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Preface

The goal of this book is to develop efficient optimization algorithms to solve di-
verse real-world problems of graded difficulty. Genetic and evolutionary mech-
anisms have been deployed for reaching the goal.

This book has made five significant contributions in the realm of genetic
and evolutionary computation (GEC).

Practical guidelines for developing genetic algorithms (GAs) to solve real-
world problems have been proposed. This fills a long standing gap between
theory and practice of GAs. A practical population-sizing model for computing
solutions with desired quality has also been developed. The model needs no
statistical information about the problems. It has duly been validated by
computer simulation experiments.

The suggested design-guidelines have been followed in developing a GA for
solving the shortest path (SP) routing problem. Experimental studies validate
the effectiveness of the guidelines. Further, the population-sizing model passes
the feasibility test for this application. It appears to be applicable to a wide
class of problems.

Elitist compact genetic algorithms (cGAs) have been developed under the
framework of simple estimation of distribution algorithms (EDAs). They can
deal with memory- and time-constrained problems. In addition, they do not
require any prior knowledge about the problems. The design approach enables
a typical cGA to overcome selection noise. This is achieved by persisting with
the current best solution until, hopefully a better solution is found. A higher
quality of solutions and a higher rate of convergence are attained in this way
for most of the test problems. The hidden connection between EDAs and evo-
lutionary strategies (ESs) has been made explicit. An analytical justification
of this relationship is followed by its empirical verification. Further, a speedup
model that quantifies convergence improvement has also been developed. Ex-
perimental evidence has been supplied to support the claims.

The real-coded Bayesian optimization algorithm (rBOA) has been pro-
posed under the general framework of advanced EDAs. Many difficult prob-
lems – especially those that can be decomposed into subproblems of bounded
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difficulty – can be solved quickly, accurately, and reliably with rBOA. It can
automatically discover unsuspected problem regularities and effectively ex-
ploit this knowledge to perform robust and scalable search. This is achieved
by constructing the Bayesian factorization graph using finite mixture mod-
els. All the relevant substructures are extracted from the graph. Independent
fitting of each substructure by mixture distributions is then followed by draw-
ing new solutions by independent subproblem-wise sampling. An analytical
model of rBOA scalability in the context of problems of bounded difficulty
has also been investigated. The criterion that has been adopted for the pur-
pose is the number of fitness function evaluations until convergence to the
optimum. It has been shown that the rBOA finds the optimal solution with a
sub-quadratic scale-up behavior with regard to the size of the problem. Em-
pirical support for the conclusion has also been provided. Further, the rBOA
is found to be comparable (or even better) to other advanced EDAs when
faced with nondecomposable problems.

Finally, a competent multiobjective EDA (MEDA) has also been devel-
oped by extending the (single-objective) rBOA. The multiobjective rBOA
(MrBOA) is able to automatically discover and effectively exploit implicit reg-
ularities in multiobjective optimization problems (MOPs). A selection method
has been proposed for preserving diversity. This is done by assigning fitness
to individuals by domination rank with some penalty imposed on sharing
and crowding of individuals. It must be noted that the solution quality is
not compromised in the process. It is experimentally demonstrated that Mr-
BOA outperforms other state-of-the-art multiobjective GEAs (MGEAs) for
decomposable as well as nondecomposable MOPs.

It is thought that this work will have a major impact on future genetic
and evolutionary computation (GEC) research. Our ardent hope is that it
will play a decisive role in bringing about a paradigm shift in computational
optimization research.

December 2005 Chang Wook Ahn
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1

Introduction

Every real-world problem from economic to scientific and engineering fields is
ultimately confronted with a common task, viz., optimization [1, 3,20,38,89].
An optimization problem can be defined by specifying the set of all feasible
candidates and a measure for evaluating their worth [89]. The goal is to find
the best solution(s). In the design of aerofoils, for instance, the parameters that
define the geometry of the aerofoil are optimized to achieve the desired surface
pressure distribution. In the design of a satellite antenna, the antenna pattern
is optimized to maximize the mainbeam gain while minimizing the sidelobe
gain. In robot trajectory planning, the position, orientation, velocity, and
acceleration that specify robot trajectory are optimized for feasible obstacle
free motion.

Intense research activity over the years has resulted in many optimiza-
tion algorithms. They are, however, still limited in their reach. In this regard,
there is growing interest in the design of adaptive optimization techniques.
It makes an attempt to discover and exploit invisible (problem) patterns in
solving various real-world problems in an efficient and scalable manner. This
is similar to black-box optimization [20, 89]. In black-box optimization, there
is no prior information about the relation between the performance measure
and the semantics of the solutions. However, the knowledge can be gath-
ered by sampling new candidate solutions and assessing their suitability (i.e.,
quality). Some well known techniques in this regard include random search,
hill climbing, and so forth. A well structured traversal of the search space
incorporates state-of-the-art computing technologies such as computational
intelligence. Genetic and evolutionary algorithms (GEAs) belong to a class of
the advanced black-box optimization algorithms.

GEAs evolve a population of promising solutions by following a two-
operator mechanism – selection and variation. They emulate some natural
processes. The population approach eliminates noise in evaluating solution
quality. It allows simultaneous search of multiple basins of attraction. The se-
lection operator nudges the search toward superior solutions, whereas the vari-
ation operators promote wider exploration. Recombination (or crossover) and

Chang Wook Ahn: Advances in Evolutionary Algorithms: Theory, Design and Practice, Studies
in Computational Intelligence (SCI) 18, 1–5 (2006)
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2 1 Introduction

mutation are the commonly used variation operators [11, 32, 38, 48]. Recom-
bination promotes purposeful search by combining superior partial solutions;
while mutation overcomes local traps by slightly perturbing current solutions.
The trust in these algorithms may be misplaced in that they turn out to
be more and more expensive as the number of parameters (of the problem)
increases. The central theme of this book is related to these issues.

1.1 Motivation

GEAs have an enviable success record in solving real-world problems in diverse
areas [3,23,38,48,52,84]. In some sense, they offer a panacea to practitioners
in a wide range of disciplines. Significant progress has been registered in the
theory and design of competent GEAs [9, 40, 41, 45, 73]. They can efficiently
deal with very hard optimization problems. Despite considerable theoreti-
cal achievements, GEA practitioners often discern a gap between theory and
practice. This is acutely felt when they try to design algorithms for real-world
problems. There has been little or no effort to bridge this gap, however.

A new GEA paradigm has received attention of late. This is the estimation
of distribution algorithms (EDAs), also known as probabilistic model building
genetic algorithms (PMBGAs) [63,64,89,90]. EDAs are good at automatic dis-
covery and exploitation of problem regularities. They combine unique features
of GEAs (viz., genetic inheritance and survival of the fittest) with advanced
computing methods of machine learning and (graphical) probabilistic mod-
eling. Based on the intricacy of the probabilistic model, EDAs are roughly
divided into two categories – simple and advanced. The simple approach in-
curs no computational cost for discovering and exploiting problem regularities,
but it is extravagant on solution quality evaluations. The advanced approach
works in just the opposite way.

The simple approach is quite promising for some real-world applications
such as unicast or multicast routing, call admission control, resource alloca-
tion, and so forth. In these problems, a matter of primary importance is to
find acceptable solution(s) as quickly as possible (i.e, real-time requirement).
One can offer to be liberal on the number of inexpensive solution quality com-
putations. Meanwhile, the advanced approach is apt for a class of real-world
problems such as DNA array analysis, space-station structure design, etc. This
is because optimality of the computed solution(s) is of primary importance
here and high computational cost is a necessary “evil”.

The simple approach cannot be directly applied to real-world problems
involving real-time and limited-memory constraints. Even though these prob-
lems are relatively easy to solve, there are some difficulties related to deception
and interactions between decision variables. It is possible to devise a variant
that lies somewhere in between simple and advanced schemes by restricting
the complexity of the probabilistic model [14, 26, 87]. However, the compu-
tational cost for providing prior information on problem regularities can be
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unacceptably high. Moreover, its overall complexity leaves much to be de-
sired. Consequently, new simple EDAs must be devised for effectively coping
with such issues. Some results [15,52,86] reported in this context still require
excessive computational resources.

In general, many important real-world problems have some complicated
structures. A representative example is a pattern of interactions between de-
cision variables. Without knowing the inherent features, it is quite hard to
find optimal solution(s). This has motivated researchers to design competent
algorithms. Several advanced (discrete) EDAs for solving difficult real-world
problems are known. They decompose a problem into several subproblems of
bounded difficulty and then intermix their desirable features [44,61,76,88,89].
Their effectiveness has been well supported by tests on artificial as well as
actual real-world problems. The discrete EDAs have led to similar work on
continuous (i.e., real-valued) problems [20,63,82]. However, the attempts have
not been very successful.

Many real-world problems have multiple irreconcilable and often compet-
ing objectives. These problems are known as multiobjective optimization prob-
lems (MOPs) . The goal of multiobjective optimization is to find a complete set
of solutions (i.e., Pareto-optimal set) such that no other solutions in the search
space are better than them with respect to all the considered objectives. Many
multiobjective genetic and evolutionary algorithms (MGEAs) have been re-
ported [19,29,37,38,68,122]. They choose promising candidates that facilitate
convergence to global Pareto-optimal set while maintaining uniform spread of
the candidates . In other words, there has been little or no effort to develop
competent MGEAs that efficiently identify, propagate, and intermix impor-
tant partial solutions of the problem. The sequence of procedures is a critical
factor in devising successful MGEAs (as in single-objective GEAs).

1.2 Objectives

In the light of the above discussion, the following five primary objectives have
been set for this book.

1. Establish useful guidelines for designing practical GEAs as a class of op-
timization algorithms.

2. Design a genetic algorithm (GA) for solving the shortest path (SP) routing
problem following the suggested practical guidelines.

3. Design a class of simple but efficient optimization algorithms under the
framework of simple EDAs.

4. Develop a competent optimization algorithm in the context of advanced
EDAs for solving problems in the continuous domain.

5. Extend the competent EDA (in the fourth objective) with a view to deal-
ing with the multiobjective optimization.
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The first objective will play a critical role in filling the gap between theory
and practice in designing practical GEAs for dealing with a broad class of
real-world applications. The second objective will demonstrate the practical
utility of the suggested design road map. The third objective will offer a
useful tool to significantly enhance the exploratory power in time-constrained
and memory-limited applications. The fourth objective will lead to a class of
promising (scalable) procedures that are capable of solving hard problems in
the continuous domain. The problems are assumed to be decomposable into
subproblems of bounded difficulty. The last objective will open an important
track for MGEA research that relies on discovering and utilizing problem
regularities of MOPs.

The objectives appear to have real importance because they are intended
to make GEAs highly promising in dealing with simple to hard, time- to
quality-constrained, and single- to multi-objective real-world (optimization)
problems in a wide range of disciplines.

1.3 Outline

An outline of this book is given as follows.
Chapter 2 introduces principles of a basic class of GEAs (i.e., GAs) and

design-decomposition theory that is critical to successful design. The chapter
suggests methodologies for designing GAs for solving real-world problems. A
practical population-sizing model is also presented. It facilitates computation
of solutions with the desired quality without demanding any prior statistical
information about the problems.

Chapter 3 develops a GA for solving the SP routing problem along the
lines of design guidelines presented in Chap. 2. The aim of this development
is to demonstrate the utility of the guidelines. The population-sizing model is
also validated in the context of the routing problem.

Chapter 4 presents a class of elitism-based compact genetic algorithms
(cGAs) as simple but efficient EDAs. The design objective is to compensate
for inherent defects (of compact-type GAs) connected with lack of memory
through elitism. This enables the algorithms to efficiently and speedily solve
time- and memory-constrained problems without any overheads on discover-
ing and utilizing problem regularities. Also, some theoretical aspects of the
proposed algorithms are investigated.

Chapter 5 describes real-coded Bayesian optimization algorithm (rBOA)
as a competent advanced EDA in the continuous domain. It tries to bring the
power of existing (discrete) Bayesian optimization algorithm (BOA) to bear
upon the area of real-valued (i.e., numerical) optimization. Thus, it can deal
with a hard problem by decomposing it into tractable subproblems and then
combining the computed partial solutions of the subproblems. Scalability of
the rBOA is also analyzed and verified.
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Chapter 6 presents multiobjective real-coded Bayesian optimization algo-
rithm (MrBOA). It is an extended version of the proposed rBOA that in-
corporates the features of multiobjective optimization. It can automatically
discover regularities of multiobjective optimization problems and then utilize
the knowledge for exploring the search space on the basis of the decomposi-
tion principle. This chapter also describes a new selection method that goads
current solutions to converge to the set of nondominated solutions while main-
taining an appreciable (solution) spread.

Finally, Chap. 7 summarizes and concludes the book. Some directions for
future work are also suggested.



2

Practical Genetic Algorithms

Over the last decade, genetic algorithms (GAs) have been successfully applied
to problems in business, engineering, and science. This is a consequence of a
noteworthy progress in their theory, design and development [3, 11, 25, 38,
41,48]. In spite of considerable work on various aspects of GAs, practitioners
often face hurdles in confronting real-world problems due to inadequate design
guidelines. They are often at a loss to come up with proper parameter values
for want of relevant theoretical basis. Unavailability of problem dependent
information complicates the issue in practice.

This chapter is an attempt to bridge this gap. The chapter also develops
a practical population-sizing model. The model helps compute solutions with
desired quality, and – this is important – it does so without the aid of any
statistical information about the problems.

The chapter is organized as follows. Section 2.1 briefly introduces the prin-
cipal ideas behind GAs and GA design theory based on the decomposition
principle. Section 2.2 suggests some (useful) practical design guidelines. In
Sect. 2.3, the population-sizing model is developed and verified. The chapter
concludes with a summary in Sect. 2.4.

2.1 Genetic Algorithms: Simple to Competent

This section provides background information on simple genetic algorithms
(sGAs). A brief introduction to design decomposition that is necessary to
design competent GAs is also presented.

2.1.1 Overview of Genetic Algorithms

Genetic algorithms (GAs) are stochastic, population-based search and opti-
mization algorithms inspired by the process of natural selection and genet-
ics [11, 38, 48, 53]. A major characteristic of GAs is that they work with a

Chang Wook Ahn: Advances in Evolutionary Algorithms: Theory, Design and Practice, Studies
in Computational Intelligence (SCI) 18, 7–22 (2006)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006
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Simple Genetic Algorithm

Step 1. Initialization

Generate initial population P at random or with prior knowledge
Step 2. Fitness Evaluation

Evaluate the fitness for all individuals in P
Step 3. Selection

Select a set of promising candidates S from P
Step 4. Crossover

Apply crossover to the mating pool S for generating a set of offspring O
Step 5. Mutation

Apply mutation to the offspring set O for obtaining its perturbed set O′

Step 6. Replacement

Replace the current population P with the set of offspring O′

Step 7. Termination

If the termination criteria are not met, go to Step 2

Fig. 2.1. Pseudo-code for sGA.

population, unlike other classical approaches which operate on a single solu-
tion at a time. Hence, they can explore different regions of the solution space
(i.e., search space) concurrently, thereby exhibiting enhanced performance.
The pseudo-code of sGAs is shown in Fig. 2.1.

Essential Components

GAs are powerful search mechanisms: traverse the solution space in search of
optimal solutions. GAs encode the decision variables (or input parameters) of
the underlying problem into (solution) strings. Each string, called individual
or chromosome, represents a candidate solution. Characters of the string are
called genes. The position and the value in the string of a gene are called
locus and allele, respectively. There are two encoding classes: genotype and
phenotype. The former denotes the codings of the variables and the latter
represents the variables themselves.

A fitness function is needed for differentiating between good and bad so-
lutions. Unlike classical optimization techniques, the fitness function of GAs
may be presented in a mathematical terms, or as a complex computer simu-
lation, or even in terms of subjective human evaluation. Fitness generates a
differential signal in accordance with which GAs guide the evolution of solu-
tions to the problem [25].

The initial population is created at random or with prior knowledge about
the problem. The individuals are evaluated to measure the quality of can-
didate solutions with a fitness function. In order to generate or evolve the
offspring (i.e., new solutions), genetic operators are applied to the current
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population. The genetic operators are: selection (or reproduction), crossover
(or recombination), and mutation.

Genetic Operators

Selection chooses the individuals with higher fitness as parents of the next
generation. In other words, selection operator is intended to improve average
quality of the population by giving superior individuals a better chance to
get copied into the next generation. There is a selection pressure that char-
acterizes the selection schemes. It is defined as the ratio of the probability of
selection of the best individual in the population to that of an average indi-
vidual [9,73]. There are two basic types of selection scheme in common usage:
proportionate and ordinal selection. Proportionate selection picks out individ-
uals based on their fitness values relative to the fitness of the other individuals
in the population. Examples of such a selection type include roulette-wheel
selection [38,53], stochastic remainder selection [16], and stochastic universal
selection [12]. Ordinal selection selects individuals based not upon their fitness,
but upon their rank within the population. The individual are ranked accord-
ing to their fitness values. Tournament selection [21], (µ, λ) selection [105],
linear ranking selection [12], and truncation selection [73] are included in the
ordinal selection type.

Crossover exchanges and combines partial solutions from two or more
parental individuals according to a crossover probability, pc, in order to cre-
ate offspring. That is, the crossover operator exploits the current solutions
with a view to finding better ones. Two popular crossover operators, from
among many variants, are presented: one-point and uniform crossover. One-
point crossover [38,53] randomly chooses a crossover point (i.e., crossing site)
in the two individuals and then exchanges all the genes behind the crossover
point (see Fig. 2.2(a)). Uniform crossover [111] exchanges each gene with prob-
ability 0.5 (see Fig. 2.2(b)), hence achieving the maximum allele-wise mixing
rate.

Mutation acts by altering a small percentage of genes in the list of indi-
viduals to slightly perturbs the recombined solutions. One classical mutation
operator is bit-wise mutation [38,53] in which each gene whose allele is binary
is complemented with a mutation probability pm. For instance, a binary in-
dividual A = 1 1 1 1 1 1 might become A′ = 1 1 0 1 1 1 when the third
gene is chosen (randomly) for mutation. In general, the mutation probability
is taken to be low.

By striking a balance between exploitation (of selection) and exploration
(of crossover and mutation), GAs can effectively search the solution space.

2.1.2 Design-Decomposition Theory

In the study on innovation intuition (of GAs) by Goldberg [40, 41], the com-
bined effect of selection and mutation (these GAs are called selectomutative
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Fig. 2.2. Example of two-parent crossover operators.

GAs) and that of selection and crossover (these GAs are referred to as selec-
torecombinative GAs) has been likened to continual improvement and cross-
fertilizing types of innovation, respectively. On the basis of innovation intu-
ition, a design-decomposition theory has been proposed for developing com-
petent (selectorecombinative) GAs, which are a class of GAs that solve hard
problems quickly, accurately, and reliably [41]. The design decomposition con-
sists of seven steps briefly described below.

1. Know what GAs process – Building blocks (BBs): Competent
GAs must decompose the problem into subproblems implicitly (virtually),
process them independently (either in a serial or parallel manner), and
combine subsolutions to form better solutions or the global optima. The
superior subsolutions are identified as building blocks (BBs).

2. Know the BB challenges – BB-wise difficult problems: Competent
GAs should efficiently solve problems of bounded BB difficulty through
BB processing. Those problems are known as decomposable problems that
include a wide range of practical problems.

3. Ensure an adequate supply of raw BBs: To successfully solve a prob-
lem, all the (necessary) raw BBs must be supplied in the initial popula-
tion. Although decision-making, mixing, and sampling mainly govern the
population-sizing in the evolving population, it would be extremely dif-
ficult to maintain the growth of the BBs if one is faced with paucity of
BBs.

4. Ensure increased market share for superior BBs: The growth of
superior BBs in the evolving population is clearly of central importance to
ensure a GA success. Thus, competent GAs must give good BBs a higher
chance of survival. Note that this issue is closely related to the supply of
raw BBs (Step 3), decision making (Step 6), and mixing BBs (Step 7).
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5. Know BB takeover and convergence time: Although it is necessary
to grow the market share for superior BBs, an adequate growth rate is
essential. This is because too fast a growth rate often results in premature
convergence while too slow a growth rate retards the convergence speed.

6. Make decisions well among competing BBs: As increasing the pop-
ulation reduces the noise in decision making, the population size should
be large enough to make statistically correct decisions among competing
BBs.

7. Mix BBs well: Competent GAs should effectively intermix and reassem-
ble superior BBs in order to create promising solutions.

The design-decomposition theory provides valuable guidelines on designing
competent GAs. Moreover, it can also be used for investigating the principal
mechanisms of GAs and developing theoretical models for predicting the scal-
ability of GAs [25].

2.2 Practical Design Guidelines

Despite the GA design theory – the design decomposition that plays an im-
portant role in developing competent GAs, practitioners may still face hurdles
due to certain practical issues. This problem is addresses in this section.

There are six issues that lead to practical GA design. These are described
below.

1. Representation: This issue is primarily related to the encoding scheme.
Individuals are represented by binary codes, real-valued (i.e., floating-
point) codes, and program code. Moreover, the length of individuals may
be constant or variable. In general, it is hard to find an encoding method
that transforms a problem so as to reduce or preserve the difficulty of the
problem. Hence, the encoding method that has identical genotype and
phenotype (of the decision variables) is advisable. Although fixed-length
individuals are generally desirable, their variability is not a critical factor
provided their design is easy.

2. Initialization: In general, there are two issues to be considered for popu-
lation initialization of GAs: the initial population size and the procedure to
initialize the population. At first, the initial population size connected to
the supply of raw BBs (in the design-decomposition theory) is crucial for
efficiency of GAs in terms of both optimality and complexity. A detailed
investigation can be found in Sect. 2.3.4. Secondly, there are two ways to
generate the initial population: random and heuristic initialization. If no
prior information on the problem is available, random initialization is the
natural choice; otherwise, heuristic initialization is favored. Although the
mean fitness of the heuristic initialization is already high so that it may
help the GAs to find solutions faster, it may just explore a small part of
the solution space and never find global optimal solutions because of lack
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of diversity in the population [56]. In the heuristic case, thus, a portion of
the population can still be generated randomly to ensure some diversity
in the population. It is noted that the random initialization is generally
desirable for stability and simplicity of GAs even when a valuable piece
of information is available.

3. Fitness function: The fitness function interprets the individual in terms
of physical representation and evaluates its fitness based on desired traits
(in the solution). But, the fitness function must accurately measure the
quality of the individuals in the population. The definition of the fitness
function, therefore, is very crucial. It is suggested that the fitness function
fully reflect the physical objective of the problem.

4. Genetic operators: The genetic operators must be carefully designed as
they directly affect the performance of GAs.
a) Selection: Selection focuses on the exploration of promising regions

in the solution space. As proportionate selection is very sensitive to
the selection pressure, a scaling function is employed for redistributing
the fitness range of the population. The selection pressure of the or-
dinal selection is independent of the fitness distribution, and is based
solely based on the relative ranking of the population although it may
also suffer from high selection pressure [9, 73]. In general, the ordinal
selection is preferable. Among the selection schemes (in the ordinal se-
lection), tournament selection without replacement is perceived to be
effective in achieving low (selection) noise [40]. Recall that tournament
selection without replacement works by means of choosing nonover-
lapping random sets of s individuals (i.e., tournament size of s) from
the population and then selecting the best individual from each set to
serve as a parent for the next generation. Typically, the tournament
size s is 2 (viz., pairwise tournament), and it would adjust the selec-
tion pressure: the selection pressure increases as the tournament size
s becomes larger [45,73]. In this regard, pairwise tournament selection
without replacement is advisable.

b) Crossover: Crossover is the primary operator that increases the ex-
ploratory power of GAs. In order to successfully achieve the cross-
fertilizing type of innovation, crossover operator must ideally inter-
mix good subsolutions without any disruption of the partitions (i.e.,
BBs). For example, uniform crossover is very promising in the ab-
sence of any inter-gene linkage while building-block crossover is better
otherwise. Here, building-block crossover uniformly shuffles the genes
on the basis of entire partitions (i.e., subsolutions). In practice, uni-
form crossover is pessimistic as most of real-world problems have the
decision variables that are closely interacted each other. Moreover,
building-block crossover may also be undesirable because the capabil-
ity of learning linkage is an essential prerequisite of the operator. In
stead of pursuing the maximum BB-wise mixing in the population, it
can be also efficient to increase the population size and employ a sim-
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ple crossover that has a low probability of disrupting the BBs found so
far. Therefore, it is recommended that building-block crossover is suit-
able if the evaluation of fitness function requires a high computational
cost; otherwise, one- or two-point crossover is desirable. Naturally, the
crossover probability must be relatively high.

c) Mutation: Mutation is the secondary operator of GAs to explore a
solution space. In other words, a local search is performed in the case
of altering nonsalient genes or getting away from local optima is pos-
sible when the salient genes are changed. To carry out the continual
improvement type of innovation, as in nature, the probability of ap-
plying mutation must be very low. Hence, the suggestion with respect
of mutation is that any type of mutation designed is applicable as long
as its probability is quite small. Moreover, it is possible to get rid of
mutation when the design of mutation operator is complicated.

5. Treating infeasible individuals: In case that a problem has some con-
straints, crossover or mutation may often generate infeasible individuals
that violate the constraints. There are two strategies to deal with infeasible
individuals: one is to impose a penalty and the other is to repair them [56].
A classical method employs penalty functions. It must be noted that the
penalty function is critical to ensure quick convergence and high quality
of solution. But it is not easy to come up with an appropriate penalty
function. Moreover, this technique may sacrifice some feasible individuals
as well because the infeasible individuals might continue to be reproduced.
On the other hand, the repair method is applied extensively. But it is not
always simple to cure infeasible individuals. Hence, the repair strategy is
always advisable unless developing a repair function is an arduous task or
the designed function is computationally too expensive by far.

6. Population size: A problem that arises with GAs is to properly estimate
the values of parameters. Most of the parameters can be determined by the
transcendental cognition of practitioners so as to attain good performance.
However, it is not easy to estimate the population size that guarantees an
optimal solution quickly enough. Thus, the population size has generally
been perceived as the most important factor. A recent study has devel-
oped a refined population-sizing model by integrating the requirements of
the BB supply and decision making [45]. It provides an accurate bound
on determining an adequate population size that guarantees a solution
with desired quality for (selectorecombinative) GAs. However, it requires
stochastic information such as the variance of fitness (i.e., noise) and the
expected difference value of fitness (i.e., signal) between the best and
second-best BBs, which may not be available in many practical problems.
With this in view, the practical population-sizing model is suggested in
the next section.
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2.3 Practical Population-Sizing Model

The question as to how to choose an adequate population size for a particular
domain is difficult and has puzzled practitioners for a long time [31, 39, 40,
45, 53, 69]. If the population size is too small, it is not likely that the GAs
will find solutions of high quality. However, if the population size is too large,
the GAs will unnecessarily waste processing time leading to unacceptably slow
convergence. In this section, the practical population-sizing model that ensure
a specified quality of solution in investigated by employing the gambler’s ruin
problem that was considered first by Harik et al. [45].

2.3.1 Review of Population-Sizing Models

Holland [53] studied the k-armed bandit problem as a theoretical motivation
for GAs. Macready and Wolpert [69] showed a mathematical flaw in Holland’s
analysis and provided an analytically simple bandit model that is directly
applicable to optimization theory.

De-Jong [31] proposed a population-sizing model based on the signal as
well as noise characteristics of the k-armed bandit problem. Although the
result explicitly exhibited the role of signal-to-noise ratio in estimating popu-
lation size, the result was unverified and ignored [40,45].

Goldberg and Rudnick [39] developed the first population-sizing model
based on the variance of fitness. Goldberg et al. [40] enhanced the model
as a conservative bound on the quality of GAs. The population-sizing model
permits accurate statistical decision making among competing building blocks.
The population-sizing relation conservatively bounds the actual accuracy of
GA convergence as long as all major sources of noise (i.e., collateral noise) are
considered in the sizing calculation.

Harik et al. [45] also develop a population-sizing model by exploiting simi-
larity between the classical random walk problem – the gambler’s ruin problem
in particular and the selection mechanism of GAs for determining an adequate
population size that guarantees a solution of the desired (target) quality. Using
test problems that ranged from the simple to the very difficult, the accuracy
of the model was verified. The (linear) ranking selection was tacitly assumed
because the decision model1 in [40] is quite appropriate under this selection
scheme. It was also assumed implicitly that mutation is not a dominant op-
erator (i.e., crossover-intensive) because it always disrupts BBs. In order to
use his results, however, several domain-dependent variables (involved in his
decision model) must be known such as the signal that is defined by the fitness
difference between the best and second best BBs, the collateral noise that is
defined by the root mean square (rms) fitness variance of the BB that is being
considered, and the number of BBs in a string. Furthermore, signal-to-noise
ratio (SNR), the most important piece of information in Harik’s model is

1 It leads directly to the results in [45]
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not usually known in practice. His population-sizing model, therefore, is not
suitable for applying to the real-world problems.

2.3.2 Harik’s Decision Model

The following results follow from Harik’s model of selection [45]. Assume that
individuals consist of m non-overlapping (i.e., separable) and uniformly scaled
BBs of size k. Consider a competition between an individual i1 with optimal
BB H1 with mean fitness f̄H1 and fitness variance σ2

H1
, and an individual

i2 with the second best BB H2 with mean fitness f̄H2 and fitness variance
σ2

H2
. The probability of deciding correctly between these two individuals is

the same as the probability that the fitness of i1 (f1) is higher than the fitness
of i2 (f2): the probability that (f1 − f2) > 0.

The distance between the mean fitness of individual with H1 (f̄H1) and
the mean fitness of individual with H2 (f̄H2) is denoted by d (i.e., signal).
Assuming that the fitness is an additive function of the fitness contributions of
all the BBs, f1 and f2 are normally distributed (by the central limit theorem).
Since the fitness distributions of f1 and f2 are both normal, the distribution
of (f1 − f2) is also normal.

The distribution of (f1 − f2) is given by [40,45]

(f1 − f2) ∼ N (f̄H1 − f̄H2 , σ
2
H1

+ σ2
H2

). (2.1)

Substituting d for (f̄H1 − f̄H2) in the above equation, and normalizing, the
probability p of making the correct decision on a single trial for the domains
where BBs m (that are not competing directly) are independent and equally
scaled (i.i.d) is given by [45]

p = Φ


 d√

σ2
H1

+ σ2
H2


 = Φ

(
d√

2m′σbb

)
(2.2)

where Φ is the cumulative distribution of a normal distribution with zero mean
and unit variance, σbb is the average rms BB standard deviation. Also, m′ =
m − 1 is the total number of collateral noise sources that are not competing
directly. The total collateral noise coming from m′ is m′σbb.

2.3.3 Practical Decision Model

In general, standard deviation can be thought of as the probabilistic “width”
or “spread” of distribution of a random variable. Hence, σbb (i.e., the standard
deviation of BBs) indicates the “statistical length” or “spread” of fitness values
of BBs from their average fitness value; indeed, the factor 2σbb represents the
total average range of fitness changes of all the BBs.

Let X be the average number of competing BBs. Since the signal d is
defined as the fitness difference between the best and the second best BBs,
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from a statistical point of view, the best BB has a fitness value that is the
sum of the average and the standard deviation of BBs’ fitness, while the
second best BB’s fitness is the value of subtracting {2σbb/(X − 1)} from the
best value. This is because it may be assumed that all the competing BBs
are ordered and they are distributed uniformly from the best to the worst
fitness values. The key point is that the signal d must be small compared with
the standard deviation σbb of BBs, and the interval value between inter-rank
BBs is {2σbb/(X − 1)}. The first assumption is valid when ordinal selection
(e.g., pairwise tournament selection without replacement) is employed in real-
world problems because the probability that different individuals have the
same quality of solution is nearly zero. The second assumption follows from
statistical considerations. Moreover, the signal has a small value in practice
because there exist suboptimal solutions whose quality is quite comparable
with that of the global optimum. Therefore, the signal d can be represented
as

d =
({

f̄bb + σbb

}
−

{
f̄bb + σbb −

2σbb

X − 1

})

=
({

f̄bb + σbb

}
−

{
f̄bb +

(
1 − 2

χk − 1

)
σbb

})

=
2

χk − 1
σbb (2.3)

where f̄bb is the mean fitness of BBs, χ is the average cardinality of the
alphabet, and k is the average order (i.e., size) of BBs. Therefore, Eq. (2.2)
can be rewritten as

p = Φ

(
2√

2m′(χk − 1)

)
. (2.4)

As a special case, assume that the cardinality of the alphabet is 2 (i.e.,
χ = 2) and the size of BB is 1 (i.e., k = 1) in a uniformly scaled linear
problem, viz., one-max problem. Similar problems were investigated in [45].
It finds the signal d to be 1.0 and the BB variance σ2

bb to be 0.25, so that the
probability p of making the correct decision on a single trial is given by

p = Φ

(
d√

2m′σbb

)
= Φ

(
2√
2m′

)
. (2.5)

On the other hand, Eq. (2.4) for the same problem can be rewritten as

p = Φ

(
2√

2m′(χk − 1)

)
= Φ

(
2√
2m′

)
. (2.6)

This is, of course, the same as Eq. (2.5). It is surprising that the probability
of making the correct decision can be obtained by only knowing the average
number of BBs of length m = m′ + 1. No knowledge of signal and noise is
required.
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2.3.4 Practical Population-Sizing Model

GA succeeds when all the N members of the population in the BBs of in-
terest are correct. From a well-known result from the literature of gambler’s
ruin problem2, it follows that the probability Pbb(x0) that the GA eventually
succeeds when there are x0 initial correct BBs is [45]

Pbb(x0) =
1 −

(
q
p

)x0

1 −
(

q
p

)N
(2.7)

where q = 1 − p is the probability of losing a copy of the BB in a particular
competition.

Since Eq. (2.7) is a conditional probability given that the GA starts with
x0 correct BBs, the probability that the GA succeeds can be found by

Pbb =
N∑

i=0

Pbb(i) · P (i)

=
N∑

i=0




1 −
(

q
p

)i

1 −
(

q
p

)N


 ·

(
N

i

)(
1
χk

)i (
1 − 1

χk

)N−i

(2.8)

where P (i) represents the probability that the GA starts with i correct BBs.
The probability P (i) is connected to the BB supply in the initial population.
Using binomial expansion, it can be arranged as follows:

Pbb =
1 −

(
1 − 1−( q

p )
χk

)N

1 −
(

q
p

)N
=

1 −
(
1 − 2p−1

χkp

)N

1 −
(

1−p
p

)N
. (2.9)

The remaining derivation refers to [45]. The Pbb may be approximated as

Pbb ≈ 1 −
(

1 − 2p − 1
χkp

)N

. (2.10)

Hence we get

N =
ln(α)

ln
(
1 − 2p−1

χkp

) (2.11)

where α = 1−Pbb is the probability of GA failure. Physically, the probability
α of GA failure represents the fact that the GA converges to one of the local
optimal solutions.
2 It is equivalent to one-dimensional random walk model.



18 2 Practical Genetic Algorithms

Since (2p − 1)/(χkp) tends to be a small number, ln(1 − (2p − 1)/(χkp))
can be approximated by −(2p − 1)/(χkp). Thus, Eq. (2.11) can be rewritten
as follows:

N = −χk ln(α)
p

2p − 1
. (2.12)

An approximate value of p, using the first two terms of the power series
expansion of the normal distribution is given by [45]

p =
1
2

+
1√
2π

z. (2.13)

From Eq. (2.4), z is found to be 2/(
√

2m′(χk − 1)). Thus, a fairly general,
practical population-sizing model can be written as follows:

N = −χk

2
ln(α)

(
z−1

√
π

2
+ 1

)

= −χk

2
ln(α)

(
χk − 1

2

√
πm′ + 1

)
. (2.14)

When the number of genes in the BBs (viz., average order) becomes large,
the probability of disrupting the BBs is increased; thus, the population size
may be increased to reach a particular quality of solution. This is the rea-
son why a higher probability of disrupting the BBs drives the probability of
making the correct decision on a single trial p towards smaller values so that
the population size N must be increased for achieving the same GA failure
probability α. This can be inferred from Eq. (2.12). However, we can observe
an interesting consequence from the experiments of [45]: the population size
necessary for obtaining a desired quality of solution is not overly affected by
the order of BBs, even if it is considerably large (e.g., k ≥ 4). Thus, it is as if
the population size is not strongly affected by one- or two-point crossover.

Although the mutation operation may disrupt the BBs and retard conver-
gence of BBs, it eventually ensures a better quality of solution by introducing
new chromosomes (maintaining the diversity of the population) that help the
GA avoid local convergence. Thus, the population will not be increased by
the mutation. In other words, the ultimate population size for a solution of
desired quality may not be increased by these operations because the minor
harmful effects of the crossover are offset by the beneficial effects of mutation.

Equation (2.14) is applicable only to crossover-intensive GA with little
or no mutation. There are some approaches in evolutionary computation,
and some problems (notably neural networks), that employ mutation as the
dominant operator. In these approaches, Eq. (2.14) is not really useful for
determining a population size that ensures a solution of desired quality. The
evolutionary checkers player coevolved with a fully connected feed forward
neural network with an input layer, two hidden layers, and an output node [23]
provides a good example in this regard. It needs a tiny population of only 30
to evolve thousands of weights of the neural network.
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It must be noted that Eq. (2.14) does not require any knowledge of signal
and noise which may not be available in advance in most practical problems.
Instead, the model approximates such stochastic information for all the selec-
tion mechanisms. Of course, the approximation may induce some discrepancy
that depends on the selection mechanism. It can, however, be concluded that
the model provides an upper bound3 for ordinal selection. Also, note that
the population-sizing model can be applied to variable-length individuals by
employing the average values in the order of BBs and the number of BBs.

2.3.5 Experimental Verification

The practical population-sizing model is verified with test problems of varying
difficulty. The test problems include the classical one-max problem and de-
ceptive problems. In all the experiments, pairwise tournament selection with-
out replacement is employed as a typical ordinal selection. A different type
of crossover is chosen according to the order of the BBs of each problem.
The crossover is applied with probability 1.0 and the mutation probability
is set to zero, because the population-sizing model has been developed for
the crossover-intensive GA – the only source of diversity is the initial ran-
dom population. Moreover, the population-sizing model obtained by applying
Harik’s decision model to Eq. (2.12) is chosen as a reference for investigating
how accurately the proposed approach approximates the problem dependent
information (i.e, signal d and BB variance σ2

bb). All the results were averaged
over 100 independent runs of a simple (generational) GA.

One-Max Problem

We consider the one-max problem that is the most popular test function in
research on GAs due to its simplicity. The fitness of an individual is measured
as the number of bits set to one. This is a very easy problem for GAs be-
cause there is no isolation, deception, and interdependence (of genes) [22,45].
Since the order of the BBs is one, any crossover does not disrupt them. Thus,
uniform crossover with exchange probability 0.5 is employed for achieving the
maximum (BB-wise) mixing rate.

Figure 2.3 depicts the results of the population-sizing model on a 100-bit
one-max problem. It is seen that the population the experimental results are
in agreement with the theory, especially as the population size N increases.
Moreover, the practical population-sizing model is perfectly matched with
Harik’s model because their probabilities of correct decision are equivalent
(as explained in Sect. 2.3.3).

3 It means an overestimation of population size to obtain a target quality
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Fig. 2.3. Verification of the population-sizing model for an one-max problem.
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Fig. 2.4. Basis functions of deceptive problems.

Deceptive Problems

Two types of deceptive problem are also considered. The first deceptive prob-
lem is a minimal deceptive problem (mDP) that is formed by concatenating
twenty copies of the minimal deceptive function [38] shown in Fig. 2.4(a). The
second deceptive problem is a fully deceptive problem composed of twenty
copies of the modified 3-bit trap function depicted in Fig. 2.4(b). The pur-
pose of the modification is to fulfill the assumptions (described in Sect. 2.3.3)
for the target problem. In the deceptive problems, one-point crossover is used
for avoiding the excessive disruption of BBs [45].
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(a) Results for a minimal deceptive problem.
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(b) Results for a (modified) fully deceptive problem.

Fig. 2.5. Verification of the population-sizing model for deceptive problems.

The results for deceptive problems are shown in Fig. 2.5. It is also observed
that the analytical model is consistent with the experimental results even for
higher population size. Moreover, the close agreement between the practical
population-sizing model and Harik’s model implies that the proposed decision
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model can accurately approximate the actual SNR without any statistical
information about the signal and variance of BBs.

Discussion

From the results of Figs. 2.3 and 2.5, the practical population-sizing model can
accurately estimate the actual size of the population with a desired quality
of solution without any SNR information. Thus, the results clearly validate
the practical population-sizing model.It may be noted that the model would
hold true when the fitness difference between the best and second best BBs
(i.e., the signal d) is relatively small and all the competing BBs are evenly
distributed over the fitness range. However, there is no concern about applying
the model because most real-world problems are generally characteristic of
satisfying such conditions. Although the population size is overestimated for
the optimality below 0.9, such qualities are not regarded as feasible areas in
practice. In other words, the model plays a role in providing an upper bound
(of population size) with regard to the actual performance.

2.4 Summary

This chapter has sketched a bird’s-eye view of GAs. It has also presented
the design-decomposition theory that lays guidelines for designing competent
GAs. Design of practical GAs for solving real-world problems was the main fo-
cus all along. Further, this chapter has also investigated a practical population-
sizing model that comes in handy in determining an adequate population size
for finding a desired solution without requiring statistical information such as
the signal or variance of competing BBs. Its effectiveness has also been tested:
the model is in close agreement with experimental results.
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Real-World Application: Routing Problem

This chapter presents a genetic algorithmic approach to shortest path (SP)
routing problem. Variable-length chromosomes (i.e., strings) and their genes
(i.e., parameters) have been used for encoding the problem. The crossover
operation exchanges partial chromosomes (i.e., partial routes) at positionally
independent crossing sites and the mutation operation introduces new partial
chromosomes into the population. The proposed algorithm can cure all the
infeasible chromosomes with a simple repair function. Crossover and mutation
together provide a search capability that results in improved quality of solution
and enhanced rate of convergence.

The chapter is organized as follows. Section 3.1 provides the motivation
for considering as powerful tools for dealing with routing problems. A brief
survey of GA-based approaches is given in Sect. 3.2. The proposed GA for the
SP routing problem is described in Sect. 3.3. In Sect. 3.4, the proposed algo-
rithm and several extant algorithms are applied to diverse networks exhibiting
arbitrary link cost, network size, and topology. A comparative study of the
results follows. The section also verifies the accuracy of the population-sizing
model (developed in Sect. 2.3) in the context of real-world applications. The
chapter concludes with a summary in Sect. 3.5.

3.1 Motivation

In multihop networks, such as the Internet and the Mobile Ad-hoc Networks,
routing is one of the most important issues that has a significant impact on
the network’s performance [8, 110]. An ideal routing algorithm should strive
to find an optimum path for packet transmission within a specified time so
as to satisfy the quality of service [1, 8]. There are several search algorithms
for the shortest path (SP) problem: the breadth-first search algorithm, the
Dijkstra algorithm and the Bellman-Ford algorithm, to name a few [110].
Since these algorithms can solve SP problems in polynomial time, they will be
effective in fixed infrastructure wireless or wired networks. But, they exhibit

Chang Wook Ahn: Advances in Evolutionary Algorithms: Theory, Design and Practice, Studies
in Computational Intelligence (SCI) 18, 23–43 (2006)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006
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unacceptably high computational complexity for real-time communications
involving rapidly changing network topologies [1,85]. This is explained below.

We consider mobile ad hoc networks as target systems because they rep-
resent new generation wireless networks. Since all the nodes cooperatively
maintain network connectivity without the aid of any fixed infrastructure net-
works, dynamic changes in network topology are possible. An optimal (viz.,
shortest) path has to be computed within a very short time (i.e., a few µs )
in order to support time-constrained services such as voice-, video- and tele-
conferencing [1, 8]. The indicated algorithms do not satisfy this (real-time)
requirement.

In most of the current packet-switching networks, some form of SP compu-
tation is employed by routing algorithms in the network layer [8]. Specifically,
the network links are weighted, the weights reflecting the link transmission ca-
pacity, the congestion of networks and the estimated transmission status such
as the queueing delay of head-of-line (HOL) packet or the link failure. The
SP routing problem can be formulated as one of finding a minimal cost path
that contains the designated source and destination nodes. In other words,
the SP routing problem involves a classical combinatorial optimization prob-
lem arising in many design and planning contexts [8, 67]. Since neural net-
works (NNs) [1, 8, 85] and genetic algorithms (GAs) (and other evolutionary
algorithms) [57, 67, 79, 108, 120] have been known to offer solutions to such
complicated problems, they have also found application in several practical
fields. The downside is that NNs and GAs may not be as promising in real-
time applications over mobile ad hoc networks because they generally involve
a large number of iterations. However, hardware implementations (e.g., field-
programmable gate arrays (FPGA) chip) of NNs or GAs are extremely fast.
Further, they are not very sensitive to network size [1,116]. The quality of so-
lution (i.e., computed path) returned by NNs is constrained by their inherent
characteristics. GAs are flexible in this regard. The quality of solution can be
adjusted as a function of population. In addition, NN hardware is limited in
size: it cannot accommodate networks of arbitrary size because of its physi-
cal limitation. GA hardware, on the other hand, scales well to networks that
may not even fit within the memory. It is realized by employing parallel GA
over several nodes. Therefore, GAs (especially hardware implementations) are
clearly quite promising in this regard.

3.2 Existing GA-Based Approaches

Investigators have applied GAs to unicasting SP routing problem [57,67,79],
multicasting routing problem [118, 120], ATM bandwidth allocation problem
[84], capacity and flow assignment problem [78], and the dynamic routing
problem [108]. It is noted that all these problems can be formulated as some
sort of a combinatorial optimization problem.
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Munetomo’s algorithm [79] is practically feasible in a wired or wireless en-
vironment. It employs variable-length chromosomes for encoding the problem.
Crossing sites (i.e, crossover points) are the loci (viz., positions of nodes in
a route) where identical genes (i.e., nodes) in both the chosen chromosomes
(i.e., routes) are found at the same location. Thus, it leads to a situation in
which only a few crossover sites are usable for exploring feasible solutions.
In other words, crossover is totally dependent on positions: indeed, identical
genes should occupy the same locus for crossover. The candidate crossing sites
are called “potential crossing sites.” A locus is selected randomly to act as an
actual crossing site and to partially exchange chromosomes with the parent.
In the mutation phase, a gene (i.e., the mutation node) is selected randomly
from the chromosome. Another gene is selected randomly from the chromo-
somes connected directly to the mutation node, and a mutated chromosome
(viz., alternative route) is generated by combining each partial chromosome
(i.e., partial route) obtained by Dijkstra’s algorithm. It must be noted that
one partial route refers to a shortest path from the source node to the selected
node and the other to a shortest path from the selected node to the destination
node. But, the algorithm requires a relatively large population for an optimal
solution due to the constraints on the crossover mechanism. Furthermore, it
is not suitable for large networks or real-time communications since Dijkstra’s
algorithm has a prohibitive computational cost.

Inagaki et al. [57] proposed an algorithm that employs fixed (i.e., determin-
istic) length chromosomes. The chromosomes in the algorithm are sequences
of integers and each gene represents a node ID, that is selected randomly from
the set of nodes connected with the node corresponding to its locus number.
All the chromosomes have the same (fixed) length. In the crossover phase,
one of the genes from two parent chromosomes is selected at the locus of the
starting node ID and put in the same locus of an offspring. One of the genes is
then selected randomly at the locus of the previously chosen gene’s number.
This process is continued until the destination node is reached. The details of
mutation are not explained in the algorithm. The algorithm requires a large
population to attain an optimal or high quality of solution due to its incon-
sistent crossover mechanism. Some offspring may generate new chromosomes
that resemble the initial chromosomes in fitness, thereby retarding the process
of evolution.

There are several GAs that address different kinds of routing problems,
such as multiple destination or multicasting routing problems [67, 118, 120].
Those approaches are beyond the scope of this investigation. However, the
unicasting or one-destination algorithms such as the one proposed here can
be extended in a straightforward manner to include them.
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3.3 Proposed GA-based Routing Algorithm

The underlying topology of multihop networks can be specified by the directed
graph G = (V,A), where V is a set of |V| nodes (or vertices), and A is a set
of its links (or arcs, edges) [8, 110]. There is a cost Cij associated with each
link (i, j). The costs are specified by the cost matrix C = [Cij ], where Cij

denotes a cost of transmitting a packet on link (i, j). Source and destination
nodes are denoted by S and D, respectively. Each link has the link connection
indicator denoted by Iij , which plays the role of a chromosome map (i.e.,
masking) providing information on whether the link from node i to node j is
included in a routing path or not. It can be defined as follows:

Iij =

{
1, if the link (i, j) exists in the routing path
0, otherwise.

(3.1)

It is obvious that all the diagonal elements of I must be zero. Using the above
definitions, the SP routing problem can be formulated as a combinatorial op-
timization problem minimizing the objective function (Eq. (3.2a)) as follows:

minimize
D∑

i=S

D∑
j=S
j �=i

Cij · Iij (3.2a)

subject to
D∑

j=S
j �=i

Iij −
D∑

j=S
j �=i

Iji =




1, if i = S

−1, if i = D

0, otherwise

and

D∑
j=S
j �=i

Iij

{
≤ 1, if i �= D

= 0, if i = D

Iij ∈ {0, 1}, for all i. (3.2b)

The constraint (Eq. (3.2b)) ensures that the computed result is indeed a path,
without loops, between a source and a designated destination.

3.3.1 Chromosome Representation

A chromosome of the proposed GA consists of sequences of positive integers,
which represent the IDs of nodes through which a routing path passes. Each
locus of the chromosome represents an order of a node (indicated by the
gene of the locus) in a routing path. The gene of the first locus is always
reserved for the source node. The length of the chromosome is variable, but
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Fig. 3.1. Example of routing path and its encoding scheme.

it should not exceed the maximum length |V|, where |V| is the total number
of nodes in the network, since it never needs more than the total number of
nodes to form a routing path. A chromosome (i.e., routing path) encodes the
problem by listing up node IDs from its source node to its destination node
based on topological information database (i.e., routing table) of the network.
The information can be easily obtained and managed in real-time by routing
protocols such as OSFP [72], DSR [80], and VCRP [2] in wired or wireless
environments, but the detailed mechanisms or other controversial issues are
beyond the scope of this study. It is noted that the topological information
database of the network can be constructed easily and rapidly by such routing
protocols.

An example of chromosome encoding from node S to node D is shown
in Fig. 3.1. The chromosome, viz., routing path, is essentially a list of nodes
along the constructed path, (S → N1 → N2 → · · · → Nk−1 → Nk → D). In
Fig. 3.1, n represents the total number of nodes forming a path.

The gene of the first locus encodes the source node, and the gene of second
locus is randomly or heuristically selected from the nodes connected with the
source node (S) that is represented by the front gene’s allele. The chosen node
is removed from the topological information database to prevent the node from
being selected twice, thereby avoiding loops in the path. This process continues
until the destination node is reached. Note that an encoding is possible only
if each step of a path passes through a physical link in the network.

3.3.2 Population Initialization

Heuristic initialization may be beneficial to the SP routing problem because
the topological information for computing the SP is already collected be-
fore the algorithm starts. However, the heuristic initialization may increase
the complexity of the algorithm and lead to premature convergence (as de-
scribed in Sect. 2.2). Consequently, random initialization is effected so that
initial population is generated with the encoding method already explained
in Sect. 3.3.1. Physically, the random initialization chooses genes (viz., nodes)
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from the topological information database in a random manner during the en-
coding process. It is possible that the algorithm encounters a node for which
all of whose neighboring nodes have already been visited. In this case, the
defective chromosome is refreshed and reinitialized. This may induce a subtle
bias in which some partial paths are more likely to be generated. However, the
meager bias does not significantly affect the performance of the algorithm. It
is doubly so because the bias vanishes after evolving just a few generations.

3.3.3 Fitness Function

Fitness function must be defined with utmost care so that the quality of
candidate solutions is accurately measured. Fortunately, the fitness function
in the SP routing problem is obvious because the SP computation amounts
to finding the minimal cost path. Therefore, the fitness function that involves
computational efficiency and accuracy (of the fitness measurement) is defined
as follows:

Fi =




ni−1∑
j=1

Cgi(j),gi(j+1)



−1

(3.3)

where Fi represents the fitness value of the ith chromosome, ni is the length
of the ith chromosome, gi(j) represents the gene (i.e., node) of the jth locus
in the ith chromosome, and Cij is the link cost from node i to node j.

The fitness function of GAs is generally the objective function that requires
to be optimized [38,56,67]. In a sense, the fitness function (Eq. (3.3)) can be
thought of as fully reflecting the objective function (Eq. (3.2a)). The fitness
function has a higher value when the fitness characteristic of the chromosome
is better than others. In addition, the fitness function introduces a criterion
for selection of chromosomes.

3.3.4 Genetic Operators

Great care must be exercised in designing genetic operators that lead GAs to
the (globally) optimal solution, quickly, accurately, and reliably.

Selection

Among the ordinal selection schemes, tournament selection without replace-
ment is promising as it is perceived to be effective in keeping the selection noise
as low as possible (described in Sect. 2.2). Recall that the selection pressure
of tournament selection increases with the tournament size s. In general, high
selection pressure leads to premature convergence. Thus, the pairwise (i.e.,
s = 2) tournament selection without replacement is employed for the pro-
posed GA: two chromosomes are picked and the one that is fitter is selected.
However, the same chromosome should not be picked twice as a parent.
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Crossover

Crossover examines the current solutions in order to find better ones. Physi-
cally, crossover in the SP routing problem plays the role of exchanging each
partial route of two chosen chromosomes in such a manner that the offspring
produced by the crossover represents only one route. This dictates selection
of one-point crossover as a good candidate scheme for the proposed GA. One
partial route connects the source node to an intermediate node, and the other
partial route connects the intermediate node to the destination node. The
crossover between two dominant parents chosen by the selection gives higher
probability of producing offspring having dominant traits.

But the mechanism of the crossover is not the same as that of the conven-
tional one-point crossover. In the proposed scheme, two chromosomes chosen
for crossover should have at least one common gene (i.e., node) except for
source and destination nodes, but there is no requirement that they be located
at the same locus. That is, the crossover does not depend on the position of
nodes in routing paths. Figures 3.2(a) and (b) show the pseudo-code and an
example of the crossover procedure, respectively.

As shown in Fig. 3.2(b), a set of pairs of nodes which are commonly in-
cluded in the two chosen chromosomes but without positional consistency is
formed first, viz., (3,2) and (5,4). Such pairs are also called “potential crossing
sites.” Then, one pair (3,2) is randomly chosen and the locus of each node
becomes a crossing site of each chromosome. The crossing points of two chro-
mosomes may be different from each other. This is in contrast to the scheme
adopted in Munetomo’s algorithm [79]. Each partial route is exchanged and
assembled, eventually leading to two new routes. It is possible that loops are
formed during crossover. In this regard, a simple countermeasure must be
prepared with a view to avoiding degenerating the rate of convergence and
the quality of solution. Of course, such chromosomes (viz. routes with loops)
will gradually be weeded out in the course of a few generations because the
traits of those chromosomes drive fitness values from bad to worse. Repair and
penalty functions are the usual countermeasures. It is described in Sect. 3.3.5.

Mutation

The population undergoes mutation by an actual change or flipping of one
of the genes of the candidate chromosomes, thereby keeping away from local
optima. Physically, it generates an alternative partial route from the mutation
node to the destination node in the proposed GA. A topological information
database is utilized for the purpose. Of course, mutation may induce a sub-
tle bias for reasons indicated earlier (Sect. 3.3.2). However, this bias can be
ignored. This is explained below.

First, mutation leads to an infinitesimal increase in the probability of in-
ducing the bias. Second, selection and crossover strongly influence the way this
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Parameters.

C1, C2 : Input chromosomes, C̃1, C̃2 : Output chromosomes

n1, n2 : Length of chromosomes C1, C2

/*Find the potential crossing sites*/

for i:=1 to n1 do

for j:=1 to n2 do

/*If a node is common to both chromosomes*/

if C1[i]==C2[j] then

/*Construct a set of potential sites*/

sp[k]:=(i,j);
k++;

/*Randomly choose a crossing site*/

sc:=choose random(sp);
C̃1:=C1[1 : sc(1)]//C2[sc(2) + 1 : n2]; /*1st exchange*/

C̃2:=C2[1 : sc(2)]//C1[sc(1) + 1 : n1]; /*2nd exchange*/

(a) Pseudo-code of the crossover.
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Fig. 3.2. Overall procedure of the crossover.

bias operates. Indeed, its (bias’) harmful effects vanish almost completely. Fur-
thermore, the bias, whenever it helps in searching an optimal solution, may
not induce any harmful effect at all.

Figure 3.3 shows the overall procedure of the mutation operation. As can
be seen from Fig. 3.3(b), in order to perform a mutation, a gene (i.e., node N2)
is randomly selected first from the chosen chromosome (“mutation point”).
One of the nodes, connected directly to the mutation point, is chosen randomly
as the first node of the alternative partial route. The remaining procedure has
been given in Sects. 3.3.1 and 3.3.2.

However, nodes already included in an upper partial route should be
deleted from the database so as not to include the same node twice in the
new routing path. The upper partial route represents the surviving portion
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Parameters.

C: Input chromosome, C̃ : Output chromosome

T: Topological information database

/*Randomly choose a node as a mutation point*/

sm:=choose random(C);
/*Delete the nodes of upper partial route from T*/

delete(T,C,sm);

/*Put the upper partial route to the mutation chromosome*/

C̃:=C[1 : sm];

/*Construct the remaining mutation chromosome*/

while(1)

/*Randomly choose a node and then delete the node from T*/

C̃[sm + 1]:=choose random delete(T, C̃[sm]);
if C̃[sm + 1]==D then

break;

sm++;

(a) Pseudo-code of the mutation.
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Fig. 3.3. Overall procedure of the mutation.

of the previous route after mutation; it is the partial chromosome stretching
from the first gene to the intermediate gene at the mutation point.

3.3.5 Repair Function

As mentioned earlier, crossover may generate infeasible chromosomes that
violate the constraints (Eq. (3.2b)), generating loops in the routing paths. It
must be noted that none of the chromosomes of the initial population or after
the mutation is infeasible because when once a node is chosen, it is excluded
from the candidate nodes forming the rest of the path.

Due to critical drawbacks of the penalty method – the difficulty of devising
an appropriate penalty function and the reproduction of infeasible chromo-
somes at the price of some feasible ones, the repair method is employed in the
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Parameters.

C: Input chromosome, C̃ : Output chromosome

n: Length of chromosome C

/*Find and eliminate a loop*/

for i:=1 to n

for j:=1 to n

if C[i]==C[n−j] then

C̃:=C[1 : i]//C[n− j + 1 : n];

(a) Pseudo-code of the repair function.
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Fig. 3.4. Overall procedure of the repair function.

proposed GA. Fortunately, the mechanism that eliminates the lethal genes
that form loops can cure all the infeasible chromosomes. The repair func-
tion finds and eliminates loops in a routing path without unduly increasing
computational costs.
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The proposed repair function is described in Fig. 3.4(a) and an exam-
ple is shown in Fig. 3.4(b). In Fig. 3.4(b), one of the offspring produced
after crossover becomes infeasible because the new route contains the loop
N2 → N3 → N1 → N2. The repair function detects the loop by a simple
search described in Fig. 3.4(a). The function is linear in n, the chromosome
length. After that, the lethal genes (forming a loop) that violate the constraint
condition are deleted; those nodes are {N3, N1, N2}1 in this example.

3.3.6 Population Size

In the GA run, a proper setting of the population size is the most crucial issue.
To find better solutions, the population size must be increased as much as
possible; however, it may result in unacceptably slow convergence. In Sect. 2.3,
a practical population-sizing model has been developed. It explicitly tells us
of the relationships among the size of the population, the quality of solution,
the cardinality of the alphabet, and other factors of GAs. One can compute an
adequate population size by making use of Eq. (2.14). A detailed investigation
of the validity and usefulness of the population-sizing model to the SP routing
problem is treated in Sect. 3.4.3.

3.4 Experiments and Discussion

In this section, the proposed GA is compared with Munetomo’s [79] and
Inagaki’s [57] algorithms through computer simulations. As described in
Sect. 3.3.4, the proposed GA employs pair-wise tournament selection (i.e.,
tournament size s = 2) without replacement. In all the experiments, the
crossover and mutation probabilities are set to 1.0 and 0.05, respectively.2

Each experiment is terminated when all the chromosomes have converged to
the same solution. A convergence test for termination is performed before
applying mutation as otherwise uninvited evolution may follow due to the
placement of the mutation operator. However, this strategy does not affect
the results.

Each solution is compared with Dijkstra’s SP [110] solution. In other
words, Dijkstra’s algorithm provides a reference point. Furthermore, the ac-
curacy and the scalability of the population-sizing model are also verified
through simulation studies.

3.4.1 Results for a Fixed Network with 20 Nodes

The simulation studies involve the deterministic, weighted network topology
with 20 nodes depicted in Fig. 3.5(d). The bold line shows an optimal path.

1 One of two N2 must be taken regardless of its order.
2 In general, they come under a set of typical values.
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(a) Result of the Munetomo’s algo-
rithm (total path costs: 187).
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(b) Result of the Inagaki’s algorithm
(total path costs: 234).
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(c) Result of the Proposed algorithm
(total path costs: 142).
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(d) Example network with optimal
path in bold line (optimal costs: 142).

Fig. 3.5. Comparison results for the paths found by algorithms.

With a view to focusing exclusively on fair comparison of algorithms on the
basis of performance, the population size is taken to be the same as the number
of nodes in the network. Population size and its influence on quality of solution
are investigated later (Sect. 3.4.3).

Fig. 3.5 shows the shortest paths (viz., bold lines) found by the algorithms
for the indicated source-destination pair. It is seen that the path computed
by the proposed algorithm coincides with that found by Dijkstra’s algorithm.
The latter is known to always return the optimal shortest path. Munetomo’s
and Inagaki’s algorithms, on the other hand, settle for a suboptimal path.

Figure 3.6 compares objective function values returned by the algorithms.
In the figure, the objective function value represents the sum of link costs
(i.e., total path cost) normalized by the maximum link cost in the network. It
is seen that the proposed GA exhibits the fastest rate of convergence because
the number of generations up to convergence is the smallest. The algorithm
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Fig. 3.6. Convergence property of each algorithm.

converging through smaller generations has better convergence performance
because all the algorithms have the same population size in the experiment. In
general, however, convergence performance must be compared with the aver-
age number of fitness function evaluations until the GAs reach equal quality of
solutions [22]. A detailed explanation will be given in Sect. 3.4.2. In addition,
it indeed converges to a value that is exactly the same as the Dijkstra-value
(i.e., the optimal route), notwithstanding the somewhat inherent initial dis-
advantage.

3.4.2 Results for Random Networks

In this section, we verify that the previous results concerning the quality of
solution and the convergence speed hold for all kinds of problems (i.e., net-
works types and scales). Networks with 15–50 nodes, and randomly assigned
(normalized) link costs were investigated. As described earlier (see Sect. 3.1),
mobile ad hoc networks provide acceptable targets. Applications include mili-
tary battlefield (e.g., moving platoon or company), rescue missions, conference
room and so on [2,80]. They involve networks with sizes that range from small
to medium (e.g., tens of nodes). Simulations reflect this practical reality. A
possible implication is that the proposed algorithm scales well to larger net-
works.

First, the quality of solution (i.e., route optimality) for each GA is investi-
gated. The route optimality is defined as a percentage of the number of times
the GA finds the global optimum (i.e., the shortest path). The route failure
ratio is the inverse of route optimality. It is asymptotically the probability
that the computed route is not optimal, because it is the relative frequency
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Fig. 3.7. Comparison results of the quality of solution for each algorithm.

Table 3.1. Performance comparison on the quality of solution.

Performance Inagaki’s Munetomo’s Proposed
measure algorithm algorithm algorithm

Route failure µRFR 0.4195 0.2959 0.1712
ratio (RFR) σRFR 0.1745 0.1670 0.1067

of route failure. The population size of each GA is also taken to be the same
as the number of nodes in the networks. A total of 1000 random network
topologies were considered in each case.

The quality of solutions of the algorithms is compared in Fig. 3.7. From
the figure, we can see that the quality of the solution of the proposed GA
is much higher than that of the other algorithms. In case of 30 nodes, for
example, the proposed GA outperforms Inagaki’s GA and Munetomo’s GA
with prob. < 0.26 and prob. < 0.15, respectively. The results are collected in
Table 3.1. The proposed GA attains a 0.1712 route failure ratio (viz., 82.88%
route optimality) with a population size equal to the number of nodes in the
networks. The proposed GA is better than Inagaki’s GA and Munetomo’s
GA with prob. < 0.25 and prob. < 0.13, respectively. Meanwhile, standard
deviation of route failure ratio (i.e, probability) for the proposed GA amounts
to 0.1067 comparing favorably with 0.1745 for Inagaki’s GA and 0.167 for
Munetomo’s GA. It means that the proposed algorithm retains its robustness
amidst changing network topologies with regard to the quality of solution (i.e.,
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Fig. 3.8. Comparison results of the rate of convergence for each algorithm.

route optimality). The benefits accrue from the compound effects of effective
search capability of the crossover and the diversity maintenance by mutation.

Second, the convergence speed of every GA is investigated. Convergence
performance is investigated in terms of the average number of fitness func-
tion evaluations. Cantú-Paz [22] suggests the total execution time (i.e., the
number of fitness function evaluations) required to find a solution of the same
average quality as a fair comparison criterion. In other words, the number
of fitness function evaluations can directly measure the dominance of conver-
gence performance only if all the GAs converge to solutions with identical
quality. Unfortunately, finding the exact population size for a particular qual-
ity of solution for each algorithm is very difficult. However, determining the
population size with certain constraints is relatively easy. We can determine
the population size for each algorithm by exhaustive search for each algorithm
so as to achieve almost the same quality of solution (viz., route optimality).
The proposed algorithm seems to have the most satisfactory performance and
Inagaki’s the least. The reason is not far to seek: the proposed algorithm in-
volves the smallest number of fitness function evaluations. That means faster
convergence.

Networks with 15–50 nodes, and randomly assigned link costs were also
studied. The results in respect of number of fitness function evaluations are
shown in Fig. 3.8. From the figure, we can see that the convergence rate of
the proposed algorithm is much higher than that of the other algorithms in
every case, because the average number of fitness function evaluations needed
to reach similar quality of solution (i.e., maximum difference is about 4%)
is smaller than any other algorithm. In case of 30 nodes, for instance, the
proposed GA is faster than Inagaki’s GA and Munetomo’s GA with prob. <
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Table 3.2. Performance comparison on the rate of convergence.

Performance measure
Inagaki’s Munetomo’s Proposed
algorithm algorithm algorithm

Achieved route failure ratio 0.2438 0.229 0.2014

Number of fitness µeval 810.5440 251.9105 122.3158
function evaluations σeval 181.9882 58.9393 31.6627
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Fig. 3.9. Computation time between Dijkstra’s and the proposed algorithms.

0.87 and prob. < 0.48 (i.e., 7.27 times and 1.92 times), respectively. The results
are collected in Table 3.2.

From Table 3.2, it can be seen that the proposed GA converges to a solu-
tion with about 0.2 route failure ratio (viz., 80% route optimality) in about
122 fitness function evaluations. The convergence speed of the proposed GA
is superior to that of Inagaki’s GA and Munetomo’s GA with prob. < 0.85
and prob. < 0.52 (i.e., 6.63 times and 2.06 times), respectively. It is noted
that such improvement serves as a lower bound of convergence gain because
the proposed GA still attains better quality of solution than other algorithms.
Furthermore, standard deviation of fitness function evaluations for the pro-
posed GA is about 32, while it is about 182 for Inagaki’s GA and about 59 for
Munetomo’s GA. It also implies that the proposed GA is indeed insensitive
to network topologies, as far as convergence is concerned.

In order to further compare the convergence performance of the proposed
GA with that of Dijkstra’s algorithm, direct (real) computation time obtained
from previous experiments given in Fig. 3.7 is presented in Fig. 3.9. The
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average computation time of Dijkstra amounts to 0.14 second and that of
the proposed GA is 0.067 second. The proposed GA is faster than Dijkstra’s
algorithm with prob. < 0.522, although it may confront route failure situation
with prob. < 0.1712. The computation time of the proposed GA does not
increase significantly with the network size while it does in case of Dijkstra’s
algorithm. It is noted that both the algorithms are, per se, inadequate for real-
time communications in mobile ad hoc networks. However, the proposed GA,
with its extremely fast hardware counterpart, passes the test (see Sect. 3.1).

3.4.3 Experimental Verification of the Population-Sizing Model

In this section, we verify that the generalized version of the population-sizing
model of Eq. (2.14) fairly accurately predicts the quality of solutions computed
by the proposed GA.

Deciding the Parameters in the SP Routing Problem

In Sect. 2.3, the practical population-sizing model was given by

N = −χk

2
ln(α)

(
χk − 1

2

√
πm′ + 1

)
. (3.4)

To apply it to the SP routing problem, the parameters have to be determined.
As χ is the average cardinality of the alphabet, it can be found by the average
link connectivity in the network. In other words, the parameter χ physically
represents the average number of nodes that each gene can take. As mentioned
before, the parameter α is the GA failure (i.e., route failure) probability3. The
average order k of BBs can be modeled as a linear combination of one-max
function and deceptive function in the SP routing problem. That is,

k =
|V|∑
x=1

(cx · x) (3.5)

where |V| is the number of nodes in the networks, and cx, the weighted average
coefficient is a domain-dependent parameter. The sum of all the coefficients
is 1.

In Eq. (3.5), we get the one-max problem when x = 1, and the deceptive
problem when x > 1. In addition, the total number of collateral noise sources
m′ is (m−1), where m is the average number of BBs. In the routing problem,
m is calculated as n/k, where n is the average length of chromosomes that is
defined by the number of nodes whose average cost is not greater than that
of the overall network. Of course, the BBs may be inherently interdependent.
However, the average number of BBs (n/k) will be a reasonable approximation

3 It denotes the probability that the computed route is not optimal.
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from a statistical point of view, if an accurate average order k is used. This is
explained below.

The possibility of finding a shortest path will be quite high when each node
chooses a lowest/best-cost node among its own neighbors as a forward node in
a route (as happens in a greedy algorithm). If the shortest path is always found
in this manner, the problem can be modeled as the one-max problem. But,
a globally optimal path is possible even when locally non-optimal selections
are made. It is well known that locally optimal selections may be misleading.
These features reflect on the interdependence among BBs. The idea is to make
an attempt to spread this potential (to mislead) over the average length of
chromosomes, and thereby weaken it. The chromosomes can then be modeled
as independent BBs.

The average order k is a unique domain-dependent variable not yet speci-
fied. Assuming that it is likely that an average order of more than two is very
rare, the parameter k can be approximated by a two-term weighted average
as follows:

k ≈
2∑

x=1

cx · x. (3.6)

The reason for this assumption is explained below. When k is 2, half the nodes
in a route choose lower/worse nodes among their own neighbors as forward
nodes in order to build an optimal path (i.e., quite misleading). Thus, k > 2
can be ignored since this situation itself (i.e., k = 2) is relatively rare in
practice. Determining the coefficients is a very difficult problem. They are
also sensitive to network size and topology. We observed that plotting the
average deceptive size against the number of nodes on a log-log scale results
in an almost straight line, which means that the coefficient of the average
order 2, c2, can be approximated with a general power-law equation [22] as
follows:

c2 = A · |V|B . (3.7)

Here, A and B are domain-dependent constants. The value of A and B can
be computed by transcendental cognition as follows:

A = 10−2 · (1 − α)2 and B = 1.0. (3.8)

Therefore, the average order may be calculated as follows:

k = 1 · c1 + 2 · c2 = 1 + c2 = 1 + 10−2 · (1 − α)2 · |V|. (3.9)

From Eq. (3.9), we can see that the average order k is around 1 if the network
does not have a large number of nodes. In that case, the probability of dis-
ruption of the BBs by crossover is very small. It is noted that if the average
order k becomes large, the probability becomes large too and the population
size might be affected. As mentioned earlier (see Section 2.3.4), however,
the increasing average order does not strongly induce any increment in the
population size if one- or two-point crossover is exploited [45].
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Fig. 3.10. Validity of the population-sizing model for SP routing problem.

Experimental Results

For an accurate assessment, all the results must be averaged over 10000 ran-
dom network topologies, because the best quality of solution in the experi-
ment guarantees a 10−2 route failure ratio (viz., 99% route optimality). In
other words, we must experiment until the number of suboptimal solutions is
at least 100; thus, 10000 network topologies are needed for supporting up to
10−2 route failure ratio.4 In this respect, the experiments are run ten-times
with a total of 1000 random network topologies with 15–50 nodes, and ran-
domly assigned link costs (normalized).

Experiments concerning the population-sizing model are summarized in
Fig. 3.10. In that figure, the dotted line is the target route failure probability
and the symbol is the experimental result with the population size obtained
by Eq. (3.4). From the figure, we can see that the model accurately predicts a
population size that is adequate for reaching the desired (target) solution on
the order of route failure probability of 0.1 (i.e., better than 90% optimality),
and satisfactorily estimates the population size as an upper bound in cases of
worse route failure probabilities. Thus, the model can be used for determining
the population size for a desired quality of solution.

On the other hand, the scalability of the population-sizing model with re-
gard to the number of nodes (i.e., network size) is investigated only in two
cases, viz., 0.01 (99%) and 0.1 (90%) route failure probabilities (route opti-
mality). The results of the experiments are shown in Fig. 3.11. It can be seen

4 The reason for employing this methodology lies in ensuring the obtained results
by observing sufficient samples.
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Fig. 3.11. Scalability of the population-sizing model for SP routing problem.

that the quality of solution is not strongly influenced by the number of nodes
since the variation of the quality of solutions is about 5% (with regard to
route optimality). It means that the model is scalable at 0.01 and 0.1 route
failure ratio.

As a result, it may be inferred that the practical population-sizing model
is scalable, a characteristic that is quite important in practical problems.

3.5 Summary

This chapter presented a GA for solving the SP routing problem. The crossover
and the mutation operations work on variable-length chromosomes. The
crossover is simple and independent of the location of the crossing site. Con-
sequently, the algorithm can search the solution space in a very effective man-
ner. The mutation introduces, in part, a new alternative route. In essence,
it maintains the diversity of population thereby avoiding local traps. Infea-
sible solutions (i.e., chromosomes) have also been dealt with without unduly
compromising on computational requirements.

Simulation studies show that the algorithm is indeed insensitive to varia-
tions in network topologies in respect of both route optimality (i.e., quality of
solution) and convergence speed. Experimental results show that the quality of
solution is better than those of other algorithms. Indeed, 0.1712 route failure
ratio (viz., 82.88% route optimality) is attained with the population size that
is equal to the number of nodes in the networks. The route failure (i.e., opti-
mality) performance of the proposed GA was better than those of Inagaki’s
GA and Munetomo’s GA with prob. < 0.25 and prob. < 0.13, respectively.
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Furthermore, convergence was seen to occur after about 122 fitness function
evaluations with up to about 0.2 quality of solution (viz., 80% route optimal-
ity). The convergence performance of the proposed GA was better than those
of Inagaki’s GA and Munetomo’s GA with prob. < 0.85 and prob. < 0.52, re-
spectively. In addition, the actual computation time of the proposed GA was
shorter than that of Dijkstra’s algorithm. However, hardware implementation
may be necessary for applications involving real-time services in a dynamic
network topology.

The accuracy of the practical population-sizing model was also verified, in
context of the SP routing problem, with experiments by specifying different
solution qualities ranging from 0.01 to 0.5 route failure probability (that is,
50∼99% route optimality). The results showed that the predictions of the
model are acceptable in the practically operational region which is better
than 0.1 route failure probability (i.e., 90% route optimality). It can be used
as an upper bound elsewhere. Furthermore, the model scales with problem
difficulty (i.e., network size).

The proposed algorithm can search the solution space effectively and
speedily compared with other extant algorithms. The population-sizing model
appears to be a conservative tool to determine a population size in the routing
problem.
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Elitist Compact Genetic Algorithms

This chapter describes two elitism-based compact genetic algorithms (cGAs) –
persistent elitist compact genetic algorithm (pe-cGA), and nonpersistent elitist
compact genetic algorithm (ne-cGA). The aim is to design efficient compact-
type GAs by treating them as simple estimation of distribution algorithms
(EDAs) for solving difficult optimization problems without compromising on
memory and computation costs. Difficult problems have the following charac-
teristics: 1) full deception, 2) interdependence (of decision variables), 3) multi-
modality, and 4) symmetry. The idea is to deal with issues connected with lack
of memory – inherent disadvantage of cGAs – by allowing a selection pressure
that is high enough to offset the disruptive effect of uniform crossover. The
point is to properly reconcile the cGA with elitism. The pe-cGA finds a near
optimal solution (i.e., a winner) that is maintained as long as other solutions
(i.e., competitors) generated from probability vectors (PVs) are no better.
It attempts to adaptively alter the selection pressure in accordance with the
degree of problem difficulty by employing only the pairwise tournament se-
lection strategy. Moreover, it incorporates a model that is equivalent to the
(1+1) evolution strategy (ES) with self-adaptive mutation. The pe-cGA, apart
from providing high performance, also reveals the hidden connection between
EDAs (e.g., cGA) and ESs (e.g., (1+1)-ES). The ne-cGA further improves
the performance of the pe-cGA by avoiding strong elitism that may lead to
premature convergence (by incorporating elitism in a restricted manner). The
ne-cGA offers all the benefits of the pe-cGA. Restricted elitism also plays
a role in arresting the rapid degeneration of genetic diversity (i.e, diversity
maintenance). This chapter also proposes an analytic model for investigating
convergence enhancement, viz., speedup.

The chapter is organized as follows. Section 4.1 briefly describes a fam-
ily of cGAs. Section 4.2 explains the original cGA and provides an overview
of elitism. In Section 4.3, the proposed elitism-based compact GAs for effi-
ciently solving difficult problems are described. The (analytic) speedup model
is presented in Sect. 4.4. The results of experiments on several test func-
tions/problems and Ising Spin-Glasses (ISG) systems (a real-world applica-
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tion) can be found in Sect. 4.5. The chapter concludes with a summary of the
results in Sect. 4.6.

4.1 A Family of Compact Genetic Algorithms

Of all the issues connected with genetic algorithms (GAs) – such as population
size, genetic operators (e.g., selection, crossover, and mutation), and encod-
ing methods, etc., – the population size that guarantees an optimal solution
quickly enough has been a topic of intense research [3,39,40,45,49,101]. This is
because large populations generally result in better solutions, but at increased
computational costs and memory requirements. Goldberg and Rudnick [39]
developed the first population-sizing model based on the variance of fitness.
They further required the equation to permit accurate statistical decision mak-
ing in the presence of competing building blocks (BBs) [40]. However, if wrong
BBs are chosen in the first generation, the GAs will never recover [45, 101].
Extending the decision model in [40], Harik et al. [45] exploited the similarity
between the gambler’s ruin problem and the selection mechanism of GAs for
determining an adequate population size that guarantees a solution with the
desired quality. Furthermore, the analytic model started from the assump-
tion that the fitness values of a pair of chromosomes can be ordered. This
effectively implies tournament selection without replacement. Moreover, Ahn
and Ramakrishna [3] further enhanced and generalized the population sizing
model in [45] so as to dispense with any problem dependent information such
as signal or collateral noise of competing BBs. While attempting to under-
stand the real importance of population in evolutionary algorithms (EAs), He
and Yao [49] showed that the introduction of population increases the first
hitting probability, so that the mean first hitting time is shortened.

Based on the results in [45], Harik et al. [46] proposed the compact GA
(cGA) as an (simple) estimation of distribution algorithm (EDA) that gen-
erates the offspring in line with the estimated probabilistic model of parent
population instead of using traditional recombination and mutation opera-
tors [64, 115]. The cGA represents the population as a probability (distribu-
tion) vector (PV) over the set of solutions and operationally mimics the order-
one behavior of simple GA (sGA) with uniform crossover using a small amount
of memory. Therefore, the cGA can be a welcome too in memory-constrained
applications such as multicasting routing and resource allocation problems in
the emerging field of wireless networks. When confronted with easy problems
(e.g., continuous-unimodal problems) involving lower order BBs, the cGA can
achieve solutions of comparable quality with approximately the same number
of fitness evaluations as the sGA with uniform crossover [46]. However, the
cGA does not provide acceptable solutions to difficult problems (e.g., decep-
tive problems or multimodal problems), because it does not have the memory
to retain the required knowledge (e.g., decision error, linkage information of
genes) about non-linearity of the problems [46]. These problems involve higher
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order BBs. It is noted that most practical applications may come within the
purview of difficult optimization problems because they usually have many
local optima (i.e., multimodal) and the genes are inter-dependent in general.1

It follows that the cGA may not be effective in solving real-world problems.
In order to obtain better solutions to such difficult problems, the cGA should
exert a higher selection pressure. This, in turn, increases the survival proba-
bility of higher order BBs, thereby preventing loss of the best solution found
thus far. In other words, higher selection pressure can play the role of mem-
ory. Therefore, it can take care of a finite number of decision errors and some
linkage information of genes. Selection pressure of the cGA can be increased
with easy by creating a larger tournament size [46]. However, this scheme
requires additional but insignificant memory that is proportional to tourna-
ment size. Furthermore, it is difficult to precompute the (average) order of
BBs in practical applications. Even if the order of BBs can be found (or is
known) in advance, the tournament size that provides a selection pressure
that is high enough to compensate for the highly disruptive effects of uniform
crossover cannot be determined precisely. Although Harik et al. [46] investi-
gated the relationship between tournament size and selection pressure in the
cGA by employing a global schema theorem, the relation was verified only
in the context of a specific problem involving concatenation of 10 copies of
a 3-bit, fully deceptive function with deceptive-to-optimal ratio of 0.7. This
underscores the point that the relationship may only be partially satisfied.
This is because the tournament size is closely related to not only the order of
BBs but also to other factors such as deceptive-to-optimal ratio and collateral
noise. The problem with Harik’s result is demonstrated through experiments
in Sect. 4.5.2, but a detailed investigation is beyond the scope of this work.

Furthermore, Harik et al. [44] proposed an extended compact GA (ecGA)
for solving difficult problems such as fully deceptive problems by combining
a greedy marginal product model (MPM) search algorithm with a minimal
description length (MDL) search model. Although the MPMs are similar to
the PV of cGA with regard to the products of marginal distributions on a
partition (i.e., a BB) of the genes, they can provide a direct linkage map
with each partition separating tightly linked genes [100]. Thus, the ecGA can
find better solutions to difficult problems with a smaller number of function
evaluations (than the sGA). However, it requires more memory and carries
higher computational costs per function evaluation.

Baraglia et al. [15] proposed a hybrid heuristic algorithm that combines
cGA with an efficient Lin-Kernighan (LK) local search algorithm, the so called
cGA-LK. The aim of cGA-LK is to deal with difficult order-k (k > 1) opti-
mization problems such as the traveling salesman problem (TSP) without
requiring larger memory than the existing cGA. The cGA-LK exploits the
cGA in order to generate high quality solutions (to TSP), which are then
refined with the LK local search algorithm. The refined solutions are in turn

1 It is difficult to model the problems as the combination of lower order BBs.
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exploited further with a view to improving the quality of the simulated pop-
ulation (i.e., the probabilities of PV). In this way, it achieves a performance
that is better than is possible with sGA and cGA in terms of quality of solu-
tions. However, the algorithm may incur an unacceptably high computational
cost because it employs the complex LK local search algorithm.

In the same context, Hidalgo et al. [52] devised a hybrid algorithm for
Multi-FPGA partitioning. The mechanism that combines the existing cGA
and a random local search algorithm is quite similar to that of cGA-LK.
Every time a certain number of epochs elapses, the best individual competes
with a new individual found by local search. If the new individual has a higher
fitness, then the PV (of cGA) is updated by its traits.

4.2 Compact Genetic Algorithm and Elitism

This section provides background information on cGA and elitism.

4.2.1 Compact Genetic Algorithm

In the community of genetic and evolutionary computation, estimation of
distribution algorithms (EDAs), also known as probabilistic model building
genetic algorithms (PMBGAs), have attracted due attention of late [64], [90].2

Being one of the simplest EDA, the cGA manages its population as a PV over
the set of solutions (i.e., only models its existence), thereby mimicking the
order-one behavior of the sGA with uniform crossover using a small amount
of memory [15,46].

Figure 4.1 is the pseudo-code of the cGA. The elements of PV, viz.,
pi ∈ [0, 1], ∀i ∈ {1, · · · , n}, where n is the number of genes (i.e., the length
of the chromosome), measures the proportion of “1” alleles in the ith locus
of the simulated population [15, 46]. The PV is initially assigned 0.5 to rep-
resent a randomly generated population. In every generation (i.e., iteration),
competing chromosomes are generated on the basis of the current PV, and
their probabilities are updated to favor a better chromosome (i.e., winner).
It is noted that the generation of chromosomes from PV simulates the ef-
fects of crossover that leads to a decorrelation of the population’s genes. In
a simulated population of size N , the probability pi is increased (decreased)
by 1/n when the ith locus of the winner has an allele of “1” (“0”) and the
ith locus of the loser has an allele of “0” (“1”). If both the winner and the
loser have the same allele in each locus, then the probability remains the
same. This scheme is equivalent to (steady-state) pairwise tournament selec-
tion [46]. The cGA is terminated when all the probabilities converge to 0.0
or 1.0. The convergent PV itself represents the final solution. It is seen that
the cGA requires n · log2(N + 1) bits of memory while the sGA requires n ·N
2 A detailed investigation about EDAs can be found in Sect. 5.1.
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Compact Genetic Algorithm

Parameters.

N: Population size, n: Chromosome length, p: Probability vector

Step 1. Initialize probability vector
for j:=1 to n do

p[i]:=0.5;

Step 2. Generate two chromosomes from the probability vector
a:=generate(p); b:=generate(p);

Step 3. Let them compete
winner,loser:=compete(a,b);

Step 4. Update the probability vector toward the better one
for i:=1 to n do

if winner[i] �= loser[i] then

if winner[i]==1 then p[i]:=p[i]+1/N;

else p[i]:=p[i]-1/N;

Step 5. Check if the probability vector has converged
for i:=1 to n do

if p[i]>0 and p[i]<1 then

go to Step 2;

Step 6. The probability vector represents the final solution

Fig. 4.1. Pseudo-code of compact genetic algorithm.

bits [46]. Thus, a large population size can be effectively exploited without
unduly compromising on memory requirements [15].

On the other hand, the cGA simulates higher selection pressure to solve
problems with higher order BBs. Selection pressure of the cGA can be in-
creased by replacing Steps 2–4 (in Fig. 4.1) with the procedures described
below [46].

First, s chromosomes are generated from the PV. The best among them
is found. Second, the best chromosome competes with the other (s− 1) chro-
mosomes and the PV is updated on the way. However, it requires bothersome
information such as the order of BBs and the tournament size3. Since such
information may not be available in practice, the cGA may not be all that
useful.

4.2.2 Elitism

As an operational characteristic of GAs, elitism provides a means for re-
ducing genetic drift by ensuring that the best chromosome(s) is allowed to
pass/copy their traits to the next generation [32, 94]. Genetic drift is used to
3 It closely adjusts the selection pressure that is sufficient to combat the highly

disruptive effects of uniform crossover.
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explain/measure stochastic changes in gene frequency through random sam-
pling of the finite population [95]. Some genes of chromosomes may turn out
to be more important to the final solution than others [94]. When the chro-
mosomes representing decision variables that have a reduced “salience” to the
final solution do not experience sufficient selection pressure, genetic drift may
be stalled. Therefore, it is important to maintain adequate selection pressure,
as demanded by the application, in order to avoid this phenomenon [94]. In
other words, the arrest of genetic drift reflects the failure to exert adequate se-
lection pressure by increasing the tournament size or by some form of elitism.

Since elitism can increase the selection pressure by preventing the loss of
low salient genes of chromosomes due to inadequate (i.e., deficient) selection
pressure, it improves the performance with regard to optimality and conver-
gence of GAs in many cases. However, the degree of elitism should be adjusted
properly and carefully because high selection pressure may lead to premature
convergence [32].

4.3 Elitism-Based Compact Genetic Algorithms

This section describes the persistent elitist compact GA (pe-cGA), and the
nonpersistent elitist compact GA (ne-cGA). They combine the existing cGA
with elitism in an effective manner. The major objective is to improve the
quality of solution and the rate of convergence (to the global optimum) with
acceptable memory and computational costs. Since the cGA operates on each
gene independently, it may lose linkage information. As a consequence, the
cGA may not be able to solve difficult problems, especially those involving
higher order BBs (e.g. deceptive problems).

4.3.1 Persistent Elitist Compact Genetic Algorithm

In Sect. 4.2.1, we found that the selection pressure of cGA should be propor-
tional to the degree of difficulty of problems for efficiently solving them. In
other words, a more difficult problem requires a higher selection pressure for
finding a better solution. This is because higher selection pressure offsets the
disruptive effects of uniform crossover (i.e., it carries partial knowledge about
the gene’s correlation such as the linkage information), thereby encouraging
convergence to a better solution. Although the selection pressure of the cGA
can be increased by creating a larger tournament size, it requires additional
but by no means significant memory and problem-dependent information that
is not generally available in real-world problems. Even if such information is
available, computation of the necessary tournament size that builds a selection
pressure that is high enough to offset the crossover disruption is not easy. As a
result, the selection pressure should be adaptively adjusted in response to the
degree of difficulty of the problems without actually varying the tournament
size.
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Parameters.

Echrom: Elite chromosome, Nchrom: New chromosome

Step 2*. Generate one chromosome from the probability vector
if the first generation then

Echrom:=generate(p); /*Initialize the elite chromosome*/

Echrom:=generate(p); /*Generate a new chromosome*/

Step 3*. Let them compete and let the winner inherit persistently
winner,loser:=compete(Echrom, Nchrom);
Echrom:=winner; /*Update the elite chromosome*/

Fig. 4.2. Modification of the cGA that realizes the pe-cGA.

Since pairwise tournament selection has been employed, the selection pres-
sure should be adaptively increased by evolving only two competing chromo-
somes. It has already been shown that the selection pressure is also increased
by passing the best chromosome(s) onto the next generation (i.e., elitism in
Sect. 4.2.2). Therefore, the idea is to increase the selection pressure in accor-
dance with the difficulty of the problems by employing elitism in an judicious
manner. In order to accomplish this, Steps 2–3 of the cGA (in Fig. 4.1)
should be replaced by the ones described in Fig. 4.2.

The procedures are being added with a view to simulating elitism in the
cGA. Of the two competing chromosomes, only the loser is replaced by the
new one that is generated from the PV. In other words, the winner is never
eliminated in so far as a better chromosome has not yet been produced from
the PV. This scheme is called persistent elitist compact GA (pe-cGA).

The following theorem is important in this regard.

Theorem 4.1: The pe-cGA is equivalent to the (1+1)-Evolutionary Strat-
egy (ES) with self-adaptive mutation.

Proof: Let g : Rm → R be the objective function to be maximized.
Consider the Markovian process X = {Xk; k ≥ 0} generated by the stochastic
algorithm [98]

Xk+1 =

{
Xk + lkZk, if g(Xk + lkZk) > g(Xk)
Xk, otherwise

(4.1)

where lk is the step length control parameter that is increased as long as
mutation improves solutions. Each random vector Zk (of the sequence of in-
dependent and identically distributed random vectors) has a joint probability
density function (pdf) with independent marginal densities.

The model of Eq. (4.1) falls within the purview of the (1+1)-ES with self-
adaptive mutation, if the step length control parameter is changed when the
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relative frequency of improving mutations is below or above some threshold
within τ trials [98]. In other words, Eq. (4.1) can exactly model the (1+1)-ES
with self-adaptive mutation if it considers the τ trials as an elementary event
in stage k.

Now, let Yk be a random vector generated from the PV. The probability
distribution of Yk is given by

FYk
(y1, · · · , ym) =

m∏
i=0

Pk(i) (4.2)

where m is the number of decision variables and Pk(i) represents the probabil-
ity distribution of the ith decision variable in the kth generation. Moreover, m
is given by n/ν where n and ν are the length of chromosome and the number
of bits used for encoding a decision variable, respectively.

With Yk, the pe-cGA takes the form

Xk+1 =

{
Yk, if g(Yk) > g(Xk)
Xk, otherwise.

(4.3)

Here, Yk describes a new chromosome generated from the PV. Also, Xk

represents a winner (i.e., the elite chromosome) in the (k − 1)th generation,
viz., a chromosome in the kth generation that is inherited from (k − 1)-th
generation. Then, Eq. (4.3) can naturally be rewritten as

Xk+1 =

{
Xk + (Yk − Xk) , if g(Yk) > g(Xk)
Xk, otherwise.

(4.4)

The random vector Zk and its scaling constant lk in Eq. (4.1) have been used.
Since Yk is also a random vector and Xk is a constant vector in the kth
generation, one can relate Zk with Yk as follows:

lkZk = Yk − Xk. (4.5a)

Here, the pdf of Zk can be computed easily by

fZk
(z1, · · · , zm) = fZk

(z) = |lk|fZk
(lkz + Xk). (4.5b)

Employing Eqs. (4.4) and (4.5), Eq. (4.3) can be rewritten as

Xk+1 =

{
Xk + lkZk, if g(Xk + lkZk) > g(Xk)
Xk, otherwise.

(4.6)

Comparing Eqs. (4.1) and (4.6), one can conclude that the two algorithms
(i.e., pe-cGA and (1+1)-ES with self-adaptive mutation) follow an identical
model. �
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The general tendency is to treat EDAs and ESs as belonging to differ-
ent realms of evolutionary algorithms. Theorem 4.1 is interesting in that it
reduces an EDA with elitism to a certain ES. Thus, the pe-cGA not only
achieves a higher performance but also opens up an avenue for examining the
unsuspected relationship between EDAs and ESs.

Instead of gaining in selection pressure, the pe-cGA may lose genetic di-
versity owing to inherent elitism. From Theorem 4.1, however, we see that the
pe-cGA maintains genetic diversity that is comparable with that of (1+1)-ES
with self-adaptive mutation. Furthermore, the pe-cGA offers some additional
benefits over (1+1)-ES to GA practitioners and designers. First, the step
length control parameter lk is adjusted in a dynamic manner. Second, the
pe-cGA does not have to select and fix the multivariate probability distri-
bution for generating the random vector Zk. In other words, the mutation
distribution of pe-cGA can also be adaptively adjusted.

In the (1+1)-ES with self-adaptive mutation, however, the update rule for
lk should be effective and the probability distribution for Zk should be selected
with care. This is because they directly and critically affect the performance
of the algorithm. Popular choices for mutation distribution are Gaussian and
Cauchy distributions [98,119].

Lee and Yao [66] developed an EA using stable Lévy distribution with dif-
ferent values of parameters in this regard. The objective is to adaptively alter
the mutation distribution in the environment. However, the Lévy parameter
distribution is not self-adaptive and the adjusted mechanism is applied only
to the variation of the decision variables, not to the self-adaptive deviation
(i.e., lk).

4.3.2 Nonpersistent Elitist Compact Genetic Algorithm

It may be noted that strong elitism may lead to premature convergence (to a
suboptimal solution). This is because a high selection pressure brought about
by strong elitism results in the population’s reaching equilibrium very fast, but
it inevitably sacrifices genetic diversity. Thus, a parameter η that indicates an
allowable scope of the elite chromosome’s inheritance is introduced to control
the strength of elitism. This parameter restrains the scope of inheritance (i.e.,
the number of generations) of the winner, thereby playing a role in retrieving
genetic diversity to some extent. This scheme is called nonpersistent elitist
compact GA (ne-cGA). In order to employ elitism in a nonpersistent manner,
the Steps 2–3 (in Fig. 4.1) should be modified by the procedures described
in Fig. 4.3.

As in pe-cGA, the loser is always replaced by a new candidate generated
from the current PV. However, the winner can be passed on to the next gen-
eration only when the present depth of inheritance, denoted by θ, does not
exceed the allowable scope of inheritance (i.e., η). In other words, a new ran-
domly generated chromosome can replace the winner if θ > η. Physically, this
is very similar to mutation or random immigrant mechanism in GAs. Hence,
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Parameters.

Echrom: Elite chromosome, θ: Current depth of inheritance

Nchrom: New chromosome, η: Allowable scope of inheritance

Step 2**. Generate one chromosome from the probability vector
if the first generation then

θ:=0 /*Initialize the control parameter*/

Echrom:=generate(p); /*Initialize the elite chromosome*/

Echrom:=generate(p); /*Generate a new chromosome*/

Step 3**. Let them compete and let the winner inherit nonpersistently
winner,loser:=compete(Echrom, Nchrom);
if θ ≤ η and winner==Echrom then

θ++; /*Increment the control parameter*/

else if winner�= Echrom then

Echrom:=winner; /*Update the elite chromosome by the winner*/

θ:=0; /*Reset the control parameter*/

else

/*Replace the winner as a new chromosome randomly generated*/

Echrom:=generate(p[i]:=0.5,∀i)
θ:=0; /*Reset the control parameter*/

Fig. 4.3. Modification of the cGA that realizes the ne-cGA.

this strategy may gently nudge the simulated population towards restoration
of genetic diversity. Moreover, the ne-cGA has almost all the characteristics of
the pe-cGA because it also employs elitism (the strength is restricted, though).

The following theorem relates to the scope of inheritance η.

Theorem 4.2: The allowable scope of inheritance (η) should not exceed
the simulated population size N . That is, η < N .

Proof: The letters Xk and Yk are as in Theorem 4.1. Define Wk as a
random vector generated from a random PV set to 0.5. Let Vk be another
random vector defined as (Pk+1 − Pk). This vector represents the changes
between intergeneration PVs. Let us assume that the winner takes the PV
to convergence regardless of optimality of the solution. In other words, it is
assumed that the (current) winner always defeats its competitor when the PV
converges, irrespective of whether the solution is optimal or suboptimal.

The evolution of PV can be described by

Pk+1(i) =

{
Pk(i) + E[Vk(i)|Xk(i) = 1], if Xk(i) = 1
Pk(i) + E[Vk(i)|Xk(i) = 0], if Xk(i) = 0.

(4.7)

Each conditional expectation on Vk(i) can be computed as follows:

E[Vk(i)|Xk(i) = 1] = (1/N) · p[Vk(i) = 1/N |Xk(i) = 1]
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+ 0 · p[Vk(i) = 0|Xk(i) = 1] (4.8a)
E[Vk(i)|Xk(i) = 0] = (−1/N) · p[Vk(i) = −1/N |Xk(i) = 0]

+ 0 · p[Vk(i) = 0|Xk(i) = 0]. (4.8b)

On the other hand, each conditional probability is seen to be

p[Vk(i) = 1/N |Xk(i) = 1] = p[Yk(i) = 0] = 1 − Pk(i) (4.9a)
p[Vk(i) = 0|Xk(i) = 1] = p[Yk(i) = 1] = Pk(i) (4.9b)
p[Vk(i) = −1/N |Xk(i) = 0] = p[Yk(i) = 1] = Pk(i) (4.9c)
p[Vk(i) = 0|Xk(i) = 0] = p[Yk(i) = 0] = 1 − Pk(i). (4.9d)

Consider Eq. (4.9a) first. To increase the ith element of PV by 1/N (i.e.,
Vk(i) = 1/N) given that ith gene of the winner (i.e., Xk(i)) has “1”, the ith
gene of its competitor (i.e., Yk(i)) should generate “0” because the winner in
the (k−1)th generation (i.e., Xk) becomes a winner in the present kth gener-
ation (i.e., the chromosome is passed to the next, viz., (k + 1)th generation).
Since Pk(i) is the probability that Yk(i) = 1, it is computed as 1 − Pk(i).
The rest of Eq. (4.9) can be explained in a similar manner.

Using Eqs. (4.8) and (4.9), Eq. (4.7) can be rewritten as

Pk+1(i) =

{
Pk(i) + (1/N) · {1 − Pk(i)} , if Xk(i) = 1
Pk(i) − (1/N) · Pk(i), if Xk(i) = 0.

(4.10)

Define PM
k and Pm

k as max∀j Pk(j) and min∀j Pk(j), respectively. None of
the elements in the PV should be brought to convergence by the same winner
because there is no guarantee that the chromosome leads to an optimal solu-
tion. It means that PM

k or Pm
k should not be taken to convergence to “1.0”

or “0.0” by the same winner. Hence, follow inequalities (4.11a) and (4.11b):

PM
k+η < 1 (4.11a)

Pm
k+η > 0. (4.11b)

Here, η is the allowable scope of inheritance of the winner.
By employing Eq. (4.10), Eq. (4.11a) can be rewritten as follows:

PM
k+η = (1 − 1/N) · PM

k+η−1 + 1/N

= (1 − 1/N)2 · PM
k+η−2 + {(1 − 1/N) + 1} · (1/N)

= · · ·
= (1 − 1/N)η · PM

k + {1 − (1 − 1/N)η}
(since the simulated population size N 
 1)

≈ (1 − η/N) · PM
k + η/N < 1.

Thus, the allowable scope η is seen to satisfy
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η < N. (4.12a)

In a similar manner, Eq. (4.11b) can be rewritten as

Pm
k+η = (1 − 1/N) · Pm

k+η−1

= (1 − 1/N)2 · Pm
k+η−2

= · · ·
= (1 − 1/N)η · Pm

k

≈ (1 − η/N) · Pm
k > 0.

The allowable scope η is also found to obey the inequality

η < N. (4.12b)

By considering Eqs. (4.12a) and (4.12b), it is seen that the allowable scope η
should not exceed the simulated population size N . �

It follows from Theorem 4.2 that the quality of solution found by ne-cGA
is identical to that found by pe-cGA when η = N . This is experimentally
confirmed later (Sect. 4.5.5). It is obvious that the ne-cGA does not require
any extra memory (as in the pe-cGA). Moreover, the ne-cGA is not demanding
on computational costs either (see Fig. 4.3).

4.4 Speedup Model

This section presents a speedup model (i.e. a gain in convergence speed). Due
to the similarity of stochastic mechanisms of sGA and cGA, the respective
convergence speeds would not be very different (especially as population size
increases). At the very least, the speed of cGA is slightly higher than that
of sGA. Furthermore, the convergence speed of ne-cGA is approximately the
same as that of pe-cGA from a statistical point of view because the ne-cGA
imposes a somewhat relaxed elitism on the pe-cGA. Therefore, the speedup S
is defined as the ratio of the number of fitness evaluations of cGA (i.e., TcGA)
to that of pe-cGA (i.e., Tpe−cGA).

That is
S =

TcGA

Tpe−cGA
. (4.13)

Consider a well-known convergence model of population based GAs in
the context of problems in which BBs are of equal salience, genes converge
uniformly, and the fitness is distributed binomially. One-max problem is a
typical example. It is formulated as follows:

fOneMax =
m∑

i=1

xi (4.14)
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where m is the number of BBs (i.e., bits) and xi is the value of the ith gene.
From the characteristics of the problem, we can approximate the mean

and variance of fitness of the population as a normal distribution with mean
µt, and variance σ2

t . Here, µt = mpt and σ2
t = mpt(1 − pt), and pt represents

the proportion of correct BBs (of the population) in generation t. Mühlenbein
and Schlierkamp-Voosen [73] proposed a convergence model for the problem
and ordinal selection schemes as follows:

µt+1 = µt + Iσt. (4.15)

Here, I is the selection intensity that is defined as the expected increase in
the average fitness of a population after the selection operation.

Equation (4.15) leads to [73]

pt =
1
2

[
1 + sin

(
I√
m

t + arcsin(2p0 − 1)
)]

. (4.16)

The convergence time tconv (i.e., the number of generations encountered before
convergence occurs) can be shown to be:

tconv =
(π

2
− arcsin(2p0 − 1)

) √
m

I
. (4.17)

If the population size is N , the number of function evaluations (Tconv) per-
formed before convergence is clearly given by

Tconv =
(π

2
− arcsin(2p0 − 1)

) N
√

m

I
. (4.18)

From Eqs. (4.13) and (4.18), the speedup S is seen to be

S =
TcGA

Tpe−cGA
=

Ipe−cGA

IcGA
. (4.19)

Hence, the speedup can also be computed as the ratio of selection intensity of
pe-cGA to that of cGA. This is quite reasonable because the selection intensity
is inversely proportional to the speed of convergence. Note that the selection
intensity is required for computing the speedup. Unfortunately, it is not the
same for different selection schemes. For a tournament selection of size s, for
example, the selection intensity I is given by [10]

I = µs:s = s

∫ ∞

−∞
xφ(x)(Φ(x))s−1dx. (4.20)

Here, φ(x) = exp(−x2/2)/
√

2π and Φ(x) =
∫ x

−∞ φ(z)dz are the probability
density function (pdf) and the cumulative distribution function (cdf) respec-
tively of a standard normal distribution (with zero mean and unit standard
deviation).
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To find the selection intensity of cGA, let us consider the selection method
that randomly chooses two individuals and reflects two copies of the better one
on the population. This is equivalent to a steady-state pairwise tournament
selection [46]. Since there is no population of selected parents for a steady-
state scheme, the selection intensity can be redefined as the expected fitness
increase after N offsprings have been generated [112]. In the case of selection
of cGA with a tournament size s, the best individual competes with the other
(s− 1) individuals, updating the PV along the way [46]. It means that all the
parents in these (s − 1) competitions (i.e., 2(s − 1) individuals) are replaced
by the copies of the best individual out of s individuals. Thus, the creation of
N offsprings is equivalent to the execution of N/{2(s − 1)} selections. Since
one execution of the selection with tournament size s increases the expected
fitness for population size N by (1/N)

∑s−1
i=1 (µs:s−µi:s), the selection intensity

of cGA can be defined by

IcGA =
1

2(s − 1)

s−1∑
i=1

(µs:s − µi:s) (4.21)

where µi:s represents the expected fitness value of the ith ranked individual
of a random sample of size s of a population.

The expected value of the ith-order statistic µi:s can be computed by
[10,112]

µi:s = s

(
s − 1
i − 1

)∫ ∞

−∞
xφ(x)Φ(x)i−1(1 − Φ(x))s−idx. (4.22)

When s = 2 (i.e., a steady-state pairwise tournament selection), the selection
intensity is given as

IcGA =
µ2:2 − µ1:2

2

=
∫ ∞

−∞
xφ(x)Φ(x)dx −

∫ ∞

−∞
xφ(x){1 − Φ(x)}dx

=
∫ ∞

−∞
xφ(x){2Φ(x) − 1}dx

= 2
∫ ∞

−∞
xφ(x)Φ(x)dx ≈ 0.56. (4.23)

It is interesting to note that the selection intensity for the tournament selection
(of sGA) with s = 2 (see Eq. (4.20)) is exactly the same as that of cGA with
s = 2, viz., Eq. (4.23). That is, convergence performances of sGA and cGA
are identical when s = 2. However, it is observed that the convergence speed
of sGA is slightly lower than that of cGA (see Fig. 4.4(b)). The discrepancy
seems to be due to the inherent nature (i.e., a sort of hitchhiking) of the
process of mixing of BBs.
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On the other hand, the pe-cGA reflects two copies of a tournament winner
on the population.4 However, the winner is deterministically chosen as one
of the competitors. In the context of a population, the selection mechanism
can be approximated by truncation selection. The corresponding truncation
selection takes the top (1/5) of individuals in a population as parents because
a selected individual whose fitness value (of normal distribution) is higher than
the fitness of the top (1/5) individuals would be a winner with prob. ≥ 0.98
from the long-run behavior point of view.

Moreover, truncation selection that picks the top (1/δ) portion of the
population as parents is equivalent to a (µ, λ) selection with µ = λ/δ [74].
Therefore, the selection mechanism of pe-cGA amounts to the (µ, λ) selection
with µ = λ/5 (i.e., δ = 5). Since the selection intensity of (µ, λ) selection can
be given by (λ/µ) · φ(Φ−1(1 − µ/λ)), the pe-cGA has the following intensity:

Ipe−cGA = 5 · φ(Φ−1(0.8)) ≈ 1.46. (4.24)

By substituting Eqs. (4.23) and (4.24) in Eq. (4.19), the speedup S is found
to be

S =
TcGA

Tpe−cGA
=

Ipe−cGA

IcGA
= 2.61. (4.25)

It is noted that the indicated assumption invalidates this model for the
problems whose some genes (i.e., BBs) are highly correlated and are of unequal
salience. However, such characteristics carry a tendency that prevents the
cGA from steadily converging to a solution because of the absence of a strong
reference for convergence. That is, the speedup plays a role in providing a
lower bound on such problems (i.e., S ≥ 2.61).

4.5 Experimental Results and Discussion

In this section, the performance of pe-cGA and ne-cGA are compared with
that of cGA, sGA, and (1+1)-ES on various test functions and Ising Spin-
Glasses (ISG) systems (a real-world application) through computer simula-
tions. Fitness value (e.g., the number of correct BBs) and the number of
(fitness) function evaluations are taken to be performance measures. The for-
mer considers solution quality (i.e., optimality) and the latter indicates the
convergence performance.

In all the experiments, the sGA uses tournament selection without replace-
ment and uniform crossover with exchange probability 0.5 [46]. The crossover
is applied with probability one and the mutation probability is set to 0.0. The
parameter η directly influencing the strength of elitism (i.e., selection pres-
sure) is set to 0.1N as a default value. All the results were averaged over 100
runs. Each experiment is terminated when the PV converges to a solution.

4 It is equivalent to the steady-state pairwise tournament selection of cGA.
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Table 4.1. Statistical comparison of algorithms (N = 100) on fOneMax.

Measure sGA cGA pe-cGA ne-cGA

µconv 3150.0 2836.4 1127.6 1142.1
σconv 82.27 88.11 86.72 69.09

Statistical t-test

Measure sGA − cGA cGA − ne-cGA ne-cGA − pe-cGA

t-value 26.046† 151.296† 1.813

Order pe-cGA ∼ ne-cGA � cGA � sGA

† The value of t is significant at α = 0.01 by a paired, two-tailed test. The
symbols � and ∼ represent dominance and indifference between algorithms.

4.5.1 Results for the Problems Involving Lower Order BBs

A 100-bit one-max problem (i.e., the counting ones problem) and a minimum
deceptive problem (mDP) formed by concatenating ten copies of minimum
deceptive function [38] are considered for evaluating the proposed algorithms
on problems involving lower-order BBs. The one-max problem and the mDP
are representative problems with the order-one BBs and the order-two BBs,
respectively.

A 100-bit one-max problem (i.e, fOneMax) that is specified by Eq. (4.14) is
considered first. Figures 4.4(a) and 4.4(b) compare the number of correct BBs
(i.e., bits) and the number of function evaluations returned by each algorithm
as applied to one-max problem. On the face of it, the proposed algorithms
do not find high quality solutions while convergence speeds are admittedly
far higher than those of sGA and cGA. Table 4.1 supports the claim on the
improvement of convergence speed of the proposed algorithms over sGA and
cGA. Moreover, the validity of the proposed speedup can also be concluded
from Table 4.7.

In the interest of fair comparison of the algorithms on the basis of op-
timality and convergence performance, we investigate the number of correct
BBs (i.e., solution quality) obtained by each population size that performs the
same number of function evaluations [3], [22]. Since the population sizes of
35 (sGA), 40 (cGA), 90 (pe-cGA), and 100 (ne-cGA) perform approximately
1200 function evaluations (see Fig. 4.4(b)), for example, the solutions returned
by the populations should be compared for investigating the superiority of the
algorithms. Unfortunately, finding the exact population size for a particular
execution for each GA is very difficult in practice. However, determining the
population size with certain constraints is relatively easy. We can determine
the population size for each GA by exhaustive search so as to achieve almost
the same number of function evaluations. From this perspective, the number
of correct BBs is plotted against function evaluations in Fig. 4.5. The figure
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Fig. 4.4. Performance of algorithms on fOneMax.

shows that the sGA, cGA, and ne-cGA achieve similar quality of solution
while the pe-cGA computes a worse solution. The reason is discussed below.

The pe-cGA may suffer from lack of genetic diversity leading to prema-
ture convergence since an elite chromosome is never lost unless a superior
chromosome appears. This is the reason why the ne-cGA restricts the scope
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Fig. 4.5. Fair comparison of algorithms on fOneMax.

of inheritance of the elite chromosome (i.e., the strength of elitism). In the
figures, we may note that ne-cGA augments genetic diversity to some extent,
thereby maintaining the quality of solution and the convergence speed at lev-
els comparable with those of the reference algorithms. The pe-cGA, however,
returns a poor overall performance. Note that the unsatisfactory performance
of the pe-cGA may not be critical from a practical point of view because
most real-world problems such as multicast routing, and (adaptive) equalizer
design in fading channels, ISG systems, and maximum satisfiability problem
etc., cannot be modeled as combinations of order-one BBs.

The next test problem is a mDP defined by

fmDP =
m∑

i=1

f(x2i) , where f(x2i) =




0.7, if x2i = 00
0.4, if x2i = 01
0.0, if x2i = 10
1.0, otherwise.

(4.26)

Here, x2i presents the values (i.e., alleles) of a 2-bit long substring (i.e., BB).
Figures 4.6(a) and 4.6(b) depict the quality of solution and the speed of

convergence of the algorithms when applied to the mDP with m = 10 (i.e.,
10-BBs). Trends similar to those found in Figs. 4.4(a) and 4.4(b) can be seen
here as well. Table 4.2 also shows the higher convergence speed of the proposed
algorithms over sGA and cGA. Moreover, accuracy of the model of speedup
can be observed in Table 4.7. With regard to fair comparison, Fig. 4.7 shows
the quality of solution versus the number of function evaluations. In the figure,
it is seen that ne-cGA outperforms cGA and performs as well as sGA.
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Fig. 4.6. Performance of algorithms on fmDP .

However, there is a difference with regard to pe-cGA. That is, the pe-
cGA may be less effective than sGA and cGA on real-world problems because
some of them can be modeled as combinations of order-two BBs (especially,
the deceptive ones).
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Table 4.2. Statistical comparison of algorithms (N = 200) on fmDP .

Measure sGA cGA pe-cGA ne-cGA

µconv 4076.0 4066.4 1531.3 1505.2
σconv 313.70 395.16 262.05 225.90

Statistical t-test

Measure sGA − cGA cGA − pe-cGA pe-cGA − ne-cGA

t-value 0.191 52.162† 2.463

Order ne-cGA ∼ pe-cGA � cGA ∼ sGA

† The value of t is significant at α = 0.01 by a paired, two-tailed test. The
symbols � and ∼ represent dominance and indifference between algorithms.

From Figs. 4.4–4.7, we may conclude that ne-cGA is a promising candidate
for solving relatively simple problems as compared with sGA, cGA, and pe-
cGA, even though a significant improvement of overall performance is not
evident.

4.5.2 Results for the Problems Involving Higher Order BBs

Fully deceptive problems [27] are considered for testing pe-cGA and ne-cGA
on the problems involving higher-order BBs. Before investigating the perfor-
mance, we define a trap function ftrap (that is a constituent of deceptive
problems [27]) by
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(a) Performance of cGA, pe-cGA, and ne-cGA on f3−bit.
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Fig. 4.8. Performance comparison of algorithms on f3−bit.

ftrap(u, a, b, z, k) =

{
(a/z) · (z − u), if u ≤ z

{b/(k − u)} · (u − z), otherwise.
(4.27)

where u is the unitation that is defined as the number of ones of a (sub)string,
a and b are the local (i.e., deceptive) and the global optimum respectively, z
is the slope-change location, and k is the (sub)problem size.

The first deceptive problem is based on a three-bit trap function. The test
problem is formed by concatenating ten copies of the three-bit trap function
for a total chromosome length of 30 bits. Each three-bit trap function has a
deceptive-to-optimal ratio of 0.7. That is, the problem is formulated by

f3−bit =
10∑

i=1

ftrap(u3i, 0.7, 1, 2, 3) (4.28)

where u3i is the unitation of a 3-bit long substring.
Figure 4.8 depicts the results of each algorithm as applied to the first

deceptive problem. From Fig. 4.8(a), it is observed that pe-cGA achieves a
better solution (than does cGA) with s = 8 and ne-cGA finds a quality of
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Table 4.3. Statistical comparison of algorithms (s = 16, N = 3000) on f3−bit.

Measure sGA cGA pe-cGA ne-cGA

µconv 31050.0 48716.3 35896.73 28415.41
σconv 2872.3 4518.37 3765.04 2967.25

Statistical t-test

Measure cGA − pe-cGA pe-cGA − sGA sGA − ne-cGA

t-value 21.797† 10.234† 6.381†

Order ne-cGA � sGA � pe-cGA � cGA

† The value of t is significant at α = 0.01 by a paired, two-tailed test. The
symbols � and ∼ represent dominance and indifference between algorithms.

solution that is comparable with that found by cGA with s = 16. At the same
time, their convergence speeds are higher than those of all the cGAs. From
Fig. 4.8(b), it is also clear that the quality of solution found by the proposed
algorithms is no better than that found by the sGA with s = 4 while their
convergence speeds are higher than those of sGAs except when s = 16 for
pe-cGA. Convergence performance is clearly seen in the statistical test in
Table 4.3. Moreover, Table 4.7 also supports the accuracy of the speedup
model.

The reason why the proposed algorithms do not find a better solution
than does the sGA with s ≥ 4 is because they lack the memory to retain the
knowledge about nonlinearity of the problems. However, this is an inherent
characteristic of all the compact-type GAs. It is also seen that the solution
quality returned by the proposed algorithms improves as the population size
grows. Thus, if a larger population is employed, a higher quality of solution is
obtained. Note the important fact that the algorithms (i.e., pe-cGA, ne-cGA)
exert a selection pressure that is high enough to combat the disruptive effects
of crossover without altering the tournament size. Furthermore, these benefits
accrue without any compromise on memory requirements and computational
costs. In the context of this test problem, on the other hand, it appears that
the relation (investigated by Harik et al. [46]) between selection pressure and
tournament size of the sGA and cGA is satisfied. The relation developed from
a global schema theorem dictates the tournament size (of the sGA and cGA)
that provides a higher selection pressure that is sufficient to grow the correct
BBs as the population size increases. The tournament sizes in order-k BB
should be greater than or equal to 2k−1 and 2k, respectively, in the case of
sGA and cGA [46].

The second deceptive problem is formed by concatenating ten copies of the
four-bit trap function for a total chromosome length of 40 bits. Each four-bit
trap function has a deceptive-to-optimal ratio of 0.7. That is, the problem is
specified by
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Fig. 4.9. Performance comparison of algorithms on f4−bit.

f4−bit =
10∑

i=1

ftrap(u4i, 0.7, 1, 3, 4). (4.29)

The results are compared in Fig. 4.9. As seen in Fig. 4.9(a), the proposed
algorithms generally outperform all the cGAs that choose a tournament size
s from 2 to 32. Moreover, the convergence speeds of pe-cGA and ne-cGA are
higher than those of all the cGAs. In Fig. 4.9(b), it is seen that the proposed
algorithms achieve a quality of solution that is similar to that obtained by
sGA with s = 8 and their convergence speeds are higher than those of all
the sGAs except when s = 32 for pe-cGA. The results are similar to those
in Fig. 4.8. Fast convergence is supported by the statistical test of Table 4.4.
Moreover, Table 4.7 also attests to the accuracy of the speedup model for the
four-bit deceptive problem.

It is also clear that the relation suggested by Harik et al. [46] between
selection pressure and tournament size is not satisfied for the cGA in this
test problem. According to the relation, the correct BB will grow when the
tournament size is greater than or equal to 16 (i.e., 2k where k = 4). However,
the cGA is not able to propagate the BB as long as the tournament size is less
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Table 4.4. Statistical comparison of algorithms (s = 32, N = 3000) on f4−bit.

Measure sGA cGA pe-cGA ne-cGA

µconv 37770.0 45014.17 36433.04 28737.64
σconv 5925.20 4711.80 4027.80 2435.51

Statistical t-test

Measure cGA − sGA sGA − pe-cGA pe-cGA − ne-cGA

t-value 9.570† 1.866 16.351†

Order ne-cGA � pe-cGA ∼ sGA � cGA

† The value of t is significant at α = 0.01 by a paired, two-tailed test. The
symbols � and ∼ represent dominance and indifference between algorithms.

than 32 (i.e, s < 32) in this problem. It appears that there is some discrepancy
in the relation. The tournament size may be intricately related to not only
the deceptive-to-optimal ratio but also to the order of BBs and the number
of collateral noise sources, etc., in the cGA. The rule [46] takes only the order
of BBs into account. However, further investigation on these issues is beyond
the scope of this investigation. Furthermore, such information may not be
available in any case. It follows that the existing cGA may not be very useful
in practice even if a perfect relation is discovered.

Figures 4.8 and 4.9 show that the proposed algorithms seem to adaptively
adjust their selection pressures according to the difficulty of the problems. It
is seen that the proposed algorithms are always able to provide a selection
pressure that is enough to steadily grow the correct BBs as the population
size increases. Therefore, they can effectively solve the difficult problems (espe-
cially, deceptive problems involving higher order BBs) without any knowledge
about the problem dependent information such as the degree of deception, the
order of BBs, and the selection pressure needed to combat disruptive effects
of crossover.

4.5.3 Results for Continuous and Multimodal Problems

Most real-world problems do not involve simple concatenation of distinct
order-k BBs since their solution/search spaces are continuous and multimodal.
The problems can be modeled as an intricate combination of lower and higher
order BBs. In order to investigate the performance on such problems, a circle
function [77] and Schaffer’s binary function [104] are employed. The functions
may be used for modeling several real-world problems, especially those aris-
ing in the emerging areas of wireless networks such as the ultra-wide band
antenna design and fading channel estimation problems.

The circle function to be minimized is investigated first. It is defined by
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Fig. 4.10. Plot of two-dimensional fC .

Table 4.5. Statistical comparison of algorithms (N = 100) on fC (n = 2).

Measure sGA cGA pe-cGA ne-cGA

µconv 5047.0 4086.97 910.95 1174.3
σconv 833.21 600.65 119.22 153.89

Statistical t-test

Measure sGA − cGA cGA − ne-cGA ne-cGA − pe-cGA

t-value 2.338 58.586† 13.527†

Order pe-cGA � ne-cGA � cGA ∼ sGA

† The value of t is significant at α = 0.01 by a paired, two-tailed test. The
symbols � and ∼ represent dominance and indifference between algorithms.

fC(x) =

(
n∑

i=1

x2
i

)1/4

·


sin2


50

(
n∑

i=1

x2
i

)1/10

 + 1.0


 (4.30)

where xi ∈ [−32.767, 32.768],∀i. Its two-dimensional landscape is plotted in
Fig. 4.10. This multimodal function has many local optima (i.e., minima) that
are located on concentric circles near the global optimum (i.e., the origin) [77].

Figures 4.11(a) and 4.11(b) compare the objective function values and
the function evaluations achieved by the algorithms as applied to the circle
function with n = 2. It is seen that the proposed algorithms significantly
outperform sGA and cGA with regard to convergence speed (see Table 4.5),
without unduly compromising on the solution quality. Under conditions of
fair comparison as depicted in Fig. 4.12, the overall performance of ne-cGA
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Fig. 4.11. Performance of algorithms on fC with n = 2.

is better than that of the rest of the algorithms as the number of function
evaluations increases while pe-cGA achieves a performance that is similar to
that of sGA. As noted in Sect. 4.4, the model of speedup does not accurately
estimate the extent of convergence improvement (see Table 4.7) due to inter-
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Fig. 4.12. Fair comparison of algorithms on fC with n = 2.

dependency and unequal salience of BBs in this problem. Instead, it provides
a marginal speedup for this kind of problem.

Schaffer’s binary function to be maximized is considered next. The function
is defined by

fS6(x) =
sin2

(√∑n
i=1 x2

i

)

1.0 + 10−3 · (
∑n

i=1 x2
i )

2 (4.31)

where xi ∈ [−16.383, 16.384],∀i. The characteristics (e.g., landscape) of this
function are easily grasped from its two-dimensional form shown in Fig. 4.13.
The function is degenerate in the sense that many points share the same global
optimal function value. As can be seen in Fig. 4.13, the points are located on
the highest circle in the crown near the origin [104].

Figure 4.14 compares the algorithms as applied to Schaffer’s binary func-
tion with n = 5. Figure 4.14(a) shows that the solution found by ne-cGA is
better than those computed by sGA and cGA, while pe-cGA finds a solution
that is similar to that returned by the cGA. Although the result is invalid when
the population size is small, such populations are not regarded as feasible can-
didates in practice. Figure 4.14(b) and Table 4.6 show that their convergence
speeds are higher than those of sGA and cGA. Furthermore, the improvement
of convergence speed is about 8.38 times (see Table 4.7). It also supports the
model of speedup as a lower bound. Accuracy is not high, however. Note that
a larger discrepancy of speedup implies a higher inter-correlation and unequal
salience of BBs.

On the basis of comparison studies, the proposed algorithms are found
to be suitable for solving those types of problems. On the other hand,
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Table 4.6. Statistical comparison of algorithms (N = 300) on fS6 (n = 5).

Measure sGA cGA pe-cGA ne-cGA

µconv 48798.0 42680.33 3721.83 5451.0
σconv 5406.12 3508.6 485.74 557.04

Statistical t-test

Measure sGA − cGA cGA − ne-cGA ne-cGA − pe-cGA

t-value 9.493† 104.794† 23.396†

Order pe-cGA � ne-cGA � cGA � sGA

† The value of t is significant at α = 0.01 by a paired, two-tailed test. The
symbols � and ∼ represent dominance and indifference between algorithms.

Table 4.7. Comparison of speedup on test problems.

Theory fOneMax fmDP f3−bit f4−bit fC fS6

Speedup S 2.61 2.55 2.63 2.73 2.47 4.21 8.38

Figs. 4.11, 4.12 and 4.14 imply that sGA and cGA already have a selection
pressure that is high enough to overcome crossover disruption because the
degree of optimality improves as the population size increases.
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Fig. 4.14. Performance of algorithms on fS6 with n = 5.

4.5.4 Comparison Results with Evolutionary Strategies

Evolutionary strategies (ESs) are among the main cutting-edge evolutionary
algorithms. However, comparison of ESs with EDAs is quite unusual because
they are considered to be different schemes. In other words, any criterion for
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comparing them in an unbiased way has not yet been suggested. This the-
sis has revealed a relationship between pe-cGA and (1+1)-ES in Sect. 4.3.1.
More intense comparative study of the two schemes is imperative. Although
ESs maintain at each step a set of solution candidates (i.e., a population),
(1+1)-ES does not involve any idea of population. Without loss of generality,
this work employs the average quality of solutions returned after (almost) the
same execution time (i.e., the number of function evaluations) as the com-
parison criterion. All the test problems have been investigated. For discrete
test problems, (1+1)-ES with Bernoulli distribution as a mutation distribu-
tion is taken as a reference. This is the same as (1+1)-EA proposed by He
and Yao [49]. For an objective function g to be maximized, it can be defined
as follows:

Xk+1 =

{
Xk + Z, if g(Xk + Z) > g(Xk)
Xk, otherwise

(4.32)

where Z = {Z1, · · · , Zn}, and Zi is a Bernoulli random variable with a flipping
probability of 0.1.

The solution quality for each algorithm is presented in Table 4.8. The
(1+1)-ES is terminated at a specified epoch that is close to the convergence
instant of all the algorithms. From Figs. 4.8 and 4.9, tournament sizes of sGA
and cGA are seen to be s = 4 and s = 8 for the three-bit deceptive problem,
respectively; and they are s = 8 and s = 32 for the four-bit deceptive problem.
This is because the values provide a selection pressure that is enough to offset
the disruptive effect of crossover. From Table 4.8, it is seen that the pe-cGA
generally returns a solution that is better than or similar to that of (1+1)-ES
except for fmDP . Moreover, the ne-cGA outperforms (1+1)-ES on most of the
test problems.

For continuous test problems, (1+1)-ES with self-adaptive mutation is em-
ployed as a reference. The (1+1)-ES is defined by Eq. (4.1). Normal distribu-
tion with zero mean and unit variance (i.e., N (0, 1)) is employed for mutation.
The initial step length control parameter l0 is assigned the value 100 and the
period τ (i.e., an instance for adjusting lk) is set to 1. The step-length rule
suggested in [98] with a view to avoiding premature convergence is employed.
Evolution of (1+1)-ES is terminated when lk is smaller than 0.1.

Performance of all the algorithms is exhibited in Table 4.9. In this table,
it is seen that the pe-cGA is similar in performance to (1+1)-ES while the
performance of ne-cGA is better. By observing the standard deviations, one
can also conclude that (1+1)-ES is quite unstable with regard to solution
quality as well as convergence speed. Note that the performance of (1+1)-ES
would be the same as that of pe-cGA if the step length control parameter
lk and the mutation distribution fZk

(z) are adjusted to satisfy Eq. (4.5b) at
every stage (Theorem 4.1). However, this is not possible in practice.
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Table 4.8. Statistical comparison of algorithms on discrete test problems.

Problem Measure sGA cGA pe-cGA ne-cGA (1+1)-ES

µQoS 99.74 99.97 92.97 99.61 88.31
fOneMax σQoS 0.24 0.17 2.40 0.57 1.67

(opt : 100) µconv 1996.47 1988.93 1994.25 1988.54 2000
σconv 73.2 50.98 228.97 64.58 -

µQoS 9.76 9.71 8.56 9.73 9.80
fmDP σQoS 0.50 0.48 1.10 0.51 0.50

(opt : 10) µconv 1951.95 1985.11 1919.41 1985.90 2000
σconv 456.61 247.30 262.34 166.06 -

µQoS 7.51 5.58 6.74 7.26 6.93
f3−bit σQoS 0.98 1.39 1.45 1.24 1.39

(opt : 10) µconv 9930.40 9927.71 9659.63 9848.04 10000
σconv 2520.62 543.70 878.89 1248.92 -

µQoS 5.97 5.02 6.08 7.05 5.04
f4−bit σQoS 1.17 1.42 1.32 1.05 1.32

(opt : 10) µconv 29876.4 29187.3 29583.1 29950.7 30000
σconv 7556.91 2822.70 2838.26 2042.85 -

Statistical t-test

Problem pe-cGA − (1+1)-ES ne-cGA − (1+1)-ES

fOneMax 15.919† 63.995†

fmDP −13.344† −1.185

f3−bit −0.946 1.770

f4−bit 5.375† 10.398†

Problem Statistical order

fOneMax pe-cGA � (1+1)-ES ne-cGA � (1+1)-ES

fmDP (1+1)-ES � pe-cGA ne-cGA ∼ (1+1)-ES

f3−bit pe-cGA ∼ (1+1)-ES ne-cGA ∼ (1+1)-ES

f4−bit pe-cGA � (1+1)-ES ne-cGA � (1+1)-ES

† The value of t is significant at α = 0.01 by a paired, two-tailed test. The
symbols � and ∼ represent dominance and indifference between algorithms.

As a consequence, the proposed algorithms (especially, ne-cGA) are also
seen to be quite promising candidates for solving various problems5 vis-à-vis
the corresponding ESs.

4.5.5 Effects of the Scope of Inheritance

The ne-cGA is characterized by a parameter η that controls the inheritance
scope of the elite chromosome. That is, it controls the strength of elitism.

5 They may be approximated/modeled by the tested types of problems.
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Table 4.9. Statistical comparison of algorithms on continuous test problems.

Problem Measure sGA cGA pe-cGA ne-cGA (1+1)-ES

µQoS 0.2347 0.3051 0.1917 0.097 0.2788
fC σQoS 0.2621 0.4104 0.1843 0.096 0.8766

(opt : 0.0) µconv 3016.14 3083.92 3020.27 3011.15 3094.22
σconv 501.80 384.28 508.33 334.68 1496.71

µQoS 0.7180 0.6818 0.7790 0.8280 0.7711
fS6 σQoS 0.2009 0.2059 0.1449 0.1703 0.2151

(0.994007) µconv 2303.4 2341.5 2271.28 2340.20 2352.43
σconv 340.47 257.01 187.89 256.12 1127.77

Statistical t-test

Problem pe-cGA − (1+1)-ES ne-cGA − (1+1)-ES

fC −0.553 −1.575

fS6 0.305 2.069†

Problem Statistical order

fC pe-cGA ∼ (1+1)-ES ne-cGA ∼ (1+1)-ES

fS6 pe-cGA ∼ (1+1)-ES ne-cGA � (1+1)-ES

† The value of t is significant at α = 0.01 by a paired, two-tailed test. The
symbols � and ∼ represent dominance and indifference between algorithms.

Hence, the parameter may affect the algorithm’s performance. This experi-
ment focuses only on examining the influence of this parameter on the per-
formance. The algorithm is investigated on three test problems/functions: the
one-max problem, the deceptive problem based on three-bit deceptive func-
tion, and Schaffer’s binary function.

Figure 4.15 compares the number of correct BBs (i.e., bits) and the number
of function evaluations returned by the pe-cGA and the ne-cGA with different
values of η as applied to the one-max problem (i.e., a simple problem).

It is observed that the quality of solution improves as η decreases (i.e.,
elitism becomes weaker) except when the population size is small. This is
due to increased genetic diversity brought about by weakening elitism. More-
over, this improvement does not have to pay any price in terms of reduced
convergence speed (i.e., the number of function evaluations).

The solution quality of ne-cGA with η = 0.05N is slightly better than
that of ne-cGA with η = 0.1N when the population size is larger than 60.
However, their performances are nearly the same under fair comparison. Thus,
the performance will not be improved any more when a value smaller than
0.05N is assigned to η. It implies that too low a value of elitism incurs degra-
dation in algorithm’s performance. This is the reason why the ne-cGA with
η = 0.05N cannot achieve a better performance with respect to optimality,
as well as convergence speed when the population size is smaller than 60. We
can see that elitism is quite weak when population is in the above range since
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Fig. 4.15. Comparison of pe-cGA and ne-cGA with various η on fOneMax.

the scope of inheritance is at most three generations. Thus, it is clear that a
proper adjustment of elitism in one-max type problems leads to better quality
(of solution) without unduly compromising on convergence performance.
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Fig. 4.16. Comparison of pe-cGA and ne-cGA with various η on f3−bit.

Figure 4.16 compares the algorithms when applied to the deceptive prob-
lem constructed by a three-bit deceptive function with the deceptive-to-
optimal ratio of 0.7. The quality of solution improves as η decreases as long as
elitism is not too weak. Unlike the convergence tendency shown in Fig. 4.15,
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Fig. 4.17. Comparison of pe-cGA and ne-cGA with various η on fS6 (n = 5).

however, the convergence performance also improves but slightly as long as a
smaller value is assigned to η before it reaches 0.1N .
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Therefore, it is noted that a proper adjustment of elitism in deceptive-type
problems (i.e., difficult problems) leads to a better solution without affecting
the rate of convergence.

Figure 4.17 presents the effects of the parameter η on ne-cGA as applied
to Schaffer’s binary function with n = 5. In order to highlight the effects of
restricted elitism, a 2-D function is considered. As can be seen in the fig-
ures, the convergence performance is getting worse without improved solution
quality as a value less than 0.5N is assigned to the parameter. It is seen that
the ne-cGA with η = 0.5N returns the best performance when the solution
quality and convergence speed are considered at the same time.

It follows that the reduction of η below half the simulated population size
(i.e., 0.5N) results in the degradation of both the solution quality as well as
the convergence speed in this type of problems. However, this degradation is
not of any major concern in so far as the parameter η is above 0.1N .

As shown in Figs. 4.15–4.17, all the objective function values of ne-cGA
with η = 1.0N are comparable with those of the pe-cGA. Incidentally, it
verifies an assertion that arises from Theorem 4.2. The assertion requires that
the solution quality of ne-cGA with η = N be the same as that of the pe-cGA.

As a result, it follows that an adequately controlled elitism6 imparts ge-
netic diversity, thereby improving the performance. Note that the adjustment
of elitism would be problem-dependent in practice. Thus, it is difficult to prop-
erly characterize it. Based on the comparative studies, however, η = 0.1N can
be considered as a promising value.

4.5.6 Real-World Applications: Ising Spin-Glasses (ISG) Systems

Ising Spin-Glasses (ISG) systems are considered in order to examine the fea-
sibility and usefulness of the proposed algorithms in solving real-world prob-
lems. Finding the ground state of a given ISG system is a well known problem
in statistical physics. In the context of GAs, ISG systems are frequently em-
ployed as test cases in the study of GAs because they exhibit symmetry and
a large number of plateaus [55, 89]. The physical state of an ISG system is
defined by a Hamiltonian H that specifies the energy of the system by

H(σ) = −
n−1∑
i=0

n−1∑
j=0

Jijσiσj (4.33)

where a set of spins σ = {σ0, σ1, · · · , σn−1} taking values in {−1,+1} repre-
sents the physical state of spins, and Jij specifies a coupling coefficient from
the ith spin to the jth spin. The objective is to find the state of spins so that
the energy is minimized (i.e., the ground state is achieved).

6 It denotes that the scope of the elite chromosome’s inheritance is appropriately
adjusted.
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Table 4.10. Statistical comparison of algorithms on ISG systems.

Problem Measure sGA cGA pe-cGA ne-cGA (1+1)-ES

ISG µE/S −1.2325 −1.2394 −1.3031 −1.3504 −1.2883
25-spins σE/S 0.1956 0.1155 0.1298 0.0794 0.1371

ISG µE/S −1.1334 −1.1530 −1.1029 −1.2116 −1.0748
100-spins σE/S 0.0637 0.0819 0.0616 0.0423 0.0556

Statistical t-test

ISG sGA − cGA cGA − ES ES − pe-cGA pe-cGA − ne-cGA

25-spins 0.270 2.730† 0.783 3.110†

ISG ES − pe-cGA pe-cGA − sGA sGA − cGA cGA − ne-cGA

100-spins 3.392† 3.263† 1.890 5.923†

Problem Statistical order

25-spins ne-cGA � pe-cGA ∼ (1+1)-ES � cGA ∼ sGA

100-spins ne-cGA � cGA ∼ sGA � pe-cGA � (1+1)-ES

† The value of t is significant at α = 0.01 by a paired, two-tailed test. The
symbols � and ∼ represent dominance and indifference between algorithms.

In our investigations, spins were arranged on a 2-D grid. The spins interact
with only their nearest neighbors. We assume periodic boundary conditions.
There exist several polynomial time algorithms for solving this special case of
ISG problems. The optimal solution of such a system is provided by an online
server [58]. Moreover, Jij is chosen from {−1,+1} in a random fashion (i.e.,
uniform distribution). All the algorithms were tested on two ISG systems with
25 and 100 spins arranged on 5 × 5 and 10 × 10 toroids, respectively.

Figure 4.18 and Table 4.10 exhibit the energy (per spin) found by each
algorithm, measured after almost equal number of function evaluations. That
is, the results of ISG systems with 25 and 100 spins are collected after ap-
proximately 104 and 3 ∗ 104 evaluations, respectively. It is observed that the
ne-cGA finds the smallest energy for both systems although the pe-cGA can
not find a solution that is better than that of sGA and cGA for the 100-spins
system.

Based on the comparative studies presented in this section, we may con-
clude that the proposed algorithms, especially ne-cGA, are quite promising
candidates for solving various types of problems – ranging from simple to
difficult – including real-world applications.

4.6 Summary

This chapter has presented two elitism-based cGAs in an EDA framework.
The aim is to address the problems associated with inadequate memory in
the cGA by employing elitism in a proactive manner. The cGA is likely to
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Fig. 4.18. Performance of algorithms on ISG systems.

lose – irretrievably – the best current solution due to lack of memory. It
cannot, therefore, speedily solve many difficult optimization problems in an
efficient manner. The pe-cGA and the ne-cGA have been proposed to address
this issue. The pe-cGA compensates for the lack of memory of the cGA by
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keeping the current best solution until, hopefully a better solution is found.
It was shown that the pe-cGA is identical to (1+1)-ES with self-adaptive mu-
tation. The ne-cGA relaxes selection pressure (i.e., elitism) of the pe-cGA by
restricting the scope of elite chromosome’s inheritance, thereby mitigating the
possibility of premature convergence (i.e., convergence to a local optimum).
The allowable scope of inheritance was shown to be bounded by the simulated
population size (i.e., η < n). Furthermore, an analytic model of speedup for
quantifying convergence improvement has been proposed.

Simulation studies showed that the proposed algorithms generally provide
a better solution and a higher convergence speed than those of the sGA and
cGA. The overall performance was shown to be better than those of sGA,
cGA, and (1+1)-ES, especially as the problem becomes more and more dif-
ficult. It was also noted that most real-world problems cannot be modeled
as simple problems. The experiments have also shown that the pe-cGA and
ne-cGA do not have to adjust the tournament size in an attempt to exert a
selection pressure high enough to compensate for crossover disruption. The
algorithms always offer a proper selection pressure as if the tournament size
(i.e., selection pressure) is automatically regulated in accordance with the de-
gree of difficulty of the problems. Moreover, the experiments have shown that
the speedup model accurately estimates the convergence improvement if the
problems involve equally salient and uncorrelated BBs. It provides a marginal
speedup, otherwise.

On the other hand, it was demonstrated that the quality of the solution
improves as the scope of inheritance is decreased, while the convergence per-
formance depends on the problem, in general. However, a proper adjustment
of elitism improves the solution quality and enhances the convergence speed.
Furthermore, a feasibility of the proposed algorithms for real-world appli-
cations has been demonstrated by investigating their performance on ISG
systems.

The proposed algorithms can search the solution space effectively and
speedily without compromising on memory and computational requirements.
Moreover, the search capability may not depend overly on the shape of the
search/solution space (i.e., difficulty of problems).
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Real-coded Bayesian Optimization Algorithm

This chapter describes a real-coded (i.e., continuous) estimation of distrib-
ution algorithm (EDA) that solves real-valued (i.e., numerical) optimization
problems of bounded difficulty quickly, accurately, and reliably. This is the
real-coded Bayesian optimization algorithm (rBOA). The objective is to bring
the power of (discrete) BOA to bear upon the area of real-valued optimization.
That is, the rBOA must properly decompose a problem and effectively per-
form probabilistic building-block crossover (PBBC) for real-valued multivariate
data. In other words, a unique feature of rBOA is to learn complex dependen-
cies of variables and make use of mixture models at the level of substructures.
To begin with, a Bayesian factorization is performed. The resulting that con-
tains linkage information is then utilized for finding implicit subproblems (i.e.,
substructures). Mixture models are employed for independently fitting each
of these substructures. Subsequently, an independent substructure-wise sam-
pling draws the offspring.

This chapter also presents the scalability analysis of rBOA on problems of
bounded difficulty. The scalability is measured by the growth of the number of
(fitness) evaluations with the size of the problem until the optimum is reached.
The total number of evaluations is computed by multiplying the population
size for learning a correct probabilistic model (i.e, population complexity) and
the number of generations until convergence (i.e., convergence time complex-
ity).

The chapter is organized as follows. Section 5.1 briefly reviews EDAs.
Section 5.2 outlines rBOA. Section 5.3 suggests a learning strategy for proba-
bilistic models. Section 5.4 presents a popular technique for model sampling.
Section 5.5 analyzes the scalability of rBOA. Real-valued test problems are
cited in Sect. 5.6. Experimental results are presented in Sect. 5.7. We conclude
with a summary in Sect. 5.8.

Chang Wook Ahn: Advances in Evolutionary Algorithms: Theory, Design and Practice, Studies
in Computational Intelligence (SCI) 18, 85–124 (2006)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006
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5.1 Estimation of Distribution Algorithms

Estimation of distribution algorithms (EDAs), also known as probabilistic
model building genetic algorithms (PMBGAs), signal a paradigm shift in ge-
netic and evolutionary computation research [64, 90]. Incorporating (auto-
mated) linkage learning techniques into a graphical probabilistic model, EDAs
exploit a feasible probabilistic model built around superior solutions found
thus far while efficiently traversing the search space [90]. EDAs iterate the
three steps listed below, until some termination criterion is satisfied:

1. Select good candidates (i.e., solutions) from a population of solutions.1

2. Estimate the probability distribution from the selected individuals.
3. Generate new candidates (i.e., offspring) from the estimated distribution.

It must be noted that the third step uniquely characterizes EDAs as it
replaces traditional recombination and mutation operators employed by sim-
ple genetic and evolutionary algorithms (sGEAs). Although the sGEAs (with
well-designed mixing operator) and EDAs deal with solutions (i.e., individu-
als) in quite different ways, it has been theoretically shown and empirically
observed that their performances are quite close to each other [64,90]. More-
over, EDAs ensure an effective mixing and reproduction of building blocks
(BBs) due to their ability to accurately capture the (BB) structure of a given
problem, thereby solving GA-hard problems with a linear or sub-quadratic
performance in terms of (fitness) function evaluations [6, 20, 82, 89, 90]. How-
ever, there is a trade-off between the accuracy of the estimated distribution
and the efficiency of computation. For instance, a close and complicated model
is recommended if the fitness function to be evaluated is computationally ex-
pensive.

A large number of EDAs have been proposed for discrete and real-valued
(i.e., continuous) variables in this regard. Depending on how intricate and
involved the probabilistic models are, they are divided into three categories:
no dependencies, pairwise dependencies, and multivariate dependencies [90].

The first category (i.e., no dependencies) is by far the simplest. It assumes
statistical independence of all the variables in the problem. All the algorithms
in this category compute the probability distribution as a product of univari-
ate distributions. Looked at from the operational point of view, they approx-
imate the order-one behavior of sGEA with uniform crossover. Hence, they
are quite effective on linear problems where the variables have no interaction
(i.e., order-one BBs) [64, 90]. Population based incremental learning (PBIL)
algorithm [13], compact genetic algorithm (cGA) [46], and univariate marginal
distribution algorithm (UMDA) [75] for discrete variables, and stochastic hill-
climbing with learning by vectors of normal distributions (SHCLVND) [97],
real-coded PBIL [106], and real-coded UMDA [61] for continuous variables are

1 The initial population is randomly generated.
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widely known in this respect. However, the assumption appears to be unrealis-
tic in view of the fact that difficult optimization problems involve interactions.
The independence assumption brings forth the disruption of superior partial
solutions (i.e., BBs).

Several algorithms have been developed for countering the disruption of
BBs by uniform crossover. Quantum-inspired evolutionary algorithm (QEA)
[43], reinforcement learning estimation of distribution algorithm (RELEDA)
[86], and persistent/nonpersistent elitist compact genetic algorithm (pe/ne-
cGA) [4] are representative examples. Although they exhibit improved per-
formance, they do not offer any solution to the basic problem.

As a first attempt in this direction, the category of pairwise dependen-
cies has been studied. The assumption is that there are interactions only
between pairs of variables. It is possible to quickly estimate the joint proba-
bility distribution by reflecting upon interactions between pairs of variables.
Breeding and thoroughly mixing BBs of order-two, all the algorithms belong-
ing to this category can efficiently solve linear as well as quadratic problems.
Examples of this category include mutual information maximization for input
clustering (MIMIC) [26], combining optimizers with mutual information tree
(COMIT) [14], and bivariate marginal distribution algorithm (BMDA) [87] for
discrete variables, and real-coded MIMIC [62] for continuous variables. How-
ever, difficult problems with higher-order interactions are beyond the reach of
these algorithms.

The category of multivariate dependencies endeavors to use general prob-
abilistic models, thereby solving many difficult problems quickly, accurately,
and reliably [64,90]. The more complex the probabilistic model the harder as
well is the task of finding the best structure. At the expense of some compu-
tational efficiency with regard to learning the probabilistic model, they can
significantly improve the overall time complexity for large (additively) decom-
posable problems due to their innate ability to reduce the number of compu-
tationally expensive fitness function evaluations. Extended compact genetic
algorithm (ecGA) [44], factorized distribution algorithm (FDA) [76], estima-
tion of Bayesian networks algorithm (EBNA) [61], and (hierarchical) Bayesian
optimization algorithm ((h)BOA) [88, 89] are some leading examples for dis-
crete variables.

Note that the BOA is perceived to be an important effort that employs gen-
eral probabilistic models for discrete variables [6,90]. It utilizes techniques for
modeling multivariate data by Bayesian networks so as to estimate the (joint)
probability distribution of promising solutions. A Bayesian network encodes
the conditional probability of each variable given its parents. A simple greedy
algorithm joining forces with the Bayesian Dirichlet equivalence(BDe) met-
ric is used for constructing the Bayesian network. The BOA is very effective
even on large decomposable (discrete) problems with loose and tight linkage of
BBs. It is important to note that the power of BOA arises from realizing prob-
abilistic building-block crossover (PBBC) that approximates population-wise
building-block crossover by a probability distribution estimated on the basis of
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proper (problem) decomposition [88, 89]. The underlying decomposition can
be performed regardless of types of dependency between variables because it
is capable of accurately modeling any type of dependency due to the inherent
characteristic (i.e., finite cardinality) of the discrete world. The PBBC can
shuffle as many superior partial solutions (i.e., BBs) as possible in order to
bring about an efficient and reliable search for the optimum.2 Therefore, it is
only natural that the principles of BOA be tried on real-valued variables.

In general, there are two approaches with regard to real-valued variables
– indirect and direct. In order to effectively deal with real parameters, the
former employs transform methods such as discretization and the latter es-
timates the parameters of predefined (mixture) distributions. BOA with dis-
cretization [92] follows the indirect approach, while estimation of Gaussian
networks algorithm (EGNA) [62, 63], iterative density-estimation evolution-
ary algorithms (IDEAs) [17, 20], and mixed Bayesian optimization algorithm
(MBOA) [81, 82] take the direct approach. A review of indirect and direct
methods is presented in the sequel.

The BOA with discretization combines the strength of BOA for discrete
representation with the advantage of evolutionary strategies (ESs) for real-
valued (i.e., continuous) representation. In other words, the advanced recom-
bination technique of BOA, viz., PBBC, is incorporated into the advanced mu-
tation technique, viz., self-adaptive mutation for optimization of real-valued
problems. Discretization is employed to transform solutions between the dis-
crete and real-valued domains. However, it incurs computational overheads
for discretizing the promising candidates for BOA and backing the discrete
solutions into the continuous domain for adaptive ES. Furthermore, it is not
scalable in the EDA framework since the complexity of required discrete prob-
abilistic model exponentially increases with the target precision of the solu-
tion [82].

In the EGNA, the Gaussian network is induced in each generation by
means of a chosen scoring metric (e.g., edge exclusion tests, Bayesian Gaussian
equivalence (BGe), and Bayesian information criteria (BIC)) and the offspring
is created by simulating the learned network. A simple greedy algorithm re-
veals good structures when the BGe and BIC scores are employed. However,
the EGNA is not suitable for solving complicated problems because it only
constructs a (simple) single-peak Gaussian model.

The IDEAs exploit Bayesian factorizations and mixture distributions
for learning probabilistic models using the BIC just as the expectation-
maximization (EM) or simple search algorithms do. There is a general, but
simple factorization mixture selection to be named “mixed IDEA” (mIDEA)
in this chapter. It clusters the selected individuals and subsequently estimates
a factorized probability distribution in each cluster separately. It is evident
that the mIDEA can learn various types of dependency. This is in contrast
to the usage of a single model for the entire search space. However, it cannot

2 That is, the maximum BB-wise mixing rate can be achieved.
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realize the PBBC because different clusters that may create important BBs
do not share all the common features.

The MBOA learns a Bayesian network with local structures in the form
of decision trees coming with univariate normal-kernel leaves, thereby captur-
ing the mutual dependencies of the variables. The main purpose of MBOA
is to find a decomposition of the search space into subspaces, in which the
parameters are mutually independent. The decomposition is encoded by the
Bayesian network with decision trees and each resulting partition is locally
modeled by the normal-kernel distribution. In the MBOA, one decision tree is
built for each target variable, and the split nodes of the decision tree are used
to linearly split the domain of parent variables into parts. The leaves represent
the elementary models for obtaining the target variable. The MBOA builds
the decision trees by recursively adding the split nodes for each variable until
the BDe score returns a negative value for all the variables. This results in a
decomposition of the conditional distribution’s domain into axis-parallel par-
titions, thereby efficiently approximating the variables by univariate (kernel)
distributions [83]. Although the MBOA can be very effective for problems in-
volving variables with simple interactions (i.e., linearity), it is inefficient for
nonlinear, symmetric problems because finding the linear split boundaries for
detecting the inherent characteristics is very difficult and quite often even
impossible.

It may be noted that the direct approach occupies a predominant position
because the indirect approach fails to scale with problem size and solution
precision [82].

5.2 Real-coded Bayesian Optimization Algorithm

This section describes the rBOA as an efficient tool for solving real-valued
problems of bounded difficulty with a sub-quadratic scale-up behavior. The
purpose is to transplant the strong points of BOA into the continuous world.

Generously drawing on generic procedures of EDAs (see Sect. 5.1), the
following pseudo-code summarizes the rBOA:

Step 1. Initialization

Randomly generate initial population P
Step 2. Selection

Select a set of promising candidates S from P
Step 3. Learning

Learn a probabilistic model M from S using a metric (and constraints)
Step 4. Sampling

Generate a set of offspring O from the estimated probability distribution
Step 5. Replacement

Create a new population P by replacing some individuals of P with O
Step 6. Termination

If the termination criteria are not satisfied, go to Step 2
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In spite of similar behavior patterns, EDAs can be characterized by the
method of learning a probabilistic model (in the STEP 3). That is, the per-
formance of EDAs depends rather directly on the efficiency of probabilistic
model learning. In general, the learning of probabilistic models consists of two
tasks: learning the structure and learning the parameters [89], also known as
model selection and model fitting, respectively [20]. The former determines the
structure of a probabilistic model. The structure defines conditional dependen-
cies and independencies. Model fitting estimates the (conditional) probability
distributions with regard to the found structure.

It is noted that model selection is closely related to model fitting. In the
model selection phase, the best structure is searched by investigating the val-
ues of a chosen metric for all possible structures. However, the results of model
fitting are directly or indirectly needed for computing the metric. Due to the
large number of possible structures, the outcome may be unacceptably high
computational complexity unless model fitting is performed in some simple
way. A detailed investigation is described in Sect. 5.3.1.

On the other hand, there is a significant difference between discrete and
real-coded EDAs from the viewpoint of probabilistic model learning. Discrete
EDAs can easily estimate a probability distribution for a given/observed data
by simply counting the number of instances for possible combinations. More-
over, the estimated distribution converges to its true distribution as the data
size increases. Thus, discrete EDAs can quickly and accurately carry out model
selection and model fitting at the same time.

A typical attempt to bringing the merit of discrete EDAs to bear on real-
valued variables is to use histogram methods. This follows from the observa-
tion that constructing the histogram for a discrete distribution from popula-
tion statistics and approximating it for a continuous distribution are analogous
tasks [114]. Of course, the problem is tricky in higher dimensions (as described
in Sect. 5.1), but nonetheless, it is theoretically possible. Indeed, it converges
as the population size tends to infinity.

On the other hand, real-coded EDAs cannot use the simple counting meth-
ods of discrete EDAs to estimate a probability distribution for real-valued
data due to (uncountably) infinite cardinality. There is an efficient method
for reliably approximating the true probability distribution. The method re-
lies on (finite) mixture models [70]. Some recent methods for unsupervised
learning of mixture models are capable of automatically selecting the exact
number of mixture components and overcoming some drawbacks of the EM
algorithm [35, 70]. Due to its iterative nature, however, reconciling the unsu-
pervised mixture learning techniques with the EDA framework is obviously
hopeless (regardless of the frequency of its use). In this regard, faster mixture
models are believed to be useful for efficiently estimating the probability dis-
tribution, in spite of sacrificing the accuracy. Although the fast alternatives
can significantly reduce the computational cost, they may not be suitable
candidates as model fitting is required for every considered structure.



5.3 Learning of Probabilistic Models 91

It is, therefore, impossible to directly employ the learning procedure of
discrete EDAs (such as BOA) in order to learn a probabilistic model for real-
valued variables. An alternative technique for learning probabilistic models
in real space is needed. Such a technique can draw on the power of EDAs in
the discrete domain. By incorporating the solution with offspring generation
procedure (i.e., model sampling), the proper decomposition and the PBBC
that are important characteristics of BOA can be realized. The solution is
explained in Sect. 5.3.

5.3 Learning of Probabilistic Models

This section presents an efficient technique for learning probabilistic models.
Two tasks stand out in this regard: model selection and model fitting.

5.3.1 Model Selection

Factorizations (or factorized probability distributions) discover dependencies
and independencies among random variables. A factorization is a probability
distribution that can be described as a product of generalized probability den-
sity functions (gpdfs) which are themselves probability density functions (pdfs)
involving real-valued random variables [20, 30]. Bayesian factorizations, also
known as Bayesian factorized probability distributions come under a general
class of factorizations [20,65]. A Bayesian factorization estimates a joint gpdf
for multivariate (dependent) variables as a product of univariate conditional
gpdf of each random variable. The Bayesian factorization is represented by a
directed acyclic graph, called a Bayesian factorization graph, in which nodes
(or vertices) and arcs identify the corresponding variables in the data set and
the conditional dependencies between variables, respectively [20,65].

An n-dimensional real-valued optimization problem is considered for dis-
cussion. We denote the random variables in the problem by Y = (Y1, · · · , Yn)
and their instantiations by y = (y1, · · · , yn). The pdf of Y is represented by
f(Y)(y).3

In general, a pdf is represented by a probabilistic model M that consists
of a structure ζ and an associated vector of parameters θ (i.e., M = (ζ,θ))
[17, 20]. As the rBOA employs Bayesian factorization, the pdf f(Y) for the
problem can be encoded as

f(Y) = f(ζ,θ)(Y) =
n∏

i=1

f
θ̇

Yi (Yi|ΠYi
) (5.1)

where Y = (Y1, · · · , Yn) presents a vector of real-valued random variables,
ΠYi

is the set of parents of Yi (i.e., the set of nodes from which there exists an
3 The second parenthesis of probability distribution can be omitted for convenience

if it causes no ambiguity.
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arc to Yi), and f
θ̇

Yi (Yi|ΠYi
) is the univariate conditional pdf of Yi conditioned

on ΠYi
with its parameters θ̇

Yi .
Although there are various methods for learning the structure of a prob-

abilistic model (i.e., model selection), a widely used approach has two basic
factors: a scoring metric and a search procedure [20, 89]. The scoring metric
measures the quality of the structures of probabilistic models (i.e., Bayesian
factorization graphs) and the search procedure efficiently traverses the space
of feasible structures for finding the best one with regard to a given scoring
metric.

Scoring Metric

A penalized maximum likelihood criterion known as the Bayesian information
criterion (BIC) is employed as the scoring metric. Although any metric can be
used, the reason for choosing the BIC is its empirically observed effectiveness
in greedy estimation of factorized probability distributions [17, 64, 76]. Let S
be the set of selected individuals, viz., S =

(
y1, · · · ,y|S|), where |S| is the

number of the individuals. The BIC that assigns the structure ζ a score is
formulated as follows [17,20]:

BIC (ζ) = ln




|S|∏
j=1

f(ζ,θ)(Y)(yj)


− λ ln (|S|) |θ|

=
|S|∑
j=1

ln f(ζ,θ)(Y)(yj) − λ ln (|S|) |θ| . (5.2)

Here, λ regularizes the extent of penalty and |θ| is the number of parameters of
f(ζ,θ)(Y). Physically, the first and second terms represent the model accuracy
and the model complexity, respectively.

Computing the BIC score for the structure ζ requires its parameters θ
which fit the structure. However, the relations of cause and effect among
them lead to unacceptably high computational complexity. This is because the
number of possible structures to be tested/traversed increases exponentially
with the problem size and the parameter fitting for the data set in real space
is by no means a simple undertaking.

In short, the impracticality arises from the close relationship between
model selection and model fitting. One way to cross the hurdle is to break the
connection without obscuring their intrinsic objectives. An important feature
of model selection is to acquire an a priori knowledge of the variables which
are conditionally dependent regardless of linearity, nonlinearity, or symme-
try. The reason is that the dependent type itself is learned (with probability
distributions) by model fitting (see Sect. 5.3.2). Decoupling the connection
can be achieved by computing the needed probability distributions for pos-
sible structures from a reference distribution. This is so because computing
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a marginal distribution with regard to an interesting substructure from a
(reference) probability distribution fitted on the whole problem space is much
simpler than directly estimating the exact probability distribution correspond-
ing to the real-valued data set. EGNA and IDEAs are widely known in this
respect. However, this can be hazardous in that it may fail to discover specific
dependencies such as nonlinearity or symmetry.

In order to overcome the difficulty, multiple (probability) distributions are
employed instead of one (i.e., mixture distribution), with a view to capturing
the specific dependencies by a combination of piecewise linear interactions. In
other words, the probability distributions used should lead to correct struc-
tures by capturing the dependency itself. We define the correct structure as the
Bayesian factorization graph that encodes only the true or false interactions
of the variables, regardless of the types of dependencies. Moreover, we learn
one structure because it has been shown empirically that using one suitably
constructed structure is sufficient to solve difficult problems [6, 81,88].4

We employ mixture models for efficiently modeling the selected individu-
als by a mixture of probability distributions. With this in view, the BIC in
Eq. (5.2) must be modified further.

As the pdf f(ζ,θ)(Y) can be described by a linear combination of a number
of mixture components, Eq. (5.2) can be extended to

BIC (ζ) =
|S|∑
j=1

ln

(
K∑

i=1

αif(ζ,θi)(Y)(yj)

)
− λ ln (|S|)

K∑
i=1

∣∣θi
∣∣ (5.3)

where K is the number of mixture components, α1, · · · , αK are the mixing
probabilities satisfying αi ≥ 0, ∀i, and

∑K
i=1 αi = 1, and θi is the set of

parameters defined on the ith mixture component.
The observed-data vector (i.e., the selected individuals S) can be viewed as

being incomplete due to the unavailability of the associated component-label
vectors, w1, · · · ,w|S| [35,70]. Each label wi is a K-dimensional binary vector
and each element wi

j is set to 0 or 1, depending on whether yj did or did not
arise from the ith mixture component. The component-label vectors are taken
to be the realized values of the random vectors, W1, · · · ,W|S|, in which it is
assumed that they agree with an unconditional multinomial distribution [70].
That is, the probability distribution of the complete-data vector carries an
appropriate distribution for the incomplete-data vector. Hence, Eq. (5.3) can
be rewritten as

BIC (ζ) =
K∑

i=1

|S|∑
j=1

wi
j

{
ln αi + ln f(ζ,θi)(Y)(yj)

}
− λ ln (|S|)

K∑
i=1

∣∣θi
∣∣

4 However, it can be naturally extended to multiple structures.
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=
K∑

i=1

ln αi

|S|∑
j=1

wi
j +

K∑
i=1

|S|∑
j=1

wi
j ln f(ζ,θi)(Y)(yj) − λ ln (|S|)

K∑
i=1

∣∣θi
∣∣ .

(5.4)

As the vectors w1, · · · ,w|S| can be simulated by the resulting mixture
distribution, it is natural that

∑|S|
j=1 wi

j coincides with the expected num-
ber of selected individuals drawn from the probability distribution f(ζ,θi)(Y),
denoted by |Si|. As the maximal log-likelihood is equivalent to the maxi-
mal negative entropy,

∑|S|
j=1 wi

j ln f(ζ,θi)(Y)(yj) = − |Si|h
(
f(ζ,θi) (Y)

)
where

h
(
f(ζ,θi) (Y)

)
represents the differential entropy of f(ζ,θi) (Y). Moreover, the

number of parameters for each distribution is the same (i.e., |θ′| ≡
∣∣θ1

∣∣ =
· · · =

∣∣θK
∣∣) because the structure ζ is fixed for every distribution to be mixed.

Thus, Eq. (5.4) is rewritten as

BIC (ζ) =
K∑

i=1

|Si|
{
ln αi − h

(
f(ζ,θi)(Y)

)}
− Kλ ln (|S|)

∣∣θ′∣∣ . (5.5)

Since the terms |Si| and lnαi are not affected by the structure ζ, Eq. (5.5)
can be further reduced to

BIC (ζ) = −
K∑

i=1

|Si|h
(
f(ζ,θi) (Y)

)
− Kλ ln (|S|) |θ′| . (5.6)

Thus, the BIC in Eq. (5.6) leads to a correct factorization even if there is
some kind of nonlinearity and/or symmetry between variables.

Search Procedure

Learning the structure of a probabilistic model given a scoring metric is NP-
complete [20,50,89]. However, most EDAs have successfully employed a greedy
approach for searching a promising structure with a chosen metric. We em-
ploy the incremental greedy algorithm, a kind of greedy search algorithm [50].
Being one among many variants, this greedy algorithm starts with an empty
graph with no arcs, and proceeds by incrementally adding an arc (such that
no cycles are introduced) that maximally improves the metric until no further
improvement is possible. The greedy algorithm is not guaranteed to discover
an optimal structure in general because searching for the structure is an NP-
complete problem. However, the resulting structure is good enough for encod-
ing the most important interactions between variables of the problem [88,89].

5.3.2 Model Fitting

Note that the BOA models any type of dependency because it maintains
all the conditional probabilities in the learned structure, without losing any
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Fig. 5.1. Bayesian factorization graph involving component subproblems.

information due to finite cardinality of discrete variables. Moreover, the BOA
naturally performs the PBBC with regard to the proper decomposition as it
treats all the subproblems independently through the model selection, model
fitting, and model sampling (i.e., offspring generation) phases. Hence, the
BOA can solve difficult problems quickly, accurately, and reliably [88,89].

With this in view, the model fitting phase (of the rBOA) must realise the
probability distribution of a problem as a product of conditionally indepen-
dent distributions accurately estimated on the basis of subproblems. In other
words, the PBBC can be prepared by subspace-based model fitting. Unlike
discrete EDAs, however, a preprocessing step for explicitly discovering sub-
problems (i.e., problem decomposition) is essential in real-coded EDAs, before
performing the subspace-based model fitting. This is because discrete EDAs
can implicitly carry out the problem decomposition in the course of (proba-
bilistic) model learning while real-coded EDAs cannot do so (see Sect. 5.2).

Problem Decomposition

Problem decomposition can be easily accomplished because a set consisting of
a node and its parents in the Bayesian factorization graph represents a com-
ponent subproblem of decomposable problems. Here, the sets of variables of
component subproblems may or may not be disjoint, but they cannot properly
contain each other. In Fig. 5.1, the Bayesian factorization graph consists of five
component subproblems, viz., {Y2,Y3},{Y3,Y1},{Y2,Y3,Y6},{Y2,Y6, Y5},{Y4, Y7}.
However, it is not proper to directly use the component subproblems for model
fitting. The reason is explained below.

The probability distribution of a problem can be constructed as a product
of univariate conditional distributions which are computed from the probabil-
ity distributions of component subproblems. Hence, the fitting process must
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be applied to every component subproblem. Since the fitting process itself is
relatively complex even with a simple technique, it follows that fitting the
model on the basis of component subproblems is not adequate, especially as
the problem size increases.

Thus, an alternative decomposition is required for quickly and accurately
performing model fitting on the basis of subproblems. In this regard, there is
an observation that the set of a parent and its child nodes can be grouped as
a kind of subproblem because the child nodes share a common feature even
though they do not directly interact with each other. The set is called the dual
component subproblem. It follows that the conditional distributions can be ac-
curately computed from the probability distributions over the dual component
subproblems. At this juncture, minimal compound subproblems are defined as
the largest component or dual component subproblems that are not proper
subsets of each other. In this way, a large number of fitting processes can
be avoided (in proportion to the problem size) without losing fitting accu-
racy. For the problem in Fig. 5.1, the five component subproblems reduce to
three minimal compound subproblems, viz., {Y2, Y3, Y6, Y5}, {Y3, Y1}, {Y4, Y7}
shown in Fig. 5.2(a).

There is another decomposition that is simple and also quite efficient for
large problems. Consider the maximal connected subgraphs of a Bayesian fac-
torization graph. Nodes in a maximally connected subgraph are looked on as
a family; they have a common feature of being bound with common ancestors
or descendants. Thus, the nodes can be thought of as interacting with each
other in some sense. The conditional distributions can then be obtained from
the probability distributions fitted over the maximally connected subgraphs
without unduly compromising on the fitting accuracy. Here, the maximal con-
nected subgraph is called the maximal compound subproblem. In Fig. 5.2(b),
three minimal compound subproblems of Fig. 5.2(a) can be reduced to two
maximal compound subproblems, viz., {Y2, Y3, Y6, Y5, Y1}, {Y4, Y7}. Since this
decomposition is a special case of decomposing the problem by minimal com-
pound subproblems, minimal compound subproblems are employed for ex-
plaining the subspace-based model fitting.

Note that most real-coded EDAs in the category of multivariate depen-
dencies (such as EGNA and IDEAs) choose an alternative that is far from
being perfect. That is, conditional distributions are computed from the refer-
encing distributions fitted over the problem space itself instead of subspaces.
This cannot provide the PBBC, thereby resulting in an exponential scale-up
performance. The reason is explained below.

BBs can be defined by groups of real-valued variables, each having values
in some neighborhood (i.e., a small interval), that break up the problem into
smaller chunks which can be intermixed to reach the optimum. Assume that
the mixture models have been employed for model fitting. Univariate condi-
tional distributions are computed from the mixture distributions fitted over
the problem space itself. In the model sampling phase, an entire individual is
drawn from a proportionately chosen mixture component. Regardless of the
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(b) Maximal compound subproblems.

Fig. 5.2. Examples of problem decomposition.

result of Bayesian factorization, it does not perform the PBBC as any mu-
tual information of different regions cannot be shared. Instead, at least one
mixture component must contain almost all the (superior) BBs of the prob-
lems for the sake of finding an optimal solution. In order to construct the
mixture distribution that contain such mixture components, however, a huge
population and a very large number of mixture components are required. It
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may result in an exponential scale-up behavior, even if the problem can be
decomposable into subproblems of bounded order.

Subspace-based Model Fitting

Following proper decomposition, each substructure (corresponding to each
subproblem) must be independently fitted. We employ the mixture models as
an efficient tool for the purpose. The aim of mixture models is twofold: compre-
hending the type of dependency between variables and traversing the search
space effectively. In general, higher-order factorized probability distributions
are quite effective in discovering linear interactions between variables [20].
Each mixture component can model the linearity of the variables. Thus, the
mixture models can approximate any type of dependency (e.g., nonlinear-
ity or symmetry) by a combination of piecewise linear interaction models. In
addition, it has the effect of partitioning each subspace for effective search.

Let Zi =
{

Zi
1, · · · , Zi

|Zi|

}
be a vector of random variables of the ith sub-

problem in which the variables have already been topologically sorted for
drawing new partial-individuals corresponding to the substructure. Note that
the role of the topological sorting lies in discovering ancestral orders of the
variables so as to generate the parents of each variables prior to the vari-
able itself. Moreover, Zi �

⋃i−1
k=1 Zk and

⋃
i Z

i = Y. Let Xi = Zi
/
Ai where

Ai = Zi
⋂(⋃i−1

k=1 Zk
)
. An example is given in Fig. 5.2(a).

Let ζZi

and θZi

indicate a structure for the variables Zi (i.e., substruc-
ture) and its associated parameters, respectively (viz., MZi

=
(
ζZi

,θZi
)
). Let

f(ζZi ,θZi)
(
Zi

)
represent a pdf ofZi and f(ζAi ,θAi)

(
Ai

)
=
∫
Xi

f(ζZi ,θZi)
(
Zi

)
dXi.

As the mixture models are being employed, the pdf f(ζZi ,θZi)
(
Zi

)
can gen-

erally be represented by linearly combining f(ζZi ,θZi
j )

(
Zi

)
(for all j) that

presents the pdf of the jth mixture component over Zi. Therefore, the pdf of
Y can be written as a product of linear combinations of subspace-based (i.e.,
subproblem) pdfs as in Eq. (5.7),

f(ζ,θ)(Y) =
m∏

i=1

ci∑
j=1

βij

f(ζZi ,θZi
j )

(
Zi

)

f(ζAi ,θAi
j ) (Ai)

(5.7)

where m is the number of subproblems, ci is the number of mixture compo-
nents for Zi, βij is the mixture coefficient, βij ≥ 0, and

∑ci

j=1 βij = 1 for
each i. In general, the mixture coefficient βij is proportional to the expected
number of individuals of the jth mixture component of the subproblem Zi.

Any pdf can be rewritten as the product of univariate conditional pdfs
according to its probabilistic model structure. Therefore, Eq. (5.7) can be
rewritten as
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f(ζ,θ)(Y) =
m∏

i=1

ci∑
j=1

βij

∏|Zi|
k=1 f

θ̇
Zi

k
j

(
Zi

k

∣∣ΠZi
k

)

∏|Ai|
l=1 f

θ̇
Ai

l
j

(
Ai

l

∣∣ΠAi
l

) . (5.8)

Therefore, the structure learned is efficiently fitted by the subspace-based
mixture distributions even in the presence of nonlinearly and/or symmetrically
dependent variables.

5.4 Sampling of Probabilistic Models

After model fitting, new individuals (i.e., offspring) are generated from sam-
pling the resulting factorization, i.e., model sampling. With a view to gener-
ating the offspring, Eq. (5.8) can be simplified to

f(ζ,θ)(Y) =
m∏

i=1

ci∑
j=1

βij

|Xi|∏
k=1

f
θ̈

Xi
k

j

(
Xi

k

∣∣ΠXi
k

)
. (5.9)

Due to its simplicity and efficiency, the probabilistic logic sampling is em-
ployed [51]. Model sampling is performed in a straightforward manner. At first,
the pdf of the jth mixture component for the ith subproblem is selected with
a probability βij . Subsequently, a multivariate string (i.e., partial-individual)
corresponding to Zi can be drawn by simulating the univariate conditional
pdfs of the chosen pdf which models one of the promising partitions (i.e., a
superior BB) of a subspace (i.e., subproblem). By repeating this for all the
subproblems, superior BBs can be mixed and bred for subsequent search.

To sum up, model selection amounts to a proper decomposition. The
PBBC is realized successfully by model fitting and model sampling on the
basis of the proper decomposition.

5.5 Scalability Analysis

This section analyzes the scalability of rBOA on problems of bounded diffi-
culty, along the lines of approaches in [89,91].

5.5.1 Preliminaries

We make several assumptions for tractable analysis. First, we assume addi-
tively decomposable problems that consist of concatenated basis functions
(i.e., subfunctions or subproblems); the overall fitness is the sum of contri-
butions of all the subfunctions. It is also assumed that all the subfunctions
are disjoint and their orders are all the same, viz., k. These are known as
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the decomposable problems with bounded difficulty.5 Formally, the problems
investigated in this analysis are characterized by

g(Y) =
n/k∑
i=1

gc

(
Yω(i−1)k+1 , · · · , Yωik

)
(5.10)

where k is the subproblem size, n is the problem size, ω is a permutation of
{1, · · · , n}, and gc(•) denotes a contribution of its arguments to the overall
fitness.

Note that the assumption of equal order k may not be reasonable in prac-
tice. It is possible to set k to the average order of interactions for practical
use [3]. Moreover, there is an upper bound on population complexity when k
is set to the highest order of subproblems. No matter what methods are in
use, there is no influence on the rBOA’s scalability itself.

A particular partition (i.e., subproblem) is considered here. We denote
the partition by a vector of random variables, Z = (Z1, · · · , Zk), and its
instantiation (i.e., subsolution) by a vector of real numbers, z = (z1, · · · , zk).
The individuals consisting of such partitions are also denoted by a vector
of random variables, Y = (Y1, · · · , Yk, · · · , Yn), where n is the size of the
problem. The fitness of the individual y is indicated by g(y). The total fitness
of the individuals involving the subsolution (i.e., block) z is represented by a
random variable G(z). It is assumed that G(z) follows a normal distribution,
viz.,

G(z) ∼ N (µG(z), σ
2
c ) (5.11)

where µG(z) is the average fitness of the individuals involving the block z, and
σ2

c is the total collateral noise variance coming from the rest of the variables.
The collateral noise is defined as the disturbance in the decisions in regard to
an observed partition. It is due to the fitness contributions of the rest of the
partitions. The decision making process is explained in Sect. 5.5.2. Naturally,
it follows that

σ2
c ∝ n (5.12)

where n is the problem size (i.e., the number of variables).
The normality assumption can be justified by the central limit principle

in respect of all the decomposable problems consisting of uniformly scaled
subproblems: the fitness contribution of each subproblem is of equal impor-
tance. The situation is the same even for exponentially scaled subproblems
because the number of individuals required for building a good model does
not increase and the number of generations until convergence grows linearly
with the problem size [89,91].

We also assume that decision variables can be modeled with normal mix-
ture distributions. Given adequate data, the approximation to normal distri-
bution is usually fairly close for some source components. In principle, the
5 Many real-world problems can be approximated by decomposition into indepen-

dent subproblems even when the subfunctions overlap [3, 89,91].
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assumption is also supported by the central limit theorem. In this regard,
the rBOA employs normal mixture distributions in order to perform model
selection (i.e., the BIC computation) and model fitting.

It is also assumed that the rBOA employs truncation selection for learning
the probabilistic model due to its effectiveness over other selection methods
in model learning. Recall that truncation selection with threshold τ ranks all
the individuals according to their objective function values and selects the top
τ -portion of the individuals. It is possible to carry out the analysis on other
selection schemes. The theoretical results are expected to hold true for other
selection methods [89,91]. However, this is an issue for future research.

Note that the scalability of rBOA is measured by the growth of the num-
ber of (objective function) evaluations with regard to the problem size until
reliable convergence to the optimum. Since the total number of evaluations
E is computed as a product of the population size N and the number of
generations T [89, 91], we have

E = Θ(N × T ). (5.13)

Therefore, the scalability analysis falls within the purview of investigating the
population complexity and the convergence time complexity with respect to
the size of the problem (i.e., the number of decision variables).

5.5.2 Population Complexity

In the process of discovering the problem regularities, viz., dependencies of
variables, decision about adding and not adding an arc between two (real-
valued) random variables, Z1 and Z2, in a particular partition Z has to be
made [89, 91]. In order to decide whether an arc should be added or not be-
tween Z1 and Z2, the scores assigned by the BIC of Eq. (5.6) to the structures
with and without arc are compared, and then the better alternative must be
chosen. In the BIC, mixture distributions are incorporated to perform a cor-
rect factorization even in the presence of some nonlinearity and symmetry.
Since the mixture model is composed of a linear combination of mixture com-
ponents, we first investigate the BIC score with one component (K = 1), and
then extend the result to multiple components. For notational convenience,
|S| that denotes the selected population size in the BIC is replaced by Ns.

With regard to decision making, two possible cases are illustrated in
Fig. 5.3. In the first case, Z1 has no parents before deciding on whether or not
to add the arc Z2 → Z1 (Fig. 5.3(a)). In the second case, Z1 already has a
number of parents before the decision regarding the arc Z2 → Z1 is considered
(Fig. 5.3(b)). Taking into account the term involving Z1, it is acceptable to
compute a (selected) population size required for discovering the dependencies
of variables because the BIC is decomposable. This is defined as the critical
(selected) population size [89,91]. The first case is analyzed below. The result
is then extended to the second case.
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Fig. 5.3. Examples on choosing between adding and not adding an arc.

The BIC score assigned to Z1 without the arc Z2 → Z1 is given by

BIC(Z1) = −h(Z1)Ns − 2λ ln(Ns) (5.14)

where h(Z1) is the differential entropy of Z1, and Ns is the number of selected
solutions (i.e., selected population size). After adding the arc Z2 → Z1, the
BIC value of Z1 is obtained by

BIC(Z1|Z2) = −Nsh(Z1|Z2) − 3λ ln(Ns) (5.15)

where h(Z1|Z2) is the conditional differential entropy of Z1 given Z2. To
successfully discover the dependency between Z1 and Z2 (i.e., add the arc
Z2 → Z1), BIC(Z1 ← Z2) should be greater than BIC(Z1). That is,

BIC(Z1|Z2) > BIC(Z1). (5.16)

Substituting Eqs. (5.14) and (5.15) into Eq. (5.16) yields the following in-
equality:

(h(Z1) − h(Z1|Z2)) Ns − λ ln(Ns) > 0. (5.17)

By replacing the mutual information term, h(Z1)−h(Z1|Z2), with a parameter
I, Eq. (5.17) can be rewritten as

Ns −
λ

I
ln(Ns) > 0. (5.18)
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To compute the critical population size, denoted by N crit
s , we must solve the

following equation:

N crit
s − λ

I
ln(N crit

s ) = 0. (5.19)

In Eq. (5.19), although two possible solutions exist when the ratio λ/I is
sufficiently large, the larger solution is assigned to N crit

s [89, 91]. Moreover,
the mutual information of the normal random variables Z1 and Z2 is widely
known to be

I = h(Z1) − h(Z1|Z2) =
1
2

ln

(
1

1 − ρ2
Z1,Z2

)
(5.20)

where ρZ1,Z2 is the correlation coefficient of Z1 and Z2, and 0 ≤ |ρZ1,Z2 | ≤ 1.
By employing Eq. (5.20), Eq. (5.19) can be rewritten as follows:

N crit
s − 2λ

ln
(

1
1−ρ2

Z1,Z2

) ln(N crit
s ) = 0. (5.21)

Let us consider a high |ρZ1,Z2 | (e.g., greater than 0.4). It represents strong de-
pendency of Z1 and Z2. In this case, Eq. (5.21) gives a (very) small N crit

s (less
than 10), but such a small value is of no interest because it is not regarded as
a feasible candidate in practice. However, it does not mean that the results of
scalability analysis would not be valid for the strong dependencies of variables.
Physically, the small N crit

s for high |ρZ1,Z2 | means that strong dependencies
can always be captured regardless of the size of population. Thus, |ρZ1,Z2 |
has to be small enough to have a proper solution, N crit

s . However, too small a
value (e.g., less than 0.1) is of no interest since the learning process employing
the solution N crit

s might misjudge independent variables to be dependent.
Here is an important observation. The initial behavior of rBOA is crucial

for successfully solving the problems. In the beginning, |ρZ1,Z2 | has a small
value no matter how strongly dependent the variables Z1 and Z2 are in real-
ity. This is because all the selected individuals are initially evenly distributed
over the search space. In the first generation, the value of |ρZ1,Z2 | is the small-
est. Once the individuals start crowding toward the optimum, |ρZ1,Z2 | would
gradually increase so that the correct dependency can always be captured by
the current size of the population. However, this might not come about if the
dependency is not found at an early stage. Therefore, the scalability analysis
focuses on the first generation of rBOA. This somewhat conservative approach
is supported by empirical evidence (Sect. 5.7.3)

Note that the solution of Eq. (5.21) follows a power-law when ln(1/(1 −
ρ2

Z1,Z2
)) is small enough (i.e., λ/I is large enough in Eq. (5.19)). It implies

that the solution N crit
s takes the form α

(
1
/

ln
(

1
1−ρ2

Z1,Z2

))β

, where α and

β are some positive constant [89]. To approximate Eq. (5.21), the regulation
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Fig. 5.4. Critical population size with regard to correlation coefficient.

parameter λ (of BIC) needs to be fixed in advance. Although λ is set to
0.5 in this study, any other value would do as well. The reason is that the
constant term λ does not have any effect on the order of growth of N crit

s (i.e.,
population complexity).

Therefore, we can approximate Eq. (5.21) by

N crit
s ≈ 2.1

(
1

/
ln

(
1

1 − ρ2
Z1,Z2

))1.25

. (5.22)

where the constants α = 2.1 and β = 1.25 are numerically obtained. The ac-
curacy of the approximation for 0.1 ≤ |ρZ1,Z2 | ≤ 0.4 is shown in Fig. 5.4. The
range is perceived to be promising for investigating the population complex-
ity. In the figure, it is observed that the approximation is in close agreement
with the numerical solution.

Since we are interested in the first generation of the rBOA, ρ2
Z1,Z2

tends
to be a small number (see Sect. 5.5.1). Thus, Eq. (5.22) can be further ap-
proximated as follows:

N crit
s ≈ 2.1

(
1

ρ2
Z1,Z2

)1.25

. (5.23)

The equation relates the population complexity to the correlation coeffi-
cient of variables. It apparently hints at the existence of some positive con-
stants c1 and c2 such that c1 · 1

ρ2
Z1,Z2

≤ N crit
s ≤ c2 · 1

ρ2
Z1,Z2

for any sufficiently

large 1
ρ2

Z1,Z2

. Thus, we obtain
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N crit
s = Θ



(

1
ρ2

Z1,Z2

)1.25

 . (5.24)

To analyze the scalability of rBOA, the growth of the solution N crit
s must

be investigated with regard to the problem size (i.e., the number of decision
variables) [89, 91]. The relation between the correlation coefficient and the
problem size is investigated in the sequel.

Note that the correlation coefficient of the two random variables Z1 and
Z2 is given by ρZ1Z2 = E[Z1Z2]−E[Z1]E[Z2]

σZ1σZ2
. Consider two random vectors,

U = (U1, U2)T and V = (V1, V2)T , in order to investigate the relationship
between the correlation coefficient and the moment. Assume that they have
equal mean and variance, viz., E[U1] = E[V1], E[U2] = E[V2], σ2

U1
= σ2

V1

and σ2
U2

= σ2
V2

. Although their first- and second-order moments are equal, the
correlation coefficients are different if their second-order joint moments are not
the same, viz., E[U1U2] �= E[V1V2]. That is, the second-order joint moment
retains, in essence, the attribute of the correlation coefficient of two variables.
It indicates that the correlation coefficient ρZ1,Z2 is directly connected with
the (joint) probability distribution of Z1 and Z2. Therefore, we reach the
following relation:

ρZ1,Z2 ∝ E[Z1Z2]. (5.25)

In the truncation selection with threshold τ , the top τ -portion of the pop-
ulation is selected as parents. The probability distribution of Z after the trun-
cation selection is given by

FZ(z) = P [Z ≤ z] = P [G(z) ≥ θ] (5.26)

where G(z) denotes the random variable of total fitness of the individuals with
the subsolution z, and θ is a real number (i.e., fitness value) such that

τ =
∫

g(y)≥θ

fg(Y)(g(y))dg(y). (5.27)

where g(y) is the fitness of the individual y. Since the distribution of G(z) is
modeled by G(z) ∼ N (µG(z), σ

2
c ) (see Eq. (5.11)), we get

FZ(z) = P [G(z) ≥ θ] = Φ

(
µG(z) − θ

σc

)
(5.28)

where Φ(x) denotes the cumulative normal distribution function with zero
mean and unit variance.

The difference of (µG(z)−θ) almost remains constant regardless of problem
size because it can be looked upon as a kind of average fitness contribution of
z. In general, the collateral noise σc increases with the problem size. It means
that the ratio is very small for moderate-to-large problems. There is a linear
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approximation of normal distribution: Φ(x) ≈ (1/2) + (x/
√

2π) for small x.
Therefore, Eq. (5.28) can be approximated as follows:

FZ(z) =
1
2

+
µG(z) − θ√

2πσc

. (5.29)

The marginal distribution of particular variables Z1 and Z2 can be computed
by

FZ1,Z2(z1, z2) = FZ1,Z2,Z3,··· ,Zk
(z1, z2,∞, · · · ,∞)

=
1
2

+
µG(z1,z2) − θ√

2πσc

(5.30)

where µG(z1,z2) is the average fitness of the individuals containing the parti-
tion Z with Z1 = z1 and Z2 = z2. Since the numerator (µG(z1,z2) − θ) also
comes under a fitness contribution (of the sub-block {z1, z2}), the probability
distribution is clearly dominated by the denominator

√
2πσc. In other words,

the joint probability distribution of Z1 and Z2 is inversely proportional to the
collateral noise. Thus, the second-order joint moment is proportional to the
inverse of collateral noise, viz., E[Z1Z2] ∝ 1

σc
. From the relationship between

correlation coefficient and second joint moment given in Eq. (5.25), we get

ρZ1,Z2 ∝ 1
σc

. (5.31)

By employing Eq. (5.31), Eq. (5.24) can be rewritten as

N crit
s = Θ(σ2.5

c ). (5.32)

Since the collateral noise variance is proportional to the problem size (see
Eq. (5.12)), viz., σ2

c ∝ n, Eq. (5.32) becomes the following form

N crit
s = Θ(n1.25). (5.33)

In other words, the critical population size for discovering dependency be-
tween two variables without parents grows quasi-linearly with the size of the
problem.

Let us extend the result of Eq. (5.33) to the general case – Z1 already
has multiple parents. If the arcs X3 → X1 to Xk → X1 are already present,
the condition for adding the arc Z2 → Z1 is clearly given by the following
inequality [89,91]:

BIC(Z1|Z2, · · · , Zk) > BIC(Z1|Z3, · · · , Zk). (5.34)

Naturally, Eq. (5.34) can be rewritten as

−Nsh(Z1|Z2, · · · , Zk)− (k +1)λ ln(Ns) > −Nsh(Z1|Z3, · · · , Zk)−kλ ln(Ns).
(5.35)
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Setting I ′ = h(Z1|Z3, · · · , Zk) − h(Z1|Z2, · · · , Zk), we have

Ns −
λ

I ′
ln(Ns) > 0. (5.36)

The critical population size with regard to multiple parents is given by

N crit
s − λ

I ′
ln(N crit

s ) = 0. (5.37)

From Eqs. (5.19) and (5.37), it follows that the growth of the critical pop-
ulation size N crit

s depends rather strongly on the growth of the mutual in-
formation I ′ [89, 91]. We now focus on the growth of I ′ with the size of the
problem.

Let us first consider the case in which Z1 has only one parent Z3. In the
investigated interaction model (i.e., Z2 → Z1 ← Z3), the conditional mutual
information I(Z1;Z2|Z3) is always less than I(Z1;Z2). This is because the
process Z3 plays a role in restricting the range of Z1 (as in Markov chain
models), and thus only partial mutual information of Z1 and Z2 is measured.
The relationship can be extended to the general case. The conclusion is that
the conditional mutual entropy decreases as the number of parents grows.
That is, we have I ′ ∝ I/k. Thus, the growth of the critical population size in
case of multiple parents depends on the product kn1.25.

We have derived the result on the BIC employing one component (i.e.,
K = 1). Let us consider the multiple mixture component BIC of Eq. (5.6). In
the model selection phase, the structure of the probabilistic model is learned
by proportionally combining the BIC results gathered from all the mixture
components. It is claimed that the number of individuals involved in each
component is inversely proportional to the number of mixture components.

As described in Sect. 5.3.2, employing multiple mixture components pro-
vides the ability to partition the search space. Since the mixture model is
constructed on the whole population, each component consists of a subset of
the population (i.e. subpopulation). The subpopulation sizes are not equal.
The size, however, decreases as the mixture components increase. That is, the
rate of decrease of the subpopulation size is linearly bounded by the number
of components in the mixture. Hence, it supports the claim.

Let there be some unknown dependencies among the mixture components.
In order to discover the dependencies, the size of each subpopulation must
grow as the product kn1.25. Therefore, the critical population size for discov-
ering the problem regularities should grow as

N crit
s = Θ(Kkn1.25) (5.38)

where K is the number of mixture components, k is the maximum order of
the subproblems, and n is the size of the problem.

Note that three important factors must be considered while computing
the population size of EDAs in order to reliably solve problems [89,91]. First,
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the initial BB supply must be adequate. That is, the population must be
large enough to ensure the supply of sufficient raw BBs. Actually, it grows
logarithmically with the problem size, i.e., Θ(ln n) [7, 41]. Second, the pop-
ulation should guarantee right decisions when selecting the proper solution
(from amongst alternatives) to each subproblem so as to ensure the best BB.
This requires that the population grows with the square root of the problem
size, i.e., Θ(

√
n) [45, 91]. The above two factors are well known in this re-

gard. Third, the requirement that the population must discover the correct
probabilistic model forces a growth expressed by Θ(Kkn1.25). Note that the
population size that leads to an accurate model is the dominant factor.

If the number of mixture components (i.e., K) and the order of decom-
position (i.e., k) are fixed, the growth of the (rBOA) population is bounded
above by c1n

1.25 for some positive constant c1; and, bounded below by c2n
1.25

for some positive constant c2, where n is the size of the problem. Hence the
conclusion is that

N = Θ(n1.25). (5.39)

This population growth enables the rBOA to reach the optimum. This is
because the growth model involves all the population-sizing elements needed
for global convergence.

5.5.3 Convergence Time Complexity

Another important issue in this regard is the convergence time (i.e., the num-
ber of generations until convergence). Our interest is in uniformly scaled sub-
problems. However, we do not have to be concerned with exponentially scaled
subproblems since the number of generations until convergence grows linearly
with the size of the problem; that is, Θ(n) [89, 91]. Recall that the conver-
gence time of BOA (i.e., a complex model with multiple interactions) can be
accurately modeled by that of UMDA (i.e., a simple model with no inter-
actions) with regard to various decomposable problems where the order of
each (uniformly scaled) subproblem is bounded by a constant [89,91]. In this
context, we may conclude that the convergence time of rBOA can be derived
from that of real-coded UMDA6. It is necessary to examine this claim prior
to proceeding further.

Note that a certain EDA incorporating a fixed factorized distribution in
accordance with the variable-interaction structure of the problem (i.e. prob-
lem’s structure) comes under an FDA. As for rBOA, the population given
by Eq. (5.39) ensures that the evolving model converges toward a variable-
interaction structure of the problem (i.e., problem’s structure). That is, the
steady-state dynamics of rBOA is identical to that of a continuous FDA
(FDAc). It may be noted that the FDAc for separable decomposable prob-
lems is mathematically equivalent to the UMDAc because there are no variable
overlaps between subproblems [121].
6 It is also known as continuous UMDA (UMDAc).
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With regard to the convergence time, on the other hand, there is no differ-
ence between truncation selection and tournament selection. This is explained
below. The convergence time (i.e., the number of generations until global con-
vergence) of evolutionary algorithms is inversely proportional to the selection
intensity that is defined as the expected increase in the average fitness af-
ter selection [89]. However, the selection intensity of truncation selection and
tournament selection is a constant throughout the run. It means that they
behave identically with regard to convergence time.

González et al. [42] investigated the convergence time of UMDAc equipped
with tournament selection. It has been proved that the algorithm is able to
reach the optimum in case it starts near about the basin of attraction of
the problem, and the speed of convergence decreases with a complexity of
Θ(1/

√
n). If UMDAc begins far from the optimum, it does not work as ex-

pected due to the absence of the signal that leads to the optimum. However,
this in itself is of no interest because the investigated rBOA incorporates a
population that is sufficient to discover the correct model, and thus can reach
the optimum. It indicates that the behavior of rBOA can be approximated by
that of UMDAc starting in the proximity of the basin of attraction.

Therefore, the worst-case convergence time complexity is given by

T = Θ(
√

n). (5.40)

5.5.4 Scalability of rBOA

As described in Sect. 5.5.1, the scalability of rBOA is computed by multiplying
the population size required for reliably finding the optimum and the number
of generations until convergence.

From Eqs. (5.39) and (5.40), the worst-case complexity in terms of the
problem size is given by

E = Θ(n1.75) (5.41)

where n is the size of the problem.
As a result, the rBOA finds the optimal solution for decomposable prob-

lems, with a sub-quadratic scale-up behavior in respect of the problem size.

5.6 Real-valued Test Problems

This section presents real-valued test problems: (additively) decomposable
problems and traditional real-valued optimization problems.

5.6.1 Decomposable Problems

Decomposable problems are created by concatenating basis functions of a
certain order. The overall fitness is equal to the sum of all the basis functions.
Two types of real-valued decomposable problem are presented.
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The first problem is a real-valued deceptive problem (RDP) composed of
trap functions. The RDP to be maximized is defined by

fRDP (y) =
m∑

i=1

ftrap (y2i−1, y2i) (5.42)

where yj ∈ [0, 1], ∀j, m are the number of subproblems, and ftrap is defined
in Eq. (5.43) and plotted in Fig. 5.5(a).

ftrap(yj , yj+1) =




α, if yj , yj+1 ≥ δ,

β
δ

(
δ −

√
y2

j +y2
j+1

2

)
, otherwise.

(5.43)

Here, α and β are the global and the local (i.e, deceptive) optimum, respec-
tively, so that α/β indicates the signal to noise ratio (SNR), and δ is the
border of attractors.

Note that the trap function is not only flexible but also quite simple be-
cause δ controls the degree of BB supply and the SNR is adjusted by α/β. As
an interesting characteristic, it retains 2m optimal plateaus, out of which there
is only one global optimum. The optimum is isolated and there is no attractor
around the region, thereby not being amenable to hill-climbing strategies (such
as mutation) only. It is clear that recombination is essential to efficiently solve
the RDP. In other words, a linkage-friendly recombination operator should be
included for preventing disruption of (superior) partial solutions (i.e., BBs).

The second problem is a (real-valued) nonlinear, symmetric problem
(RNSP) that is constructed by concatenating nonlinear, symmetric functions.
The RNSP to be maximized is

fRNSP (y) =
m∑

i=1

fnon-sym(y2i−1, y2i) (5.44)

where yj ∈ [−5.12, 5.12], ∀j, and fnon-sym is defined in Eq. (5.45) and illus-
trated in Fig. 5.5(b).

fnon-sym(yj , yj+1) =

{
0.0, if 1 − δ ≤ yj , yj+1 ≤ 1 + δ,

− 100(yj+1 − y2
j )2 − (1 − yj)2, otherwise.

(5.45)

Here, δ adjusts the degree of BB supply, and the nonlinear, symmetric function
retains the traits of Rosenbrock function presented in Eq. (5.49).

It is important to note that linkage-friendly recombination which is also
capable of capturing nonlinear, symmetric interactions is required for effec-
tively solving the RNSP. It is seen that the RNSP provides a real challenge
for real-coded optimization algorithms. Moreover, incorporating the mutation
operation further helps find the global optimum as the nonlinear, symmetric
function (i.e, basis function) is unimodal so that the hill-climbing strategy at
any point eventually leads toward its optimum.
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Fig. 5.5. Basis functions of decomposable problems.

5.6.2 Traditional Optimization Benchmarks

Four well-known real-valued optimization problems are investigated. Their
two-dimensional versions are illustrated in Fig. 5.6. The task is to minimize
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(c) Summation Cancellation function.
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Fig. 5.6. Traditional real-valued optimization problems (Two-dimensional forms).

the benchmarks. They have some intriguing characteristics beyond decompos-
ability which most optimization algorithms find hard to negotiate.

The first problem is Griewangk function [113] defined as follows:

fG(y) =
1

4000

n∑
j=1

(yj − 100)2 −
n∏

j=1

cos

(
yj − 100√

j

)
+ 1 (5.46)

where yj ∈ [−600, 600],∀j. It consists of many local optima that prevent opti-
mization algorithms from converging to the global optimum if (fine-grained)
gradient information is incorporated. Regardless of its dimensionality, the
global optimum is always 0, which is obtained when all (decision) variables
are set to 100.

The second problem is Michalewicz function [71] that is given by

fM (y) = −
n∑

j=1

sin(yj)sin20

(
j · y2

j

π

)
(5.47)
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where yj ∈ [0, π],∀j. It also has many suboptimal solutions (albeit to a lesser
degree than the Griewangk) and some long valleys along which the minimum
value is the same. Thus, gradient information does not lead to better local op-
tima found at the intersections of the channels. The global optimum depends
on its dimensionality.

The third problem is Summation-Cancellation function [14] that is formu-
lated as

fSC(y) =


10−5 +

n∑
j=1

|yj +
j−1∑
i=1

yi|




/
100 (5.48)

where yj ∈ [−3, 3],∀j. The function has (multivariate) linear interactions be-
tween variables. Moreover, the optimum is located on a very narrow peak.
Thus, it is hard to find the optimal solution without some information on
dependencies (of the variables) and dense-searching in the vicinity of the op-
timum. For any dimension of the problem, the optimum is always 10−7, which
occurs when all the variables are 0.

The last problem is Rosenbrock function [96,99] defined by

fR(y) =
n∑

j=2

{
100 · (yj − y2

j−1)
2 + (1 − yj−1)2

}
(5.49)

where yj ∈ [−5.12, 5.12],∀j. It is highly nonlinear and symmetric around quite
a flat curved valley. Due to the very small gradient and the strong signal (to
solution quality) along the bottom of the valley, it is very hard to find the
(global) optimum. Oscillations from one side of the valley to the other is likely
unless a starting point is selected in the vicinity of the optimum. The value
of the optimum is 0 for any dimensionality. This occurs when the variables
are set to 1. No algorithm finds it easy to discover the global optimum of
Rosenbrock function.

5.7 Experimental Results and Discussion

This section investigates the ability of rBOA to benefit from the strengths
of BOA (i.e., the proper decomposition and the PBBC) in real space. This
section also verifies the scalability of rBOA.

5.7.1 Experiment Setup

The performance of rBOA is measured by the average number of (function)
evaluations until convergence to the optimum. A comparative study is per-
formed by comparing the solution quality (returned by the fixed number of
evaluations) of rBOA with that of EGNA [63], mIDEA [17], and MBOA [81].7

7 All the references belong to advanced real-coded, especially direct approach,
EDAs.
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The references are appropriately tuned in the interest of fair comparison. For
instance, the references employ selection and replacement strategies which are
identical to those of rBOA.

Among various (un)supervised learning algorithms for accomplishing mix-
ture models, clustering is perceived to be a suitable candidate in terms of
computational efficiency [6, 20]. In general, EDAs employ a partitional ap-
proach that endeavors to group a set of multi-dimensional data into a number
of subsets. Promising examples include K-means algorithm [47] and random-
ized leader algorithm (RLA) [20, 47]. Their mechanisms are briefly described
below.

The K-means algorithm divides data samples into K nonempty subsets.
The centroids of the current clusters are computed, and each sample is reas-
signed to the closest cluster. The process iterates until no more new assign-
ment occurs [47]. In the RLA, each randomly chosen sample belongs to the
nearest cluster whose leader is at a distance (to the sample) that is below
a given threshold. If there is no such cluster, the sample becomes the leader
of a new cluster. The result is obtained after going over the samples exactly
once [20,47].

Note that the RLA is faster than the K-means. The former is somewhat
less accurate. Moreover, the frequency with which mixture models are used
(in model selection) is lower than that in model fitting. Thus, the K-means
algorithm8 and the RLA (with a threshold value of 0.3) are appropriate can-
didates for model selection and model fitting, respectively.

Model fitting and model sampling are carried out on the basis of maxi-
mal compound subproblems in view of their efficiency for large decomposable
problems. Moreover, normal probability distribution has been employed due
to its inherent advantages – close approximation and simple analytic proper-
ties. Truncation selection that picks the top half of the population and the
BIC of Eq. (5.6) whose regularization parameter λ is 0.5 have been invoked
for learning a probabilistic model. The renewal policy replaces the worst half
of the population with the newly generated offspring (i.e., elitism-preserving
replacement). Since no prior information about the problem structure is avail-
able in practice, we set |Y| − 1 for the number of allowable parents (i.e., no
constraint in the model selection).

Each experiment is terminated when the optimum is found or the number
of generations reaches 200. All the results were averaged over 100 runs.

5.7.2 Results for the rBOA Performance

Figure 5.7 shows the average number of evaluations that rBOA performs to
find the optimum of RDP with α = 1.0, β = 0.8, δ = 0.8, and n ranging from
10 to 100. The figure also shows results for RNSP with δ = 0.2 and n = 10

8 A promising number of clusters (i.e., mixture components K) empirically obtained
for each problem is used for model selection.
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Fig. 5.7. Performance of rBOA on decomposable problems.

to 60. The population size supplied is empirically determined by a bisection
method so that the optimum is found [88,89]. In Fig. 5.7, it is seen that the re-
sults for the RDP and the RNSP are closely approximated (fitted) by Θ(n1.9)
and Θ(n1.8), respectively. Thus, rBOA can solve (additively) decomposable
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problem of bounded difficulty with a sub-quadratic (but near-quadratic) com-
plexity. In other words, the growth of the number of evaluations with the size
of problem (i.e, scalability) seems to be sub-quadratic. A detailed investigation
is found in Sect. 5.7.3.

Figure 5.8 provides a comparative study of the performance of rBOA and
references (i.e., EGNA, mIDEA, and MBOA) as applied to the decomposable
problems (i.e., RDP and RNSP). Since a decomposable problem consists of
m subproblems, the effective problem difficulty tends to be proportional to
m. Hence, the population is supplied by a linear model, viz., N = r · m, for
simplicity.

Figure 5.8(a) compares the proportion of correct BBs as applied to the
RDP with α = 1.0, β = 0.8, δ = 0.8, and varying m. The rBOA employs
one mixture component, viz., K = 1, for model selection. The population is
supplied by N = 100m. The results show that the solutions found by rBOA
and MBOA are much better than those computed by mIDEA and EGNA.
Although the MBOA seems to be somewhat superior to the rBOA, it has
no statistical significance. Table 5.1 supports this assertion. It is also seen
that the rBOA and the MBOA achieve stable quality of solutions while the
performance of mIDEA and EGNA rapidly deteriorates as the problem size
increases. From Figs. 5.7(a) and 5.8(a), it is clear that the scale-up behavior
of rBOA and MBOA is sub-quadratic for the RDP; while the mIDEA and the
EGNA have an exponential scalability.

Figure 5.8(b) depicts the BB-wise objective function values returned by the
algorithms when applied to the RNSP with δ = 0.2 and varying m. Mixture
models for model selection use three mixture components (K = 3). A linear
model, viz., N = 200m, is used for supplying the population. As in the RDP, it
is seen that the performance of rBOA and MBOA remains uniform irrespective
of the problem size. It can mean that they have a sub-quadratic scalability for
the RNSP. However, the results show that the rBOA outperforms the MBOA
quite substantially with regard to the quality of solution. This consequence
is clearly seen in the statistical test in Table 5.1. It is also observed that the
mIDEA and the EGNA find solutions of unacceptable quality as the problem
size increases and their scalabilities obviously become exponential.

From Figs. 5.7 and 5.8 and Table 5.1, we may conclude that the rBOA finds
a better solution with a sub-quadratic scale-up behavior for decomposable
problems than does the MBOA, the mIDEA, and the EGNA, especially as
the size and difficulty of problems increase.

Table 5.2 compares the solutions found by the algorithms as applied to
the well-known real-valued optimization problems depicted in Table 5.1. Three
mixture components are employed for all the benchmarks. However, any num-
ber of components is acceptable for Griewangk and Michalewicz functions as
there is no interaction between variables. The results show that the MBOA
is superior to the rBOA, the mIDEA, and the EGNA (they find acceptable
solutions, however) for the Griewangk function because it can capture some
knowledge about independence as well as overcome numerous traps (i.e., local
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Fig. 5.8. Comparison results of algorithms on decomposable problems.

optima) due to the kernel distributions. In the Michalewicz function, the per-
formances of MBOA and rBOA are comparable, and both algorithms outper-
form the EGNA and the mIDEA. It means that the EGNA and the mIDEA
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Table 5.1. Performance comparison of algorithms on fRDP and fRNSP .

Problem Measure EGNA mIDEA MBOA rBOA

RDP µQoS 0.196000 0.418000 1.0 0.988000
(m = 5) σQoS 0.197949 0.169900 0.0 0.047497

RDP µQoS 0.002000 0.175000 1.0 0.992000
(m = 10) σQoS 0.019900 0.187283 0.0 0.030590

RNSP µQoS −0.229916 −0.200973 −0.063843 −0.001384
(m = 5) σQoS 0.030276 0.136850 0.056469 0.005965

RNSP µQoS −0.238623 −0.299768 −0.056143 −0.001456
(m = 10) σQoS 0.017609 0.111364 0.030395 0.002651

Statistical t-test

Test case
RDP RNSP

m = 5 m = 10 m = 5 m = 10

rBOA − EGNA 38.30† 273.20† 71.72† 110.78†

rBOA − mIDEA 32.80† 41.92† 14.45† 13.59†

rBOA − MBOA −2.51 −1.99 11.10† 13.34†

MBOA − EGNA 40.41† 499.00† 27.18† 33.51†

MBOA − mIDEA 34.08† 43.83† 14.71† 10.43†

mIDEA − EGNA 8.10† 9.05† 2.19 −1.97

Problem Statistical order

RDP (m = 5, 10) rBOA ∼ MBOA � mIDEA � EGNA

RNSP (m = 5, 10) rBOA � MBOA � mIDEA ∼ EGNA

† The value of t is significant at α = 0.01 by a paired, two-tailed test. The
symbols � and ∼ represent dominance and indifference between algorithms.

fail to discover independent interactions between variables. It is also seen that
the EGNA and the rBOA are quite superior to the mIDEA and the MBOA
in the Cancellation function. Although all the algorithms can successfully
capture the information about linear interactions, the EGNA achieves the
best performance due to its inherent efficiency when it comes to single-peak
functions. Even though the rBOA traverses multiple regions of the unimodal
function, its performance is acceptably high. It is important to note that the
rBOA outperforms the MBOA, the mIDEA, and the EGNA in the case of the
Rosenbrock function whose optimum is hard to find. Further, the performance
of MBOA and EGNA is very poor. This is explained below.

The variables of the Rosenbrock function strongly interact around a curved
valley. Also, the function is symmetric. It is clear that incorrect factorizations
(i.e., no dependencies between variables) are encountered at an early stage
of the algorithms. Due to the incorrect structure, they try to solve the prob-
lems by treating the variables in isolation. Of course, finding an optimum in
this way is difficult because any given algorithm does not cross the intrinsic
barrier. After a few generations, however, individuals start to collect around
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Table 5.2. Performance of algorithms on real-valued benchmarks (n = 5).

Problem Measure EGNA mIDEA MBOA rBOA

Griewangk µQoS 0.061968 0.067873 0.003258 0.065993
(N = 2000) σQoS 0.016287 0.018634 0.005205 0.017604

Michalewicz µQoS −4.637647 −4.613430 −4.687653 −4.687640
(N = 500) σQoS 0.013388 0.076301 0.005857 0.000044

Cancellation µQoS 0.000034 0.014854 0.001654 0.000557
(N = 100) σQoS 0.000122 0.006420 0.001663 0.000740

Rosenbrock µQoS 2.141721 0.003518 0.664121 0.000177
(N = 3000) σQoS 0.182596 0.017894 0.521631 0.001283

Statistical t-test

Test case Griewangk Michalewicz Cancellation Rosenbrock

EGNA − rBOA −1.70 37.17† −6.69† 116.64†

mIDEA − rBOA 0.74 9.68† 21.97† 1.83

MBOA − rBOA −33.77† 0.00 5.72† 12.67†

EGNA − MBOA 32.76† 37.16† −9.58† 25.49†

mIDEA − MBOA 33.07† 9.68† 19.83† −12.65†

EGNA − mIDEA −2.35 −3.30† −22.91† 115.46†

Problem Statistical order

Griewangk MBOA � rBOA ∼ mIDEA ∼ EGNA

Michalewicz rBOA ∼ MBOA � EGNA � mIDEA

Cancellation EGNA � rBOA � MBOA � mIDEA

Rosenbrock rBOA ∼ mIDEA � MBOA � EGNA

† The value of t is significant at α = 0.01 by a paired, two-tailed test. The
symbols � and ∼ represent dominance and indifference between algorithms.

the curved valley. At this time, the rBOA can easily capture such a nonlin-
ear, symmetric dependency due to mixture models. On the other hand, the
mIDEA can cope with the cancellation effect (arising from symmetry) to some
extent by clustering in the overall problem space. However, the MBOA does
not deal successfully with the situation because finding a promising set of split
boundaries so as to cross the barrier is very difficult. In addition, the EGNA
finds it impossible to overcome the hurdles by a (simple) single-peak model.

From Table 5.2, it can be concluded that the rBOA finds good solutions to
complicated problems in terms of dependencies (of decision variables) while
achieving comparable or acceptable solutions to others.

As a result, the rBOA achieves the optimal solution with a sub-quadratic
scale-up behavior for decomposable problems. Note that the sub-quadratic
scalability is solely due to proper decomposition brought about by correct
factorization and the PBBC realized by the subspace-based model fitting and
model sampling.
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Moreover, the rBOA finds better solutions for decomposable problems and
acceptable (or even better) solutions to traditional real-valued optimization
benchmarks, than those found by the state-of-the-art real-coded EDAs.

5.7.3 Verification of rBOA Scalability

Figures 5.9 and 5.10 show the experimental results for decomposable problems
(i.e., RDP and RNSP). The population size N supplied is empirically sought
by a bisection method [89] such that the rBOA finds the optimal solution by
the estimated (optimal) population size.

Figure 5.9 depicts the average population size and the number of evalua-
tions until convergence to the optimum when the rBOA with K = 1 is applied
to the RDP with α = 1.0, β = 0.8, and δ = 0.8. The size of the tested problem
varies from n = 10 to 100. Figure 5.10 also illustrates the same performance
measures as the rBOA with K = 3 is applied to the RNSP with δ = 0.2. The
size n of the problem varies from 10 to 60.

The results in Figs. 5.9(a) and 5.10(a) show that the population-sizing
model Θ(n1.25) (i.e., population-complexity) (required for correctly discover-
ing the problem regularities) is in close agreement with the experimental re-
sults. In Figures 5.9(b) and 5.10(b), it is also seen that the theoretical model
of rBOA scalability, viz., Θ(n1.75), is consistent with experimental results.
More accurate approximations for the RDP and the RNSP are obtained by
Θ(n1.9) and Θ(n1.8) respectively (see Fig. 5.7). The discrepancies arise from
the effects of finite population on the convergence time and the assumptions
made for tractable analysis. The close agreement with actual performance is
a noteworthy feature in this regard.

We have often insisted that the analysis is also applicable to exponentially
scaled problems where the assumptions made for uniformly scaled problems
are relaxed. As described in Sect. 5.5.3, the only difference is in the conver-
gence time: the number of evaluations increases linearly with the problem size.
It implies that the population dependence remains the same, i.e., Θ(n1.25),
and hence the convergence time complexity is Θ(n). Thus, the scalability of
rBOA for exponentially scaled problems is reflected by Θ(n2.25).

Additional experimental studies are reported in this section. On the basis
of RDP, an exponentially scaled problem is produced by multiplying subprob-
lems by exponential-scaling constants. The problem is formally stated by

m∑
i=1

ci · ftrap(y2i−1, y2i) (5.50)

where c is a scaling factor.9

Fig. 5.11 illustrates the average population size and the number of evalu-
ations as applied to the exponentially scaled problem. It is also seen that all

9 In this experiment, the scaling factor c is set to 2.5.
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Fig. 5.9. Scalability of rBOA on fRDP with α = 1.0, β = δ = 0.8, and n = 10−100.

the experimental results are in close agreement with the theoretical bounds.
In other words, it supports the validity of the method of analysis in respect
of exponentially scaled problems.

On the basis of the results, we may conclude that the rBOA achieves
an optimum with a sub-quadratic scale-up behavior for (uniformly scaled)
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Fig. 5.10. Scalability of rBOA on fRNSP with δ = 0.2 and n = 10 − 60.

decomposable problems, and its population size supplied for learning a correct
model grows as quasi-linear.
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Fig. 5.11. Scalability of rBOA on the exponentially scaled problem.

5.8 Summary

In this chapter, we have presented a real-coded BOA in the form of (ad-
vanced) real-coded EDAs. Decomposable problems were the prime targets
and sub-quadratic scale-up behavior (of rBOA) was a major objective. This
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was achieved by proper decomposition (i.e., linkage learning) and probabilistic
building-block crossover (PBBC) on real-valued variables. As a step in this
direction, Bayesian factorization was performed by means of mixture mod-
els, the substructures were extracted from the resulting Bayesian factoriza-
tion graph (i.e., problem decomposition), and each substructure was fitted by
mixture distributions whose parameters were extracted (by estimation) from
the subspaces (i.e., subproblems). In the model sampling phase, the offspring
was generated by an independent subproblem-wise sampling procedure.

Moreover, the scalability of rBOA has been analyzed for uniformly scaled
decomposable problems. The approach has also been valid for exponentially
scaled problems. According to the number of mixture components (K), the
(maximum) order of decomposition (k), and the size of the problem (n), it has
been shown that the population size required for building a correct model (i.e.,
discovering the problem regularities) increases as Kkn1.25 and the number of
evaluations until reaching the optimum grows as Kkn1.75. That is, the worst-
case complexity of rBOA scalability is Θ(n1.75). Thus, the rBOA finds the
optimal solution with a sub-quadratic scalability with regard to the problem
size.

Experimental studies demonstrated that that the rBOA finds the optimal
solution with a sub-quadratic scale-up behavior. The comparative studies ex-
hibited that the rBOA outperforms the up-to-date real-coded EDAs (EGNA,
mIDEA, and MBOA) when faced with decomposable problems regardless of
inherent problem characteristics such as deception, nonlinearity, and symme-
try. Moreover, the solutions computed by rBOA are acceptable in the case of
traditional real-valued optimization problems while they are generally better
than those found by EGNA, mIDEA, and MBOA. Further, the quality of so-
lutions improves with the degree of problem difficulty. Moreover, the analytic
models of rBOA vis-à-vis the population-sizing and the scalability have been
verified by the experimental studies.

It is noted that the rBOA learns complex dependencies of variables by
means of mixture distributions and estimates the distribution of population
by exploiting mixture models at the level of substructures. This allows us to
keep options open at the right level of attention throughout the run. In the
past, most (advanced) real-coded EDAs used single normal models or mixtures
at the level of the problem, but these are unable to capture the critical detail.

More work on the proper number of mixture components and the devel-
opment of faster mixture models needs to be done. However, rBOA’s strategy
of decomposing problems, modeling the resulting building blocks, and then
searching for better solutions appears to have certain advantages over exist-
ing advanced probabilistic model building methods that have been suggested
and used elsewhere. Certainly, there can be many alternatives with regard
to exploring the method of decomposition, the types of probabilistic models
utilized, as well as their computational efficiency, but this avenue appears to
lead to a class of practical procedures that should find widespread use in many
engineering and scientific applications.
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Multiobjective Real-coded Bayesian
Optimization Algorithm

This chapter presents a competent multiobjective estimation of distribution
algorithm (MEDA). It solves real-valued multiobjective optimization prob-
lems (MOPs) of bounded difficulty quickly, accurately, and reliably: it is a
pilot study in this regard. This is the multiobjective real-coded Bayesian op-
timization algorithm (MrBOA). The goal is to fit the real-coded Bayesian
optimization algorithm (rBOA) into the multiobjective optimization frame-
work without in any way diluting its unique features. Thus, it can automati-
cally discover problem regularities and then effectively exploit this knowledge
for traversing the multiobjective search space in the context of decomposition
principle. A new selection scheme has also been developed for improving prox-
imity and promoting diversity of the solutions. It assigns fitness to nondom-
inated individuals on the basis of pure Pareto ranks and crowding distance;
and to others by their ranks and sharing intensity. The effect of the Pareto
rank is to push all the individuals toward nondominated solutions. It may
significantly weaken population diversity, but the problem is overcome by in-
corporating crowding distance and sharing intensity. The crowding distance
(that has already been investigated elsewhere) is enhanced by considering the
distance of a solution from its successor along each of the objectives. It can
promote diversity of nondominated individuals due to its ability to discrimi-
nate between two equally preferable but crowded individuals and then select
the most promising one. The sharing intensity is inversely proportional to the
domination count, which is the number of individuals that dominates the so-
lutions. It can also preserve population diversity. In other words, it penalizes
the dominated individuals by their domination count so that representative
individuals are selected. By combining the selection scheme with the rBOA,
the MrBOA achieves a Pareto front with improved proximity and diversity.

The chapter is organized as follows. Section 6.1 introduces the central con-
cepts of multiobjective optimization. Section 6.2 briefly reviews genetic and
evolutionary algorithms (GEAs) for multiobjective optimization. Section 6.3
outlines MrBOA. The proposed selection scheme is presented in Sect. 6.4.

Chang Wook Ahn: Advances in Evolutionary Algorithms: Theory, Design and Practice, Studies
in Computational Intelligence (SCI) 18, 125–151 (2006)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006
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Real-valued test MOPs are cited in Sect. 6.5 and experimental results are
exhibited in Sect. 6.6. The chapter concludes with a summary in Sect. 6.7.

6.1 Multiobjective Optimization

Many real-world problems naturally fall within the purview of multiobjective
(or multicriteria) optimization problems (MOPs) consisting of several incom-
mensurable and often conflicting objectives [20, 24, 36, 68, 122, 123]. Without
loss of generality, a general MOP can be formulated as follows:

minimize z = f(y) = (f1(y), f2(y), · · · , fM (y))
subject to e(y) = (e1(y), e2(y), · · · , eJ (y)) ≥ 0 (6.1)

where y = (y1, y2, · · · , yn) ∈ Ω, z = (z1, z2, · · · , zM ) ∈ Λ. Here, y is the
decision vector, Ω denotes the decision space, z is the objective vector, and
Λ denotes the objective space. The set of decision vectors y that satisfy the
constraints e(y) ≥ 0 is defined to be the feasible set Ωf , and the image of Ωf

in the objective space is defined to be the feasible region Λf .
Due to the interdependence of the objectives, MOPs normally have a set of

alternative solutions. These solutions are optimal in the sense that no solution
is superior to them in an overall sense because no objective can be improved
without losing on the others. The set of solutions is known as Pareto-optimal
set or nondominated set. With regard to a set A ⊆ Ωf , the Pareto-optimal
set (or nondominated set) that consists of alternative solutions such that no
objective can be improved without, at the same time, degrading the others is
mathematically defined by

Q = {y0 ∈ A| � y1 ∈ A : y1 � y0} (6.2)

where y1 � y0 indicates that the solution y1 (Pareto) dominates the solution
y0. That is,

∀i : fi(y0) ≥ fi(y1) ∧ ∃j : fj(y0) > fj(y1). (6.3)

The image of the Pareto-optimal set under the feasible objective space is
defined to be the Pareto (optimal) front. It is defined by

F = {(f1(y0), f2(y0), · · · , fM (y0))|y0 ∈ Q}. (6.4)

Note that the goal of multiobjective optimization is to find the global
Pareto-optimal set Q∗; in other words, to locate the global (or true) Pareto
front F∗ of the nondominated solutions. They are defined by the Pareto-
optimal set and the Pareto front on the entire feasible set Ωf and region Λf ,
respectively.

However, achieving the goal is not practical since there can be an infi-
nite number of Pareto-optimal solutions. Therefore, the down-to-earth goal is
to find representative nondominated solutions of the true Pareto front while
maintaining a good spread of solutions over the front [18–20,24,29,38,60].
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6.2 Multiobjective Genetic and Evolutionary Algorithms

Multiobjective genetic and evolutionary algorithms (MGEAs) have attracted
due attention of late due to their ability to search for multiple solutions in
parallel (so that a family of feasible solutions to the problem is found) as
well as handle complex features such as discontinuity, multimodality, and dis-
joint objective spaces [29, 68, 123]. The growing interest in difficult, higher
dimensional problems has spurred the growth of MGEAs for over a decade.
In general, MGEAs can be divided into two categories – population-based and
probability distribution-based (or EDA-based) approaches.

The population-based approach strives to deal with MOPs by allowing
population-based GEAs the ability to handle multiple objectives. It can be
further classified into two categories: simple and advanced.

The simple approach attempts to improve proximity of the Pareto front by
exploiting the domination information of individuals and maintain diversity of
the population by employing a sharing strategy. However, the approach often
looses good solutions found so far due to lack of elitism and fails to maintain
diversity in the population due to the difficulty in properly specifying the
sharing parameter. Multiobjective genetic algorithm (MOGA) [37], niched
Pareto genetic algorithm (NPGA) [54], and nondominated sorting genetic
algorithm (NSGA) [109] are included in this category.

The MOGA assigns the rank of a particular individual by adding one to
the number of individuals by which it is dominated. All the nondominated
individuals are preferentially managed by assigning the best rank; while dom-
inated solutions are penalized by the population density of the corresponding
region of the tradeoff surface. The fitness assignment is performed by usually
linearly interpolating the ranks from the nondominated (i.e, the best) to the
most dominated (i.e., the worst) individuals. The MOGA also uses a niche-
formation method to distribute the population over the Pareto front, which
maintains the diversity in the population.

The NPGA harmonizes tournament selection with the concept of Pareto
dominance. Instead of allowing direct competition between two individuals, a
comparison set consisting of other individuals in the population intervenes in
the tournament. If one of the two competitors is dominated by any member
of the comparison set and the other is not, then the latter is chosen as the
winner of the tournament. When both competitors are either dominated or
nondominated, the tournament result is determined by fitness sharing: the
individual of the sparsest population density in its niche is selected. Although
quite a large population size is inevitable, the selection noise can be tolerated
by emerging niches in the population.

The NSGA classifies individuals into several categories based on the con-
cept of nondomination. To provide an equal signal for reproduction, all non-
dominated individuals are classified into the first (i.e., nondominated) front
and assigned the same dummy fitness value. This group of individuals is then
ignored and the next front is extracted in the same manner. The process is
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repeated until all individuals in the population are classified. This is known as
the nondominated sorting. To maintain the diversity of the population, these
solutions are shared with their dummy fitness values by a niching method.

To compensate the inherent defects of the simple approach, an advanced
approach has been devised. It endeavors to harmonize with elitism and to
take into account domination and density information at the same time,
thereby improving both proximity and diversity of nondominated solutions.
However, the approach may not be efficient for some complicated problems
since it does not pay much attention to linkage-friendly recombination. It
is a key component (of GEAs) for growing and assembling good partial solu-
tions (i.e., BBs) toward global optima. Strength Pareto evolutionary algorithm
(SPEA) [122, 123], SPEA-II [124], NSGA-II [29], and rank-density-based ge-
netic algorithm (RDGA) [68] are representative schemes.

The SPEA archives nondominated solutions found thus far. In the external
set (called archive), the fitness of an individual is determined by a proportional
number of individuals which are covered by the individual. The proportional
number is defined as strength. For an individual of the non-external set (i.e.,
the population), its fitness is calculated by adding “1” to the total sum of the
strengths of all the external members that cover the individual. This mecha-
nism simultaneously performs two tasks on the individuals preferably closer
to the Pareto front; and the population diversity is maintained without any
explicit sharing. The SPEA also incorporates a clustering procedure in order
to keep the size of the external set without affecting its unique characteristics.

The SPEA-II is an enhanced version of SPEA. In the SPEA-II, each indi-
vidual in both the (elitist) archive and the population (i.e., non-external set)
is assigned a strength value by the number of individuals it dominates. The
rank (i.e., raw fitness) of an individual is computed by summing the strengths
of the individuals that dominate the individual. To discriminate between in-
dividuals which have equal ranks, the density information is estimated by the
kth nearest neighbor method. The (final) fitness is defined as the sum of rank
and density values. In addition, a truncation method is used in the archive in
order to maintain the number of elitists.

The NSGA-II combines a fast nondominated sorting approach and a simple
crowding distance assignment method in the earlier NSGA framework. Also,
elitism is involved in the selection phase. The nondominated sorting scheme
can rapidly discover the Pareto ranks (i.e., domination ranks) of individuals.
As a diversity-preserving strategy, a dynamic crowding scheme is applied to
effectively carry out density estimation. The NSGA-II prefers the individuals
that are close to the true Pareto front and exist in some coarser region (i.e.,
low density) when they belong to the same front. Moreover, the idea of elitism
is all about equally preferable nondominated solutions.

The RDGA exploits the ranking scheme of MOGA in the similar context
of the strength of SPEA and SPEA-II. The final rank of an individual is de-
fined as the sum of the rank values of all the individuals that dominate it.
In addition, a modified adaptive cell density evaluation scheme is employed
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for discriminating between the identically ranked individuals. It transforms
any MOP into a biobjective optimization problem over the rank-density do-
main. After the conversion, fitness assignment is efficiently fulfilled by a simple
MGEA such as a vector evaluated genetic algorithm (VEGA) [103].

The EDA-based approach concentrates on effectively combining the
strengths of the state-of-the-art MGEAs with the EDAs’ ability of automatic
discovery and exploitation of problem regularities. The approach generally
outperforms the population-based approach with regard to both proximity
and diversity, by virtue of its efficient fitness assignment policy of compe-
tent MGEAs and linkage-friendly recombination of EDAs. In this sense, the
EDA-based approach is coming into limelight of late. Bayesian mutiobjective
optimization algorithm (BMOA) [82], multiobjective (hierarchical) Bayesian
optimization algorithm (m(h)BOA) [59,60], and multiobjective mixture-based
iterative density-estimation evolutionary algorithm (MIDEA) [18,19] are some
leading techniques.

The BMOA merges a ε-dominance selection into mixed Bayesian optimiza-
tion algorithm (MBOA) for multiobjective optimization. In the selection, no
two neighboring individuals within an ε-distance are nondominated, and the
survival of dominated solutions depends on the number of individuals by which
they are dominated. Thus, the selection operator enables nondominated so-
lutions to ensure proximity (i.e., convergence to the true Pareto front) and
diversity (i.e., a good approximation of the front).

The m(h)BOA combines the simple and robust selection scheme of NSGA-
II with the BB identification and mixing capabilities of (h)BOA for multiob-
jective optimization. Due to the synergistical integration, it can effectively
solve MOPs of (hierarchically) bounded difficulty.

The MIDEA transplants a diversity-preserving selection into an iterative
density-estimation evolutionary algorithm (IDEA) with mixture probability
distributions in the multiobjective optimization framework. The selection op-
erator can flexibly strike a balance between proximity and diversity in the
resulting approximation set through a single control parameter. The use of
mixture distributions obtained by means of clustering the objective space fur-
ther stimulates the diversity of solutions. In addition, the diversity-preserving
selection reconciled with the elitism can prevent diversity degeneration.

6.3 Multiobjective Real-coded
Bayesian Optimization Algorithm

This section describes the multiobjective real-coded Bayesian optimization al-
gorithm (MrBOA) as an effective tool for solving MOPs. The aim is to extend
the single-objective real-coded Bayesian optimization algorithm (rBOA) into
the realm of multiobjective optimization.

Without loss of generality, it is assumed that all the objectives in the
MOP are to be minimized. Further, real-valued multiobjective optimization
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problems (RMOPs) are the main targets since the (single-objective) rBOA
treats the continuous domain quite satisfactorily.1 In this regard, the rBOA
is extended into the realm of multiobjective optimization without in any way
diluting its unique features. Generously drawing on the procedures of rBOA
(see Section the following pseudo-code provides an outline of the MrBOA:

Step 1. Initialization

Randomly generate initial population P
Step 2. Selection

Select a set of promising candidates S from P
2.1. Ranking

Domination ranks R are found by the nondominated sorting
2.2. Adaptive Sharing

Sharing intensity I are computed by an adaptive sharing
2.3. Dynamic Crowding

Crowding distances D are computed by a dynamic crowding
2.4. Fitness Assignment

Fitness of individuals are assigned by R, I, and D
2.5. Elitism

The elitist solutions are selected
Step 3. Learning

Learn a probabilistic model M from S using a metric (and constraints)
Step 4. Sampling

Generate a set of offspring O from the estimated probability distribution
Step 5. Replacement

Create a new population P by replacing some individuals of P with O
Step 6. Termination

If the termination criteria are not satisfied, go to Step 2

All the procedures except for the selection (i.e., Step 2) are the same as
those of rBOA. Hence, the selection procedure imparts to rBOA the capability
to handle multiple objectives, and the (probabilistic) model learning (i.e.,
building) and sampling technique of rBOA provide MrBOA with necessary
tools for discovering problem regularities and achieving the maximum BB-
wise mixing rate in multiobjective optimization.

In general, the MGEAs are characterized by the selection strategy. This is
because the purpose of selection in the MGEAs is to choose individuals that
can lead individuals to the true Pareto front F∗ while maintaining a good
spread of the solutions. The selection method of Step 2 is described in the
next section.

1 However, different types of problems can be taken into consideration because the
rBOA can be replaced by any competent GEA while directly incorporating the
proposed selection method in Section 6.4.

5.2),
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Fig. 6.1. Example of domination ranks.

6.4 Selection Strategy

This section presents the proposed selection scheme that promotes high prox-
imity as well as diversity-preservation. It consists of five components described
below.

6.4.1 Ranking

In MGEAs, ranking is a fundamental element since it is closely related to
fitness assignment to individuals. Many ranking schemes have been developed
for achieving close convergence and uniform spread to the true Pareto front
F∗ [29, 37,68,82,123,124].

We employ nondominated sorting method (i.e., pure Pareto ranking scheme)
of NSGA-II, due to its simplicity and effectiveness. It decides domination ranks
R of individuals in such a manner that all the nondominated individuals in
the population are assigned “rank 1” (known as the first (Pareto) front2 F1)
and removed from temporary assertion, then a new set of nondominated in-
dividuals is assigned “rank 2” (viz., the second front F2), and so forth. A
solution (i.e., individual) with a lower rank is always preferred. An example
of the Pareto ranking is illustrated in Fig. 6.1.

In the NSGA-II, a simple but efficient crowding method for diversity
preservation is applied to the individuals on the basis of identical fronts.

2 It is also denoted as the nondominated front.
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It computes crowding distance (as a density estimate) in order to discrim-
inate among solutions with equal domination ranks. However, its effect on
the selection of individuals is definitely secondary to that of their domination
ranks. Thus, some information that can facilitate diversity preservation must
be more actively brought in for selecting promising individuals. In this regard,
adaptive sharing and dynamic crowding described below are very helpful.

6.4.2 Adaptive Sharing

The adaptive sharing method effectively estimates density information of indi-
viduals. It is based on the domination count [18,36]. The domination count of
an individual is defined by the number of individuals in the current population
by which it is dominated. The goal of the sharing scheme is to boost the solu-
tions that are less dominated since they generally stand for their dominated
solutions. In a similar way, an individual can also incorporate the informa-
tion about the number of individuals which are dominated by it; that is, a
solution that dominates more individuals is preferred [24]. However, it risks
being a primary factor. The reason is that a solution dominated by a smaller
number of individuals (i.e., smaller domination count) is essentially represen-
tative; but a solution that dominates a smaller number of individuals is not
necessarily unrepresentative. The latter case commonly occurs whenever the
solutions exist around the boundary of each objective. In that region, some
individuals may dominate only a few solutions even though their ranks are
low. Moreover, this situation frequently occurs as population converges to-
ward the true Pareto front. Consequently, the domination count is sufficient
to distinguish representative individuals of a population.

In the existing sharing methods, the performance is strongly governed by
the parameter setting. Thus, it cannot achieve a good performance without
proper setting. However, the adaptive approach does not require any user-
specified parameter. That is, good density information can be adaptively
computed by employing the domination count alone. As a measure of den-
sity, sharing intensity is defined as follows:

I(i) = 1 − 1
1 + Ndom(i)

(6.5)

where I(i) is the sharing intensity of individual i, Ndom(i) is the domination
count of the individual i.

It assigns zero value to the nondominated individuals and lower values
are assigned to the individuals which are less dominated (by other solutions).
Hence, an individual with a lower value is always preferred because it serves as
a representative of its objective space covered by the solution regardless of the
number of dominated individuals in that region. During fitness assignment (in
Sect. 6.4.4), it can play an important role in preserving diversity of population
by imposing higher penalty to the individuals which are dominated by more
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individuals because they can be regarded as being crowded (i.e., redundant) in
the sense of Pareto optimality. An example of sharing intensity of individuals
is given in Fig. 6.2.

In the figure, domination ranks of individuals are the same as those in
Fig. 6.1. It is seen that lower values are assigned to individuals closer to non-
dominated solutions having smaller number of neighbors (i.e., less crowded).
In other words, the individuals that can promote diversity preservation (and
improve proximity as a bonus) are preferred.

6.4.3 Dynamic Crowding

Sine the sharing method does not have any effect on nondominated individuals
(see Figure 6.2), the dynamic crowding method is applied for performing a
good approximation of the nondominated (i.e., first) front F1. It has been
noted that the crowding method of NSGA-II is quite effective in stimulating a
diverse representation of the nondominated solutions in F1. Hence, we employ
the crowding method; it has been further enhanced, however.

After sorting individuals according to each objective function value, the
crowding method is applied to the first front F1 in order to discriminate be-
tween the nondominated solutions3. As a density measure, crowding distance
is defined by

3 They have the same domination rank “1” and sharing intensity “0”.



134 6 Multiobjective Real-coded Bayesian Optimization Algorithm

4

4

4

4

3

3

(B): {0.16}, {0.0016}

A

B

C

D

1
1

(individual): {Existing}, {Proposed}

(C): {0.16}, {0.0144}

f
1

(max) - f
1
(min) = 10

f
1

f
2

f
2

(max) - f
2
(min) = 10

Fig. 6.3. Example of crowding distance.

D(ωi) =
v∑

k=1

{fk(ωi+1) − fk(ωi−1)} {fk(ωi) − fk(ωi−1)}(
fmax

k − fmin
k

)2 (6.6)

where ωi is the ith individual in the sorted set of nondominated solutions, D(i)
is the crowding distance of the individual i, fk(i) is the kth objective function
value of the individual i, and fmin

k (fmax
k ) is the minimum (maximum) value

of the kth objective function. For each objective, as a matter of course, the
first and last individuals are assigned an infinite distance to give an absolute
preference to boundary solutions.

An individual with a larger value is always preferred because it is regarded
as a less crowded (i.e, representative) individual that can well approximate
the nondominated solutions. Thus, the crowding distance can be incorporated
with fitness assignment as a sort of penalty function.

On the other hand, its benefit over the crowding of NSGA-II is illustrated
in Fig. 6.3. It is seen that the crowding of NSGA-II assigns to individuals B
and C the same values so that both individuals are equally preferred. But, it
is sufficient if one of them survives for a good approximation of the solutions
in F1 because the two solutions are quite close (i.e., crowded). The proposed
method assigns to the individual C a crowding distance that is larger than
that assigned to the individual B. That is, C is preferred to B. Therefore,
the crowding method provides an efficient framework for further promoting
diversity preservation of the nondominated solutions.
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6.4.4 Fitness Assignment

It is important to note that domination rank R is a primary component of
fitness assignment while sharing intensity I and crowding distance D prevent
thickly crowded and dominated individuals from surviving through the selec-
tion process. Taking into account their effect on preference of individuals, a
fitness function is defined as follows:

f(i) =

{
R(i)

(
1 + 1

1+D(i)

)
, if i ∈ F1

R(i) + γI(i), otherwise.
(6.7)

Here, f(i) denotes the fitness value of individual i, R(i) is the domination
rank of individual i, γ is a regularization parameter for penalty, and I(i)
and D(i) are the sharing intensity and the crowding distance of individual i,
respectively. An individual with a lower fitness value is always preferable.

As the value of parameter γ increases, sharing effect on the fitness grows
so that diversity is promoted. In the reverse case, proximity is emphasized
due to the growth of the effect of domination rank on the fitness. A proper
setting of γ may be crucial. Note that the value of the parameter γ should
not be too large. This is because the fitness assignment gradually approaches
that of NSGA-II as γ goes to 1. It is suggested that the parameter value
not exceed the total number of selected individuals for adequately balancing
between proximity and diversity.

An example of fitness assignment is depicted in Fig. 6.4. It is seen that
an individual is penalized in proportion to the degree of domination and the
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extent of crowding. In other words, a lower fitness value is assigned to an
individual that is closer to the first front F1 and less crowded while mostly
representing population.

6.4.5 Elitism

Elitism allows the best solutions of the current generation to be copied into
the next generation [32, 94] (see Sect. 4.2.2). Elitism plays an important
role in MGEAs due to the availability of equally preferable multiple solu-
tions [19,29,82,123]. It is important to retain many elitist solutions to further
advance the set of nondominated solutions. In general, a variation operator
such as recombination should be capable of generating new individuals that
are better in the sense of proximity as well as diversity. Of course, the operator
suffers as the set of nondominated solutions approaches the true Pareto front
F∗. If a nondominated solution gets lost in a certain generation, it is very
hard to recover a new nondominated individual in its neighborhood. Thus,
elitism directly contributes to exploration because it preserves superior indi-
viduals which are difficult to generate [19]. Moreover, elitism can also help in
exploitation as it determines the individuals which are selected to survive the
current generation [19]. Note that an easy but efficient approach for incorpo-
rating elitism into MGEAs is to employ truncation selection.

6.5 Real-valued Multiobjective Optimization Problems

This section presents real-valued multiobjective optimization problems
(RMOPs): (additively) decomposable problems and some traditional bench-
marks.

6.5.1 Decomposable Multiobjective Optimization Problems

Decomposable multiobjective optimization problems are created by combin-
ing basis functions of bounded difficulty. The value of a specific objective is
computed by the sum of the corresponding objective values of all the basis
functions.

The first problem is a multiobjective deceptive problem I (MDP-I). It is
based on the binary MDP suggested in [59,60]. The MDP-I is composed of a
real-valued deceptive problem (RDP) and its complement.

The RDP to be maximized is defined as follows:

fRDP (y) =
m∑

i=1

ftrap (y2i−1, y2i) (6.8)

where yj ∈ [0, 1], ∀j, m are the number of subproblems, and the trap function
ftrap which is the constituent of deceptive problems is given by
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ftrap(yj , yj+1) =

{
{α/(1 − δ)} (tj,j+1 − δ) , if tj,j+1 ≥ δ,

(β/δ) (δ − tj,j+1) , otherwise.
(6.9)

Here, tj,j+1 is given by
√

(y2
j + y2

j+1)
/
2, α and β are the global and the local

(i.e, deceptive) optimum, respectively, so that α/β indicates the signal to noise
ratio (SNR), and δ is the border of attractors. Note that the function can be
deceptive only if the constraint, α < (α + β)δ, is satisfied.

It may be noted that the RDP has 2m optimal solutions, among which
there is only one global optimum. An unsavoury feature of RDP is that the
optimum is isolated and there is a narrow basin of attraction toward the op-
timum. Thus, it is not readily amenable to hill-climbing strategy (such as
mutation) alone. In order to efficiently solve the RDP, a recombination oper-
ator that can learn the linkage between variables and achieve the maximum
BB-wise mixing rate is essential. This is because if the variables of each trap
function are processed independently (as in uniform crossover), BBs (i.e.,
partial solutions) near to the basin of attraction toward the global optimum
gradually degenerate, thereby eventually leading to one of the local optima.

On the other hand, the complement of RDP can be created by

fRDP (y) =
m∑

i=1

f trap (y2i−1, y2i) (6.10)

where the complement of trap function f trap is defined by

f trap(yj , yj+1) =

{
{α/(1 − δ)} (tj,j+1 − δ) , if tj,j+1 ≥ δ,

(β/δ) (δ − tj,j+1) , otherwise.
(6.11)

Here, α and β are the local and global optimum, respectively. There is no
deception.

Note that the complementary RDP also has only one global optimum, but
there is very wide attractor around it. Thus, any type of algorithm discovers
the optimum. The problem itself is trivial, but it makes the deception of RDP
harder when it is incorporated with the RDP in the context of multiobjective
optimization. The reason is given below.

Let us consider the RDP and its complement simultaneously. The comple-
ment strongly leads the variables toward zero value where the global optimum
of the complement occurs. Because of the deceptive characteristic of RDP, it
is difficult to find the optimum that is encountered as all the variables reach
“1”. In other words, extracting and keeping the optimal BBs of the RDP is
extremely hard due to the strong signal for the optimal solutions of the com-
plementary RDP as well as the deception of the RDP itself. Thus, it is hard
to discover the true Pareto front since it is composed of combinations of the
optimal BBs of both the problems.

On the basis of the RDP and its complement, the MDP-I is defined as
follows:
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maximize fMDP -I = (fRDP (y), fRDP (y)). (6.12)

Main difficulties of the problem lie in deception, tight linkage, and multi-
modality [27, 59, 60]. The true Pareto front has a total of (m + 1) number
of points. When they are listed from 0 to m along the objective values of
the RDP, each ith point has

(
m
i

)
distinct solutions [59,60]. It is important to

note that linkage-friendly recombination that can discover linear interactions
between variables and then incorporate the knowledge to effectively inter-mix
BBs is essential to successfully solve the MDP-I.

The second problem is a multiobjective deceptive problem II (MDP-II)
that also consists of the RDP. The MDP-II is formulated as follows:

minimize fMDP -II(y) = (f1(y), f2(y)),
where f1(y) = y1,

f2(y) = g(y)
{
1 − (f1(y)/g(y))2

}
,

g(y) = 1 + m − fRDP (y2, · · · , yn) (6.13)

where yj ∈ [0, 1], ∀j, m is the number of subproblems, and n is the size of
the problem. Since it involves all the characteristics of the RDP, the linkage-
friendly recombination is necessary for finding the true Pareto front. Note that
there are (m + 1) classes of Pareto fronts. As in the case of the MDP-I, each
ith class has

(
m
i

)
distinct Pareto fronts as arranged by the objective values of

the RDP.
The last decomposable problem is a multiobjective nonlinear, symmetric

problem (MNSP). The problem employs Rosenbrock function as a basis func-
tion of a real-valued nonlinear, symmetric problem (RNSP). The RNSP is
formulated as follows:

fRNSP (y) =
m∑

i=1

fRosen(y(i−1)·k+1, · · · , yi·k) (6.14)

where yj ∈ [−5.12, 5.12], ∀i, k and m is the subproblem size and the number
of subproblems, and the Rosenbrock function fRosen is given by

fRosen(y1, · · · , yk) =
k∑

i=2

{100 · (yi − y2
i−1)

2 + (1 − yi−1)2}. (6.15)

The RNSP is unimodal even though it consists of a number of flat curved
valleys. Thus, if selection pressure is not very high, any algorithm may grad-
ually transit to the global optimum without paying any special attention to
learning and exploiting linkage information. However, it leads to quite a slow
convergence as well as huge population size, and worse still, this problem is
proportional to the problem dimensionality. Consequently, it is quite hard to
find the global optimum unless linkage-friendly recombination is incorporated.

By incorporating the RNSP, the MNSP is created as follows:
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minimize fMNSP (y) = (f1(y), f2(y)),
where f1(y) = y1,

f2(y) = g(y)
{

1 −
√

f1(y)/g(y)
}

,

g(y) = 1 + fRNSP (y2, · · · , yn) (6.16)

where y1 ∈ [0, 1] and yj ∈ [−5.12, 5.12] for 2 ≤ j ≤ n, and n is the size of the
problem.

Note that linkage-friendly recombination that is capable of capturing and
incorporating nonlinear, symmetric interactions is required for efficiently solv-
ing the MNSP. In this regard, it ensures that the MNSP offers a real challenge
for real-coded multiobjective optimization algorithms, especially EDA-based
algorithms, due to some difficulties arising from nonlinear, symmetric linkage
between variables and flat, long basin of attraction of each subproblem.

6.5.2 Traditional Multiobjective Optimization Problems

Many RMOPs have been proposed with a view to testifying whether multiob-
jective optimization algorithms have the capability of dealing with a variety
of difficulties. Three well-known difficult RMOPs are investigated here. They
have some intriguing characteristics (beyond decomposability) which most
multiobjective optimization algorithms find hard to negotiate.

The first test problem is the ZDT4 function [122]. It is formulated as
follows:

minimize fZDT4(y) = (f1(y), f2(y)),
where f1(y) = y1,

f2(y) = g(y)
{

1 −
√

f1(y)/g(y)
}

,

g(y) = 1 + 10(n − 1) +
n∑

j=2

{
y2

j − 10cos(4πyj)
}

(6.17)

where y1 ∈ [0, 1] and yj ∈ [−5, 5] for 2 ≤ j ≤ n, and n is the size of the
problem. It has a very large number, viz., 219, of local Pareto fronts [29,
122]. Furthermore, the number of Pareto fronts increases as the individuals
approach the true Pareto front. Due to the high multimodality, it is very hard
to discover the true Pareto front.

The second test problem is the ZDT6 function [122]. It is defined as follows:

minimize fZDT6(y) = (f1(y), f2(y)),

where f1(y) = 1 − e−4y1sin6(6πy1),

f2(y) = g(y)
{
1 − (f1(y)/g(y))2

}
,

g(y) = 1 + 9

{
n∑

i=2

yj

/
(n − 1)

}1/4

(6.18)
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where yj ∈ [0, 1], ∀j, and n is the size of the problem. It has global Pareto-
optimal solutions which are nonuniformly distributed along the true Pareto
front such that more solutions come out as f1(y) goes to 1. Moreover, the
density of the solutions increases away from the true Pareto front. Thus, it
is quite difficult to achieve a good spread of solutions along the true Pareto
front.

The last test problem is a modified BT1 (mBT1) function. With a view to
emphasizing interactions of variables, the original BT1 proposed in [20] has
been amended as follows:

minimize fmBT1(y) = (f1(y), f2(y)),
where f1(y) = y1,

f2(y) = 1 − f1(y) +
n∑

j=1

∣∣∣∣∣yj +
j−1∑
i=1

yi

∣∣∣∣∣

where y1 ∈ [0, 1] and yj ∈ [−3, 3] for 2 ≤ j ≤ n, and n is the size of the
problem. Unlike the previous two functions, it has multivariate linear depen-
dencies between variables. Hence, discovering the true Pareto front is not easy
without incorporating the knowledge on the problem structure.

6.6 Experimental Results and Discussion

This section describes the performance metrics and the experimental setup.
The performance of MrBOA on RMOPs under various conditions is also in-
vestigated.

6.6.1 Performance Measures

The main goal in multiobjective optimization is to achieve higher proximity
of the nondominated set of solutions while preserving better diversity. Hence,
proper metrics are required for efficiently assessing the performance of an
algorithm regarding proximity and diversity. In this regard, we employ the
following two metrics.

The first is the proximity metric [20,117]. It measures the extent of conver-
gence of the nondominated set to the true Pareto front. The proximity metric
is given by,

Υ =
1

|F1|
∑

z0∈F1

min
z1∈F∗

{dE(z0, z1)} (6.19)

where dE(z0, z1) is the Euclidean distance between objective values and it is
given by

dE(z0, z1) =

√√√√ M∑
k=1

(fk(y1) − fk(y0))2 (6.20)
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where M is the number of objectives. A smaller value denotes a higher prox-
imity of the nondominated set of solutions.

The second is the diversity metric. It measures the extent of spread of the
nondominated solutions. The diversity metric is defined by

∆ =
df + dl +

|F1|−1∑
i=1

|di − µd|

(|F1| − 1)µd
(6.21)

where di and µd are the Euclidean distance between consecutive solutions
in the set F1 and the average of these distances respectively, and df and dl

are the Euclidean distances between the extreme solutions and the boundary
solutions of the computed nondominated set. The concrete methodology of
computing df and dl can be found in [29]. A smaller value indicates a better
diversity of the nondominated solutions.

Note that the diversity metric is essentially identical to that of NSGA-
II [29], but the difference lies in the consistency in indicating good/bad dis-
tribution of the nondominated solutions. With regard to diversity, the worst
case occurs when all the solutions come together to form a single solution.
Moreover, the diversity improves as the variance of di and the values of df

and dl decrease. Thus, the diversity metric always has a small value for well
distributed nondominated set of solutions. It goes to infinity as they gather
together.

Note that an effective comparative study of the two algorithms under con-
sideration must be performed by properly treating proximity and diversity.
However, there is a simple but effective alternative for directly comparing the
algorithms even though it does not provide any information about proximity
and diversity of nondominated solutions. This is the coverage metric [122,123].
It is used for comparing the dominance relationship between two sets of non-
dominated solutions resulting from two different algorithms. We employ a
modified coverage metric [34] that compensates some undesirable mathemat-
ical properties (as a metric). It is defined as follows:

C(QA
1 ,QB

1 ) =
|{y1 ∈ QB

1 |∃y0 ∈ QA
1 : y0 � y1}|

|QB
1 |

(6.22)

where QA
1 (QB

1 ) presents the set of solutions in the first front F1 (i.e., nondom-
inated solutions) returned by the algorithm A (B). The metric measures the
proportion of the members of QB

1 that are strictly dominated by the members
of QA

1 . Hence, C(QA
1 ,QB

1 ) = 1 if all the individuals in QB
1 are dominated by

those in QA
1 ; on the contrary, C(QA

1 ,QB
1 ) = 0 in the opposite case. Moreover,

C(QA
1 ,QA

1 ) = 0, and C(QA
1 ,QB

1 ) = 0 if QA
1 and QB

1 are subsets of a nondom-
inated set. Note that both C(QA

1 ,QB
1 ) and C(QB

1 ,QA
1 ) must be considered

independently since they have physically different meanings.
Although the above performance metrics are very rational for investigating

performance of multiobjective optimization algorithms on most of MOPs, they
are not suitable for applying to the MDP-I. The reason is given below.
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The true Pareto front of MDP-I is composed of several distinct points. The
goal is to find all solutions corresponding to the true Pareto front. But the
deceptive property prohibits individuals from evolving toward optimal BBs.
When an algorithm is completely under the influence of deception, all the
individuals converge to one of the points that is only composed of the opti-
mal BBs of the complementary RDP so that the proximity metric produces
zero value, viz., a perfect proximity. This is no meaningful situation. We can
obtain a similar result for the coverage metric. Hence, another metric must
be considered. In some past studies [19, 20], a metric has been proposed for
reflecting both proximity and diversity by computing the average distance
from the true Pareto front to nondominated set. In this work, it is denoted as
prox-div (PD) metric.

The PD metric is defined by

Ψ =
1

|F∗|
∑

z1∈F∗

min
z0∈F1

{dE(z0, z1)}. (6.23)

In the MDP-I, it returns zero value when all the points in the true Pareto front
are found. If individuals converge to some of them, it yields a higher value.
That is, the deception nudges the metric to a larger value. Moreover, a small
value is obtained as the algorithm keeps the individuals which are approaching
toward all the Pareto points. Note that the PD metric is conceptually akin to
the solution quality in the single objective optimization.

6.6.2 Experiment Setup

The performance of MrBOA is compared with that of NSGA-II [29] and
MIDEA [18, 19]. NSGA-II and MIDEA have been perceived to be represen-
tative algorithms of population-based (especially advanced) and EDA-based
approaches, respectively. To assess the performance of algorithms, PD metric
is used for MDP-I, and proximity, diversity and coverage metrics are employed
for MDP-II, MNSP, ZDT4, ZDT6, and mBT1.4

The NSGA-II employs real-coded encoding scheme with simulated binary
crossover (SBX) operator, and polynomial mutation [28,29]. Moreover, it uses
a crossover probability of pc = 0.9, crossover distribution index of ηc = 20,
mutation probability of pm = 1/n (where n is the problem size), and a mu-
tation distribution of ηm = 20. Although the parameter setting may not be
the best, it has been exploited by the original study to achieve better overall
performance.

The MrBOA uses normal mixture distributions obtained by clustering the
selected individuals in order to learn probabilistic models. As a computation-
ally efficient clustering mechanism, the K-means algorithm is employed for
model selection and the randomized leader algorithm (RLA) with a threshold

4 The reason has been described in Sect. 6.6.1.
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value of 0.3 is used for model fitting. Truncation selection with parameter
τ = 0.5 and the Bayesian information criterion (BIC) with regularization
parameter λ = 0.5 are invoked for learning a probabilistic model. As an elite-
preserving strategy, the worst half of the population is replaced by the newly
generated individuals. The number of allowable parents is given by half the
problem size, viz., �0.5n�. Moreover, the penalty parameter γ in the fitness
assignment is set to 20. The set of parameter values has been determined on
the basis of empirical investigation.

The MIDEA contains, in part, the same parameters that MrBOA retains
due to a similarity of their basis algorithms (i.e., IDEA and rBOA). In the
interest of fair comparison, the parameters – viz., the threshold value of the
leader algorithm, the parameter τ of the truncation selection, the regulariza-
tion parameter λ of BIC, and the number of maximum parents – have the
same values as in MrBOA. Diversity preservation parameter that adjusts the
size of preselection is set to 1.5 in the diversity-preserving selection.

The population size used is empirically obtained for each problem to get a
good performance within the maximum number of (multiobjective) function
evaluations. Here, MrBOA plays the role of a decision maker. The computed
population size is assigned to the references. However, it may be inadequate
for NSGA-II5 because EDAs generally requires a larger population than does
the population-based GEAs [89, 91]. In other words, there exists a different
optimal population for each algorithm. However, if a large enough population
is considered with sufficient number of generations to achieve acceptable con-
vergence, this inadequacy would vanish. In the problems under focus, it has
been empirically observed that a maximum of 50 · 103 evaluations is adequate
for satisfactory convergence of all the algorithms. In this case, adequate pop-
ulation size N amounts to 1000 for MDP-I, 800 for MDP-II and ZDT4, and
400 for MNSP, ZDT6 and mBT1.

The Pareto fronts presented are obtained by nondominated solutions of
the set of nondominated solutions collected from 30 runs. At the last, all the
results are averaged over all the runs.

6.6.3 Results and Discussion

Figure 6.5 compares the Pareto fronts found by the algorithms as applied
to MDP-I. The parameter values are: α = β = 1.0, β = α = 0.8, δ = 0.8,
and m = 5. The figure shows that MrBOA discovers the true Pareto front,
while NSGA-II finds only two most deceptive points. That is, NSGA-II does
not cope with deception. In this respect, MIDEA is superior to the NSGA-II
because it can discover most of the points in the true Pareto front although
the speed of convergence seems to be lower than those of the others. However,

5 In this study, the population size of NSGA-II denotes the complete population
size, viz., a sum of parents and offsprings, for notational consistency with MIDEA
and MrBOA.
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Fig. 6.5. Pareto fronts obtained from algorithms on fMDP -I .

Table 6.1. Statistical comparison of algorithms on fMDP -I .

Measure NSGA-II MIDEA MrBOA

µΨ 0.6804 0.2848 0.0304
σΨ 0.0697 0.0818 0.0316

Statistical t-test

Measure NSGA-II − MIDEA NSGA-II − MrBOA MIDEA − MrBOA

t-value 21.44† 49.34† 18.44†

Order MrBOA � MIDEA � NSGA-II

† The value of t is significant at α = 0.01 by a paired, two-tailed test. The
symbols � and ∼ represent dominance and indifference between algorithms.

the MIDEA never finds all BBs of the RDP. That is, the MIDEA can deal with
deception to some extent but it is also not free form the handicap. Table 6.1
supports the claim that the MrBOA mostly finds the true Pareto front while
the MIDEA and the NSGA-II do not return good performance.

Figure 6.6 depicts the Pareto fronts for MDP-II with m = 5 and n = 11.
In the figure, solid lines present all kinds of Pareto fronts whose degree of
deception increases outwards. It is seen that MrBOA converges to the true
Pareto front while MIDEA and NSGA-II do not do so. Further, the NSGA-II
finds the solutions that are close to the most deceptive front: it converges to
the second most deceptive front. It seems that all the algorithms maintain
relatively good spread of their nondominated solutions although MIDEA ex-
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Fig. 6.6. Comparison results of the Pareto fronts for fMDP -II .

poses some wider gap between solutions. It follows that MrBOA achieves a
higher proximity than do the references; and all the algorithms appear to have
similar diversities (MIDEA might be worse than the others, however). In this
regard, more details are provided in Table 6.2. The table supports the claim
on the predominance of MrBOA over NSGA-II and MIDEA with regard to
proximity as well as diversity.

Figure 6.7 compares the results for MNSP with k = 3, m = 3, and n = 10.
As a reference for a more precise assessment, an upper curve obtained when
fRNSP = 0.1 whose solution is far away from the optimum is presented in the
figure. As seen in the figure, the MrBOA offers near-optimal and uniformly
distributed Pareto front, while MIDEA show the worst performance for both
proximity and diversity measures. Although NSGA-II seems, on the face of
it, to return a good Pareto front, the quality is clearly very poor as compared
with the reference front. Table 6.2 also upholds the superiority of MrBOA.

From the above results, we may conclude that the MrBOA outperforms
the NSGA-II and the MIDEA for decomposable problems with some difficulty
such as deception or nonlinearity with regard to both proximity and diver-
sity. Note that the superiority of MrBOA obtains from its ability to discover
problem regularities and inter-mixing superior partial solutions by referring
to the accumulated information.

Figure 6.8 demonstrates the nondominated solutions (in the objective
space) found by each algorithm when applied to ZDT4 with n = 10. The
results of proximity and diversity are quantified in Table 6.2. It is seen that
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Fig. 6.7. Computed Pareto fronts with algorithms on fMNSP .
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Fig. 6.8. Comparison results of the Pareto fronts for fZDT4 .

NSGA-II and MrBOA6 tend to converge to the true Pareto front. Although
the NSGA-II achieves a better diversity than the MrBOA, there is no differ-

6 Due to high multimodality feature of ZDT4, the threshold value of 0.05 for the
RLA is used.
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Fig. 6.9. Pareto fronts found by algorithms for fZDT6 .
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Fig. 6.10. Nondominated solutions returned by algorithms for fmBT1 .

ence in their proximity values. The results clearly validate the inferiority of
MIDEA. That is, the MIDEA cannot adequately deal with multimodality.
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Table 6.2. Statistical comparison of algorithms on fMDP -II , fMNSP , fZDT4 , fZDT6

and fmBT1 .

Problem Measure NSGA-II MIDEA MrBOA

µΥ 0.9399 0.6511 0.1172
fMDP -II σΥ 0.0360 0.1541 0.1193

(m = 5, n = 11) µ∆ 0.2455 0.3269 0.2049
σ∆ 0.0151 0.1601 0.0147

µΥ 0.7221 1.2775 0.1270
fMNSP σΥ 0.3954 0.5748 0.1602

(m = 3, n = 10) µ∆ 0.1786 0.2629 0.1634
σ∆ 0.0242 0.0384 0.0117

µΥ 0.0027 23.252 0.0252
fZDT4 σΥ 9.5e-4 2.9381 0.0601

(n = 10) µ∆ 0.1829 0.5535 0.3178
σ∆ 0.0406 0.2291 0.1676

µΥ 0.0737 0.0444 0.0213
fZDT6 σΥ 0.0097 0.0527 0.0248

(n = 10) µ∆ 0.3089 0.6496 0.7682
σ∆ 0.0198 0.5274 0.5519

µΥ 0.1000 0.0245 0.0034
fmBT1 σΥ 0.0691 0.0531 0.0032

(n = 10) µ∆ 0.5930 0.4108 0.2751
σ∆ 0.2869 0.0760 0.0214

Statistical t-test; (Υ, ∆)

Problem NSGA-II − MIDEA NSGA-II − MrBOA MIDEA − MrBOA

fMDP -II (10.26†,−2.82†) (38.08†, 9.86†) (14.30†, 4.10†)

fMNSP (−4.58†,−11.99†) (7.93†, 2.76†) (10.96†, 14.14†)

fZDT4 (−43.34†,−8.77†) (−2.07,−4.15†) (43.38†, 3.65†)

fZDT6 (2.93†,−4.49†) (10.24†,−4.53†) (2.04,−0.13)

fmBT1 (4.37†, 3.52†) (7.64†, 6.08†) (2.15, 9.46†)

† The value of t is significant at α = 0.01 by a paired, two-tailed test.

Figure 6.9 shows the results of the algorithms as applied to ZDT6 with
n = 10. It seems that MIDEA and MrBOA7 find the Pareto fronts quite close
to the true front while NSGA-II returns the nondominated solutions a little
away from the global optimum. Further information on their performances is
also presented in Table 6.2. As seen in the table, there is no dominance among
the algorithms with regard to proximity, while the diversity of NSGA-II and
MrBOA is superior to that of MIDEA. Moreover, high deviation in MIDEA’s
performances signals its instability.

7 With a view to enduring the nonuniformity of ZDT6, one component is employed
for model selection and model fitting; K = 1 and threshold = 1.0 for the K-means
algorithm and the RLA, respectively.
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Table 6.3. Dominance comparison of algorithms based on proximity and diversity.

Problem Proximity; Υ Diversity; ∆

fMDP -II MrBOA � MIDEA � NSGA-II MrBOA � NSGA-II � MIDEA

fMNSP MrBOA � NSGA-II � MIDEA MrBOA � NSGA-II � MIDEA

fZDT4 MrBOA ∼ NSGA-II � MIDEA NSGA-II � MrBOA � MIDEA

fZDT6 MrBOA ∼ MIDEA � NSGA-II NSGA-II � MrBOA ∼ MIDEA

fmBT1 MrBOA ∼ MIDEA � NSGA-II MrBOA � MIDEA � NSGA-II

The symbols � and ∼ represent dominance and indifference between algorithms.

Figure 6.10 compares the Pareto fronts for mBT1 with n = 10. Moreover,
Table 6.2 provides more informative results. It is observed that the nondomi-
nated solutions of MIDEA and MrBOA nearly converge on the optimal front
but NSGA-II is misled by some local front. In detail, proximity performance
of MrBOA is comparable to that of MIDEA, and both the results are superior
to that of NSGA-II. With regard to diversity performance, MrBOA is the best
and NSGA-II is the worst.

From the results for ZDT4, ZDT6 and mBT1, it may be concluded that
MrBOA finds the set of nondominated solutions whose proximity is compa-
rable (or even better) to that of NSGA-II or MIDEA for the problems with
some difficulty over decomposability, without compromising on diversity of
the solutions.

Moreover, Table 6.3 compares dominance relation among the algorithms
on the basis of proximity and diversity measures given in Table 6.2. In the
comparative study, proximity is a matter of primary importance. The table in-
dicates that MrBOA achieves the best performance regardless of problem dif-
ficulties in respect of decomposability (interlaced with deception or nonlinear-
ity), multimodality, nonuniformity and variables’ interactions; while MIDEA
is superior to NSGA-II except for MNSP and ZDT4 which have some difficul-
ties with nonlinearity under decomposability and multimodality, respectively.

On the other hand, simple direct comparison with regard to the coverage
metric is performed in Fig. 6.11. A box plot has a notched box summariz-
ing 50% of the data, viz., the lower and upper boundaries (of the box) are
the lower and upper quartiles. The appendages indicate 10% and 90% per-
centiles respectively, while the remainders represent outliers. The square sym-
bol presents the mean value. In order to understand the correct relationships,
it is necessary to take both side coverage metrics into consideration. With
the same notations as in Sect. 6.6.1, the way of interpretation is described as
follows. When C(QA

1 ,QB
1 ) = 1 and C(QB

1 ,QA
1 ) = 0, the algorithm A always

dominates the algorithm B, and vice versa. If C(QA
1 ,QB

1 ) and C(QB
1 ,QA

1 ) have
0, they do not dispute preeminence with each other. Further, it is impossible
that both the metrics have 1.
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MrBOA

MIDEA

NSGA-II

Fig. 6.11. Comparison of dominance relationships based on coverage metric. The
box plots arrange the results for fMDP -II , fMNSP , fZDT4 , fZDT6 and fmBT1 from
the left to the right. The scale is 0 at the bottom and 1 at the top. Each rectan-
gle represents the coverage metrics for algorithm A of the corresponding row and
algorithm B of the corresponding column, i.e., C(A, B).

The figure shows that the Pareto fronts reached by NSGA-II and MIDEA
for the MDP-II and the MNSP are entirely covered by those of MrBOA.
In the ZDT4, the MrBOA discover the nondominated solutions that always
dominate the solution set of the MIDEA and has a relatively low probability
of being dominated by the solutions of NSGA-II. In the ZDT6, the MIDEA
nearly bears comparison with the MrBOA, while the Pareto front of NSGA-II
is almost behind that of MrBOA. In the case of mBT1, MrBOA can dominate
as well as be dominated by MIDEA with a small chance (i.e., less than 0.4),
but it strictly dominates NSGA-II. The results are generally consistent with
those obtained by considering proximity and diversity metric which offer more
accurate comparison (see Table 6.3). Two algorithms may not be statistically
different even though the coverage metric strictly exhibits difference between
their nondominated sets. Although any information about the extent of close-
ness and spread of nondominated solutions cannot be obtained, the metric
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is definitely useful for conveniently testing dominance relationship between
algorithms.

In conclusion, the proposed MrBOA achieves higher proximity and better
diversity of nondominated solutions for the problems of bounded difficulty
while finding comparable or better solutions to the problems with some diffi-
culty beyond decomposability.

6.7 Summary

In this chapter, we have developed a multiobjective real-coded Bayesian op-
timization algorithm (MrBOA) as an efficient tool for dealing with various
difficult multiobjective optimization problems (MOPs), especially decompos-
able ones. It was achieved by fitting the competent (single-objective) real-
coded Bayesian optimization algorithm (rBOA) into multiobjective optimiza-
tion framework, without weakening its ability to automatically discover prob-
lem regularities and thoroughly exchange superior characters of current solu-
tions. To further preserve diversity of population without degrading proximity,
a selection method has been developed by combining Pareto ranking with the
proposed diversity-preserving mechanisms – adaptive sharing and dynamic
crowding. The adaptive sharing tries to accord preference to less dominated
solutions, and the dynamic crowding offers a higher chance of survival to
sparse nondominated solutions. The selection scheme is characterized by a
unique fitness assignment scheme. Individual’s fitness is assigned by incorpo-
rating the domination rank with some penalty imposed on the sharing and
the crowding schemes.

Experimental studies demonstrated that MrBOA definitely achieves sta-
tistically competitive results with the two state-of the art MGEAs – NSGA-II
and MIDEA – on deceptive or nonlinear-symmetric decomposable problems in
finding a near-optimal and uniformly distributed Pareto front. For some tradi-
tional MOPs with multimodality, nonuniformity of the Pareto front, or close
interactions of variables, the MrBOA was able to find a nondominated set
whose proximity and diversity are comparable to or even better than NSGA-
II and MIDEA. It is noted that the competency of MrBOA is largely brought
about by the unique strengths of rBOA; and the proposed selection method
also plays a role in further enhancing the performance.

The proposed MrBOA is thought to be an effective tool for dealing with
many engineering and scientific problems whose difficulties might be beyond
the reach of current techniques.
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Conclusions

This chapter summarizes and concludes this book. Also, directions for future
research have been indicated.

7.1 Summary

Primary contributions of this book are summarized below.

• Design of practical genetic algorithms: The book offered practical de-
sign guidelines for developing efficient genetic algorithms (GAs) to success-
fully solve real-world problems. As a critical design component, a practical
population-sizing model was also developed, which accurately estimates an
adequate population size with a desired quality of solution without requir-
ing statistical knowledge about problems such as the signal and variance
of competing building blocks (BBs). Effectiveness of the model was sup-
ported by the results on test problems.

• Application to real-world problems: The book developed a GA that
efficiently solves an important real-world application – shortest path rout-
ing problem. Operators were designed by following the suggested road map.
The algorithm can traverse the search space effectively and speedily with-
out overly depending on problem types. Experimental results exhibited
that the proposed algorithm outperforms many competitors. The results
also emphasized the relevance of the population-sizing model in a practical
setting.

• Elitist compact genetic algorithms: Two elitism-based compact ge-
netic algorithms (cGAs) were proposed in a simple estimation of distribu-
tion algorithm (EDA) framework: the persistent elitist cGA (pe-cGA) and
the nonpersistent elitist cGA (ne-cGA). The pe-cGA counters selection
noise by keeping the current best solution until, hopefully a better solu-
tion is found. It was shown that it incorporates a model that is equivalent
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to (1+1) evolutionary strategy (ES) with self-adaptive mutation. The ne-
cGA further enhances the performance of the pe-cGA by avoiding strong
elitism (i.e., high selection pressure) that may lead to premature conver-
gence. The improvement is a consequence of the fact that it does not allow
genetic diversity to degenerate. It was also shown that the allowable scope
of an elite member’s inheritance is bounded by the simulated population
size. Furthermore, an analytic speedup model that quantifies convergence
improvement was developed. Experimental studies demonstrated the su-
periority of the proposed algorithms with regard to solution quality as well
as convergence speed. The results also pointed to the correctness of the
speedup model.

• Real-coded Bayesian optimization algorithm (rBOA): A compe-
tent real-coded EDA, viz., rBOA, has been developed for solving a wide
class of real-world problems efficiently, quickly, and reliably. Problem sub-
structures were extracted from the Bayesian factorization graph involving
finite mixture models. Each substructure was fitted by mixture distrib-
utions, and new candidate solutions were generated by an independent
subproblem-wise sampling procedure. The power of rBOA arises from
its ability to effect proper decomposition and probabilistic building-block
crossover (PBBC) on real-valued multivariate data (i.e., a class of mech-
anisms for discovering and exploiting problem regularities). A scalability
model of the rBOA was also developed on problems of bounded difficulty
by computing the number of fitness evaluations until convergence to the
optimal solution. The theory asserted that the rBOA finds the optimal
solution with a sub-quadratic scale-up behavior in respect of the problem
size. Experimental studies showed that the rBOA outperforms advanced
real-coded EDAs when faced with decomposable problems regardless of
inherent problem characteristics. For nondecomposable problems, compa-
rable or better performance was achieved. The experiments also supported
the analytic model on sub-quadratic scalability of rBOA.

• Multiobjective rBOA (MrBOA): The book devised a competent mul-
tiobjective EDA (MEDA) , viz., MrBOA, for solving difficult multiobjec-
tive optimization problems (MOPs) of bounded difficulty. It was achieved
by extending the proposed (single-objective) rBOA so as to allow for au-
tomatic discovery and effective exploitation of regularities in MOPs. The
unique characteristics of the rBOA – proper decomposition and PBBC –
invest the MrBOA with appreciable power. A selection method was de-
veloped for preserving diversity. The proximity to the Pareto front was
not compromised as a result. The selection is characterized by a unique
fitness assignment scheme that incorporates domination rank with some
penalty imposed on sharing intensity and crowding distance. Experimen-
tal results demonstrated that the MrBOA achieves a better performance
for decomposable and nondecomposable MOPs than do state-of-the-art
multiobjective GEAs (MGEAs).
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7.2 Future Work

There is a bright future for research on rBOA and MrBOA. In this book,
we have focused on the development of a class of procedures that performs
proper decomposition and effective search through intermixing superior par-
tial solutions (i.e., BBs). Further, rBOA and MrBOA have been developed for
largely dealing with problems with single-level decomposition. Thus, several
paths for future work are open.

7.2.1 Incorporating Efficiency-Enhancement Techniques

There are promising approaches to enhancing the efficiency of rBOA and
MrBOA. Parallelization, hybridization, evaluation relaxation, and incremental
and sporadic model building are representative techniques [24,60,89].

Parallelization can considerably reduce execution time and possibly find a
better solution by implementing an algorithm over multiple processors. Par-
allelization can be realized by distributing fitness evaluation, model building
and sampling, or the population [22,89]. Several approaches have been inves-
tigated in this regard [22, 64, 82]. Parallelization of model building and sam-
pling may be a promising approach for rBOA and MrBOA because dealing
with probabilistic models is generally computationally very costly. Of course,
a combined approach may have some advantages. There is another approach
under the EDA framework [5]. The approach tries to conceptually combine
two parallelization methods of decentralizing model building/sampling and
distributing the population (although more work needs to be done).

Hybridization can improve performance of an algorithm by combing the ad-
vantages of the algorithm and other types of competent algorithms [15,89,107].
A well-known approach is to properly balance between global and local search
algorithms. These kinds of schemes are generally known as memetic algo-
rithms. The hybridization limits the search to local optima, thereby allowing
problem regularities to be easily identified. The required population size can
be significantly shrunk in this way. When incorporating local search into rBOA
and MrBOA, intensive uses of local search in the early and final stages can
help improve the initial probabilistic model by rapidly capturing promising re-
gions and enhance convergence performance by dense-searching in the vicinity
of the global optimum, respectively.

Evaluation relaxation offers an effective tool for evaluating a large number
of candidate solutions quickly and reliably [24,89,102]. It can be achieved by
approximating/estimating fitness of candidate solutions from actual fitness of
partial candidates. Although there is discrepancy between true and approxi-
mate fitness, the approximation error decreases as generations pass so that the
global optimum can be discovered. The approach is quite effective when fit-
ness evaluation is computationally expensive. The approach can significantly
improve the performance of rBOA and MrBOA although more work related
to the effect of the approximation error on model building is necessary.
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Incremental and sporadic model building can significantly reduce the com-
putational cost of learning the structure of a model [33, 89]. Since rBOA and
MrBOA construct the model from the bottom in every generation, the ap-
proach can considerably enhance their efficiency. If a bad model is built in a
specific generation, the incorrect information propagates into subsequent gen-
erations so that convergence performance is somewhat compromised. However,
it does not endanger convergence to the optimum [89].

7.2.2 Challenging to Hierarchical Difficulty

The rBOA and MrBOA mainly target (single-objective and multiobjective)
optimization problems that can be decomposed into subproblems of bounded
order. There are many complex problems that can be decomposed into a
hierarchy of levels of difficulty rather than into a single level [89,93]. Moreover,
the problems may have exponentially many local optima that hinder any local
search from approaching the global optimum.

Hierarchical decomposition is required for dealing with hierarchical prob-
lems quickly, accurately, and reliably. To realize hierarchical decomposition,
there are three key components – decomposition, chunking, and niching [89].
In this regard, rBOA and MrBOA can be readily extended because they al-
ready contain major components that lead to hierarchical rBOA (hrBOA) and
multiobjective hrBOA (MhrBOA). This is described below.

In rBOA and MrBOA, a proper decomposition is ensured by construct-
ing probabilistic models to discover important problem regularities. Sampling
those models generates new candidates. Modeling multivariate data by incor-
porating finite mixture models can be viewed as an instance of chunking in the
sense that all the parameters that encode all the explicit information about
the data are compressed by several parameters that proportionally encodes al-
ternative partial solutions to the particular subproblem. However, more work
on grouping of decision variables from each subproblem of the lower level into
a single variable needs to be done. For instance, it can be achieved by incorpo-
rating principal component analysis (i.e., dimension-reduction) on real-valued
data. Lastly, there have been developed many niching methods that can pre-
serve alternative candidates. Crowding, sharing, and spatial separation have
been widely known. The concept of niching has given rise to restricted tour-
nament replacement [89]. There is no difficulty in incorporating those niching
techniques into rBOA and MrBOA.

To test the developed hrBOA and MhrBOA, moreover, research on de-
signing real-valued hierarchical problems is imperative.

7.3 Concluding Remarks

The final goal of this book is to offer effective black-box optimization tools for
solving a broad class of real-world problems quickly, accurately, and reliably
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by employing genetic and evolutionary computation (GEC). In this regard,
five primary issues in GEC have been investigated. First, bridge the gap be-
tween theory and practice of GEAs; thereby providing practical design guide-
lines. Second, exhibit the practical use of the suggested design methodology
by designing a GA-based routing algorithm. Third, devise simple but efficient
optimization algorithms in the context of simple EDAs, which effectively and
speedily solve memory- and time-constrained problems without incorporating
any prior knowledge about the problems. Fourth, develop competent opti-
mization algorithms from the standpoint of advanced EDAs. Finally, design
competent multiobjective optimization algorithms within the framework of
multiobjective EDAs.

It is hoped that the work will have a lasting influence on future research
work on GEC as well as computational optimization.
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45. Harik, G., Cantú-Paz, E., Goldberg, D. E., and Miller, B. L. (1999). The gam-
bler’s ruin problem, genetic algorithms, and the sizing of populations. Evolu-
tionary Computation, 7(3), pages 231-253.

46. Harik, G., Lobo, F. G., and Goldberg, D. E. (1999). The compact genetic
algorithm. IEEE Transactions on Evolutionary Computation, 3(4), pages 287–
297.



162 References

47. Hartigan, J. (1975). Clustering algorithms, New York, John Wiley & Sons.
48. Haupt, R. L. and Haupt, S. E. (1998). Practical genetic algorithms. New York,

John Wiley & Sons.
49. He, J. and Yao, X. (2002). From an individual to a population: An analysis of

the fist hitting time of population-based evolutionary algorithms. IEEE Trans-
actions on Evolutionary Computation. 6(5), pages 495–511.

50. Heckerman, D., Geiger, D., and Chickering, D. M. (1994). Learning Bayesian
networks: The combination of knowledge and statistical data. Technical Report
MSR-TR-94-09, Redmond, WA: Microsoft Research.

51. Henrion, M. (1988). Propagating uncertainty in Bayesian networks by proba-
bilistic logic sampling. Uncertainty in Artificial Intelligence 2, pages 149–163,
Amsterdam.

52. Hidalgo, J. I., Lanchars, J., Ibarra, A., and Hermida, R. (2002). A hybrid evolu-
tionary algorithm for multi-FPGA systems design. In Proceedings of Euromicro
Symposium of Digital System Design (DSD 2002), pages 60–67.

53. Holland, J. H. (1975). Adaptation in natural and artificial system. Ann Arbor,
MI: University of Michigan Press.

54. Horn, j., Nafpliotis, N., and Goldberg, D. E. (1994). A niched pareto genetic al-
gorithm for multiobjective optimization. In Proceedings of the IEEE Conference
on Evolutionary Computation (ICEC’94), pages 82–87.

55. Hoyweghen, C. V. (20010). Detecting spin-flip symmetry in optimization prob-
lems. In Theoretical Aspects of Evolutionary Computing (Natural Computing
Series), Kallel, L., Naudts, B., and Rogers, A., Eds, Berlin, Germany: Springer-
Verlag, pages 423–437.

56. Hue, X. (1997). Genetic algorithms for optimization: Background and applica-
tions. Edinburgh Parallel Computing Centre, University of Edinburgh, Scot-
land, Ver 1.0.

57. Inagaki, J., Haseyama, M., and Kigajima, H. (1999). A genetic algorithm for
determining multiple routes and its applications. In Proceedings of the IEEE
International Symposium on Circuits and Systems, pages 137–140.
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Technology (ETH), Zürich, Switzerland.

123. Zitzler, E. and Thiele, L. (1999). Multiobjective evolutionary algorithms: A
comparative case study and the strength Pareto approach. IEEE Transactions
on Evolutionary Computation, 3(4), pages 257–271.

124. Zitzler, E., Laumanns, M., and Thiele, L. (2002). SPEA2: Improving the
strength Pareto evolutionary algorithm. In Proceedings of Evolutionary Methods
for Design, Optimization, and Control, pages 95–100.



Index

adaptive sharing 132
sharing intensity 132, 135

allele 8

Bayesian factorization 91
graph 91–93, 95

Bayesian information criterion 92
Bayesian multiobjective optimization

algorithm 129
Bayesian network 87

Bayesian Dirichlet equivalence 87
local structure 89

Bayesian optimization algorithm 87,
94

BB see building block
BIC see Bayesian information

criterion
BMOA see Bayesian mutiobjective

optimization algorithm
BOA see Bayesian optimization

algorithm
box plot 149
building block 10, 96, 137

average order 16, 18, 40
decision making 11
disruption 12, 20
supply 10, 108

building-block crossover 12, 13
population-wise 87
probabilistic see PBBC

cGA see compact genetic algorithm
chromosome 8, 26

infeasible see infeasible individual

circle function 68
clustering 114

K-means algorithm 114, 142
randomized leader algorithm 114,

142
collateral noise 105, 106
compact genetic algorithm 46, 48
convergence

model 56, 57
time 108, 109

coverage metric 141
modified 141

crossing site 9, 25, 29
potential 25, 29

crossover 1, 9, 12, 29, 31
building-block see building-block

crossover
one-point 9, 20
point see crossing site
probability 13
uniform 9, 12

crowding distance 125, 134

deceptive problem 39
fully 20, 64
minimal see minimal deceptive

problem
real-valued see real-valued deceptive

problem
decomposable problem 99, 109, 116,

136
exponentially scaled 108, 120
real-valued 109
uniformly scaled 100



168 Index

decomposition 88, 89, 95, 99
design-decomposition theory 10, 11
discretization 88
diversity 129

metric 141
dominated solution 127, 129
domination

count 125, 132
rank 131, 135

dynamic crowding 133
crowding distance 133, 135

ecGA see extended compact genetic
algorithm

EDA see estimation of distribution
algorithm

efficiency-enhancement 155
evaluation relaxation 155
hybridization 155
incremetal and sporadic model

building 156
parallization 155

EGNA see estimation of Gaussian
networks algorithm

elitism 49, 50, 136
encoding 11
ES see evolutionary strategy
estimation of distribution algorithm 2,

3, 46, 48, 53, 86, 90, 108, 143
discrete 90
multivariate dependencies 87
no dependencies 86
pairwise dependencies 87
real-coded 90, 96

estimation of Gaussian networks
algorithm 88, 117, 119

Gaussian network 88
evolutionary strategy 53, 73

(1+1)-ES 51, 74
self-adaptive mutation 51

extended compact genetic algorithm
47

factorization 91
Bayesian see Bayesian factorization

fitness 8, 128
contribution 105
distribution 15
function 8, 12, 28, 135

raw 128

GA see genetic algorithm
GEA see genetic and evolutionary

algorithm
gene 8

lethal 32
genetic

diversity 53
drift 49

genetic algorithm 7, 8
competent 10
selectomutative 10
selectorecombinative 10

genetic and evolutionary algorithm 1
genetic operator 8, 12, 28
genotype 8
Griewangk function 112, 116

hierarchical
decomposition 156
difficulty 156

hill-climbing strategy 110, 137

IDEA see iterative density-estimation
evolutionary algorithm

incremental greedy algorithm 94
individual 8, 11

infeasible see infeasible individual
infeasible individual 13, 31

penalty function 13, 31
repair function 13, 32

inheritance scope 53, 54, 62, 75, 83
initialization 11

heuristic 11, 27
random 11, 12, 27

innovation
continual improvement 10, 13
cross-fertilizing 10, 12

ISG system see Ising Spin-Glasses
system

Ising Spin-Glasses system 80
iterative density-estimation evolution-

ary algorithm 88

locus 8

m(h)BOA see multiobjective (hier-
archical) Bayesian optimization
algorithm



Index 169

MBOA see mixed Bayesian optimiza-
tion algorithm

mBT1 140

mDP see minimal deceptive problem

MDP-I see multiobjective deceptive
problem I

MDP-II see multiobjective deceptive
problem II

MEDA see multiobjective estimation
of distribution algorithm

memetic algorithm 155

MGEA see multiobjective genetic and
evolutionary algorithm

Michalewicz function 112, 116

MIDEA see multiobjective iterative
density-estimation evolutionary
algorithm

mIDEA see mixed iterative density-
estimation evolutionary algorithm

minimal deceptive problem 20, 62

mixed Bayesian optimization algorithm
89, 116, 119

mixed iterative density-estimation
evolutionary algorithm 88, 117,
119

mixture model 85, 90, 93, 98, 101

MNSP see multiobjective nonlinear,
symmetric problem

mobile ad hoc network 24, 35

model fitting 90, 99

subspace-based 95

model sampling 99

probabilistic logic sampling 99

model selection 90, 92, 99

scoring metric 92

search procedure 92

MOGA see multiobjective genetic
algorithm

MOP see multiobjective optimization
problem

MrBOA see multiobjective real-coded
Bayesian optimization algorithm

multiobjective

(hierarchical) Bayesian optimization
algorithm 129

estimation of distribution algorithm
125

genetic algorithm 127

genetic and evolutionary algorithm
3, 127, 130

iterative density-estimation evolu-
tionary algorithm 129, 143, 144,
147

real-coded Bayesian optimization
algorithm 125, 129, 142, 144, 145,
149–151, 154

multiobjective deceptive problem
I 136, 137, 142
II 138

multiobjective nonlinear, symmetric
problem 138, 139

multiobjective optimization 3, 126,
140

problem 3, 126
mutation 2, 9, 13, 18, 29

bit-wise 9
point 30
probability 9, 13

ne-cGA see nonpersistent elitist
compact genetic algorithm

niched Pareto genetic algorithm 127
nondominated

individuals 127, 131
set 126
solution 136
solutions 126
sorting 128, 131

nondominated sorting
genetic algorithm 127
genetic algorithm II 128, 142

nonpersistent elitist compact genetic
algorithm 53, 61, 62, 64, 83, 154

NPGA see niched Pareto genetic
algorithm

NSGA see nondominated sorting
genetic algorithm

NSGA-II see nondominated sorting
genetic algorithm II

one-max problem 19, 39, 56
optimization 1

black-box 1
multiobjective see multiobjective

optimization
problem see optimization problem

optimization problem 1



170 Index

real-valued 85

Pareto
rank 125
ranking 131

Pareto front 126
global (or true) 126

Pareto-optimal set 3, 126
global 126

PBBC see probabilistic building-block
crossover

PD metric see prox-div metric
pe-cGA see persistent elitist compact

genetic algorithm
persistent elitist compact genetic

algorithm 51, 61, 63, 82, 153
phenotype 8
PMBGA see probabilistic model

building genetic algorithm
population 1

complexity 104
population size 13, 14, 33, 46, 107, 108,

124
critical 101, 103, 106, 107

population-sizing model 14
collateral noise 14, 15
decision model 15
gambler’s ruin problem 14
signal 14, 15

practical population-sizing model 18,
22, 39, 153

practical decision model 15
premature convergence 11, 50, 53
probabilistic building-block crossover

87, 88, 95, 99
probabilistic model 86, 87, 90–92, 94

fitting see model fitting
sampling see model sampling
selection see model selection

probabilistic model building genetic
algorithm 2, 48, 86

probability distribution 86, 91, 95
joint 87
mixture 93, 97, 101, 129
normal 114

probability vector 46, 48
prox-div metric 142
proximity 129, 149

metric 140

rank 128
rank-density-based genetic algorithm

128
ranking 131
rBOA see real-coded Bayesian

optimization algorithm
RDGA see rank-density-based genetic

algorithm
RDP see real-valued deceptive

problem
real-coded Bayesian optimization

algorithm 85, 109, 115, 116,
118–121, 124, 154

real-valued deceptive problem 110,
136, 137

complementary 137
real-valued multiobjective optimization

problem 136, 139
real-valued nonlinear, symmetric

problem 110, 138
recombination 1, 2, 9

linkage-friendly 110, 128, 138, 139
representation 11, 26
reproduction 9
RMOP see real-valued multiobjective

optimization problem
RNSP see real-valued nonlinear,

symmetric problem
Rosenbrock function 113, 118, 138
routing 23

algorithm 23
partial route 25, 29
shortest path see shortest path

routing

scalability 41, 101, 109, 124, 154
Schaffer’s binary function 68, 71
selection 1, 9, 12, 130

intensity 57–59, 109
ordinal 9, 12, 28
pressure 9, 12, 28, 47, 49–51
proportionate 9, 12
tournament see tournament

selection
truncation 59, 101, 105, 109

sGA see simple genetic algorithm
sharing intensity 125, 132
shortest path routing 24

convergence speed 37



Index 171

route failure ratio 35

route optimality 35

simple genetic algorithm 8

order-one behavior 46, 48

SPEA see strength Pareto evolution-
ary algorithm

SPEA-II see strength Pareto
evolutionary algorithm II

speedup 56, 57, 59

strength 128

strength Pareto

evolutionary algorithm 128

evolutionary algorithm II 128

subproblem 95, 100

component 95

dual component 96
maximal compound 96
minimal compound 96

Summation-Cancellation function 113

tournament selection 28, 109
pairwise 28, 48
steady-state 58
tournament size 12, 47, 68
without replacement 12, 28

trap function 64, 110, 136
four-bit 66
three-bit 65

ZDT4 139
ZDT6 139


	Advances in Evolutionary Algorithms: Theory, Design and Practice
	Preface
	Acknowledgements
	Abbreviations
	Contents
	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Outline

	2 Practical Genetic Algorithms
	2.1 Genetic Algorithms: Simple to Competent
	2.1.1 Overview of Genetic Algorithms
	2.1.2 Design-Decomposition Theory

	2.2 Practical Design Guidelines
	2.3 Practical Population-Sizing Model
	2.3.1 Review of Population-Sizing Models
	2.3.2 Harik's Decision Model
	2.3.3 Practical Decision Model
	2.3.4 Practical Population-Sizing Model
	2.3.5 Experimental Verification

	2.4 Summary

	3 Real-World Application: Routing Problem
	3.1 Motivation
	3.2 Existing GA-Based Approaches
	3.3 Proposed GA-based Routing Algorithm
	3.3.1 Chromosome Representation
	3.3.2 Population Initialization
	3.3.3 Fitness Function
	3.3.4 Genetic Operators
	3.3.5 Repair Function
	3.3.6 Population Size

	3.4 Experiments and Discussion
	3.4.1 Results for a Fixed Network with 20 Nodes
	3.4.2 Results for Random Networks
	3.4.3 Experimental Verification of the Population-Sizing Model

	3.5 Summary

	4 Elitist Compact Genetic Algorithms
	4.1 A Family of Compact Genetic Algorithms
	4.2 Compact Genetic Algorithm and Elitism
	4.2.1 Compact Genetic Algorithm
	4.2.2 Elitism

	4.3 Elitism-Based Compact Genetic Algorithms
	4.3.1 Persistent Elitist Compact Genetic Algorithm
	4.3.2 Nonpersistent Elitist Compact Genetic Algorithm

	4.4 Speedup Model
	4.5 Experimental Results and Discussion
	4.5.1 Results for the Problems Involving Lower Order BBs
	4.5.2 Results for the Problems Involving Higher Order BBs
	4.5.3 Results for Continuous and Multimodal Problems
	4.5.4 Comparison Results with Evolutionary Strategies
	4.5.5 Effects of the Scope of Inheritance
	4.5.6 Real-World Applications: Ising Spin-Glasses (ISG) Systems

	4.6 Summary

	5 Real-coded Bayesian Optimization Algorithm
	5.1 Estimation of Distribution Algorithms
	5.2 Real-coded Bayesian Optimization Algorithm
	5.3 Learning of Probabilistic Models
	5.3.1 Model Selection
	5.3.2 Model Fitting

	5.4 Sampling of Probabilistic Models
	5.5 Scalability Analysis
	5.5.1 Preliminaries
	5.5.2 Population Complexity
	5.5.3 Convergence Time Complexity
	5.5.4 Scalability of rBOA

	5.6 Real-valued Test Problems
	5.6.1 Decomposable Problems
	5.6.2 Traditional Optimization Benchmarks

	5.7 Experimental Results and Discussion
	5.7.1 Experiment Setup
	5.7.2 Results for the rBOA Performance
	5.7.3 Verification of rBOA Scalability

	5.8 Summary

	6 Multiobjective Real-coded Bayesian Optimization Algorithm
	6.1 Multiobjective Optimization
	6.2 Multiobjective Genetic and Evolutionary Algorithms
	6.3 Multiobjective Real-coded Bayesian Optimization Algorithm
	6.4 Selection Strategy
	6.4.1 Ranking
	6.4.2 Adaptive Sharing
	6.4.3 Dynamic Crowding
	6.4.4 Fitness Assignment
	6.4.5 Elitism

	6.5 Real-valued Multiobjective Optimization Problems
	6.5.1 Decomposable Multiobjective Optimization Problems
	6.5.2 Traditional Multiobjective Optimization Problems

	6.6 Experimental Results and Discussion
	6.6.1 Performance Measures
	6.6.2 Experiment Setup
	6.6.3 Results and Discussion

	6.7 Summary

	7 Conclusions
	7.1 Summary
	7.2 Future Work
	7.2.1 Incorporating Efficiency-Enhancement Techniques
	7.2.2 Challenging to Hierarchical Difficulty

	7.3 Concluding Remarks

	References
	Index




