representation given in Section 2.3.3. The extension requires taking account the
phase delay between the current at the terminals of antenna 2, namely, I2, and the current
on the surface, S2; the phase delay on antenna 1 is accounted for in the same way. Consider
an infinitesimal element of antenna 2, which is illuminated by an incident electric field from
antenna 1 given by E21. Suppose an electric current, J2 dS, is induced on the element of
antenna 2. At the terminals of antenna 2, an emf induced at the terminals is dV21. For continuity
of complex power, it is required that

I2dV21 = −J2 E21 R dS 7 26

where I2 is the current at the terminals of antenna 2 and R is the vector from antenna 1 to
antenna 2. Consider initially the infinitesimal mutual impedance defined in Eq. 2.32. Now
sum all such current elements over the surface of antenna 2 to give:
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Figure 7.10 Input reflection coefficient in the H-plane scan of a periodic array of square waveguides
obtained from a single-mode approximation. Dimensions a= b= 0 5354λ and dx = dy = 0 5714λ. Solid
line, magnitude; dashed line, phase; dot, Galindo and Wu (1966)
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Z21 =
V2

I1
= −

1
I1 I2 S2

J2 E21 R dS 7 27

Equation 7.27 is a generalization of a formula first derived by Carter (1932). The self-
impedance of the antenna, due to its own current, is given by Eq. 7.27 when the two antennas
are coincident. An identical result was derived by Richmond (1961) by means of the Lorentz
reciprocity theorem. Expressions for mutual impedance other than Eq. 7.27 are possible. For
example, an expression that uses the complex conjugate instead of the current density arises
from a derivation based on the complex Poynting vector (King, 1956). Another expression
derived by Richmond (1961) uses total fields; that is, fields due to antenna 1 transmitting in
the presence of antenna 2 and vice versa. It is shown in Appendix C that Eq. 7.27 is stationary
with respect to the electric current and the incident field.
Expressions for the mutual impedance of two dipoles in various dispositions have been

derived from Eq. 7.27 for assumed current distributions, and some of these are given by Brown
(1937), Barzilai (1948) and Hansen (1966, 1998). For the case of two thin dipoles with lengths
L1 and L2 supporting sinusoidal currents sin k L1,2− t (where L1,2 > t ), the mutual imped-
ance is approximately (Schelkunoff & Friis, 1952)

Z21 =
jηo

4π sin kL1 2 sin kL2 2

L2 2

−L2 2

e− jkr21

r21
+
e− jkr21

r21
−2 cos

kL1
2

e− jkr21

r21
sin k

L2
2
− t dt

7 28

where r21, r21 and r21 are defined in Figure 7.11. Approximations given by Eq. 7.28 when the
spacing between the dipoles, s, is greater than the length of the dipoles can be obtained (e.g.
Gera, 1988). For half-wave dipoles arranged at broadside (i.e. H-plane coupling), the mutual
impedance is

I2

I1

θ21

r21

ʺr21

ʹr21

Dipole 1

Dipole 2

α
z,z1

x,x1
x0

z0

x2

z2

Figure 7.11 Geometry of coupling of two dipoles in x–z plane
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Z21≈
jηo
2π2

e− jks

s λ
1 +

π 8 − 1 2π
js λ

7 29

The above is accurate for s > 0.75λ. In the case of two collinear dipoles (i.e. E-plane cou-
pling), then

Z21≈ −
ηo
32π

e− jks

s λ 2 7 30

This equation is accurate for s > λ.
The above results are for the mutual impedance. From duality, as summarized in Table 2.2, a

similar description is possible for mutual admittance. In particular, the mutual admittance
obtained from the emf method is

Y21 = −
1

V1V2 S2

M2 H21 R dS 7 31

where V1 and V2 are the applied voltages, M2 is the magnetic current on antenna 2, and H21

is the magnetic field at antenna 2 from antenna 1. Another version of this formula that is
applicable to planar waveguide and slot arrays is given by Borgiotti (1968). This expresses
the mutual admittance in the form of a Fourier transform of a function that is related to the
radiation pattern of the elements.
In the most general application of Eqs. 7.27 or other similar impedance formulae, the electric

field at antenna 2 can be expressed in terms of a dyadic Green’s function G e for the electric

field given as follows by

E21 R =
S1

G e R R J1 R dS 7 32

where J1 is the current density on the surface of antenna 1 while R and R are vectors from the
origin to the field and the source points, respectively. Knowledge of the currents on antennas 1
and 2 is required to determine mutual impedance. Before the widespread use of digital com-
puters, the practice was to assume a current based on approximations from on physical reason-
ing and to evaluate the integrals as best one could with hand calculators. Nevertheless, excellent
results were achieved for dipole arrays, for example. However, improved results and mutual
coupling between wider classes of antennas became possible with numerical methods, such
as the method of moments. This approach for wire antennas has been described in detail in
several texts including those by Harrington (1961) and also Stutzman & Thiele (1981) and,
therefore, shall not be repeated here.
As mentioned earlier, one of the reasons good results are obtained with relatively simple

current approximations is that Eqs. 7.27 and 7.31 are stationary with respect to small variations
in the assumed currents. A proof of this stationary or variational behaviour of the mutual imped-
ance expression Eq. 7.27 is given in Appendix C. Similar conclusions apply to the magnetic
currents and the corresponding mutual admittance. This time the magnetic field is expressed in

terms of the dyadic Green’s function G h for the magnetic field as follows (Collin, 1960):
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H21 R =
S1

G h R R M1 R dS 7 33

where M1(R ) is the magnetic current on antenna 1. Therefore, the mutual admittance is
expressed as

Y21 = −
1

V1V2 S2

dS2M2 R
S1

G h R R M1 R dS1 7 34

As a particular case, an expression is obtained for the mutual admittance of two identical
rectangular waveguides that terminate in a ground plane. The aperture width and height dimen-
sions, respectively, are a and b. The free-space dyadic magnetic Green’s function can be shown
to be (see Appendix D)

G h =
− jk

2πηo
I+

1
k2
∇t∇t Go R−R 7 35

where

R−R = x−x 2 + y−y 2 + z−z 2

Go R = exp − jkR R is the scalar free-space Green’s function, I is the unit dyadic, and ∇t

is the gradient operator in the transverse plane. Let us approximate the magnetic current in
the apertures using the TE field of the fundamental mode of rectangular waveguide, that is,
y cos(πx/a) and M1 =E1 × z= xV1 cos πx a . Similarly, M2 = xV2 cos πx a .
Therefore,

Y21 =
− jk

2πηo S2

dx dy x cos
πx

a S1

I+
1
k2
∇t∇t Go R−R x cos

πx

a
dxdy

or

Y21 =
− jk

2πηo S2

dx dy cos
πx

a S1

1 +
1
k2

∂

∂x

∂

∂x
Go R−R cos

πx

a
dxdy 7 36

This expression can be integrated numerically with some difficulty due to the singularity in the
Green’s function when the field point approaches the source point. As is shown in Section 7.3.5,
Eq. 7.36 can be expressed in closed form using a transformation of variables.

7.3.3 Mutual Impedance and Scattering Matrix Representation

In the element-by-element approach, finite arrays of antennas can be represented in terms
of network parameters that depend on the type of array element. Consider initially an N
element array of electric dipole antennas. Suppose that the dipoles have external voltages
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V in
p (p = 1, …, N ) applied to the input terminals. Application of the emf method to all dipoles

requires that

Vin =ZI 7 37

where Z is the impedance matrix for the mutual coupling in the array

Z =

Z11 Z12 … Z1N

Z21 Z22 … Z2N

.... .... .... ....

ZN1 .... .... ZNN

7 38

The currents I at the terminals of the dipoles are obtained from the inverse of Z as follows:

I=Z−1Vin 7 39

For arrays of magnetic dipoles, apertures and slots, the expressions are the dual of those for
the electric dipole. In matrix notation, the relation between the externally applied current vector
Iin and the induced voltage is obtained from

V=Y−1 Iin 7 40

where Y is the admittance matrix.
It is often convenient to use a scattering matrix formulation because feeding networks can be

fully included in the design. To relate this formulation to the impedance and admittance net-
work representations, voltage and current need to be defined in terms of the complex ampli-
tudes of forward and backward travelling waves on these lines. Let

ak = complex amplitude of a wave travelling towards port k
bk = complex amplitude of a wave travelling away from port k
Zok = characteristic wave impedance at port k

The associated wave admittance is Yok = 1 Zok. The voltage and current at port k are defined
as follows:

Vk = Z
1 2
ok ak + bk 7 41

Ik =Z
−1 2
ok ak −bk

After substituting Eq. 7.41 into Eq. 7.40 and rearranging, it is found that

b= Sa 7 42
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where

S= z−I z + I = I−2 I + z −1

is the scattering matrix of the array, a and b are column vectors of forward and backward
travelling waves, I is the unit matrix, and z is a matrix of normalized impedances with elements

zpq = ZpqZ
−1 2
op Z −1 2

oq

The normalization is usually relative to the free-space wave impedance ηo and the normalized
impedance is indicated by the lower case letter z.
For an array of only two elements, the scattering matrix is

S=
1
Δ

z11−1 z22 + 1 −z12z21 2z12

2z21 z11 + 1 z22−1 −z21z12

where Δ= z11 + 1 z22 + 1 −z12z21. Note that if the elements are identical and their inputs are
well matched z11 = z22≈1, then the coupling coefficient between the antennas is S12 = S21≈
z12 2. That is, as a general rule in a well-matched array of identical elements, the coupling coef-
ficient is approximately half or 3 dB below the magnitude of the mutual impedance (or admit-
tance), In the case of magnetic dipoles, Eq. 7.42 remains the same except that the scattering
matrix is expressed as

S=
I−y
I+ y

= 2 I + y −1−I 7 43

where y is the normalized admittance matrix with elements

ypq = YpqY
−1 2
op Y −1 2

oq

The normalization is relative to the free-space wave admittance and is denoted by a lower case
letter y.
The scattering matrix S represents the coupling between the elements due to the external

radiating region only. As a result, it is convenient to now replace the external region scattering
matrix by S(0) that is fed by forward and reverse waves a(0) and b(0). Generally, each array feed
element has its own individual scattering matrix, which connects to S(0), as illustrated in
Figure 7.12. This shows that at the output of element p feeding into part of the external network,

there are forward and reverse travelling waves with amplitudes a p
O and b p

O . In turn, this net-

work has input travelling waves with amplitudes a p
I and b p

I , which are related through a scat-

tering matrix S p
ij . Suppose there are a total of N elements. These are related to the forward and

backward waves at the aperture through

bI

aO
=

S11 S12

S21 S22

aI

bO
7 44

in which the elements of the scattering matrix are partitioned as shown:
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Sij =

S 1
ij 0 … 0

0 S 2
ij … 0

.... .... .... ....

0 .... .... S P
ij

7 45

As the forward and reverse amplitudes aO = a 0 and bO = b 0 are related via Eq. 7.42, the
reflected waves can be expressed in terms of the input wave amplitudes by

bI = S11 + S12S 0 U−S22S 0
−1
S21 aI 7 46

Equation 7.46 shows that mutual coupling, here given by S(0), can have a significant influ-
ence on the input reflection coefficient if this coupling is strong and also the input network is
not well matched.

7.3.4 Analysis of Arrays of Aperture Antennas by Integral
Equation Methods

As Figure 7.7 shows both infinite and finite arrays can be analyzed with integral equation
methods, which for arrays is a class of methods for solving problems where the unknowns
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Figure 7.12 Network representation of an array
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are inside integral expressions. This commonly occurs for arrays of apertures on surfaces
including curved ones. Such a method is useful as these types of arrays occur in a wide range
of applications in communications and radar, especially where accuracy, efficiency and low
sidelobes are required. The apertures may be physical apertures, such as arrays of waveguides
(Figure 1.1a–c, l) or two-dimensional microstrip patches (Figure 1.1k) mounted on other
surfaces. Suppose the array is located on a surface that is designated by So. When the array
is operating, let the fields radiated externally to this surface be E1, H1 and the fields inside
the surface E2, H2. It is convenient to use the field equivalence principle to replace the field
inside So by the null field. To do this and maintain continuity of the field, electric and magnetic
currents Jo, Mo are introduced on the surface. At this point, two types of arrays of practical
interest can be identified which permit further simplification: (i) the array which comprises
separate isolated electric conductors separated by homogeneous materials and (ii) the comple-
mentary situation when So is an electric conductor and the array comprises apertures in the
conductor. Both of these antennas can be analysed rigorously by the integral equation method,
and in this section, a solution of the latter problem is considered.
For an array of apertures in a conductor, the original equivalent sources are the electric cur-

rent, Jo, over the entire surface and a magnetic current, Mo which is non-zero in the apertures
only. To remove the need to determine both sources, it is convenient to introduce an electric
conductor into the null field region inside So and place it adjacent to the surface so that it com-
pletely shorts out Jo. The result is the equivalent problem of an array of patches of magnetic
current that are backed by an electric conductor. To solve this problem, one needs to know the
Green’s function for a magnetic dipole radiating in the presence of an electric conductor of
shape given by So. Closed-form solutions may be found to this problem for some elementary
surfaces, for example, the plane, the cylinder or the sphere (e.g. Felsen & Marcuvitz (1973)).
The Green’s function for the plane is derived in Appendix D. One may also consider the exter-
nal region to comprise several homogeneous layers or shells (Galejs, 1969), but here for sim-
plicity’s sake, only a homogeneous external region is considered. When the surfaces have large
curvatures, asymptotic solutions may be usefully employed. Further, by following the general
principles of the geometrical theory of diffraction (GTD), asymptotic solutions for elementary
surfaces may be generalized to approximate fields on arbitrary surfaces (e.g. Shapira et al.,
1974; Pathak et al. 1981).
Let n be the unit outward normal to the surface So. If Et is the tangential component of the

electric field in the apertures, the magnetic current is given by

Mo =Et × n 7 47a

In the region outside So, the tangential component of the magnetic field is given by

Hext R =
S1

G h R R Mo R dS 7 47b

where R and R are vectors from the origin to the field and source points respectively. In the
special case when So is a plane, the appropriate Green’s dyadic is best obtained by the method
of images. Equations 7.47 form the basis of the present analysis of apertures on a plane. In the
next chapter, a formulation will be described for curved surfaces.
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Since the remaining patches of magnetic current are backed by a plane, electric conductor
image theory says the field due to this arrangement is identical to a magnetic current of twice
the strength that operates in free space. As shown in Appendix D, the dyadic Green’s function
for a planar source is given by

G h =
− jk

2πηo
I+

1
k2
∇t∇t Go R−R 7 48

where

R−R = x−x 2 + y−y 2 + z−z 2,

Go R = exp − jkR R is the scalar free-space Greens function, I is the unit dyadic, and∇t is
the gradient operator in the transverse plane. Now consider the region inside the surface So. The
magnetic field therein consists of an incident field Hinc and a reverse travelling field due to
the discontinuity at the apertures, Hrev. For continuity of the field, the sum of the magnetic
fields tangential to the inside surface should equal the tangential component of the field just
outside. That is, at the surface,

Hinc
t +Hrev

t =Hext
t 7 49

The fields inside the waveguides leading to the apertures can be usefully approximated by an
expansion of waveguide modes. Modal field solutions may be obtained by analytical methods
for many common types of waveguide cross sections represented by separable co-ordinates
such as circular, elliptical and rectangular geometries, while structures with general cross sec-
tions can be analysed by numerical means, such as the finite element method.Whatever method
is adopted, a set of known modes with transverse fields is assumed to be available in the form

(epi, hpi). In waveguide, i the total transverse field E i
t ,H i

t consisting of both forward and

reverse travelling waves is approximated as a finite sum of M(i) modes as follows:

E i
t =

M i

p = 1

apie
− jγpiz + bpie

+ jγpiz epi x,y Y −1 2
pi 7 50a

H i
t =

M i

p= 1

apie
− jγpiz−bpie

+ jγpiz hpi x,y Y + 1 2
pi 7 50b

where

γpi = βpi− jαpi = propagation constant of mode p in region I,

hpi = z × epi

and

Si

dSepi × hpi z= 2δpq 7 51
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where δpq is the Kronecker delta and Ypi is the mode admittance of mode p in waveguide I,
given by

Ypi =
1
ηo

γpi k TEmodes

ε i
r k γpi TMmodes

7 52

where ε i
r is the relative permittivity of the filling in aperture i.

At this stage, the fields in the waveguides have been detailed, particularly the magnetic field,
leading to the apertures and exterior regions, and these may be employed to satisfy, approxi-
mately, continuity of the magnetic field at the apertures (Eq. 7.49). It is the choice of the type
of expansion functions in these approximate representations that has resulted in the coining of
several different solution methods. Two of the many approaches possible are described in the
following sections.

7.3.4.1 Moment Method Approach

In this approach, the field travelling away from the apertures is expressed also in terms of the
magnetic current on the aperture. This was first detailed by Harrington and Mautz (1976) and
since then has been used by others and to analyse arrays of rectangular waveguides (Fenn et al.,
1982; Luzwick & Harrington, 1982), and also circular horns (Silvestro & Collin, 1989).
Since the tangential component of the electric field should be continuous across the aperture,
the magnetic current inside So must be −Mo (Eq. 7.47a). This is substituted into Eq. 7.49 to give

Hinc
1 +Hrev

t −Mo =Hext
t Mo 7 53

Hrev
1 may be expressed in the form of Eq. 7.47b, where G h is replaced by an appropriate

Green’s dyadic for a magnetic source inside the conductor, although it is sometimes preferable
to use a simpler representation. Further, one usually requires the amplitude of the modes in the
waveguides to be an outcome of the analysis.
To satisfy Eq. 7.53 and solve for the magnetic current, the magnetic current is expressed in

terms of Ne general expansion functions, here denoted by αn n = 1,…,Ne , with unknown
coefficients Vn as follows:

Mo =
Ne

n= 1

Vnαn 7 54

This approximation is now substituted into Eq. 7.53, and use is made of the linearity of the
fields. However, since it cannot be assumed that continuity is satisfied exactly, define the resid-
ual of Eq. 7.53 as follows:

R=
Ne

n= 1

Hrev
t αi +Hext

t αi Vi − Hinc
t 7 55
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The approach adopted now is the method of weighted residuals (Finlayson, 1972). For the
purpose of makingR as small as possible, define a set of weighting functions βn n = 1,…,Ne

that are valid over So. In weighted residuals, the inner product (i.e. the integral over So) of the
weighting functions and the residual is set to be zero; thus

βi,R =
So

dS βi R= 0 7 56

The simplest set of weighting functions is constants, and in that case, Eq. 7.56 requires that
the average residual is zero. Another simple set of weighting functions is delta functions, and
use of these results in a point matching solution. The method of moments is another special
case. One particular version that uses sub-sectional basis functions is popular for field calcula-
tions (Harrington, 1968). The most common approach is to use identical weighting and expan-
sion functions, that is, αn = βn n= 1,…,Ne . This approach is known as the Galerkin method,
which is used here, and results in

βi,R =
So

dS αi R

= αi,Hrev
t αj + αi,Hext

t αj Vj− αi,Hinc
t = 0

7 57

The first two terms in the last line are admittance matrices for the reflected field and the
exterior region given by

Yrev = Y rev
ij = αi,Hrev

t αj

and

Yext = Yext
ij = αi,Hext

t αj

In addition, define a current source vector

Iinc = αi,Hinc
t αj

Therefore, Galerkin’s method results in the matrix equation

Yrev +Yext V= Iinc 7 58

The physical picture provided by Eq. 7.58 is of two general admittances in parallel with a
current source. By inverting the sum of the admittance matrices, the coefficients of magnetic
current expansion are obtained from

V= Yrev +Yext −1 Iinc 7 59
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Once V has been found, the complex amplitudes of the reverse travelling fields in the wave-
guides can be obtained. When Eqs. 7.50a and 7.54 are substituted into Eq. 7.47a, the result is

Ne

i= 1

αiVi =
Mo

m = 1

am + bm Y −1 2
m em x,y × z 7 60

Next, taking the inner product with hn on both sides of this equation for the region So and
using mode orthogonality through Eq. 7.51 results in

am + bm = −
Y1 2
m

2

Ne

n, i= 1
αi,hm Vi 7 61

As mentioned previously, several workers have used the moment method to analyse
mutual coupling in rectangular apertures. All employ Galerkin’s method, but differences
occur in the choice of expansion functions. One approach (Luzwick & Harrington, 1982)
uses linearly polarized expansion functions that are co-sinusoidal over the apertures,
while another (Arndt et al., 1989) adopt a combination of pyramidal and triangular func-
tions. In a further approach, Fenn et al. (1982) use two orthogonally polarized sets of
overlapping piecewise sinusoidal-uniform surface patches as expansion and weighting
functions. This leads to mutual coupling calculations involving only a single integration.
Booker’s relation Eq. 2.41 can be used to convert the mutual admittance formula to deter-
mine the mutual impedance of two parallel-staggered electric surface sources. Arrays of
rectangular waveguides have been studied (Fenn et al., 1982), during which the method
of images was used to determine the generalized admittance for the internal waveguide
region.

7.3.4.2 Mode Matching in Arrays

A special case of the method of weighted residuals arises when the expansion functions are also
the mode functions of the waveguides feeding the apertures. This time Eq. 7.50b is used in the
equation of continuity of the magnetic field (Eq. 7.49). Further, Eq. 7.50a is used in Eq. 7.47b to
determine the magnetic current. With these approximations, the residual of Eq. 7.47b at the ith
aperture is

Ri =
M i

p= 1

api−bpi hpiY
1 2
pi −

N

j = 1

M j

q

aqj + bqj Y
1 2
qj

Sj

dS G h R R eqj × n 7 62

where without loss of generality it is assumed that z = 0. Using the hpi as testing functions, the
inner product is taken of both sides of Eq. 7.62 over Si domain to obtain

hpi,Ri = api−bpi 2Y
1 2
pi −

N

j= 1

M j

q

aqj + bqj Y
1 2
qj hpi,

Sj

dS G h R R eqj × n = 0

7 63
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where in addition use has been made of mode orthogonality given by Eq. 7.51. The series in the
middle of Eq. 7.63 involves the normalized mutual admittance between modes p and q in aper-
tures i and j which is given by

yij p q =
1

2 YpiYpj
Si

dS hpi u1,u2
Sj

dS G h R−R eqj u1,u2 × n 7 64

where (u1, u2) are co-ordinates on aperture i and similarly the primed co-ordinates refer to aper-
ture j. It is seen that the mutual admittance is symmetric with respect to interchange of modes
and apertures; thus

yji q p = yij p q 7 65

With the weighted residual set the zero, Eq. 7.63 becomes

a−b= y a + b

and

b= 1+ y −1 1−y a

= Sa

where S= I + y −1 I−y is the scattering matrix of the apertures. The scattering matrix enables
the amplitudes of the reverse travelling mode amplitudes to be obtained. In the special case of
apertures in a conducting ground plane, Eq. 7.64 may be simplified using the fact that the mode
functions satisfy the boundary conditions on the waveguide walls. It is found that the elements
of the normalized admittance matrix can be further expressed (Bird, 1979) as

yij p q =
jk

4πηo YpiYqj
Si

dSΨpi u1,u2
Sj

dS Ψqj u1,u2 G R−R 7 66

where a vector mode function for the admittance is defined by

Ψpi x,y = hpi + z
1
jk
∇t hpi

= hpi + z
β

k
hz,pi

7 67

It is observed that Eq. 7.66 is valid for arbitrarily shaped apertures, which are homogene-
ously filled, provided that the fields are solutions of Maxwell’s equations and that they satisfy
the boundary conditions for the given geometry.
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The method described above can be extended to the modes of partially dielectric loaded
waveguides (Bird & Hay, 1990), and although the admittance matrix elements are given by
Eq. 7.66, this time the mode function is expressed in terms of longitudinal section electric
(LSE) or longitudinal section magnetic (LSM) modes. In this case,

Ψpi x,y = z× epi + zηohz,pi 7 68

where epi and hz,pi are the TE field and axial magnetic field components, respectively, of LSE
or LSM mode p in waveguide i.
The number of modes needed for an accurate representation of the aperture field depends on

the operating frequency. If the waveguide or horn operates in the fundamental mode and all
other modes are well below cut-off, a good estimate of reflection is obtained by considering
the fundamental mode only in the scattering matrix. Use of several high-order modes is recom-
mended, however, for accurate predictions. Satisfaction of the edge condition is not critical
except when there is a thin iris at the aperture, although Hockham (1975) showed that for rec-
tangular waveguide, inclusion of TEm0 (m = 3, 5, …) and TE0n (n = 2, 4, …) modes improve
solution convergence.
The mode matching approach has been applied to study mutual coupling and radiation in a

variety at waveguides terminated in a ground plane. These have closed-form solutions, which
are described in the next section.

7.3.5 Mutual Coupling Analysis in Waveguide Apertures

The approach so far has been developing a general formalism for planar arrays. In this section,
results for a number of practical finite planar arrays are obtained. The methods described earlier
have been applied to specific aperture geometries, namely, rectangular, circular coaxial and
elliptical, where there are closed-form modal solutions in a range of waveguides (circular
(Bird, 1979, 1996), coaxial (Bird, 2004), rectangular (Bird, 1990a) and elliptical (Bird,
1990b)) that terminate in a ground plane. For more general waveguide geometries, a numerical
method is required, and a simple approach based on the results of a finite element method is also
described.

7.3.5.1 Rectangular Waveguide Arrays

Arrays of rectangular waveguides or horns are used in many applications that require good
polarization characteristics and simplicity. Horns can be analysed accurately through more
sophisticated techniques such as mode matching (refer to Section 4.5.2). The advantage of
the latter approach is that the mode representation is consistent with the radiating aperture
case. Consider a suitable vector for use with the mutual admittance formula (Eq. 7.66). In
this section, mutual coupling is described for a finite array of different-sized rectangular
waveguides. Expressions for the mutual admittance of all possible combinations of mode
coupling are provided. A formula is given for reducing the order of integration in these
expressions, allowing the quadruple integral for mutual admittance to be expressed as several
double integrals instead. Results are provided that show excellent agreement between theory
and experiment.
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The transverse field vectors for rectangular waveguides ep and hp (the single integer sub-
script p is interchanged on occasions with the dual indices mn to simplify notation) that are
normalized for unit power transfer are summarized as follows:

TEmn Modes
The TE field is given by

emni x,y =
2εomεon
aibik2c ,mn

x
nπ

bi
cos

mπ

ai
x sin

nπ

bi
y −y

mπ

ai
sin

mπ

ai
x cos

nπ

bi
y ; m,n ≥ 0

7 69

where kc,mn = mπ ai
2 + nπ bi

2 and εoν =
1 ν= 0
2 ν> 0

.

The corresponding transverse magnetic field is

hpi =hmni = z× emni

and the axial magnetic field component is

hzpi =
1
jβ
k2c,mn cos

mπ

ai
x cos

nπ

bi
y

Therefore, the vector field function for admittance calculations (Eq. 7.67) in rectangular
apertures is

Ψmni x,y =
2εomεon
aibik2c mn

x
mπ

ai
sin

mπ

ai
x cos

nπ

bi
y + y

nπ

bi
cos

mπ

ai
x sin

nπ

bi
y

+ z
k2c,mn
jk

cos
mπ

ai
x cos

nπ

bi
y

7 70

TMmn Modes
The vector field function for these modes are obtained from

Ψmn TM = z × Ψmn TE 7 71

Substitution of Eqs. 7.70 and 7.71, respectively, into Eq. 7.66 for each case, results in a
mutual admittance expression for rectangular apertures given by

yij m,n m n =
jkπYo
8

αmnαm n cxIx + cyIy + czIz 7 72
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where

αmn =
εomεon

aibiYmnk2c,mn

Ix
Iy
Iz
=

Di

dS

Dj

dS G x−x ,y−y
sin
cos
cos

mπx

ai

cos
sin
cos

nπy

bi
×

sin
cos
cos

m πx

aj

cos
sin
cos

n πy

bj

7 73

The coefficients cx, cy, cz in Eq. 7.72 are listed in Table 7.1 for the four combinations of mode
coupling.
The integrals over the domains Di and Dj can be completed in closed form leaving only a

double integral in the transform domain. The most direct way of doing this is through numerical
evaluation of the double integrals by means of either conventional numerical quadrature
(Fröberg, 1974) or the fast Fourier transform (FFT) algorithm (Brigham, 1974; Oppenheim &
Shafer, 1975). In practice, both approaches are similar; the main difficulty being to ensure that
the integral converges in the region k ≤ ξ , η < ∞ in particular. A way of accelerating the con-
vergence of integrals in this region has been described by Kitchiner et al. (1987).
An analytical approach to evaluating the admittance formula and reducing the computation

time is to employ Lewin’s method (Lewin, 1951). This method can be extended to handle mode
coupling between separate, different-sized rectangular apertures. In this approach, the order of
integration in the four-dimensional integrals is changed to an integration over the (x, x ) domain
and separately the (y, y ) domain as illustrated in Figure 7.13., which leaves two surface inte-
grals having the same form. Considering the (x, x ) domain, the integral is

Ixx =
ai

0
dx

aj

0
dx B x−x

cos
sin

mπx

ai

cos
sin

m πx

aj
7 74

where B x−x is a function with integrable singularities due to the scalar Green’s function. Ini-
tially, let σ = x−x and λ = y−y . As two other variables are required for this four-dimensional
integration, let ν= x+ x −ai and μ= y + y −bi. The original and new regions of integration are

Table 7.1 Coefficients of admittance formula

Mode coupling cx cy cz

TEmn TEm n mm

aiaj

nn

bibj

kc,mn kc,m n

πk

2

TMmn TMm n nn

bibj

mm

aiaj

0

TEmn TMm n
−
mn

aibj

nm

biaj

0

TMmn TEm n
−
nm

biaj

mn

aibj

0
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shown in Figure 7.13. Now introduce the change of variable into the admittance formula and
in Eq. 7.74. Note that dxdx = dσdν 2. With these substitutions, the integral over μ can be
evaluated in closed form so that Ixx becomes

Ixx = ±
1
4

ai

0
dσ

B −σ M ± −σ,σ−ai,2aj−ai−σ,sm,dm +

B σ + ai−aj M± σ + ai−aj,σ−aj,aj−σ,sm,dm

−
ai −aj

0
dσB σ M ± σ,σ−ai,2aj−ai + σ,sm,dm

7 75

where sm,dm = 1 2 m±m ai aj and

M ± σ,ν1,ν2,s,d =
2ai
π

1
s
sin

sπ

2ai
ν1−ν2 cos sπ 1 +

ν1 + ν2
2ai

+
σdπ

ai

±
1
d
sin

dπ

2ai
ν1−ν2 cos dπ 1 +

ν1 + ν2
2ai

+
σsπ

ai

7 76

The above integral reduction formula (Eq. 7.75), is also applicable to the (y, y ) domain. With
both integrals simplified as in Eq. 7.75, the mutual admittance in Eq. 7.72 becomes

yij m,n,m ,n = −
jkπYo
64

αmnαm n

aj

0
dσ

bj

0
dλ T −σ,σ1,σ2 −λ,λ1,λ2

+ T −σ,σ1,σ2 λ3,λ4, −λ4 + T σ3,σ4, −σ4 −λ,λ1,λ2 +T σ3,σ4, −σ4 λ3,λ4, −λ4

+
bi −bj

0
dλ T −σ,σ1,σ2 λ,λ1,λ2 + T σ3,σ4, −σ4 λ,λ1,λ2

+
ai −aj

0
dσ

bj

0
dλ T σ,σ1,σ2 −λ,λ1,λ2 + T −σ,σ1,σ2 λ3,λ4, −λ4

+
bi −bj

0
dλT σ,σ1,σ2 λ,λ1,λ2

7 77

xʹ

x

(4)

(1) (2)

(3)

(0, ai)
(0, aj)

(ai, 0)

(a)

(1)

(2)

(3)

(4)

(0, ai)

(ai, 0)

v

σ

v = ai– σ
v = 2aj– ai+ σ

(–ai, 0)

(0, –ai)
v = – (ai+ σ) 

v = –(ai– σ)

(b)

Figure 7.13 Regions of integration in analysis of mutual coupling in different-sized apertures.
(a) Original domain and (b) domain after replacement of variables
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where

σ1 = σ−ai

σ2 = 2aj−ai−σ

σ3 = σ + ai−aj

σ4 = σ−aj

λ1 = λ−bi

λ2 = 2bj−bi−λ

λ3 = λ + bi−bj

λ4 = λ−b

and

T x,ν1,ν2 y,μ1,μ2 =G X0i−X0j + x,Y0i−Y0j + y

× cxM− x,ν1,ν2,sm,dm M+ y,μ1,μ2,sn,dn

+ cyM + x,ν1,ν2,sm,dm M− y,μ1,μ2,sn,dn

+ czM + x,ν1,ν2,sm,dm M + y,μ1,μ2,sn,dn

In the special case of identical apertures, that is, ai = aj = a and bi = bj = b, the integrand sim-
plifies to the single double integral, which is due to the first integral on the right side of Eq. 7.77
as there are no contributions from the other integrals. The term in parentheses in Eq. 7.72
becomes

cxIx + cyIy + czIz =
a

0
dσ

b

0
dλF σ,λ,m,n,m ,n

× G σ,λ + cosmπ cosm πG −σ,λ + cosnπ cos n πG σ, −λ

+ cosmπ cosm π cosnπ cos n πG −σ, −λ

The function in the integrand F(σ, λ,m, n,m , n ) is summarized in Table 7.2 for each case.
Further simplification is possible for modes coupling in the same aperture. As will now be
described in the next section.

7.3.5.2 Self-Admittance of TE10 Mode

The self-admittance of the TE10 mode at the aperture of the open rectangular waveguide is
required in most calculations of mutual coupling and can be a good first approximation to
the practical value. Now consider the fundamental mode only in the same aperture by letting
m=m = 1 and n = n = 0. As a result of the simplifications obtained for same-sized apertures in
the previous section, the self-admittance of the fundamental mode is given by
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y11 1,0 =
2jπk2

a3bβ10k
2
c,10

a

0
dσ

b

0
dλG σ,λ F σ,λ,1,0,1,0 7 78

where

F σ,λ,1,0,1,0 = b−λ 1 +
π

ka

2 a

π
sin

πσ

a
+ 1−

π

ka

2
a−σ cos

πσ

a

G σ,λ = exp − jk σ2 + λ2 σ2 + λ2, kc, 10 = π a, and β10 is the TE10 propagation con-

stant. The reflection coefficient is approximately obtained from Eq. 7.78 in the usual way
through Γ≈ 1−y11 1,0 1 + y11 1,0 . Eq. 7.78 agrees with the result obtained by Lewin
(1951, p. 126) for a waveguide with no dielectric filling. There is a singularity at the origin,
and this can be eliminated by the use of polar co-ordinates as follows. Let σ = t cos α and
λ= t sin α where dσdλ= tdtdα. As a consequence, Eq. 7.78 is expressed alternatively as

y11 1,0 =
2jπk2

a3bβ10k
2
c,10

αo

0
dα

asecα

0
tdt +

π 2

αo

dα
b cosecα

0
tdt

exp − jkt F t cos α, t sin α,1,0,1,0

7 79

where tan αo = b a. The inner integral with respect to t can be integrated out in terms of
elementary functions, but it is generally simpler and cleaner to integrate Eq. 7.79 numerically.
A computer program (called RECAR) based on the analysis described in this and

the previous section has been implemented to allow for all possible combinations of mode
coupling in the calculation of radiation from a finite array of different-sized rectangular

Table 7.2 Function in integrand of mutual admittance of modes in isolated rectangular apertures

Mode coupling F(σ, λ,m, n,m n )

TEmn TEm n mm

a2
L− σ,a,sm,dm L+ λ,b,sn,dn +

nn

b2
L+ σ,a,sm,dm L− λ,b,sn,dn

+
kc,mnkc,m n

πk

2

L+ σ,a,sm,dm L+ λ,b,sn,dn

TMmn TMm n nn

b2
L− σ,a,sm,dm L+ λ,b,sn,dn +

nn

a2
L+ σ,a,sm,dm L− λ,b,sn,dn

TEmn TMm n nm

ab
L+ σ,a,sm,dm L− λ,b,sn,dn −

mn

ab
L− σ,a,sm,dm L + λ,b,sn,dn

TMmn TEm n mn

ab
L+ σ,a,sm,dm L− λ,b,sn,dn −

nm

ab
L− σ,a,sm,dm L + λ,b,sn,dn

L± x,a,p,q = cos π p+ qx
a K −x,a,p ± cos π q+ px

a K −x,a,q K −x,a,p = a−x S p 1− x
a
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apertures. Further, provision has been made for slightly flared sections, thus allowing pyram-
idal horns to be analysed, and also for parasitic elements. Whatever the array configuration, by
far, the greatest computational effort and time goes into determining the admittance matrix. As
mentioned earlier, the admittance of modes coupling in the same waveguide is calculated using
one-dimensional numerical integration. For all other mode admittances, integration in two
dimensions is needed. The program calculates both single and double integrals by means of
Simpson’s rule algorithm with interval bisection until the error in the approximation of the inte-
gral is <10−3.
As an example, Figure 7.14 shows the reflection coefficient of an open-ended WG-16

waveguide that has been computed from Eq. 7.79. Also shown are the results of a more accurate
calculation with eight modes and also some experimental results (Adams, 1966). The wave-
guide dimensions are a = 2.286 cm and b = 1.016 cm, and it is loaded with Stycast HI-K mate-
rial with dielectric constant 9.68, which reduces the cut-off frequency to 2.12 GHz.
The mutual coupling analysis has been verified for different-sized waveguides by compar-

ing computed results with measurements made with a three-element test array. A square wave-
guide (element #1) with side length a1 = b1 = 22.8 mm is located at the centre of a ground
plane, and two rectangular waveguides with dimensions a2,3 = 15.7 mm and b2,3 = 7.7 mm
are located at (0, −30.0) mm and (30.0, 0) mm relative to the central of element 1. All three
elements were connected to waveguide-to-coaxial adaptors for measurement with a network
analyser. For the computations, seven modes were used in each waveguide – namely, TE10,
TE11, TM11, TE02, TE20, TE12 and TM12 modes. The reflection coefficient in the central square
waveguide due to transition to free space is given in Figure 7.15a, and the coupling coeffi-
cients for TE10 1 TE10 2 in apertures 1 and 2 and TE10 1 TE10 3 in apertures 1 and
3 are shown in Figure 7.15b and c, respectively. The oscillation in the measured data is mainly
due to diffraction from the edge of the ground plane, which is not included in the present
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Figure 7.14 Computed and measured (Adams, 1966) conductance and susceptance of open-ended
rectangular waveguide with a = 2.186 cm and b = 1.016 cm loaded with dielectric εr = 9 68
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Figure 7.15 Coupling coefficients in the E- and H-planes of different-sized rectangular waveguide.
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(a) Reflection coefficient at central square aperture. (b) E-plane coupling (apertures 1 and 3) and
(c) H-plane coupling (apertures 1 and 2) (Bird, 1990a)



analysis described here. Figure 7.15 shows that a seven-mode solution is in good agreement
with experiment.
The importance of including modes other than the fundamental TE10 mode in the calcula-

tions has been observed, particularly when these modes are above cut-off. Calculations for
reflection coefficient, E-plane coupling coefficients and cross-polar radiated fields are espe-
cially sensitive.
The impact of mutual coupling on the radiation pattern is demonstrated in Figure 7.16, for a

finite rectangular array of square elements with side length a = b= 0 6305λ. It shows results for
the single isolated waveguide and a 13 × 13 array with element spacing 0.6729λ, which were
obtained with the computer program RECAR in which five modes were specified in each aper-
ture, namely, TE10, TE12, TM12, TE11 and TM11. Also shown in the figure are measured results
for a 19 × 19 array (Amitay et al., 1972, p. 201).
The approach for reducing the order of integration, namely, Lewin’s method, has wider

application than the one described in this section. With minor modification, it has been
used in coupling problems involving different-sized rectangular subregions of bigger apertures
such as can occur in single or multiple apertures partially loaded with different dielectric
regions.

7.3.5.3 Arrays of Circular and Coaxial Waveguides

The geometry for the coupling between two coaxial waveguides is shown in Figure 7.17.
The case when bi = 0 corresponds to circular waveguide. The mode functions are summarized
below for waveguide i:

E-plane

Single element (theory)

13 × 13 array (theory)

19 × 19 array (measured 
Amitay et al. (1972), p. 201) First grating 

lobe 29.1°

Square grid spacing: 0.6729λ
Square elements a = b = 0.6305λ
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Figure 7.16 Radiation pattern of an element at the centre of a square lattice array of square waveguides
a= b= 0 6305λ with lattice grid spacing 0.6729λ.
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TE m≡TEpq Modes

Ψmix =
χmi
2

−Zp−1 kmiρ,βmi cos p−1 ϕ−ψmi +Zp+ 1 kmiρ,βmi cos p + 1 ϕ−ψmi

Ψmiy =
χmi
2

Zp−1 kmiρ,βmi sin p−1 ϕ−ψmi + Zp + 1 kmiρ,βmi sin p + 1 ϕ−ψmi

Ψmiz = − j
χmikmi
ko

Zp kmiρ,βmi cos pϕ−ψmi 7 80

TM m≡TMpq Modes

Ψmix = −
χmi
2

Λp−1 kmiρ,βmi sin p−1 ϕ−ψmi +Λp + 1 kmiρ,βmi sin p + 1 ϕ−ψmi

Ψmiy =
χmi
2

−Λp−1 kmiρ,βmi cos p−1 φ−ψmi +Λp+ 1 kmiρ,βmi cos p + 1 φ−ψmi 7 81

TEM≡TM00 Modes

Ψmix = −
χmi
ρ

sin ϕ, Ψmiy =
χmi
ρ

cos ϕ 7 82

where by definition Ψmiz = 0 for the TM and TEM modes. The functions Zp and Λp are combi-
nations of ordinary Bessel functions of order p as described in Appendix B, kmi is the cut-off
wavenumber of mode m in aperture i, αmi = kmiai, βmi = kmibi, ai and bi are the outer and inner

O

aj

bj
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ρj

ρj

ϕi

ϕj
Rij

R

ρ

Aperture Dj

Aperture Diϕij

x

y

Figure 7.17 Coupling between two different coaxial waveguides
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conductor radii of aperture i, ψmi is the polarization angle of mode m and χmi is a scale factor in
each case as follows:

χmi =
2ε0p
π

a2i Z
2
p αmi,βmi 1−p2 α2mi −b2i Z

2
p βmi,βmi 1−p2 β2mi

−1 2
TE

a2iΛ
2
p αmi,βmi −b2iΛ

2
p βmi,βmi

−1/2 TM

2ln ai bi
−1 2 TEM

in which ε0p is Neumann’s number that has a value 1 if p = 0 or 2 if p > 0. A prime on Λp des-
ignates the first derivative with respect to the first argument.
The mutual coupling between coaxial elements is found by substituting the mode functions

for the three mode types given by Eqs. 7.80–7.82 into the mutual admittance formula Eq. 7.66.
The results are summarized in Table 7.3.
The functions used in Table 7.3 are defined hereunder:

Fx
mn = −S 1

p,qC
1
p,q,p+ q dmi,dnj;0,0;Rij +D 1

p,qC
1
p,q,q−p dmi,dnj;0,0;Rij 7 83a

Gx
mn = S

1
p,qC

2
p,q,p + q dmi,dnj;um,un;Rij +D 1

p,qC
2
p,q,q−p dmi,dnj;um,un;Rij 7 83b

Lx
mn = S

1
p,qC

1
p,q,p+ q cmi,cnj;um,un;Rij +D 1

p,qC
1
p,q,q−p cmi,cnj;um,un;Rij 7 83c

Mx
mn = S

2
p,qC

1
p,q,p+ q cmi,dnj;um,0;Rij −D 2

p,qC
1
p,q,q−p cmi,dnj;um,0;Rij 7 83d

Nx
mn = S

2
p,qC

1
p,q,p+ q dmi,cnj;0,un;Rij +D 2

p,qC
1
p,q,q−p dmi,cnj;0,un;Rij 7 83e

Table 7.3 Mutual admittance yij(m, n) of modesm≡ ps and n≡ qt in separate coaxial apertures i and j.
Self-admittance is recovered when Rij 0

(TEqt)j (TMqt)j (TEM)j

(TEps)i κmn
Gx

mn
k2aiaj

+ pq

αmiαnj
2Fx

mn

κmnpNx
mn κmn −1 ppC 1

p,0,p
dmi,1;0, 0;Rij

× sin pϕij−ψmi

(TMps)i κmnqMx
mn κmnLx

mn κmn −1 pC 1
p,0,p

cmi,1;um, 0;Rij

× cos pϕij−ψmi

(TEM)i κmn −1 qqC 1
0,q,q

1,dnj;0, 0;Rij

× sin qϕij−ψnj

κmn −1 qC 1
0,q,q

1,cnj;0, un;Rij

× cos qϕij−ψnj

κmnC
1
0,0,0 1, 1;0, 0;Rij
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where

S 1,2
p,q = −1 p cos

sin
p + q ϕij−ψmi−ψnj ,

D 1,2
p,q =

cos
sin

p−q ϕij−ψmi +ψnj ,

cmi =
biΛp βmi,βmi
aiΛp αmi,βmi

,

dmi =
Zp βmi,βmi
Zp αmi,βmi

,

dmi =
biZp βmi,βmi
aiZp αmi,βmi

The remaining functions in Table 7.3 are Hankel transforms involving products of Bessel
functions:

C 1
p,q,ν α,β;um,un;s =

∞

0
dw

w3

1−w2

Jp kaiw −αJp kbiw

w2−u2m

×
Jq kajw −βJq kbjw

w2−u2n
Jν ksw

7 84a

and

C 2
p,q,ν α,β;um,un;s =

∞

0
dww 1−w2

Jp kaiw −αJp kbiw

w2−u2m

×
Jq kajw −βJq kbjw

w2−u2n
Jν ksw

7 84b

where um = αmi kai, ym = Zp αmi,βmi , ym =Λp αmi,βmi , αmi = kmiai, and the scale factor of the
admittance, κmn, is listed in Table 7.4. The properies of the Hankel transforms are described
in more detail in Appendix F. The mutual admittances for the cases given in Table 7.3 also
apply for self-admittance in which case Rij 0. Also the functions in Table 7.3 are replaced
as follows:

Fx
mn Fmn =C

1
p,q,0 dmi,dnj;0,0;0 cos ψnj−ψnj 7 85a

Gx
mn

2Gmn

εom
= 2C 2

p,q,0 dmi,dnj;um,un;0
cos ψnj−ψnj

ε0m
7 85b

260 Fundamentals of Aperture Antennas and Arrays



Lx
mn

2Lmn
ε0m

= 2C 1
p,q,0 cmi,cnj;um,un;0

cos ψnj−ψnj

ε0m
7 85c

Mx
mn Mmn =C

1
p,q,0 cmi,dnj;um,0;0 sin ψnj−ψnj 7 85d

Nx
mn Nmn =C

1
p,q,0 dmi,cnj;0,un;0 sin ψnj−ψnj 7 85e

When the radii of the inner conductors shrink to zero, that is, bi, j 0, the mode functions for
TE and TM modes reduce to those of circular waveguide. In this instance, it can be shown that
cmi 0, dmi 0 and dmi 0. Thus, the mode coupling formulae for the TE and TM modes
coupling in different circular waveguides are given in Table 7.5 where for bi, j 0 it can be
shown that

Fx
mn = −S 1

p,qC
1
p,q,p + q 0,0;0,0;Rij +D 1

p,qC
1
p,q,q−p 0,0,0;Rij 7 86a

Gx
mn = S

1
p,qC

2
p,q,p+ q 0,0;um,un;Rij +D 1

p,qC
2
p,q,q−p 0,0;um,un;Rij 7 86b

Lx
mn = S

1
p,qC

1
p,q,p + q 0,0;um,un;Rij +D 1

p,qC
1
p,q,q−p 0,0;um,un;Rij 7 86c

Mx
mn = S

2
p,qC

1
p,q,p + q 0,0;um,0;Rij −D 2

p,qC
1
p,q,q−p 0,0;um,0;Rij 7 86d

Nx
mn = S

2
p,qC

1
p,q,p+ q 0,0;0,un;Rij +D 2

p,qC
1
p,q,q−p 0,0;0,un;Rij 7 86e

Table 7.5 Mutual admittance yij(m, n) of modes m≡ ps and n≡ qt in separate
circular apertures i and j

(TEqt)j (TMqt)j

(TEps)i
κmn

Gx
mn

k2aiaj
+

pq

αmiαnj
2F

x
mn

κmnpNx
mn

(TMps)i κmnqMx
mn κmnLx

mn

Table 7.4 Scale factors κmn in mutual admittances for coaxial waveguide modes

(TEqt)j (TMqt)j (TEM)j

(TEps)i πaiajymynαmiαnjχmi χnjYo

2 YmiYnj

−πaiajymyn χmi χnjYo

2αmi YmiYnj

πaiym χmi χnjYo

αmi YmiYnj

(TMps)i −πaiajymyn χmi χnjYo

2αnj YmiYnj

πaiajymyn χmi χnjYo

2 YmiYnj

−πaiym χmi χnjYo

YmiYnj

(TEM)i πajyn χmi χnjYo

αnj YmiYnj

−πajyn χmi χnjYo

YmiYnj
εri ln

ai
bi

εrj ln
aj
bj

−1 2
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where Eqs. 7.84 become

C 1
p,q,ν 0,0;um,un;s =

∞

0
dw

w3

1−w2

Jp kaiw

w2−u2m

Jq kajw

w2−u2n
Jν ksw 7 87a

and

C 2
p,q,ν 0,0;um,un;s =

∞

0
dww 1−w2

Jp kaiw

w2−u2m

Jq kajw

w2−u2n
Jν ksw 7 87b

The Hankel transforms should be integrated with care in the vicinity of the poles and the
branch cut located at w = 1. In some cases, the result can be represented by series. Appendix
F should be consulted for further details of this type of Hankel transforms.

7.3.5.4 Self-Admittance of TE11 Mode in Circular Waveguide

The self-admittance of the TE11 mode in the aperture of an open-ended circular waveguide is an
example and an important practical result both for single apertures and also for mutual coupling
calculations. The mutual admittance for a single aperture is given by the top-left element of
Table 7.5 with Gx

mn and Fx
mn replaced by the functions Gmn and Fmn as given by Eqs. 7.85.

For the TE11 mode m = 1 = n, it is found that the self-admittance of the TE11 mode is

y11 1,1 =
2x41k

x21−1 β11

G11

ka 2 +
F11

x1
4 7 88

where x1 = 1 841184 is the first zero of J1 x1 = 0 corresponding to the TE11 mode, β11 is the
propagation constant, and

F11 =C
1
1,1,0 0,0;0,0;0 =

∞

0
dw

J1 kaw 2

w 1−w2

=
1

0
dw

J1 kaw 2

w 1−w2
+ j

∞

1
dw

J1 kaw 2

w w2−1

=
1
2
−
J1 2ka
2ka

+ j
H1 2ka
2ka

7 89

where u1 = x1 ka and H1 is a Struve function of order 1, which can be expressed in a power
series (Abramowitz & Stegun, 1965) as follows:

H1 x =
2
π

1 +
∞

q= 0

ε0nJ2q x

4q2−1
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and

G11 =C
2
1,1,0 0,0;u1,u1;0 =

∞

0
dw w 1−w2

J1 kaw
2

w2−u21
2

The functions G11 and also C
1,2
p,q,ν can be integrated directly with some care. The contours of

both integrals run along the real positive w-axis, which can lead to oscillatory integral values
and slow convergence. The integration path can be deformed into the complex plane, and
this improves convergence. For integrals of this type, one of the Bessel functions in the
integrand can be replaced by their equivalent in terms of Hankel functions of first and
second kind. Thus, in G11 , one of the Bessel functions in the product is replaced with

Jp x = H 1
p +H 2

p 2. Therefore,

G11 =
1
2

∞

0
dw w 1−w2

J1 kaw H 1
1 +H 2

1

w2−u21
2

=G1 +G2

The contour for G1 involving H 1
1 can now be deformed into the w = u + jv-plane along the

positive jv axis, and this enables the replacement of the Hankel functions by their modified
Bessel equivalents (see Appendix B), which helps to achieve better convergence. Similarly,
the contour for G2 is deformed around the branch cut and along the − jv line. The details of
this approach have been described by the author (Bird, 1979) and will not be repeated here
except to quote the final results for both contour integrals

G1 ka = −
j

π

∞

0
dv

v 1 + v2I1 kav K1 kav

v2 + u21
2 7 90a

and

G2 ka =
1

0
du

u 1−u2J1 kau H 2
1 kau

u2−u21
2

−
j

π

∞

0
dv

v 1 + v2I1 kav K1 kav

v2 + u21
2

+
πka

4u1
1−u21J1 kau1 Y1 kau1 H u1−1

7 90b

where I1 and K1 are derivatives of the modified Bessel function (Appendix B) and H() is the
Heaviside step function. The third term is a contribution from the pole on the real u-axis when
the waveguide is operating above its cut-off (i.e. u1 > 1).
As an example, consider an isolated circular waveguide in a ground plane. The waveguide

has a diameter of 5.7 cm, and its reflection coefficient was measured from 3.3 to 5.0 GHz.
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The experimentally obtained values are shown in Figure 7.18 along with results calculated
using 20modes. The latter result closely approximates the measured data, which becomes noisy
above 4.5 GHz as the calibration of the network analyser became more difficult due to over-
moding in the transition to the antenna under test. For comparison, the result given by the TE11

mode self-admittance (1-mode) in the top-left column of Table 7.3 is also shown in Figure 7.18.
An array example is illustrated in Figure 7.19. This array consists of three waveguides with

apertures that terminate in a large metallic ground plane. A 5.4 cm-diameter waveguide is
located at the centre of a large ground plane, and two 4.08 cm apertures are located nearby.
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Figure 7.19 Array of three circular waveguides in an infinite ground plane. Dimensions are in mm
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Measurements were taken over a 3.25–6 GHz frequency range for the two polarizations E1 and
E2. Computations were made assuming nine modes in each waveguide, namely, TE1n and
TM1n (n = 1, 2), TE2n and TM2n (n = 1, 2) and TM01. The results obtained are shown in
Figure 7.20 and are compared with the experimental coupling coefficients for the TE11 mode
in each waveguide when the input to the waveguides is assumed matched. Excellent agreement
is obtained between experiment and theory.
As a final example of circular aperture coupling, consider the seven-element array of conical

horns illustrated in Figure 7.21. All aperture diameters are 3.81 cm.
Figures 7.22 and 7.23 show the measured and computed mutual coupling between elements

1 and 3 for cases when horn 1 is excited with vertical and horizontal polarization. These plots
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Figure 7.21 Seven-element array of conical horns. All dimensions are in mm
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correspond to E- and H-plane coupling in the seven-element array. The computations were
performed with 16 modes in each waveguide (viz. TE1n and TM1n (n = 1, 4); TM01, TM02,
TE2n and TM2n (n = 1, 2); TE31 and TM31), and the flare was modelled using the mode matching
method. Once again, the simulated results are in excellent agreement with the measured data.

7.3.5.5 Mutual Coupling in Other Geometries

Waveguides and horns that have general cross sections can be analysed for mutual coupling
using the admittance formula given in Eq. 7.66 (Kuehne & Marquardt, 2001). For separable
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Figure 7.22 Measured and computed E-plane coupling of elements 1 and 3 in the seven-element conical
horn array. Element 1 is vertically polarized
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Figure 7.23 Measured and computedH-plane coupling of elements 1 and 3 in the seven-element conical
horn array. Element 1 is horizontally polarized
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co-ordinate systems, mode functions can be readily obtained in closed form and in some
instances the integrals can also be evaluated in closed form. This depends on the availability
of transform functions in those domains. The fourfold integral in Eq. 7.66 must be evaluated
directly for general cross sections. In some separable co-ordinate systems, the number of inte-
grals may be reduced by replacing the Green’s function with an equivalent transform represen-
tation. Such a representation exists for elliptical co-ordinates, but this offers few advantages for
numerical evaluation of Eq. 7.66 as the resulting integral is still difficult. One advantage though
is that the transform representation is useful for identifying modes that couple.
Horns with an elliptical cross section (see Figure 7.24) find application as sources of circular

polarization and as feeds for reflectors for producing shaped beams from satellites. Radiation
from elliptical corrugated horns (Vokurka, 1979) has been studied in the past, but relatively
little attention has been paid to the smooth-wall variety, and in particular reflection at the aper-
ture. There are infinite sets of TE and transverse magnetic modes in elliptical waveguide, desig-
nated TEcmn, TEsmn, TMcmn and TMsmnwhere in the subscripts c and s refer to the even and odd
types of Mathieu functions (McLachlan, 1964) required for each mode set. Mention is made of
the work of Müller (1960) who described solutions for the radiation characteristics of smooth-
wall elliptical waveguides and gave results for radiation in the fundamental TEc11 mode. Expe-
rience with smooth-wall horn radiators of rectangular and circular cross section has shown that
significant reflection can occur from apertures of moderate size, resulting in a mismatch at the
horn input. A complete solution for elliptical apertures has been given by the author (Bird,
1990b), and both theoretical and experimental results were provided. As shown in the previous
section for circular apertures, the free-space Green’s function can be used this time for elliptical
apertures in a ground plane. The aperture field and ground plane are replaced by a magnetic
current distribution as described in Section 7.3.4. Of the four basic mode sets in elliptical
regions the c modes are have the electric field parallel to the minor axis (y-axis in
Figure 7.24) and the s modes are polarized parallel to the major axis.
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Figure 7.24 Geometry of elliptical waveguide apertures in a ground plane
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The fundamental mode of elliptical waveguide limits to the TE11 mode in circular waveguide
as b a. The mutual admittance of the TEcmn and TEcm n modes in elliptical waveguide aper-
tures D and D is given by

yij mn m n =
jkYohh DmnDm n

4π YmnYm n

ξo

0
dξ

2π

0
dη

ξo

0
dξ

2π

0
dη G X−X Y −Y

× fx ξ,η,q fx ξ ,η ,q + fy ξ,η,q fy ξ ,η ,q −
k2c,mnhk

2
c,m n h

k2
fz ξ,η,q fz ξ ,η ,q

7 91

where the functions in the integrand are as follows:
TEcmn modes

fx ξ,η,q =Cem ξ,q cem η,q v−Cem ξ,q cem η,q u

fy ξ,η,q =Cem ξ,q cem η,q u +Cem ξ,q cem η,q v 7 92

fz ξ,η,q = cos h2ξ− cos2η Cem ξ,q cem η,q

where u= cos hξsin η and v = sin hξcos η, (ξ, η, z) are elliptical cylinder co-ordinate, q is a sep-

aration variable, h= a2−b2, cos hξo = a b, and also cem(η, q) andCem(ξ, q) are even order are
ordinary and modified Mathieu functions respectively of order m. The multiplier Dmn is a nor-
malization constant, which is chosen to give unit power transfer in each mode and a symmetric
scattering matrix, and is given by

Dmn =
2
π

ξo

0
dξ Ce 2

m ξ,q +ΘmCe2m ξ,q
−1 2

TEc,mn

for the two types of TE modes.

TEsmn modes

Same as for Eq. 7.92 and Dmn with replacements, Ce Se and ce se.

TMcmn modes

Same as Eq. 7.92 with replacements fy TE fx TM, fx TE − fy TM and fz TM = 0.

TMsmn modes

Same as for the TMcmn modes except with replacements, Ce Se and ce se.
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In addition, kc,mn = 2h qmn where qmn is the nth zero of the following:

TE modes
Even; Cem ξo,q

Odd; Sem ξo,q
= 0

TM modes
Even; Cem ξo,q

Odd; Sem ξo,q
= 0

It can be shown that the dominant TEc11 couples only to the TEcmn and TMsmn modes when
m is an odd integer. Thus, the TEc11 mode and its odd mode counterpart, the TEs11 mode, are
not coupled at the aperture, which is not unexpected as the dominant field polarizations are
orthogonal.
The reflection coefficient of the TEc11 mode in a single aperture can be calculated from

Eq. 7.73 by letting m = 1 =m and n = 1 = n . Convergence is a problem due to the singularity
of the Green’s function, but this singularity can be isolated or removed by subtraction. In the
latter approach, an integral having the same type of singularity with a known integral value is
added to the function, and at the same time, its integral representation is subtracted under the
integral sign. Such a function is the integral for static fields, which is excited by a uniform
source, given by

I x,y =
D

dx dy

x−x 2 + y−y 2

When this singularity is subtracted, stable solutions are obtained. Results have been obtained
(Bird, 1990b) as a function of normalized frequency ka with waveguide ellipticity as a param-
eter. In these calculations, coupling to other modes in the aperture was neglected, as was done
above for circular and rectangular apertures. The reflection coefficient in elliptical waveguide
increases as a/b increases in much the same way as the reflection level does for the TE10 mode
of rectangular waveguide. Well above cut-off, the level of reflection of the TEc11 mode is
approximately the same as for the TE10 mode in open-ended rectangular waveguide with
the same aspect ratio, a/b. This is demonstrated in Figure 7.25. It is seen that the coupling coef-
ficient in either aperture type increases comparably as frequency increases until close to the cut-
off frequency of the first coupled high-order mode.

7.3.5.6 Waveguide-Fed Slot Arrays

The theory outlined earlier can be used to analyse mutual coupling in waveguide-fed slot
arrays. These arrays are generally of two types: standing wave fed, where adjacent slots are
one-half guide wavelength apart, and travelling wave fed. There are several methods available
for feeding the parallel plate region, and these include probes, waveguide or a folded parallel
plate section to allow the antenna to be fed from the rear with a conventional waveguide that has
a smaller width. Whatever the feeding mechanism of the slotted section, the analysis for side-
fed apertures is similar and tends to have greater complexity than the analysis given earlier for
apertures fed directly by the waveguide, for example. This is because coupling must be con-
sidered between the interior waveguide and the exterior region via a ground plane of finite
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thickness. Single waveguide-fed slots have been analysed by several workers (e.g. Stevenson
(1948); Oliner (1973); Vu Khac & Carson (1973); Quintez & Dudley (1976); Butler & Yung
(1979); Lyon & Sangster (1981) and Stern & Elliott (1985). Vu Khac and Carson (1973)
describe a moment method for solving the integral equations governing the coupling between
the internal and exterior regions and determined the characteristics of a longitudinal slot in a
rectangular waveguide. Lyon and Sangster (1981) extended this method to thick-walled rec-
tangular waveguide. The case of arrays of slots has been considered by Stern and Elliott
(1985), where the problem is treated by modelling the slots as centre-fed dipoles, and also
by Ando, Kirokawa and co-workers (an example is Tomura et al. (2013) who have considered
both centre-fed and end-fed arrays. The moment method is used to calculate the coupling
between two slots in the broad wall by Shan-wei et al. (1985). They applied Galerkin’s method
to the equations of continuity of the tangential components of the magnetic fields, and sinus-
oidal basis functions were used for the magnetic currents in the slots. Excellent agreement with
experiment was obtained with this approach.
In an alternative approach (Bird & Bateman, 1992), the thickness of the slots is directly

accounted for by making use of the formulation in Section 7.3.5.1. The array of rectangular slots
is then fed by a parallel plate waveguide as shown in Figure 7.26. Suppose there are Ns radiating
slots. A flat plate antenna offers a similar gain to the reflector or lens antenna without the addi-
tional volume taken up with feeds and struts although the bandwidth may be limited if the feed
mechanism is narrowband. The latter is very important for exciting the slots. In the following, it
is assumed that the slots (region 2) are excited by the fundamental TM0 mode of parallel plate
waveguide (region 3). Radiation from the array (in region 1) is determined by the size of slots and
their arrangement as well as the plate thickness and the termination of the mode at the end of the
parallel plate waveguide. The TM0 mode is incident from the left side of Figure 7.26b. Some of
the power is coupled to the exterior region through the slots, some is reflected back into
the parallel plate region, and the remainder travels towards the load at the far end. The magnetic
field radiated and scattered back in regions 1 and 3 in Figure 7.26b is given by Eq. 7.33. The
dyadic Green’s function adopted in region 1 is the free-space dyadic given by Eq. 7.35.
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In the parallel plate region, region 3, the dyadic is denoted by G3
=

x,y,z x ,y ,z . A suitable

Green’s function can be found by observing that due to field equivalence a magnetic source
in the top plate is equivalent to an infinite array of point sources in two planes with spacing
2d. Thus,

G3
=

x,y,z x y =
∞

n=−∞
G1
=

x,y,z x ,y ,2d

The summation on the right-hand side can be re-expressed in a suitable form for numerical
calculation by noting that in this application G3

=
has a single component, which has a scalar

functional dependence given by

G3 R =
∞

n=−∞
Go R2 + z−2nd 2

Use is now made of Poisson’s summation formula, which is

∞

n=−∞
f nα =

1
α

∞

n=−∞
F

2nπ
α

where the function F(2nπ/α) denotes the Fourier transform of f(nα). As a consequence,

G3
=

R =
xx + yy+ zz

d

− jπ

2
H 2

0 kR + 2
∞

n=1

K0 R
nπ

d

2
−k2 7 93

where H 2
0 is the Hankel function and K0 is the modified Bessel function both of second kind

and order zero. The value of G3 converges rapidly and normally only requires two or three
terms of the series for a result that is usually sufficiently accurate in practice. In the slots (region
2 in Figure 7.26b), the field is expressed as a sum of rectangular waveguide modes as in
Eq. 7.50 in a short length of waveguide. By doing this, the thickness of the plate is explicitly
taken into account and can be used as a design parameter.
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Region 2S1

axi

S3

Z
t

d
x

Figure 7.26 Plate array of rectangular slots. (a) Top plate and (b) excitation of slots by a TM0 mode in
the parallel plate region

271Arrays of Aperture Antennas



To obtain the radiation from the slots due to the input mode, continuity is imposed on the
upper and lower surfaces of the top plate. Continuity of the transverse field on the upper surface
at z= t and the use of Galerkin’s method result in a scattering matrix formulation described in
Section 7.3.3. In this case:

b 1 = S 1 b 3

where

S 1 = 2 I + yext
−1
−I

with admittance matrix yext for the external free-space region given in Eq. 7.66.
In the same way, continuity of the magnetic field at z = 0 givesHinc +H 3 =H 2 ,whereHinc

is the magnetic field in the incident wave, H(3) is the scattered field in region 3, and H(2) is the
field in the slots, and then an application of Galerkin’s method results in

I−yint a 3 − I + yint b 3 =F 7 94

where F is a vector of forcing functions with components

Fpi =
1
2
Y −1 2
p

Si

dx dy Ho y y G3
=

hpi exp − jkx

a(3) and b(3) are the incident and reflected mode amplitudes in the parallel plate region. They are
related to a(1) and b(1) by a transmission factor for the slots. Hinc

o y is the transverse magnetic
field of the incident TM0 mode. The mutual admittance for the interior region yint is given by
Eq. 7.66 wherein the scalar free-space Green’s function is now replaced by the scalar value of
G3
=

R given in Eq. 7.93.

The reflection and transmission coefficients are obtained by equating the field due to the
infinite array of images to a modal expansion in the parallel plate region. For the TM0 mode,
the reflection coefficient is

b0 =
Ho exp − jγ0x1

2wY1 2
0 Spp

dydz
Ns

i= 1 Si

dx dy y G3
=

hpi 7 95

where Spp refers to the input cross section of the parallel plate waveguide, γ0 and Y0 are the
propagation constant and wave admittances of the TM0 mode, w is the width of the waveguide,
x1 is the input reference plane, and Ho is the amplitude of the incident wave.
As an example, the reflection coefficient of a single slot is given in Figure 7.27 as a function

of the slot width. The calculations made with the present approach are compared with the
results of Quintez and Dudley (1976) and are seen to be in good agreement.
The radiation pattern of a 15 × 15 element slot array has been computed by the method

described later in Section 7.3.7 for an array of rectangular waveguides and the results in the
two principal planes are given in Figure 7.28 at 12.5 GHz. The computed gain is 30 dBi
and the radiation efficiency is 70%. The parallel plates have a spacing of d = 4.5 mm, and
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the top plate has thickness t = 0 5mm. The filling material in the slotted region has a dielectric
constant of 2.12. In this example, the slots in the top plate are spaced one wavelength apart in
the material in the direction of propagation. In the transverse direction, they are also spaced one
wavelength apart. The size of the slots can be varied to control the radiation pattern, and also
slot pairs can be used with advantage to control both the input reflection and the aperture
distribution.

7.3.5.7 Arrays of Microstrip Patches

In the analysis of mutual coupling between microstrip antennas (see Figures 1.1k and 7.29a),
two main direct approaches have been used in the literature (Pozar, 1982; Newman et al.,
1983; Mohammadian et al., 1989), apart from numerical methods such as the method of
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moments with Rao–Wilton–Glisson (RWG) (Rao et al., 1982) basis functions or the mixed
potential integral equation (MPIE) method (Mosiq, 1988). An equivalent circuit representa-
tion of the coupling is shown in Figure 7.29b. In this model, mutual coupling is represented

y

(a)

x

S

a

b

sy

b

sx a

1

2

.
(xo, yo)

.
(xo + a + sx, yo + b + sy)
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LmGrʹ GrʹCeʹ

Zop

Lm

M1
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LmGrʹ GrʹCeʹ Ceʹ

Ceʹ

Zop

ℓ

ℓ
(b)

Figure 7.29 Mutual coupling between two identical microstrip patches showing the probe locations.
(a) Geometry and (b) equivalent circuit representation
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by mutual inductances across the slot apertures to show that not only does mutual coupling
introduce an altered excitation, but also it loads the existing elements with an inductive ele-
ment and modifies the conductance and capacitance of the single patch shown in Figure 5.5.
The first direct approach (Pozar, 1982; Newman et al., 1983) represents the patches as

electric current sources and the fields are given in terms of the Green’s function for the
elementary electric currents on a grounded dielectric slab. The method of solution is similar
to the one given earlier for apertures. Once the current on the patches is determined, the
mutual impedance is calculated from Eq. 7.27. One of the complicating features of the anal-
ysis of the microstrip patch is that the probe feed to the patch is an integral part of the
antenna. Therefore, for accurate results, a suitable model is required for the probe. Although
in practice a coaxial transmission line-fed probe is relatively easy to implement, in theory
it is quite difficult to treat accurately. The most common approach is to use an idealized
feed model comprising a uniform electric current filament. Although this model gives rea-
sonable predictions for the radiation and cross-coupling properties, it gives inaccurate
results for self-impedance because the boundary conditions are not satisfied where the probe
and patch connect. Aberle and Pozar (1989) describe an improved method where continuity
is ensured at the connection and a moment method is used to calculate the current on the
probe and patch. This has been applied successfully to both finite and infinite arrays of
patches.
A second direct method (Mohammadian et al., 1989) uses the cavity model for micro-

strip, which was described in Chapter 5. The microstrip patch is modelled as a grounded
dielectric slab with the magnetic current distributions located at the open walls formed
between the edges of the patch and the ground plane. Since the electric field is zero
everywhere on the surface of the cavity except on the open walls, field equivalence
may be used to replace the fields on the surface by equivalent magnetic currents in
front of a perfect electric conductor. Mutual coupling occurs between these sources,
and the magnetic field due to these equivalent sources is needed to calculate the effect.
Central to this is determining a dyadic Green’s function of the magnetic type for the
grounded dielectric slab. From the Green’s dyadic, the magnetic field due to the mag-
netic currents on the open boundary may be calculated and the mutual impedance
obtained from

Z21 =
1
I1I2 S

dSH21 S M2 7 96

where the input currents to the two patches shown in Figure 7.29a are I1 and I2, M2 is the
magnetic current on the second patch, and H21 is the magnetic field at patch 2 due to an
elementary source on patch 1. It is noted that the mutual impedances calculated from
Eq. 7.96 can be used to contribute the values of the circuit elements due to mutual coupling
in the equivalent circuit model shown in Figure 7.29b.
The magnetic current on patch 2 is given by M2 =E2z z× n where n is the normal to the

open-circuit walls on patch 2. The TM01 mode is assumed to be generated on each patch.
E2z is derived from the modal expansion of the cavity model. The magnetic field on patch 2
due to patch 1 can be obtained in closed form as can the magnetic field in the dielectric slab.
When these are brought together, the mutual impedance is expressed as
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Z21 =
−32jkηo

π2
Kf

∞

−∞
dκ1

∞

−∞

dκ2
κ21 + κ

2
2

sin h2t

× ακ22 + βκ
2
1 S12 + ακ21 + βκ

2
2 C12 + 2κ1κ2 α−β S1C1

× exp jκ2 a + sx + κ2 b + sy

7 97

where

Kf =
k2 ab

k22 −k
2
10

S
πyp
2b

cos
πyo
b

2

α=
μr1μr2

h2μr1−h1μr2 e− jh2t + h2μr1 + h1μr2 ejh2t

β =
μr1μr2h1h2

k22μr1h1−k
2
1μr2h2 e− jh2t + k22μr1h1 + k

2
1μr2h2 ejh2t

S1 =
a

2
S

κ1a

2
sin

κ2b

2

C1 = −κ2
b

π

2

cos
κ1a

2
C

κ2b

2

In Eq. 7.97, t is the substrate thickness, and μr1, μr2, εr1 and εr2 are the relative permeabilities
and permitivities of the surrounding medium (region 1) and of the substrate (region 2),

hi = k2i −κ
2
1−κ

2
2 where ki = k μriεri i= 1,2 . The spacing between the patches in the x- and

y-directions are sx and sy as shown in Figure 7.29a. The functions α and β contain the TE
and TM surface wave poles, which have singularities in the integration domain. The equations
for these poles are found by setting the denominators of α and β to be zero. The multiplying
factor Kf is a term contributed from the input probe where yp is its diameter and (xo, yo) are the
coordinates of the connection on patch 1, shown in Figure 7.29a. Typically, the probe occurs
off the centre of the patch to achieve good excitation and input match. The eigenvalue k10 is a
root of the transcendental equation

tan k10b =
2k10α10
k210−α

2
10

where α10 = jk t a Yrwηo εr. The real part of α10 is ≈0 98π b. Yrw is the admittance of the
radiating walls at y = 0 and y = b, which are the transitions from a parallel plate waveguide filled
with the substrate to a dielectric slab of thickness t. An approximate result for this admittance is
(Carver & Mink, 1981)

Yrw≈ 0 5 + j
Δℓ

t
εeff

ka

ηo

where εeff the effective dielectric constant of the patch given by
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εeff≈
εr + 1
2

+
εr + 1
2

1 + 10
t

a

−1 2

and

Δℓ
t
≈0 412

εeff + 0 30
εeff −0 26

a + 0 26t
a + 0 81t

The double integrals in Z21 can be evaluated by means of numerical integration or with a FFT
(Brigham, 1974). Before evaluating the integral numerically, it is convenient to change the vari-
ables of integration. To do this, let κ1 = ρ cos ξ and κ2 = ρ sin ξ so that dκ1dκ2 = ρdξdρ and

Z21 =
−32jkηo

π2
Kf

∞

0
dρρ

2π

0
dξZ ρ,ξ exp − jρ cos ξ a + sx + sin ξ b + sy

where

Z ρ,ξ = sin h2t α ρ sin2ξ+ β ρ cos2ξ S12 + α ρ cos2ξ

+ β ρ sin2ξ C12 + sin 2ξ α ρ −β ρ S1C1

When evaluating the transform integral in Z21, care must be taken with the poles in the inte-
grand. One way is described by Mohammadian et al. (1989) where the poles are subtracted and
their contributions summed separately. Typical results obtained with this mutual admittance
expression are shown in Figure 7.30 where good agreement is demonstrated with measured
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Figure 7.30 Coupling coefficients in the (a) E-plane (sx = −a) and (b) H-plane sy = −b of two
microstrip patches at 1.405 GHz. Solid and dashed curves, theory (Mohammadian et al., 1989);
points, measured (Carver & Mink, 1981). Patch dimensions a = 10.57 cm and b = 6.55 cm. Substrate
thickness t = 0.32 cm and dielectric constant εr = 2 5. Probe position xo = 1.7 cm and yo = 3.28 cm
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results (Mohammadian et al., 1989) for E- and H-plane coupling. These cases correspond
in Figure 7.29a when to sx = −a and sy = −b, respectively. When the patches are well
matched, the coupling coefficient is approximately given by S21≈Z21 2ηo (see discussion
under Eq. 7.42).

7.3.5.8 A Numerical Formulation of Coupling in Arbitrary Shaped Apertures�

The expression Eq. 7.66 for mutual admittance is applicable to apertures of arbitrary shape,
providing that a solution can be found to Helmholtz’s equation for this geometry that also satis-
fies the boundary conditions on the walls. An approach based on numerical field solutions has
been described by Kuehne and Marquardt (2001). Alternatively, a specific numerical formu-
lation results by assuming that the vector field function Ψpi for the guiding structure has been
obtained by a particular method such as finite elements where the field solution is known only
at a finite number of nodes N on the aperture plane. The coupled apertures are discretized with
triangular elements. This discretization may be identical to the one used to obtain the field solu-
tion or a different mesh could be chosen for the mutual coupling calculation. In the latter case,
interpolation may be necessary to find the magnetic field components at the nodes.
Consider the discretization of the apertures with triangular finite elements with polynomial

shape functions (Silvester, 1969). These elements could be in the same aperture for self-
admittance or different apertures as illustrated in Figure 7.31 for mutual admittance between
two arbitrary apertures.
Consider initially the coupling between two triangular elements, namely, Δm and Δn, in

aperture i and j, respectively. The contribution to the mutual admittance is

yij p q
mn

=
jk

4πηo YpiYqj
Δm

dS Ψpi u1,u2 m

Δn

dS Ψqj u1,u2 n
G R−R

y

x

xi

yj

yi

xjΔ j

Δi

Ri

Rj

Ri – Rj

.

Figure 7.31 Coupling of two arbitrary waveguide apertures with fields obtained by triangular finite
element method
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As the fields are also known on the same triangular elements, the mode vector on triangular
element m can be represented by

Ψpi u1,u2 m =
N

ℓ= 1

αm
ℓ x,y Ψm

ℓ 7 98

In addition, a similar N point interpolation for the Green’s function is obtained on triangle n.
This is given by

G Rμ−Rj =
N

ν= 1

αn
ν xj,yj g

mn
μν 7 99

where gmnμν = exp − jk xmμ −x
n
ν

2
+ ymμ −y

n
ν

2
xmμ −x

n
ν

2
+ ymμ −y

n
ν

2
.

The co-ordinates xmi ,y
m
i are located at the ith interpolation point in triangle m. The reason

for interpolating G Ri−Rj in this way is to simplify the integration and also shorten the for-
mulation for triangular domains. A singular point in the calculation of self-admittance can be
accommodated by stepping slightly away from the singularity within a circle of small radius
ε and using G(ε) instead. The change in the admittance value tends to be quite small.
Substituting Eqs. 7.98 and 7.99 into the mutual admittance expression (Eq. 7.66) results in

yij p q
mn

=
jk

4πηo YpiYqj
Δm

dS
N

ℓ = 1

αm
ℓ x,y Ψm

ℓ

N

μ= 1

αn
μ x,y

Δn

dS
N

t = 1

αn
t x ,y Ψn

t

N

ν = 1

αn
ν x ,y gmnμν

The integrals over Δm and Δn can be completed in closed form or replaced by the standard
finite element T matrix (Silvester, 1969), which is defined as

Tpq =
1
Δ

Δ

dSαp x,y αq x,y

where Δ is the area of the triangular domain. The mutual admittance is now expressed as

yij p q
mn

=
jk

4πηo YpiYqj
ΔmΔn Ψm T g mn T Ψn 7 100

where [g]mn is an N ×N matrix of the Green’s function. The total admittance is found by
summing all contributions such as Eq. 7.100, that is,
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yij p q =
jk

4πηo YpiYqj m n

ΔmΔn Ψm T T g mn T Ψn

=
jk

4πηo YpiYqj m n

ΔmΔn Ψm
x

T
T g mn T Ψn

x

+ Ψm
y

T
T g mn T Ψn

y + Ψm
z

T
T g mn T Ψn

z

7 101

where the vectorΨm has been separated into its component column vectors and the superscript
T denotes the transpose operation.
The result given by Eq. 7.101 has proved to be more instructive than useful in practice.

It clearly shows the role of the Green’s dyadic, here represented by the matrix [g]mn, of
linking the field distributions Ψm and Ψn in the aperture(s). The [T]-matrices provide the con-
nection from the Green’s dyadic and the field. As an example, consider two identical
0 3λ × 0 6λ rectangular waveguides that couple in their E-planes as shown in Figure 7.32.
The centre-to-centre spacing is 0.4λ.
For the purpose of this example, it is assumed that an accurate solution has been obtained for

the TE01 mode. In this example, for simplicity, only four triangular elements with a linear shape
function are used. (This is not a good approximation to the actual field as more elements are
required for an accurate solution and representation of the fields.) The set of matrices for this
example are easily obtained and are listed below (note that Ψx = 0):

T =

0 167 0 083 0 083 0 0 0

0 083 0 333 0 167 0 083 0 0

0 083 0 167 0 5 0 167 0 083 0

0 0 083 0 167 0 5 0 167 0 083

0 0 0 083 0 167 0 333 0 083

0 0 0 0 083 0 083 0 167

Ψy =

0

0

10 472

10 472

0

0

Ψz =

−1 389j

−1 389j

0

0

−1 389j

−1 389j

0.6λ

0.1λy 0.3λ

E

1

3 4

5 6

2

1

3

4

2´

x

Aperture 2Aperture 1

Figure 7.32 Rectangular apertures coupling in their E-planes as represented with four finite elements
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and

g=

−2 023−1 469j −0 441 + 1 359j −2 −0 441 + 1 359j −0 25 + 1 364j 0 431−0 741j

8 09−5 878j −2 023−1 469j −1 278−2 892j −2 023−1 469j −1 278 + 1 034j 0 957 + 0 511j

−2 0 095 + 1 31j −2 023−1 469j 0 095 + 1 31j −2 0 921−0 262j

8 09−5 878j −2 023−1 469j −1 278−2 892j −2 023−1 469j −1 278 + 1 034j 0 957 + 0 511j

−0 25 + 1 364j 0 957 + 0 511j −2 0 957 + 0 511j −2 023−1 469j 1

−1 064 + 1 169j −1 278 + 1 034j −1 775−2 131j −1 278 + 1 034j 1 545−4 755j −2 023−1 469j

The individual [T]-matrices of the triangles have been combined into an overall [T]-matrix
for the two rectangular apertures. Using Eq. 7.101 and the matrices given earlier, an estimate of
mutual admittance is 0.598 − j0.782 (−0.136 dB ∠ −52.59 ). This compares with a value of
0.45 − j0.748 (−1.179 ∠ −58.96 ) which is obtained from Eq. 7.66 using analytical expression
for the TE01 mode. Considering the level of approximation in the field representation as well as
the integration, this result is respectable in the circumstances.

7.3.6 An Asymptotic Expression for Mutual Admittance∗

Computation of mutual coupling can take a considerable amount of computation time. This can
be reduced by means of an asymptotic formula to Eq. 7.66 that is accurate for large element
spacings. By means of this formula, considerable savings are possible for the coupling to dis-
tant elements in very large finite arrays, for example, as well as providing helpful estimates on
the level of coupling overall. This asymptotic formula expands the Green’s function in a Taylor
series and then evaluates the mutual admittance in terms of Fourier transforms of weighted
moments of the mode function. For separable geometries such as rectangular and elliptical
polar co-ordinates, these transforms can be expressed in closed form. The approach has been
applied successfully to arrays with rectangular, circular and coaxial elements.
Consider the mutual admittance expression (Eq. 7.66) for modes in apertures i and j, the cen-

tres of which are separated by a distance Rij that is much greater than the aperture dimensions.
To a second order, the Green’s function can be approximated by

G R ≈G Rij exp − jkρi cos ϕi−ϕij + jkρj cos ϕj−ϕij

× 1−
1
Rij

ρi cos ϕi−ϕij −ρj cos ϕj−ϕij +
jk

4Rij
ρiρj sin ϕi−ϕij sin ϕj−ϕij

+ ρ2i cos 2 ϕi−ϕij + ρ2j cos 2 ϕj−ϕij − ρ2i + ρ
2
j

7 102

where Rij = xj−xi
2
+ yj−yi

2
and G Rij = exp − jkRij Rij. The polar co-ordinates used

in Eq. 7.102 can be easily transformed to other aperture co-ordinate systems such as
rectangular by replacing the local coordinates (ρi. ϕi) and (ρj. ϕj) with (xi. yi) and (xi. yi) by
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xi = ρi cos ϕi and yi = ρi sin ϕi, similarly for the aperture j. Substitution of Eq. 7.102 into
Eq. 7.66 results in the three-term approximation to admittance

yij p q =
jk

4πηo
G Rij S i

p −k S j
q k +

1
Rij

S i
p −k X j

q k

−X i
p −k S j

q k + jkT i
p −k T j

q k

7 103a

which involve geometric transforms of the field functions. These transforms in Eq. 7.103 are
given by:

S i
p w =

Di

dSiΨpi ρi,ϕi exp jwρi cos ϕi−ϕij

T i
p w =

Di

dSiΨpi ρi,ϕi ρi sin ϕi−ϕij exp jwρi cos ϕi−ϕij 7 103b

X i
p w =

Di

dSiΨpi ρi,ϕi ρi cos ϕi−ϕij +
jwρi
4

cos 2 ϕi−ϕij −1

× exp jwρi cos ϕi−ϕij

The transforms given in Eq. 7.103b can be evaluated in closed form in many cases, for exam-
ple, rectangular (Bird & Bateman, 1994) and circular elements (Bird, 1979, 1996). The results
can be quite accurate as will be demonstrated in the following.
An asymptotic approximation to the coupling between two rectangular waveguides can be

obtained from Eq. 7.103 alongwith the vector field function given by Eq. 7.70. It may be shown
that the first term of the asymptotic expression for the mutual admittance of TE10 modes in
identical rectangular waveguides is

yij 10 10 =
4jk2ab
π3β10

G Rij sin2ϕoC
2 ka

2
cos ϕo S2

kb

2
sin ϕo 7 104

where ϕo is the angle in the x–y plane between the apertures, that is, tan ϕo = yj−yi xj−xi ,
and β10 is the propagation constant of the TE10 mode. The mutual admittance in the E-plane
(ϕo = 90 ) is

yij 10,10 ≈ j
4k2ab
π3β10

G Rij S
2 kb

2
7 105

In the H-plane, it is observed that the first-order approximation predicts zero coupling
when (ϕo = 0). This is because the z-component is maximum at this angle and this cancels
out the x-component resulting in zero for first-order coupling. However, by including
second-order terms and higher in 1/Rij, it is found that H-plane coupling is not zero but is
given approximately by
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yij 10 10 ≈ −
8kab
π3β10

G Rij

Rij
C2 ka

2
7 106

The formulation in Eq. 7.103 has a simple physical interpretation. The first term of the
formula is the mutual admittance of two elemental magnetic dipoles on a ground plane
weighted by the far-field patterns of the apertures in the plane of the conductor, along the
trajectory between the two centres. For example, consider two identical rectangular wave-
guides of width a and height b that are excited in the TE10 mode only. From Section 4.2,
the far-field pattern in the aperture plane of the E-plane (i.e. along the x-axis) the electric
field is dominated by the function S(kb/2), while in the orthogonal H-plane the pattern is
determined by C(ka/2), where the functions S and C are defined in Appendix A. The mutual
admittance of two waveguides that couple in the E-plane direction is approximately given by
the product of the square of E-plane pattern times the mutual admittance of two elemental
dipoles (see Problem P7.12). Similarly, for H-plane coupling, it consists of the product of
the patterns in the direction between the two apertures. Both Eqs. 7.105 and 7.106 are accu-
rate for s> 3a and 3b, respectively.
To demonstrate some typical results, Figure 7.33 shows the coupling between two circular

waveguides of radius 1.905 cm in a ground plane that has been computed from Eq. 7.103
assuming that only the TE11 mode is in both apertures. These results are compared in
Figure 7.33 with measured data and computed results from the exact theory (Bailey, 1974).
A further demonstration of the accuracy of the asymptotic formula is shown in Figure 7.34

where the coupling coefficient for two circular waveguides as a function of separation distance
is compared with results from the exact admittance expressions given in Section 7.3.5.3. In both
analyses, five modes were used in each aperture. It has been found that the asymptotic formula
is very accurate for aperture spacings >3λ.
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Figure 7.33 H-plane coupling coefficient versus frequency for two waveguides of radius 1.905 cm
located in a ground plane and separated by s = 4.667a and s = 6.667a. (a) Magnitude and (b) phase.
Dashed curve, exact theory (Bailey, 1974); points, measured (Bailey, 1974); circle with cross,
asymptotic 1 mode (Bird, 1979)
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7.3.7 Radiation from Finite Arrays with Mutual Coupling

Once the complex amplitudes of the currents have been obtained from the mutual coupling
formulation, the radiation from all elements in the array can be found by superposition. In
the far-field region of a single isolated antenna excited by an electric current at i, the radiated
electric field is

Ep =Fp θ,ϕ Ii
exp − jk r−ri

r−ri
7 107

where Ii is the element excitation, F(θ, ϕ) is the element pattern, r is the radial vector from the
origin of the element to the field point, and ri is the radial vector to the source (see Figure 7.35).
The current is related to the drive voltage sources via the impedance matrix as described by
Eq. 7.39. The total field is given by

E=
Na

i= 1

Fi θ,ϕ Ii
exp − jk r−ri

r−ri

where Ii is given by Eq. 7.39 and Na is the number of apertures. Now, if the distance
of the elements is small relative to the distance from the origin to the field point
(i.e. ri << r = r), then

E≈
e− jkr

r

Na

i= 1

Fi θ,ϕ Ii exp jkr ri
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Figure 7.34 Coupling coefficient versus separation distance (s/λ) for two circular waveguides of
diameter 2λ. Line, asymptotic formula; and dots, exact formula
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Suppose all the elements are identical, that is, Fi θ,ϕ =Fo θ,ϕ , then

E≈
e− jkr

r
Fo θ,ϕ

Na

i= 1

Ii exp jkr ri 7 108

Finally, in the ideal situation when there is no coupling (i.e. Zij = 0 where i j),

E≈
e− jkr

r
Fo θ,ϕ

1
Zin

Na

i= 1

Vin
i exp jkr ri 7 109

where Zin is the input impedance of the elements. Eq. 7.109 is the conventional form of simple
array analysis and synthesis in absence of coupling fields. There are other variations of
Eq. 7.108 when only one or two neighbours are included.
When the aperture array is located in a ground plane (see Figure 7.35), the radiated field is

obtained by the methods of Section 3.4 and in particular Eqs. 3.26. The aperture field at z = 0 is
given by Eq. 7.50a as

E i
a =

M i

m= 1

ami + bmi emi x,y Y −1 2
mi

and, as a consequence, the transform vector Eq. 3.24a is given by

N u,v =
Na

i= 1

M i

m = 1

Y −1 2
mi ami + bmi

Ai

dS emi x ,y exp j2π ux + vy 7 110

Let Fmi u,v =Y −1 2
mi

Ai

dS emi x ,y exp j2π ux + vy .

y

z

x

θ
𝜙

P(r,θ,𝜙)

r
ri

Aperture i

Figure 7.35 Geometry for calculation of radiation from an array of aperture antennas
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Then expressing Eq. 7.110 in a matrix format and introducing the scattering matrix relation
(Eq. 7.42) to replacing the reverse travelling wave amplitudes, it is found that

N=
Nx

Ny
=F a+ b = F I+ S a

where Nx and Ny are column vectors corresponding to the x- and y-components of the trans-
forms of the array elements. The far-fields can now be calculated from

Eθ =
jk

2π
e− jkr

r
Nx cos ϕ +Ny sin ϕ

Eϕ =
jk

2π
e− jkr

r
−Nx cos ϕ +Ny sin ϕ

To obtain the fields in the near- or intermediate-field regions, it is preferable to return to the
original Green’s function and to calculate the magnetic field by integrating across the aperture
field (magnetic current), as given by Eq. 7.47b, and then obtain the other field components by
means of Maxwell’s equations. Thus, the transverse field, HT, is found this way, while the
remaining magnetic field component is obtained from ∇ H= 0. Thereafter, the electric field
is calculated from E= − jηo k ∇×H.

7.4 Techniques for Minimizing Effects of Mutual Coupling

The neglect of mutual coupling can have serious consequences, and it is especially important to
consider its effect in the design. In some applications, it is desirable that mutual coupling is as low
as possible, while in others the coupling can be included in the design as a matter of course. If
mutual coupling is neglected, the expected performance can depart significantly from that
achieved in practice. Therefore, what can be done about it? There are several possible approaches:

• Increase antenna element spacing.
• Reduce the near-field in the direction of adjacent elements by increasing the field taper (also
not practical in some cases without compromising performance).

• Isolate elements with electromagnetic ‘fences’.
• Compensate for mutual coupling through signal processing methods.
• Take account of mutual coupling at the outset, as in a normal coupled circuit, using one of the
methods described in Section 7.3.

Some of these approaches will now be discussed in detail.

7.4.1 Element Spacing

A change in the element spacing is an obvious approach, but it is not always practical as
the apertures may be fixed in position or the beam shape or spacing may be compromised
or incorrect. Care should also be taken not to introduce grating lobes especially in the coverage
area or in other directions, which may introduce interference. This may mean the element spa-
cing should be no greater that 0 7−1λ unless other means are taken to taper the pattern.
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Increasing element spacing was described in the previous section for particular aperture shapes
for two-element coupling. This coupling varies with distance depending on location and polar-
ization. As we have seen, for magnetic current dominant sources, which is often the case for
apertures, coupling in the E-plane falls in the limit as 1/s where s is the separation distance,
and in the H-plane, it limits to 1/s2. For electric current dominant sources the reverse occurs.
Elsewhere, the decay is a combination for anywhere between these limits. The elements need to
be two to three wavelengths apart for the trend to be monotonic, so care is required for smaller
separations. If the coupling level is unexpectedly high, the spacing could be increased as long as
the spacing is not detrimental to the performance. Otherwise, another technique should be
adopted.

7.4.2 Aperture Field Taper

In electromagnetic horns, an aperture field distribution may be synthesized by means of high-
order modes or inserts such as dielectric and corrugations that produce little radiated power in
the direction of neighbouring array elements. For example, the aperture distribution in the
E-plane of rectangular horns which are excited in the TE10 mode is almost uniform. Corruga-
tions or dielectric placed on the walls parallel to the H-plane increase the field taper in the
E-plane and reduce the field at the edge of the aperture. The same effect is created in circular
horns by exciting the correct proportions of TE12 and TM12 modes, and this results in almost
equal E- and H-plane patterns and reduced cross-polarization (Schennum et al., 1978). The lat-
ter approach is a narrower-band solution than corrugations or dielectric but it is a less expensive
and more lightweight option.

7.4.3 Electromagnetic Fences

Metallic guards, fences or cups are sometimes used between elements or at the edges of large
arrays as shown in Figure 7.36. The perimeter of the fence is usually perpendicular to the
ground plane and is located between elements. For example, arrays of dipoles placed in circular
cups generally tend to have lower coupling. The purpose of the cup, and other fences, is to
reduce the radiation in the direction of the other elements. The aperture excites a field in
the cup, and this creates a new aperture field that depends on the diameter of the cup. Not only
is its shape important, but also its height and its effect can be direction dependent. For example,
Mailloux (1971) showed that if a fence is placed between two long slots, which couple in the E-
plane, coupling initially increases with the height of the fence up to a height of a quarter of a
wavelength and decreases thereafter, but not monotonically. By contrast, for long slots, which
couple in their H-plane, the coupling decreases monotonically with fence height. Reactively
loaded elements placed between adjacent elements (see Figure 7.36a) can also be used to
reduce coupling in waveguide arrays (e.g. Edelberg & Oliner, 1960; Hockham, 1974). Such
indirectly excited elements provide extra degrees of freedom for radiation pattern control
(e.g. Silvestro, 1989).

7.4.4 Mutual Coupling Compensation

In some array applications, it is desirable to compensate for the effect of mutual coupling
through appropriate design of the beamforming network. To describe how this can be achieved,
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consider the electric field radiated by an array of apertures with scattering matrix as shown in
Figure 7.12. In matrix notation, this field is

E r, θ,ϕ = e r ,θ ,ϕ W
=
aI 7 111

where e(r , θ, ϕ) is a row vector of electric field vectors of M radiation modes,

W= U +S 0 U−S22S 0
−1

S21, 7 112

which is an M ×N matrix, and aI is a column vector of N inputs. The other quantities were
defined earlier in Section 7.3.3. It is clear that the radiated field would be uncoupled for
new array coefficients c if

E r, θ,ϕ = e r ,θ ,ϕ c

where c is a column vector.
This occurs for the array input vector given by

aI =W−1 c 7 113

Decoupling
element

Array
element

Fence

E

E

Cup

Active
elements Edge

element
Loaded guard
elements

Array
element

(a)

(b)

(c)

Figure 7.36 Decoupling methods for arrays. (a) Guard elements, (b) fences (sometimes called baffles)
and (c) cups
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Thus, if c specifies a given pattern distribution, such as Taylor or Chebyshev, andW is known,
then the input excitation required to produce this uncoupled distribution is found by multiply-
ing c by W−1. An example of this type of compensation is described by Steyskal and Herd
(1990). They showed that the technique is most beneficial for digital beamforming where
W−1 was realized by Fourier decomposition of the measured array element patterns. They pre-
sented results for a linear array of eight X-band waveguide elements that have a common
E-plane. Excitations were synthesized for a 30 dB Chebychev pattern. However, the measured
pattern for the array with coupling, but with no compensation, had sidelobes at the 20 dB level.
Practical and computed results showed that following compensation the sidelobe level was
reduced to the required 30 dB level. Compensation is possible also by connecting a network
between the input ports and the antenna ports. Andersen and Rasmussen (1976) describe nec-
essary conditions for such a lossless network to achieve complete decoupling and de-scattering.

7.4.5 Power Pattern Synthesis Including the Effect of Mutual Coupling

The obvious way to minimize the impact of mutual coupling is to take it into account in the
design process. One design approach that is sensitive to neglecting mutual coupling is the
design of shaped beam. The effect of this on the design of arrays has been considered by several
workers. In adaptive arrays, the effect of mutual coupling was considered by Gupta and
Ksienski (1983) and also Yirnin et al. (1985) to be significant even for inter-element spacing’s
greater than half a wavelength, and its effect was drastic when the element spacing was within
this distance. Perrott (1985) showed that the accuracy of an interferometer direction finding
system was improved when mutual coupling was included. A power pattern synthesis formu-
lation (Bird, 1982) that includes mutual coupling is described in the next section.

7.5 Low-Sidelobe Arrays and Shaped Beams

Antennas with shaped beams or low sidelobes are required in many applications from on-board
satellites to surveillance radar. Efficient illumination of irregularly shaped regions on the
earth’s surface from a geostationary satellite requires the radiation pattern to be contoured
to suit the desired coverage. In addition, it is desirable for the beam to have low sidelobes out-
side this coverage region, and in frequency reuse applications, cross polarization should also be
low. Contoured beam illumination may not be the only task of such an antenna as it may also be
required to produce multiple pencil beams. A suitable antenna to perform these functions usu-
ally involves a directly radiating array or array feed cluster in combination with a reflector or
lens. The antenna adopted in this section is an array-fed offset reflector antenna as illustrated
in Figure 7.37 although a similar approach could also be used for a directly radiating array
of horns.
Individual beams are generated by exciting clusters of elements so as to achieve high beam

efficiency and low cross-polarization. Although only selected elements may be involved in pro-
ducing a particular beam, mode coupling in the array ensures all elements are involved to some
extent depending on location, polarization and neighbouring structures. In the presence of this
coupling, the objective is to determine the required excitation to produce a particular beam.
Once the excitation of each beam is known, the excitation of multiple antenna beams follows
by superposition.
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In this section, a method is described for obtaining the array excitation for generating spot
beams with maximum efficiency and zero cross-polarization in the beam direction. Control of
the cross-polar null is important as it can be positioned to increase polarization diversity by
reducing cross-coupling between adjacent beams. By adopting a similar approach to the spot
beam analysis, a beam having a desired shape and cross-polar isolation can be synthesized. The
formulation to achieve this is described here. The approach accounts for deficiencies of the
antenna by including diffraction from a reflector and also feed element coupling.
Consider a feed cluster in the focal plane of a reflector antenna, which may consist of one or

more reflecting surfaces, as shown in Figure 7.37. When this antenna is illuminated by a wave
from the direction sI in the far-field, a current Js is induced on the reflector surface(s). Consider
the reflector nearest to the array, in this case the subreflector. From reciprocity, a beam that is
produced in the direction sI is achieved by exciting the array with a selected driving function.
The field due to an N element array is represented by M radiating modes in each aperture. In
addition, suppose only the first J modes are accessible, that is, modes that can be addressed
directly at the inputs. Some modes are generated electromagnetically at the same ports or
through reflections at other ports. There are thus JN accessible ports at the MN ports that
are available for producing a beam. Let Ek be the electric field radiated by port k and let its
total amplitude be Ak = ak + bk where ak and bk are amplitudes of the incident and reflected
modes. The next step, when constraints are implemented, determines whether the antenna
has low sidelobes. The constraint conditions are a special case of those for a general shaped
beam, and also the array amplitudes are coupled through the scattering matrix S. The approach
is essentially the same for an array of directly radiating horns or a reflector antenna.
Under these conditions, the fraction of the power radiated by the array in the beam direction

is given by the power coupling theorem Eq. 3.63 as

η θ,ϕ,a =
QQ∗

Pr
7 114

where η is the aperture efficiency and

SI

X

Zy

Jsek

Figure 7.37 Array-fed reflector and shaped beam synthesis
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Q=
MN

k = 1

Aktk 7 115

where

tk =
1

4 Pi Σ
dS ek Js

Pr and Pi are, respectively, the power radiated by the feed array and the power incident upon
the reflector.
A similar expression as Eq. 7.114 results also for a directly radiating array of horns. In this

case, the gain function of the antenna (Eq. 3.48) is used:

G θ,ϕ,a =
2πr2

ηo

E
∗
E

Pr
7 116

where E is the electric field radiated by the array at a far-field distance of radius r. Compared
with the gain of a uniformly illuminated aperture with the same dimensions, Go, the array has
an efficiency

η θ,ϕ,a =
2πr2

Goηo

E
∗
E

Pr
= c

MN

k = 1
Akek

∗
MN

k = 1
Akek

Pr
7 117

where c is a constant, ek is the radiated electric field at accessible port k, and Ak is its amplitude.
The radiated power is:

Pr = aTI DaI

where

D=
1
2

I−S22S 0
− 1
S21

† I+ S 0
†

I−S 0 +

I−S 0
†

I+ S 0 I−S22S 0
−1
S21

The dagger † is the Hermitian conjugate matrix operation (i.e. conjugate transpose).
Equation 7.114 (or Eq. 7.117) gives the antenna gain relative to a uniformly illuminated aper-

ture and is suitable as a basis for a synthesis procedure. In addition, it is convenient to express
the efficiency in matrix notation. Let

Q= uTv

where vT = a1 a2 aJN is a subset of the excitation coefficients corresponding to accessible
ports and T denotes the matrix transpose operation
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uT = tTW 7 118

with

tT = t1 t2 tMN and Wij =
1 + Sii; i= 1,2,…,JN

Sij; otherwise
7 119

In this notation, the power radiated by the array is

Pr = vTD v

where D=P−STPS is a JN × JN positive-definite diagonal matrix given by

P=

p1 0 … 0
0 p2 0 0

0 0 … pMN

where pi the mode power at the accessible ports i.
Equation 7.114 can now be re-expressed as

η θ,ϕ,v =
vTu

∗
uTv

vT
∗
Dv

and further refined to

η =
x† α†α x

x†x
7 120

where x =D1 2v , α =uTD1 2. Eq. 7.120 is a quadratic form, which has a maximum value at the
maximum eigenvalue of α†α−λI x = 0. Since α†α is a rank one matrix, the maximum eigen-
value is simply α†α, and the associated eigenvector is x=α. Therefore, the beam efficiency is
maximized when

v =D−1W†t
∗

7 121

When there is no coupling or reflection at the ports, that is, the scattering matrix S= 0,W= I
and v =D−1t

∗
. Further, as D is diagonal, the ith accessible port is proportional to the ith cor-

relation coefficient. Mutual coupling causes the excitation coefficient to depend on all far-field
vectors through the matrixD. When there is no coupling, D= I=W and Eq. 7.121 predicts that
for maximum gain the excitation coefficient of a particular mode should equal the complex
conjugate of its own far-field vector.
The formulation above can be extended to include cross-polarization. In a specified direc-

tion, Eq. 7.114 will have a range of values depending on polarization. Let uc the vector
Eq. 7.118 that results from currents generated by co-polar illumination and ux be the
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corresponding vector due to cross-polar illumination. Two functions in the form of Eq. 7.114
can be defined for co-polar and cross-polar illumination in terms of a common desired exci-
tation v as follows:

ηc θ,ϕ,v =
Qc

∗
Qc

vT
∗
Dv

=
vTuc

∗
ucTv

vT
∗
Dv

7 122a

ηx θ,ϕ,v =
Qx

∗
Qx

vT
∗
Dv

=
vTux

∗
uxTv

vT
∗
Dv

7 122b

where c and x indicate co-polar and cross-polar illumination, respectively. Tomeet the common
objective of maximum efficiency and minimum cross-polarization, a single performance index
is constructed and is

ξ= 1−ηc + μ2 ηx 7 123

where μ is an arbitrary complex constant. Once again, intermediate vectors are introduced in
this case x =D1 2v, α† = ucD

−1 2 and β† =uxD−1 2. Substituting Eq. 7.122 with these interme-
diate vectors in Eq. 7.123 results in

ξ=
x† I−α†α+ μ 2β†β x

x†x
7 124

As with the case of a single efficiency, Eq. 7.124 is a ratio of quadratic forms. In this case, the
minimum of Eq. 7.124 is required, which occurs at the maximum eigenvalue of

μ 2β†β−α†α−λI x= 0 7 125

To find this, define τ= μβ. Resolve α into components parallel and orthogonal to τ. Thus,
α =α1 +α2 where α1 = kτ andα†

2τ= 0. It can be shown that k =α†τ τ†τ. In addition, the source
vector x is expressed as a linear combination of α1 and α2 as follows: x= cα1 + dα2.
This is permissible since if either α or β are identically zero, Eq. 7.125 reduces to the
rank one eigenvalue problem discussed previously. Making the above substitutions in
Eq. 7.125 gives

τ c 1−k2 α†τ−kdα†α2 −α2 ckα†τ + dα†α2 = λ ckτ + dα2

By equating the coefficients, homogeneous equations in c and d are obtained:

c λk + k2−1 α†τ + d kα†α2 = 0 7 126a

c k α†τ + d λ+α†α2 = 0 7 126b

For a non-trivial solution of Eqs. 7.126, the determinant of the matrix relating the coefficients
c and d must be zero. This leads to the following the characteristic equation for λ:
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λ2 + λ α†α − τ†τ + α†τ 2
− α†α τ†τ = 0 7 127

The solutions of Eq. 7.127 are

λ=
− α†α − τ†τ ±Δ

2
7 128

where the discriminant is

Δ= α+ τ α−τ

To determine which of the two solutions are relevant, define a real angle θ such that

cos θ =
α†α − τ†τ

Δ

which results in the two solutions of the characteristic equation given by Δsin2(θ/2) and
−Δcos2 θ 2 . The second solution is the required result as it gives an eigenvalue nearest to
−1. Substituting this eigenvalue into Eqs. 7.126 results in k c−d + νd = 0 where

ν=
1
2

α†α + τ†τ −Δ
α†τ

Finally, x = cα1 + dα2 = d α−μνβ . Without loss of generality, the multiplier can be set to
unity, that is, d = 1. Therefore, in Eq. 7.122, let

Qc =α†x=α†α−μνα†β 7 129a

and

Qx = β†x = β†α−μνβ†β 7 129b

Zero cross-polarization on-axis is achieved when ηx 0, 0, v = 0. It follows from Eq. 7.129b
that Qx = 0 when

μν=
β†α
β†β

7 130

Equation 7.130 specifies the value of the weighting factor in the initial performance index
(Eq. 7.123) to give the correct level of co- and cross-polar excitation to achieve zero cross-
polarization. The co-polar beam efficiency achieved under condition Eq. 7.130 is

ηc θ,ϕ,v =α†α−
α†β

∗
α†β

β†β
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and the corresponding eigenvector is

x =α−
β†α
β†β

β 7 131

Replacing the intermediate quantities in the above with the matrices and vectors of the
original formulation, the excitation vector given by Eq. 7.131 is

v =D−1 u
∗
c−u

∗
x

uT
x D

−1u
∗
c

uT
x D

−1u∗
x

7 132

A physical interpretation of Eq. 7.132 is that the excitation for a general array consists of the
excitation to achieve a maximum for an uncoupled array minus a component that cancels out
the cross-polarization in that direction. The method described earlier could be extended to more
directions, but it becomes increasingly difficult to obtain a closed-form solution as the number
of unknowns increased. As the number of specified directions (or stations) increases, the order
of the characteristic equation increases in step with the number of unknowns. Thus when there
are three conditions are specified, the solution of a cubic is required, for four conditions the
solution of a quartic polynomial is needed, etc.
A performance index for contoured beam synthesis requires ηc to be maximized across many

stations (directions) in a selected coverage area or across the main beam and be minimized out-
side the coverage or main beam while at the same time ηx is normally minimized everywhere.
An ideal index consists of constraints on both ηc and ηx at specified stations points throughout
the field of view (FOV). Suppose there are Ns stations in the FOV and Nc of these are in desired
coverage. At station j, let

ηcj = ηc θj,ϕj,v

ηxj = ηx θj,ϕj,v

cuj = specified upper beam efficiency level
cLj = specified lower beam efficiency level
xj = specified maximum cross-polar level relative to the peak
wcuj,wcLj = weighting on upper and lower beam efficiency levels
wxj = weighting on the cross-polar level

The constraints can be included in a single function that is negative when all are met as
described in Section 6.9.2. Define

fi =

−wcLj ηcj−cuj i= j; j= 1,2,…,Nc

wcuj ηcj−cuj i=Nc + j; j= 1,2,…,Nc

wxj ηxj−xj i=Nc +Ns + j; j= 1,2,…,Ns

; i= 1,2,…,Nc + 2Ns 7 133
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The aim is to find a value for v for which all fi ≤ 0 (i = I, 2,…, Nc + 2 N). One approach is to
combine all these constraints into a single performance index such as the least pth index that is
given by Eq. 6.123.
The advantage of the least pth performance index is that the minimum can be obtained using

gradient search methods as well as more sophisticated optimization methods.
As an example of a shaped beam design, consider an array feed of rectangular horns for a

parabolic reflector that is required to produce a beam in the shape of the outline of a country on
the earth’s surface. This occurs in the design of shaped beam antennas from satellites. A set of
stations are chosen to cover the country and surrounding regions. The constraints described
in Eqs. 7.133 and 7.134 are then used to determine the array excitation coefficients. An example
of this approach is the production of a shaped beam to cover continental United States, Alaska,
Hawaii and Puerto Rico, from satellite locations between 91 W and 133 W (Bird & Sroka,
1992). The required pattern was achieved with 33 rectangular horns, which have E-plane steps,
for horizontal polarization and 26 horns for vertical polarization. The layout of the apertures in
the focal plane of the reflector is shown in Figure 7.38. The resulting shaped beam pattern for
the horizontal polarization is shown in Figure 7.39. The horns are analysed using the mode
matching technique, in which each horn is represented by a series of uniform sections. Mutual
coupling between the apertures was included by the methods described in Section 7.3. The
penalty function method described earlier was used with the reflector and array analysis soft-
ware to apply constraints to the assigned stations inside and outside the desired coverage region
to obtain the excitation coefficients to achieve the shaped beam shown in Figure 7.39. For the
results shown here 17 modes are used for calculating mode self-coupling, while the first four
modes only are used in the cross-coupling calculation.
A second example is the design of a low sidelobe array that required a maximum gain and

have sidelobes that are <−30 dB below the peak. The array chosen consisted of seven rectan-
gular pyramidal horns that are spaced every d = 2.5 cm in their E-plane. The horns are identical
with aperture dimensions of 6.0 × 2.3 cm and a length of 23 cm, and they are fed from WR-75
waveguide (inside dimensions 1.905 × 0.950 cm). The principal plane radiation pattern of the
isolated horn at 10 GHz is shown in Figure 7.40.
The numerical method described earlier can be used to meet the requirements. A set of con-

straints were established and a satisfactory result was obtained. An alternative although classic
approach is to use a standard polynomial approach such as binomial or Chebyshev synthesis
(e.g. Balanis, 1982) for which the maximum sidelobe level can be set. The array function for a
specified array given the number of elements and element spacing is then matched to the stand-
ard polynomial. The AF for this array is

AF =
N

n= 0

an cos 2nu 7 134

where u = kd 2 sin θ. The array is assumed symmetric with an odd number Ne = 2N + 1 of
elements, where the coefficient

A± n =
ao; n = 0
an
2
; n = ±1, ±2,…
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corresponds to the excitation coefficient of horn n, which is symmetrically placed either side of
the central element with excitation A0. Eq. 7.135 is now expanded and the function cos(2nu) is
expressed in terms of integer powers of cos(u). For the present example with N = 3, after col-
lecting terms, it is found that

AF = a0−a1 + a2−a3 + 2a1−8a2 + 18a3 cos2u + 8a2−48a3 cos4u+ 32a3 cos
6u
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Figure 7.38 Feed horn layout in the focal plane. (a) Horizontal polarization and (b) vertical polarization
(Bird & Sroka, 1992). Source: Reproduced by permission of The Institution of Engineers, Australia
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Figure 7.39 Radiation pattern of a horizontally polarized transmit beam at 11.95 GHz with mutual
coupling included. Contours are in 1 dB decrements from the peak level (Bird & Sroka, 1992).
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Clearly, this step can be generalized for other values of N. Next, cos u is replaced by the
substitution cos u = z zo to obtain polynomial powers in z. The coefficients of the polyno-
mial that results are equated with the coefficients of a polynomial that has desirable sidelobe
characteristics, for example, Chebyshev. The parameter zo in the expansion is defined
from the final polynomial coefficient of the final polynomial of N. Note that the order of
this polynomial is one less than the number of elements in the array, that is, Ne−1. In
this case, the order is 6. For the Chebyshev polynomial, which is adopted here, the final
polynomial corresponds to TNe −1 zo =MSL where MSL is the maximum sidelobe level rela-
tive to the peak and TM(z) is the Chebyshev polynomial order M. Formulae for the Chebyshev
polynomials are given in Appendix A and in the references (Abramowitz & Stegun, 1965).
It can be shown that

TNe −1 zo = cosh Ne−1 cosh−1 z 7 135

for zo > 1. Expressed alternatively,

zo = cosh
1

Ne−1
cosh−1 MSL
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Figure 7.41 Radiation pattern of seven-element E-plane array of rectangular horns at 10 GHz. Element
spacing d = 2.5 cm. Solid line, H-plane; short dash, E-plane (optimization); and long dash, Chebychev
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In the present example of a seven-element array, zo = 1 248489. The sixth-order Chebyshev
polynomial is T6 z = 32z6−48z4 + 18z2−1 (Abramowitz & Stegun, 1965, p. 795). The coeffi-
cients of AF are found by equating the coefficients so that AF= T6 z . Thus,

32 = 32
a3
z6o

−48 =
8a2−48a3

z4o

18 =
2a1−8a2 + 18a3

z2o
−1 = a0−a1 + a2−a3

This results in the following coefficients: a0 = 7 166444987, a1 = 12 5242748, a2 =
18 144943314 and a3 = 3 787113499. When normalized to the central horn, the coefficients
are a0 = 1 0, a1 = 1 747627286, a2 = 1 136538874 and a3 = 0 528450788. The AF correspond-
ing to these coefficients is plotted in Figure 7.41. The E-plane element that is obtained by
numerical synthesis is also shown in Figure 7.41. This sidelobe level has reduced slightly with
an optimization routine and with a harder sidelobe constraint of 35 dB. The gain of this design
is 17.333 dBi compared with 17.319 dBi for the design with the Chebyshev coefficients. Also,
the excitation that is obtained by optimization was identical to the aforementioned except for
the outside horns where the coefficients are A±3 = a 3 2 = 0 264225394.

7.6 Problems

P7.1 An array of microstrip patches is arranged with its elements polarized parallel to the
x-axis and arranged on a regular 3 × 3 grid at intervals of λ/2 in the plane at z = 0.
a. Neglecting mutual coupling, find the radiation pattern of the array when the elements

are driven with currents of the same amplitude but with a phase-shift between adjacent
elements of Δ radians.

b. What value does the phase-shift need to be to steer the beam ±20 either side of broad-
side in the E-plane?

c. Plot the E-plane pattern of the array for patches of width w= λg 2 and length ℓ= 1 1λg
on a substrate of thickness h = 0 005λg and dielectric constant εr = 1 5.

P7.2 Using Lewin’s formula for admittance, Eq. 7.78 and your favourite computer software,
calculate the reflection coefficient in a rectangular waveguide with dimensions a = 2.286
cm and b = 1.016 cm over the frequency band 9–10 GHz.

P7.3 A uniform linear array consists of seven identical square 3λ/8 waveguides spaced λ/2
apart along the y-axis in the H-plane. The waveguides are loaded with dielectric with
a relative permittivity of εr = 3. The waveguides are of equal length and are fed with equal
amplitude but with a uniform progressive phase shift Δ.
a. Determine the element pattern and the AF.
b. Plot the E-plane radiation pattern when Δ= −0 5 rad.
c. Design a feed network for the array.
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d. If the input reflection coefficient of one waveguide is −10 dB ∠ 30 , determine the
magnitude of the input reflection coefficient of the feeding network assuming all
other components are matched to 50 ohms.

P7.4 Calculate the coupling coefficient, S12, of two adjacent square waveguide apertures of
sidelength 0.7λ as a function of separation for the two cases of E- andH-plane coupling.
Assume the normalized admittance at each aperture is y10 = 1 098 + j0 063. Compare the
two sets of results and discuss.

P7.5 Show that the first-order term in separation distance Rij in the asymptotic formula for the
mutual admittance between two circular waveguide apertures is given by

yij p,q ≈
jk

4πηo
G Rij

χmiχnj
2

S i
p −k S j

q k

where

S i
p w = x −Qp−1 w,kmi,ai cosΔp−1 +Qp+1 w,kmi,ai cosΔp+1

+ y Qp−1 w,kmi,ai sinΔp−1 +Qp+1 w,kmi,ai sinΔp+1

−z −2j
kmi
k

Qp w,kmi,ai cosΔp,

Δp = pϕij−ψm and Qp w,u,ξ =
ξ

0
dρ ρ Jp wρ Jp uρ .

P7.6 Show that the self-admittance of the TEM mode in coaxial waveguide that is filled with
a dielectric material with a relative dielectric constant εr is given by

y11 0,0 =
πχ200
εr

∞

0

dw

w 1−w2
J0 ka1w −J0 kb1w

2

where a1 and b1 are the outer and inner conductor radii and χ00 = 1 π ln a1 b1 .
Assuming the dimensions a1 and b1 are small compared with the wavelength, show

that the normalized conductance is g00≈2 3 εrln a1 b1 π λ 2 a12−b1
2

2

(Marcuvitz, 1986, p. 213).
P7.7 Find the location of the grating lobes in a hexagonal array of waveguide elements by

examining the AF given in Eq. 7.15.
P7.8 Two identical rectangular patches are placed side by side on a substrate of thickness

0.15 cm and dielectric constant 2.55. Their dimensions are 1.6 × 1.66 cm. At an operat-
ing frequency of 5 GHz, calculate the E- and H-plane coupling as a function of the spa-
cing between them from 0.1λ to 1λ. Each patch is fed with a probe located at xo = 0 55
cm and yo = 0 8 cm.

P7.9 Use Eq. 7.66 to obtain the reflection coefficient of the TEMmode of parallel plate wave-
guide of height a and width b where a << b. Assume Ex =Eo exp − jβz .

P7.10 Obtain the asymptotic admittance of two slots coupling in their E-plane from the dual of
Eq. 7.29. Compare this result with the mutual admittance given by Eq. 7.105 and dis-
cuss. How might the present approximation be improved?
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P7.11 Suppose a cross-polarized beam is required in the same direction as the main beam with
half the gain. Use the approach in Section 7.5 starting with Eq. 7.122 to obtain the array
excitation to achieve the required array excitation v.

P7.12 By means of the Chebyshev procedure described in Section 7.5 and (a) initially neglect-
ing mutual coupling, synthesize the excitation coefficients of an 11-element linear
planar array of 0.7λ long slots of width 0.1λ with spacing of 0.5λ to achieve a sidelobe
level of −40 dB in the array’s E-plane. (b) Introduce mutual coupling through, for exam-
ple, the asymptotic admittance (Eq. 7.105), use the excitation coefficients in (a), and
recalculate the E-plane radiation pattern. What is the impact on the sidelobe level?
Hint: The normalized aperture admittance of the slot is y10 = −0 282− j0 321.
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8
Conformal Arrays of Aperture
Antennas

8.1 Introduction

Amajor limitation of the planar-phased array is that as the beam is scanned from broadside, the
beam broadens and the pattern deteriorates. On the other hand, an array that is conformal to a
convex surface, such as a circular cylinder or a cone, has a beam that can be scanned in discrete
steps through an arc while maintaining a constant pattern. Antennas mounted on moving plat-
forms such as on an aircraft are usually covered by aerodynamic radomes to reduce drag and
improve performance. This can lead to wastage of space in the radome. An antenna that is flush
with the surface can reduce space and avoid hindering the aerodynamics. Although there are
some well-documented examples of conformal arrays, their use by and large is not widespread
mainly because of the complexity of the feed network as well the array itself. Recent improve-
ments in microwave and optical components have simplified the design of feed networks,
thereby making conformal arrays an attractive alternative for applications such as wide-angle
scanned beam antennas with ultra-low sidelobes. Of importance in the design of low sidelobe
antenna arrays is predicting the effect of mutual coupling between the array elements.
Difficulties can arise in the design of conformal arrays because the elements are pointing in

different directions and the curvature can create propagating waves on the surface, called
‘creeping waves’. Their impact on performance can be significant and difficult to predict with-
out detailed analysis. General surfaces usually involve esoteric functions and transformations
that considerably complicate the field analysis. An approximate approach involves obtaining
solutions for common surfaces such as planes, cylinders or spheres as canonical surfaces and to
generalize these results by allowing basic quantities to vary such as a radius by introducing
radius of curvature. In the following chapter, the canonical structure is a circular cylinder
but the approach is equally applicable to a cone or sphere.
In the next section, the radiation is determined from some typical conformal arrays. Next,

mutual coupling and radiation is described for a finite array of rectangular waveguides
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terminated in a circular conducting cylinder. Of particular interest are uniform asymptotic
representations of the basic problem due to a magnetic point source on a cylinder that has a
medium to large radius. Although there is an exact modal solution to this problem, it is not
useful for practical array analysis except for cylinders of small radius. A periodic array
approach is described for a cylinder that is similar to the infinite array approach for the plane.
A uniform asymptotic representation of diffraction is presented for analysing the array. These

are uniform in that they provide a smooth transition across the shadow boundary from a region
of direct illumination by the source to the shadow region where there is only a diffracted field.
As with the geometrical theory of diffraction (GTD), this representation admits a ray-based
interpretation of the field on the cylinder in terms of creepingwaves. Also, following the general
principles of GTD, the cylinder problem is treated as a canonical problem and, knowing its solu-
tion, a generalized solution can be devised for any smooth conducting convex surface.
The next section gives a brief review of the literature on the application of asymptotic tech-

niques to the analysis of mutual coupling and radiation of apertures in convex surfaces. The
reference list is a representative of the material published in the open literature. An analysis
of mutual coupling is described in Section 8.3 along with some computed results that include
a comparison of the coupling coefficients calculated from a present finite array analysis with
measured results. Some computed radiation patterns are presented for two different structures.
These results are compared with patterns obtained from an exact harmonic series solution
(Golden et al., 1974). Also, in Section 8.3, methods are discussed for reducing a large ‘charac-
teristic’ grating lobe in patterns of phased conformal arrays. Coupling in a periodic array is
described in Section 8.4 for a concave structure that is suitable for a variety of microwave lenses
that are used for array beamforming.

8.2 Radiation from a Conformal Aperture Array

Suppose an array of identical rectangular waveguides of width a and height b terminates in a
conducting cylinder of radius Ro as illustrated in Figure 8.1. As a first approximation, each
waveguide is assumed to support only the dominant TE10 mode. Without loss of generality
two cases will be considered. The one shown in Figure 8.1 is for waveguides oriented with
the electric field polarized in the circumferential direction and the case where the waveguides
are rotated through 90 and the electric field is parallel to the axis.

8.2.1 Waveguide with E-Field Polarized in Circumferential Direction

Consider a waveguide that is oriented so that its broadwall is parallel to the axis of the cylinder as
shown inFigure8.1.On the aperture, the field can be replaced by an axialmagnetic current element
dMz. It has been shown (Wait, 1959) the electric fieldcomponents radiatedby this axial current isof
the form

dEϕ r,θ,ϕ =
dMz

2π2Ro

e− jkr

r
exp − jkz cosθ

∞

n=−∞
jn
ejn ϕ−ϕ

H 2
n γ

8 1a

dEθ r,θ,ϕ = 0= dEr r,θ,ϕ , 8 1b

where γ = kRo sin θ >> 1. The total field is obtained by integrating across the aperture of the
waveguide as well as any other waveguides on the cylinder and summing the result. Assume
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a ring ofM equispaced apertures on the cylinder centred at locations (Roϕoi, zoi) i= 1,2,…M
on the surface, and angular extent of the unit cell of 2π/M. For one such aperture, the aperture
field is

Ea =ϕAi
2
ab

cos
π

a
z ; zoi−

a

2
< z < zoi +

a

2
;ϕoi−Δϕ <ϕ<ϕoi +Δϕ

Ai is the amplitude of the electric field excited in the aperture and Δϕ = b 2Ro. Substituting
for dMz due to the TE10 mode and integrating over the aperture results in

Eϕ r,θ,ϕ =Ai
2ab

π3Ro

e− jkr

r
exp jkzoi cosθ C

ka

2
cosθ I θ,ϕ , 8 2

where

I θ,ϕ =
∞

ν=−∞
jnS νΔϕ

ejνϕ

H 2
ν γ

8 3

the function S is defined in Appendix A.4 and ϕ =ϕ−ϕoi. Eq. 8.3 converges slowly for large
cylinders and for numerical evaluation the number of terms required to achieve convergence is
typically N ≥ ± γ + 5 . As shown by Wait (1959, Chapter 9), the series in Eq. 8.3 can be con-
verted via Watson’s transformation to a more convenient form for calculation, by initially con-
verting it to an integral in the complex ν-plane. Thus,

I θ,ϕ = − j

Cν

cos ν ϕ−π

sin νπ
S νΔϕ

ejνϕ

H 2
ν γ

dν

z

Ro

a

b

P(r,θ,ϕ)

r

x

y

ϕ

θ

Figure 8.1 Rectangular waveguide array on circular cylinder
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The contourCν initially runs along the horizontal axis in the complex ν-plane. To simplify the
integral, use is made of a creeping wave representation. The integral is the equivalent of a series
of creeping waves, which travel forward and backward around the cylinder. Taking only two
terms of the series, corresponding to the two dominant creeping waves, the integral becomes

I θ,ϕ ≈Q θ,ϕ +Q θ,2π−ϕ ,

where

Q θ,ϕ =

Cν

S νΔϕ
e− jν ϕ −π 2

H 2
ν γ

dν

The Watson transformation is then completed by deforming Cν around the zeros in the
ν-plane. This results in

Q θ,ϕ ≈ j
πγ

2
exp − j ϕ−

π

2
S γΔϕ

∞

p=1

e− jM ϕ −π 2 αp

αpAi αp
, 8 4

whereM = γ 2 1 3, αp is the p-th zero of the derivative of the Airy integral and Ai −αp is the

Airy function evaluated at this zero. The Airy function zeros and associated functions values are
tabulated in the references (Abramowitz & Stegun, 1965, Chapter 10). The terms of the series
are called creeping waves (Chan et al., 1977). Because αp is complex with a negative imaginary

part, the creeping waves decay with angular distance x = ϕ−π 2 . Close to the source, the
series converges slowly and it is replaced instead by an equivalent function, g(x), which is
known as the hard acoustic Fock function, after V.A. Fock, an early investigator of diffraction
by curved surfaces (Fock, 1965). Notice that x = 0 (ϕ = π 2) corresponds to the transition from
the lit to the shadow region. When x> 0, which corresponds to the diffraction region, the expo-
nentials of the acoustic Fock function decay and for large M Eq. 8.4 requires only a few terms
for accurate evaluation. The region x < 0 corresponds to the lit region and for x< −1 a good
approximation is

g x ≈2 exp j
x3

3
1−

j

4x3

Because of the transition at x = 0, it is convenient to define the modified hard acoustic
Fock function as

G x = g x
exp − jx3 3 ; x < 0

1; x > 0
8 5

Details of this function are given in Appendix G, and it is plotted in Figure 8.2. In the illu-
mination region as x −∞ , it is seen from Figure 8.2 that G 2 thereby recovering the
geometric optics result.
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As a result of these definitions,

Q θ,ϕ ≈ j
πγ

2
S γΔϕ G M ϕ−

π

2
exp − j ϕ−

π

2

and

I θ,ϕ ≈ j
πγ

2
S γΔϕ e− jγΦ1G MΦ1 + e− jγΦ2G MΦ2 , 8 6

where Φ1 =ϕ−π 2 and Φ2 = 2π−ϕ = 3π 2−ϕ are the angles subtended by the creeping wave
paths shown in Figure 8.3. This figure shows a source and an observer of two rays indicated as 1
and 2 corresponding to three possible regions (a) illumination; (b) shadow boundary; and (c)
shadow. The paths of the two creeping waves on the cylinder are also shown in Figure 8.3. The
final expression for the radiated field is

Eϕ r,θ,ϕ ≈Ai
ab 2γ
π2Ro

e− jkr

r
exp jkzoi cosθ C

ka

2
cosθ

× S γΔϕ e− jγΦ1G MΦ1 + e− jγΦ2G MΦ2

8 7
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Figure 8.2 Modified hard acoustic Fock function G(x), magnitude (dB) and phase

311Conformal Arrays of Aperture Antennas



A slightly improved form of Eq. 8.6 for axially oriented waveguides is adopted to ensure a
smooth transition of the hard acoustic Fock function from the illuminated to the shadow region.
These expressions are listed below.

Illuminated region (Φ1 < 0 or Φ2 < 0):

Eϕ r,θ,ϕ ≈Ai
e− jkr

r
sinθ Pz θ,ϕ e− jγMsinΦ1,2G M sinΦ1,2

+Pz θ,
π

2
e− jγMsinΦ2,1G M sinΦ2,1 ; Φ1,2 < 0, Φ2,1 > 0

8 8a

(a)

dMz

1
2

Φ1

Φ2

Observer

dMz
1

2

Φ1= 0Φ2

(b)

Observer

dMz

1

2

Φ2

(c)

Observer

Φ1

Figure 8.3 Creeping wave representation of radiation from a magnetic source on a circular cylinder.
(a) Direct illumination Φ1 < 0 and Φ2 < 0. (b) Shadow boundary Φ1 = 0 and Φ2 = 0. (c) Shadow region
Φ1 > 0 and Φ2 > 0
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Shadow region (Φ1 ≥ 0 and Φ2 > 0):

Eϕ r,θ,ϕ ≈Ai
e− jkr

r
sinθPz θ,

π

2
e− jγMΦ1G MΦ1 + e− jγMΦ2G MΦ2 , 8 8b

where

Pz θ,x = jk π2 ab 2C ka 2 cosθ S kb 2 sinθ sinx exp jkzoi cosθ

is the pattern function in the azimuth direction for z-directed magnetic source excitation.
As an example, Figure 8.4 shows the elevation radiation pattern as a function of the azimuthal

angle for a 45-element array of rectangularwaveguides (a = 2.286, b = 1.016 cm) in a cylinder of
radius Ro = 12 624 cm at a frequency of 9.5 GHz when only the central element is excited. The
waveguides are oriented with their broadwall parallel to the z-axis as shown in Figure 8.1 (i.e.
circumferential polarization). Also shown for comparison are the patterns of a single isolated
waveguide in the same cylinder. The impact of the array is clearly shown.
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Figure 8.4 Elevation patterns of 45-element array (a = 2.286 cm and b = 1.016 cm) in a cylinder with a
radius Ro = 12 624 cm versus azimuthal angle. Circumferential E-polarization at 9.5 GHz. × single
waveguide
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To steer the beam in a cylindrical conformal array, the path length from the cylinder to a
fictitious aperture plane needs to be included in the phase of the excitation coefficients. Thus,
a beam is formed in the direction (r, θb, ϕb ) in the far-field, if element i at (Ro, ϕoi, zoi) on the
cylinder, has a complex amplitude given by

ai =A ϕoi,zoi exp jk Ro 1− sinθb cos ϕoi−ϕb −zoi cosθb ,

where A is the illumination function (e.g. cosine). The aperture plane is at angle θb and the first
term in the exponential is the additional distance a ray travels from the centre of element i to
the aperture.
In a second example, the E-plane pattern produced by a 44-element azimuthal array that has

been excited and phased to produce a beam on boresight is shown in Figure 8.5. The waveguide
dimensions are a = 2.4 cm and b = 0.4 cm. In this example, Ro = 45 635 cm and the azimuthal
spacing is 2 2432∘ (1.7866 cm or 0.56 λ). The pattern in Figure 8.5 includes a large grating lobe
in the vicinity of 128 . The position of the n-th grating lobe of a cylindrical array is approx-
imately given by

sin
ϕnGL

2
= −

nλ

2d
sinθo,
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Figure 8.5 E-plane patterns of a 44-element azimuthal array with edge tapers of 0 and 10 dB at 9 GHz.
Dimensions a = 2.4 cm and b = 0.4 cm, Ro = 45.635 cm, and element spacing 2.2432
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where d is the element spacing and θo is the elevation angle. As has been described earlier in
Chapter 7, grating lobes can be reduced by tapering the illumination appropriately. This is
demonstrated in Figure 8.5 where a 10 dB edge taper has been applied to the excitation.

8.2.2 Waveguide with E-Polarized in Axial Direction

For completeness, the equivalent expression is given here for a TE10 mode excited waveguide
that has its electric field polarized in the z-direction (magnetic current is ϕ-directed), that is, the
broadwall is parallel to the circumferential direction. The incremental electric field components
radiated by the magnetic current dMϕ in this case are (Wait, 1959):

dEθ r,θ,ϕ = − j
dMϕ

2π2Ro

e− jkr

r
exp jkz cosθ cosecθ

∞

n=−∞
jn
ejn ϕ−ϕ

H 2
n γ

8 9a

dEϕ r,θ,ϕ = − j
dMϕ

2π2Roγ

e− jkr

r
exp jkz cos θ cotθ

∞

n=−∞
jnn

ejn ϕ−ϕ

H 2 '
n γ

8 9b

and

dEr r,θ,ϕ ≈0 8 9c

For a TE10 mode excited aperture with width a and height b centred at (Ro,ϕoi,zoi), the
aperture field is of the form

EA = zAi
2
ab

cos
πRo

a
ϕ−ϕoi

Making the substitution for the magnetic current and integrating over the aperture, the com-
ponents of the electric field in the far-zone are:

Eθ r,θ,ϕ = − jAi
2ab

π3Ro

e− jkr

r
cosecθ S

kb

2
cosθ exp jkzoi cosθ

×
∞

n= −∞
jnC n

a

2Ro

ejνϕ

H 2
ν γ

8 10a

Eϕ r,θ,ϕ = − jAi
2ab

π3kR2
o

e− jkr

r
cosecθcotθ S

kb

2
cosθ exp jkzoi cosθ

×
∞

n= −∞
jnnC n

a

2Ro

ejνϕ

H 2
ν γ

8 10b

The series in Eq. 8.10 can be evaluated asymptotically using the Watson transformation as
described earlier for the circumferentially polarized aperture. The reader is referred to the
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references for details of the next steps (e.g. Wait, 1959). For the present case, an appropriate
acoustic Fock function is required. This is the modified soft acoustic function, which is
defined as

F x = f x
exp − jx3 3 ; x< 0

1; x> 0
,

where f(x) is the soft acoustic Fock function that is defined in Appendix G. The modified soft
function is plotted in Figure 8.6 over the range of arguments −5 < x < 10.
The solution for axially polarized waveguides is a described by the following equations.

Illuminated region (Φ1 < 0 or Φ2 < 0):

Eθ r,θ,ϕ = − jAi
e− jkr

r

1
M

Pϕ θ,ϕ e− jγMΦ1,2F M sinΦ1,2

+Pϕ θ,π 2 e− jγMΦ2,1F M sinΦ2,1

8 11a

Eϕ r,θ,ϕ = −Ai
e− jkr

r
cos θ cosΦ1,2Pϕ θ,ϕ e− jγMΦ1,2G M sinΦ1,2

+Pϕ θ,π 2 e− jγMΦ2,1G M sinΦ2,1

8 11b
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Shadow region (Φ1 ≥ 0 and Φ2 > 0):

Eθ r,θ,ϕ = − jAi
e− jkr

r

Pϕ θ,π 2
M

e− jγMΦ1F MΦ1 + e− jγMΦ2F MΦ2 8 12a

Eϕ r,θ,ϕ = −Ai
e− jkr

r
cosθPϕ θ,π 2 e− jγMΦ1G MΦ1 + e− jγMΦ2G MΦ2 , 8 12b

where

Pϕ θ,x =
jk

π2
ab

2
C

ka

2
sin θ sin x S

kb

2
cos θ exp jkzoi cos θ

is the pattern function in the azimuthal direction for ϕ-directed magnetic source excitation.

Once again γ = kRo sin θ, G is defined by Eq. 8.5 and M = γ 2 1 3. The plot in Figure 8.6
shows that F(x) rapidly decays with increasing positive arguments, which indicates that the
Eθ-component level falls significantly with increasing angle into the shadow region.

8.2.3 Historical Overview of Asymptotic Solutions
for Conformal Surfaces

In the previous section, some basic techniques were introduced for evaluating the radiation
from apertures in conformal surfaces. There are several basic problems inherent to this work,
which has significant historical interest. This early work is summarized in this section.
The problem of diffraction by a smooth convex surface on which a source is located has been

studied since the early days of radio. A review of the literature concerned with this problem is
contained in the references (e.g. Pistolkors, 1947; Logan, 1959; Bowman et al., 1963; Fock,
1965; Mittra & Safavi-Naini, 1979; James, 1986). It is apparent from these references that most
of the early work involved asymptotic analysis of the radiation field and, with a few notable
exceptions, asymptotic investigation of the surface field held limited practical interest.
The formal solutionof the fields due toa sourceona circular cylinderwas first obtainedbySilver

andSaunders (1950), althoughearlier publicationsbyother authorsdescribed special solutions.As
the series for the surface fields converges slowly, even for cylinders of moderate radius, it was not
until later that the surface field solution was studied in any depth. Hasserjian and Ishimaru (1962)
obtained asymptotic solutions for the surface field due to axial and circumferential slots.Thiswork
was motivated by the need to determine mutual coupling between slots on a cylinder. Asymptotic
solutions for the currents on a sphere had been obtained earlier by Fock (1965), Franz (1954) and
Wait (1956). A significant feature of the paper by Hasserjian and Ishimaru (1962) is that they
derived a small argument approximation that is valid near the shadow boundary by expressing
the contour integral for the field as an inverse Laplace transform (Bromwich integral) the power
series of which is easily evaluated. This is now a standard tool for determining the small argument
approximation to functions which arise in the asymptotic analysis of the current on large conduct-
ing bodies, the so-called surface Fock functions which are defined in Appendix G.
Asymptotic solutions for the radiation from apertures in cylinders have been covered by

numerous authors including Sensiper (1957), Bailin and Spellmire (1957), Wait (1959) and
Lee and Safavi-Naini (1976). One of the earliest attempts to extend the cylindrical solution
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to arbitrary structures is that ofGoodrich et al. (1959)whogeneralized the argument usedbyFock
in the vicinity of the shadow boundary. This technique is essentially the GTD approach where a
solution for an arbitrary convex surface is obtained from ‘canonical’ problems such as the
cylinder or the sphere. A GTD solution for radiation from apertures in arbitrary convex surfaces
was presented by Pathak and Kouyoumjian (1974). A short-coming of this solution is that ray
torsion, due to the surface having two different radii of curvature, is not included. Neglect of
ray torsion is usually not important in the principal plane radiation patterns of structures with
at least one plane of symmetry; however, it can be important in other planes. Subsequently,
improved solutions were developed, notably the work of Lee and Safavi-Naini (1976), Mittra
and Safavi-Naini (1979) and Pathak et al. (1981). These solutions are uniform asymptotic
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Figure 8.7 Creeping waves on a circular cylinder. (a) Ray paths of the first six creeping waves between
P and P . (b) Amplitude of creeping wave on a ray path at angle θ, where xo = 4M2 3. (c) A projected view
of a ray path on the cylinder

318 Fundamentals of Aperture Antennas and Arrays



descriptions which represent the field everywhere in terms of continuous functions, the acoustic
Fock functions. The original solution given byMittra and Safavi-Naini (1979) does not reduce to
the geometric optics result although this is easily rectified. The solutions presented byPathak and
Wang (1978, 1981) and later improvements by the author (Bird, 1985a) are in general use at pres-
ent, because excellent agreement with practice has been obtained for a wide range of surfaces.
The asymptotic solution obtained by Hasserjian and Ishimaru (1962) for the surface field

on a cylinder retains only the lowest order terms in q = j kt and (1/M). As shown in
Fig. 7.35, t is the path length between the source and field points on the cylinder and

M = kRt 2 1 3 is the magnification factor. Rt is the radius of curvature of the surface in the
ray direction. This first order solution predicts, for example, zero field along the axis for an
axial magnetic point source and hence zero H-plane coupling for arrays of TE10 mode excited
circumferentially polarized waveguides. Only by including q2 and higher-order exact solution
terms one can accurately represent the field parallel to the magnetic point source. Other workers
(e.g. Chang et al., 1976; Chan et al., 1977) have provided solutions for the cone, for example,
which include all terms up to q2. Both solutions are based on an asymptotic evaluation of the
rigorous Green’s function solution for each geometry. In later work, Boersma and Lee (1978)
obtained a solution containing terms up to q3 and 1/M2, using a GTD-style approach. They
modified the asymptotic solution for a source on a conducting sphere such that it provided accu-
rate results for the cylinder as well. In another approach, Pathak andWang (1981) described an
asymptotic solution for surface field on an electrically large conducting convex surface. This
solution was devised from asymptotic solutions for the cylinder and the sphere and, therefore,
recovers these results as limiting cases. It contains all terms up to q3 and 1/M. All solutions
mentioned above recover the solution for a magnetic source on a plane in the limit that the radii
of curvature become infinitely large. However, each solution predicts a different limiting value
for the field in the vicinity of the axis (paraxial region) of a cylinder excited by a circumferential
magnetic point source. This discrepancy occurs because the exact solution is dependent on
some 1/M2 terms in the region of the axis. It can be shown that an asymptotic surface field
solution for the circular cylinder that retains terms up to q3 and 1/M2 gives the correct limiting
value. Other significant references on apertures in conformal surfaces include Shapira et al.
(1974a, b), Lee and Mittra (1977, 1979), Golden et al. (1974), Steyskal (1977) and Hessel
et al. (1979).

8.3 Mutual Coupling in Conformal Arrays

Consider an array of identical rectangular waveguide of width a and height b that terminate in
an arbitrary surface. It is assumed that each waveguide supports only the dominant TE10 mode.
Starting from Eq. 7.31 and introducing Eq. 7.33 for a cylinder, the normalized mutual admit-
tance of these modes (i.e. mode 1) in the surface is

yij 1,1 = −
1

AiAj Di

1
Yj

Ej × ρ Hij R dSj, 8 13

where

Ei =Aip
2
ab

cos
πxi
a
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with p = ϕcosωi + zsinωi the polarization of the electric field, Yi = Y10 = Yoβ10 k is the TE10

mode wave admittance and β10 is its propagation constant. In the above, ωi is the angle of the
aperture relative to the axis of the cylinder as shown in Figure 8.8. The arrangement where all
elements are aligned in the circumferential direction (ωi = 90 ) is shown in Figure 8.1. In
addition,

Hij R =
Dj

0 0 0

0 G h
ϕϕ G h

zϕ

0 G h
ϕz G h

zz

MjdSj, 8 14

where the matrix in Eq. 8.14 is a representation of the dyadic Green's function G h R R in

Eq. 7.33. The zero elements in the dyadic correspond to the radial components which vanish
because of the boundary condition on the cylinder surface. Also, because of symmetry

G h
zϕ =G h

ϕz . Continuing, the magnetic current on aperture i is Mi =Ei × ρ and, therefore,
Eq. 8.13 becomes

yij 1,1 = −
2k

abYoβ10 Di

dSi cos
πxi
a Dj

dSj cos
πxj
a

× G h
ϕϕ cosωi cosωj +G h

zz sinωi sinωj +G
h
ϕz sin ωi +ωj

8 15
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Figure 8.8 Geometry of mutual coupling analysis on a cylinder of radius Ro
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The three independent components of the dyadic function for the cylinder, namely,G h
ϕϕ,G

h
zz

andG h
ϕz , correspond to the magnetic field on the surface of a metallic surface, due to a magnetic

point source of unit strength also on the surface. These components can be expressed in closed
form as follows (Felsen & Marcuvitz, 1973; Bird, 1985a):

G h
ϕϕ ϕi,zi ϕj,zj = −

jYo

2π 2Ro

∞

−∞

dξ
∞

n=−∞
exp j nϕ−ξz

k

h

×
H 2

n hRo

H 2
n hRo

−
nξ

kz

2 H 2
n hRo

H 2
n hRo

8 16a

G h
ϕz ϕi,zi ϕj,zj =

jYo

2π 2Ro

∞

−∞

dξ
∞

n=−∞
exp j nϕ−ξz

×
nξ

khRo

H 2
n hRo

H 2
n hRo

8 16b

G h
zϕ ϕi,zi ϕj,zj =G h

ϕz ϕi,zi ϕj,zj 8 16c

G h
zz ϕi,zi ϕj,zj =

jYo

2π 2Ro

∞

−∞

dξ
∞

n=−∞
exp j nϕ−ξz

h

k

H 2
n hRo

H 2
n hRo

, 8 16d

where

h = k2−ξ2, ϕ =ϕi−ϕj and z= zi−zj. Note that when ξ > k, h = − j k2−ξ2 .

The dyadic components given in Eq. 8.16 can be substituted into Eq. 8.15, and a closed form
result can be obtained for the mutual admittance on a cylindrical surface. The result can be time
consuming to compute numerically for cylinders of moderate to large radius (i.e. kRo > 10).
However, in that latter case, approximate solutions for the dyadic components can be derived
by asymptotic methods. From these it is then relatively straight-forward to compute elements of
the admittance matrix from Eq. 8.15 by numerical integration. A similar approach is possible
for apertures on a conducting sphere or a more general surface (Hessel et al., 1979;
Wills, 1986).
The coupling coefficients are the elements of the scattering matrix for an array on the cyl-

inder or sphere, and this matrix is obtained in much the same way as for a planar array. The
element-by-element approach is used to calculate admittances between two apertures at a time.
This is possible because the apertures are in a conducting cylinder. The self-admittances can be
calculated directly from Eq. 8.15, or if the surface has a moderate to large radius of curvature,
the admittance of a single aperture in a ground plane is a good approximation (Bird, 1988).
Once the admittance matrix y has been found, the scattering matrix can be computed as for

the planar case from S= 2 I+ y −1−I, where I is the unit matrix. The complex amplitudes
of the electric and magnetic fields are A = a + b and B= a−b , respectively, and the ampli-
tudes are related through b=Sa as described in Section 7.3.3.
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8.3.1 Asymptotic Solution for Surface Dyadic∗

An asymptotic solution for the surface field at (Ro, ϕ, z) on the surface of the cylinder due to a
source situated at (Ro, ϕ , z ) also on the surface is expressed in the form

G
=

h ϕ,z ϕ ,z
∞

p = 0

G
=

ϕ + 2pπ,z + G
=

2π−ϕ + 2pπ,z , 8 17

where ϕ =ϕ−ϕ and z = z−z . The dyadic function G is the field due to a single surface ray in
one direction while the summation corresponds to creeping waves travelling along helical paths
between the field and source points. Figure 8.7 illustrates creeping waves on a cylinder. In this
section an approximate asymptotic solution is obtained for each component of the surface field
dyadic of a cylinder. Each term of Eq. 8.17 can be interpreted as a surface wave and the field on
the cylinder as a standing wave produced by contra-rotating surface waves, which propagate
from the source to the field point along helical ray paths, as depicted in Figure 8.7a. These
waves follow the curvature of the cylindrical surface and appear to ‘creep’ from the source
to the field point. These creeping waves attenuate as they propagate requiring, in any practical
calculation (see Fig. 8.7b), the consideration of only two contra-rotating creeping waves encir-
cling the cylinder just once. That is,

G
=

h ϕ, z ϕ , z G
=

ϕ, z + G
=

2π−ϕ, z

Several approximate asymptotic solutions have been obtained, and five of them were com-
pared with the exact solution for a range of parameters (Bird, 1984). The asymptotic solution
becomes identical to the exact solution for a point source on a plane conductor when the radius
of the cylinder approaches infinity.
Let t and θ be co-ordinates relative to the source on the projected surface of the cylinder,

Figure 8.7c, where t = z2 + Roϕ
2
and θ = tan−1 z Roϕ . An accurate solution for the three

non-zero components of the dyadic are as follows (Bird, 1985a):

Gzz t,θ v β Go t cos2θ + q 2−3cos2θ +C 1
zz t,θ , 8 18a

where

C 1
zz t,θ =Go t q v β

31
72

sin2θ−
5
24

+ v1 β
11
60

−
17
36

sin2θ

+ v2 β
1
24

sin2θ +
1
40

+
jβ

5
v 1
0 β ,

where β = kt 2M2 = kt cos2 θ 2kRo
2 3

is the distance parameter, Go t = − k2 2πηo q

exp − jkt and q= j kt. The functions v(β), v1(β), v2(β) and v 1
0 β are the surface Fock

functions, which are detailed in Appendix G. The remaining asymptotic dyadic components are
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Gϕϕ t,θ v β Go t sin2 θ + q 2−3sin2 θ +C 1
ϕϕ t,θ 8 18b

and

Gϕz t,θ v β Go t sinθcosθ 1−3q +C 1
ϕz t,θ , 8 18c

where

C 1
ϕϕ t,θ =Go t q sec2θ u β −v β + v β

8
9
tan2θ−

31
72

sin2θ

+ v1 β
17
36

sin2θ−
43
45

tan2θ + v2 β
1
15

tan2θ−
1
24

sin2θ +
jβ

5
v 1
0 β tan2θ

and

C 1
ϕz t,θ = −Go t qsinθcosθ v β

5
9
sec2θ−

31
72

+ v1 β
17
36

−
28
45

sec2θ + v2 β
1
15

sec2θ−
1
24

+
jβ

5
v 1
0 β sec2θ

A more accurate result is possible by the addition of higher-order terms (Bird, 1984), where
terms up to third order in q are required. This full solution was used to study the effect of the
aperture orientation in the cylinder on the self-admittance (Bird, 1988). This work showed that
for moderately large cylinders the self-admittance is relatively weakly dependent on orientation
and the self-admittance of the waveguide in a ground plane is an excellent approximation com-
pared with experiment.
As a verification of the above solution, some results are described for mutual coupling

between waveguides in a cylinder. As a first example, Figure 8.9 shows the computed magni-
tude and phase of the mutual admittances of apertures coupling in the H-plane at 9 GHz as a
function of angle between of twoWG-16 rectangular waveguides (a = 2.286 cm, b = 1.016 cm)
on a cylinder of radius 5.057 cm. A single TE10 mode is assumed in each aperture and a 9 × 9
regular grid of integration points is used with Simpson’s rule in the computation. The modal
solution results are taken from an extensive data compilation on the topic (Lee &Mittra, 1977).
Another result is given this time for a 29-element array of WR-90 X-band waveguides that

terminate in a cylinder (pictured in Figure 1.1i). The waveguides are arranged with their prin-
cipal electric field oriented in the circumferential direction in the manner illustrated in
Figure 8.1. The cylinder has a radius of 126.24 mm and the waveguide azimuthal and axial
spacing’s are ϕo = 11 61 and xo = 28 40 mm (Wills, 1983). The scattering parameters are com-
puted from the mutual admittances that were obtained from a single mode approximation for
the aperture field, and these are compared with experimental results. Each waveguide is fed
with a coaxial line-to-waveguide stepped end-launcher. Figures 8.10a and b show a quadrant
of the array for experimental (a) and computed coupling (b) coefficients, respectively, that were
obtained at 9.5 GHz when the centre waveguide was driven and the other waveguides were
terminated in matched loads. The theoretical values were computed using the asymptotic
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formulae Eq. 8.18 and a single mode approximation for the aperture field. There is good agree-
ment between the single-mode theory and experiment except for the distant elements in the H-
plane where the coupling level is low. However, the agreement is expected to improve if more
modes are assumed for the aperture field. Results computed from an infinite array analysis
implemented by Wills (1986) are also in good agreement with the finite array analysis except
on the array periphery and at several waveguides in the H-plane.
The radiation pattern in the E-plane of the 29-element conformal array of axially oriented

waveguides described earlier is shown in Figure 8.11. The central waveguide is excited,
and the remaining elements are terminated in matched loads. It is seen that reasonable agree-
ment is obtained between theoretical and experimental results except mainly at wide angles.

8.4 Coupling in a Concave Array: Periodic Solution�

Two-dimensional conformal periodic arrays can be handled through the natural periodicity of
the circular geometry and two examples are illustrated in Figure 8.12. Two-dimensional
microwave lenses are an important class of beamforming networks for array antennas. Prac-
tical examples include the Ruze and Rotman lenses for linear arrays and the R-2R lens for
cylindrical arrays, a part of which is a cylindrical lens (Ruze, 1950; Rotman & Turner,
1963). A basic realization consists of a parallel plate region fed by coaxial probes mounted
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Figure 8.11 E-plane radiation pattern of 29-element axial waveguide conformal array (see Figure 8.10)
at 10 GHz when central element is excited and other waveguides terminated in matched loads
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close to the lens contour or by waveguides terminated in the lens contour. In a typical micro-
wave lens design, the input (beam) and output (array) contours are chosen so that a beam is
formed when one or more inputs are excited. According to geometric optics, this is possible if
all ray path lengths are identical from the feed port to the radiated wave-front by means of the
array port contour. This cannot be achieved in general for each ray and there is an associated
path length error. Usually the two lens contours are designed to minimize these errors for all
beams. In this section a simplified model for a concave array is developed based on a periodic
array on a cylinder.
Consider an array of N apertures of width a that terminates in a concave metallic cylinder of

radius Ro. A unit cell is shown in Figure 8.13. Suppose ψ is the phase shift per unit cell around
the cylinder and ϕo = 2π N is its angular extent. When the axis of the cylinder is along the
z-direction, the field in the cylinder is periodic and of the form

Ez ρ,ϕ = k2
∞

n=−∞
DnJνn kρ exp jνnϕ 8 19a

Hϕ ρ,ϕ =
− jk2

ηo

∞

n=−∞
DnJνn kρ exp jνnϕ , 8 19b

where νn = ψ + 2πn ϕo. For electrical periodicity, it is required that ψ = 2π N ℓ;
ℓ = − N 2 + 1,…,0,…, N 2 . Therefore, νn = ℓ + nN.
Boundary conditions on the surface of the cylinder ρ=Ro require zEz =EAz over the aperture

in the unit cell −ϕo 2 <ϕ<ϕo 2 (see Figure 8.13). This requires that

EA = k
2

∞

n = −∞
DnJνn kRo exp jνnϕ 8 20

(a) (b)

Beam
ports

Array
portsϕ

Array port
surfaceBeam port

surface

Absorber

a  
Ro

ρ

Figure 8.12 Waveguide-fed parallel plate concave arrays. (a) Circular lens. (b) Rotman lens.
Source: Reproduced with permission of the Institution of Engineers, Australia
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for −ϕo 2 <ϕ <ϕo 2. Taking the inverse Fourier transform results in

Dn =
N

2πk2
1

Jνn kRo

ϕo 2

−ϕo 2
EA Ro,ϕ exp − jνnϕ dϕ 8 21

Introducing Eq. 8.21 into Eqs. 8.19 gives the field inside the cylinder as

Ez ρ,ϕ =
N

2π

∞

n= −∞

Jνn kρ

Jνn kRo

ϕo 2

−ϕo 2
EA Ro,ϕ exp jνn ϕ−ϕ dϕ

Hϕ = −
jN

2πηo

∞

n = −∞

Jνn kρ

Jνn kRo

ϕo 2

−ϕo 2
EA Ro,ϕ exp jνn ϕ−ϕ dϕ

Let the field in the aperture be represented by the following modal expansions:

EAz= z
∞

p = 1

Apep ϕ

and

HAϕ=ϕ
∞

p= 1

BpYpep ϕ ,

where ep = 2 ϕo cos pπϕ ϕo , Yp is the admittance of mode p, while Ap and Bp are the mode
coefficients of the electric and magnetic fields. Continuity of the magnetic field component Hϕ

at ρ =Ro requires that

a

o/2
Ro

Ez

z
ρ

ϕ

ϕ

Figure 8.13 Unit cell of concave periodic array
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∞

p = 1

BpYpep = −
jN

2πηo

∞

n=−∞

Jνn K

Jνn K
exp jνnϕ

∞

p= 1

Ap

ϕo 2

−ϕo 2
ep ϕ exp − jνnϕ dϕ

= −
jN

2πηo

∞

n=−∞

Jνn K

Jνn K
exp jνnϕ

∞

p= 1

ApIp −νn ,

8 22

where

Ip ν =
ϕo 2

−ϕo 2
ep ϕ exp jνϕ dϕ

=
2 2ϕo

pπ
−1 p−1 2C

ϕoν

2

K = kRo, and the function C(x) is defined in Appendix A.4. Multiplying both sides of Eq. 8.22
by eq and integrating across the aperture results in

BpYp = −
jN

2πηo

∞

q=1

Aq

∞

n=−∞

Jνn K

Jνn K
Ip −νn Iq νn

That is,

Bp =
∞

p= 1

YpqAq,

where Ypq is the mutual admittance of elements p and q in the apertures for the ℓ-th phase
sequence. This is expressed as follows:

Ypq ℓ = −
jN

2πηoYp

∞

n=−∞

Jνn K

Jνn K
Ip −νn Iq νn

Suppose the aperture field consists of only the fundamental TE10 mode, that is, p = 1 = q then

Y11 ℓ = −
j4Nϕo

π3
k

β10

∞

n=−∞

Jνn K

Jνn K
C

νnϕo

2

2

, 8 23

where Yp = β10 kηo is the mode admittance, and β10 is the mode propagation constant. Recall
that νn = ℓ + nN. When νn > 2kRo, the following asymptotic formula can be used for the ratio of
the Bessel function derivative with itself (see Appendix B.1). Thus,

Jνn K

Jνn K
≈

νn
K

2
−1
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The series in Eq. 8.23 converges rapidly for 2 ϕo << νn as νn becomes large resulting in

Jνn K

Jνn K
C

νnϕo

2

2

≈
1
K

π

ϕo

4 cos2 νnϕo 2
ν3n

The active reflection coefficient can be used to determine the coupling to the other wave-
guides. The active reflection coefficient in the present case is defined by

Γ ℓ =
1−Y11 ℓ

1 + Y11 ℓ

= exp 2jarg 1−Y11 ℓ ,

since the admittance Y11 is purely imaginary. The coupling coefficient between waveguide n
and the central (0-th) element is given by

Sn0≈
1
N

Lmax

ℓ = −Lmin

Γ ℓ exp j
2πnℓ
N

=
1
N

Lmax

ℓ = −Lmin

exp 2j
πnℓ

N
+ arg 1−Y11 ℓ ,

8 24

where Lmax = Int N 2 , Lmin =N− 1 + Int N 2 and the function Int(x) is the integer value of
x ≤ x. The limits of ℓ are chosen to make the middle element to be located at ℓ= 0.
As an example of the results given by this formulation and Eq. 8.24, the coupling coefficients

in theH-plane at 9.5 GHz are shown in Figure 8.14 for 60 element array of X-band waveguides
(width a= 0 724λ corresponding to WG-16 waveguide at 9.5 GHz) located in a cylinder of
radius Ro = 8 λ. The elements are spaced a distance 0.84 λ or ϕo = 6 apart. A geometric optics
estimate for the coupling in the H-plane based on a ray analysis can be obtained and is

S21 ϕa
2≈

8ka
π3

k

β10
1 +

β10
k

2

sin
ϕa

2
C

ka

2
sin

ϕa

2

4 1
ks

, 8 25

where ϕa is the angle at the centre of the circle between the source and receiving elements, and
s= 2Ro sin ϕa 2 is the distance between the waveguide centres. The results predicted by
Eq. 8.25 are shown in Figure 8.14 as the GO solution. Eq. 8.25 gives a reasonable estimate
providing the receiving waveguide is not too near the source waveguide.
The circular lens, shown in Figure 8.12a, can be analysed using the above formulation or

the one based on the mutual admittance that is obtained from an asymptotic formation of
the surface field as described in the references (Ishihara et al., 1978; Bird, 1985b; Parini &
Lee-Yow, 1986). An indication of the level of coupling that can be expected in circular lens,
the power coupled across the lens, is shown in Figure 8.15 for a lens of diameter 25 cm. The
lens is excited by tenWG-16 waveguides (width 2.286 cm). Five waveguides are located on the
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beam (input) side as shown in the inset in Figure 8.15 and another five on the array (output)
side. Figure 8.15 shows the computed and measured amplitude of the coupling coefficient S16.
Despite the strong interactions around the lens, quite good agreement has obtained for this and
the other coupling coefficients including the input reflection coefficient.

8.5 Problems

P8.1 Calculate and plot the radiation patterns in the E- andH-planes at 28 GHz for a waveguide
with inside dimensions 7.112 × 3.556 mm that is terminated in a cylinder of diameter of
100 mm. The narrow wall of the waveguide is parallel to the axis of the cylinder (i.e. axial
polarization).

P8.2 Verify that the excitation coefficient of an element of an array on a cylinder that produces a
beam in the direction (r, θb,ϕb) is given by a=A ϕo,zo exp jk Ro 1− sinθb cos ϕo−ϕb

−zo cos θb , where the centre of the element is at (Ro, ϕo, zo) and A is the illumination
function.

P8.3 Commencing with the far-field radiated by an axially oriented waveguide in Eq. 8.8, plot
the E-plane radiation pattern of a 33-element equispaced conformal array of these ele-
ments on a cylinder of radius Ro = 25λ. The waveguide dimensions are width a = 0 7λ
and height b = 0 4λ, and the element spacing is 0.5 λ. Apply an excitation to steer the array
in the azimuth direction to an angle of 30 from boresight.

P8.4 For the same array configuration and cylinder radius as in P8.3, increase the element spa-
cing to 1 λ and demonstrate the formation of two grating lobes.

P8.5 From Eq. 8.18, show that as the radius of a cylinder becomes increasingly large the
asymptotic solution for the surface field approaches that of an infinite metallic plane.

P8.6 Simplify the self-admittance of a rectangular waveguide aligned in the axial direction
ωi = π 2 in a cylinder given by Eq. 8.15. In particular, consider the integral in the vicin-
ity of h = 0 and the evaluation of the Hankel functions. Evaluate the ratio of the Hankel
function and its derivative in this region. Describe what happens when the radius of the
cylinder becomes very large (i.e. Ro ∞ ).

P8.7 Using the definition of the hard surface Fock function, v m
n z , given by Eq. G.5 in

Appendix G, where the argument z is complex, show that its derivative can be obtained

from itself and the next order function as follows: v m
n z = n + 1 2 v m

n z −v m
n+ 1 z z .
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9
Reflectarrays and Other
Aperture Antennas

9.1 Introduction

There are a variety of other aperture antennas which find use in specialized applications that
have not yet been considered. Some of these antennas that will be described in this chapter
are illustrated in Figure 9.1. The first type shown in Figure 9.1a is the reflectarray. In design
and operation, reflectarrays are inherently a combination of arrays and reflectors. They were
first developed in the 1960s to achieve a high gain in combination with a low profile and
with a potential ability to modify the beam direction without the complexity of a complex
RF beamformer, which is usually associated with scanning arrays (Berry et al., 1963). Since
the 1980s, reflectarrays have increasingly been made with microstrip patch elements on a
substrate with a metal ground plane. These microstrip reflectarrays are illuminated by a feed
and consist of a number of discrete resonant elements that are conventionally passive and
arranged on a plane or conformal to another surface such as a cylinder. By appropriate
phasing of the elements, a reflectarray can be a source of directive radiation (Huang &
Encinar, 2008).
Another type of aperture antenna that gives directive radiations is a lens. Some lens antennas

are illustrated in Figure 9.1b. A lens was first used as an antenna for radio by Oliver Lodge in
1889. In the same way as in optics, a lens can create directive radiation from a point source or
conversely receive energy and focus it to a point. A lens is often used in combination with other
aperture antennas such as a horn or reflector.
The third type of aperture antenna described here, which is illustrated in Figure 9.1c, is the

Fabry–Pérot resonator antenna. This can be highly efficient and flexible as a radiator, but in

Fundamentals of Aperture Antennas and Arrays: From Theory to Design, Fabrication and Testing,
First Edition. Trevor S. Bird.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
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Figure 9.1 Some other aperture antennas. (a) Reflectarray; (b) plano-convex and spherical lenses
and (c) Fabry–Pérot resonator antenna
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its basic form, it is a narrowband device. The Fabry–Pérot cavity was first used in optics to
create an intense beam of light. This cavity was invented by the physicists Charles Fabry and
Alfred Pérot in the 1890s (Born & Wolf, 1959). In common with practice in optics where
light is injected between two mirrors one of which is slightly transparent, radio frequency
versions operate in a similar fashion as shown in Figure 9.1c. The operation of a Fabry–Pérot
resonator antenna is described in this chapter and as well as some techniques that are used to
broaden its bandwidth.

9.2 Basic Theory of Reflectarrays

A reflectarray consists of discrete resonant elements that are typically arranged on a planar sur-
face. An important attribute of an element in this application is phase compensation. It is vital
for reflectarrays to have this attribute so that in a similar manner to a paraboloidal reflector it can
focus and redirect rays from a source towards an intended direction or in receive mode into a
feed horn. When the elements are excited at their resonant frequency, the scattered energy can
be highly directive as for a solid reflector antenna. In this section a simplified model of the array
elements is developed. In this model, mutual coupling has been neglected although the prin-
ciples described in the previous sections could be adopted for a more accurate representation of
the antenna radiation.
Typically, a reflectarray is a planar surface, but in principle, it could be conformal with other

surfaces to suit the application.Whatever the surface profile, a fundamental property of a reflec-
tarray element located at (xi,yi) is to have a phase shift Ψij such that

k ρij−rij rb −Ψij = 2Nπ; i= 1,…,Nx; i= 1,…,Nx, 9 1

where ρij is the radial distance from the feed at F to the element located at (xi, yi), as shown in
Figure 9.2a, and the total number of elements is Ne =Nx +Ny. The vector rij extends from O to
the centre of element i, rb is a unit vector in the direction of the main beam, and N is an integer
selected such that the phase is in the range 0–360 . Individual patches are usually designed to
resonate at or near half the guided wavelength in the substrate (i.e. λ 2 εr, where εr is the
dielectric constant of the substrate above the ground plane), and the spacing between elements
is chosen to be half the free-space wavelength, that is, λ/2. The most common ways to introduce
the phase shift Ψij into element ij is to either change its size (see Figure 9.2b), to add a short or
open circuited stub or to shunt load the element with an active element such as a varactor diode.
The advantage of the last-mentioned technique is that the reflectarray can be made adaptable to
enable the beam to be steered electronically or to make the surface reconfigurable. Whatever
phase compensation technique is employed, it is helpful for design to know the dependence
of the phase response on variable parameters such as dimensions, length of stub or diode
bias. Linear polarization is often handled with rectangular elements, while in circular polari-
zation square, two orthogonal stubs or circular patches can be used. An early difficulty with
reflectarrays was the very narrow bandwidth available mainly due to phase errors. This has
now been largely overcome by the use of thicker substrates, stacked patches and improved
modelling techniques.
An element can be modelled in a simple way as a transmission line or more accurately

with a commercial full-wave software package. A simple narrowband radiation model
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of a single rectangular patch is shown in Figure 9.2a. It consists of an array of patches
with a uniform current that has been excited by a feed horn, the pattern of which can be
calculated from basic array theory. The uniform current is assumed to be set up on element
i located at (xi, yi) by the feed located at F. In spherical polar co-ordinates relative to F,
this is

P(r, θ, ϕ)
z

O

y

a
b

x f

F

𝜔
ij

𝜊
ij

𝜍
ij

r
ij

rb

r

(xi,yj,–f)

εrh

(a)
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Figure 9.2 Geometry of the reflectarray. (a) Feed illumination and geometry and (b) typical
phase compensating patch elements
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Jsij = 2z×H
inc
ij exp − jkh εr cos jkh εr exp jΨij , 9 2

whereHinc
i is the incident magnetic field from the feed. It is assumed that the element is located

on a substrate of thickness hwith a dielectric constant εr that is backed by a ground plane. Also
each patch has associated with it an additional phase factor Ψij due to techniques such as those
shown in Figure 9.2b. The element is assumed in the far-field of the feed, and therefore, its
radiated electric field is given by

Einc
ij =

Eo exp − jkρij
ρij

ψA ψ ij cos ξij−ξB ψ ij sin ξii ,

where Eo is a constant. Relative to the feed point F, the centre of the patch i has spherical

polar co-ordinates given by (ρij, ψ ij, ξij), where ρij = x2ij + y
2
ij + f

2, ψ ij = tan
−1 x2ij + y

2
ij ρi

and ξ= tan−1 yij xij . The magnetic field at the centre of the patch is

Hinc
ij =

1
ηo
ρ×Einc

ij =
Eo exp − jkρij

ηoρij
ψB ψ ij sin ξij + ξA ψ ij cos ξij

The power radiated by the feed can be calculated from

Pf =
1
2

π 2

0
dψ sin ψ

2π

0
dξρ2 Einc ×Hinc ρ

=
Eoπ

4ηo

π 2

0
dψ sin ψ A ψ 2 + B ψ 2 9 3

In the special case of a symmetric feed pattern, A ψ =B ψ = cosnψ , Eq. 9.3 simplifies to
Pf =Eoπ η 2n + 1 . The surface current is now expressed as

Jsij = −
2Eo

ηoρij
exp − jk h εr + ρi + jΨij cos kh εr Gij, 9 4

where the vector Gi has the following components when expressed in the global co-ordinate
system (x, y, z)

Gijx =A ψ ij cos2ξij +B ψ ij cos ψ ij sin
2ξij

and

Gijy = A ψ ij −B ψ ij cos ψ ij

sin 2ξij
2

The field radiated by this current on element i to a far-field point can be found from Eq. 6.31.
The total field consists of this radiation plus the field scattered by the dielectric substrate and the
ground plane. For the moment, the scattered field from the substrate is ignored assuming the
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patches are densely packed and they are the only scatterer. Further, for simplicity, it is assumed
here that the current is constant over the surface of the patches. Thus, for patch i,

Eij≈ −
jkη

4π
e− jkr

r
Jsij− Jsij r r

Sij

exp jkr rij dS , 9 5

where rij = xxij + yyij. As noted previously, the second term in Eq. 9.5 cancels the radial com-
ponents produced by the first term. The remaining components are

Eijθ = −
e− jkr

r
cos θ Fijx cos ϕ +Fijy sin ϕ 9 6a

Eϕ ij = −
e− jkr

r
−Fijx sin ϕ +Fijy cos ϕ , 9 6b

where

Fij u,v =
jkηe− jkf cos θ

4π

xij+ai 2

xij−ai 2
dx

yij + bi 2

yii −bi 2
dy Jsij exp jk ux + vy

= −
jkEo

2πρji
exp − jk h εr +Ri − f cos θ + jΨij cos kh εr GijIij u,v

with u= sin θ cos ϕ and v = sin θ sin ϕ. The integral in u, v simplifies as follows:

Iij u,v =
xij+a 2

xij−a 2
dx

yij + b 2

yij −b 2
dy exp jk ux + vy

= exp jk uxij + vyij −ab S
kua

2
S

kvb

2

S is the sinc function, which is defined in Appendix A.4. Now assume Ψij is chosen so that
Eq. 9.1 is satisfied. That is, kρij−Ψij−krij rb = 2Nπ. Thus,

Fij =
jkEoaibi

2
exp jk uxij + vyij− f cos θ−rij rb−h εr GijS

kua

2
S

kvb

2
cos kh εr

9 7

Suppose the centre of the beam has co-ordinates (θb , ϕb), the beam direction is

rb = x sin θb cos ϕb + y sin θb sin ϕb + z cos θb

= xub + yvb + z cos θb

Since ri = xxi + yyi,

ri rb = xiub + yivb
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This relationship, together with Eq. 9.6, results in the following electric field components
radiated by element i:

Eijθ≈ −α
e− jkr

r

1
ρij

exp jk xij u−ub + yij v−vb − f cos θ

× S
uka

2
S

vkb

2
cos θ Gijx cos ϕ+Gijy sin ϕ

9 8a

Eijϕ≈ −α
e− jkr

r

1
ρij

exp jk xij u−ub + yij v−vb − f cos θ

× S
uka

2
S

vkb

2
−Gijx sin ϕ+Gijy cos ϕ ,

9 8b

where α= jkEoab 2π exp − jkh εr cos kh εr . The total field is obtained by summing
over the fields radiated by all such elements, namely, i, j= 1,…Ne. The gain can be computed
from Eqs. 3.48, 9.8, and 9.3.
As an example, consider a reflectarray with focal length 5λ consisting of nine square patches,

on a square 3 × 3 grid with a spacing of 0.5λ and a central element located at the origin. A beam
is required in the vertical (z-) direction. The reflectarray is illuminated by a horn that is linearly
polarized in the x-direction and has an axisymmetric pattern given by A θ =B θ = cos20ψ ,
which has a half-power beamwidth of 21.3 . In this case, the vector Gij in Eq. 9.4 has the fol-
lowing components:

Gijx =A ψ ij cos ψ ij + 1 sin2ξij−1 and Gijy =A ψ ij 1− cos ψ ij

sin 2ξij
2

9 9

The patches are chosen to have a sidelength of 0.35λ and are on a substrate of thickness
0.02λ and dielectric constant εr = 2. The resulting principal radiation patterns are shown in
Figure 9.3. For comparison also shown in Figure 9.3 is the radiation pattern of a uniformly
illuminated 2λ × 2λ square aperture corresponding to the maximum extent of the reflectarray.
The 10 dB-beamwidth and first sidelobe level are seen to be comparable. The gain of this square
aperture is 13.6 dBi, while for the nine-element reflectarray, it is calculated to be 5.7 dBi. The
large gain difference is due to the very high spillover from the feed beyond the reflectarray.
For a practical reflectarray, there will be manymore elements on the substrate and they will better
extend across the field of view of the feed. In the example above, if the feed taper is increased by
increasing the power n of the cosine amplitude function, the aperture efficiency increases.

9.3 Extensions to the Basic Theory

The radiation pattern analysis given above for the reflectarray and resulting in Figure 9.3 is a
very simplified one. It could be improved by including the reflections from the grounded sub-
strate, using a better representation for the currents on the patches, and including coupling
between the patches (Pozar et al., 1997). As well, the phase compensation through Eq. 9.1 will
not be met exactly, and there are losses in the substrate and in the metallic patches. These are in
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addition to the usual losses experienced by reflectors such as feed spillover and mismatch.
Mutual coupling between the patches could be included as described in Section 7.3.5.7.
The field scattered back from the dielectric interface and the ground plane could be included
by means of the approximation

Escatt≈ Γ12 +T21T12 exp jk2d εr2 Einc exp
− jkr

r
, 9 10

where Einc is the incident field from the feed, Γ12 is the reflection coefficient matrix for a wave
reflected from the substrate (region 2 with dielectric constant εr2),T12 is the transmission matrix
for the forward-wave from free-space (region 1) into the substrate and T21 is the transmission
matrix for the reverse travelling wave from the substrate into free-space. The elements of the
reflection and transmission matrices are obtained from the Fresnel coefficients for wave inter-
action parallel and perpendicular ⊥ to the plane of incidence, for example,

Γ12 =
Γ12 0

0 Γ⊥
12

where Γ12 and Γ
⊥
12 are given by Eqs. 3.92. In the implementation of Eq. 9.10, the field Einc must

be resolved into components that are parallel and perpendicular ⊥ to the plane of inci-
dence. Thus,
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Figure 9.3 Radiation patterns of a reflectarray of 3 × 3 patches with spacing of 0.5λ. Feed
pattern: cos20θ. Patch dimensions: 0.35λ × 0.35λ, h = 0.005λ and εr = 2. Solid curve: Eθ in ϕ = 0 plane,
short dash: Eϕ in ϕ = 90 plane and long dash: pattern of 2λ × 2λ uniformly illuminated aperture
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Escatt≈

cx dx

cy

cz

dx

dz

Γ12 +T21T12 exp jk2d εr2 0

0 Γ⊥
12T

⊥
21T

⊥
12 exp jk2d εr2

×
ax ay az
bx by bz

E incx

E incy

E incz

exp
− jkr

r
,

9 11

where the unit vectors â and b are parallel and perpendicular to the plane of incidence given
by n × sI × r = 0. Thus, from elementary geometry, it is found that a sI = 0, n × a= 0 and
b = n × sI n × sI , where a a = 1, b b = 1 and a b = 0. Also, c = x ax + y ay + z az axayaz
and d = x bx + y by + z bz bxbybz .
To obtain the total field, the scattered field, given byEq. 9.11, is added to the field components

given by Eqs. 9.8. Note that if the reflection and transmission coefficients are small, Eq. 9.11
makes a small contribution to the total. This is generally not the case as there is usually significant
reflection from the substrate, typically at the −10 dB level or even greater.
Nevertheless, as an illustration that the formulation given by Eq. 9.8 can yield useful results,

Figure 9.4 shows a comparison of the results of the simplified model and an analysis that includes
both scattering and mutual coupling. The reflectarray is 15.24 cm square and operates at 77 GHz
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Figure 9.4 Principal plane radiation pattern at 77 GHz of a reflectarray with 76 × 76 rectangular
patches of dimensions a = b = 0.276λ, on a rectangular grid 0.506λ × 0.506λ and focal length f = 39λ. Solid
curve: model described, Eq. 9.8, with an axisymmetric cosine feed and radix n = 10; dotted curve:
experiment (Pozar et al., 1997) and long dash: computed with accurate model (Pozar et al., 1997)
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(Pozar et al., 1997). It was fabricated on a 0.127 mm thick duroid substrate εr = 2 . It consists of
5776 linearly polarized identical square patches of sidelength 1.076 mm that are spaced 1.978
mm apart. The feed radiates an axisymmetric field and has a cos10ψ pattern function, which
gives a −9 dB edge illumination when fed at a distance of 154.2 mm from the array. Both the-
oretical models are seen to be in reasonable agreement with the experimental results. The mutual
coupling between the elements is expected to be modest due to the element spacing and dielectric
loss. The measured gain was 36 dBi, which is slightly less than the gain of 36.7 dBi that is com-
puted from the simplified model with the axisymmetric feed. A uniformly illuminated aperture of
the same maximum dimensions has a gain of 42.4 dBi. As well as some spillover, a reduction in
gain is expected due to ohmic loss and random fabrication phase errors.

9.4 Other Aperture Antennas

9.4.1 Lenses

A lens is another useful technique for achieving directive radiation (Brown, 1953; Cornbleet,
1976; Bodnar, 2007). At this point, an axisymmetric dielectric medium is considered about the
z-direction. Such a lens can have two surfaces – one on the side of the incident field and the
second surface for the emerging wave. As with all media transitions, reflection and refraction
occurs at both surfaces, which obey Snell’s laws. For simplicity, consider a lens with one
curved surface on the side of a feed antenna and a planar surface (a plano-convex lens) on
the exit face as shown in Figure 9.5. Due to the symmetry, the wave propagation can be con-
sidered a two-dimensional problem. For a spherical (or cylindrical) source of waves incident on
a lens with refractive index n situated in a vacuum, the optical paths through the lens to the
aperture plane located a distance Δ from the exit face are given by

x

z

nSurface 1 Surface 2

O

Δ

r1

z0

z1 n̂2

n̂1

θ1

f

Figure 9.5 Dielectric lens with hyperbolic input face and planar exit surface
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r1 + nz1 +Δ= f + nzo +Δ

or

r1 = f + n r1 cos θ1− f

That is, a general location on surface 1 from O is given by

r =
n−1 f

n cos θ−1
9 12

This is the equation of a hyperbola with eccentricity n with O as the focus. To obtain the
field on the aperture plane, conservation of power from the source to the aperture plane is used.
Suppose the source radiates the incremental power P(θ)sin θ dθ dϕ, where P(θ) is the feed
power pattern, and the corresponding power collected on a segment of the aperture at a
radius ρ is Pa(ρ)ρ dρ dϕ. Thus, for conservation of power, P θ sin θdθ =Pa ρ ρdρ, which
can be re-written as

Pa ρ

P θ
=

sin θ
ρ dρ dθ

9 13

For the hyperbolic lens, this relationship results in

Pa ρ

P θ
=

1

r
dr

dθ
sin θ + r cos θ

=
ncosθ−1 3

n−1 f 2 n− cos θ

9 14

The field radiated by the lens is obtained from Eq. 9.14 by means of Eq. 3.20. Assuming the
magnetic field is related to the electric field through Ha = 1 ηo z ×Ea, the electric field in the
aperture is given by

Ea = xA θ
Pa ρ

P θ
9 15

for a linearly polarized axisymmetric source with an amplitude function given by A(θ). Such a
pattern is produced by a corrugated horn operating at the balanced hybrid condition or a cir-
cular waveguide feed with a corrugated flange. One of the problems with this lens is that
amplitude of the aperture field given by Eq. 9.15 falls quickly due to the decay of the power
function ratio under the square root sign. For example, a lens with n= 1 5 and f = 10λ at an
angle of θ = 45 , which is close to the edge of the lens, the edge of the illumination has dropped
25 dB below the illumination of the feed at that angle. One way around this is to design both
lens surfaces or to reverse the lens.
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In the design of lens profiles, the input surface can be chosen depending on the wavefront of
the source such as a spherical surface. A limiting case of this is a plane surface. If the refractive
index of the lens is close to 1, the reflection back to feed is small and the reflection coefficient is
approximately Γ≈ n−1 n + 1 . Thus, for a polythene lens with n = 1 5, Γ≈ −14 dB. Never-
theless, there are several techniques available to reduce this reflection further. One approach is
to include a matching pad in the second surface, which is designed to give a uniform exit ampli-
tude. This is found by requiring, as best as possible, a uniform amplitude and phase across the
aperture of the lens. In this approach, shown in Figure 9.6, ray tracing from the feed-phase cen-
tre, through the lens and thence to the aperture plane, results in a path length given by

L= d sec θ1 + n x2−x1
2 + z2−z1

2 + h +Δ−z2 secθ3, 9 16

where θ2 = sin−1 1 n sin θ1 and θ3 is found by an application of Snell’s law at surface 2
(see Figure 9.6). The total phase shift from the feed to the aperture plane is kL. Eq. 9.13
is valid for the present uniform phase lens configuration. Making the transformation
∂ρ ∂θ = ∂ρ ∂t 1 ∂θ ∂t , where t is the radial distance from the axis at the curved surface,
for a lens with a planar surface 1 and a shaped surface 2, the power relationship becomes

Pa t

P θ
=

x1 t

ρ t 2 x21 t + d2
t + z t + d ∂z ∂t

z t + d − t ∂z ∂t
9 17

where z(t) is the lens profile and ρ t = z t + d 2 + t2. The co-ordinate x1(t) on surface 1 is

found by tracing the ray back from the aperture point through the lens to the surface 1 and sol-
ving for the intersection points on the lens surfaces. If the feed radiation is axisymmetric, the
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∆
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Figure 9.6 Design of lens profile on surface 2 for uniform aperture illumination
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radiation pattern of the lens is obtained from Eqs. 9.15 and 9.17 by means of Eq. 6.10 and the
transformation integral Eq. 6.12 for axisymmetric illumination.
As an example of some results that can be achieved, Figure 9.7 shows the synthesized profile

of a polyethylene lens with a refractive index n = 1 5. A best-fit equation to these data is
given by

z t = −0 0001t3−0 0019t2−0 1688t + 60 066 9 18

Typically, the error in this approximation is less than 0.5% except at the outer extremity of
the lens. The diameter of this lens is 140 mm, the distance to surface 1 is d = 76 67mm and the
focal length is 136.67 mm. The lens is fed by a circular waveguide that has a flange containing
two parasitic rings to produce an axisymmetric radiation pattern. A function that approximates
the feed pattern is A θ = cos3θ, which results in a −7.7 dB edge illumination at 42 on the
lens’s rim. The prototype lens and the feed are pictured in Figure 9.8a. The results computed
by the method outlined above are shown in Figure 9.8b along with experimental results in the
45 -plane at 40 GHz (Chandran & Hayman, 1994). Both patterns have been normalized to the
measured gain of 35.0 dBi and are seen to be in quite good agreement given the approximation
of the feed illumination.
Spherical lenses have found several applications due to their wide-angle beam scanning

capability without pattern deterioration and their capacity to produce multiple beams. They
can also operate over a wide frequency range, and there is no feed blockage. There are two
main types of inhomogeneous spherical lens where each source has a single focus. The first
is the Luneburg lens, which is distinguished by being radially inhomogeneous. In addition,
any two points on a great circle through the lens, which are on opposite sides of a radius vector,
pass through the centre of symmetry. This lens has a refractive index that varies with radial
distance r from the centre given by

n r = 2−
r

R

2
9 19
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Geometric optics indicates that a point source which is located on the surface radiates a
plane wave diametrically opposite the source. A hemispherical lens on a ground plane can be
fed from a point source, which creates a virtual source from the absent hemisphere in the image
below thegroundplane. It can be shown that in general for a spherical lens that the path of shortest
distance follows the ray path given by the differential equation (Collin & Zucker, 1969).
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Figure 9.8 A 140mm planar-convex lens antenna with a gain of 35 dBi at 40 GHz. (a) Prototype
and (b) measured and computed patterns in the 45 plane. Solid curve: measured (Chandran &
Hayman, 1994); dash curve: this theory
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κ

r

dr

dθ

2

= n2 r r2−κ2, 9 20

where κ is a parameter specific to a ray path. The ray paths in a Luneburg lens follow elliptical
paths given by

r θ,α =
R sin α

sin2θ + sin2 θ−α
, 9 21

where (r, θ) are polar co-ordinates R is the radius, and α is the launch angle between the initial
ray at the source and the diameter of the sphere. The ray parameter in Eq. 9.20 for the Luneburg
lens can be shown to be κ =R sin α. A plot of some typical ray paths in the lens is shown in
Figure 9.9. From Eq. 9.21 it can be shown that a ray launched at an angle α intersects the surface
on opposite of the lens at an angle θ = α. The amplitude distribution can be readily estimated by
the methods used earlier in this section. The ray that leaves the feed at an angle α exits the lens
and intersects with the aperture at a distance ρ from the centre where ρ =R sin α. The electrical
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Figure 9.9 Ray paths (dashed) in a spherical Luneburg lens from the source to the aperture plane.
The labels on the rays refer to the angle (in radians) of incidence θi from the source
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path length of a ray from the feed, through the lens and to the aperture plane shown in Figure 9.9
is a constant as can be found by evaluating the phase shift given by

Φ θ = k
π

tan−1 sin α
n r θ,α r2 θ,α +

dr θ,α
dθ

2

dθ

= kR 1 +
π

2
,

9 22

where Eqs. 9.20 and 9.21 are used in Eq. 9.22. The power radiated by the feed between angles α
and α+ dα leaves the aperture between ρ and ρ + dρ, where dρ =R cos αdα Making use of
Eq. 9.13 for the Luneburg lens, it is found that the power in the aperture is given by

Pa ρ

P α
=

sin α
ρ dρ dα

=
secα
R2

,

9 23

where P(α) is the power pattern of the source. The factor sec α appears because the rays are not
uniformly spread across the aperture but become closely bunched as α π 2. For a maximum
feed incidence of α= π 2, the ray travels an angular distance of π/2 along the surface of the lens.
As the electrical path length travelled by each ray is constant, as verified by Eq. 9.22, no addi-
tional phase factor is required in the aperture field distribution. Taking all these factors into
account, and making use of Eq. 9.15, the aperture field produced by an x-directed axisymmetric

feed with an amplitude pattern P α = cosnα is

Eax = x
Eo

R cos α
cosnα

This equation is substituted into Eq. 6.10 to obtain the radiation pattern of the lens. Once
again the feed is axisymmetric and the transformation integral, Eq. 6.12, can be used. The latter
gives

Nx θ,ϕ = 2πEo

R

0
cosn−1 2 sin−1 ρ R J0 kρ sin θ ρdρ

As an example, consider a Luneburg lens with a radius R= 14 423 cm that is fed by an axi-
symmetric feed with an n = 1 radix at a frequency of 16.65 GHz. The co-polar component of the
electric field in the 45 -plane is plotted in Figure 9.10, the form of which is characteristic of the
geodesic Luneburg lens. The computed half-power beamwidth is 3.94 , which corresponds to
HPBW=1 12 λ D, where D is the diameter, and the gain is 33.8 dBi. These results are com-
parable to experimental results of a lens of a similar diameter (Ap Rhys, 1970).
A second type of spherical lens is the Maxwell fish-eye lens is one for which any two points

on the same radius that pass through the centre are inverse curves relative to a circle of radius R.
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The Maxwell fish-eye is also radially inhomogeneous and has a refractive index that varies
from its centre as follows:

n r =
2

1 + r R 2
9 24

This lens has the property that it creates an image at a point diametrically opposite of the point
source on the sphere. The ray paths are segments of circular arcs which create figures shaped
like the eye of a fish. The ray paths are great circles and an image of the source on the surface
is formed on the opposite side of the lens. The ray path on a great circle is given by

r2 θ,α + 2Rcot αr θ,α sin θ =R2, 9 25

where (r, θ) are polar co-ordinates in the plane and α is the launch angle between the ray and the
axis that passes through the source phase centre and the origin at the centre of the lens. The roots
of Eq. 9.25 are

r θ,α =R − sin θcotα± sinθ cot α 2 + 1
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Figure 9.10 Radiation pattern of a Luneburg lens with radius of 14.438 cm at a frequency of 16.65 GHz.
The lens is fed by an axisymmetric cosine source with a power of n = 1. Solid line: computed;
Δ experiment (Ap Rhys, 1970)
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A valid root for the Maxwell lens is chosen so that r θ,α ≤R. Ray paths are illustrated in
Figure 9.11 for a source located at θ = π. At the plane midway through the lens, this source
creates a plane phase front. If the lens is halved, the resulting mid-point surface will be a con-
stant phase aperture which equalsΦ ± π 2 = 3kRπ 2. As a result, a directive beam is produced
from this semi-circular lens. Only rays in the sector π 2 < α < 3π 2 are valid. Some mismatch
can occur at the aperture plane due to the refraction index difference between the lens dielectric
and free-space. To reduce this, a matching layer coating on the surface can be used to improve
the match. Compared to the Luneburg lens, the fish-eye lens cannot steer the beam by moving
the feed and hence cannot be used to produce multiple beams. Finally, it is noted that the tech-
niques used above for analysing the Luneburg lens, for example, the radiated fields, can also be
applied to the Maxwell fish-eye lens.

9.4.2 Fabry–Pérot Resonator Antennas

The Fabry–Pérot cavity was conceived for optics as an arrangement of two highly reflecting mir-
rors (with some small transitivity) to create a standing wave resonator (Born & Wolf, 1959).
A typical Fabry–Pérot resonator antenna is shown in Figure 9.1c. It consists of a bottom surface
that is usually a good reflector and top surface that is of a partial reflecting surface (PRS) material
both ofwhich are excited by a small radiator such as amicrostrip patch. The gain of this antenna is
determined, up to a limit, by the lateral dimensions of the two surfaces, the reflection coefficient
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Figure 9.11 Maxwell fish-eye lens and ray paths from a point source for launch angles α from
0.1 to 1.5 rad
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of the PRS material, and the gain of the small radiator (or feed antenna). This small antenna
couples energy to the cavity formed by the PRS material and the ground plane. The operating
frequency of the PRS antenna can be derived by referring to Figure 9.1c. This figure
shows the PRS material with a reflection coefficient of R2∠ϕ2 placed a distance d above a bot-
tom surface that may be phase agile, which has a reflection coefficient R1∠ϕ1. These reflection
coefficients are functions of angle of incidence to the surface, but for simplicity, it will be
assumed that the rays in the cavity are normal to both surfaces. If a wave originates from
the lower patch antenna that is normally incident on the PRS, then the field will be maximized
at the output face of the antenna when (Wang et al., 2006)

ϕ1 +ϕ2 −2kd = −2mπ; m = 1,2,… 9 26

Considering the lowest resonance frequency (i.e. m= 1), this operating frequency is related
to the cavity height and reflection phase of the PRS and phase agile surface as shown

f =
c

2d
ϕ1 +ϕ2

2π
+ 1 9 27

The standard microwave resonator does not have a phase agile lower surface and usually
consists of a metallic plate for which ϕ1 = π. More advanced antennas allow the reflection phase
of either surface to be varied with tuneable elements, the operating frequency of which may be
reconfigured over a considerable range. This allows the frequency band of the antenna to be
increased, but it may not provide a large enough instantaneous bandwidth. Various types of
PRS materials have been used including dielectric sheets, a periodic surface such as an elec-
tromagnetic bandgap (EBG) or a reflectarray. As well, an inherent disadvantage of the Fabry–
Pérot resonator antenna is its typically narrowband operation (3%). To overcome this, the lower
surface can be tuned to make the antenna reconfigurable and to operate over a wide frequency
range (Weily et al., 2008). One of the problems is that the reflection coefficient of the top sur-
face varies significantly over the frequency band and especially at frequencies where signifi-
cant but partial reflection occurs. A frequency selective surface (FSS), for example, exhibits
this behaviour near the FSS resonance frequency. Although the reflection phase of a conven-
tional FSS decreases with frequency at most frequencies, it can be made to increase with fre-
quency over a frequency band that is close to the FSS’s resonance frequency. Advantage can be
taken of this phenomenon to design a PRS with increasing phase over a selected frequency
band. Such a surface has been developed on a single dielectric slab, with arrays of periodic
elements such as dipoles, slots, patches, rings etc., printed on both surfaces (Ge et al.,
2012). The directivity of the resonator antenna changes with area up to a dimension that will
depend on the bottom and top surfaces. With a simple probe or microstrip source, an EBG top
surface and a metallic bottom plate, the directivity has been shown to vary in a linear manner
with aperture width/length from about 2λ to 6 5λ, at the centre frequency. This means that the
maximum directivity possible is about 27 dBi although this can be increased by employing a
more complex source of wider extent such as an array. Above the upper limit the directivity
reduces slightly, and converges to a value just below the maximum. The minimum width is
limited by the size of the source and the sidelobe level as these are higher for smaller aperture
dimensions.
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9.5 Problems

P9.1 A reflectarray with a focal length of 10λ consists of 81 square patches, on a square 9 × 9
grid with a spacing of 0.5λ. The central element of the grid is located at the centre of the
beam from the feed. Assume that the basic requirement for a reflectarray array that is
given by Eq. 9.1 has been included in the patch design. In addition, the patch has dimen-
sions 0 4λ × 0 4λ and the array is on a substrate with εr = 2 and h = 0.005λ. The reflectar-
ray is illuminated by a horn that is linearly polarized in the x-direction and with an
axisymmetric pattern given by A Θ =B Θ = cos20Θ.
a. What is the illumination level at the edge of the patch array?
b. Obtain the far-field patterns radiated by this reflectarray in the boresight direction.
c. Calculate the scattered field from Eq. 9.11 where

Γ12 =
0 17 0
0 0 16

T12 =
0 83 0
0 0 84

, and T21 =
−1 17 0
0 −1 16

The dielectric material in region 2 has a relative permittivity εr2 = 1. Add this field to
the result in (b) to find the total field.

P9.2 Use Eq. 9.8 to obtain the ideal gain of a reflectarray antenna.
P9.3 A reflectarray has been designed by the method of Berry et al. (1963), which has been

formed from short sections of square waveguides of width a= 0 75λ. The open-ended
waveguides are arranged in a hexagonal array of 37 elements with spacing between ele-
ments s = 0 8λ. The focal length is f = 6λ. Neglecting mutual coupling, obtain the radia-
tion pattern in the far-field when the waveguides are fed with an axisymmetric source that
gives a 6 dB taper at the centre of the elements most distant from the centre. Use the array
factor of a hexagonal array given by Eq. 7.15. Compare the radiation pattern obtained
with that of a parabolic reflector of the same diameter and focal length.

P9.4 Suggest ways of increasing the bandwidth of a reflectarray of patches. In particular,
devise an approach that could achieve operation over a 20% bandwidth at X-band.

P9.5 Verify that the path length from the source to the aperture plane via the plano-convex lens
in Figure 9.6 and Eq. 9.18 is almost constant for rays at angles up to 45 from the source.

P9.6 Use Eq. 9.18 to obtain the aperture distribution for the lens shown in Figure 9.8a. Use an
axisymmetric feed with a cos3θ amplitude.

P9.7 By means of the field correlation theorem, Eq. 3.62, show that the reflection coefficient at
surface 2 of the hyperbolic lens shown in Figure 9.6 is given by

Γ=

ψc

0
A2 ψ exp −2jkr ψ sin ψ dψ

π

0
A ψ 2 sin ψ dψ

,

where r ψ = n−1 f n cos θ−1 and A(θ) is the amplitude pattern function for an
axisymmetric feed.

P9.8 Design a Luneburg lens for an application requiring a directive radiation pattern and a
half-power beamwidth of 5 . Assume the lens is fed with a horn with an axisymmetric
radiation pattern and the highest refractive index material available has a value of 2. What
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diameter lens is required? Describe a way of achieving the desired variation in refrac-
tive index.

P9.9 Show that on a plane at the mid-way point of a Maxwell fish-eye lens, that:
a. The distance from the centre is given by ρ α = ±R tan α 2, where θ = ± π 2.
b. Use your favourite software to verify that the path length of a ray from a point source

located at θ = π to this plane is independent of launch angle α.
c. Use the distance given in (a) to verify that the amplitude of the aperture field of a hem-

ispherical Maxwell fish-eye lens that is fed with a axisymmetric spherical source is

Aa ρ = 2
P α cos2α 2

R

n ρ

1 + n ρ
,

where P(α) is the power distribution of the source and n(ρ) is the refractive index.
P9.10 A quarter-wave matching layer is added to the aperture face of the hemispherical

Maxwell fish-eye lens described in P9.9.
a. What dielectric constant of material is required for this layer if the design is based on

the average power mismatch between the lens aperture and free-space?
b. Describe better ways of achieving a good match over a band of frequencies.

P9.11 Verify that the field is maximized at the output face of a Fabry–Pérot cavity resonator
antenna when condition Eq. 9.26 is satisfied.

P9.12 A one-dimensional Fabry–Pérot cavity resonator is formed by a dielectric sheet of thick-
ness τ and dielectric constant εr2 in free-space. Assume that a source in region 1 (see
Figure P9.1) creates planes waves between the dielectric and a ground plane, which
propagate in the z-direction. The total electric field in the three regions shown in
Figure P9.1 consists of plane waves in the form Exi =Ai exp − jkiz +Bi exp jkiz ;
i= 1,2,3, where i refers to the region number, Ai and Bi are the amplitudes of the forward
and reverse travelling waves. Region 1 is characterized by a propagation constant
ki = k εri, dielectric constant εri and wave impedance. In the free-space regions,
εr1 = εr3 = 1 and η1 = η3 = ηo. By satisfying the boundary conditions, obtain:
a. The resonance frequency
b. The aperture field in region 3 at z= τ

z

Z = O

– d

x

𝜏
Region 3

Region 1

Region 2

K, ɛr3= 1, ηo

K, ɛ1= 1, ηo

K2, ɛ2, η2

Ground

Figure P9.1 Dielectric sheet above a ground plane forming a one-dimensional Fabry–Pérot cavity
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10
Aperture Antennas in Application

The already theory of aperture antennas as described in the earlier chapters is only part of the
story in creating aperture antennas. In this chapter, the reader is introduced to another side of
antenna engineering, that of fabrication, measurement and testing. The approach adopted here
is one of introduction to the basic principles as there are texts that are dedicated to all or parts
of these topics (Hollis et al., 1970; Levy, 1996; Schofield & Breach, 2007). The principles of
fabrication, measurement and test are summarized in the next two sections. In the final section,
the fabrication and testing of several practical aperture antennas are described. These antennas
are a lightweight horn for space flight, a dual reflector producing multiple beams and a radio
telescope that operates with multiple beams to reduce observation time.

10.1 Fabrication

Vital to the application of aperture antennas is their construction and testing, which often
involves techniques that are suitable for the purpose within budget constraints. The fabrication
of aperture antennas canbe slightly different fromother antennas, due to their geometry andoften
large dimensions. A variety of techniques are used, and some will be described in this section.

10.1.1 Machining

Prototype aperture antennas are often made from an aluminium billet or plate by machining with
a machining centre or a hand lathe. A variety of aluminum types are available and the one
selected should suit the application. For example, a slab of 6061-T6 aluminum can be suitable
for a test reflector because of its machinability and stability including temperature. Another
example, is an aluminium alloy such as 5086 can be useful for producing profiled circular horns

Fundamentals of Aperture Antennas and Arrays: From Theory to Design, Fabrication and Testing,
First Edition. Trevor S. Bird.
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Companion website: www.wiley.com/go/bird448



by boring from a solid block of the metal. With boring the horn does not need to halved, which
can lead to cross-polarization, and also other horns can be bored in the same block to form an
array. As well as aluminium another possible material is brass. However, it tends to result in
components that are heavy and tarnish with time due to repeated handling and oxidation.
The accuracy required varies and depends mainly on the operating wavelength of the prototype.
For accurate comparison with theory, for example, a surface accuracy of horn components is
normally better than λ/50. Under normal operating conditions, accuracy needs normally to be
better than λ/20. The production of a quantity of aperture antennas by machining will probably
be uneconomical except in specialized applications. Casting components such as horns from an
alloy of aluminum is possible when quantity is required although surface quality and loss can be
issues depending on the technique. Some success has been achieved by making these antennas
from plastic by means of a mould. After the plastic base structure has been produced, a metalli-
zation layer is applied either by spraying or dipping in a molten metal bath.

10.1.2 Printing

Aperture antennas, and especially those based on patches, can be made by etching or depositing
metal on a dielectric substrate or mould. The dielectric substrate should be chosen so that the
dielectric loss is low. Some dielectrics that have low loss may not be conducive to depositing
metal, and often this can be overcome by coating the dielectric with another material that may
provide better adhesion than the base substrate. The patches can also contribute significant loss
by the high current densities on the edges. The accuracy required for most patches is not high
and a resolution of λ/10 is usually sufficient.

10.1.3 Mould Formation

Someaperture antennas such as reflectors andhorns canbemade from lowmelting pointmetal or
a plasticmaterial bymeans of amould onwhich a high-conductivitymetal can be deposited. The
mould should allow for some shrinkage of the deposit, and its surface should be slightly more
accurate than the required accuracy of the antenna to allow for unevenness of the metal deposits.

10.1.4 Electroforming

This technique is a way of making metal items by forming a thin skin through electrodepositing
on a base object known as a mandrel. This compares with the previously mentioned technique
of electroplating amould. After electroforming the mandrel is usually removed. Compared with
electroplating, the deposits obtained in electroforming are usually much thicker. An electrolytic
bath is used to deposit nickel or another similar metal onto a conductive surface such as stain-
less steel. Once the deposited material has been built up to a desired thickness, the elector is
separated from the mandrel. The pyramidal horns shown in the array pictured in Figure 1.1c
were produced by electroforming.

10.1.5 Lightweight Construction

Even with careful design, the weight of the aperture antenna may be too heavy for the intended
application or possibly too costly to mount. In these instances, a lightweight construction
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approach may be necessary. Some reduction in weight could be achieved by thinning the walls
or the profile, but this may still result in an unacceptably high weight antenna. In some applica-
tions, such as space flight, a very low weight construction is necessary to achieve the lowest
possible payload cost and still achieve a high performance. To achieve a much lower weight, a
new design may be required with lightweight manufacture in composite materials in mind.
Before undertaking this new design, the greatest contributors to the weight should be iden-

tified. Structural methods should be adopted where possible, such as thin walls and fins,
although this usually leads to a compromise between weight and mechanical strength. The
effect of the changes should be examined to see if they impact the overall performance.
Before the design is completed and fabrication commenced, a tolerance study should be

made of the antenna geometry. The purpose is to indicate the most sensitive part of the antenna
to change and to error. Tolerances should be assigned to various subassemblies although these
should be achievable with practical fabrication methods.
A lightweight antenna can be constructed from various composite materials such as carbon

fibre reinforced plastic (CFRP) materials. It is recommended that this work is undertaken by
experienced personnel that are equipped to handle such materials. If a metal coated surface is
required, such as the interior surfaces of a CFRP horn, all active surfaces can be plated with
copper, for example, to increase the electrical conductivity. The outer surfaces can be produced
in a one-piece mould. Assembly of any intricate parts with the skin should be accomplished
with specially designed fixtures that ensure concentricity or correct spacing according to the
design. After all parts are bonded together, the interior surface can be plated with a continuous
layer of copper. The thickness of the metal layer is usually >10 skin-depths (δ) at the centre
frequency to ensure losses are negligible. The skin depth is the distance a normally incident
plane wave travels in a metal before its amplitude decays to 1/e of its value at the surface. This
depth is given by δ = 1 ωμoσ, where σ is the conductivity of the metal. Copper has a con-

ductivity σ = 5 8 × 107S, and, therefore, the skin depth in copper is 2 06 f μm where f is
the frequency in GHz. In the present example, the copper thickness was >10μm.
An example of lightweight construction, is the corrugated horn shown in Figure 4.43 which

was fabricated using the technique described in the previous paragraph. A prototype antenna
was machined initially from aluminium and this weighed 110 kg. The operational antenna was
fabricated from CFRP and other lightweight materials which resulted in a horn weighing less
than 10 kg. This horn will be described in a later section.

10.1.6 Pressing and Stretch Forming of Reflector Surfaces

Large reflector surfaces are usually composed of many small panels, which are manufactured
separately (Levy, 1996). A technique often used to produce reflector panels or complete reflec-
tors involves the use of a number of thin metal sheets. Usually aluminium is used and is forced
down onto a mould under pressure to form the desired shape. The pressure must be applied
evenly to achieve the desired reflector shape which is curved in two dimensions. To save time
and cost, the mould may consist of studs that are adjusted to the desired curvature under com-
puter control (e.g. Parsons & Yabsley, 1985). In this approach, the metal sheet is often drawn
down under a vacuum to prevent denting or marking as illustrated in Figure 10.1. A backing
structure is then attached to the panel usually with a suitable adhesive to help bond the sheet
in the desired shape and also to take up any gap between the panel and the backing. The backing
structure may be metallic beams or made from a honey-comb structure. The use of any rivets or

359Aperture Antennas in Application



similar for further attachment should be avoided to prevent deformation of the shape and raised
areas on the panel surface. After the metal sheets have been held in the desired contour for a
predetermined time, the vacuum is released. The sheet and its backing structure should be
now permanently deformed into the specified shape.
In another approach, a reflector can be formed from several successive layers of cloth and

fibreglass placed over a mould to a depth of suitable strength. Hardening of the fibreglass pro-
duces a rigid structure, which can be accurately shaped by polishing or filled to overcome any
surface imperfections. The reflector is then flame sprayed with a metallic spray to a suitable
thickness, typically to 4–6 skin depths to produce a low loss reflective surface.
An example of reflector panels produced by the first approach is described below and shown

in Figure 10.12. The reflector panel surface accuracy is 0.3 mm rms or about λ/80 at 12 GHz.

10.1.7 Assembly and Alignment

An important part in the final stages of fabrication is the assembly and alignment of various
parts of the antenna. Within limits, this can be done with micrometer, tape and surveying tools
although sometimes special alignment rods and jigs are manufactured along with the antenna
components. However, there are many parts of the assembly that require greater accuracy and
techniques such as laser ranging and photogrammetry can greatly assist the antenna engineer
(Schofield & Breach, 2007). Some of these methods (e.g. lasers) extend to operational correc-
tion in real time for deformations due to ambient temperature, differential solar radiation and
the gravitational deformation as the antenna scans to different positions.
Distance measurement methods by optics are typically time-of-flight, interferometry or trian-

gulation (Hodges & Greenwood, 1971). A time-of-flight system measures the round trip time
between a light pulse emission and the return of the pulse echo as a result of reflection from
the target. Therefore, the distance is found by multiplying the velocity of light by the trip
time divided by 2 to give the one-way distance to the object. Initial alignment and test are
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Figure 10.1 An adjustable mould and reflector surface with a backing structure formed under
vacuum. Source: US patent (Kommineni et al., 1988)
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important for accurate results. An initial test could be undertaken with a calibrated target before
the actual measurement commences. Commercial laser range finders are usually equipped with
angle encoders to enable the definition of the co-ordinates of a measurement point relative to the
ranger. Scanning of several points at a time is possible and is carried out manually or automat-
ically.Reflector surfaceverificationmeasurements canbeundertakenby theodolite (Levy, 1996)
or laser triangulation.
Photogrammetry is a three-dimensional co-ordinate measurement technique that uses photo-

graphs as the fundamental medium for metrology of objects that have been fitted together. In
operation, a single camera system can be used to record digital images of the object from sev-
eral different locations. The systemmeasures the location of high contrast retro-reflective target
points that are placed on the object. By imaging the object from several different locations, the
points on the object are seen from enough geometrically diverse locations to support determi-
nation of their spatial locations by triangulation.
There are several photogrammetry systems commercially available. One such system called

V-STARS is capable of producing XYZ co-ordinate point data to an accuracy of 1 : 120 000
(0.025 mm on a 3 m object).

10.2 Measurement and Testing

After the antenna has been fabricated, it is important to test a prototype or a sample of the anten-
nas manufactured. Some aspects of the antenna can be measured and assessed using standard
microwave network measurement methods such as reflection coefficient, insertion loss and
transmission coefficient. These can be obtained with a vector network analyser and calibrated
standard. As well, a variety of radiation pattern measurement techniques are possible, and these
are summarized in Figure 10.2.

10.2.1 Far-Field Measurement

The aim of far-field measurement is to measure the distant radiation pattern on a sphere of con-
stant radius. This measurement can be made in transmission or reception. The latter is consid-
ered here. The equipment needed is a rotator in azimuth and/or elevation (Hollis et al., 1970).
A source antenna is located at a distance at least equal to the Rayleigh distance R = 2D2 λ as
shown as (3) in Figure 10.2, where D is the maximum dimension of the antenna under test
(AUT) and λ is the shortest wavelength (highest frequency) in the band of interest. The equip-
ment set-up is shown in Figure 10.3.

d

(1)

(2)rb

r

(3)

Figure 10.2 Techniques employed for aperture antenna radiation pattern measurement. (1) Planar
near-field; (2) holographic distance or spherical near-field and (3) far-field
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The AUT is placed on a rotator with its phase centre as close as possible to the axis or axes of
rotation in the vertical and horizontal directions. This can be done with a measuring tape and
string or more accurately with photogrammetry. The phase centre can be estimated using the
technique described in Section 3.5.5 or obtained through measurement as outlined below. The
AUT should be located on the rotator according to this estimate of phase centre. It is then
rotated and the received signal recorded with a sensitive receiver. This will give a first estimate
of the radiation pattern. If the phase is recorded as the antenna is rotated, this can be used to
measure the phase centre. The AUT is moved backwards and forwards along its axial direction
on the rotator as depicted in Figure 10.3. Its position should be recorded and a note made of this
on the antenna. Further adjustment both forwards and backwards will indicate a position for
which the phase is most uniform. This is the location of the phase centre. When the AUT is
positioned at its phase centre, the radiation patterns should be recorded.
The H-plane co-polar pattern is obtained when the AUT is rotated in a plane perpendicular

to the electric field direction as shown in Figure 3.7. While still rotating in the same plane,
but with the source polarization rotated by 90 , the pattern that is then obtained is the cross-polar
pattern in the H-plane. The E-plane pattern is obtained by physically rotating the AUT and the
source polarization through90 andmaking ameasurement in the plane shown inFigure 3.7. The
radiation patterns in another plane, such as in the 45 plane,may be obtained by rotating theAUT
through 45 and aligning the polarization in the same plane as the pattern to be measured. The
cross-polar pattern in the45 plane is then foundbymaintaining the source in the sameposition as
for the co-polarmeasurementbutwith theAUTnowrotated through 90 relative to theprevious
location. Thus, the cross-polar pattern is obtained in the plane perpendicular to the plane of par-
allel to the polarization.
Antenna gain can be measured by several ways. The most common technique used is gain

comparison. The maximum signal is recorded with a reference antenna (or standard) for which
gain is accurately known either by other measurement or with a well-characterized antenna, such
as a horn, from which the geometry allows an accurate estimate of gain. The maximum signal of
the AUT is recorded under the same conditions. The gain of the AUT is calculated as follows:

Gain AUT,dB = gain reference,dBi −signal reference,dBi + signal AUT,dB 10 1

For example, suppose a reference horn has a gain of 20 dBi. If the maximum signal received
from the AUT is 17.5 dB while from the reference the measured signal is 11.2 dB, the gain of
the AUT given by Eq. 10.1 is 26.3 dBi.

Optional: Reference signal

AUT

Source Receiver

Baffle

Source antenna

Rotator

Figure 10.3 Far-field measurement equipment
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Another technique that is used is the ‘three antenna measurement method’. The basis is the
Friis transmission formula (Kraus & Carver, 1973). When a transmitting antenna with gain Gtx

radiates a power Ptx in watts to a second antenna at a distance r, the power received is

Prx =PtxGtxGrx
λ

4πr

2

, 10 2

where Grx is the receiving antenna gain and λ is the wavelength.
The signal of the AUT and two reference antennas is then measured as described above for

the gain comparison method. However, on this occasion each of the three antennas is used in
turn as the source antenna. All three combinations are used and this results in three equations as
follows:

Gain AUT,dBi +Gain Ref1,dBi = 20log10
4πr
λ

+ 10log10
PowerRxAUT
PowerTx1

10 3a

Gain Ref2,dBi +Gain Ref1,dBi = 20log10
4πr
λ

+ 10log10
PowerRxRef2
PowerTx1

10 3b

Gain AUT,dBi +Gain Ref2,dBi = 20log10
4πr
λ

+ 10log10
PowerRxAUT
PowerTx2

10 3c

where Gain (AUT, dBi) refers to the gain in dBi of the AUT, Power Rx Refk is the received
power with antenna k as a reference and PowerTx k refers to when reference antenna k is used
as the source antenna. The gains of the three antennas are found from the simultaneous solution
of Eqs. 10.3.
Circular polarization can be measured by means of several techniques. One of the simplest is

to rotate the receiving antenna at a controlled speed of rotation typically 20–30 revolutions per
minute. Assuming Er≈0, this enables the two field components to be represented as is now
shown for the incident circularly polarized field given as

E θ,ϕ =R
Eθ + jEϕ

2
+L

Eθ− jEϕ

2
10 4

where Eθ and Eϕ are the non-zero components of the far-field and also the time and distance
dependence given by exp j ωt−kr r has been suppressed. The unit vectors in Eq. 10.4 are
given by R= θ− jϕ 2 and L= θ + jϕ 2 . Note that Eq. 10.4 is an alternative represen-

tation of E θ,ϕ = θEθ θ,ϕ +ϕEϕ θ,ϕ , which can be verified by substituting the unit vectors

R and L into Eq. 10.4 and simplifying the expression. The phase angle exp ± jπ 2 relative to
the phasor reference ωt refers to right (+) or left (−) hand circular polarization corresponding,
respectively, to clockwise or counter-clockwise rotation as viewed for a wave propagating
away from the transmitter (this is reversed for a receiver). Ameasurement is performed of either
component by rotating the receiving antenna in either directions R or L. The former gives a
measurement of Eθ + jEϕ 2 while the latter gives Eθ− jEϕ 2.
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10.2.2 Near-Field Measurement

The far-field region of some microwave antennas such as reflectors and horns can occur
several kilometres or more away from the source depending on the antenna dimensions
and operating frequency. A possible option is to use an interstellar source. Such measure-
ments require a sensitive receiver for them to be successful. The moon can also be used, but
care needs to be taken due to the angle it subtends with respect to a point on the earth’s sur-
face. Constraints on measurements made outdoors and a desire for an all-weather facility in
which measurements can be performed close to the workplace of most personnel and under
controlled conditions have led to the development of other methods of measuring far-field
patterns.
One particularly powerful technique, which was developed in the early 1960s as the neces-

sary computational power became available, is probe compensated near-field measurement
(NFM) (Burnside et al., 2007). Today, this technique is very widely used in research as well
as in industry. The technique requires the near-field of the AUT to be sampled on a specified
surface at about 5–10 wavelengths away (as in Figure 10.2a), and these data are numerically
transformed to obtain the far-field. Some effects of the sampling probe on the measurement
need to be included in this transformation, as will be described.
Probe-compensated NFM has been shown to be time and cost effective, and results can be

obtained that are at least comparable to those obtained with a far-field range. Stray reflections
can be controlled by the use of microwave absorber and this, plus the error involved in posi-
tioning the probe, usually limits the useful frequency range of NFM from low UHF to around
1 THz. NFM is more complicated than other techniques, it must be automated and staff must be
highly skilled. Also the probe antenna must be extensively and accurately calibrated at all oper-
ating frequencies. The measurement is made under computer control, and the same computer
can also be used to transform the near-field data to the desired region in real time, which can be
an advantage. This may not be possible with electrically large antennas as these measurements
can take several hours to complete.
The three principal surfaces surrounding the test antenna that are used for near-field probing

are the plane, cylinder and sphere, as illustrated in Figure 10.4. The planar approach is the most
common, despite the need to accurately position the probe on a plane, because the far-field
calculation is easily and efficiently implemented (Paris et al., 1978). However, the cylindrical
and spherical schemes can provide more of the far-fields in the far-zone, the latter most com-
pletely. The planar technique on the other hand becomes more inaccurate as the angle between
the test and probe antennas increases, although this can be overcome if it forms part of a cylin-
drical scan. The planar scan can provide far-field information out to the angle subtended by the
plane at the AUT, which is

θmax = tan
1 xmax

d
,

where d the probe is distance and xmax is the maximum extent of the planar scan in direction x.
If a sample probe does not influence the near-field, the far-field of the test antenna is obtained

directly from the solution to the field equations in the appropriate separable co-ordinate system.
For the planar configuration shown in Figure 10.4a, the far-field intensity is the Fourier trans-
form of the near-field on a plane at a distance d in front of the test antenna. That is, the far-field
is (Paris et al., 1978)
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E θ,ϕ =
jkz
2π

exp jkZd

∞

−∞

e xo,yo,d exp j kxxo + kyyo dxodyo, 10 5

where e(xo,yo,d) is the aperture field, kx, ky and kz are the rectangular components of the wave
vector in the far-field direction, namely, k= xkx + yky + zkz = k x sin θ cos ϕ + y sin θ sin ϕ +
z cos θ where k = 2π λ.
The probe affects the measurement in two ways. Its output is a weighted average of the field

over its aperture, and there is some interaction between the test and probe antennas. Compen-
sation for these effects is possible although some of the latter is ignored in current near-field
techniques. The theory of probe compensation is briefly described here.
Let Eq. 10.5 be the near-field of the test antenna in the absence of the probe on a surface

Σ between the aperture and the plane at z= d as shown in Figure 10.4. Also let (e , h ) be
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Figure 10.4 Near-fieldmeasurement surfaces. (a) Planar scan at distance d and an intermediate surfaceΣ;
(b) cylindrical scan of radius d and (c) spherical scan of radius d
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the near-fields of the probe antenna. Assuming the scattered fields are small compared to the
primary fields, the reciprocity theorem (see Section 2.1.4) applied to the situation depicted in
Figure 10.4a can be shown to give

Σ
e ×h −e ×h ndS= vα ro 10 6

vα(ro) is proportional to the open-circuit received voltage at the probe, which is rotated an
angle α about its axis. The derivation of the far-fields from Eq. 10.6 depends upon the chosen
measurement surface, but the aim is the same – to express the near-fields of the test and probe
antennas in terms of quantities from which the far-fields can be calculated directly. The planar
case is by far the simplest for, as Eq. 3.18 shows, the near-field is the inverse Fourier transform
of the far-field. In the cylindrical and spherical cases, the near-field is expressed as a continuous
spectrum of, respectively, cylindrical and spherical vector wave functions. For example, the
near-field in the cylindrical case is

e d,θ,ϕ =
∞

n = −∞

∞

−∞

dk an k Mn ϕ,z + bn k Nn ϕ,z , 10 7

where Mn(ϕ, z) and Nn(ϕ, z) are the n-th cylindrical vector wave functions evaluated on a
cylinder of constant radius d. The aim is to determine the coefficients an(k ) and bn(k ) to
obtain the far-field. The cylindrical wave functions involve Bessel functions, which rapidly
increase with |n|. However, the coefficients decay at a faster rate. The series in Eq. 10.7 can be
truncated when n > kd as the terms become negligibly small. An explicit solution for the
unknown coefficients can be obtained after considerable additional manipulation (Leach &
Paris, 1973).
In the planar case, Eq. 10.6 results in

−Eθ θ,ϕ Eθ θ, − ϕ + α +Eϕ θ,ϕ Eϕ θ, − ϕ+ α =F θ Vα θ,ϕ , 10 8

where F θ = kωμ 8π2 cos θexp jkdcos θ , while Eθ θ,ϕ and Eϕ θ,ϕ are the electric
field intensity in the far-field of the probe antenna. For a general probe, these data are obtained
from measurement and need to be stored. The transform of the measured data for a probe at a
rotation angle α is

Vα θ,ϕ =
∞

−∞
vα xo,yo exp j kxxo + kyyo dxodyo 10 9

Eq. 10.8 contains two unknown functions and thus measurements are required at two probe
orientation angles. The two resulting equations can be solved simultaneously to obtain the far-
field functions.
In the cylindrical case, equations for the coefficients an and bn in Eq. 10.7 are obtained sim-

ilarly, and these also involve Fourier transforms of the measured data for each function. In the
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spherical case, Figure 10.4c, probe correction is more complex, and only one of the integrals
involved in the transformation is a Fourier integral and, hence, the other must be evaluated by
numerical integration. As the planar method is simpler, without loss of generality, the remain-
der of the discussion of NFM is limited to this technique.
Through selection of a suitable probe antenna, the transformation and the equations for the

unknown functions can be simplified, and this can substantially reduce the amount of probe
data stored in memory. Consider a probe antenna with physical circular symmetry, such as
a thin wall circular waveguide, which is linearly polarized in the x-direction. It has been shown
in Section 4.4.1 that the field components of this antenna take the form

Eθ θ,ϕ =A θ cos ϕ and Eϕ θ,ϕ = −B θ sin ϕ, 10 10

where the functions A(θ) and B(θ) are the complex patterns in the E- andH-planes, respectively.
These functions characterize the antenna and only data for these planes need be measured
and stored in memory. Precisely manufactured circular aperture antennas, such as a thin wall
TE11 mode waveguide, are represented very accurately by Eq. 10.10. In addition, this probe
has the advantage that exact expressions for functions A(θ) and B(θ) are available
(Weinstein, 1969).
When Eq. 10.10 are introduced into Eq. 10.8 and measurements are taken at probe orienta-

tions α = 0 and 90 , the far-field functions of the test antenna can be calculated from

Eθ θ,ϕ =
F θ

A θ
V0 θ,ϕ cos ϕ−V90 θ,ϕ sin ϕ 10 11a

Eϕ θ,ϕ =
F θ

B θ
V0 θ,ϕ sin ϕ +V90 θ,ϕ cos ϕ , 10 11b

where V0(θ, ϕ) and V90(θ, ϕ) are the two sets of measured two-dimensional data that have been
transformed by means of Eq. 10.9.
Equations 10.11 are in a convenient form for computing great circle cuts in the far-field. In

the special case that measured data distributions are separable in the probe co-ordinates, it can
be shown from Eqs. 10.11 that the principal plane cuts are one-dimensional Fourier transforms
of the measured data in those principal planes.
A planar NFM system based on the principles described above is shown in Figure 10.5.

The probe is assumed to have been characterized as described above. In one implementation,
the probe was positioned by means of belt-driven gears which are driven individually by step-
per motors under computer control. After a short settling time, the output of the probe was
sampled. A sensitive vector receiver or network analyser was used to measure the signal from
the probe. The output of the receiver was converted to binary-format for more efficient
storage.
The main computational function to be performed by the computer is the computation of

the discrete Fourier transform of the rectangular array of data. The fast Fourier transform
(FFT) (Brigham, 1974) can be used to reduce the number of multiplications required for a
one-dimensional transform of N points from the order of N2 (the number required for a direct
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application of the transform formula) to the order of N log2N. For a two-dimensional transform
over MxN points, the repeated application of the one-dimensional FFT to produce a two-
dimensional FFT requires of the order of NM log2M +MNlog2N multiplications. An efficient
implementation of multi-dimensional Fourier transforms can reduce the required number of
multiplications below that for repeated application of one-dimensional transforms. However,
in this application, the critical process governing the time to produce results is the acquisition of
raw data and display of the computed fields.
In operation, observations can be made at predetermined points across a linear scan in the

near-field plane, and the received data placed in random access memory. While the next scan is
being performed, the FFT of the observations in the previous scan could be computed.When all
scans have been made, the transform of the final scan can be completed. The remainder of the
two-dimensional transform can be performed by taking transforms over the stored data in the
direction normal to the scan direction in the plane. A final task for the system is the display of
results in two-dimensional format and plotting of selected pattern cuts.
The antenna gain can be obtained from the computed far-fields by means of Eqs. 10.11

from its basic definition (Eq. 3.48). The total radiated power is found by making use of
reciprocity, through connecting the power source to the input of the AUT and measuring trans-
mitted power.
The field in the aperture plane can be computed from the calculated far-field pattern by com-

puting the inverse Fourier transform. If the probe affects have been removed, the computed
aperture field will be quite accurate. The aperture field is very useful to have available for
aligning or adjusting the performance of the antenna.
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Figure 10.5 Planar near-field measurement instrumentation
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10.2.3 Intermediate-Field Measurement

Antenna radiation patterns can be obtained using the Fresnel-zone holographic technique if the
antenna is too large for a near-field range or the far-field range is too short compared to
the Rayleigh distance R= 2D2 λ (Keen, 1978; Poulton, 1983). A schematic of a typical meas-
urement set-up for a Fresnel zonemeasurement is shown in Figure 10.6. The signal received from
the antenna and a reference signal,which is taken froma splitter placed just before the source horn,
is fed into a vector microwave receiver. A computer logs the data and drives the antenna in azi-
muth and elevation to produce a two-dimensionalmap on a hemispherical surface. The number of
samples required is determined by the Nyquist criterion which ensures there is no aliasing of the
predicted aperture field. The spacing, in radians, must be < λ D, where D is the diameter of the
AUT. To compensate for drift in the signal, calibration points should be made at regular inter-
vals. This is equally true of NFMs and, therefore, should be programmed into the measurement
procedure.
With a planar aperture A in the x–y plane and with the assumption of an electric field backed

by a magnetic conductor, the far-fields may be computed from the following Fresnel approx-
imation (Poulton, 1983) obtained from Eq. 3.10:

E u,v exp jq u,v = −
jk

4π
e− jkr

r A
Ea x ,y exp − jk

x 2 + y 2

rb
exp − j2π ux + vy dS ,

10 12

where Ea is the aperture field in the (x , y ) plane, u = sin θ cos ϕ, v = sin θ sin ϕ, rb is the dis-
tance from the aperture to the source when u= 0 = v, and q(u, v) is a phase term compensating
for offsets d1, d2, h and x0 all shown in Figure 10.7.
Co- and cross-polarization data can be taken with the set-up in Figure 10.7 and then pro-

cessed using the following steps (Poulton, 1983):

1. Correct for phase and amplitude drifts by interpolating between the calibration points.
2. Compensate for the offset in the centre of rotation if the antenna is set above and forward of

the centre of rotation.
3. The aperture field is calculated by applying a Fourier transform with a quadratic phase cor-

rection as given in Eq. 10.12.
4. A circle with a radius one wavelength larger than the reflector can be used as a mask and the

field set to zero outside it to remove measurement artefacts.
5. A second Fourier transform is taken to create a two-dimensional map of the far-field, cov-

ering the desired angular range in both azimuth and elevation.
6. Cardinal and inter-cardinal plane pattern cuts are then interpolated from the two-

dimensional maps.

The typical equipment required for radiation pattern measurement at an intermediate range
is illustrated in Figure 10.6. Inmuch the sameway as for full NFM, the heart of themeasurement
is a vector receiver and a computer controller. As an example of the radiation patterns obtained
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through an intermediate-field measurement, Figure 10.8 shows the co-polar pattern of a radar
dish antenna that was refurbished for dual-polarization operation (Keenan et al., 1998). As both
amplitude and phase information was available, the reflector surface errors were calculated by
transforming the data back to the aperture and expressing the phase variations into physical
deviations from the expected surface profile of the paraboloid.
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Figure 10.6 Intermediate radiation pattern measurement set-up
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10.3 Modern Aperture Antennas

Some examples of recently developed aperture antennas will now be described. They are
included to support some of the topics discussed previously and are used also to illustrate
where improvements have been made in recent years to the state-of-the-art.They should also
indicate possible future enhancements. The first example is the design and fabrication of a com-
pact, low-sidelobe horn (Granet et al., 2000). This type of antenna has several applications from
a feed in a reflector antenna to lightweight reference antenna for a point-to-point communica-
tion system. The second example is of a shaped reflector antenna which extends the concepts
described in Chapter 6 (Hay et al., 2001). The aim was to achieve multiple beams with several
feed horns located in the focal region of the antenna. The final example is an array of horns for
feeding a radio telescope (Staveley-Smith et al., 1996).

10.3.1 Compact Low-Sidelobe Horns

Horn antennas are often required for applications requiring a moderate gain, low sidelobes
and a compact geometry for lightweight applications or to enable the source to be located
close to a secondary radiating aperture. In geostationary satellite applications, a horn antenna
is frequently used to provide full earth coverage for telemetry and command signals transmis-
sion or reception as well as conventional communication traffic. In addition with an increas-
ing number of satellites orbiting the earth, minimizing interference with other satellites has
become more important than in the past. To achieve this, the amount of sidelobe energy
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Figure 10.8 Co-polar far-field of a meteorological radar antenna measured using the intermediate
distance technique. Plot contours are at 3 dB intervals. Source: Reproduced from Hayman et al. (1998)
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should be as low as possible, both for co- and cross-polarized signals while at the same time
illuminating the earth efficiently at the required power level over the 17.4 angle subtended
by the earth. Another important factor for any satellite application is keeping the weight of the
antenna as low as possible as well as making the size manageable. Therefore, the horn should
be as compact as possible. Usually there is a trade-off between performance and size/weight
of the horn.
In designing a compact horn there are two main approaches. As described in Section 4.5.3,

these are profiling, or tapering, the horn or introducing steps. A stepped horn has the advantage
that the horn can be made up of a number of uniform sections, which may be easier to machine.
Stepped horns have been used in many forms from a series of irises to corrugations.
A systematic approach to designing profiled horns has been described (Bird & Granet,
2013). This approach uses numerical optimization in concert with an accurate analysis method.
It is described in Section 4.5.3 and it has the advantage that most a priori requirements can be
included in a performance index of the optimization method. The approach also has the advan-
tage that it can be applied to design other antenna geometries.
A rectangular horn designed by optimization for maximum efficiency is illustrated in

Figure 10.9. The performance index was optimized to maximize gain and to minimize the
reflection coefficient as set out in Section 4.5.3.1. The final performance of the square-profiled
horn in summarized in Table 10.1.

Figure 10.9 A profiled rectangular horn designed for maximum efficiency and for operation in the
frequency range 11.7–12.2 GHz. Source: Reproduced with permission from CSIRO
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In another example, a horn was designed to have low sidelobes by means of a sine raised to
power p profile as described in Section 4.5.3.2 (Granet et al., 2000). Simulations with accurate
computer software showed that a design with p = 0.8 gave best overall results for sidelobe level
and gain. To verify the concept and test the design, a prototype was initially constructed from
aluminium. This prototype weighed about 100 kg. Following successful tests on the prototype,
a flight-suitable lightweight version was constructed from CFRP, Figure 10.10. All materials
were rated <0.01% vacuum condensable material. The horn body consisted of the mode gen-
erator, flare section and an input probe exciter; all three corrugated parts were constructed sep-
arately. The ring corrugations were first manufactured using flat stock and cut to size. The outer
skin of the mode generator and flare section was produced in a one-piece mould. A specially
designed fixture ensured that the corrugations were concentric and were correctly spaced. When
the construction was completed the interior was plated with a continuous layer of copper (thick-
ness 4–5 skin depths). The worst case manufacturing error is estimated to be <0.00018λ.

Table 10.1 Summary of profiled square-horn performance

Parameter Property

Aperture size 50.21 × 50.21 mm 2 × 2λm (at 11.95 GHz)
Total horn length 80 mm (3.2λm at 11.95 GHz)
Return loss >25 dB
Cross-polar maximum <−25 dB
Efficiency 11.70 GHz 96.5%

11.95 GHz 96.8%
12.20 GHz 96.1%

Figure 10.10 Low-sidelobe horn manufactured in carbon fibre and copper coated is its interior for high
performance. Source: Reproduced with permission from CSIRO
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The total weight of the horn and exciter was 9.12 kg, which is less than a tenth of the weight of the
prototype. The completed horn was subject to a complete range of tests including electrical,
mechanical vibration and thermal in the range −30 to +60 C to assess the effect of temperature
on the sidelobe performance. The performance of the low-sidelobe horn is summarized in
Table 10.2, and somemeasured radiation patterns are shown in Figure 10.11 along with the com-
puted results. The experimental results overlap the predictions made with software that uses the
mode matching method which indicates excellent agreement with the design. The first sidelobe
level was at the −35 dB level relative to the peak and reflection coefficient was <–20 dB over
a 5% bandwidth.

Table 10.2 Performance of low sidelobe corrugated horn with p = 0.8 profile

Parameter Performance

Centre frequency (fc) S-band (λc)
Specified bandwidth 1%
Half-power beamwidth 17.4
Gain at (fc) 20.9 dBi
First sidelobe level −36 dB below peak
Peak cross-polarization <−40 dB
Aperture diameter 4.6λc
Length 5.6λc
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10.3.2 Multibeam Earth Station

As the number of geostationary satellites increases year-by-year, in some applications it is advan-
tageous to be able to address several satellites at one time with an earth station antenna. To access
these and other new satellites, pay-tv operators and service providers such as teleports are instal-
ling more earth station antennas. As an alternative to a standard earth station antenna, where one
dish receives the signal from a single satellite, a multibeam earth station offers significant advan-
tages. These advantages include that a multibeam earth station occupies less real estate than sev-
eral dishes, maintenance can be simplified, a new satellite can be accommodated by the addition
of a new feed system and services from several satellites can be multiplexed.
A reflector surface in the shape of a torus can be used to access several satellites by placing

several feeds in the focal region because it has a line focus. A limitation of the torus reflector is
that the sidelobes and cross-polarization produced can be unacceptable in some situations such
as in transmission due to inherent aberrations created by the toroidal surface. An alternative
approach is to shape the surfaces of the reflector as described in Chapter 6 to provide multiple
beams over a limited angular range. One such design shown in Figures 10.12 and 10.13 is
briefly described (Hay et al., 2001).
Amultibeam antennawas designed using two reflectors and with up to 19 feed horns to cover a

40 field of view, each viewing a satellite with a possible separation of 2 . Unlike a conventional
reflector antenna, which has a single focal point where the feedmust be positioned, themultibeam
antenna has a focal surface on which the feed horns are located. The reflectors are specially
shaped and strategically positioned to maximize the field-of-view of the geostationary satellite
arc. The antenna that resulted is shown in Figures 10.12 and 10.13. In Figure 10.12, three such
antennas are combined to cover a total of 120 coverage of the geostationary arc.
The resulting multibeam antenna design has shaped reflectors arranged in a Cassegrain con-

figuration, and each feed horn illuminates part of an extended subreflector. The entire main

Figure 10.12 Multibeam earth stations at SES-Astra in Luxembourg. Each antenna covers a 40-degree
field-of-view of the geostationary satellite arc. Source: Reproduced with permission from SES-ASTRA
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reflector is used by each beam. Both reflectors are under illuminated to produce low sidelobes
so as to meet the sidelobe specification. To help achieve low sidelobes, profiled corrugated
horns were also used. A compact corrugated feed horn was designed using accurate electro-
magnetic modelling software as described in Section 4.5.3. The horns were designed to give
low signal spillover and low cross-polarization. To create the initial shaped reflector surfaces,
a geometric-optics ray-tracing programme was used.
The main reflector is about 4.5 m square, while the subreflector is about 5.6 m wide by 2.3 m

high. The final reflector shapes are found by means of an accurate physical-optics-based opti-
mizer to achieve low sidelobes over a wide field-of-view while maintaining good aperture effi-
ciency. To ensure that the electrical performance of the overall antenna was satisfactory, the
complete antenna was modelled with an accurate computer software package, which combines
physical optics modelling of both reflectors and mode matching for the feeds. Antenna feed
horns placed on the focal surface in transmit mode produce directional beams over the ±20 field
of view. The sidelobes of each beam satisfy the ITU envelope of 29−25logθ dBi, where θ is the
angle from the beam maximum. In the specification 10% of the sidelobe power is permitted to
exceed this envelope. In the forward direction, the sidelobes are below the required envelope,
but for angles >100º several peaks are expected to exceed—5 dBi due to the spillover from the
subreflector. The subreflector is significantly larger than in conventional dual reflector anten-
nas and the feed horn sidelobes illuminate this reflector, which in turn produce the spillover.
Both reflectors were fabricated from shaped reflector panels by means of the adjustable mould
method that was described in Section 10.1.6. A bed-of-bolts shown in Figure 10.1 was set under
computer control for each panel on the antennas. The final accuracy of the panels was < 0.025λ.
The feed system that is used in conjunction with the wideband-corrugated horn covers the

required frequency range of 10.7–12.75 GHz. In a typical arrangement, the horn is connected to
an orthomode transducer that allows reception of two orthogonal polarizations, and filters are
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Figure 10.13 Geometry of the 4.5 m diameter multibeam antenna for Ku-band. Source: Reproduced
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provided in each port to reduce interference at transmit band frequencies. The feed system was
placed in a cylindrical enclosure which was then attached to a beam supporting all feed systems.
The mount allows translation and rotation of the feeds for alignment purposes. As the antenna
may have to operate in freezing conditions, de-icing equipment was also included. Hot air
blowers were placed on the back of each reflector, and resistive tape heaters were placed around
the aperture of each horn to prevent ice and water forming on the radome.
To obtain permission to transmit into commercial satellite networks using an antenna, such as a

multibeam earth station, verification testing of radiation, gain and noise temperature performance
is normally required. The fixed structure of a multibeam antenna does not allow for all the con-
ventional on-site tests to bemade. Therefore, in conjunctionwith severalmajor satellite operators,
a protocol was developed to verify that the performance was acceptable for transmit mode
of operation. This protocol involved the following steps: (i) assembly of the antenna at the
site of manufacture followed by measurement of the antenna structure using photogrammetry;
(ii) detailed radiation pattern testing on an antenna range; (iii) disassembly of the antenna and
shipment to the final site; (iv) re-assembly and re-measurement by means of photogrammetry;
and (v) limited on-site tests including measurement of gain and on-axis cross-polar isolation.
Photogrammetry was used to verify the assembled accuracy compared with the design. For

instance, the antenna shown in Figure 10.12 had the following accuracy: main reflector surface,
0.3 mm rms; subreflector surface, 0.5 mm rms; and inter-reflector alignment, 1.6 mm rms.
Verification testing at the site of manufacture can be performed before installation, as long as

the antenna is sufficiently modular so that it can disassembled and transported to its final loca-
tion. One way to test the performance of an earth station is to use the signal from a satellite in
reception. This can be used to optimize gain and sidelobes as well as adjustment of the orien-
tation of the ribs of the reflector panels to ensure spurious sidelobes were not created by periodic
ribs. The radiation patterns were measured by means of a large rotator that could be moved in
azimuth and elevation directions about the centre of the beam. At the same time, a beacon signal
at 12.748 GHz was recorded from a locally operating Ku-band geostationary satellite. Receive
tests were completed for several sample beams and transmit tests were alsomade for two beams.
The results are summarized in Table 10.3. The radiation pattern and gain performance for all
measured beam positions were excellent and exceeded the requirements except for the cross-
polar isolation within the 1 dB beamwidth, which had a target specification of 35 dB/K. How-
ever, the measured cross-polarization isolation within this 1 dB beamwidth was better than 30
dB which is the operating specification of most satellite operators. Antenna noise temperature
was also measured at an elevation angle of 25 . These measurements gave an antenna noise
temperature, Ta, of ≤21 K for the receive-only feeds and ≤39 K for the transmit/receive feed

Table 10.3 Gain and noise temperature of 4.5 m multibeam antenna at two frequencies
and beam positions, measured and simulated results

Gain (dBi)
Antenna temperature at 30

elevation ( K)

Frequency (GHz) Beam Theory Experiment Theory Experiment

12.75 0 51.4 50.8 ± 0.5 14 15 ± 4
11.20 0 51.0 50.5 ± 0.5 20 23 ± 4
12.75 18 51.4 51.0 ± 0.5 14 17 ± 4
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Figure 10.14 Measured radiation patterns of the 4.5 m multibeam antenna at 12.748 GHz for beam
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system (with diplexer). For the frequencies of interest, the G/Ta is ≤31.2 dB/ K for feeds
operating only in the receive-only band and ≤30.2 dB/ K for full bandwidth transmit/receive
feeds, and this gives a significant system margin for operators above the typical specification
of 29 dB/K. The measured results are summarized in Table 10.3, and a typical measured radi-
ation pattern at 12.748 GHz for a beam +18.6 from boresight is shown in Figure 10.14.

10.3.3 Radio Telescopes

On several continents there are a number of radio observatories with large reflector antennas
that are used for radio astronomy. The diameter of the telescope is important as it determines the
minimum sensitivity and its ability to detect signals from distant galaxies. The objective is to
observe sources sufficiently far enough away in specific frequency bands such as the OH mol-
ecule (1.4–1.6 GHz) and to monitor these signals over time. It is predicted that the signals ema-
nate from distances far away, thought to be close in time to the creation of the universe. In the
past, most single radio telescopes had a single sensitive feed horn. Over recent years, a cluster
of feeds has been used, each with two orthogonal linear polarizations so that survey speeds
can be reduced to a more manageable observation limits. As well, multiple feeds can be used
to provide redundancy to improve the radio images. This was demonstrated early on with
the Parkes multibeam feed (Bird, 1994; Staveley-Smith et al., 1996). Compared with a
high-efficiency feed at the focus, an N-beam focal plane array reduces the sampling time by
a factor Ct/N, where Ct is a time penalty due to the longer sample times that are required with
a multibeam feed to compensate for slightly reduced antenna gain and increased noise caused
by higher feed spillover. As an example, consider the design of a seven multiple beam feed
cluster for the Arecibo radio telescope. This antenna uses a Gregorian reflector system. The
main reflector diameter is 320 m, and the Gregorian subreflector subtends an angle of 60 with
respect to the optical axis of the feed, which allows waveguide feeds to be used. The specifica-
tions of a seven-element feed cluster for this reflector system are summarized in Table 10.4.
There are twomajor drivers of the feed array design. The first of these is that the feed elements

should efficiently illuminate thenearest reflectorwith a suitably lowedge taper and lowspillover.
If the edge taper is too low, the antenna efficiency may suffer. The second driver is that the feed
aperture diameter is limited in size, since the larger thediameter of each feed the further the beams
are apart and the greater the scan loss.A rough estimate for the radius that is based onEq. 6.107 is
a≈ feffβ, where feff is the effective focal length and β is the maximum scan angle (in radians).
Figure 10.15 shows the scan loss as a feed is moved from the focus of the Gregorian system.
A scan loss of about 1.5 dB was considered the upper limit and this constrained the feed centre-
to-centre spacing to <270 mm. The combination of these two factors restricts a practical array in
the Arecibo antenna to about seven elements (see Figure 10.16), which still gives a significant
reduction in observing time. The limited size also means that the most efficient feeds for wide-
angle reflectors cannot be used because their effective aperture would be made too large
through the addition of external slots and chokes for higher performance. To control the aper-
ture diameter, TE11-mode stepped circular and also coaxial horns were investigated as potential
candidates as array elements. Both horn types were analysed in detail using mode-matching
software for arrays. A range of horn sizes were tried in assessing the various trade-offs.
Another important geometric constraint is the diameter of the input waveguide to the horn.

This is usually set at the commencement of the design. The usual requirement is that only the
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Table 10.4 Specifications for a multibeam reflector for radio astronomy in L-band

Frequency range 1.225–1.525 GHz
Number of elements 7-hexagonal array
Return loss >20 dB
Polarization Dual linear
Polarization isolation >20 dB
Edge illumination <–10 dB
Input waveguide 150 mm
Ground plane diameter 1000 mm
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Figure 10.15 Scan loss of the Arecibo Gregorian reflector system at 1.375 GHz for feed movements in
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fundamental TE11 mode can propagate in the frequency range 1.225–1.525 GHz and all other
modes are cut-off. A 150 mm diameter pipe satisfies this requirement.
The horn performance was studied using mode matching software not only in isolation but

also when each horn was embedded in the Gregorian system optics. A spherical wave expan-
sion of the feed radiation patterns was used to obtain a complete antenna gain analysis of the
Arecibo radio telescope optics by a combination of kinematic and electrodynamic ray tracing,
and aperture field integration. Finally, a noise analysis was performed with the feed to obtain
the overall G/T using the previously mentioned techniques in conjunction with a detailed Gre-
gorian noise mapping. A noise temperature analysis was undertaken to provide a clear basis for
a selection.
A variety of circular and coaxial horn geometries were investigated initially as possible mul-

tibeam feed elements. The initial starting point for the circular horn was the feed design for the
Parkes multibeam (Bird, 1994) as the angle subtended at the tertiary reflector of the Gregorian
system is almost the same as for the Parkes radio telescope. However, the Parkes multibeam
was required to operate over a narrower band of frequencies (1.27–1.47 GHz) and the match of
the Parkes horn design is poor outside this band, hence the need for a new design for Arecibo.
The coaxial horn designs were studied for the Lovell radio telescope in the United Kingdom
(Bird, 1997), although a smaller inner-to-outer conductor ratio could be used because the angle
subtended at the reflector is smaller for Arecibo. The smaller inner-to-outer conductor ratio
helps to achieve a wider-band match. For both circular and coaxial designs, the horns were
stepped from the 150 mm diameter input waveguide up to the aperture diameter in steps
designed to give a good match and pattern symmetry over the frequency band. A ground plane
diameter (2R) of 1 m was assumed during the design phase.
After several feed designs were trialled in the Gregorian optics, it was found that the largest

apertures tended to give best overall performance. The two horn designs shown in Figures 10.17
and 10.18 were obtained, and they were found to give comparable performance in the radio
telescope. The input match of these horns is shown in Figures 10.19 and 10.20. Although
the TE11-mode stepped horn has slightly better return loss, lower variation of pattern beam-
width and lower cross-polarization, the coaxial horn is smaller and can be packed closer
together in the array which reduces the reflector scan loss.

40 160 160 110 100

150158196240250

Figure 10.17 Stepped feed horn geometry (dimensions in mm)
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A detailed study concluded that the TE11-mode stepped horn in Figure 10.17 offered the best
compromise in performance in terms of spillover efficiency, antenna noise temperature and
sensitivity and was simple to fabricate. The performance of the stepped horn is very satisfactory
as shown in Table 10.5. Radiation pattern cuts of the isolated horn are given in Figures 10.21
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Figure 10.18 Coaxial horn design (dimensions in mm)
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and 10.22 at the low and mid-frequencies in the operating band. Figure 10.23 shows the cor-
responding two-dimensional patterns for the isolated horn. The patterns at the highest fre-
quency in the band are even better than at the middle of the band.
The array centre is offset 27 mm in the X-direction of the focal plane, and this limits the

scan loss at an outer horn location to about 1.3 dB (see Figure 10.15). For the chosen horn
size and aperture spacing, it was found that the beam spacing of the radio telescope is about
1.66 times larger than the Nyquist sample spacing. Also, it was determined that the path fol-
lowed by the beams in the sky, as the array rotates in the focal plane, is elliptical. The size of
this ellipse depends linearly on the feed spacing in the focal plane, but the eccentricity is almost
constant.
The performance of the horn in the array was predicted including the effects of mutual

coupling and also a finite ground plane. Figure 10.24 shows the predicted radiation patterns
of three elements in the array for the three independent beams at the mid-frequency for vertical
(Y) polarization. These patterns should be compared with the corresponding pattern for the

Table 10.5 Summary of multibeam feed performance

Frequency (GHz) 1.225 1.375 1.525
Return loss (dB) 23.5 27.2 23.5
Edge illumination (dB) 10.9 13.5 15.9
Peak horn cross-polar (dB) −24.4 −30.7 −33.7
Spillover efficiency (%) 92.7 95.7 97.9
Antenna system temperature (K) 36 30 26
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Figure 10.20 Reflection coefficient of the isolated single coaxial horn shown in Figure 10.18
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isolated horn in Figure 10.23b. It is found that, due to mutual coupling, the peak cross-
polarization can be about 5 dB higher than that for the isolated horn at the low frequency
end of the band. This is because of the high levels of the TE21 mode excited in the aperture
of the array. The result is summarized in Figure 10.25 for vertical polarization (Y-direction).
Excitation of this unwanted TE21 mode is difficult to control at low frequencies in a close-
packed array of relatively small diameter horns, and tuning of the waveguide steps has little or
no effect on the peak level. However, mutual coupling has a small effect on the return loss,
which remains >23 dB across the entire frequency band, as shown in Figure 10.19.
The design was performed assuming the array was located in a large ground plane. With

a smaller ground plane, the radiation patterns are more greatly impacted by the edge diffrac-
tion. Thus a finite ground plane should be included in the design. The size of the ground plane
does not have a significant effect on the individual feed pattern; provided the ground plane is
reasonably large (typically R> 3 4a, where a is the radius of the horn aperture in a seven-
element hexagonal array), there is minor effect on the secondary radiation patterns and there
is only a small change in feed spillover if the size is varied slightly from the specified diameter.
Measured results are shown in Figure 10.26 for the central element. The patterns shown are

for the co-polar and cross-polar components in the 45 plane. Due to the geometrical sym-
metry, the pattern is almost symmetric. There is good agreement between these results and
theoretical values obtained from the mode matching method which includes mutual coupling
between the elements. It is seen that the peak cross-polar level is comparable to its level in the
isolated horn.
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10.4 Problems

P10.1 A metal is spluttered onto a lossy dielectric. If the metal has a high conductivity that is
close to aluminium, what thickness of metal coating is required to ensure the loss due to
the dielectric is negligible at a frequency of 30 GHz.

P10.2 A planar near-field measurement obtains data sets v0 and v90 at two probe orientations
0 and 90 for scans extending over x,y ≤ 100λ with sample spacing of λ/2. The data
obtained for the probe oriented at α= 0 is given by jH x −50λ H y −50λ , where H()
is the Heaviside step function. The data obtained for the probe at 90 is of the same
functional form but with an amplitude 1/100 less. Assume the probe is a corrugated
waveguide with a radius of 1λ and operating at the balanced hybrid condition.
a. Transform the data to obtain the far-field functions.
b. Determine the E- and H-plane patterns and also the peak cross-polarization level.

P10.3 If the measurement error is εi where i = 1,...3 for each of the three separate measurements
in the three antenna method as described in Section 10.2.1 and given by Eq. 10.3, what is
the total error for the method and the error in the gain of each antenna?

P10.4 Verify that Eq. 10.4 is an alternative representation of the spherical field

is E θ,ϕ = θEθ θ,ϕ +ϕEϕ θ,ϕ .
P10.5 Design an aperture antenna for full earth coverage from a low-earth orbit (LEO) satellite,

which is at an altitude of 800 km above the earth (earth radius 6378 km). Determine the
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Figure 10.26 Radiation patterns in a 45 plane of element 1 of the feed array at a frequency of
1.375 GHz. Solid line: co-polar computed; dashed line: cross-polar computed; diamond: experiment

387Aperture Antennas in Application



required half-power beamwidth. Suggest options for aperture antennas to provide the
specified half-power beamwidth (Hay et al., 1999).

P10.6 Simplify Eq. 10.8 for a probe with an axisymmetric pattern. Determine the formula for
cross-polarization with this probe for an aperture antenna with a general pattern.

P10.7 Verify that Eq. 10.12 for an intermediate field measurement becomes a far-field
measurement as the radius rb ∞ .

P10.8 Design a phased array feed consisting of a rectangular array of circular horns for a
parabolic reflector with diameter D= 55λ and f D= 0 38. The antenna should be able
to view a source at ± 2 HPBWs from boresight in any direction with minimum loss of
gain. What is the size of the array and how many elements are required?
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Appendix A

Useful Identities

A.1 Vector Identities

Some useful vector identities and geometrical transformations are summarized below
(Harrington, 1961; Hildebrand, 1962; Gradshteyn et al., 1994).
A vector quantity is defined in bold lettering, for example, A. A unit vector is shown as a

standard variable with a caret (‘hat’) symbol, for example, â:

A+B ×C =A ×C +B ×C

A B×C =B C×A −C A ×B

A× B×C = A C B− A B C

∇ A+B =∇ A+∇ B

∇× A+B =∇×A+∇×B

∇ ϕA =ϕ∇ A +A ∇ϕ

∇× ϕ∇α =∇ϕ ×∇α

∇×∇α= 0

∇ A×B =B ∇×A−A ∇×B

∇ ∇ ×A = 0

∇×∇×A=∇ ∇ A −∇2A

Fundamentals of Aperture Antennas and Arrays: From Theory to Design, Fabrication and Testing,
First Edition. Trevor S. Bird.
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Note that

A ×B =

x y z

Ax Ay Az

Bx By Bz

= x
Ay Az

By Bz
−y

Ax Az

Bx Bz
+ z

Ax Ay

Bx By

= x AyBz−AzBy −y AxBz−AzBx + z AxBy−AyBx ,

where |X| is the determinant of matrix X.

A.2 Geometric Identities

The three main co-ordinates systems used here are rectangular (x, y, z), cylindrical (ρ, ϕ, z) and
spherical (r, θ, ϕ) co-ordinates as shown in Figure A.1. The relationship between the
co-ordinates is

x= ρ cos ϕ = r sin θ cos ϕ

y= ρ sin ϕ = r sin θ sin ϕ

z = ρ cos θ

ρ = x2 + y2 = r sin θ

ϕ = tan−1 y

x

r = x2 + y2 + z2 = ρ2 + z2

ϕ = tan−1 x2 + y2

z
= tan−1 ρ

z

Transformations between the co-ordinate vector components are given by the relationships

x

z

0

θ

ϕ
y

r

ρ

Figure A.1 Co-ordinate definitions
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Ax =Aρ cos ϕ−Aϕ sin ϕ

=Ar sin θ cos ϕ +Aθ cos θ cos ϕ−Aϕ sin ϕ

Ay =Aρ sin ϕ +Aϕ cos ϕ

=Ar sin θ sin ϕ +Aθ cos θ sin ϕ +Aϕ cos ϕ

Az =Ar cos θ−Aθ sin θ

Aρ =Ax cos ϕ +Ay sin ϕ

=Ar sin θ +Aθ cos θ

Aϕ = −Ax sin ϕ +Ay cos ϕ

Ar =Ax sin θ cos ϕ +Ay sin θ sin ϕ+Az cos θ

=Aρ sin θ +Az cos θ

Aθ =Ax cos θ cos ϕ +Ay cos θ sin ϕ−Az sin θ

=Aρ cos θ−Az sin θ

The differential surface and volume elements are, respectively,

dS= xdydz+ ydxdz + zdxdy

= ρρdϕdz+ϕdρdz+ zρdρdϕ

= rr2 sin θdθdϕ+ θr sin θdrdϕ+ϕ rdrdθ

dV = dxdydz = ρdρdϕdz = r2 sin θdrdθ dϕ

A.3 Transverse Representation of the Electromagnetic Field

In two-dimensional field problems and also in uniform cylindrical structures, it is convenient to
use a transverse field representation. Thus, three-dimensional fields are represented as

A x,y,z =At x,y,z + zAz x,y,z

=At ρ,ϕ,z + zAz ρ,ϕ,z

The gradient vector is similarly represented

∇=∇t + z
∂

∂z
,

where

∇t = x
∂

∂x
+ y

∂

∂y

= ρ
∂

∂ρ
+ϕ

1
ρ

∂

∂ϕ
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and

∇2
t =

∂2

∂x2
+

∂2

∂y2

=
1
ρ

∂

∂ρ
ρ
∂

∂ρ
+

1
ρ2

∂2

∂ϕ2

A.4 Useful Functions

Some functions that are used throughout are listed below:

H u =
0; u< 0
1; otherwise

Int x = Integer value of x ≤ x

C x =
cos x

1− 2x π 2 = cosine function

S x =
sin x

x
= sinc function

A recursion formula for the Chebyshev polynomial of order n, Tn(z), is as follows:

Tn z = 2zTn−1 z −Tn−2 z ,

where T0 z = 1, T1 z = z, T2 z = 2z2−1, etc. Also,

Tn z =
cos ncos−1 z ; z < 1

cosh ncosh−1 z ; z > 1
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Appendix B

Bessel Functions

B.1 Properties

The Bessel equation of integer order n is given by

x
d

dx
x
dψ

dx
+ x2−n2 ψ = 0 B 1

The solutions are expressed in several forms (McLachlan, 1934; Abramowitz & Stegun,
1965). Two possible solutions to this equation are called Bessel functions of first and second
kind. These are Jn(x) and Yn(x). A series expansion of the former type is

Jn x =
∞

k = 0

−1 k

k n + k
x

2

n + 2k

For a negative integer order, the expansion shows that J−n x = −1 nJn x and x real
Jn −x = −Jn x . In addition,

Yn x = lim
ν n

Jν x cosνπ−J−ν x

sinνπ

For small arguments,

Jn x
1

Γ n + 1
x

2

n
, Yn x −

Γ n

π

2
x

n

,

where for the latter when n= 0, Y0 x 2 π ln x .
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For large arguments (i.e. z >> n),

Jn x
2
πx

cos x−
1
2
nπ−

π

4

Yn x
2
πx

sin x−
1
2
nπ−

π

4

On the other hand for large orders (i.e. n ∞ ),

Jn x
1

2πn

xe

2n

n

Yn x −
2
πn

xe

2n

−n

and for positive values of n

Jn nsechα
exp n tan hα−α

2πn tan hα

and also

Jn nsechα
sin h2α
4πn

exp n tan hα−α

The ratio of the derivative of J 'n and Jn for large orders can be expressed as

Jn z

Jn z

n

z

2

−1

Zeros of the ordinary Bessel function and its derivative can be approximated by the first two
terms of McMahon’s expansion. For n fixed and s large, an estimate for the zero of the Bessel
function is

jn,s β−
4n2−1
8β

,

where β = n 2 + s−1 4 π, and for the derivative of the Bessel function,

jn,s β −
4n2 + 3
8β

,

where β = n 2 + s−3 4 π. These formulae give adequate first estimates to commence a search
for more accurate values. The exception is j1,1 1 98 compared with j1,1 = 1 84118.
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The Hankel functions of first and second kinds are defined by

H 1
n x = Jn x + jYn x

H 2
n x = Jn x − jYn x ,

and for large arguments the Hankel functions and their derivative are

H 1,2
n x

2
πx

exp ± j x−
1
2
nπ−

π

4

H 1,2
n x ± j

2
πx

exp ± j x−
1
2
nπ−

π

4

Approximations with greater degree of accuracy than given above are available in the refer-
ences (e.g. Abramowitz & Stegun, 1965).
Recurrence relations for any of the Bessel functions, Zn(x), which stands for any one of the

ordinary Bessel functions or Hankel functions, Jn, Yn or H 1,2
n , are as follows:

Zn x =
x Zn−1 x + Zn + 1 x

2n

Zn x =
Zn−1 x −Zn+ 1 x

2

=
Zn−1 x −nZn x

x

= −
Zn+ 1 x + nZn x

x

B 2

A useful series expansion for Y0(x) is

Y0 x =
2
π

ln
x

2
+ γ J0 x −2

∞

k = 1

−1 k J2k x

k
,

where γ = 0 5772156649053 is Euler’s number.
The modified Bessel functions of first and second kind, namely, In(x) andKn(x), are solutions

of the Bessel equation, Eq. B.1, with an imaginary argument. They can be expressed as

In x = exp
− jnπ

2
Jn jx ; −π < arg x ≤

π

2

= exp
j3nπ
2

Jn − jx ;
π

2
< arg x ≤ π

Kn x =
jπ

2
exp

jnπ

2
H 1

n jx ; −π < arg x ≤
π

2

= −
jπ

2
exp

− jnπ

2
H 2

n jx ;
π

2
< arg x ≤ π
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with

K0 x = − ln
x

2
+ γ I0 x + 2

∞

k = 1

J2k x

k

For large arguments Kn(x) and its derivative are

Kn x
2
πx

exp −x

Kn x −
2
πx

exp −x

Recurrence relation Eq. B.2 applies also for In(x) or Kn(x) with the following changes in the
expressions Zn x Zn x , Zn + 1 x −1 Zn + 1 x and Zn−1 x Zn−1 x .
Some Wronskian relations for the Bessel functions are

Jn + 1 x Yn x −Jn x Yn + 1 x =
2π
x

Jn x Yn x −Jn x Yn x =
2π
x

H 1
n+ 1 x H 2

n x −H 1
n x H 2

n+ 1 x =
−4j
πx

H 1
n x H 2

n x −H 1
n x H 2

n x =
4j
πx

Jn x H 2
n x −Jn x H 2

n x =
2j
πx

In coaxial structures it is convenient to adopt compound Bessel functions of the form

Zn x,y = Jn x −
Jn y

Yn y
Yn x

Λn x,y = Jn x −
Jn y

Yn y
Yn x

Zn x,y = Jn x −
Jn y

Yn y
Yn x

Λn x,y = Jn x −
Jn y

Yn y
Yn x

Un x,y = Jn x −
Jn y

H 2
n y

H 2
n x

Vn x,y = Jn x −
Jn y

H 2
n y

H 2
n x ,
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where the derivative indicated by refers to the derivative with respect to the first argu-
ment only.
Useful series of Bessel functions are

exp jxcos θ = J0 x + 2
∞

k = 1

jkJk x cos kθ

exp jxsin θ =
∞

k= −∞
exp jkθ Jk x

1 = J0 x + 2
∞

k = 1

J2k x

exp z = I0 x + 2
∞

k = 1

I2k x

1 = I0 x + 2
∞

k = 1

−1 kI2k x

Jp az Jq z =
1
2az

p 1
2bz

q

Γ q + 1

∞

r = 0

−1 r
2F1 −r, −p−r;q + 1; b a 2 az 2 r

r Γ p + q+ 1

2F1(s, t; u; z) is the hypergeometric function (Watson, 1962; Abramowitz & Stegun, 1965)
given by

2F1 α,β;γ;z =
Γ γ

Γ α Γ β

∞

n= 0

Γ α+ n Γ β + n
Γ γ + n

zn

n

Some useful integrals involving Bessel functions in closed form are (McLachlan, 1934;
Luke, 1962; Gradshteyn et al., 1994)

2π

0

cos
sin

pϕ ejzcos ϕ−ϕ dϕ = 2πjpJp z
cos
sin

pϕ B 3

z

zpJp−1 z dz = zpJp z

a

0
Jp αz

2
zdz =

a2

2
Jp αa

2
−Jp−1 αa Jp+ 1 αa B 4

a

0
Jp αz Jp βz zdz=

a

α2−β2
αJp + 1 αa Jp βa −βJp αa Jp+ 1 βa

=
a

α2−β2
βJp αa Jp−1 βa −αJp−1 αa Jp βa

B 5
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a

0

Jp αz Jp βz exp − jγz2 zdz =
αβ

4
a2

p a2

2Γ p + 1

∞

m= 0

−1 m α

2
a

2m
×

2F1 −m, −m−p;p+ 1; β α 2

m Γ p+m+ 1

∞

ν = 0

− jγa2

ν p+m+ ν+ 1

B 6

a

0
dwwα−1 1−w2 β−1 Jp Aw Jq Bw

w2−u2m
λ
w2−u2n

τ Jν Cw =

Γ β

2
Γ

A

2

p

Γ
B

2

q ∞

σ = 0

−1 σQσ p + σ,q + 1,A,B
∞

μ= 0

−1 μ

μ

C

2

2μ

× Γ
C

2

ν Γ χ

Γ ν+ μ+ 1 Γ β + χ
gν + jsgn 1−β Γ

C

2

2 λ−β−σ + 1 − p+ q+ α Γ θ

Γ ν−θ + 1 Γ β−μ
hν

B 7

where A,B<C, um = xm A and un = xn B in which Jp xm = 0,

Qm s, t,x,y =
x 2 2m

2F1 −m, −s;t; y x 2

m Γ s + 1 Γ t
,

χ = p+ q + ν + α 2 + σ + μ , θ = p+ q + ν + α 2 + σ−μ+ β−λ−1 and

gν =

1; λ = 0 = τ

−1
u2m −u

2
n

u−2
m1F2 1,χ;β + χ;u−2

m −u−2
n1 F2 1,χ;β + χ;u−2

n ; λ= 1 = τ

u−2λ
m1 F2 λ,χ;β + χ;u−2

m ; λ > 0,τ = 0

hν =

1; λ = 0 = τ

1
u2m −u

2
n

1F2 1, −μ;β−μ;u2m −1F2 1, −μ;β−μ;u2n ; λ= 1 = τ

1F2 λ, −μ;β−μ;u2m ; λ> 0,τ = 0

In the functions gν and hν above, when λ = 0 and τ > 0, the roles of λ and τ reverse as are those
of um un.

B.2 Computation of Bessel Functions

Several applications call for a sequence of Bessel functions with the same argument z but of
different orders. An accurate method of generating the desired sequence of functions up to order
N is to commence with M >N (typically M =N + 10) such that
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jM z = 0 and jM−1 z = ε 10−8,

where jk are unscaled and commencing members of the sequence and z may be complex. Then
use the following recurrence relation to compute other members down to k = 0. Thus,

jk z =
2 k + 1

z
jk + 1− jk + 2;k =M−2,M−1,…, 1, 0

At the same time, compute a normalization constant C from

C = 2
M

k = 1

j2k z + j0 z

Also, if the Y Bessel functions are needed at the same time, compute

Σ=
M

k = 1

−1 k

2k
j2k z

The ordinary Bessel functions are given by

Jk z =
j0 z

C

and

Y0 z =
2
π

ln
z

2
+ γ J0 z − −

4Σ z

C

Afterwards use the first Wronskian listed above to compute Y1(z). Thus,

Y1 z =
J1 z Y0 z −2π z

Jn z

An ascending recurrence relation is used to compute the remaining members of the sequence

Yk + 1 z =
2k
z
Yk z −Yk−1 z ; k = 1,2,…,N

The modified Bessel functions are computed in the same way except that the relevant recur-
rence relations and summation formulae should be used.
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Appendix C

Proof of Stationary Behaviour
of Mutual Impedance

A reason for relatively accurate results being possible with simple current approximations is
that mutual impedance expression, Eq. 7.27, is stationary with respect to small variations in
currents on the antennas. To prove this, substitute Eq. 7.32 in Eq. 7.27 and consider deviations
in J1 and J2 expressed as δJ1 and δJ2. If the errors are small, the change in Z21 (given by δZ21)
is, to first order, given by

δZ21I1I2 = −Z21 I1δI2 + δI1I2 −
S2

dS
S1

dS δJ2 G e R R J1

−
S2

dS
S1

dS J2 G e R R δJ1

C 1

To interpret the terms on the right side of Eq. C.1, consider the scalar product of E21 and δJ2
and integrate over the surface of antenna 2 to give

S2

dSδJ2 E21 = −
S2

dS
S1

dS δJ2 G
=

e J1

=V21δI2 = Z21 I1δI2

C 2
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Similarly, the integral of the scalar product of E12 and δJ1 on S1 gives

S2

dSδJ1 E21 = −
S2

dS
S1

dS δJ1 G
=

e J2

=V12δI1 = Z12 I2δI1

C 3

Under conditions where the dyadic Green’s function is symmetric and the dyadic products
are symmetric, then from Eqs. C.2 and C.3,

S1

dS
S2

dS δJ1 G e R R J2 =
S2

dS
S1

dS J2 G e R R δJ1 C 4

Using Eqs. C.2 to C.4 and also the reciprocity property that Z12 =Z21, the terms on the right-
hand side of Eq. C.1 cancel, giving δZ21 = 0. Thus the mutual impedance Eq. C.4 is stationary
and is accurate to second order for an assumed current distribution that may be correct to only
first order. This conclusion applies also for the special case of the self-impedance, correspond-
ing to when antennas 1 and 2 are coincident, and also for the dual quantity mutual admittance
given by Eq. 7.31.
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Appendix D

Free-Space Dyadic Magnetic
Green’s Function

The magnetic Green’s function dyadic is derived from the wave equation for a magnetic dipole
in free-space (Felsen & Marcuvitz, 1973).
Commencing with the rotational Maxwell equations, the vector wave equation is formed for

the magnetic field in the absence of electric currents

∇×∇×H r −k2H r = jωεM r ,

where M(r) is the magnetic current source. Now make use of the curl-curl vector identity in
Appendix A.1. With a combination of Gauss’ law and the continuity equation for magnetic
sources, it is found that

∇2H r + k2H r = − jωε I+
∇ ∇
k2

M r ,

where I is the unit dyadic. IfM(r) lies on a planar surface S, then a solution to the above equa-
tion is

H r = − jωε
S
dSM r I+

∇t ∇t

k2
Go r−r

= − jωε
S
dSM r G h

= r, r ,
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where ∇t is the gradient operator in the transverse plane. The two-dimensional Greens dyadic
is given by

G
=

h r, r =
− jk

2πηo
I +

∇t ∇t

k2
Go r−r ,

where Go R = exp − jkR R is the scalar free-space Greens function, and

r−r = x−x 2 + y−y 2 + z−z 2
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Appendix E

Complex Fresnel Integrals

Several forms of Fresnel integrals have been defined by various authors, and as a result, the
definition often depends on the application. In this text, a complex Fresnel integral is
defined as

K z =
z

0
exp − jξ2 dξ, E 1

where z is generally complex also. Note that

−K z =K −z and K ∞ =
π

2
exp − j

π

4

The complex Fresnel integral is related to the cosine and integral functions, which are
defined here as (Abramowitz & Stegun, 1965, p. 300)

Ci z =
z

0
cos

π

2
t2 dt and Si z =

z

0
sin

π

2
t2 dt

Thus, Ci z = π 2 Re K π 2z and Si z = π 2 ℑm K π 2z or K z =

π 2 Ci 2 π z + jSi 2 π z .
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Series expansions for the cosine and sine integrals are given by

Ci z =
∞

k = 0

−1 k π 2 2k

2k 4k + 1
z4k+1 E 2a

Si z =
∞

k = 0

−1 k π 2 2k + 1

2k + 1 4k + 3
z4k+3 E 2b

These series are quite accurate for moderate values of the argument (typically z < 3).
As well, there are accurate Padé polynomial approximations to these integrals that can be used
to compute the complex Fresnel integral (refer to Luke, 1969). For small arguments, C z ≈z
and S z ≈πz3 6 and, therefore,

K z ≈z 1− j
z2

3
E 3

Another variant is the one-sided Fresnel integral that has an infinite upper limit arises in some
diffraction problems. It is defined by the integral

F ± x =
∞

x
exp ± jξ2 dξ, E 4

where x is real. Thus,

F± x =
∞

0
−

x

0
exp ± jξ2

=
π

2
exp ± j

π

4
−

K z ; +

K z ∗;−

By a similar argument, when x is negative,

F ± −x =
∞

−∞
−

∞

x
exp ± jξ2

= π exp ± j
π

4
−F± x

E 5

For large arguments, the Fresnel integral is approximately

F± x ≈
1
2x

exp ± j x2 +
π

2
1 ± j

1
2x2
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A large argument approximation to the complex Fresnel integral can be obtained from
this relationship:

K z =K ∞ −F− z

≈
π

2
exp − j

π

4
−
1
2z

exp − j z2 +
π

2
1− j

1
2z2

Another function used in diffraction theory is the modified Fresnel integral (James, 1986)
which is defined as

M ± x =
exp j x2 + π 4

π

∞

x
exp ± jxt2 dt

=
exp j x2 + π 4

π
F ± x

E 6

Special cases of the modified Fresnel integral are

M± −x = exp jx2 −M ± x ,

M ± 0 =
1
2
,

and

M ± x x ∞
exp ± jπ 4

2x π

The modified Fresnel integral can be evaluated numerically by means of the results given
above or approximated quite accurately by the formula (James, 1979), which is often suffi-
ciently accurate for many applications:

M± x ≈
1
2
exp ± j tan−1 x2 + 1 594x + 1 −π 4

πx2 + 0 54 x + exp −0 2x4
E 7
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Appendix F

Properties of Hankel Transform
Functions

Closed-form solutions to the integral of products of Bessel functions have been described
by several authors (Nicholson, 1920; de Hoop, 1955; Luke, 1962; Watson, 1962). In coupling
computations involving circular apertures (Bird, 1996b), products of up to three Bessel func-
tions can occur in the mutual admittance expressions. A general Hankel transform involving
triple products of Bessel functions is defined by

C 1
p,q,ν α,β;um,un;s =

∞

0
dw

w3

1−w2

Jp kaiw −αJp kbiw

w2−u2m

×
Jq kajw −βJq kbjw

w2−u2n
Jν ksw ,

F 1

and a second type involving derivatives of the two compound Bessel functions is defined by

C 2
p,q,ν α,β;um,un;s =

∞

0
dw w 1−w2

Jp kaiw −αJp kbiw

w2−u2m

×
Jq kajw −βJq kbjw

w2−u2n
Jν ksw

F 2
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Both transforms can be expressed in terms of the following general integral:

Ep,q,ν μ,σ,λ,τ;x,y,s =
∞

0
dw wμ 1−w2 σ−1 Jp kxw

w2−u2m
λ

Jq kyw

w2−u2n
τ Jν ksw , F 3

where μ, σ, λ and τ are integers, and kx, ky and ks are normalized lengths. Also um and un are the
m-th and n-th zeros of Jp and Jq. Expanding C 1

p,q,ν in terms of Eq. F.3, it is found that

C 1
p,q,ν α,β;um,un;s =Ep,q,ν 3,

1
2
,1,1;ai,aj,s −αEp,q,ν 3,

1
2
1,1;bi,aj,s

−βEp,q,ν 3,
1
2
,1,1;ai,bj,s + αβEp,q,ν 3,

1
2
,1,1;bi,bj,s

F 4

In addition, since Jp z = −Jp+ 1 z + p z Jp z , C 2
p,q,ν α, β;um,un;s can be expanded

similarly into 16 terms. In the special case when α= β = 0, Eq. F.2 becomes

C 2
p,q,ν 0,0;um,un;s =Ep+1,q+1,ν 2,

3
2
,1,1;ai,aj,s −

q

kaj
Ep+ 1,q,ν 1,

3
2
,1,1;ai,aj,s

−
p

kai
Ep,q+1,ν 1,

3
2
,1,1;ai,aj,s +

pq

kaikaj
Ep,q,ν 0,

3
2
,1,1;ai,aj,s

F 5

The real and imaginary parts of the integral Ep,q,ν(μ, σ, λ, τ; x, y, s) can each be expanded as
two double series of simple integrals (Watson, 1962). It can be shown that various infinite inte-
grals involving Bessel products can be simplified by substituting series for the Bessel functions
under the integral sign and expressing the result in terms of other functions such as the hyper-
geometric function. In other cases, these series can be expressed in terms of hypergeometric
functions (see Appendix B.1). A closed-form solution is available for all integers p, q and ν
for some cases such as when there are no poles (i.e. λ= 0 = τ) (Bird, 1996a). In another case,
a closed-form solution to Eq. F.3 in the form of series is available under limited conditions
(Bird, 1996b), namely, for the real part of Ep,q,ν(μ, σ, λ, τ; x, y, s), when um,n > 1, and also
for the imaginary part, when um,n < 1. In the case of mode coupling contributions to the self-
admittance (when s = 0), the integral transform function becomes Ep,q,0(μ, σ, λ, τ; x, y, 0), which
now involves only a double product of Bessel functions as can be seen from Eq. F.3.
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Appendix G

Properties of Fock Functions
for Convex Surfaces

The Fock functions occur in the asymptotic representation of the circular cylinder and are also
used in the description of general convex surfaces (Bowman et al., 1963; Fock, 1965). These
functions are integrals in the complex τ-plane of the Airy integral w2(τ) or its derivative w2 τ .
The Airy integral is defined by

w2 α =
1
π Γ2

dτ exp ατ−
τ3

3
G 1

where the contour Γ2 in the τ-plane is shown in Figure G.1.

G.1 Surface Fock Functions

A surface Fock function of the n-th kind, order m, is defined by

L n
m z =

Γ1

dτ τn
w2 τ

w2 τ

m

exp − jzτ , G 1

where m, n are integers and the contour Γ1 in the complex plane is shown in Figure G.1. Two
families of functions have been defined. These are known as soft and hard surface functions,
depending on m > 0 or m< 0, respectively.
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G.1.1 Soft Surface Functions (m> 0)

For convenience these are defined as

u m
n z =

exp j n + 3 2 π 2 zn+ 3 2

2Γ n + 3 2
L n
m z ; m,n= 0,1,… G 2

un z ≡ u 0
n z and u z ≡ u0 z ≡ u 0

0 z

The first derivative is given by

u m
n z = n + 3 2 u m

n z −u m
n + 1 z z

A residue series that is sufficiently accurate for z > 1 is found to be

un z =
π exp j n + 3 2 π 2 zn+ 3 2

2Γ n + 3 2

∞

p = 1

tp
n
exp − jztp , G 3

where tp p= 1,2,…,∞ are the zeros of w2 and are related to the zeros αp of the Airy function
Ai(t) (Abramowitz & Stegun, 1965) as follows:

tp = αp exp −
jπ

3
,

where αp are available in tables (Abramowitz and Stegun, 1965) for p = 1 to10.
For p > 10 a highly accurate approximation to |αp| is

αp ≈χ2 3 1 + 5 48χ2 ,

where χ p =
3π
4

p−1 4 .

Γ2

Γ1

2π/3

–2π/3Cτ
Re

Im

τ – plane

–∞

–∞

∞

Figure G.1 Contours in the complex τ-plane. Crosses indicate zeros of w2 or w2 depending on
the integrand of the soft or hard Fock functions
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A small argument approximation can be found from Eq. G.1. It can be shown that

un z ≈1 + −1 n
∞

m= 1

exp −
j3mπ
4

am n z3m 2 G 4

The first five coefficients of Eq. G.4, am(n) (m = 1, 2, …, 5), are given by

a1 n =
π 4

Γ 1−n Γ n + 3 2
,

a2 n =
5π 32

Γ 5 2−n Γ n+ 3 2
,

a3 n =
15π 64

Γ 4−n Γ n + 3 2
,

a4 n =
1105π 1024

Γ 11 2−n Γ n + 3 2
, and

a5 n =
1695π 1024

Γ 7−n Γ n + 3 2

A list of the first 20 coefficients of the small argument approximation is given in the
references (Bird, 1985).

G.1.2 Hard Surface Fock Functions (m< 0)

The n-th order hard surface Fock functions are defined as

v m
n z =

exp j n + 1 2 π 2 zn + 1 2

2Γ n+ 1 2
L n
−m−1 z ; m,n = 0,1,… , G 5

The first derivative is

v m
n z = n +

1
2

v m
n z −v m

n+ 1 z

z

It is conventional for m= 0 to let

vn z ≡ v 0
n z

and the zeroth-order function to be given by

v z ≡ v0≡ v 0
0 z

415Appendix G



As for the soft surface Fock functions, a residue series is available for z > 1. In this instance

vn z =
π exp j n + 1 2 π 2 zn + 1 2

2Γ n + 1 2

∞

p= 1

tp
n−1

exp − jztp , G 6

tp p = 1,2,…,∞ are the zeros of w2 which are related to the zeros αp of the derivative of the
Airy function Ai (t) as follows:

tp = αp exp −
jπ

3
,

where αp are also tabulated in the references (Abramowitz and Stegun, 1965) for p = 1 to10.
For p> 10 a highly accurate approximation to |αp| is

αp ≈χ2 3 1−7 48χ2 ,

where this time χ p = 3π 2 p−3 4 .
A small argument approximation can be found by returning to the definition in Eq. G.1. It can

be shown that

vn z ≈1 + −1 n
∞

m= 1

exp −
j3mπ
4

bm n z3m 2, G 7

The first five coefficients of this series, bm(n) (m = 1, 2,…, 5), are as follows:

b1 n =
π 4

Γ 2−n Γ n+ 1 2
,

b2 n =
7π 32

Γ 7 2−n Γ n + 1 2
,

b3 n =
21π 64

Γ 5−n Γ n+ 1 2
,

b4 n =
1463π 2048

Γ 13 2−n Γ n + 1 2
and

b5 n =
2121π 1024

Γ 8−n Γ n+ 1 2

The first 20 coefficients of the small argument approximation are given in the references
(Bird, 1985).
A zero-order hard surface Fock function of the first kind is also required for an asymptotic

expansion described in Chapter 8. This function is defined

v 1
0 z =

exp jπ 4 z1 2

2Γ 1 2
K 0

−2 z G 8
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Its residue series is

v 1
0 z = π exp j3π 4 z1 2 1 +

∞

p = 1

1 + jztp
exp − jztp

tp
3

= πzexp − jπ 4 1 +
∞

p = 1

1 +w
exp −w

αp
3 ,

where w= zαp exp jπ 6 .
A small argument approximation is

v 1
0 z = π exp jπ 4 z1 2 1 +

∞

m= 1

cm 0 −z 3m 2 G 9

The first five coefficients of this series are as follows:

c1 0 =
1 2

Γ 5 2
,

c2 0 =
1 2
Γ 4

,

c3 0 =
49 64
Γ 11 2

,

c4 0 =
105 64
Γ 7

, and

c5 0 =
19019 4096
Γ 17 2

A list of the first 10 coefficients is available (Bird, 1985). Functions of higher order but still
of the first kind are calculated from the following recursion relation

v 1
n z =

z2

n−1 2 n−3 2
n−1 v 1

n−2 z − n−3 2 v 1
n−1 z

G.2 Acoustic Fock Functions

These functions arise in the asymptotic representation of the field scattered by or radiated from
a curved surface. Two basic forms are used in Chapter 8.
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G.2.1 Soft Acoustic Fock Function

The lowest order of these functions are defined by (Logan, 1959)

f z =
1
π Γ1

dτ
exp − jzτ

w2 τ
G 10

When z= 0, f 0 = 0 776 exp jπ3 . When x> 0, f(z) is accurately represented by the residue
series

f z = exp jπ 3
∞

p = 1

exp z αp e− j5π 6

Ai − αp
G 11

and for z< −1,

f z ≈ −2j exp jz3 3 1 + j
1
4z3

+
1
2z6

− j
175
64z9

−
395
16z12

+ j
318175
1024z15

+…

A Taylor series expansion of f(z) is frequently adopted in the intermediate region −1 < z < 1.
This representation is

f z =
∞

n= 0

γn− jδn
zn

n

The first 11 coefficients of this series are listed in Table G.1 (Logan, 1959, Table 24).
A polynomial approximation for the range −3 < z < 0 is also useful. To establish this, it is

convenient to define a new function that is continuous, namely,

F z = f z
exp − jz3 3 ; z < 0

1; z > 0

Table G.1 Coefficients of Taylor series for f(z) in the range −1 < z< 1

n γn δn

0 3.879110E−01 −6.718810E−01
1 0.000000E+00 1.146730E+00
2 −4.314790E−01 −7.473430E−01
3 −1.748730E+00 −1.009630E+00
4 9.977770E+00 0.000000E+00
5 −1.264780E+01 7.302190E+00
6 −2.453740E+01 4.250000E+01
7 0.000000E+00 −3.594720E+02
8 3.602850E+02 6.240320E+02
9 2.711050E+03 1.565220E+03
10 −2.910550E+04 0.000000E+00
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The amplitude and phase of this function is approximated by a 7th-order polynomial, the
coefficients of which are listed in Table G.2. The approximation is valid for the range −3 < x < 0

B z =
7

n = 0

bn z
n error ≤ 1 × 10−4

Φ z =
7

n = 0

ϕn z
n error ≤ 2 × 10−5radians ,

where F z ≈B z exp − jΦ z . An estimate of the error of the polynomial approximations is
shown in brackets. The modified soft acoustic Fock function F(z) is plotted in Figure 8.6 over
the argument range −5 < z < 10.

G.2.2 Hard Acoustic Fock Function

This is defined by

g z =
1
π Γ1

dτ
exp − jzτ

w2 τ
, G 12

where g 0 = 1 399. When z> 0, g(z) is accurately represented by the residue series

g z =
∞

p= 1

exp z αp e− j5π 6

αp Ai − αp
=

∞

p = 1

exp −z αp 3 + j 2

αp Ai − αp
G 13

While for z < −1,

g z ≈2 exp jz3 3 1− j
1
4z3

−
1
z6

+ j
469
64z9

+
5005
64z12

− j
31122121
1024z15

+…

Table G.2 Coefficients of 7th-order polynomial approximations of
amplitude and phase of F(z) in the range −3 < x <0

n bn ϕn

0 7.757384E−01 −1.047185E+00
1 −9.668020E−01 7.394584E−01
2 4.029465E−01 4.664478E−01
3 −6.896238E−02 1.573962E−01
4 −1.256473E−01 2.612710E−02
5 −5.095698E−02 6.100471E−04
6 −9.824301E−03 −4.277579E−04
7 −7.800576E−04 −4.556784E−05
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The following Taylor series expansion of g(z) is usually used in the range −1 < z< 1:

g z =
∞

n= 0

an− jbn
zn

n

The first 11 coefficients of this series are listed in Table G.3 (Logan, 1959, Table 25). A
useful polynomial approximation for the range −3 < z< 0 has also been obtained. For this, a
new function was defined, namely,

G z = g z
exp − jz3 3 ; z< 0

1; z> 0

The amplitude and phase of this function is approximated by a 7th-order polynomial, which
has coefficients listed in Table G.4. The approximation is valid for the range −3 < z < 0

Table G.3 Coefficients of Taylor series for g(z) in the range −1 < z < 1

n αn βn

0 1.399380E+00 0.000000E+00
1 −6.472530E−01 3.736920E−01
2 −3.431040E−01 5.942730E−01
3 0.000000E+00 −2.949540E+00
4 1.741350E+00 3.016110E+00
5 7.740490E+00 4.489700E+00
6 −5.619460E+01 0.000000E+00
7 8.458020E+01 −4.883240E+01
8 1.852550E+02 −3.206110E+02
9 0.000000E+00 3.083790E+03
10 −3.451710E+03 −5.978540E+03

Table G.4 Coefficients of 7th-order polynomial approximations of the
amplitude and phase of G(z) in the range −3 < z < 0

n an θn

0 1.399427E+00 1.633610E+00
1 −6.450223E−01 2.674878E−01
2 −1.056456E−01 3.376310E−01
3 1.453212E−01 1.654477E−01
4 7.815282E−02 2.993846E−02
5 9.556067E−03 −3.475570E−03
6 −1.858469E−03 −2.159459E−03
7 −4.039875E−04 −2.410199E−04
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A z =
7

n= 0

anz
n error ≤ 5 × 10−4

Θ z =
7

n= 0

θnz
n error ≤ 2 × 10−5rad ,

where G z ≈A z exp − jΘ z . An estimate of the error of these approximations is shown
in brackets beside the polynomials. The modified hard acoustic Fock function G(z) is plotted
in Figure 8.2 for the argument range −5 < z < 10.
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Index

aberrations, 5, 48–50, 101, 215, 375
active reflection coefficient, 235, 329
Airy

functions, 54, 310, 414, 416
George Biddell, 175
ring, 176, 186, 195
zeros, 310, 414, 416

annular ring, 91, 96, 138
aperture

admittance, 91, 96, 132, 302
cylinders, 3, 18, 144, 308, 317, 320, 321,

323, 326
ground plane, 17, 27, 67, 83, 90, 267, 285, 321
receiver, 48

apodization, 162
array

circular, 257–262, 264, 265, 379–380
coaxial, 257–262, 381
factor, 141, 220, 224, 226, 227
finite, 219, 229, 230, 235, 239, 242, 249, 254,

281, 284–286
hexagonal, 223–228, 385
infinite, 229–235, 242, 271, 272, 275, 308, 325
mutual coupling, 4–5, 7, 23, 26, 143, 229–231,

234–235, 238, 240, 242, 247, 249, 255, 259,
265–266, 273–275, 278, 281, 284, 286–287,

289, 292, 296, 307, 317, 319–323, 337,
342–344, 383, 385

periodic, 229, 230–236, 308, 325–331
planar, 5, 219–228, 231, 232, 249, 273,

302, 321
rectangular, 221–225, 249–253, 257, 309
two-dimensional, 219–228
waveguide-fed slot, 269–273

asymptotic
method, 176, 229, 321
physical optics (APO), 53, 57–60
representation of scattered field, reflector,

176–181, 417
solution, 178, 180, 181, 243, 317–319,

322–325
solution, high order, 318–319, 322–323

asymptotic expression for mutual coupling,
281–284

asymptotic physical optics (APO)
relation to GTD, 61
in two dimensions, 57–60

axial, directed field, 315–317

balanced hybrid condition, 106–107, 109, 114,
160, 345

Balanis, C.A., 5, 77, 296

Fundamentals of Aperture Antennas and Arrays: From Theory to Design, Fabrication and Testing,
First Edition. Trevor S. Bird.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
Companion website: www.wiley.com/go/bird448



beamwidth, 38, 42, 49, 89–93, 95, 100, 101, 104,
123, 127, 159, 160, 163, 200, 201, 205, 341,
350, 374, 377, 381

Bessel functions, 10, 38, 86, 87, 92, 94, 95, 100,
107, 154, 166, 258, 260, 263, 271, 328, 366,
395–401

blockage, 97, 150, 181–182, 185, 186, 189, 191,
198, 209, 347

Booker’s relation, 25, 26, 247
Bose, J., xiii, 71, 72
boundary conditions, 10–11, 13, 15, 75, 92, 105,

111, 115, 152, 233, 248, 249, 275, 278,
320, 326

Carter, P.S. 228, 237
Cassegrain

classical, 150, 196–198
offset-fed, 3, 150, 189–196, 375
symmetrical, 198, 200

characteristic impedance
microstrip, 138–143
waveguide, 138, 141, 142, 156

Chebychev synthesis, 289, 299
circular

aperture, 5, 33, 37, 38, 46, 48, 49, 57,
86, 90, 91, 101, 213, 261, 265, 267,
367, 411

lens, 326, 329, 330
horn, see conical
waveguide, xiii, 2, 5, 71, 85–91, 92, 97, 100,

105, 111, 112, 113, 154, 157–160, 176, 185,
186, 187, 257–266, 268, 283, 284, 345,
347, 367

circumferential, directed field, 144, 308–315,
320, 323

coaxial aperture
extended central conductor, 97–101
horn, 95–101
waveguide, 91–101

compact low-sidelobe horn, 371–374
compensation, mutual coupling, 287–289
complementary antennas, 25
computer software, 254, 257, 296, 337, 373, 374,

376, 379, 381
concatenation, matrices, 119
concave array, periodic solution, 325–331
conducting wire loop, 55–57
conformal

arrays, 307–331
slots, 317

surfaces, 1, 5, 17–18, 146
surfaces, asymptotic solutions, 317–319,

322–325
waveguides, 308–317

conical
corrugated horn, 109, 110, 128, 267, 345, 359,

374, 376
horn, smooth wall, 81, 105, 109, 267

constraints, optimization, 126, 209
contoured beam, synthesis, 295
corrugated horn, 5, 109, 110, 128, 267, 345, 359,

374, 376
cosine function, C(x), 38–39, 314, 341, 394
creeping wave, 146, 307, 308, 310–312,

318, 322
cross-polarization, 43, 85, 91, 93, 100, 106,

110–114, 123, 128, 150, 163, 172, 176,
185, 186, 188, 192, 198, 201, 202, 287,
289, 290, 293, 295, 358, 369, 374, 375,
377, 381

cylinder, circular, 18, 307, 309, 312,
317–319, 413

cylindrical
co-ordinates, 9
near-field measurement, 364–368
reflector, 375, 377
wave, 10, 64, 75, 76, 366
waveguide, 10

decoupling methods, 288
dielectric-loaded horn, 81–85
diffraction, 32, 53, 60–66, 100, 115, 117,

170, 171, 178, 179, 198, 202, 203,
209, 255, 290, 308, 310, 317, 385,
408, 409

dipole
feed, 154–157, 160, 162
radiator, 45

directional
antenna, 1, 42
beam, 1, 376

directivity, 44–46, 211–213, 221, 223, 225,
228, 353

duality, 7, 13, 22, 25, 238
dyadic magnetic Greens function, 244, 406

earth station antenna, 3, 198, 375
edge
condition, 120, 121, 249
diffraction, 64, 171, 178, 385
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illumination, 58, 123, 159–162, 166, 169, 172,
193, 194, 198, 201, 202, 206, 344, 347,
380, 383

taper, 160–162, 168, 314, 315, 379
edge taper loss, parabolic reflector, 161
effective aperture, 46–47, 379
efficiency

aperture, 45, 74, 88, 107, 131, 168, 183,
185–189, 290, 341, 376

conductor loss, 183, 185
feed mismatch, 185, 210
reflector, 186
spillover, 184, 186, 382, 383
total, 183

Eikonal equation, 13, 14
electroforming, 358
element-by-element, 235, 239, 321
element spacing, 223, 228, 230, 257, 281,

286, 287, 289, 296, 299, 314, 315,
324, 344

E-plane, 25, 26, 42–45, 74–76, 80, 81, 83–85,
88–90, 93, 100, 101, 104, 115, 120, 122,
131, 141, 142, 145, 155, 157, 162, 187, 194,
238, 256, 257, 266, 270, 273, 277, 280,
282, 283, 287, 289, 296, 298–300, 314,
325, 362

equi-phase surface, 13, 18, 183
equivalent paraboloid, 196–198
equivalent sources, 4, 5, 15–18, 29, 140,

243, 275
E-shaped patch, 138
expansion functions, shape functions, 125, 127,

233, 245–247, 278, 280

fabrication, 5, 344, 357–361, 371, 395
Fabry-Perôt

cavity, 5, 337, 352
resonator antenna, 335–337, 352–353

far-field, 4, 5, 21–23, 32–41, 43, 45, 78, 95, 99,
101, 111, 139, 140, 152, 163, 165, 166, 169,
171–173, 182, 184, 192, 195, 210, 212, 220,
283, 284, 286, 290–292, 314, 339, 340,
361–369, 371

feed
axisymmetric, 158, 193, 194, 209, 344, 350
circular waveguide, 185–187, 345
corrugated, 2, 110, 376
dipole, 154–157, 160, 162
horn, 157–160, 386
Huygens source, 111, 172

phase centre, 100, 101, 150, 200, 211, 346
reflector, 210
ring-slot, 2, 96, 101, 102, 185–187
self-supporting, rear waveguide, 97

fence, aperture, 286–288
field
aperture, 32, 35, 36, 39, 40, 48, 68, 74, 76, 79,

81, 82, 85, 86, 92, 99, 101, 104, 106, 109,
111, 121, 138, 152–158, 162, 172, 176, 181,
188, 191, 192, 198–201, 205, 231, 233, 249,
267, 285–287, 309, 315, 323, 325, 328, 345,
350, 365, 368, 369

electric, 7, 11, 13, 16, 19–21, 24, 27, 31, 32, 42,
43, 48, 50, 67–69, 78, 82, 89, 92, 94, 98, 103,
105–107, 111, 115, 132, 139–141, 144, 145,
152–154, 156, 162, 165, 170–173, 176, 177,
181, 192, 195, 199, 200, 220, 230, 233, 236,
238, 243, 245, 267, 275, 283, 284, 286, 288,
290, 291, 308, 309, 315, 320, 323, 339, 341,
345, 350, 362, 369

equations, 7, 8, 115, 162, 364
focal region, 169, 170, 172–181, 195,

196, 198
magnetic, 7, 9, 11, 13, 16, 19, 20, 31, 38, 42, 73,

105–107, 162, 176, 231, 233, 238, 243–245,
249, 250, 270, 272, 275, 278, 286, 321, 327,
339, 345, 405

time harmonic, 7–15
finite array, 219, 229–231, 235, 239, 242, 249,

254, 271, 272, 275, 281, 284, 307, 308,
324, 325

finite element method, 116, 244, 249, 278–281
flange, aperture, 185
Floquet modes, 229, 230, 232
focal region fields
long focal length, reflector, 175, 195
offset parabolic reflector, 193–196
paraboloid, 149–150, 172–181, 195, 196,

198, 199
spheroid, 169, 170

Fock functions
hard surface, 310–312, 415–417
soft, 316–317, 414–415

Fock V.A., 310–312, 316–319, 322, 413–421
Fourier
fast Fourier transform (FFT), 35, 77, 163,

251, 277, 367–368
integral (transform), 367
series, 212, 213, 229, 232, 235
Taylor series for, 163
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Fourier (cont’d)
transform, 35, 36, 76, 77, 163, 164, 181,

212, 231, 238, 251, 271, 281, 327,
364, 366–369

transform relations, 36–37
free-space loss, 40, 161
Fresnel

integral, 54, 55, 60, 65, 66, 77, 180,
407–409

zone, defined, 32–33
zone, measurement, 369–371

front-to-back ratio (FTBR), 42
full earth coverage beam, 371

gain
calculation, 183
definition, 44–45
maximum, 40, 45–46, 74, 78–81, 84, 88, 103,

107, 109, 123, 128, 142, 168, 176, 183–185,
189, 203, 207, 292, 296

measurement, 377
optimum gain, 79
reduced by aberrations, 49–50
relative, 291

Galerkin’s method, 120, 246, 247, 270, 272
Gaussian

error distrubution, 189
function pattern, 159, 160, 166, 172, 193, 201
profile, 128
quadrature, 52
transform, 36

geometrical theory of diffraction (GTD), 61–66,
115, 170, 217, 243, 308

geometric optics, 13–15, 21, 53, 61, 62,
65, 66, 145, 152–160, 179, 180, 191,
198, 200, 202–209, 310, 319, 326, 329,
348, 376

Green’s
dyadic, 238, 244, 270, 275, 320, 404
function, 120, 238, 239, 243, 244, 251, 267,

269–272, 275, 279, 281, 286, 319, 320,
404–406

guard elements, 288

half cone angle, 151, 177, 185, 186, 188, 196,
198, 213

paraboloid, 151, 177, 185, 188, 196,
198, 213

half-power beam width, 38, 42, 90, 123, 159, 341,
350, 374

Hankel
function, 144, 263, 271, 397
transform, 260, 262, 411

Harrington, R.F., 229, 238, 245–246
Heaviside, O.A., 7, 8, 55, 263
hexagonal array, 223–228, 380, 385
high frequency method, 52–66
horns
circular, 245, 287, 357
conical, 81, 109, 265
corrugated, 109, 110, 267, 376
dielectric loaded, 85
optimum gain, 79
profiled, 123–131, 372
pyramidal, 2, 71, 255, 296, 358
sectoral, 79
stepped, 114, 372, 386

H-plane, 24, 25, 42–45, 74–76, 79, 81, 83,
84, 86, 89, 90, 92, 93, 95, 100, 101,
103–105, 107, 111, 112, 114, 115, 120, 141,
142, 145, 146, 154, 155, 157, 162, 187, 193,
194, 201, 236, 237, 256, 266, 270, 273, 277,
278, 282, 283, 287, 298, 299, 319, 323–325,
329, 330, 362, 367

Huygens
factor, 73, 74, 89
source, feed, 111, 172, 200

hyperbolic profile, 128
hyperboloid
geometry, 196, 197, 200, 203
subreflector, 150, 196, 199

illumination function, 159, 188, 206,
208, 314

I(x), modified Bessel function of first kind, 397
impedance
input, 4, 26, 47–48, 142, 285
mutual, 24–26, 228, 236–242, 247, 275,

403–404
self, 275, 404
surface, 105, 360

induced current method, 162–168, 170, 172
infinite periodic array, 230–235
Infinitesimal current element, field of, 23–26
integral equations, 229, 242–249, 270, 274
intermediate field (Fresnel zone)
definition, 369
measurement method, 369–371

J(x), ordinary Bessel function, 166
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K(x), modified Bessel function of second kind,
263, 271, 397

least p-th index, 211
lens

hyperbolic, 345
Luneburg, 347, 349–352
Maxwell fish-eye, 350, 352
plano-convex, 344
reflection, surfaces, 213
Rotman, 325, 326
Ruze, 189, 325
spherical, 336, 347, 348, 350
synthesis, 290

Lewin’s
formula, 254
method, 251, 257

lightweight construction, 358–359
Lodge, O., xiii, 71, 335
longitudinal section

electric (LSE) mode, 249
magnetic (LSM) mode, 249

machining, 357–358
magnification factor, reflector, 198, 319
matching

circular aperture, 90–91
coaxial aperture, 95–101
corrugated horn, 110
mode, 91, 103, 114–123, 128, 131,

247–249, 266, 296, 374, 376, 379,
381, 385

Maxwell
equations component form, 8
equations, differential, 405
equations, time harmonic, 7–15
fish-eye lens, 350, 352
James Clerk, 7, 8

measurement
far-field, 43, 361–363
intermediate-field, 369–371
near field, 364–368

method
Galerkin, 246
images, of, 13, 18, 243, 247
mode matching, 91, 103, 114–123, 128,

131, 247–249, 266, 296, 374, 376, 379,
381, 385

moment method, 245–247, 270, 275
receive-mode, 168–172

residuals, 246, 247
microstrip
annular ring, 91, 138
cavity model, patch, 275
conformal array, 3, 335, 352, 353
on cylinder, 143–146
equivalent source, 15–18
E-shaped, 138
mutual coupling, 273–278
radiation, patch, 139–140
triangular, 138

mode
LSE, 249
LSM, 249
matching, 91, 103, 114–123, 128, 131,

247–249, 266, 296, 374, 376, 379,
381, 385

TE, 10, 46, 245, 268, 269, 275, 343
TM, 261, 269
of waveguide, 75, 86, 92, 98, 106, 176, 239,

268, 269
moment method, 245–247, 270, 275
mould, formation, 358
multi-beam reflector antenna, 375
mutual admittance, 25, 26, 236, 238, 239,

247–250, 252, 254, 259–262, 268, 272,
277–279, 281–284, 319, 321, 323, 324, 328,
329, 411

mutual coupling, apertures
arbitrary shaped, 278–281
asymptotic expression, 281–284
circular, 90
coaxial, 259
compensation, 287–289
corrugated, 105–110
dielectric loaded, 81–85
elliptical, 267, 268
minimizing, 286–289
radiation, 114, 188
rectangular, 372

near-field
definition, 364
measurement, 364–368

network representation
array, 242
horn, 122
microstrip, 142, 274

Newton-Raphson, root finding, 82, 180
noise temperature, 149, 377, 381, 382
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normal
general surface, 125, 165, 307, 321
paraboloid, 151

off-axis incidence
circularly polarized waves, 363
focal field, 176
linearly polarized waves, 176

obliquity factor, 73
offset-fed

Cassegrain, 198–202
cross-polarization condition, Cassegrain, 198,

200–202
parabolic reflector, 189–196

offset parabolic reflector
cross-polarization, 150, 194
efficiency, 193, 198
focal region fields, 172–181, 195, 196
half-power beamwidth, 194
projected aperture, 190, 192

optimization
methods, 123, 124, 209, 211, 296, 372
penalty function, 123, 124
performance index, 124, 126, 211, 293–296, 372

Paraboloid
equivalent, 198
reflector, geometry, 4, 159

penalty function. see performance index
performance index

least p-th, 211
least squares, 44

permeability, 8, 9, 11, 42, 62
permittivity, 8, 9, 11, 42, 62, 82, 146, 245
phase

centre, 43, 44, 50, 100, 101, 104, 150, 200, 211,
351, 362

error, total, 33, 49, 50, 79, 167, 168, 188,
337, 344

velocity, 14, 98
photogrammetry, 360–362, 377
physical optics method, 53–60, 115, 162, 165, 171,

181, 192, 193, 198, 202, 203, 206, 210, 376
planar/plane

co-ordinates, 392
near-field measurement, 368
surface, 17, 337, 344, 346
wave, 9, 48, 52, 55, 63, 65, 150, 169–172, 176,

178, 195, 233, 348, 359
waveguide, 238

plate array, 271
Poisson’s summation formula, 271
polarization
circular, 111, 267, 337, 363
linear, 337, 379, 380

power
coupling theorem, 50–52, 170, 171, 290
maximum radiated, 38, 40, 45
pattern synthesis, 289
received, 46, 51, 62, 363
transmitted, 368

Poynting’s theorem, 11, 40
pressing, fabrication, 359–360
printing, 358
profile, 79, 109, 114, 115, 123, 125–131, 149,

164–166, 196–198, 202–209, 335, 337, 346,
347, 357, 359, 370, 372–374, 376

horn, 123, 126–131
optimization, 126, 127, 131
parametric, 126, 128
reflector, general profile, 164–166

projected aperture, reflector, 211
propagation constant, 9, 72, 82, 86, 91,

105, 118, 232, 244, 254, 262, 272,
282, 320, 328

prototype section, mode matching, 45, 47
pyramidal horn, 2, 71, 255, 296, 358

quadratic phase
approximation, 50, 76, 109
definition, 83
error, 49, 50, 79

radiation
cross-polarization, 43, 114
pattern, 1, 26, 40–43, 48–50, 52, 74, 81, 84, 86,

88, 89, 92–95, 101–103, 106–108, 110, 111,
114, 115, 127, 131, 142, 145, 155–160, 163,
166, 168–171, 176, 181, 186–188, 193, 194,
201, 202, 205–208, 212, 213, 219, 222, 228,
238, 257, 272, 287, 289, 296, 298, 299, 308,
313, 325, 341–343, 347, 350, 351, 361, 362,
369, 370, 374, 377–379, 381–387

presence of coupling, 219
principal plane pattern, 105, 201
resistance, 47, 228

radiotelescope
Arecibo, 379, 381
feed, 210, 371
multibeam, 375–379
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Parkes, 2, 3, 176, 379, 381
receive-mode method, 168–172
reciprocity, 11–13, 24, 48, 50, 169, 228, 237, 290,

366, 368, 404
rectangular

aperture, 33, 37, 38-40, 46, 72, 234, 247, 250,
251, 254, 269, 280, 281

waveguide, 3, 5, 72–74, 79, 83, 86, 87,
120–122, 220, 239, 245, 247,
249–253, 255, 256, 269–272, 280,
282, 283, 308, 309, 313, 319, 323, 330

waveguide, array, 249–253
waveguide modes, 271

reflectarray
fundamental condition, 337–341
model, radiation, 337
reflection, dielectric substrate, 358
scattering, 323

reflector
array-fed, 290
axisymmetric, 150, 178, 204
Cassegrain, 198
dual, 167, 178, 181, 209–211, 357, 376
error, 189
general profile, 164–166
maximum frequency, 183, 185
offset parabolic, 150, 190, 194–196
paraboloid, 4, 159
phase error, 167, 188
shaping, 198, 203, 209, 210
single, symmetrical, 164–166
spherical, 167–169
surface error, 188–189, 370
uniformly illuminated, 5, 37–40,

72, 74
refractive index, 13, 14, 62–64, 344, 346, 347, 351
rms surface error, 189
Robieaux, power coupling, 50
Rotman lens, 325, 326
Rumsey, 71
Ruze

lens, 325
reflector surface error, 189

satellite antenna
feed, 149
ground station, 198, 375–379
on-board, 3

scanned beam, 4, 167, 307
scattering matrix

calculation from admittance, 49, 120, 122, 240,
241, 248, 268, 272, 288

definition, 248
formula for periodic array, 240, 272

self-admittance
definition, 258
TE11 mode, circular waveguide, 262–266
TE10 mode, rectangular waveguide, 253–257

shaped beams, 13, 16, 206, 208, 213, 219, 230,
267, 289–300

shaped reflector
conservation of energy condition, 205, 209
differential equation for, 202, 204, 209
dual, 202, 203, 209
elliptical shaped beam, 208
radiation, 202, 205, 213
single, 200, 203
successive projections, 203, 209, 211–213
synthesis, geometric optics, 200–209
synthesis, optimization, 209–213

sidelobe
definition, 36, 38, 41, 49, 182
low, 4, 81, 123, 128, 219, 243, 289, 290, 307,

371, 373, 374, 376
Silvester, P., 278, 279
sinc function, S(x), 38–39, 222, 340
spherical
co-ordinates, 24, 151, 153, 163, 191, 338, 339
near-field measurement, 364–367
reflector, 167–169
wave, 22, 44, 64, 150, 160, 161, 193, 381

spline
function, shape, 125, 126, 209
representation, 125

standard gain horn (SGH)
design, 79–81
general, 79, 81
pyramidal, 79–81

stationary behaviour, mutual impedance, 403–404
stepped horns, 114, 372, 381, 382,

384–386
stretchforming, 359–360
struts, 182, 189, 270
subreflector
analysis, 376
illumination, 198, 201, 202

supergain, 46, 183
surface
admittance, 86, 105, 229, 247, 329
current, electric, 10, 16
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surface (cont’d)
current, magnetic, 10, 16, 162
impedance, 47, 236, 403

taper, 36, 37, 75, 85, 107, 109, 123, 158,
160–162, 168, 183, 184, 286, 287, 314, 315,
341, 379

time harmonic fields, 7–15
transform

Fourier, 35, 36, 76, 77, 163, 164, 181,
212, 231, 238, 251, 271, 281, 327,
364, 366–369

Hankel, 260, 262, 411
transverse

electric (TE) mode, 10, 46, 245, 269
electromagnetic (TEM) mode, 92, 94,

95, 258
fields, 72, 76, 86, 107, 116, 120, 233, 244, 250,

272, 286, 393
magnetic (TM) mode, 261, 269

two dimensional planar array, 219–228

Uniform
asymptotic representation, 308
illumination, 158, 159, 168, 189, 206, 207

unit cell, periodic array, 231, 232

Variational, 82, 229
stationary, 238, 403

vector identities, 12, 24, 163, 391–392

wave
admittance, 72, 91, 118, 171, 240, 241, 272, 320

cylindrical, 64, 75
equation, 9, 10, 12, 232, 405
impedance, 9, 22, 42, 106, 240, 241
number, 9, 82
plane, 9, 48, 52, 55, 63, 65, 150, 169–172, 176,

178, 195, 233, 348, 359
spherical, 22, 34, 44, 64, 101, 150, 160, 161,

196, 381
velocity, 9

waveguide
circular, 2, 5, 71, 85–114, 154, 157, 176,

185–187, 257, 261–265, 268, 283, 284, 345,
347, 367

elliptical, 267–270
fed slot array, 269–273
radiator (antenna), 71, 73, 85, 86, 91, 92,

95, 236
rectangular, 3, 5, 72–75, 79, 84, 87, 120–122,

220, 239, 245, 247, 249–253, 255, 256,
269–272, 280, 282, 283, 308, 309, 313, 319,
323, 330

Weinstein, V.A., 88, 185, 367
solution for open circular waveguide, 18,

185, 367
Wiener–Hopf method, 88

Y, admittance, 25, 72, 94–96, 105, 228–229, 234–
236, 238–241, 245–283, 319, 323–324,
328–329

Y(x), modified Bessel function of first kind, 397

Z, impedance, 9, 22, 24, 25, 47–48, 138, 141, 229,
235, 237, 240, 275
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