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Preface

Fast-growing Ethernet demands in the metropolitan area networking have very recently caused
the IEEE 802.3 Standardization Committee to develop new transmission system specifications for
end-user 10GbE applications over existing multimode optical fiber with a target reach of at least
three hundred meters. However, high-speed transmission at multigigabit data rates, combined with
the existing multimode optical fiber infrastructure, have led to relevant optical pulse distortion
even after only one hundred meters of link length, consequently demanding proper compensation
techniques of the time dispersion.

In order to understand better how simultaneous multipath optical pulse dispersion, intersymbol
interference (ISI) and several noise sources affect the multigigabit transmission performances over
multimode fibers, a detailed analysis of the optical propagation mechanisms has been developed
thoroughly in this book. The general theoretical approach favors mathematical modeling, which
is better suited to the modular structure of every analytical link simulator. After introducing the
physical concepts and the mathematical modeling, each chapter reports extensive working examples
based on the developing software Matlab 7.1 from The MathWorks, Inc. However, despite using
an original theoretical approach, this book would not have been complete without the extensive
experimental verification reported in the last part of this work, which refers to the pioneering
transmission experiments of 10GbE over legacy multimode fibers recently performed at the Fiber
Optic Laboratory of Infineon Technologies AG, Berlin.

Multigigabit transmission over multimode optical fiber could never be achieved without imple-
menting proper pulse dispersion equalization techniques. The electronic dispersion compensator
(EDC) emerges today as the key factor in achieving the required performance in practical imple-
mentations and has accordingly a very relevant role to play in the book. The theoretical approach
followed identifies first the ideal inverse linear filtering as the reference compensation method for
every pulse dispersion mechanism, in order to qualify and compare more sophisticated equalizing
solutions. Although it is well known that inverse linear filtering does not represent a suitable solu-
tion, especially under severe signal degradation, its simple and ideal compensation principle makes
this filter well suited as the reference dispersion compensator.

The most promising electronic dispersion compensator (EDC) available at the 10GbE data rate
and suitable for mass volume access networking is based on the dispersion feedback equalizer
(DFE). The theory and the modeling of the dispersion feedback equalizer are presented, based on
the minimum mean square error criteria as originally proposed by J. Salz at the beginning of the
1970s. Several numerical calculations of the optical channel metrics follow. It is outside the scope
of this book to present equalization techniques based on different approaches like the maximum
likelihood sequence equalizer (MLSE). However, the main effort has been spent in identifying
ideal system performances, design criteria and limitations inherent to different pulse dispersion
mechanisms occurring in multimode optical fibers in order to achieve the required transmission
performances.

Stefano Bottacchi
Milan



Book Organization

The book is divided into two parts. The first part deals with the theory and the modeling of
the multimode optical fiber propagation, leading to useful closed-form equations well suited for
analytical simulation purposes. Particular attention has been devoted to the theoretical modeling of
the multimode fiber impulse response, including both the chromatic and the modal responses. A
mathematical modeling approach has been preferred in order to arrive at a set of equations suitable
for a multimode optical fiber transmission link simulator. The Gaussian response model has been
detailed with several numerical examples. The second part deals instead with the optoelectronic
subsystems encountered in the implementation of the multigigabit transmission system using the
multimode optical fiber. The optical transmitter, the optical receiver and, in particular, the electronic
dispersion compensator have been exhaustively analyzed and specified in order to give to the
reader the essential directions for proceeding further in the system design optimization. Several
experimental results have been added at the end of the book in order to emphasize the open issues
and the distance still encompassing the performances required for massive deployment and the state-
of-the-art experimental laboratory implementation of 10GbE transmission over multimode optical
fibers.

Looking into a more detailed organization of the book, the first chapter serves as the general intro-
duction to the field and overviews almost all aspects developed in subsequent chapters. In particular,
Chapter 1 introduces the basic transmission methods and issues encountered when sending multigi-
gabit data over multimode optical fibers. Chapter 2 presents an original analysis of a metallic-based
transmission waveguide, leading to different response behaviors used for comparison purposes with
the simple Gaussian response model of multimode optical fibers. Chapter 3 to Chapter 7 deal with
the propagation theory and modeling of the multimode fibers. Chapter 3 reviews the multimode
fiber theory by introducing the principal concepts, parameters and mathematical tools needed for the
subsequent development. Chapter 4 presents the theory of the chromatic dispersion in multimode
fibers assuming a general multimode source spectrum profile and an arbitrary group delay distri-
bution. The developed theory leads to a closed-form mathematical expression for the chromatic
impulse response. Chapter 5 approaches the theory of the modal dispersion assuming a general
group delay distribution and modal excitation. The general expression derived for the impulse
response includes both embedded effects of chromatic and modal dispersions. Several Matlab
codes written ad hoc provide interesting and original simulation cases for underlying basic physical
principles and interaction mechanisms occurring with the total pulse dispersion. Chapter 6 reports
the Gaussian model of the multimode fiber response, including benefits and limitations of this
easy mathematical approach. Several useful formulas and numerical examples close the chapter.
Chapter 7 introduces some important topics encountered in high-speed transmission using multi-
mode fiber. Computer modeling provides interesting examples of impulse response compositions
including pulse precursors and postcursors. The modal theory of the step-index fiber is presented
as the simpler case for introducing launching condition issues in more complex graded refractive
index fibers.



xvi Book Organization

The second part of the book starts with Chapter 8, which introduces the characteristics and gives
modeling suggestions for the principal transmission system components. Several optical waveforms
are considered and compared as potential light sources for multigigabit transmission. The general
architecture of the optical receiver is then analyzed, including the characterization of topic receiving
filter models, and a short theoretical approach is given to the intersymbol interference pattern.
Chapter 9 presents the theoretical background for the equalization problem in multimode fiber
transmission systems. The chapter starts by introducing the noise analysis and the error probability
formulation in optical receivers. The ideal inverse filter is then proposed as the reference linear
equalizer and the related noise enhancement factor is defined in order to make a quantitative
comparison among different solutions. The eye diagram closure and more generally the optical
power penalty are among the most relevant engineering tools used for assigning quantitative figures
of merit to different equalizer structures. Chapter 10 presents the theory of the decision feedback
equalizer as the basic building block of the electronic dispersion compensator solution today, and
is proposed as the best solution for achieving 10GbE access networking over the legacy multimode
fiber infrastructure. The concept of the channel metric as the measure of the optical power penalty
formed by the linear transmission channel is then introduced. Quantitative measures of the linear
channel performance, like PIE-L and PIE-D, are defined and compared with the power penalty
due to noise enhancement of the ideal inverse linear equalizer. The last Chapter 11 is completely
devoted to reporting the transmission experiments performed at the Fiber Optic Laboratory, Infineon
Technology AG, Berlin, during 2003–2005. Details of the pulse responses of benchmark multimode
fiber and the eye diagram measured at the 10GbE data rate are presented and correlated with system
performances. New observations regarding the polarization-induced pulse distortion in multimode
fiber links excited with offset launching are then presented. A first theoretical justification of the
observed alterations is also approached. The last section reports the first EDC-based multigigabit
transmission experiments carried out over multimode fibers. Transmission system performances
including sample EDCs are finally evaluated by means of measured bit error rates.
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1
Introductory Concepts

Components and Design Issues for a
Multigigabit Link over Multimode Fiber

1.1 Introduction
The recent huge demand for Multigigabit Ethernet (10GbE) and Fiber Channel (FC) standard appli-
cations in metropolitan areas has very rapidly pushed up the need for broader modulation frequency
ranges in deployed multimode optical fibers. Since the beginning of the Gigabit Ethernet (GbE) in
1997, a great effort has been devoted to qualify transmission performances of standard multimode
fiber (MMF) deployed in buildings, offices and everywhere around metropolitan areas. Multimode
fibers had been developed in the past 20 years and an increase in optical fiber manufacturing and
very different manufacturing procedures led to a very different transmission behavior and modal
bandwidth optimization. At the beginning of the optical fiber transmission era, about 30 years ago,
multimode fibers were deployed for use with light emitting diodes (LED) and low-bit-rate-based
optical links, usually operating below 200 Mb/s. Since the advent of the Gigabit Ethernet during the
late 1990s, the expected bit rate today has increased demand for multigigabit Internet routing in the
metropolitan area, but this may not be possible due to the inherently slow transmission properties of
the deployed multimode optical fibers. The transmission speed is no more than 1 Gb/s but 10 Gb/s
and beyond are today requested for MMF links from most of the service providers.

Most of the installed multimode fiber base was manufactured during the 1980s and early 1990s,
when the multimode optics was conceived essentially for subgigabit transmission applications, using
surface emitting LED and large area PIN diodes operating mainly at 850 nm. High-speed optical
transmission was concentrated on single-mode fiber technology where high transmission capacity
easily allowed 10 Gb/s transmission over several tens of kilometers. High-speed telecommunication
was concentrated mainly in the backbone market, where huge transmission capacities were needed
to link large and faraway metropolitan areas. As soon as the Internet started to grow more quickly
in the local area network, there was a need to increase the transmission capacity of the existing fiber
infrastructure. That layout was structured with multimode fiber of use only for previous low-speed
applications and the need for new engineering challenges in utilizing deployed multimode fibers at
10 Gb/s appeared as one of the major tasks facing the datacommunication industry. Efficient light
sources such as the vertical cavity surface emitting laser (VCSEL) are suitable candidates for high-
speed direct modulation, but they require new investigations on the effect of launching conditions

Multi-Gigabit Transmission over Multimode Optical Fibre: Theory and Design Methods for 10GbE Systems Stefano Bottacchi
 2006 John Wiley & Sons, Ltd. ISBN: 0-471-89175-4



2 Multi-Gigabit Transmission over Multimode Optical Fibre

on multimode fiber propagation behavior. The conventional multimode fiber coupling technology
must be revised to take account of the new laser launching and multigigabit data rate, including
fusion splices, connectors and optical couplers. Because of the complexity and the relevance of
these applications, the new standard 10BASE-LRM is under development by the IEEE802.3ae
committee.

1.2 Multimode Optical Fibers
Optical fibers have been widely deployed to serve extremely high performing transmission chan-
nels for both telecommunication and datacommunication applications since their first industrial
manufacture in the mid seventies. For almost thirty years, optical fibers have represented the best
transmission channel technology available for either long-reach backbone transmission or large
local area distribution purposes. In order to serve a multigigabit transmission medium every wired
transmission channel should have simultaneously low attenuation and high bandwidth per unit
length. Optical fiber meets both of these requirements. Optical attenuation in fact ranges between
0.2 and 2.0 dB/km while the modulation bandwidth is inherently almost infinite in single-mode
fibers for most telecommunication applications. In general, it is not possible to specify just one
number to characterize either the attenuation or the modulation bandwidth of optical fiber because
both parameters are strongly influenced by the operating wavelength and optical waveguide struc-
ture. For example, in the limiting case of single-mode optical fiber linearly excited by a highly
coherent externally modulated laser source the link bandwidth is limited only by the modulating
signal bandwidth and by fiber polarization mode dispersion. Under these conditions, ITU-T STM16
transmission at 2488 and 320 Mb/s can reach more than 1000 km at 1550 nm without being partic-
ularly limited by pulse dispersion of the bandwidth limitation. However, even the extremely low
attenuation of less then 0.2 dB/km available at 1550 nm would require a link budget of 200 dB in
order to be connected. This extremely high attenuation can be overcome by using optical amplifiers
with a repetition span of about 25 dB between each of them.

The picture is completely different when using multimode optical fibers. Before entering into
more detail, it is useful first to describe the waveguide properties of optical fibers. The optical fiber
is a cylindrical dielectric waveguide where the guiding principle is achieved using the refractive
index difference between the inner dielectric region, the core and the outside dielectric region, the
cladding. Making the refractive index slightly higher in the core than in the cladding ensures optical
waveguide operation in a specific wavelength range.

The optical fiber dealt with here is made of a silica glass composition and both the core and the
cladding must be carefully doped and processed in order to obtain the exact refractive index profile
and high-purity material needed to achieve simultaneously very low dispersion and attenuation.
The low attenuation wavelength range is achieved by choosing the correct silica glass to place
the dielectric optical waveguide structure within the near-infrared region, 820 nm < λ < 1620 nm.
In this wavelength range, the optical fiber will perform in the single-mode or multimode regimes
depending on the radius a of the inner core region. Standard single-mode fibers have the core
diameter close to a = 4 µm or less, while standard multimode fibers have a much larger core
radius, either a = 25 µm or a = 31.25 µm. Other factors affect the modal capability of the fiber,
but essentially the core diameter is mainly responsible for the different kinds of waveguide behavior.
Figure 1.1 shows a schematic drawing of the multimode fiber geometry.

This book will deal exclusively with multimode fibers, so cylindrical dielectric waveguides made
of doped silica glass with a core diameter of either 50 µm or 62.5 µm will be referred to implicitly.
These multimode fibers are specified by ISO/IEC 11801 and ITU-T G.651 standards. The multimode
regime requires a strong bandwidth limitation compared to single-mode ones. This is essentially
because of the multipath propagation and the related group delay per unit length spreading among
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Figure 1.1 Multimode fiber geometry

all allowed and excited modes. The refractive index profile is the only functional parameter that sets
the electromagnetic properties of every dielectric waveguide. In order to compensate for different
mode delays it is possible to design a graded refractive index profile. Accordingly, the mode delay
per unit length is equalized and in principle the modal bandwidth would be infinitely large for
perfectly compensated delays. In reality, group delay compensation is an extremely critical function
of the refractive index profile and even assuming a highly sophisticate manufacturing process the
highest modal bandwidth achieved for commercially available optical fiber usually does not exceed
a few gigahertz per kilometer. In addition to modal dispersion, each mode is subjected to intrinsic
chromatic dispersion due to the dispersion relationship between the modal propagation constant and
the source spectrum width. Chromatic dispersion is otherwise identified as group velocity dispersion
(GVD) and is the major drawback in dispersion-limited transmission using single-mode fiber with
direct modulated semiconductor laser diode sources.

Every nonlinear behavior and dispersion contribution to pulse propagation experienced by single-
mode fiber transmission would in principle be present even for each individual mode of every
multimode fiber. Of course, the very different timescales of these phenomena with respect to
modal dispersion makes the contribution of almost all of them negligible when considering pulse
dispersion in multimode fibers. Accordingly, in the following chapters the theory of the multimode
pulse response will be presented, including only modal and chromatic dispersion.

1.3 Semiconductor Laser Sources
There is a need to increase the transmission bit rate for high-speed laser sources, due to well-
performing and low-cost direct modulation capabilities of those devices compared with the slow
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and much less efficient LED. Recently, VCSEL technology provides a very interesting compromise
in terms of speed, cost, yields and power consumption. However, more consolidated light sources
for 10GbE, at least in the 1310 nm wavelength range, are still directly modulated Fabry-Perot (FP)
lasers and distributed feedback (DFB) lasers. Unfortunately, any kind of laser source is almost a
nightmare for every multimode fiber.

There are at least three characteristics of semiconductor lasers that act against the natural behavior
of any multimode optical waveguide and of the multimode fiber in particular:

1. The light emitted from the semiconductor laser is spatially localized on to a region that is usually
much narrower then the fiber core area. This leads to a partial excitation of a few mode groups
allowed by the fiber. If the group delay of the multimode fiber is not compensated enough among
excited bound modes (the amount of compensation required depends on the ratio between the
bit rate and the differential mode delay), the energy distribution among a few excited modes
will result in a consistent pulse broadening at the fiber end facet after just a few hundred meters
of propagation length.

2. The laser coherence properties in conjunction with multimode connectors originate in the
intensity-dependent Speckle noise term, namely the modal noise.

3. The power distribution among fiber modes is strongly dependent on the combined effect of
launch polarization and environmental induced stresses and perturbation, originating in random
output pulse fluctuations, which of course make the channel picture even more complicated.

A large number of measurements demonstrates how unpredictable the MMF frequency response
would be when the light excitation comes from a laser source. The reason for such unpredictable
behavior results from the very spatially localized excitation of a subset of guided modes in the
MMF. Depending on which fiber modes are excited by the laser light, either a very high or a very
low propagation bandwidth can be experienced on the same MMF link. When the light power
is distributed among a few supporting modes, even a small propagation delay difference among
excited modes will make a strong output pulse deformation with the creation of relatively large
pulse precursors and postcursors that destroy pulse symmetry.

The launching-dependent frequency response of every multimode optical fiber clearly compli-
cates the picture of multigigabit transmission over this dielectric waveguide. The IEEE802.3ae
standard for 1GbE specifies the restricted offset launch conditions as the solution to provide suit-
able fiber mode excitation in order to control differential mode delay and pulse broadening. Even if
restricted offset launch conditions provide a more stable multimode fiber bandwidth behavior, their
implementation is not so simple as to be widely accepted and leads to increasing cost per module
and other practical implications.

1.4 Offset Launch Conditions
A standard solution proposed to improve the multimode fiber bandwidth by limiting multipath
propagation relies on specified offset launch conditions and related encircled flux specifications
using standard offset launching patchcord. The idea behind offset launching is to excite selectively
high-order modes that are localized in the mid-region of the fiber core section. Figure 1.2 shows
qualitatively the offset launch case.

Unfortunately, offset launch patchcord is almost impractical today because of its dimensions and
the space required to be hosted into small modules or crowded boards, as well as the cost issue.
Sometimes, the cost of offset launching patchcord is comparable to the cost of the whole module.
In addition, a unique solution for defining offset launch compliant with both 50 µm and 62.5 µm
multimode fibers is still under study.
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Figure 1.2 Schematic representation of the offset launch in a multimode fiber. The offset coordinate is ρ.
Excited skew modes occupy the inner shaded region around the radial position ρ, leaving both the central
region and the outer core region almost unoccupied by the electromagnetic energy

1.5 Optical Receivers
The optical receiver converts the optical signal available at the fiber end section into the corre-
sponding electrical signal. This process takes place inside the optical photodetector according to the
photoelectric effect. Each incoming photon has a probability of being absorbed, releasing its energy
to a conduction band electron. The probability of photodetection depends on several factors involv-
ing the detector optical coupling, antireflection coating, depth of the intrinsic absorbing region,
leakage currents and so on. All of these factors are usually summarized using a single parame-
ter, namely the photodetector external quantum efficiency, ηp(λ). Typical values range between
50 % < ηp(λ) < 95 %, depending on the operating wavelength and photodetector structure. Very
high-speed photodiodes have among the lowest quantum efficiency values due to width shortening
of the absorbing region, thus minimizing the transit time dispersion. Coaxial receptacle photodi-
odes, designed for 10GbE applications in the second window operations λ = 1310 nm, usually have
quantum efficiency in the order of 60 % < ηp(λ) < 80 %.

Each photon brings a fixed energy amount depending on its wavelength. The detected photon
rate, namely the number of photons per unit time incident on the photodetector sensible area, is
therefore related to the received optical power. The conversion factor is the universal constant R0:

R0 = qλ

hc
(A/W) (1.1)
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Substituting the speed of light in a vacuum, c = 2.9979 × 108 m/s, and the electron charge, q =
1.6022 × 10−19 C, for the Plank constant, h = 6.626110−34 J s, the following value for the conver-
sion factor as a function of the wavelength is obtained:

R0 = 0.8066λ[µm] ⇒



λ = 0.850 µm → R0 = 0.686 A/W
λ = 1.310 µm → R0 = 1.057 A/W
λ = 1.550 µm → R0 = 1.250 A/W

(1.2)

The product of the conversion factor R0(λ) with the photodetection external quantum efficiency
ηp(λ) defines the photodetector responsivity R(λ):

R(λ) = R0(λ)ηp(λ) = qλ

hc
ηp(λ) (A/W) (1.3)

Assuming that the photodetection external quantum efficiency ηp(λ) = 0.7 is independent of the
operating wavelength, from Equation (1.2) the following expected values of photodiode responsivity
for 10GbE applications are obtained:

ηp = 0.7 ⇒



λ = 0.850 µm → R0 = 0.480 A/W
λ = 1.310 µm → R0 = 0.740 A/W
λ = 1.550 µm → R0 = 0.875 A/W

(1.4)

It should be noted, however, that the photodetection external quantum efficiency is a decreasing
function of the wavelength. This effect compensates partly for the linear reduction of the conversion
constant in Equation (1.2) at shorter wavelengths.

The photocurrent is proportional to the envelope of the received optical intensity, and for this
behavior the photodiode is defined as a square-law device. The optical power is then converted into
electrical current intensity, as clearly reported by the unit of measure of the responsivity function in
Equation (1.3). At a limited input optical power level, the photodiode behaves linearly with respect
to the incident optical intensity and can be conveniently characterized by the impulse response
and the transfer function in the frequency domain. The photodetector therefore performs the first
filtering process on the incoming optical signal. The photocurrent pulses are then amplified and
converted into more suitable voltage pulses before being processed through conventional clock and
data recovery (CDR) circuits. If the multimode fiber bandwidth together with additional electrical
low-pass filtering in the optical receiver front end set severe limitations on the signal available at
the receiver decision section, a large error rate would be expected and a transmission failure status
would therefore be detected. This failure mechanism is referred to as the ‘dispersion limited system
fault’. The only possible remedies known to overcome this fault condition is either to provide
a received pulse reshaping process or to use error correcting code transmission or even reduce
the signal bandwidth requirement in the given transmission channel using a proper modulation
format. The first approach leads to the electronic dispersion compensation (EDC) technique, while
two other solutions, optical mode filtering (OMF) and the multilevel modulation format (PAM-4),
tend to either increase the multimode fiber transmission capacity or reduce the signal bandwidth
occupation.

1.6 Signal Compensation Techniques
Due to the relatively large differential mode delay (DMD) encountered in multimode fibers when
excited by semiconductor laser sources, a strong pulse dispersion and interferometric noise (Speckle
pattern) are simultaneously expected as major limitations to multigigabit data transmission over
a few hundred meters of link length. These effects lead to different dispersion compensation
approaches, namely electronic dispersion compensation (EDC), optical mode filtering (OMF) and
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quaternary pulse amplitude modulation (PAM-4). The IEEE 802.3aq 10BASE-LRM Committee is
at present carefully investigating these three alternative compensating procedures.

The impulse response of a multimode fiber link distributed over several connected sections
is very sensitive to perturbing environmental conditions like temperature mechanical vibration
and even the state of polarization. Due to its inherent adaptive architecture, EDC seems to have
better control against those environmental effects, making the multimode fiber link more robust
under cabled operating conditions. However, it is widely accepted by the IEEE 802.3aq Committee
that the complete picture of 10GbE over long-reach multimode fibers remains quite troublesome
unless a proper dispersion compensation mechanism is taken into account. Although EDC seems
to be the most promising solution for multipath pulse dispersion compensation, the remaining two
approaches are still under investigation and merit some attention as alternative methods for potential
future approaches. In the following, the operating principles of the above-mentioned three methods
will be considered. All of the considered solutions have several issues to be solved in order to
become widely deployed on the 10GbE large-volume market expected in 2006 and 2007. The basic
principles of these signal compensation techniques for multigigabit transmission over multimode
optical fibers will also be reviewed.

1.6.1 Electronic Dispersion Compensation (EDC)

The electronic dispersion compensation (EDC) technique proposes to mitigate optical pulse broad-
ening at the multimode fiber output by means of electronic signal processing directly operating at
the signal rate. The optical signal must be first detected and linearly amplified by a proper low-noise
receiver before being processed by EDC. This approach requires relatively complex digital signal
processing at 10 Gb/s in the case of the 10BASE-LRM standard. The key element is the adaptive
finite impulse response (FIR) filter whose tap coefficients are managed through the minimum mean
square error (MMSE) algorithm. Among several different available architectures the most suitable
for achieving simultaneously a high bit rate capability and relatively low power requirements is
based on a combination of the feedforward equalizer (FFE) and the decision feedback equalizer
(DFE). Both sections are realized by means of FIR filters. Key parameters of both the FFE and
DFE are the number of taps and the tap delay (tap spacing) used to synthesize each FIR filter.
The more dispersed equalizer is expected to be the input pulse and the longer are would be the
filter length in order to compensate for longer precursors and postcursors. This produces a trade-off
between technological complexity, power consumption and compensation capability. Essentially,
the EDC action can be depicted in two steps:

1. The FFE section controls the input pulse shape providing weighted amounts of frequency
response equalization in order to re-establish a proper pulse profile, thus reducing the intersymbol
interference pattern.

2. The DFE section adaptively adjusts the decision threshold of the digital quantizer in order
to minimize the intersymbol interference power at the decision section output. According to
standard solutions, the DFE operation requires the clock recovery feature from the incoming
data pattern in order to synchronize the decision timing properly.

In this context, relatively relaxed optical constraints including launch conditions, connector tol-
erances and optical detection architectures are required for the fiber transmission system. The EDC
advantage relies on its integrated circuit (IC) structure: low cost, high reliability, compact and easily
integrable in a small form factor and pluggable data communication modules. The EDC drawback
is that some unstable convergence is experienced when the required filter length increases and the
multimode fiber response demands that the compensation capabilities be limited. A low value of
the signal-to-noise ratio (SNR) at the optical receiver input places one more constraint on EDC
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operation. The electronic compensator architecture should also include an adaptive electrical filter
in order to track the compensation profile variations according to the temporal changes of the MMF
response and to restore the proper electrical pulse profile at the decision section.

It will be seen in the next chapters that several fiber modes excited by the laser source will
propagate, with relative delay differences giving rise to multipath pulse distortion after some dis-
tance from the launch section. Due to the large-area photodetection mechanism, interferometric
noise plays a marginal role, leaving the complete interferometric pattern inside the detected light
area. Spatial averaging over the whole fiber end section due to the large-area detection mechanism
makes the detected light intensity spatially averaged and almost unaffected by interferometric noise
fluctuations.

Major problems in the EDC approach are:

1. The efficiency of the FFE filter depends on the number of taps and on the relative spacing
needed for impulse reconstruction. Due to the strong multipath dispersion usually encountered
in legacy multimode fibers, several integral bit time equivalents are needed, leading to long FFE
filter structures with more than 9 to 12 sections.

2. Increasing the number of taps leads to an increase in the equalization filter capability of the long
pulse tail distortion, but at same time it increases considerably the power consumption and the
design implementation complexity for the given technology state.

3. Internal delay of the EDC architecture must match with 10GbE bit-rate requirements (about
100 ps time step) and this leads to state-of-the-art CMOS (complementary metal oxide semicon-
ductor) technology with less than a 90 nm gate length

4. The input stage must account for a linear automatic gain controlled (AGC) microwave amplifier
with a proper dynamic range and a smooth bandwidth in excess of 8 GHz.

5. The optical photodetector and related low noise transimpedance amplifier must have a linear
(V/W) transfer characteristic.

6. The DFE corrects only the pulse postcursor. Inherent leaking of the compensation capability of
either pulse precursor and the dual peak pulse response reveal a severe limitation of the DFE
approach for these pulse distortions.

1.6.2 Optical Mode Filtering (OMF)

The optical mode filtering (OMF) technique proposes a reduction in the number of propagating
modes in the multimode fiber by selective excitation and detection of the fundamental fiber mode.
Optical mode filtering can be summarized using the following basic operations:

1. A selective laser light launch into the multimode fiber input section in order to couple as much
power as possible to the fundamental fiber mode only. This is achieved by means of a proper
laser coupling mechanism in order to maximize the overlapping integral with the fundamental
fiber mode.

2. Selective light detection at the multimode fiber end section by means of a spatial selective filter
interposed between the multimode fiber end section and the photodetector active area.

By reducing drastically the number of excited mode groups, modal delay spreading is implicitly
reduced. The principal problem encountered by this method is the large amount of power fluctuation
(modal noise) induced by the standard connector offset and perturbing environmental conditions.
However, under controlled laboratory conditions, this solution provided excellent results. From an
application point of view, this solution requires specialized launch and detection tools that add
complexity and cost to high-volume market demands. It is a common opinion of the IEEE 802.3aq
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Committee that in order to introduce OMF as a valid signal compensation technique it should work
together with EDC. Of course, the performance required in this case by EDC would be much less
demanding than in a stand-alone application, but would still add more complexity and cost to the
module final solution.

As had been anticipated, the basic principle behind OMF is to force as much multimode fiber as
possible to operate as nearly single-mode fiber in the 1310 nm region by selective excitation and
selective detection of the fundamental fiber mode. In the OMF approach, only the fundamental fiber
mode would be excited in principle, leaving a relatively small contribution in terms of pulse energy
carried up to the fiber end to the residually excited higher-order modes. In other words, the basic
idea behind OMF is to force a single-mode regime into a multimode fiber. Although in principle the
differential mode delay and the modal bandwidth concepts no longer apply to the OMF approach, the
interferometric noise between excited higher-order modes and the fundamental mode grown at each
fiber discontinuity, like connectors and fusion splices, makes the whole channel design much more
critical with respect to optical alignment tolerances when compared to the EDC approach. Every
misalignment in the fiber core contributes to unwanted higher-order mode excitation and modal
noise. An additional effect is represented by the polarization of the fundamental mode respect to
the direction connector misalignment. Due to the random nature of the polarization direction of the
fundamental mode and to its sensitivity to any environmental condition, a polarization-dependent
noise term must be added to light intensity. A careful central spot size launching condition, receiver
mode filtering and optical connector alignment statistics all play a dominant role in the OMF
approach. Unfortunately, standard tolerances for MMF technology optical connectors are too loose
to compete with the OMF requirements. High modal noise due to an interference pattern between
higher order modes and the fundamental mode severely limits system performance.

Major problems in the OMF approach are:

1. The laser source coupled field must match the fundamental fiber mode in order to transfer as
much power as possible to that mode. This in particular requires numerical aperture adaptation
between the laser light and the fundamental fiber mode.

2. Due to almost unavoidable irregularity of the refractive index profile at the fiber center (dip or
pin) laser light should not be focused on such a small area around the fiber axis. Laser light
should be applied to a larger axial-symmetric region in order to minimize the relative power
coupled in the defective central region, but a region not too large to provide unwanted higher
mode excitation.

3. Minimize the power transferred to higher-order modes.
4. Connector offset plays a dominant role in OMF penalty calculation. Any offset leads to power

coupling that is not optimized, allowing higher-order mode excitation and consequent pulse
dispersion.

5. Polarization and connector offset generate relevant modal noise.
6. The modal filter at the receiver end is needed to cut out higher-order mode contributions to the

detected intensity, but it generates strong intensity fluctuations when modal noise, polarization
and connector offset are produced simultaneously.

1.6.3 Quaternary Pulse Amplitude Modulation (PAM-4)

The basic idea behind the quaternary pulse amplitude modulation (PAM-4) proposal is to reduce
the bandwidth requirement of the multimode fiber link in order to allow full 10GbE datastream
transmission over a long-reach legacy multimode fiber link. This is achieved by using four-level
modulation amplitude instead of the more conventional two-level NRZ (no return to zero) mod-
ulation scheme. Adopting the four-level scheme, each sequence of two information bits is coded
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into the four-level digital amplitude instead of being simply time multiplexed, as shown by the
following encoding logic: 


b1 b2 L I2 + I1 Imod

0 0 L0 0 + 0 0
0 1 L1 0 + I I
1 0 L2 2I + 0 2I
1 1 L3 2I + I 3I




This shows the encoding relations between the NRZ dual-bit sequence (b1, b2) and the logic PAM-4
levels Lk , k = 0, 1, 2, 3. Each PAM-4 logic level is then identified by combining the two current
generators I1 and I2. The corresponding modulation current Imod, reported in the last column, is
injected into the laser.

The result is that for the same symbol rate exactly half a bit rate is required. Referring to
the 10GbE signaling speed B = 10.3125 Gb/s, this translates into one-half of the symbol rate
requirement, corresponding to exactly BPAM-4 = 1

2B = 5.156 25 Gb/s. Assuming that the multimode
fiber modal bandwidth scales inversely with the link length (no mode group mixing), this leads
to double the link length or one-half of the link bandwidth requirement for the fixed link length.
Since there is interest in transmitting 10GbE, the latter conclusion looks quite attractive, allowing in
principle 10GbE transmission over at least 300 m of legacy multimode fiber with a modal bandwidth
B̂W(bandwidth per kilometer) = 500 MHz km in the second window region.

Although the conclusion above could justify design efforts in the PAM-4 solution due to sensible
relaxation of multimode fiber bandwidth requirements, major constraints will be added to the
optoelectronic modules.

1.6.3.1 NRZ to PAM-4 Encoder

Figure 1.3 shows a solution for the PAM-4 encoder operating in the optical domain. The current
encoding logic is represented by the following relationships:

{
Imod = I1 + I2

IL = Imod + Ibias
,




I1 =
(

I : high
0 : low

)

I2 =
(

2I : high
0 : low

) (1.5)

The laser diode driver LDD1 delivers the modulation current I1 that assumes two digital levels,
namely I1 = I and I1 = 0 in the high state and in the low state respectively. The laser diode
driver LDD2 delivers the modulation current I2 that still assumes still two digital levels, but of
double intensity, namely I2 = 2I and I2 = 0 in the high state and in the low state respectively.
According to the 1:2 demultiplexed function, each laser driver is fed at half the bit rate and each
of them supplies the proper output current corresponding to the input digital level. Depending
on the input dual-bit sequence, four input combinations are possible and correspondingly four
output current levels are coded. Due to the 1:2 demultiplexed function, each output current level
is associated with twice the input time step T = 1/B, effectively doubling the duration of each
PAM-4 coded symbol.

The most relevant problem concerning the optical transmitter for the PAM-4 coding is the
linearity of the laser characteristic and the resulting signal-to-noise ratio uniformity achievable for
each level difference. It is well known that the laser pulse response is strongly dependent on the
biasing position, at least when the laser is biased close to the lasing threshold. Different overshoot
and transient time responses are therefore expected for the level transitions L0 → L1 and L2 → L3,
due to the different positions of L0 and L2 respectively compared to the lasing threshold.
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Figure 1.3 Block diagram of the NRZ to PAM-4 optical encoder. The modulation current is given by the
sum of the two current components I1 and I2

In order to understand the signal differences better, Figure 1.4 illustrates both the NRZ signal
and the corresponding PAM-4 converted signal. The first row in Figure 1.4 shows the incoming
NRZ pattern. The following two waveforms represent the 1:2 demultiplexed signals with ideal
timing. In order to align those waveforms it is necessary to add a time delay equal to one time
step T to waveform D1. The resulting shifted signal is then represented. The current sum shown in
the schematic in Figure 1.3 therefore provides the PAM-4 output reported. This is the modulation
current pattern that drives the semiconductor laser.

1.6.3.2 PAM-4 to NRZ Decoder

Once the optical PAM-4 signal reaches the photodetector it must be recognized and converted to
NRZ using a proper PAM-4 to NRZ decoder. Figure 1.5 gives the block diagram for a plausible
solution for the PAM-4 to NRZ decoder.

The basic principle underlying the schematic PAM-4 to NRZ decoder presented in Figure 1.5
considers the three inner level transitions of the PAM-4 signal to be three separate NRZ signals of
reduced amplitude. After detection, the logic block recovers the original NRZ pattern. The major
constraint in the PAM-4 to NRZ decoder is the reduced signal-to-noise ratio available at each
threshold detector in the optical receiving process in comparison to the equivalent NRZ optical
receiver. It is important to underline the fact that the comparison between NRZ and PAM-4 optical
receivers should be performed using adequate assumptions and available technology.

1.6.3.3 NRZ versus PAM-4: SNR Comparison

In order to calculate the signal-to-noise ratio and proceed to evaluate the different benefits and
impairments between NRZ and PAM-4 modulation schemes, consider the following assumptions:

1. NRZ and PAM-4 optical receivers use the same IC technology with the same white thermal
noise power spectral density nth. This allows only noise bandwidth differences to be considered
as responsible for the different noise powers available in the two receivers.

2. Both optical receivers are thermal noise limited. In other words, thermal noise is the dominant
contribution in setting the sensitivity performances.

3. NRZ and PAM-4 optical receivers both have the same frequency response profile, but the NRZ
receiver has twice the bandwidth of the PAM-4 receiver.
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D1 delayed

10 1 1 0 1 0 0 1 0

L1

L0

L1

L0

L1

L0

L1

L0

L3

L2

L0

L1

D1

D2

NRZ

PAM - 4 → (D1, D2)

10 1 0 1 0 0 1 01 1 0 0

1 0 0 1

Figure 1.4 NRZ to PAM-4 signal encoding according to the block diagram presented in Figure 1.3. Light
waveforms are detected at the 1:2 demultiplexed output including T-delay required in order to align signal
wavefronts before the current sum. The waveform shows the total modulation current injected into the laser
according to the coded PAM-4 pattern

Figure 1.6 is a schematic representation of the frequency response and related noise bandwidth
of both receivers. According to the third assumption, the two receivers have a noise bandwidth
ratio equal to their corresponding bandwidths. Therefore:

Bn,NRZ = 2Bn,PAM-4 (1.6)

From assumptions 1 and 2, it can easily be deduced that the noise power of the NRZ receiver is
twice the noise power of the PAM-4 receiver:

σ 2
n,NRZ = Bn,NRZnth = 2Bn,PAM-4nth = 2σ 2

n,PAM-4 (1.7)



Introductory Concepts 13

Figure 1.5 Schematic representation of the block diagram of a PAM-4 to NRZ decoder using three threshold
detectors and a clock by 2 multiplier. By choosing the correct threshold position of the three threshold detectors,
the subsequent logic can reconstruct the original NRZ signal from the PAM-4 detected signal

Figure 1.6 Schematic representation of frequency responses and noise bandwidths of NRZ and PAM-4
receivers. According to the third assumption, noise bandwidths have the same ratio of 1

2 as their respective
cut-off frequencies



14 Multi-Gigabit Transmission over Multimode Optical Fibre

The RMS (root mean square) noise reduction ∆n produced using the PAM-4 receiver can be
estimated as

∆n ≡ 10 log10

(
σn,NRZ

σn,PAM-4

)
= 10 log10

√
2 ∼= 1.5 dB(optical) (1.8)

The gain factor ∆n represents the average optical power sensitivity improvement for achieving
the same signal-to-noise ratio performances for a given signal amplitude. If the required decision
threshold distance had been the same for both NRZ and PAM-4 receivers, it can be concluded
that there is a net gain of 1.5 dB (optical) when using the PAM-4 solution versus the NRZ one,
but unfortunately this is not the case. In fact, for a given average received optical power PR, the
PAM-4 signal has a one-third decision amplitude with respect to the corresponding NRZ signal.
The signal pattern reported in Figure 1.4 gives a qualitative representation of this characteristic
behavior. Figure 1.7 shows the computed gain between the PAM-4 and the NRZ line coding versus
increasing multimode fiber link length for a specified modal bandwidth of B̂W = 500 MHz km with
Gaussian frequency response. Figures 1.8 and 1.9 show instead a more realistic computer simulation
of both NRZ and PAM-4 eye diagrams, assuming that they have the same average optical power
for the 10GbE case. The pulse has been chosen according to the raised cosine family with unit
roll-off.

Since there is no intersymbol interference (ISI) in both cases, the reduction in the decision
amplitude experienced for each signal transition in the PAM-4 pattern with respect to the NRZ one

Figure 1.7 Optical sensitivity gain comparison between the PAM-4 and NRZ line codings versus the mul-
timode fiber single link length. The fiber modal bandwidth is B̂W = 500 MHz km. The breakeven distance is
about L0 = 123 m
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leads to a loss of signal strength of about 4.77 dB (optical):

∆s = 10 log10(1/3) ∼= −4.77 dB (1.9)

This value refers to ideal eye diagrams with no added jitter or ISI and the average eye opening
coincides with the decision threshold amplitude for each level. The receiver sensitivity for a given
bit error rate (BER) is determined by the Q-factor defined below, where d is the decision threshold
distance and σ is the total RMS noise amplitude. Assuming thermal noise limited detection and
Gaussian noise approximation, then

Q ≡ d

σ
, BER = 1

2
erfc

(
Q√

2

)
(1.10)

Taking into account the reduced noise bandwidth in Equation (1.8) for PAM-4 and the corre-
sponding detection amplitude reduction in Equation (1.9), it can be concluded that the net average
optical power gain using the PAM-4 receiver instead of the corresponding NRZ receiver is about
3.27 dB (optical):

∆Q = ∆s + ∆n
∼= −4.77 + 1.50 = −3.27 dB (1.11)

This is essentially the reason for the success of the NRZ solution adopted in almost all optical
telecommunication systems. Of course, at least technically the development of the PAM-4 signaling
must be justified.

1.6.3.4 NRZ versus PAM-4: Eye Opening Comparison
The general signal-to-noise reduction experienced by the PAM-4 signal must in fact be balanced
by the reduced channel bandwidth requirement, as clearly shown by comparing the left top graphs
of Figures 1.8 and 1.9. Assuming the same unity roll-off raised cosine signal pulse profile in both
modulation codes, it is evident that the PAM-4 pulse requires exactly a bandwidth that is one-half
of the corresponding NRZ case. This leads to a considerable pulse spreading reduction after a given
link length propagation, which corresponds to a relative increased optical eye opening. Following
this reasoning, it is possible to arrive at the obvious conclusion justifying the PAM-4 coding when
reduced transmission channel capabilities must be accounted for in the transmission system design.

Figures 1.10 and 1.11 report respectively the PAM-4 and NRZ data stream detected after a
single link length of 100 m of a Gaussian bandwidth multimode fiber. Most of the original eye
opening reduction due to multilevel coding has been recovered after just 100 m of link length.
In fact, the PAM-4 eye opening diagram results from about 27 % of the highest PAM-4 signal
amplitude, while the same qualitative calculation performed on the NRZ eye diagram shows that
the eye opening results from about 50 %. Referring to the ideal −4.77 dB penalty reported in
Equation (1.9), the ratio now gives about −2.67 dB, with a recovery of about 2.1 dB. Assuming
the same noise spectral power density for both line codes, the net gain in using PAM-4 versus
NRZ is still negative, −1.17 dB, but is much more reduced compared to the back-to-back case in
Equation (1.11).

The relative performance of PAM-4 line coding improves at longer link lengths, as shown
in Figures 1.12 and 1.13 for the case of a single link length of 150 m of the same Gaussian
bandwidth multimode fiber. A qualitative eye opening measurement for both cases gives about
the same value of 18 %, leading to a positive net gain of 1.5 dB, which coincides with the noise
bandwidth enhancement factor. The breakeven point in using PAM-4 instead of NRZ for this
Gaussian bandwidth multimode fiber is therefore somewhere between 100 m and 150 m, where
the net gain is zero. For every longer link length, PAM-4 gives theoretically better performances
than NRZ.

The last simulated case shown in Figures 1.14 and 1.15 refers to a single link length of 200 m of
the same Gaussian bandwidth multimode fiber. The PAM-4 eye diagram looks almost closed, even



18 Multi-Gigabit Transmission over Multimode Optical Fibre

10
8

10
9

10
10

05010
0

15
0

S
in

gl
e 

P
ul

se
: M

M
F

 O
ut

pu
t S

pe
ct

ru
m

 -
 P

ha
se

F
re

qu
en

cy
 [H

z]

Angle [degree]

−2
−1

.5
−1

−0
.5

0
0.

5
1

1.
5

2
0

0.
51

1.
52

2.
53

E
ye

 D
ia

gr
am

: P
R

B
S

 2
7 -

1

U
ni

ty
 In

te
rv

al

Amplitude [a.u.]

10
8

10
9

10
10

−4
0

−3
0

−2
0

−1
00

S
in

gl
e 

P
ul

se
: M

M
F

 O
ut

pu
t S

pe
ct

ru
m

 -
 M

ag
ni

tu
de

F
re

qu
en

cy
 [H

z]

Amplitude [dBo]

−4
00

−3
00

−2
00

−1
00

0
10

0
20

0
30

0
40

0
0

0.
2

0.
4

0.
6

0.
81

S
in

gl
e 

P
ul

se
: M

M
F

 O
ut

pu
t T

im
e 

R
es

po
ns

e

T
im

e 
[p

s]

Amplitude [a.u.]

M
M

F
 O

U
T

P
U

T

P
P

G
 P

A
R

A
M

E
T

E
R

S
Li

ne
 c

od
e:

 P
M

4
P

ul
se

: E
rr

or
 F

un
ct

io
n

t r 
= 

t f 
= 

15
 p

s
σ t

 =
10

 p
s

B
it-

ra
te

 =
 1

0.
31

25
 G

b
/s

O
R

T
 P

A
R

A
M

E
T

E
R

S
R

es
po

ns
e:

 G
au

ss
ia

n
σ t

 =
 2

0 
ps

α 
= 

0
M

M
F

 P
A

R
A

M
E

T
E

R
S

R
es

po
ns

e:
 G

au
ss

ia
n

M
od

al
 B

W
 =

 5
00

 M
H

z.
km

D
M

D
 =

 0
 n

s
/k

m
Le

ng
th

 =
 1

00
 m

C
hr

.D
is

p.
 =

 6
 p

s
/n

m
.k

m

σ λ
 =

 0
 n

m

F
ig

ur
e

1.
10

Fr
eq

ue
nc

y
an

d
tim

e
do

m
ai

n
re

pr
es

en
ta

tio
ns

of
PA

M
-4

PR
B

S
27

-1
lin

e
co

de
si

gn
al

s
at

10
G

bE
da

ta
ra

te
af

te
r

a
10

0
m

si
ng

le
lin

k
le

ng
th

of
G

au
ss

ia
n

ba
nd

w
id

th
m

ul
tim

od
e

fib
er

.
L

ef
t

to
p

re
pr

es
en

ts
th

e
si

ng
le

pu
ls

e
fib

er
ou

tp
ut

,
w

hi
le

th
e

le
ft

bo
tto

m
gr

ap
h

sh
ow

s
th

e
co

rr
es

po
nd

in
g

ey
e

di
ag

ra
m

in
no

rm
al

iz
ed

bi
t

tim
e

un
its

.
T

he
le

ge
nd

at
th

e
to

p
re

po
rt

s
th

e
si

m
ul

at
ed

co
nd

iti
on

s
fo

r
th

e
pu

ls
e

pa
tte

rn
ge

ne
ra

to
r

an
d

th
e

lig
ht

so
ur

ce
im

pu
ls

e
re

sp
on

se



Introductory Concepts 19

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7 −1

−0
.5

0
0.

5
1

0

0.
2

0.
4

0.
6

0.
81

10
8

10
9

10
10

−4
0

−3
0

−2
0

−1
00

S
in

gl
e 

P
ul

se
: M

M
F

 O
ut

pu
t S

pe
ct

ru
m

 -
 M

ag
ni

tu
de

F
re

qu
en

cy
 [H

z]

Amplitude [dBo]

−4
00

−3
00

−2
00

−1
00

0
10

0
20

0
30

0
40

0

T
im

e 
[p

s]

Amplitude [a.u.]

S
in

gl
e 

P
ul

se
: M

M
F

 O
ut

pu
t T

im
e 

R
es

po
ns

e
M

M
F

 O
U

T
P

U
T

10
8

10
9

10
10

05010
0

15
0

S
in

gl
e 

P
ul

se
: M

M
F

 O
ut

pu
t S

pe
ct

ru
m

 -
 P

ha
se

F
re

qu
en

cy
 [H

z]

Angle [degree]

E
ye

 D
ia

gr
am

: P
R

B
S

 2
7 -

1

U
ni

ty
 In

te
rv

al

Amplitude [a.u.]

F
P

G
 P

A
R

A
M

E
T

E
R

S
Li

ne
 c

od
e:

 N
R

Z
P

ul
se

: E
rr

or
 F

un
ct

io
n

t r 
= 

t f 
= 

15
 p

s
σ t

 =
10

 p
s

B
it-

ra
te

 =
 1

0.
31

25
 G

b
/s

O
R

T
 P

A
R

A
M

E
T

E
R

S
R

es
po

ns
e:

 G
au

ss
ia

n
σ t

 =
 2

0 
ps

α 
= 

0
M

M
F

 P
A

R
A

M
E

T
E

R
S

R
es

po
ns

e:
 G

au
ss

ia
n

M
od

al
 B

W
 =

 5
00

 M
H

z.
km

D
M

D
 =

 0
 n

s
/k

m
Le

ng
th

 =
 1

00
 m

C
hr

.D
is

p.
 =

 6
 p

s
/n

m
.k

m

σ λ
 =

 0
 n

m

F
ig

ur
e

1.
11

Fr
eq

ue
nc

y
an

d
tim

e
do

m
ai

n
re

pr
es

en
ta

tio
ns

of
N

R
Z

PR
B

S
27

-1
lin

e
co

de
si

gn
al

s
at

10
G

bE
da

ta
ra

te
af

te
r

a
10

0
m

si
ng

le
lin

k
le

ng
th

of
G

au
ss

ia
n

ba
nd

w
id

th
m

ul
tim

od
e

fib
er

.
L

ef
t

to
p

re
pr

es
en

ts
th

e
si

ng
le

pu
ls

e
fib

er
ou

tp
ut

,
w

hi
le

th
e

le
ft

bo
tto

m
gr

ap
h

sh
ow

s
th

e
co

rr
es

po
nd

in
g

ey
e

di
ag

ra
m

in
no

rm
al

iz
ed

bi
t

tim
e

un
its

.
T

he
le

ge
nd

at
th

e
to

p
re

po
rt

s
th

e
si

m
ul

at
ed

co
nd

iti
on

s
fo

r
th

e
pu

ls
e

pa
tte

rn
ge

ne
ra

to
r

an
d

th
e

lig
ht

so
ur

ce
im

pu
ls

e
re

sp
on

se



20 Multi-Gigabit Transmission over Multimode Optical Fibre

10
8

10
9

10
10

−4
0

−3
0

−2
0

−1
00

S
in

gl
e 

P
ul

se
: M

M
F

 O
ut

pu
t S

pe
ct

ru
m

 -
 M

ag
ni

tu
de

F
re

qu
en

cy
 [H

z]

Amplitude [dBo]

10
8

10
9

10
10

05010
0

15
0

S
in

gl
e 

P
ul

se
: M

M
F

 O
ut

pu
t S

pe
ct

ru
m

 -
 P

ha
se

F
re

qu
en

cy
 [H

z]

Angle [degree]

−4
00

−3
00

−2
00

−1
00

0
10

0
20

0
30

0
40

0

0

0.
2

0.
4

0.
6

0.
8

S
in

gl
e 

P
ul

se
: M

M
F

 O
ut

pu
t T

im
e 

R
es

po
ns

e

T
im

e 
[p

s]

Amplitude [a.u.]

−2
−1

.5
−1

−0
.5

0
0.

5
1

1.
5

2

0

0.
51

1.
52

2.
53

E
ye

 D
ia

gr
am

: P
R

B
S

 2
7 -

1

U
ni

ty
 In

te
rv

al

Amplitude [a.u.]

M
M

F
 O

U
T

P
U

T

P
P

G
 P

A
R

A
M

E
T

E
R

S
Li

ne
 c

od
e:

 P
M

4
P

ul
se

: E
rr

or
 F

un
ct

io
n

t r 
= 

t f 
= 

15
 p

s
σ t

 =
10

 p
s

B
it-

ra
te

 =
 1

0.
31

25
 G

b
/s

O
R

T
 P

A
R

A
M

E
T

E
R

S
R

es
po

ns
e:

 G
au

ss
ia

n
σ t

 =
 2

0 
ps

α 
= 

0
M

M
F

 P
A

R
A

M
E

T
E

R
S

R
es

po
ns

e:
 G

au
ss

ia
n

M
od

al
 B

W
 =

 5
00

 M
H

z.
km

D
M

D
 =

 0
 n

s
/k

m
Le

ng
th

 =
 1

50
 m

C
hr

.D
is

p.
 =

 6
 p

s
/n

m
.k

m

σ λ
 =

 0
 n

m

F
ig

ur
e

1.
12

Fr
eq

ue
nc

y
an

d
tim

e
do

m
ai

n
re

pr
es

en
ta

tio
ns

of
PA

M
-4

PR
B

S
27

-1
lin

e
co

de
si

gn
al

s
at

10
G

bE
da

ta
ra

te
af

te
r

a
15

0
m

si
ng

le
lin

k
le

ng
th

of
G

au
ss

ia
n

ba
nd

w
id

th
m

ul
tim

od
e

fib
er

.
L

ef
t

to
p

re
pr

es
en

ts
th

e
si

ng
le

pu
ls

e
fib

er
ou

tp
ut

,
w

hi
le

th
e

le
ft

bo
tto

m
gr

ap
h

sh
ow

s
th

e
co

rr
es

po
nd

in
g

ey
e

di
ag

ra
m

in
no

rm
al

iz
ed

bi
t

tim
e

un
its

.
T

he
le

ge
nd

at
th

e
to

p
re

po
rt

s
th

e
si

m
ul

at
ed

co
nd

iti
on

s
fo

r
th

e
pu

ls
e

pa
tte

rn
ge

ne
ra

to
r

an
d

th
e

lig
ht

so
ur

ce
im

pu
ls

e
re

sp
on

se



Introductory Concepts 21

10
8

10
9

10
10

−4
0

−3
0

−2
0

−1
00

S
in

gl
e 

P
ul

se
: M

M
F

 O
ut

pu
t S

pe
ct

ru
m

 -
 M

ag
ni

tu
de

F
re

qu
en

cy
 [H

z]

10
8

10
9

10
10

F
re

qu
en

cy
 [H

z]

Amplitude [dBo]

05010
0

15
0

S
in

gl
e 

P
ul

se
: M

M
F

 O
ut

pu
t S

pe
ct

ru
m

 -
 P

ha
se

Angle [degree]

−4
00

−3
00

−2
00

−1
00

0
10

0
20

0
30

0
40

0
0

0.
1

0.
2

0.
3

0.
4

0.
5

S
in

gl
e 

P
ul

se
: M

M
F

 O
ut

pu
t T

im
e 

R
es

po
ns

e

T
im

e 
[p

s]

Amplitude [a.u.]

−1
−0

.5
0

0.
5

1

0

0.
2

0.
4

0.
6

0.
81

E
ye

 D
ia

gr
am

: P
R

B
S

 2
7 -

1

U
ni

ty
 In

te
rv

al

Amplitude [a.u.]

M
M

F
 O

U
T

P
U

T

P
P

G
 P

A
R

A
M

E
T

E
R

S
Li

ne
 c

od
e:

 N
R

Z
P

ul
se

: E
rr

or
 F

un
ct

io
n

t r 
= 

t f 
= 

15
 p

s
σ t

 =
10

 p
s

B
it-

ra
te

 =
 1

0.
31

25
 G

b
/s

O
R

T
 P

A
R

A
M

E
T

E
R

S
R

es
po

ns
e:

 G
au

ss
ia

n
σ t

 =
 2

0 
ps

α 
= 

0
M

M
F

 P
A

R
A

M
E

T
E

R
S

R
es

po
ns

e:
 G

au
ss

ia
n

M
od

al
 B

W
 =

 5
00

 M
H

z.
km

D
M

D
 =

 0
 n

s/
km

Le
ng

th
 =

 1
50

 m
C

hr
.D

is
p.

 =
 6

 p
s

/n
m

.k
m

σ λ
 =

 0
 n

m

F
ig

ur
e

1.
13

Fr
eq

ue
nc

y
an

d
tim

e
do

m
ai

n
re

pr
es

en
ta

tio
ns

of
N

R
Z

PR
B

S
27

-1
lin

e
co

de
si

gn
al

s
at

10
G

bE
da

ta
ra

te
af

te
r

a
15

0
m

si
ng

le
lin

k
le

ng
th

of
G

au
ss

ia
n

ba
nd

w
id

th
m

ul
tim

od
e

fib
er

.
L

ef
t

to
p

re
pr

es
en

ts
th

e
si

ng
le

pu
ls

e
fib

er
ou

tp
ut

,
w

hi
le

th
e

le
ft

bo
tto

m
gr

ap
h

sh
ow

s
th

e
co

rr
es

po
nd

in
g

ey
e

di
ag

ra
m

in
no

rm
al

iz
ed

bi
t

tim
e

un
its

.
T

he
le

ge
nd

at
th

e
to

p
re

po
rt

s
th

e
si

m
ul

at
ed

co
nd

iti
on

s
fo

r
th

e
pu

ls
e

pa
tte

rn
ge

ne
ra

to
r

an
d

th
e

lig
ht

so
ur

ce
im

pu
ls

e
re

sp
on

se



22 Multi-Gigabit Transmission over Multimode Optical Fibre

10
8

10
9

10
10

−4
0

−3
0

−2
0

−1
00

S
in

gl
e 

P
ul

se
: M

M
F

 O
ut

pu
t S

pe
ct

ru
m

 -
 M

ag
ni

tu
de

F
re

qu
en

cy
 [H

z]

Amplitude [dBo]

10
8

10
9

10
10

05010
0

15
0

S
in

gl
e 

P
ul

se
: M

M
F

 O
ut

pu
t S

pe
ct

ru
m

 -
 P

ha
se

F
re

qu
en

cy
 [H

z]

Angle [degree]

−4
00

−3
00

−2
00

−1
00

0
10

0
20

0
30

0
40

0
0

0.
2

0.
4

0.
6

0.
8

S
in

gl
e 

P
ul

se
: M

M
F

 O
ut

pu
t T

im
e 

R
es

po
ns

e

T
im

e 
[p

s]

Amplitude [a.u.]

−2
−1

.5
−1

−0
.5

0
0.

5
1

1.
5

2

0

0.
51

1.
52

2.
53

E
ye

 D
ia

gr
am

: P
R

B
S

 2
7 -

1

U
ni

ty
 In

te
rv

al

Amplitude [a.u.]

M
M

F
 O

U
T

P
U

T

P
P

G
 P

A
R

A
M

E
T

E
R

S
Li

ne
 c

od
e:

 P
M

4
P

ul
se

: E
rr

or
 F

un
ct

io
n

t r 
= 

t f 
= 

15
 p

s
σ t

 =
10

 p
s

B
it-

ra
te

 =
 1

0.
31

25
 G

b
/s

O
R

T
 P

A
R

A
M

E
T

E
R

S
R

es
po

ns
e:

 G
au

ss
ia

n
σ t

 =
 2

0 
ps

α 
= 

0
M

M
F

 P
A

R
A

M
E

T
E

R
S

R
es

po
ns

e:
 G

au
ss

ia
n

M
od

al
 B

W
 =

 5
00

 M
H

z.
km

D
M

D
 =

 0
 n

s
/k

m
Le

ng
th

 =
 2

00
 m

C
hr

.D
is

p.
 =

 6
 p

s
/n

m
.k

m

σ λ
 =

 0
 n

m

F
ig

ur
e

1.
14

Fr
eq

ue
nc

y
an

d
tim

e
do

m
ai

n
re

pr
es

en
ta

tio
ns

of
PA

M
-4

PR
B

S
27

-1
lin

e
co

de
si

gn
al

s
at

10
G

bE
da

ta
ra

te
af

te
r

a
20

0
m

si
ng

le
lin

k
le

ng
th

of
G

au
ss

ia
n

ba
nd

w
id

th
m

ul
tim

od
e

fib
er

.
L

ef
t

to
p

re
pr

es
en

ts
th

e
si

ng
le

pu
ls

e
fib

er
ou

tp
ut

,
w

hi
le

th
e

le
ft

bo
tto

m
gr

ap
h

sh
ow

s
th

e
co

rr
es

po
nd

in
g

ey
e

di
ag

ra
m

in
no

rm
al

iz
ed

bi
t

tim
e

un
its

.
T

he
le

ge
nd

at
th

e
to

p
re

po
rt

s
th

e
si

m
ul

at
ed

co
nd

iti
on

s
fo

r
th

e
pu

ls
e

pa
tte

rn
ge

ne
ra

to
r

an
d

th
e

lig
ht

so
ur

ce
im

pu
ls

e
re

sp
on

se



Introductory Concepts 23

10
8

10
9

10
10

−4
0

−3
0

−2
0

−1
00

S
in

gl
e 

P
ul

se
: M

M
F

 O
ut

pu
t S

pe
ct

ru
m

 -
 M

ag
ni

tu
de

F
re

qu
en

cy
 [H

z]

10
8

10
9

10
10

F
re

qu
en

cy
 [H

z]

Amplitude [dBo]

05010
0

15
0

S
in

gl
e 

P
ul

se
: M

M
F

 O
ut

pu
t S

pe
ct

ru
m

 -
 P

ha
se

Angle [degree]

−4
00

−3
00

−2
00

−1
00

0
10

0
20

0
30

0
40

0
0

0.
1

0.
2

0.
3

0.
4

0.
5

S
in

gl
e 

P
ul

se
: M

M
F

 O
ut

pu
t T

im
e 

R
es

po
ns

e

T
im

e 
[p

s]

Amplitude [a.u.]

−1
−0

.5
0

0.
5

1

0

0.
2

0.
4

0.
6

0.
81

E
ye

 D
ia

gr
am

: P
R

B
S

 2
7 -

1

U
ni

ty
 In

te
rv

al

Amplitude [a.u.]

M
M

F
 O

U
T

P
U

T

P
P

G
 P

A
R

A
M

E
T

E
R

S
Li

ne
 c

od
e:

 N
R

Z
P

ul
se

: E
rr

or
 F

un
ct

io
n

t r 
= 

t f 
= 

15
 p

s
σ t

 =
 1

0 
ps

B
it-

ra
te

 =
 1

0.
31

25
 G

b
/s

σ t
 =

10
 p

s
O

R
T

 P
A

R
A

M
E

T
E

R
S

R
es

po
ns

e:
 G

au
ss

ia
n

σ t
 =

 2
0 

ps

α 
= 

0
M

M
F

 P
A

R
A

M
E

T
E

R
S

R
es

po
ns

e:
 G

au
ss

ia
n

M
od

al
 B

W
 =

 5
00

 M
H

z.
km

D
M

D
 =

 0
 n

s/
km

Le
ng

th
 =

 2
00

 m
C

hr
. D

is
p.

 =
 6

 p
s

/n
m

.k
m

σ λ
 =

 0
 n

m

F
ig

ur
e

1.
15

Fr
eq

ue
nc

y
an

d
tim

e
do

m
ai

n
re

pr
es

en
ta

tio
ns

of
N

R
Z

PR
B

S
27

-1
lin

e
co

de
si

gn
al

s
at

10
G

bE
da

ta
ra

te
af

te
r

a
20

0
m

si
ng

le
lin

k
le

ng
th

of
G

au
ss

ia
n

ba
nd

w
id

th
m

ul
tim

od
e

fib
er

.
L

ef
t

to
p

re
pr

es
en

ts
th

e
si

ng
le

pu
ls

e
fib

er
ou

tp
ut

,
w

hi
le

th
e

le
ft

bo
tto

m
gr

ap
h

sh
ow

s
th

e
co

rr
es

po
nd

in
g

ey
e

di
ag

ra
m

in
no

rm
al

iz
ed

bi
t

tim
e

un
its

.
T

he
le

ge
nd

at
th

e
to

p
re

po
rt

s
th

e
si

m
ul

at
ed

co
nd

iti
on

s
fo

r
th

e
pu

ls
e

pa
tte

rn
ge

ne
ra

to
r

an
d

th
e

lig
ht

so
ur

ce
im

pu
ls

e
re

sp
on

se



24 Multi-Gigabit Transmission over Multimode Optical Fibre

if small signal detection still seems possible. There is twice the channel bandwidth requirement in
the case of NRZ coding, which leads instead to a completely closed eye diagram.

1.6.3.5 PAM-4 Coding Impairments in Optical Modulation

Previous analysis showed the comparison between NRZ and PAM-4 line code formats. The inher-
ent reduced bandwidth occupancy of the PAM-4 line coding for the same information capacity
supported by the NRZ format makes the former solution quite attractive as a valuable coding
technique for overcoming the band-limited restrictions of legacy multimode fibers when operated
at 10GbE standard. This is clearly summarized by the plot presented in Figure 1.7 between the
coding net gain and the link distance for a given single multimode fiber. In that case, when the
link length exceeds about 120 m, the PAM-4 coding results in superior performances with an
increased signal-to-noise ratio. This is achieved by balancing the initially reduced eye opening due
to multilevel modulation with the reduced signal pulse broadening during its propagation along the
multimode fiber. The higher frequency content of the NRZ pulse undergoes a stronger interaction
with the band-limited operation of the transmission channel, resulting in a relatively larger pulse
dispersion.

These considerations are correct but they do not include any design issues or light source spec-
ifications. In order to obtain PAM-4 coding there is a need to discriminate among four different
signal levels which correspond to three signal intervals. Figure 1.16 shows the PAM-4 signal and
noise specifications.

The simple theory presented in the previous section assumes implicitly that the four signal
levels are equally spaced and the noise power is uniform among them. This is reasonably true for

Figure 1.16 The PAM-4 code is represented through four digital levels, L0, L1, L2, L3, uniformly spaced
by A/3, where A = L3 − L0 is the maximum signal amplitude. The noise level is qualitatively represented by
3σk and added over the signal level. Index k = 0, 1, 2, 3 indicates the corresponding signal level. Mid-range
decision thresholds are respectively D01, D12, D23
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electrical PAM-4 modulation but it is not the general case for optical PAM-4 modulation. Different
noise contributions on each signal level must be divided according to the source and the detector
contribution. Depending on the detection system used, there may be either a negligible or a relevant
shot noise contribution, and even a signal-spontaneous beat noise term if optical amplification is
used at the receiver end section.

It is well known in optical communication that the shot noise power is proportional to the
signal average optical power leading to an increasing signal-to-noise ratio as the square root of the
average received optical power. In the case of optically amplified transmission systems, the signal-
spontaneous beat noise usually becomes the dominant noise term and the signal-to-noise ratio
remains constant versus the received average optical power, which leads to the well-known optical
signal-to-noise ratio (OSNR) limited operations. Since both shot noise and signal-spontaneous beat
noise are dependent on the optical signal level, it might be expected that optical PAM-4 exhibits a
decreasing signal-to-noise ratio moving from the lower signal level towards the higher signal level.
This could be compensated by properly adjusting the decision threshold for every signal interval.
It this case, moving from the lowest interval towards a higher one, the decision threshold must be
positioned correspondingly below the mid-range position, at relatively decreasing distances from
the lower signal level. This threshold adjustment will compensate for higher noise fluctuations on
the higher signal level.

There is at least one more reason for having different decision conditions corresponding to dif-
ferent intervals in the PAM-4 signal structure shown in Figure 1.16, namely the nonlinearity of the
laser source transfer characteristic and the quite different source noise added to different levels due
to strong differences in the lasing conditions. Laser nonlinearities in the L-I (eight power–current
intensity) characteristic are responsible for different interval amplitudes between consecutive sig-
nal levels. Compared to the NRZ line coding, the reduced interval amplitude together with the
laser nonlinearities makes the PAM-4 line coding implementation at 10GbE a very challenging
design. In addition, the different noise spectral power densities exhibited by every direct modu-
lated laser source at different lasing intensities require a careful decision threshold design. It will
be seen later in this book that the optimum decision threshold between any two digital signal
levels is determined by the minimum error probability achievable for the given signal ampli-
tude and noise distributions on both levels. If noise distribution is not the same or if it changes
during the lasing life, the corresponding optimum decision would require an adaptive threshold
capability.

1.6.3.6 EDC-Based PAM-4 to NRZ Decoder

Figure 1.17 shows qualitatively the block diagram for an EDC-based PAM-4 decoder to be used in
10GbE transmission over legacy multimode fiber. The optical line code is assumed to be PAM-4
running at 10.3125 Gb/s. The optical detector followed by the low-noise transimpedance amplifier
provides linear conversion to PAM-4 in the electrical domain. This signal simultaneously feeds
the three binary signal discriminators operating at the equivalent half-rate NRZ line code. The
embedded EDC feature improves the signal recognition after fiber bandwidth limitation added
significant distortion. It is important to remark that the electrical signal speed in each discriminator
is just half a bit rate, then 5.15625 Gb/s. This makes EDC implementation easier using the same
high-speed IC technology as that used for the low-noise front end. Once the signal has been first
discriminated among the three possible intervals defined by the PAM-4 coding, the LOGIC block
provides the NRZ data coding.
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Figure 1.17 Block diagram of the EDC-based PAM-4 receiver. The optical signal is first detected assuming
a linear PAM-4 transimpedance amplifier. Then each of the three signal discriminators operates according to
the selected threshold with the EDC feature. The LOGIC block provides the NRZ coding output. The required
signal speed of each signal discriminator is just one-half of the equivalent NRZ line code

1.7 Conclusions and Recommendations
The three solutions presented so far, namely EDC, OMF and PAM-4, serve as mitigating coun-
termeasures for multimode fiber bandwidth limitation. In principle all these three solutions should
allow 10GbE transmission over long-reach multimode fiber, although EDC gains an advantageous
position due to the intense development pursued by several IC companies involved in these projects.
Electronic dispersion compensation now looks much more promising than the other two alterna-
tives, mainly due to relatively more relaxed optical tolerances required by the fiber channel and
the laser source. Although at the present time a solid EDC design capable of successfully linking
300 m of legacy multimode fiber under operating field conditions has not yet been demonstrated,
many laboratory experiments have demonstrated its compensation capability, including dynamic
multipath adaptations.

In the following some general recommendations are summarized for achieving a successful
10GbE transmission over a multimode fiber link:

1. The 10GbE system must work with legacy MMF. No old fiber replacement should be planned.
2. No special patchcord should be used for restricted launching conditions. Those items will add

cost and bulky passive components to the system layout. An integrated offset launching tool
should be recommended for high-volume and low-cost production.

3. Low-cost and directly modulated receptacle laser sources must be used, instead of better perform-
ing but much more expensive solutions. More sophisticated transmitter solutions using externally
modulated laser sources, such as the EAM-DFB laser, do not match both cost requirement and
reduced power consumption for high-density pluggable modules. VCSEL, Fabry-Perot (FP) or
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distributed feedback (DFB) lasers are all recommended due to compact packaging, yield and
low cost. On the receiver side, receptacle PIN detectors are highly recommended.

4. Use standard MMF optical connector technology, avoiding any special alignment tolerance
requirements.

5. Reduce module power consumption as much as possible in order to be compliant with next-
generation higher-density low-profile optical interconnect modules.

State-of-the-art EDC designed using low-cost, high-speed, low-power and high-density CMOS IC
technology can accommodate moderate optical pulse distortion, due to insufficient MMF bandwidth.
However, OMF, even though it has not even if it been demonstrated to be fully capable of behaving
as the outstanding solution due to many layout-dependent problems, could mitigate multimode fiber
bandwidth limitation, thus reducing at least the EDC design complexity.

At the present time, EDC design based on high-speed CMOS technology is targeted at a com-
pensation distance of 300 m over a legacy multimode fiber link. Longer distances result in a
compensation effect that is not predictable, excessive design complexity and high power con-
sumption. In conjunction with EDC, OMF or PAM-4 could even be the proper ‘link extender’,
used to reach longer distances with stable results.

1.8 Optical Fiber Transmission Standards
Optical fiber transmission protocols and specifications are carefully controlled by several Standards
Committees. Depending on the target application, optical fiber transmission systems are addressed
for telecommunication and datacommunication areas. Different specifications characterize these
two fields: privileged performance and reliability in the first case while stressing engineering solu-
tions for a high-volume and low-cost market in the second case. The same data transmission
speed demands quite different laser sources and detection technologies. Long-reach requirements
in telecommunications very often need several hundred kilometers of single-mode fiber link, with
large use of optical amplifier and dense wavelength division multiplexing (DWDM) technologies.
For the large distribution of multigigabit data transmission implementation of legacy multimode
fiber deployed in the 1980s and 1990s is required with very sensible bandwidth limitations. This
situation sets a great engineering challenge in the local area distribution market. According to these
specific business areas, several standards have been proposed. Tables 1.1 to 1.5 report the most
relevant optical fiber standards, including the principal parameters for the fiber medium, the optical
receiver and the optical transmitter. Major standard committees included are the following:

1. International Telecommunication Union, ITU-T G.XXX
2. Bellcore–Telcordia, GR-253-CORE
3. Fiber Channel, FC-PI
4. IEEE802.3ae, Gigabit Ethernet



2
Conductive Transmission Lines

A Simplified Attenuation Model

2.1 Introduction

This chapter deals with the electromagnetic skin effect as the main agent responsible for the
characteristic square root frequency behavior experienced by every metallic conductor or waveguide.
All transmission lines exhibit this behavior, but different transmission line topologies have peculiar
contributions from the dielectric absorption and the related dispersion characteristic due to their
own geometry. In the following simplified analysis all these contributions will be neglected, with
the focus just on the skin effect as the major agent responsible for the characteristic attenuation
frequency response. This model behaves quite well, allowing very interesting conclusions to be made
when it is used to make a comparison between the frequency behavior of metallic transmission
lines and multimode optical fibers.

This frequency dependence of the transmission line loss is today at the center of extensive
design activity in many semiconductor IC companies devoted to provide electric compensation
of the degraded signal through long metallic transmission lines, which can be found in every
backplane interconnection operating at the multigigabit signaling rate. The XFP (X small-form
factor pluggable) standard is an example of a serial 10GbE optical fiber module where both copper
transmission lines and optical fiber compensation schemes are needed. Many debates are now
taking place on the merits of the different compensation techniques for copper transmission lines
and optical fiber.

This chapter is therefore devoted to a clarification of these different topics, making more evidence
available of the different frequency behaviors. The expected frequency response of the transmission
line attenuation calculated according to this simplified method is usually a slightly better estimation
than the results obtained from a full electromagnetic calculation. This conclusion comes from the
missing contributions to the total loss due to the dielectric material absorption and waveguide effect.

2.2 The Attenuation Model

The electrical surface impedance Zs of the metallic plane shown in Figure 2.1 will now be consid-
ered. The plane is assumed to be indefinitely extended in width and length, according to the two
Cartesian coordinates y and z respectively. The finite thickness is measured along the x axes.

Multi-Gigabit Transmission over Multimode Optical Fibre: Theory and Design Methods for 10GbE Systems Stefano Bottacchi
 2006 John Wiley & Sons, Ltd. ISBN: 0-471-89175-4
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Figure 2.1 Infinite conductive plane for the definition of the surface impedance. The electromagnetic field is
described by a plane wave incident normal to the plane surface with the electric field oriented along the z axes

2.2.1 The Surface Impedance

The surface impedance at a given angular frequency ω presented by the indefinite conductive
plane in Figure 2.1 is given by the sum of a resistive contribution, Rs, and an inductive term, Ls.
Application of electromagnetic theory easily leads to the following result:

Zs = Rs + jωLs (2.1)

where the resistive and inductive components have the following expressions:

Rs =
√

πµf

σ
, ωLs = Rs (2.2)

and µ is the magnetic permeability, σ is the conductivity and f = ω/2π is the frequency of the inci-
dent monochromatic electromagnetic field. From Equations (2.1) and (2.2), the surface impedance
takes the following form:

Zs = Rs(1 + j) =
√

πµf

σ
(1 + j) (Ω/square) (2.3)

2.2.2 The Transmission Line Loss Approximation

In order to arrive at a simplified formulation for the frequency response of the skin effect attenuation,
the first approximation will be made, namely that:

The previous results of Equations (2.1), (2.2) and (2.3) are still valid for every finite planar surface, such
as a generic transmission line.

This is just an approximation, of course, since the confinement and the guiding properties of
the transmission line are easily simplified, assuming no fringe effects and a plane wave field
distribution. Nevertheless, a reasonably simple model for the frequency response of the skin effect
will be achieved, which will clarify the frequency behavior differences between multimode optical
fibers and any generic conductive transmission line.

The surface impedance (2.3) is defined per unit width and per unit length. It is usually referred to
as the surface impedance per square. This terminology is quite common in semiconductor integrated
circuit technology, where the sheet resistance is defined in terms of ohm per square. In order to
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calculate the surface impedance ZTL of a transmission line of width w and length l, it is sufficient to
divide expression (2.3) by the line width w and multiply the same expression by the line length l:

RTL = Rs
l

w
(Ω) (2.4)

ZTL = RTL + jωLTL = RTL(1 + j) (Ω) (2.5)

The transmission line resistance RTL, inductance LTL and impedance ZTL have been introduced in
order to keep the same relationship between the plane conductor and the transmission line.

In order to obtain a quantitative idea of the formulation, the following case will be considered.

Example 2.1
Conductivity (copper): σ = 5.80 × 107 S/m
Length: l = 20 cm
Width: w = 200 µm
Magnetic permeability: µ0 = 4π × 107 H/m
Frequency: f = 1 × 109 Hz

In this example the role of the thickness of the transmission line is neglected and it is assumed
that it is just thick enough to satisfy the complete skin effect penetration. This argument will be
the topic of the next section. From Equations (2.2) and (2.4) the transmission line resistance RTL

is calculated at the given frequency f and from Equation (2.3) the corresponding magnitude of the
line impedance ZTL is computed:

RTL =
√

πµf

σ

l

w
= 8.25 Ω (2.6)

|ZTL| = RTL × √
2 = 11.67 Ω (2.7)

2.2.3 Thickness Frequency

The penetration depth of the electric field in any conductor is inversely proportional to the square
root of the frequency of the incident electric field. This is the major result of the well-known skin
effect. The skin effect penetration depth is given by the following expression:

δ(f ) =
√

1

πµσf
(m) (2.8)

As a consequence, the lower the frequency, the deeper will be the electric field penetration
in the conductor thickness. At the limit of a time constant electric field, as it is generated by
a constant DC electric current, the penetration depth becomes infinite and the whole thickness
of the conductor is therefore occupied by the electromagnetic field. In the constant current case,
the electric charges flow within every inner region of the conductor. This is the reason why all
conductors exhibit a lower resistance at the DC condition. Figure 2.2 shows the computed skin
effect penetration depth versus frequency for copper, gold, silver and aluminum, according to
Equation (2.8). Copper has the highest conductivity, so at a fixed frequency the penetration depth
of the field in copper is the smallest one. Among the four metals mentioned above, aluminum
shows the longest penetration depth.

From a physical point of view, the penetration depth δ is regulated by the shielding effect of the
available free electron density. The higher the electron density, the higher the conductivity and the
lower the penetration depth will be due to stronger shielding by the free electron gas.
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Figure 2.2 Penetration depth for metal planes according to the skin effect expression (2.8). At f = 5 GHz
all four conductors exhibit a penetration depth very close to 1 µm

The purpose of this section is to compute the frequency at which a conductor stripe of given
thickness t becomes completely filled by the electromagnetic field oscillating at a fixed frequency f .
This frequency is called the thickness frequency, ft.

Consider an infinite conductive plane of thickness t , as shown in Figure 2.1, and compute the
frequency ft at which the penetration depth δ(f ) coincides with the thickness t of the conductive
plane. Then from Equation (2.8),

δ(ft) = t ⇒
√

1

πµσft
= t (2.9)

and

ft = 1

πµσt2
(2.10)
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Figure 2.3 Thickness frequency for different metals. For a given metal thickness, a frequency exists at which
the metal is filled by the electric field and its surface impedance does not change for lower frequency values

Figure 2.3 shows the computed thickness frequency for copper, silver, gold and aluminum. Accord-
ing to Equation (2.10), the higher the metal conductivity, the lower the thickness frequency will be
for a given metal plane thickness t .

The important meaning of the thickness frequency can be summarized as follows:

1. Above the thickness frequency ft, the skin effect dominates the transmission line impedance.
2. Below the thickness frequency ft, the line impedance is almost constant as opposed to the

frequency and is equal to its DC value (field-filled conductor).

Using the typical thickness value of t = 42 µm for a copper printed circuit board (PCB),
from Equation (2.10) a thickness frequency ft = 2.476 MHz is computed (shown by arrows in
Figure 2.3).

2.2.4 DC Resistance

When the transmission line thickness is much smaller than the thickness frequency, the metal
sheet is completely filled by the electromagnetic field. In the present approximation, it is therefore



42 Multi-Gigabit Transmission over Multimode Optical Fibre

assumed that the transmission line behaves in a DC mode and the surface resistance is given by
its DC value. According to this simplified model, the surface resistance takes the following form:

RDC = l

tσw
(Ω) (2.11)

Using the case of Example 1, the DC resistance takes the value given in Example 2.

Example 2.2

Conductivity (copper): σ = 5.80 × 107 S/m
Length: l = 20 cm
Width: w = 200 µm
Thickness: t = 42 µm

RDC = 1

tσ

l

w
= 410 mΩ

2.2.5 The Resistance Model

The simple theory developed in previous sections leads to a model for the resistance of a trans-
mission line versus frequency. As already stated, this model is based on the approximation that
the electromagnetic field is incident on the transmission line as a plane wave and that the guiding
properties of the transmission line does not contribute much to the behavior of the waveguide
losses. All those assumptions must be referred to the attenuation analysis that is presented, and not
to other transmission line characteristics.

Within the above assumptions, it is easy to arrive at the formulation of the following model for
the transmission line resistance versus frequency. From Equations (2.4) and (2.11),

f ≤ ft, RTL = RDC = 1

tσ

l

w
(2.12)

f ≥ ft, RTL =
√

πµf

σ

l

w
(2.13)

It is easy to arrive at a compact expression using the definition for the thickness frequency. Using
Equation (2.10) gives the following identity:√

πµ

σ
= 1

tσ

1√
ft

(2.14)

The frequency-dependent transmission line resistance takes the following form:

f ≥ ft, RTL =
√

f

ft

1

tσ

l

w
(2.15)

By comparison with (2.12), it can immediately be concluded that the transmission line resistance
has the following compact form:

f ≤ ft, RTL = RDC

f ≥ ft, RTL = RDC

√
f

ft
(2.16)
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It is easy to verify the resistance continuity at the thickness frequency ft. This value satisfies the
continuity condition for the resistance across the two frequency ranges. If the decibel definition is
used, then

f ≤ ft, RdB
TL ≡ 20 log10(RDC) = RdB

DC (2.17)

f ≥ ft, RdB
TL(f ) ≡ 20 log10(RTL) = RdB

DC + 10 log10

(
f

ft

)
(2.18)

It is evident that the transmission line resistance RdB
TL increases with a constant slope of +10 dB/dec

(decade) from the thickness frequency ft. Figure 2.4 shows the computed resistance for the trans-
mission line given in Example 2, assuming different metals.
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Figure 2.4 Transmission line resistance versus frequency for different conductors. The frequency-independent
behavior is characteristic of the low-frequency range, well defined by the thickness frequency corner. Above the
thickness frequency, the resistance dependence versus frequency is clearly determined by the skin effect, leading
to the constant +10 dB/dec slope. The transmission line parameters are the following: l = 20 cm, w = 200 µm,
t = 42 µm



44 Multi-Gigabit Transmission over Multimode Optical Fibre

The top line is the 50 Ω reference load expressed in dB-ohm. Different metal conductivities orig-
inate different thickness frequencies, as represented by the corner frequencies positions. According
to Equation (2.18), the slope is not a function of metal conductivity, nor of metal thickness.
Equations (2.11), (2.12) and (2.16) constitute the transmission line inductance model.

2.2.6 The Inductance Model

In previous sections a simplified model was derived for the resistance RTL of a generic transmission
line according to the skin effect and local plane wave approximation. Besides the approximation
involved for the resistive model, the model for the inductance of a transmission line due to the
skin effect now has to be included. As already introduced in Figure 2.1, if a horizontally polarized
plane wave is incident perpendicular to an infinite conductive plane, the surface impedance Zs

exhibits a resistive component Rs and an inductive component Ls, given by Equations (2.1) and
(2.2) respectively. Using the same reasoning as for the resistive component, the same concepts can
now easily be extended to the inductive term Ls.

Assuming that the frequency of the incident field is still high enough to have the skin effect pen-
etration depth lower than the transmission line thickness, or equivalently f > ft, the transmission
line surface inductance LTL is defined according to Equations (2.2) and (2.5) as follows:

f ≥ ft, Ls = Rs

2πf
⇒ LTL ≡ RTL

2πf
(2.19)

This definition satisfies the general transmission line impedance expression (2.5). Substituting
expression (2.16) for the transmission line resistance above the thickness frequency ft in Equa-
tion (2.19), the relationship for the transmission line inductance is

f ≥ ft, LTL = RDC

2π

√
1

fft
(2.20)

In conclusion, above the thickness frequency, the transmission line inductance LTL is proportional
to the DC resistance of the transmission line and decreases as the square root of the frequency. It
is important to point out that even if the transmission line inductance decreases as the square root
of the frequency, from Equation (2.19) it can easily be concluded that the inductive reactance of
the transmission line still increases, as expected from Equation (2.5), according to the square root
of the frequency:

f ≥ ft, XTL = ωLTL = RDC

√
f

ft
(2.21)

In particular, if the frequency f coincides with the thickness frequency ft, the inductance expres-
sion (2.20) is still valid and gives

f = ft, LTL(f = ft) = RDC

2πft
(2.22)

This value represents the lower limit for the applicability of the skin effect model to the induc-
tive components of the surface impedance. As already known, when the applied field frequency
is below the thickness frequency ft, the field completely fills all the metal thickness and the
skin effect characteristics are no longer valid. In order to guarantee at least first-order continuity
of the transmission line inductance, the DC transmission line inductance is defined according to
Equation (2.22) as LDC:

LDC = RDC

2πft
(2.23)
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Equations (2.20), (2.21) and (2.23) give the model for the transmission line inductance:

f ≤ ft, LTL = LDC (2.24)

f ≥ ft, LTL = LDC

√
ft

f
(2.25)

Figure 2.5 shows the frequency-dependent behavior of the transmission line inductance for sev-
eral metals. The transmission line parameters are the same as those used in Example 2. The results
clearly show how the skin effect reduces the surface inductance versus frequency. Above the thick-
ness frequency ft and according to the inverse proportionality of the square root of the frequency,

Figure 2.5 Transmission line inductance versus frequency for different metals. The frequency-independent
behavior is characteristic of the low-frequency range, well defined by the thickness frequency corner. Above
the thickness frequency, the inductance dependence versus frequency is clearly determined by the skin effect,
leading to the constant −10 dB/dec slope. The transmission line parameters are the following: l = 20 cm,
w = 200 µm, t = 42 µm
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the log–log plot used in Figure 2.5 shows a constant negative slope of one inductance decade every
two decades of frequency. This decay is characteristic of the inverse square root dependence and
is of course independent of the metal used.

In the next section it can be seen how the negative constant slope versus frequency of the
transmission line inductance in the log–log scale representation shown in Figure 2.5 will be com-
pensated by the linear frequency dependence of the inductive reactance term, making the whole
impedance function still dependent on frequency with a positive constant slope of +10 dB/dec, as
expected from the second equation in (2.2).

2.2.7 The Impedance Model

To obtain the transmission line impedance ZTL(f ) it is sufficient to take into account the resistive
component RTL(f ) and the inductance component LTL(f ). Therefore, according to Equation (2.5),

ZTL = RTL + jωLTL (2.26)

Substituting expressions (2.12) and (2.16) for the resistive contribution and expressions (2.24)
and (2.25) for the inductive term, the expression for the transmission line inductance is finally
obtained:

f ≤ ft,

{
RTL = RDC

LTL = LDC

}
⇒ ZTL = RDC + jωLDC (2.27)

f ≥ ft,




RTL = RDC

√
f

ft

LTL = LDC

√
ft

f


 ⇒ ZTL = RDC

√
f

ft
+ jωLDC

√
ft

f
(2.28)

Substituting the expression of the DC value for the transmission line inductance (2.23), the
following compact and meaningful expression of the transmission line impedance is obtained:

f ≤ ft, ZTL = RDC

(
1 + j

f

ft

)
(2.29)

f ≥ ft, ZTL = RDC

(
1 + j

√
f

ft

)
(2.30)

From the above expressions it is easy to conclude that the transmission line impedance is completely
characterized by the DC resistance RDC = l/tσw, reported in Equation (2.11).

Figure 2.6 shows the modulus and phase of the impedance for the transmission line reported in
Example 2. The transmission line impedance represented in Figure 2.6 needs some comments:

1. Even if the resistance contribution RTL is constant and below the thickness frequency, the
inductance LTL makes the impedance function not constant in the same frequency range.

2. According to these simplified model assumptions, the magnitude and the phase of the impedance
are continuous functions of frequency, but they still have first-order and high-order discontinu-
ities at f = ft.

3. The very low-frequency value of ft ensures that the higher-order discontinuity point usually
falls outside the frequency range of interest; in addition the contribution of the low-frequency
range to integral properties or to high-frequency behavior is usually negligible.
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Figure 2.6 Transmission line impedance versus frequency for different metals. The frequency-independent
behavior is characteristic of the low-frequency range, well defined by the thickness frequency corner. Above the
thickness frequency ft, the impedance dependence versus frequency is clearly determined by the skin effect.
The magnitude (upper graph) presents an asymptotic behavior above the thickness frequency, with a slope
of +10 dB/dec. The transmission line parameters are the following: l = 20 cm, w = 200 µm, t = 42 µm. The
phase (lower graph) above the thickness frequency is given by the term arctan(

√
f/ft)

The skin effect approximation of the transmission line impedance formulation led to a transfer
function with a single zero behavior located at the thickness frequency ft. If the impedance mag-
nitude is expressed in decibels, an asymptotic +10 dB/dec slope above the thickness frequency is
produced.
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2.2.8 Frequency Response

To conclude the approximated theoretical model of a generic transmission line based on the skin
effect, the attenuation function versus frequency needs to be derived. Consider the general expres-
sions (2.29) and (2.30) for the transmission line impedance and define the complex function u(f ):

f ≤ ft, u(f ) = 1 + j
f

ft
(2.31)

f ≥ ft, u(f ) = 1 + j

√
f

ft
(2.32)

The function u(f ) takes into account the different frequency dependences within the two frequency
intervals defined by the thickness frequency ft. Using the definition of the function u(f ), from
Equations (2.29) and (2.30) the general expression for the transmission line impedance takes the
following unified form:

ZTL(f ) = RDC u(f ) (2.33)

The voltage attenuation A(f ) of the transmission line is easily derived using the standard phasor
partition between the transmission line input section and the resistive load RL:

A(f ) ≡ RL

RL + ZTL(f )
(2.34)

Substituting Equation (2.33) gives

A(f ) = 1

1 + ρu(f )
(2.35)

The factor ρ

ρ ≡ RDC

RL
(2.36)

characterizes the DC transmission line attenuation

A0 ≡ A(0) = 1

1 + ρ
(2.37)

In order to proceed further with the derivation of the transfer function of the transmission line
attenuation, two intervals below and above the thickness frequency need to be considered separately.

2.2.8.1 Attenuation in the Lower Frequency Range: f ≤ ft

Introducing the variable

y ≡ f

ft
, 0 ≤ y ≤ 1 (2.38)

and using the proper definition (2.31) for the function u(f ), from Equations (2.35) and (2.37) the
following expression for the transmission line attenuation in the lower frequency range is obtained:

AL(f ) = A0

1 + j[ρ/(1 + ρ)]y
(2.39)

where the suffix L stands for the lower frequency range. According to Equations (2.38) and (2.39),
the attenuation would have a pole at the frequency

ρ

1 + ρ
yp = 1 ⇒ yp = 1 + 1

ρ
= 1 + RL

RDC
� 1
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which is clearly outside the assumed frequency range and therefore is without any physical mean-
ing. After a few algebraic manipulations, from Equation (2.39) the following expression for the
attenuation in the lower frequency range is obtained:

0 ≤ f ≤ ft ⇒ AL(f ) = A0
1 − j [ρ/(1 + ρ)]y

1 + {[ρ/(1 + ρ)]y}2
(2.40)

The modulus and the phase have respectively the following forms:

|AL(f )| = A0
1√

1 + {[ρ/(1 + ρ)]y}2
(2.41)

ΘAL(f ) = − arctan

(
ρ

1 + ρ
y

)
(2.42)

From Equation (2.40), at the thickness frequency f = ft, y = 1, the attenuation takes the value

AL(ft) = A0
1 − jρ/(1 + ρ)

1 + [ρ/(1 + ρ)]2
(2.43)

2.2.8.2 Attenuation in the Upper Frequency Range: f ≥ ft

In the upper frequency range, the variable is defined as

x ≡
√

f

ft
, x ≥ 1 (2.44)

Substituting in the general expression (2.35) of the transmission line attenuation the proper def-
inition (2.32) of the function u(f ) and using Equation (2.37), the following expression for the
attenuation in the upper frequency range is obtained:

AU(f ) = 1

1 + ρx + jρx
(2.45)

where the suffix U stands for the upper frequency range. After simple algebraic manipulations, at
the following form is found:

f ≥ ft ⇒ AU(f ) = 1

1 + ρx

1 − j[ρx/(1 + ρx)]

1 + [ρx/(1 + ρx)]2
(2.46)

The modulus and the phase are

|AU(f )| = 1

1 + ρx

1√
1 + [ρx/(1 + ρx)]2

(2.47)

ΘAL(f ) = − arctan

(
ρx

1 + ρx

)
(2.48)

At the thickness frequency f = ft, x = 1, and from Equation (2.46) the attenuation becomes

AU(ft) = A0
1 − j[ρ/(1 + ρ)]

1 + [ρ/(1 + ρ)]2
(2.49)

A comparison with Equation (2.43) reveals the continuity condition for the complex attenuation
function:

AU(ft) = AL(ft) (2.50)
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2.2.8.3 Asymptotic Frequency Behavior: f � ft

When the frequency is several orders of magnitude higher than the thickness frequency, the asymp-
totic frequency behavior of the attenuation function AU(f ) is easy to derive. From Equation (2.47),
at the high-frequency limit,

lim
x→∞ |AU(f )| → 1√

2ρx
= 1

ρ

√
ft

2

1√
f

(2.51)

lim
x→∞ ΘAL(f ) = −π

4
(2.52)

High-frequency behavior of the modulus |AU(f )| of the attenuation function is therefore decaying
according to the reciprocal of the square root of the frequency. In addition, it is interesting to note
that the asymptotic value of the phase is π/4 and not π/2, as would be expected from the single-
pole behavior. This is a peculiarity of the skin effect square root frequency dependence. If the
magnitude of the attenuation is found, it is easy to find the asymptotic slope of −10 dB/dec:

lim
f →∞ 20 log10 |AU(f )| → −20 log10

(
1

ρ

√
ft

2

)
− 10 log10 f (2.53)

Figure 2.7 shows the magnitude and phase of the transmission line attenuation function A(f ),
which had been derived according to Equations (2.40) and (2.46) for the lower and upper frequency
ranges respectively. The line parameters used are reported in Example 2 and in the figure caption.

For any given transmission line geometry and operating frequency, higher metal conductivity
results in a lower attenuation value. From the frequency behavior simulated above, it is clear
that copper and silver at f = 10 GHz show an attenuation about 0.8 dB lower than, the same
transmission line built using gold or aluminum.

2.2.9 Commenting Model Approximations

Before concluding the chapter on the theory developed for the transmission line attenuation model,
it is important to point out the approximations assumed behind its development. First of all, the
attenuation model presented should fit for every transmission line structure, once metal conductivity
and geometrical parameters have been specified. This means that the model completely neglects
the dielectric properties into which the transmission line is embedded. In addition, the line structure
is also neglected. No matter what type of transmission lines are used, coplanar, micro-strip or
strip-line, once they have the same electrical length, width and thickness, and are built with the
same conductor, they show the same attenuation function. It is evident that this will not be the
case in reality, due to different dielectric contributions according to a specific transmission line
topology. Of course, the more the dielectric affects the electromagnetic field propagation, the more
accentuated will be the dielectric contribution to the transmission line attenuation function. This is
especially the case for the strip-line structure, where the dielectric completely surrounds the metallic
part of the transmission line.

Nevertheless, the attenuation function found in Equations (2.40) and (2.46) represents the true
consequence of the skin effect, which takes account of the characteristic square root frequency
decay behavior. A more accurate analysis of transmission line attenuation will usually show higher
attenuation versus frequency due to the dielectric absorption contribution and peculiar electro-
magnetic field structures, but the major attenuating term would still remain a consequence of the
characteristic skin effect.

The major approximation assumptions are summarized below:

1. The conductor region is a homogeneous infinite plane of finite thickness.
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Figure 2.7 Transmission line attenuation versus frequency for different metals. Above the thickness frequency
ft , the impedance dependence versus frequency is clearly determined by the skin effect. The magnitude (upper
graph) presents an asymptotic behavior above the thickness frequency, with a slope of −10 dB/dec. The trans-
mission line parameters are the following: l = 20 cm, w = 200 µm, t = 42 µm. The phase (lower graph) above
the thickness frequency is given by the term arctan (

√
f/ft)

2. The electromagnetic field is assumed to be incident normal to the metal surface as a plane wave
(TEM, or transverse electromagnetic, wave) with the electric field polarized along the plane
surface (horizontal polarization).

3. According to the previous two points, the guided electromagnetic field would be approximated as
a local plane wave, neglecting the side effect. In order to validate this assumption, the wavelength
would be much smaller than the waveguide geometry (geometrical optic conditions).

4. Dielectric contributions are neglected.
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2.3 Design Applications
In this section some applications of the attenuation model that have been developed so far will be
considered. As already pointed out, this model gives results independently from the transmission line
topology and dielectric material. Accordingly, to find the attenuation function A(f ) the following
four design parameters will need to be specified:

1. Electrical conductivity: σ( S
m )

2. Transmission line length: l(m)
3. Transmission line width: w(m)
4. Transmission line thickness: t(m)
5. Load resistor: RL(Ω)

To make comparison easier, it is assumed that the waveguide metal is copper, σCu = 5.80 × 107 S/m,
and the load resistance is fixed to RL = 50 Ω for all the following cases.

2.3.1 Fixed Length and Width, Variable Thickness

First consider a transmission line of fixed length and width, and assume the metal thickness as
the parameter: l = 20 cm, w = 200 µm, t = 5, 10, 20, 50, 200 µm. From Equations (2.10), (2.11)
and (2.36), for each thickness value respectively the thickness frequency ft, the DC resistance RDC

and the factor ρ are computed (see Table 2.1).
Figure 2.8 shows the computed transmission line attenuation versus frequency for each of the

above thicknesses. Figure 2.9 shows the magnitude of the attenuation function for the same trans-
mission line parameters as above with thickness t = 42 µm. The attenuation at 10 GHz reaches the
value A(f = 10 GHz) ∼= −4.13 dB.

2.3.2 Fixed Width and Thickness, Variable Length

The transmission lines considered in this section all have the same width and metal thickness, but
it is assumed that they can have different lengths. According to Equation (2.10), the frequency
thickness is the same for all cases, while DC resistance, Equation (2.11), is clearly linearly increas-
ing with the line length. This affects the ratio ρ, and hence the frequency response versus length.
Figure 2.10 presents the frequency response of the attenuation function of five different line lengths.
All transmission lines have the same width and thickness.

Figure 2.11 presents the magnitude of the transmission line attenuation for the three lengths of
10 cm, 20 cm and 100 cm.

Table 2.1 Computed parameters for a transmission line of
different metal thicknesses

Thickness (µm) ft (MHz) RDC(Ω) ρ

5 174.69 3.4483 0.0690
10 43.673 1.7241 0.0345
20 10.918 0.8621 0.0172
50 1.7469 0.3448 0.0069

200 0.1092 0.0862 0.0017
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Figure 2.8 Transmission line attenuation versus frequency for different metal thicknesses of copper. Above
thickness frequency ft, the impedance dependence versus frequency is clearly determined by the skin effect
and has the same frequency behavior independently from the line thickness. The magnitude (upper graph)
presents an asymptotic behavior above the thickness frequency, with a slope of −10 dB/dec. The transmission
line parameters are: l = 20 cm, w = 200 µm, σ = 5.80 × 107 S/m, RL = 50 Ω . The phase (lower graph) above
the thickness frequency is given by the term arctan

(√
f/ft

)
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Figure 2.9 Transmission line attenuation magnitude versus frequency for line thickness t = 42 µm. The trans-
mission line parameters are: l = 20 cm, w = 200 µm, σ = 5.80 × 107 S/m, RL = 50 Ω

Table 2.2 reports the magnitude and the phase of the attenuation function evaluated at f =
10 GHz according to different line lengths.

In the next section the impulse response using the fast Fourier transform (FFT) technique will
be evaluated.
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Figure 2.10 Transmission line attenuation versus frequency for different line lengths of copper. The magnitude
(upper graph) presents an asymptotic behavior above the thickness frequency, with a slope of −10 dB/dec. The
transmission line parameters are: l = 42 µm, w = 200 µm, σ = 5.80 × 107 S/m, RL = 50 Ω . The phase (lower
graph) above the thickness frequency is given by the term arctan (

√
f/ft)

2.4 Impulse Response
The characteristic square root frequency roll-off of the dominant skin effect based transmis-
sion line attenuation gives the peculiar asymptotic slope of −10 dB/decade. This slow-decay
behavior is correct within the dominant skin effect approximation that was made earlier, where
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Figure 2.11 Transmission line attenuation versus frequency for three different line lengths of copper. The
transmission line parameters are: l = 42 µm, w = 200 µm, σ = 5.80 × 107 S/m, RL = 50 Ω

Table 2.2 Magnitude and phase of the transmission line transfer function
(attenuation) evaluated at 10 GHz versus different line lengths according to
the skin effect dominant modeling

Length (cm) Magnitude (dB) at 10 GHz Phase (deg) at 10 GHz

10 −2.20 −11.69
20 −4.13 −18.93
50 −8.46 −29.51

100 −12.97 −35.86
200 −18.19 −40.00
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Figure 2.12 Transmission line impulse responses according to the skin effect dominant approximation. Each
graph reports the impulse response for the given line length, assuming the same geometrical line parameters
as before: l = 42 µm, w = 200 µm, σ = 5.80 × 107 S/m, RL = 50 Ω . The ripple effect due to high-frequency
numerical truncation of the transfer response function according to Equation (2.46) is more evident in shorter
line lengths
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the dielectric material attenuation has been completely neglected. Real transmission lines show
much faster high-frequency decay of the attenuation function, including, of course, frequency-
dependent absorption and the dispersion effect due to dielectric material properties. Neglecting
those dielectric-related high-frequency effects, the present approximated analysis therefore leads to
relevant high-frequency performances.

Time domain analysis is performed by means of a numerical inverse fast Fourier transform
(FFT) of the previously derived high-frequency attenuation response (2.46). Due to the smoother
frequency response decay resulting from the more common frequency response shapes, the param-
eter setup for the inverse FFT needs a higher temporal resolution. This leads to a corresponding
increase in the frequency sampling interval in order to include almost all the relevant spectrum
contributions. Nevertheless, from the mathematical point of view, in order to include a frequency
response contribution at least −20 dB below the low-frequency value, it would be necessary to push
the frequency analysis range above 1000 GHz, assuming a corner frequency of around 10 GHz. This
requirement asks for a sampling interval below 1 ps.

Figure 2.12 shows the numerically computed transmission line impulse response according to the
skin effect dominant frequency response reported in Equation (2.46). The same transmission line
lengths considered in the previous analysis have been included, providing an inverse FFT response
for each of them. All four impulses corresponding respectively to the lengths of 10 cm, 20 cm,
50 cm and 100 cm show the characteristic time ripple as a consequence of the frequency spectrum
truncation due to the finite FFT length. The broader the frequency spectrum range, the more
enhanced are the results of the time domain ripple amplitude. It is simply a numerical resolution
effect and must not be attributed to mathematical modeling.

All impulse responses show the characteristic exponential-like behavior. It should be noted that
each impulse response is a real and causal function of the time. The impulse postcursors are more
pronounced for a longer transmission line, but they have the same monotonic decaying behavior.

2.5 Conclusions
In this chapter a simple and general model for a transmission line attenuation function has been
proposed. Although this model has some restrictions, the frequency profile that has been have
achieved clearly represents the major frequency roll-off contribution in every metallic transmission
line. The skin effect is usually the dominating term among attenuation contributions and it was the
purpose of this work to highlight its characteristic frequency square root behavior.

The principal conclusion about this model relies for its general and simple description on the
frequency attenuation profile. The introduction of the thickness frequency allows a definition of the
skin effect threshold and the continuity condition for each physical quantity to be described. The
whole set of equations (2.10), (2.11), (2.36), (2.40) and (2.43) completely describe the transmission
line attenuation model. According to this model, each transmission line, independently from the line
structure and dielectric substrate, can be easily introduced into any transmission system simulator,
allowing first-order electronic dispersion compensation techniques. A more accurate electromagnetic
analysis would be needed for a more suitable dispersion equalization profile.

However, it is important to point out that electronic equalization is inherently approximated due
to real filter requirements and design constraints. Very often, even an approximated transmission
line frequency response is accurate enough to be only partially equalized by real systems.



3
Principles of Multimode Optical
Fiber

Theory and Modeling Issues
for Multigigabit Transmission Links

3.1 Introduction
An alternative solution to the consistent bandwidth limitation inherent in the installed multimode
fibers infrastructure seems to be the deployment of high-bandwidth multimode fibers made using
a new precise manufacturing process and having an optimized refractive index profile, expressly
designed to satisfy large-bandwidth requirements in 10 GbE applications. These fibers have only
recently been produced in new manufacturing plant and are capable of guaranteeing a modal
bandwidth in excess of 2000 MHz km in the 850 nm range, with a very low differential mode delay
(DMD) contribution. The fibers make the optical channel well suited for 10 GbE transmission
in excess of a 300 m link length. Although they will probably replace almost all the existing old
MMF plant, they will effectively increase the final cost per subscriber, making their deployment still
more questionable in the present data communication market scenario. It had been thought that the
present multimode fiber infrastructure would continue to be used, limiting the high-bandwidth MMF
deployment to new link installation. Therefore the old installed multimode fibers would be used
as the general channel platform when designing the 10 GbE transmission system in a metropolitan
area. High-speed semiconductor lasers provide spatial selective excitation of guided mode groups.
The injected pulse energy is therefore distributed among a restricted number of mode groups, a
situation complementary to the conventional multimode fiber excitation using LED and any other
large numerical aperture source. Refractive index profile optimization for the modal bandwidth is
based on overfilled launch (OFL) conditions, a situation where all guided mode groups receive the
same amount of source energy.

Proper refractive index profiling ensures a sufficient delay equalization among all mode groups,
making the output pulse broadening per unit length suitable for subgigabit transmission require-
ments. As a consequence of the laser source excitation, usually only a few guided modes bring
the launched energy along the fiber extent. Relative power differences among a limited number
of modes, together with relevant group delay differences in comparison to the bit duration, make
laser excitation quite a difficult matter to cope with multigigabit bandwidth over conventional

Multi-Gigabit Transmission over Multimode Optical Fibre: Theory and Design Methods for 10GbE Systems Stefano Bottacchi
 2006 John Wiley & Sons, Ltd. ISBN: 0-471-89175-4
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MMF long-distance links. It is important to point out that ‘long distances’ in 10 GbE over MMF
refers to a few hundred meters, well below a kilometer. Today the IEEE802.3aq Committee for
the new standard development 10BASE-LRM has the difficult task of defining the specification for
achieving at least 300 meters of legacy multimode fiber with a link length transmission of 10 Gb/s
Ethernet. A similar link span could easily be achieved using single-mode fiber technology, even at
much higher bit rates.

3.2 The Graded Refractive Index
It is well known from the basic principles of multimode fiber propagation that group delay equal-
ization requires a graded refractive index profile that decreases monotonically from the fiber axis
towards the outer cladding region. According to the very basic laws of electromagnetic propagation,
the phase velocity vp of a plane wave of wavelength λ propagating in an homogeneous medium
characterized by the refractive index n(λ) is given by vp(λ) = c/n(λ).

This elementary description holds only for the homogeneous medium with constant refractive
index n. As soon as a spatial dependence of the refractive index is introduced, the wave phase fronts
will no longer be planar and the propagating wave will follow the refractive index spatial depen-
dence. This is the basic principle behind each wave guiding medium. The plane wave assumption
is generalized by introducing the local plane wave concept. Essentially, the local plane wave can
be imaged to behave almost like a plane wave if the wave phase fronts are almost constant on
the scale length of the refractive index variation. The local plane wave concept leads to the light
ray theory as an approximation of the electromagnetic theory in the limiting case of negligible
wavelength. By virtue of the local plane wave concept, it is easy to generalize the phase velocity
definition given above by introducing the spatial dependence in the refractive index and letting

vp(r, λ) = c

n(r, λ)
(3.1)

where c ∼= 2.998 × 108 m/s is the speed of light in vacuum. The basic principle of mode delay
equalization relies on this formula. Making the refractive index higher where the light ray path
is shorter leads to a slower phase velocity for low-order mode groups. Conversely, by lowering
the refractive index in the outer core region where higher-order helical modes travel longer paths
makes their phase velocity higher, thus providing delay equalization.

Figure 3.1 shows a schematic representation of the delay compensation principle of the graded
index fiber. Imagine that the axis symmetric graded refractive index of the multimode fiber is sliced
into several planar sections along the fiber axis. In addition, within each section with a uniform
refractive index, the light ray is assumed to propagate along a straight line path. This of course is
just an approximation since the wavelength is usually about the same order of magnitude as the
step of the staircase refractive index and geometrical optics loses its validity, but nevertheless the
physical picture looks quite clear.

3.2.1 Group Velocity

Phase velocity refers to the velocity of a sine wave propagating in a homogeneous medium, so
it cannot represent any physical situation. The infinite sine wave, otherwise stated as the true
monochromatic wave, is a mathematical model. When dealing with time-confined events, like
pulses, the phase velocity must be replaced by the group velocity vg. The group velocity represents
the velocity of propagation of the center of gravity of the pulse. By definition, in a nondispersive
medium the group velocity does not depend on the frequency (wavelength) and the pulse propagation
is undistorted (it goes through a temporal translation along the propagation axis). As soon as the
group velocity depends on the frequency (wavelength) vg(ω), the spectral content of the pulse
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Figure 3.1 Curved ray trajectory in an optical layered medium. To construct the ray trajectory all that is
needed is to apply the classical Snell laws between each layer pair. The resulting ray path is a piecewise linear
approximation of the gradually varying refractive index profile

induces energy dispersion along with pulse propagation and the dispersion relationship must be
accounted for properly.

3.3 Modal Theory of Graded Index Fiber
Like all electromagnetic phenomena, the propagation of optical fields in multimode fiber is governed
by the Maxwell equations. Boundary conditions lead to the eigenmode solutions (modes) with
related eigenvalues (propagation constants). The cylindrical symmetry of the optical fiber suggests
the adoption of the cylindrical coordinate system (r, ϕ, z) to represent the spatial position. However,
the mathematical description of differential operators becomes simpler if Cartesian field components
are used instead of cylindrical ones. Accordingly, the generic electric and magnetic fields take the
following form:

E(r, t) = Ex(r, ϕ, z, t)x + Ey(r, ϕ, z, t)y + Ez(r, ϕ, z, t)z

H(r, t) = Hx(r, ϕ, z, t)x + Hy(r, ϕ, z, t)y + Hz(r, ϕ, z, t)z
(3.2)

The triplet (x,y,z) defines the unit reference vector along the Cartesian coordinate axis. Maxwell’s
vector equations for the electric and the magnetic fields are

∇2E(r, t) = n2(r)
c2

∂2E(r, t)

∂t2
+ ∇{E(r, t) · ∇ ln[n2(r)]} (3.3)

∇2H(r, t) = n2(r)
c2

∂2H(r, t)

∂t2
+ [∇ × H(r, t)] × ∇ ln[n2(r)] (3.4)

A little more detailed analysis shows that the last term in the brace on the right member of the
vector wave Equation (3.3) is the divergence of the electric field:

∇ · Ê(r, t) ≡ E(r, t) · ∇ ln[n2(r)] (3.5)
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where ∇n2(r)
n2(r)

= ∇ ln[n2(r)] (3.6)

In addition, the following identity holds for the last term on the right side of (3.4):

∂E(r, t)

∂t
× ε0∇χ(r) = [∇ × H(r, t)] × ∇ ln[n2(r)] (3.7)

3.3.1 Physical Medium Assumptions

Vector wave equations derived above for the electromagnetic field are quite general and do not
assume implicitly any symmetry of the fiber medium and in particular of the refractive index
function n(r) = n(r, ϕ, z), which is assumed to be a generic spatial dependence. However, it is
important to comment about the physical meaning and the consequent mathematical implications
of the assumptions underlying Equations (3.3) and (3.4). To be specific, in deriving those vector field
equations from Maxwell’s equations, it is assumed that the fiber medium is isotropic, instantaneous
and linear. The mathematical implications of those physical medium assumptions and how they
transfer into each equation term are reviewed.

3.3.1.1 Isotropy
The dielectric susceptibility can be considered as a scalar quantity instead of a tensor. This is a
consequence of the amorphous nature of the glass composition of silica based optical fibers:

χijk(r, t) = χ(r, t) (3.8)

3.3.1.2 Instantaneity
The time response of the dielectric susceptibility is instantaneous with respect to the time evolution
of the inducing electric field envelope:

χ(r, t) = χ(r)δ(t) (3.9)

3.3.1.3 Linearity
The dielectric induced polarization field P(r,t) is linearly dependent on the inducing electric field.
The quantity that relates the dielectric polarization field to the applied electric field is the first-order
dielectric susceptibility χ(1)(r, t):

P(r, t) = ε0χ
(1)(r, t) ∗ E(r, t) = ε0

∫ +∞

−∞
χ(1)(r, τ ) ∗ E(r, t − τ) dτ (3.10)

The first-order (linear) dielectric-induced polarization is given by the time convolution between
the first order (linear) susceptibility χ(1)(r,t) and the inducing electric field. Third-order dielec-
tric susceptibility χ(3)(r,t) accounts for nonlinear refraction and related effects such as self-phase
modulation (SPM), cross-phase modulation (XPM) and four-wave mixing. (FWM).

Including all of the above three assumptions about the fiber optic material allows the dielectric
polarization vector to be written in the following simple form:

P(r, t) = P(1)(r, t) = ε0χ(r)
∫ +∞

−∞
E(r, τ )δ(t − τ) dτ = ε0χ(r)E(r, t) (3.11)

In addition, the linear dielectric permittivity and the linear refractive index are related to the
first-order dielectric susceptibility as follows:

ε(r, t) = ε0[1 + χ(1)(r)]δ(t) = n2(r)δ(t) (3.12)
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3.3.2 Wave Equations for Longitudinal Invariance
The vector field Equations (3.3) and (3.4) are valid according to the above assumptions reported
in Sections 3.3.1.1 to 3.3.1.3. The only remaining general assumption is the spatial dependence
of the refractive index. In both vector Equations (3.3) and (3.4) the refractive index is a function
of the spatial position, without any symmetry requirement. This is not the case for optical fibers. In
the following it will be assumed that the refractive index is longitudinal invariant. This means that

n(r) = n(r, ϕ) (3.13)

Later on, it will be assumed further that the refractive index satisfies additional axial symmetry.
For the moment it is sufficient to assume that the refractive index is only longitudinal invariant. In
this case, each Cartesian component F(r, ϕ, z, t) of the electromagnetic mode field can be written
as the product of the function Ψ (r, ϕ) with the propagation phasor term ej(ωt−βz):

F(r, ϕ, z, t) = Ψ (r, ϕ)ej(ωt−βz) (3.14)

The electric and magnetic fields can therefore be written as

E(r, t) = [Et (r, ϕ) + Ez(r, ϕ)z]ej(ωt−βz) (3.15)

H(r, t) = [Ht (r, ϕ) + Hz(r, ϕ)z]ej(ωt−βz) (3.16)

Substituting field expressions (3.15) and (3.16) into wave Equations (3.3) and (3.4), the vector
wave equations are obtained for the electric and the magnetic fields respectively in the case of the
translational invariant optical fiber.

3.3.2.1 Vector Wave Equation for the Electric Field
The electric field Equation (3.3) is considered first. The left member of Equation (3.3) is the
Laplacian of the electric field and can be written as follows:

∇2E(r, t) =
(

∇2
t + ∂2

∂z2

){
[Et (r, ϕ) + zEz(r, ϕ)]ej(ωt−βz)

}
= ej(ωt−βz)(∇2

t − β2)[Et (r, ϕ) + zEz(r, ϕ)] (3.17)

In the above derivation decomposition of the Laplacian in the cylindrical coordinate system has
been used in terms of the transversal Laplacian and the longitudinal second-order derivative:

∇2 = ∇2
t + ∂2

∂z2
, ∇2

t = ∂2

∂r2
+ 1

r

∂

∂r
+ 1

r2

∂2

∂ϕ2
(3.18)

The first term of the right member of Equation (3.3) is the second-order derivative of the electric
field. Using the field decomposition (3.15) gives

∂2E(r, t)

∂t2
= [Et (r, ϕ) + zEz(r, ϕ)]

∂2

∂t2
ej(ωt−βz)

= −ω2ej(ωt−βz)[Et (r, ϕ) + zEz(r, ϕ)] (3.19)

The second term of the right member of Equation (3.3) includes the gradient of the logarithmic
function of the refractive index:

∇{E(r, t) · ∇ ln[n2(r, ϕ)]} = ∇{ej(ωt−βz)[Et (r, ϕ) + zEz(r, ϕ)] · ∇t ln[n2(r, ϕ)]}

= ∇{ej(ωt−βz)Et · ∇t ln[n2]} + ∇


ej(ωt−βz) zEz · ∇t ln[n2]︸ ︷︷ ︸

null due to orthogonality






64 Multi-Gigabit Transmission over Multimode Optical Fibre

= ej(ωt−βz)∇t {Et · ∇t ln[n2]} − jβzej(ωt−βz){Et · ∇t ln[n2]}
= ej(ωt−βz)(∇t − jβz){Et (r, ϕ) · ∇t ln[n2(r, ϕ)]} (3.20)

In the above calculation, the decomposition of the gradient operator in cylindrical coordinates into
the transversal gradient and the longitudinal derivative has been used accordingly:

∇ = ∇t + z
∂

∂z
, ∇t = r

∂

∂r
+ ϕ

1

r

∂

∂ϕ
(3.21)

Finally, substituting Equations (3.17), (3.19) and (3.20) into Equation (3.3) and using the defi-
nition of the wavenumber k = ω/c gives the following vector wave equation for the electric field
in a longitudinally invariant optical fiber:

[∇2
t + k2n2(r, ϕ) − β2][Et (r, φ) + zEz(r, ϕ)] = (∇t − jβ ẑ){Et (r, ϕ) · ∇t ln[n2(r, ϕ)]} (3.22)

Material properties of the optical fiber are included in the refractive index function n(r, ϕ). From
Equations (3.21), the transversal gradient is acting on both the radial and azimuthal components. In
standard optical fibers the refractive index changes slightly between the core and the cladding and
the weakly guiding approximation usually holds. Furthermore, the logarithmic function smoothes
the slight index variation, making the scalar product with the electric field almost negligible when
compared to the left side term.

3.3.2.2 Vector Wave Equation for the Magnetic Field

The magnetic field Equation (3.4) is now considered. The first terms on the left and right members
of Equation (3.4) are exactly the same as those already solved for the electric field Equation (3.3).
Therefore, following the same procedure, after substituting the electric field with the magnetic field,
from Equations (3.17) and (3.19),

∇2H(r, t) =
(

∇2
t + ∂2

∂z2

){
[Ht (r, ϕ) + zHz(r, ϕ)]ej(ωt−βz)

}
= ej(ωt−βz)

(∇2
t − β2

)
[Ht (r, ϕ) + zHz(r, ϕ)] (3.23)

∂2H(r, t)

∂t2
= [Ht (r, ϕ) + zHz(r, ϕ)]

∂2

∂t2
ej(ωt−βz)

= −ω2ej(ωt−βz)[Ht (r, ϕ) + zHz(r, ϕ)] (3.24)

The second term of the right member in Equation (3.4), [∇ × H(r, t)] × ∇ ln[n2(r)], needs more
comment. It is the vector product between the curl of the magnetic field intensity H(r, t) and the
gradient of the logarithmic function of the squared refractive index n(r, ϕ). Since the refractive
index is assumed to be longitudinal invariant (it does not depend on the longitudinal coordinate z),
the gradient is effective only in the (r, ϕ) transversal plane and the curl expression can be simplified
by replacing ∇ with ∇t . The same conclusion holds for the previous derivation of the electric field
equation:

∇ ln[n2(r, ϕ)] = ∇t ln[n2(r, ϕ)] =
(

r
∂

∂r
+ ϕ

1

r

∂

∂ϕ

)
ln[n2(r, ϕ)] (3.25)

In order to derive the expression for the curl of the magnetic field, the expression (3.16) of H(r, t)
is substituted in terms of the transversal and longitudinal field components:

∇ × H(r, t) =
(

∇t + z
∂

∂z

)
× {[Ht (r, ϕ) + zHz(r, ϕ)]ej(ωt−βz)

}
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= ej(ωt−βz)[∇t × Ht + ∇t × zHz − jβz × Ht − jβz × zHz]

= ej(ωt−βz)(∇t − jβz) × (Ht + zHz) (3.26)

Finally, from Equations (3.25) and (3.26) the following expression for the second term on the
right-hand side of the magnetic field Equation (3.4) is given:

∇ × H(r, t) × ∇ ln[n2(r, ϕ)] = ej(ωt−βz)
{
(∇t − jβz) × [Ht (r, ϕ) + zHz(r, ϕ)

]}× ∇t ln[n2(r, ϕ)]
(3.27)

Substituting Equations (3.23), (3.24) and (3.27) into Equation (3.4) leads to the following vector
wave equation for the magnetic field in a longitudinally invariant optical fiber:

[∇2
t + k2n2(r, ϕ) − β2][Ht (r, ϕ) + zHz(r, ϕ)] = {(∇t − jβ ẑ) × [Ht (r, ϕ) + zHz(r, ϕ)]

}
× ∇t ln[n2(r, ϕ)] (3.28)

The two vector Equations (3.22) and (3.28) completely define the electromagnetic field in a cylin-
drical dielectric waveguide under the assumptions of material isotropy, instantaneity, linearity and
longitudinal invariance. In the above derivation the refractive index is allowed to vary arbitrarily
in the transversal plane. In general, the transverse plane coordinate set (r, ϕ) allows the refractive
index to have any azimuthal dependence. Of course, the axial symmetric case is just one particular
condition. It is relevant that under the above assumptions the equations of the electromagnetic field
are separable into two second-order partial differential equations for the electric and the magnetic
fields. This is the major consequence of the Cartesian representation for the electromagnetic field
components. The case of the axial symmetric refractive index n(r) described in the following
section simplifies the mathematical description further.

3.3.3 Wave Equations for Axial Symmetric Fibers
In this section, in addition to the same assumptions reported above, the case of the axial symmetric
refractive index n(r) is considered. To be explicit, the conditions satisfied by the dielectric optical
waveguide are as follows:

1. Cylindrical symmetry (optical fiber)
2. Isotropy
3. Instantaneity
4. Linearity
5. Longitudinal invariance
6. Axial symmetry

Assumption 6 mathematically translates by setting n(r, ϕ) = n(r) into both vector wave equa-
tions (3.22) and (3.28). Due to the radial symmetry, the transversal gradient (3.21) of the logarithmic
function of the squared refractive index includes only the first-order radial derivative:

∇t ln[n2(r)] = r
d

dr
ln[n2(r)] = r

2

n(r)

dn(r)

dr
(3.29)

Substituting Equation (3.29) into Equations (3.22) and (3.28) gives the following vector equations
for the electric and the magnetic fields in longitudinal invariant and axial symmetric optical
fibers respectively:

[∇2
t + k2n2(r) − β2][Et (r, ϕ) + zEz(r, ϕ)] = (∇t − jβ ẑ)

{
Et (r, ϕ) · r

d

dr
ln[n2(r)]

}
(3.30)

[∇2
t + k2n2(r) − β2][Ht (r, ϕ) + zHz(r, ϕ)] = {(∇t − jβ ẑ) × [Ht (r, ϕ) + zHz(r, ϕ)]

}
× r

d

dr
ln[n2(r)] (3.31)
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Figure 3.2 Coordinate system representation in the fiber cross-section. The field has Cartesian components
while position is represented by cylindrical coordinates

These equations need some comment. First of all, the left member in both equations is the same
for either the electric or the magnetic field. The right member includes instead the logarithmic
dependence on the squared refractive index profile and it is different for the electric and magnetic
field equations. The electric field Equation (3.30) is first considered.

The transversal component of the electric field Et (r, ϕ) can be decomposed into two Cartesian
components, according to Equations (3.2), and consequently the scalar product with the radial unit
vector r in the cylindrical coordinate system (see Figure 3.2) reduces to the following term:

Et (r, ϕ) · r = Ex(r, ϕ)x · r + Ey(r, ϕ)y · r

= Ex(r, ϕ) cos ϕ + Ey(r, ϕ) sin ϕ (3.32)

From Equations (3.30) and (3.32) the right member has the following transversal and longitudinal
components:

∇t {[Ex(r, ϕ) cos ϕ + Ey(r, ϕ) sin ϕ]
d

dr
ln[n2(r)]}

− jβ[Ex(r, ϕ) cos ϕ + Ey(r, ϕ) sin ϕ]
d

dr
ln[n2(r)]z (3.33)

However, the logarithmic factor (d/dr) ln[n2(r)] in Equation (3.30) is usually very weak and its
contribution is negligible compared to the left-hand term.

The right member in Equation (3.31) for the magnetic field is more complicated because it
includes vector products. However, apart from some what longer calculations, the conclusion is the
same as for the electric field equation, namely the logarithmic factor in the right member contributes
very little and so is usually neglected. In the following the separate contributions of the individual
terms are reported:

{
(∇t − jβ ẑ) × [Ht (r, ϕ) + zHz(r, ϕ)]

}× r
d

dr
ln[n2(r)]

= {[∇t × Ht (r, ϕ)] + [∇t × zHz(r, ϕ)] − [jβ ẑ × Ht (r, ϕ)] − [jβ ẑ × zHz(r, ϕ)]
}

× r
d

dr
ln[n2(r)] (3.34)

The transversal and longitudinal contributions are considered separately. The curl of the transversal
component of the magnetic field in the first term is oriented along the longitudinal axis:

∇t × Ht (r, ϕ) =
[

∂Hy(r, ϕ)

∂x
− ∂Hx(r, ϕ)

∂y

]
z (3.35)



Principles of Multimode Optical Fiber 67

Figure 3.3 Coordinate system representation showing the vector product between the longitudinal unit vector
z and the radial unit vector r. The resulting unit vector lies in the transversal plane

After the vector product with the radial unit vector r a transversal contribution to the vector wave
Equation (3.31) is produced, as follows (see Figure 3.3):

[∇t × Ht (r, ϕ)] × r
d

dr
ln[n2(r)] = (z × r){|∇t × Ht (r, ϕ)| d

dr
ln[n2(r)]} (3.36)

The second term in the left member of Equation (3.34) can be easily transformed as follows:

∇t × zHz(r, ϕ) = ∇tHz(r, ϕ) × z (3.37)

It is oriented in the transversal plane as the third term in the left member of Equation (3.34). After
the vector product with the radial unit vector both of those terms give a longitudinal contribution
to the vector Equation (3.31). Finally, the fourth term in the left member of Equation (3.34) gives
a null contribution.

As already mentioned, the logarithmic term in the right member of both vector equations makes
almost no contribution under the weakly guiding condition and so both can be neglected. With
this approximation, the vector wave equations for the electromagnetic field of Equations (3.30) and
(3.31) reduce to the following more familiar form:

[∇2
t + k2n2(r) − β2][Et (r, ϕ) + zEz(r, ϕ)] = 0 (3.38)

[∇2
t + k2n2(r) − β2][Ht (r, ϕ) + zHz(r, ϕ)] = 0 (3.39)

The great advantages of these equations are that they are separable in the electric and magnetic
field components, they are identical and finally, using Cartesian field components, they reduce to
the same well-known scalar wave equation for each arbitrary Cartesian field component for the
graded index optical fiber. From Equations (3.14), (3.15) and (3.16),

[∇2
t + k2n2(r) − β2]Ψ (r, ϕ) = 0 (3.40)

The scalar function Ψ (r, ϕ) represents any of the electric or magnetic field Cartesian components.
Using the explicit form of the transversal Laplacian operator in the cylindrical coordinates of
Equation (3.18) gives the following second-order partial differential equation:

∂2Ψ (r, ϕ)

∂r2
+ 1

r

∂Ψ (r, ϕ)

∂r
+ 1

r2

∂2Ψ (r, ϕ)

∂ϕ2
+ [k2n2(r) − β2]Ψ (r, ϕ) = 0 (3.41)

The axial symmetry of the refractive index allows for the generic field component Ψ (r, ϕ) to be sep-
arated into the product or the radial-dependent function R(r) with the azimuthal-dependent function
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Φ(ϕ). This property only holds due to the axial symmetry of the refractive index n(r, ϕ) = n(r).
Setting Ψ (r, ϕ) = R(r)Φ(ϕ) in the scalar wave Equation (3.41) finally gives the separated form:

d2Rν(r)

dr2
+ 1

r

dRν(r)

dr
+
[
k2n2(r) − β2 − ν2

r2

]
Rν(r) = 0 (3.42)

d2Φν(ϕ)

dϕ2
+ ν2Φν(ϕ) = 0 (3.43)

In order to satisfy the boundary conditions of the circular fiber, the separation constant ν must be
a positive or negative integer, including zero:

ν = 0, ±1,±2, . . . (3.44)

The general solution of the harmonic Equation (3.43) is the linear combination of harmonic func-
tions of the azimuthal coordinate ϕ:

Φν(ϕ) =

 ejνϕ

cos(νϕ)

sin(νϕ)


 (3.45)

Any of the above harmonic functions constitutes a possible choice for the angular mode field
dependence. In the particular case of ν = 0 the angular contribution reduces to the constant value
of 0 or 1 according to the base function chosen.

3.3.4 Modal Field Structure and Properties

In the following reference will be made to the axial symmetric optical fiber, in addition to the six
assumptions reported at the beginning of Section 2.2.3. The radial term in Equation (3.42) includes
the radial dependence of the axial symmetric refractive index and accordingly characterizes the
modal field distribution. For the particular case of the uniform refractive index, otherwise known
as the step-index case, the radial Equation (3.42) reduces to the Bessel equation and the general
solution is a linear combination of Bessel functions of the first kind and the second kind. Up to now,
the modal fields depend on one index, namely the azimuthal mode number ν. Upon satisfaction of
the circular boundary condition at the core–cladding interface, a second modal number is needed
for matching of the conditions of the radial differential Equation (3.42). This is the radial mode
number µ = 1, 2, . . . .

Each mode field solution is characterized by a pair of mode numbers (ν, µ). In general, for each
fixed azimuthal mode number ν many radial mode numbers µ1, µ2, . . . , µMν

are allowable, leading
to corresponding modal solutions of the radial Equation (3.42). Radial mode numbers associated
with the same azimuthal mode number ν belong to a finite set of dimensions Mν . Even if the
azimuthal mode number ν, as related to the azimuthal field component (3.43), could assume in
principle infinite values according to the set in Equation (3.44), the simultaneous satisfaction of the
boundary conditions for the radial field component limits the upper value of the allowable range
for the azimuthal number ν to the integer Nν :

ν = 0,±1,±2, . . . ,±Nν

As a consequence of the finite set of both azimuthal and radial mode numbers, it is easy to
conclude that all optical fibers must support a finite number NG = NνMν of guided (bounded)
modes. The corresponding product Ψνµ(r, ϕ) = Rνµ(r)Φν(ϕ) for each allowed mode number pairs
defines the particular modal field supported by the optical fiber. In addition to the discrete set of
guided modes, each optical fiber even allows a continuum set of radiation modes ψ(r, ϕ, α). The
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modal decomposition constitutes the basis set for the representation of the general electromagnetic
field component F(r, ϕ) supported by the optical fiber in terms of both guided (discrete) modes
and radiation (continuum) modes:

F(r, ϕ) =
Nν∑
ν=1

Φν(ϕ)

Mν∑
µ=1

cνµRνµ(r) +
∫

Ω

c(α)ψ(r, ϕ, α) dα (3.46)

3.3.5 Comments on Pulse Propagation

The following considerations are quite important for understanding the fundamental pulse propaga-
tion physics in optical fibers. The modal field theory that has been presented implicitly assumes a
true monochromatic field with uniform field amplitude along the whole fiber length. This is implic-
itly assumed in the phasor term expression in Equation (3.14), ej(ωt−βz). The phase wavefronts have
therefore been assumed to be planes without any longitudinal dependence. This is evident when the
phase term in Equation (3.14) is considered. Each surface of constant phase φ(z, t) = ωt − βz = φ0

moves with the constant phase velocity vp = ω/β. At the fixed time instant t = t0 the phase sur-
face is the plane defined by z = (ωt0 − φ0)/β. This is consistent with the assumption previously
made in the modal field theory. Concepts like intermodal dispersion and in particular intramodal
(chromatic) dispersion have not been included in the modal field theory presented so far. Even the
light source has been implicitly assumed to be ideally monochromatic with the single frequency ω.
In order to include pulse distortion and the related propagation concept into optical fiber theory it
is necessary to generalize the previous analysis including the field envelope function. In addition, it
is necessary to assume that the modal field distribution as deduced from the ‘static’ field approach
presented above still remains valid, even under reasonable envelope distortion. This is the basic
approach presented in the literature for pulse propagation theory in optical fibers. Nonlinear effects
such as nonlinear refraction can be inserted in the field equation for the pulse propagation based
on the approach described above.

Multimode fiber propagation theory relies mainly on the mode group delay concept as the
strongly dominant phenomena affecting optical pulse propagation. In this approach, chromatic
dispersion does not make a relevant contribution and it can be neglected at a first analysis level.
By neglecting chromatic dispersion, each excited mode propagates with its group velocity and
contributes to the output section pulse composition with its own energy released at some specific
time instant. Since group velocity is in general a function of the mode distribution considered, all
energy contributions generally arrive at different time instants at the output fiber section, leading to
modal delay pulse broadening. This behavior is common to every multimode waveguide, including
of course even metallic waveguides, and is not a peculiarity of either optical fibers or any other
dielectric waveguide. Instead, chromatic dispersion acts within each excited mode and refers to
the interaction between the source spectrum width and both material and waveguide dispersion
relationships.

3.3.6 Weakly Guiding Fibers and Mode Groups

Satisfaction of the boundary conditions for the radial wave Equation (3.42) at the core–cladding
interface is demanded for the solution of the eigenvalue equation. The solutions of the eigenvalue
equation, namely the eigenvalues, give the phase constants βνµ for the corresponding allowed guided
modes. The phase constant completely characterizes the propagation behavior of the corresponding
mode. Accordingly, the phase constant βνµ is also defined as the propagation constant. For a given
fiber geometry, the propagation constant βνµ is a function of the optical frequency (wavelength). The
dependence of βνµ(ω) on the optical frequency ω can be quite cumbersome, since it includes both
waveguide dispersion and material dispersion relationships. Even assuming no material dispersion
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contribution, the propagation constant will depend on the optical frequency due to the waveguide
dispersion relationship. The waveguide dispersion term is of course defined through the refractive
index profile. It should be remembered that in this context a given fiber mode is dealt with. The
dispersion relationship βνµ(ω) refers to the dependence of the propagation constant on the optical
frequency and therefore it generates the chromatic dispersion term previously introduced, otherwise
known as the intramodal dispersion component. As already stated in Equation (3.46), the eigenvalue
equation admits solutions only for a limited value of the azimuthal mode number ν, precisely for
every integer value |ν| ≤ Nν . These are called proper azimuthal mode numbers.

For any proper azimuthal mode number ν, several radial mode numbers can be associated with it:

∀ν : |ν| ≤ Nν ⇒ ∃µ ∈ {1, 2, . . . ,Mν} ⇒ (ν, µ) (3.47)

Each pair (ν, µ) therefore identifies a propagation constant βνµ(ω) and the corresponding guided
mode Ψνµ(r, ϕ) = Rνµ(r)Φν(ϕ). This correspondence is bidirectional, meaning that each mode
solution is uniquely identified by one and only one pair of mode numbers and vice versa. As a
consequence, each mode field Ψνµ(r, ϕ) has its own propagation constant βνµ(ω). Different modes
have therefore different propagation constants. This uniquely ordered set will be referred to as a
nondegenerate mode set. The following mathematical representation schematizes this concept:

(ν, µ) ⇔
{

βνµ(ω)

Ψνµ(r, ϕ)
(3.48)

In optical fibers used for a telecommunication purpose the difference between the maximum
value of the refractive index on the fiber axis, n(0) = n1, and the minimum value reached in the
cladding region, n2, is usually much smaller than the average value of the refractive index itself.
The proper function used to specify the relative refractive index variation along the radial coordinate
is called the refractive index profile height parameter:

∆ ≡ 1

2

[
1 −
(

n2

n1

)2
]

(3.49)

Standard telecommunication optical fibers usually have a profile height parameter in the range
0.001 ≤ ∆ ≤ 0.01 and are referred to as weakly guiding fibers.

Under weakly guiding fiber approximation the modal solution becomes degenerate and several
mode solutions share a common propagation constant. This condition will be referred to as a
degenerate mode set. Fiber modes are then grouped together in order to have the same propagation
constant. The degeneration order of a mode group is identified by the number of individual modes
belonging to it. More precisely, the order of degeneration refers to the eigenvalue associated with
the mode group. Mode groups can be identified by a single group index instead of a pair of mode
numbers. Of course, even propagation constants will be identified by the same group index. Several
mode field distributions therefore belong to the same group and, more importantly, they propagate at
the same speed, with the same propagation constant. Individual modes belonging to the same mode
group have the same dispersion characteristic and are indistinguishable in terms of their propagation
characteristics. Under the degenerate eigenvalue condition, the unique relationship (3.48) no longer
holds and must be substituted with the more general relation reported below:



(ν1, µ1) ⇔ Ψν1µ1(r, ϕ)

...

(νj , µk) ⇔ Ψνj µk
(r, ϕ)

...




⇔
{

βh(ω)

Mh = {Ψνj µk
}(νj ,µk)∈Sh

(3.50)
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The index h = 1, 2, . . . , M is the group index and the set Sh includes all the pairs of mode
numbers (ν, µ) that identify individual modes Ψνµ(r, ϕ) belonging to the mode group h. Here it is
assumed that all individual modes labeled with radial and azimuthal mode indices νj and µk with
(νj , µk) ∈ Sh have the same propagation constant βh(ω) and can consequently be grouped together
in the same mode group Mh.

3.4 Theory of the Modal Impulse Response
Before writing the mathematical definition of the group delay, it is important to discuss this concept
briefly in order to avoid some common misunderstandings. Mode group and group delay refer to
different things. Group delay is not specifically the delay of the mode group. The terminology
used, group delay, refers instead to the bundle of pulse energy concentrated around the center of
gravity of the pulse. Group delay is quite a fundamental concept and is not only related to optical
fiber theory. It is just a mere coincidence that the definition of group delay also applies to the
propagation delay of the optical fiber mode group, since individual modes belonging to a given
mode group experience the same group delays.

The group delay per unit length τg(ω) is defined as the reciprocal of the group velocity vg(ω). It
is given by the first-order derivative of the propagation constant β(ω) with respect to the angular
frequency ω:

τg(ω) ≡ 1

vg(ω)
= dβ(ω)

dω
(ns/m) (3.51)

Each mode group supported by the multimode fiber propagates with its own group delay:

τg,h(λ) = dβh(ω)

dω
, h = 1, 2, . . . ,M (3.52)

The group delay τg,h(ω) of each mode group depends on the dispersion relationship for the selected
eigenvalue βh(ω). The integer M is the total number of guided mode groups supported by the
fiber. The task to be solved now is to find the optimum refractive index profile n(r, λ) in order
to equalize group delays τg,h(ω) among all M guided mode groups supported by the multimode
fiber. The refractive index profile optimization depends on the fiber geometry, material properties
and wavelength.

According to the group delay compensation principle achieved through proper refractive index
profiling for a given light source spectrum, each mode group propagates along the fiber length,
reaching the fiber end section at some time instant th, h = 1, 2, . . . ,M . This time instant, referred
to the time origin at the input impulse and measured after the unit length, coincides with the
mode group delay defined in Equation (3.52): τh = τg,h, h = 1, 2, . . . ,M . One question now arises
spontaneously. What would be the shape of the impulse response υh(z, t, λ) of the hth mode group
measured at the output fiber section z and excited at the wavelength λ?

If the approximation of neglecting both the effects of the modulated light source spectral width
and of the input pulse spectral content is accepted, the answer is the following. Each supported
fiber mode will contribute to the total output pulse with the impulse response υh(z, t, λ) exhibiting
the same impulsive temporal profile as the input impulse but delayed by the corresponding mode
group delay τg,h(ω) evaluated at the source spectrum wavelength λ:

υh(z, t, λ) = δ[t − zτg,h(λ)] (3.53)

In this case we have used the wavelength variable λ instead of the optical frequency ω in order
to avoid confusion over the spectral content of the pulse envelope. Of course, both the vacuum
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wavelength λ and frequency ω refer to the source optical carrier frequency evaluated in vacuum.
They are related by the following simple relation, where c is the speed of the light in vacuum:

ω = 2πc

λ
−→ dω = −2πc

λ2
dλ (3.54)

Once the impulse response of the individual hth fiber mode has been found to be the same input
impulsive stimulus delayed by the corresponding fiber mode group delay τg,h(λ), it is easy to agree
with the following fundamental statement, which leads directly to the modal impulse response of
the multimode fiber. Assuming linear propagation conditions and no mode interaction, the modal
impulse response measured at the multimode fiber output section z is obtained by superposing all
supported modal contributions reported in Equation (3.53):

υ(z, t, λ) =
M∑

h=1

|ah(λ)|2δ[t − zτg,h(λ)] (3.55)

Each single coefficient |ah(λ)|2 is given by the sum of the squared value of the normalized
overlap integral between the input exciting field distribution and the corresponding individual mode
distribution evaluated at the same input fiber section belonging to the hth mode group:

|ah(λ)|2 =
∑
ν,µ

(ν,µ)∈Sh

|aνµ(λ)|2 ≤ 1 (3.56)

The coefficient |ah(λ)|2 therefore represents the fraction of input field intensity that has been coupled
to the corresponding hth mode group through the individual contribution of each mode belonging to
the corresponding mode group. The conservation of launched energy reflects the unit normalization
of all mode group coupling coefficients:

M∑
h=1

|ah(λ)|2 = 1 (3.57)

Figure 3.4 gives a schematic representation of the situation described above. All excited mode
groups are launched simultaneously at the input fiber section with the impulsive stimulus. The
launched intensity varies for each mode group according to the overlap integral calculation. Assum-
ing there is no additional intramodal (chromatic) pulse dispersion, each mode group brings the
corresponding light energy as the same impulse available at the input section. After propagating for
some distance, the mode group reaches the output fiber section at different time instants, according
to their own group delay. The output intensity is therefore no longer available as a single impulse
but instead is spread among all mode group contributions showing different group delays. The
picture presented in Figure 3.4 is an approximation of the effective optical excitation, at least for
the following two reasons:

1. The modulated source spectrum width cannot be zero as it must have some extent. According
to the light modulation technique the source spectrum width can be either very narrow or very
large. In the case of external modulation, for instance, the source spectrum width could even
coincide with the source CW (continuous wave) condition in the limiting case of very high
optical isolation. In the case of direct modulation the situation would be the opposite and the
frequency chirping induced by fast input pulse transients would affect the spectrum extent.

2. The input impulse stimulus has an inherently infinite signal bandwidth extent. Even assuming
external laser modulation with an infinite modulation bandwidth, the optical spectrum at the
fiber input section would be indefinitely wide.
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Figure 3.4 Schematic representation of the multimode fiber modal impulse response. Assuming ideal condi-
tions, the impulse response is given by the superposition of each delayed mode group impulse contribution. In
the lossless case, the weight |ah(λ)|2 of the output pulse of the j th mode group is given by the square value
of the coupling coefficient evaluated at the input section

The above two cases represent an interesting discussion about how to interpret an ideal modeling
situation. Both of them should be considered in any real application, and not only as limiting cases,
but instead they should serve at least as interesting operating conditions.

3.4.1 The Differential Mode Delay

A fundamental parameter used to determine the degree of mode delay equalization of the graded
index multimode fiber is the differential mode delay (DMD). In order to understand the physical
concept behind the standard definition of DMD, it is assumed that a unit energy light impulse δ(t)

is launched at the fiber input section according to the over-filled launch (OFL) conditions. This
means that all guided modes are excited by the input light source with the same amount of incident
light intensity. The amount of light intensity captured by each mode depends instead on the spatial
mode distribution, according to the overlap integral. In addition, without losing generality, it can
be assumed that the unit light intensity incident on the fiber input section is completely captured
by all the guided modes, so that no radiated power appears in the energy conservation balance. All
the launched power is therefore transferred to the supported bound modes.

The output pulse detected after a unit length by means of the ideal simplified experiment shown
in Figure 3.4 suggests a meaningful interpretation. Since the input impulse has normalized unit
energy the following statistical interpretation of the output pulse distribution is made:

1. The output pulse takes the meaning of the statistical distribution of the energy arrival time
instants among the set of all excited guided modes. Since the energy arrives at the output
section as packets brought by corresponding mode groups at the time instant defined by the
group delay, the following statements are also deduced:

2. The output pulse assumes the meaning of the statistical distribution of the group delay variable
evaluated at the source wavelength.

3. Each weighted energy contribution therefore assumes the meaning of the probability of finding
the corresponding group delay among the detected population.
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4. The group delay per unit length can be mathematically described as the discrete random variable
τ g(λ) defined over the set {τg,h(λ)} of the group delays allowed by the excited mode groups,
where the underscore notation identifies a random variable.

5. The probability of detecting one particular event τg,h(λ) at the output section after one unit
length of pulse propagation is given by the intensity coefficient |ah(λ)|2 of the corresponding
mode group.

6. Due to normalization of the total launched energy in Equation (3.57), the intensity distribution
of the output pulse takes the meaning of the probability density function of the discrete random
variable associated with the group delay:

ah(λ) = P {τ g(λ) = τg,h(λ)} = fτ g
[τ g(λ)]

Each value τg,h(λ) of the mode group delay therefore represents a particular event allowed by the
random variable τ g(λ). These concepts are shown in Figure 3.5.

Once the energy distribution versus time at the output section is known, it is important to compute
the ensemble average group delay 〈τ g(λ)〉 over the modal distribution:

〈τ g(λ)〉 =
M∑

h=1

|ah(λ)|2τg,h(λ) (3.58)

The average group delay 〈τ g(λ)〉 represents the center of gravity of the detected output pulse due
to modal distribution, and is shown as the dot–dash vertical line in Figure 3.5.

It is convenient to define the centered group delay distribution by subtracting the average value
〈τ g(λ)〉 from the original group delay τ g(λ). This leads to the centered process τ̂ g(λ), which is
identified by adding the hat symbol over the corresponding variables:

τ̂ g(λ) ≡ τ g(λ) − 〈τ g(λ)〉 (3.59)

Figure 3.5 Statistical interpretation of the intensity distribution at the optical fiber output section due to the
mode group delay as the probability density function fτg (τ) of the group delay process. The intensity of each
group contribution is given by the corresponding excitation coefficient |ah(λ)|2 at the launching section after
normalization. The envelope of the distribution gives the intensity profile of the output pulse
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From Equations (3.58) and (3.59),

〈τ̂ g(λ)〉 =
M∑

h=1

|ah(λ)|2[τg,h(λ) − 〈τ g(λ)〉] = 0 (3.60)

The variance of the group delay distribution of both the centered process and the original one is
of course the same. From Equation (3.59) it can be found immediately that

σ 2
τ̂g
(λ) = σ 2

τg
(λ) =

M∑
h=1

|ah(λ)|2[τg,h(λ) − 〈τ g(λ)〉]2 (3.61)

According to the statistical interpretation of the modal group delay τ g(λ), the differential mode delay
(DMD) can be defined as the average value of the group delay deviation around the expected group
delay. Equivalently, it can be said that the parameter DMD coincides with the standard deviation
σm(λ) of the modal group delay distribution measured in the normalized temporal variable τ .
According to the unit of measure of the group delay τ g(λ), the DMD takes the same meaning as
the normalized delay per unit time. From Equation (3.61), therefore,

DMD(λ) = σm(λ) =
√√√√ M∑

h=1

|ah(λ)|2[τg,h(λ) − 〈τ g(λ)〉]2 (ns/km) (3.62)

The statistical definition of the DMD allows a clear interpretation of this important concept. In
practice, the correct way to set up the DMD measurement would be by using an external modulated
laser source with a narrow linewidth, modulated by a relatively fast pulse driver whose launched
optical pulse duration would be much narrower than the expected resolution needed for collecting
separate output mode group contributions, but still wide enough to make a negligible contribution to
chromatic dispersion in each mode group. From Equation (3.62) it is concluded that the differential
mode delay increases linearly with distance. This suggests that the DMD measurements should be
set up using the minimum multimode fiber length in order to have good temporal accuracy for the
given source pulse width.

The multimode fiber modal for a generic finite width pulse is considered again. According to
the above discussion and neglecting for the moment the chromatic dispersion contribution, the
normalized response of each mode group to the input pulse excitation p(t) coincides with the
convolution between the impulse response (3.53) with the launched pulse p(t). Due to the impulse
response (3.53), the time convolution simply reduced to the input pulse translation of the amount
corresponding to the modal group delay:

hh(z, t, λ) = p[t − zτg,h(λ)] (3.63)

Under the linear propagating regime, the total response at the fiber output is given by the superpo-
sition of each mode group intensity pulse response:

h(z, t, λ) =
M∑

h=1

|ah(λ)|2hh(z, t, λ) =
M∑

h=1

|ah(λ)|2p[t − zτg,h(λ)] (3.64)

Figure 3.6 shows the situation. Each excited mode propagates the input pulse up to the output
section almost unchanged by neglecting any further broadening or distortion due to intramodal (chro-
matic) dispersion. If the chromatic dispersion effect can be accounted for, each modal contribution
will be affected by proper pulse distortion.
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Figure 3.6 Multimode fiber impulse response under the assumption of a not ideal impulse excitation. The
impulse response is given by the superposition of each delayed mode group pulse contribution. In the lossless
case, the relative weight of the output pulse of the h mode group is given by the square value of the coupling
coefficient evaluated at the input section, |ah|2

The modal impulse expressions derived either in Equation (3.55) for the impulsive stimulus
or in Equation (3.64), assuming the finite input pulse (3.63), are general and their validity is not
limited by any approximation except for the linear regime assumption among all supported fiber
modes. In the next section the linear regime implications will be discussed in more detail. A brief
analysis of either expressions (3.55) or (3.63) shows that the impulse response of the multimode
fiber is made up of several discrete contributions and the relative weight of those adding terms
is governed by the coupling coefficients |ah(λ)|2. The index h identifies the corresponding hth
mode group. Moreover, it would be clear that every condition that modifies the energy distribution
among the launched modes will generate accordingly different modal impulse responses. This
characteristic is the most important property of the modal impulse response. Every modification
of the environmental conditions, such as the temperature, the pressure and the polarization, that
could determine a variation in the coupling coefficient distribution will be responsible for the
corresponding variation in the modal impulse response.

3.5 Linear Propagation Regime
In this section the validity will be discussed of the superposition principle in computing the output
pulse intensity as the sum of the individual intensities carried by each mode group. This is a
completely different situation from the basic model theory of nonlinear behavior of the single-mode
optical fiber, where the nonlinear regime refers to the electric field amplitude and to the consequent
nonlinear refraction induced through the third-order susceptibility. In the following context, it will
be assumed that the electric field intensity is low enough to validate the linear refraction assumption.
High-field nonlinear refraction analysis is outside the scope of this book. Two different conditions
will be considered, single-pulse and multiple-pulse excitation of multimode group propagation.

3.5.1 Single-Pulse Excitation

In deriving the total output pulse intensity in Equations (3.55) and (3.64) the assumption of a
linear regime has been used. It is important now to spend some time looking at this assumption.
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Input pulse energy is distributed among all excited bound modes and each mode group propagates
along the fiber, delivering the proper fraction of pulse energy to the fiber end section after some
delay from the instant of excitation. This picture, although quite simple and clear, hides instead
a subtle argument. The input field from the light source is coupled to the bound mode field by
means of overlap integrals. Accordingly, each excited mode field brings the proper amplitude as a
consequence of the source electric field and propagates along the fiber. The following two assertions
are considered:

1. The linear regime assumption ensures that the total electric field evaluated at the end section of
the multimode fiber is given by the sum of the electric field of each individual mode.

2. Assuming weakly guiding conditions, the magnetic field results are almost proportional to the
electric field (quasi-transverse electromagnetic (TEM) waves) and the intensity at the output
fiber section is therefore proportional to the square modulus of the total electric field.

In general the second assertion does not imply that the total output intensity is equal to the sum
of the individual mode group intensities. In order to verify this condition it is necessary that all
cross-products between different modes give a null contribution to the total intensity. Since the
guided mode set constitutes an orthogonal basis for the guided electromagnetic field, this satisfies
the orthogonality condition for the scalar product between any two basis elements. The definition of
the scalar product implies the integration of the product of any two basis elements over the infinite
cross-section. This means that in order to have a null contribution from any two cross-terms, the
collected intensity would be measured over the infinite cross-section. With this observation in mind,
it is therefore concluded that:

3. The total intensity collected at the output cross-section is given by the sum of the intensities
carried by each individual mode, computed through integration over the infinite cross-section.

3.5.2 Multiple-Pulse Excitation

The second question regarding the plausible nonlinear multimode regime refers to the validity of
the intensity superposition when multiple-input pulse excitations are applied. The subject to be
investigated here is the intensity response of the multimode fiber to multiple subsequent input
pulses measured after a relatively long propagation length at the output section in order to allow
several responses to overlap. The propagation length and the input pulse repetition rate should
be adjusted in order to cause output pulse overlap according to at least two subsequent input
excitation pulses. Stated differently, the total duration τ of the group delay distribution (peak-to-
peak extent) measured after the link length should be wider than the time interval ∆T between
any two consecutive exciting input pulses. Figure 3.7 shows a schematic representation of this
condition.

As already noted, the question dealt with here regards the validity of the linear superposition
principle applied to the intensities of each mode group at the output fiber section. In the following it
will be shown that the individual intensity contribution from each mode group is linearly superposed
at the output fiber section.

To see how the superposition principle of individual mode intensities holds its validity, first the
case presented in Figure 3.7 is considered, where two input pulses, completely separated from each
other, generate instead overlapping output pulse contributions. In order to cause the output pulses
to overlap, it is necessary for the temporal distance between the two input exciting pulses to be
less than the pulse broadening response at the output section. Accordingly, it becomes evident that
the electric field associated with the same individual mode excited by the first and the second input
pulses will overlap.
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Figure 3.7 The drawing to the right end shows the pulse response of the multimode fiber to the single-input
pulse excitation (top left). If the repetition rate of input pulses is fast enough, the envelope of two consecutive
output pulses will overlap by some amount (bottom left)

It should be remembered that the total electric field is given by the sum of all excited modes
available at every point in the fiber cross-section. If any two individual modes, excited by two
different input pulses and propagating at different speeds, overlap during some time interval at
the fiber output cross-section, they would contribute to the total intensity with their characteristic
interfering terms, thus invalidating the superposition principle of the intensities. However, due to
mode orthogonality, after integration over the infinite fiber cross-section, the interfering contribution
between any two electric fields belonging to different individual modes will vanish and the total
intensity will satisfy the superposition principle.

The second case considered is given by the input stream with a very fast pulse repetition rate,
much faster than the duration of each individual stimulating pulse. This case leads to input pulse
superposition but, nevertheless, the same orthogonality properties among different individual modes
allows for output intensity superposition. In this case, of course, due to input pulse overlap the
exciting pulse shape is different from the previous case, but this must not be misunderstood as a non-
linear overlap pulse contribution. In multimode fibers, neglecting high-intensity-induced nonlinear
refraction, mode orthogonality allows for intensity superposition independently from any launching
conditions, pulse repetition rate and spectral coherence. If mode coupling occurs, individual power
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contributions are exchanged among coupled modes, but still the intensity superposition at the output
cross-section holds its validity. It is, however, relevant to remember that mode orthogonality is an
integral property of the modal field. It is not a local property of the spatial field. This means that
interfering terms will vanish just after integration of the field distribution over the infinite fiber
cross-section.

3.6 The Optimum Refractive Index
The mode field theory of graded index optical fiber allows the optimum refractive index profile to
be determined. Index profile optimization refers to the capability of gaining group delay equaliza-
tion among all excited modes. Assuming the optimum refractive index profile, every mode group
propagates with the same component of the group velocity along the longitudinal direction. Accord-
ingly, all mode groups reach in principle every fiber cross-section at the same time instant. This
ideal equalized condition leads to a null differential mode delay distribution. Stated differently, the
differential mode delay distribution collapses upon a Dirac delta distribution with zero variance.

In any manufactured multimode optical fibers, things are not as easy as they could appear from
the above idealized conditions. The optimum profile is found to be strongly dependent on the fiber
geometry, material properties and source wavelength. Any defect found during the multimode fiber
fabrication process affects the refractive index profile and consequently has a strong impact on
the differential mode delay distribution. Manufacturing defects are statistically localized close to
the fiber axis and at the core–cladding transition region. Additional profiling changes can also
happen in the radial mid-region, with an even stronger impact on the group delay equalization
properties. Each defective region contributes consistently in destroying the designed group delay
compensation, and a certain amount of the launched pulse energy therefore travels at a slightly
different speed, contributing to the output pulse dispersion. Of course, if the differential group
delay τj (λ) is comparable with the transmitting time step T , a relevant pulse distortion will be
produced. Otherwise, for a relatively lower bit rate the group delay dispersion could even be
negligible. Just to have an order of magnitude of the dispersion in deployed multimode fibers
would produce DMD ranges between 0.5 ns/km and 1.0 ns/km. Assuming a 10 GbE bit rate, the
time step T is close to T ∼= 100 ps and the allowed pulse dispersion would therefore be less than
30 ps for a limited eye optical power penalty. Assuming a quadratic dispersion composition after
pulse convolution, this leads to an acceptable DMD of about DMD ∼= 83 ps, which corresponds to
the worst-case link reach of less then 83 m.

Figure 3.8 gives a qualitative representation of the principal defect regions in the refractive
index profile for a graded index multimode fiber. The central region (I) shows typical axial defects
recognized as refractive index dip or pin. This defect indicates respectively a refractive index
depletion or enhancement on the fiber axis region with respect to the optimum designed refractive
index profile. As already mentioned, the mid-radial core region (II) reports some refractive index
profile distortions usually due to the manufacturing process and recognized as the multiple-α profile
region. Since the delay compensation strongly depends on the grading profile of the refractive index,
any perturbation from the ideal situation contributes to pulse broadening. Finally, the outer core
region (III) reports typical core–cladding irregular boundary conditions.

It has been mentioned that the optimum refractive index profile depends on the wavelength
through the doped glass material dispersion characteristic. Accordingly, a graded index profile
can in principle be optimized only for a single wavelength operation. This is in fact what is
encountered in all practical situations, where the manufacturing process of the multimode fiber has
been designed to achieve the minimum group delay dispersion for a given operating wavelength
range. Today, bandwidth-optimized multimode fibers for GbE and 10 GbE standards are available
with a bandwidth in excess of 2 GHz km when operated in the 850 nm wavelength region, but most
of their performance is lost when operating in the 1310 nm region, degrading the bandwidth down
to 500 MHz km. This rapidly degrading behavior is a consequence of the very tight optimization
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Figure 3.8 Representation of the refractive index for a graded multimode fiber showing defective regions.
The optimum refractive index profile is shown. Shadowed regions I, II and III indicate areas where the pro-
filing is perturbed by manufacturing distortion. In the example shown, the dashed region represents the better
approximation available to the optimum profile and should be used for the off-set launch (OSL) technique, in
order to minimize optical pulse broadening

requirement for the optimum profiling and the dependence of the involved parameters on the
operating wavelength. The same high sensitivity to the profiling parameters makes the optimum
grading a very challenging task, even for multimode fiber manufacturing today. The large spreading
in multimode dispersion performances of deployed multimode fiber is a consequence of the same
critical optimum profile function.

3.6.1 Clad Power Law Grading

In order to take a step further in understanding graded index optical fibers, in the following the
mathematical model of the profiling function is considered. First of all the graded profile must be
assumed to be axial symmetric due to demanding simplicity in the manufacturing process. A very
common axial symmetric refractive index function used for minimizing group delay dispersion is
known as the ‘clad power law profile’. The clad power law refractive index profile is a piecewise
function of the radial coordinate only, thus exhibiting the required axial symmetry. The profiling
function is defined through the single parameter α, which defines the grading variation between
the fiber axis and the core–cladding interface. The clad power law profile assumes the maximum
value n1 on the fiber axis and decreases monotonically towards the cladding boundary at r = a in
order to match the uniform cladding refractive index value n2:

n(r, λ) =




n1(λ)

√
1 − 2∆(λ)

( r

a

)α

, 0 ≤ r ≤ a

n1(λ)
√

1 − 2∆(λ) = n2(λ), r ≥ a

(3.65)
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The clad power law refractive index just reported refers to the assumption of the linear dispersion
regime. In fact, it is assumed that both the maximum n1(λ) and the minimum n2(λ) values of
the refractive index on the fiber axis and in the cladding region respectively are dependent on the
wavelength of the monochromatic light source. This is due to the material dispersion properties.
Of course, the profile height parameter ∆(λ), defined in Equation (3.49), turns out to be a function
of the wavelength through the dependence of both n1(λ) and n2(λ). In the formula (3.65) it has
implicitly been assumed that the profiling coefficient α is not a function of the wavelength. This
assumption is known as the linear dispersion regime approximation for the grading profile of the
multimode fibers. Figure 3.9 shows computed profiles according to Equation (3.65) for α varying
between 1 and 32, as reported in the legend. The refractive indices n1(λ) = 1.470 and n2(λ) =
1.465, leading to ∆(λ) = 3.46 × 10−3.

In the limiting case of an infinite value of the α index, the clad power law profile tends to the
step index profile. In the case of doped silica fibers the optimum refractive index profile is generated
by using the a exponent very close to 2. For this reason it is customary to refer to the optimum

0 0.2 0.4 0.6 0.8 1 1.2 1.4

1.465

1.466

1.467

1.468

1.469

1.47

Normalized radial coordinate, r/a

R
ef

ra
ct

iv
e 

in
de

x

Clad power-law refractive index profile

α1 = 01

α2 = 02

α3 = 04

α4 = 08

α5 = 16

α6 = 32

 core cladding

Figure 3.9 Computed clad power law profile for different profile indices α. All profiles have the same values
of axis refractive index and profile height. The unit value of the profile index generates the linear shaping
(triangular index profile). Higher index values correspond to higher profile concavities. For α = 2 the refractive
index assumes a true parabolic shape
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refractive index profile as the parabolic grading function. Unfortunately, very small variations of
the optimum α index are responsible for even one order of magnitude of multimode bandwidth
loss. To gain a quantitative idea of the loss, a variation of about 1–2 % of the optimum α can lead
to one decade or even more of multimode bandwidth collapse. The situation is critical because the
optimum α is quite sensitive to the amount of doping used to provide the profile variation itself.
Figure 3.9 gives a qualitative representation of the differential mode delay of Equation (3.62) versus
the α index for the clad power law profile.

3.7 Physics of the Chromatic Dispersion
In order to understand the impact of the material dispersion in the spectral dependence of the
refractive index n(λ) and its role in the optimum grading profile in terms of the operating wave-
length, in this section the interaction of the electromagnetic field with the glass-based optical fiber
is considered in more detail. When an electromagnetic wave of proper spectral content is incident
on a dielectric material, some of the energy of the radiation field is transferred to bound electrons
of the medium. The bound electron reaction to that excitation characterizes the dielectric behavior
of the medium through the dielectric susceptibility function χ(r, t). The dielectric susceptibility
χ(r, t) directly relates the induced polarization field P(r, t) with the exciting electric field E(r, t).
The general relationship between the exciting field E(r, t) and the induced polarization P(r, t) can
be very complex in the case of nonanisotropic and nonlinear materials. In general, the dielectric
susceptibility χ(r, t) is a nonlinear tensor quantity. However, the amorphous glass composition of
the optical fibers used in conventional telecommunication applications behaves quite linearly if the
exciting electric field intensity remains below a critical threshold for the nonlinear refraction. In the
case of single-mode optical fibers with a mode field diameter of the order of 10 µm, the threshold
intensity for nonlinear refraction effects is around 10 mW. In multimode optical fiber, due to a larger
core diameter and therefore reduced field intensity, the threshold value for the nonlinear refraction
is much higher and the power level is out of the range of interest for every telecommunication
application. The refractive index is related to the dielectric susceptibility by the following simple
relation:

n2(ω) = 1 + χ(ω) (3.66)

The interaction of an electromagnetic wave with the bound electrons of a dielectric medium
depends on the frequency spectrum of the applied field. This behavior can be simply understood by
means of the electric dipole approximation and the damped harmonic oscillator model. Even if this
analysis is out side the scope of this book, it is nevertheless important to consider some relevant
concepts and conclusions. The dependence of the linear susceptibility transfer function χ(r, t) on
the spectral content of the exciting electromagnetic field leads to the phenomenon of chromatic
dispersion and manifests itself through the frequency dependence of the refractive index.

3.7.1 The Sellmeier Equation for the Refractive Index

Bound electrons in dielectric materials are distributed over different binding energies and an accu-
rate model of the interaction between the applied electromagnetic field and the dielectric medium
should take care of several electron binding energies, leading to a discrete set of resonant fre-
quencies. The Sellmeier equation represents the linear (first-order) dielectric susceptibility in the
frequency domain χ(ω) in glass materials as the weighted series expansion of the resonant fre-
quency contributions. Each resonant frequency generates a singularity in the frequency response
whose intensity is determined by corresponding weighting coefficients according to the following
formula:

χ(ω) =
M∑

j=1

Bj

1 − (ω/ωj )2
(3.67)
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Each different dielectric material is therefore characterized by a proper set of resonant frequencies
ω1, ω2, . . ., ωM and corresponding weighting coefficients B1, B2, . . ., BM . From Equation (3.66)
it is deduced that the square value n2(λ) of the refractive index is given by the following simple
relation:

n2(ω) = 1 + χ(ω) = 1 +
M∑

j=1

Bj

1 − (ω/ωj )2
(3.68)

known as the Sellmeier equation for the refractive index in a dielectric medium.
Each resonant frequency ωj determines a resonant peak in the frequency response of the linear

refractive index. Model parameters for fused silica glass (undoped) have been obtained exper-
imentally by I. H. Malitson1 by fitting measured dispersion curves to the three-term Sellmeier
equation:

n2(ω) = 1 + χ(ω) ∼= 1 + B1

1 − (ω/ω1)2
+ B2

1 − (ω/ω2)2
+ B3

1 − (ω/ω3)2
(3.69)

The value of the refractive index can therefore be computed once the three resonant frequencies
(ω1, ω2, ω3) and the corresponding coefficients (B1, B2, B3) are known. In the case of pure fused
silica, according to Malitson,


B1 = 0.696 166 3
B2 = 0.407 942 6
B3 = 0.897 479 4

⇔



λ1 = 0.068 404 3 µm
λ2 = 0.116 241 4 µm
λ3 = 9.896 161 µm

⇔



ω1 = 27.538 × 1015 rad/s
ω2 = 16.205 × 1015 rad/s
ω3 = 0.1903 × 1015 rad/s

(3.70)

The first resonant peak with the shortest wavelength is located in the far-ultraviolet region at
λ1 = 0.0684043 µm. The second resonant peak is located in the near-ultraviolet frequency range at
λ2 = 0.116 241 4 µm, while the third resonant frequency is located instead in the very-far-infrared
region at λ3 = 9.896161 µm. It is interesting to observe that all three coefficients have almost the
same value, giving similar contributions.

Figure 3.10 gives a logarithmic frequency plot of the linear refractive index according to the
three-term Sellmeier Equation (3.70). The frequency profile of the refractive index is strongly
affected by the resonance frequencies. Far away from frequency peaks, in particular within the range
of interest for optical communication wavelengths, 800 nm ≤ λ ≤ 1650 nm and the corresponding
frequency interval 1.14 × 1015 rad/s ≤ ω ≤ 2.35 × 1015 rad/s, the profile is relatively uniform. By
comparing the frequency interval used for optical communications with the resonant frequencies of
pure silica glass it can be seen that there is about one decade on each side before reaching the cor-
responding resonant peak respectively at ω2 = 16.205 × 1015 rad/s and ω3 = 0.1903 × 1015 rad/s.

The following relationship between frequency and vacuum wavelength is recalled:

ω = 2πc

λ
⇒ d

dω
= − λ2

2πc

d

dλ
(3.71)

After applying these relations to Equation (3.69), the three-term Sellmeier equation for the refractive
index n(λ) and the dielectric susceptibility χ(λ) takes the following form:

n2(λ) = 1 + χ(λ) ∼= 1 + B1

1 − (λ1/λ)2
+ B2

1 − (λ2/λ)2
+ B3

1 − (λ3/λ)2
(3.72)

1 I. H. Malitson, ‘Interspecimen Comparison of the Refractive Index of Fused Silica’, J. Optical Society of
America, 55, 1965, 1205–1209.
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Figure 3.10 Linear dielectric susceptibility of fused silica according to the three-term Sellmeier Equa-
tion (3.69). The top graph shows the frequency function χ(ω), while the bottom graph reports the dielec-
tric susceptibility as a function of the wavelength, χ(λ). Coefficients and peak locations are defined according
to parameters given in Equation (3.70). The interval used for optical communication is located about one decade
away from closer resonant peaks, leading to an almost uniform susceptibility profile

3.7.2 Frequency Domain
Restricting the wavelength interval (frequency interval) closer to the optical communication range
800 nm ≤ λ ≤ 1800 nm, the three-term Sellmeier equation leads to a very simple and useful repre-
sentation of the refractive index for undoped fused silica. Knowledge of the refractive index allows
all the material-related physical properties to be determined as functions of both wavelength and
frequency. In the following the frequency relations of major physical parameters are given.

3.7.2.1 Propagation Constant

β(ω) = kn(ω) = ω

c
n(ω), β(q)(ω) = dqβ(ω)

dωq
, k = ω

c
(3.73)

3.7.2.2 Group Index of Refraction

ng(ω) = n(ω) + ω
dn(ω)

dω
(3.74)

3.7.2.3 Group Velocity

vp(ω) = ω

β(ω)
= c

n(ω)
, vg(ω) = 1

β(1)(ω)
= c

ng(ω)
(3.75)
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3.7.2.4 Group Delay

τg(ω) = 1

vg(ω)
= dβ(ω)

dω
= β(1)(ω) = 1

c
ng(ω) (3.76)

3.7.2.5 Group Dispersion

dg(ω) = dtg(ω)

dω
= β(2)(ω) = − 1

v2
g(ω)

dvg(ω)

dω
= 1

c

dng(ω)

dω
= 1

c

[
2

dn(ω)

dω
+ ω

d2n(ω)

dω2

]
(3.77)

3.7.2.6 Conclusions

Figure 3.11 shows the computed refractive index and refractive group index according to Equa-
tion (3.74) using the three-term Sellmeier Equation (3.69) for the silica glass parameter set given
in Equation (3.70). The refractive indices reported below refer to the undoped silica glass. Due
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Figure 3.11 Computed frequency dependencies of the refractive index, group index, phase velocity and group
velocity using the three-term Sellmeier Equation (3.69) for the undoped fused silica. The frequency variation
is responsible for pulse dispersion due to the pulse spectral content
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Figure 3.12 Computed frequency dependence of group delay and group dispersion using the three-term
Sellmeier Equation (3.69) for the undoped fused silica. In the frequency interval around 1.48 × 1015 Hz corre-
sponding to the wavelength range close to 1300 nm, the group delay for the undoped fused silica reaches the
absolute minimum value. Accordingly, the group dispersion reaches the zero value. This frequency is known
as the zero-dispersion frequency ω0 for the undoped fused silica

to material doping the refractive index increases accordingly. The frequency dependencies of the
phase and group velocities according to the relationships (3.75) are also shown in Figure 3.11.

Figure 3.12 shows the group delay τg(ω) and the group dispersion computed for the same
undoped silica fiber as above. According to Equation (3.77), group dispersion dg(ω) is related to
both first-order and second-order frequency derivatives of the refractive index n(ω).

A few more comments are now considered about results obtained using the three-term Sellmeier
approximation for the undoped fused silica refractive index. The group delay showed in the upper
graph is within the range 4.875 µs/km < tg(ω) < 4.895 µs/km in the whole optical communication
frequency interval. The group delay variation is therefore less then 20 ns/km in the whole optical
frequency interval. This behavior is more precisely expressed by the group delay dispersion (bottom
graph), which ranges between −60 ps2/km < dg(ω) < 40 ps2/km.
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3.7.3 Wavelength Domain

Using the frequency-to-wavelength relationship (3.71), it is possible to represent the same physical
quantities as above with respect to the optical wavelength instead of the frequency. However, it is
important to point out that the physical definition of the parameters has been set according to the
frequency representation. This can be rigorously demonstrated by solving the linear propagation
equation for the electric field pulse using the slowly varying envelope approximation (SVEA). The
only difference to be taken into account is the mathematical relationship between the frequency and
wavelength. This is highlighted below, where the definitions are given for each physical quantity.
Some mathematical manipulations give the following relationships.

3.7.3.1 Propagation Constant

β(λ) ≡ kn(λ) = 2π

λ
n(λ), β(q)(λ) ≡ dqβ(λ)

dλq
, k = 2π

λ
(3.78)

3.7.3.2 Group Index of Refraction

ng(λ) ≡ n(λ) − λ
dn(λ)

dλ
(3.79)

3.7.3.3 Group Velocity

vp(λ) ≡ c

n(λ)
= 2πc

λβ(λ)
, vg(λ) ≡ 1

dβ[λ(ω)]/dω
− 2πc

λ2

1

dβ(λ)/dλ
= c

ng(λ)
(3.80)

3.7.3.4 Group Delay

τg(λ) = 1

vg(λ)
≡ dβ[λ(ω)]

dω
= − λ2

2πc
β(1)(λ) = − λ2

2πc

dβ(λ)

dλ
= 1

c
ng(λ) (3.81)

3.7.3.5 Group Dispersion

dg(λ) ≡ dtg[λ(ω)]

dω
= − λ2

2πc

dtg(λ)

dλ
= − λ2

2πc2

dng(λ)

dλ
= λ3

2πc2

d2n(λ)

dλ2
(3.82)

3.7.3.6 Conclusions

The expression (3.79) for the group refractive index ng(λ) follows directly from the expressions of
the group delay τg(λ) and the propagation constant β(λ). Substituting for the propagation constant
expression (3.78) into the group delay (3.81) and taking the first-order derivative with respect to
the wavelength gives

τg(λ) = − λ2

2πc

dβ(λ)

dλ
= − λ2

2πc

d

dλ

[
2πn(λ)

λ

]
= 1

c

[
n(λ) − λ

dn(λ)

dλ

]
(3.83)

Using the definition of the group index ng(λ) : τg(λ) = ng(λ)/c then gives Equation (3.79).

3.7.4 Polynomial Approximation

For a limited wavelength range, sufficiently far away from the resonant peaks, the Sellmeier
equation can be approximated by a polynomial series in λ2 and 1/λ2. In the particular case
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of the fused silica glass, excited in the optical communication range 800 nm ≤ λ ≤ 1800 nm,
Equation (3.72) can be approximated by the following superposition of second-order polynomials
in λ2 and 1/λ2:

n2(λ) = 1 +
∑

j

Bj

1 − λ2
j /λ

2
∼= 1 + B1 + B2︸ ︷︷ ︸

M0

+ (B1λ
2
1 + B2λ

2
2)︸ ︷︷ ︸

M2

1

λ2
−B3

λ2
3︸ ︷︷ ︸

N2

λ2 (3.84)

Mk ≡
∑

i

Biλ
k
i︸ ︷︷ ︸

λi�λ

Nk ≡ −
∑

i

Bi

λk
i︸ ︷︷ ︸

λi�λ




⇒ n2(λ) = 1 + M0 + M2

λ2
+ N2λ

2

for λ1 < λ2 � 800 nm ≤ λ ≤ 1800 nm � λ3 (3.85)

Substituting the above approximation of the refractive index into Equation (3.79), it is easy to
derive the polynomial approximation for the group index:

ng(λ) ∼= 1 + M0 + 2M2/λ
2√

1 + M0 + M2/λ2 + N2λ2
(3.86)

Figure 3.13 gives the computed profiles of the refractive index n(λ), the group index ng(λ), the
phase velocity vp(λ) and the group velocity vg(λ) as a function of the optical wavelength according
to the three-term Sellmeier approximation. In addition to the above four parameters, the top graph
in the figure shows the second-order polynomial approximation of the group refractive index.

Differences between the computed phase velocity and group velocity show the dispersive nature
of the medium being considered. It is a very fundamental result of physics that in any dielectric
medium except the vacuum, the phase velocity of the electromagnetic field is even higher than
the corresponding group velocity. In vacuum, both quantities are equal since the refractive index
assumes the unit constant value and the energy is transferred at the speed of the light c.

Figure 3.14 shows the computed wavelength profile of the group delay and group dispersion.
It is noteworthy that every physical parameter regarding the intramodal pulse propagation can be
directly computed by knowing the refractive index as a function of the wavelength.

3.7.5 The Chromatic Dispersion Coefficient

The chromatic dispersion coefficient Dc(λ) is defined in the wavelength domain but cannot be
deduced directly from the frequency domain as is the case for other parameters. The chromatic
dispersion coefficient is defined as the first-order derivative of the group delay tg(λ) with respect
to the wavelength:

Dc(λ) ≡ dtg(λ)

dλ
(ps/nm km) (3.87)

Equation (3.83) gives the following relation between the chromatic dispersion coefficient and the
second-order derivative of the refractive index:

Dc(λ) ≡ dtg(λ)

dλ
= 1

c

dng(λ)

dλ
= −λ

c

d2n(λ)

dλ2
(3.88)



Principles of Multimode Optical Fiber 89

0.8 1 1.2 1.4 1.6 1.8

× 10−6

× 10−6

1.44

1.45

1.46

1.47

1.48
Fused silica material contribution vs. wavelength

Wavelength, [m−1]

0.8 1 1.2 1.4 1.6 1.8

Wavelength, [m−1]

R
ef

ra
ct

iv
e 

in
de

x:
 n

(l
),

 n
g(
l
) Phase index

Group index

Poly approx

2.04

2.05

2.06

2.07

2.08

2.09
× 108 Fused silica material contribution vs. wavelength

V
el

oc
ity

: v
p(
l
),

 v
g(
l
) 

[m
/s

] Phase velocity

Group velocity

Figure 3.13 Computed wavelength profiles of the refractive index and velocities for the fused silica glass
using the three-term Sellmeier formula (3.72) with coefficients given in Equation (3.70). The top graph shows
the refractive index, the group index and the polynomial approximation of the group index according to
Equations (3.72), (3.79) and (3.86) respectively. The bottom graph shows the phase velocity and group velocity
profiles according to Equation (3.80)

From the expression in the wavelength domain of the group dispersion (3.82), it is possible to
deduce immediately that the following relation holds:

Dc(λ) = −2πc

λ2
dg(λ) (3.89)

The chromatic dispersion coefficient is mainly used in pulse broadening calculations under direct
modulation of the light source. Once the light source spectrum width σλ (nm) is known, the
chromatic dispersion of the fiber link is easily computed by multiplying Dc(λ) by the source
spectrum width. The result has the dimension of ps/km and specifies the fiber link dispersion
parameter ∆c(λ):

∆c(λ) ≡ Dc(λ)σλ (ps/km) (3.90)
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Figure 3.14 Computed group delay (top) for the fused silica glass using Equation (3.81) with the three-term
Sellmeier model of the refractive index. The group delay calculation using the group index polynomial approx-
imation has been added on the same graph. Both plots show the characteristic group delay minimum close
to 1270 nm, revealing the zero-dispersion wavelength position. The bottom graph reports the computed group
dispersion according to Equation (3.82). Dispersion reaches the zero value at the delay minimum wavelength

3.7.5.1 The Chromatic Dispersion Slope

A useful parameter for characterizing the chromatic dispersion wavelength profile is the chromatic
dispersion slope Sc(λ), defined as the first-order wavelength derivative of the chromatic dispersion
coefficient:

Sc(λ) ≡ dDc(λ)

dλ
(ps/nm2 km) (3.91)

Equation (3.88) gives the slope expression in terms of the higher-order wavelength derivative of
the refractive index:

Sc(λ) = −1

c

d

dλ

[
λ

d2n(λ)

dλ2

]
= −1

c

[
d2n(λ)

dλ2
+ λ

d3n(λ)

dλ3

]
(3.92)
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By comparing Equation (3.92) with the chromatic dispersion coefficient (3.88), the following equiv-
alent expression is derived for the chromatic dispersion slope:

Sc(λ) = Dc(λ)

c
− λ

d3n(λ)

dλ3
(3.93)

Once the slope Sc(λ) is known it is possible to write down the first-order approximation of the
chromatic dispersion coefficient Dc(λ) around the generic reference wavelength λc:

Dc(λ) = Dc(λc) + (λ − λc)Sc(λ) + · · · (3.94)

Figure 3.15 Top: computed chromatic dispersion coefficient using the three-term Sellmeier approximation
of the refractive index in the case of fused silica glass. The dashed line represents the chromatic dispersion
slope evaluated at the zero-dispersion wavelength. Bottom: chromatic dispersion slope computed according to
Equation (3.93). The slope evaluated between 800 nm and 1800 nm results in a monotonic decreasing function
of the wavelength
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Figure 3.15 shows the chromatic dispersion coefficient and the slope function computed using
Equations (3.88) and (3.92) or (3.93) respectively, with the refractive index modeled according to
the three-term Sellmeier approximation reported in Equation (3.72).

3.8 Waveguide Dispersion
The concept of chromatic dispersion as introduced so far is a property of the pure material constitut-
ing the dielectric waveguide. Accordingly, it is more convenient to specify the dispersion coefficient
Dc(λ) that has been considered up to now as the material chromatic dispersion. In addition, each
individual mode supported by the multimode optical fiber exhibits one more chromatic dispersion
term, namely the waveguide chromatic dispersion. This term accounts for the peculiar dispersion
relationship relating the propagation constant βνµ(λ) of each individual mode with the wavelength λ

of the exciting light source. The waveguide dispersion is indicated by Dw(λ) and has the same unit
of measure (ps/nm km) as the chromatic dispersion coefficient Dc(λ). Assuming that material and
waveguide chromatic dispersions are not correlated with each other, the total chromatic dispersion
is given by the algebraic sum of both contributions:

D(λ) = Dc(λ) + Dw(λ) (3.95)

The waveguide chromatic dispersion can be conveniently used to modify the total chromatic
dispersion properly in order to have some specific dispersion behavior. Two major examples are the
dispersion shifted and dispersion flattened single-mode optical fibers, both of which are extensively
used in long-haul and single-wavelength multigigabit transmission links. It is known explicitly
that any waveguide dispersion correction is suitable only for single-mode fibers. It is not possible,
and would not be justifiable, to design graded index-based multimode fibers with a controlled
waveguide dispersion contribution. Without entering into a waveguide dispersion analysis, which
would be outside the scope of this book, Figure 3.16 gives a qualitative plot demonstrating the
operating principle of the dispersion shifted single-mode optical fiber. In order to achieve a higher
waveguide dispersion contribution, the profile of the refractive index must be carefully designed
and the manufacturing process requires higher parameter controls. The refractive index profile of

Dc(λ)

D (λ)

Dw(λ)

Wavelength shiftλo λs

ps/nm ⋅ km

0

20

40

−20

−40 ~1300 nm ~1550 nm

λ

Figure 3.16 Qualitative representation of the waveguide chromatic dispersion correction used in order to
achieve dispersion shifted total chromatic dispersion behavior for third-window operation. The total chromatic
dispersion is given by the algebraic combination of material and waveguide dispersions
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both dispersion shifted and dispersion flattened fibers is usually quite a complex function of the
radial coordinate. Some common profiles adopted for single-mode telecommunication optical fiber
show triangular or W-shaped profiles in the core and exhibit depressed cladding design in the
core–cladding interface region.

3.9 Frequency Chirping
The group delay and the group dispersion defined in Section 3.7.3 refer to the undoped silica
glass and therefore their behavior can be used to discuss some general properties of light pulse
propagation in glass-based optical fibers. What does a negative dispersion mean? Looking at the
frequency interval to the left of the zero-dispersion frequency ω0 in Figure 3.12, which corresponds
to the longer wavelengths, the pulse experiences a negative value of the group dispersion:

dg(ω)
∣∣|ω<ω0 < 0

On the contrary, in the frequency range to the right of ω0, which corresponds to the shorter
wavelengths, the pulse experiences a positive value of the group dispersion:

dg(ω)
∣∣|ω>ω0 > 0

In order to find a physical answer to this apparently strange behavior, the group delay curve in the
upper graph in Figure 3.17 is considered. In the frequency interval to the left of the zero-dispersion
frequency ω0, the group delay is a monotonically decreasing function of the optical frequency,
leading therefore to the negative value of the group dispersion.

The physical interpretation is that the higher frequency components present in the optical pulse
spectrum will experience a lower group delay when traveling at a faster group velocity than the
lower frequency components, which will, on the contrary, experience a higher group delay when
traveling at a slower group velocity. In order to have a clearer understanding of this fundamental
concept, the following terminology is introduced. An optical pulse is said to be color biased or
frequency chirped when the time-resolved spectrum has different colors according to different pulse
transients in the time domain.

If pulse edge precursors and postcursors are color biased or frequency chirped, this would led
to quite different pulse distortions after traveling along the dispersive optical fiber. Since the pulse
distortion depends on the colored pulse composition, the dispersion considered so far is defined
accordingly as chromatic dispersion. These concepts are quite important and are the basis for
understanding frequency chirping of the optical pulse when it is traveling in a dispersive medium
such as optical fibers.

In the following two sections the two cases of long- and short-wavelength excitations will be
considered separately, referring to launched source spectra localized to the left of ω0 and to the
right of ω0 respectively. The important result is the very different distortion the pulse experiences
after a certain propagation length, leading to the opposite behavior, namely pulse broadening or
pulse compression depending upon the chirped launched pulse.

3.9.1 Long-Wavelength Region (Anomalous Region)

It is assumed first that the launched optical pulse spectrum is centered to the left of the zero-
dispersion frequency ω0, as depicted in the top graph of Figure 3.17. This condition will be referred
to as the long-wavelength region because the lowest frequency range to the left of ω0 corresponds,
through Equation (3.71), to the longer-wavelength interval. Due to the negative slope of the group
delay function, components of the source spectrum will experience longer propagation delays,
while spectral components will propagate with shorter delay times. What happens after a fixed



94 Multi-Gigabit Transmission over Multimode Optical Fibre

blue

bluered

redblue

bluered

red

Figure 3.17 Chromatic dispersion effect upon the chirped source optical pulse. The top graph shows the
situation when the source spectrum is centered to the left of the zero-dispersion frequency, operating in the
long-wavelength range (lower-frequency range). In that case, blue-shifted leading edges and red-shifted trailing
edges will generate pulse broadening, while red leading edges and blue trailing edges will generate pulse
compression. The opposite situation holds in the right side of the zero-dispersion frequency (bottom graph),
operating in the shorter-wavelength range

propagation distance? The answer depends on the time-resolved spectral distribution of the launched
optical pulse.

Two complementary cases are possible:

1. The leading edge is blue-shifted and the trailing edge is red-shifted.
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(a) This means that the pulse generation mechanism (inside the laser cavity for example) slightly
changes the emission frequency during the optical pulse profile: the optical frequency
increases during the pulse rising edge (leading edge), providing the blue-shift behavior,
and slightly decreases during the pulse falling edge (trailing edge), providing the spectrum
red-shift behavior.

(b) Since in the long-wavelength region spectral blue components travel faster than the red ones,
the leading edge of the optical pulse reaches the fiber end section earlier than the trailing
edge and the pulse becomes broader as long as it propagates.

2. The leading edge is red-shifted and the trailing edge is blue-shifted.
(a) This means that the pulse generation mechanism (inside the laser cavity for example) slightly

changes the emission frequency during the optical pulse profile: the optical frequency
decreases during the pulse rising edge (leading edge), providing the red-shift behavior,
and slightly increases during the pulse falling edge (trailing edge), providing the spectrum
blue-shift behavior.

(b) Since in the long-wavelength region spectral blue components travel faster than the red ones,
the trailing edge reaches the fiber end section earlier than the leading edge and the pulse
becomes narrower as long as it propagates.

In the longer-wavelength region, depending on the frequency chirping of the time-resolved source
spectrum, the optical pulse can go through either broadening or narrowing mechanisms due to the
fiber group delay characteristic.

3.9.2 Short-Wavelength Region (Normal Region)

It is now assumed that the launched optical pulse spectrum is centered to the right of the zero-
dispersion frequency ω0, as depicted in the bottom graph of Figure 3.17. This condition will be
referred to as the short-wavelength region because the highest frequency range to the right of
ω0 corresponds, through Equation (3.71), to the shorter-wavelength interval. Due to the positive
slope of the group delay function, red components of the source spectrum will experience shorter
propagation delays, while blue spectral components will propagate with longer delay times. After
a fixed propagation distance the optical pulse will experience either compression or broadening
mechanisms, as depicted in the section above, according to the following two complementary
launching cases.

1. The leading edge is blue-shifted and the trailing edge is red-shifted.
(a) The optical frequency increases during the pulse rising edge (leading edge), providing the

blue-shift behavior, and slightly decreases during the pulse falling edge (trailing edge),
providing the spectrum red-shift behavior.

(b) Since in the short-wavelength region spectral blue components travel slower than the red
ones, the leading edge of the optical pulse reaches the fiber end section later than the trailing
edge and the pulse becomes narrower as long as it propagates.
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2. The leading edge is red-shifted and the trailing edge is blue-shifted.
(a) The optical frequency decreases during the pulse rising edge (leading edge), providing

the red-shift behavior, and slightly increases during the pulse falling edge (trailing edge),
providing the spectrum blue-shift behavior.

(b) Since in the short-wavelength region red components travel faster than the blue ones, the
red-shifted trailing edge reaches the fiber end section earlier than the blue-shifted leading
edge and the pulse becomes broader as long as it propagates.

In conclusion, even in the shorter-wavelength region, depending on the frequency chirping of the
time-resolved source spectrum, the optical pulse can go through either broadening or narrowing
mechanisms due to the fiber group delay characteristic.

In order to summarize the discussion so far, the following conclusions can be made:

1. Moving to the left of the zero-dispersion frequency, in the case of the red-shifted time-resolved
source spectrum the corresponding pulse spectrum enters into the anomalous dispersion regime,
which corresponds equivalently to using the right extent of the zero-dispersion wavelength.

2. Standard telecommunication optical fibers exhibit a zero-dispersion wavelength around 1310 nm.
3. System applications centered in the wavelength range of 1550 nm will run under the anomalous

propagation regime.
4. System applications centered in the wavelength range of 1310 nm have both anomalous and

normal regimes available, depending on the side occupied by the time-resolved source spectrum.
5. The anomalous dispersion regime is of considerable interest because in this regime optical fibers

can support optical Solitons balancing between the group velocity dispersion and nonlinear
refraction effects.

The discussion so far has referred exclusively to the chromatic dispersion contribution experi-
enced by any optical pulse propagating within a fused silica glass fiber. As already mentioned, these
dispersion characteristics are referred to as intramodal dispersion, due to their presence within each
individual mode group supported by the multimode optical fiber. In conventional multimode optical
fiber operating in the 1310 nm region, even for the latest generation of laser-launch optimized fibers
for 10 GbE applications, chromatic dispersion is usually responsible for a small correction of the
whole dispersion encountered by the optical pulse during the propagation over a multimode fiber.
In the first wavelength region the contribution of the chromatic dispersion is usually not negligible
at 10 GbE, due to a higher dispersion contribution, as can be seen in Figure 3.15 in the lower-
wavelength range. At an increasing bit rate all pulse dispersion contributions become even more
relevant, and system dispersion penalties are not only related to multimode bandwidth limitations.
Due to a shorter bit time, chromatic dispersion starts to play a relevant role in defining multimode
fiber system limitations and adds more restrictive light source spectrum requirements.

3.10 Higher-Order Linear Dispersion
The dispersion relationship between the propagation constant βνµ(ω) and the optical frequency ω

determines the linear propagation characteristics of the optical pulse supported by each individual
fiber mode. As seen in Section 3.7.2, Equations (3.76) and (3.77) are directly related to the group
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delay and the group dispersion respectively. The first derivative with respect to the frequency of
the propagation constant of the mode, identified by the indices (ν, µ), β(1)

νµ (ω) ≡ dβνµ(ω)/ dω,
assumes the meaning of the group delay tg,νµ(ω). The second derivative, β(2)

νµ (ω) ≡ d2βνµ(ω)/ dω2,
coincides with the group dispersion dg,νµ(ω). A more detailed analysis of the electromagnetic
field propagation in optical fibers shows that under the validity of the slowly varying envelope
approximation (SVEA) the propagation of the amplitude envelope Aνµ(z, t) of the electric field
pulse carried by the individual fiber mode (ν, µ) depends on the frequency derivatives of the
propagation constant βνµ(ω), evaluated at the optical carrier frequency ω0.

3.10.1 The Effective Refractive Index

In the linear isotropic medium, the propagation constant of the unguided field β(ω) is simply
proportional to the refractive index n(ω) through the wavenumber k = ω/c = 2π/λ:

β(ω) = ω

c
n(ω) (3.96)

In a guiding medium, the relationship must be generalized in order to include the waveguide
mode field structure. The effective refractive index for the guided mode (ν, µ) is defined through
the same dispersion relationship as that above, but replacing the unguided medium propagation
constant β(ω) with the mode propagation constant βνµ(ω) and the refractive index n(ω) with the
effective refractive index ne,νµ(ω) for the considered guided mode:

βνµ(ω) = ω

c
ne,νµ(ω) (3.97)

Due to the weakly guiding assumption valid for all telecommunication optical fibers, the effective
refractive index is only slightly different from the material refractive index, but even such small
differences characterize the mode propagation behavior and the mode filed structure. This concept
is nearly equivalent to the waveguide group dispersion introduced previously to characterize the
waveguide effect from the material unguided dispersion contribution. Of course, each individual
mode of any multimode optical fiber is fully characterized by its own propagation constant and
under the mystifying use of the same material propagation constant for all guided modes any
mode differentiation will be lost. In the following, in order to highlight the physical concepts
involved in the mode propagation constant and the related mathematics, the unguided linear isotropic
case is considered by replacing the effective refractive index with the material refractive index.
Nevertheless, it must be very clear that peculiar results cannot be applied directly to waveguide
analysis, but instead to the mathematical methodology. All the analytical results derived below are
easily generalized to guided fields by replacing the refractive index with the effective refractive
index. Numerical results presented in Figures 3.18 and 3.19 refer exclusively to the Sellmeier
approximation of the material refractive index.

3.10.2 General Expression for Higher-Order Dispersion

Starting with the simple relation (3.97) between the modal propagation constant βνµ(ω) and the
effective refractive index ne(ω) the analytical expression is obtained for every frequency derivative
of the mode propagation constant βνµ(ω):

β(q)
νµ (ω) ≡ dq

dωq

[ω
c

ne,νµ(ω)
]

(3.98)
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Figure 3.18 First three derivatives of the material propagation constant for the fused silica glass

Generalization of the concept of the group index introduced in Equations (3.73) and (3.74) is found
for the effective group index for the guided mode (ν, µ):

βνµ(ω) ≡ d

dω

[ω
c

ne,νµ(ω)
]

= 1

c

[
ne,νµ(ω) + ω

dne,νµ(ω)

dω

]
= 1

c
ng,νµ(ω) (3.99)

ng,νµ(ω) ≡ ne,νµ(ω) + ω
dne,νµ(ω)

dω
(3.100)
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Figure 3.19 Wavelength representation of the first three derivatives of the material propagation constant for
the fused silica glass. Dashed lines refer to the zero-dispersion wavelength

By repetitive frequency derivation of Equation (3.98), the following analytical expression of higher-
order derivatives of the (ν, µ) guided mode propagation constant βνµ(ω) is found:

β(1)
νµ (ω) = 1

c

[
ne,νµ(ω) + ω

dne,νµ(ω)

dω

]
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β(2)
νµ (ω) = 1

c

[
2

dne,νµ(ω)

dω
+ ω

d2ne,νµ(ω)

dω2

]

β(3)
νµ (ω) = 1

c

[
3

d2ne,νµ(ω)

dω2
+ ω

d3ne,νµ(ω)

dω3

]

...

β(q)
νµ (ω) = 1

c

[
q

dq−1ne,νµ(ω)

dωq−1
+ ω

dqne,νµ(ω)

dωq

]
, q = 1, 2, . . . (3.101)

The expression (3.101) for the general qth derivative of the propagation constant can be easily
demonstrated by induction. To proceed further, the qth derivative of the propagation constant in
Equation (3.98) in terms of the lower-order derivatives is written as

β(q)
νµ (ω) ≡ 1

c

dq

dωq
[ω ne,νµ(ω)] = 1

c

dq−1

dωq−1

d

dω
[ω ne,νµ(ω)]

= 1

c

dq−1

dωq−1

[
ne,νµ(ω) + ω

dne,νµ(ω)

dω

]
= 1

c

dq−2

dωq−2

d

dω

[
ne,νµ(ω) + ω

dne,νµ(ω)

dω

]

= 1

c

dq−2

dωq−2

[
2

dne,νµ(ω)

dω
+ ω

d2ne,νµ(ω)

dω2

]
= 1

c

dq−3

dωq−3

d

dω

[
2

dne,νµ(ω)

dω
+ ω

d2ne,νµ(ω)

dω2

]

= 1

c

dq−3

dωq−3

[
3

d2ne,νµ(ω)

dω2
+ ω

d3ne,νµ(ω)

dω3

]
= · · · (3.102)

After p iterations, with 0 ≤ p ≤ q, it can be concluded that

β(q)
νµ (ω) = 1

c

dq−p

dωq−p

[
p

dp−1ne,νµ(ω)

dωp−1
+ ω

dpne,νµ(ω)

dωp

]
(3.103)

Setting p = q and using the notation d0f (ω)/ dω0 = f (ω) gives expression (3.101).
Figure 3.18 shows the first three numerical derivatives of the material propagation constant versus

optical frequency using the three-term Sellmeier approximation of the refractive index. Figure 3.19
shows the computed first three order derivatives of the propagation constant in the wavelength
domain, where the conversion relationship between frequency and wavelength has been used.

Some comments need to be made about these graphs. As already mentioned, the first-order
derivative of the propagation constant β(1)(ω) represents the group delay. The second-order deriva-
tive β(2)(ω) accounts instead for the linear dispersion and represents the group velocity dispersion
relationship. The third-order derivative β(3)(ω) represents the additional quadratic contribution
to the pulse dispersion. It is interesting to observe that the third-order derivative acquires much
of its meaning from the zero-dispersion frequency ω0, where the second-order derivative of the
propagation constant is extremely small. In order to compare the relative importance of the second-
order derivative β(2)(ω) and the third-order derivative β(3)(ω) it is necessary to solve the linear
propagation equation for each guided mode contribution to the optical pulse in a multimode fiber.

3.11 The Gaussian Model
This section deals with the multimode fiber response from the perspective of a transmission system
modeling tool. In order to understand the fiber Gaussian model better, the basic assumptions stated
in first part of this chapter are reviewed.
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3.11.1 Physical Model Review

In this section a list of major conclusions that have been reached about multimode fiber modeling
are presented in a summary. This helps to cover most of principal topics related to multimode fiber
pulse propagation.

1. The multimode fiber is modeled as a time-independent, isotropic and linear system in the
electric field amplitude.

This assumption leads to the important conclusion that two subsequent electric field pulses
belonging to the same electromagnetic field mode will overlap each other if their temporal sep-
aration is less then their tail extent (pre–postcursors). The fiber propagation characteristics are
linear. This assumption means that each fiber coefficient, including the refractive index, is not a
function of the electric field amplitude. Fiber propagation characteristics are assumed to be constant
over time.

2. The frequency response HF(f ) of the multimode fiber is defined as the Fourier transform of the
intensity envelope response to the launched optical intensity impulse, detected after propagating
the unit distance from the launching section.

3. The dimension of the frequency response HF(f ) is W/W.
4. The fiber frequency response HF(f ) relates the complex input phasor of the optical power

envelope to the output complex phasor of the optical power envelope.
5. No mode coupling is considered in this system model.
6. Fiber bound modes constitute an orthogonal basis for the decomposition of the guided opti-

cal power.
7. The radiated field is orthogonal to any bound mode.
8. Mode orthogonality leads to the following fundamental statement: the Poynting vector (power

density flux) due to electromagnetic field components belonging to different guided or radiation
modes does not contribute to the overall guided power after integration over the infinite fiber
cross-section.

9. The total guided power is given by the sum of the power contributions carried by each individual
guided mode. Indicating by Pj the time average power of the guided mode j , j = 1, 2, . . . , N ,
where N is the number of guided modes, the total guided power P is given by the follow-
ing sum: P =∑N

j=1 Pj .
10. Optical dispersion induces a distortion of the envelope of the launched pulse around its center

of gravity.
11. Optical dispersion in multimode fiber comes mainly from two contributions:

(a) Intermodal dispersion. In multimode fibers the major term is due to modal group delay
(MGD). Each mode supports a fraction of the total launched optical power that travels along
the fiber with a peculiar group velocity vj . Due to differences in group velocities among
bound modes the launched pulse energy arrives at the output section with a considerable
relative delay, leading to optical pulse broadening. Differential mode delay (DMD) accounts
for group delay differences among propagating modes.

(b) Intramodal dispersion. The amount of optical energy carried by any given mode will expe-
rience a temporal dispersion according to several phenomena encountered by the optical
pulse propagation.

12. Group velocity dispersion (GVD). The dependence of the group velocity of each allowed mode
from the optical frequency, vj (ω), induces a temporal broadening of the energy amount carried
by that mode. Material dispersion and waveguide dispersion contribute to the group velocity
dispersion.
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13. Polarization mode dispersion (PMD). Assuming a nonideal optical fiber composition that does
not satisfy true axial symmetry, two slightly different refractive indices can be identified along
the principal dielectric axes. The fiber in this case behaves in a slightly birefringent way and
each mode is allowed to propagate with two orthogonal polarizations. The difference between
the fast axis and the slow axis is responsible for a PMD broadening mechanism inside each
allowed propagation mode. As a general rule, the electric field travels faster in a region where
the refractive index is lower, according to the general relationship v = c/n, where c is the
speed of light in vacuum.

14. The multimode fiber Gaussian model simply assumes that the frequency response of the mul-
timode fiber has a Gaussian magnitude and a linear phase with a unity concatenation factor,
γ = 1. The unity concatenation factor translates the assumption that the fiber link, even if con-
stituted by several fiber segments, is not experiencing any mode coupling. All excited modes
behave independently from each other and propagate along the whole fiber length without
any mutual interaction, unless optical connectors and other discontinuities are present along
the line.

15. The phase linearity assumption implies a constant group delay. The constant group delay
assumption implies a translation of the center of gravity of the Gaussian impulse response as
long as it propagates along the fiber, without inducing any pulse dispersion. If not otherwise
specified, the group delay will be assumed equal to zero, leading to placement of the center of
gravity of the multimode fiber output pulse at the time origin.

16. The over-filled launch (OFL) condition provides uniform excitation of all fiber bound modes by
uniform amplitude of the exciting field. Each excited bound mode carries on the characteristic
fraction of source optical power resulting from the overlap integral calculation.

17. Assuming the OFL condition, the multimode frequency response is well represented by a
Gaussian profile. In order to fulfill the OFL condition the exciting power source must present
plane wavefronts with a uniform radial intensity distribution. Large numerical aperture far-field
sources, like the surface emitting LED, closely resemble this condition. The launching condition
for a laser-based light source is of coarse very different, usually providing only selective mode
excitation. In this case, the Gaussian frequency response assumption usually lacks its validity
and the frequency response depends on the composition of the exited modes.

18. According to ITU-T G.651, the modal bandwidth (BW) of the multimode fiber is defined as the
half-width at half-maximum (HWHM) of the magnitude of its frequency response according
to OFL conditions.

19. A multimode fiber bandwidth is defined per unit length of the fiber. Assuming a unity length
of one kilometer, the MMF bandwidth is therefore specified in MHz km units. This is a direct
consequence of the definition of the group delay per unit length τg,j (ns/km).

20. Laser sources required for 10 GbE signaling do not satisfy the OFL condition due to a laser light
peculiarity. Consequently, the modal bandwidth is no longer uniquely defined and therefore is
not a valid representation of the multimode fiber propagation characteristics. Similar arguments
apply to the impulse response.

21. Laser source multimode excitations are grouped under the general acronym of RL (restricted
launch) conditions, where only a small fraction of the input fiber cross section is illuminated.
Very careful studies are still ongoing toward the best definition of restricted launch in order to
guarantee a maximum fiber bandwidth.

22. Both central launch (CL) and offset launch (OSL) are special cases of the restricted launch
(RL) condition. Each of them results in better bandwidth performance according to the peculiar
multimode fiber profile perturbations.

23. The encircled flux launch (EFL) method proposes a standard procedure in defining the proper
RL conditions for both GbE and 10 GbE applications of multimode fibers.
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24. Launching conditions are currently under study in order to improve multimode fiber link reli-
ability. The question is complicated by the existence of both 50 µm core and 62.5 µm core
multimode fibers as referenced by the standards OM-1, OM-2 and OM-3 fibers.

25. The multimode fiber bandwidth definition involves the frequency cut-off of the optical intensity
evaluated at one-half of its maximum. After intensity-to-current conversion in the receiving
photodetector, the multimode fiber bandwidth corresponds to the −6 dB electrical bandwidth.

26. The effects of source linewidth and group velocity dispersion are included assuming first-order
intramodal pulse broadening by means of the chromatic dispersion coefficient. Intramodal
dispersion and modal dispersion add quadratically to set the RMS width of the equivalent
Gaussian frequency response profile.

27. The relative angle between the linear polarization of the light source and the radial offset of
the launching connector induces selective modal amplitude coupling and consequently induces
impulse response distortion when individual modes are considered.

28. This effect has been demonstrated experimentally and leads to sensible link performance degra-
dation. The random polarization fluctuation along the multimode fiber in the presence of several
offset connectors generates a new noise term in the output pulse intensity profile.

29. The polarization-induced pulse distortion in the multimode fiber is currently under both theo-
retical and experimental investigation in multigigabit links.

30. Fiber attenuation and the modal-dependent attenuation are not included in the following MMF
model. In the current model no power attenuation is included for each fiber mode. Each guided
mode therefore exhibits the same zero power attenuation coefficient αj = α = 0 dB/km.

3.11.2 The Gaussian Frequency Response

This section deals with the mathematical formulation and properties of the Gaussian approximation
of the multimode fiber transfer function. The Gaussian function has a very symmetric correspon-
dence between the time and frequency domains, allowing for easy but significant modeling of the
MMF impulse response under the assumption of the over-filled launch condition. The implication
and the validity of the physical assumptions behind this relevant concept have already been briefly
discussed, so in the following sections the mathematical properties and modeling approaches used
for the multimode fiber Gaussian response will be presented.

3.11.2.1 The Gaussian Transform Pair
In this subsection the principal properties and relationships of the Gaussian transform pairs in both
the time and frequency domains will be summarized. The Fourier transform pair for the Gaussian
function are

hG(t) =
√

α

π
e−αt2 �←→ e−π2f 2/α = HG(f ) (3.104)

where α is a real constant and the suffix G stands for Gaussian. Setting α = 1/(2σ 2
t ) in

Equation (3.104) immediately gives the following transform pair, which relates the area normalized
Gaussian time pulse with the amplitude normalized Gaussian frequency pulse:

hG(t) = 1

σt

√
2π

e−t2/(2σ 2
t ) �←→ e−2π2σ 2

t f 2 = HG(f ) (3.105)

The area normalization in the time domain implies that∫ +∞

−∞
hG(t) dt = HG(0) = 1

σt

√
2π

∫ +∞

−∞
e−t2/(2σ 2

t ) dt = 1 (3.106)

hG(0) = 1

σt

√
2π

(3.107)
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In the frequency domain the corresponding amplitude normalization reads

HG(0) = 1 (3.108)∫ +∞

−∞
HG(f ) df = hG(0) = 1

σt

√
2π

(3.109)

In order to obtain the standard deviation or RMS width σf in the frequency domain it is sufficient
to set

2π2σ 2
t ≡ 1

2σ 2
f

(3.110)

in the exponent of the right member transform (3.105). Consequently, the following fundamental
relationship exists between the two dual domains for the Fourier transform pairs of the Gaus-
sian pulse:

σf ≡ 1

2πσt

σω ≡ 2πσf


⇔ σω = 1

σt

(3.111)

The above relationship expresses mathematically the indetermination principle for the Gaussian
pulse in the dual domains. This property is general and holds for every Fourier transform pair.
The more the pulse is confined in time the more its frequency spectrum is spread out in the dual
frequency domain. Equations (3.105) and (3.111) after proper normalization give the following
Gaussian transform pair:

hG(t) = 1

σt

√
2π

e−t2/(2σ 2
t ) �←→ HG(f ) = e−f 2/(2σ 2

f
)
, σf = 1

2πσt

(3.112)

Figure 3.20 gives the qualitative description of the Gaussian transform pair in both the time and
frequency domains.

Figure 3.20 Left: time domain representation of the intensity Gaussian impulse response of the MMF. Pulse
energy is normalized to unity and the RMS width is σt . Right: frequency domain representation of the same
Gaussian pulse shown on the left side. The unilateral intensity frequency spectrum is still Gaussian with the
RMS width given by σf = 1

2 πσt
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3.11.3 Gaussian Relationships

In addition to the RMS width, another useful parameter is the full-width at half-maximum (FWHM).
FWHMt and FWHMf are the full-width at half-maximum in the time and frequency domains
respectively. From Equations (3.112),

e−t2/(2σ 2
t ) = 1

2 ⇒ FWHMt = 2σt

√
2 ln 2 ∼= 2.355σt (3.113)

e−f 2/(2σ 2
f
) = 1

2 ⇒ FWHMf = 2σf

√
2 ln 2 ∼= 2.355σf (3.114)

Remember that FWHMf is the full-width at half-maximum in the frequency representation of
the Gaussian pulse. The unilateral bandwidth (BW) is defined instead as the half-width at half-
maximum and it is therefore measured at half the optical intensity of the unilateral frequency
spectrum, as reported in Figure 3.20. From Equation (3.114),

BW ≡ 1
2 FWHMf = σf

√
2 ln 2 ∼= 1.177σf (3.115)

The same relationship also holds in the time domain. By comparing Equations (3.113) and (3.114),
the relationship between the time and frequency domain FWHM is obtained for the Gaussian
transform pair:

FWHMf σt = FWHMt σf (3.116)

Substituting the expression (3.111) of σf in Equation (3.114) and using the optical bandwidth
definition (3.115), the following useful additional relationships between the optical bandwidth (BW),
FWHMt and the RMS width σt in the time domain can be obtained:

BW = FWHMf

2
= 2 ln 2

π

1

FWHMt

∼= 0.44
1

FWHMt

=
√

2 ln 2

2π

1

σt

∼= 0.187
1

σt

(3.117)

Other useful relationships can be easily demonstrated. In the following additional properties of
the Gaussian transform pair are reported:

1. Decaying time versus sigma:

h(tα) ≡ α h(0), 0 < α ≤ 1 (3.118)

tα = σt

√
2 ln

(
1

α

)
(3.119)

2. Rise time 20 %–80% versus sigma:

∆t20 – 80 =
(√

2 ln
1

0.2
−
√

2 ln
1

0.8

)
σt = 1.1261 σt (3.120)
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3. Rise time 20 %–80 % versus FWHMt :

∆t20 – 80 =
(√

ln 1/0.2 − √
ln 1/0.8

2
√

ln 2

)
FWHMt

∼= 0.4782 FWHMt (3.121)

4. Rise time 20 %–80% versus bandwidth:

∆t20 – 80 =
√

ln 2

π

(√
ln

1

0.2
−
√

ln
1

0.8

)
1

BW
∼= 0.2110

BW
(3.122)

5. Integrals:

I1 =
∫ +∞

t

h(u) du = 1

σt

√
2π

∫ +∞

t

e−u2/(2σ 2
t ) du = 1

2
erfc

(
t

σt

√
2

)
(3.123)

I2 =
∫ t

0
h(u) du = 1

σt

√
2π

∫ t

0
e−u2/(2σ 2

t ) du = 1

2
erf

(
t

σt

√
2

)
(3.124)
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6. Noise bandwidth:

Bn =
∫ +∞

0
|H(f )|2 df =

∫ +∞

0
e−4π2σ 2

t f 2
df = 1

4σt

√
π

∼= 1.4105

σt

(3.125)

Bn =
∫ +∞

0
|H(f )|2 df = 1

4

√
2π

ln 2
BW ∼= 0.7527 BW (3.126)

Figure 3.21 reports the computed plots of the standard deviation σt (RMS width), FWHMt ,
HWHM bandwidth (−3 dB optical) (BW) and the noise bandwidth Bn. All four plots are computed
for the 20 %–80 % rise time tr varying between 1 ps and 100 ps. By comparing the last two plots
regarding the HWHM BW and the noise bandwidth Bn, it is interesting to conclude that the noise
bandwidth results are lower than the HWHM BW for every Gaussian considered. This property
is clearly indicated by Equation (3.126) where the noise bandwidth results are about 75 % of the
corresponding HWHM BW.

In order to gain a quantitative idea of the corresponding Gaussian widths in the time and fre-
quency domains, the following examples are considered.

Example 3.1
In Figure 3.22 it is assumed that the multimode fiber has a Gaussian frequency response with
half the intensity bandwidth BW−3 dB = 500 MHz km. Then the FWHM and rise–fall times of the
impulse response are calculated. From Equations (3.117) and (3.122),

BW = 500 MHz km ⇒
{

FWHMt
∼= 883 ps/km

tr = tf = 430.20 ps/km
(3.127)

Example 3.2
In Figure 3.23 it is assumed that the multimode fiber has a Gaussian impulse response (intensity)
with RMS width σt = 10 ps. Then the FWHMt and the half-intensity bandwidth BW−3 dB are
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Figure 3.22 Left: Gaussian frequency response of the multimode fiber with a bandwidth fm = 500 MHz km.
Right: corresponding Gaussian impulse response with FWHMt = 882 ps/km

Figure 3.23 Left: time domain representation of the intensity Gaussian impulse response of the MMF with
FWHM = ∆t = 23.55 ps. Pulse energy is normalized to unity. Right: frequency domain representation of
the same Gaussian pulse shown on the left side. The unilateral intensity frequency bandwidth is given by
BW−3 dB = 18.74 GHz

calculated. From Equations (3.113), (3.114), (3.115) and (3.121),

σt = 10 ps ⇒




FWHMt = 23.55 ps

σf = 15.91 GHz

FWHMf = 37.48 GHz

BW−3 dB = 18.74 GHz

tr = tf = 11.47 ps
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Figure 3.24 Schematic representation of the Gaussian pulse with FWHMt equal to the time step of the 10 GbE
data rate. The corresponding 20 %–80 % rise time equals 46.37 ps

Example 3.3
As the last example, the case of a Gaussian laser pulse of FWHMt = 96.970 ps = 1/10.3125 GHz
is considered (see Figure 3.24), which corresponds to the bit period of the 10 GbE standard. Using
Equation (3.121), the corresponding rise and fall times are computed immediately:

∆t20−80
∼= 0.4782 FWHMt = 46.37 ps

3.11.4 Gaussian Responses

The Gaussian model of the multimode fiber intensity impulse response hF (z,t) is defined using the
following Gaussian impulse response hG (z,t):

hF(z, t) = hG(z, t) = 1

σt (z)
√

2π
e−t2/[2σ 2

t (z)] (3.128)

The variable z represents the distance measured along the fiber path from the origin situated at the
launching section. The RMS width σt (z) of the multimode fiber impulse response accounts for all
contributions to pulse broadening, including the differential mode delay, group velocity dispersion
and eventually other higher-order dispersion effects. The corresponding frequency response of the
intensity field of the multimode fiber is given by the Fourier transform of Equation (3.128):

HF(z, f ) = HG(z, f ) = e−2[πσt (z)f ]2
(3.129)

In the above expression, the frequency f refers to the spectral content of the envelope of the
optical intensity field. The modulated optical signal brings the information content in the envelope
of the optical field. In the above expression, the multimode fiber frequency response is evaluated at
a distance z from the launching section located at z = 0 and it is completely characterized by the
RMS pulse width σt (z). In the following model it will be assumed that the various contributions
to the pulse dispersion add quadratically. This assumption is correct if all frequency response
contributions are Gaussian, or alternatively if all processes involved are not correlated and each
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has a zero average. Assuming at least one of these two conditions to be fulfilled, the total RMS
pulse width σt (z) can be written according to the following relation:

σ 2
t (z, λ) = σ 2

m(z, λ) + σ 2
c (z, λ) (3.130)

where σm(z, λ) (ps) is the RMS width of the modal impulse response due to differential mode delay
evaluated at distance z and σc(z, λ) (ps) is the RMS width of the chromatic impulse response due
to chromatic dispersion evaluated at distance z.

The analysis of the differential mode delay DMD(z, λ) ≡ σm(z, λ) presented in Section 3.4.1
should be recalled. The RMS width σm(z, λ) of the impulse response due to the modal delay dis-
tribution measured at distance z from the launching section coincides with the DMD expression
given Equation (3.62). Consequently, expression (3.62) must be inserted in (3.130) for the calcu-
lation of the total pulse dispersion. In Chapter 4 the physical principles, the theory and modeling
of the chromatic dispersion in optical fibers is considered. Modal dispersion analysis will follow in
Chapter 5.



4
Theory of Chromatic Response

Modeling Light Source Effect
in Multigigabit Transmission Links

4.1 Introduction and Outline

In this chapter the theory of chromatic dispersion in multimode optical fiber is presented. Some of
the theoretical concepts have already been introduced and discussed in Chapter 3. It is the aim of
this chapter to present the physical concepts behind the chromatic impulse response in multimode
optical fiber and to give a mathematical closed-form description of the propagation phenomena. The
mathematical model has been developed in order to find a suitable solution for computer simulation
and transmission system design purposes. It is important to remember that all the presented analysis
is based on the linear intensity regime assumption: the optical fiber is a linear system capable of
transferring the intensity impulse launched at the input section to the intensity impulse response
available at the output section.

The next section deals with the theoretical formulation of the optical impulse response from the
source spectral characteristics, assuming the propagation to be supported by a fixed allowed mode.
Important concepts such as the optical source spectrum and the modulation signal spectrum limiting
conditions are introduced in order to define the corresponding different optical propagation regimes.
In this book essentially only the spectrum limited propagation condition and the corresponding
chromatic impulse response equation have been derived and discussed.

The third section uses the mathematical result achieved when developing the Matlab 7.0.2
based simulation software which allows several chromatic impulse responses to be computed using
both generalized source and group delay distributions. The presented results are quite interesting,
showing a large variety of different temporal responses. The cases considered have been grouped
according to the wavelength range, source spectrum composition and group delay distribution in
the operating wavelength range.

The fourth section defines the principal signal moments of the chromatic impulse response.
In particular, the well-known expression for the chromatic impulse response RMS pulse width
is derived, which is very often used for a first-order estimation of chromatic response limited
transmission system performance. The intent of this section is to clearly define the metrics for the
chromatic impulse response evaluation in order to proceed with a quantitative comparison among
different source conditions.

Multi-Gigabit Transmission over Multimode Optical Fibre: Theory and Design Methods for 10GbE Systems Stefano Bottacchi
 2006 John Wiley & Sons, Ltd. ISBN: 0-471-89175-4
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4.2 Theory of Chromatic Impulse Response
As already introduced in the previous chapter, each individual fiber mode, labeled by the single
index h ≡ (ν, µ) to simplify the notation, is characterized by the propagation constant or phase
constant βh(ω). All individual modes belonging to the same mode group have the same propagation
constant. The number of individual modes coincides with the degree of degeneration of the eigen-
value βh(ω). The propagation constant βh(ω) determines the way the mode wavefronts propagate
along the optical fiber. Since βh(ω) depends on the optical frequency ω, the modulated light source
spectrum must play a dominant role in the mode propagation characteristics. The dependence of the
propagation constant βh(ω) from the optical frequency defines the dispersion relations for the con-
sidered individual mode. The first-order derivative of βh(ω) with respect to the optical frequency
has the meaning of the group delay per unit length τg,h(ω) of the hth mode. It is important to
recognize the conceptual difference between the definition reported in Chapter 3 [Equation (3.83)]
and the more general definition discussed in this section. Equation (3.83) referred to the material
contribution only, disregarding any waveguide effect. In Chapter 3, Section 3.7, the material con-
tribution was conceptually separated from the waveguide contribution. Now it seems physically
more appropriate to include both of those effects in the whole propagation constant expression for
the selected hth mode leading to the modal chromatic dispersion.

4.2.1 Modal Delay
Once those important concepts are clear, the frequency derivative of the modal propagation con-
stant βh(ω) includes all frequency-dependent terms, in particular the material contribution and the
waveguide contribution. Since both terms depend on the optical frequency both of them will be
taken together as the chromatic contribution. In this context it is meaningful to write the generalized
expression (3.76) for the total propagation delay of the hth guided mode by just adding the modal
index h:

τg,h(ω) = 1

vg,h(ω)
= dβh(ω)

dω
= β

(1)
h (ω) = 1

c
ng,h(ω) (4.1)

All terms involved refer to the selected guided mode identified by the index h.

4.2.2 Modal Chromatic Dispersion
In order to arrive at the concept of chromatic dispersion of the generic j th guided mode, the way in
which the group delay per unit length τg,h(ω) depends on the optical frequency of the light source
must be considered. In general, the propagation constant can be conveniently expanded in a power
series around the central optical frequency emitted by the light source. Limiting the power series
expansion of βh(ω) to the second-order term leads to the first-order group chromatic dispersion
term dg,h(ω). By differentiating Equation (4.1) with respect to ω,

dg,h(ω) = dτg,h(ω)

dω
= β

(2)
h (ω) = − 1

v2
g,h(ω)

dvg,h(ω)

dω
= 1

c

dng,h(ω)

dω
(4.2)

Each supported mode therefore experiences a characteristic chromatic dispersion for the selected
frequency (wavelength). This value is the result of the interaction between the contributions of the
waveguide field and the material properties filling the mode volume.

The chromatic dispersion coefficient Dc,h(λ) for the hth guided mode is defined as the first-
order derivative of the group delay τg,h[ω(λ)] (Equation (4.1)) with respect to the wavelength.
Since d/dλ(·) = d/dω(·)dω/dλ and ω = 2πc/λ, the chromatic dispersion coefficient of the hth
guided mode assumes the following expression:

Dc,h(λ) = −2πc

λ2

[
d2βh(ω)

dω2

]
ω=2πc/λ

= −2πc

λ2
dg,h(ω)

∣∣∣∣
ω=2πc/λ

(4.3)
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From Equation (4.3), it can be concluded that the chromatic dispersion is proportional to the
second-order derivative of the propagation constant βh(ω) evaluated at the corresponding wave-
length. Due to the close relationship with the chromatic dispersion dg,h(λ), the same conclusions
as above also hold for the function Dc,h(λ).

4.2.3 Source Spectrum Conditions

Chromatic dispersion affects pulse propagation in different ways depending on the origin of the
source spectrum broadening. To simplify the discussion it is better to refer to the following two
extreme cases.

4.2.3.1 Modulation Spectrum Limited Condition

The continuous wave (CW) source linewidth is much narrower than the modulating signal spectrum.
In this case the spectrum of the modulated light source is dominated by the signal spectrum and
the achievable link distance L decreases as the inverse of the square value of the bit rate B:

L ∝ 1

B2

This case will not be analyzed further. It is very important and finds proper application in almost
all externally modulated highly coherent light sources in the multigigabit range. It leads to the
solution of the linear or nonlinear wave propagation equation for the optical field envelope and will
be the topic for a later book. Since in this case the pulse propagation characteristics are due to the
signal spectrum content, the theory refers to mainly single-mode fiber applications with externally
modulated highly coherent laser sources. It includes wavelength division multiplexing and generally
optically amplified lines operated with light modulators based on the Mach–Zendher interferometer
principle.

In order to have a qualitative behavior as a consequence of this spectral condition, the propagation
distance achievable for a fixed pulse degradation is inversely proportional to the square value of
the transmitting bit rate. As a first case, the SONET hierarchy OC-48 is considered, with a bit rate
B = 2488.320 Mb/s. The pulse propagation theory under the assumption of modulation spectrum
limiting conditions predicts a linear link reach of about LOC48 = 1000 km, assuming standard step-
index single-mode fiber and operating in the third window range, λ = 1550 nm.

Moving up to the next SONET hierarchy, at an OC-196 signaling rate with B = 9953.280 Mb/s,
the square-law dependence of the link length over the bit rate implies a link about 16 times shorter,
reaching about LOC196 = 62.5 km. The same criteria lead to a link length of only LOC768 = 3.9 km
link for the latest SONET OC-768 case, with B = 39 813.120 Mb/s.

4.2.3.2 Source Spectrum Limited Condition

The unmodulated source linewidth (CW conditions) is assumed to be much broader than the mod-
ulating signal spectrum. In this case the modulated light source spectrum is dominated by the
unmodulated source linewidth and the achievable link distance L decreases as the inverse of the
bit rate B:

L ∝ 1

B

This case refers to directly modulated laser diodes or LED sources, or even to an externally
modulated laser source but with consistent chirping behavior. In this case the modulated optical
linewidth is some order of magnitude broader than the modulating signal spectral content and the
modulated spectrum does not resemble the intensity modulating signal spectrum. Multimode fiber
applications at 10GbE standards belong to this case.
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In order to become a little more acquainted with a typical situation, a laser linewidth ∆λ = 1 nm
centered around λ = 1550 nm is considered and is found to correspond through the frequency
wavelength differentiation expression (3.54) to about ∆f = 125 GHz. This means that a direct
modulated laser running at 10GbE speed occupies no more than 20 % of the assumed laser linewidth
and after proper mathematical convolution of both spectra the result is quite unchanged and is
represented essentially by the laser linewidth.

The analysis of the pulse propagation condition under broadband optical spectral conditions will
be presented in Section 4.3. The important result anticipated here is that under linear group delay
approximation, the RMS width broadening σc,h(z, λ) of the impulse response of each fiber mode j ,
due to the combined effects of the first-order chromatic dispersion Dc,h(λ) and the source spectrum
RMS linewidth σs, has the following simple and fundamental expression:

σc,h(z, λ) = |Dc,h(λ)|σsz (4.4)

The chromatic dispersion contribution in Equation (4.4) is evaluated up to the second-order
derivative of the propagation constant of the fiber mode. This condition is referred to as linear
dispersion and allows for a very reasonable description of the pulse broadening away from the
zero-dispersion wavelength, λ �= λ0. Close to the zero-dispersion wavelength third-order and higher
effects become relevant and the pulse broadening description must be restated.

The parameters involved in Equation (4.4) have the following meanings: σs is the standard
deviation of the light source spectrum under signal modulated conditions and coincides with the
wavelength RMS width of the light source and σc,h(z, λ) is the standard deviation of the induced
impulse response broadening by the combined effects of the source spectrum linewidth and the
chromatic dispersion coefficient evaluated at the source average wavelength λ.

Since under the linear regime the light spectrum is assumed constant in every fiber section,
the standard deviation σc,h(z, λ) of the pulse broadening due to chromatic dispersion interaction
results in a linear function of the propagation distance z. This means that the launched pulse
broadens uniformly as long as it propagates along the fiber link. In order to understand better the
consequences of Equation (4.4) and how the chromatic dispersion interacts with the initial pulse
width, the following example is considered in which the Gaussian pulse reported in Figure 3.24
has been assumed as the initial launched pulse.

Example 4.1
1. Source average wavelength λ = 1550 nm
2. Source linewidth σs = 0.5 nm, 1.0 nm, 2.0 nm
3. Chromatic dispersion coefficient Dc,h(λ) = 20 ps/nm km
4. Launched Gaussian pulse of RMS width σ0 = 42.5 ps
5. Fiber Gaussian impulse response due to chromatic dispersion only

The pulse broadening at a given distance z from the launching section z = 0 is computed by
convolving the initial Gaussian pulse with the assumed Gaussian impulse response of the fiber
mode due to chromatic dispersion only. That would be the case for either a single-mode fiber
or any selected individual mode in a multimode fiber where mode coupling has been neglected.
Due to well-known Gaussian convolution properties, the convolution output is still a Gaussian
pulse, with the variance given by the sum of the variances of the two Gaussian components. From
Equation (4.4), the following variance of the output pulse is obtained:

σ 2(z, λ) = σ 2
0 + σ 2

c,h(z, λ) = σ 2
0 + σ 2

s |Dc,h(λ)|2z2 (4.5)

Figure 4.1a shows the computed RMS width of the pulse evaluated versus the distance z. Due
to the quadratic relation (3.125), the pulse RMS width starts to increase almost linearly with dis-
tance after the chromatic dispersion term σc,h(z, λ) starts to dominate the initial pulse width σ0.
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Figure 4.1a Computed Gaussian pulse broadening versus fiber length due to chromatic dispersion for each
individual mode. The assumed input pulse corresponds to Figure 3.24, with an RMS width σ0 = 42.5 ps accord-
ing to 10GbE FWHM. The plotted curves refer to three different source spectrum linewidths but to the same
chromatic dispersion coefficient. Vertical bars represent the position of the threshold z0 for the three differ-
ent wavelengths, according to Equations (4.8). The top graph reports the absolute pulse broadening while the
bottom graph refers to the relative broadening

Figure 4.1b shows the relative pulse broadening factor ηc,h(z, λ) defined as the width increment
over the initial width:

ηc,h(z, λ) ≡ σ(z, λ)

σ0
− 1 =

√
1 + σ 2

s |Dc,h(λ)|2z2

σ 2
0

− 1 ∼=
∣∣∣∣z�z0

σs|Dc,h(λ)|z
σ0

(4.6)

The length z0 represents the threshold distance where the chromatic dispersion effect starts to
dominate the whole pulse width. It can be defined as follows:

σs|Dc,h(λ)|z0

σ0
= 1 ⇒ z0(λ) = σ0

σs|Dc,h(λ)| (4.7)
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Figure 4.1b Magnification of the plot shown in the bottom graph of Figure 4.1a for a relative pulse broadening
factor less than 50 %. The link length must be limited respectively to about 0.8 km, 1.6 km and 3.2 km in order
to achieve the relative pulse broadening equal to 25 % for the three laser linewidths considered. Vertical bars
represent the position of the threshold z0 for the three different wavelengths, according to Equations (4.8)

The distance z0 is inversely proportional to the source linewidth, as indicated by the small vertical
segment in the above figure. In the considered case, Equation (4.7) gives the following values:

z0|σs=0.5 nm(λ = 1550 nm) = 4.250 km

z0|σs=1.0 nm(λ = 1550 nm) = 2.125 km (4.8)

z0|σs=2.0 nm(λ = 1550 nm) = 1.062 km

For distances z greater then z0 the chromatic broadening effect dominates over the initial pulse
width and the pulse broadens almost linearly as long as it propagates.

This behavior is quite simple but it has interesting consequences when combined with modal
pulse dispersion. In fact, due to linear spreading of all modal contributions, the combined effect
of both chromatic and modal broadening gives a time-scalable pulse with an invariant shape for
distances greater then z0. This interesting effect will be shown in several numerical applications in
the next section.

The values listed in Equations (4.8) give quantitative indications about the maximum allowed
source linewidth in order to achieve a minimum link length close to a bit late of 10-Gb/s. Since
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σ0 is proportional to the bit rate, it is evident how a decreasing transmission speed leads to a
proportional increase in the achievable distance for a relative pulse broadening factor. Before
closing this subsection it is important to remember the following remark: in the example above it
was assumed that a single value for the chromatic dispersion coefficient was independent of the
individual mode property. This is in general an approximation and should be at least justified. The
remaining parameters that were introduced, the RMS width relative broadening and the distance z0

should therefore have the proper modal index in order to specify their modal dependence.

4.2.4 Broadband Optical Sources

In this section the theory of pulse propagation relative to each multimode fiber mode will be intro-
duced under the assumption that the unmodulated light source spectrum is much broader than the
modulating signal spectrum. In Section 4.2.3.2 the chromatic dispersion broadening factor σc,h(λ)

in Equation (4.4) has been presented almost as a heuristic result, without any formal mathemati-
cal demonstration. It is the aim of this section instead to present the physical assumptions behind
the mathematical treatment and to provide a closed-form expression of the chromatic dispersion
impulse response with a first-order broadening factor given by Equation (4.4). In order to satisfy
the broadband optical source condition the unmodulated light source spectrum must be sufficiently
broader than the modulating signal spectrum. Before starting the mathematical development, a few
practical cases are given to illustrate some typical applications:

1. A direct modulated laser diode operating at 10 Gb/s, 2.5 Gb/s or a lower bit rate with a modulated
linewidth of the order of 1 nm. In this case the optical spectral width is in the range of 100 GHz,
resulting in at least one order of magnitude larger than the signal spectrum.

2. Externally modulated laser diodes with added phase dithering to increase the linewidth. This
technique is used in linear fiber optic systems such as CATV in order to reduce the nonlinear
Brillouin scattering effect. By properly choosing a dithered linewidth in the range of 10 GHz, or
equivalently about 0.08 nm in the 1550 nm optical wavelength range, a modulating signal with
a spectrum below 1 GHz satisfies the broadband optical source condition.

3. LED light sources exhibit a broad spectral width, usually in the range of 20–80 nm, and they
fully satisfy the broadband optical source condition for every applicable modulating signal.

Under the broadband optical source condition it can be assumed that the intensity modulated
light spectrum remains almost unchanged by the modulation process. This conclusion appears
quite a paradox at first thought, but it can easily be justified using basic conclusions from the
amplitude modulation process and in particular the frequency convolution theorem. The assumption
of the optical source spectrum being much broader than the modulating signal spectrum leads to a
frequency convolution spectrum mainly dominated by the broader spectral component, namely the
unmodulated optical spectrum. Under these circumstances, the impulse response of the individual
fiber mode is dominated by the interaction between the spectrum of the unmodulated light source
and the chromatic dispersion relationship of the propagation constant of the considered fiber mode.
In the following, a generic fiber mode labeled by the mode index h will be considered.

The power spectral density (PSD) of the unmodulated optical source is given by Ss(λ). The
unit of measure of Ss(λ) is W/nm. The power of the light source included within the wavelength
interval between λ1 and λ2 is given by the integral of the light source PSD:

Ps(λ1, λ2) =
∫ λ2

λ1

Ss(λ) dλ (W) (4.9)
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Figure 4.2 Representation of the power spectral density (PSD) of the light source. Dashed areas represent
power contributions calculated after integration, as reported in Equation (4.9)

By differentiating the integral relation (4.9) the source power included within the infinitesimal
wavelength interval between λ and λ + dλ is obtained:

dPs(λ) = Ss(λ) dλ (4.10)

Figure 4.2 shows the graphical interpretation of the concepts just presented.

4.2.4.1 Single-Line Optical Source Spectrum

According to the dispersion relationship, each infinitesimal power contribution dPs(λ) of the source
spectrum localized at the wavelength λ propagates with the group delay τg,h(λ) per unit length of
the launched individual fiber mode. Neglecting the power attenuation, the optical fiber of length
z behaves like a delay line supporting the hth mode characterized by the group delay tg,h(z, λ) =
zτg,h(λ). The frequency response Gc,h(z, λ, f ) of the signal intensity due to chromatic dispersion
(in the electric frequency domain) of the selected hth mode corresponding to the infinitesimal source
spectrum contribution dPs(λ) localized within the interval λ and λ + dλ is therefore represented by
the well-known frequency response of the delay line:

Gc,h(z, λ, f ) = e−j2πf zτg,h(λ) (4.11)

The corresponding impulse response is given by the Fourier transform of the delay line frequency
response (4.11):

�−1[Gc,h(z, λ, f )] = gc,h(z, λ, t) = δ[t − zτg,h(λ)] (4.12)

The result obtained so far is consistent with the concept and the definition of the modal group
delay given previously. It is important to note, however, the different notation that was used for
frequency and impulse responses respectively in Equations (4.11) and (4.12). They refer to the case
of a monochromatic light source, localized at the wavelength λ. At first sight this is a contradiction,
because the frequency spectrum of the impulse function δ(t) is indefinitely extended and it cannot
therefore be assimilated to a single wavelength. However, optical signals are supposed to be inten-
sity modulated by electrical pulses whose spectral content is usually negligible with respect to the
optical carrier. The optical carrier has a frequency that is usually four to five orders of magnitude
higher than the spectral content of the modulating signal for relatively fast pulses. In order to satisfy
the broadband optical source condition the unmodulated light source spectrum must be sufficiently
broader than the modulating signal spectrum. This concept is behind the widely used narrowband



Theory of Chromatic Response 121

signal modulation approximation. Even relatively fast optical pulses have a wavelength range below
one nanometer.

In the following example the case of a modulated light source satisfying both the broadband
optical source condition and the Narrowband signal modulation approximation is considered.

Example 4.2
Using the Gaussian relationship reported in Chapter 3, Section 3.11.3, the following parameters of
the electrical Gaussian pulse characterized by FWHMt = 100 ps are computed (see Figure 4.3):

FWHMt = 100 ps ⇒




σt = 42.46 ps

σf = 3.749 GHz

FWHMf = 8.825 GHz

BW−3 dB = 4.413 GHz

tr = tf = 47.81 ps

In particular, the Gaussian spectrum width evaluated at half-maximum (−3 dB optical) has the
following value, according to Equation (3.117):

FWHMf = 2BW = 4 ln 2

π

1

FWHMt

∼= 0.8825

FWHMt

= 8.825 GHz (4.13)

Due to the intensity modulation process, the Gaussian spectrum of the modulating electrical
pulse must be convolved with the carrier light source spectrum in order to give the Gaussian pulse
modulated optical spectrum. Since the width of the electrical Gaussian pulse results in FWHMf =
8.825 GHz, this corresponds in the wavelength domain to about FWHMλ

∼= 50 pm = 0.05 nm, eval-
uated at the central wavelength λ = 1310 nm. Assuming that the unmodulated light source has the
spectrum centered at λ = 1310 nm with a linewidth of the order of 0.5 nm or even less, both the
broadband optical source condition and the narrowband signal modulation approximation are simul-
taneously verified. In the following sections, in order to have some reference cases in mind, it can
be assumed that both optical spectral lines and the modulating pulse closely resemble the Gaussian

Figure 4.3 Electrical Gaussian pulse used to modulate the intensity of the optical source. Assuming
FWHMt = 100 ps, the corresponding frequency spectrum width has FWHMf = 8.825 GHz, which corresponds
to FWHMλ

∼= 50 pm = 0.05 nm evaluated at the central wavelength λ = 1310 nm
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case just presented. In addition, it is remarkable that the normalized Gaussian pulse in the limit of
infinitely small variance converges toward the Dirac delta:

lim
σ→0

1

σ
√

2π
e−t2/(2σ 2) = δ(t) (4.14)

The limit is referred to the integral property that defines the Delta distribution:

lim
σ→0

∫ +∞

−∞
φ(t)

σ
√

2π
e−(t−t0)

2/(2σ 2) dt =
∫ +∞

−∞
φ(t)δ(t − t0) dt = φ(t0) (4.15)

where the test function φ(t) is continuous at the time instant t0.
In the following mathematical development, both modulating pulses and optical spectra are

modeled assuming Dirac delta impulses. Although the mathematical treatment of the Dirac impulse
requires the theory of distribution, it can be easily handled using the integral definition as above
and a few related properties. Finite pulses like Gaussian or rectangular windows can conve-
niently represent the Dirac impulse approximation when dealing with numerical and experimental
environments.

4.2.4.2 Double-Line Optical Source Spectrum

As a step forward, it is assumed that the optical source PSD is distributed over two spectral lines
at λ1 and λ2 with intensities |a1|2 and |a2|2 respectively satisfying the normalization condition of
unity power:

|a1|2 + |a2|2 = 1 (4.16)

If each single line spectrum is modeled as a Dirac delta, the source power spectral density is
therefore represented by two frequency impulses localized at λ1 and λ2 with respective area |a1|2
and |a2|2:

Ss(λ) = |a1|2δ(λ − λ1) + |a2|2δ(λ − λ2) (4.17)

Assuming a linear transmission regime in the optical fiber, the corresponding chromatic frequency
response Hc,h(z, f ) of the considered hth mode measured after a distance z from the launching
section can be written as the sum of the two frequency responses (4.11) corresponding to the PSD
in Equation (4.17):

Hc,h(z, f ) = |a1|2Gc,h(z, λ1, f ) + |a2|2Gc,h(z, λ2, f )

= |a1|2e−j2πf zτg,h(λ1) + |a2|2e−j2πf zτg,h(λ2) (4.18)

The different notation used for identifying the frequency response (4.18) is noted for the case
of a multiple-line source spectrum with respect to the single-line source spectrum considered in
Equation (4.11). The corresponding impulse response hc,h(z, f ) is obtained directly from Equa-
tions (4.18) and (4.12) by virtue of the superposition principle:

hc,h(z, t) = |a1|2δ[t − zτg,h(λ1)] + |a2|2δ[t − zτg,h(λ2)] (4.19)

It is relevant to observe the optical fiber behavior in this case: the double-delta spectrum (4.17) has
been converted into the double-delta impulse response (4.19).

This is a peculiarity of the chromatic impulse response under the assumption of satisfying
simultaneously both the broadband optical source condition and the frequency impulsive line shape.
Again, the simultaneous satisfaction of both these conditions leads to a conceptual contradiction:
a broadband optical spectrum cannot be assigned to an impulsive frequency shaping. This is true,
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Figure 4.4 The figure shows in the first row the input and output light spectra respectively, while the second
row shows corresponding impulse responses. Alternatively, the first column presents (top) the light source
spectrum and (bottom) the light source impulse stimulus. The second column shows corresponding by (top) the
output spectrum and (bottom) the output impulse response. In this case the impulse response is a time-scaled
version of the input source spectrum. The slope of the group delay versus wavelength is assumed to be positive:
λ2 > λ1 ⇒ τg,h(λ2) > τg,h(λ1)

of course, but once more the narrowband signal modulation approximation allows a relatively
broadband spectrum to be considered with respect to the electrical modulating signal extension, with
a relatively narrow linewidth in the wavelength domain allowing the impulsive approximation. The
behavior just encountered is characteristic of the chromatic impulse response under the broadband
optical source condition. The impulse response in the time domain in general resembles the source
spectrum in the optical domain.

Figure 4.4 gives a schematic representation of the discrete source spectrum considered in the text.

4.2.4.3 Multiple-Line Optical Source Spectrum
The above procedure can be extended to as many spectral lines as needed: the only physical assump-
tion behind it is the validity of the superposition principle. In the case where the optical source
PSD is constituted by a series of wavelength impulses, Equations (4.16) to (4.19) are generalized
as follows:

Ss(λ) =
∑

i

|ai |2δ(λ − λi) (4.20)

∫ +∞

−∞
Ss(λ) dλ =

∑
i

|ai |2
∫ +∞

−∞
δ(λ − λi) dλ =

∑
i

|ai |2 = 1 (4.21)

Hc,h(z, f ) =
∫ +∞

−∞
Ss(λ)e−j2πf zτg,h(λ) dλ =

∑
i

|a1|2e−j2πf zτg,h(λ1) (4.22)

hc,h(z, t) =
∑

i

|ai |2δ[t − zτg,h(λi)] (4.23)
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By comparing Equation (4.19) with Equation (4.23) the same property of the chromatic impulse
response introduced above is found for the double-line spectrum. Under the broadband optical source
condition, the chromatic impulse response to a succession of light source impulses in the wavelength
domain is the equivalent succession of time domain impulses localized at the corresponding group
delays and with the same intensity ratios as the line spectra.

The important conclusion deduced from Equation (4.23) is that, assuming the validity of the
broadband optical source condition, even for the multiple narrow line spectrum, the impulse response
of the chromatic dispersion associated with the individual fiber mode leads to a multiple impulse
output, localized on the time axis according to the group delay value experienced at the source
line spectrum. As a consequence, if the group delay function is monotonic, the same behavior
will be experienced by the chromatic impulse response at the output section, leading to the same
sequence of impulse contributions as the input line spectrum. If the slope of the group delay versus
wavelength for the individual fiber mode is monotonic positive, this leads in fact to increasing delays
at increasing wavelengths. The contrary of course holds in the case of a negative group delay slope.
Figure 4.5 presents the situation described above assuming a positive slope group delay.

The validity of the chromatic transfer function (4.22) is subordinated to the broadband opti-
cal source condition fulfilled for each spectral line contribution. Each of the spectrum lines in
Equation (4.20) must be broad enough to hide the modulating signal spectrum content. This condi-
tion can be satisfied, for instance, by using the 100 ps FWHM modulating Gaussian pulse presented
in Example 4.2 and but assuming that each spectral line is about 0.5 nm wide. Since the validity
for Equation (4.22) is subordinated to the relative width between each spectral line of the light
source and the modulating signal spectrum, both quantities can easily be scaled to different values
if needed. For example, assuming a Fabry–Perot multilongitudinal mode semiconductor laser emit-
ting at λ = 1310 nm with an individual linewidth of ∆λ = 0.1 nm = 100 pm, this would require
increasing the modulating Gaussian pulse width to about FWHMt = 500 ps, which corresponds to
about FWHMλ = 10 pm in the wavelength domain in order to have a ratio of 10 as above.

Figure 4.5 The top graph shows the multiple-line input spectrum. The bottom graph shows the corresponding
chromatic impulse response assuming the broadband optical source condition as explained in the text. Assuming
a positive slope group delay, λk+1 > λk ⇒ τg,h(λk+1) > τg,h(λk), at an increasing source wavelength impulse
responses correspond with increased group delay
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4.2.5 Continuous Optical Source Spectrum

If the optical power spectral density (PSD) of the light source Ss(λ) is a continuous function of the
optical wavelength λ, all previous concepts are easily extended by substituting the discrete sum-
mations (4.20) and (4.21) with the corresponding integrals over the wavelength range of definition
for the function Ss(λ). It is assumed that the optical source spectrum belongs to the space L1(�)

of positive definite functions which are integrable over the real axis. This means physically that
Ss(λ) represents obviously a finite power optical source, where

Ss(λ) ∈ L1(�) (4.24)∫ +∞

−∞
Ss(λ) dλ = 1 (4.25)

Hc,h(z, f ) =
∫ +∞

−∞
Ss(λ)e−j2πf zτg,h(λ) dλ (4.26)

hc,h(z, t) = �−1[Hc,h(z, f )] =
∫ +∞

−∞
Hc,h(z, f )ej2πf t df (4.27)

Substituting the chromatic frequency response representation (4.26) into Equation (4.27) gives the
general expression for the chromatic impulse response subjected to a continuous light source
spectrum:

hc,h(z, t) =
∫ +∞

−∞

∫ +∞

−∞
Ss(λ)ej2πf [t−zτg,h(λ)] dλ df (4.28)

The expression (4.28) allows an analytical calculation of the general impulse response of each
individual hth fiber mode to be made for a given light source spectrum Ss(λ).

The integral representation of the chromatic impulse response hc,h(z, t) that has just been derived
in Equation (4.28) gives a very remarkable physical interpretation once use is made of the Fourier
transform of the Dirac delta impulse. To this end, the following Fourier transform pair is obtained:

δ(t − t0)
�←→ ej2πf t0 (4.29)

or, more explicitly,

δ(t − t0) =
∫ +∞

−∞
ej2πf (t−t0) df (4.30)

Using Equation (4.30), it is easy to solve the integration in the frequency variable f in the chromatic
impulse response (4.28) by means of the Dirac delta function. Since∫ +∞

−∞
ej2πf [t−zτg,h(λ)] df = δ[t − zτg,h(λ)] (4.31)

substituting this in the inner integration over the frequency variable in Equation (4.28) gives the
following meaningful expression of the chromatic impulse response for the individual h fiber mode:

hc,h(z, t) =
∫ +∞

−∞
Ss(λ)δ[t − zτg,h(λ)] dλ (4.32)

In order to solve the integration in the wavelength variable λ, the inverse function λ = ζg,h(τ )

of the group delay τ = τg,h(λ) for the selected hth fiber mode now needs to be introduced, namely

λ = ζg,h(τ ) ⇔ τ = τg,h[ζg,h(τ )] (4.33)

The group delay versus wavelength usually has a parabolic-like shaping for the parabolic-clad
refractive index profile. This leads in general to a double-valued inverse function ζg,h(τ ). Even
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Figure 4.6 Qualitative representation of the group delay function versus the wavelength τ = τg,h(λ) for the
individual hth fiber mode. In general, the inverse function λ = ζg,h(τ ) is not single-valued if the inverse
function co-dominium included the whole wavelength range. However, if the wavelength co-dominium is
restricted to a specified window range, the inverse function λ = ζg,h(τ ) becomes single-valued

using different refractive index profiles, the inverse function ζg,h(τ ) will not be in general be
single-valued. Figure 4.6 shows these concepts.

In the following it will be assumed that the wavelength range for the inverse function of the group
delay belongs to a specified optical window, as depicted in Figure 4.6. In this case, the group delay
inverse function λ = ζg,h(τ ) becomes single-valued and to each group delay value belonging to
the selected window range a well-defined wavelength can be assigned through the inverse function
λ = ζg,h(τ ). According to Equation (4.15), the Dirac delta function is defined by the integral∫ +∞

−∞
φ(t)δ(t − t0) dt = φ(t0) (4.34)

The chromatic impulse response derived in Equation (4.32) has the same mathematical form as
Equation (4.34) in which the time constant t0 is replaced by zτg,h(λ) and the time integration
variable t by the wavelength λ. The latter assertion is important because the test function φ(t) in
Equation (4.32) coincides with the power spectral density Ss(λ) of the light source and is defined
over the wavelength domain. This is the reason for introducing the inverse function λ = ζg,h(τ ) of
the group delay τ = τg,h(λ).

From a conceptual point of view, in order to solve the integral in Equation (4.32) for each pair
of distance variable z and time variable t the wavelengths that are the roots of the argument of the
Dirac delta need to be found and those wavelength values need to be assigned to the power spectral
density of the light source Ss(λ). In order to proceed formally to the solution of the problem the
integral in Equation (4.32) is considered and the following change of the variable is performed:

u = zτg,h(λ)

du = z
dτg,h(λ)

dλ
dλ (4.35)

dλ = 1

z

dλ

dτ
du = 1

z

dζg,h(τ )

dτ
du
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Figure 4.7 Generalized group delay function τ = τg,h(λ) showing the multiple-valued inverse function
{λ0,k} = ζg,h(τ0). Each stationary point λk defines the interval ∆k = (λk, λk+1) where the inverse group delay
function λ = ζg,h(τ ) is single-valued

In the above expressions the inverse group delay definition (4.33) and the consequent first-order
derivative are used:

λ = ζg,h(τ ) ⇒ dλ

dτ
= dζg,h(τ )

dτ
(4.36)

In order to maintain simultaneously full generality in the mathematical development, but avoiding
any ambiguity in inverting the group delay function due to multiple-valued behavior of λ = ζg,h(τ ),
the indefinite integration interval in Equation (4.32) can conveniently be decomposed into a joint
finite interval partitioning where each wavelength interval Λk = (λk, λk+1) is characterized by
a single-valued inverse group delay function. Figure 4.7 shows the required integration interval
decomposition for a complex case of group delay function exhibiting multiple stationary points
(local minima and maxima).

The complexity of the group delay function serves to illustrate the decomposition procedure.
Each local minima or maxima is identified sequentially starting from the shortest wavelength as
λ1. The next stationary point will be labeled λ2 and so on, up to the last stationary point labeled
λN . There is therefore a total of N stationary points and N + 1 decomposing intervals, including
the first interval (−∞, λ1) and the last one (λn,+∞). Of course, the sum of the measures of all
the N + 1 intervals coincides with the real axis (−∞, +∞).

Once such decomposition is provided, the chromatic impulse response (4.32) can be rewritten
as the overlap of the partial integrals into each of the intervals Λk = (λk, λk+1):

hc,h(z, t) =
∫ λ1

−∞
Ss(λ)δ[t − zτg,h(λ)] dλ

+
N−1∑
k=1

∫ λk+1

λk

Ss(λ)δ[t − zτg,h(λ)] dλ

+
∫ +∞

λN

Ss(λ)δ[t − zτg,h(λ)] dλ (4.37)
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Substituting the integration variable according to Equation (4.35) and defining the group delay
values at each stationary point with

τg,h(λk) = τk (4.38)

gives

hc,h(z, t) = 1

z

[
dζg,h(τ )

dτ

]
Λ0

∫ zτ1

+∞
Ss

[
ζg,h

(
u

z

)]
δ[t − u] du

+
N−1∑
k=1

1

z

[
dζg,h(τ )

dτ

]
Λk

∫ zτk+1

zτk

Ss

[
ζg,h

(
u

z

)]
δ[t − u] du

+ 1

z

[
dζg,h(τ )

dτ

]
ΛN

∫ +∞

zτN

Ss

[
ζg,h

(
u

z

)]
δ[t − u] du (4.39)

The derivative [dζg,h(τ )/dτ ]Λk
of the inverse group delay function must be included within the

corresponding interval Λk in order to have a single-valued function. As a consequence of the defi-
nition of the interval Λk , the derivative is definite positive or definite negative within each interval.
Therefore the derivative sign is constant on the selected interval Λk . These latter observations lead
to a significant simplification of the above integral representation of the chromatic impulse response.
Figure 4.8 shows qualitatively the behavior of the group delay function within each interval Λk .

Referring to Figure 4.8, the two possible intervals are considered separately, namely Λp with a
negative slope and Λq characterized instead by a positive group delay slope. In terms of optical fiber
transmissions, to Λp will be referred to as a normal transmission region and Λq as an anomalous
transmission region:

1. Λp , a normal transmission region:[
dζg,h(τ )

dτ

]
∆p

< 0 ⇒
[

dζg,h(τ )

dτ

]
Λp

= −
∣∣∣∣dζg,h(τ )

dτ

∣∣∣∣
Λp

(4.40)

τp > τp+1 ⇒
∫ zτp+1

zτp

Ss

[
ζg,h

(
u

z

)]
δ[t − u] du = −

∫ zτp

zτp+1

Ss

[
ζg,h

(
u

z

)]
δ[t − u] du

(4.41)

Figure 4.8 Group delay slope and integration extremes
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Therefore the corresponding integral contribution becomes

1

z

[
dζg,h(τ )

dτ

]
Λp

∫ zτp+1

zτp

Ss

[
ζg,h

(
u

z

)]
δ[t − u] du

= +1

z

∣∣∣∣dζg,h(τ )

dτ

∣∣∣∣
Λp

∫ zτp

zτp+1

Ss

[
ζg,h

(
u

z

)]
δ[t − u] du (4.42)

2. Λq , an anomalous transmission region:[
dζg,h(τ )

dτ

]
∆q

> 0 ⇒
[

dζg,h(τ )

dτ

]
Λq

= +
∣∣∣∣dζg,h(τ )

dτ

∣∣∣∣
Λq

(4.43)

τq < τq+1 ⇒
∫ zτq+1

zτq

Ss

[
ζg,h

(
u

z

)]
δ[t − u] du > 0 (4.44)

Therefore the corresponding integral contribution becomes:

1

z

[
dζg,h(τ )

dτ

]
Λq

∫ zτq+1

zτq

Ss

[
ζg,h

(
u

z

)]
δ[t − u] du

= +1

z

∣∣∣∣dζg,h(τ )

dτ

∣∣∣∣
Λq

∫ zτq+1

zτq

Ss

[
ζg,h

(
u

z

)]
δ[t − u] du (4.45)

In conclusion, independently from the normal or anomalous regions considered, the integral
contribution to the chromatic impulse response in Equation (4.39) has a positive value. The deriva-
tive of the inverse group delay must be taken as the absolute value and the lower integration
extreme must be the lowest value between the group delays corresponding to that interval. From
Equation (4.39), the following expression for the chromatic impulse response of the selected hth
fiber mode is obtained:

hc,h(z, t) = 1

z

∣∣∣∣dζg,h(τ )

dτ

∣∣∣∣
Λ0

∫ +∞

zτ1

Ss

[
ζg,h

(
u

z

)]
δ[t − u] du

+
N−1∑
k=1

1

z

∣∣∣∣dζg,h(τ )

dτ

∣∣∣∣
Λk

∫ z max(τk ,τk+1)

z min(τk ,τk+1)

Ss

[
ζg,h

(
u

z

)]
δ[t − u] du

+ 1

z

∣∣∣∣dζg,h(τ )

dτ

∣∣∣∣
ΛN

∫ +∞

zτN

Ss

[
ζg,h

(
u

z

)]
δ[t − u] du (4.46)

The last step toward the final form of the chromatic impulse response requires the application of
the definition of the Dirac delta function, as reported in Equation (4.34). However, according to the
definition of the Dirac delta function, the integration interval must coincide with the whole real axis
(−∞,+∞). In the expression (4.46) of the chromatic impulse response each partial integral refers
instead to a finite time interval. The conditions, if any, for the Dirac delta function first need to
be found in order to be included in that integration interval, otherwise the result of the integration
would be null.

In order to simplify the notation of the generic partial integral in Equation (4.46) the integration
extremes with tk,min = z min(τk, τk+1) and tk,max = z max(τk, τk+1) are identified:

∫ tk,max

tk,min

Ss

[
ζg,h

(
u

z

)]
δ[t − u] du =




Ss
[
ζg,h(t/z)

]
, tk,min < t < tk,max

0,
tk,min < tk,max < t or
t < tk,min < tk,max

(4.47)
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The notation is further simplified by introducing the Boolean variable Bk associated with the
normalized time interval Tk shown in Figure 4.8:

Bk = t ∩ zTk

Tk ↔ Λk = (λk, λk+1)

Tk = (τk,min, τk,max)

τk,max = max(τk, τk+1)

τk,min = min(τk, τk+1)




⇒
{

Bk = 1, t ∈ zTk

Bk = 0, t /∈ zTk

(4.48)

With the introduction of the Boolean variable Bk relative to the time interval per unit length Tk ,
each partial integral of Equation (4.47) can be written in the following simpler way:

∫ tk,max

tk,min

Ss

[
ζg,h

(
u

z

)]
δ[t − u] du = Bk Ss

[
ζg,h

(
t

z

)]
(4.49)

Substituting expression (4.49) into Equation (4.46), the following closed form of the chromatic
impulse response is found, where all integrals have been solved by means of the Dirac delta
definition:

hc,h(z, t) = 1

z

∣∣∣∣dζg,h(τ )

dτ

∣∣∣∣
Λ0

B0 Ss

[
ζg,h

(
t

z

)]
+ 1

z

∣∣∣∣dζg,h(τ )

dτ

∣∣∣∣
ΛN

BN Ss

[
ζg,h

(
t

z

)]

+ 1

z

N−1∑
k=1

∣∣∣∣dζg,h(τ )

dτ

∣∣∣∣
Λk

Bk Ss

[
ζg,h

(
t

z

)]
(4.50)

It is noteworthy that no integrals appear in the closed form (4.50). The unit of measure of the
chromatic impulse response is derived directly from the general expression (4.50). Since all addends
have the same dimension, any one of them can be considered:

hc,h(z, t)(W/ps) = 1

z
(1/km)

∣∣∣∣dζg,h(τ )

dτ

∣∣∣∣
Λ

(nm km/ps) Ss

[
ζg,h

(
t

z

)]
(W/nm) (4.51)

The dimensions of the chromatic impulse response are W/ps and they are therefore consistent with
the physical meaning attributed to the light intensity.

Before closing this section it is important to understand the physical meaning of the derivative
of the inverse group delay function, given as dζg,h(τ )/dτ . According to the definition (4.47) of the
inverse group delay function λ = ζg,h(τ ), the following relationship holds between the derivatives:

1

dτ/dλ
= 1

dτg,h(λ)/dλ
= dλ

dτ
= dζg,h(τ )

dτ
(4.52)

Therefore, the definition of the chromatic dispersion coefficient D(λ) as the wavelength derivative
of the group delay gives the following important identification of the first-order derivative of the
inverse group delay:

dζg,h(τ )

dτ
= 1

dτg,h(λ)/dλ
= 1

D[ζg,h(τ )]
(4.53)

Substituting into Equation (4.50), the general expression of the chromatic impulse response
is found using the familiar chromatic dispersion coefficients Dk(λ) relative to each partition
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interval Λk:

hc,h(z, t) = 1

z

{
B0 Ss

[
ζg,h(t/z)

]∣∣D0
[
ζg,h(t/z)

]∣∣
}

︸ ︷︷ ︸
λ=ζg,h(t/z)∈Λ0

Λ0=(0,λ1)

+1

z

{
BN Ss

[
ζg,h(t/z)

]∣∣DN

[
ζg,h(t/z)

]∣∣
}

︸ ︷︷ ︸
λ=ζg,h(t/z)∈ΛN

ΛN=(λN ,∞)

+ 1

z

N−1∑
k=1

{
Bk Ss

[
ζg,h(t/z)

]∣∣Dk

[
ζg,h(t/z)

]∣∣
}

︸ ︷︷ ︸
λ=ζg,h(t/z)∈Λk

Λk=(λk,λk+1)

(4.54)

The above expression represents the most general closed form of the chromatic impulse response
once the light source power spectral density Ss(λ) and the selected fiber mode group delay function
versus wavelength, τ = τg,h(λ) are known. According to the partitioning of the wavelength axis
due to the eventual multiple stationary point group delay function, each partial wavelength inter-
val contributes a proper portion of the light spectrum weighted by the corresponding chromatic
dispersion coefficient.

In the next section the way to proceed toward the computer model of the chromatic impulse
response is considered in more detail, starting with the group delay function and the light source
power spectral density. In order to use the general expression (4.50) of the chromatic impulse
response, the role of the Boolean variables Bk and of the wavelength intervals Λk must be clearly
understood. In the following section, the role of the various terms composing the chromatic impulse
response formula (4.50) will be clarified.

4.2.6 Solution Methods for Impulse Responses

In this section reference will be made first to the situation presented in Figure 4.9, which has
been derived from Figure 4.7 by adding a Gaussian-like light source spectrum. The exotic group
delay function τ = τg,h(λ) presented in Figure 4.9, showing five stationary points in the central
wavelength range, is quite interesting and is useful to understand the physical implication of group
delay stationary points. In most real cases, assuming the usual parabolic-clad refractive index profile
and circular cross-section silica-based optical fibers, the group delay function τ = τg,h(λ) usually
exhibits one minimum only, which corresponds to the zero-dispersion wavelength. The second case
considered in this section will refer to the conventional parabolic-like group delay with only one
zero-dispersion wavelength.

4.2.6.1 Multiple-Valued Group Delay Function

As discussed previously, the first derivative of the group delay gives the chromatic dispersion
for the selected fiber mode. Assuming several stationary points in the group delay function is
equivalent to assuming corresponding zero-dispersion wavelengths. This situation is encountered
in several applications of dispersion flattened optical fibers like ITU-T G.655 standards for single-
mode fibers. In fact, in order to achieve the chromatic dispersion flattening behavior within a
specified wavelength range the group delay function τ = τg,h(λ) must exhibit a wavelength ripple
behavior in the flattening interval, a situation closely modeled by the group delay function reported
in Figure 4.7.

Referring to the light source spectrum shown in Figure 4.9, λL and λR define the shortest (left)
and longest (right) wavelength extremes respectively, which identify the source power spectral
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Figure 4.9 Representation of the group delay function τ = τg,h(λ) with ripple behavior showing as mul-
tivalued inverse function λ = ζg,h(τ ). The wavelength axis is partitioned into finite wavelength intervals
corresponding to the group delay function stationary points λk . On the same graph is shown the Gaussian-shaped
optical power spectral density function of the optical source. On the left side are reported the temporal intervals
Tk . The contributing temporal intervals have been highlighted. The piecewise linear approximation of the group
delay in the light spectrum overlapped intervals (λ1, λ4) have been highlighted

density contributions. In practical cases it will be assumed that beyond those extremes the power
contribution can be neglected without altering the chromatic impulse response. The situation pre-
sented in Figure 4.9 simplifies further if it is assumed that the source spectrum wavelength range
(λL, λR) is identified by the wavelength extremes (λ1, λ4) defined by the wavelengths corresponding
to the stationary points of the group delay function. Accordingly, the integrating interval must be
extended from λL = λ1 to λR = λ4. In fact, outside that interval there would be no power spectral
density available and consequently there would be no energy contribution for the chromatic impulse
response.

Based on Figure 4.9, the contributions of the wavelength intervals labeled Λ0, Λ4 and Λ5 = ΛN

can be discarded from the chromatic impulse response (4.50), therefore leaving only the remaining
three intervals, Λ1, Λ2 and Λ3:

hc,h(z, t) = 1

z

{∣∣∣∣dζg,h(τ )

dτ

∣∣∣∣
Λ1

B1 Ss

[
ζg,h

(
t

z

)]
+

∣∣∣∣dζg,h(τ )

dτ

∣∣∣∣
Λ2

B2 Ss

[
ζg,h

(
t

z

)]

+
∣∣∣∣dζg,h(τ )

dτ

∣∣∣∣
Λ3

B3 Ss

[
ζg,h

(
t

z

)]}
(4.55)

In order to simplify the description the group delay in the three wavelength intervals are approx-
imated by proper linear functions, as illustrated in Figure 4.9 by straight lines. Accordingly, the
derivative |dζg,h(τ )/dτ | of the linearized group delay characteristic evaluated for each of the inter-
vals Λ1, Λ2 and Λ3 assumes a constant positive value:

Ck =
∣∣∣∣dζg,h(τ )

dτ

∣∣∣∣
Λk

= 1

|dτg,h(λ)/dλ|Λk

≡ 1

|D̂k|
, (nm km/ps) (4.56)
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Drawn not to scale

Figure 4.10 Top: graphical representation used for the impulse response computation in the text. The group
delay function shows linearized ripple behavior, exhibiting one minimum and one maximum in the source wave-
length range. The source power spectral density has a Gaussian-like shape. Bottom: chromatic impulse response
achieved using the procedure described in the text. Due to the multiple-valued inverse group delay function,
different spectral contributions are superposed on the impulse response build-up. The two zero-dispersion
wavelengths λ2 and λ3 originate from the corresponding dual-peak chromatic impulse response in τ2 and τ3

The general expression of the chromatic impulse response in Equation (4.54) is made up of
as many adding terms as there are different wavelength intervals interested by the light source
spectrum. Referring to Figure 4.10, where only the interested wavelength intervals are given, for
any fixed distance z the time instant t1 is considered such that the ratio t1/z = τ1 coincides with the
first point of the interval T1. For all time instants t ≥ t1 such that t/z ∈ T1, the Boolean variable
B1 = 1 and the first term in Equation (4.54) contribute to the chromatic impulse response with the
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quantity (1/z)C1Ss[ζg,h(t/z)]. For every time instant t ≥ t2 such that t/z ∈ T2, the Boolean variable
B2 = 1 and the second term in Equation (4.54) contribute to the chromatic impulse response with
the quantity (1/z)C2Ss[ζg,h(t/z)]. The same reasoning applies to the third term in Equation (4.54)
for every time instant t ≥ t3 such that t/z ∈ T3. There is only one more remark to make about the
power spectral density Ss[ζg,h(t/z)]: for the given time instant t the inverse function ζg,h(t/z) is
associated with a unique wavelength λ ∈ Λ in the selected wavelength interval Λ. The contribution
to the chromatic impulse response therefore coincides with the light source spectrum evaluated at
the wavelength λ = ζg,h(t/z) with λ ∈ Λ.

In order to build up the chromatic impulse response for the case considered in Figure 4.10 the
three contributions in Equation (4.54) that correspond to proper time intervals for the fixed distance
z need to be considered. It is noted that each coefficient D̂k is defined in Equation (4.56), where
D̂k equals the value of the first-order derivative of the linearized group delay in the wavelength
interval Λk .

Without losing generality, the treatment can be simplified by assuming that the absolute value
of the three slope coefficients are equal: |D̂1| = |D̂2| = |D̂3| = D.

1. τ1 < t/z < τ3:

hc,h(z, t) = 1

zD
Ss

[
ζg,h

(
t

z

)]
λ=ζg,h(t/z)∈Λ1

(4.57)

2. τ3 < t/z < τ4:

hc,h(z, t) = 1

zD

{
Ss

[
ζg,h

(
t

z

)]
λ=ζg,h(t/z)∈Λ1

+ Ss

[
ζg,h

(
t

z

)]
λ=ζg,h(t/z)∈Λ2

+ Ss

[
ζg,h

(
t

z

)]
λ=ζg,h(t/z)∈Λ3

}
(4.58)

3. τ4 < t/z < τ2:

hc,h(z, t) = 1

zD

{
Ss

[
ζg,h

(
t

z

)]
λ=ζg,h(t/z)∈Λ1

+ Ss

[
ζg,h

(
t

z

)]
λ=ζg,h(t/z)∈Λ2

}
(4.59)

Looking at the three contributions to the chromatic impulse response in the corresponding three
time intervals reported above, it can be concluded that, apart from the linearization approximation,
which is mainly devoted to simplifying the results and highlighting the conclusions, the chromatic
impulse response reproduces the source power spectrum density through the inverse group delay
function λ = ζg,h(t/z). The assumption of a linear group delay function within each partition interval
Λk allows a constant chromatic dispersion coefficient D̂k to be used within each partition interval
Λk . This leads analogously to a linear relationship within each partial interval Λk between the power
spectral density shape and the consequent impulse response. This conclusion is quite important as it
helps in understanding the background to the chromatic impulse response behavior. This has been
clearly reported in the graphical construction used in Figure 4.10 to draw the qualitative chromatic
impulse response. According to the partition of the wavelength interval, the corresponding group
delay components lead to the chromatic impulse response made up of several contributions, as
expressed in Equations (4.57), (4.58) and (4.59). Computed-generated chromatic impulse responses
in different multivalued group delay functions will follow in the next section.

One fundamental remark needs to be understood clearly now. To this end, the following knowl-
edge steps are considered:
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1. The linearity assumption of each group delay segment determines the corresponding contribution
to the impulse response and coincides with the shape of the portion of the light source spectrum
excited by that wavelength interval.

2. Due to the multiple-valued group delay function, the same time interval can generally be inter-
ested by multiple wavelength intervals, therefore leading to the superposition of different source
spectral components.

3. Each stationary wavelength in the multivalued (ripple) group delay function behaves like a
singularity in the chromatic impulse response. According to the general expression (4.54), when
the first-order derivative of the group delay has a stationary point, the corresponding null value
of the chromatic dispersion coefficient makes its singular contribution to the overall response.,
when the first order derivative of the group delay has a stationary point, the corresponding
null value of the chromatic dispersion coefficient makes its singular contribution to the overall
response.

4. Including multiple zero-dispersion wavelengths in the light source spectrum range determines
a corresponding multipeak chromatic impulse response. Accordingly, contributions of the lin-
earized parts to the overall impulse response become almost negligible.

In conclusion, in the case presented in Figure 4.9, even if each segmented (linearized) group
delay Λk leads to a mirroring of the corresponding source spectral shape into a partial contribution to
the chromatic impulse response, the two stationary wavelengths λ2 and λ3 lead to the characteristic
dual-peak chromatic impulse response shown in the Figure 4.10. The spectral superposition due to
the multiple-valued group delay function with at least one stationary point in the spectral power
range of the optical source has given a false impulse response identification for the source power
spectral density.

The intensity of each peak is given by the value of the power spectral density at the corresponding
zero-dispersion wavelength. This is a direct consequence of the property of the Dirac delta function.
This property is general: corresponding to every zero-dispersion wavelength λk in the group delay
function, the chromatic impulse response exhibits a sharp peak at the normalized time instant τk

given by τk = τg,h(λk). The intensity of the peak response is proportional to the value of the source
power spectral density measured at the same zero-dispersion wavelength Ss(λk).

In the following section the more traditional parabolic-like group delay function, as expected in
every multimode optical fiber with an optimized profile grading, is considered and the straightfor-
ward identification of the assumed power spectral density of the light source with the chromatic
impulse response is found.

4.2.6.2 Parabolic-Like Group Delay Functions

In the case of a parabolic-like group delay function exhibiting only one minimum value, the general
expression for the chromatic impulse response in Equation (4.54) is considerably simplified. Since
the group delay function exhibits only one stationary point, for the zero-dispersion wavelength
where the group delay reaches the minimum value, N = 1 and Equation (4.54) reduces to the
following expression:

hc,h(z, t) = 1

z

{
B0Ss[ζg,h(t/z)]

|D0[ζg,h(t/z)]| + BNSs[ζg,h(t/z)]

|DN [ζg,h(t/z)]|
}

(4.60)

It was found from Equation (4.53) that the chromatic dispersion coefficient Dk(λ) is related to the
inverse group delay function λ = ζg,h(τ ) in the selected single-valued wavelength interval Λk by
the following equation:[

dζg,h(τ )

dτ

]
τ∈Tk

= 1

[dτg,h(λ)/dλ]λ∈Λk

= 1

Dk[ζg,h(τ )]
(4.61)
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In order to avoid misunderstanding, the chromatic dispersion coefficient D0(λ) coincides with
the first-order wavelength derivative of the group delay function evaluated in the wavelength range
to the left of the zero-dispersion wavelength, Λ0 = (λ ≤ λ0), while D1(λ) coincides with the first-
order wavelength derivative of the group delay function evaluated in the wavelength range to the
right of the zero-dispersion wavelength Λ1 = (λ ≥ λ0). Similarly, the two Boolean variables B0

and B1 refer respectively to the overlapping condition of the normalized time variable τ = t/z with
intervals T0 and T1.

In order to understand clearly the interaction between the source power spectral density and the
group delay of the selected fiber mode, in the following, three different cases will be considered
corresponding to the position of the central wavelength of the source spectrum. Precisely, first
the case where the spectrum Ss(λ) is completely confined within the normal spectral region will
be considered, with energy released to the wavelength portion to the left of the zero-dispersion
wavelength λ0. The second case will deal with a source spectrum centered on the zero-dispersion
wavelength, with λc = λ0. Finally, the third case reports the condition of anomalous spectral exci-
tation, assuming that the whole source energy is released to the wavelength portion to the right of
the zero-dispersion wavelength.

4.2.6.2.1 Spectral Excitation in the Normal 850 nm Range
The source power spectral density has a Gaussian-like profile but it is limited to the finite wavelength
range between λL and λR, with λL < λR < λ0:

Ss(λ) = 0, (λ ≤ λL) ∪ (λ ≥ λR) (4.62)

Figure 4.11 gives the complete graphical description for the normal excitation condition.

Figure 4.11 Graphical representation of the parabolic-like group delay function for the selected fiber mode
and of the source PSD providing mode excitation in the normal region. The optical spectrum is fully confined
in the normal region to the left of the zero-dispersion wavelength and consequently the inverse group delay
function λ = ζg,h(τ ) is strictly single-valued for every time τ ≥ τ0. The source spectral interval is defined by
the two limiting wavelengths, λL < λR. The condition for normal excitation translates into λL < λR < λ0
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Since there is no spectral content to the right side of λ0, the chromatic impulse response reported
in Equation (4.60) reduces to one term only:

hc,h(z, t) = 1

z

B0Ss[ζg,h(t/z)]

|D0[ζg,h(t/z)]| (4.63)

This expression, although quite simple, is the most common chromatic impulse response formula.
The only limitation is that the source power spectrum belongs to a single-valued wavelength
interval of the group delay function for the selected fiber mode. The Boolean variable B0 = τ ∩ T0.
Referring to Figure 4.11, it is clear that the useful time interval for not having a zero spectral
contribution must coincide with the time interval Ts = (τR, τL) defined between normalized instants
τR = τg,h(λR) and τL = τg,h(λL). Since Ts ⊂ T0, it can be concluded that for every normalized time
instant τ ∈ Ts ⇒ B0 = τ ∩ Ts = τ ∩ T0 = 1. Assuming that τ ∈ Ts = (τR, τL), the Boolean variable
is always true and the chromatic impulse response (4.63) becomes

hc,h(z, t) = 1

z

Ss[ζg,h(t/z)]

|D0[ζg,h(t/z)]| , zτR ≤ t ≤ zτL (4.64)

The expression above has the following important physical meaning. For any fixed distance z the
chromatic impulse response in the normal region is defined in the time interval zτR ≤ t ≤ zτL and
is given by the source power spectral density weighted by the reciprocal of the chromatic dispersion
coefficient.

It is very important to note the linear scaling behavior of the chromatic impulse response with
the distance. In fact, by increasing the distance z in Equation (4.64) the corresponding definition
interval increases proportionally and the whole chromatic impulse response becomes broader. This
is a consequence of the fact that the group delay function is defined as normalized time delay,
namely delay per unit distance. Another remarkable corollary of this behavior is that the chromatic
impulse response, even if it broadens linearly with the increasing distance, does not change the
shape. In other words, the pulse shape is fixed for every distance z regardless of how short or how
long it can be, and the time axis t is scaled according to the distance.

Figure 4.12 shows a qualitative drawing of the chromatic impulse response as derived in
Equation (4.64) and assumes the same spectral characteristics presented in Figure 4.11. The effect
of the nonlinear group delay function in the wavelength region of the source PSD is evident from
the qualitative drawing of the chromatic impulse response presented in Figure 4.12. The variation of
the slope of the group delay versus the wavelength in the denominator of Equation (4.64) modifies
the chromatic impulse response compared to the source PSD. Referring to Figure 4.11, the slope
at the initial time instant tstart = zτR has a much lower value than the slope at the final time instant
tstop = zτL. This variation determines a different weighting action on the spectral profile of the
source PSD, leading to the impulse response qualitatively presented in Figure 4.12. It is evident
from Equation (4.64) that if the group delay can be assumed to be a linear function in the source
spectrum wavelength interval, the corresponding chromatic impulse response would have been
identical to the source spectrum profile converted in the time domain through the inverse group
delay function τ = ζg,h(λ).

4.2.6.2.2 Spectral Excitation in the Anomalous 1550 nm Range
In this section the chromatic impulse response is considered when the source power spectral density
is localized in the anomalous wavelength region on the right side of the zero-dispersion wavelength.
In standard optical fibers based on doped silica glass, the anomalous region corresponds to the third
optical window in the 1550 nm wavelength range.

It is assumed again that the source power spectral density has a Gaussian-like profile but it is
limited to the finite wavelength range between λL and λR, with λ0 < λL < λR:

Ss(λ) = 0, (λ ≤ λL) ∪ (λ ≥ λR) (4.65)
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Figure 4.12 Qualitative drawing of the chromatic impulse response for the spectral characteristic presented
in Figure 4.11. The initial time instant is tstart = zτR and the final time instant is tstop = zτL. The normalized
instants τR and τL have been defined in the text. The impulse response corresponding to the source PSD in the
case of a linear group delay with a constant chromatic dispersion coefficient is shown in a light shade. The
distortion of the real pulse with respect to the source PSD depends on the nonlinear group delay in the source
wavelength interval

Figure 4.13 Graphical representation of the parabolic-like group delay function for the selected fiber mode
and of the source power spectral density which provides mode excitation in the anomalous region. The optical
spectrum is fully confined in the region to the right of the zero-dispersion wavelength and consequently the
inverse group delay function λ = ζg,h(τ ) is strictly single-valued for every time τ ≥ τ0. The source spectral
interval is defined by the two limiting wavelengths, λL < λR. The condition for anomalous excitation requires
λ0 < λL < λR
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Figure 4.13 gives a graphical description of the anomalous excitation condition that is being con-
sidered. For any fixed distance z, the chromatic impulse response hc,h(z, t) is defined over the time
interval zτL ≤ t ≤ zτR, as reported on the left side of Figure 4.13. Due to the inverted sign of the
slope between the normal and the anomalous wavelength intervals, the time interval extremes are
inverted with respect to the previous case. The slope of the group delay is positive in the anomalous
region and the longest wavelength λR in the source spectrum corresponds to the longest time τR,
while at the shortest spectrum wavelength λL the group delay is associated with the shortest time
τL. As already mentioned in the previous section, in the anomalous wavelength region the shortest
wavelength spectral components travel faster than the longer wavelength components. Moreover,
due to the reduced slope with respect to the previous case of normal excitation, the total impulse
response duration is reduced considerably for the same source spectrum. In other words, this means
that for a given light source spectrum, the anomalous region produces a faster chromatic impulse
response than the normal region. This is understandable because for a given wavelength interval
the corresponding variation of the group delay is greater at increasing slope, like in the normal
region.

Since there is no spectral content to the left side of λ0, the general expression (4.60) of the
chromatic impulse response for a parabolic-like group delay reduces to only one term again:

hc,h(z, t) = 1

z

B1Ss

[
ζg,h(t/z)

]
|D1[ζg,h(t/z)]| (4.66)

Following the same reasoning as in the previous section, it can be concluded that the Boolean
variable B1 = τ ∩ T1 is always true for all the temporal subsets Ts = (τL, τR) ⊂ T1 and so can be
removed from the previous expression. In conclusion, Equation (4.66) simplifies further to

hc,h(z, t) = 1

z

Ss[ζg,h(t/z)]

|D1[ζg,h(t/z)]| , zτL ≤ t ≤ zτR (4.67)

Proceeding as in the case of normal excitation, it can be conclude that for any fixed distance z the
chromatic impulse response in the anomalous region is defined in the time interval zτL ≤ t ≤ zτR

and is given by the source power spectral density weighted by the reciprocal of the chromatic
dispersion coefficient.

Figure 4.14 shows qualitatively the profile of the chromatic impulse response according to
Equation (4.67) and the spectral characteristics shown in Figure 4.13. The shortest wavelength
components experience a lower value of the chromatic dispersion coefficient with respect to the
longer spectral components. This causes a slight distortion of the chromatic impulse response pro-
file when compared with the source power spectral density. According to the chromatic impulse
formula (4.67) and Figure 4.13, it is clear that faster spectral components (associated with shorter
wavelengths) give corresponding lower values of the chromatic dispersion coefficient and conse-
quently a smoother rise time transient of the impulse response. The opposite effect holds for longer
spectral components, which induce instead a steeper falling transient in the pulse falling edge.

The next section will report computed chromatic impulse response examples in order to clarify
this behavior.

4.2.6.2.3 Spectral Excitation in the Low-Dispersion 1310 nm Range
In this section the case where the spectral excitation is localized around the minimum group delay
wavelength is considered. Since the slope reaches its minimum value, the corresponding impulse
response will exhibit the fastest behavior, reaching the minimum pulse width available for the given
source power spectral density. This is the reason for having the minimum pulse dispersion in the
second window operation of optical transmission systems based on single-mode fiber. As usual,
the source power spectral density is assumed to have a Gaussian-like profile, limited to the finite
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Figure 4.14 Chromatic impulse response for the spectral characteristic presented in Figure 4.13. The initial
time instant is tstart = zτL and the final time instant is tstop = zτR. In the anomalous wavelength range, spectral
components are associated with the pulse precursors while spectral components generate pulse postcursors. The
impulse response corresponding to the source PSD in the case of a linear group delay with a constant chromatic
dispersion coefficient is shown in a light shade. The slight distortion of the pulse with respect to the Gaussian
source PSD depends on the nonlinear group delay in the source wavelength interval

wavelength range between λL and λR, with λL < λ0 < λR:

Ss(λ) = 0, (λ ≤ λL) ∪ (λ ≥ λR) (4.68)

Figure 4.15 reports the parabolic-like group delay function with the Gaussian PSD excitation
centered in the zero-dispersion wavelength region. In this case the inverse group delay λ = ζg,h(τ )

is a two-valued function for every normalized time instant τ0 < τ < max(τL, τR), as depicted in
Figure 4.15. Then separate contributions are considered from the two partial wavelength intervals,
λL < λ < λ0 and λ0 < λ < λR, as described in the general solution methodology in Section 4.2.6.1.

The chromatic impulse response is given by Equation (4.60). Referring to the situation pre-
sented in Figure 4.15, the initial instant for computing hc,h(z, t) is τ0 and the last instant is τR.
However, the whole interval T1 = (τ0, τR), which corresponds to the longest wavelength interval
Λ1 = (λ0, λR), also includes the second contributing interval T0 = (τ0, τL), which is associated
with the shortest wavelength interval Λ0 = (λL, λ0). The chromatic impulse response is therefore
given by the following expression, where the two separate contributions have been highlighted:

hc,h(z, t) = 1

z

{
Ss[ζg,h(t/z)]

|D0[ζg,h(t/z)]|
}

︸ ︷︷ ︸
λ=ζg,h(t/z)∈Λ0

Λ0=(λL,λ0)

+1

z

{
Ss[ζg,h(t/z)]

|D1[ζg,h(t/z)]|
}

︸ ︷︷ ︸
λ=ζg,h(t/z)∈Λ1

Λ1=(λ0,λR)

(4.69)

Figure 4.16 shows the qualitative profile of the chromatic impulse response according to Equa-
tion (4.69) and the spectral characteristics shown in Figure 4.15. In this case since both wavelength
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Figure 4.15 Spectral excitation in the zero-dispersion wavelength region corresponding to approximately
1310 nm for silica-based optical fibers. The source PSD is located across the minimum group delay wavelength
and the chromatic impulse response requires the excitation interval to be split into two partial intervals for a
single-valued inverse group delay function λ = ζg,h(τ ). The source spectral interval is defined by λL < λ0 < λR

Figure 4.16 Chromatic impulse response for the spectral characteristic shown in Figure 4.15. Due to the
almost symmetric group delay in the wavelength range of the source spectrum, the impulse response closely
resembles the spectrum shape. However, the negligible value of the first-order derivative of the group delay
around the zero-dispersion wavelength λ0 makes the impulse response quite sharp compared to the source
spectrum
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intervals have almost symmetric chromatic dispersion coefficients, the impulse response resembles
the shape of the source PSD. Even if the group delays change the shape according to the behavior
versus wavelength slope, this effect is nearly symmetric as the central wavelength is closer to
the zero-dispersion wavelength λc

∼= λ0 and the output pulse mainly resembles the shape of the
light source spectrum. However, it is very remarkable that when the wavelength is approaching the
minimum delay condition, λ ∼= λ0, the slope becomes negligible and the corresponding contribution
to the impulse response becomes indefinitely high. This effect reflects of course a very fast impulse
response as predicted by the lowest dispersion wavelength region.

The following section presents the numeric solution algorithm together with some interesting
examples of the chromatic impulse response for different source spectrum profiles and group
delay ripple functions. The algorithm has been developed using Matlab 7.0.2 software by Math-
Works Inc.

4.3 The Chromatic Impulse Response Model
In this section the solution algorithm is presented for the chromatic impulse response calculation
according to the general expression in Equation (4.54). The algorithm has been implemented using
Matlab 7.0.2 by MathWorks Inc. The program accepts both source power spectral density and fiber
group delay, eventually exhibiting multiple peaks according to individual peak Gaussian modeling.
In Section 4.3.2 the whole Matlab code is reported.

4.3.1 Model Equations

The chromatic impulse response theory was developed in the previous section, 4.2. Here the time
domain representation according to Equation (4.54) is given, where a general multiple-valued group
delay function is assumed. In the following description, in order to simplify the notation, the
individual fiber mode index h has been removed from any modal function, including the group
delay, the chromatic dispersion coefficient and the chromatic impulse response. Of course, dealing
with multimode fibers it must be remembered that each individual fiber mode has its own group
delay function, identified by the index notation τ = τg,h(λ).

It is known that if the group delay function τ = τg(λ) exhibits N stationary points, the whole
wavelength axis must then be partitioned into N + 1 intervals Λk = (λk, λk+1). Accordingly, in
each wavelength interval Λk the group delay τ = τg(λ) is single-valued and assumes temporal
values belonging to the corresponding interval Tk = (τk, τk+1). For every time instant τ ∈ Tk the
inverse function λ = ζg(τ ) exists and is unique. Once the inverse group delay is known at every
time instant of the interval Tk = (τk, τk+1), both the source power spectrum and the chromatic
dispersion coefficient can be computed and the contribution to the chromatic impulse response can
therefore be evaluated. This procedure must be repeated for every time instant belonging to the
whole defined interval. The interval of definition Tc of the chromatic impulse response hc(z, τ ) is
given by the continuous interval defined by the minimum and the maximum time instants among
the set of partial time intervals Tk = (τk, τk+1):

Tc = (τmin, τmax) ⇒
{

τmin = min{Tk}k=0,1,2,...,N

τmax = max{Tk}k=0,1,2,...,N

(4.70)

The integer N that appears in Equation (4.70) is the number of stationary points of the group
delay function. If the group delay has the classical parabolic profile with only one minimum
point, N = 1, then the generic wavelength interval is divided into two subintervals, like the case
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considered in Figure 4.16. The general expression for the impulse response (4.54) where the total
response hc(z, τ ) is equal to the sum of all partial contributions hc,k(τ ), k = 0, 1, . . . , N divided
by the distance z is given below, where the temporal variable has been changed to τ = t/z:

hc,0(τ ) ≡ Ss�ζg(τ )�
|Dc[ζg(τ )]|︸ ︷︷ ︸

λ=ζg(τ )∈Λ0

Λ0=(0,λ1)

hc,k(τ ) ≡ Ss[ζg(τ )]∣∣Dc[ζg(τ )]
∣∣︸ ︷︷ ︸

λ=ζg(τ )∈Λk

Λk=(λk,λk+1),k=1,2,...,N−1

hc,N(τ ) ≡ Ss[ζg(τ )]

|Dc[ζg(τ )]|︸ ︷︷ ︸
λ=ζg(τ )∈ΛN

ΛN=(λN ,∞)




⇒ hc(z, τ ) = 1

z

N∑
k=0

hc,k(τ ) (4.71)

Figure 4.17 shows the procedure applied to every partial single- valued wavelength interval
Λk = (λk, λk+1) in order to compute the corresponding contribution hc,k(τ ) to the chromatic impulse
response according to Equation (4.71). Referring to Figure 4.17, it is assumed that the normalized

Figure 4.17 Representation of the numerical approximation of the group delay function and of the source
power spectral density for numeric analysis of the chromatic impulse response. Discrete wavelengths {λj }
belong to the same single-valued interval Λk and the corresponding discrete time instants {τj } belong to the
time interval Tk . For any given time instant τ ∈ (τj−1, τj ) the linear approximation leads to the corresponding
wavelength λ and finally to the value Ss of the source power spectrum. An analogous procedure holds for
calculation of the chromatic dispersion coefficient Dc
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time instant τ belongs to the single-valued interval Tk and the corresponding wavelength λ is within
the interval Λk . In the following, the generic contribution hc,k(τ ) to the chromatic impulse response
reported in the general expression (4.71) is computed:

hc,k(τ ) = Ss[ζg(τ )]

|Dc[ζg(τ )]| = Ss(λ)

|Dc(λ)| = Ss

|Dc|
(4.72)

where
τ = t

z
, τ ∈ Tk ←→ Λk, λ = ζg(τ ) ∈ Λk, (λj−1, λj ) ⊂ Λk

The wavelength λ is easily computed by inverting the linear relationship between the group delay
and the wavelength in the considered interval:

τ = τj−1 + τj − τj−1

λj − λj−1
(λ − λj−1) (4.73)

and the linear approximation of the inverse group delay function is

λ = ζg(τ ) = λj−1 + τ − τj−1

τj − τj−1
(λj − λj−1) (4.74)

Either the linear approximation of the source power spectral density Ss(λ) or the chromatic dis-
persion coefficient Dc(λ) are evaluated at the same wavelength λ and have a similar expression to
Equation (4.73). From Figure 4.17,

Ss = Ssj−1 + Ssj
− Ssj−1

λj − λj−1
(λ − λj−1) (4.75)

Dc = Dcj−1 + Dcj
− Dcj−1

λj − λj−1
(λ − λj−1) (4.76)

Substituting Equation (4.74) into Equations (4.75) and (4.76), from Equation (4.72) the following
numerical solution for the general chromatic impulse response contribution at the time instant τ is
obtained:

hc,k(τ ) = τjSsj−1 − τj−1Ssj
+ (Ssj

− Ssj−1 ) τ

τjDcj−1 − τj−1Dcj
+ (Dcj

− Dcj−1) τ
(4.77)

This expression is used in the developed program reported below to compute the chromatic
impulse response of every group delay profile and source power spectral density. Those functions
are the only two required inputs for extracting the impulse response. The next section gives a short
overview of how the Matlab program operates.

4.3.2 Computing Algorithm

The main program CIR (chromatic impulse response) requires first the definition of the whole
wavelength range and the resolution of each step. Then routine GROUPDELAY is called to compute
both the group delay function and the chromatic dispersion coefficient by means of numerical
differentiation of the group delay. The routine GROUPDELAY calls the routine MGP (multi-
Gaussian profile) in order to allow for superposed multi-Gaussian peak ripples over the uniform
Sellmeier group delay profile. The routine MGP is used to generate the source spectrum and returns
the normalized source power spectral density over the same wavelength axis used for the group
delay. The routine MGP provides either a single Gaussian peak or a multi-Gaussian peak spectrum
for handling different source conditions. According to the solution methods described in the text,
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the program searches for every group delay stationary wavelength in order to have the wavelength
axis partition for a single-valued group delay function. The corresponding time intervals are then
scanned simultaneously from the minimum time instant up to the maximum time instant, assuming
that the same number of elementary points are used as for the wavelength axis.

For each time instant, the program computes the chromatic impulse response according to expres-
sion (4.77). The plots of the generated group delay and source power spectrum profiles are then
represented on the same graph in order to visualize clearly the spectrum interaction used to produce
the total impulse response. On a separate graph all the computed time intervals are then shown
in order to obtain a clear representation of the way the several chromatic impulse response con-
tributions add together to produce the final response. The last graph finally reports the computed
chromatic impulse response without any further processing. The corresponding timescale there-
fore includes the average group delay of the pulse center of gravity, according to the group delay
function and the source spectrum wavelength distribution. The program then computes the average
group delay of the resulting impulse response and provides the time-shifted axis by centering the
chromatic impulse response on the time origin of the translated axis. Operating in this way, the
visible timescale resolution is usually greatly increased and all details of the pulse shape appear
with the proper timescale.

The chromatic impulse response is normalized with unit energy, as demonstrated in Section 4.2.
The time-centered chromatic impulse response is then plotted on a separate graph together with
the RMS width. Depending on the pulse width, the proper timescale can be selected using units of
either ps/m or ps/km. The following are reported Matlab codes for both main program CIR and
all the related routines.

4.3.2.1 Program CIR

% The program CIR computes the chromatic impulse response for the given
% mode group delay Tg and source power spectral density Ss. The chromatic
% impulse response hc(z,t) is function of the distance z and the normalized
% time t/z.
%
clear;
N0=2000; % Number of steps in the wavelength axis
Lmin=1530e-9; % Minimum wavelength in the computing interval
Lmax=1570e-9; % Maximum wavelength in the computing interval
dL=(Lmax-Lmin)/N0; % Wavelength step
L=(Lmin:dL:Lmax); % Wavelength axis for the Sellmeier refractive index
L1=L(1:N0); % Wavelength axis for the first order derivative Tg
L2=L(1:N0-1); % Wavelength axis for the second order derivative Dc
%
%------------ Group Delay and Chromatic Dispersion Coefficient ------------
%
Tg=1e9*GROUPDELAY(L); % [ns/m]
Dc=1e-3*diff(Tg)/dL; % [ps/nmkm]
%
%------------------- Multi-Gaussian-Profile Source PSD --------------------
%
A=[0.15 0.20 0.30 0.20 0.15]; % Coefficients for the individual Gaussian

peaks
FWHM=[0.1 0.1 0.1 0.1 0.1]*1e-9; % FHHM [m]
Lambda=[1548.4 1549.2 1550 1550.8 1551.6]*1e-9; % Central Wavelengths [m]
Ss=MGP(A,FWHM,Lambda,L2); % Multi-Gaussian-Profile
%
%----------------------- Chromatic Impulse Response -----------------------
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%
% Finding stationary wavelengths for inverting the group delay function
%
j=1;
k=0;
while j<N0-1,

Sc=sign(Dc(j));
j=j+1;
while j<N0-1 & Sc*sign(Dc(j))==+1,

j=j+1;
end;
if j<N0-1,

k=k+1;
Index(k)=j; % Index exceeding the current stationary wavelength
Lo(k)=L(j-1)-Dc(j-1)*dL/(Dc(j)-Dc(j-1)); % Stationary wavelengths

end;
end;
if k>0, % At least one stationary wavelength exists in the interval

N=length(Index); % Number of stationary wavelengths found
%
% Finding time intervals corresponding to single-valued wavelength

intervals
%
disp(' Interval T(min) T(max) Lambda(min) Lambda(max)

Lambda(zero)');
disp(' ns/m ns/m nm nm

nm');
disp(");
TauL 0=Tg (1);
TauR 0=Tg(Index (1) -1);
disp([0 TauL 0 TauR 0 L (1) L(Index (1) -1)]);
for k=1:N-1,

TauL(k)=Tg(Index(k));
TauR(k)=Tg(Index(k+1)-1);
disp([k TauL(k) TauR(k) L(Index(k))*1e9 L(Index(k+1)-1)*1e9

Lo(k)*1e9]);
end;
TauL(N)=Tg(Index(N));
TauR(N)=Tg(N0);
disp([N TauL(N) TauR(N) L(Index(N))*1e9 L(N0+1)*1e9 Lo(N)*1e9]);
Taumax=max([TauL 0 TauR 0 TauL TauR]); % Maximum normalized time instant
Taumin=min([TauL 0 TauR 0 TauL TauR]); % Minimum normalized time instant

else
N=0;
Taumin=Tg (1);
Taumax=Tg(N0);

end;
dT=(Taumax-Taumin)/(N0-1); % Normalized time step
T=(Taumin:dT:Taumax); % Normalized time axis
%
% Computing chromatic impulse response contributions of each time interval
%
hc(1:N0)=0;
if N>0,

for j=1:N0,
if min([TauL 0 TauR 0])<=T(j) & T(j)<=max([TauL 0 TauR 0]),
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hc(j)=hc(j)+CIRCON(T(j),Tg,Ss,abs(Dc),1,Index (1) -1);
end;
for k=1:N-1,

if min([TauL(k) TauR(k)])<=T(j) & T(j)<=max([TauL(k) TauR(k)]),
hc(j)=hc(j)+CIRCON(T(j),Tg,Ss,abs(Dc),Index(k),Index(k+1)-1);

end;
end;
if min([TauL(N) TauR(N)])<=T(j) & T(j)<=max([TauL(N) TauR(N)]),

hc(j)=hc(j)+CIRCON(T(j),Tg,Ss,abs(Dc),Index(N),N0-1);
end;

end;
else,

for j=1:N0,
hc(j)=hc(j)+CIRCON(T(j),Tg,Ss,abs(Dc),1,N0-1);

end;
end;
%
% Chromatic Impulse Response Moments
%
disp(' S WL AVE S WL RMS To lin To Dc lin
hc RMS lin hc RMS');
disp(' [nm] [nm] [µs/km] [µs/km] [ps/nmkm]
[ps/km] [ps/km]');
disp(");
To=sum(T.*hc)/sum(hc); % Average response delay in normalized time unit
Ts=(T-To)*1e6; % Temporal axis with origin in To [ps/km]
Sigma hc=sqrt(sum(Ts. ^2.*hc)/sum(hc)); % RMS pulse width [ps/km]
%
% Source PSD Moments
%
Lo Ss=sum(L2.*Ss)/sum(Ss); % Average wavelength [m]
Sigma Ss=sqrt(sum((L2-Lo Ss). ^2.*Ss)/sum(Ss)); % RMS spectral width [m]
%
% Linear Group Delay Approximation
%
k=1;
while L(k)<Lo Ss & k<N0, k=k+1; end;
if k<N0,

Dc lin=(Tg(k)-Tg(k-1))/dL;
Tau lin=Tg(k-1)+Dc lin*(Lo Ss-L(k-1));
Sigma lin=Sigma Ss*abs(Dc lin);
disp([Lo Ss*1e9 Sigma Ss*1e9 Tau lin To Dc lin*1e-3 Sigma lin*1e6

Sigma hc]);
end;
%
%--------------------------------- Plotting -------------------------------
%
figure (1);
subplot (221); % Fiber Group Delay - Chromatic Dispersion - Light Source PSD
plot(L1*1e6,Tg,L2*1e6,min(Tg)+Ss/max(Ss)*(max(Tg)-min(Tg))); grid on;
title('Fiber Group Delay and Light Source PSD');
xlabel('Wavelength, \lambda [µm]');
ylabel('t g(\lambda) [ns/m]');
legend('Group Delay','Source PSD');
subplot (222);
plot(L2*1e6,Dc), grid on;
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line([Lmin Lmax]*1e6,[0 0],'LineStyle','-.','Color','r');
title('Chromatic Dispersion');
xlabelW'(avelength, λ [µm]');
ylabel('D c(λ) [ps/nmkm]');
subplot(223); % Normalized Time Intervals
if N>0,

plot([0:N],[TauL 0 TauL],'o',[0:N],[TauR 0 TauR],'ro'); grid on;
line([0 0],[TauL 0 TauR 0],'LineWidth',2,'Color','k');
for k=1:N,line([k k],[TauL(k) TauR(k)],'LineWidth',2,'Color','k');end;

else
plot(0,Taumin,'o',0,Taumax,'ro'); grid on;
line([0 0],[Taumin Taumax],'LineWidth',2,'Color','k');

end;
title('Normalized Time Intervals');
xlabel('Wavelength interval \Lambda k');
ylabel('Time interval [ns/m]');
legend('\tau L=ζ(λ L)','τ R=ζ(λ R)');
subplot (224); % Chromatic Impulse Response
plot(T,hc); grid on;
line([To To],[0 1.1*max(hc)],'LineStyle','-.','Color','r');
title('Chromatic Impulse response');
xlabel('Normalized time τ [ns/m]');
ylabel('a.u.');
figure (2); % Time-shifted chromatic impulse response
plot(Ts,hc); grid on;
line([-Sigma hc -Sigma hc],[0 1.1*max(hc)],'LineStyle','-.','Color','r');
line([Sigma hc Sigma hc],[0 1.1*max(hc)],'LineStyle','-.','Color','r');
text(0.6*Ts(N0),1.05*max(hc),['RMS width σ τ=' num2str(Sigma hc)
'[ps/km]'],'BackgroundColor','w');
title('Centered Chromatic Impulse response');
xlabel('Normalized time τ [ps/km]');
ylabel('Unity energy response [a.u.]');

4.3.2.2 Function GROUPDELAY

function tg=GROUPDELAY(L);
N0=length(L)-1;
Lmin=min(L); % Minimum wavelength
Lmax=max(L); % Maximum wavelength
dL=(Lmax-Lmin)/N0; % Wavelength step
c=2.9979e8; % Speed of light in vacuum
%
% Sellmeier equation: coefficients for the fused silica
%
B1=0.6961663; % Coefficient B1 for Three-term Sellmeier equation
B2=0.4079426; % Coefficient B2 for Three-term Sellmeier equation
B3=0.8974794; % Coefficient B3 for Three-term Sellmeier equation
Lambda1=0.0684043e-6;% Peak wavelength L1
Lambda2=0.1162414e-6;% Peak wavelength L2
Lambda3=9.896161e-6; % Peak wavelength L3
%
% Sellmeier component
%
n S=sqrt(1+B1./(1-(Lambda1./L).^2)+B2./(1-(Lambda2./L).^2)+B3./(1-

(Lambda3./L).^2));
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% Index of refraction
n1 S=diff(n S)/dL; % First order derivative of the refractive index
n2 S=diff(n1 S)/dL; % Second order derivative of the refractive index
L1=L(1:N0); % Wavelength axis for the first order derivative
L2=L(1:N0-1); % Wavelength axis for the second order derivative
ng S=n S(1:N0)-L1.*n1 S; % Group index
tg S=ng S/c; % Sellmeier Group delay [s/m]
%
% Multi-Gaussian-Profile component
%
C tg=0e-12; % Unit amplitude for the group delay ripple [s]
A tg=[0.20 0.20 0.125 0.125 0.125 0.10 0.10 0.05]*C tg; % Coefficients for

the group delay ripple
FWHM tg=[75 75 75 75 75 75 75 75]*1e-9; % FHHM of the group delay ripple
Lambda tg=[850 950 1050 1150 1250 1350 1450 1550]*1e-9; % Central wavelengths

of the group delay ripple
A tg=A tg./(2*sqrt(log (2)/pi)./FWHM tg); % Amplitude normalization
tg MGP=MGP(A tg,FWHM tg,Lambda tg,L1); % MGP group delay component [s/m]
%
% Linear combination of Sellmeier and MGP group delays
%
tg=tg S+tg MGP; % Total group delay [s/m]

4.3.2.3 Function MGP

% The function MGP provides the Multi-Gaussian-Profile power spectral
% density of the light source based on the linear superposition of the
% input-defined Gaussian functions. Inputs A, FWHM and Lambda represent
% respectively linear vectors containing the weight coefficients, the
% Full-Width-Half-Maximum and the central wavelengths of the Gaussian
% components. There is no limitation to the number of Gaussian components
% used in the linear superposition. The length of each input vector
% specifies the required number of Gaussian components.
%
function S=MGP(A,FWHM,Lambda,L);
N=length(A);
S=0;
for k=1:N,

Sk=2*sqrt(log(2)/pi)/FWHM(k)*exp(-4*log(2)*(L-Lambda(k)).^2/FWHM(k)^2);
S=S+A(k)*Sk;

end;

4.3.2.4 Function CIRCON

% The function CIRCON provides the inversion of the group delay function Tg
% limited by the selected wavelength interval defined by two indices j1 and
% j2 and returns the Chromatic Impulse Response CONtribution Ss/Dc. The
% returned value is computed assuming linear interpolation between the two
% subsequent wavelength points available from the two input indices
%
function hc=CIRCON(Tj,Tg,Ss,Dc,j1,j2);
j=j1;
Sgn=sign(Tg(j)-Tj);
j=j+1;
while j<j2 & Sgn*sign(Tg(j)-Tj)==+1,



150 Multi-Gigabit Transmission over Multimode Optical Fibre

j=j+1;
end;
hc=1e-3*(Tg(j)*Ss(j-1)-Tg(j-1)*Ss(j)+(Ss(j)-Ss(j-1))*Tj)/...

(Tg(j)*Dc(j-1)-Tg(j-1)*Dc(j)+(Dc(j)-Dc(j-1))*Tj);

4.3.3 Numerical Solution Examples

In this section some selected chromatic impulse responses are computed using the solution algorithm
presented above. The cases reported have been chosen in order to give clear evidence of the different
relevant chromatic impulse response profiles that can be achieved using different source excitation
conditions and the group delay functions. The same group delay together with the same source
spectrum profile generate very different chromatic impulse responses by simply sliding the source
central wavelength. This relevant characteristic of the chromatic impulse response has already been
shown in the cases considered in the theoretical part of Section 4.2 above. It would be instructive to
have numerical computed solutions for the same cases already considered previously in a qualitative
way in order to understand the impulse response mechanism clearly.

The results presented below should help to clarify the physical principles behind the chromatic
impulse response. The cases considered below are the following:

1. Sellmeier group delay profile for the fused silica:
(a) single-Gaussian peak source PSD operating in the first window range at 850 nm;
(b) single-Gaussian peak source PSD operating in the third window range at 1550 nm;
(c) single-Gaussian peak source PSD operating in the second window range at 1310 nm.

2. Sellmeier group delay profile for the fused silica with added multi-Gaussian peak ripples:
(a) single-Gaussian peak source PSD operating in the first window range at 850 nm;
(b) single-Gaussian peak source PSD operating in the third window range at 1550 nm;
(c) single-Gaussian peak source PSD operating in the second window range at 1310 nm.

3. Sellmeier group delay profile for the fused silica:
(a) multi-Gaussian peak source PSD (modeling multilongitudinal Fabry–Perot laser) operating

in the first window range at 850 nm;
(b) multi-Gaussian peak source PSD (modeling multilongitudinal Fabry–Perot laser) operating

in the third window range at 1550 nm;
(c) multi-Gaussian peak source PSD (modeling multilongitudinal Fabry–Perot laser) operating

in the second window range at 1310 nm.
4. Sellmeier group delay for the fused silica profile with added multi-Gaussian peak ripples:

(a) multi-Gaussian peak source PSD (modeling multilongitudinal Fabry–Perot laser) operating
in the first window range at 850 nm;

(b) multi-Gaussian peak source PSD (modeling multilongitudinal Fabry–Perot laser) operating
in the third window range at 1550 nm;

(c) multi-Gaussian peak source PSD (modeling multilongitudinal Fabry–Perot laser) operating
in the second window range at 1310 nm.

The selected 12 cases above can be conveniently set up into a 6 × 2 simulation matrix, as given
in Table 4.1.

Before reporting computed chromatic impulse responses versus different source spectrum and
group delay conditions according to the Table 4.1, it is instructive to show both group delay
functions used in the simulation: the Sellmeier uniform (SU) profile and the Sellmeier ripple (SR)
profile. For both representations the same wavelength interval 600 nm–1900 nm has been used.
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Table 4.1 Simulation matrix for computing the chromatic impulse response according to different combi-
nations of the group delay function and the source power spectral density. The Sellmeier uniform profile
refers to the undoped fused silica (SU, Sellmeier uniform; SR, Sellmeier ripple; SG, single-Gaussian; MG,
multi-Gaussian)

Source PSD Group delay

Sellmeier uniform Sellmeier + multi-Gaussian ripple

Single-Gaussian peak 850 nm 1.a: SUSG850 2.a: SRSG850

Single-Gaussian peak 1550 nm 1.b: SUSG1550 2.b: SRSG1550

Single-Gaussian peak 1310 nm 1.c: SUSG1310 2.c: SRSG1310

Multi-Gaussian peak 850 nm 3.a: SUMG850-A/B 4.a: SRMG850

Multi-Gaussian peak 1550 nm 3.b: SUMG1550-A/B 4.b: SRMG1550
Multi-Gaussian peak 1310 nm 3.c: SUMG1310-A/B 4.c: SRMG1310
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Figure 4.18 Left: uniform group delay of the fused silica according to the Sellmeier approximation with a
superposed source single-Gaussian PSD with FWHM = 150 nm, λc = 1300 nm. Right: chromatic dispersion.
The zero-dispersion wavelength for fused silica is at λ0 = 1272.6 nm

The multi-Gaussian source spectrum has been centered at 1300 nm as a matter of convenience.
The remaining two wavelength excitations merely require a spectrum translation over the selected
wavelength.

In Figure 4.18 the width of the single-Gaussian PSD has been chosen abnormally wide in order to
highlight the consequences on the chromatic impulse response better. The usual values for the LED
source spectral width are in the range between 20 nm and 100 nm. Single-line laser sources are much
narrower, usually below 1 nm under direct modulated conditions. A multilongitudinal mode laser
spectrum, like those of Fabry–Perot lasers, has a larger spectrum envelope, exhibiting several emit-
ted modes spaced about 0.8–1 nm apart. In the following reported cases of numerically computed
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Figure 4.19 Left: ripple group delay of the fused silica according to the Sellmeier approximation with a super-
posed source multi-Gaussian PSD with FWHM = 20 nm, λc = 1300 nm, N = 5, ∆λ = 1 nm. Right: chromatic
dispersion of the ripple group delay corresponding to the left graph. The number of zero-dispersion wave-
lengths coincides with the number of group delay stationary wavelengths. In this example 17 zero-dispersion
wavelengths are shown

chromatic impulse responses two different source spectral profiles are used, namely the single-
Gaussian broad spectrum with FWHM = 150 nm and the multi-Gaussian spectrum. Two different
multi-Gaussian spectrum profiles have been used. The first one refers to five lasing modes spaced
at 50 nm with FWHM = 20 nm, while the second model of the multi-Gaussian spectrum refers
to five lasing modes spaced at 1 nm with FWHM = 0.20 nm, representing a typical Fabry–Perot
laser diode. The first model of the multi-Gaussian spectrum does not represent a realistic light
source; however, it is believed to be useful in understanding some characteristic mechanisms lead-
ing to the chromatic impulse response. Figure 4.19 reports the ripple group delay together with the
multi-Gaussian source PSD.

The ripple group delay is obtained by superposition of the uniform Sellmeier term with the multi-
Gaussian weighted profile. The corresponding chromatic dispersion is shown on the right side and
is obtained by numerical derivation of the group delay. The characteristic ripple of the chromatic
dispersion characteristic reflects the multi-Gaussian profile of the group delay. The number of zero-
dispersion wavelengths coincides with the number of stationary points of the group delay. Table 4.2
gives the 17 stationary wavelengths and the corresponding 18 partial wavelength intervals used to
compute the multivalued inverse group delay function, according to the general chromatic impulse
response expression (4.71).

Each wavelength interval Λk is identified by the two wavelengths λk and λk+1. Accordingly, the
minimum wavelength of interval Λk+1 coincides with the maximum wavelength of the previous
interval Λk , augmented by the elementary wavelength step ∆λ. The zero-dispersion wavelength
is computed as the linear interpolation between those two extremes and belongs to the elemen-
tary interval, as has been highlighted in the case of 1249.2 nm < λ0 = 1249.3 nm < 1249.4 nm in
Table 4.2. Figure 4.20 gives a graphical representation of the linear interpolation procedure used
to calculate each zero-dispersion wavelength.
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Table 4.2 Computed zero-dispersion wavelengths and partial intervals for the numerical calculation of the
chromatic impulse response, as reported in the text. The intervals are ordered according to subsequent wave-
lengths, starting at λmin = 600 nm and ending at λmax = 1900 nm

Interval Tmin (ns/m) Tmax (ns/m) λmin (nm) λmax (nm) λ0 (nm)

0 4.9302 4.8967 600.00 792.14 –

1 4.8967 4.8996 792.27 840.89 792.26

2 4.8996 4.8910 841.02 907.71 841.02

3 4.8910 4.8928 907.84 943.33 907.80

4 4.8928 4.8843 943.46 1014.6 943.35

5 4.8843 4.8850 1014.7 1042.9 1014.6

6 4.8850 4.8808 1043.0 1103.9 1043.0

7 4.8808 4.8827 1104.0 1147.2 1103.9

8 4.8827 4.8794 1147.3 1201.4 1147.2

9 4.8794 4.8818 1201.5 1249.2 1201.4

10 4.8818 4.8788 1249.4 1303.0 1249.3

11 4.8788 4.8808 1303.2 1351.4 1303.1

12 4.8808 4.8791 1351.5 1397.3 1351.5

13 4.8791 4.8820 1397.4 1452.9 1397.3

14 4.8820 4.8799 1453.1 1505.3 1453.0

15 4.8799 4.8814 1505.4 1558.8 1505.3

16 4.8814 4.8806 1558.9 1609.3 1558.8

17 4.8806 4.8900 1609.4 1900.0 1609.4

Figure 4.20 Graphical representation of the linear interpolation for the determination of the zero-dispersion
wavelengths using the first-order derivative of the group delay function. The algorithm search for the zero-
crossing condition of the chromatic dispersion then proceeds with the linear interpolation
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4.3.3.1 Example 1.a: SUSG850 (Figures 4.21 and 4.22)

0.6 0.7 0.8 0.9 1 1.1

4.88

4.89

4.9

4.91

4.92

4.93

4.94

Fiber Group Delay and Light Source PSD

Wavelength, λ [µm]

t g
(λ

) 
[n

s
/m

]

Group Delay

Source PSD

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
−300

−250

−200

−150

−100

−50

0
Chromatic Dispersion

Wavelength, λ [µm]

D
c(

λ)
 [p

s
/n

m
km

]

4.86 4.88 4.9 4.92 4.94
0

10

20

30

40

50

60

70

80

90
Chromatic Impulse response

Normalized time τ [ns/m]

a.
u.

−1 −0.5 0 0.5 1
4.87

4.88

4.89

4.9

4.91

4.92

4.93

4.94

4.95
Normalized Time Intervals

Wavelength interval Λk

T
im

e 
in

te
rv

al
 [n

s
/m

]

τL = ζ(λL)

τR = ζ(λR)

Figure 4.21 Sellmeier group delay. Wavelength interval 600 nm ≤ λ ≤ 1100 nm, single-Gaussian peak source
FWHM = 150 nm, λc = 850 nm

Figure 4.22 Chromatic impulse response to the spectral condition shown above
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4.3.3.2 Example 1.b: SUSG1550 (Figures 4.23 and 4.24)
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Figure 4.23 Sellmeier group delay. Wavelength interval 1300 nm ≤ λ ≤ 1900 nm, single-Gaussian peak
source FWHM = 150 nm, λc = 1550 nm

Figure 4.24 Chromatic impulse response to the spectral condition shown above
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4.3.3.3 Example 1.c: SUSG1300 (Figures 4.25 and 4.26)
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Figure 4.25 Sellmeier group delay. Wavelength interval 1050 nm ≤ λ ≤ 1550 nm, single-Gaussian peak
source FWHM = 150 nm, λc = 1300 nm

Figure 4.26 Chromatic impulse response to the spectral condition shown above
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4.3.3.4 Example 2.a: SRSG850 (Figures 4.27 and 4.28)
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Figure 4.27 Sellmeier group delay with added multi-Gaussian ripple. Wavelength interval 600 nm ≤ λ ≤
1100 nm, single-Gaussian peak source FWHM = 150 nm, λc = 850 nm

Figure 4.28 Chromatic impulse response to the spectral condition shown above
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4.3.3.5 Example 2.b: SRSG1550 (Figures 4.29 and 4.30)
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Figure 4.29 Sellmeier group delay with added multi-Gaussian ripple. Wavelength interval 1300 nm ≤ λ ≤
1900 nm, single-Gaussian peak source FWHM = 150 nm, λc = 1550 nm

Figure 4.30 Chromatic impulse response to the spectral condition shown above
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4.3.3.6 Example 2.c: SRSG1300 (Figure 4.31 and 4.32)
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Figure 4.31 Sellmeier group delay with added multi-Gaussian ripple. Wavelength interval 1050 nm ≤ λ ≤
1550 nm, single-Gaussian peak source FWHM = 150 nm, λc = 1300 nm

Figure 4.32 Chromatic impulse response to the spectral condition shown above



160 Multi-Gigabit Transmission over Multimode Optical Fibre

4.3.3.7 Example 3.a: SUMG850-A (Figures 4.33 and 4.34)
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Figure 4.33 Sellmeier group delay. Wavelength interval 600 nm ≤ λ ≤ 1100 nm, multi-Gaussian peaks
Np = 5, FWHM = 20 nm, ∆λp = 50 nm, A = [0.15, 0.20, 0.30, 0.20, 0.15], λc = 850 nm

Figure 4.34 Chromatic impulse response to the spectral condition shown above
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4.3.3.8 Example 3.a: SUMG850-B (Figures 4.35 and 4.36)
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Figure 4.35 Sellmeier group delay. Wavelength interval 840 nm ≤ λ ≤ 860 nm, multi-Gaussian peaks Np = 5,
FWHM = 0.20 nm, ∆λp = 1 nm, A = [0.15, 0.20, 0.30, 0.20, 0.15], λc = 850 nm

Figure 4.36 Chromatic impulse response to the spectral condition shown above
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4.3.3.9 Example 3.b: SUMG1550-A (Figures 4.37 and 4.38)

1.3 1.4 1.5 1.6 1.7 1.8
0

5

10

15

20

25

30

35

40
Chromatic Dispersion

D
c(
l
) 

[p
s

/n
m

km
]

Wavelength, l [µm]
1.3 1.4 1.5 1.6 1.7 1.8

4.876

4.878

4.88

4.882

4.884

4.886

Fiber Group Delay and Light Source PSD

Wavelength, l [µm]

t g
(l

) 
[n

s
/m

]

4.87 4.875 4.88 4.885 4.89
0

100

200

300

400

500

600

700

800

−1 −0.5 0 0.5 1
4.874

4.876

4.878

4.88

4.882

4.884

4.886

4.888

4.89
Normalized Time Intervals

Wavelength interval Λk

T
im

e 
in

te
rv

al
 [n

s
/m

]

Chromatic Impulse response

Normalized time τ [ns/m]

a.
u.

τL = ζ(lL)

τR = ζ(lR)

Group Delay
Source PSD

Figure 4.37 Sellmeier group delay. Wavelength interval 1300 nm ≤ λ ≤ 1800 nm, multi-Gaussian peaks
Np = 5, FWHM = 20 nm, ∆λp = 50 nm, A = [0.15, 0.20, 0.30, 0.20, 0.15], λc = 1550 nm

Figure 4.38 Chromatic impulse response to the spectral condition shown above
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4.3.3.10 Example 3.b: SUMG1550-B (Figures 4.39 and 4.40)
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Figure 4.39 Sellmeier group delay. Wavelength interval 1545 nm ≤ λ ≤ 1565 nm, multi-Gaussian peaks
Np = 5, FWHM = 0.20 nm, ∆λp = 1 nm, A = [0.15, 0.20, 0.30, 0.20, 0.15], λc = 1550 nm

Figure 4.40 Chromatic impulse response to the spectral condition shown above
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4.3.3.11 Example 3.c: SUMG1300-A (Figures 4.41 and 4.42)
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Figure 4.41 Sellmeier group delay. Wavelength interval 1295 nm ≤ λ ≤ 1305 nm, multi-Gaussian peaks
Np = 5, FWHM = 0.2 nm, ∆λp = 1 nm, A = [0.15, 0.20, 0.30, 0.20, 0.15], λc = 1300 nm

Figure 4.42 Chromatic impulse response to the spectral condition shown above
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4.3.3.12 Example 3.c: SUMG1300-B (Figures 4.43 and 4.44)

Figure 4.43 Sellmeier group delay. Wavelength interval 1268 nm ≤ λ ≤ 1278 nm, multi-Gaussian peaks
Np = 5, FWHM = 0.2 nm, ∆λp = 1 nm, A = [0.15, 0.20, 0.30, 0.20, 0.15], λc = 1272.6 nm

Figure 4.44 Chromatic impulse response to the spectral condition shown above
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4.3.3.13 Example 3.c: SUMG1300-C (Figures 4.45 and 4.46)
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Figure 4.45 Sellmeier group delay. Wavelength interval 1100 nm ≤ λ ≤ 1500 nm, multi-Gaussian peaks
Np = 5, FWHM = 20 nm, ∆λp = 50 nm, A = [0.15, 0.20, 0.30, 0.20, 0.15], λc = 1272.6 nm

Figure 4.46 Chromatic impulse response to the spectral condition shown above
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4.3.3.14 Example 4.a: SRMG850 (Figures 4.47 and 4.48)
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Figure 4.47 Wavelength interval 600 nm ≤ λ ≤ 1900 nm, multi-Gaussian peaks Np = 5, FWHM = 20 nm,
∆λp = 50 nm, A = [0.15, 0.20, 0.30, 0.20, 0.15], λc = 850 nm. Sellmeier group delay with added multi-
Gaussian ripple

Figure 4.48 Chromatic impulse response to the spectral condition shown above
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4.3.3.15 Example 4.b: SRMG1550 (Figures 4.49 and 4.50)
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Figure 4.49 Wavelength interval 600 nm ≤ λ ≤ 1900 nm, multi-Gaussian peaks Np = 5, FWHM = 20 nm,
∆λp = 50 nm, A = [0.15, 0.20, 0.30, 0.20, 0.15], λc = 1550 nm. Sellmeier group delay with added multi-
Gaussian ripple

Figure 4.50 Chromatic impulse response to the spectral condition shown above
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4.3.3.16 Example 4.c: SRMG1310 (Figures 4.51 and 4.52)
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Figure 4.51 Wavelength interval 600 nm ≤ λ ≤ 1900 nm, multi-Gaussian peaks Np = 5, FWHM = 20 nm,
∆λp = 50 nm, A = [0.15, 0.20, 0.30, 0.20, 0.15], λc = 1300 nm. Sellmeier group delay with added multi-
Gaussian ripple

Figure 4.52 Chromatic impulse response to the spectral condition shown above



170 Multi-Gigabit Transmission over Multimode Optical Fibre

4.3.4 Comments and Remarks

The results achieved in the previous section are quite remarkable and some comments are needed to
point out major conclusions. Assuming two group delay modelings and two source spectrum PSDs,
four different propagation conditions have been established for the chromatic impulse response.
Those conditions have been grouped in Table 4.1 according to the following four identifica-
tion codes:

SUSG −→ Sellmeier uniform single-Gaussian

SRSG −→ Sellmeier ripple single-Gaussian

SRSG −→ Sellmeier uniform Multi -Gaussian

SRSG −→ Sellmeier ripple multi -Gaussian

Each coded condition has been solved for the three wavelength ranges of interest, namely λc =
850 nm, λc = 1300 nm and λc = 1550 nm, producing 12 basic chromatic impulse responses. In addi-
tion to those conditions, four more cases have been added in order to highlight major peculiarities
when multi-Gaussian source profiles are considered. Major conclusions are:

1. If the source PSD does not overlap any zero-dispersion wavelength, typically in both λc =
850 nm and λc = 1550 nm wavelength ranges, the chromatic impulse response closely resembles
the source power spectral density. This natural behavior of the chromatic impulse response can
be clearly seen from the seven computed cases in the following subsections:
(a) Section 4.3.3.1: SUSG850
(b) Section 4.3.3.2: SUSG1550
(c) Section 4.3.3.7: SUMG850-A
(d) Section 4.3.3.8: SUMG850-B
(e) Section 4.3.3.9: SUMG1550-A
(f) Section 4.3.3.10: SUMG1550-B
(g) Section 4.3.3.11: SUMG1300-A

(Figure 4.21)
(Figure 4.23)
(Figure 4.33)
(Figure 4.35)
(Figure 4.37)
(Figure 4.39)
(Figure 4.41)

2. If the source PSD spans over one or more zero-dispersion wavelengths of the group delay
function the resulting chromatic impulse response is fully unpredictable, as is clearly shown
by the computed cases. Essentially, if the source PSD has not a negligible value at the zero-
dispersion wavelength, that power contribution strongly dominates the whole response over
the remaining source power terms and the chromatic impulse response closely resembles a
Dirac delta profile. This situation, which would be quite predictable in the presence of a single
zero-dispersion wavelength leading to an almost ideal response, becomes quite unpredictable if
more zero-dispersion wavelengths are simultaneously present in the group delay function. This
situation is well represented for the modeling of the group delay by adding a weighted Gaussian
ripple. Depending on the ripple amplitude, this will reflect a corresponding time shifting of
the various impulsive components, leading to a strong echoes-affected impulse response. Such
interesting cases have very often been exaggerated in the previous examples by adding a well-
defined and consistent ripple to the uniform Sellmeier group delay function. This led to the
following six simulation results:
(a) Section 4.3.3.4: SRSG850
(b) Section 4.3.3.5: SRSG1550
(c) Section 4.3.3.6: SRSG1300
(d) Section 4.3.3.14: SRMG850
(e) Section 4.3.3.15: SRMG1550
(f) Section 4.3.3.16: SRMG1300

(Figure 4.27)
(Figure 4.51)
(Figure 4.29)
(Figure 4.31)
(Figure 4.47)
(Figure 4.49)

3. The remaining three cases all refer to the uniform Sellmeier group delay function excited in the
λc = 1300 nm range by either a single-Gaussian or a multi-Gaussian source PSD. The interesting
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result is that the chromatic impulse response behaves almost independently from the spectrum
profile, resulting in a very sharp single-peak impulsive response. This means that the amount
of source spectrum energy allocated close to the zero-dispersion wavelength strongly dominates
the whole energy distribution of the fiber chromatic response. These cases are reported in the
previous subsections:
(a) Section 4.3.3.3: SUSG1300
(b) Section 4.3.3.12: SUMG1300-B
(c) Section 4.3.3.13: SUMG1300-C

(Figure 4.25)
(Figure 4.43)
(Figure 4.45)

4.4 Moments of Chromatic Impulse Response
In this section the first- and second-order moments of the chromatic impulse response will be
discussed. The first-order moment gives the average time value of the response, whereas the second-
order moment gives the response temporal dispersion. Those two moments are quite useful in
characterizing the chromatic impulse response behavior and are used extensively in first-order
estimations of the optical fiber transmission system performance.

4.4.1 Energy Normalization

In order to proceed as easily as possible, it is convenient to consider the chromatic impulse response
derived in Equation (4.32). Here, in order to simplify the notation the reference to some specific
hth individual mode in the multimode fiber has been removed. This dependence must of course be
implicitly intended in the following:

hc(z, t) =
∫ +∞

−∞
Ss(λ)δ[t − zτg(λ)] dλ (4.78)

where the temporal variable is the time t and not the normalized time τ = t/z. This is quite
important since the response normalization is defined with respect to the absolute time variable t .
The integral of the impulse response in the time variable gives the energy Wc of the pulse hc(z, t).
In the present theory any losses are excluded so energy conservation is expected at every section
of the fiber, independently of the distance z:

Wc =
∫ +∞

−∞
hc(z, t) dt =

∫ +∞

−∞

∫ +∞

−∞
Ss(λ)δ[t − zτg(λ)] dλ dt (4.79)

Performing the integral over time first and using the integral property of the Dirac delta function
it is easily concluded that

Wc =
∫ +∞

−∞
hc(z, t) dt =

∫ +∞

−∞
Ss(λ) dλ

∫ +∞

−∞
δ[t − zτg(λ)] dt =

∫ +∞

−∞
Ss(λ) dλ (4.80)

Finally, due to the assumed source PSD normalization in Equation (4.25), it is concluded that the
chromatic impulse response has constant unit energy:

Wc =
∫ +∞

−∞
hc(z, t) dt = 1 (4.81)

It is instructive to compute the chromatic response energy in the normalized time domain, using
the variable τ . To this end, it is easy to solve the following integral by the variable substitution
τ = t/z and using the result just derived in Equation (4.81):∫ +∞

−∞
hc(z, t) dτ = 1

z

∫ +∞

−∞
hc(z, t) dt = Wc

z
= 1

z
(4.82)
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In conclusion, the chromatic impulse response energy is conserved and is normalized to the unit.
The same normalization integral in the variable τ gives accordingly a decreasing value with the
distance z. This result will be used later in the first- and second-order moment calculations.

In the following derivations the explicit expression for the chromatic impulse response given in
Equation (4.71) will be needed several times. As mentioned above, any index reference to modal
properties will be discarded and the index k will be used instead to refer to the chromatic impulse
response contribution of the partial wavelength interval due to the multivalued inverse group delay
function. From Equation (4.71),

hc,k(τ ) ≡ Ss[ζg(τ )]

|Dc[ζg(τ )]|︸ ︷︷ ︸
λ=ζg(τ )∈Λk,k=1,2,...,N−1,




Λ0=(0,λ1)

Λk=(λk,λk+1)

ΛN=(λN ,+∞)

⇒ hc(z, τ ) = 1

z

N∑
k=0

hc,k(τ ) (4.83)

In the expression above the notation referring to the three different partition intervals Λ0, Λk , ΛN

has been simplified.

4.4.2 Average Value

The average value t(z) of the time variable t according to the chromatic impulse response hc(z, t)

is defined by the following integration, where the response normalization (4.81) is used:

t(z) ≡

∫ +∞

−∞
t hc(z, t) dt∫ +∞

−∞
hc(z, t) dt

=
∫ +∞

−∞
t hc(z, t) dt (4.84)

Note that the average time t(z) is a function of the distance because the integration operates only
over the time variable of the impulse response hc(z, t). Substituting Equation (4.83) gives

t(z) = 1

z

N∑
k=0

∫
zTk

t hc,k(τ ) dt (4.85)

Each integral in the sum must be performed over the partial time interval (tk, tk+1) = z(τk, τk+1) =
zTk . Substituting the normalized variable τ = t/z gives

t(z) = z

N∑
k=0

∫
Tk

τhc,k(τ ) dτ (4.86)

This expression has a relevant physical meaning. In order to show this, the average value of the nor-
malized temporal variable τ = t/z is considered. Following the same definition as Equation (4.84)
and using the result in Equation (4.82) gives

τ ≡

∫ +∞

−∞
τhc(z, t) dτ∫ +∞

−∞
hc(z, t) dτ

= z

∫ +∞

−∞
τhc(z, t) dτ (4.87)
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Substituting the expression (4.83) of the chromatic impulse response, the following important
result of the average value of the normalized time is found:

τ =
N∑

k=0

∫
Tk

τhc,k(τ ) dτ (4.88)

note that the average delay τ does not depend upon the distance z. Comparing with Equation (4.86)
it is concluded as expected that

t(z) = zτ (4.89)

The average time delay of the chromatic impulse response depends linearly upon the distance z.
This statement holds in general without any further assumption.

Expression (4.89) allows a calculation to be made of the average time operating just over the
normalized time response, and then multiplying the result by the required distance z. The normalized
average delay τ of the chromatic impulse response can be computed explicitly in terms of the
source PSD and chromatic dispersion coefficient. Substituting Equation (4.83) into Equation (4.88)
and using Equation (4.89), it can be concluded that

τ =
N∑

k=0

∫
Tk

τ
Ss[ζg(τ )]

|Dc[ζg(τ )]| dτ

︸ ︷︷ ︸
λ=ζg(τ )∈Λk,k=1,2,...,N−1,




Λ0=(0,λ1)

Λk=(λk,λk+1)

ΛN =(λN ,+∞)

⇒ t = zτ (4.90)

This expression represents the general analytical form of the average delay of the chromatic impulse
response. The pulse centering procedure used in the chromatic impulse response solution algorithm
presented in Section 4.3 was based on expression (4.90). In the simple case where any stationary
wavelength was included in the spectral range Λs of the source PSD, the above expression greatly
simplifies:

τ =
∫

Ts

τ
Ss[ζg(τ )]

|Dc[ζg(τ )]| dτ︸ ︷︷ ︸
τ∈Ts↔λ=ζg(τ )∈Λs

⇒ t = zτ (4.91)

4.4.3 Linear Approximation of the Group Delay

The average delay τ depends on the whole contribution of the chromatic dispersion function over
the wavelength interval defined by the source PSD. In the following the linear approximation of
the chromatic dispersion coefficient around the average wavelength of the source spectrum will be
introduced. This will allow a significant simplification of the expression (4.90), which will lead to
an interesting physical interpretation.

The average wavelength λ emitted by the source power spectral density is given by the following
averaging integral:

λ ≡

∫ +∞

−∞
λSs(λ) dλ∫ +∞

−∞
Ss(λ) dλ

=
∫ +∞

−∞
λSs(λ) dλ (4.92)
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Here the normalization property (4.25) of the source PSD was used. Assuming that the group delay
function τg(λ) can be written as a power series around the average source wavelength λ,

τg(λ) = τg(λ) +
∑
k=1

[
dkτg(λ)

dλk

]
λ

(λ − λ)k

k!
(4.93)

It is important to note that in general the value of the group delay τg(λ) assumed at the average
spectrum wavelength λ is different from the average delay τ of the chromatic impulse response
given by Equation (4.90); therefore, in general τg(λ) �= τ . This is a consequence of the response
pulse distortion with respect to the source PSD profile.

Since the chromatic dispersion coefficient is defined as the first-order wavelength derivative of
the group delay function, it can be concluded from Equation (4.93) that

Dc(λ) =
∑
k=0

[
dk+1τg(λ)

dλk+1

]
λ

(λ − λ)k

k!

= Dc(λ) +
∑
k=1

[
dkDc(λ)

dλk

]
λ

(λ − λ)k

k!
(4.94)

It is already known that the first derivative of the chromatic dispersion coefficient is usually iden-
tified by the symbol Sc(λ) in order to remember that it is the slope of the chromatic dispersion
coefficient Dc(λ), but it must not be confused with the source PSD notation Ss(λ) used so far
in this chapter. Equations (4.93) and (4.94) give the following linear approximation of the group
delay function around the average spectrum wavelength:

τg(λ) ∼= τg(λ) + (λ − λ)Dc (4.95)

where
Dc ≡ Dc(λ) (4.96)

Using the linear approximation (4.95) of the group delay function around the average wavelength
λ of the source spectrum, the average delay τ of the chromatic impulse response in Equation (4.91)
takes the simplified form:

τ ∼= 1

|Dc|
∫

Ts

τSs[ζg(τ )] dτ︸ ︷︷ ︸
τ∈Ts←→λ=ζg(τ )∈Λs

(4.97)

If linear group delay is assumed, implicitly a single-valued inverse group delay function λ =
ζg(τ ) is then assumed and the wavelength partition is no longer required. Consequently, from
Equation (4.90) it is possible to remove the sum symbol, replacing the sum over multiple integrals
with the single integral over the wavelength range defined by the source PSD as reported in
Equation (4.91). This means that for every instant τ belonging to the integration interval Ts, one
and only one wavelength λ = ζg(τ ) exists that belongs to the wavelength interval Λs defined by
the source power spectral density Ss(λ).

The approximate expression (4.97) of the average delay of the chromatic impulse response has
a meaningful interpretation. In fact, by changing the integration variable to λ = ζg(τ ),

λ = ζg(τ )

τ∈Ts

←→ τ = τg(λ)

λ∈Λs=(λmin,λmax)

,
Ts ←→ Λs, dτ = dλ

dζg(τ )/dτ
= dτg(λ)

dλ
dλ (4.98)
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and

τ ∼= 1

|Dc|
∫

Λs

∣∣∣∣dτg(λ)

dλ

∣∣∣∣ τg(λ)Ss(λ) dλ =
∫

Λs

τg(λ)Ss(λ) dλ (4.99)

where the linear approximation Dc
∼= [dτg(λ)/dλ]λ∈Λs was used. The modulus of the wavelength

derivative of the group delay introduced in the previous expression takes into account the sign of
the wavelength increment dλ and the positive sign of the integration interval Λs = (λmin, λmax).
Substituting the linear group delay (4.95) into Equation (4.99) gives

τ ∼=
∫

Λ

[τg(λ) + (λ − λ)Dc]Ss(λ) dλ

= τg(λ)

∫
Λ

Ss(λ) dλ + Dc

∫
Λ

(λ − λ)Ss(λ) dλ = τg(λ) (4.100)

As expected, this gives the following theorem. Under the linear group delay assumption the group
delay evaluated at the average wavelength λ of the source spectrum coincides with the average
delay of the corresponding chromatic impulse response τ = τg(λ). This interesting consideration
leads to the following fundamental theorem. Assuming the linear group delay approximation, the
chromatic impulse response has exactly the same profile as the source PSD.

To prove this fundamental theorem, the general expression for the chromatic impulse response
reported in Equation (4.91) is considered one more time. The linear approximation of the group
delay allows the single wavelength interval Λs defined by the source power spectrum to be used:

hc(z, τ ) = 1

z

Ss[ζg(τ )]

|Dc[ζg(τ )]|
∼= 1

z|Dc|
Ss[ζg(τ )] (4.101)

where τ ∈ Ts ↔ ζg(τ ) = λ ∈ Λs. Due to the assumed linear relationship between time and wave-
length, the source spectrum profile Ss(λ) is converted into the time-scaled profile of the chromatic
impulse response. The scale factor is represented by the chromatic dispersion coefficient Dc.
Equation (4.95) gives the following linear inverse group delay:

λ = ζg(τ ) ∼= λ + τ − τ

Dc
, τ = τg(λ) (4.102)

Substituting the linear inverse group delay function into Equation (4.101) gives the chromatic
impulse response under the linear group delay approximation:

hc(z, τ ) ∼= 1

z|Dc|
Ss

(
λ + τ − τ

Dc

)
(4.103)

where τ ∈ Ts ↔ ζg(τ ) = λ + (τ − τ)/Dc = λ ∈ Λs.
Figure 4.53 shows the wavelength–time scaling principle. The gray shaded source power spectral

density is assumed to be centered in the third optical window, where the group delay has a positive
slope. Assuming that the linear approximation holds, the group delay is completely characterized
by the average delay at the average spectrum wavelength and the chromatic dispersion coefficient,
which represents the group delay slope.

In the figure two different cases have been characterized by two average delay and two chromatic
dispersion coefficients. Those two different excitations can be easily achieved by sliding the source
average wavelength along the third window range. In order to simplify the graphics, two different
group delay slopes at the same average source wavelength have been given.

Expression (4.103) gives the chromatic impulse response under the assumption of a linear group
delay approximation. This condition is largely encountered in most practical situations. The source
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Figure 4.53 Chromatic impulse response with a linear group delay approximation. The linear group delay has
a constant chromatic dispersion coefficient which leads to the chromatic impulse response being the time-scaled
image of the source power spectral density. The slope of the group delay determines the scaling factor, as
reported above for the increasing dispersion coefficient. The linear approximation is of course quite reasonable
for a relatively narrow spectrum width located away from the zero dispersion wavelength

spectral width is usually less the 4 nm for any laser light excitation (multilongitudinal mode FP
laser) and in this range the group delay is well approximated by a straight line, both in the first
(820 nm ≤ λ ≤ 870 nm) and third (1530 nm ≤ λ ≤ 1610 nm) windows. The situation in the second
window (1265 nm ≤ λ ≤ 1335 nm) is different and usually requires careful consideration of the
zero-dispersion wavelength, as shown in the computer simulation presented in Section 4.3.

4.4.4 Pulse Dispersion: Variance and RMS Width

In order to compute the pulse dispersion needed for the second-order moment of the chromatic
impulse response function, the variance σ 2

c (z) of the time variable t according to the chromatic
impulse response hc(z, t) is defined by the following integration, where the response energy nor-
malization (4.81) is again used:

σ 2
c (z) ≡

∫ +∞

−∞
[t − t(z)]2hc(z, t) dt∫ +∞

−∞
hc(z, t) dt

=
∫ +∞

−∞
[t − t(z)]2hc(z, t) dt (4.104)

It is noted that the variance σ 2
c (z) is a function of the distance z because the integration operates

only over the time variable of the impulse response hc(z, t). Substituting expression (4.83) of the
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chromatic impulse response gives

σ 2
c (z) = 1

z

N∑
k=0

∫
zTk

[t − t(z)]2hc,k(τ ) dt (4.105)

The integration variable is the absolute time t while each response contribution depends on the
normalized time τ . In addition, each partial integral must be performed over the time interval (tk ,
tk+1) = z(τk, τk+1) = zTk in exactly the same way as encountered for the average delay calcu-
lation. Substituting the normalized variable τ = t/z, dt = z dτ , t ∈ zTk ⇒ τ ∈ Tk , and using the
result (4.89), expression (4.103) becomes

σ 2
c (z) = z2

N∑
k=0

∫
Tk

(τ − τ)2hc,k(τ ) dτ (4.106)

The expression just derived for the variance of the chromatic impulse response looks quite similar
to the expression (4.86) of the average delay t . This suggests proceeding with the definition of the
corresponding chromatic variance σ 2

τ of the normalized time variable τ :

σ 2
τ (z) ≡

∫ +∞

−∞
(τ − τ)2hc(z, t) dτ∫ +∞

−∞
hc(z, t) dτ

(4.107)

From Equation (4.81), ∫ +∞

−∞
hc(z, t) dτ = 1

z

∫ +∞

−∞
hc(z, t) dτ = 1

z
(4.108)

and the variance of the normalized time variable τ assumes the following form:

σ 2
τ (z) = z

∫ +∞

−∞
(τ − τ)2hc(z, t) dτ (4.109)

Substituting the chromatic impulse response expression (4.83) gives the following relevant theorem:

σ 2
τ =

N∑
k=0

∫
Tk

(τ − τ)2hc,k(τ ) dτ (4.110)

The variance of the normalized time variable evaluated by means of the chromatic impulse response
no longer depends on the distance z.

Comparing with the expression of the variance given in Equation (4.106), it can be concluded that

σ 2
c (z) = z2σ 2

τ (4.111)

The variance of the chromatic impulse response depends quadratically upon the distance z. This
statement holds in general, without any further assumption.

The RMS pulse width is defined as the square root of the variance. From Equation (4.110)
and (4.111) the following general expression is obtained for the RMS width of the chromatic
impulse response:

στ =
√√√√ N∑

k=0

∫
Tk

(τ − τ)2hc,k(τ ) dτ ⇒ σc(z) = zστ (4.112)
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This general expression allows for the calculation of the RMS pulse width in the absolute time
variable just by using the normalized time chromatic impulse response and then multiplying the
result by the required distance z. The normalized time RMS pulse width στ of the chromatic impulse
response can be computed explicitly in terms of both the source PSD Ss(λ) and the chromatic
dispersion coefficient Dc(λ). Substituting Equation (4.83) into Equation (4.112) gives the general
analytical expression for the RMS width of the chromatic impulse response in terms of the source
PSD and chromatic dispersion coefficient of the optical fiber:

στ =
√√√√ N∑

k=0

∫
Tk

(τ − τ)2
Ss[ζg(τ )]

|Dc[ζg(τ )]|dτ

︸ ︷︷ ︸
λ=ζg(τ )∈Λk,k=1,2,...,N−1,




Λ0=(0,λ1)

Λk=(λk,λk+1)

ΛN=(λN ,+∞)

⇒ σc(z) = zστ (4.113)

In the simple case of any stationary wavelength included in the spectral range Λs of the source
PSD, the above expression reduces to a single integration interval:

στ =
√∫

Ts

(τ − τ)2
Ss[ζg(τ )]

|Dc[ζg(τ )]|dτ

︸ ︷︷ ︸
τ∈Ts↔λ=ζg(τ )∈Λs

⇒ σc(z) = zστ (4.114)

4.4.5 Linear Approximation of the Group Delay

Using the linear approximation (4.95) of the group delay function around the average wavelength
λ of the source spectrum, the chromatic dispersion coefficient Dc(λ) = Dc(λ) = Dc can be brought
outside the integral in the expression (4.114) of the RMS pulse width στ of the chromatic impulse
response:

στ =
√

1

|Dc|
∫

Ts

(τ − τ)2Ss[ζg(τ )] dτ

︸ ︷︷ ︸
τ∈Ts↔λ=ζg(τ )∈Λs

⇒ σc(z) = zστ (4.115)

If it is assumed that the linear group delay approximation lies in the source wavelength range,
the inverse group delay function λ = ζg(τ ) is a single-valued function and the wavelength partition
due to stationary points is no longer required. Consequently, the RMS pulse width is given by
expression (4.114) and for every instant τ belonging to the integration interval Ts one and only one
wavelength defined by the linear inverse function λ = ζg(τ ) exists that belongs to the wavelength
interval Λs defined by the source power spectral density Ss(λ).

At this point the same mathematical problem arises that was already encountered in the derivation
of the average delay theorem stated in expression (4.100). To proceed analogously, the integration
variable τ is changed to λ = ζg(τ ) in Equation (4.115) by using the single-valued (linear) inverse
group delay function:

λ = ζg(τ )

τ∈Ts

←→ τ = τg(λ),

λ∈Λs=(λmin,λmax)

Ts ←→ Λs, dτ = dλ

dζg(τ )/dτ
= dτg(λ)

dλ
dλ (4.116)

and

στ =
√∫

Λs

[τg(λ) − τ ]2Ss(λ) dλ (4.117)
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By virtue of the linear approximation of the group delay (4.95), the constant value of the chro-
matic dispersion coefficient in the wavelength interval Λs coincides with the first-order wavelength
derivative Dc

∼= [dτg(λ)/dλ]λ∈Λs . Using expression (4.95) and the property (4.100), the pulse RMS
width (4.117) is written as follows:

στ = |Dc|
√∫

Λs

(λ − λ)2Ss(λ) dλ (4.118)

The integral under the square root coincides with the variance of the source power spectral den-
sity σ 2

s :

σ 2
s =

∫
Λs

(λ − λ)2Ss(λ) dλ (4.119)

Finally, substituting the variance of the source PSD into Equation (4.119) and using the result (4.100)
gives the well-known theorem of the RMS pulse width of the chromatic impulse response under a
linear group delay approximation:

σc(z, λ) = |Dc(λ)|σsz (4.120)

The RMS width of the chromatic impulse response, under the assumption of the linear group delay,
is given by the product of the chromatic dispersion coefficient with the RMS spectral width of the
source power spectral density by the distance z.

In the following, Equation (4.120) will be referred to as the linear chromatic pulse dispersion
condition. In Section 4.4.6 the numerical computed RMS pulse dispersion will be compared quan-
titatively with the linear chromatic pulse dispersion condition (4.120) in order to check the validity
of that useful approximation.

4.4.6 Comments on the Linear Approximation

In this section the RMS pulse dispersion computed numerically using expression (4.113) will be
compared with the corresponding approximation given in Equation (4.120) which is valid for the
linear group delay evaluated at the average wavelength of the source power spectral density for all
the cases 1(a) to (g) presented in Section 4.3.4. The comparison results are shown in Table 4.3,
where the first column reports the code of the case considered according to the coding detailed
in Section 4.3.4 and the last column shows the percentage error. Columns 7 and 8 report respec-
tively the RMS linear chromatic pulse dispersion (4.120) and the RMS numerically computed pulse
dispersion according to Equation (4.113).

The results shown in the table are quite interesting and give a clear indication of the validity
of the useful linear dispersion approximation. The rows are arranged according to the excited
wavelength range, from the first window to the third one. In the following the different results will
be briefly analyzed.

The 850 nm wavelength range excitation is presented in the first three rows of the table. It is
clear that due to high dispersion coefficient values, a larger spectral width gives a higher error
than narrow spectral width sources. This leads to a relative error about 4 % to 6 % depending
on the source characteristic. A narrow spectral width leads to a very nice matching between the
numerically computed RMS pulse width and the corresponding linear approximation. This is clearly
understood if the very narrow spectral interval used by the source and the consequent validity of
the linear group delay approximation are considered.

The 1300 nm wavelength range excitation is presented in the subsequent four rows of the table.
As expected, the zero-dispersion wavelength leads to very different conclusions depending on
whether the source spectrum includes that wavelength or not. This is evident by the first, the
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Table 4.3 The table reports the comparison between the linear approximation and the numerically computed
parameters for nine cases considered in Section 4.3.4. All the considered cases refer to the Sellmeier uniform
group delay, without any ripple added. The second and third columns report respectively the average wave-
length and the RMS spectral width of the source power spectral density considered. Those two parameters
are used for evaluation of the linear approximation. The last three columns report respectively the RMS linear
chromatic pulse dispersion from Equation (4.120), the RMS numerically computed pulse dispersion according
to Equation (4.113) and the relative percentage error. It is evident that the different behaviors between the three
wavelength windows are characterized by the different values of the chromatic dispersion coefficient. Lower
values, but away from the zero-dispersion wavelength, give lower errors

Code λ

(nm)
σs

(nm)
τg(λ)

(ns/m)
τ

(ns/m)
Dc

(ps/nm km)
σ τ

(ps/m)
στ

(ps/m)
σ τ /στ − 1(%)

SUSG850 850 63.699 4.8892 4.8900 −84.015 5.3516 5.7222 −6.476

SUMG850-A 850 63.813 4.8892 4.8900 −84.004 5.3606 5.5940 −4.1723

SUMG850-B 850 1.2678 4.8892 4.8892 −84.008 0.1065 0.1065 0

SUSG1300 1300 63.654 4.8755 4.8756 2.6468 0.1685 0.2572 −34.487

SUMG1300-A 1300 1.2678 4.8755 4.8755 2.6479 0.00336 0.00336 0

SUMG1300-B 1272.6 1.2678 4.8755 4.8755 −0.0188 2.389e-5 8.415e-5 −71.61

SUMG1300-C 1272.6 63.813 4.8755 4.8756 −0.0115 73.31e-5 0.1715 −99.573

SUSG1550 1550 63.699 4.8787 4.8789 21.912 1.3958 1.3997 −0.279

SUMG1550-A 1550 63.813 4.8787 4.8789 21.918 1.3987 1.3991 −0.0286
SUMG1550-B 1550 1.2678 4.8787 4.8787 21.916 0.0278 0.0278 0

third and the fourth case where, almost independently of the single-line or multiple-line spectrum
profiles, the linear approximation clearly fails. It is remarkable that in the second case presented the
narrow spectrum does not include the zero-dispersion wavelength and the correspondence between
the RMS pulse widths is extremely precise. This confirms that the linear approximation holds,
even very close to any zero-dispersion wavelengths, but that must not be included in the spectral
excitation. Otherwise, its contribution will dominate the whole impulse response and the linear
approximation will fail.

The 1550 nm wavelength range excitation is presented in the last three rows of the table. The
lower value of the slope of the chromatic dispersion coefficient makes this parameter much less
dependent on the exciting wavelength and therefore the linear group delay approximation behaves
quite well. This is clearly shown in the three cases considered, where almost independently from
the source composition the percentage error is well below 0.5 %. This conclusion allows the lin-
ear chromatic pulse dispersion to be used with high confidence over the whole third window
applications.

Before closing this section, one important remark should be made. The RMS pulse width
expressions that have been derived, both the general formula (4.113) and the linear approximate
one (4.120), refer to the RMS value only. Both the chromatic impulse response width and the source
spectrum width must therefore be considered as RMS values. However, they are not related to any
specific profile. This sometimes raises misunderstanding when evaluating system performances.

4.4.7 Summary

In this section the general expressions for first- and second-order moments of the chromatic impulse
response have been derived. The theory presented includes general profiles for both the group delay
and the source power spectral density, allowing for the ripple profile and the multipeak spectrum
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Table 4.4 A summary of the principal equations derived in the text regarding first- and second-order moments
of the chromatic impulse response. The third column gives the applicability of the corresponding equation. The
last column gives the equation number in the text. The suffix c identifies the chromatic quantity

Parameter Expression Validity Reference
equation

Unit energy normalization Wc =
∫ +∞

−∞
hc(z, t) dt = 1 General (4.81)

Chromatic impulse response hc,k(τ ) ≡ Ss[ζg(τ)]

|Dc[ζg(τ)]|︸ ︷︷ ︸
λ=ζg(τ )∈Λk,k=1,2,...,N−1,




Λ0=(0,λ1)

Λk=(λk ,λk+1)

ΛN =(λN ,+∞)

General (4.83)

hc(z, τ) = 1

z

N∑
k=0

hc,k(τ )

Average delay τ c =
N∑

k=0

∫
Tk

τ
Ss[ζg(τ)]

|Dc[ζg(τ)]| dτ

︸ ︷︷ ︸
λ=ζg(τ )∈Λk,k=1,2,...,N−1,




Λ0=(0,λ1)

Λk=(λk ,λk+1)

ΛN =(λN ,+∞)

General (4.90)

tc(z) = zτ c

Linear group delay approximation τg(λ) ∼= τg(λ) + (λ − λ)Dc Linear (4.95)

Dc ≡ Dc(λ)

Linear average delay τ c = τg(λ) Linear (4.100)

Chromatic impulse response for the
linear group delay approximation

hc(z, τ) ∼= 1

z|Dc|
Ss

(
λ + τ − τ c

Dc

)
Linear (4.103)

τ ∈ Ts ←→ ζg(τ) = λ + τ − τ c

Dc
= λ ∈ Λs

Variance σ 2
τ =

N∑
k=0

∫
Tk

(τ − τ c)
2hc,k(τ ) dτ General (4.111)

σ 2
c (z) = z2σ 2

τ

RMS pulse width στ =
√√√√ N∑

k=0

∫
Tk

(τ − τ c)
2 Ss[ζg(τ)]

|Dc[ζg(τ)]| dτ

︸ ︷︷ ︸
λ=ζg(τ )∈Λk,k=1,2,...,N−1,




Λ0=(0,λ1)

Λk=(λk ,λk+1)

ΛN =(λN ,+∞)

General (4.113)

σc(z) = zστ

Linear RMS pulse width σc(z, λ) = |Dc(λ)|σsz Linear (4.120)
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respectively. The general expression for the chromatic impulse response hc(z, t) has been written
in Equation (4.83), neglecting any eventual modal dependence.

Section 4.4.1 dealt with normalization integrals and in Equation (4.81) it was demonstrated that
if the source PSD Ss(λ) has unit energy, even the chromatic impulse response hc(z, t) has unit
energy.

Section 4.4.2 dealt with the average delay t of the chromatic impulse response, leading to the
general expression reported in Equation (4.90).

Section 4.4.3 presented the linear group delay approximation (4.95). In this case, the response
delay τ coincides with the group delay evaluated at the average spectrum wavelength τg(λ) and
t = τ z = τg(λ)z, as stated in Equation (4.100). The linear group delay assumption leads to the
fundamental result that the chromatic impulse response coincides with the scaled source power
spectral density, as given by Equation (4.103).

Section 4.4.4 dealt with the variance of the chromatic impulse response, leading to the general
expression reported in Equation (4.111). That expression holds in general without either approx-
imation or group delay and source spectrum restrictions. Similar to the average delay, the RMS
pulse width increases linearly with the distance, as given in Equation (4.113).

Section 4.4.5 presented the variance theory for the linear group delay approximation. Under this
condition, the RMS pulse width of the chromatic impulse response assumes the familiar expression
given in Equation (4.120).

Table 4.4 summarizes all of the above results in order to take a close-up view of the moments
of the chromatic impulse response.

4.5 Conclusions and Remarks
In this chapter the theory has been developed of the chromatic impulse response in multimode
optical fiber realized using silica-based doped material. The chromatic response depends directly
on the dispersion relationship that characterizes each supported fiber mode when the group delay
is considered versus the optical source wavelength. The term ‘chromatic’ indicates the dependence
of the propagation characteristics on the light wavelength, which more generally sets the color.
For every given fiber mode the source power density and the modal group delay function versus
the wavelength determine the way the different spectral contributions of the mode power travel
relative to each other in order to reach the output fiber section where they are collected by the optical
detector. The dependence of the modal group delay on the wavelength gives the chromatic dispersion
property of the considered mode supported by the optical fiber, but the spectral contribution to the
composition of the chromatic impulse response depends equally on the spectral distribution of the
source power.

In conclusion, the chromatic impulse response is not a property of the optical waveguide as
a stand-alone component, but also depends strongly on the spectral characteristics of the light
source. This is the reason why the optical source has the well-known dominant role of performing
in every optical fiber communication system. In particular, the more the chromatic dispersion
makes a high dispersion contribution to the total parameter value, the more effective will be the
choice of optical source. This is the physical concept behind the choice between an externally
modulated semiconductor laser or an externally modulated light source. The former are used in
lower performing transmission systems where the chromatic dispersion is not the dominant limiting
factor.

A summary of the most relevant expressions derived in this chapter have been presented in
Table 4.4.



5
Theory of Multimode Response

Application to Multigigabit
Transmission Links

5.1 Introduction and Outline
In this chapter the theory of modal propagation in a multimode optical fiber is presented. The analy-
sis starts with some basic assumptions and expressions derived previously in Chapter 3, Section 3.4.
The modal impulse response is described as the superposition of the impulse response on each
excited mode. How does the impulse response of each individual fiber mode form? To answer this
question only needs to invoke the modal orthogonality and use the chromatic impulse response
of the selected fiber mode. The impulse response of each individual mode is given by the chro-
matic impulse response of that mode. By virtue of the mode orthogonality, all modes propagate
independently from each other, delivering their energy content at the detection section according
to the specific group delay constant. The result gives quite a clear picture: the multimode impulse
response is given by the intensity superposition of all individual modes reaching the output section
and each bringing the assigned amount of optical power.

The chromatic impulse response theory was developed in Chapter 4. In this chapter the theory
of modal response will be presented, assuming that no chromatic dispersion accounted for each
mode. This is equivalent to assuming that the chromatic impulse response of each mode is the
ideal impulse distribution (Dirac delta function), properly delayed by the corresponding modal
group delay evaluated at the source wavelength. This approach allows the modal behavior to be
conceptually separated from the chromatic behavior, leading to a clear physical picture of the
multimode fiber impulse response. The second section starts with calculation of the most used
averages of the modal impulse response, namely the mode normalization, the average group delay
and the modal dispersion. The third section derives the mathematical closed-form expression of the
modal impulse response with the related pulse moments. The fourth section develops the algorithm
and computer model of the multimode fiber impulse response, including both the chromatic and the
modal contributions. Numerous examples provide a clear understanding of the underlying physical
picture and mathematical modeling. The fifth section deals with the fundamental concept of the
frequency response, simply derived using the Fourier transform definition. In this section the new
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 2006 John Wiley & Sons, Ltd. ISBN: 0-471-89175-4
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concept of the modal function is introduced as a useful tool for understanding the linear modeling
behavior of the multimode fiber under some light restrictions. Several mathematical models of
group delay distributions are presented in order to predict and manage the modal impulse response
profile. This approach leads to defining some functional characteristics of the group delay function
and launch condition in order to expect a symmetric Gaussian fit response.

5.2 Moments of Modal Impulse Response
In this section the first- and the second-order moments of the modal impulse response derived
in Chapter 3, Section 3.5, will be considered. A similar analysis has already been performed for
the chromatic impulse response, in Chapter 4, Section 4.4. As usual, attention will be focused on
the ensemble average and on the variance of the modal impulse response, according to expres-
sion (3.55). Before computing the related moments, it is convenient to consider first the normal-
ization condition for the modal impulse response.

5.2.1 Energy Normalization

If a multimode fiber with M excited modes at the fixed source wavelength λ is considered, the
modal impulse response υ(z, t, λ) is given by the set of M impulses properly weighted and delayed.
Each impulse is weighted by the square modulus of the coupling coefficient |ah(λ)|2 between the
light source distribution and the corresponding modal field distribution, and is translated according
to the group delay of the supporting hth fiber mode τg,h(λ). The Greek letter υ, ‘upsilon’, is used to
indicate the modal impulse response υ(z, t, λ) and to distinguish from the chromatic contribution
hc,h(z, t, λ) derived in previous chapters. In this chapter each mode group is labeled with the index
h. The energy of the modal impulse response is given by the following integral, where use is made
of the general expression (3.55):

Wm =
∫ +∞

−∞
υ(z, t, λ) dt =

M∑
h=1

|ah(λ)|2
∫ +∞

−∞
δ[t − zτg,h(λ)] dt (5.1)

By virtue of the Dirac delta definition and of the normalization property (3.57), it can be concluded
immediately that independently from any wavelength and distance z, the modal impulse response
is correctly normalized with unit energy:

Wm =
∫ +∞

−∞
υ(z, t, λ) dt = 1 (5.2)

In deriving the normalization property of the modal impulse response the characteristic condition
is represented by Equation (3.57). Analogously, the characteristic condition for achieving the nor-
malization of chromatic impulse response was the unit energy requirement of the optical source
spectrum (4.25). It is interesting to note that moving from the chromatic to the modal response,
the normalizing requirement moves from the spectral integration (4.25) towards the spatial integra-
tion (3.57).

Using the temporal variable per unit length τ = t/z instead of the absolute time t , the normal-
ization condition for the modal impulse response takes the following form:

∫ +∞

−∞
υ(z, t, λ) dτ =

M∑
h=1

|ah(λ)|2
∫ +∞

−∞
δ[t − zτg,h(λ)] dτ

= 1

z

M∑
h=1

|ah(λ)|2
∫ +∞

−∞
δ[t − zτg,h(λ)] dt = Wm

z
= 1

z
(5.3)
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This result has already been obtained in conjunction with the normalization (4.82) of the chromatic
impulse response and it can be justified accordingly. In fact, using the variable τ = t/z to perform
the integration, the energy per unit length of the modal impulse response must decrease linearly with
the distance due to the corresponding pulse broadening due to the differential mode delay (DMD).
This result will be used in the derivation of the first- and second-order moment expressions.

5.2.2 Average Value

The average temporal value of the modal impulse response is given by the integral (4.84), where
the chromatic impulse response is substituted by the modal impulse response:

tm(z, λ) ≡

∫ +∞

−∞
tυ(z, t, λ) dt∫ +∞

−∞
υ(z, t, λ) dt

=
∫ +∞

−∞
tυ(z, t, λ) dt (5.4)

The index m is added to identify the modal parameter, and the energy normalization (5.2) has been
used. Replacing the expression of the modal impulse response (3.55) gives

tm(z, λ) =
M∑

h=1

|ah(λ)|2
∫ +∞

−∞
t δ
[
t − z τg,h(λ)

]
dt (5.5)

Using the Dirac delta definition gives the following expression of the ensemble average delay
tm(z, λ):

tm(z, λ) = z

M∑
h=1

|ah(λ)|2τg,h(λ) (5.6)

This expression has a straightforward physical interpretation: as will be demonstrated below, it
corresponds to the ensemble average of the modal group delay weighted by the coupling coefficient
distribution. The linear dependence from the distance z makes, as expected, the ensemble average
of the absolute time of the modal impulse response proportional to the propagation distance z.

To see this in a formal way, first the ensemble average of the normalized time τ is computed.
From Equations (5.3) and (5.4), by definition,

τm(z, λ) ≡

∫ +∞

−∞
τυ(z, t, λ) dτ∫ +∞

−∞
υ(z, t, λ) dτ

= z

∫ +∞

−∞
τυ(z, t, λ) dτ (5.7)

Up to this point the ensemble average time τm could still depend of the position z and the
general notation τm(z, λ) can be used. However, this dependence can suddenly be removed as
expected by the linear regime assumption and as illustrated below. By substituting the modal
impulse response (3.55) and changing the integration variable to τ = t/z,

τm(z, λ) = z

M∑
h=1

|ah(λ)|2
∫ +∞

−∞
τδ[t − zτg,h(λ)] dτ

= 1

z

M∑
h=1

|ah(λ)|2
∫ +∞

−∞
tδ[t − zτg,h(λ)] dt (5.8)
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By virtue of the Dirac delta definition the ensemble average of the normalized time variable τ can
be obtained:

τm(λ) =
M∑

h=1

|ah(λ)|2τg,h(λ) (5.9)

As expected, the ensemble average no longer depends on the distance z and this has the physical
justification in terms of the linear regime assumption. Since excited modes neither interfere nor
couple with each other, the normalized ensemble average time must remain constant versus the
propagation length. Finally, by comparing with Equation (5.6), it can be concluded that

tm(z, λ) = z τm(λ) (5.10)

5.2.3 Pulse Dispersion: Variance and RMS Width

The variance σ 2
m(z, λ) of the time variable t computed using the modal impulse response υ(z, t, λ)

is defined by the following integration, where the energy normalization (5.2) has been used:

σ 2
m(z, λ) ≡

∫ +∞

−∞
[t − tm(z, λ)]2ζ(z, t, λ) dt∫ +∞

−∞
υ(z, t, λ) dt

=
∫ +∞

−∞
[t − tm(z, λ)]2υ(z, t, λ) dt (5.11)

The variance σ 2
m(z, λ) results in a function of the distance z because the ensemble integration (5.11)

operates over the absolute time variable and the impulse response υ(z, t, λ) broadens with the
propagation distance. Substituting expression (3.55) of the modal impulse response and using the
Dirac delta definition gives

σ 2
m(z, λ) =

M∑
h=1

|ah(λ)|2
∫ +∞

−∞
[t − tm(z, λ)]2δ[t − zτg,h(λ)] dt

=
M∑

h=1

|ah(λ)|2[zτg,h(λ) − tm(z, λ)]2 (5.12)

Using the result (5.10) for the average time tm(z, λ) gives the following expression for the variance
of the modal impulse response:

σ 2
m(z, λ) = z2

M∑
h=1

|ah(λ)|2[τg,h(λ) − τm(λ)]2 (5.13)

The expression just derived has the same straightforward physical interpretation as Equation (5.6):
the term under the summation sign corresponds to the variance of the modal group delay weighted
by the coupling coefficient distribution. The quadratic dependence from the distance z makes, as
expected, the RMS pulse width proportional to the propagation distance z when referred to the
absolute time units. In other words, as will be seen below, the RMS pulse width of the modal
impulse response increases linearly with the distance. To show this it is sufficient to proceed as in
Section 5.2.2 for the ensemble average τm(λ) of the time variable τ .
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The variance σ̂ 2
m(λ) of the normalized time variable τ is given by the following integral, where

the normalization energy (5.3) is used to compute the integral at the denominator:

σ̂ 2
m(z, λ) ≡

∫ +∞

−∞
[τ − τm(λ)]2υ(z, t, λ) dτ∫ +∞

−∞
υ(z, t, λ) dτ

= z

∫ +∞

−∞
[τ − τm(λ)]2υ(z, t, λ) dτ (5.14)

Again, in general a dependence from the distance z is assumed, since it is implicit in the impulse
response υ(z, t, λ). After substituting the modal impulse response (3.55), changing the integration
variable to τ = t/z and using the Dirac delta definition, the expression of the variance of the
impulse response evaluated with respect to the normalized time variable is obtained:

σ̂ 2
m(λ) =

M∑
h=1

|ah(λ)|2[τg,h(λ) − τm(λ)]2 (5.15)

As expected, the spatial dependence has disappeared. Comparing with (5.13), it can be conclude
that

σ 2
m(z, λ) = z2σ̂ 2

m(λ) (5.16)

The RMS pulse width is defined as the square root of the variance. Equations (5.15) and (5.16)
immediately give

σ̂m(λ) =
√√√√ M∑

h=1

|ah(λ)|2[τg,h(λ) − τm(λ)]2 ⇒ σm(z, λ) = zσ̂m(λ) (5.17)

As anticipated, the RMS pulse width of the modal impulse response increases linearly with the
propagation distance. This is a consequence of the linear regime assumption, without any mode
interference or coupling.

Before closing this section, it is important to point out that the characteristic behavior of the modal
response of the multimode fiber is completely determined by the coupling coefficient distribution
{ah(λ)}. Once the modal group delay function is given at the operating wavelength, the only
characterizing function for the modal impulse response is the coupling coefficient distribution. This
reasoning leads to the fundamental role of the optical launching condition in the modal impulse
response determination. Figure 5.1 shows the graphical interpretation of the first- and second-order
moments that have been derived.

5.2.4 Conclusions and Remarks

In this section the general expressions of the average delay time and the RMS width of the modal
impulse response of a multimode optical fiber have been deducted. The theory presented allows
for any general profile of the group delay, and it assumes a linear propagation regime. This
condition is required so that each excited mode can propagate independently from any other
supported mode. The major conclusion is that for each given group delay profile, an infinite
number of different modal impulse responses are allowed according to the infinite possibilities
of different coupling coefficient distributions. This is a peculiarity of the multimode impulse
response.



188 Multi-Gigabit Transmission over Multimode Optical Fibre

Figure 5.1 Qualitative representation of the modal impulse response of a multimode fiber. Each excited mode
contributes to the energy amount defined by the corresponding coupling coefficient and is located at the time
instant given by the group delay at the operating wavelength. The dot–dash line indicates the ensemble average
time value according to Equation (5.10) and the shadowed area identifies the RMS pulse width according to
Equation (5.17). Both the time average and RMS pulse width are linear functions of the distance

For a given group delay profile and coupling coefficient distribution, the general expression for
the modal impulse response υ(z, t, λ) has been derived in Equation (3.55). Section 5.2.1 defines
the normalization integrals and in Equation (5.2) it was demonstrated that if the coupling coefficient
distribution is properly normalized, even the modal impulse response υ(z, t, λ) has unit energy. The
average delay tm(z, λ) of the modal impulse response has been derived in Section 5.2.2 and the
general expression of tm(z, λ) is given in Equation (5.10). The average delay of the response results
in a linear function of the distance z. The normalized average delay is given in Equation (5.9) and
does not depend upon length, as expected by the linear regime assumption.

Section 5.2.3 deals with the variance σ 2
m(z, λ) of the modal impulse response, leading to the

general expression reported in Equation (5.16), where the normalized time variance σ̂ 2
m(λ) was

introduced in Equation (5.15). As expected, it does not depend upon the distance z once the linear
regime condition is assumed among the excited modes. The RMS pulse width expression (5.17)
holds in general, without any further assumption except the linear regime. Similar to the average
delay, the RMS pulse width σm(z, λ) increases linearly with the distance.

Table 5.1 summarizes the expressions derived for the moments of the modal impulse response.

5.3 Theory of Multimode Impulse Response
In Chapter 4 the expressions for the chromatic impulse response under general conditions were
derived. Both first- and second-order moments have been derived and extensively analyzed, resulting
in general and linearly approximated expressions. All those formulas have been summarized in
Table 4.4 in Chapter 4 and Table 5.1 for the chromatic impulse response and the modal impulse
response respectively.

5.3.1 Problem Statement and Discussion

It is known that chromatic dispersion affects every propagating mode, because of the source spec-
trum interacting with the supporting fiber mode dispersion characteristic. This relation includes
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Table 5.1 Principal expressions regarding first- and second-order moments of the modal impulse response.
Except for the linear regime assumption, all equations have general validity. The last column gives the equation
number in the text

Parameter Expression Validity Reference

Unit energy normalization Wm =
∫ +∞

−∞
υ(z, t, λ) dt = 1 ⇔

N∑
h=1

|ah(λ)|2 = 1 General (5.2)

Modal impulse response υ(z, t, λ) =
M∑

h=1

|ah(λ)|2δ[t − zτg,h(λ)] General (3.55)

Average modal delay τm(λ) =
M∑

h=1

|ah(λ)|2τg,h(λ) General (5.10)

tm(z, λ) = zτm(λ)

Variance σ̂ 2
m(λ) =

M∑
h=1

|ah(λ)|2[τg,h(λ) − τm(λ)]2 General (5.16)

σ 2
m(z, λ) = z2σ̂ 2

m(λ)

RMS pulse width σ̂m(λ) =
√√√√ M∑

h=1

|ah(λ)|2[τg,h(λ) − τm(λ)]2 General (5.17)

σm(z, λ) = zσ̂m(λ)

both material and waveguide contributions to the dispersion relationship. The impulse response of
each mode will therefore be affected by some amount of temporal broadening due to the chromatic
dispersion mechanism. The question to answer now is the following: what would be the interaction
of chromatic dispersion with the modal dispersion in order to have a closed-form expression of the
impulse response of the multimode optical fiber?

In order to proceed toward the general solution of this problem, from the discussion in Chapter 4
the following three fundamental input parameters that characterize the output impulse response of
every multimode optical fiber need to be known:

1. The source power spectral distribution Ss(λ)

2. The group delay distribution {τg,h(λ)}
3. The source coupling coefficient distribution {ah(λ)}

The second and the third parameter sets depend on the modal index h. This means that they refer
to every specific fiber mode that has been excited by the light source. Even if the variation of
the group delay profile among different modes are usually limited to the group delay value at the
average source wavelength τg,h(λ) = τ g,h, it is convenient for clarity to include the complete modal
group delay dependence in the following general multimode fiber impulse response expression.

In order to answer to the question above, the following assumptions are formulated:

1. Chromatic dispersion affects the impulse response of each excited mode independently from any
other propagating mode.

2. Modal dispersion affects the relative group delay of each excited mode, without altering the
pulse shape, independently from any other propagating mode.
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The second assumption is equivalent to the well-known linear multimode regime, where any kind
of mode interaction is postulated. According to the above two modeling assumptions, the general
expression of the impulse response of the multimode fiber can be written as the linear superposition
of the chromatic impulse response of each excited mode, properly weighted by the power coupling
coefficients and translated by the corresponding group delay.

Before writing the impulse response expression, one more remark is necessary. Both the coupling
coefficient distribution {ah(λ)} and the modal group delay {τg,h(λ)} are functions of the source
spectrum through the wavelength. This is important because in the general model the source PSD
is not necessarily concentrated around a single wavelength as the case of a narrow linewidth
laser source. This leads unavoidably to an approximation in the impulse response modeling. It is
assumed that each mode propagates with a specific delay, but one question arises spontaneously:
which wavelength would it be? In general, there is no one single wavelength emitted by the light
source but instead there is a continuous wavelength spectrum. The approximation here essentially
assumes that the multimode behavior of the optical fiber is determined according to the average
wavelength of the spectrum, leaving the chromatic impulse response to take care of the effects of
the source spectral distribution around the average wavelength.

This is, on the other hand, the very fundamental postulate of the modal analysis of every multi-
mode waveguide, either metallic or dielectric. Maxwell equations are written for a monochromatic
electromagnetic source. The modal analysis of every waveguide structure postulates that the excit-
ing field is true monochromatic, closely defined by a single wavelength, and that the whole modal
field solution which derives from that excitation is referring to that single wavelength. The more
general approach assuming a polychromatic light source can be solved by linear superposition of the
monochromatic field solution, and essentially that approach has been used to define the chromatic
modal dispersion.

However, the fundamental difference between the general theory of the impulse response using
a polychromatic light source and the present approximated approach is that the same modal field
solution is postulated for all the spectral wavelengths included in the polychromatic light source, and
of course it should be clear that this is not the exact solution since the modal fields are dependent
on the exciting wavelength.

5.3.2 The Mathematical Model

With the above discussion in mind, from Equations (3.55) and (4.83), it is therefore possible to
approach the general (approximated) expression of the multimode optical fiber impulse response
hF(z, t, λ). However, before writing down the expression by simply superposing each chromatic
impulse response with the corresponding modal delay, one more issue needs to be discussed. The
chromatic impulse response of the hth excited mode hc,h(z, t) in Equation (4.83) includes the pulse
translation according to the average time delay tc,h = zτ c,h reported either in Equation (4.90) or
in Table 4.4. This time delay is in general different from the modal group delay tg,h = zτg,h(λ)

evaluated at the average wavelength spectrum λ. This is because the group delay τg,h(λ) is not
a linear function of the wavelength in the source spectrum wavelength range and in general the
chromatic impulse response hc,h(z, t) differs from the time equivalent replica of the source spectrum
profile and some pulse distortion usually occurs. In conclusion, for the general group delay function
and source PSD,

tg,h = zτg,h(λ)

tc,h = zτ c,h

}
⇒ tg,h �= tc,h (5.18)

The equality sign holds only in the case of the linear group delay, independently from the source
spectrum profile, as can be clearly seen from the delay time expression (4.98) in Chapter 4,
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Section 4.3, of the chromatic impulse response. Of course, for a narrow source spectrum cen-
tered away from any zero-dispersion wavelength, the equality is almost satisfied, even assuming a
nonlinear group delay, as extensively discussed in the examples reported in Chapter 4, Section 4.3.

In order to proceed toward the mathematical expression of the multimode fiber impulse response,
first the centered chromatic impulse response ĥc,h(z, t) of each excited mode is written by temporal
translation of the corresponding average time tc,h = zτ c,h:

ĥc,h(z, t) ≡ hc,h(z, t + zτ c,h) ⇒ t = 0, ĥc,h(z, 0) ≡ hc,h(z, tc,h) (5.19)

The ‘hat’ symbol was used to refer to the time-centered response. Figure 5.2 shows the pulse
centering procedure.

Once the chromatic impulse response of each excited mode has been centered at the time origin,
all of the modes are superposed after translating each of them by the corresponding modal group
delay evaluated at the average source spectrum wavelength, tg,h = zτg,h(λ) and multiplying by the
coupling power coefficient. From Equation (3.55),

hF(z, t, λ) =
M∑

h=1

|ah(λ)|2ĥc,h[z, t − zτg,h(λ)]

Using Equation (5.19) gives

hF(z, t, λ) =
M∑

h=1

|ah(λ)|2hc,h[z, t − z(τ g,h − τ c,h)] (5.20)

Figure 5.2 Centering procedure of the chromatic impulse response of the excited mode hth. The pulse
ĥc,h(z, t) has the average time delay centered on the time origin. The pulse ĥc,h(z, t − tg,h) has shifted with
the average value centered on the time instant tg,h = zτg,h(λ)
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Figure 5.3 Qualitative representation of the multimode fiber impulse response showing the contribution of
the chromatic response to the broadening factor of each excited mode. The total impulse response assumes the
linear superposition form referred to in the text, where the fiber modal solution is defined as the average source
power spectral density wavelength λ

where

λ ≡

∫ +∞

0
λSs(λ) dλ∫ +∞

0
Ss(λ) dλ

is the average wavelength of the source power spectral density. Figure 5.3 shows a qualitative
representation of the multimode fiber impulse response according to the superposition (5.20).

Each fiber mode hth is affected by the chromatic broadening due to the impulse response hc,h(z, t)

derived in Equation (4.83). The same chromatic impulse response expression is given below, where
for completeness the modal index dependence, h, has been added. Here the index k refers to each
wavelength segment Λ

(k)
h identified in the ripple group delay profile τg,h(λ) of the hth mode, as

discussed in Chapter 4, Section 4.2:

hc,h(z, t) = 1

z

N∑
k=0

h
(k)
c,h

(
t

z

)
(5.21)

and

h
(k)
c,h

(
t

z

)
≡ Ss[ζg,h(t/z)]

|Dc,h[ζg,h(t/z)]|︸ ︷︷ ︸
λ=ζg,h

(
t

z

)
∈Λ

(k)

h
,k=1,2,...,N−1,




Λ
(0)
h = (0, λ1)

Λ
(k)

h
=(λk,λk+1)

Λ
(N)

h
=(λN ,+∞)

h=1,2,...,M fiber modes

(5.22)

The multimode fiber impulse response is completely determined by the set of equations derived
above. Table 5.2 summarizes the major conclusions.
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Table 5.2 Expressions for the mathematical model of the multimode fiber impulse response, including all the
required components, are given. The last column indicates the equation reference in the text. The first row
of the table shows the impulse response as a superposition of all the excited mode contributions, including
intramodal pulse broadening due to chromatic dispersion

Parameter Expression Validity Reference

General impulse
response

hF(z, t, λ) =
M∑

h=1

|ah|2hc,h[z, t − z(τ g,h − τ c,h)] Linear
regime

(5.20)

Chromatic impulse
response of the hth
mode

hc,h(z, t) = 1

z

N∑
k=0

h
(k)
c,h

(
t

z

)
General (5.21)

Chromatic impulse
response contribution
of segment Λ

(k)
h of

the hth mode

h
(k)
c,h

(
t

z

)
≡ Ss[ζg,h(t/z)]

|Dc,h[ζg,h(t/z)]|︸ ︷︷ ︸
λ=ζg,h

(
t
z

)
∈Λ

(k)

h
,k=1,2,...,N−1,




Λ
(0)

h
=(0,λ1)

Λ
(k)

h
=(λk,λk+1)

Λ
(N)

h
=(λN ,+∞)

h=1,2,...,M fiber modes

General (5.22)

Average source
wavelength

λ ≡

∫ +∞

0
λSs(λ) dλ∫ +∞

0
Ss(λ) dλ

General (4.92)

Coupling coefficients of
the hth mode

|ah|2 = |ah(λ)|2,
M∑

h=1

|ah|2 = 1 General (3.57)

Group delay of the hth
mode at the average
source wavelength

τ g,h = τg,h(λ) General (4.100)

Average delay of the
chromatic impulse
response of the hth
mode

τ c,h =
N∑

k=0

∫
Tk

τ
Ss[ζg,h(t/z)]

|Dc,h[ζg,h(t/z)]| dτ

︸ ︷︷ ︸
λ=ζg,h

(
t
z

)
∈Λ

(k)

h
,k=1,2,...,N−1,




Λ
(0)

h
=(0,λ1)

Λ
(k)

h
=(λk ,λk+1)

Λ
(N)

h
=(λN ,+∞)

h = 1, 2, . . . , M fiber modes

General (4.90)

5.3.3 Impulse Response Moments

In this section the general expression for the normalization condition, the average time and the RMS
pulse width of the multimode fiber impulse response will be derived, as depicted in Table 5.2. The
procedure follows the same approach already used in the analysis of either the chromatic impulse
response or the modal impulse response. In order to have a consistent theory both of those two
partial responses must as particular cases of the general impulse response must be found. The
consistency of the mathematical model will be verified at the end of this section.

5.3.3.1 Energy Normalization

It has been affirmed several times that the general impulse response of the multimode fiber requires
the knowledge of the source power spectral density, the group delay function for every excited mode
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and the source power coupling coefficient distribution. Any mode group is effectively excited by
the light source if the corresponding power coupled coefficient has not a negligible value. Of
course the set of power coupling coefficients satisfies the energy conservation condition reported
in Equation (3.57) in Chapter 3 for every source wavelength. In particular, for the average source
wavelength λ defined in Equation (4.92),

|ah|2 = |ah(λ)|2,
M∑

h=1

|ah|2 = 1 (5.23)

This condition has already been included in Table 5.2. The energy WF of the general impulse
response hF(z, t, λ) of the multimode fiber, reported in Equation (5.22), is given by the following
integral:

WF =
∫ +∞

−∞
hF(z, t, λ) dt =

M∑
h=1

|ah|2
∫ +∞

−∞
hc,h[z, t − z(τ g,h − τ c,h)] dt (5.24)

From Chapter 4, Section 4.4.1, the integral of the chromatic impulse response was found to
give the energy of the pulse and this value is normalized, as shown in Equation (4.81). The pulse
translation in Equation (5.24) does not alter this conclusion because the integration interval is
infinite. From the energy normalization of the chromatic impulse response and the normalization
condition for the coupling coefficients, (3.57), it can be concluded that the energy of the multimode
fiber general impulse response hF(z, t, λ) is normalized:

WF =
∫ +∞

−∞
hF(z, t, λ) dt = 1 (5.25)

As a consequence of the constant value of the energy in the lossless assumption, the impulse
response subtends the same area along the propagation. It is interesting to observe that the unit
energy conservation of the general impulse response was found using both properties needed
for the energy conservation of the chromatic impulse response (4.81) and the modal impulse
response (3.57) respectively.

5.3.3.2 Average Value

The average value of the temporal variable for the general impulse response of the multimode fiber
is given by the following integral, where the energy normalization in Equation (5.25) is used:

tF(z, λ) ≡

∫ +∞

−∞
thF(z, t, λ) dt∫ +∞

−∞
hF(z, t, λ) dt

=
∫ +∞

−∞
thF(z, t, λ) dt (5.26)

Substituting the impulse response expression (5.20) gives

tF(z, λ) =
M∑

h=1

|ah|2
∫ +∞

−∞
thc,h[z, t − z(τ g,h − τ c,h)] dt (5.27)

As demonstrated below, the average value of the translated chromatic impulse response hc,h[z, t −
z(τ g,h − τ c,h)] of the hth mode coincides with the temporal group delay evaluated at the
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source average wavelength tg,h(z) = zτg,h(λ) = zτ g,h. Substituting the integration variable ξ =
t − z(τ g,h − τ c,h) and using the energy normalization (4.81), from Equation (4.84)∫ +∞

−∞
thc,h[z, t − z(τ g,h − τ c,h)] dt =

∫ +∞

−∞
[ξ + z(τ g,h − τ c,h)]hc,h(z, ξ) dξ

= zτ c,h + z(τ g,h − τ c,h)

∫ +∞

−∞
hc,h(z, ξ) dξ (5.28)

= zτ g,h = tg,h(z)

In conclusion, the temporal average value of the translated chromatic impulse response
hc,h[z, t − z(τ g,h − τ c,h)] of the hth mode coincides with the group delay tg,h(z) of the hth mode
of Equation (5.18) evaluated at the average source spectrum wavelength λ. This result is consistent
with the theory developed for the two partial impulse responses. Substituting Equation (5.28)
into Equation (5.27), the average value tF(z, λ) of the multimode fiber impulse response delay
coincides with the average value (5.10) of the modal delay evaluated at the average source spectrum
wavelength λ:

tF(z, λ) = z

M∑
h=1

|ah|2τg,h(λ) = zτm(λ) = tm(λ) (5.29)

This result is relevant for three reasons:

1. It has the expected form and from Equation (5.10) it coincides with the average modal delay
tm(λ) evaluated at the average source spectrum wavelength λ. Therefore the following clear
physical meaning is obtained: the average delay of the multimode fiber impulse response is the
weighted average among individual mode delays through the power coupling coefficients.

2. It depends on the modal parameters only. This is a consequence of the previous assumption of
centering each chromatic impulse response over the corresponding modal group delay evaluated
at the average source spectrum wavelength, and weighting with the corresponding power cou-
pling coefficient, as shown in Equation (5.20). It confirms the consistency of the mathematical
modeling.

3. It depends linearly on the distance z. Again, this result is expected within the assumption of the
linear propagation regime, when no mode interactions are allowed in the optical fiber.

5.3.3.3 Pulse Dispersion: The Variance Theorem

The variance σ 2
F (z, λ) of the temporal variable of the multimode fiber impulse response hF(z, t, λ)

is defined as the square value of the expected deviation of the pulse profile from the average delay
tF(z, λ):

σ 2
F (z, λ) ≡

∫ +∞

−∞
[t − tF(z, λ)]2hF(z, t, λ) dt∫ +∞

−∞
hF(z, t, λ) dt

=
∫ +∞

−∞
[t − tF(z, λ)]2hF(z, t, λ) dt (5.30)

where the energy normalization property in Equation (5.25) is used. Replacing the impulse
response (5.20) by the following expression gives

σ 2
F (z, λ) =

M∑
h=1

|ah|2
∫ +∞

−∞
[t − tF(z, λ)]2hc,h[z, t − z(τ g,h − τ c,h)] dt (5.31)

In the following the very useful theorem of the variance will be demonstrated.
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Theorem of the Variance
The variance σ 2

F (z, λ) of the multimode fiber impulse response hF(z, t, λ) is given by the sum of
the modal variance σ 2

m(z, λ) and the average chromatic variance σ 2
c(z).

Before proceeding with the demonstration, it is important to note that this result is related
neither to any approximation nor to Gaussian pulse modeling. Instead, it is verified for every
general chromatic impulse response, including the multiple line source spectrum and the ripple
group delay function, with every modal distribution. Besides that, this relevant and expected result
confirms the validity and the internal consistency of the multimode fiber modeling presented here.

By changing the integration variable in Equation (5.31) to ξ = t − z(τ g,h − τ c,h),

σ 2
F (z, λ) =

M∑
h=1

|ah|2
∫ +∞

−∞

{
(ξ − zτ c,h) + [zτ g,h − tF(z, λ)]

}2
hc,h(z, ξ) dξ (5.32)

The squared term has been grouped in order to provide decomposition into the following three
relevant integrals, where the time variable t has again been indicated:

σ 2
F (z, λ) =

M∑
h=1

|ah|2
∫ +∞

−∞
(t − zτ c,h)

2hc,h(z, t) dt

+
M∑

h=1

|ah|2
∫ +∞

−∞
[zτ g,h − tF(z, λ)]2hc,h(z, t) dt

+ 2
M∑

h=1

|ah|2
∫ +∞

−∞
(t − zτ c,h)[zτ g,h − tF(z, λ)]hc,h(z, t) dt (5.33)

In the following the three integral terms separately. The temporal average value t c,h(z) of the
chromatic impulse response hc,h(z, t) of the hth excited mode is given by Equation (4.89): tc,h(z) =
zτ c,h. The integral in the first addend of Equation (5.33) therefore coincides with expression (4.104)
of the variance of the chromatic impulse response of the hth excited mode:

σ 2
c,h(z) =

∫ +∞

−∞
(t − zτ c,h)

2hc,h(z, t) dt (5.34)

It should be remembered that each propagating mode supports its own chromatic dispersion.
Accordingly, with M propagating modes account must be taken of M different chromatic impulse
response variances σ 2

c,h(z). This is exactly the role of the weighting sum in the first addend of
Equation (5.33) over the power coupling coefficients. The result is the ensemble average value of
the variance among all the supported fiber modes, according to their own coupling coefficients.
Equations (5.33) and (5.34) define σ 2

c(z) as the ensemble average of the chromatic variance:

σ 2
c(z) ≡

M∑
h=1

|ah|2σ 2
c,h(z) = z2

M∑
h=1

|ah|2σ̂ 2
c,h = z2σ̂

2
c (5.35)

Using this definition, the first addend of Equation (5.33) becomes

M∑
h=1

|ah|2
∫ +∞

−∞
(t − zτ c,h)

2hc,h(z, t) dt = σ 2
c(z) (5.36)

The second term in Equation (5.33) has a straightforward meaning. In Section 5.3.3.2 it was
recognized that the average value of the delay of the multimode fiber impulse response tF(z, λ)
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coincides with the average value of the modal delay tm(z, λ), both evaluated at the average source
spectrum wavelength λ, as reported in Equation (5.29). The term in parentheses does not depend
on the time and can therefore be taken out of the integration. Using the energy normalization (4.81)
for the chromatic impulse response, it is easy to recognize that the second term coincides with the
variance σ 2

m(z, λ) of the modal impulse response, as derived previously in Equation (5.16):

M∑
h=1

|ah|2
∫ +∞

−∞
[zτ g,h − tF(z, λ)]2hc,h(z, t) dt = σ 2

m(z, λ) = zσ̂ 2
m(z, λ) (5.37)

The third term in Equation (5.33) gives a null contribution, as demonstrated below. The term
in square brackets does not depend on the time variable and it can be taken out of the integral.
Each term of the sum is therefore multiplied by the corresponding integral in the chromatic impulse
response of the hth modal component, as shown below:

M∑
h=1

|ah|2[zτ g,h − tF(z, λ)]
∫ +∞

−∞
(t − zτ c,h)hc,h(z, t) dt

It is a simple matter to conclude from Equations (4.89) and (4.81) that each of those integrals
gives a null contribution, leading to a null value of the whole third term in Equation (5.33). In fact,∫ +∞

−∞
(t − zτ c,h)hc,h(z, t) dt

=
∫ +∞

−∞
thc,h(z, t) dt − zτ c,h

∫ +∞

−∞
hc,h(z, t) dt = zτ c,h − zτ c,h = 0

Therefore
M∑

h=1

|ah|2[zτ g,h − tF(z, λ)]
∫ +∞

−∞
(t − zτ c,h)hc,h(z, t) dt = 0 (5.38)

In conclusion, from Equations (5.33), (5.35), (5.36), (5.37) and (5.38), the following relevant result
is obtained. The variance of the multimode fiber impulse response is given by the sum of the
ensemble average of the chromatic variance with the modal variance evaluated at the source average
wavelength:

σ 2
F (z, λ) = σ 2

c(z) + σ 2
m(z, λ) (5.39)

From Equations (4.111), (5.35) and (5.17) it is concluded that the variance of the multimode fiber
impulse response scales quadratically with the propagated distance z:

σ 2
F (z, λ) = z2[σ̂

2
c + σ̂ 2

m(λ)] (5.40)

It should be remembered that the overbar sign indicates the ensemble average of the corresponding
entity. In addition, when requested, the wavelength-dependent functions are assumed to be evaluated
at the average wavelength of the source spectrum.

The result just obtained is very relevant because it summarizes into a single and simple formula
both the chromatic and modal dispersion effects encountered by the propagating pulse in a mul-
timode optical fiber. Table 5.3 summarizes the major expressions that have been derived in this
section for the general impulse response of the multimode optical fiber.

If all excited modes experience the same first-order derivative of the group delay function,
otherwise stated as the chromatic dispersion coefficient, the ensemble average of the chromatic
variance defined in Equation (5.35) reduces to the same value, σ 2

c,h(z) = σ 2
c (z), for every modal
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Table 5.3 Expressions of the first- and second-order moments of the multimode fiber impulse response. The
last column indicates the equation reference in the text. The last row gives the variance theorem

Parameter Expression Validity Reference

Energy normalization WF =
∫ +∞

−∞
hF(z, t, λ) dt = 1 General (5.25)

Average delay tF(z, λ) = z

M∑
h=1

|ah|2τg,h(λ) = zτm(λ) = tm(λ) General (5.29)

Ensemble average of the
chromatic variance

σ 2
c(z) ≡

M∑
h=1

|ah|2σ 2
c,h(z) General (5.35)

Variance σ 2
F (z, λ) = σ 2

c(z) + σ 2
m(z, λ) General (5.40)

chromatic contribution. According to the normalization (3.57) of the power coupling coefficients,
it is therefore concluded that σ 2

c(z) = σ 2
c (z).

In the following section basic concepts and conclusions analyzed so far will be reviewed in
order to avoid misunderstanding and to underline system design considerations clearly. Basic con-
cepts such as broadband and narrowband source spectrum conditions, the multimode fiber impulse
response and the −3 dB bandwidth will shortly be reviewed.

5.3.4 System Design Considerations

When involved in a multimode optical fiber transmission system design that is mainly concerned
with feasibility criteria and a maximum allowed signal distortion penalty, the RMS pulse width
of the general impulse response of the multimode fiber assumes the principal role in setting a
maximum allowable link length for a given transmission rate. According to the analysis in the
previous section, the RMS pulse width of the general impulse response is given by the square root
of the total variance in Equation (5.40):

σF(z, λ) = z

√
σ̂

2
c(z) + σ̂ 2

m(z, λ) (5.41)

The physical principles behind the total RMS dispersion contributions are quite different.

5.3.4.1 Chromatic Dispersion or Intramodal Dispersion

Chromatic dispersion or intramodal dispersion act inside each guided mode, providing the distortion
of the envelope of the optical pulse depending on the operating wavelength region and the source
spectral characteristics. So far the situation where the source spectrum dominates over the modula-
tion spectrum has been extensively studied. This situation was identified as the broadband optical
source condition. A detailed analysis of chromatic dispersion of the complementary situation, when
the source spectrum collapses into a very narrowband linewidth with respect to the modulation
spectrum, will not be included in this book. The analysis of the narrowband optical source condi-
tion can be found in many references and reveals that the pulse distortion can have a broadening or
a compressive behavior depending on the sign of the product between the source frequency chirping
coefficient and the second-order derivative of the propagation constant. The relevant consequences
of the sign of the source spectrum chirping coefficient find major applications in either very high
speed or very long haul digital transmission systems operating over single-mode fibers using the
external optical modulation technique. Typical transmission speed–length products for including
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significant limitations due to group velocity dispersion start at 2.5 Gb/s, reaching about 900 km of
unregenerated link length, reducing to about 60 km when operating at 10 Gb/s and limited to below
3 km for 40 Gb/s transmission speed. It is the characteristic quadratic link length limitation versus
the signaling speed that marks the group velocity dispersion as the dominant transmission behavior.

In applications of standard single-mode or multimode fibers operating in either the 850 nm or
1300 nm region (the normal regime, the second-order derivative of the propagation constant, has
a positive sign) and fed with direct modulated semiconductor laser sources exhibiting a typical
positive chirping coefficient, the propagating pulse versus distance goes into initial compression.
This is the effect of the source chirped pulse spectrum. With a further increase of the distance,
the pulse dispersion starts to be dominated by the fiber-induced chirping and the pulse begins
to broaden. This is the usual well-known pulse broadening effect when no source chirping is
included. On the other hand, if the source is negatively chirped, the pulse would start to broaden
immediately after the launching section. The opposite situation happens in the 1550 nm region,
where the standard fiber falls into the anomalous regime with negative sign of the second-order
derivative of the propagation constant. In this case a direct modulated laser diode with a positive
chirping coefficient will generate optical pulses that will start to broaden as soon as they leave the
launching section. In order to have pulse compression in the third window a negatively chirped
source spectrum is needed.

Independently from the operating region and fiber characteristics, if the source is assumed to
operate without frequency chirping, the propagating pulse starts to broaden monotonically as soon
as it leaves the launching section. In order to avoid too sophisticated a dependence on fiber spec-
ifications, the operating wavelength region and source spectral characteristics have been widely
assumed to consider the fact that the chromatic dispersion induces a general pulse broadening.
This essentially resembles the chirp-free source condition. Finally, considering multimode propa-
gation, chromatic dispersion pulse broadening induces fiber mode contributions to overlap along
the propagation.

5.3.4.2 Modal Dispersion or Intermodal Dispersion

Modal dispersion acts among guided modes, providing the mode energy partition to be detected at
different time instants after some propagation length. It is important to note that modal dispersion
is not related to the signal frequency content. Instead, modal dispersion is a direct consequence of
the differential mode delay (DMD) among all excited modes. The differentiation concept regards
the modal index in this sense. Once the fiber characteristics have been fixed by means of a specified
group delay for each supported mode, the modal impulse response becomes a function of the source
power distribution among allowable modes. This is a very peculiar behavior of the multimode fiber
modal response and makes usual meaningful concepts like impulse response and bandwidth lose
their role in the design methodology of multimode fiber transmission systems. The modal impulse
response changes according to the source power coupling at the launching section and therefore
acquires a strong dependence on any kind of environmental perturbation that can interfere with the
source power coupling coefficient distribution. Mechanical vibration and temperature stresses can
strongly change the multimode fiber impulse response. Even multimode fiber optical connectors
are quite involved in the impulse response stability.

One more remark is needed concerning the meaning of the modal bandwidth, which are usually
considered in design procedures. Once the modal impulse response has been determined using the
techniques presented in previous sections, the Fourier transform is of course uniquely defined and
the multimode fiber frequency response is uniquely related to the corresponding impulse response.
The question arises when the frequency response is reduced to a single convenient number showing
the −3 dB bandwidth. The multimode fiber propagation characteristic is not uniquely identified in
terms of the simple −3 dB bandwidth definition. In fact, according to the large variability of the
multimode fiber impulse response versus launching conditions and environmental perturbations, a
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very large number of different frequency responses can exhibit instead the same −3 dB bandwidth.
As will be seen in the next section, even slight changes in the launching conditions can generate
different multiple peak impulse responses due to various mode excitations. Correspondingly, the
multiple peak impulse response generates high-frequency ripple behavior in the frequency response
and very often the −3 dB bandwidth interests only the lower range of the frequency response,
where the ripple is still not present. It is evident that in this case the −3 dB bandwidth concept
would lose most of its meaning in characterizing the multimode fiber frequency behavior.

This multimode fiber bandwidth characterization generates a lot of discussion in many standard
committees about how to achieve at the same time an effective bandwidth definition without losing
too much in terms of practical engineering design procedures. This issue belongs to the more general
channel metric problem: which metric would be suitable for the multimode fiber transmission
channel in order to have as many correct predictions as possible in terms of transmission system
performances? To answer this question, finding the most suitable channel metric requires a deep
knowledge of the whole transmission system, including both the optical transmitter and the optical
receiver architectures. Modulation formats and detected signal processing are intimately involved
in the channel metric definition for the multimode fiber transmission system. It will be seen later in
this book that 10 Gb/s transmission over multimode fiber suggests the application of the electronic
dispersion compensator (EDC) in order to correct some of the band-limited pulse distortion. The
EDC is based on the combined architecture of a feedforward equalizer and a decision feedback
equalizer and in this case the proposed channel metrics is known as the penalty of ideal equalizer-
digital (PIE-D).

5.4 The Multimode Impulse Response Model
In this section a computer modeling will be presented of a multimode fiber transmission behavior
computing the whole impulse response (including both chromatic and modal responses) using
Matlab 7.0. The corresponding frequency response will follow in Section 5.5. Assuming a fixed
multimode fiber with a known group delay function for each allowed mode, the program will
change the launched power distribution, clearly showing the large expected variability of the impulse
response and of the corresponding frequency response. The meaning of the −3 dB bandwidth will
be commented on accordingly. The modeling presented does not reflect either any real multimode
fiber or any light source device, but instead serves as a useful tool for studying the behavior of
different impulse responses when changing the source power distribution at the launching section.

5.4.1 Model Assumptions

The multimode fiber transmission system modeling is based on the following assumptions:

1. Linear regime. The multimode fiber supports a linear propagation regime. Mode groups do not
interfere with each other and the modal power distribution remains constant during the pulse
propagation.

2. Uniform chromatic dispersion. The chromatic dispersion coefficient in the wavelength range
occupied by the source spectrum is assumed to have the same value for all excited modes,
leading therefore to the same contribution at the average wavelength λ of the source spectrum:

Dc,h(λ) = Dc, h ∈ N (1, M) (5.42)

The notation h ∈ N (1, M) is used to indicate the positive integer numbers included between
1 and the mode group number M . Since the chromatic dispersion coefficient is defined as the
first-order wavelength derivative of the modal group delay, the uniform chromatic dispersion
assumption is equivalent to assuming that the modal group delays τg,h(λ) have all the same
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wavelength dependence, at least in the wavelength interval occupied by the source spectrum.
The modal group delays therefore differentiate only for the value τg,h(λ) = τ g,h that they assume
at the average wavelength λ of the source spectrum. Using the power series expansion of the
group delay function, this leads to the following representation:

τg,h(λ) = τg,h(λ) + (λ − λ)Dc(λ) + · · · + higher order terms, h ∈ N (1,M) (5.43)

This hypothesis is equivalent to assuming that the group delay of the generic supported fiber
mode can be expressed as the sum of the delay value τ g,h at the average wavelength λ plus the
same wavelength function for each allowed fiber mode. According to Equation (5.42), the first
derivative of that wavelength function therefore gives the same chromatic dispersion coefficient
Dc,h(λ) = Dc for all supported modes.

3. Group delay distribution versus modal index. In order to complete the description of the group
delay of each allowed fiber mode there is a need to specify further how those values τ g,h are
distributed according to the modal group index h ∈ N(1, M). It is assumed that the values τ g,h

of the modal group delays evaluated at the average source spectrum wavelength λ are distributed
versus the modal index h according to a specified discrete function fτ (h).

The profile of the function fτ (h) reflects the amount of delay equalization achieved using the
proper grading of the refractive index, as discussed briefly in Chapter 3, Section 3.7. In the case
of perfect delay equalization, the delay distribution fτ (h) versus the modal index h would be a
constant. In that case, every excited fiber mode will experience the same group delay, delivering
the fraction of launched power simultaneously with all the remaining excited modes. According
to the present multimode propagation modeling, under perfect delay equalization the only source
of pulse distortion would be the chromatic dispersion. Any deviation from the constant profile
of the delay distribution fτ (h) indicates a mismatch in the group delay equalization. In the
following three simple but relevant discrete functions fτ (h) will be presented for modeling the
group delay distributions among allowed fiber modes.
(a) Constant. In this case, the modal group delay τg,h(λ) = τ g,h, evaluated at the average source

spectrum wavelength λ, assumes the constant value τ g for every excited fiber mode. This
case corresponds to the perfect modal delay equalization:

τ g,h = fτ (h) = τ g, h ∈ N (1, M) (5.44)

(b) Linear. The modal group delay τg,h(λ) = τ g,h, evaluated at the average source spectrum
wavelength λ, shows a linear dependence from the from the modal index h ∈ N(1, M). The
straight-line profile passing through two given points P1 = (x1, y1) and P2 = (x2, y2) has
the following general equation:

y − y1

y2 − y1
= x − x1

x2 − x1
,

{
x1 �= x0

y1 �= y0
(5.45)

Using physical variables, this equation translates into the following discrete straight-line
group delay profile:

τ g,h = fτ (h) = τ1 + (τ2 − τ1)
h − h1

h2 − h1
,




(h, h0, h1) ∈ N (1, M)

τ1 = τ g,h1

τ2 = τ g,h2

(5.46)

(c) Quadratic. The modal group delay τg,h(λ) = τ g,h, evaluated at the average source spectrum
wavelength λ, shows a quadratic dependence from the modal index h ∈ N(1, M). Since
the parabolic profile requires the definition of three independent conditions to be uniquely
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determined, the parabolic group delay distribution will be defined starting from the following
general equation y = f (x) of the parabola which satisfies the following conditions:
1. The vertex has position V = (x0, y0).
2. It passes through point P = (x1, y1):

y − y0

y1 − y0
=
(

x − x0

x1 − x0

)2

,

{
x1 �= x0

y1 �= y0
(5.47)

Using the physical delay variables and the related discrete modal indices, the parabolic profile
fτ (h) having the vertex at the point (h0, τ0) and passing through the point (h1, τ1), with indices
h0, h1 ∈ N (1,M), satisfies the following expression:

τ g,h = fτ (h) = τ0 + (τ1 − τ0)

(
h − h0

h1 − h0

)2

,




(h, h0, h1) ∈ N(1, M)

τ0 = τ g,h0

τ1 = τ g,h1

(5.48)

with V = (h0, τ0), the vertex and P = (h1, τ1). The parabolic profile has some interesting fea-
tures: it can represent either a monotonically decreasing or increasing profile versus the modal
index h. The distance τ1 − τ0 is related to the profile curvature and for the limiting value
τ1 − τ0 → 0, the profile tends to be constant. The position of the vertex h0 defines the cen-
ter of a region of maximally flat group delay dependence, approximating good local delay
compensation. Figure 5.4 shows the quadratic group delay distribution highlighting principal
features.
Figure 5.5 shows qualitatively the three distributions fτ (h) considered so far for modeling the
group delay profiles. The solid lines refer to the quadratic profiles. In the case shown these

Figure 5.4 Qualitative representation of the quadratic relationship between the modal group delay values at
the average wavelength of the source spectrum and the modal index. According to the definition given in the
text, the parabolic profile is defined by setting the vertex (h0, τ0) and one other arbitrary point (h1, τ1)
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Figure 5.5 Modal group delay distribution according to the constant, linear and quadratic models presented
in the text. The white circles correspond to discrete modal index values. Due to a profile equalization that is
not perfect, the modal group delay τg,h(λ) = τ g,h belongs to the interval τ g,min ≤ τ g,h ≤ τ g,max, h ∈ N(1,M)

profiles have the vertex respectively either at h = 1 or h = M , exhibiting both positive and
negative curvatures.

4. Modal average delay and RMS pulse width. For every specific launching condition, the
corresponding coupled source power coefficient distribution {|ah(λ)|2} = {|ah|2} can be achieved.
According to each coupled power coefficient and group delay function fτ (h) distributions,
the resulting modal impulse response hm(z, t, λ) will be characterized by the average modal
delay tm = zτm and by the RMS pulse width σm(z, λ) = σ m(z) reported respectively in
Equations (5.10) and (5.17).
The DMD (λ), defined in Equation (3.62), therefore coincides with the RMS pulse width
σ m(z) = DMD(z, λ) of the modal impulse response.

5. Source power spectrum. The source power spectral density Ss(λ) is assumed to be shaped as a
single-peak Gaussian function with full width at half maximum FWHMs = 5 nm. Using the
Gaussian relationship (3.113) in Section 3.11.3, Chapter 3, the corresponding RMS spectral
width becomes

σs = FWHMs

2
√

2 ln 2
∼= 0.425 FWHMs = 2.123 nm|FWHMs=5 nm (5.49)

The five assumptions discussed so far define the modeling set that is needed for the numerical
computation of the multimode fiber impulse response. Once the group delay profile, the coupled
source power coefficient distribution and the source power spectral distribution have been specified,
the multimode fiber impulse response can be computed using the set of equations in Table 4.4 of
Chapter 4 and Tables 5.1 and 5.2.

5.4.2 Computer Simulation Procedure

In this section the model assumptions introduced in the previous section will be used to create
the simulation environment and to compute the multimode fiber impulse response, including both
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chromatic and modal dispersion with arbitrary group delay and source power coupling coefficient
distributions.

5.4.2.1 Chromatic Impulse Response

According to assumption 2, each excited fiber mode will experience the same chromatic dispersion,
leading to a consistent simplification of the general impulse response Equation (5.20). By setting

hc,h[z, t − z(τ g,h − τ c,h)] = hc[z, t − z(τ g,h − τ c)] (5.50)

only one chromatic impulse response profile is obtained for all the excited modes used for generating
the impulse response of the multimode fiber. In addition, it should be noted that even the chromatic
average delay τ c,h of the hth mode in Equation (5.50) is the same for all the excited modes,
τ c,h = τ c.

5.4.2.2 Linear Regime

The linear regime assumption (assumption 1) allows the time-centered chromatic impulse response
to be superposed when properly translated with the corresponding group delay value τ g,h and
weighted by the source power coupled coefficient ah as many times as the number of allowed fiber
modes. Each chromatic impulse response contribution hc(z, t) must first be centered according to
the chromatic average delay hc(z, t + zτ c) and then it must be translated by the group delay value
of the corresponding mode hc(z, t + zτ c − zτ g,h).

5.4.2.3 Source Spectrum

Assumption 5 specifies the source power spectral density and is strictly related to the chromatic
impulse response, at least away from the zero-dispersion wavelength. Accounting for the above
three assumptions, Equation (5.50) of the general multimode impulse response can therefore be
simplified to the following expression:

hF(z, t, λ) =
M∑

h=1

|ah|2hc[z, t − z(τ g,h − τ c)] (5.51)

In order to proceed toward computing the multimode fiber impulse response using the simplified
expression (5.51) the distributions of both the group delay values τ g,h and the source power coupled
coefficients ah need to be specified, in agreement with the remaining third and fourth assumptions.

5.4.2.4 Group Delay Distribution

In order to model the group delay τ g,h evaluated at the average wavelength of the source spectrum,
the quadratic distribution according to Equation (5.48) is chosen by assigning specific values to
the parabolic profile parameters. Precisely, some criteria must be specified when assigning the
required coordinate pairs (h0, τ0) and (h1, τ1). These criteria define the group delay gauge. The
vertex of the parabola is set at the first modal index value h0 = 1 with the corresponding minimum
delay value τ0 = τ g,min while assigning at h1 the last modal index value, h1 = M , associated with
the maximum delay value, τ1 = τ g,max. This is just one arbitrary choice leading to the upward
group delay distribution shown in Figure 5.6. The minimum delay τ0 = τ g,min is associated with
the lowest-order mode with h0 = 1 and the maximum delay value τ1 = τ g,max is associated instead
with the highest-order mode. This choice of the group delay gauge has the maximum flatness in
correspondence with the lowest-order mode as a consequence of coincidence with the parabola
vertex location. In order to have a physical picture in mind, it is imagined that all the allowed
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Figure 5.6 Graphical representation of the quadratic group delay gauge. The abscissa reports the discrete
modal index value h as indicated by the white circles. The ordinate scale shows the corresponding modal group
delay evaluated at the same average wavelength of the source spectrum. The difference τ g,max − τ g,min gives a
quantitative indication of the unmatched delay equalization

modes are ordered with the lowest index value h = 1 associated with the fundamental fiber mode,
and the highest-order mode associated with the highest index value h = M .

The distribution of the group delay at the fixed average wavelength of the source spectrum has
a major impact on shaping the modal impulse response. The case considered above produces a
monotonic increasing relationship between the modal index and the corresponding group delay.
This means that the lowest-order mode will travel the fastest, determining the pulse leading edge
profile. Accordingly, the highest-order mode will travel the slowest, leading to the trailing edge
shape. However, it will be the amount of fractional power delivered to those modes that will
definitely set the output modal impulse response. From Equation (5.48), the following parabolic
upward group delay distribution is obtained:

h0 = 1
h1 = M

τ0 = τ g,1 = τ g,min

τ1 = τ g,M = τ g,max


 ⇒ τ g,h = τ g,min + (τ g,max − τ g,min)

(
h − 1

M − 1

)2

, h ∈ N(1, M) (5.52)

It should be remembered that this is just an arbitrary choice for the group delay distribution
used in order to forward the simulation procedure. Of course, using a multimode fiber mode
solver based on the numerical solution of the scalar wave equation with a given refractive index
profile, a more correct group delay distribution will be achieved, at least consequent to the assumed
refractive index profile and fiber geometry. However, the simulation procedure will remain exactly
the same, even when the assumed delay profile is released from an accurate mode solver or from
the simple quadratic model. Figure 5.7 shows the computed parabolic profile using Equation (5.52)
with τ g,max − τ g,min = ∆τ = ±2 ns/km and τ g,min = τg,1.
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Figure 5.7 Quadratic group delay distribution computed according to Equation (5.52) assuming relative delay
from the minimum value corresponding to the modal index h0 = 1. The group delay variation has been set
positive and equal to τ g,max − τ g,min = ∆τ = 2 ns/km

5.4.2.5 Source Power Coupling Coefficients

In order to find the complete set of parameters used to solve the simplified expression of the
multimode fiber impulse response (5.51), the source power coupling coefficient distribution ah

needs to be specified. Chapter 7 will introduce in Section 7.3 the source power coupling theory
and show the influence of the launching conditions over the multimode impulse response. For the
moment it is sufficient to use any finite sequence satisfying the unit normalization condition (3.57).
To this end, a start is made using the well-known geometric progression:

1 +
M−1∑
h=1

qh = 1 − qM

1 − q
(5.53)

The square value of the source power coupling coefficient |ah|2 is defined as the element of the
following normalized geometric progression of the variable q with M elements:

|ah|2 ≡ 1 − q

1 − qM
qh−1, |q| < 1 (5.54)



Theory of Multimode Response 207

0 5 10 15 20
10−20

10−18

10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100
Normalized Geometric Progression: M=20

Lo
ga

rit
m

ic
 s

ca
le

Progression term h

0.1

0.3

0.5

0.7

0.9

Figure 5.8 Computed elements of the normalized geometric progression in Equation (5.54) for the cases
M = 20, q = 0.1, 0.3, 0.5, 0.7, 0.9. All cases satisfy the unit normalization condition (3.57)

Using the result in Equation (5.53), the finite set of M elements satisfies the normalization condi-
tion (3.57) is

M∑
h=1

|ah|2 = 1 − q

1 − qM

M∑
h=1

qh−1 = 1 (5.55)

Figure 5.8 shows the computed elements of the normalized geometric progression in
Equation (5.54), represented in the logarithmic scale, for M = 20 and q = 0.1, 0.3, 0.5, 0.7, 0.9. The
five sequences satisfy the unit normalization condition (5.55). For a fixed number M of elements,
the sequence profile depends strongly on the value of the variable q. A smaller q value corresponds
to a steepest sequence, where only the first few terms take relevant contributions. However, a larger
q value corresponds instead to a smoother sequence where many more terms assume the relevant
contribution.

This behavior is very visible in the logarithmic scale representation of Figure 5.8 where smaller
q values are associated with flatter curves. In terms of the multimode fiber impulse response this
means that smaller q value power distributions spread out over a larger number of allowed fiber
modes, showing a multiple pulse profile response. Of course, due to the normalization constraint,
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decreasing the q value also corresponds to a lower intensity contribution from the first few terms,
leading to a more homogeneous power distribution among allowed modes. At higher q values the
relative weight of the first or second term contribution is much more relevant, bringing a higher
fraction of the total launched optical power.

In the following, the simulation output assuming all five normalized geometric progressions
shown in the figure will be considered. All the cases will exhibit the same group delay distribution in
order to highlight the consequences of the different excitations on the multimode impulse response.

5.4.2.6 Algorithms and Matlab Codes

The multimode fiber impulse response (MMFIR) simulator is based on the main routine MMFIR
and the following six subroutines used for computing specific multimode fiber and source spectrum
profiles. Slightly different versions of some of these routines have already been used previously.

1. MGP (multi-Gaussian profile). It provides a multi-Gaussian peak spectrum profile or group delay
profile, depending on the calling routine.

2. GROUPDELAY. It computes the group delay function of the wavelength according to the
linear superposition of the Sellmeier three-term equation and the multi-Gaussian peak ripple
contribution.

3. CIRCON (chromatic impulse response contribution). It provides the individual segment chro-
matic impulse response contribution when the ripple group delay function or zero-dispersion
wavelengths have been included in the source spectral range.

4. CIR (chromatic impulse response). It provides the chromatic impulse response according to the
given group delay function and source spectrum.

5. SPCC (source power coupling coefficient). It provides the power coefficient distribution at the
launching section.

6. QGDD (quadratic group delay distribution). It provides the quadratic group delay distribution
at the average wavelength of the source spectrum.

5.4.2.6.1 MMFIR
% MMFIPR: Multi-Mode-Fiber-Impulse-Response
% The function MMFIR computes the impulse response of the multimode fiber
% including both chromatic and modal responses. Input parameters are:

%
function hf=MMFIR;
global T NTS NSYM time tplot tindex...

N0 Lmin Lmax A s FWHM s L s A tg FWHM tg L tg M
%
% Source Power Spectral Density
%
A s=[0 0 1 0 0]; % Coefficients for the individual Gaussian peaks
FWHM s=[0.1 0.1 1 0.1 0.1]*1e-9; % FHHM [m]
L s=[1548.4 1549.2 1550 1550.8 1551.6]*1e-9; % Central Wavelengths [m]
%
% Group Delay Wavelength Function
%
N0=1000; % Number of steps in the wavelength axis
Lmin=1535e-9; % Minimum wavelength in the computing interval
Lmax=1565e-9; % Maximum wavelength in the computing interval
C tg=0e-12; % Unit amplitude for the group delay ripple [s]
A tg=[0.20 0.20 0.125 0.125 0.125 0.10 0.10 0.05]*C tg; % Coefficients for

the group delay ripple
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FWHM tg=[75 75 75 75 75 75 75 75]*1e-9; % FHHM of the group delay ripple
L tg=[850 950 1050 1150 1250 1350 1450 1550]*1e-9; % Central wavelengths of

the group delay ripple
A tg=A tg./(2*sqrt(log(2)/pi)*FWHM tg); % Amplitude normalization
%
% Source Power Coupling Coefficient
%
M=20; % Number of mode groups
q=0.999; % Geometric progression coefficient
A D=SPCC(M,q); % Source Power Coupling Coefficients
%
% Quadratic Group Delay Distribution
%
ho=1; % Index of the parabola vertex
h1=M; % Index of the maximum delay absolute value
Delta Tau=2e-3; % [ns/m]
Tau D=QGDD(ho,h1,Delta Tau); % Quadratic Group Delay Distribution [ns/m]
Tm=sum(A D.*Tau D); % Ensemble average group delay [ns/m]
Tau D=(Tau D-Tm)*1e6; % Centered group delay distribution [ps/km]
%
% Chromatic Impulse Response
[Ts,hc]=CIR;
%
% Multimode Fiber Impulse Response
%
% The chromatic impulse response is centered over each value of the group
% delay distribution and weighted by the coupling coefficients A D. The
% time axis Tf of the multimode impulse response has the same resolution of
% the chromatic dispersion time axis Ts, but its extremes extend in order
% to include the whole superposition.
%
Ts min=min(Ts);
Ts max=max(Ts);
dT=(Ts max-Ts min)/(N0-1); % Time step
Tf min=floor((min(Tau D)-abs(Ts min))/dT)*dT; % Minimum time instant
Tf max=ceil((max(Tau D)+abs(Ts max))/dT)*dT; % Maximum time instant
Tf=(Tf min:dT:Tf max); % Temporal axis of the multimode impulse response
Nf=length(Tf);
hf(1:Nf)=0;
%
% Finding the index ko of the origin of the centered time axis
%
ko=1;
while Ts(ko)<=0 & ko<N0,

ko=ko+1;
end;
ko=ko-1;
%
% Finding the index vector Index of the group delay distribution
%
for k=1:M,

j=1;
S=sign(Tf(j)-Tau D(k));
while sign(Tf(j)-Tau D(k))==S & j<Nf,

j=j+1;
end;
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Index(k)=j-1;
end;
figure(4);
for k=1:M,

hfk(1:Nf)=0;
hfk(Index(k)-ko+1:Index(k)-ko+N0)=hc;
plot(Tf,A D(k)*hfk);
hold on;

hf=hf+A D(k)*hfk;
end;
grid on;
plot(Tf,hf,'r');
title('Multimode Fiber Impulse Response');
ylabel('Arbitrary Unit');
xlabel('Time [ps/km]');
hold off;

5.4.2.6.2 MGP
% The function MGP provides the Multi-Gaussian-Profile power spectral
% density of the light source based on the linear superposition of the
% input-defined Gaussian functions. Inputs A, FWHM and Lambda represent
% respectively linear vectors containing the weight coefficients, the
% Full-Width-Half-Maximum and the central wavelengths of the Gaussian
% components. There is no limitation to the number of Gaussian components
% used in the linear superposition. The length of each input vector
% specifies the required number of Gaussian components.
%
function S=MGP(A,FWHM,Lambda,L);
N=length(A);
S=0;
for k=1:N,

Sk=2*sqrt(log(2)/pi)/FWHM(k)*exp(-4*log(2)*(L-Lambda(k)).^2/FWHM(k)^2);
S=S+A(k)*Sk;

end;

5.4.2.6.3 GROUPDELAY
function tg=GROUPDELAY(L);
global A tg FWHM tg L tg;
N0=length(L)-1;
Lmin=min(L); % Minimum wavelength
Lmax=max(L); % Maximum wavelength
dL=(Lmax-Lmin)/N0; % Wavelength step
c=2.9979e8; % Speed of light in vacuum
%
% Sellmeier equation: coefficients for the fused silica
%
B1=0.6961663; % Coefficient B1 for Three-term Sellmeier equation
B2=0.4079426; % Coefficient B2 for Three-term Sellmeier equation
B3=0.8974794; % Coefficient B3 for Three-term Sellmeier equation
Lambda1=0.0684043e-6;% Peak wavelength L1
Lambda2=0.1162414e-6;% Peak wavelength L2
Lambda3=9.896161e-6; % Peak wavelength L3
%
% Sellmeier component
%
n S=sqrt(1+B1./(1-(Lambda1./L).^2)+B2./(1-(Lambda2./L).^2)+B3./(1-

(Lambda3./L).^2));
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% Index of refraction
n1 S=diff(n S)/dL; % First order derivative of the refractive index
L1=L(1:N0); % Wavelength axis for the first order derivative
L2=L(1:N0-1); % Wavelength axis for the second order derivative
ng S=n S(1:N0)-L1.*n1 S; % Group index
tg S=ng S/c; % Sellmeier Group delay [s/m]
%
% Multi-Gaussian-Profile component
%
tg MGP=MGP(A tg,FWHM tg,L tg,L1); % MGP group delay component [s/m]
%
% Linear combination of Sellmeier and MGP group delays
%
tg=tg S+tg MGP; % Total group delay [s/m]

5.4.2.6.4 CIRCON
% The function CIRCON provides the inversion of the group delay function Tg
% limited by the selected wavelength interval defined by two indices j1 and
% j2 and returns the Chromatic Impulse Response CONtribution Ss/Dc. The
% returned value is computed assuming linear interpolation between the two
% subsequent wavelength points available from the two input indices
%
function hc=CIRCON(Tj,Tg,Ss,Dc,j1,j2);
j=j1;
Sgn=sign(Tg(j)-Tj);
j=j+1;
while j<j2 & Sgn*sign(Tg(j)-Tj)==+1,

j=j+1;
end;
hc=1e-3*(Tg(j)*Ss(j-1)-Tg(j-1)*Ss(j)+(Ss(j)-Ss(j-1))*Tj)/...

(Tg(j)*Dc(j-1)-Tg(j-1)*Dc(j)+(Dc(j)-Dc(j-1))*Tj);

5.4.2.6.5 CIR
% The function CIR computes the chromatic impulse response for the given
% mode group delay Tg and source power spectral density Ss. The chromatic
% impulse response hc(z,t) is function of the distance z and the normalized
% time t/z.
%
function [Ts,hc]=CIR;
global N0 Lmin Lmax A s FWHM s L s;
dL=(Lmax-Lmin)/N0; % Wavelength step
L=(Lmin:dL:Lmax); % Wavelength axis for the Sellmeier refractive index
L1=L(1:N0); % Wavelength axis for the first order derivative Tg
L2=L(1:N0-1); % Wavelength axis for the second order derivative Dc
%
%------------ Group Delay and Chromatic Dispersion Coefficient ------------
%
Tg=1e9*GROUPDELAY(L); % [ns/m]
Dc=1e-3*diff(Tg)/dL; % [ps/nmkm]
%
%------------------- Multi-Gaussian-Profile Source PSD --------------------
%
Ss=MGP(A s,FWHM s,L s,L2); % Multi-Gaussian-Profile
%
%----------------------- Chromatic Impulse Response -----------------------
%
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% Finding stationary wavelengths for inverting the group delay function
%
j=1;
k=0;
while j<N0-1,

Sc=sign(Dc(j));
j=j+1;
while j<N0-1 & Sc*sign(Dc(j))==+1,

j=j+1;
end;
if j<N0-1,

k=k+1;
Index(k)=j; % Index exceeding the current stationary wavelength
Lo(k)=L(j-1)-Dc(j-1)*dL/(Dc(j)-Dc(j-1)); % Stationary wavelengths

end;
end;
if k>0, % At least one stationary wavelength exists in the interval

N=length(Index); % Number of stationary wavelengths found
%
% Finding time intervals corresponding to single-valued wavelength

intervals
%
disp(' Single-valued Intervals Decomposition for Ripple Group

Delay');
disp(");
disp(' Interval T(min) T(max) Lambda(min) Lambda(max)

Lambda(zero)');
disp(' ns/m ns/m nm nm

nm');
disp(");
TauL 0=Tg(1);
TauR 0=Tg(Index(1)-1);
disp([0 TauL 0 TauR 0 L(1) L(Index(1)-1)]);
for k=1:N-1,

TauL(k)=Tg(Index(k));
TauR(k)=Tg(Index(k+1)-1);
disp([k TauL(k) TauR(k) L(Index(k))*1e9 L(Index(k+1)-1)*1e9

Lo(k)*1e9]);
end;
TauL(N)=Tg(Index(N));
TauR(N)=Tg(N0);
disp([N TauL(N) TauR(N) L(Index(N))*1e9 L(N0+1)*1e9 Lo(N)*1e9]);
Taumax=max([TauL 0 TauR 0 TauL TauR]); % Maximum normalized time instant
Taumin=min([TauL 0 TauR 0 TauL TauR]); % Minimum normalized time instant

else
N=0;
Taumin=Tg(1);
Taumax=Tg(N0);

end;
dT=(Taumax-Taumin)/(N0-1); % Normalized time step
T=(Taumin:dT:Taumax); % Normalized time axis
%
% Computing chromatic impulse response contributions of each time interval
%
hc(1:N0)=0;
if N>0,
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for j=1:N0,
if min([TauL 0 TauR 0])<=T(j) & T(j)<=max([TauL 0 TauR 0]),

hc(j)=hc(j)+CIRCON(T(j),Tg,Ss,abs(Dc),1,Index(1)-1);
end;
for k=1:N-1,

if min([TauL(k) TauR(k)])<=T(j) & T(j)<=max([TauL(k) TauR(k)]),
hc(j)=hc(j)+CIRCON(T(j),Tg,Ss,abs(Dc),Index(k),Index(k+1)-1);

end;
end;
if min([TauL(N) TauR(N)])<=T(j) & T(j)<=max([TauL(N) TauR(N)]),

hc(j)=hc(j)+CIRCON(T(j),Tg,Ss,abs(Dc),Index(N),N0-1);
end;

end;
else,

for j=1:N0,
hc(j)=hc(j)+CIRCON(T(j),Tg,Ss,abs(Dc),1,N0-1);

end;
end;
%
% Chromatic Impulse Response Moments
%
disp(' Chromatic Impulse Response Parameters');
disp(");
disp(' S WL AVE S WL RMS To lin To Dc lin

hc RMS lin hc RMS');
disp(' [nm] [nm] [µs/km] [µs/km] [ps/nmkm]

[ps/km] [ps/km]');
disp(");
To=sum(T.*hc)/sum(hc); % Average response delay in normalized time unit
Ts=(T-To)*1e6; % Temporal axis with origin in To [ps/km]
Sigma hc=sqrt(sum(Ts.^2.*hc)/sum(hc)); % RMS pulse width [ps/km]
%
% Source PSD Moments
%
Lo Ss=sum(L2.*Ss)/sum(Ss); % Average wavelength [m]
Sigma Ss=sqrt(sum((L2-Lo Ss).^2.*Ss)/sum(Ss)); % RMS spectral width [m]
%
% Linear Group Delay Approximation
%
k=1;
while L(k)<Lo Ss & k<N0, k=k+1; end;
if k<N0,

Dc lin=(Tg(k)-Tg(k-1))/dL;
Tau lin=Tg(k-1)+Dc lin*(Lo Ss-L(k-1));
Sigma lin=Sigma Ss*abs(Dc lin);
disp([Lo Ss*1e9 Sigma Ss*1e9 Tau lin To Dc lin*1e-3 Sigma lin*1e6

Sigma hc]);
end;
%
%--------------------------------- Plotting -------------------------------
%
figure(1);
subplot(221); % Fiber Group Delay - Chromatic Dispersion - Light Source PSD
plot(L1*1e6,Tg,L2*1e6,min(Tg)+Ss/max(Ss)*(max(Tg)-min(Tg))); grid on;
title('Fiber Group Delay and Light Source PSD');
xlabel('Wavelength, \lambda [µm]');
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ylabel('t g(\lambda) [ns/m]');
legend('Group Delay','Source PSD');
subplot(222);
plot(L2*1e6,Dc), grid on;
line([Lmin Lmax]*1e6,[0 0],'LineStyle','-.','Color','r');
title('Chromatic Dispersion');
xlabel('Wavelength, \lambda [µm]');
ylabel('D c(\lambda) [ps/nmkm]');
subplot(223); % Normalized Time Intervals
if N>0,

plot([0:N],[TauL 0 TauL],'o',[0:N],[TauR 0 TauR],'ro'); grid on;
line([0 0],[TauL 0 TauR 0],'LineWidth',2,'Color','k');
for k=1:N,line([k k],[TauL(k) TauR(k)],'LineWidth',2,'Color','k');end;

else
plot(0,Taumin,'o',0,Taumax,'ro'); grid on;
line([0 0],[Taumin Taumax],'LineWidth',2,'Color','k');

end;
title('Normalized Time Intervals');
xlabel('Wavelength interval \Lambda k');
ylabel('Time interval [ns/m]');
legend('\tau L=\zeta(\lambda L)','\tau R=\zeta(\lambda R)');
subplot(224); % Chromatic Impulse Response
plot(T,hc); grid on;
line([To To],[0 1.1*max(hc)],'LineStyle','-.','Color','r');
title('Chromatic Impulse response');
xlabel('Normalized time \tau [ns/m]');
ylabel('a.u.');
figure(2); % Time-shifted chromatic impulse response
plot(Ts,hc); grid on;
line([-Sigma hc -Sigma hc],[0 1.1*max(hc)],'LineStyle','-.','Color','r');
line([Sigma hc Sigma hc],[0 1.1*max(hc)],'LineStyle','-.','Color','r');
text(0,1.05*max(hc),['RMS width \sigma \tau=' num2str(Sigma hc)

'[ps/km]'],'BackgroundColor','w');
title('Centered Chromatic Impulse response');
xlabel('Normalized time \tau [ps/km]');
ylabel('Unity energy response [a.u.]');

5.4.2.6.6 SPCC
% Normalized Geometric progression with M elements of characteristic q
%
function A=SPCC(M,q);
H=(1:M);
A=(1-q)/(1-q M)*q.^(H-1);
figure(3);
subplot(122);
semilogy(H,A,'-o');
grid on;
title(['Source Power Coupling Coefficients: q=' num2str(q)]);
ylabel('Coupling - Log scale');
xlabel('Mode group number');

5.4.2.6.7 QGDD
% The function QGDD computes the Group Delay distribution at the source
% spectrum average wavelength of the M supported fiber modes. The
% distribution is computed according to the quadratic model with the
% following parameters:
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% h0 : mode index corresponding to the vertex of the parabola
% Tau 0: group delay value at the vertex of the parabola
% h1 : mode index corresponding to the group delay Tau 1
% Tau 1: group delay value at the mode index h1
%
function Tau D=QGDD(ho,h1,Delta Tau);
global N0 Lmin Lmax A s FWHM s L s M;
dL=(Lmax-Lmin)/N0; % Wavelength step
L=(Lmin:dL:Lmax); % Wavelength axis for the Sellmeier refractive index
L1=L(1:N0); % Wavelength axis for the first order derivative Tg
Tg=1e9*GROUPDELAY(L); % [ns/m]
Ss=MGP(A s,FWHM s,L s,L1); % Multi-Gaussian-Profile
Lo=sum(L1.*Ss)/sum(Ss); % Average wavelength [m]
k=1;
while L1(k)<Lo & k<N0

k=k+1;
end;
if k<N0,

Tgo=Tg(k-1)+(Tg(k)-Tg(k-1))/dL*(Lo-L1(k-1));
else

Tgo=Tg(N0);
end;
Tau 0=Tgo;
H=(1:M);
Tau D=Tau 0+Delta Tau*((H-1)/(M-1)).^2;
figure(3);
subplot(121);
plot(H,(Tau D-Tgo)*1e3,'-o');
grid on;
title(['Quadratic Group Delay Distribution: \Delta \tau='

num2str(Delta Tau*1e3) '[ns/km]']);
xlabel('Modal Index');
ylabel('Relative Group Delay [ns/km]');

5.4.3 Simulation Results

In this section the computed multimode fiber impulse response according to the set of parameters
reported in Table 5.4 will be presented and discussed. The simulation outputs refer to the Matlab
code reported in the previous section 5.4.2.

It is assumed that the light source emits a single Gaussian spectrum profile centered at λc =
1550 nm with FWHM = 5 nm. The group delay function is modeled according to the three-term
Sellmeier approximation without any ripple contribution. According to these assumptions the chro-
matic impulse response profile is uniquely determined. Figure 5.9 shows the computed chromatic
impulse response determined using this simulation environment. The chromatic impulse response
in the bottom right picture is not centered and is represented with the absolute delay time per unit
length.

The time-centered chromatic impulse response is represented in Figure 5.10. The pulse has been
time translated around the ensemble average group delay per unit length. The time-centered pulse
presented in Figure 5.10 is the same for all excited modes, according to the assumption of having
the same chromatic dispersion among the mode groups. The multimode fiber impulse response
therefore differentiates for the modal group delay, which characterized the position of the pulse
on the normalized time axis and for the source power coupling coefficient. Table 5.5 shows the
computed output parameters of the chromatic impulse response.
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Table 5.4 Parameters used for the computation of the multimode fiber impulse response

Parameter Value Unit Comments

N0 1000 – Computing steps for the chromatic impulse response
(wavelength and time)

Lmin 1535 × 10−9 m Start wavelength
Lmax 1565 × 10−9 m Stop wavelength
As 1 – Normalized source coefficient vector
FWHMs 5 × 10−9 m Source full-width at half-maximum
Ls 1550 × 10−9 m Source peak wavelengths
Ctg 0 s Unit amplitude for the group delay ripple
Atg 0 – Coefficients for the group delay ripple
FWHMtg 0 m FHHM of the group delay ripple
Ltg 0 m Central wavelengths of the group delay ripple
M 20 – Number of allowed mode groups
q 0 < q < 1 – Geometric progression coefficient
h0 1 – Index of the group delay parabola vertex
h1 M – Index of the maximum group delay variation
∆τ 2 ns/km Variation of the group delay distribution
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Figure 5.9 Chromatic impulse response of each mode computed for the parameter set specified in Table 5.4.
As reported in the text, the simulation assumes the same chromatic dispersion coefficient for all mode groups.
The group delay value for each mode group is instead distributed according to the quadratic model
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Figure 5.10 Time-centered computed chromatic impulse response for the parameter set specified in Table 5.4.
The full-width at half-maximum is FWHMτ = 109.567 ps/km

Table 5.5 Computed parameters of the chromatic impulse response. The average exciting wavelength
coincides with the central wavelength of the single-peak Gaussian spectrum. The assumed FWHMs = 5 nm
coincides with the RMS source spectrum width σs = 2.1233 nm, in agreement with the Gaussian
relationship (3.114). The RMS width of the chromatic impulse response results στ = 46.529 ps/km correspond
to FWHMτ = 109.567 ps/km

Code λ

(nm)
σs

(nm)
τg(λ)

(µs/km)
τ c

(µs/km)
Dc = Dc(λ)

(ps/nm km)
σ c

(ps/km)
σc

(ps/km)

σ c

σc
− 1(%)

SUSG1550-5 1550 2.1233 4.8787 4.8787 21.912 46.526 46.529 0.00645

As already explained, in this simulation example the group delay distribution due to nonperfect
delay equalization is represented by a quadratic profile. Each modal group delay value is calcu-
lated at the average wavelength λ = λc = 1550 nm of the source spectrum. In the following eight
simulation results are reported, corresponding to different choices of the mode group number M ,
the group delay distribution and the geometric progressions used to model the source power cou-
pling coefficient profile. Precisely, the selected cases are grouped according to the mode number
M , the group delay variation ∆τ and the geometric progression coefficient q. These parameters
will assume specific values corresponding to small, medium and large numbers of their respective
ranges, resulting in a partial set of eight multimode impulse response simulations, as reported in
Table 5.6.
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Table 5.6 Selected eight configurations for the simulation of the multimode
impulse response. The simulation identifier XMXDXQ refers to the following
codification: X stands for one of the values L, large; M, medium; S, small; M,
D and Q stand respectively for the corresponding parameters M, mode number; D,
group delay variation; Q, geometric progression coefficient

Number Code M ∆τ (ns/km) q

1 LMLDLQ 200 ±2 0.999
2 LMLDSQ 200 ±2 0.500
3 LMMDLQ 200 ±1 0.999
4 MMLDLQ 20 ±2 0.999
5 MMLDSQ 20 ±2 0.500
6 MMMDLQ 20 ±1 0.999
7 SMLDLQ 5 ±2 0.999
8 SMMDSQ 5 ±1 0.500

The intention of the following simulations is to show the relevance of the three above-mentioned
parameters in leading to very different multimode impulse response profiles. In general, when the
mode number is large the effect is an averaging of the individual mode contribution over the whole
population. This leads to a smoothed impulse response, characterized usually by either a long
precursor tail or a long postcursor tail. The energy carried by each mode is usually a small fraction
of the launched amount and unless the group delay distribution exhibits abrupt fluctuations, the
energy would be smoothly distributed along the normalized timescale. On the contrary, when the
excited mode number is small, the energy content of each mode is relatively more consistent, and
impulse responses characterized by sparse impulsive contributions are quite usual.

5.4.3.1 Configuration 1: LMLDLQ

Following the simulation scheme listed in Table 5.6, the first case considered counts a large mode
number, M = 200, with a peak-to-peak quadratic group delay distribution of ∆τ = ±2 ns/km and
an almost uniform geometric progression power coupling coefficient. All these three ingredients
lead to almost the same individual contribution from all excited modes, even if their density is not
uniform. The time position of the contributing pulses is determined by the group delay distribution,
and therefore they are denser toward either the minimum or the maximum delay time, according
respectively to the positive or negative group delay variation ∆τ = ±2 ns/km.

This situation is clearly shown in the simulation results given in Figure 5.11, where the positive
group delay variation ∆τ = +2 ns/km leads to the left side multimode impulse response plotted and
shown in Figure 5.12. Instead, the negative group delay variation ∆τ = −2 ns/km plotted leads to
the right side multimode impulse response shown in Figure 5.12. It is important to remark that the
two multimode impulse responses shown in Figure 5.12 are antisymmetric: they are the mirrored
representation of each other. This behavior is general for symmetric group delay variations as
shown in Figure 5.11.

In order to explain the computed multimode impulse response, first the upward group delay
distribution in Figure 5.11 is considered, which corresponds to a positive variation ∆τ = +2 ns/km.
The quadratic distribution concentrates the lower group delay values in the vertex region, close to
lower mode group numbers. This determines the higher concentration of mode contributions per
unit time in the neighborhood of the minimum delay value, leading to a corresponding huge pulse
body in the initial region of the pulse distribution. As long as the group delay spread out over
higher mode numbers, the corresponding energy is delivered along the time axis in a spared way,
determining the long postcursor tail.
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Figure 5.11 Quadratic group delay (left) and geometric progression (right) distributions computed using the
data reported in Table 5.6. The sign of the parameter ∆τ = ±2 ns/km leads to either increasing or decreasing
group delay distribution

Figure 5.12 Computed multimode fiber impulse response for the case M = 200, ∆τ = ±2 ns/km, q = 0.999.
The plot on the left side refers to the increasing group delay distribution, while the right side plot corresponds
to the decreasing ones. The relevant peak behavior of both responses depends on the parabolic distribution of
group delay values that increases the low-order mode density
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The downward group delay distribution in Figure 5.11 corresponds to a negative variation ∆τ =
−2 ns/km. In this case, the quadratic distribution concentrates the higher group delay values in the
vertex region of the parabola, determining the higher concentration of mode contributions per unit
time in the neighborhood of the maximum delay value and leading to the corresponding huge pulse
body. However, the downward quadratic group delay makes the fastest modes sparsely distributed
on to the time axis, leading to exactly the symmetrical behavior encountered before. The multimode
impulse response exhibits in this case a long precursor tail with the huge pulse body and the ending
region of the pulse distribution. Figure 5.13 illustrates the magnification of the bottom view of
both impulse responses shown in Figure 5.12, in order to highlight the mode superposition. This is
performed by the computational method.

The modal chromatic impulse responses are quite visible with the Gaussian-like profile. This
is a consequence of the Gaussian source PSD and the almost linear group delay function of the
wavelength in the source spectrum range. Each modal chromatic impulse response is properly
delayed according to the quadratic group delay distribution. The left graph in Figure 5.13 shows
very high-density mode contributions due to the upward group delay parabolic profile. Since modes
superpose linearly, a higher mode density corresponds to a higher intensity, and the result is the
huge pulse body shown in the left inset of Figure 5.12. The right inset of Figure 5.13 shows the
complementary tail behavior of the impulse response in the case of the downward group delay
distribution. The relatively sparse mode arrivals lead to the formation of the long low intensity tail
of Figure 5.12.

Besides the discussion about the consequences of the group delay distribution, it is fundamental
to take into account the contribution of the source power coupling coefficients. In the present
case, the coupling coefficient profile is almost uniform, and this has been achieved using the
q coefficient of the geometric progression very close to unity, q = 0.999. The source energy is

Figure 5.13 Mode superposition leading to the different pulse postcursor and precursor of Figure 5.12. Each
Gaussian-like pulse coincides with the modal chromatic impulse response. The left graph shows high-density
mode overlap, leading to the huge pulse body corresponding to the positive group delay variation. The right
graph shows the complementary situation, where the negative group delay variation determines low-density
mode energy contributions with the formation of the almost uniform long precursor tail
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almost uniformly distributed among all allowed modes, which highlighted the consequences of the
delay distribution. The next example shows the effect of a lower-order selective excitation assuming
a lower q coefficient, namely q = 0.50, with the same large mode number, M = 200, and the same
peak-to-peak quadratic group delay distribution with ∆τ = ±2 ns/km.

5.4.3.2 Configuration 2: LMLDSQ

This case is interesting for highlighting the consequences of a more selective mode excitation
characterized by a small q = 0.50, but still assuming a very large mode number and group delay
per unit length. Figure 5.14 shows on the left graph the two mirrored group delay distributions
assuming ∆τ = ±2 ns/km, while the right plot shows the power coupling coefficient profile. In
comparison with Figure 5.11, the stronger concentration of the launched power into lower-order
modes is evident.

The restricted central launching conditions are quite well synthesized in Figure 5.15, where both
plots have been magnified in the lower mode number range. The coupled power reduces to less
than 1 % after the first seven excited mode groups and the resulting delay variation among them
is quite negligible, below ∆τ(h = 1, . . . , 7) = ±5 ps/km. This leads to the sharp impulse response
reproduced in Figure 5.16.

5.4.3.3 Configuration 3: LMMDLQ

In this case it is assumed that the fiber supports still have a high number of guided modes, but
with a better group delay equalization ∆τ = ±1 ns/km, which is only one-half of the value used in
the previous case in Section 5.4.3.1. The quadratic excitation distribution is almost uniform, with
q = 0.999 providing the same energy contribution from each guided mode. Figure 5.17 shows in
the left graph the computed group delay distributions for both positive and negative delay variations.
The right plot shows the source power coupling coefficient distribution.

Figure 5.14 Quadratic group delay (left) and geometric progression (right) distributions reproducing restricted
central launch conditions, with q = 0.50
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Figure 5.15 Multimode fiber impulse response according to the selected conditions reported in Table 5.6:
M = 200,∆τ = ±2 ns/km, q = 0.50. The reduced number of excited modes with nonnegligible source coupled
power leads to a very sharp impulse response. In fact, due to the quadratic delay distribution, the few selected
low-order modes exhibit very small group delay differences. Those conditions are usually identified as restricted
central launch conditions

Figure 5.16 Magnified view of the lower order range of the quadratic group delay (left) and geometric pro-
gression (right) distributions reproducing restricted central launch conditions, with M = 200,∆τ = ±2 ns/km,
q = 0.50
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Figure 5.17 Quadratic group delay (left) and geometric progression (right) distributions reproducing almost
uniform excitation conditions, with q = 0.999

The flat energy distribution makes almost all participating modes have the same output pulse with
the same intensity. However, the quadratic group delay determines a higher intensity accumulation
at shorter group delay values, leading to the unsymmetrical output pulse reported in Figure 5.18.
The width of both pulses, measured at a very low intensity as expected, tends to be the assumed
group delay variation ∆τ = ±1 ns/km.

In comparison with the impulse response shown in Figure 5.12, it can be concluded that pulses
are quite similar to each other, showing just a time scaling difference due to the different group delay
variation. The multimode fiber impulse response in both cases is therefore mainly characterized by
the large mode number and by the uniform modal excitation. In this case the group delay does not
affect the response profile very much.

5.4.3.4 Configuration 4: MMLDLQ
In the previous sections, 5.4.3.1 and 5.4.3.3, the averaging effect of the uniform excitation of a large
number of excited modes have been seen. Conceptually, each mode carries a very small amount of
energy with a correspondingly very small relative delay with respect to adjacent modes, leading to
an almost smoothed pulse profile when linear superposition is taken into account. In the following
case a smaller number of excited modes is assumed, while still retaining a, large delay variation
and uniform excitation. Figure 5.19 refers to these conditions. By comparing Figures 5.11, 5.14
and 5.17 the effect of a lower mode number can clearly be seen. The mode density per unit group
delay is correspondingly lower and each mode is much better separated by adjacent ones. The
interesting result shown in Figure 5.20 is a more granular profile of the impulse response, where
the chromatic impulse response of higher-order modes is quite visible after superposition.

5.4.3.5 Configuration 5: MMLDSQ
What happens to the multimode impulse response of the previous configuration in Section 5.4.3.4
if restricted central launching conditions are assumed by setting q = 0.50? The group delay profile
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Figure 5.18 Computed multimode fiber impulse response for positive and negative group delay distributions
respectively, with M = 200,∆τ = ±1 ns/km, q = 0.999. The peaking behavior of both responses depends on
the parabolic distribution of group delay values located in the low-order mode region

Figure 5.19 Quadratic group delay (left) and geometric progression (right) distributions reproducing almost
uniform excitation conditions for a lower number of modes. Reducing the number of fiber supported modes,
but still assuming the same group delay variation of ∆τ = ±2 ns/km, makes each modal chromatic impulse
response more isolated from neighborhood contributions
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Figure 5.20 Computed multimode impulse response for the case M = 20,∆τ = ±2 ns/km, q = 0.999. Higher
differential delay among higher-order modes leads to the granular resolution in the multimode response. Even
after superposition, the chromatic impulse response contribution of each individual higher-order mode group
is still clearly recognizable

and the exciting distributions are shown in Figure 5.21. The reduced value of the coefficient q

selects only low-order modes, leading to a modal intensity contribution of less then 1 % for mode
numbers exceeding seven. This means that only about the first seven low-order modes will contribute
significantly to the intensity composition of the output pulse with the relevant reduction of the modal
dispersion.

Elimination of higher-order modal contributions makes the resulting impulse response shown in
Figure 5.22 much narrower than the case presented in Figure 5.20. Long tail behavior, either with
a precursor or postcursor, is no longer present and the resulting impulse response shows strongly
reduced intersymbol interference when used in digital NRZ transmission systems. The impulse
response structure shown in Figure 5.22 reveals that the differential delay among the first seven
modal chromatic impulse responses is significantly smaller than the chromatic RMS pulse width and
the resulting output pulse is no longer very different from the single chromatic impulse response.
The slight asymmetry in the trailing edge of the left side pulse (leading edge of the right side pulse)
is due to the group delay contribution among the selected modes.

5.4.3.6 Configuration 6: MMMDLQ

This configuration differs from the one considered in Section 5.4.3.4 for the reduced group delay
variation. Figure 5.23 shows both the group delay and the power coupling excitation distributions.

Due to the uniform excitation all 20 allowed modes contribute to the multimode impulse response
with the same intensity, overlapping each other according to the assumed quadratic group delay
distribution. Figure 5.24 shows as usual the individual modal chromatic impulse responses and
their superposition. The reduced group delay variation in conjunction with the chromatic impulse
response width makes the resulting pulse almost smooth. The granularity shown in Section 5.4.3.4
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Figure 5.21 Quadratic group delay distribution (left) for M = 20 allowed fiber modes. The selective excitation
(right) provides a source energy transfer only to low-order modes. Relative coupled power reduces to less than
1 % for a mode group number exceeding seven

Figure 5.22 Computed multimode impulse response for the case M = 20,∆τ = ±2 ns/km, q = 0.50. Higher
differential delay among higher-order modes has almost been eliminated by means of the selective low-order
mode excitation
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Figure 5.23 Group delay and power coupling coefficients distributions

Figure 5.24 Computed multimode impulse responses for the case M = 20,∆τ = ±1 ns/km, q = 0ext.999.
The modal chromatic impulse responses are easily visible, each properly translated according to the group
delay value. Their weighted superposition produces the multimode impulse response shown left and right for
positive and negative group delay variations respectively
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is no longer visible in this case and the multimode impulse response closely resembles the case
presented in Section 5.4.3.3, where a larger number of modes was assumed, with M = 200.

5.4.3.7 Configuration 7: SMLDLQ

These last three cases deal with very low allowed fiber modes. Only M = 5 fiber modes are
assumed and the group delay variation and the coupling distribution will be changed in order
to have corresponding different multimode impulse responses. Among those three mentioned, the
most severe condition refers to the case of equally excited modes with a relatively high group delay
variation, namely q = 0.999 and ∆τ = ±2 ns/km, as reported in Figure 5.25.

The resulting multimode fiber impulse response is shown in Figure 5.26. The multipeak pro-
file makes this pulse response not suitable for any digital NRZ transmission system due to the
strong intersymbol interference produced. According to the sign of the group delay variation, either
three postcursors or three precursors are produced. Precisely, the positive group delay variation
∆τ = +2 ns/km leads to the postcursor formation, while the negative group delay ∆τ = −2 ns/km
determines the pulse precursor. It is important to note that the total pulse width nearly coincides
with the sum of the respective modal and chromatic pulse widths. This is due to the granular profile
of the response, with individual modal responses almost completely separated from each other. In
this case the geometric sum coincides with the linear sum of the pulse components.

5.4.3.8 Configuration 8: SMSDSQ

This simulation example shows the effect of selective low-order excitation, even for very few
allowed fiber modes. The source power is no longer distributed equally among allowed modes
and higher-order modes carry less power than lower-order ones. The resulting impulse response
is shown in Figure 5.27. It has a smoother granular profile in comparison with the one shown in

Figure 5.25 Group delay distribution for the case of only five allowed fiber modes. The almost uniform
source power coupling coefficients distribution delivers about 20 % of the total launched power to each fiber
mode
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Figure 5.26 Computed multimode impulse responses for the case M = 5,∆τ = ±2 ns/km, q = 0.999. The
very low number of allowed modes together with the high group delay variation leads to a strong granularity
of the multimode impulse response. Strong postcursors or precursors are therefore generated corresponding to
positive and negative group delay variations respectively

Figure 5.27 Quadratic group delay distribution on the left side for the case of only five allowed fiber modes.
The group delay variation has been set equal to ∆τ = ±1 ns/km. The right side plot shows the geometric
progression distribution of the coupling coefficient with q = 0.50
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Figure 5.28 Computed multimode impulse response using the configuration M = 5,∆τ = ±1 ns/km,
q = 0.50. The granularity of the group delay of the allowed fiber mode is partially compensated by the
selective low-order mode excitation achieved using a low q geometric progression coefficient distribution

Figure 5.26. From the multimode impulse response presented in Figure 5.28, the same granularity
of the previous case but with a smoothed profile due to selective low-order mode excitation is
evident.

5.4.3.9 Conclusions

The eight configurations presented in this section represent typical impulse response profiles achiev-
able by multimode fibers. Simplified mathematical modeling has been used to evaluate the different
configurations, but as mentioned at the beginning of this section, the simulator can be easily adapted
to handle more realistic multimode fiber configuration conditions. Both group delay distribution and
source power coupling coefficients can be computed accurately using either a deterministic model
or a statistical approach. Even experimental data can be uploaded into the simulation program in
order to emulate experimental multimode fiber impulse responses. The mathematical modeling used
in this section was mainly conceived for handling an easy simulation environment, so that it could
be focused instead on the interesting response profiles. It should be clear that the multimode fiber
impulse response is governed by the combination of the group delay distribution at the operating
wavelength and the excited mode distribution. The fiber can support a large number of modes, but
the modes effectively concurring to the impulse response are of course only those excited by the
input launching conditions.

The same fiber has as many impulse responses as there are launching conditions defined. This
discussion leads directly to the concept of multimode fiber behavior when it is excited by laser
light, as required by multigigabit transmission systems. LED light sources characterized by a high
numerical aperture produce a more uniform excitation, but they are not suitable for multigigabit
direct modulation. On the other hand, laser light has an inherently lower numerical aperture with
a much greater limit on spot size. Typical spot size values for a semiconductor laser diode are
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of the order of a few micrometers, usually much less than the standard multimode fiber core
diameter ranging between 50 µm and 62.5 µm. As a consequence, laser excitation belongs to the
restricted launching conditions, providing the selective excitation of a small fraction of the allowed
fiber modes. The impulse response will therefore depend on the group delay distribution among
the excited mode fractions. Due to the strong influence of the refractive index grading profile
on the group delay equalization, very small differences in the grading profile during either the
manufacturing process or the environmental conditions can lead to a sensible uncompensated group
delay profile with a strong dependence of the multimode fiber impulse response on the launching
conditions.

The next section analyzes in more detail the effect of the group delay distribution on the impulse
response profile.

5.4.4 Influence of the Group Delay Distribution

In this section we will discuss in more detail the consequences of the group delay distribution on
the modal impulse response while assuming uniform mode excitation. In fact, as learned from the
simulation configuration in the previous section, once the mode excitation is uniform, the multimode
impulse response is mainly governed by the group delay distribution evaluated at the average source
wavelength. The next sections will introduce the group delay analysis in order to forecast principal
impulse response characteristics.

5.4.4.1 General Concepts

Figure 5.29 qualitatively reports symmetric group delay profiles. It is evident that in the cases
represented the outer range values of the group index will be responsible for either the fastest or

Figure 5.29 Bell-shaped group delay distributions leading to mirrored behaviors of the modal impulse res-
ponse. The profile leads to weak precursors followed by a high-intensity pulse. The profile leads to a high-
intensity pulse followed by weak postcursors. This interesting complementary behavior of the modal impulse
response is consequent to the complementary density distributions of the allowed group delay values between
the profiles. Shadowed regions highlight higher densities of allowable group delays
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the slowest modal contributions. It is the density of allowable delay values that determines the
largest intensity contribution to the output pulse. Again, the coupled power distribution will be
responsible for the weighting of those allowable delay contributions.

The profiles represented in Figure 5.29 are an interesting example of a complementary group
delay distribution, which give mirrored modal impulse responses, once it is assumed that both of
them are excited by the same coupled source power distribution. To have a clear representation of
this effect, it is convenient to assume uniform mode excitation, with the same amount of optical
source energy distributed to each allowed fiber mode. Moreover, each impulse response can be
shaped with the simple square pulse, as represented in Figure 5.30. Then the impulse response
can be built up by adding together the square pulses according to the corresponding group delay
experienced.

Figure 5.29 shows the individual modal impulse responses corresponding to each group delay
profile distribution, assuming uniform coupled power distribution. Each mode will therefore bring
the same intensity to the output fiber section and consequently the output impulse response shape

Figure 5.30 Modal impulse responses corresponding to the group delay distributions shown in Figure 5.29,
assuming a uniform intensity distribution among all allowed modes. The top impulse response shows a weak
precursor followed by a bulk response and refers to the group delay distribution shown at the top of Figure 5.29.
The complementary situation holds for the impulse response shown in the bottom graph
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will be determined by the modal delay distribution. Quantitative demonstrations of these interesting
effects will be seen using computer modeling results in the following section. Referring to the group
delay distribution in Figure 5.29, it is concluded immediately that the fastest square pulses will be
sparsely distributed in the leading tail (precursor), due to the low concentration of group delay
values available in this region. Instead, slower pulses will tend to concentrate as long as they
spread out over a longer timescale in the trailing tail. The result is shown in the top graph of
Figure 5.30. The impulse response is composed of a weak precursor in the leading edge, followed
by the principal pulse. The reversed group delay distribution, drawn in Figure 5.29, leads to the
mirrored multimode impulse response with a characteristic weak postcursor in the trailing edge, as
depicted by the bottom graph in Figure 5.30.

5.4.4.2 Linear Distribution

The general introduction presented in the previous section suggested that a more systematic way
should be followed in order to understand better and manage the influence of group delay distribution
on the multimode impulse response. In this section, as well as in the following ones, uniform mode
excitation by setting will be assumed, unless otherwise stated:

|ah|2 = 1

M
⇒

M∑
h=1

|ah|2 = 1 (5.56)

A start is made using the simplest modal delay distribution available, namely the linear rela-
tionship. The value τ0 ≡ τ g,h0 , h0 ∈ N(1, M) and the slope ∆τ/(M − 1) of the linear distribution
are assigned, where h0 is any modal index between h = 1 and h = M , assuming M excited modal
groups, and ∆τ is the total variation of the modal group delay evaluated at the source spectrum
average wavelength λ. Once those parameters are known, the linear group delay distribution from
Equation (5.46) has the following expression:

τh = τ0 + ∆τ

M − 1
(h − h0) (5.57)

Figure 5.31 shows the definition of the linear distribution. Multimode impulse responses computed
assuming uniform excitation and linear group delay distributions are presented below. The remaining
parameters are the same as in Table 5.4. The simulation output of the spectral condition and of
the chromatic impulse response are also the same as shown in Figures 5.8 and 5.9 and will not be
reproduced here.

In Figure 5.32 the multimode impulse response assuming a large mode number M = 200 and
∆τ = ±2 ns/km is shown. The uniform superposition of individual chromatic impulse responses
gives, as apparently expected, an almost uniformly flat-shaped multimode impulse response char-
acterized by a half-width at half-maximum value approximately equal to the assumed group delay
variation, |∆τ | = 2 ns/km. The exact computation of the FWHM value of the impulse response
must include the chromatic impulse FWHM value. Of course, due to symmetric linear delay distri-
butions in Figure 5.33, both mirrored impulse responses in Figure 5.32 are identical. It is important
to remark that although the flat-shaped response obtained in this case could be expected as a
general consequence of the linear delay and uniform excitation assumptions, the generalization of
this conclusion is absolutely not correct. It is just a matter of coincidence that the superposition
of the delay-shifted Gaussian-like chromatic impulse responses gives the almost flat output pulse
computed in Figure 5.32.

For a given chromatic impulse response, the almost flat profile depends on the particular choices
of both the mode number M and the total delay ∆τ , as shown in the second case reported in
Figures 5.34 and 5.35, just after limiting the mode number to M = 20. Reducing the mode number
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Figure 5.31 Linear group delay distribution. The modes are uniformly ordered according to their delay value.
The total delay variation is ∆τ = τ g,max − τ g,min and the reference delay τg,hr (λ) = τ g,hr = τr is evaluated at
the source spectrum average wavelength

Figure 5.32 Computed multimode impulse response in the case the of linear delay distribution with M = 200,
∆τ = ±2 ns/km, q = 1.00. The individual superposition of the chromatic impulse response leads to almost a
square pulse profile. The symmetry of the linear delay distributions shown in Figure 5.33 gives identical
mirrored multimode impulse responses
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Figure 5.33 Computed linear group delay distribution (left) and uniform excitation (right) for the following
parameters: M = 200,∆τ = ±2 ns/km, q = 1.00. The delay distribution is referenced to the value assumed at
the source average wavelength τg,hr (λ) = τ g,hr = τr

Figure 5.34 The linear group delay distribution has the same total delay value ∆τ = ±2 ns/km of the preced-
ing case but the number of modes has been reduced to M = 20. This leads to a larger delay difference between
any adjacent mode pairs. The right plot shows the uniform excitation. The delay distribution is referenced to
the value assumed at the source average wavelength τg,hr (λ) = τ g,hr = τr
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Figure 5.35 Computed multimode impulse response in the case of the linear delay distribution with M = 20,
∆τ = ±2 ns/km, q = 1.00. The superposition of the individual chromatic impulse response leads to the ripple
pulse profile. The symmetry of the linear delay distributions shown in Figure 5.30 is responsible for identical
mirrored responses

but leaving the same total delay variation ∆τ corresponds to an equivalent increment of the delay
difference between adjacent modes, leading to a different chromatic impulse response overlap. In
this case the Gaussian-like chromatic impulse responses in Figure 5.9 superpose by a different
amount with respect to the preceding condition, giving a multimode response with a characteristic
ripple profile.

Figure 5.35 presents the computed multimode impulse response according to considered linear
delay distribution and uniform excitation. As mentioned, the same chromatic impulse response
gives a different multimode response due to the different overlapping conditions. It is evident
that either increasing the total delay or reducing the excited mode number will result in a more
granular response, where individual chromatic responses will be more isolated from each other.
If the third condition is assumed (see Figure 5.36) to excite the same large mode number used in
the first case, M = 200, but reduces the total delay variation to only |∆τ | = 0.25 ns/km, therefore
allowing a closer chromatic response superposition, the multimode impulse response assumes a
smoothed bell-shaped profile, as reported in Figure 5.37, which closely resembles a Gaussian-like
pulse.

5.4.4.3 Piecewise Linear Distribution

The mathematical modeling presented in the preceding section easily generalizes to a multiseg-
mented or piecewise linear group delay profile. This technique is quite interesting because it allows
the general delay distribution to be approximated by means of a sequence of linear group delays. It
is easy to generalize the linear delay modeling into a multisegment linear profile. Figure 5.38 shows
the piecewise linear specifications. Each segment Tk is defined by specifying the modal indices and
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Figure 5.36 Computed linear group delay distribution (left) and uniform excitation (right) for the following
parameters: M = 200, ∆τ = ±0.25 ns/km, q = 1.00. The delay distribution is referenced to the value assumed
at the source average wavelength τg,hr (λ) = τ g,hr = τr

Figure 5.37 The multimode impulse response shown here refers to the linear group delay reported in Fig-
ure 5.36 with M = 200 and uniform excitation. The low value of the total delay together with the large mode
number leads to a small delay difference between adjacent chromatic mode responses. After the superposing
process, the resulting multimode impulse response assumes a more smoothed Gaussian-like profile
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Figure 5.38 Piecewise linear group delay distribution. The first index h = 1 refers to the group delay value
τ1,1 = τ g,1. In this representation three segments are included. The reference group delay can be assigned
to each one of the M mode groups. By definition, the reference delay is assigned to the value τr of the
group delay function τg,hr (λ) of the selected reference mode hr, evaluated at the source average wavelength
λ : τg,hr (λ) = τ g,hr = τr

the corresponding delay values of the two extremes, (hk,1, τk,1) and (hk,p, τk,p), h ∈ N (hk,1, hk,p),
τ ∈ Tk = (τk,1, τk,p):

τk,h = τk,1 + ∆k

Mk

(h − hk,1),

{
∆k ≡ τk,p − τk,1

Mk ≡ hk,p − hk,1
(5.58)

In order to have the delay distribution continuous at each segment, the following condition needs
to be satisfied:

τk+1,1 = τk,p (5.59)

Substituting into (5.58) satisfies the following equation by the piecewise linear group delay
distribution:

τ2,1 = τ1,1 + ∆1

τ3,1 = τ2,1 + ∆2

...

τk+1,1 = τk,1 + ∆k

...




⇒
τk+1,1 = τ g,1 +

k∑
j=1

∆j

(τ1,1≡τ g,1)

(5.60)

The definition of the group delay variation in each segment implies the sign of the variable ∆k ,
which must be accounted for in the algebraic sum in Equation (5.60). Figure 5.38 gives an example
of this issue where the delay value τ g,min is obtained according to Equation (5.60) as τ g,min = τ3,1 =
τ1,1 + ∆1 − |∆2|.
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5.4.4.4 Inverse Hyperbolic Tangent Distribution

The multimode impulse response of the optical fiber depends on two fundamental factors: the
group delay distribution at the source average wavelength and the source power coupling coefficient
distribution. In the following uniform mode excitation will continue to be assumed, launching the
same amount of optical energy into each mode group. Under uniform mode excitation, the impulse
response will no longer depend on the launch conditions but instead, for a given chromatic impulse
response, it will be governed by the group delay distribution. In previous sections it was observed
how different the multimode impulse response could be by selecting the mode number, the delay
distribution and the mode excitation parameter set.

The scope of this section is to introduce some general criteria for the group delay profile in
order to have a regular, axial-symmetric, single-body and bell-shaped multimode impulse response.
Which general criteria should satisfy the group delay distribution for having such a multimode
impulse response while assuming uniform excitation? To answer this question a start could be
made using some conclusions obtained after the previous computed multimode impulse responses.

1. Assuming a single-peak Gaussian-shaped source spectrum, the chromatic impulse response of
each supporting mode closely resembles a Gaussian pulse. This is due to the relatively narrow
linewidth of the light source with respect to the scale of variation of the group delay function
that allows a linear delay approximation.

2. High density of allowable mode group delays induces a smoothed peak formation in the
multimode impulse response. This effect is due to the relevant overlapping of adjacent Gaussian-
shaped chromatic impulse responses.

3. Symmetric group delay distribution corresponds to a balanced precursor and postcursor distri-
bution, leading to a symmetric multimode impulse response around the ensemble average group
delay.

4. In order to model infinite time length tails of the multimode impulse response, the group delay
distribution must have vertical asymptotes corresponding to extreme values of the modal index.
The infinite time extent response does not have any direct physical justification, but this is a
useful mathematical feature that can be adjusted to fit both experimental data and required test
pulse performances. Gaussian modeling of physical events is an example of this conceptual
approach.

One possible candidate for the group delay distribution that satisfies both the last three require-
ments is the inverse hyperbolic tangent. This function has odd symmetry; it has an inflection point
with a minimum derivative value at the origin and it exhibits two vertical asymptotes. In order
to generalize the modeling capabilities of the function, the inverse hyperbolic tangent function is
defined by introducing three parameters as follows:

y(x) = a + c

2
log

(
1 + bx

1 − bx

)
, |x| <

1

|b|
y(0) = a, lim

x→±1/b
y(x) = ±∞

dy

dx
= bc

1 − b2x2
⇒




(
dy

dx

) ∣∣∣
x=0

= bc(
dy

dx

) ∣∣∣
x=1

= bc

1 − b2

(5.61)

The physical meaning of the three parameters a, b and c is evident: they are related to the
reference group delay at the source average wavelength, to the slope at the |x| = 1 and to the slope
of the inflection point at the origin respectively. Assuming uniform excitation, the product bc is



240 Multi-Gigabit Transmission over Multimode Optical Fibre

directly related to the multimode impulse response full-width at half-maximum. In fact, the lower
the bc product, the lower is the slope at the inflection point according to Equation (5.61), and the
modal chromatic impulse responses will concentrate closer to the reference delay. The resulting
multimode superposition will therefore be strongly peaked at the reference group delay with a
narrow full-width at half-maximum value.

Using physical variables, the discrete version of expression (5.61) becomes

τ(h) = τr + γ

2
log




1 + 2κ

M

(
h − M + 1

2

)

1 − 2κ

M

(
h − M + 1

2

)

 , h ∈ N(1, M) (5.62)

where τ(h) is used to indicate the group delay value for the hth excited mode, evaluated at the
source average wavelength. Dependence of the discrete variable h has been explicitly reported
in parentheses. The parameter κ controls the curvature of the discrete inverse hyperbolic tangent
closer to the extremes h = 1 and h = M , while the parameter γ sets the slope of the inflection
point at the reference group delay. The parameter γ has the dimension of normalized delay and
sets the timescale of group delay variation. The physical meaning and limitation of these shaping
parameters will be discussed below.

When the total mode number is odd, the reference group delay τr is associated with the mode
index hr = (M + 1)/2, which has been set equal to the average value of the modal index inter-
val. This value can either belong or not to the discrete indices. However, this choice ensures a
symmetric variation around the central symmetry of the inverse hyperbolic tangent. Below are
reported significant values of the discrete inverse hyperbolic tangent distributions for even mode
numbers M:

h = 1 ⇒ τ(1) = τr + γ

2
log

[
1 − κ(M − 1)/M

1 + κ(M − 1)M

]

h = M ⇒ τ(M) = τr + γ

2
log

[
1 + κ(M − 1)/M

1 − κ(M − 1)/M

]

h = M

2
⇒ τ

(
M

2

)
= τr + γ

2
log

(
1 − κ/M

1 + κ/M

)

h = M

2
+ 1 ⇒ τ

(
M

2
+ 1

)
= τr + γ

2
log

(
1 + κ/M

1 − κ/M

)
(5.63)

From Equations (5.63), using the property of the logarithmic function, it follows that

τ(1) − τr = τr − τ(M), τ

(
M

2

)
− τr = τr − τ

(
M

2
+ 1

)
(5.64)

Figure 5.39 reports a qualitative drawing of the inverse hyperbolic tangent distribution of the group
delay, according to Equations (5.63). The most important parameter values have been indicated for
illustration.

One more remark is useful about the choice of the total mode number M:

• M is even. If the mode number M is even, both indices h = M/2 and h = M/2 + 1 referred to in
Equations (5.63) are integers and are valid numbers for identifying mode groups. The reference
group delay τr instead cannot be associated with a particular mode group because hr = (M + 1)/2
would not be a valid mode index. In this case τr is just assumed to be the reference value around
which the total delay variation can be added symmetrically according to Equation (5.62). This
is the reason for specifying the relationships (5.63) only for the even mode number M .
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Figure 5.39 Qualitative representation of the inverse hyperbolic tangent group delay distribution according
to Equations (5.63). This particular function allows symmetric mode concentration around the reference group
delay τr, which therefore assumes the meaning of the average delay. Low-order and high-order modes give a
symmetric tail contribution generating a symmetric bell-shaped profile which often closely resembles a Gaussian
pulse

• M is odd. When the mode number is odd, the reference delay τr is associated with the index hr =
(M + 1)/2 and the two adjacent modes become h = (M + 1)/2 − 1 and h = (M + 1)/2 + 1, as
reported in Figure 5.39 for the case M = 13.

5.4.4.4.1 Shaping parameters κ and γ

The discrete inverse hyperbolic tangent distribution (5.62), evaluated at the two extreme indices
h = 1 and h = M , assumes the corresponding values τ(1) and τ(M) reported in Equations (5.63).
In order to have both values finite and positive, the logarithmic argument in Equations (5.63) must
be greater than one. If

|κ| < 1 (5.65)

the argument of the logarithmic function is positive for every large mode number M , leading to
physical consistent results. The difference between τ(M) and τ(1) represents the total group delay
variation ∆τ(M) evaluated among all M excited modes. From Equations (5.63) and (5.64) the
following expression for the total group delay variation is obtained:

∆τ(M) ≡ τ(M) − τ(1) = γ log

[
1 + κ(M − 1)/M

1 − κ(M − 1)/M

]
(5.66)

The dependence of the group delay variation over the finite number of modes M has been explicitly
indicated in order to distinguish it from the asymptotic value for M → ∞.

To find the relationship between the parameters κ and γ , it is convenient to consider the case of
an indefinitely large mode number, with M → ∞. To this purpose, the limit of the two distributions
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τ(1) and τ(M) in Equations (5.63) is evaluated for M → ∞:

lim
M→∞

τ(1) = τr + γ

2
log

(
1 − κ

1 + κ

)

lim
M→∞ τ(M) = τr + γ

2
log

(
1 + κ

1 − κ

) (5.67)

Here the consistency of the requirement (5.65) for the parameter κ can clearly be seen. No limitation
exists instead for the second shaping parameter γ , and so |γ | < +∞. The limits in Equations (5.67)
constitute a relationship between the two parameters κ and γ . From Equations (5.66) and (5.67) it
can be concluded that the group delay variation ∆τ (M) tends to the following limiting value ∆τ

for indefinitely large mode number M → +∞:

∆τ ≡ lim
M→∞ ∆τ(M) = γ log

(
1 + κ

1 − κ

)
(5.68)

and

γ = ∆τ

log[(1 + κ)/(1 − κ)]
= ∆τ

2 tanh−1(κ)
(5.69)

Inverting Equation (5.68), the expression for κ can be found in terms of ∆τ and γ :

e∆τ /γ = 1 + κ

1 − κ
⇒ κ = e∆τ /γ − 1

e∆τ /γ + 1
= e+∆τ /(2γ ) − e−∆τ /(2γ )

e+∆τ /(2γ ) + e−∆τ /(2γ )
(5.70)

or

κ = tanh

(
∆τ

2γ

)
In conclusion:

1. The shaping parameter κ is related to the curvature of the distribution in regions close to both
low-order and high-order mode delays and is given by Equations (5.70). Values closer to one
correspond to a smaller curvature radius (steeper curvature).

2. The shaping parameter γ is related to the slope at the inflection point of the reference group
delay and is given by Equation (5.69).

3. For a large but still finite mode number M , the group delay variation will be upward bounded
by ∆τ when the parameters γ and κ satisfy either Equation (5.69) or Equations (5.70).

4. Only two parameters among γ , κ and ∆τ are independent, the third one being related through
Equation (5.69) or Equations (5.70).

5.4.4.5 Simulation Results

In the followings pages some computed multimode impulse responses are presented, where an
inverse hyperbolic tangent group delay distribution according to Equation (5.62) is assumed. The
total delay variation ∆τ and the shaping factor κ are chosen as an independent set of parameter,
and the shaping parameter γ is determined by the relationship (5.69). For every finite mode number
M the total group delay variation ∆τ(M) supported by the inverse hyperbolic tangent distribution
is given by Equation (5.66). Two different shaping factors κ with assumed very low and very large
mode number cases respectively are considered. Both the total group delay variation and the excita-
tion are assumed to be the same among all the computed cases. As a consequence, the four computed
multimode impulse responses differentiate with respect to the shaping factor and the mode numbers.
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5.4.4.5.1 Configuration 1: κ = 0.999, M = 20, q = 1, ∆τ = ±2 ns/km
Due to the low number of modes, the energy distributed to each excited mode is relatively higher, but
the modes are quite sparsely distributed. This leads to the multimode impulse response presented
in Figure 5.40. As usual, individual weighted mode contributions are shown together with their
superposition.

As expected, higher concentrations of modes around the average delay makes the central part of
the superposed impulse response highly peaked, resembling a Gaussian pulse. The two symmetri-
cal side peaks correspond to the lowest- and highest-order modes, which experience corresponding
extreme delays. The symmetry of the inverse hyperbolic tangent together with the uniform excita-
tion makes the mirrored multimode impulse responses corresponding to both positive and negative
total group delays quite symmetrical, as clearly shown in Figure 5.41. In particular in the left plot,
corresponding to the positive group delay variation, the lowest-order mode is associated with the
lowest group delay. The right plot refers to the negative group delay and the lowest-order mode
exhibits a higher group delay, as reported in Figure 5.40.

5.4.4.5.2 Configuration 2: κ = 0.999, M = 2000, q = 1, ∆τ = ±2 ns/km
The following simulation has the same configuration as the first case, except for the much larger
number of excited modes, M = 2000. Owing to the uniform excitation, a corresponding two orders
of magnitude lower energy is distributed to each mode, with two orders of magnitude higher density
over the same total group delay variation. This leads to the superposition of a very tight chromatic
impulse response, which gives a more smoothed multimode impulse response. Figure 5.42 shows
the group delay distribution and the corresponding uniform excitation. Figure 5.43 presents the
impulse response.

Figure 5.40 Computed group delay distribution (left) with uniform excitation q = 1, according to the
inverse hyperbolic tangent with M = 20, κ = 0.999, ∆τ = ±2 ns/km. The group delay variation is
∆τ (M) = 0.959 ns/km. Both positive and negative delay variations are reported
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Figure 5.41 Computed multimode impulse response for the case shown in Figure 5.40. The left graph refers
to the positive group delay variation while the right graph reports the case of the negative group delay. Due to
the symmetry of the inverse hyperbolic tangent and the uniform excitation both impulse responses are almost
identical. Negligible differences are due to the slight asymmetry of the chromatic impulse response with respect
to the average value

Figure 5.42 Computed group delay distribution (left) with uniform excitation q = 1, according to the
inverse hyperbolic tangent with M = 2000, κ = 0.999, ∆τ = ±2 ns/km. The group delay variation is
∆τ (M) = 1.895 ns/km, closer to the asymptotic value ∆τ = 2 ns/km. Both positive and negative delay
variations are reported. The uniform source power coupling coefficient is |ah|2 = 1/M = 5 × 10−4
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Figure 5.43 Computed multimode impulse responses for the case shown in Figure 5.42. Both positive and
negative group delay impulse responses are reported. A higher density of allowed modes together with the
inverse hyperbolic tangent distribution and uniform excitation makes the impulse response symmetrical and
Gaussian shaped

This computational example reveals some already known conclusions. The multimode impulse
response under the following three operating conditions:

(a) a large mode number (M → ∞),
(b) a symmetrical group delay variation (κ → 1, inverse hyperbolic tangent) and
(c) a uniform excitation (q → 1),

has a symmetric, Gaussian-shaped profile. This result, even if referred to specific operating con-
ditions, is quite important because in most practical design issues the multimode fiber is assumed
to be almost Gaussian. In this sense, it is important to remember which mathematical modeling
condition must be respected in order to have at least a Gaussian approximation of the multimode
impulse response. In Chapter 6 the Gaussian approximation modeling will be discussed.

5.4.4.5.3 Configuration 3: κ = 0.900, M = 20, q = 1, ∆τ = ±2 ns/km
In this case less pronounced curvature of the inverse hyperbolic tangent distribution is assumed by
setting the shaping factor κ = 0.900 instead of κ = 0.999 as in configuration 1. The consequence
is a slightly more uniform distribution of the group delays around the average value compared to
configuration 1. Figure 5.44 shows the group delay distribution together with the uniform excitation
for the low mode number case, M = 20. The lower shaping factor κ not only affects the curvature of
the distribution but also changes the total excursion of the group delay. Comparing Figure 5.40 with
Figure 5.44, it can be seen, for example, that the mode identified by the index h = 15 in the first case
experiences a relative group delay of about τ15

∼= 13 ps/km, while the same mode, again identified
by the index h = 15, experiences more than twice the delay in the second case, with τ15

∼= 30 ps/km.
This difference is common for all modes between the two considered configurations. Those two
effects, namely the reduced distribution curvature and the extended group delay variation, lead to
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Figure 5.44 Computed group delay distribution (left) with uniform excitation q = 1, according to the
inverse hyperbolic tangent with M = 20, κ = 0.900, ∆τ = ±2 ns/km. The group delay variation is
∆τ (M) = 1.731 ns/km and is much closer to the asymptotic value ∆τ = 2 ns/km with respect to the case
in Figure 5.40. Both positive and negative delay variations are reported. The uniform source power coupling
coefficient is |ah|2 = 1/M = 5 × 10−2

a more pronounced granular aspect of the resulting multimode impulse response. This is clearly
visible in the computed plots given in Figure 5.45, where the looser superposition of each chromatic
impulse response gives the characteristic symmetrical ripple in the leading and trailing edges of
the multimode impulse response.

5.4.4.5.4 Configuration 4: κ = 0.900, M = 2000, q = 1, ∆τ = ±2 ns/km
In this last configuration, the same operating conditions are assumed as in the previous case, except
for a much larger number of modes. Again, increasing the mode number while maintaining the
same total group delay variation leads to a corresponding higher density of excited modes per unit
delay. This mostly eliminates the granular profile of the resulting multimode impulse response, as
clearly shown in Figures 5.46 and 5.47.

The multimode impulse response shown in Figure 5.47 is identical in the central body section to
the result presented in Figure 5.45. The main difference is in the leading and trailing edges, which
are completely smoothed with respect to the granular aspect they both have in the response shown
in Figure 5.45. The superposed pulse is symmetrical but in this case the Gaussian interpolation
does not fit as well as that in configuration 2. This is essentially due to the lack of smoothed tails in
this impulse response due to the lower value of the κ parameter, which leads to a delay distribution
much less dense in both extreme regions of low and high index numbers.

5.4.4.6 Conclusions

These simulation results close the section on computer modeling of the multimode impulse response.
Several configurations have been considered and the effects have been seen of all the modeling
parameters in shaping the impulse response output. Again, the relevant role of both the group delay
and source power coupling coefficient distributions have been confirmed in defining the multimode
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Figure 5.45 Computed multimode impulse response for the case shown in Figure 5.44. Both positive and
negative group delay impulse responses are reported. A lower density of excited modes makes the superposition
looser than in configuration 1, leading to a more granular multimode impulse response with a pronounced ripple
at both the leading and trailing edges. The central body is still smoothed

Figure 5.46 Computed group delay distribution (left) with uniform excitation q = 1, according to the
inverse hyperbolic tangent with M = 2000, κ = 0.900, ∆τ = ±2 ns/km. The group delay variation is
∆τ (M) = 1.997 ns/km, almost approximating the asymptotic value ∆τ = 2 ns/km. Both positive and negative
delay variations are reported. The uniform source power coupling coefficient is |ah|2 = 1/M = 5 × 10−4
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Figure 5.47 Computed multimode impulse response for the case shown in Figure 5.46. A higher density of
excited modes makes the superposition tighter than in configuration 3, leading to a more smoothed multimode
impulse response with sharp tails at both the leading and trailing edges

impulse response. The first distribution depends directly on the level of delay equalization achieved
during the multimode fiber design and manufacturing, while the second distribution depends exclu-
sively on the adopted launching conditions. The source spectrum and the consequent chromatic
impulse response usually play a minor role in defining the multimode impulse response, especially
for large numbers of modes where the output pulse granularity due to the single-mode contribution
is almost negligible. Gaussian modeling is an interesting candidate for system design when the
required conditions for a symmetric bell-shaped impulse response can be fulfilled. As stated above,
the Gaussian modeling condition can be summarized as having both a symmetric, center denser,
group delay distribution and an almost uniform mode excitation. While the excitation requirement
can be approximated by means of the over-filled launch technique, the first condition remains in
almost every case just a useful assumption that is almost never verified or controllable. This last
issue makes the Gaussian modeling a simple but still quite questionable tool.

5.5 Theory of Multimode Frequency Response
The theory of the impulse response of the multimode fiber developed in Section 5.3 was written
directly in the time domain, assuming only the superposition principle as the basic physical require-
ment for composing all the modal contributions. This is an important prerequisite, which is usually
common to several signal or circuit simulators. The modeling architecture is first developed in
the time domain by means of both linear assumptions among the physical quantities involved and
the related set of linear equations. The solution is directly obtained in the time domain whereas
the frequency domain is derived through the Fourier integral.

The linearity of the optical field together with the orthogonal property of the modal decomposi-
tion of the electromagnetic field led to the superposition principle with respect to the transmitted
optical power. This allows summing of the intensity contribution of each excited fiber mode. Mode
orthogonality in fact guarantees that the intensity contribution of each field cross-term vanishes
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when the power is calculated by integrating the Poynting vector of each mode pair over the infinite
fiber cross-section. In other words, if the fiber supports M guided modes, the multimode impulse
response in terms of the intensity of the optical field is given by the weighted sum of the intensities
of all M impulse responses.

The theory of the multimode fiber frequency response will be derived from the impulse response
by means of the well-known Fourier integral theory. The linearity of the impulse response in
fact guarantees the applicability of the Fourier transform properties, reducing the theory of the
multimode fiber impulse response mainly to an application of the Fourier transform technique.
Nevertheless, many interesting features of the frequency response will be introduced and analyzed
in terms of the multimode fiber bandwidth and frequency profile.

5.5.1 Basic Concepts and Definitions

If the signal f (t) of the temporal real variable t belongs to the space L1(�), and therefore it is
absolutely integrable on the whole real axis �:

f (t) ∈ L1(�) ⇒
∫ +∞

−∞
|f (t)| dt < +∞ (5.71)

then the function f (t) admits the Fourier integral representation F(ω):

f (t) ∈ L1(�) ⇒ F(ω) =
∫ +∞

−∞
f (t) e−jωt dt (5.72)

The following basic equation, known as the inversion formula, permits the representation of the
function f (t) in terms of its Fourier integral F(ω):

f (t) = 1

2π

∫ +∞

−∞
F(ω) e+jωt dω (5.73)

The temporal real variable t and the frequency real variable ω constitute the conjugate domains
of the Fourier integral representation of the function f (t). The Fourier transform pair is indicated as

f (t)
�↔F(ω) and establishes a biunivocal relationship between the two functional representations.

The properties and the relationships between the two space representations of the Fourier integral
theory will not be discussed further, but instead the reader is referred to the book by A. Papoulis,
which is a valuable reference on this subject.1

The time domain representation of the multimode fiber impulse response has been derived in
Equation (5.20). For the sake of clarity, the same expression is given again:

hF(z, t, λ) =
M∑

h=1

|ah(λ)|2hc,h[z, t − z(τ g,h − τ c,h)]

According to the definition of the frequency response of a single-port, time-invariant linear system,
the Fourier transform of the multimode impulse response (5.20) is taken. Using the linear property
and the time-shifting theorem of the Fourier transform, it is easy to derive the frequency response
of the multimode fiber:

HF(z, ω, λ) = �[hF(z, t, λ)] =
M∑

h=1

|ah(λ)|2� {hc,h[z, t − z(τ g,h − τ c,h)]
}

(5.74)

1 A. Papoulis, The Fourier Integral and Its applications, McGraw-Hill, 1987.
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Using the time-shifting theorem:

�[f (t − t0)] = e−jωt0�[f (t)] = e−jωt0F(ω) (5.75)

it is concluded from Equation (5.74) that the frequency response of the multimode fiber has the
following general expression:

HF(z, ω, λ) =
M∑

h=1

|ah(λ)|2Hc,h(z, ω) e−jωz(τ g,h−τ c,h) (5.76)

The function
Hc,h(z, ω) = �[hc,h(z, t)] (5.77)

is the Fourier transform of the chromatic impulse response of the hth fiber mode.

5.5.2 Spectral Characteristics and Physical Properties

The multimode fiber frequency response (5.76) needs some discussion. First of all, the time-shifting
theorem converts the modal delay translation into an equivalent shifting of the phase term. The
weighting terms |ah(λ)|2 are the same as those defined in the time domain, but now they act over
the phase components generated by the group delay distribution. These phase terms are represented
by complex exponential factors Φh(z, ω) = e−jωz(τ g,h−τ c,h).

5.5.2.1 Two Cascaded Linear Systems

In general, each mode has its own chromatic impulse response, which is represented by the h index
of the chromatic impulse response hc,h(z, t) and average delay τ c,h indicated in formula (5.76)
above. If it is assumed that all modes have almost the same chromatic impulse response, neglecting
small differences due to second-order modal dispersion relationships, both the chromatic response
and the relative phase term can be taken out of the summation in Equation [5.76], leading to the
following approximated expression for the multimode fiber frequency response:

HF(z, ω, λ) ∼= Hc(z, ω) e+jωzτ c

M∑
h=1

|ah(λ)|2 e−jωzτ g,h (5.78)

The term in front of the summation symbol coincides with the frequency response of the time-
centered chromatic impulse response:

Ĥc(z, ω, λ) ≡ �[ĥc(z, t, λ)] = �[hc(z, t − zτ c, λ)] (5.79)

The average chromatic impulse response delay of ĥc(z, t, λ) is of course zero, τ c = 0, and the
approximated frequency response (5.78) reduces to the simpler form:

HF(z, ω, λ) ∼= Ĥc(z, ω)

[
M∑

h=1

|ah(λ)|2 e−jωzτ g,h

]
(5.80)

Note that there is no additional approximation between Equation (5.78) and the above expression.
This is simply a definition of the centered chromatic impulse response. Of course, behind the modal
delay affecting the average value of each chromatic impulse response there is an assumption that
all the centered chromatic impulse responses are equal to each other, which reduces to having the
same profile for each chromatic impulse response, regardless of the average delay. This hypothesis
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coincides with assuming the same value of the second order propagation constant for each fiber
mode.

The meaningful concept behind the approximated expression (5.80) is the separation of the
multimode fiber system into two cascaded linear systems equivalent to the time-centered chro-
matic impulse response and the modal impulse response respectively. This comes directly from the
mathematical expression (5.80) as a product of the two frequency responses.

5.5.2.2 The Modal Function
The expression (5.80), although approximated in the sense discussed above, is quite useful for
understanding the physical interaction between modal propagation and chromatic dispersion. To
this purpose, the modal function Υ (z, ω, λ) is introduced:

Υ (z, ω, λ) ≡
M∑

h=1

|ah(λ)|2 e−jωzτg,h(λ) (5.81)

This gives the frequency representation of the excited modal structure of the multimode fiber,
without referring to any chromatic effect. It links the source power coupling coefficients with
the corresponding modal delay, both evaluated at the source average wavelength λ. Using the
definition (5.81), the multimode frequency response (5.80) assumes the following form of product
of two frequency-dependent functions:

HF(z, ω, λ) ∼= Ĥc(z, ω)Υ (z, ω, λ) (5.82)

According to this expression, the modal function Υ (z, ω, λ) therefore assumes the meaning of the
frequency shaping profile.

This conclusion is very relevant and needs a few more comments. First of all, in the frequency
domain there is now the clear meaning of the usual negligible contribution of the chromatic disper-
sion in a multimode propagation regime. In fact, the short chromatic impulse response translates
in the frequency domain into a broad, smoothed frequency response when compared to the narrow
frequency occupancy of the modal function Υ (z, ω, λ), leaving to the shaping profile Υ (z, ω, λ)

essentially the leading role in defining the multimode frequency response. In order to investigate
further the nature of the modal function Υ (z, ω, λ), the following particular case of uniform modal
excitation will be considered.

5.5.2.3 Uniform Modal Excitation
Assuming uniform modal excitation, all coupling coefficients in Equation (5.80) must have the
same value. Therefore, according to the energy normalization with M excited modes,

|ah(λ)|2 = 1

M
(5.83)

Substituting in Equation (5.81), the following expression of the modal function is obtained:

Υ (z, ω, λ) = 1

M

M∑
h=1

e−jωzτ g,h (5.84)

This approximated expression of the multimode fiber frequency response holds by virtue of the
following two assumptions:

1. Each fiber mode has the same time-centered chromatic impulse response.
2. There is uniform excitation of M fiber modes.
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Following the same approach used in the previous section, the value ∆τ is assigned to the total
modal delay per unit length. This means that every excited mode will present the group delay value
within the interval ∆τ :

∀h ∈ N(1, M) ⇒ τ g,h ∈ ∆τ (5.85)

At this point the third assumption is formulated:

3. The M group delay values τ g,h are uniformly distributed in the interval ∆τ :

∀h ∈ N(1, M) ⇒ τ g,h = ∆τ

M − 1
h ∈ ∆τ (5.86)

In order to simplify the mathematical description, an irrelevant phase term assuming that the
total modal delay ∆τ is centered on the time origin can be removed, and the modal indices can
be reordered with corresponding positive and negative values for a total of M + 1 symmetri-
cally located modal delays. Accordingly, using the uniform spacing with M + 1 modes, the modal
function (5.84) assumes the following form:

Υ (z, ω, λ) = 1

M + 1

M/2∑
h=−M/2

e−jω(z∆τ /M)h (5.87)

This expression is the discrete representation of the Fourier integral of the uniform time win-
dow pulse. Its Fourier transform is the well-known sinc function. In order to see this, each time
instant th = (z∆τ/M)h is defined. The time step is given by δt = z∆τ/M = T/M and at the two
extreme index values h = ±M/2 the corresponding time instants are t±M/2 = ±z∆τ/2 = ±T/2.
Substituting in Equation (5.87) gives

Υ (z, ω, λ) = M

M + 1

1

T

M/2∑
h=−M/2

e−jωthδt (5.88)

At the limiting condition of infinite mode numbers M → ∞, the sum merges into the continuous
integration, leading to the well-known Fourier integral:

Υ (z, ω, λ) = 1

T

∫ T/2

−T/2
e−jωt dt = sinc(πf T ) = sin(πf T )

πf T
(5.89)

Expressions (5.87) and (5.89) are equivalent: the first one is simply the discrete approximate rep-
resentation of the Fourier integral for a finite mode number. Of course, the numeric solution of
the sinc function must refer to the discrete sum in Equation (5.87). The result obtained here is a
clear example of the effect of the shaping behavior of the modal function in Equation (5.82). The
interaction between the chromatic frequency response and the modal frequency response, in this
case, depends on the ratio between the resonance modal frequency f0 = 1/T and the corresponding
bandwidth fc of the chromatic frequency response.

As long as fc >> f0, the multimode frequency response will be essentially determined by the
modal frequency response Υ (z, ω, λ). In the top graph of Figure 5.48 a sketch is presented of the
uniform distribution of the group delay assumed in the derivation of Equations (5.87) and (5.89),
including the major parameters. It was assumed that there were M + 1 modes, equally spaced with
a uniform intensity distribution. Each mode has therefore a power coupling coefficient |ah|2 =
1/(M + 1), while the spacing δt between adjacent mode delays is given by the total group delay
T = z∆τ divided by the number M of modal delay steps.
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Figure 5.48 Top: uniform modal excitation distribution with uniformly spaced group delay samples. The
height of each line represents the intensity coupled to the corresponding mode. The total width of all M + 1
group delays coincides with the total delay per unit length ∆τ . Bottom: modal function Υ (z, f, λ) = sinc(πf T )

in the limit of the infinite mode number corresponding to the uniform excitation and uniformly spaced group
delay samples. The total delay value is fixed at T = z∆τ

The computed results of expression (5.87) for increasing mode numbers compared with the
numerical solution of the integral in Equation (5.89) are presented instead in Figure 5.49. The
case reported here refers to ∆τ = 2 ns/km for the unit length z = 1 km, leading to the resonant
frequency f0 = 1/T = 1/(z∆τ ) = 500 MHz. The vertical scale is reported in both linear and dB
units to provide better evidence of the zero locations. The frequency scale is linear.

The expression (5.82) is of great conceptual importance since it allows the multimode fiber to
be considered as being composed of a cascade of two linear systems, namely one system providing
the chromatic impulse response and the other characterized by the modal impulse response. This
conclusion has already been encountered in a previous time domain analysis, but the frequency
domain picture highlights this significant representation. It should be remembered that factorization
of the multimode fiber linear system into two independent and cascaded linear systems is allowed
under the approximation of a unique time-centered chromatic impulse response common to every
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Figure 5.49 Computed modal function Υ (z, f, λ) for the case of uniform excitation with uniform group
delay spacing for different mode numbers in linear (top) and logarithmic scales. By increasing the mode
number the frequency profile of the modal function tends to the Υ (z, f, λ) = sinc(πf T ) function reported in
Equation (5.89). The case given here refers to a total group delay ∆τ = 2 ns/km for the unit length z = 1 km,
leading to the asymptotic resonant frequency f0 = 1/T = 1/(z∆τ ) = 500 MHz, indicated by dot–dash lines
in both graphs

excited fiber mode. This assumption is widely verified since the physical parameters involved are
related to the second-order derivative of the propagation constant, which is slightly affected by
the waveguide contribution to the total dispersion relationship. However, the material dispersion
is a common factor affecting all fiber modes in the same way. These results can be summarized
by the following statement. If the time-centered chromatic response Ĥc(z, f, λ) is the same for
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all excited fiber modes, then the frequency response HF(z, f, λ) of the multimode fiber is given
by the product of the modal function Υ (z, f, λ) by the chromatic response Ĥc(z, f, λ). According
to the approximate expression (5.82), once the modal function Υ (z, f, λ) is obtained, in order to
compute the multimode fiber frequency response HF(z, f, λ), Υ (z, f, λ) needs to be multiplied by
the Fourier transform of the centered chromatic impulse response Ĥc(z, f, λ).

In order to finalize the calculation to the uniform excitation case now being considered, the
treatment is simplified for the moment assuming that the time-centered modal chromatic impulse
response has a Gaussian shaping:

ĥc(z, t) = 1

σ t (z)
√

2π
e−t2/[2σ

2
t (z)]

�←→ e−2π2σ
2
t (z)f

2 = Ĥc(z, f, λ) (5.90)

The centered Gaussian chromatic frequency response Ĥc(z, f, λ), after multiplication by the modal
function Υ (z, f, λ), leads to the total multimode response exhibiting the characteristic resonance
frequencies corresponding to the reciprocal of the total group delay, as shown in Figure 5.50.
Figures 5.51 to 5.54 present more response configurations.

5.5.2.4 Physical Interpretation of the Modal Function

In this section the case of a generic modal excitation will be considered, with no particular restriction
on the source power coupling coefficient distribution. In order to continue using expression (5.82),
only a mode independent and time-centered chromatic frequency response Ĥc(z, ω) needs to be
assumed. The expression of the modal function Υ (z, f, λ) is shown in Equation (5.81) and includes
both any generic modal excitation |ah|2 = |ah(λ)|2 and group delay distribution τ g,h = τg,h(λ),
where λ is the average wavelength of the spectral power density of the light source. In the fol-
lowing the fiber supports M modes and the modal index h ∈ N (1,M). The modal function has
a straightforward physical interpretation, which will be illustrated below. To this purpose, the
expression for the modal impulse response, defined in Equation (3.53), is considered:

υ(z, t, λ) =
M∑

h=1

|ah|2δ[t − zτ g,h]

Both the group delay and the coupling coefficients are evaluated at the source average wavelength.
By virtue of the linearity property and using the time-shifting theorem, the Fourier transform of
the above modal impulse response has the following expression:

�[υ(z, t, λ)] = �
{

M∑
h=1

|ah|2δ[t − zτ g,h]

}
=

M∑
h=1

|ah|2 e−jωzτ g,h

Comparing this with the definition (5.81) gives the fundamental result, which provides a physical
interpretation of the definition given for the modal function. The modal function Υ (z, f, λ) coincides
with the Fourier transform of the modal impulse response υ(z, t, λ) given in Equation (3.53), and
assumes the meaning of the modal frequency response:

Υ (z, f, λ) = �[υ(z, t, λ)] (5.91)

This conclusion holds for every modal excitation defined through the coefficient distribution and
for every general group delay distribution. The case of uniform excitation with uniformly spaced
group delays considered in the previous section is, of course, a very special case, which gives a
simple and useful understanding of the concepts behind the conclusion that has been achieved.
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Figure 5.50 Computed multimode fiber frequency response respectively in the linear (top) and logarithmic
(bottom) scales for the case of uniform modal excitation with total group delay per unit length ∆τ = 2 ns/km
over the fiber length z = 1 km. The centered chromatic frequency response is Gaussian with the RMS width
σt = 50 ps. According to Equation (5.82), the multimode fiber frequency response is given by the product of
the modal function Υ (z, f, λ) = sinc(πf T ) with the centered chromatic response Ĥc(z, f, λ). The relative
broadband Gaussian response has a negligible effect on the total multimode response which is determined
essentially by the modal function
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Figure 5.51 Same operating conditions as in Figure 5.50 computed using an extended frequency scale up
to 10 GHz. The broadband Gaussian chromatic response starts to affect the multimode fiber response from
approximately 4 GHz. At about the same frequency, the modal function is more then 13 dB down with
respect to the low-frequency amplitude. The frequency multiples of the reciprocal of the total group delay
time T = z∆τ = 2 ns are clearly visible as sharp notches with a period of f0 = 1/T = 500 MHz. The top
graph shows the linear amplitude scale, while the bottom graph shows the logarithmic representation
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Figure 5.52 Computed multimode fiber frequency response for the case of uniform modal excitation with
a total group delay per unit length ∆τ = 2 ns/km over the fiber length z = 1 km. The centered chromatic
frequency response is Gaussian with the RMS width σt = 500 ps. The relative narrowband Gaussian response
has a sensible bandwidth reduction effect on the total multimode response, which still exhibits sharp notches
due to the modal function
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Figure 5.53 Computed multimode frequency response in the case of uniform modal excitation with a total
group delay per unit length ∆τ = 10 ns/km over the fiber length z = 1 km, leading to a fundamental resonant
frequency f0 = 1/T = 100 MHz. The chromatic frequency response is Gaussian with the RMS width σt = 50 ps
with a negligible effect on the multimode fiber response
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Figure 5.54 Same conditions as Figure 5.53, but with one order of magnitude slower chromatic impulse
response, σt = 500 ps. As expected, the chromatic response starts to affect the multimode fiber bandwidth
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In general, it has been demonstrated that under the assumption that the time-centered chromatic
response Ĥc(z, f ) is the same for every excited mode, the multimode response is given by multiply-
ing the modal function Υ (z, f, λ) by the time-centered chromatic response. This is the characteristic
behavior of the frequency response of two time-invariant and independent cascaded linear systems.
In terms of a physical interpretation this means that in the multimode fiber under the linear field
regime, the profile of the chromatic response is approximately independent of the distribution of the
optical power among all excited modes. Each mode is therefore assumed to respond to the source
spectrum stimulus with the same impulse response, except for the characteristic group delay. The
factorization of the multimode frequency response demonstrated in Equation (5.82) suggests the
following physical picture of the multimode optical fiber response:

1. The spectral characteristics of the light source determine the chromatic impulse response profile
of each excited mode.

2. The power of the light source is spatially partitioned into the excited modes by means of the
launch conditions. Each mode delivers the amount of power after the characteristic group delay
per unit length.

3. The group delay is evaluated at the average source wavelength, leaving the role of specifying
the dependence from the source power spectral distribution to the chromatic response profile.

4. The chromatic and the modal responses do not interact, leading to the cascaded linear system
model with the frequency response (5.82).

5. Changing the source power coupled distribution, without changing the source spectrum, affects
the modal response only.

6. Given the group delay τ g,h and the coupling coefficient distributions |ah|2 of M modes, the modal
frequency response is given by the Fourier transform of the finite sequence of M impulses located
at the group delay instants, whose area is given by the corresponding source power coupling
coefficient.

In the next section some examples will be given of multimode frequency responses based on
the approximated expression given in Equation (5.82). In order to find evidence of the profiling
characteristic in the modal function Υ (z, f, λ), the same chromatic response used in Section 5.4.2.2
will be assumed.

5.5.3 Simulation of Multimode Frequency Responses

Table 5.7 summarizes major conclusions achieved during multimode frequency response model-
ing. In the following, both the computed modal functions Υ (z, f, λ) and the multimode impulse
responses hF(z, t, λ) will be given using Equations (5.81) and (5.20) respectively. In the derivation
of the multimode frequency response the same simulation environment that has already been used
in Section 5.4.4.5 will be assumed.

The time-centered chromatic impulse response ĥc(z, f ) is calculated assuming a Gaussian source
spectrum centered in the third window of a silica-based multimode fiber. As usual, the spectral
dependence of the group delay is modeled using the three-term Sellmeier equation and it is assumed
that there is no contribution to the modal dispersion relations except for the modal delay evaluated
at the average wavelength of the source spectral power density. The modal delay distribution τ g,h

versus the modal index is modeled assuming either a linear, quadratic or inverse hyperbolic tangent
profile and the source power coupling coefficient distribution |ah|2 = |ah(λ)|2 is modeled using the
well-known geometric progression.

In the following five cases are presented, each of which is characterized by a specific issue. All
cases considered present the same chromatic dispersion conditions, characterized by a single-peak
Gaussian light source spectrum centered at λc = 1550 nm with FWHMt = 5 nm, which corresponds
to an RMS width σs = 2.12 nm. The total wavelength range spans for 30 nm between λmin =
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Table 5.7 Major equations derived in the text regarding the frequency response relationships of the multimode
fiber. The last two columns give the validity of the equation and its reference in the text respectively

Parameter Expression Validity Reference

Multimode impulse
response

hF(z, t, λ) =
M∑

h=1

|ah(λ)|2hc,h[z, t − z(τ g,h − τ c,h)] General (5.20)

Multimode frequency
response

HF(z, ω, λ) =
M∑

h=1

|ah(λ)|2Hc,h(z, ω) e−jωz(τg,h−τ c,h) General (5.76)

Time-centered chromatic
response

General (5.79)Ĥc(z, f ) = Hc(z, f ) e+j2πf zτ c

� �
ĥc(z, t) = hc(z, t − zτ c)

Modal function Υ (z, f, λ) ≡
M∑

h=1

|ah(λ)|2 e−j2πf zτg,h(λ)

� �
υ(z, t, λ) =

M∑
h=1

|ah(λ)|2δ[t − zτ g,h]

General (5.81)

Multimode frequency
response

HF(z, f, λ) ∼= Ĥc(z, f )Υ (z, f, λ) Approximate (5.82)

1535 nm and λmax = 1565 nm for a total of N0 = 1000 uniformly spaced wavelength samples. The
modal group delay is modeled according to the three-term Sellmeier equation for the fused silica
without any ripple contribution. The modal group delay is assumed to have the same wavelength
profile for each mode, thus exhibiting the same wavelength derivatives, and in particular the same
chromatic dispersion coefficient. The group delay distribution evaluated at the average wavelength
of the source PSD is modeled according to the inverse hyperbolic tangent (IHT) or quadratic (QDR)
distributions. The fiber mode number is set equal to either M = 200 or M = 500 and the total delay
variation among the modes is represented by the parameter ∆τ .

The last parameter involved is the coefficient q defining the geometric progression used to
model the source power coupling coefficient distribution. This parameter has quite an effect on the
multimode impulse response because according to its value the coupled power distribution ranges
between uniform excitation for q = 1 and an almost restricted center launch condition for a lower
q value, such as q = 0.7 ÷ 0.9.

As a general comment about the following simulations, it should be noted that while the multi-
mode impulse response includes both chromatic and modal contributions, the multimode frequency
response refers only to the modal function Υ (z, f, λ). It is the purpose of this section to highlight
this important concept as introduced and defined above. Moreover, it is important to remark that
although the modal impulse response is given by a sequence of impulses (Dirac delta function) the
modal function does not have in general a line spectrum. This is due to the following two reasons:

1. The group delay is not indefinitely extended over the time axis, but instead is a time-limited
function.

2. The group delay does not have a constant step between adjacent delay samples.

In the only special case of a uniformly spaced and indefinitely extended group delay distribution,
the modal function is an indefinite sequence of equally spaced impulses.

This case is of course a pure theoretical concept but, as with most of the content of this chapter, it
is of fundamental importance in understanding the physical background and the related mathematical
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modeling validity and limitations. Besides using some what fascinating conclusions of mathematical
modeling, it is most important to have the validity of the modeling clearly in mind. Without this,
it is very often quite dangerous or at least misleading to refer to simulation results. Everybody
involved in simulation development and applications should be first of all conscious of the validity
of the produced results. This approach is of course well known to all theoretical physicists: theory
success is first based on the assumption phase.

One comment is needed with regards to the approach followed through the simulated cases in
this book. The principal task has been to define as clearly as possible the simulating environment
for understanding the multimode fiber propagation behavior and the way different variables and
physical quantities are involved is producing results. In this context, suitable mathematical functions
have been used to describe source power coupling coefficients and modal group delay distributions,
such as geometric progression and the inverse hyperbolic tangent. These choices may possibly cause
concern in the reader with regards to their physical validity, but this should not change the validity
of the general modeling approach.

Once more realistic physical modeling of the multimode fiber behavior becomes available, includ-
ing a two-dimensional electromagnetic mode solver for graded index fibers, more suitable source
power coupling coefficients and modal group delay distributions will be available from the field
simulator, but the logic process for the derivation of the multimode fiber response will remain
exactly the same as that presented here. It is beyond the scope of this book to provide an elec-
tromagnetic mode solution for general graded index fibers, but this does not change the general
validity of the theoretical modeling presented here. All that is needed afterwards is to change the
abstract distribution models used here with more realistic ones taking into account refractive index
profile-dependent modal solutions.

5.5.3.1 Restricted Excitation, Small Delay, IHT Distribution

The first case to consider assumes a very restricted low-order mode launch with q = 0.7, over a rel-
atively large mode number fiber, M = 200. This leads to less then seven modes (about only 3.5 %),
contributing significantly to the output impulse response. All remaining modes are of extremely
low power coupled to the light source and bring a negligible intensity contribution to the output
impulse response. The group delay distribution in the following Figure 5.55 is assumed to follow
the inverse hyperbolic tangent function with a total (asymptotic) group delay per unit length of
∆τ = 2 ns/km.

The modal function presents an almost regular Gaussian-shaped frequency profile up to about
one-third of the spectrum amplitude; it then shows a deep notch at about 2.4 GHz, leaving the
Gaussian profile. This resonance is represented in the time domain by the dual-peak time centered
impulse response shown in Figure 5.56. On the same graph the Gaussian fit using the same RMS
width of the impulse response is also shown. The dual-peak impulse response is a consequence
of the reduced number of excited modes and the relatively sparse distributed group delay they
experience due to the long tail of the inverse hyperbolic tangent distribution.

Figure 5.56 also shows the corresponding modal function Υ (z, f, λ) computed using
Equation (5.81) and plotted versus the logarithmic frequency scale. It is evident that there is good
Gaussian frequency fitting up to about −5 dB with respect to the low-frequency spectrum amplitude.
The deep notch at about 2.4 GHz reaches a relative intensity of −20 dB.

5.5.3.2 Uniform Excitation, Small Delay, IHT Distribution

The second case to be considered has the same parameter set as the previous example, except
that it shows a uniform excitation of q = 1 and a higher mode number of M = 500. Figure 5.57
presents the inverse hyperbolic tangent distribution computed with M = 500 modes and the uniform
power distribution with |ah|2 = 2 × 10−3. The resulting multimode impulse response has a more
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Figure 5.55 Top: inverse hyperbolic tangent (IHT) group delay distribution and geometric progression cou-
pling coefficient sequence for the case M = 200, q = 0.7, ∆τ = 2 ns/km. Bottom: modal function frequency
response in linear (left) and dB (right) scales. The Gaussian fit of the whole multimode frequency response has
been also plotted

symmetric shape and closely fits with the Gaussian approximation. The uniform excitation over the
symmetric group delay distribution results, as expected, in a more symmetric multimode impulse
response and a corresponding high-frequency smoothed modal function. Figure 5.58 shows the
computed multimode impulse response with the modal function, both fitted with the corresponding
Gaussian profiles.

Although the low-frequency part of the modal function looks similar to the previous case, with
a different scale factor, the high-frequency portion is completely different. The smoothed and
symmetric impulse response corresponds in fact to the much more regular profile in the high-
frequency range, leading to a closer Gaussian approximation, even in the high-frequency spectrum
portion. Nevertheless, it should be noted that including all supported fiber modes with the same
power contribution leads to a broader impulse response than the one obtained in the restricted
excitation case. In the next section the Gaussian approximation of the multimode fiber response will
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Figure 5.56 Computed multimode impulse response (top) and the corresponding modal function (bottom) for
the parameter set M = 200, q = 0.7, ∆τ = 2 ns/km. Both plots show the Gaussian fitting assuming the same
total RMS width σF = 131.63 ps/km of the impulse response

be used as a convenient simulation tool for providing a reasonable transmission system performance
prediction.

5.5.3.3 Uniform Excitation, Small Delay, QDR Distribution

The multimode impulse response is essentially determined by the group delay and the source power
distributions among the supported fiber modes. In this example, the same configuration used in the
previous case in Section 5.4.3.2 is used, except for the quadratic modal delay distribution. The
effect of a different modal delay distribution among the same number of uniformly excited modes
gives quite a clear representation of the relevance of this fiber characteristic.

Figure 5.59 shows the computed modal solution assuming a quadratic group delay (QDR) and
uniform geometric progression. In the same graph the modal function Υ (z, f, λ) and the corre-
sponding Gaussian fitting are also shown, using both linear and logarithmic scales. It is evident
that although the Gaussian profile fits the modal function quite well up to about −5 dB in the
low-frequency reference amplitude, at higher frequencies the Gaussian fit is no longer sustainable
and the modal function almost follows the hyperbolic decaying profile. In order to understand this
behavior, there is a need to refer to the multimode impulse response shown in Figure 5.60. The
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Figure 5.57 Top: inverse hyperbolic tangent (IHT) group delay distribution and the geometric progression
coupling coefficient sequence for the case M = 500, q = 1, ∆τ = 2 ns/km. Bottom: modal function frequency
response in linear (left) and dB (right) scales. The more regular high-frequency shape of the modal function
fits better with the Gaussian profile

impulse response profile looks quite different from that of the inverse hyperbolic tangent modal
delay distribution shown in Figure 5.58.

In this case in fact, the strong asymmetry of the quadratic modal delay distribution makes
the impulse response strongly asymmetrical, with pronounced peaking in correspondence with the
higher density of available low-order modal delays. This causes the impulse response to peak at
the leading edge, with a precursor-like profile. The total variation of the modal delay is limited
to ∆τ = 2 ns/km and the quadratic distribution ends almost abruptly, making the impulse response
clearly time limited over the same temporal interval. This leads to the asymptotic ripple-shaped
frequency response according to the frequency convolution of the corresponding sinc function.
This ripple was not present in the previous case in Section 5.4.3.2 because the inverse hyperbolic
tangent distribution exhibits a very gradual decaying profile at both delay interval extremes. The
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Figure 5.58 Computed multimode impulse response (top) and the corresponding modal function (bottom) for
the parameter set M = 500, q = 1, ∆τ = 2 ns/km assuming an inverse hyperbolic tangent distribution. Both
plots report the Gaussian fitting of the multimode impulse response assuming the same RMS pulse width
σF = 240.32 ps/km

multimode impulse response is reported in Figure 5.60, together with the modal function and the
Gaussian approximation.

The impulse response presents the characteristic rising edge peaking followed by the long and
almost uniform tail due to the contribution of the higher delay interval of the quadratic delay profile.
The peaked response is a result of the relatively dense accumulation of group delay values close
to the vertex of the parabolic distribution. Many energy contributions sum up together almost at
the same time instant, leading to the huge intensity peak. Higher-order modes are instead sparser
along the time axis and their energy is delivered with a decreasing time concentration, therefore
leading to the long pulse tail.

The Gaussian fitting in this case is very poor, as clearly shown in the top graph of Figure 5.60.
The modal function and the related Gaussian fitting profile are reported in the bottom graph using
the logarithmic frequency scale. The high-frequency behavior of the spectrum of the modal func-
tion, apart from the decaying ripple, shows an asymptotic decaying constant of about 5 dB/dec,
which implies the factor 1/

√
f when plotted in the dB10 scale. It is very interesting to compare

the frequency response of the last two cases. Exactly the same parameter set has been assumed,
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Figure 5.59 Top: quadratic group delay distribution (QDR) and the geometric progression coupling coefficient
sequence for the case M = 500, q = 1, ∆τ = 2 ns/km. Bottom: modal function frequency response and Gaussian
fitting in the linear (left) and dB (right) scales. The high-frequency ripple is due to the abrupt time-limited
impulse response. The more the impulse pulse terminates abruptly, the more persistent will be the high-frequency
ripple

including the uniform modal excitation. The difference between the two cases is the group delay
distribution, which is responsible for the great difference in the multimode fiber response.

The group delay distribution in standard manufactured optical fiber depends essentially on the
manufacturing tolerances, and not on the design specification for the graded refractive index profile.
The refractive index is designed in order to compensate the modal delay theoretically, but the high
sensitivity of the modal impulse response from the group delay distribution makes the achieved
compensation only approximate. The multimode fiber performance evaluated at a transmission rate
of 10 Gb/s is extremely demanding and the degree of modal delay compensation required usually
allows the transmission only for a few hundred meters of link length. In addition to that, it is
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Figure 5.60 Computed multimode impulse response (top) and corresponding modal function (bottom) for the
parameter set M = 500, q = 1, ∆τ = 2 ns/km, assuming a quadratic group delay distribution. Both plots report
the Gaussian fitting of the multimode impulse response with the same RMS pulse width σF = 599.36 ps/km

the second leading factor affecting the multimode fiber response in the source power coupling
distribution.

Even if the launching section can be accurately designed to optimize the coupling distribution,
every discontinuity along the fiber link length creates a different power coupling to the fiber
modes and the link response becomes less predictable. This is the case for optical connectors or
fusion splices, which can be located everywhere along the fiber link. The more optical connectors
added between fiber sections, the more perturbed does the optical pulse propagation become, and
the impulse response collected at the end section usually shows highly increased sensitivity to
environmental conditions such as mechanical vibrations and thermal stresses and light polarization.
Since the group delay and definitely the impulse response of the multimode fiber are defined over
the unit fiber length, of course all these considerations become amplified when either the link length
is extending or the bit rate is increasing. Both of these effects are simultaneously present in LAN
(local area network)-based 10 GbE communication systems, which strongly affect multimode fiber
performance.
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5.5.3.4 Restricted Excitation, Medium Delay, IHT Distribution
These last two cases are an interesting example of split-pulse profiles assuming symmetric inverse
hyperbolic tangent group delay distributions. The pulse splitting profile is characteristic of restricted
launching conditions because a reduced number of modes needs to be selected with a proper relative
group delay. In the case of uniform excitation the very large mode number acts to average the power
content over the whole population and individual pulse contributions are much less significant. In
both of these examples the geometric progression factor is set to q = 0.85, giving a reasonably
low number of excited modes. Finally, in order to produce better evidence of the impulse response
pulse splitting the absolute value of the total delay variation has been increased up to ∆τ = 5 ns/km
with respect to the lower value of ∆τ = 2 ns/km, which was assumed in all three previous cases.
Figure 5.61 shows the first case of the negative total delay variation ∆τ = −5 ns/km.
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Figure 5.61 Top: inverse hyperbolic tangent (IHT) group delay distribution and the geometric progression
coupling coefficient sequence for the case M = 500, q = 0.85, ∆τ = −5 ns/km. Only about the first 30 modes
contribute to the impulse response, corresponding to less the 6 % of the total supported fiber modes. Bottom:
modal function frequency response in the linear (left) and dB (right) scales. The Gaussian fit of the whole
multimode frequency response has been also plotted
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PARAMETERS

Source: single-peak Gaussian
Central wavelength λc = 1550 nm

FWHM Dl = 5 nm

Min wavelength λmin = 1535 nm

Max wavelength λmax = 1565 nm

Wavelength steps N0 = 1000

Fiber mode groups M = 500

Delay ripple amplitude = 0 ps
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Delay distribution = IHT
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Figure 5.62 Computed multimode impulse response (top) and the corresponding modal function (bottom)
for the parameter set M = 500, q = 0.85, ∆τ = −5 ns/km, assuming an inverse hyperbolic tangent group
delay distribution. The negative total group delay value sets the condition for a strong pulse postcursor. The
split-pulse profile leads to the multiple-notch modal frequency response, as clearly shown in the bottom graph.
Both plots report the Gaussian fitting of the multimode impulse response with the same RMS pulse width
σF = 336.53 ps/km

The modal function presents strong notches at several frequencies, which is a characteristic of
the split profile of the impulse response shown in Figure 5.62. The negative total group delay
variation implies that the lower-order mode selected by the coupling coefficients exhibits a higher
delay value. These lower-order modes are also less concentrated in time due to the long tail of
the inverse hyperbolic tangent distribution, leading to the bulk body of the multimode impulse
response. The following intense postcursor peak is determined by the highest group delay value,
which is also the one most coupled to the light source since it corresponds to the lowest-order
mode. Essentially, due to the long tail distribution of the assumed group delay, the postcursor
almost corresponds to the chromatic impulse response of the lowest-order mode, due to the lack of
adjacent pulse overlapping.

The modal function shown in Figure 5.62 fits the Gaussian profile quite well up to about 1 GHz,
corresponding to −9 dB in the low-frequency amplitude. The relevant amplitude fluctuation encoun-
tered at higher frequencies reflects the multiple peak impulse response and this profile cannot be
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approximated by any single-peak smoothed function such as the Gaussian pulse. To conclude this
section, the computed multimode impulse response is given in the case of the symmetrical group
delay distribution with a positive total delay variation of ∆τ = +5 ns/km, as shown in Figure 5.63.

The same considerations made for the previous case still hold for this example. The interesting
conclusion is that, being reversed, the delay distribution, which is now the multimode impulse
response given in Figure 5.63, mirrors the results of the negative delay variation presented in
Figure 5.62. In fact, in this case the highest value of the coupled power refers to the slowest
mode, exhibiting a relative delay of about −2 ns/km. This mode, being almost isolated, determines
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Figure 5.63 Top: inverse hyperbolic tangent (IHT) group delay distribution and the geometric progression
coupling coefficient sequence for the case M = 500, q = 0.85, ∆τ = +5 ns/km. Only about the first 30 modes
contribute to the impulse response, corresponding to less the 6 % of the total supported fiber modes. Bottom:
modal function frequency response in the linear (left) and dB (right) scales. The Gaussian fit of the whole
multimode frequency response has been also plotted
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Figure 5.64 Computed multimode impulse response (top) and corresponding modal function (bottom) for the
parameter set M = 500, q = 0.85, ∆τ = +5 ns/km, assuming an inverse hyperbolic tangent group delay distri-
bution. The positive total group delay value sets the condition for a strong pulse precursor. The split-pulse profile
leads to the multiple-notch modal frequency response, as clearly shown in the bottom graph. Both plots report
the Gaussian fitting of the multimode impulse response with the same RMS pulse width σF = 336.53 ps/km

the strong precursor shown in the multimode impulse response in Figure 5.64. The remaining
few excited modes (less than 30 modes according to the geometric progression distribution) are
responsible for the following main pulse body.

5.5.4 Concluding Remarks

In this section the theory has been presented of the frequency response of the generic multimode
fiber based on the simple properties of the Fourier transform of the multimode impulse response.
The multimode response depends on the combination of both chromatic and modal dispersions,
but in almost all cases the modal response is highly dominant. Under the assumption of no mode
coupling or interaction, the modal response is completely characterized by two factors:

(a) the source power coupling coefficient distribution at the input section;
(b) the modal group delay distribution at the output section, evaluated at the average wavelength

of the light source spectrum.
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Three different mathematical models have been proposed for the group delay distribution. Using
these artificial distributions, very interesting results have been computed and presented in graphic
form. The source power coupling distribution has been modeled assuming geometric progression
with different coefficients, obtaining a very easy way of handling either the uniform excitation
condition or the restricted excitation and thus providing a source power transfer only to low-order
central modes.

Besides the computation of frequency responses, one important issue of this section has been
to define the modal function. Under the simplifying assumption that the modal chromatic impulse
response differentiates only for the average delay and not for the time-centered profile, the mul-
timode frequency response simply reduces to the product of the modal function with the Fourier
transform of the time-centered chromatic impulse response. This property allows interesting model-
ing of the multimode fiber to be made as the cascade of two linear systems, either with the chromatic
impulse response only or with the modal impulse response only. Conceptually, this also allows the
intramodal and intermodal dispersion to be considered as two independent linear phenomena, which
can therefore be treated independently from each other.

In the next chapter the Gaussian approximation of the multimode fiber response will be considered
in more detail, leading to validity conditions and approximations.

5.6 Summary and Conclusions
In this chapter a general expression has been derived for the multimode fiber impulse response
under the assumption of no modal coupling. According to this assumption, all excited modes
propagate independently from each other and their optical intensity is collected at the fiber detecting
section. The general expression of the multimode impulse response is given in Equation (5.20)
while Equation (5.76) reports the corresponding general expression for the multimode frequency
response. As expected, the RMS width σm(z, λ) = zσ̂m(z, λ) of the modal impulse response in
Equation (5.17) scales linearly with the propagated distance z. The same also occurs for the RMS
width of the ensemble average of the chromatic impulse response given in Equation (5.35). The
cumulative variance of the multimode impulse response adds up quadratically, leading to the RMS
pulse width in Equation (5.40), and scales linearly with the distance z.

The multimode impulse response has been presented in Section 5.4, leading to eight different
simulation cases characterized by peculiar choices of group delay distribution and source coupled
power coefficients. The computed results give evidence of the large variety of impulse responses
achievable from the multimode fiber, changing either the group delay or the source coupling dis-
tributions. In order to acquire a quantitative feeling of the consequences of group delay profiling,
Section 5.4.4 introduces the piecewise linear distribution and the inverse hyperbolic tangent dis-
tribution. It is convenient to use the latter distribution to model the symmetric Gaussian- like
multimode impulse response, which can be conveniently fitted with the Gaussian interpolation.
This will be the subject of Chapter 6. The last part of this chapter dealt with the multimode fiber
frequency response by means of the Fourier transform. Using simple definitions and properties of
the Fourier integral, the general expression for the multimode frequency response was derived.
Under the assumption of the uniform chromatic response profile among the excited mode popu-
lation, the useful concept of the modal function was introduced. This led to the multimode fiber
equivalent model in terms of two cascaded linear systems. The first system is characterized by the
chromatic impulse response profile, while the second one shows the modal response according to
the source coupled excitation and the selected group delay distribution. The results presented are
quite interesting, showing both smoothed, notch-free and frequency ripple spectra, according to the
selected case.

The next chapter will deal with the Gaussian approximation of the multimode fiber frequency
response, which contains configuration conditions assumed to have a reasonable Gaussian fitting
of the output response.



6
Gaussian Approximation
and Applications

Link Bandwidth Calculations

6.1 The Gaussian Model Approximation
In Chapter 5 the multimode fiber theory of impulse response and the related frequency response were
presented. If there is no mode coupling, the principal physical entities involved in the determination
of the multimode fiber response can be stated, namely:

1. The spectral power density of the light source determines the chromatic response.
2. The group delay function versus the wavelength for each supported fiber mode determines both

the chromatic and modal responses.
3. The light source power coupling distribution evaluated at the input section among all the sup-

ported fiber modes determines the weighting function for the modal response superposition.

As well as these three primary factors and under the approximation that the time-centered modal
chromatic response has the same profile for each excited mode, the following requirement can be
added:

4. The modal group delay distribution at the output section, evaluated at the average wavelength
of the light source spectrum, determines the approximate multimode frequency response as the
product of the time-centered chromatic frequency response with the modal function.

Multigigabit transmission requires a laser light source due to high-speed direct modulation
capabilities. Under laser modulation the chromatic response contribution per unit length is rela-
tively negligible compared to the modal contribution, resulting in a relatively broadband frequency
response. In order to have a quantitative idea of the laser light modulation condition, it is suf-
ficient to consider the case of a multilongitudinal mode semiconductor laser source emitting in
the high dispersive first window at λc = 850 nm with an envelope linewidth σλ = 2 nm. From
Equation (4.120), the linear approximation of the RMS pulse width per unit length due to chromatic
dispersion is given by σc = |Dc|σλ. Assuming |Dc(850 nm)| ∼= 100 ps/nm km, it is concluded that
σc

∼= 200 ps/km. The contribution of the modal dispersion depends on the launch condition and on

Multi-Gigabit Transmission over Multimode Optical Fibre: Theory and Design Methods for 10GbE Systems Stefano Bottacchi
 2006 John Wiley & Sons, Ltd. ISBN: 0-471-89175-4
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the group delay distribution. Without specifying too much detail, it can reasonably be assumed that
σm

∼= 1000 ps/km. Using the quadratic composition of chromatic and modal dispersions reported
in Equation (5.40), it is concluded that the total RMS width of the multimode impulse response

has the value of σ̂F =
√

σ̂
2
c + σ̂ 2

m
∼= 1020 ps/km, hence resulting in a value only 2 % higher than

the modal dispersion alone. This example gives a quantitative feeling of the relative contributions
between chromatic and modal dispersions in a laser-based transmission system and it is clearly
concluded that the multimode fiber frequency response is essentially determined by the modal
function.

The characteristic profiles of this relevant function has been extensively discussed with numerous
examples. It mainly depends upon both the modal delay distribution and the source coupling
distribution. According to the distribution chosen, the impulse response can be assumed to be almost
an infinite variety of profiles, ranging from the symmetric single-pulse shape, to the multiple-peak
pulse waveform, to the wide and almost uniform narrowband pulse. It is evident at this point that
any move to force the Gaussian profile to model the multimode fiber impulse response seems to
be more an artificial exercise rather than a physical supported argument.

Next the formulation of the Gaussian model of the multimode fiber response will be carried out,
keeping these limitations cleared in mind. As already stated, before using any model there must be
an awareness of the assumptions and limitations of the model that is to be used. This is of course
also valid for the Gaussian modeling. The first important issue is to find the parameter conditions
needed to support a multimode impulse response that can be reasonably fitted by the Gaussian
profile. This will be the argument of the next section. Once a single-pulse response with an almost
symmetric profile can reasonably be expected to satisfy the Gaussian fitting, the multimode fiber
Gaussian response modeling will be developed.

6.1.1 Prescriptions for Gaussian Modeling

In Chapter 5 numerous examples were presented to show different group delay and source coupling
coefficient distributions and the corresponding different impulse responses were found. The purpose
now is to find and select some qualitative prescriptions for expecting a Gaussian-shaped response.
For a given multimode fiber the group delay distribution is fixed by the refractive index profile
and more generally by the material composition and environmental conditions. Changing the envi-
ronmental conditions like temperature and mechanical stresses induces mode coupling and optical
power redistribution at every optical link discontinuity. This reflects on the frequency response
and the related Gaussian fitting validity. Even if the modal group delay distribution at a given
wavelength is specified for every multimode fiber, the variability of the launch condition at every
fiber section corresponding to the location of an optical connector makes the multimode response
highly dependent on environmental conditions.

In Chapter 4 it was seen that the chromatic impulse response profile resembles quite closely
the light source spectral distribution, in particular for relatively narrow linewidth sources like
semiconductor lasers. This allows the chromatic impulse response shaped like a Gaussian with a
linearly approximated RMS width given by Equation (4.120) to be considered. As a consequence,
to obtain a smoothed single-pulse multimode response the proximity condition should be set: adja-
cent modal contributions must be closer together than the chromatic RMS width. This leads to a
smoothed superposition of each Gaussian chromatic response. Of course, the wider the chromatic
impulse response, the easier it is to satisfy the proximity condition and the closer the multimode
response will be to the Gaussian profile. That is true, for example, for LED broad linewidth
optical sources. Semiconductor laser excitation is characterized by a narrower linewidth and con-
sequently requires a more uniform and closer spacing of the group delay distribution in order to
release a Gaussian-like multimode response. In order to fix the proximity condition in mind, ref-
erence needs to be made to the hyperbolic tangent distribution with uniform excitation presented
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in Section 5.5.3.2, Figures 5.57 and 5.58 of Chapter 5. The multimode impulse response was in
that case quite well fitted by a Gaussian pulse, leading to a smoothed and notch-free frequency
response.

The Gaussian response prescription can therefore be summarized as follows:

1. The modal group delay distribution evaluated at the source average wavelength must satisfy the
proximity condition, at least for the more excited modes. The delay variation between any two
relatively intense and adjacent modes must be shorter than the chromatic response RMS pulse
width.

2. The mode excitation must be almost uniform relative to the more intense modes.

In the following, when the Gaussian approximation is referred to, it will be assumed, unless oth-
erwise stated, that the Gaussian response prescription above is almost satisfied.

6.1.2 The Gaussian Response Model

According to the ITU-T G.651 standard, the fiber modal bandwidth BW is defined as follows. The
fiber modal bandwidth BW is given by the half-width at half-maximum of the unilateral intensity
transfer function, at a given distance z from the launching section set at the origin.

The modal bandwidth refers to the intensity transfer function HF(z, f, λ) obtained under the
assumption that the chromatic frequency response has a negligible contribution. In the limiting case
where the time-centered chromatic impulse response coincides with the Dirac delta impulse, the
chromatic response has a constant frequency spectrum and the multimode fiber intensity transfer
function coincides with the modal function defined in Equation (5.81). Conceptually the modal
bandwidth per unit length B̂W therefore coincides with the half-width at half-maximum bandwidth
of the spectrum of the modal function Υ (z, f, λ) defined in Equation (5.81).

6.1.2.1 Impulsive Spectral Excitation

To demonstrate this important statement, the limiting case is considered of the light source spectrum
coinciding with the delta distribution centered at the wavelength λc:

Ss(λ) = δ(λ − λc) (6.1)

Before proceeding with the mathematical demonstration, it is important to comment on the phys-
ical implications and the consistency of this assumption. The chromatic dispersion modeling of the
multimode fiber is based on the assumption of the broadband light source. In particular, the mod-
ulation bandwidth is embedded into the light source spectrum width. Of course these assumptions
are now violated because the impulsive spectrum is by definition indefinitely narrowband and every
modulation signal will be broadening that ideal optical carrier.

Nevertheless, with this warning in mind the derivation will continue of the modal chromatic
impulse response assuming impulsive spectral excitation. The more general analysis of the impulse
response to a very small narrowband (impulsive spectrum) is outside the scope of this book.

The light intensity in Equation (6.1) satisfies the normalization condition
∫ +∞
−∞ Ss(λ) dλ = 1 and

the general chromatic impulse response of the hth mode is given by the Fourier integral (4.32) in
Chapter 4, Section 4.2.5:

hc,h(z, t) =
∫ +∞

−∞
Ss(λ) δ[t − zτg,h(λ)] dλ (6.2)
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This expression is valid without any restriction and in particular, for the Dirac delta light source
spectrum (6.1), it gives the following impulse response:

hc,h(z, t) =
∫ +∞

−∞
δ(λ − λc)δ[t − zτg,h(λ)] dλ = δ[t − zτg,h(λc)] (6.3)

This result should have been expected, because the impulsive source linewidth cannot induce any
chromatic dispersion and the chromatic impulse response of each excited mode must therefore
coincide with the Dirac delta function located at the group delay value corresponding to the single
exciting wavelength λc.

Once the chromatic impulse response has been calculated for each excited mode, substituting
expression (6.3) into Equation (5.20) gives the corresponding multimode impulse response:

hF(z, t, λ) =
M∑

h=1

|ah(λ)|2δ{t − z[2τg,h(λc) − τ c,h]} (6.4)

In this case the source average wavelength λ defined in Equation (4.92) coincides with the wave-
length location of the Dirac delta spectrum in Equation (6.1), λ = λc. The normalized time τ c,h

in Equation (6.4) is the average delay of the chromatic impulse response of the mode hth and is
given in Equation (4.90). Although the formal mathematical demonstration is a very interesting
application of the mathematical properties of the impulse distribution, it is clear from the physical
picture involved in Equation (6.3) that the time τ c,h coincides with the modal group delay evaluated
at the wavelength λc of the impulsive spectrum. Therefore,

τg,h(λc) = τ c,h (6.5)

Substituting in Equation (6.4), the multimode impulse response assumes the form

hF(z, t, λc) =
M∑

h=1

|ah(λc)|2δ[t − zτg,h(λc)] (6.6)

If the above chromatic impulse response is compared with the modal impulse response (3.53), it
can easily be concluded that they are completely identical and the multimode fiber impulse response
under the assumption of spectral impulsive excitation coincides with the modal impulse response
given in Equation (3.53):

υ(z, t, λc) =
M∑

h=1

|ah(λc)|2δ[t − zτg,h(λc)]

Hence, it is concluded that
hF(z, t, λc) = υ(z, t, λc) (6.7)

From the above identity and the uniqueness of Fourier transform pairs υ(z, t, λ)
�←→Υ (z, f, λ) and

hF(z, t, λ)
�←→HF(z, f, λ), it follows that the multimode fiber frequency response HF(z, f, λ) under

impulsive spectral excitation coincides with the modal function Υ (z, f, λ) given in Equation (5.81):

HF(z, f, λc) = Υ (z, f, λc) =
M∑

h=1

|ah(λc)|2e−j2πf zτg,h(λc) (6.8)

It a valid broadband spectrum condition is assumed, the modal function coincides with the multi-
mode fiber frequency response under impulsive spectral excitation.
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Once the modal intensity transfer function is identified as the modal function, it is easy to
introduce the definition of the modal bandwidth B̂W (MHz km) per unit length: the modal bandwidth
per unit length B̂W (MHz km) of the modal intensity transfer function is defined as the unilateral
cut-off frequency corresponding to a decrease in the intensity response spectrum of a half, or
equivalently −3 dB (optical).

From the general expression (6.8), the following equation must be satisfied by the modal band-
width:

|Υ (z, B̂W, λc)| =
∣∣∣∣∣

M∑
h=1

|ah(λc)|2e−j2πB̂Wzτg,h(λc)

∣∣∣∣∣ = 1

2
(6.9)

The modal bandwidth defined in Equation (6.9) is not related to any Gaussian approximation. It
is simply defined through the modal function assuming impulsive spectral excitation. In order to
make a step forward, the intensity frequency response must now be assumed to be approximated
by the Gaussian profile. Without caring about the conditions for having a reasonably Gaussian
fitting, as already discussed before, it will now be assumed that the modal frequency response
Υ (z, f, λ) is reasonably interpolated by the Gaussian transfer function. To define the Gaussian
frequency interpolation the only parameter needed is the spectrum bandwidth. This parameter will
be represented by means either of the RMS width or the half-width at half-maximum of the intensity
transfer function in the frequency domain.

6.1.2.2 Modal Bandwidth

Assuming Gaussian modeling and using the Gaussian relationships between the half-width
at half-maximum bandwidth and the corresponding standard deviation in the time domain
derived in Chapter 3, Section 3.11.3, Equation (3.117), the modal RMS pulse width σm(z, λc)

in Equation (5.17) can be expressed in terms of the modal fiber bandwidth per unit length B̂W
(MHz km):

σm(z, λc) = z

π

√
ln 2

2

1

B̂W(λc)
∼= 0.187

z

B̂W(λc)
(ps) (6.10)

Both the modal RMS pulse width σ̂m(λc) and the modal bandwidth B̂W are defined over a specific
unit length of optical fiber link. The time scaling assumption states that without any mode coupling
each individual modal group delay tg,h(z, λc) measured after the distance z from the launching
section is directly proportional to the propagated distance z. This means that under the time scaling
assumption the group delay of each individual mode measured after a propagation length z can be
expressed as the product of the group delay per unit length τg,h(λc) expressed in ns/km and the
distance z (km) propagated along the multimode fiber:

tg,h(z, λc) = τg,h(λc)z (6.11)

The ensemble averaged modal delay time tm(λc) and the corresponding RMS pulse width σm(z, λc)

are expressed by Equations (5.6) and (5.17) respectively, which are reproduced here and evaluated
more conveniently using the impulsive spectral excitation λc:

tm(z, λ) = zτm(λc) = z

M∑
h=1

|ah(λ)|2τg,h(λ) (6.12)

σm(z, λc) = z

√√√√ M∑
h=1

|ah(λc)|2[τg,h(λc) − τm(λc)]2 (6.13)
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Figure 6.1 Description of the Gaussian fit procedure of the group delay distribution measured at distance
z from the launching section. The group delay distribution is assumed to be a centered process with a zero
average value. The RMS width of the group delay distribution is used to generate the Gaussian model

Figure 6.1 shows qualitatively the concepts that have just been introduced. At this point, in order
to have a Gaussian model of the modal impulse response, the following condition is set:

σG(z, λc) ≡ σm(z, λc) (6.14)

This is the meaning of the Gaussian modeling: it assumes that the modal impulse response after a
distance z from the launching section can be fitted by the Gaussian function having the standard
deviation σG(z, λc) equal to σm(z, λc). Substituting Equation (6.10) into Equation (6.14) gives the
relationship between the Gaussian fitting of the modal impulse response RMS width and the modal
bandwidth.

To conclude this section, the expression (3.117) of the full-width at half-maximum FWHMt(λc)

of the modal impulse response is given for the modal bandwidth in the Gaussian approximation:

FWHMt(λc) = 2 ln 2

π

z

BW(λc)
∼= 0.44

z

BW(λc)
(6.15)

In order to have a quantitative idea of the above relationship, a multimode fiber with a modal band-
width BW = 500 MHz km produces a Gaussian modal impulse response with FWHMt

∼= 883 ps/km.

6.1.2.3 Total Pulse Dispersion

In the previous section the modal bandwidth was related to the modal impulse response RMS
width in the time domain. In order to include the chromatic dispersion in the Gaussian model-
ing there is a need to generalize the relationship (6.14) adding the chromatic dispersion. Using
the result in Chapter 5, the variances of the modal impulse response and the chromatic impulse
response are added together, as reported in Equation (5.40). To simplify the modeling it will be
assumed, unless otherwise stated, that the linear chromatic dispersion approximation is as derived
in Equation (4.120):

σc(z, λ) = |Dc(λ)|σsz (6.16)

Here the average wavelength λ source spectrum was used instead of λc to identify the refer-
ence wavelength for evaluating the spectral properties of the group delay function. Substituting
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Equations (6.10) and (6.16) into Equation (5.40) gives the expression of the total pulse RMS width
for the Gaussian approximation:

σG(z, λ) =
√

σ 2
m(z, λ) + σ 2

c (z, λ) = z

√
ln 2

2π2

1

B̂W
2
(λ)

+ |Dc(λ)|2σ 2
s (ps) (6.17)

The normalized Gaussian pulse approximation of the time-centered multimode fiber impulse
response is therefore given by the following expression:

hF(z, t, λ) ∼= hG(z, t, λ) =
exp −

{
(t/z)2

(ln 2/π2)[1/B̂W
2
(λ)] + 2|Dc(λ)|2σ 2

s

}

z

√
ln 2

π

1

B̂W
2
(λ)

+ 2π|Dc(λ)|2σ 2
s

(6.18)

6.1.2.4 Frequency Response

The Fourier transform pair of the Gaussian pulse is given by Equation (3.105):

hG(t) = 1

σt

√
2π

e−t2/(2σ 2
t ) �←→e−2π2σ 2

t f 2 = HG(f )

Using the total dispersion in Equation (6.17), the following frequency response is found:

HG(z, f, λ) = exp −2π2

[
ln 2

2π2

1

B̂W
2
(λ)

+ |Dc(λ)|2σ 2
s

]
z2f 2 (6.19)

Due to the time domain normalization, HG(z, 0, λ) = 1. The expression of the multimode fiber
frequency response just derived needs some relevant comments:

1. The exponent of Equation (6.19) shows that both the frequency f and the distance z play the
same role from a mathematical point of view:
(a) For any fixed distance z = z0, the transfer function is a Gaussian function in the frequency

domain.
(b) For any fixed frequency value f = f0 the frequency response evaluated at f0 shows a

Gaussian shape with the distance.
2. Due to the spatial Gaussian decay, increasing the distance from the launching section corresponds

to narrowing the frequency response. This is of course expected and is the effect of pulse
broadening in the time domain at longer propagation distances.

3. The factor in brackets in the following equation of the Gaussian link dispersion CG(λ) has the
dimension of a time over unit length and includes both contributions from chromatic and modal
dispersions:

C2
G(λ) ≡ 4π2

[
ln 2

2π2

1

B̂W
2
(λ)

+ |Dc(λ)|2σ 2
s

]
(6.20)

Comparing this with the expression for the total pulse RMS width of the Gaussian approximation
given in Equation (6.17), it is concluded that

CG(λ) = 2πσ̂G(λ)

σG(z, λ) = zσ̂G(λ)
(6.21)
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In order to highlight the symmetry of the Gaussian frequency response, the variable x equal to the
distance–frequency product is introduced:

x ≡ z · f (6.22)

Using the definitions of Equations (6.20) and (6.22), the Gaussian approximation of the multi-
mode fiber frequency response in Equation (6.19) takes the following canonical form:

HG(x, λ) = e− 1
2 C2

G(λ)x2

(6.23)

6.2 Comparing Engineering Solutions
High-speed datacommunication relies today mostly on directly modulated semiconductor lasers. As
already introduced, semiconductor lasers are the only light source available today that simultane-
ously satisfies such basic requirements as high-speed direct modulation, low cost, low power and
easy optical coupling to multimode fibers. Nevertheless, in the following examples multigigabit
semiconductor lasers will be compared with light emitting diodes (LED), essentially characterized
by a lower modulation speed, a broader emitted spectrum but still a lower cost compared to laser
diodes. To this purpose, it is interesting to compare the chromatic and modal dispersion contributions
to the total pulse RMS width for the Gaussian approximation given in Equation (6.17). It is known
that the light source spectrum directly influences the chromatic response and by approximating
the modal response using the Gaussian profile, the single-parameter modal bandwidth completely
specifies the frequency transfer function. The first term in the second member of the total dispersion
in Equation (6.17) comes from the modal response while the second one represents the contribution
of chromatic dispersion.

In the following two applications of the multimode fiber operating at 1310 nm and 850 nm respec-
tively are considered. In both cases, the light source is assumed to be either a single-mode VCSEL
(vertical cavity semiconductor emitting laser) or a standard surface emitting LED, resulting in a total
of four transmission applications. In order to simplify the approach without losing the generality of
the conclusions, it is assumed that both light source spectra are characterized by a single peak of
different widths. The very different spectrum widths and contributions of the chromatic dispersion
between the two light sources and wavelength windows cause the total dispersion composition to
range from almost a modal contribution only up to a dominant chromatic dispersion term. The
total dispersion in Equation (6.17) has been referred to the unit fiber length, z = 1 km. Table 6.1
summarizes the four cases considered.

Table 6.1 The four cases considered giving the corresponding
source and fiber parameters used to determine the dispersion
performances. The values presented are indicative and usually
correspond to worst-case conditions

Source Wavelength

MMF 850 nm MMF 1310 nm

VCSEL σs = 0.6 nm σs = 1 nm
B̂W = 160 MHz km B̂W = 500 MHz km
|Dc| = 116 ps/nm km |Dc| = 6 ps/nm km

LED σs = 30 nm σs = 40 nm
B̂W = 160 MHz km B̂W = 500 MHz km
|Dc| = 116 ps/nm km |Dc| = 6 ps/nm km
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Example 6.1
Source: VCSEL
Fiber: MMF −→ Modal dispersion is limited
Wavelength: 850 nm

σs = 0.6 nm
|Dc| = 116 ps/nm km
B̂W = 160 MHz km


 ⇒

{
σc = 69.6 ps
σm = 1170 ps

}
⇒ σG = 1172 ps

In this case the contribution from chromatic dispersion to total dispersion is almost negligible. The
multimode fiber impulse response per unit length is then dominated by modal dispersion.

Example 6.2

Source: LED
Fiber: MMF −→ Chromatic dispersion is limited
Wavelength: 850 nm

σs = 30 nm
|Dc| = 116 ps/nm km
B̂W = 160 MHz km


 ⇒

{
σc = 3480 ps
σm = 1170 ps

}
⇒ σG = 3671 ps

In this case the contribution from modal dispersion is much less relevant than that from chro-
matic dispersion. The multimode fiber impulse response per unit length is therefore dominated by
chromatic dispersion.

Example 6.3
Source: VCSEL
Fiber: MMF −→ Modal dispersion is limited
Wavelength: 1310 nm

σs = 1 nm
|Dc| = 6 ps/nm km
B̂W = 500 MHz km


 ⇒

{
σc = 6 ps
σm = 375 ps

}
⇒ σG = 375.05 ps

In this case the contribution from chromatic dispersion is even less significant than in Example 6.1.
The reduced chromatic dispersion coefficient in the 1310 nm wavelength region makes the role of
the modal dispersion over the chromatic term much more evident. The multimode fiber impulse
response per unit length is dominated by modal dispersion.

Example 6.4
Source: LED
Fiber: MMF −→ Modal dispersion and chromatic dispersion are comparable
Wavelength: 1310 nm

σs = 40 nm
|Dc| = 6 ps/nm km
B̂W = 500 MHz km


 ⇒

{
σc = 240 ps
σm = 375 ps

}
⇒ σG = 445 ps

In this case the contributions from chromatic dispersion and modal dispersion are within the same
order of magnitude and no dominating term exists. Depending on the LED spectral width and fiber
modal bandwidth, the major broadening role can depend on either of these two factors.
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Table 6.2 The results of the dispersion calculations given in the text.
Using semiconductor lasers like VCSEL the link bandwidth limitation
comes from the multimode fiber modal dispersion, both in the first and
second windows. Using an LED light source, chromatic dispersion is dom-
inant in the first window due to a higher dispersion coefficient, and both
chromatic and modal dispersions give comparable contributions to the total
dispersion in the second window

Source Wavelength

MMF 850 nm MMF 1310 nm

VCSEL Modal dispersion Modal dispersion
LED Chromatic dispersion Modal and chromatic

dispersion are comparable

Table 6.2 summarizes the calculation results. The examples lead to the following conclusions:

1. Using semiconductor lasers like VCSEL, the modal bandwidth has the dominant role in defining
the total dispersion of the impulse response in both operating windows.

2. Using an LED, the comparison depends on the operating windows. At 850 nm, the large chro-
matic dispersion coefficient of the multimode fiber together with the large spectrum width of
the LED makes the chromatic dispersion highly dominant over the modal bandwidth. Operating
at 1310 nm instead, the lower value of chromatic dispersion raises the relevance of the modal
bandwidth and both dispersion contributions become comparable to each other.

3. The comparison of the last two cases in Examples 6.3 and 6.4 reveals the interesting conclusion
that when operating at 1310 nm the fiber link bandwidth gains less than 20 % using the VCSEL
instead of the LED. The modal bandwidth in fact almost dominates both transmission conditions.

The last point does not seem to justify the effort required to achieve a market-oriented VCSEL
operating at 1310 nm, since 1310 nm LEDs have been available in the market since the mid 1980s.
However, it is important to note two more points:

1. In the examples it was assumed that a legacy MMF bandwidth of 500 MHz/km was used
when operated in the 1310 nm region. This assumption corresponds to choosing the worst-case
commercial fiber available to date. Improving the fiber bandwidth at 1310 nm makes sense only
if VCSEL sources are going to be used or unless LED chromatic dispersion limitations saturate
overall link performances.

2. The modulation bandwidth of the LED is not comparable to the VCSEL capability and multi-
gigabit transmission can be achieved only using semiconductor laser light sources.

In addition to these considerations, it must be made clear that all multigigabit transmission
standards today require semiconductor lasers as the proper light source. This means that every
standard multigigabit module will be assembled with a direct modulated semiconductor laser like
the VCSEL, Fabry-Perot (FP) or distributed feedback (DFB) laser. As often happens in every
engineering field, if one parameter is chosen to improve a particular performance some other
related characteristics are going in another direction, inducing different but still performance-related
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impairments. This is also the case for semiconductor lasers operating in multigigabit transmission
over multimode fiber links, which creates high variability in the modal impulse response profile
due to restricted launch conditions.

6.2.1 The Gaussian Link Dispersion Factor

The expression derived for the Gaussian approximation of the multimode fiber transfer func-
tion (6.23) allows an easy interpretation of the Gaussian link dispersion CG(λ). Setting xC =
1/CG(λ) in Equation (6.23), the transfer function takes the value

HG

(
1

CG(λ)
, λ

)
= 1√

e
∼= 0.607 ∼= −2.17 dB

Hence:

1. The reciprocal of the Gaussian link dispersion CG(λ) coincides with the contour xG = z · f =
1/CG(λ) in the (z, f ) plane at which the transfer function HG(xC, λ) decays at 1/

√
e of the

value it reaches at the origin, x = 0, or equivalently decays at −2.17 dB.

The transfer function has been defined for the intensity of the optical field and all logarithmic
ratios are calculated according to the 10 log10 definition. The smaller the Gaussian link dispersion
CG(λ), the larger the value xc becomes and the more the MMF link performs. The present analysis
also has a very simple geometrical interpretation, presented below:

2. Given a multimode fiber link specified by the Gaussian link dispersion CG(λ), the 1/
√

e roll-off
of the transfer frequency function gives the hyperbola z · f = xC between the link distance z

and the frequency f with constant xC = 1/CG(λ).

Figure 6.2 presents the qualitative behavior of the hyperbolic contour at constant Gaussian link
dispersion CG(λ) corresponding to the intensity transfer function decaying of 1/

√
e ∼= −2.17 dB.

Figure 6.2 Qualitative drawing of the hyperbolic relationship between the distance and frequency in the
Gaussian transfer function (6.23) of the multimode fiber. Left: linear scale representation of the hyperbola
between the distance and frequency for two different values of the Gaussian link dispersion. Right: logarithmic
scale representation of the same case reported in the linear scale. In this case the hyperbolic relationship is of
course plotted as a straight line
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Assuming similar conditions to those reported in Examples 6.1 to 6.4, the Gaussian link disper-
sion CG(λ) takes the following values respectively:

Case A

Source: VCSEL
Fiber: MMF
Wavelength: 850 nm

σs = 0.6 nm
|Dc| = 116 ps/nm km
B̂W = 160 MHz km


 ⇒ CG(λ) = 7.37 ns/km

Case B

Source: LED
Fiber: MMF
Wavelength: 850 nm

σs = 30 nm
|Dc| = 116ps/nm km
B̂W = 160 MHz km


 ⇒ CG(λ) = 23.07 ns/km

Case C

Source: VCSEL
Fiber: MMF
Wavelength: 1310 nm

σs = 1 nm
|Dc| = 6 ps/nm km
B̂W = 500 MHz km


 ⇒ CG(λ) = 2.36 ns/km

Case D

Source: LED
Fiber: MMF
Wavelength: 1310 nm

σs = 40 nm
|Dc| = 6 ps/nm km
B̂W = 500 MHz km


 ⇒ CG(λ) = 2.80 ns/km

Figures 6.3 to 6.6 give the three-dimensional plots of the Gaussian approximations of the multimode
fiber transfer function (6.23) assuming the Gaussian link dispersion CG(λ) values corresponding to
the four cases A to D listed above.

The three-dimensional functional plots have been computed using Matlab 7.0.2 code. In order
to show the functional symmetry between the distance and frequency clearly, the graph of the
multimode fiber transfer Gaussian function (6.23) has been plotted on to a four quadrants represen-
tation. Negative values of both variables have no physical meaning in this case. The characteristic
cross-like shape of HG(z, f, λ) derives from the symmetry of the function with respect to the two
variables, as stated above. As long as the optical pulse propagates along the fiber length z, the func-
tional dependence from the frequency becomes narrower, following a Gaussian shape. The same
conclusions are valid when assuming a fixed frequency f and analyzing pulse intensity versus the
position coordinate. For any fixed frequency the pulse intensity decreases with increasing distance z

according to the Gaussian profile. Figures 6.4, 6.5 and 6.6 show the same calculations for the other
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Figure 6.3 Numerical evaluation of the Gaussian approximation of the multimode fiber transfer function
HG(z, f, λ) given in Equation (6.23). The value of the Gaussian link dispersion CG(λ) = 7.37 ns/km corre-
sponds to case A

three cases B, C and D presented above. In each figure the physical first quadrant representation
has been added.

6.2.2 Hyperbolic Contour at Fixed Intensity

The orthogonal projection of the multimode fiber Gaussian transfer function (6.23) on to the (z, f )
plane clearly reveals the hyperbolic constant contour property. The constant contour curves are
all hyperbolas whose characteristic constant κ(λ) is proportional to the reciprocal of the Gaussian
link dispersion CG(λ). Equation (6.23) gives the following equation for the generic hyperbolic
projection:

HG(z, f, λ)|z f =κ = e− 1
2 C2

G(λ)κ2 = 1

α
, z f = κ, 1 < α < +∞ (6.24)

Then

z =
[√

2 log α

|CG(λ)|

]
1

f
(6.25)

The parameter α defines the reciprocal of the relative intensity level of the hyperbolic contour. For
the special hyperbola characterized by the constant value α = √

e, the above equation gives the
following hyperbolic contour:

z = 1

|CG (λ)|
1

f
(6.26)

Figure 6.7 gives the three-dimensional plot of the transfer function for case A. The contour line at
1/

√
e has been added. The comparison between the multimode fiber Gaussian transfer functions for

the two cases A and C is presented in Figure 6.8. Both plots show the projections of the Gaussian
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Figure 6.4 Top: numerical evaluation of the multimode fiber transfer function HG (z, f, λ) given in Equa-
tion (6.23). The value of the Gaussian link dispersion CG(λ) = 23.07 ns/km corresponds to case B. Bottom:
first quadrant representation (z > 0, f > 0)

transfer function on to the (z, f ) plane, where the two corresponding hyperbolic contours at 1/
√

e
have been added. It is evident that case C refers to a multimode fiber link with a higher transmission
bandwidth per unit length than that of case A. The lower Gaussian link dispersion CG(λ) shown for
case C causes the hyperbolic line to be located further away from the origin than that for case A.
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Figure 6.5 Top: numerical evaluation of the multimode fiber transfer function HG (z, f, λ) given in Equa-
tion (6.23). The value of the Gaussian link dispersion CG(λ) = 2.36 ns/km corresponds to case C. Bottom: first
quadrant representation (z > 0, f > 0)
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Figure 6.6 Top: numerical evaluation of the multimode fiber transfer function HG (z, f, λ) given in
Figure (6.23). The value of the Gaussian link dispersion CG(λ) = 2.8 ns/km corresponds to case D. Bottom:
first quadrant representation (z > 0, f > 0)
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Figure 6.7 Projection of the transfer function for case A on to the (z, f ) plane. The hyperbola corresponding
to the intensity decaying at 1/

√
e is also shown

6.2.3 Gaussian Equivalent Link Bandwidth

In the following the Gaussian equivalent link bandwidth BG (z, λ) is defined as the half-width at
half-maximum of the equivalent Gaussian frequency response of the optical intensity characterized
by the total dispersion σG (z, λ) given in Equation (6.17). Inverting the Gaussian relationship (6.10)
and substituting σG (z, λ) for σm (z, λ) and BG (z, λ) z instead of B̂W(λ), the Gaussian equivalent
link bandwidth, including chromatic dispersion effects, is given by

BG(z, λ) = 1

π

√
ln 2

2

1

σG(z, λ)
(MHz) (6.27)

The link bandwidth is measured at the Half-Width at Half-Maximum of the whole Gaussian
frequency response of the optical intensity, including both the effect of modal broadening and chro-
matic dispersion. The link bandwidth defined in Equation (6.27) has the dimension of frequency.
The dependence upon the distance is included in the total dispersion σG(z, λ).

The Gaussian equivalent link bandwidth BG(z, λ) is related to the Gaussian link dispersion
CG(λ). Solving Equation (6.21) for σG(z, λ) and substituting into Equation (6.27) gives

BG(z, λ) =
√

2 log 2

zCG(λ)
(MHz) (6.28)

The Gaussian equivalent link bandwidth BG(z, λ) results are therefore inversely proportional to
the Gaussian link dispersion CG(λ). Note that all of the above relations are valid in the Gaussian
approximation and cannot be applied to any other transfer function profile other than the Gaussian
interpolation.
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Figure 6.8 Projections of the multimode fiber Gaussian transfer function for case A (top) and for case C
(bottom) on to the (z, f ) plane. Hyperbolic contour lines corresponding to the intensity decaying at 1/

√
e are

also shown. Case C with a Gaussian link dispersion of CG(λ) = 2.36 ns/km is characterized by a hyperbola
located further away from the origin than that for case A, whose Gaussian link dispersion is CG(λ) = 7.37 ns/km

6.2.4 Application to Legacy MMF

In this section the standardization of the multimode fibers according to their worst-case bandwidth
capability will be considered. The fiber bandwidth is defined by the ITU.T G.651 standard (Septem-
ber 2000) and refers to the Gaussian best fit of the measured intensity profile versus modulating
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Table 6.3 Standard multimode fiber specifications according to ISO/IEC and related operating wavelength
ranges. The gray-shaded specifications refer to the three cases considered in the text

Wavelength MMF type

OM1
(ISO/IEC 11801)

OM2
(ISO/IEC 11801)

OM3
(ISO/IEC 11801)

850 nm 2a = 62.5 µm 2a = 50 µm 2a = 50 µm
B̂W = 160 MHz km B̂W = 500 MHz km B̂W = 1500 MHz km
|Dc| = 120 ps/nm km |Dc| = 120 ps/nm km |Dc| = 120 ps/nm km

1310 nm 2a = 62.5 µm 2a = 50 µm 2a = 50 µm
B̂W = 500 MHz km B̂W = 500 MHz km B̂W = 500 MHz km
|Dc| = 6 ps/nm km |Dc| = 6 ps/nm km |Dc| = 6 ps/nm km

frequency, assuming over-filled launching (OFL) conditions. Implications of the launch condition
and the effectiveness of the Gaussian approximation have already been discussed. In Table 6.3 three
legacy multimode fibers are considered that satisfy a priori the Gaussian frequency response under
the assumption of over-filled launch conditions. Each fiber is excited both at 850 nm and 1310 nm
wavelength regions.

According to ISO/IEC 11801: 2002 standards, all three fiber types OM1, OM2 and OM3 have
the same over-filled launch modal bandwidth of 500 MHz when excited in the 1310 nm wavelength
region. This is important because it leads to the same link bandwidth for a given link length when
operating at 1310 nm independently from the installed fiber type. The situation is, however, much
more critical in the first optical window, where the modal bandwidth strongly depends on the
selected fiber standard. From Table 6.3 it is evident that changing the fiber type from OM1 to
OM2 and to OM3 the modal bandwidth greatly increases from 160 MHz km to 500 MHz km and
to 1500 MHz km respectively.

In the following three application cases will be considered of OM1 fiber at 850 nm, OM2 fiber
at 1310 nm and exceeding OM3 fiber specification operating at 850 nm.

6.2.4.1 OM1 Fiber at 850 nm

Multimode optical fiber type OM1, with a core diameter of 2a = 62.5 µm and operating in the
850 nm wavelength region.

Link parameters:




Modal bandwidth : B̂W(850 nm) = 160 MHz km
Chromatic dispersion : |Dc| = 120 ps/nm km
Source spectral width : σs = 0.6 nm

Gaussian link dispersion (6.20): CG(850 nm) = 7.373 ns/km

Link bandwidth (6.28):

BG(z, 850 nm) =

 1 km 300 m 100 m 26 m

↓ ↓ ↓ ↓
159.7 MHz 532.3 MHz 1597.0 MHz 6142.3 MHz




Figure 6.9 shows the computed Gaussian frequency response assuming four different link lengths
for the OM1 multimode fiber. Due to the requested applications in the 10BASE-SR standards, the
link length of 26 m has been highlighted. As expected, the modal bandwidth increases inversely
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Figure 6.9 OM1 multimode fiber Gaussian frequency response versus link length. The fiber parameters refer
to the legacy fiber with a core diameter of 62.5 µm operating at 850 nm, with a chromatic dispersion coefficient
|Dc| = 120 ps/nm km. The source linewidth (VCSEL) has been assumed to be σs = 0.6 nm. The Gaussian link
dispersion of the MMF link is CG(850 nm) = 7.373 ns/km. The link bandwidth is in excess of 6.5 GHz after
the length of 24 m

in proportion to the link length, reaching the required channel bandwidth for the 10 GbE signal at
about the link length of 26 m.

The Gaussian modeling greatly facilitates the link design but it should be noted that in field
deployments of multimode fiber links the effective frequency response rarely matches the Gaussian
shape. In particular, for multigigabit transmission the over-filled launch condition cannot be satisfied
by laser sources due to the restricted far-field angle and small intensity spot size. As described in
Chapter 5, the uniform modal excitation is one of the primary conditions to be verified in order to
expect a Gaussian-like impulse response. Accordingly, it should be concluded that in multigigabit
transmissions requiring a high-speed directly modulated laser source, the Gaussian impulse response
would only rarely be expected. However, in multigigabit transmissions the standardization suggests
the offset launch technique in order to excite a relatively large number of higher-order modes in
the multimode fiber, enabling a relatively tight group delay matching and consequently an almost
Gaussian fitted impulse response.

To gain an idea of the relationship between the link length and data rate transmitted over the
multimode fiber, the one-half bit rate bandwidth criteria can be considered as a ‘rule-of-the-thumb’.
Basically, the required channel bandwidth, in order to allow reasonable data transmission without
caring about any data pulse shaping optimization, would be about one-half of the bit rate. It is
noted that Nyquist signaling with sinc pulses requires exactly one-half of a bandwidth. Referring
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to the computed Gaussian responses in Figure 6.9, it can be concluded that OM1 fiber allows NRZ
data transmission at 1250 Mb/s (1 GbE) over about 250 m of fiber link length, reaching about 70 m
of link length at 4250 Mb/s, which corresponds to the 4GFC standard.

6.2.4.2 OM2 Fiber at 1310 nm

Multimode optical fiber type OM2, with a core diameter of 2a = 50 µm and operating in the
1310 nm wavelength region.

Link parameters:




Modal bandwidth : B̂W(1310 nm) = 500 MHz km
Chromatic dispersion : |Dc| = 6 ps/nm km
Source spectral width : σs = 1 nm

Gaussian link dispersion (6.20): CG(1310 nm) = 2.355 ns/km

Link bandwidth (6.28):

BG(z, 1310 nm) =

 3 km 1 km 300 m 82 m

↓ ↓ ↓ ↓
166.7 MHz 499.7 MHz 1666.6 MHz 6097.3 MHz




Figure 6.10 shows the computed Gaussian frequency response assuming four different link
lengths for the OM2 multimode fiber. Multigigabit applications in the 10BASE-LRM and 10BASE-
SR standards require link lengths of 300 m and 82 m respectively. Due to a higher modal bandwidth
of OM2 fiber than the OM1 case, the link bandwidth available after 300 m is still reasonable for dig-
ital signal restoration by means of the electronic dispersion compensation technique. As expected,
the modal bandwidth increases inversely in proportion to the link length, reaching the required
channel bandwidth for the 10 GbE signal at about the link length of 82 m.

The multimode fiber designated as OM2 refers to the ISO/IEC standard and has many common
parameters with the telecommunication multimode optical fiber specified in the ITU-T G.651 (1998)
standards. This graded index multimode optical fiber is specified in operation of both the first and
second windows. At 1310 nm it has the numerical aperture (NA) 0.20 ≤ NA ≤ 0.23 and the
attenuation α ≤ 2 dB/km.

6.2.4.3 OM3 Fiber at 850 nm

Multimode optical fiber exceeding OM3 specifications, with a core diameter of 2a = 50 µm and
operating in the 850 nm wavelength region.

Link parameters:




Modal bandwidth : B̂W(850 nm) = 2000 MHz km
Chromatic dispersion : |Dc| = 120 ps/nm km
Source spectral width : σs = 0.6 nm

Gaussian link dispersion (6.20): CG(850 nm) = 0.590 ns/km

Link bandwidth (6.28):

BG(z, 1310 nm) =

 12 km 3 km 1 km 300 m

↓ ↓ ↓ ↓
166.3 MHz 665.2 MHz 1995.6 MHz 6652.0 MHz




Figure 6.11 shows the computed Gaussian frequency response assuming four different link
lengths for the OM3 multimode fiber. Multigigabit applications in the 10BASE-LRM and 10BASE-
SR standards require link lengths of 300 m. Due to the higher modal bandwidth with respect to the
OM2 case, the link bandwidth available after 300 m is sufficient for direct detection and decision
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Figure 6.10 OM2 multimode fiber Gaussian frequency response versus link length. The fiber parameters refer
to the legacy fiber with a core diameter of 50 µm operating at 1310 nm, with a chromatic dispersion coefficient
|Dc| = 6 ps/nm km. The source linewidth (VCSEL) has been assumed to be σs = 0.6 nm. The Gaussian link
dispersion of the MMF link is CG(1310 nm) = 2.355 ns/km. The link bandwidth is in excess of 6.5 GHz after
the length of 75 m

without any digital signal restoration. As expected, the modal bandwidth decreases inversely in
proportion to the link length, reaching about 2 GHz after 1 km. This channel bandwidth is sufficient
for 10 GbE operation supported by electronic dispersion compensator architecture.

The fiber designated in OM3 ISO/IEC standards represents the high-speed proposal for using
multimode optical fibers in multigigabit transmission systems. These fibers are relatively new ones
as they have been installed after 1998. All remaining installed bases refer to older and lower-
performance multimode optical fibers. The ISO/IEC multimode fiber standards have been written
in order to designate multimode fiber into these three large categories depending on their bandwidth
performances.

The population of multimode fibers actually deployed spans these three categories and multigi-
gabit transmissions must account for very different transmission and bandwidth performances. This
is the reason for the great effort in specifying the new 10 GbE IEEE.802.aq standard 10BASE-LRM
in order to get the multigigabit optical link working independently from whichever fiber, ISO/IEC
OM1, OM2 or OM3, has been assumed. In order to guarantee 10 GbE transmission over a minimum
link length of 300 m operating in the 1310 nm wavelength region, both the transmitter and receiver
must be properly specified and designed, and in particular new dispersion compensation techniques
must be installed in the optical receiving unit.
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Figure 6.11 OM3 multimode fiber Gaussian frequency response versus link length. The fiber parameters refer
to the legacy fiber with a core diameter of 50 µm operating at 1310 nm, with a chromatic dispersion coefficient
|Dc| = 6 ps/nm km. The source linewidth (VCSEL) has been assumed to be σs = 1 nm. The Gaussian link
dispersion of the MMF link is CG(1310 nm) = 0.590 ns/km. The link bandwidth is still in excess of 6.5 GHz
after the length of 300 m

6.2.4.4 Comments

The computed frequency response of the three multimode fiber links considered above reveal an
almost linear behavior between the fiber modal bandwidth B̂W(λ) and the link bandwidth BG(z, λ)

achieved for a given distance z. The mainly linear relationship that has been found means that
the chromatic dispersion contribution is negligible in all the cases considered, which is easily
proved below. Substituting the Gaussian link dispersion CG(λ) (6.20) into the expression of the
link bandwidth BG(z, λ) (6.28) gives the following general relationship between the link bandwidth
and the modal bandwidth:

BG(z, λ) = 1

2πz

√
2 log 2

[ln 2/(2π2)][1/B̂W
2
(λ)] + |Dc(λ)|2 σ 2

s

(MHz) (6.29)

Independently from the relative contribution between the modal dispersion and the chromatic dis-
persion, the link bandwidth decreases inversely to the link distance z.
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Assuming that the chromatic dispersion contribution is negligible with respect to the modal one,
the above expression greatly simplifies, giving the following expected result:

BG(z, λ) = 1

z
B̂W(λ) (MHz) (6.30)

1. As long as modal bandwidth B̂W(λ) is the dominant effect, the link bandwidth BG(z, λ) scales
with the distance z.

This behavior is quite evident from the computed frequency response:

2. The link bandwidth BG(z, λ) is almost constant if modal bandwidth B̂W(λ) compensates linearly
for the increased link length.

According to Figures 6.9, 6.10 and 6.11, approximate link bandwidths of 530 MHz, 500 MHz
and 660 MHz respectively have been achieved after 300 m, 1 km and 3 km of fiber length with
corresponding modal bandwidths of 160 MHz km, 500 MHz km and 2000 MHz km. These relation-
ships clearly confirm Equation (6.30), revealing the expected linearity between the link bandwidth
and the modal bandwidth in the presence of negligible chromatic dispersion.

It is interesting to verify that the IEEE 802.3ae standards for 10 GbE applications recommend
using a design with maximum link lengths of 26 m (850 nm), 82 m (1310 nm) and 300 m (850 nm)
respectively using multimode fibers with modal bandwidths of 160 MHz km, 500 MHz km and
2000 MHz km respectively. In all these cases the link bandwidth BG(z, λ) is almost independent of
the chromatic dispersion and reaches approximately the value of 6.5 GHz.

6.3 Comparison with Transmission Lines
In this section the Gaussian modeling of the multimode fiber frequency response will be compared
with the frequency response of the metallic transmission line presented in Chapter 2 with reference
to the 10 GbE application case. This comparison clearly reveals the major difficulties encountered
when achieving good frequency response compensation of the multimode fiber with respect to the
case of the metallic transmission line. The principal difference is the characteristic square-root
frequency roll-off of the transmission due to the skin effect. The square root frequency response
in fact demands a smoother high-frequency compensation than the equivalent bandwidth of the
multimode fiber Gaussian response would require.

Figure 6.12 shows on the same graph a comparison of the frequency response of four different
multimode fibers with four different lengths of the same transmission lines. Each multimode fiber is
assumed to have a Gaussian frequency response according to Equation (6.19) with a defined modal
bandwidth B̂W(λ) and length z. The light source is a single-line semiconductor laser with σs = 1 nm
emitting either at 850 nm or 1310 nm according to the selected multimode fiber specification. The
transmission line frequency response is given by Equations (2.40) and (2.46) respectively in the
lower and higher frequency ranges. As discussed in Chapter 2, the transmission line model that
was developed is approximated and takes into account only the skin effect in order to achieve the
characteristic square root frequency response. A more accurate model of the metallic transmission
line would include, however, the effects of the dispersion of the surrounding dielectric material
and of the waveguide structure. Nevertheless, at least for comparison purposes, the characteristic
frequency behavior is well interpreted by the present simplified model.

The fiber length has been assumed to be z = 300 m for all cases, while the modal bandwidth
changes for each fiber type. All transmission lines have the same transversal geometry, which leads
to the common value ft = 2.476 MHz for the thickness frequency. Without entering the details
for the calculation of the required channel bandwidth for a 10 GbE transmission system, it can
be assumed that a transmission channel bandwidth of approximately 5 GHz evaluated at −3 dBe
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(decibel-electrical) would guarantee a reasonable eye diagram opening with acceptable intersymbol
interference (ISI) at the receiving section. This is consistent with the one-half bit rate bandwidth
rule introduced previously. These qualitative criteria will be used in this section to compare the
multimode optical fiber with a transmission line frequency roll-off. In Chapter 8 the theoretical
model and the design prescriptions for the 10 GbE multimode optical fiber based transmission
system will be analyzed.

It is evident from Figure 6.12 that just one fiber configuration would allow for the required
transmission length z = 300 m and bandwidth conditions, namely the multimode fiber with a

Figure 6.12 Frequency response comparison between the multimode fiber Gaussian response of a fixed link
length and a copper transmission line of several lengths. The fiber bandwidth varies according to MMF speci-
fications. The highlighted dot indicates the −3 dB link bandwidth requirement needed to achieve a reasonable
10 GbE eye diagram with an acceptable amount of ISI. This diagram reveals that the multimode fiber bandwidth
requirement would not be below 2000 MHz km. The same conclusion leads to a copper transmission line length
of about 20 cm
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bandwidth coefficient B̂W(λ) = 2000 MHz km. The same bandwidth on the copper transmission
line would be achieved approximately after a line length of only LT = 20 cm. All other cases
reported in Figure 6.12 would not allow error-free transmission without being involved in signal
compensation algorithms and techniques.

The computed frequency response clearly reveals the expected differences between the multimode
fiber Gaussian response and the skin effect based response of the transmission line. Both models
rely upon approximations, as already mentioned, but their very different frequency profiles need
some more comments. In order to compare quantitatively multimode fibers and copper transmission
lines, a reference level needs to be defined. To compare them the same −3 dBe cut-off frequency
criteria is chosen. This is just one possible choice among many others, but it relies on a very
common understanding. The −3 dBe cut-off frequency using the dB-electrical definition was chosen,
using the 20 log10 operator. This is consistent with the electrical pulse signal achieved after the
optoelectrical conversion takes place in the optical receiver. It is assumed that the multimode fiber
parameter set used before is characterized by the same length, LF = 300 m, each with an individual
modal bandwidth, namely:

1. OM1: B̂W(850 nm) = 160 MHz km
2. OM2: B̂W(1310 nm) = 500 MHz km
3. OM2: B̂W(1310 nm) = 1000 MHz km
4. OM3: B̂W(850 nm) = 2000 MHz km

Transmission line lengths LT are chosen in order to match exactly the same −3 dBe cut-off
frequency of the multimode fiber links after LF = 300 m. Table 6.4 summarizes the operating
conditions for each case considered. The last column refers to the corresponding figures given
below. The computed copper line length giving the same cut-off frequency of the corresponding
multimode fiber link is also added.

The comparison between the frequency domain and the corresponding impulse response becomes
more evident. The fiber link bandwidth is derived using both modal dispersion and chromatic
dispersion contributions, and the latter one depends on the source wavelength and linewidth.

It is interesting to observe that in all the cases the optical link bandwidth is slightly lower than the
fiber modal cut-off frequency due to the contribution of the chromatic dispersion. Higher bandwidth
fibers are more sensitive to the chromatic dispersion effect due to the relatively higher contribution
of GVD with respect to the differential mode delay.

Figure 6.17 shows the computed impulse responses for the four cases examined above. The time
domain comparison reveals the dramatic differences in pulse shaping and duration between any
two pairs examined. It should be mentioned one more time that the transmission line results are
valid under the assumption of a dominant skin effect. A more accurate transmission line modeling
including material dispersion and waveguide effects will have a broader impulse response, but is
nevertheless still more regular and narrower than the equivalent bandwidth multimode optical fiber
can exhibit.

Table 6.4 Fiber link parameters used for comparison with an equivalent transmission line

Wavelength
range

Modal
bandwidth

Chromatic
dispersion

Source
linewidth

Link
bandwidth

Transmission
line length

Figure
reference

850 nm 160 MHz km 120 ps/nm km 0.6 nm 376.0 MHz 72.14 cm 6.13
1310 nm 500 MHz km 6 ps/nm km 1 nm 1176.3 MHz 40.77 cm 6.14
1310 nm 1000 MHz km 6 ps/nm km 1 nm 2351.7 MHz 28.81 cm 6.15

850 nm 2000 MHz km 120 ps/nm km 0.6 nm 4696.3 MHz 20.39 cm 6.16
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Figure 6.13 Frequency response comparison between the Gaussian approximation of the multimode fiber
frequency response of a fixed link length LF = 300 m and the copper transmission line whose length
LT = 72.14 cm gives the same −3 dBe link cut-off frequency fc = 376 MHz as the fiber link. The fiber
bandwidth is B̂W(850 nm) = 160 MHz km, the chromatic dispersion coefficient is |Dc| = 120 ps/nm km and
the source linewidth is σs = 0.6 nm. The smoother square root frequency response decay of the transmission
line is evident
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Figure 6.14 Frequency response comparison between the Gaussian approximation of the multimode fiber
frequency response of a fixed link length LF = 300 m and the copper transmission line whose length
LT = 40.77 cm gives the same −3 dBe link cut-off frequency fc = 1176.3 MHz as the fiber link. The fiber
bandwidth is B̂W(1310 nm) = 500 MHz km, the chromatic dispersion coefficient is |Dc| = 6 ps/nm km and the
source linewidth is σs = 1 nm. The smoother square root frequency response decay of the transmission line is
evident
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Figure 6.15 Frequency response comparison between the Gaussian approximation of the multimode fiber
frequency response of a fixed link length LF = 300 m and the copper transmission line whose length
LT = 28.8 cm gives the same −3 dBe link cut-off frequency fc = 2531.7 MHz as the fiber link. The fiber
bandwidth is B̂W(1310 nm) = 1000 MHz km, the chromatic dispersion coefficient is |Dc| = 6 ps/nm km and
the source linewidth is σs = 1 nm. The smoother square root frequency response decay of the transmission line
is evident
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Figure 6.16 Frequency response comparison between the Gaussian approximation of the multimode fiber fre-
quency response of a fixed link length LF = 300 m and the copper transmission line whose length LT = 20.39 cm
gives the same −3 dBe link cut-off frequency fc = 4696.3 MHz as the fiber link. The fiber bandwidth is
B̂W(850 nm) = 2000 MHz km, the chromatic dispersion coefficient is |Dc| = 120 ps/nm km and the source
linewidth is σs = 0.6 nm. The smoother square root frequency response decay of the transmission line is
evident
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Figure 6.17 Comparison between the multimode fiber Gaussian impulse responses and the transmission line
impulse responses of the same −3 dBe cut-off frequency. The transmission line length has been computed in
order to have the same cut-off frequency as the corresponding multimode fiber

6.4 Conclusions and Remarks

The Gaussian transfer function used for modeling the multimode fiber response represents a useful
solution to the transmission system simulation based on multimode fibers. There is no satisfactory
physical explanation to justify the Gaussian pulse response, but it is widely used and referred to
by both Standardization Committees ITU-T and IEEE 802.3ae. Depending on both the launching
conditions and the fiber delay distribution, the Gaussian model could more or less fit the real
measurements. Starting with the Gaussian assumption as a modeling approach, the theory relating
the frequency and time domain was developed, including a quantitative comparison using copper
transmission lines.

The accuracy of multimode fiber response modeling has attracted much interest in recent years
since new high-speed transmission applications like 10 GbE and 4GFC have been proposed by the
standardization community. Data transmission infrastructure must therefore use existing multimode
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fiber plants for those newly increased transmission speeds, using single longitudinal mode semi-
conductor laser sources such as VCSEL instead of the slower LED. Selective fiber mode excitation
leads directly to the strongly launching condition which is dependent on the multimode fiber impulse
response. A unified form of multimode fiber impulse response modeling is not available, except for
Gaussian interpolation as an average impulse response. More realistic modeling must therefore rely
on the physical model of the multimode fiber, solving the waveguide modal equation according to
the applied launching condition and to the measured refractive index profile. A statistical approach
would be more adequate due to the variability of the measured refractive index profile among
deployed multimode fibers. All those complexities make the Gaussian approach a reasonable and
useful compromise between transmission system design criteria and real measurement expectations.
Gaussian modeling is a simple design tool and must be properly used in order to have realistic
design criteria.



7
Multimode Fiber Selected Topics

Impairments and Methods for Multigigabit
Transmission Links

7.1 Impulse Response and Modal Bandwidth
The theory of multimode fibers presented so far allows direct representation of the multimode
fiber impulse response as the linear combination of individual mode contributions in the time
domain, including both modal group delays and chromatic dispersion. The list below summarizes the
fundamental steps that were achieved in understanding the physical description and the mathematical
modeling of the impulse response behavior of the multimode fiber:

1. As derived in Chapter 3, each excited mode group presents the fraction reported in
Equation (3.56) of the total launched optical power and is represented by the intensity weighting
coefficient |aj (λ)|2. The energy conservation (3.57) of the launched input optical pulse among
the whole set of guided modes implies that

∑M
j=1 |aj (λ)|2 = 1, M being the number of mode

groups.
2. The impulse response of each hth mode group is indicated by the function υh(z, t, λ), h =

1, 2, . . . , M . According to Equation (3.53), the modal impulse response coincides with the
impulse distribution at the input section translated by the corresponding group delay tg,j (z, λ) =
zτg,j (λ):

υh(z, t, λ) = δ[t − zτg,h(λ)] (7.1)

3. The chromatic dispersion σc,h(z) adds the characteristic RMS width broadening to the modal
impulse response υh(z, t, λ), h = 1, 2, . . . , M , of each mode group. Assuming source spectrum
limited conditions and a linear approximation of the modal group delay, the chromatic dispersion
of each hth mode group is given by the product of the chromatic dispersion coefficient |Dc,h(λ)|
evaluated at the source average wavelength λ with the source linewidth σs, as reported in (4.120):

σc,h(z, λ) = |Dc,h(λ)|σsz (7.2)

4. In general, without any linear approximation of the group delay function, the chromatic impulse
response experienced by the hth mode group is indicated by the function hc,h(z, t) and does not
depend explicitly on any particular wavelength. Instead, the chromatic impulse response is an
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integral functional of the source power spectral density and results in a function of the distance
z from the launch section and the temporal variable t . The function σc,h(z) characterizes the
RMS width of the chromatic impulse response hc,h(z, t), and does not necessarily need to be a
Gaussian pulse in the time domain. For the moment, the general assumption is made that the
chromatic impulse response belongs to the space of modulus integrable functions over the time
axis, for every distance z and wavelength λ:

hc,h(z, t) ∈ L1(�), t ∈ �∫ +∞

−∞
|hc,h(z, t)| dt < +∞

(7.3)

Since the impulse response hc,h(z, t) represents the optical power it must be definite positive over
the whole time axis and therefore Equation (7.3) coincides with the finite energy requirement.

5. The effect of chromatic dispersion over each mode group response is given by the time con-
volution of the modal impulse response υh(z, t, λ), h = 1, 2, . . . ,M , with the corresponding
time-centered chromatic impulse response ĥc,h(z, t) ≡ hc,h(z, t − zτ c,h):

hF,h(z, t, λ) ≡ υh(z, t, λ) ∗ ĥc,h(z, t) (7.4)

6. Under the assumption of the linear mode power superposition, the multimode fiber impulse
response hF(z, t, λ), subjected to the chromatic dispersion effect, can be defined as the weighted
sum of all excited mode group contributions hF,h(z, t, λ):

hF(z, t, λ) ≡
M∑

h=1

|ah(λ)|2hF,h(z, t, λ) (7.5)

7. Substituting Equation (7.1) into Equation (7.4) and using the summation (7.5) gives the explicit
form of the multimode fiber impulse response:

hF(z, t, λ) =
M∑

h=1

|ah(λ)|2ĥc,h[z, t − zτg,h(λ)] (7.6)

Substituting for the centered chromatic impulse response in terms of the original one gives
the following expression, which coincides with expression (5.20) derived in Chapter 5, obtaining
the general multimode fiber impulse response under the linear intensity superposition assumption,
including both modal and chromatic dispersions:

hF(z, t, λ) =
M∑

h=1

|ah(λ)|2hc,h{z, t − z[τg,h(λ) − τ c,h]} (7.7)

Note that the quantity τ c,h is the value of the average delay of the chromatic impulse response
of the hth excited fiber mode and in general is different from the value of the group delay of the
same hth mode evaluated at the source average wavelength. This is due to the chromatic distortion
of the nonlinear group delay profile in the spectral range of the light source spectrum. If the group
delay is linearly approximated, of course both terms coincide. No other dispersion effects have been
considered in Equation (7.7). Each mode is affected by chromatic dispersion through the impulse
response hc,h(z, t), without specifying the general function used to model the chromatic impulse
response.

The next section analyses the interesting case of the Gaussian chromatic impulse response. This
case represents a valid assumption for laser-based transmission systems where the almost Gaussian
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shaped and narrow light spectrum allows for consistent linear approximation of the multimode
fiber group delay profile. In the following, it will be assumed that the Gaussian chromatic impulse
response will have the same variance for every fixed distance. In other words, the chromatic impulse
response will be represented by the same Gaussian profile with the proper group delay characteristic
of the corresponding mode group delay.

7.1.1 Gaussian Chromatic Response

In this section, modeling of the chromatic impulse response hc,h(z, t, λ) will be considered by
means of a suitable Gaussian function. Both the source spectrum limited condition and the lin-
ear chromatic dispersion given by Equation (4.120) will be assumed. The time-centered Gaussian
chromatic impulse response is defined as follows:

ĥc(z, t, λ) ≡ 1

zσs|Dc(λ)|√2π
e−t2/[2z2σ 2

s |Dc(λ)|2] (7.8)

At any fixed section z and source average wavelength λ, the time-centered chromatic impulse
response ĥc(z, t, λ) in Equation (7.8) results in a normalized Gaussian pulse with zero mean, τ c,h =
0, h ∈ N (1,M), and variance given by the following term:

τ c = 0

σ 2
c (z, λ) = z2σ 2

s |Dc(λ)|2
(7.9)

Increasing the distance z from the origin, the RMS width σc(z, λ) increases linearly. It is important
to remark that the Gaussian chromatic impulse response in Equation (7.8) is the same for every
mode group. Is it time-centered and, due to the assumed linearity of the group delay in the inter-
val interested by the light source spectrum, the chromatic dispersion coefficient is the same for
all modes.

Substituting Equation (7.8) into Equation (7.7) gives the multimode fiber impulse response with
the approximation of the Gaussian chromatic impulse response:

hF(z, t, λ) = 1

zσs|Dc(λ)|√2π

M∑
h=1

|ah(λ)|2 exp − [t − zτg,h(λ)]2

2z2σ 2
s |Dc(λ)|2 (7.10)

This expression gives interesting multimode fiber impulse response simulations by assuming the
Gaussian chromatic impulse response. However, depending on the modal delay distribution τg,h(λ)

and the coefficients |ah(λ)|, very different impulse responses can be achieved. This is the most
distinctive peculiarity of the multimode fiber response. It will be seen in the next section that
launching conditions strongly affect the energy distribution among guided modes and group delays,
and consequently the impulse response detected at the output section.

The above expression (7.10) should not be confused with the much more severe approximation
presented in Chapter 6, where the whole impulse response of the multimode fiber was consid-
ered, including modal delay contributions, as a Gaussian pulse. In the following sections it will
be shown how this is a special case of the more general multimode fiber impulse response pre-
sented in Equation (7.9). In order to achieve a completely Gaussian response, in fact both the
modal excitation and group delay distribution must satisfy the general prescriptions indicated in
Chapter 6. In that case the multimode fiber impulse response could be approximated using Gaussian
functions.

Once the multimode fiber impulse response has been derived as a superposition of weighted
Gaussians pulses, by virtue of the linearity and of the time-shifting theorem of the Fourier transform
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pair it is easy to derive the corresponding frequency response of the multimode fiber with the
approximation of the Gaussian chromatic impulse response:

HF(z, f, λ) = e−2π2z2σ 2
s |Dc(λ)|2f 2

M∑
h=1

|ah(λ)|2e−j2πf zτg,h(λ) (7.11)

By comparing this equation with Equation (5.81) it can be concluded that the summation term
coincides with the modal function Υ (z, f, λ). Hence, this gives the following relevant result. The
frequency response HF(z, f, λ) of the multimode fiber with the approximation of the Gaussian
chromatic impulse response is given by the product of the Gaussian transfer function corresponding
to the chromatic impulse response with the modal function Υ (z, f, λ):

HF(z, f, λ) = e−2π2z2σ 2
s |Dc(λ)|2f 2

Υ (z, f, λ) (7.12)

The result just derived is consistent with the general theory of the multimode fiber
frequency response developed in Chapter 5. In particular, expression (7.12) derives directly from
Equation (5.81).

7.1.2 Modeling Impulse Responses
In order to expand the view of multimode fiber impulse responses, some interesting applications
of the previous modeling will be considered in the following. The chromatic impulse response is
assumed to be Gaussian and the multimode fiber response is computed according to Equations (7.10)
and (7.12). Once the chromatic dispersion parameters σs and |Dc(λ)| have been fixed, the impulse
response at any given section z becomes a function of the two distributions {ah(λ)}, {τg,h(λ)}. It will
be seen later that for a given multimode fiber both the power coefficients and the delay distribution
are not independent of each other, but are instead related to the same launching conditions. For
a given multimode fiber, the light source parameters (λ, σs) and the spectrum profile together
with the launching conditions uniquely specify the impulse response at every distance z from the
input section. For the moment, without entering into this mathematical analysis, some relevant
delay distributions {τg,h(λ)} and power coefficient distributions {ah(λ)} will be defined a priori
in order to obtain some specified response shape at the output section z. For each multimode
impulse response computed using Equation (7.10) the corresponding frequency response according
to Equation (7.12) has also been added. The application considered below can be grouped into four
different cases, according to the shape of the impulse response. In order to simplify the mathematical
description and to highlight the physical meaning behind it, in all four cases presented a uniform
modal excitation will be assumed, namely:

|ah(λ)|2 = 1

M

M∑
h=1

|ah(λ)|2 =
M∑

h=1

1

M
= 1

(7.13)

Consequently, different impulse responses are due exclusively to different group delay distribu-
tions. Proceeding in this way, the physical role of this fundamental multimode fiber parameter is
highlighted. Substituting the condition (7.13) into both expressions (7.10) and (7.11) gives

hF(z, t, λ) = 1

Mzσs|Dc(λ)|√2π

M∑
h=1

exp − [t − zτg,h(λ)]2

2z2σ 2
s |Dc(λ)|2 (7.14)

HF(z, f, λ) = e−2π2z2σ 2
s |Dc(λ)|2f 2 1

M

M∑
h=1

e−j2πf zτg,h(λ) (7.15)
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In the following cases the same parameters values will be assumed:

λ = 1300 nm

z = 1 km

σs = 4 nm (7.16)

|Dc(λ)| = 6 ps/nm km

M = 500

The only condition responsible for different impulse responses is therefore the group delay
distribution {τg,h(λ)}. Before using simulation results it is, however, important to discuss briefly
the characteristic profile of the group delay distributions in order to satisfy the required multimode
impulse response. To this purpose the conditions discussed in Chapter 6 concerning the Gaussian-
shaped impulse response are recalled. Since the power coupling coefficient distribution can be
assumed to be uniform for all the considered cases, the modal contribution to the impulse response
depends exclusively on the group delay distribution {τg,h(λ)}. In the following, without losing
any generality, it will be assumed that the fiber modes are ordered according to the required
group delay profile. The group delay distribution is sketched versus the mode group index, h =
1, 2, . . . , M . In the following examples, every stationary interval of the delay distribution leads to
the accumulation of the corresponding chromatic impulse responses, almost all on the same delay
value. This condition will be referred to as a synchronous superposition.

Similarly, every abrupt change of the delay distribution corresponds to a low-energy contribution
to the optical impulse response, due to the limited mode group that satisfies the very restricted delay
values. These low-energy intervals extend for the corresponding value of the abrupt group delay
variation.

7.1.2.1 Symmetric Single-Peak Response

Following the discussion and the prescriptions reported in Chapter 6, it can be concluded that in
order to have a symmetric single-peak impulse response, the group delay distribution {τg,h(λ)}
must have an odd symmetry around the average value, as sketched in Figure 7.1. The lower slope
central region is responsible for the main body of the impulse response because most of the modal

M1 h, mode group number

tg, h (l)

hF (z, t, tt l)
Ideal distribution

t

Figure 7.1 Qualitative representation of the odd-symmetric group delay distribution and of the correspond-
ing symmetric single-peak multimode impulse response, assuming uniform mode group excitation. The ideal
group delay distribution with perfect delay compensation is shown as the dot–dash line and the corresponding
multimode impulse response on the right side exhibits only a chromatic dispersion contribution
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Precursor

M1 h, mode group number

t

Ideal distribution

tg, h (l)

hF (z, t, tt l)

Figure 7.2 Qualitative representation of the group delay distribution and of the corresponding precursor
single-peak multimode impulse response, assuming uniform mode group excitation. The ideal group delay
distribution with perfect delay compensation is shown as the dot–dash line and the corresponding multimode
impulse response on the right side exhibits only a chromatic dispersion contribution

contributions arrive almost at the same time. Pulse tails are determined instead by the outer regions
of the group delay distribution.

The dot–dash line represents the uniform group delay distribution, as expected after perfect delay
compensation. The corresponding multimode impulse response coincides with the synchronous
superposition of the chromatic impulse responses, resulting in the sharpest pulse profile available
for the given operating conditions.

7.1.2.2 Precursor Single-Peak Response

Figure 7.2 shows the qualitative behavior of the group delay distribution in order to have a precursor
single-peak impulse response. Generally, every mode group bundle that exhibits almost the same
group delay value originates of course a peak in the impulse response. This is due essentially to
the almost synchronous superposition of the chromatic impulse responses. The relative position and
the intensity of the precursor depend on the location and on the fraction of the mode bundle delay
distribution.

Because of these concepts, it could be argued that a staircase group delay distribution will
generate a multiple peak impulse response. In the next section some computer simulations will be
presented of the multimode impulse response, assuming mathematical modeling of the group delay
distribution.

It is important to remark that under uniform excitation, if an almost flat group delay distribution
results in a Gaussian-like impulse response, a very steep group delay profile variation results in
almost a lack of energy content along the corresponding time interval. This gives a hint that almost
separated multipeak impulse responses can be achieved. The same conclusions do not hold in
general for nonuniform excitation. This is due to the relative weight given to the source coupled
power coefficients among different mode groups.

7.1.2.3 Postcursor Single-Peak Response

Proceeding in the same way as the precursor single-peak response, the postcursor single-peak
response is obtained by simply, providing a mirrored group delay distribution. In the case reported
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t

M1 h, mode group number

Ideal distribution

Postcursortg, h (l)

hF (z, t,tt l)

Figure 7.3 Qualitative representation of the group delay distribution and of the corresponding postcursor
single-peak multimode impulse response, assuming uniform mode group excitation. The ideal group delay
distribution with perfect delay compensation is shown as the dot–dash line and the corresponding multimode
impulse response on the right side exhibits only a chromatic dispersion contribution

in Figure 7.3, the higher mode numbers correspond to higher delay values, thus providing the
postcursor behavior. The main body depends instead on the lower- to mid-order mode groups.

The ideal group delay distribution, which represents the ideal compensation for every mode
delay, is drawn as the horizontal dot–dash straight line. In that case, the impulse response is
characterized by the synchronous superposition of all excited modes, leading to a single very sharp
chromatic impulse response.

In this representation of the group delay distribution the same upside down mirrored distribution
used for the previous case of the precursor single-peak response has been assumed. This transfor-
mation of the group delay distribution, together with the assumption of uniform excitation, leads
to the postcursor single-peak impulse response coincident with the time-mirrored replica of the
precursor single-peak response. These symmetry concepts have already been introduced in several
numerical examples presented in Chapter 5.

7.1.2.4 Symmetric Dual-Peak Response

The last case considered refers to the symmetric dual-peak impulse response. According to the
concept described above, the group delay distribution must have an odd symmetry of opposite sign
with respect to the first case examined of a single-peak response. In this case, in fact, the central
part of the distribution should provide relatively less energy contribution, allowing for the central
darker region of the impulse response, as shown in Figure 7.4.

The symmetrical impulse response is a direct consequence of the symmetric group delay distribu-
tion and of the uniform excitation assumptions. The higher slope interval of the delay distribution
{τg,h(λ)}, in correspondence with the central range of mode numbers in Figure 7.4 leads to a
reduced energy transfer corresponding to the average delay value. The lower slope outer intervals
instead determine higher energy accumulation among corresponding mode numbers, leading to
symmetrical pronounced energy peaks in the optical impulse response. In conclusion, the expected
impulse response has the typical saddle-like shaping with the characteristic dual peaks separated
by a relatively low energy interval in correspondence to the average delay value.

The next section presents numerical solutions of the multimode impulse response according to
the Gaussian chromatic impulse response and an analytical group delay distribution satisfying the
required symmetry.
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t

M1 h, mode group number

Ideal distribution

tg, h (l)
hF (z, t,tt l)

Figure 7.4 Qualitative representation of the group delay distribution and of the corresponding symmetric
dual-peak multimode impulse response, assuming uniform mode group excitation. The ideal group delay dis-
tribution with perfect delay compensation is shown as the dot–dash line and the corresponding multimode
impulse response on the right side exhibits only a chromatic dispersion contribution

7.1.3 Computer Simulation

Dual-peak impulse responses are conveniently modeled assuming a modified inverse hyperbolic
sine group delay distribution, as given below:

τg,h(λ) = τmin + y(h; a, b) − ymin

ymax − ymin
(τmax − τmin), h = 1, 2, . . . ,M (7.17)

y(h; a, b) = sinh−1

(
h − a

b

)
= ln


h − a

b
+

√
1 +

(
h − a

b

)2

 (7.18)

The parameters a, b set the abscissa and the slope of the inflection point respectively. Figure 7.5
gives the numerically computed group delay distribution according to Equations (7.17) and (7.18),
where

a =
[

M

4
,
M + 1

2
,

3M

4

]
, 1 ≤ a ≤ M

b = 0.2, 0 < b < ∞ (7.19)

M = 100

and
τmin = 5.000 µs/km, τmax = 5.002 µs/km (7.20)

for a total variation of ∆τ = 2 ns/km. The three distributions correspond respectively to the three
cases presented in the previous sections, namely the precursor single-peak, symmetric dual-peak
and postcursor single-peak responses, as reported in the plot legend. The mathematical model of
Equations (7.17) and (7.18) allows for easy configuration of the required group delay by changing
either one or both shaping parameters a, b. The lower the parameter b, the steeper are the results
for the inflection point of the given total group delay variation.

In order to compute the multimode fiber response in the Gaussian approximation of the chromatic
response, the assumed parameters set in Equations (7.16) together with the inverse hyperbolic
sine group delay distribution need to be inserted in the analytical expressions (7.14) and (7.15)
respectively to achieve the impulse response and transfer function.
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Figure 7.5 Computed group delay distribution according to the inverse hyperbolic sine function reported
in Equation (7.18). The shaping parameters a, b have the values given in Equation (7.19). The group delay
exhibits the total variation according to Equation (7.20). The three computed distributions should be compared
with the qualitative pictures reported in Figures 7.2, 7.4 and 7.3 respectively for the precursor single-peak,
symmetric dual-peak and postcursor single-peak impulse responses

Figures 7.6, 7.7 and 7.8 show the impulse responses and the transfer functions for the same cases
considered above. In order to achieve more uniform results the number of modes has been increased
to M = 500 and the shaping coefficient has been set to b = 1 for the precursor and postcursor
responses and b = 5 for the symmetric dual-peak response. The impulse response clearly behaves
as expected, exhibiting either a precursor, postcursor or symmetrical dual-peak shape depending on
the group delay profile chosen. The distance between the secondary peak (precursor or postcursor)
and the main body depends on the step amplitude of the inverse hyperbolic sine distribution.

The frequency response shows the characteristic periodic ripple behavior. This effect is expected
every time the impulse response exhibits isolated pulses. The distance of the frequency notches
is equal to the reciprocal of the maximum variation of the assumed group delay. Thus, in all the
considered cases ∆τ = τmax − τmin = 2 ns/km and ∆f = 1/(τmax − τmin) = 500 MHz km. Due to
the sharp profile exhibited by the symmetric dual-peak response in Figure 7.8, the corresponding
magnitude of the frequency response clearly shows deep notches separated by about 500 MHz km,
as expected. Both precursor and postcursor single-peak responses shown in Figures 7.6 and 7.7
reflect the symmetry property of the group delay distribution discussed in Section 7.1.2.

7.1.4 Modal Bandwidth Discussion

According to the standard reference ITU-T G.650 the modal bandwidth is defined as the half-width
at half-maximum of the frequency response of the optical field intensity propagated along a unit
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distance of the multimode fiber under over-filled launch (OFL) conditions. There are at least two
reasons for considering the modal bandwidth concept of minor concern in multigigabit transmission
over multimode fibers:

1. The launching conditions achieved with laser sources are quite a long way from satisfying the
over-filled launch. Laser light in fact exposes only a small region of the multimode fiber input
section, with usually a low numerical aperture, therefore originating from only selected mode
excitations. Due to the restricted number of excited modes, the corresponding frequency response
is strongly dependent on the restricted launch (RL) conditions imposed by the laser light source.
Laser spot position, distance and tilt angle are all act together to determine the corresponding
multimode fiber impulse response and transfer function.

2. Residual group delay equalization has a comparable order of magnitude as high-speed optical
pulses used for multigigabit transmission. The average distance between subsequent multipeaks
of the impulse response is of the same order of magnitude as the signaling time step, allowing
for false signal pulse detection, unless electronic dispersion compensation countermeasures have
been installed in the optical receiver. The corresponding frequency response will exhibit a
characteristic ripple with even more pronounced frequency notches, which will mystify the
modal bandwidth concept.

Everything must be quantitatively related to the modulating signal spectrum. Of course, for low-
speed operation, well below 1 Gb/s, the signal pulse width is large enough to smooth out every
multimode fiber frequency response ripple consistently, leading to a smooth single-body output
pulse, preserving the applicability of the modal bandwidth concept. However, when the signal
pulse duration is one order of magnitude shorter, as it is in the case of the 10 GbE transmission
speed, the time convolution with a multipeak impulse response of the multimode fiber will form
a very distorted output pulse, which is no longer suitable for direct signal detection and decision
processes.

In the three numerical examples considered in this section, the −3 dB optical bandwidth is
about 300 MHz for the precursor and postcursor cases, and only about 200 MHz for the symmetric
dual-peak impulse response. All three bandwidths refer to the same link length of 1 km.

7.1.5 Conclusions and Remarks

In this section the theoretical principles and mathematical modeling of the multimode impulse
response are based on the assumption of the Gaussian chromatic impulse response. The time domain
and frequency domain general response equations have been derived in Equations (7.10) and (7.12)
respectively. As expected after the conclusions of Chapter 5, the multimode transfer function is
presented as the product of the Gaussian chromatic frequency response and the modal function.
Under the additional assumption of uniform excitation, the simplified expressions (7.14) and (7.15)
have been conveniently used for computer simulations of multimode responses using the analytical
form of the group delay distribution. The mathematical modeling of the group delay distribution uses
the inverse hyperbolic sine function, properly modified in order to handle a useful shaping factor for
generating precursor pulses, postcursor pulses or symmetric dual peaks responses. The computed
results for precursor and postcursor single-peak and symmetric dual-peak impulse responses have
been shown in Figures 7.6, 7.7 and 7.8 respectively. The modal bandwidth concept loses its meaning
when both the multi-peak response and high-speed transmission are encountered simultaneously.

Laboratory measurements of the multimode fiber impulse response give similar results, depending
on the operating conditions. As will be seen in more detail in the next sections, launching conditions
greatly affect the multimode fiber response, making this topic one of the most important to be used
in the careful control of achieving multigigabit transmission over long-distance legacy multimode
fibers.
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7.2 Modal Theory of the Step-Index Fiber
In this section the mathematical theory of the modal fields in a step-index multimode fiber is pre-
sented. Some general concepts regarding the modal theory of graded index fiber have already been
introduced in Chapter 3. There the fundamental assumption behind the mathematical formulation
of the scalar field equations was discussed.

7.2.1 Introduction

As a general premise, the cylindrical symmetry of the optical fiber suggests using the cylindrical
polar coordinate system to represent the spatial dependence of each Cartesian field component. This
choice is made in order to have a fixed unit vector orientation in space while using the geometrical
symmetries of the boundary conditions to implement the mathematical model:

1. The electric and magnetic field components are referred to a fixed Cartesian coordinate reference
system, E = (Ex,Ey, Ez) and H = (Hx,Hy,Hz). The spatial dependence of each Cartesian field
component is represented in the cylindrical polar coordinate system (r, φ, z).

2. The longitudinal dependence of each field component is represented by the complex phasor term
ej(ωt−βz) characteristic of every time-harmonic field:

Ẽ(r, t) = 1
2 [E(r, φ)ej(ωt−βz) + c.c.]

(7.21)
H̃(r, t) = 1

2 [H(r, φ)ej(ωt−βz) + c.c.]

E(r, φ) = xEx(r, φ) + yEy(r, φ) + zEz(r, φ)
(7.22)

H(r, φ) = xHx(r, φ) + yHy(r, φ) + zHz(r, φ)

3. The Cartesian reference system and the cylindrical polar reference system are related through
the following differential transform operators:

∂

∂x
= cos(φ)

∂

∂r
− sin(φ)

1

r

∂

∂φ

∂

∂y
= sin(φ)

∂

∂r
+ cos(φ)

1

r

∂

∂φ

(7.23)

Using the time-harmonic field representation of Equations (7.21) and (7.22) and the Maxwell
equations for the dielectric, time-invariant, homogeneous and isotropic system, the following
representation is obtained of the transversal field components Ex , Ey , Hx , Ey in terms of both
electrical and magnetic longitudinal field components Ez, Hz:

Ex = 1

jκ2

{
β

[
cos(φ)

(
∂Ez

∂r

)
− sin(φ)

r

(
∂Ez

∂φ

)]
+ ωµ

[
sin(φ)

(
∂Hz

∂r

)
+ cos(φ)

r

(
∂Hz

∂φ

)]}

Ey = 1

jκ2

{
β

[
sin(φ)

(
∂Ez

∂r

)
+ cos(φ)

r

(
∂Ez

∂φ

)]
− ωµ

[
cos(φ)

(
∂Hz

∂r

)
− sin(φ)

r

(
∂Hz

∂φ

)]}

Hx = 1

jκ2

{
β

[
cos(φ)

(
∂Hz

∂r

)
− sin(φ)

r

(
∂Hz

∂φ

)]
− ωε

[
sin(φ)

(
∂Ez

∂r

)
+ cos(φ)

r

(
∂Ez

∂φ

)]}

Hy = 1

jκ2

{
β

[
sin(φ)

(
∂Hz

∂r

)
+ cos(φ)

r

(
∂Hz

∂φ

)]
+ ωε

[
cos(φ)

(
∂Ez

∂r

)
− sin(φ)

r

(
∂Ez

∂φ

)]}
(7.24)
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The quantity
κ2 ≡ k2n2 − β2 (7.25)

is the transverse phase constant.

In the step-index optical fiber the refractive index n assumes different constant values both in
the core region and in the cladding region. Figure 7.9 shows the reference system representation of
the electromagnetic field in the axial symmetric optical fiber. The generic electric field E(r, φ, z)

is given by the vector sum of the three Cartesian components along the fixed spatial directions
identified by the unit vectors (x,y,z), as reported in Equations (7.22). Each of the three field com-
ponents has its own dependence over the transversal plane coordinate (r, φ), while exhibiting the
same longitudinal dependence from the variable z through the common phasor term ej(ωt−βz).

The logarithmic term in the right member of both vector equations for the electric and the
magnetic fields derived in Chapter 3 disappears under the constant refractive index assumption.
Consequently, both vector wave equations (3.30) and (3.31) in the case of the step index optical
fiber reduce exactly to the following forms:

(∇2
t + k2n2 − β2)E(r, φ) = 0 (7.26)

(∇2
t + k2n2 − β2)H(r, φ) = 0 (7.27)

The electric and magnetic fields are expressed in Cartesian representation according to
Equations (7.22). The term is used exactly because the refractive index is constant by definition,
both in the core and in the cladding region, and there is no approximation this time.

As discussed extensively in Chapter 3, these equations are separable, leading to the same scalar
wave equation for the generic Cartesian field component. The generic scalar function Ψ (r, φ) is

Figure 7.9 Cylindrical polar coordinate system used for the description of the spatial dependence of each
Cartesian component of the electric field. A similar description holds for the magnetic field. Even if the modal
electric field has in general all three Cartesian components simultaneously, their spatial dependence is limited to
the transversal plane only. The longitudinal dependence upon the variable z is the same for all electromagnetic
field components and is given by the phasor term ej(ωt−βz)
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defined over the transversal plane and represents any one of the electric or magnetic field Cartesian
components:

(∇2
t + k2n2 − β2)Ψ (r, φ) = 0 (7.28)

Using the explicit form of the transversal Laplacian operator in cylindrical coordinates reported
in Chapter 3, Equation (3.18), gives the following second-order partial differential equation to be
satisfied by the scalar field component Ψ (r, φ) for the step-index optical fiber with cylindrical
symmetry:

∂2Ψ (r, φ)

∂r2
+ 1

r

∂Ψ (r, φ)

∂r
+ 1

r2

∂2Ψ (r, φ)

∂φ2
+ (k2n2 − β2)Ψ (r, φ) = 0 (7.29)

Setting
Ψ (r, φ) ≡ R(r)Φ(φ) (7.30)

finally gives the separated form:

d2Rν(r)

dr2
+ 1

r

dRν(r)

dr
+

[
k2n2 − β2 − ν2

r2

]
Rν(r) = 0 (7.31)

d2Φν(φ)

dϕ2
+ ν2Φν(φ) = 0 (7.32)

The radial equation (7.31) is identical to Equation (3.42), except for the constant refractive index.
This characteristic makes the equation analytically solvable, as will be seen later. The second
equation is the well-known harmonic equation. For every real value of the constant ν, the solution
is a linear combination of harmonic functions of the azimuth angle φ:

Φν(φ) =

 ejνφ

cos(νφ)

sin(νφ)


 (7.33)

Any of the above harmonic functions, including any linear combination, constitutes a possible
choice for the angular dependence of the modal field. In the particular case ν = 0 the angular
contribution reduces to the constant value 0 or 1 according to the base function chosen. In order
to satisfy boundary conditions of the circular fiber, later it will be seen that the separation constant
ν must be a positive or negative integer, including zero:

ν = 0, ±1,±2, . . . (7.34)

The next section shows how to solve the above field equations in order to have a physical consistent
solution.

7.2.2 Field Solutions in the Core and in the Cladding

The radial equation (7.31) for the step-index optical fiber coincides with the well-known Bessel
differential equation. Its general solution is a linear combination of the Bessel functions. For any
given integer ν, Bessel’s differential equation has a different general solution according to the value
of the transverse phase constant κ2 ≡ k2n2 − β2 defined in Equation (7.25). The general solution
depends on the value of the transverse phase constant:

1. If the transverse phase constant is real

κ2 > 0 ⇒ β < kn (7.35)
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the general solution of the Bessel differential equation (7.31) is a linear combination of the Bessel
function of the first kind Jν(κr) and of the second kind Yν(κr), both of the same argument κr:

Rν(r) = A Jν (κr) + A′Yν (κr), κ2 > 0 ⇒ β < kn (7.36)

2. If the transverse phase constant is imaginary

κ2 < 0 ⇒ β > kn (7.37)

the general solution of the Bessel differential equation (7.31) is a linear combination of the
modified Bessel function of the first kind Kν(|κ|r) and of the second kind Iν(|κ|r), both of the
same argument |κ|r:

Rν(r) = C Kν(|κ|r) + C ′Iν (|κ|r), κ2 < 0 ⇒ β > kn (7.38)

In the region where the transverse phase constant is imaginary, it is sometimes convenient to
introduce the modified transverse phase constant γ :

γ 2 ≡ |κ|2 ≡ β2 − k2n2, β > kn (7.39)

In addition, the general solution (7.38) of the Bessel equation takes the following form:

Rν(r) = C Kν(γ r) + C ′Iν(γ r),⇒ β > kn (7.40)

Equations (7.36) and (7.40) represent both the general solution of the radial component of the
scalar wave equation (7.31), depending on the sign of the transverse phase constant κ2. However,
according to the physical consistency of the field solution in the core and in the cladding regions,
some of the mathematical solutions must be discarded. First the general behavior is considered of
the four Bessel functions Jν(κr), Yν(κr), Iν(κr) and Kν(κr).

Figure 7.10 shows qualitative drawings of the Bessel functions of the first kind Jν(κr) and
the second kind Yν(κr) for the first low orders. The characteristic feature of these functions is
the oscillatory decaying behavior towards infinity. In particular, the function Jν(κr) assumes the
following finite values on the axis, depending on the order:

J0(0) = 1, ν = 0

Jν(0) = 0, |ν| ≥ 1
(7.41)

Figure 7.10 Qualitative representation of the Bessel functions of the first and second kinds in the argument
κr for real values of the transverse phase constant
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Figure 7.11 Qualitative representation of the modified Bessel functions of the first and second kinds in the
argument |κ|r = γ r for imaginary values of the transverse phase constant

Conversely, the function Yν(κr) tends to minus infinite for every order on the fiber axis, r → 0:

lim
κr→0

Yν(κr) = −∞, |ν| ≥ 0 (7.42)

Figure 7.11 shows qualitative drawings of the modified Bessel functions of the first kind Kν(|κ|r)
and the second kind Iν(|κ|r). The characteristic feature of the modified Bessel functions is the mono-
tonic behavior towards infinity. In particular, the function Kν(|κ|r) tends to zero asymptotically for
every order, while the function Iν(|κ|r) diverges towards infinity for every order:

lim|κ|r→+∞ Kν(|κ|r) = 0, |ν| ≥ 0

lim|κ|r→+∞ Iν(|κ|r) = +∞, |ν| ≥ 0
(7.43)

At this point, the first physical requirement can be stated:

1. For the light energy to be guided by the optical fiber it should at least be radial bounded from
the fiber axis towards infinity.
Accordingly,

2. Any linear combination of the Bessel functions must be rejected from the general solution of
the Bessel equation that could originate a singularity both at the fiber axis and at an increasing
distance from the fiber axis.

3. Looking at the Bessel function behaviors reported in Figures 7.10 and 7.11, it is easy to conclude
that both Bessel functions of the second kind Yν(κr) and Iν(|κ|r) must be discarded due to their
divergence behavior on the fiber axis and toward infinity respectively.

4. The physical solution must therefore be accomplished using any linear combination of the Bessel
function of the first kind Jν(κr) in the core region and of the modified Bessel function of the
first kind Kν(|κ|r) in the cladding region. Introducing two generic complex constants A and
C gives

Rν(r) =
{

AJν (κr), βν < kn1, A ∈ N, CORE

C Kν(|κ|r), βν > kn2, C ∈ N, CLADDING
(7.44)

5. In order to have a consistent physical solution κ2 > 0 is chosen in the core region while in
the cladding region κ2 < 0 is chosen. Consequently, the following fundamental property of the
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phase constant β is chosen for every guided fiber mode:

kn2 < β < kn1 (7.45)

where n1 and n2 are the value of the refractive index in the core and in the cladding regions
respectively. As a corollary, it is concluded that in order to have the guided mode the refractive
index must satisfy the following inequality:

n2 < n1 (7.46)

Once the proper mathematical structure of the radial solution in Equation (7.44) has been found,
in order to find physical consistent solutions, the complete modal field, including the angular
dependence, can easily be found from Equations (7.30) and (7.33):

Ψ (r, φ) =




AJν(κr)

{
sin(νφ)

cos(νφ)

}
⇒ CORE, 0 ≤ r ≤ a

CKν(γ r)

{
sin(νφ)

cos(νφ)

}
⇒ CLADDING, a ≤ r < ∞

(7.47)

The parameters κ and γ are defined in Equations (7.25) and (7.39) respectively. It is customary
to introduce normalized and dimensionless arguments for the Bessel functions. The following
normalized transversal frequencies are defined in the core and the cladding regions respectively:

u ≡ aκ = a

√
n2

1k
2 − β2 ⇒ u ∈ N (7.48)

w ≡ aγ = a

√
β2 − n2

2k
2 ⇒ w ∈ N (7.49)

The most important property of those normalized parameters is that the sum of their squared
values is a constant for all fiber modes. Given the fiber core radius, the operating wavelength and
the refractive index values in the core and in the cladding, the sum of their squared values defines
a constant for the modal solution of the optical fiber. From Equations (7.48) and (7.49),

u2 + w2 = a2(κ2 + γ 2) = a2k2(n2
1 − n2

2) (7.50)

It is customary to define the parameter V or normalized frequency of the optical fiber by the
function

V ≡
√

u2 + w2 = 2π
a

λ

√
n2

1 − n2
2 (7.51)

This parameter has a fundamental importance in the modal theory of the optical fiber. Its value sets
the conditions for having a single-mode or a multimode regime in the optical fiber. In particular,
the parameter V is directly related to the number of supported guided modes.

Once the normalized frequencies u and w have been defined in the core and the cladding
respectively, the modal solution can conveniently be written in terms of the normalized radial
coordinate:

ρ ≡ r

a
(7.52)

From Equations (7.49), (7.50) and (7.52), the general modal solution (7.47) assumes the following
familiar form:

Ψ (ρ, φ) =




A Jν(uρ)

{
sin(νφ)

cos(νφ)

}
⇒ CORE, 0 ≤ ρ ≤ 1

C Kν(wρ)

{
sin(νφ)

cos(νφ)

}
⇒ CLADDING, 1 ≤ ρ < ∞

(7.53)
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In the following, reference will be made to this solution of the scalar wave equation (7.29)
representing the guided modal field of the step-index optical fiber. The choices between sine and
cosine functions are intended to obtain a complete set of orthogonal functions to represent any
electromagnetic guided field in the optical fiber. Since both sine and cosine functions are allowed
as solutions of the scalar wave equation (7.29) both functions are needed to represent the general
solution in Equation (7.53).

The scalar wave function Ψν(r, φ) represents any one of the Cartesian components of the
electromagnetic field. However, it is convenient to identify the scalar function Ψν(r, φ) with the
longitudinal component of the electric field. Therefore,

Ez(ρ, φ) ≡ Ψν(ρ, φ) (7.54)

For simplicity the dependence of the electric field has been omitted from the modal index ν.
Therefore, from Equations (7.53) and (7.54),

Ez(ρ, φ) =




A Jν(uρ)

{
sin(νφ)

cos(νφ)

}
⇒ CORE, 0 ≤ ρ ≤ 1

C Kν(wρ)

{
sin(νφ)

cos(νφ)

}
⇒ CLADDING, 1 ≤ ρ < ∞

(7.55)

Since the scalar wave equation for the magnetic field is the same as for the electric field, the
scalar wave function Ψν(r, φ) must also be proportional to the longitudinal component of the mag-
netic field. The only difference between the mathematical solutions of the longitudinal components
of the electric and magnetic fields must therefore be identified in a different complex constant.
Accordingly,

Hz(ρ, φ) =




B Jν(uρ)

{
sin(νφ)

cos(νφ)

}
⇒ CORE, 0 ≤ ρ ≤ 1

D Kν(wρ)

{
sin(νφ)

cos(νφ)

}
⇒ CLADDING, 1 ≤ ρ < ∞

(7.56)

Once the general solution for the longitudinal components of the electric and the magnetic
fields has been found the electromagnetic field representation in the step index optical fiber can
be completed by computing the general expressions for the transversal Cartesian field compo-
nents Ex(ρ, φ), Ey(ρ, φ), Hx(ρ, φ) and Hy(ρ, φ) using the general relationships reported in
Equations (7.24). In the following section, the general solution scheme for the modal fields in
the step-index optical fiber is proposed.

7.2.2.1 Modal Field Solution Scheme

1. Choose the expressions for the angular dependence of the longitudinal components Ez(ρ, φ)

and Hz(ρ, φ) of the electric and magnetic fields according to the general solutions (7.55)
and (7.56).

2. Compute the four first-order partial derivatives of the longitudinal components of the electric
and magnetic fields: (

∂Ez

∂ρ

)
= a

(
∂Ez

∂r

)(
∂Ez

∂φ

)
(

∂Hz

∂ρ

)
= a

(
∂Hz

∂r

)(
∂Hz

∂φ

) (7.57)
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3. Substitute the corresponding longitudinal field derivatives into the transformation relations (7.24)
separately in the core and in the cladding regions using the following recurrence relations of the
Bessel functions and the basic trigonometric properties:

(a) Jν−1(z) + Jν+1(z) = 2ν

z
Jν(z)

(b) Jν−1(z) − Jν+1(z) = 2J ′
ν(z)

(c) J ′
ν(z) = Jν−1(z) − ν

z
Jν(z)

(d) J ′
ν(z) = −Jν+1(z) + ν

z
Jν(z)

(e) Kν+1(z) − Kν−1(z) = 2ν

z
Kν(z)

(f) Kν+1(z) + Kν−1(z) = −2K ′
ν(z)

(g) K ′
ν(z) = −Kν−1(z) − ν

z
Kν(z)

(h) K ′
ν(z) = −Kν+1(z) + ν

z
Kν(z)

(7.58)

sin[(ν ± 1)φ] = sin(νφ) cos(φ) ± sin(φ) cos(νφ) (7.59)

cos[(ν ± 1)φ] = cos(νφ) cos(φ) ∓ sin(νφ) sin(φ) (7.60)

It should be noted that in the core and the cladding regions, the transversal phase constant κ

assumes real and imaginary values respectively, leading to different relationships.

7.2.3 Paraxial Approximation

The modal field solution procedure shown in the previous section, together with the general solu-
tion for the longitudinal electric and magnetic field components in Equations (7.56) and (7.57),
allows determination of the general solution for any guided mode in the step-index optical fiber.
Although the general procedure is correct, it is convenient to proceed further with a significant
simplification in the modal analysis of the optical fibers used for telecommunication purposes.
Again the relationships (7.24) are considered between the transversal and the longitudinal compo-
nents of the electromagnetic field. In particular the relationships (7.24) highlighting the similarities
between the components Ey(r, φ) and Hx(r, φ), and between Ex(r, φ) and Hy(r, φ) of the transver-
sal field can be rewritten as

Ex = + β

jκ2

{
cos(φ)

(
∂Ez

∂r

)
− sin(φ)

r

(
∂Ez

∂φ

)
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β
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(
∂Hz

∂r

)
+ cos(φ)

r

(
∂Hz

∂φ

)]}

Hy = + ωε
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∂Ez

∂r

)
− sin(φ)
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)
+ β

ωε
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(
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∂r

)
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r

(
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)]}
(7.61)

Ey = −ωµ

jκ2

{
cos(φ)
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∂Hz

∂r

)
− sin(φ)

r
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)
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Hx = + β

jκ2
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cos(φ)
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∂Hz

∂r

)
− sin(φ)

r
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∂Hz

∂φ

)
− ωε
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(
∂Ez

∂r

)
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(
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)]}
(7.62)
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These equations are valid in general, without any approximation, but the terms in Equations (7.24)
have been reordered. The following question can now be answered. Which approximate conditions
are required in order for the magnetic field components to be proportional to the electric field
components? After a short examination of Equations (7.61) and (7.62) it is easy to conclude that
the required condition is the following:

ωµ

β
= β

ωε
(7.63)

In this case, the relations between the transversal components of the magnetic fields Hx , Hy and
the corresponding orthogonal transversal components of the electric fields Ey , Ex become

Hx = −ωε

β
Ey

Hy = +ωε

β
Ex

(7.64)

The transversal components of the magnetic field are proportional through the constant ωε/β to
the cross-orthogonal components of the transversal electric field.

It should be remembered that there are no approximations in these equations. They follow directly
from the Maxwell equations for the monochromatic electromagnetic field and are valid in general
for every dielectric medium.

7.2.3.1 Transversal Orthogonality
One remarkable consequence of the proportionality between the transversal components of the
magnetic and electric fields in Equations (7.64) is their orthogonal relationship. Introducing the
transversal vector fields Et (r, φ) and Ht (r, φ) gives

E(r, φ) = Et (r, φ) + zEz(r, φ)

H(r, φ) = Ht (r, φ) + zHz(r, φ)

Et (r, φ) = xEx(r, φ) + yEy(r, φ)

Ht (r, φ) = xHx(r, φ) + yHy(r, φ)

(7.65)

From Equations (7.64) it is immediately deduced that

Et · Ht = ExHx + EyHy = −ωε

β
E2

x + −ωε

β
E2

x ≡ 0 (7.66)

Then
Et ⊥ Ht (7.67)

The condition (7.63) that was used to find the transversal field orthogonality leads to the
concept of paraxial approximation. First, it was easily demonstrated that the monochromatic
electromagnetic field in every homogeneous dielectric medium satisfies Equation (7.63). In fact,
from Equation (7.63),

β2 = ω2εµ = ω2n2ε0µ ∼= ω2n2ε0µ0 (7.68)

Since

c = 1√
ε0µ0

, k = ω

c
(7.69)
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it was concluded that condition (7.63) gives

β = nk (7.70)

This is the phase constant of an unbounded electromagnetic wave propagating in the homogeneous
medium with a refractive index n and vacuum wavenumber k = 2π/λ. In the above derivation,
the magnetic permeability of the dielectric medium has been approximated, with the magnetic
permeability of the vacuum µ ∼= µ0. Similar concepts can be used to introduce the paraxial
approximation in weakly guiding optical fibers. It is known that the guiding principle is dependent
on the refractive index difference between the core and the cladding regions. The higher the refrac-
tive index step, the stronger will be the guiding effect of the fiber structure. In other words, the
limit angle for total internal reflection increases with the refractive index profile height parameter.
It is intuitive, however, that in order to achieve low dispersion in pulse propagation, the limit angle
should be as low as possible to minimize the multipath delay dispersion.

To this end, the two members of Equation (7.63) are considered separately, where µ = µ0 is
assumed and β ∼= n1k is set approximately in the core:

ωµ0

β
= kµ0

β
√

ε0µ0

∼=
(β∼=n1k)

µ0

n1
√

ε0µ0
= Z0

n1

β

ωε
= β

√
ε0µ0

n2
1kε0

∼=
(β∼=n1k)

√
ε0µ0

n1ε0
= Z0

n1

(7.71)

The parameters ε0 and µ0 are the vacuum dielectric permittivity ε0 = 8.85410−12 F/m and the
vacuum magnetic permeability µ0 = 4π × 10−7 H/m respectively. The parameter Z0 = √

µ0/ε0
∼=

376.73 � is the vacuum impedance.
The condition

β ∼= n1k ∼= n2k (7.72)

used in Equations (7.71) in order to satisfy Equation (7.63) approximately is know as the paraxial
approximation. It assumes that the variation of the phase constant β among guided modes is almost
negligible with respect to its average value. The propagation direction of the fiber modes is therefore
almost parallel to the fiber axis direction, and hence is given the terminology paraxial approximation.

Using the approximated values in Equations (7.71), the relationships (7.64) between the transver-
sal components of the electromagnetic fields in optical fiber under the paraxial approximation
become

Hx
∼= − n1

Z0
Ey

Hy
∼= + n1

Z0
Ex

(7.73)

The paraxial approximation therefore allows a calculation of the magnetic field to be made using the
linear relationship (7.73), simplifying the modal problem to determination of the electric field only.

7.2.4 Mode Classification

Electromagnetic modes in every waveguide structure are classified according to their electric and
magnetic field components. As will be seen later, depending on the boundary conditions some of
the electric and magnetic field components might be missing, leading to particular field structures.
Conductive waveguides support electromagnetic field solutions that can be classified into the three
following modes:
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1. TE (transverse electric) modes. The electric field has no longitudinal component and consequently
lies on the transversal plane to the waveguide axis.

2. TM (transverse magnetic) modes. The magnetic field has no longitudinal component and conse-
quently lies on the transversal plane to the waveguide axis.

3. TEM (transverse electromagnetic) modes. Both the electric and the magnetic fields lie on the
transversal plane to the waveguide axis. The Poynting vector is therefore aligned with the
direction of the waveguide axis.

What would be the mode classification for a dielectric waveguide and in particular for the optical
fiber? According to the modal analysis derived in the previous section for the step-index fiber, the
following general classification holds in general for every graded index fiber:

1. Optical fibers do not support TEM modes. The longitudinal component of either the electric
field or the magnetic field or both must not be null.

2. Optical fibers support both TE modes and TM modes.
3. Optical fibers support HE hybrid modes and EH hybrid modes, where both longitudinal com-

ponents of the electric and magnetic fields are simultaneously present.
4. Due to the weakly guiding properties of optical fibers designed for telecommunication purposes,

the paraxial approximation leads to mode degeneracy. It will be seen in the next sections that,
some modes exhibit the same propagation constant, behaving in exactly the same way in terms
of propagation properties. Those modes can be grouped in a different way, leading to the well-
known linearly polarized (LP) modes of the optical fiber. The LP classification is the same
as grouping TE, TM, HE and EH modes according to their common value of the propagation
constant.

7.2.4.1 TE Modes

In this section, the transverse electric (TE) mode is considered in more detail. From the general
electromagnetic field solutions in Equations (7.55) and (7.56), the sin (νφ) dependence of the lon-
gitudinal component of the electric field and the cos (νφ) dependence of the longitudinal component
of the magnetic field are found:

Ez(ρ, φ) =
{

AJν(uρ) sin(νφ), 0 ≤ ρ ≤ 1
CKν(wρ) sin(νφ), 1 ≤ ρ < ∞ (7.74)

Hz(ρ, φ) =
{

BJν(uρ) cos(νφ), 0 ≤ ρ ≤ 1
DKν(wρ) cos(νφ), 1 ≤ ρ < ∞ (7.75)

The integration constant pairs A, C and B, D will be determined by the boundary conditions and the
corresponding eigenvalue equation produces the second radial modal number. The solution given
in Equations (7.74) and (7.75) has in general both longitudinal components unless the azimuth
mode number is set at ν = 0. Setting the azimuth mode number at ν = 0, the previous modal
equations become

TE 0 modes




Ez(ρ, φ) = 0, 1 ≤ ρ < ∞
Hz(ρ, φ) =

{
BJ0(uρ), 0 ≤ ρ ≤ 1
DK0(wρ), 1 ≤ ρ < ∞

(7.76)

(7.77)

This corresponds to a family of TE modes. As mentioned above, an individual mode specification
depends on the boundary conditions to be satisfied. Once the longitudinal solution has been defined,
the transversal field component relationships shown in Equations (7.61) and (7.62) complete the
mode description. According to the paraxial approximation, only the transversal components of the
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electric field need to be computed; then using Equation (7.73) the transversal components of the
magnetic field are found. Substituting Equation (7.76) into Equations (7.61) and (7.62) gives the
following equations for the transverse components of the electric field versus the longitudinal
magnetic field components, where the equations in the core and the cladding regions are reported
separately:

Ez ≡ 0 ⇒




CORE
κ2≡k2n2

1−β2>0




Ex = +ωµ

jκ2

[
sin(φ)

(
∂Hz

∂r

)
+ cos(φ)

r

(
∂Hz

∂φ

)]

Ey = −ωµ

jκ2

[
cos(φ)

(
∂Hz

∂r

)
− sin(φ)

r

(
∂Hz

∂φ

)]

CLADDING
γ 2≡β2−k2n2

2>0




Ex = −ωµ

jγ 2

[
sin(φ)

(
∂Hz

∂r

)
+ cos(φ)

r

(
∂Hz

∂φ

)]

Ey = +ωµ

jγ 2

[
cos(φ)

(
∂Hz

∂r

)
− sin(φ)

r

(
∂Hz

∂φ

)]
(7.78)

The only difference in the equation structure between the two regions is the value of the transverse
phase constant:

CORE : κ2 ≡ k2n2
1 − β2, β < kn1

CLADDING : γ 2 ≡ β2 − k2n2
2, β > kn2

(7.79)

Note that the longitudinal component of the magnetic field in Equation (7.77) shows axial symme-
try, having no dependence on the azimuth angle φ. Deriving the magnetic field (7.77) with respect
to both position coordinates and using the Bessel function relationships (7.58d) and (7.58h) gives

∂Hz

∂r
=

{ −BκJ1(uρ), 0 ≤ ρ ≤ 1, CORE
−DγK1(wρ), 1 ≤ ρ < ∞, CLADDING

∂Hz

∂φ
≡ 0, 0 ≤ ρ < ∞

(7.80)

Substituting the spatial derivatives of the longitudinal component of the magnetic field
in Equation (7.78) and using Equations (7.48) and (7.49) gives the following expressions for the
transversal components of the electric field in the core and in the cladding regions:

CORE : 0 ≤ ρ ≤ 1 CLADDING : ρ ≥ 1

Ex = −B
ωµ

jκ
J1(uρ) sin(φ) Ex = +D

ωµ

jγ
K1(wρ) sin(φ)

Ey = +B
ωµ

jκ
J1(uρ) cos(φ) Ey = −D

ωµ

jγ
K1(wρ) cos(φ)

Ez ≡ 0 Ez ≡ 0

(7.81)

To derive the transversal components of the magnetic field, the paraxial approximation (7.63) is
used, leading to the simplified relationships reported in Equations (7.73):

CORE : 0 ≤ ρ ≤ 1 CLADDING : ρ ≥ 1

Hx = −B
n1

Z0

ωµ

jκ
J1(uρ) cos(φ) Hx = +D

n2

Z0

ωµ

jγ
K1(wρ) cos(φ)

Hy = −B
n1

Z0

ωµ

jκ
J1(uρ) sin(φ) Hy = +D

n2

Z0

ωµ

jγ
K1(wρ) sin(φ)

Hz = +BJ0(uρ) Hz = +DK0(wρ)

(7.82)
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Equations in (7.81) and (7.82) define the generic TE0 mode for the step-index fiber. However, in
order to complete the mode field equations the integration constants B and D need to be specified.
Integration constants specify the matching conditions at the core–cladding interface and the mode
intensity. The next section shows how boundary conditions for the electromagnetic field at the
core–cladding interface lead to the eigenvalues equation and to the introduction of the second
modal number, namely the radial mode number µ.

7.2.4.2 TM Modes

In order to arrive at the general expression for the transverse magnetic (TM) modes, a consistent
solution with null longitudinal components of the magnetic field is needed. This must be true for
every point in the transversal fiber section. Once again, the general electromagnetic field solutions
in Equations (7.55) and (7.56) are used, and the cos(νφ) dependence of the longitudinal component
of the electric field and the sin(νφ) dependence of the longitudinal component of the magnetic field
are found:

Ez(ρ, φ) =
{

AJν(uρ) cos(νφ), 0 ≤ ρ ≤ 1
CKν(wρ) cos(νφ), 1 ≤ ρ < ∞ (7.83)

Hz(ρ, φ) =
{

BJν(uρ) sin(νφ), 0 ≤ ρ ≤ 1
DKν(wρ) sin(νφ), 1 ≤ ρ < ∞ (7.84)

According to this choice from the general solutions in Equations (7.55) and (7.56) it can be
seen from Equations (7.74) and (7.75) that the complementary azimuth dependence between the
TE and TM modes is found. The integration constant pairs A, C and B, D will be determined
by the boundary conditions and the corresponding eigenvalues equation produces the second radial
modal number. Proceeding as in the previous section for the derivation of the TE modes, the
solution chosen in Equations (7.83) and (7.84) has in general both longitudinal components unless
the azimuth mode number ν = 0 is set. Setting the azimuth mode number ν = 0, the previous
modal equations become

TM0 modes




Ez(ρ, φ) =
{

AJ0(uρ), 0 ≤ ρ ≤ 1, CORE
CK0(wρ), 1 ≤ ρ < ∞, CLADDING

Hz(ρ, φ) ≡ 0

(7.85)

(7.86)

which corresponds to the required transverse magnetic field for the TM modes. The mathematical
structure of the longitudinal fields for TM modes is identical to the TE modes except for the
exchanging role between the electrical and the magnetic fields. Proceeding as for the case of TE
modes, the following equations for the transversal components of the electric field are

Hz ≡ 0 ⇒




CORE
κ2≡k2n2

1−β2>0




Ex = + β

jκ2

[
cos(φ)

(
∂Ez

∂r

)
− sin(φ)

r

(
∂Ez

∂φ

)]

Ey = + β

jκ2

[
sin(φ)

(
∂Ez

∂r

)
+ cos(φ)

r

(
∂Ez

∂φ

)]

CLADDING
γ 2≡β2−k2n2

2>0




Ex = − β

jγ 2

[
cos(φ)

(
∂Ez

∂r

)
− sin(φ)

r

(
∂Ez

∂φ

)]

Ey = − β

jγ 2

[
sin(φ)

(
∂Ez

∂r

)
+ cos(φ)

r

(
∂Ez

∂φ

)]
(7.87)
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In this case, of course, the longitudinal component of the magnetic field is null and both transversal
field components depend exclusively on the longitudinal electric field Ez(ρ, φ).

Deriving the electric field in Equation (7.85) and using the Bessel function relationships (7.58d)
and (7.58h) gives

∂Ez

∂r
=

{−AκJ1(uρ), 0 ≤ ρ ≤ 1, CORE
−CγK1(wρ), 1 ≤ ρ < ∞, CLADDING

∂Ez

∂φ
≡ 0, 0 ≤ ρ < ∞ (7.88)

Substituting the spatial derivatives of the longitudinal component of the electric field in
Equation (7.87) and again using Equations (7.48) and (7.49) gives the following expressions for
the transversal components of the electric field in the core and in the cladding regions:

CORE : 0 ≤ ρ ≤ 1 CLADDING : ρ ≥ 1

Ex = −A
β

jκ
J1(uρ) cos(φ) Ex = +C

β

jγ
K1(wρ) cos(φ)

Ey = −A
β

jκ
J1(uρ) sin(φ) Ey = +C

β

jγ
K1(wρ) sin(φ)

Ez ≡ +AJ0(uρ) Ez ≡ +AK0(wρ)

(7.89)

To compute the transversal components of the magnetic field, the paraxial approximation (7.63) is
again used to obtain the simplified relationships reported below:

CORE : 0 ≤ ρ ≤ 1 CLADDING : ρ ≥ 1

Hx = +A
n1

Z0

β

jκ
J1(uρ) sin(φ) Hx = −C

n2

Z0

β

jγ
K1(wρ) sin(φ)

Hy = −A
n1

Z0

β

jκ
J1(uρ) cos(φ) Hy = +C

n2

Z0

β

jγ
K1(wρ) cos(φ)

Hz ≡ 0 Hz ≡ 0

(7.90)

The equations shown in (7.89) and (7.90) define the generic transverse magnetic mode, TM0, for
the step-index fiber. Again, in order to specify the transverse magnetic mode field distribution
completely the integration constants B and D need to be determined.

7.2.5 Boundary Conditions and Eigenvalues Problem

The electromagnetic mode derived so far for the step-index fiber is still dependent on two constants,
either (B,D) or (A,C) for the transverse electric or transverse magnetic fields respectively. As
required in general by every physical problem, the matching conditions of the electromagnetic field
at the boundary surface between the core and the cladding leads to a first relationship between each
constant pair. The second independent relationship comes from the mode power requirement. In
this section, the boundary condition for the optical fiber will be introduced and the corresponding
eigenvalue equation to be satisfied will be derived in order to obtain a consistent field solution. The
theory of the boundary conditions for the electromagnetic field is well known and is presented in
every textbook on electromagnetic field theory.
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In this section, several aspects of the boundary conditions theory that are peculiar to optical fiber
behavior and will clarify most of the modal properties used later will be introduced. However, as
detailed mathematical aspects would be beyond the scope of this book only some of the major
milestones and related consequences will be presented. The reader is referred to specialized books
on these topics for further reading.

7.2.5.1 General Concepts
In every static medium, in the absence of both surface charge density ρ (r,t) and surface current
density K(r,t), the boundary conditions for the electromagnetic field require:

1. The continuity of the normal component of the electric displacement vector:

D1,n = D2,n (7.91)

2. The continuity of the tangential component of the electric vector:

E1,t = E2,t (7.92)

3. The continuity of the normal component of the magnetic induction vector:

B1,n = B2,n (7.93)

4. The continuity of the tangential component of the magnetic intensity vector:

H1,t = H2,t (7.94)

Figure 7.12 gives a mathematical description of the boundary conditions reported above for a
generic surface delimiting two media, medium 1 and medium 2. The equations for the boundary

Figure 7.12 Geometrical representation of the boundary conditions for the electromagnetic field across the
surface between two different media. Unit vectors n and t define the normal and the tangential directions
respectively at a given point on the surface
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conditions of the electromagnetic field components across the boundary surface are

n · (D2 − D1) = 0

n × (E2 − E1) = 0

n · (B2 − B1) = 0

n × (H2 − H1) = 0

(7.95)

The electromagnetic boundary conditions for dielectric and nonmagnetic media characterized by a
uniform refractive index n1 and n2 respectively become simply

n2
1E1,n = n2

2E2,n

E1,t = E2,t

H1,n = H2,n

H1,t = H2,t

(7.96)

7.2.5.2 Boundary Conditions for the Step-Index Fiber

Applying the general theory of the boundary conditions presented in the previous section to
the step-index optical fiber, the following fundamental statement can be concluded. Across the
core–cladding interface of a step-index fiber, the boundary conditions for the electromagnetic field
require the continuity of both the magnetic field vector and of the tangential component of the
electric field vector, while the normal component of the electric field must satisfy the first equation
in (7.96):

H1 = H2

{
E1,t = E2,t

n2
1E1,n = n2

2E2,n

(7.97)

The solution of the boundary problem must conveniently reflect the symmetry available at the
boundary interfaces. In the case of optical fibers, the boundary between the core and the cladding
regions is a cylindrical surface.

According to the fiber geometry, the followings statements hold:

1. The most convenient choice for solving the electromagnetic field boundary problem is to rep-
resent each electromagnetic field component A at the core–cladding interface in a cylindrical
reference system.

2. According to this choice, the normal component of the core–cladding interface coincides with its
radial component An ≡ Ar , while the tangential field component of the core–cladding interface
is given by the vector sum of the azimuth component with the longitudinal component At ≡
Aφ + Az.

3. Assuming that A ≡ E or H, the following relationships are valid at every point in the space and
in particular at the core–cladding interface:

A = At + An ⇒
{

At = Aφ + Az

An = Ar

(7.98)

Figure 7.13 presents the geometry involved in the core–cladding cylindrical interface with the
normal and tangent components of the generic vector field A(r, φ, z). Using the cylindrical repre-
sentation (7.98), the boundary condition (7.97) for the electromagnetic field simplifies considerably,
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Figure 7.13 Geometrical representation of the cylindrical core–cladding interface for the optical fiber with
a circular cross-section. The generic vector field A ≡ E or H decomposes into the normal and the tangent
component according to the cylindrical reference system. For every point P(r, φ, z) in the fiber cross-section,
the cylindrical reference system represents the vector field as A = Ar + Aφ + Az

giving 
 H1r = H2r

H1φ = H2φ

H1z = H2z





 n2

1E1,r = n2
2E2,r

E1φ = E2φ

E1φ = E2φ


 (7.99)

The boundary condition for the step-index fiber in condition (7.99) can be conveniently simplified
further by applying the paraxial approximation (7.72). Setting n1

∼= n2, condition (7.99) assumes
the following easiest and symmetrical form:

 H1r = H2r

H1φ = H2φ

H1z = H2z





E1,r = E2,r

E1φ = E2φ

E1φ = E2φ


 (7.100)

Every component of the electric and magnetic fields must be continuous across the core–cladding
interface.

In the following steps, the solution procedure is summarized of the boundary condition problem
for the step-index fiber, as derived so far:

1. The electromagnetic field is represented using Cartesian components in both the core and the
cladding regions.

2. Each field component is expressed in the cylindrical polar coordinate system in both the core
and the cladding regions in terms of the corresponding Cartesian components by means of the
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following general transformations:

A =
(

E
H

)
⇒




Ar (r, φ, z) = +Ax(r, φ, z) cos φ + Ay(r, φ, z) sin φ

Aφ(r, φ, z) = −Ax(r, φ, z) sin φ + Ay(r, φ, z) cos φ

Az(r, φ, z) = Az(r, φ, z)

(7.101)

3. Assuming the weakly guiding approximation, or paraxial approximation, the boundary conditions
for the electromagnetic field are given by Equation (7.100).

4. According to the boundary conditions, the twelve electric and magnetic field components (six
in the core and six in the cladding) must be equal at the radial coordinate r = a, resulting in
an homogeneous linear system of six equations into four unknowns, the coefficients A, B, C

and D.
5. Paraxial approximation adds two more equations between the transversal component of the

magnetic and electric fields, leading in conclusion to the homogeneous linear system of four
independent equations in four unknowns, the coefficients A, B, C and D.

6. A homogeneous linear system of four independent equations in four unknowns gives a nontrivial
solution if and only if the system determinant is null.

7.2.6 Mode Classification
The condition for having a nontrivial solution at point (6) leads directly to the formulation of the
following eigenvalue equation for the step-index optical fiber, under the paraxial approximation:

J ′
ν(u)

uJν(u)
+ K ′

ν(w)

wKν(w)
= ±ν

(
1

w2
+ 1

u2

)
(7.102)

The general form of the eigenvalue equation just derived is the same for all bound modes, according
to the general field solutions (7.55) and (7.56). It should be recalled that the normalized frequencies
in the core and in the cladding, u and w respectively, have the expressions in (7.48) and (7.49),
given again here for convenience:

u ≡ aκ = a

√
n2

1k
2 − β2 ⇒ u ∈ N

w ≡ aγ = a

√
β2 − n2

2k
2 ⇒ w ∈ N

Which is the unknown in the eigenvalue equation (7.102)? The fiber core radius a and the refractive
indices in the core n1 and in the cladding n2 are fixed and, of course, it is assumed to be operating
at a single optical wavelength λ. Once the azimuth mode number ν is fixed, due to the smoothed
oscillatory behavior of the Bessel function of first kind Jν(u), a finite number of solutions (even zero
solutions) of the eigenvalue equation (7.102) is expected. The unknown variable in the eigenvalue
equation is the propagation constant β. Once the azimuth mode number ν is fixed, the corresponding
eigensolutions of the propagation constant will be labeled with a first suffix ν and a second suffix µ

in order to identify all the subsequent values: βνµ. Using this labeling, the normalized frequencies
in the core and in the cladding assume the following forms:

uνµ ≡ aκνµ = a

√
n2

1k
2 − β2

νµ (7.103)

wνµ ≡ aγνµ = a

√
β2

νµ − n2
2k

2 (7.104)

As expected from Equation (7.51), the sum of the square of the normalized frequencies in the core
and in the cladding is invariant for all fiber modes, it does not depend on any modal index and it
takes the meaning of the fiber invariant V or normalized frequency V :

V ≡
√

u2
νµ + w2

νµ = 2π
a

λ

√
n2

1 − n2
2 (7.105)
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The eigenvalue equation (7.102) has several interesting features, but a detailed analysis is beyond
the scope of this book. The discussion is therefore limited in the following to only some of the
relevant conclusions. A more detailed analysis will be found in a planned book on optical fiber
theory.

For every value of the azimuth mode number ν = 0, 1, 2, . . . , the solutions of the eigenvalue
equation are ordered according to the radial mode number µ = 1, 2, . . . ,Mν . The value of Mν

gives the maximum number of eigensolutions for the given azimuth mode number ν. For every
allowed pair of mode numbers (ν, µ) the solution of the eigenvalue equation relies on the pair of
corresponding normalized frequencies (uνµ,wνµ). In order to derive the value of the corresponding
propagation constant Equations (7.103) and (7.104) need do be solved for the propagation constant
βνµ. To this purpose, Equation (7.103) is divided by Equation (7.104) and then solved for βνµ:

βνµ = k

√
u2

νµn2
2 + w2

νµn2
1

u2
νµ + w2

νµ

(7.106)

Using Equation (7.105), the following expressions of the propagation constant are finally obtained
in terms of the two normalized eigensolutions in the core and in the cladding:

βνµ = k

V

√
u2

νµn2
2 + w2

νµn2
1 = 1

a

√
u2

νµn2
2 + w2

νµn2
1

n2
1 − n2

2

(7.107)

Each fiber mode is therefore characterized by a pair of mode numbers (ν, µ) and each pair of
mode numbers identifies a value of the propagation constant βνµ. It is clear from the mathemat-
ical structure of the modal solution in Equation (7.55) and (7.56) that the azimuth mode number
identifies the order of the Bessel functions in the core and in the cladding.

The radial mode number has a different meaning. The radial mode number acts as a scaling factor
for the radial dependence. This concept is important and can be clearly understood by looking at the
normalized frequency expressions in both the core and in the cladding. The argument of each Bessel
function is simply the product of the corresponding normalized frequency and the geometrical radial
coordinate. This assigns the meaning of the scale factor to the radial mode number µ.

All fiber modes characterized by the same azimuth mode number ν have therefore the same
order of Bessel functions. The second fundamental implication of the radial mode number is the
different value generally assigned to the propagation constant. This means that, in general, every
fiber mode has a proper propagation constant. However, the inverse statement is not true in general.
The same value of the propagation constant can be common to different mode structures. It will
be seen later that, for some different pairs of mode numbers, the eigenvalue equation has the
same solution, meaning the same propagation constant. This characteristic leads to the important
concept of mode degeneracy. Different mode structures can be grouped in order to have the same
propagation constant. This leads to the concept of the mode group: all modes belonging to the same
group have the same propagation characteristics.

Last but not least, the eigenvalue equation exhibits wavelength cut-off properties for all modes
except in the case of the mode HE11, which assumes the meaning of a fundamental fiber mode.
The fundamental fiber mode HE11 has no wavelength cut-off and can be sustained by the optical
fiber at every wavelength, leading to the single-mode fiber propagation regime.

In the following sections, the conditions on the eigenvalue equation for generating the four kinds
of allowed fiber modes, namely TE, TM, HE and EH modes, will be considered separately.

7.2.6.1 TE0µ and TM0µ Modes

It is known from previous analyses that setting ν = 0 leads to TE or TM modes, depending on the
angular function that was chosen. This is the first indication of the existence of mode degeneracy. In



Multimode Fiber Selected Topics 339

fact, both TE and TM modes satisfy the same eigenvalue equation, so necessarily must have the same
propagation constant for every fixed radial mode number. Substituting ν = 0 in Equation (7.102)
gives the eigenvalue equation for TE and TM modes:

J ′
0(u)

uJ0(u)
+ K ′

0(w)

wK0(w)
= 0 (7.108)

Using the Bessel identities (7.58d) and (7.58h),

TE0µ

TM0µ

u0µJ0(u0µ)

J1(u0µ)
+ w0µK0(w0µ)

K1(w0µ)
= 0

u0µ = aκ0µ = a

√
n2

1k
2 − β2

0µ

w0µ = aγ0µ = a

√
β2

0µ − n2
2k

2




⇒ β0µ
(µ=1,2,...,M0)

(7.109)

This equation needs to be solved numerically. The physical parameters involved are the fiber
core radius a, the refractive indices n1, n2 and the wavelength λ. In general, several solutions
are available, which can be ordered according to the increasing value of the propagation con-
stant using the radial mode number µ : β01 < β02 < β03 < · · · < β0M0 . The value M0 gives the
number of eigensolutions available for the selected fiber parameters and azimuth mode num-
ber ν = 0.

In the following a numerical solution of the eigenvalue equation (7.109) is considered using
Matlab 7.0.4, SP2. The fiber parameters are

a = 25 µm, λ = 1310 nm, n1 = 1.480, n2 = 1.465

Using Equation (7.105) gives V = 25.2021. Table 7.1 reports the numerically computed normalized
frequencies in the core and in the cladding and the corresponding propagation constants β0µ,
assuming ν = 0.

Figure 7.14 shows the numerical solution of the eigenvalue equation (7.109) for the considered
case, using the graphical intersection method. Both curves are plotted as functions of the propa-
gation constant. Vertically shaped curves represent the first member in Equation (7.109), while the
horizontally shaped curves represent the second member of the same eigenvalue equation.

The propagation constant is expressed in µm−1 = 106/m. In it quite interesting at this point to
compute the modal delay per unit length of each TE and TM modes. To this purpose, the modal

Table 7.1 Computed eigenvalues for TE0µ and TM0µ modes of the
step-index fiber with a = 25 µm, λ = 1310 nm, n1 = 1.480, n2 = 1.465.
The total number of allowed modes with ν = 0 is M0 = 8

TE0µ, TM0µ: µ u0µ w0µ β0µ(µm−1)

1 24.5605 5.6504 7.0302
2 21.7216 12.7797 7.0452
3 18.7756 16.8114 7.0587
4 15.7935 19.6395 7.0704
5 12.7915 21.7146 7.0801
6 9.7752 23.2291 7.0878
7 6.7447 24.2828 7.0934
8 3.6850 24.9312 7.0970
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Figure 7.14 Graphical representation of the solutions of the eigenvalue equation for TE0µ and TM0µ of the
step-index fiber with a = 25 µm, λ = 1310 nm, n1 = 1.480, n2 = 1.465. The total number of modes with ν = 0
is given by the number of intersections, so M0 = 8

delay per unit length τνµ(λ) of the mode (ν, µ) is given by the ratio of the mode propagation
constant βνµ with the angular frequency ω = 2πc/λ:

τνµ(λ) = λ

2πc
βνµ (7.110)

Substituting the values of the propagation constant reported in Table 7.1 and assuming λ = 1310 nm
gives the modal delays per unit length of the computed eight modes shown in Table 7.2.

As expected from the delay per unit length of the plane wave propagating in the homogeneous
medium with a refractive index n = 1.5, the modal delay of the selected modes in the step-index
optical fiber is of the order of 5 µs/km. It is interesting to compare the incremental delay between
any two adjacent modes. This parameter is directly related to the differential mode delay introduced
in previous chapters. From the data computed in Table 7.2, it can be concluded that the incremental
delay decreases at higher-order modes. It is noteworthy to compare, for example, the incremental
delay between τ02 − τ01 = 10.387 ns/km and τ08 − τ07 = 2.5023 ns/km.
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Table 7.2 Computed mode delay for TE0µ and
TM0µ modes of the step-index fiber with a = 25 µm,
λ = 1310 nm, n1 = 1.480, n2 = 1.465. The third
column gives the incremental variation of the mode
delay between two subsequent supported modes.
The incremental delay is defined as τ0µ − τ0µ−1 and
it is expressed in ns/km

µ τ0µ (µs/km) τ0µ − τ0µ−1 (ns/km)

1 4.889
2 4.900 10.387
3 4.909 9.4122
4 4.917 8.1184
5 4.924 6.7479
6 4.929 5.3458
7 4.933 3.9282
8 4.936 2.5023

7.2.6.2 EHνµ Modes

If a nonzero value of the azimuth mode number is assumed, ν ≥ 1, in the eigenvalue
equation (7.102) account has to be taken of the sign of the second member. According to the sign
chosen, this leads to two different eigenvalue equations and consequently to two different sets of
modal solution, namely EHνµ and HEνµ modes. If the positive sign is considered in Equation (7.102)
the EHνµ modal solution is referred to, while the HEνµ modal solution is associated with the negative
sign. In this section, only EHνµ modes will be considered. Using the Bessel function recurrence
relations, after some manipulations the following form of the eigenvalue equation for the EHνµ

modes is found:

EHνµ

uνµJν(uνµ)

Jν+1(uνµ)
+ wνµKν(wνµ)

Kν+1(wνµ)
= 0

uνµ = aκνµ = a

√
n2

1k
2 − β2

νµ

wνµ = aγνµ = a

√
β2

νµ − n2
2k

2




⇒ βνµ(
ν≥1
µ=1,2,...,Mν

) (7.111)

For every fixed value of the azimuth mode number ν ≥ 1, several eigensolutions of
Equation (7.111) are available and can be ordered according to the increasing value of the
propagation constant using the radial mode number µ = 1, 2, . . . ,Mν, βν1 < βν2 < βν3 < · · · <

βνMν
. In this case, the value Mν gives the number of eigensolutions available for the selected fiber

parameters and azimuth mode number ν ≥ 1.
In the following, a numerical solution to the eigenvalue equation (7.111) using Matlab 7.0.4,

SP2 is considered. The fiber parameters are the same as those used for the previous case of TE and
TM modes:

a = 25 µm, λ = 1310 nm, n1 = 1.480, n2 = 1.465

The normalized frequency V of the fiber is computed using Equation (7.105), which gives V =
25.2021. Table 7.3 reports the numerically computed propagation constants β1µ, β2µ, β3µ, β4µ, β5µ,
assuming ν = 1, 2, 3, 4, 5 respectively. For every value of the azimuth mode number ν, the number
of eigensolutions is not constant but decreases as ν increases. From Table 7.3 it can be seen that
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Table 7.3 Computed propagation constants βνµ for EHνµ modes of the step-index fiber with a = 25 µm,
λ = 1310 nm, n1 = 1.480, n2 = 1.465. The total number of allowed modes decreases with increasing value of
the azimuth mode number

EHνµ : µ ν = 1
β1µ(µm−1)

ν = 2
β2µ(µm−1)

ν = 3
β3µ(µm−1)

ν = 4
β4µ(µm−1)

ν = 5
β5µ(µm−1)

1 7.0381 7.0309 7.0392 7.0324 7.0412
2 7.0525 7.0460 7.0537 7.0476 7.0558
3 7.0651 7.0595 7.0664 7.0612 7.0685
4 7.0758 7.0712 7.0771 7.0729 7.0793
5 7.0845 7.0809 7.0858 7.0827 7.0883
6 7.0912 7.0886 7.0926 7.0905
7 7.0958 7.0943

for ν = 1 and ν = 2 the number of eigensolutions is M1 = M2 = 7, while for ν = 3 and ν = 4 the
number of eigensolutions reduces to M3 = M4 = 6 and for ν = 5 only five modes, M5 = 5, are
allowable. Figures 7.15 and 7.16 show the numerical solution of the eigenvalue equation (7.111) for
the considered case, using the same graphical intersection method introduced briefly in the previous
section. In this case, however, the eigenvalue equation depends on the azimuth mode number ν.
Accordingly, for each azimuth mode number, the corresponding graphical solution is shown with
all the allowable intersections.

Figure 7.15 and 7.16 show the graphical solution for the optical fiber considered here in the
cases of ν = 1 and ν = 5. Similar plots can be easily generated for every other azimuth number.
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Figure 7.15 Graphical representation of the solutions of the eigenvalue equation (7.111) for EH1µ of the
step-index fiber with a = 25 µm, λ = 1310 nm, n1 = 1.480, n2 = 1.465. The total number of modes with
ν = 1 is given by the number of intersections, so M1 = 7
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Figure 7.16 Graphical representation of the solutions of the eigenvalue equation (7.111) for EH5µ of the
step-index fiber with a = 25 µm, λ = 1310 nm, n1 = 1.480, n2 = 1.465. The total number of modes with
ν = 5 is given by the number of intersections, so M1 = 5

It is important to remark, however, that if the azimuth mode number exceeds the cut-off value, no
more intersections would be allowable, leading to no more mode solutions for that mode family.

Figure 7.17 shows the situation close to the mode cut-off. In particular, for the specific fiber
example the mode EH19,1 is still supported but the successive value of the azimuth number leads
to no mode solution of the eigenvalue equation and therefore the mode EH20,1 cannot be sustained
by the fiber.

Comparing the solution of the eigenvalue equation for the EHνµ modes with the one used
for the TE0µ and TM0µ modes a close similarity is found. If ν = 0 is taken in the eigenvalue
equation (7.111), the eigenvalue equation (7.109) for the TE0µ and TM0µ modes is exactly the
same. This identity is not accidental but instead reflects a more general property of the degenerate
mode solutions of the ideal unperturbed optical fiber under a weakly guiding approximation. The
next section deals with the third mode family of the optical fiber, namely modes HEνµ.

7.2.6.3 HEνµ Modes

If the negative sign in the general eigenvalue equation (7.102) is considered, the eigenvalue equation
for the HEνµ modes is obtained. After using recurrence relations for the Bessel function, the
following form is found:

HEνµ

uνµJν(uνµ)

Jν−1(uνµ)
− wνµKν(wνµ)

Kν−1(wνµ)
= 0

uνµ = aκνµ = a

√
n2

1k
2 − β2

νµ

wνµ = aγνµ = a

√
β2

νµ − n2
2k

2




⇒ βνµ

(
ν≥1
µ=1,2,...,Mν

)

(7.112)
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Figure 7.17 Graphical representation of the solutions of the eigenvalue equation (7.111) for EH19µ (top)
and EH20µ (bottom) of the step-index fiber with a = 25 µm, λ = 1310 nm, n1 = 1.480, n2 = 1.465. Assuming
ν = 19 only one mode is supported, the mode EH19µ, while in the case ν = 20 the mode EH20µ will never be
sustained by this fiber
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Table 7.4 Computed propagation constants βνµ for HEνµ modes of the step-index fiber with a = 25 µm,
λ = 1310 nm, n1 = 1.480, n2 = 1.465. The total number of allowed modes decreases with increasing value of
the azimuth mode number

HEνµ : µ ν = 1
β1µ(µm−1)

ν = 2
β2µ(µm−1)

ν = 3
β3µ(µm−1)

ν = 4
β4µ(µm−1)

ν = 5
β5µ(µm−1)

1 7.0377 7.0302 7.0381 7.0309 7.0392
2 7.0521 7.0452 7.0525 7.0460 7.0537
3 7.0647 7.0587 7.0651 7.0595 7.0664
4 7.0754 7.0704 7.0758 7.0712 7.0771
5 7.0841 7.0801 7.0845 7.0809 7.0858
6 7.0908 7.0878 7.0912 7.0886 7.0926
7 7.0954 7.0934 7.0958 7.0943
8 7.0980 7.0970

It is remarkable that setting ν = 0 in the eigenvalue equation (7.112) for the HEνµ modes gives the
eigenvalue equation for TE0µ and TM0µ modes derived previously in Equation (7.109). To show
this, it is sufficient to use the recursive relations between the Bessel functions of integer order:

J−ν(z) = (−1)νJν(z), K−ν(z) = Kν(z) (7.113)

For every fixed value of the azimuth mode number ν ≥ 1, the eigenvalue equation (7.112)
for HEνµ modes behaves like the other two considered cases, giving several values of the
propagation constant. This gives the propagation constants using the radial mode number
µ = 1, 2, . . . ,Mν, βν1 < βν2 < βν3 < · · · < βνMν

. The value Mν is the number of eigensolutions
available for the selected fiber parameters and azimuth mode number ν ≥ 1.

Table 7.4 reports the computed propagation constants β1µ, β2µ, β3µ, β4µ, β5µ for the HEνµ modes,
assuming ν = 1, 2, 3, 4, 5 respectively. Each azimuth mode number allows several eigensolutions,
as explained above. The fiber parameters are the same as those used for the previous cases, with
the normalized frequency V = 25.2021:

a = 25 µm, λ = 1310 nm, n1 = 1.480, n2 = 1.465

Figures 7.18 and 7.19 show the numerical solution of the eigenvalue equation (7.112) for the
optical fiber being considered, for ν = 1 and ν = 5 respectively. The numerical solution uses the
same graphical intersection method as adopted previously. Accordingly, for each azimuth mode
number ν ≥ 1, the corresponding graphical solutions of Equation (7.112) are given using all the
allowable intersections. The opposite sign in the eigenvalue equations for HEνµ modes with respect
to EHνµ reflects the opposite curvature of the plot of the second member in Equation (7.112).
In this case the number of allowable HE1µ modes exceeds the number of EH1µ modes by one
unit, MHE

1 = 8. The suffix HE has been used to distinguish between MEH
1 = 7. Similar behavior is

reported in the Figure 7.19 for the case ν = 5, with only six solutions, MHE
5 = 6.

7.2.6.4 The Mode Groups
The eigenvalues shown in Table 7.4 for HEνµ modes have very peculiar relationships with the
eigenvalues of EHνµ modes presented in Table 7.3. In order to distinguish between HEνµ and
EHνµ propagation constants, the suffix with the modal notation TE, TM, EH, HE is appended, for
the moment, to the corresponding propagation constant:

βEH
νµ : propagation constant of the EHνµ mode

βHE
νµ : propagation constant of the HEνµ mode
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Figure 7.18 Graphical representation of the solutions of the eigenvalue equation (7.112) for HE1µ of the
step-index fiber with a = 25 µm, λ = 1310 nm, n1 = 1.480, n2 = 1.465. The total number of modes with
ν = 1 is given by the number of intersections, so M1 = 8
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Figure 7.19 Graphical representation of the solutions of the eigenvalue equation (7.112) for HE5µ of the
step-index fiber with a = 25 µm, λ = 1310 nm, n1 = 1.480, n2 = 1.465. The total number of modes with
ν = 5 is given by the number of intersections, so M1 = 6



Multimode Fiber Selected Topics 347

Comparing Table 7.3 with Table 7.4 it is easily concluded that

βEH
1µ ≡ βHE

3µ

βEH
2µ ≡ βHE

4µ (7.114)

βEH
3µ ≡ βHE

5µ

This property of the propagation constants of the step-index optical fiber is not a coincidence. It
reflects recursive properties of the Bessel functions under a weakly guiding approximation, leading
to the degenerate mode set. From a physical point of view, the coincidence of the propagation
constants means that all dispersion relationships of the corresponding modes are the same. This
makes all modes with the same propagation constant undistinguishable in terms of their propaga-
tion characteristics. To this purpose, it is usual to collect all degenerate modes within the same
mode group. The obvious generalization of the property (7.114) leads to the following propagation
constant identity:

βEH
νµ ≡ βHE

ν+2,µ (7.115)

To proceed further with this interesting degeneration property, TE0µ and TM0µ eigenvalues in
Table 7.1 are compared with the eigenvalues of modes HEνµ reported in Table 7.4. Again, it
is found that TE0µ and TM0µ modes have the same propagation constants as HE2µ modes.
Therefore,

β
TE,TM
0µ ≡ βHE

2µ

Without entering further into a mathematical description of the optical fiber eigenvalues properties,
the following important conclusions can be outlined:

1. Assuming a weakly guiding approximation (otherwise stated as the paraxial approximation), the
step-index optical fiber shows mode degeneracy: several modes have the same eigenvalues and
hence the same propagation constant.

2. Accordingly, degenerate modes are grouped together into mode groups, each characterized by
the unique propagation constant.

3. Mode degeneration occurs between the following two sets of modes:

LP1µ ≡ (TE0µ, TM0µ, HE2µ)

LPlµ ≡ (EHνµ, HEν+2,µ), ν ≥ 1, l = ν + 1 ≥ 2
(7.116)

4. Mode groups are constituted by the following linearly polarized (LP) mode designation:

LP0µ ≡ (HE1µ)

LP1µ ≡ (TE0µ, TM0µ, HE2µ) (7.117)

LPlµ ≡ (EHνµ, HEν+2,µ), ν ≥ 1, l = ν + 1 ≥ 2

5. The fiber mode LP01 ≡ HE11 is the fundamental fiber mode and has the lowest designation
order.

One fundamental result of the modal theory of the optical fiber is the capability of the fiber to
support the fundamental mode LP01 ≡ HE11 for every wavelength, refractive index height and core
radius. In other words, the optical fiber supports at least the fundamental mode under every exciting
condition. The fundamental mode, in fact, has no cut-off property. Once the fiber structure has been
fixed, it is possible to show the propagation constant distribution for each mode versus the optical
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wavelength. From that distribution, every individual mode shows a specific cut-off wavelength,
above which the mode will never be sustained. This is true for all modes except the fundamental
one, which has no cut-off wavelength.

Figures 7.20 and7.21 show a particular fiber structure designed to support single-mode operation
above the cut-off wavelength λ11

∼= 1560 nm for the first higher-order mode group available, namely
the mode group LP11 ≡ (TE01, TM01, HE21). Figure 7.20 gives the graphical solution of the eigen-
values equation for the first-order modes, reporting the propagation constant at λ = 850 nm, while
Figure 7.21 shows the same situation but evaluated at λ = 1550 nm, very close to the single-mode
operation condition.

To conclude this section, the linearly polarized mode classification, known as the LPlm classifi-
cation, is derived from the individual mode classification using (ν, µ) indexing. Using the reported
index transformations gives the following relationships between the individual mode and linearly
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Figure 7.20 Eigenvalue equation solutions for four supported modes in the fiber defined by the following
parameters: a = 5 µm, λ = 850 nm, n1 = 1.470, n2 = 1.465. All other higher-order modes are under cut-off
conditions. The normalized frequency is V = 4.4773. The eigensolutions are represented by the intersection of
the continuous lines with the dash–dot ones
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Figure 7.21 Eigenvalue equation solutions for four supported modes in the fiber defined by the following
parameters: a = 5 µm, λ = 1550 nm, n1 = 1.470, n2 = 1.465. The existence of the eigenvalue solution is
represented by the intersection between the two curves plotted. All other higher-order modes are under cut-off
conditions. The normalized frequency is V = 2.4553

polarized mode classifications:

(
TE0µ

TM0µ

)
−→


 l = ν + 1

m = µ

ν = 0


 −→

(
l = 1
m ≥ 1

)
−→ LP1,m

EHνµ −→

 l = ν + 1

m = µ

ν ≥ 1


 −→

(
l ≥ 2
m ≥ 1

)
−→ LP2,m, LP3,m, LP4,m, . . . , LPlm

HEνµ −→

 l = ν − 1

m = µ

ν ≥ 1


 −→

(
l ≥ 0
m ≥ 1

)
−→ LP0,m, LP1,m, LP2,m, . . . , LPlm

(7.118)
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Figure 7.22 Schematic representation of the individual mode distributions according to the LPlm mode classi-
fication. The abscissa reports the normalized cut-off frequency for the individual modes. Single-mode operation
is achieved when the normalized frequency is below V 01

c
∼= 2.405

Conversely, the mode grouping shown in Equations (7.117) is found according to the LPlm classi-
fication. Each individual mode belonging to the LPlm mode group exhibits the same propagation
constant. Figure 7.22 shows the LPlm classification as a function of the normalized cut-off frequency
V lm

c of individual modes.
In the next section some computed mode structures are given for the step-index optical fiber.

7.2.7 Mode Distributions of the Step-Index Fiber

In this section, the field and intensity distributions of some low-order modes supported by the
step-index optical fiber are presented. The following six modes were selected according to the
classification presented in the previous section:

LP01 = (HE11)

LP02 = (HE12)

LP03 = (HE13)

LP11 = (TE01, TM01, HE21)

LP12 = (TE02, TM02, HE22)

LP21 = (EH11, HE31)

As a general behavior of the intensity of the LPlm mode, the azimuth mode index l gives half the
number of maxima in a 2π rotation around the fiber axis or, equivalently, the number of maxima in
a π rotation around the fiber axis. The radial mode index m gives the number of maxima along the
radial direction, including the on-axis maximum if l = 0. Instead, if l ≥ 1 the radial mode index
m gives the total number of maxima along the radial direction, excluding the on-axis minimum
intensity.

According to these general properties, it is easy to conclude that the above six mode distributions
must exhibit the following characteristic shaping:

LP01 :

{
l = 0 −→ no azimuth variation, axial symmetry
m = 1 −→ one radial maximum on-axis
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LP02 :

{
l = 0 −→ no azimuth variation, axial symmetry
m = 2 −→ two decreasing radial maxima, the first on-axis

LP03 :

{
l = 0 −→ no azimuth variation, axial symmetry
m = 3 −→ three decreasing radial maxima, the first on-axis

LP11 :

{
l = 1 −→ two azimuth maxima, no axial symmetry
m = 1 −→ one radial maximum off-axis and one minimum on-axis

LP12 :

{
l = 1 −→ two azimuth maxima, no axial symmetry
m = 2 −→ two decreasing radial maxima off-axis and one minimum on-axis

LP21 :

{
l = 2 −→ four azimuth maxima, no axial symmetry
m = 1 −→ one radial maximum off-axis and one minimum on-axis

7.2.7.1 LP01

The fundamental fiber mode LP01 has axial symmetry and a single maximum located on the axis.
The computed field distributions refer to the excitation of the Ey component only, as clearly shown
in Figures 7.23 and 7.24 for the electric field amplitude and intensity respectively. The absence of
any angular dependence of the modal field leads to the expected axial symmetry and a positive
amplitude field everywhere in both the core and the cladding regions. Figure 7.23 shows the spatial
distribution of the electric field amplitude. Figure 7.24 shows instead the intensity individually
associated with each transversal electric field component, namely |Ex(ρ, φ)|2 and |Ey(ρ, φ)|2. In
the particular case of axial symmetry, the intensity of each individual field component follows
almost the same shape as the total intensity distribution (see Figure 7.25), leading to apparently
obvious results.

The situation is completely different when the field exhibits azimuth dependence. As will be
seen later, in that case the total field intensity I (ρ, φ) = |Ex(ρ, φ)|2 + |Ey(ρ, φ)|2 under uniform
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Figure 7.23 Color-graded representation of the amplitude distribution of the electric field components
Ex(ρ, φ) and Ey(ρ, φ) of the fundamental mode LP01 = (HE11) of the step-index fiber: a = 25 µm,
λ = 1310 nm, n1 = 1.480, n2 = 1.465. The circular line defines the core–cladding interface
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Figure 7.24 Color-graded graphical representation of the intensity distribution of the electric field components
|Ex(ρ, φ)|2 and |Ey(ρ, φ)|2 of the fundamental mode LP01 = HE11 for the optical fiber defined by a = 25 µm,
λ = 1310 nm, n1 = 1.480, n2 = 1.465
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Figure 7.25 Color-graded representation of the total intensity distribution of the electric field
I01(ρ, φ) = |E01(ρ, φ)|2 = |Ex(ρ, φ)|2 + |Ey(ρ, φ)|2 of the linearly polarized mode LP01 = (HE11) of the
step-index fiber: a = 25 µm, λ = 1310 nm, n1 = 1.480, n2 = 1.465. The circular line at the bottom of the
distribution defines the core–cladding interface



Multimode Fiber Selected Topics 353

−1

1
−1

0
1

0

0.2

0.4

0.6

0.8

1

−1

0

1
−1

0
1

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0

Ex Ey

Figure 7.26 Color-graded representation of the amplitude distribution of the electric field components
Ex(ρ, φ) and Ey(ρ, φ) of the linearly polarized mode LP02 = (HE12) of the step-index fiber: a = 25 µm,
λ = 1310 nm, n1 = 1.480, n2 = 1.465. The circular line defines the core–cladding interface

modal field component excitations preserves axial symmetry, while its individual components have
intensity distributions strongly depending on the angular coordinate.

7.2.7.2 LP02

Increasing the radial mode number by one unit with respect to the fundamental mode LP01 adds one
more maximum in the radial dependence of the intensity profile of the LP02 mode. Figures 7.26 and
7.27 show the amplitude and the intensity respectively of the electric field component Ey(ρ, φ). Due
to null azimuth dependence, the mode field has axial symmetry, showing an intense contribution
to the inner core region, close to the fiber axis. By comparison with LP01, it is concluded that by
increasing the radial mode number the corresponding on-axis peak of the intensity profile becomes
sharper, leading to a smaller inner circle closer to the fiber axis (see Figure 7.28). Moving along
the outside radial direction, the remaining core region is divided instead into alternate interference
fringes, with characteristic dark and light circles. This behavior becomes much more evident at
increasing radial order.

7.2.7.3 LP03

The last case of an axial symmetric field to be considered is the mode LP03. Again, the null value
of the azimuth mode number determines the axial symmetric field profile of both the amplitude
and the intensity. The reason for adding this mode field representation is to illustrate as clearly as
possible the implications of the radial mode number once the azimuth mode number has been fixed
to zero. Every unit the radial mode number increases leads to an additional relative maximum in
the radial profile of both the amplitude (Figure 7.29) and the intensity representation (Figure 7.30)
of the LP0m mode. The total intensity distribution is given in Figure 7.31. It is important to note
the following important properties of the whole family of allowed LP0m modes:
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Figure 7.27 Color-graded representation of the intensity distribution of the electric field components
|Ex(ρ, φ)|2 and |Ey(ρ, φ)|2 of the linearly polarized mode LP02 = (HE12) of the step-index fiber: a = 25 µm,
λ = 1310 nm, n1 = 1.480, n2 = 1.465. The circular line defines the core–cladding interface
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Figure 7.28 Color-graded representation of the total intensity distribution of the electric field
I02(ρ, φ) = |E12(ρ, φ)|2 = |Ex(ρ, φ)|2 + |Ey(ρ, φ)|2 of the linearly polarized mode LP02 = (HE12) of the
step-index fiber: a = 25 µm, λ = 1310 nm, n1 = 1.480, n2 = 1.465. The circular line at the bottom of the
distribution defines the core–cladding interface

1. Every LP0m mode, with 1 ≤ m ≤ M0, exhibits the maximum field amplitude located on the fiber
axis. The remaining m − 1 radial maxima have a decreasing profile with the radial distance from
the fiber axis.

2. Conversely, every LPlm mode with l ≥ 1, independently from each allowed radial mode number
m, does not exhibit an on-axis maximum.
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Figure 7.29 Color-graded representation of the amplitude distribution of the electric field components
Ex(ρ, φ) and Ey(ρ, φ) of the linearly polarized mode LP11 = (HE21, TE01, TM01) of the step-index fiber:
a = 25 µm, λ = 1310 nm, n1 = 1.480, n2 = 1.465. The circular line defines the core–cladding interface
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Figure 7.30 Color-graded representation of the intensity distribution of the electric field components
|Ex(ρ, φ)|2 and |Ey(ρ, φ)|2 of the linearly polarized mode LP03 = (HE13) of the step-index fiber: a = 25 µm,
λ = 1310 nm, n1 = 1.480, n2 = 1.465. The circular line defines the core–cladding interface

These two statements set the important condition for having only on-axis mode excitation and
are related to the optical mode filtering approach that was briefly discussed in the first chapter of
this book.

7.2.7.4 LP11

Once the azimuth mode number assumes any nonzero integer value, the field amplitude and the
corresponding intensity of each Cartesian component lose any axial symmetry, thus exhibiting
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Figure 7.31 Color-graded representation of the total intensity distribution of the electric field
I03(ρ, φ) = |E03(ρ, φ)|2 = |Ex(ρ, φ)|2 + |Ey(ρ, φ)|2 of the linearly polarized mode LP03 = (HE13) of the
step-index fiber: a = 25 µm, λ = 1310 nm, n1 = 1.480, n2 = 1.465. The circular line at the bottom of the
distribution defines the core–cladding interface

periodical behavior according to the azimuth position. This is a direct consequence of the harmonic
solution for the azimuth dependence of each transversal field component. The first low-order mode
with a nonaxial symmetric profile is the LP11 mode. As already mentioned, this mode configuration
includes three individual modes, namely TE01, TM01 and HE21. In this case, the electric field com-
ponents have a complementary azimuth dependence: assuming that the x-oriented component varies
as sin φ, the y-oriented component shows a cos φ dependence, and vice versa. Since the azimuth
mode number ν = 1, both components have in angular periodicity of 2π. The two pronounced
peaks located symmetrically along the core diameter of each transversal Cartesian components of
the electric field, as clearly shown in the computed field profiles in Figures 7.32 and 7.33, represent
the major characteristic of the LP11 mode. This characteristic behavior is most important when
there is an interested in computing the coupled optical power through the launching conditions.
Assuming the input field is linearly polarized, just one of the two available electric field components
would be excited and only one of the dual-peak intensity profiles would be detected after a short
length of fiber. The total intensity profile shown in Figure 7.34 refers to the uniform excitation of
both electric field components by means of circularly polarized light.

7.2.7.5 LP12

By increasing the radial mode number of the elementary unit step, the mode LP11 transforms into
LP12, as shown in Figures 7.35 and 7.36. The nonzero azimuth mode number l = 1 determines the
same values as discussed in the previous section. In particular, the intensity of each component
of the electric field shows the characteristic dual-peak profile, both off-axis and located along the
core diameter. The radial mode number m = 2 leads to a second smoothed peak along the same
radial direction of the two main lobes. Figure 7.36 shows the intensities of each electric field
transversal component, according to the complementary azimuth harmonic dependence. Assuming
uniform excitation of both transversal electric field components, the total intensity results in the axial
symmetric profile reported in Figure 7.37. The axial symmetry under uniform excitation is a direct
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Figure 7.32 Color-graded representation of the amplitude distribution of the electric field components
Ex(ρ, φ) and Ey(ρ, φ) of the linearly polarized mode LP11 = (HE21, TE01, TM01) of the step-index fiber:
a = 25 µm, λ = 1310 nm, n1 = 1.480, n2 = 1.465. The circular line defines the core–cladding interface
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Figure 7.33 Color-graded representation of the intensity distribution of the electric field components
|Ex(ρ, φ)|2 and |Ey(ρ, φ)|2 of the linearly polarized mode LP11 = (HE21, TE01, TM01) of the step-index fiber:
a = 25 µm, λ = 1310 nm, n1 = 1.480, n2 = 1.465. The circular line defines the core–cladding interface

consequence of the complementary azimuth harmonic dependence. This property is common to
every supported fiber mode under uniform excitation of both electric field transversal components.

7.2.7.6 LP21

The last step-index fiber mode configuration considered here is the LP21 mode, as shown in
Figures 7.38 and 7.39. In this case, the second-order azimuth dependence leads to the characteristic
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Figure 7.34 Color-graded representation of the total intensity distribution of the electric field I11(ρ, φ) =
|E11(ρ, φ)|2 = |Ex(ρ, φ)|2 + |Ey(ρ, φ)|2 of the linearly polarized mode LP11 = (HE21, TE01, TM01) of the
step-index fiber: a = 25 µm, λ = 1310 nm, n1 = 1.480, n2 = 1.465. The circular line at the bottom of the
distribution defines the core–cladding interface
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Figure 7.35 Color-graded representation of the amplitude distribution of the electric field components
Ex(ρ, φ) and Ey(ρ, φ) of the linearly polarized mode LP12 = (HE22, TE02, TM02) of the step-index fiber:
a = 25 µm, λ = 1310 nm, n1 = 1.480, n2 = 1.465. The circular line defines the core–cladding interface

quadruple peaks of the intensity profile of each transversal electric field component, as shown in
Figure 7.39. Again, there is the same complementary behavior of the two electric field transversal
component intensities that have already been observed in the previous cases. Assuming uniform
excitation of both electric field components determines the axis symmetric total intensity profile
shown in Figure 7.40.
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Figure 7.36 Color-graded representation of the intensity distribution of the electric field components
|Ex(ρ, φ)|2 and |Ey(ρ, φ)|2 of the linearly polarized mode LP12 = (HE22, TE02, TM02) of the step-index fiber:
a = 25 µm, λ = 1310 nm, n1 = 1.480, n2 = 1.465. The circular line defines the core–cladding interface
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Figure 7.37 Color-graded representation of the total intensity distribution of the electric field I12(ρ, φ) =
|E12(ρ, φ)|2 = |Ex(ρ, φ)|2 + |Ey(ρ, φ)|2 of the linearly polarized mode LP12 = (HE22, TE02, TM02) of the
step-index fiber: a = 25 µm, λ = 1310 nm, n1 = 1.480, n2 = 1.465. The circular line at the bottom of the
distribution defines the core–cladding interface

7.2.7.7 On-Axis Peak and Notch Modes
To conclude this section on the step-index fiber mode distributions, it is useful to discuss briefly the
fundamental difference found between fiber modes that support on-axis intensity and fiber modes
that do not have on-axis intensity. In the following, these will be referred to as on-axis peak modes
and on-axis notch modes respectively. Figure 7.41 shows the computed intensity profile of the y

component of the electric field of the mode LP08.
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Figure 7.38 Color-graded representation of the amplitude distribution of the electric field components
Ex(ρ, φ) and Ey(ρ, φ) of the linearly polarized mode LP21 = (HE31, EH11) of the step-index fiber: a = 25 µm,
λ = 1310 nm, n1 = 1.480, n2 = 1.465. The circular line defines the core–cladding interface
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Figure 7.39 Color-graded representation of the intensity distribution of the electric field components
|Ex(ρ, φ)|2 and |Ey(ρ, φ)|2 of the linearly polarized mode LP21 = (HE31, EH11) of the step-index fiber:
a = 25 µm, λ = 1310 nm, n1 = 1.480, n2 = 1.465. The circular line defines the core–cladding interface
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Figure 7.40 Color-graded representation of the total intensity distribution of the electric field
I21(ρ, φ) = |E21(ρ, φ)|2 = |Ex(ρ, φ)|2 + |Ey(ρ, φ)|2 of the linearly polarized mode LP21 = (HE31, EH11) of
the step-index fiber: a = 25 µm, λ = 1310 nm, n1 = 1.480, n2 = 1.465. The circular line at the bottom of the
distribution defines the core–cladding interface

Figure 7.41 Magnification of the intensity distribution of the y component of the electric field |Ey(ρ, φ)|2
of the linearly polarized mode LP08 = (HE18) of the step-index fiber: a = 25 µm, λ = 1310 nm, n1 = 1.480,
n2 = 1.465. The field is represented in the low-intensity region, where the expected eight decreasing smoothed
maxima, including the on-axis maximum, are clearly visible. The null azimuth mode number leads to the axial
peak intensity

The null value of the azimuth number leads to the expected on-axis peak intensity profile. This
statement is true for both the individual electric field components intensity and for the total field
under uniform transversal component excitation. In the case shown, the radial mode number m = 8
reflects into eight subsequent radial maxima. Figure 7.42 shows the computed intensity profile for
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Figure 7.42 Computed intensity profile of the step-index fiber mode LP18 showing the on-axis intensity notch
consequent to the azimuth mode number l = 1. The fiber parameters are a = 25 µm, λ = 1310 nm, n1 = 1.480,
n2 = 1.465. Eight radial maxima are clearly visible in the color-graded plot

the y-oriented component of the electric field for the mode LP18. Choosing l = 1 leads to the
on-axis intensity peak minimum and to eight radial maxima. Figure 7.43 shows the cross-section
view of the step index mode LP44.

7.2.8 Conclusions and Remarks

In this section, the principal aspects of the modal theory of the step-index multimode fiber have
been presented. A more complete analysis is beyond the scope of this book and has been planned
for a book dedicated to the optical fiber theory. The first important remark concerns the assumption
made at the beginning about the monochromatic optical field. Modal theory implicitly assumes only
a monochromatic electromagnetic field. This leads to some conceptual discrepancy when the modal
theory is considered as the starting point for optical pulse propagation. This argument has already
been discussed in the previous chapter with reference to the chromatic impulse response. Once the
monochromatic field assumption has been justified and accepted, the mathematical development of
the modal theory proceeds directly from Maxwell equations and related boundary conditions for
the cylindrical dielectric waveguide.

The step-index assumption greatly simplifies the mathematics involved, leading to the analyt-
ical field solutions in term of the Bessel function of the first kind in the core and the modified
Bessel function in the cladding. Satisfaction of the boundary conditions determines the eigenvalue
structure of the modal solution, leading to consistent interference patterns. Further mathematical
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Figure 7.43 Computed intensity profile of the step-index fiber mode LP44 showing the on-axis intensity notch
consequent to the azimuth mode number l = 4. The fiber parameters are a = 25 µm, λ = 1310 nm, n1 = 1.480,
n2 = 1.465. Four radial maxima and eight azimuth maxima are clearly visible in the color-graded plot of the
intensity distribution in the fiber cross-section

simplification derives from the assumption of weakly guiding fibers, leading to transverse magnetic
field components that are proportional to the cross-related transversal electric field components.

Once the modal fields have been written using mathematical formulas assuming the Cartesian
reference system for the electromagnetic field components and polar cylindrical coordinate for the
spatial dependence, the amplitude and intensity of each supported mode can be easily computed
and represented using powerful graphics aids by Matlab 7.0.2 software. The results have been
presented in graphical form showing interesting properties among supported modes in the LPlm

classification. Knowledge of the numeric field distribution is essential for calculating the coupling
power coefficients and determining the source energy distribution among the excited fiber modes.
As introduced in previous chapters, the power coupling coefficient distribution is chiefly responsible
for the multimode fiber impulse response and consequently for quantifying the fiber impact in the
link budget dispersion calculation for multigigabit transmission systems.

The next section will present the computational technique for evaluating the power coupling
coefficient distribution, starting from the modal fiber solution.

7.3 Mode Power and Launch Conditions
In this section, the mathematical theory will be presented of the mode power coupling coefficients
and of the related launching conditions using the step-index fiber mode solution derived in the
previous section. However, except for using the mathematical expression of the mode fields for the
step-index fiber in the last part of the derivation, the theory to be presented holds in general and is
based on fundamental properties of the electromagnetic field in wave guiding structures.

7.3.1 Field Expansion

The general guided fiber mode in the LPlm classification is indicated by

Elm(ρ, φ) = Et,lm(ρ, φ) + Ez,lm(ρ, φ)z

Hlm(ρ, φ) = Ht,lm(ρ, φ) + Hz,lm(ρ, φ)z
(7.119)

which are the electric and the magnetic field components respectively. Both the electric and the
magnetic fields have the modal indices l and m and are each represented as the sum of the transversal
and longitudinal components. It is assumed that the longitudinal field component depends on the
same pair of modal indices, as also does the transversal one.
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The modal amplitude alm is assigned to each supported LPlm mode. For the moment, no further
conditions are specified for the modal coefficients. With the whole set of modal amplitudes, the
following total bound field expansion is formed in the forward propagating direction, where, for
simplicity, the symmetric back propagating contribution is ignored:

Eb(ρ, φ) = ∑
l,m almElm(ρ, φ),

Hb(ρ, φ) = ∑
l,m almHlm(ρ, φ),

l = 0, 1, 2, . . . , m = 1, 2, . . . ,Ml (7.120)

The azimuth mode number ranges up to the maximum allowed value while still satisfying at least
one solution of the eigenvalue equation. The radial mode number ranges up to the allowed number
of eigensolutions Ml for each selected azimuth number. It should be noted that it is implicitly
assumed that the modal amplitudes alm for the electric and magnetic field components of the
same LPlm mode are the same. This is consistent with the paraxial approximation, according to
which the magnetic field is proportional to the electric field. However, even without returning
to any approximation, the equality of the modal amplitudes between the electric and magnetic
components reflects the meaning of each mode as the base element of the electromagnetic field in
the waveguiding structure and is a direct consequence of the Maxwell equations.

The total electromagnetic field is represented by the sum of the bound field with the radiated
field, Erad(ρ, φ) and Hrad(ρ, φ) respectively:

E(ρ, φ) = Eb(ρ, φ) + Erad(ρ, φ) =
∑
l,m

almElm(ρ, φ) + Erad(ρ, φ)

H(ρ, φ) = Hb(ρ, φ) + Hrad(ρ, φ) =
∑
l,m

almHlm(ρ, φ) + Hrad(ρ, φ)

(7.121)

The aim is to arrive at a closed-form expression for the calculation of the modal amplitudes alm,
given the exciting source field. This will solve the important problem of the calculation of the
source coupled power coefficients.

7.3.2 Modal Power

The power flow of the electromagnetic field is given by the Poynting vector. The Poynting vector
represents the electromagnetic power flux density across the unit surface normal to the power flux
direction:

S ≡ 1
2 Re[E × H∗]

Referring to the field expressions in (7.119) of the LPlm mode and computing the corresponding
longitudinal component Sz,lm of the Poynting vector in the direction of the fiber axis gives

Sz,lm(ρ, φ) = 1
2 Re[Et,lm(ρ, φ) × H∗

t,lm(ρ, φ)] · z

= 1
2 |Re[Et,lm(ρ, φ) × H∗

t,lm(ρ, φ)]|
(7.122)

Introducing the modal amplitude alm and assuming that the transversal component of the generic
LPlm mode are real, from Equation (7.122) the following form of the electromagnetic power flux
density propagating in the fiber axis direction is obtained:

Sz,lm(ρ, φ) = 1
2 |alm|2[Et,lm(ρ, φ) × H∗

t,lm(ρ, φ)] · z (7.123)

The electromagnetic power Plm associated with the LPlm mode is therefore given by the integration
of the power flux density across the infinite fiber section A∞:

Plm =
∫

A∞
Sz,lm(ρ, φ) dA (7.124)
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Using Equation (7.123) gives

Plm = 1
2 |alm|2

∫
A∞

[Et,lm(ρ, φ) × H∗
t,lm(ρ, φ)] · z dA (7.125)

Of course, the total bound power Pb is given by the sum of all supported mode powers. From
Equations (7.120) and (7.125),

Pb =
∑
l,m

Plm = 1
2

∑
l,m

|alm|2
∫

A∞
[Et,lm(ρ, φ) × H∗

t,lm(ρ, φ)] · z dA (7.126)

The integral in the above expression leads to the mode normalization concept.

7.3.3 Mode Normalization

According to the expression of the modal power (7.125), it is convenient to define the mode power
normalization constant Nlm as

Nlm ≡ 1
2

∫
A∞

[Et,lm(ρ, φ) × H∗
t,lm(ρ, φ)] · z dA (7.127)

Using this definition, the mode power of the LPlm mode from Equation (7.125) becomes

Plm = |alm|2Nlm (7.128)

The total bound power in Equation (7.126) then becomes

Pb =
∑
l,m

|alm|2Nlm (7.129)

From expression (7.128), it follows that the normalization constant Nlm assumes the meaning of
mode power with unitary mode amplitude:

|alm| = 1 ⇒ Plm = Nlm (7.130)

The paraxial approximation allows for a simple expression of the mode normalization con-
stant in terms of the square modulus of the electric field only. From Equation (7.127), using
Equations (7.67) and (7.73),

Nlm ≡ 1

2Z0

[∫ 1

0

∫ 2π

0
n1|Et,lm(ρ, φ)|2ρ dρ dφ +

∫ +∞

1

∫ 2π

0
n2|Et,lm(ρ, φ)|2ρ dρ dφ

]
(7.131)

In the expression above, the integration variables have been written explicitly, separating the
integrals between the core and the cladding regions. In order to assign a direct physical meaning to
the modal amplitudes, it is convenient to normalize the electromagnetic field of each mode solution.
To this end, the normalized mode fields are defined as follows:

Êlm(ρ, φ) ≡ 1√
Nlm

Elm(ρ, φ)

Ĥlm(ρ, φ) ≡ 1√
Nlm

Hlm(ρ, φ)

(7.132)
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At last, if these are referred to as power-normalized mode fields (7.132), the following relationships
can easily be demonstrated:

N̂lm = 1

P̂lm = |alm|2 (7.133)

P̂b =
∑
l,m

|alm|2

The ‘hat’ symbol refers, of course, to normalized quantities. Expressions (7.127), (7.132)
and (7.133) specify the mode field normalizations.

7.3.4 Mode Orthogonality

In order to determine the modal amplitudes alm of each guided mode in the field expansion (7.121),
the orthogonal property of the bound mode set needs to be used. This property is derived from
the reciprocity theorem of the Maxwell equation applied to the nonabsorbing waveguide. The
demonstration is reported by Snyder and Love.1

Assuming that the waveguide is nonabsorbing, the modal fields of LPlj mj
and LPlkmk

modes
satisfy to the following orthogonality condition:∫

A∞

[
Et,lj mj

(ρ, φ) × H∗
t,lkmk

(ρ, φ)
] · z dA = 0, j �= k

∫
A∞

[
E∗

t,lj mj
(ρ, φ) × Ht,lkmk

(ρ, φ)
]

· z dA = 0, j �= k

(7.134)

note that these orthogonality conditions hold only when the integration extends over the infinite
cross-section. Using the definition of the normalization constant in Equation (7.127), the above
orthogonality conditions can be specified as follows:

1
2

∫
A∞

[
Et,lj mj

(ρ, φ) × H∗
t,lkmk

(ρ, φ)
] · z dA = Nlmδjk

1
2

∫
A∞

[
E∗

t,lj mj
(ρ, φ) × Ht,lkmk

(ρ, φ)
]

· z dA = Nlmδjk

(7.135)

The function

δjk =
{

0, j �= k

1, j = k

is the Krönecker delta. The notation has been simplified by assuming that if the integrand fields
refer to the same mode with lj = lk , mj = mk , j = k, the normalization constant is given by
Nlm. The modal orthogonality is verified between any forward-propagating bound mode pair. In
particular, two modes specified by the same azimuth number l1 = l2, but with different radial
numbers m1 �= m2, are orthogonal in the sense of Equation (7.135). Similar orthogonality relations
hold between any bound mode and the radiation mode introduced in Equation (7.121):∫

A∞

[
Et,lm(ρ, φ) × H∗

rad(ρ, φ)
] · z dA = 0

∫
A∞

[
E∗

rad(ρ, φ) × Ht,lm(ρ, φ)
] · z dA = 0

(7.136)

1 Allan W. Snyder and John Love, Optical Waveguide Theory, Chapman and Hall, London, 1983.
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In the following, a short comment is made about forward-propagating and backward-propagating
modes. According to the Snyder and Love reference, the same convention will be used for mode
propagation identification, precisely:

Forward-propagating mode :

{
Elm = Et,lm + Ez,lmz

Hlm = Ht,lm + Hz,lmz
(7.137)

Backward-propagating mode :

{
E−l,−m = E−t,lm + E−z,lmz

H−l,−m = H−t,lm + H−z,lmz
(7.138)

and

E−l,−m = +Et ,lm − Ez,lmz

H−l,−m = −Ht,lm + Hz,lmz

}
⇒




E−t,lm = +Et,lm

E−z,lm = −Ez,lm

H−t,lm = −Ht,lm

H−z,lm = Hz,lm

(7.139)

One important question regards the orthogonality relationships between forward-propagating and
backward-propagating modes. According to Equations (7.138) and (7.139), each back-propagating
mode can be expressed in terms of the corresponding forward-propagating mode with proper
sign changes. Since the sign does not affect the conclusions regarding the mode orthogonality,
it is concluded that the orthogonality condition is preserved between either or both forward-
propagating and backward-propagating modes. In particular, since only transversal components
are involved in the orthogonality relations, the same mode distributions in the forward propaga-
tion and in the backward propagation are not orthogonal. However, different bound modes in the
forward-propagation direction and in the backward-propagation direction are orthogonal. Finally, the
same orthogonality condition (7.136) holds between backward-propagating modes and the radiation
field.

Referring to power-normalized mode fields in Equations (7.132), the orthogonality conditions
simplify, and the following orthonormal condition can be written:

1
2

∫
A∞

[
Êt,lj mj

(ρ, φ) × Ĥ∗
t,lkmk

(ρ, φ)
]

· z dA = δjk

1
2

∫
A∞

[
Ê∗

t,lj mj
(ρ, φ) × Ĥt,lkmk

(ρ, φ)
]

· z dA = δjk

∫
A∞

[
Et,lm(ρ, φ) × H∗

rad(ρ, φ)
] · z dA = 0

∫
A∞

[
E∗

rad(ρ, φ) × Ht,lm(ρ, φ)
] · z dA = 0

(7.140)

The orthonormal conditions that have been derived are valid for the power-normalized fields in
Equations (7.132) and represent very fundamental properties among modal fields, including con-
tinuum radiation modes.

7.3.5 Modal Amplitudes

The first application of orthogonal conditions (7.140) is the calculation of the modal amplitudes.
To this purpose, the total electromagnetic modal field expansion in Equations (7.121) are again
considered, where the power-normalized transversal and longitudinal components of the bound



368 Multi-Gigabit Transmission over Multimode Optical Fibre

fields are substituted according to Equations (7.119) and (7.132):

E(ρ, φ) = Erad(ρ, φ) +
∑
l,m

alm

[
Et,lm(ρ, φ) + Ez,lm(ρ, φ)z

]

H(ρ, φ) = Hrad(ρ, φ) +
∑
l,m

alm

[
Ht,lm(ρ, φ) + Hz,lm(ρ, φ)z

] (7.141)

The field expansion written above does not depend on the longitudinal coordinate z. The character-
istic approach of the modal theory has been implicitly used by assuming the steady state conditions
in the nonabsorbing waveguide with the modal phase factor ej(ωt−βlmz). In order to proceed with the
derivation of the modal amplitudes as consequent to a given source field excitation, the total elec-
tromagnetic field must be equalized at the launching section at z = 0 to the source field. The total
field expansion in Equations (7.141), evaluated at the launching section at z = 0, must therefore
coincide with the source electromagnetic field Es, Hs. Assuming that the longitudinal dependence
of the source field an be factorized using the same phase factor ej(ωt−βsz) shown by the modal
expansion, the electromagnetic field expansion at the input section can be written as follows:

Es(ρ, φ) = Erad(ρ, φ) +
∑
l,m

alm

[
Et,lm(ρ, φ) + Ez,lm(ρ, φ)z

]

Hs(ρ, φ) = Hrad(ρ, φ) +
∑
l,m

alm

[
Ht,lm(ρ, φ) + Hz,lm(ρ, φ)z

] (7.142)

Given the generic bound mode LPlk ,mk
characterized by the index pair (lk , mk), the following vector

product is formed between the source electric field Es at the launching section at z = 0 and the
complex conjugate of the power-normalized magnetic field H∗

lk ,mk
= H∗

t,lk ,mk
+ H ∗

z,lk,mk
z, which is

then integrate over the infinite fiber cross-section A∞:∫
A∞

[
Es(ρ, φ) × H∗

lk ,mk
(ρ, φ)

] · z dA =
∫

A∞

[
Erad(ρ, φ) × H∗

lk ,mk
(ρ, φ)

] · z dA

+
∑
l,m

alm

∫
A∞

{[
Et,lm(ρ, φ) + Êz,lm(ρ, φ)z

]

×H∗
lk ,mk

(ρ, φ)
} · z dA (7.143)

By virtue of the orthogonality condition (7.140) between the radiation field and each bound mode,
the first integral at the second member is identically null:∫

A∞

[
Erad(ρ, φ) × H∗

lk ,mk
(ρ, φ)

] · z dA ≡ 0 (7.144)

The second integral term includes the summation over all bound modes. Again, by virtue of the
orthonormal conditions (7.140) between bound mode pairs, the following straightforward result is
obtained:

∑
l,m

alm

∫
A∞

{[
Et,lm(ρ, φ) + Ez,lm(ρ, φ)z

] × H∗
lk ,mk

(ρ, φ)
} · z dA

=
∑
l,m

alm

∫
A∞

Et,lm(ρ, φ) × H∗
t,lk ,mk

(ρ, φ) · z dA = 2alkmk
Nlkmk

(7.145)



Multimode Fiber Selected Topics 369

Substituting Equations (7.144) and (7.145) into Equation (7.143) gives the requested expression for
the modal amplitude alk,mk

:

alkmk
= 1

2Nlkmk

∫
A∞

[
Es(ρ, φ) × H∗

t,lk ,mk
(ρ, φ)

] · z dA (7.146)

The modal amplitude alm of the LPlm mode excited by the given electric field Es(ρ, φ) is given
by the overlapping integral in Equation (7.146). The mode is assumed to be power-normalized
according to Equations (7.132).

7.3.5.1 Weakly Guiding Fibers
In the following, some simplifications are considered of the overlapping integral (7.146) due to
weakly guiding fiber approximation. The definition of the power normalization constant Nlm is
given in Equation (7.127). Using the approximate expressions (7.73) valid for weakly guiding
fibers gives the following vector representation of the transversal magnetic field component Ht,lm

in terms of the cross-related transversal electric field component Et,lm:

Ht,lm(ρ, φ) ∼= n1,2

Z0
z × Et,lm(ρ, φ) (7.147)

Figure 7.44 shows the vector relationships among electric and magnetic transversal field components
under the weakly guiding fiber approximation.

Substituting Equation (7.147) into Equation (7.127) gives the normalization constant under the
paraxial approximation:

Nlm ≡ n1,2

2Z0

∫
A∞

{
Et,lm(ρ, φ) × [

z × E∗
t,lm(ρ, φ)

]} · z dA (7.148)

This vector form is easy to solve: first the transversal unit vector e for the electric field is introduced.
Since e lies on the transversal plane by definition, the vector identity e × (z × e) = z is formed and

Figure 7.44 Vector relations between transversal magnetic and electric components under the weakly guiding
fiber approximation
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the integrand reduces to the square modulus of the transversal electric field:

Et,lm(ρ, φ) × [
z × E∗

t,lm(ρ, φ)
] · z = |Et,lm(ρ, φ)|2

The normalization constant then assumes the following simpler expression:

Nlm ≡ n1,2

2Z0

∫
A∞

|Et,lm(ρ, φ)|2 dA (7.149)

Under the paraxial approximation, the modal amplitude in Equation (7.146) can be expressed in
terms of the electric field only. To this purpose, the approximated transversal component of the mag-
netic field in Equation (7.147) is substituted into Equation (7.146), and the approximated expression
of the normalization constant is used in Equation (7.149):

alm =
∫
A∞

[
Es(ρ, φ) × z × E∗

t,lm(ρ, φ)
] · z dA∫

A∞ |Et,lm(ρ, φ)|2 dA
(7.150)

The expression of the modal amplitudes just derived is meaningful and at the same time has
a simple structure. It requires a knowledge of the transverse component of the modal electric
field and the exciting electric field. Explicit fiber parameters, such as refractive indices and the
core diameter, are not involved. Once the source field Es(ρ, φ) is given, the modal amplitude
alm depends exclusively on the transversal component Et,lm(ρ, φ) of the modal electric field.
Equation (7.128) gives the expression of the power carried by the LPlm mode as the product
of the square modulus of the amplitude coefficient and the power normalization constant. The
explicit expression of the modal power has been found from Equations (7.149) and (7.150) as
follows:

Plm = n1,2

2Z0

| ∫
A∞

[
Es(ρ, φ) × z × E∗

t,lm(ρ, φ)
] · z dA|2∫

A∞ |Et,lm(ρ, φ)|2 dA
(7.151)

According to Equation (7.129), the total power carried by the bound modes is given by summing
over all the allowed modes contribution:

Pb = n1,2

2Z0

∑
l,m

| ∫
A∞

[
Es(ρ, φ) × z × E∗

t,lm(ρ, φ)
] · z dA|2∫

A∞ |Et,lm(ρ, φ)|2 dA
(7.152)

It is noted that if each mode is normalized according to Equations (7.132), the power it brought
coincides with the square modulus of the modal amplitude and that the sum over all of them gives
the total bound power. In some applications, it is convenient to refer to the unit normalized source
power, leading to the condition

Pb =
∑
l,m

|alm|2 = 1 (7.153)

7.3.6 Source Field

The expression of the modal amplitude derived in the previous section depends on the source
electric field vector Es(ρ, φ). In this section, some properties and modeling issues of the source
field will be discussed.

The first condition to be satisfied regards the boundary condition for the transversal component
of the electric field at the launching section. Boundary conditions for the electromagnetic field
require the continuity of the transversal component of the electric field in the absence of any
surface charge. This leads to the continuity of the transversal component of the refracted source
electric field Es(ρ, φ) with the transversal component Et (ρ, φ) of the total modal field, including
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both bound modes and radiation modes, as reported in the field expansion (7.121):

Et (ρ, φ) = Et,b(ρ, φ) + Et,rad(ρ, φ) =
∑
l,m

almEt,lm(ρ, φ) + Et,rad(ρ, φ)

Ht (ρ, φ) = Ht,b(ρ, φ) + Ht,rad(ρ, φ) =
∑
l,m

almHt,lm(ρ, φ) + Ht,rad(ρ, φ)

(7.154)

In order to proceed with the calculation of the refracted (transmitted) component of the source
field Es(ρ, φ) into the fiber regions (core and cladding), it is convenient to assume the following
simplifications:

1. The source power flow Ss(ρ, φ) is aligned along the fiber axis, leading to the normal incidence
conditions:

Ss = 1
2 Re (Es × Hs) = |Ss|z (7.155)

2. The source field is approximated by means of local plane waves.
3. Indicating the refractive indices by n0 and n1 respectively of the launching medium and the fiber

core, and neglecting the fraction of the power source coupled into the cladding, the refracted
(transmitted) component Etr

s (ρ, φ) of the source electric field Es(ρ, φ) is given by the Fresnel
relationships for normal incidence:

Etr
s (ρ, φ) = 2n0

n0 + n1
Es(ρ, φ)

Htr
s (ρ, φ) = 2n1

n0 + n1
Hs(ρ, φ)

(7.156)

4. The contribution of the excited radiation mode is negligible with respect to the contribution of
the transversal component of the total bound electric field:

Erad(ρ, φ) � Et,b(ρ, φ) (7.157)

Due to the normal incidence assumption, the incident electric field and the refracted electric field
lie completely on the transversal fiber cross-section. In conclusion, from Equations (7.154), (7.156)
and (7.157), the continuity of the transversal component of the electric field at the launching fiber
cross-section leads to the following equation:

Et,b(ρ, φ) =
∑
l,m

almEt,lm(ρ, φ) ∼= 2n0

n0 + n1
Es(ρ, φ) (7.158)

Once the source electric field lying in the fiber transverse plane has been approximated, without
losing generality, it can be assumed that it is linearly polarized along one of the two coordinate
axes. According to the local plane wave assumption, the source magnetic field will be aligned along
the complementary axis and the source power flow will be directed along the fiber axis in the z

direction.

7.3.6.1 Linear Polarized Source: x Axis

If the source electric field is linearly polarized along the x axis Es(ρ, φ) = Es(ρ, φ)x, the general
expression for the modal amplitudes in Equation (7.150) becomes

alm =
∫
A∞

[
Es(ρ, φ)x × z × E∗

t,lm(ρ, φ)
] · z dA∫

A∞ |Et,lm(ρ, φ)|2 dA
(7.159)
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Figure 7.45 Source field at the launching section as assumed in the text. The electric field lies completely
in the fiber cross-section and is oriented along the x axis. The source field has been modeled as a local plane
wave in the TEM configuration with the magnetic field oriented along the y axis

To solve the vector product in the integrand only the basic unit vector relationships in Cartesian
reference system are needed. Since the generic modal electric field E∗

t,lm = E∗
x,lmx + E∗

y,lmy lies in
the transverse plane by definition, the vector product in Equation (7.159) becomes

x × z × (E∗
x,lmx + E∗

y,lmy) = x × (E∗
x,lmy − E∗

y,lmx) = E∗
x,lmz (7.160)

The expression of the modal amplitudes alm for a linearly polarized and x-oriented source electric
field is

Es(ρ, φ) = Es(ρ, φ)x ⇒ alm =
∫
A∞ Es(ρ, φ)E∗

x,lm(ρ, φ) dA∫
A∞ |Et,lm(ρ, φ)|2 dA

(7.161)

It is relevant to note that the x-polarized source electric field requires only the x component of the
modal electric field for the calculation of the corresponding modal amplitude. Figure 7.45 shows
the geometry involved at the launching section for the linear polarized electric field along the
x axis.

7.3.6.2 Linear Polarized Source: y Axis

The complementary case of linear polarization along the y axis can be solved in a very similar
way. If the source electric field is linearly polarized along the y axis Es(ρ, φ) = Es(ρ, φ)y, the
expression for the modal amplitudes in Equation (7.150) becomes

alm =
∫
A∞

[
Es(ρ, φ)y × z × E∗

t,lm(ρ, φ)
] · z dA∫

A∞ |Et,lm(ρ, φ)|2 dA
(7.162)

The generic modal electric field E∗
t,lm = E∗

x,lmx + E∗
y,lmy lies in the transverse plane by definition

and the vector product in Equation (7.162) becomes

y × z × (E∗
x,lmx + E∗

y,lmy) = y × (E∗
x,lmy − E∗

y,lmx) = E∗
y,lmz (7.163)
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Figure 7.46 Source field at the launching section as assumed in the text. The electric field lies completely
in the fiber cross-section and is oriented along the y axis. The source field has been modeled as a local plane
wave in the TEM configuration with the magnetic field oriented along the x axis in the negative direction

The modal amplitudes alm for a linearly polarized and y-oriented source electric field assume the
following form:

Es(ρ, φ) = Es(ρ, φ)y ⇒ alm =
∫
A∞ Es(ρ, φ)E∗

y,lm(ρ, φ) dA∫
A∞ |Et,lm(ρ, φ)|2 dA

(7.164)

In conclusion, the same relationship was found between the orientation of the linearly polarized
source and the transversal component of the electric field involved in the integral expression of the
modal amplitude. However, the general linear polarization state can always be decomposed into
the sum of the contributions of the x-axis and y-axis oriented linear polarizations. This generalizes
the two cases considered above. Depending on the linear polarization state of the light source, only
one of the two possible modal field solutions will therefore be excited. Stated differently, this means
that assuming the source electric field is linearly polarized along the x axis, only the x component
of each modal field will be engaged by the source power transfer. In this case, the y components
of the modal fields will never take part to the source-to-fiber energy transfer.

Figure 7.46 shows the geometry involved at the launching section for the linear polarized electric
field along the y axis. Further discussions on the polarization-dependent launching effects will lead
to interesting theoretical results about impulse response dependencies on the input polarization
fluctuation. However, a detailed discussion of these aspects is beyond the scope of this book and
the reader is referred to literature that is more specialized.

7.4 Conclusions
This chapter dealt with three major topics of the multimode optical fiber theory, namely the impulse
response, the modal theory of the step-index fiber and the mode power and launch conditions.
All three arguments would require a more complete treatment and it has not been the intention
here to give an exhaustive coverage of these fields. The relationship between the modal impulse
response and the frequency response is a central issue in multigigabit transmission engineering using
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multimode fiber links. Due to the multipath impulse response characteristic, the simple bandwidth
cut-off concept is no longer valid to predict system performances. Depending on the group delay
distribution and on the source excitation, very different impulse responses are achievable by the
same multimode fiber sample. These impulse responses include precursor, postcursor or even dual-
peak balanced impulse responses.

In order to have a clear picture of the modal structure and composition of the multimode fiber,
the simple step-index profile has been analyzed and the filed structure presented by means of a
computed filed calculation based on Matlab 7.0.2. The results show clearly how the mode structure
complexity increases as the mode order increases, showing different radial and azimuth symmetries.
A discussion of the boundary conditions and allowable field solution leads to the concepts of the
eigenvalue equation and linearly polarized modes.

The third section dealt with some fundamental properties of waveguide modes, and in particular
with the orthogonality property. Using mode orthogonality, the closed form of the modal amplitudes
was discussed as relevant to a specified source filed excitation. The modal amplitude calculation is
the fundamental issue that needs to be managed in order to design proper launching conditions for
achieving multimode impulse response optimization. A brief description of the source polarization
and of its effect on mode coupling closes the chapter.



8
The Optical Link Model

Modeling the Optical Channel Behavior
for Multigigabit Transmission

8.1 Introduction
This chapter introduces the fundamental assumption regarding the mathematical model of a single-
wavelength multimode fiber optical transmission system. The single-mode fiber transmission will
not be considered here. As already known, the multimode fiber propagation regime is dominated by
the intermodal dispersion due to different group delay distributions among different mode groups.
Intermodal dispersion theory allows a simplified approach in comparison to the propagation theory
for single-mode optical fiber, leading to a heuristic model based on the differential mode delay
(DMD) as the physical phenomenon supporting the characteristic frequency response ripple.

The modeling environment has been developed on Matlab 7.0.2, Release 14 (The MathWorks
Inc., January 2005). The optical fiber transmission system model is continuously upgraded, includ-
ing the analytical description of major phenomena involved in the multimode fiber link operating at
10GbE standards. Great attention has been devoted to the signal propagation characteristic through
the entire optical channel, including the optical transmitter, the multimode fiber, the optical receiver
and the ideal linear equalizer. Additive noise sources, signal-dependent noise terms, random jitter
and pattern-dependent jitter have been planned in the analytical model of the link simulator in
order to complete the transmission system modeling and statistical error performances. However,
an analysis of the entire simulation environment, including a detailed description of several mathe-
matical solutions used is beyond the scope of this book and is under consideration for a future book
and courses. Nevertheless, in this book some features of the link simulator will be used to show
characteristic multimode fiber system behavior, providing a useful reference for a future design
comparison.

8.2 System Models and Assumptions
The conventional approach followed in designing the multimode optical fiber link simulator is
quite usual for almost every optical fiber communication system. The fiber channel is assumed to
be the perturbing medium inserted between the optical transmitter and the ideally matched optical
receiver. Before discussing modeling assumptions of real subsystems, which would be demanded

Multi-Gigabit Transmission over Multimode Optical Fibre: Theory and Design Methods for 10GbE Systems Stefano Bottacchi
 2006 John Wiley & Sons, Ltd. ISBN: 0-471-89175-4
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of the optical transmitter and the optical receiver, it turns out to be very advisable to discuss briefly
the concept of a common reference transmission system.

Everybody dealing with mathematical modeling devoted to the prediction of real system behavior
should be aware how of different the real design could be from the ideal transmission system. This
is the a priori approach needed to have a design improving transmission system. In order to assign
a quantitative figure of merit to every designed subsystem, at the beginning the ideal reference
subsystem and the proper metrics need to be specified in order to measure the performances.
According to these concepts, the first step is to define the mathematical models for each ideal
reference subsystem encountered in the transmission system chain.

The ideal reference subsystem should specify the limiting conditions that every real design
should approximate in order to achieve ideal performances. Only a continuous improvement in
component selection and design architectures could approach that ideal limiting case. Although in
practice this condition will never be achieved, from the mathematical modeling point of view, ideal
subsystems are the easiest functional blocks to be handled. One fundamental question arising from
this approach is the sensitivity of the performances of the ideal reference subsystem to accessible
design parameter fluctuations. Sometimes, a great effort in achieving a closer fitting to the idealized
subsystem does not correspond to the expected improvement in system performances.

The ideal linear filter equalizer represents an example of an ideal reference subsystem. No matter
how severely the pulse dispersion can degrade the information content of the optically transmitted
signal, an ideal equalizer can, in principle, recover the requested pulse shaping, providing no inter-
symbol interference at the decision section port but increasing the input equivalent noise power due
to high-frequency boosting. Unfortunately, those simple equalizing functions can never be com-
pletely synthesized, leaving some amount of unequalized pulse contribution. They can be accurately
approximated by high-order polynomials, leading to higher complexity of the filter topology. In
conclusion, even if the signal shaping could be almost recovered by the linear equalization filter,
some extra noise will affect the receiving system and unavoidably will add a degradation term to
the receiver optical sensitivity.

A similar approach can be used for both the optical transmitter and the optical receiver, defining
the corresponding mathematical model of the respective ideal reference subsystem. In the following,
some remarks about signal quality and dispersion compensation in the multimode optical fiber link
are considered.

8.2.1 Optical Equalization Issues

1. Optical link performances depend on all subsystems cascaded in the transmission path, in
particular the transmitter, the fiber and the receiver.

2. In the time domain, the bit error rate (BER) is the most relevant measure of system performances
while the eye diagram is the proper representation of the transmission system performances.

3. Statistical analysis of the eye diagram available during the decision section only allows an
approximate evaluation of the bit error rate, but provides very useful information about the
pulse distortion under random pattern generation.

4. Several factors affect the eye diagram and consequently the transmission system performances.
Three major factors are:
(a) Eye opening: average amplitude and dispersion of the eye diagram evaluated at the decision

time instant:
(i) Bandwidth limitation

(ii) Intersymbol interference
(iii) Linearity

(b) Eye width: average width and dispersion of the eye diagram evaluated at the decision
threshold:

(i) Random jitter: amplitude to phase noise
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(ii) Jitter transfer function: clock recovery bandwidth
(iii) Pattern-dependent jitter: decision threshold crossing

(c) Amplitude noise: amplitude random fluctuation of each eye transition due to joint noise
processes. Noise fluctuations are usually sampled at the decision time instant:

(i) Additive noise: thermal noise
(ii) Linear signal-dependent noise: shot noise

(iii) Quadratic signal-dependent noise: beat noise
5. Pulse dispersion does not generate noise directly. Pulse dispersion is responsible for the gener-

ation of Intersymbol interference (ISI) and hence for the pattern-dependent jitter and amplitude
fluctuation contributions.

6. Intersymbol interference and pattern-dependent jitter can be completely recovered by an ideal
filter equalizer, but extra equalization noise must be taken into account according to the amount
of equalization required and to the equalization architecture adopted.

7. The efficiency or the figure of merit of every equalizer must be evaluated at the optical sensi-
tivity condition. Eye diagram equalization at a higher received power level, where high SNR
occurs, is misleading when the recovery of the dispersionless sensitivity value is targeted. The
receiver sensitivity defines the minimum signal-to-noise ratio for achieving the required bit
error rate for the requested signal quality. The input equivalent noise power at the sensitivity
condition defines the noise operating conditions for the dispersion equalizer.

8. If system performances are targeted, the optimum equalizer must be designed in order to
minimize the overall sensitivity degradation, and not only to cancel out ISI. This is a very
important concept and should be the goal for transmission system equalization.

9. The overall sensitivity degradation under dispersion equalizer operations therefore depends on
the amount of residual ISI and on the increase of the system noise bandwidth due to high
frequency boosting in the equalization filter section.

10. Residual ISI and enhanced noise bandwidth play a trade-off situation in the architecture and
design of the electronic dispersion equalizer. Forcing the residual ISI to zero leads to higher
noise power enhancement, although limiting noise power to very low values demands a higher
residual ISI. In order to optimize the optical receiver sensitivity in a dispersion channel, some
residual ISI can be justified after the electrical equalizer as it can be associated with noise
optimized design.

8.2.2 Optical Link Modeling

In the following, a summary of the basic assumptions used to model the optical fiber transmission
system is given. The modular modeling approach used throughout the Matlab 7.0.2 simulation
environment allows easy inclusion of every improvement, as soon as a new subsystem model or
a new feature becomes available. First, the signal propagation aspects are modeled, including the
transmitter, the fiber link and the receiver. The multimode fiber optical transmission system can be
conveniently partitioned into the following five blocks:

1. Electrical pulse pattern generator (PPG). This unit delivers the pseudo-random binary sequence
(PRBS) datastream according to the NRZ pulse format at the selected bit rate. The length of
the PRBS datastream determines the low-frequency content of the signal power spectral density
and affects the output eye diagram due to pulse response distortion. By definition, the PPG is
a linear module. This means that once the source impulse response xs(t) is known, it can be
used to generate the PRBS output sequence by linearly superposing the time-shifted impulse
response xs(t − kT ) with the proper PRBS weight coefficient.

2. Optical transmit unit (OTU). This unit converts electrical pulses xs(t − kT ) generated by the PPG
unit into corresponding optical pulses. From the system design point of view, the OTU includes
the optical modulator driver and semiconductor laser. By definition, the OTU is a linear system
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converting the input electrical signal amplitude (voltages and currents) into the corresponding
optical intensity pulses. No differences are therefore expected between small signal and large
signal behavior. The system characterization is completely defined by the impulse response
and the corresponding transfer function. One important consequence of the linearity assumption
consists of the independence of the optical intensity response to the input level and, to some
extent, to the PRBS length.

3. Optical channel unit (OCU). This unit represents the optical channel used to transmit informa-
tion between the optical transmitter and the optical receiver. It includes every optical passive
component inserted between the OTU output and the ORU input (see the subsection below)
and of course includes the main multimode fiber (MMF) link. A typical OCU structure includes
optical connectors with multimode fiber jumpers and the main multimode fiber link. In order to
be consistent with the system linearity assumption, the optical channel unit has been assumed to
be linear with respect to the optical intensity. Due to multimode propagation, optical connectors
are not only involved as they contribute to the power transfer attenuation but they also affect the
frequency response of the entire optical channel unit due to the different mode power distribution
induced by their mutual misalignment (offset value).

4. Optical receive unit (ORU). This unit detects the optical power signal coming from the multimode
fiber termination and provides proper electrical signal amplification and filtering. Depending
on the frequency response shaping of the electrical receiver, and including the photodetector
response, the ORU leads to the concepts of the optical reference receiver, the optical matched
receiver and the optical standard receiver, whose definitions are of major importance in order
to have clear references but quantitatively different receiver approaches.
(a) The optical reference receiver performs signal filtering in order to compensate for the opti-

cal transmitter pulse through a predefined frequency response. The output of the optical
reference receiver provides no intersymbol interference (ISI) signal at the decision section.
By definition, the output signal of the optical reference receiver is adaptive and is shaped
according to the raised cosine family, independently from the transmit pulse. Consequently,
it is not a matched receiver. Due to the analytical nature of the system responses involved,
the optical reference receiver represents a mathematical model.

(b) The optical matched receiver represents the second type of reference receiver. In order to
have a noise matched filter and simultaneously to satisfy no intersymbol interference (ISI) at
the decision section, the optical matched receiver is no longer adaptive but instead requires
knowledge of the proper transmitted optical pulse shape. Assuming the transmitted optical
pulse is shaped according to the square root of the raised cosine profile, the optical matched
receiver must perform the same square root of the raised cosine profile filtering, achieving
at the same time a minimum noise bandwidth and ISI-free signal detection. Due to the
analytical nature of the system responses involved, the optical matched receiver represents
a mathematical model.

(c) The optical standard receiver represents the third available reference for the optical receiver
and represents a solution closer to the real designed system than the other two reported
above. The optical standard receiver is neither adaptive nor matched and consequently it
does not have a minimum noise bandwidth and is affected by intersymbol interference at
the decision section. It represents the receiver solution designed using standard available
filters like the IV-order Bessel–Thompson filter.

5. Dispersion equalizer unit (DEU). The detected optical signal, after propagating along the disper-
sive multimode fiber, presents a large amount of optical pulse broadening and consequently a
consistent intersymbol interference pattern. The dispersion equalizer unit must then be added to
the transmission system configuration in order to provide signal pulse reshaping and a restored
eye diagram at the decision section. In order to achieve this feature, the dispersion equalizer unit
must therefore be cascaded at the optical receiver unit, before the signal decision section. Avail-
able electronic dispersion compensators (EDCs) are based on a feedforward equalizer (FFE)
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implemented by means of a finite impulse response (FIR) filter, followed by a decision feedback
equalizer (DFE). These blocks are implemented using digital signal processing technology and
they must be supported by proper firmware in order to perform the required operation. The
operation principle can be easily understood in terms of a linear filtering performed by the FFE
section followed by ISI average value removal operated by the DFE section. Stated in a different
way, the adaptive decision threshold follows the optimum detection position according to the
estimated ISI value in order to preserve the minimum bit error rate.

However, in the system model being presented, the reference dispersion equalizer unit is
represented by the simplest ideal compensator available, namely the ideal inverse linear filter,
sometimes called the boosting filter. This filter reaches zero residual error under every input
signal condition, providing a theoretically ISI-free signal patter output. Unfortunately, this ideal
restoring operation is achieved at the expense of very high and very often unacceptable noise
bandwidth enhancement. This is the reason for the development of digital-based EDCs, as briefly
depicted above. Nevertheless, the ideal inverse linear filter represents the most suitable reference
equalization scheme in order to quantify the figure of merit of any other electronic dispersion
equalizer.

Figure 8.1 shows a block diagram of the optical fiber transmission system model.
In the following subsections, a summary is given of the operating principles, the features and

the specifications of the multimode fiber transmission system sections briefly introduced above. A
more detailed discussion, including mathematical modeling solutions and results, will be presented
in the next dedicated sections.

Figure 8.1 Block diagram of the fiber optic transmission system used for the link model. The definition of
each subsystem follows in the sections below
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8.2.2.1 Pulse Pattern Generator (PPG)

The pulse pattern generator is the signal generation module for the entire transmission system. The
signal generation proceeds in two independent blocks, the pulse shaper and the PRBS sequence
generator. The PRBS sequence generator provides the Delta sequence feeding the pulse shaper
module. The available pulse shapes are listed below:

1. Trapezoid. Trapezoid pulse, with equal rise and fall times. The pulse full-with at half-maximum
(FWHM or −3 dB full width) is set equal to the bit time step: T = 1/B, where B is the bit rate.

2. Gaussian. The impulse response is normalized with unit energy and the RMS pulse width is
defined through the parameter σt.

3. Raised cosine. The generated single pulse is shaped using the raised cosine profile with syn-
chronized zero transitions to the given time step. The roll-off coefficient sets the profile shape
and the position of zero transitions.

4. Error function. The pulse is given by the analytical time convolution of the trapezoid pulse with
a Gaussian pulse. The RMS width of the Gaussian pulse and the transition times of the trapezoid
pulse define the error function pulse shape.

5. IV-order Bessel–Thompson. The impulse response is given by the fourth-order Bessel–
Thompson filter output when the input stimulus coincides with the delta function. This impulse
response is closely related to the measured pulse output from available filters.

6. Delta function. The impulse response is given by the impulsive function (Dirac delta) allowing
for the ideal signal source.

7. External downloaded pulse. This feature allows the impulse response to be downloaded directly
from PPG measured data as part of the modeling structure.

8.2.2.2 Optical Transmit Unit (OTU)

The optical transmitter is an electrooptic converter (E/O). It converts the electrical input pulse
(current or voltages) into the optical output pulse (optical power). The optical transmitter is assumed
to be a time-independent and linear E/O system. An electrical input sequence (voltage or current
signal) is therefore linearly converted into the same optical power sequence. The optical power
output sequence is given by the linear superposition, along the time axis, of the single optical output
pulse properly shifted and weighted according to the digital input sequence coefficients. The optical
impulse response (W/A or W/V) of the optical transmitter has a unit of optical power-to-electrical
amplitude ratio and is modeled according to the following pulse functions:

1. Gaussian. The impulse response is normalized with unit energy and the RMS pulse width
defined through the parameter σt. The model allows for a complex exponent Gaussian profile
by introducing the chirping coefficient α.

2. Nyquist. The impulse response is shaped as the Fourier transform of the square root of the
raised cosine frequency response. This model allows for an optical matched receiver, assuming
the same filtering in the receiver section.

3. Delta function. The impulse response is given by the impulsive function (Dirac delta), allowing
for an ideal response.

4. External downloaded pulse. This feature allows the impulse response to be downloaded directly
from the optical transmitter measured data as part of the modeling structure.

According to the pulse pattern generator module, the optical transmitter generates an optical
pseudo-random binary sequence (PRBS) according to any of the following lengths available in the
PPG module:

PRBS: 2n − 1, n = 7, 9, 11, 15, 20, 23, 31
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In the actual model development, the transmitter noise sources and random jitter are neglected.
Pattern-dependent jitter is instead automatically included by the PRBS datastream composition.

Relative intensity noise (RIN), mode partition noise (MPN) and reflection noise (RN) are
neglected. Phase noise and frequency chirping effects are modeled through the definition of the
modulated spectrum linewidth and the chirping coefficient introduction for the Gaussian impulse
response. As extensively discussed in the first part of this book, the laser source spectrum slightly
limits the propagation performance of MMF, which is much more degraded than by modal delay.

The single optical pulse is normalized with unity energy. Consequently, the optical pulse energy
spectrum assumes a unit value at the frequency origin.

8.2.2.3 Optical Channel Unit (OCU)
The optical channel unit includes the entire passive optical network linking the OUT with the
ORU. The multimode fiber (MMF) is the principal component of the OCU and is modeled as a
time-independent and linear system in the electric field amplitude.

The frequency response of the multimode fiber refers to the transfer function of the optical
intensity (W/W). Neglecting any mode coupling, bound fiber modes constitute an orthogonal set
for the decomposition of the guided optical power. In addition, the radiated field is orthogonal to
any bound mode. Because of the above assumptions, the total guided power is given by the sum of
the power carried by each individual mode. Any mode cross-term of the Poynting vector does not
contribute to the overall guided power after integration over the infinite fiber cross-section. This is
a consequence of the mode orthogonality.

The multimode fiber transfer function is defined according to the intensity of the electromagnetic
field. The phase of the transfer function is assumed constant (a linear phase with a null slope leading
to an impulse response with a group delay equal to zero). The impulse response of the multimode
fiber is modeled by the following pulse functions:

1. Gaussian. The impulse response is normalized with the unit energy and RMS pulse width defined
through the parameter σt.

2. Delta function. The delta function is an impulse response which is given by the impulsive
function (Dirac delta) allowing for ideal fiber response.

3. External downloaded pulse. This feature allows the impulse response to be downloaded directly
from the multimode fiber measured data as part of the modeling structure. Of course, pulse
de-embedding is needed for a proper impulse response.

Under the phase linearity assumption, the constant group delay therefore coincides with the delay
of the center of gravity of the Gaussian impulse response. If not otherwise specified, the group
delay time constant will be assumed to be equal to zero. This assumption simply translates the
center of the output optical pulse at the time origin.

The bandwidth (BW) of the Gaussian magnitude is defined as the half-width at half-maximum,
or equivalently a −3 dB bandwidth of the unilateral frequency response. The fiber attenuation has
not been taken into account so far. In this model, there is no specific attenuation for each fiber
mode. Each guided mode therefore exhibits the same zero power attenuation αlm = α = 0 dB/km.

The effects of source linewidth and of fiber chromatic dispersion are included, assuming first-
order pulse broadening using the chromatic dispersion formula (4.120). Chromatic dispersion and
the modal bandwidth add quadratically to set the width of the overall Gaussian profile.

8.2.2.4 Optical Receive Unit (ORU)
The optical receive unit terminates the OCU providing optical signal detection and amplification.
The ORU is assumed to be linear with the frequency response defined by the following impulse
responses:
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1. Single pole. This is the simplest receiver impulse response available and assumes a single
time constant frequency response. It is important to remember that the phase transfer function
follows the inverse tangent of the modulation frequency leading to consistent phase distortion
if the cut-off frequency is lower than the required signal frequency content.

2. Gaussian. The impulse response is normalized with the unit energy and RMS pulse width defined
through the parameter σt.

3. Raised cosine. The impulse is shaped using the Raised cosine profile with synchronized zero
transitions to the given time step. The roll-off coefficient sets the profile shape and the position
of the zero transitions.

4. IV-order Bessel–Thompson. The optical receiver impulse response is given by the fourth-order
Bessel–Thompson filter output when the input stimulus coincides with the delta function. This
impulse response is closely related to the measured pulse output from available filters.

5. Nyquist. The impulse response is shaped as the Fourier transform of the square root of the raised
cosine frequency response. This model allows the optical matched receiver to assume the same
transmitted optical pulse spectrum at the receiving section.

6. Delta function. In the delta function the impulse response is given by the impulsive function
(Dirac delta), allowing for an ideal optical receiver response.

7. External Downloaded Pulse. This feature allows the impulse response to be downloaded directly
from the optical receiver measured data as part of the modeling structure. Of course, pulse
de-embedding is needed for a proper impulse response.

8.2.2.4.1 Optical Reference Receiver (ORR)
Following previous definitions, the optical reference receiver (ORR) performs first the linear con-
version of the optical intensity to the electrical current (O/E). The recovered electrical pulse is then
filtered according to the receiving filter listed above. By definition, the optical reference receiver
operates adaptive signal filtering to provide the ideal raised cosine output pulse, with no intersymbol
interference (ISI).

The optical reference receiver is designed according to the back-to-back link configuration,
without the optical fiber transmission contribution. According to the transmitted optical pulse, the
receiving filter produces the raised cosine pulse output in the back-to-back system configuration.
The shaping factor m of the raised cosine pulse is adjustable between 0 and 1, providing increasing
output pulse smoothness.

According to the linearity assumptions, any input PRBS sequence of delta impulses will generate,
at the output of the optical reference receiver, the corresponding PRBS sequence of raised cosine
pulses without any intersymbol interference (ISI = 0). The optical reference receiver (ORR) so far
considered has a noise bandwidth which of course depends on the transmitted pulse shape.

8.2.2.4.2 Optical Matched Receiver (OMR)
The optical reference receiver (ORR) presents one characteristic difference from the optical matched
receiver (OMR). Precisely, the optical matched receiver provides, at the same time, both no ISI
and the minimum noise bandwidth available for the given pulse and transmission rate (maximum
SNR). To achieve simultaneously no ISI and optimum SNR, the optical matched receiver needs the
transmitted optical pulses to be properly shaped, not just like a simple trapezoid or Gaussian, but
instead they must have a profile coincident with the square root of the corresponding raised cosine
function.

In this sense, the optical reference receiver (ORR) is suboptimal with respect to the optical
matched receiver (OMR), providing no ISI but in general a wider noise bandwidth with suboptimal
SNR and related worse BER performances.

8.2.2.5 Dispersion Equalizer Unit (DEU)
Once multimode fiber has been added between the transmitter and the receiver, extra pulse broad-
ening will occur. Depending on the excited fiber frequency response, pulse dispersion can induce
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weak or severe eye closure, with relevant consequences for transmission performances. The dis-
persion equalizer unit (DEU) is targeted to eliminate or at least reduce system impairments due to
an insufficient fiber link bandwidth.

According to the definitions of either the optical reference receiver or the optical matched
receiver, the reference electronic dispersion Equalizer (REDC) is defined as the ideal linear inverse
filter whose frequency response coincides with the reciprocal of the frequency response of the mul-
timode fiber link. This gives the zero forcing equalization (ZFE) condition under the assumption
of using either ORR or OMR in the back-to-back mode.

Once REDC has been added to either ORR or OMR, the proper output pulse will be completely
recovered, giving an ISI-free output eye diagram. The above conclusions are valid in principle for
any amount of pulse broadening and consequent eye closure. The REDC equalizer can recover in
principle any amount of fiber dispersion. Throughout this book, REDC will be used as the reference
structure for comparing different equalization architectures.

In contrast to the ideal equalization of REDC is the amount of extra noise bandwidth that the
equalizer drags into the receiving system. Nevertheless, the reference electronic dispersion compen-
sation represents a suitable reference term to compare the effectiveness of any real implementation
of EDC. The phase of the REDC is assumed to be linear, according to the linear phase transfer
function of the multimode fiber. Slight deviations from the linearity of the phase transfer function
of the REDC makes noticeable distortions of the recovered output eye diagram.

8.3 The Optical Transmitter
The optical fiber transmitter can be specified, using the following three basic characteristics, inde-
pendently from any system architecture and implemented technology:

1. The signal shaping obtained in the time domain in response to the random data pattern for a
predefined transmission format (NRZ (no return to zero), RZ (return to zero), CMI (coded mark
inversion), etc.).

2. The modulated optical spectrum, which differs consistently from the CW optical spectrum due
to several phenomena involved during the light modulation process. The frequency chirping is
the instantaneous frequency deviation during modulation of the light intensity.

3. The noise characteristic of the modulated optical signal. The optical noise contribution can be
additive or proportional to the modulating signal. In the case of additive noise, the noise power is
independent of the signal power (modulation depth) and this contribution reduces proportionally
by increasing the signal power. In the case of signal-dependent noise, the noise source is related
(linear, quadratic, etc.) to the signal power, depending on the physical phenomena involved.

The following derivation of the transmitter model will focus on the mathematical description of
the signal shaping in both the time and frequency domains. Noise characteristics will be included at
the receiver section, avoiding modeling the optical signal directly as a true random process. Noise
effects will therefore be included as perturbations of the received optical signal.

The optical transmitter can be represented by two main blocks (see Figure 8.2)

1. The laser diode driver (LDD) feeds the laser diode with the required biasing and modulation
currents. The input of the laser driver is connected to the pulse pattern generator output and is
fed by the electrical datastream.

2. The laser diode (LD) converts the modulated injection current into the corresponding optical
pulse at the selected wavelength.

The optical transmitter presents electrical and optical characteristics that can in principle be
specified separately. However, it is important to remark that both electro-optical characteristics
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Figure 8.2 Block diagram of the optical transmitter including the laser diode driver (LDD) and the semi-
conductor laser (LD). The control circuit (CTL) provides optimum biasing and driving conditions for the
semiconductor laser diode

affect the transmission performances in optical fibers. The interaction between electrical and optical
characteristics of the transmitter increases with the transmission system performances, demanding
a more accurate design and parameter specifications.

The following sections will focus on the modeling issues and specifications of the modulated sig-
nal of the optical transmitter. In particular, two simple modeling waveforms, namely the Trapezoid
and error function light pulses, will be discussed.

8.3.1 Trapezoid Optical Pulse

The transmitter is assumed to generate optical pulses whose intensity envelope is shaped according
to a symmetric trapezoid waveform. Each optical pulse is generated by the laser source in response
to a single square wave stimulus, as is reported in the Figure 8.3.

The filtering performed by the optical transmitter is easily modeled using the time domain
convolution between the input electrical pulse x(t) and the transmitter impulse response hT(t). In
order to validate this procedure the following two assumptions must be fulfilled:

1. The electro-optical conversion performed by the optical transmitter is a linear operation.
2. The optical transmitter is a time-invariant system. Its performances are assumed constant ver-

sus time.

Figure 8.3 Schematic representation of the electro-optic conversion performed by the optical transmitter. The
ideal square electrical pulse is converted into the optical intensity pulse. The optical pulse envelope is assumed
to fit a symmetric trapezoid shape
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It will be seen in the following section that, for simplicity, the electrical pulse pattern generator
(PPG) is assumed to provide ideal square pulses of duration T equal to the unity time step, with
instantaneous rise and fall times. According to the time convolution theorem for linear and time
invariant systems, the output pulse is given by the time convolution of the input pulse with the
impulse time response. In order to have a trapezoid pulse at the transmitter output, the impulse
response hT(t) of the electrical to optical (E/O) converter must be modeled as an ideal square
pulse of duration τ equal to the required transition time of the trapezoid output pulse. Assuming
a smoother time response, such as the Gaussian impulse response, it is possible to model a large
variety of optical pulses with rounded wavefronts. In the following, reference will first be made to
the simplest trapezoid output pulse as a valid first-order modeling for real optical pulses.

8.3.1.1 Time Representation
The E/O converter impulse response is shown in Figure 8.4, defined by

hT(t) =
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τ
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2

0, |t | >
τ

2

(8.1)

The ideal square pulse generated by the PPG is shown in Figure 8.5, defined by

x(t) =
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2
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(8.2)

Figure 8.4 Ideal impulse response of the electro-optical converter. The pulse duration τ coincides with the
symmetrical rise and fall times of the trapezoid output pulse tr = tf = τ evaluated between 0 and 100 % of the
pulse amplitude. The impulse response is normalized with unity energy

Figure 8.5 Ideal square pulse generated by the PPG. The pulse duration T coincides with the unity time step
of the transmitted bit rate T = 1/B. The impulse response is normalized with unity energy
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Referring to Figures 8.4 and 8.5 and to the analytical pulse definitions of Equations (8.1) and (8.2),
the output pulse yT(t) is given by the following time convolution:

yT(t) = hT(t) ∗ x(t) =
∫ +∞

−∞
x(τ)hT(t − τ) dτ = 1

T

∫ +T/2

−T/2
hT(t − τ) dτ (8.3)

Due to the time symmetry of both convolved impulses, the output pulse exhibits the same symmetry.
Solving the integral for the positive time axis gives the well-known trapezoid pulse:

0 ≤ t ≤ T − τ

2
, yT(t) = 1

T

T − τ

2
≤ t ≤ T + τ

2
, yT(t) = − 1

T τ

(
t − T + τ

2

)
(8.4)

t ≥ T + τ

2
, yT(t) = 0

Figure 8.6 shows the plot of the trapezoid optical pulse yT(t) available at the transmitter output
assuming the modeling condition reported above. The trapezoid profile refers to the envelope of the
optical intensity represented in the time domain and consequently the unit of measure is J/s = W.
The energy WT (J) of the output optical pulse in the time domain is immediately computed by
calculating the trapezoid pulse area:

WT =
∫ +∞

−∞
yT(t) dt = 1

2

1

T
[(T + τ) + (T − τ)] = 1 (8.5)

8.3.1.2 Frequency Representation

The convolution theorem allows immediate frequency representation of the envelope of the output
pulse. Indicating with YT(f ) the frequency spectrum of the intensity of the transmitted optical
pulse, from Equation (8.3)

YT(f ) = X(f )HT(f ) (8.6)

Figure 8.6 Optical pulse generated by the electro-optical converter when stimulated by the ideal square pulse
from the PPG. The pulse duration measured as full-width at half-maximum coincides with the unity time step
T of the transmitted bit rate T = 1/B. The rise and fall times are equal to the duration τ of the ideal square
impulse response of the E/O unit: tr = tf = τ . The output optical pulse still has unit energy
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Equations (8.1) and (8.2) give the transfer function and the frequency representation respectively
of the corresponding square pulses:

X(f ) = sin(πf T )

πf T
(8.7)

HT(f ) = sin(πf τ)

πf τ
(8.8)

Equation (8.6) gives the well-known frequency representation of the trapezoid optical pulse emitted
from the transmitter output:

YT(f ) = sin(πf T )

πf T

sin(πf τ)

πf τ
(8.9)

What is the physical meaning of the function YT(f ) that has just been derived? The transmitter
output pulse yT(t) has the meaning of the optical intensity envelope versus time and has the
dimension of the optical power. The Fourier transform YT(f ) therefore assumes the meaning of
the spectral density of the optical power envelope and has the dimension of W/Hz = J:

yT(t) −→ W : power

yT(f) −→ W/Hz = W s = J : energy

Due to pulse normalization in the time domain, the energy YT(f ) evaluated at the frequency origin
has unity value: YT(0) = 1. In addition, using the Fourier transform relationship, from Figure 8.6
it can be seen that ∫ +∞

−∞
YT(f ) df = yT(0) = 1

T
−→ W : power (8.10)

8.3.1.3 Computed Spectrum

In Figure 8.7 the simulated spectra are shown for the trapezoid optical output pulse, according to
different rise and fall times. All time parameters are related to the time step T . The logarithmic
scale on the ordinate axis refers to the magnitude of the output pulse spectrum. This choice allows
representation of the electrical signal spectrum after the photodetection in the optical receiver:

|HT(f )|dB = 20 log10 |HT(f )| (8.11)

It is evident from the computed spectra that the fastest transition time is associated with the
frequency response with the highest peak structure. Smoother transition times have a smoother
spectrum, with less high-frequency peak contributions. In order to highlight this behavior, Figure 8.8
shows the magnification of the computed spectra around the first zero at f1 = B. In general, the nth
zero is located at fn = nB. It is evident from Figure 8.7 that the major differences in transmitted
spectra resulting from different transition times are localized in the higher frequency range, at least
beyond the first zero at f1 = B. If it is assumed that the transmission channel bandwidth connected
to the transmitter output is limited to about a half bit rate, the detected optical pulse will only
be slightly affected by the transition edges of the transmitter output. This consideration should be
addressed in choosing carefully high-frequency and expensive laser sources when the band-limited
channel effectively drops out of the transmission response.

As expected, the lower spectral content corresponds to the smoother transition in the time domain
pulse with τ = 50 ps. This means that smoother wavefronts in the optical pulses at the transmitter
output will be less distorted by reduced channel bandwidth. At approximately 1.5 times the bit rate
frequency, the smoother transition spectrum is almost 10 dB below the steeper transition spectrum.
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Figure 8.7 Spectrum of the transmitted optical pulse with different but symmetric rise and fall times. The
time domain pulse is represented by a symmetric trapezoid of unit energy. The pulses in the time domain have
all the same duration measured at half-maximum: FWHM = T = 100 ps. As the legend reports, four different
rise and fall times have been considered, namely 1 ps, 10 ps, 25 ps and 50 ps

In the example considered, the bit rate is B = 10 Gb/s with the NRZ data format. According to
the logarithmic scale definition (8.11), the HWHM bandwidth corresponds to −6 dB on the above
figure. The half-width at half-maximum (HWHM) bandwidth of the optical trapezoid spectrum
ranges between 5.5 GHz and 6.0 GHz, with a slight variation of less than 8 % versus the assumed
wavefront transitions.

8.3.1.4 Computed Pulses and Eye Diagrams

In this section, a report is given on the effects of the sampling time resolution on the actual
shape of the optical transmitted pulse versus different rise and fall time values. Although this
argument deals mainly with the numerical aspects of the optical pulse computer simulation, it gives
some interesting overview about frequency domain windowing and related time domain pulse
overshooting. In this context, the time sampling resolution is given by the parameter NTS that
corresponds to the number of sampling points for every unity time step T. All the following cases
refer to the time step T = 100 ps. The ripple effect at the transition edge is a clear indication of
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Figure 8.8 Spectrum detail around the first zero for the same cases in Figure 8.7

high-frequency truncation of the pulse spectrum, and is a consequence of the sampling theorem
applied to the discrete Fourier transform. For a given sampling resolution, the ripple effect at each
transition edge is more evident for faster transition times. This is of course easy to understood due
to the extended spectrum occupancy required by the fastest transient time with respect to the same
pulse duration but with smoother transitions. In the fastest transition case, the frequency truncation
due to the discrete Fourier transform sampling theorem is relatively more effective and determines
a stronger pulse ripple.

Figures 8.9 to 8.14 report three different computed trapezoid optical pulses with the same duration
measured at FWHM but with increasing transition times. In particular, Figures 8.9 and 8.10 refer
to the trapezoidal optical pulse with T = 100 ps and tr = tf = 1 ps. Extremely short transition times
make the ripple effect clearly visible. Figures 8.11 and 8.12 report the case of longer transition
times and a reduction in the intensity ripple is clearly visible. Finally, Figures 8.13 and 8.14 refer
to the smoother available transition time, tr = tf = 25 ps. In this case, the intensity ripple is almost
negligible and is almost independent from the reported sampling resolution.

To conclude this section, Figures 8.15 and 8.16 show respectively a comparison among several
transmitted optical pulses of various relative transition times and the transmitted eye diagram for
the particular case tr = tf = 20 ps.
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Figure 8.9 Transmitted output pulse of duration FWHM = T = 100 ps. The rise and fall times have been set
to tr = tf = 1 ps. Three different sampling resolutions have been adopted to show the effect on the pulse shape.
The curves refers to NTS = 32 samples per unity time step and NTS = 64 and NTS = 128 respectively. It is
evident that the pulse ripple reduces as the sampling time resolution increases
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Figure 8.10 A magnified view of the upper power level of the trapezoidal pulse reported in Figure 8.9, using
different sampling time resolutions. The curves refer to NTS = 32, NTS = 64 and NTS = 128 respectively
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Figure 8.11 Transmitted output pulse with FWHM = T = 100 ps. The rise and fall times have been set to
tr = tf = 10 ps. The influence of the sampling time resolution is less relevant to pulse shaping due to a smoother
transition time
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Figure 8.12 Magnification of the high power level of the pulse reported in Figure 8.11. A comparison with
Figure 8.9 reveals fewer ripples for any time resolution, due to the smoother transition time
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Figure 8.13 Transmitted output pulse of duration FWHM = T = 100 ps. The rise and fall times have been
set to tr = tf = 25 ps. Increasing the transition time up to a quarter of the unity time step makes the output
pulse shape almost identical for the three sampling time resolutions used
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Figure 8.14 Magnification of the high power level of the pulse reported in Figure 8.13. Due to a relatively
longer transition time, the output pulse ripple is reduced to be less than 0.5 % of the normalized intensity,
almost independently from the sampling time resolution
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Figure 8.15 Transmitted optical pulses of the same duration FWHM = T = 100 ps with different symmetric
transition times

Figure 8.16 Example of the 10 Gb/s NRZ transmitted eye diagram: FWHM = T = 100 ps, tr = tf = 25 ps

These numerical examples conclude the description of the trapezoid pulse as the simplest but
most useful modeling tool of a transmitted optical symbol in the NRZ data format. The next section
deals with the more sophisticated error function based pulse, with symmetric round smoothed
wavefronts.
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Figure 8.17 Schematic representation of the electro-optical conversion performed by the optical transmitter.
The ideal square electrical stimulus from the pulse pattern generator (PPG) is converted into the optical
envelope intensity pulse by the optical transmitter. If the optical impulse response to the electrical stimulus of
the electro-optical converter is Gaussian, then the optical output pulse will result in the error function shaped
pulse

8.3.2 Error Function Shaped Optical Pulse

The second optical pulse source considered for the optical transmitter output is the error function
pulse. This terminology arises from the closed-form expression of the pulse function in terms of
a linear combination of error functions. Despite its mathematical feeling, this pulse resembles real
signals very closely, as laboratory instrumentation and equipment can generate them. The close
relationship with real signals can be found by looking behind the pulse modeling assumption. In
fact, passing an ideal square pulse through a system with a Gaussian impulse response generates
the error function pulse. Figure 8.17 gives a schematic block diagram for the generation of the
error function shaped pulse.

The same procedure can be applied to any linear and time invariant electro-optical converter,
with a very different impulse response. Accordingly, a more complete library of several optical
pulse shapes can be realized. It is important to point out that the pulse pattern generator can be
modeled better using both the trapezoidal shaped pulse and the error function shaped pulse, instead
of the simple assumption of the ideal square wave with instantaneous transition times.

8.3.2.1 Temporal Representation
It is assumed that the impulse response of the electro-optical converter is given by the following
Gaussian pulse:
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defined by

hT(t) = 1

σt

√
2π

e−t2/(2σ 2
t )

∫ +∞

−∞
hT(t) dt = 1

(8.12)

The pulse pattern generator produces the ideal square pulse x(t) of duration T and instantaneous
rise and fall times, as reported in Equation (8.2) and in Figure 8.5, reproduced here for more
convenience:

defined by

x(t) =




1

T
, |t | ≤ T

2

0, |t | >
T

2

According to the linear system assumption, the output pulse yT(t) from the optical transmitter
is given by the time convolution between the input pulse definition (8.2) and the Gaussian impulse
response (8.12):

yT(t) = x(t) ∗ hT(t)

=
∫ +∞

−∞
x(τ)hT(t − τ) dτ (8.13)

= 1

T

1

σt

√
2π

∫ t+T/2

t−T/2
e−u2/(2σ 2

t ) du

After the substitution ξ = u/(σt

√
2), from Equations (8.12) and (8.13) the following integral rep-

resentation of the output optical pulse is obtained:

yT(t) = 1

T

1√
π

∫ (t+T/2)/(σt

√
2)

(t−T/2)/(σt

√
2)

e−ξ 2
dξ (8.14)

In order to solve the integral the error function is introduced:

erf(x) ≡ 2√
π

∫ x

0
e−ξ 2

dξ (8.15)

In particular, the error function erf(x) satisfies the following properties:

erf(−x) = −erf(x)

lim
x→+∞ erf(x) = 1 (8.16)

erf(0) = 0
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Using the definition (8.15) gives the solution for the definite integral (8.14) of the Gaussian function:

1√
π

∫ b

a

e−ξ 2
dξ = 1

2
[erf(b) − erf(a)] (8.17)

Applying these results to the integral (8.14) gives the following closed form of the error function
optical pulse:

yT(t) = 1

2T

[
erf

(
t + T/2

σt

√
2

)
− erf

(
t − T/2

σt

√
2

)]
(8.18)

It should be remembered that the above formula is valid, assuming that the time convolution with
the ideal square pulse is generated from the PPG, characterized by full-width at half-maximum
duration T and instantaneous wavefronts (tr = tf = 0). The parameter σt in the above formula is
the RMS width of the Gaussian impulse response of the optical transmitter.

From the analytical expression (8.18) and using the properties (8.16), it is easy to conclude that
the error function optical pulse has the following characteristics:

1. Even symmetry:
yT(−t) = yT(t) (8.19)

2. Maximum value at the time origin:

yT(0) = 1

T
erf

(
T

σt2
√

2

)

T � σt ⇒ yT(0) ∼= 1

T

(8.20)

3. Null value at infinite time coordinate:

lim
t→+∞ yT(t) = 0 (8.21)

4. Full-width at half-maximum FWHM = 2t0:

t0 : yT(t0) = 1

2
yT(0) ⇒ yT(t0) = 1

2T
erf

(
T/2

σt

√
2

)
(8.22)

and hence

erf

(
t0 + T/2

σt

√
2

)
− erf

(
t0 − T/2

σt

√
2

)
= erf

(
T/2

σt

√
2

)
(8.23)

Calculation of the FWHM requires the implicit solution of Equation (8.23), which can only be
accomplished numerically. Besides computing the exact value of the FWHM, it is possible to make
the following conclusions:

1. For every σt > 0, t0 > T/2. In fact, assuming t0 < T/2 gives erf[(t0 − T/2)/(σt

√
2)] < 0. Due

to the monotonic behavior of the error function, equation (8.23) would have no real solution.
Therefore, it is concluded that t0 > T/2.

2. At the limit for a relative small RMS pulse width, σt → 0, or equivalently σt � T , then
t0 → T/2 and from Equation (8.23) it is found that FWHM → T . This conclusion is of course
quite consistent with the assumption of a very short Gaussian impulse response. After the time
convolution with the square pulse, the output profile must resemble very closely the PPG output.
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At the limit of the Dirac delta impulse response, the effect of time convolution leads to a simple
temporal translation at the Dirac delta impulse center of gravity.

3. Relatively broad Gaussian impulse responses produced by the laser transmitter lead to an output
optical pulse whose width is strongly influenced by the laser performance. According to the
definition (8.13), each pulse resulting from the convolution with a single time step square pulse
has unity area. Therefore, broader single pulses must have a lower peak intensity. Accordingly,
time convolution with a multiple NRZ PPG pulse width, like the one generated by several
consecutive ones, will produce distorted output waveforms, with a large intersymbol interference
pattern and consequent eye diagram closure.

4. An important consequence of the above discussion is the generation of the pattern-dependent
jitter (dealt with in more detail in the next section). The amount of jitter due to the PPG pattern
is more pronounced for an increasing Gaussian RMS width σt relative to the ideal square pulse
duration nT. The parameter n gives the integer multiple of the elementary time step T .

Figure 8.18 shows some computed optical pulses according to the error function shaped profile.
The PPG produces an ideal square pulse of fixed FWHM equal to T = 100 ps, while different
Gaussian laser responses have been considered. The vertical axis gives a normalized unit. In order
to have an optical pulse with unit energy (area) it is sufficient to use a vertical unit scaled by 1/T .

The next section presents the calculation of the pattern-dependent jitter for the sequence of error
function pulses. This is an interesting example showing the analytical procedure used to determine
the interval definition of the jitter variable. In order to complete the statistical description, the
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Figure 8.18 Computed error function shaped output optical pulses according to Equation (8.18). The plotted
curves refer to an ideal square pulse generated by the PPG and passed through the Gaussian frequency response
electro-optical converter with different RMS widths. The ideal square pulse has the same duration T = 100 ps
for all curves. From these curves, it is easily to conclude that when the ratio σt /T > 0.2 the output pulse is
strongly determined by the Gaussian impulse response
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probability density function of the expected data sequences needs to be included. A similar approach
can be used for every waveform and signal condition.

8.3.2.2 Pattern-Dependent Jitter (PDJ)

In this section, the theory of the pattern-dependent jitter for the case of the error function pulse
is introduced. The error function optical pulse is given by the time convolution between the ideal
square pulse of duration T and the Gaussian impulse response of the electro-optical converter. As
clearly stated by Equation (8.23), the pulse width is dependent on both parameters σt and T . If
the RMS Gaussian pulse width σt is very small compared to T , the FWHM of the error function
optical pulse becomes coincident with the square pulse duration T . On the other hand, when σt

is no longer negligible with respect to T , the FWHM becomes larger than T , thus originating the
pattern-dependent jitter. Stated differently, for a fixed RMS width σt of the Gaussian pulse, the
FWHM of the error function optical pulse resulting from the convolution with the PPG square
wave depends on the duration nT of the generated data sequence. Since the discrete variable n is
random within the PRBS generation length, the pattern-dependent jitter will result accordingly in
the output signal.

8.3.2.2.1 Normalized FWHM Deviation
In order to compute the FWHM of the optical pulse as a function of the ratio σt/T , the following
definitions in the implicit equation (8.23) are introduced:

FWHM ≡ 2t0 ≡ ∆ (8.24)

x ≡ ∆

T
(8.25)

δ ≡ 2
√

2
σt

T
(8.26)

The new parameter x assumes the meaning of the pulse FWHM relative to the unity time step T .
The parameter δ is proportional to the ratio σt/T between the RMS width of the Gaussian impulse
response and the unit time interval. After substitution into Equation (8.23), the following implicit
equation is derived whose solution x(δ) represents the functional dependence for deriving the
pattern-dependent jitter:

erf

(
x + 1

δ

)
− erf

(
x − 1

δ

)
= erf

(
1

δ

)
(8.27)

This equation refers to the simplest case of the ideal square pulse duration and is equal to one
single time step T. In order to arrive at the final equation valid for any time step duration, there is a
need to take into account any integer multiple nT of the unity time step T . In fact, it is well known
that the PPG can generate any NRZ sequence of proper length, according to the PRBS generation
polynomials. Substituting the parameter T by nT in Equation (8.23) and making use of the above
parameters definition, it can be conclude that

x
n

n=1,2,...

(δ) : erf

(
x + n

δ

)
− erf

(
x − n

δ

)
= erf

(n

δ

)
(8.28)

Equation (8.28) is the generalization of Equation (8.27) for any integer value of the parameter n.
Figure 8.19 shows the computed implicit solution of Equation (8.28) using a Matlab code. The
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Figure 8.19 Normalized FWHM deviation Γn(δ) computed using formula (8.28) versus the ratio σt/T . The
bit length n sets the curve parameter. The ordinate is defined in Equation (8.29). A longer bit length corresponds
to an extremely small value of the normalized FWHM deviation from the ideal bit length nT. In order to limit
the FWHM deviation to less than 1 % it is necessary to set σt/T < 0.2

abscissa shows the ratio σt/T and the ordinate shows the normalized deviation Γn(δ) of the FWHM
with respect to the ideal pulse width:

Γn(δ) ≡ ∆n(δ) − nT

T
= ∆n(δ)

T
− n = xn(δ) − n (8.29)

In a PRBS pattern of length 2n − 1 all bit lengths up to qT, q = 1, 2, . . . , n, are present, and different
FWHM are obtained when they are convolved with the same Gaussian impulse response of RMS
width σt . The relative deviation Γn(δ) of the normalized FWHM generates the pattern-dependent
jitter (PDJ).

Figure 8.20 shows a detailed view of Figure 8.17, where the normalized deviation Γn(δ) has
been computed for bit lengths n = 1, 2, 3. It is evident that a broader Gaussian response relative
to the unity interval gives a higher value of Γ1(δ). It is important to note that longer bit sequences
are much less affected by relative FWHM variations than shortest ones. In Figure 8.20 it can be
seen that even assuming a broader Gaussian response with σt/T = 0.55, the contribution Γ3(δ)

of the bit length n = 3 is less than 1 %, but the unity step bit, n = 1, gives a much higher Γ1(δ)

contribution of about 50 %, making the eye width highly reduced.
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Figure 8.20 Higher value of the ratio σt /T leads to higher Γn(δ) values. Assuming σt /T = 0.4, the first
three normalized PDJ contributions Γn(δ) are Γ1(δ) = 0.21, Γ2(δ) = 1.3 × 10−2, Γ3(δ) = 2 × 10−4

8.3.2.2.2 Jitter analysis
The normalized relative FWHM Γn(δ) derived in the previous section is related to the pattern-
dependent jitter (PDJ), but is not suitable for calculation when the eye diagram is represented.
In order to have a consistent definition of the pulse width to be used in conjunction with the
eye diagram representation and PDJ, a new variable Θn(δ) needs to be introduced. Θn(δ) is the
Normalized pulse width deviation measured when pulse wavefronts cross the absolute value of
one-half, assuming that the indefinitely long pulse is normalized with unit amplitude.

The new pulse width deviation Θn(δ) leads immediately to the concept of pattern-dependent
jitter (PDJ). However, in the actual definition of the function Θn(δ), it is implicitly assumed that
the jitter is evaluated at one-half of the asymptotic amplitude. This choice corresponds to setting
the decision threshold at one-half of the asymptotic eye diagram amplitude.

In order to define Θn(δ), consider the schematic representation of the error function shaped pulse
reported in Figure 8.21. The following parameters are introduced:

tw : yT(tw) = 1

2
lim
σt →0

yT(0) = 1

2T
(8.30)

wn(δ) ≡ 2tw

T
(8.31)

δ ≡ 2
√

2
σt

T
(8.32)
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Figure 8.21 Schematic representation of the optical pulse for the definition of the pattern-dependent jitter
(PDJ)

The normalized deviation Θn(δ) is defined as follows:

Θn(δ) ≡ nT − 2tw

T
= n − wn(δ) (8.33)

Substituting Equations (8.30), (8.31) and (8.33) into Equation (8.28) gives the following equation
for the normalized pulse width wn(δ):

w
n

n=1,2,...

(δ) : erf

(
w + n

δ

)
− erf

(
w − n

δ

)
= 1 (8.34)

This equation has the same form as Equation (8.28), except for the variable wn(δ) ≡ 2tw/T used
instead of x and for the constant right-end term. Using the same Matlab code with minor modi-
fications, the normalized pulse width wn(δ) is found for any given parameter n. After substituting
wn(δ) into Equation (8.33), the normalized pulse width deviation Θn(δ) is obtained.

Figure 8.22 shows the computed width deviation using Matlab code. It is evident from the
plotted results that for pulses longer than three time steps, n ≥ 2, the amount of PDJ is quite
negligible. However, it is important to recognize that even if longer sequences do not exhibit any
significant width deviation, a single bit pulse might have a relevant deviation if δ > 0.4. Due to the
computation resolution, only the first four-bit length values have been used: n = 1, 2, 3, 4, while
the ratio parameter ranges between 0.1 ≤ δ ≤ 0.7.

In order to evaluate the PDJ contribution of the shortest bit lengths better, Figure 8.23 shows
the solution for n = 1, 2. Assuming a relative large Gaussian impulse response σt/T = 0.60, the
first two PDJ contributions corresponding to n = 1 and n = 2 are

PDJ1 = 2 × 10−1 UI, PDJ2 = 1.4 × 10−3 UI (unit interval)
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Figure 8.22 Normalized pulse width deviation Θn(δ) computed using formulas (8.33) and (8.34) versus the
increasing bit length n. The abscissa gives the ratio σt /T . The ordinate is defined in Equation (8.33). It is
evident that a bit length n ≥ 3 corresponds to an extremely small value of the normalized pulse width deviation
Θn(δ). In order to limit Θn(δ) to less than 1 % it is necessary to set σt /T ≤ 0.38

The random jitter (RJ) variable sums linearly to the pattern dependent jitter variable, and the joint
probability density function of the resulting stochastic process is given by the convolution of both
PDJ and RJ processes. The variance of the joint process is given by the sum of both process
variances. Once the weighted distribution of the PDJ is known, it is easy to conclude that the joint
jitter probability density function is given by the RJ distribution shifted and properly weighted
around each PDJ contribution. In this sense, the PDJ acts like a weighted phase shifter.

8.3.2.3 Frequency Representation

The frequency representation of the error function pulse is easily derived by virtue of the convo-
lution theorem. Indicating by XT(f ) and HT(f ) the Fourier transform of the ideal pulse xT(t) in
Equation (8.2) produced by the pattern generator and of the Gaussian impulse response hT(t) of
the electro-optical converter respectively gives

xT(t)
�←→ XT(f ) = sin(πf T )

πf T
(8.35)

hT(t)
�←→ HT(f ) = e−2π2σ 2

t f 2
(8.36)
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Figure 8.23 Normalized pulse width deviation Θn(δ) versus the ratio σt /T for two bit lengths n = 1, 2

Applying the convolution theorem immediately gives the expression for the spectrum of the error
function shaped pulse as the product of spectra in Equations (8.35) and (8.36):

yT(t)
�←→YT(f ) = sin(πf T )

πf T
e−2π2σ 2

t f 2
(8.37)

The very simple analytical form of the spectrum of the error function pulse, together with a close-
up pulse shape, makes it very attractive for computer modeling and theoretical system analysis.
Figure 8.24 shows the computed spectrum of the error function pulse using the dB scale and
logarithmic frequency representations.

The computed frequency spectra refer to increasing Gaussian pulse widths, starting from σt =
1 ps up to σt = 50 ps. The smoothing effect of the Gaussian contribution is quite evident in the
high-frequency behavior of the plotted spectra. In the case of σt = 20 ps, the first lobe is about
26 dB down from the normalized low-frequency content.

8.3.2.4 FWHM and 3 dB Cut-Off
In order to compute the frequency cut-off of the error function pulse it is sufficient to refer to the
magnitude of the spectrum expression (8.37). The cut-off coefficient α is introduced:

|YT(fα)| =
∣∣∣∣ sin(πfαT )

πfαT

∣∣∣∣ e−2π2σ 2
t f 2

α = α, 0 < α ≤ 1 (8.38)
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Figure 8.24 Frequency spectra of the error function pulse versus different ratios σt /T . The assumed unity
time step is T = 100 ps. The transition times of the electrical PPG pulse are assumed to be instantaneous.
Increasing the RMS width of the Gaussian impulse response causes the corresponding spectrum to become
smoother with less pronounced lobes

In particular, setting α = 1/2 and α = 1/
√

2 gives the unilateral bandwidth at FWHM (−6 dB) and
the −3 dB cut-off frequency respectively. Solving Equation (8.38) with respect to the frequency
fα , gives the following transcendental equation:

fα = 1

πσt

√
2

√
log

[
1

α

∣∣∣∣ sin(πfαT )

πfαT

∣∣∣∣
]
, 0 < α ≤ 1 (8.39)

Besides the numerical computation of the cut-off frequency fα , some properties of the solution can
be anticipated. The term |sin(πf T )/(πf T )| is a monotonic decreasing function of the frequency
f in the interval between the origin and the first zero f1 = 1/T . Since the function

√
log(x) has a

monotonic increasing dependence versus the argument x, it can easily be concluded that the right
member of Equation (8.39) is a monotonic decreasing function of the frequency fα . Hence, the
solution fα is given by the intersection between the line G(f ) = f and the right-hand term

H(f ) = 1

πσt

√
2

√
log

[
1

α

∣∣∣∣ sin(πf T )

πf T

∣∣∣∣
]
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Figure 8.25 Cut-off frequency of the error function shaped pulse versus the standard deviation of the Gaussian
impulse response σt . The assumed unity time step is T = 100 ps. For the case σt = 20 ps, the bandwidth
evaluated at −3 dB is f−3dB

∼= 3.70 GHz, while the −6 dB bandwidth gives f−6dB
∼= 5.15 GHz

For every value of the parameter α, the solution must belong to the frequency interval 0 < fα ≤
1/T .

Figure 8.25 gives the solution of Equation (8.39) using a simple Matlab code. For the fixed
unity time step T = 100 ps, three solutions are plotted versus the Gaussian pulse width σt assuming
three different cut-off conditions, namely α = 1/2, α = 1/

√
2 and α = 1/10, corresponding to one-

half FWHM (or −6 dB electrical bandwidth), −3 dB electrical bandwidth and −20 dB electrical
bandwidth respectively.

The curves in Figure 8.25 clearly show the reduction of the transmitted pulse bandwidth at
increasing values of the RMS width of the Gaussian impulse response of the electro-optical con-
verter. At the limit for a negligible impulse response contribution, the plotted curves coincide with
the ideal square wave spectrum generated by the pulse pattern generator.

8.3.2.5 Generalized Error Function Pulse

In order to take into account the nonideal square pulse generated by the pulse pattern generator, the
following analytical form of the spectrum of the generalized error function pulse is considered by
introducing the trapezoid pulse sequence generated by the PPG, instead of the simple ideal square
pulses.

Although the analytical form of the output pulse in the time domain can be quite cumbersome,
its frequency representation is easier and more elegant. By virtue of the convolution theorem, it
is well known that the spectrum of the trapezoid pulse is given by the product of the spectra of
the two convolving square pulses. Moreover, due to the associative property of the convolution,



406 Multi-Gigabit Transmission over Multimode Optical Fibre

108 109 1010
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0
Transmitted Pulse Spectrum (Error function shaped with Tau = 25 ps) - Magnitude

Frequency [Hz]

A
m

pl
itu

de
 [d

B
]

sigma = 1 ps
sigma = 5 ps
sigma = 10 ps
sigma = 20 ps
sigma = 50 ps

Figure 8.26 Magnitude of the frequency spectra of the error function pulse versus different ratios σt /T with
a fixed transition time for the PPG trapezoid pulse. The assumed unity time step is T = 100 ps

the spectrum of the generalized error function pulse is given by the product of the spectrum of the
trapezoid pulse produced by the PPG with the Gaussian impulse response spectrum (8.36):

yT(t)
�←→YT(f ) =

[
sin(πf T )

πf T

] [
sin(πf τ)

πf τ

]
(e−2π2σ 2

t f 2
) (8.40)

The same functional definition yT(t)
�←→ YT(f ) as the original error function pulse expression

(8.37) is used, disregarding the fact that it comes from the ideal square pulse or the trapezoid pulse.
By comparing Equation (8.37) with (8.40), the factor

[
sin(πf τ)/(πf τ)

]
in the latter equation is

found to be responsible for the finite transition time of the trapezoid PPG pulse. The PPG pulse
has a fixed value of FWHM, equal to the unity time step T , which is independent of the value
chosen for the transition time τ . This property of the PPG pulses leads qualitatively to the same
conclusion about the pattern-dependent jitter discussed in a previous section.

Figure 8.26 shows several computed spectra according to expression (8.40) for the same cases
considered in Figure 8.24, but assuming the finite transition time τ = 25 ps of the trapezoid pulse.
Figure 8.27 shows the effect of the finite transition time on the spectrum of the error function pulse.

8.3.2.6 Simulated Pulses and Eye Diagrams

In this section are discussed some computed optical pulses and the corresponding eye diagrams
generated according to the general formula of the error function pulse reported in expression (8.40).
The aim of this exercise is to show the implications of the optical pulse profile with the eye diagram
and the relevant intersymbol interference contribution that arises when the elementary error function
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Figure 8.27 A comparison among frequency spectra of the error function pulse versus three transition times
for the PPG trapezoid pulse: τ = 0, τ = 25 ps, τ = 50 ps, with a fixed ratio σt /T . The assumed unity time step
is T = 100 ps

pulse becomes too smoothed relative to the required time step. Figure 8.28 presents an example of
computed error function pulses with different Gaussian contributions.

Once the pulse response is known, it is relatively easy to build up the eye diagram according to
the transmitted PRBS sequence. Figures 8.29 to 8.33 give five different eye diagrams corresponding
to different combinations of trapezoid transient times and Gaussian pulse widths. All reported eye
diagrams refer to the same time step T = 100 ps.

8.3.3 Conclusion

In this chapter two analytical models have been presented of the optical pulse suitable for repre-
senting a light source intensity profile for optical communication: the trapezoid pulse and the error
function pulse. Both time domain and frequency domain responses have been derived, including the
corresponding eye diagram outputs. The trapezoid function pulse is easier to handle but does not
include ISI or the pattern dependent jitter effect. Conversely, the error function pulse model allows
better modeling of real pulses, where both ISI and jitter take place. The optical pulse model pre-
sented so far refers to the transmitted signal pattern, neglecting all noise and spectral contributions.
Those should be included in a transmission system simulation as a separate analysis tool.

The optical signal represented in this chapter must be intended as the ensemble average of the
transmitted optical intensity. Around the time-varying average power level, statistical fluctuations
due to amplitude and phase fluctuations act as random perturbation.
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Figure 8.28 Error function pulses corresponding to the frequency representation in expression (8.40). The
plotted curves refer to the trapezoid pulse generated by the PPG and passed through the Gaussian frequency
response of the electro-optical converter with different RMS durations. The trapezoid pulses have the same
FWHM with T = 100 ps and transition time τ = 20 ps. From these curves, it is easy to conclude that when the
ratio σt /T ≥ 0.2 the output pulse is strongly affected by the Gaussian impulse contribution

Figure 8.29 Error function shaped eye diagram: T = 100 ps, σt /T = 0.1, tr = tf = 0
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Figure 8.30 Error function shaped eye diagram: T = 100 ps, σt /T = 0.1, tr = tf = 25 ps

Figure 8.31 Error function shaped eye diagram: T = 100 ps, σt /T = 0.1, tr = tf = 50 ps
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Figure 8.32 Error function shaped eye diagram: T = 100 ps, σt /T = 0.3, tr = tf = 0. The intersymbol inter-
ference (ISI) at the ideal sampling time is clearly visible

Figure 8.33 Error function shaped eye diagram: T = 100 ps, σt /T = 0.6, tr = tf = 0. In this case, the inter-
symbol interference (ISI) strongly affects the eye shaping. The eye diagram closure can be estimated as
∆P

∼= 10 log
(

1
5

) ∼= −7 dB
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8.4 Intersymbol Interference
The optical receiver performs a signal conversion from the optical domain to the electrical domain.
In the electrical domain, it performs the signal amplification and the required electrical filtering
for noise reduction. Additional optical filtering could be added in front of the optical receiving
section for improved noise performance in optical amplified systems (ASE (amplified spontaneous
emission) noise from optical amplifiers, DWDM (dense wavelength division multiplexing) cross-talk
from adjacent channels, etc.).

Noise analysis for the optical receiver will not be covered in this chapter, as the optical sig-
nal characteristics, including pulse dispersion and the related profile equalization, are analyzed
first This must not be intended as an oversimplification of the optical receiver theory, but instead
as a restricted modeling, focused mainly on the detected signal processing. Noise is unavoid-
able for every physical system and, in particular, the detection process of optical signals is
intimately related to the noise process. Any theoretical conclusion regarding optical signal detec-
tion and receiver sensitivity without including the noise effect would of course be meaningless.
In this order, we will include the noise in the out treatment, assuming the simplified additive
white Gaussian noise (AWGN) conditions. A detailed analysis of the noise contributions in the
optical detection theory is beyond the scope of this book and will be considered for another
planned book.

What does the statement ‘the required electrical filtering for noise reduction’ mean that was
mentioned above? The answer to this question leads to the concept of either the optical reference
receiver or the optical matched receiver. The optical transmitter signal modeling has been introduced
in previous sections, and, according to the optical modulation process, it can be assumed that the
time-dependent envelope of the optical intensity launched from the transmitter into the optical fiber
would be shaped according to a proper pulse profile. The pulse profile can then be modeled using
some analytical functions and the corresponding eye diagram can easily be built up in order to
predict the effect of a random pattern generator on the signal decision process.

There is interest in the envelope of the optical intensity because the optical detection process
converts the optical intensity envelope into the corresponding electric current intensity. The mathe-
matical theory of the photodetection process is complex and requires a statistical approach in order
to have a meaningful model. The shot noise arises consistently with the photodetection theory as
the variance of the detected light intensity. The photon counting process follows the well-known
Poisson distribution and the variance of the Poisson process is proportional to the ensemble average
of the detected light. Accordingly, the intensity fluctuation of the detected light increases propor-
tionally to the intensity itself, resulting in the well-known signal-dependent shot noise contribution.
In this simplified treatment, it will be assumed that the photodetection statistics collapses on a Dirac
delta probability density function (PDF), located at the required average intensity level. Proceed-
ing in this way, the stochastic characteristic of the photodetection process is effectively removed,
relying on the simpler deterministic approach. The shot noise will be added to the remaining
noise terms as an independent Gaussian contribution whose variance is proportional to the detected
intensity.

8.4.1 Introduction

In order to understand the meaning of ‘the required electrical filtering for noise reduction’, it is
important to introduce some basic concepts regarding intersymbol interference. This concept is of
basic importance to every digital transmission system and is not a peculiarity of optical systems
only. Assuming a base band digital binary on–off keying (OOK) modulation format as the typical
line code for the direct detection optical system, the detected electrical pulse sample ys(tk) ≡ yk is



412 Multi-Gigabit Transmission over Multimode Optical Fibre

time

0 T 2T 3T−T−2T−3T

y2

y1

y−1

y−2

y−3

y0

y3

ys(t)

Post-cursors
Pre-cursors

Figure 8.34 Received single electrical pulse. Sampling time instants tk = kT , k = ±1,±2, . . . , have been
assumed at every integer multiple of the time step T , starting from t = 0. The corresponding pulse values
ys(tk) ≡ yk , constitute the intersymbol interference (ISI) components

evaluated at the time instants tk = kT , k = 0,±1,±2, . . . , according to the transmitted time step
T . The detected pulse ys(t) can exhibit residual nonzero precursor and postcursor contributions,
which will disturb the synchronous signal detection. Assuming a linear photodetection process,
consecutive detected current pulses are added together, and tail superposition in correspondence
with the signal sampling time instants tk = kT can strongly degrade the digital signal recognition.
The noise is present every time, even at the sampling time instant of course, and it is intuitive that
maximizing the amplitude of the signal sample with respect to the RMS noise level will improve
the signal decision process, at least up to some asymptotic condition.

Due to the arbitrariness of the timescale, it is assumed that the time origin t = 0 is located at the
optimum sampling time for maximizing the signal-to-noise ratio. First the signal sample ys(0) = y0

will be defined. This sample represents the information content needed to make a proper deduction.
It has been found that if the detected optical pulse shows time symmetry with the maximum
amplitude located at the time symmetry instant, the optimum sampling time coincides with that
instant. Figure 8.34 gives a qualitative description of the received signal pulse, without referring to
any particular pulse symmetry. The amount of pulse energy distributed beyond the central body is
usually identified as a pulse postcursor, while the energy located before the pulse body constitutes
a pulse precursor.

In order to minimize the probability of making an erroneous electrical pulse decision (binary
pulses have two logical levels, namely level 0 and level 1), the signal pulse amplitude ys(0) = y0

at the sampling time t = 0 must be maximized with respect to the average RMS noise value σn.
The noise at the sampling time can have either a signal-dependent contribution or an additive
signal-independent term, or both. In the following treatment, all noise components, either additive
or signal-dependent, will be assumed to exhibit a Gaussian probability density function with a white
power spectral density. A further simplification arises if the signal-dependent shot noise contribution
is calculated using the average signal power, thus losing the true time-dependent behavior.

8.4.2 Definitions

Referring to the pulse sketched in Figure 8.34, the intersymbol interference (ISI) term at the sam-
pling time t = 0 is defined as the random variable δ(T ) defined by the summation of all off-time
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Figure 8.35 Probability density function of the intersymbol interference random variable δ(T ). The dashed
line gives the average value that in general is not zero

samples, t �= 0, arising from all the available binary weighted combinations of the detected current
pulses:

δ(T ) ≡
k=+∞∑
k=−∞
k �=0

akyk

yk = ys(kT ), k = ±1,±2, . . .

(8.41)

The weighting terms are the realizations {a}k of the random sequence ak of the discrete binary
random variable a = (0, 1). Figure 8.35 gives a sketch of the ISI probability density function fδ(y).

Neglecting the noise contribution, the random nature of the intersymbol interference variable
δ(T ) relies exclusively on the randomness of the sequence ak of the binary weights considered,
and not on the off-time signal samples yk . Assuming an infinite pulse extent, each realization {a}k
of the random sequence generates the event δk(T ). In this case, the ISI value δk(T ) corresponding
to a fixed sequence {a}k is a deterministic quantity. In order to clarify this concept, the following
example should be considered:

{a}k = (. . . 10011101 ↑ 10111110 . . .) (8.42)

The up-arrow ↑ identifies the position of the sampling instant at t = 0. The eight binary weights
reported on the left and the right sides represent the weighted signal pulses considered before and
after the sampling time respectively. In this case only eight bits on both pulse sides have been
included, but the extent of the significant binary sequence depends of course on the received pulse
duration and how it decays over the relative time interval. Associated with sequence (8.42) the
corresponding off-time pulse sample sequence should be considered:

{y}k = (. . . y−8y−7y−6y−5y−4y−3y−2y−1 ↑ y1y2y3y4y5y6y7y8 . . .) (8.43)

Only off-time contributions yk associated with nonzero binary coefficients will be contributing to
the corresponding ISI term. In the example considered so far, from Equations (8.42) and (8.43),

δk(T ) = · · · + y−8 + y−5 + y−4 + y−3 + y−1 + y1 + y3 + y4 + y5 + y6 + y7 + · · · (8.44)

Changing the random sequence {a}j gives in general a different value for the intersymbol interfer-
ence contribution. Assuming, for example, the sequence realization {a}j :

{a}j = (. . . 01010101 ↑ 11110011 . . .) (8.45)
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the following ISI contribution is obtained:

δj (T ) = · · · + y−7 + y−5 + y−3 + y−1 + y1 + y2 + y3 + y4 + y7 + y8 + · · · (8.46)

and, in general, δk(T ) �= δj (T ).

8.4.3 Population Dimension

Assuming a fixed number of significant off-time samples contributing on the left side and on the
right side of the sampling time (eight time steps in the example above), the statistic of the random
variable δ(T ) is completely defined by the finite distribution of the corresponding ISI values. This
conclusion is very important from a practical point of view, and allows the probability density
function of δ(T ) to be computed once the finite number of binary sequences are known.

The symbols L and R are used to show the number of significant time steps on the left side and
on the right side respectively of the sampling instant. The extent of a significant off-time sample
can easily be defined by comparing it with the amplitude y0 of the normalized signal sample and
assuming monotonic decay of the absolute value of the pulse on both sides of the sampling instant.
The total number NL of allowable binary sequences that produce a significant ISI contribution to
the left side is given by

NL = 2L − 1 (8.47)

This number coincides with the total number of combinations of k = L elements of class n = 2,
[0,1](binary code), including repetitions but excluding the trivial case with L elements equal to 0.
For example, choosing L = 3 gives

[001], [010], [011], [100], [101], [110], [111]

The meaningless sequence corresponding to the all-zero coefficient gives no ISI contribution,
of course, and has been removed from the number NL of significant binary sequences. Using
exactly the same arguments gives the number NR of allowable binary sequences that can produce
a significant ISI contribution due to the right side of the pulse:

NR = 2R − 1 (8.48)

The total number of all binary sequences that generate significant ISI contributions is therefore
given by multiplying each single-sided sequence by the total number of allowable sequences on the
other side of the sampling instant. In conclusion, the total number NISI of ISI generating sequences
is given by

NISI = NRNL + NL + NR (8.49)

The additive term NL + NR takes into account the extra sequences corresponding to the all-
zero condition on one side only of the sampling instant. Substituting Equations (8.47) and (8.48)
into Equation (8.49) gives the following expression for the total dimension of the ISI population
contributions:

NISI = 2(R+L) − 1 (8.50)

Assuming, for example, that L = 8 and R = 8, the dimension of the ISI population is NISI = 65 535.
Expression (8.50) easily reveals that if the same number of time step contributions is accounted for
on each pulse side NL = NR , the ISI population grows as the square of the significant time steps:

L = R ⇒ NISI = 22R − 1 = (2R)2 − 1 (8.51)
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Referring to the previous case and considering now only four steps on each pulse side L = 4, R = 4,
the ISI population reduces considerably to only NISI = 255 elements. To conclude this section, it
should be noted that assuming finite binary sequences of L + R elements each, the probability
of occurrence of each realization is uniformly distributed and equals the value 1/NISI (neglecting
the identically null trivial sequence). Consequently, the ISI distribution would be uniform, unless
different coefficient sequences originate the same ISI contribution.

8.4.4 Signal–ISI Joint Statistic

Following the discussion of the previous section, it is important to remark explicitly that the
ISI statistic is exactly the same and affects both detected pulse levels y0 = a0 and y0 = a1. This
statement is self-evident since in the present derivation the value of the pulse at the sampling
time t = 0 is neglected. Neglecting pattern-dependent jitter, ISI and noise, the ideal sampled signal
value y0 of the received pulse can assume only one of the two binary values, namely a0 and a1.
Those values are therefore not affected by any signal statistics and the decision process is true
deterministic. The probability density function of the sampled signal y0 is given by two Dirac
delta functions, each located at one of the two possible sampled amplitudes, namely y0 = a0 and
y0 = a1, and weighted by the probabilities p0 and p1 of the corresponding event. Figure 8.36 gives
a graphical representation of the mathematical model just introduced.

As long as the transmission channel is deterministic and time invariant, the detected pulse shape
remains fixed and the off-time samples yk , k �= 0, are the same for every single-pulse realization.
The consequences of the pattern-dependent jitter (PDJ) as one of the most relevant contributions
to the random data jitter of the detected signal will not be discussed. Of course, once the PDJ is
included in the analysis of the detected signal, the off-time samples of the detected single pulse yk ,
k �= 0, will no longer be a fixed deterministic sequence, but instead they must be described as a
random sequence whose statistic is a consequence of the random datastream through the system PDJ
characteristic. Accordingly, the intersymbol interference distribution will be affected by the joint

Figure 8.36 Probability density function of the detected isolated pulse amplitude. Neglecting the pattern-
dependent jitter, ISI and noise, the binary single-pulse sampled amplitude can have only two values: y0 = a0

and y0 = a1. The mathematical model can be conveniently expressed using Dirac delta functions, each located
at the corresponding signal sample and weighted by the probability of the corresponding event. For every event
distribution, p0 + p1 = 1. In particular, assuming equiprobable events, p0 = p1 = 1

2
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statistic of the random data sequence ak with the system generated PDJ. It is important to point out
that even the PDJ has its statistical nature relying on the random data sequence ak and not on the
single-pulse system response. The transmission system has a deterministic single-pulse response;
when several random weighted pulses are sequenced together the system response depends on the
particular sequence realization {a}k , leading to the pattern-dependent jitter.

Neglecting both the PDJ and noise contributions and assuming a linear channel and linear
photodetection, the sampled signal value y0 and the intersymbol interference random variable δ(T )

will be added together. The total signal z(T ) at the sampling instant t = T is still a random variable
and is given by the sum of the sampled value y

0
with the ISI random variable δ(T ):

z(T ) = y
0
+ δ(T ) (8.52)

Note that the total signal amplitude is a random variable and not a random process because
the time variable has been fixed in the sampling instant. It is a fundamental result of the theory
of random processes1 that the joint probability density function of the sum of two statistically
independent random variables is given by the convolution of their respective probability densities.
This useful theorem will be invoked several times in the following derivations. The independency
requirement between the sampled signal amplitude and the corresponding ISI value is fully satisfied,
since the ISI random variable is not related in any way to the signal value sampled at the time
instant t = 0. Two definitions are given:

fy
0
(y): probability density function of the pulse sample y

0
at the sampling time instant t = 0

fδ(y): probability density function of the ISI random variable δ(T )

The probability density function of the joint statistics of the sum of noise and ISI becomes

fz(y) = fy
0
(y) ∗ fδ(y) (8.53)

According to the deterministic distribution assigned to the signal pulse at the sampling time instant
t = 0, as reported in Figure 8.36, the probability density function fy

0
(y) of the signal sample y

0
assumes the following expression:

fy
0
(y) = p0 δ(y − a0) + p1 δ(y − a1) (8.54)

The probability density function fδ(y) depends strictly on the received pulse shape ys(t) and on
the random data sequence ak . It is assumed that the probability density function fδ(y) of the ISI
random variable δ(T ) is known. From Equations (8.52), (8.53) and (8.54) the probability density
function fz(y) of the random variable z(T ) is obtained. Due to the property of the delta function,
it can immediately be concluded that the probability density function fz(y) is given by translation
of fδ(y) with the origin centered at the two detected levels a0 and a1:

fz(y) = fy
0
(y) ∗ fδ(y) = p0 fδ(y − a0) + p1 fδ(y − a1) (8.55)

Even if the ISI distribution is the same around both low and high decision levels, its effect is
different in general for the two decision processes. This is evident from Figure 8.37, where an
asymmetric PDF has been assumed. It should be noted explicitly that according to Equation (8.55),
the origin of the probability density function of the intersymbol interference is translated on to
the sampled signal levels, namely a0 and a1. Consequently, if the average value ηδ is nonzero,
the PDF will have a different effect on the two signal levels. Referring to the case presented in

1 A. Papoulis, Probability, Random Variables and Stochastic Processes, McGraw-Hill, 1991.
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Figure 8.37 The PDF for the signal pulse decision in the presence of ISI, but without noise or pattern-
dependent jitter

Figure 8.37, it evident that the ISI contribution on the lower decision level defined by a0 is stronger
than on the higher level. In this case, it would be advisable to move the threshold level D to a
higher value with respect to the middle position. This procedure will compensate for different error
contributions, balancing the error probability between the two signal levels (binary system). Of
course, if ISI has a symmetric probability density function with a zero average value, the optimum
decision threshold would be located at the middle of the signal levels.

Before concluding this short introduction on the intersymbol interference effects in binary sys-
tems, it is important to note that if the ISI distribution has a peak value lower than the decision
distance, no decision error would be produced in the absence of noise. This statement is quite
important in understanding the decision process and sometimes it is underestimated. For moder-
ate ISI and additive Gaussian noise, the noise statistic determines the error probability, while ISI
mainly affects the optimum threshold position. For a given noise, the optimum threshold position
minimizes the error probability, balancing the error contribution from both signal levels. Even
assuming an optimum threshold position, the bit error rate is still a steeply increasing function of
the relative noise power allocated to each signal level.

The effect of moderate ISI distribution is to translate the error probability curve to higher received
power levels, in order to overcome the ISI-induced closure of the eye diagram. Figure 8.38 illustrates
this concept. In order to understand how ISI probability density works in conjunction with the noise
channel, it is necessary to remember that the total PDF, including ISI and additive noise, is given by
the convolution of the two corresponding densities. Assuming for simplicity an additive Gaussian
noise, moderate ISI distribution can be quantitatively referred to if the result of the convolution
between the two probability densities still closely resembles a Gaussian-like function. From a
rigorous mathematical point of view, the output of the convolution will be a Gaussian if and only
if both convolving densities are Gaussian.

It is a well-known property of the convolution (see the Papoulis reference, 1991) that if one of the
two convolving functions is relatively broader than the other, the shaping of the convolution output
will be dominated by the broader function. A limiting case is the convolution of any suitable
function with a Delta distribution. In that case, the convolution output is given by the original
function translated at the Delta position, without any reshaping effect. As a rule of the thumb, in
order to maintain qualitatively the same Gaussian-like PDF it is necessary that the extent of the
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Figure 8.38 Representation of the Gaussian noise density function and digital signal levels with a relatively
strong ISI probability density function superposed for the decision process. The ISI probability density function
is represented, with the noise PDF shown above. The total (dashed) PDF is given by the convolution of the
ISI PDF with the noise PDF. The total PDF is responsible for the bit error rate performance. The decision
threshold must be chosen accordingly in order to minimize the bit error rate for the given total probability
density function

Figure 8.39 Representation of the Gaussian noise density function and digital signal levels with a relatively
strong ISI probability density function superposed for the decision process. The ISI probability density function
is represented, with the noise PDF shown above. The total (dashed) PDF is given by the convolution of the
ISI PDF with the noise PDF. The total PDF is responsible for the bit error rate performance. The decision
threshold must be chosen accordingly in order to minimize the bit error rate for the given total probability
density function
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probability density function of the intersymbol interference is limited to less then one sigma of
the additive noise distribution. This condition results in a total output PDF that resembles very
closely the Gaussian distribution of the noise density, but with increased width. This increased
width of the total PDF reflects a higher error probability corresponding to a given input optical
power level, representing the quantitative degradation of the digital signal detection process due to
the intersymbol interference.

From Figure 8.38 it is found that in order to maintain fixed bit error rate performances for the
received optical power when moderate ISI is added to the signal, it is necessary to increase the
received power level to the amount corresponding to the increased width of the total PDF.

Another condition that would be reflected in an overall right shift of the total error probability,
with a corresponding loss of receiver sensitivity, is shown in Figure 8.39. The intersymbol inter-
ference PDF consists of a very sharp, delta-like function, with a nonzero average value. In this
case, the convolution between the Gaussian noise PDF and the ISI PDF consists of a Gaussian-like
function, with almost the same width as the original Gaussian, but with the average value shifted to
the average value of the intersymbol interference distribution. Translation of the noise probability
density reflects the same error probability as that for the ISI-free operation but requiring more
received optical power in order to compensate for the translated noise distribution.

The concepts presented in this section would need a complete mathematical treatment in order
to acquire a proper knowledge to manage system design and to predict correctly the system per-
formances. Error probability in the presence of noise, intersymbol interference and jitter will not
be covered here, but they will be a major topic in a planned book.

8.5 The Optical Receiver
In the previous section, the intersymbol interference was introduced as one of the major impairments
of the detected optical pulse profile for a given transmission timing T . It is clear that even neglecting
the pattern-dependent jitter, the sampled signal z0 = y0 + δ(T ) must be considered as a random
variable due to the random weighted contributions δ(T ) from adjacent precursors and postcursors.

The aim of this section is to present the mathematical modeling of the optical fiber receiver.
As seen previously, among major degradations affecting the detected optical pulse and the related
eye diagram are noise and intersymbol interference. Other important contributions to eye diagram
degradation come from jitter, signal-dependent noise, phase distortion and nonlinear effects. In the
present analysis, all these signal distortion contributions will be neglected, concentrating only on
additive white Gaussian noise (AWGN) and intersymbol interference (ISI).

Depending on which of these two signal-degrading causes are minimized (noise) or even can-
celed (ISI), the corresponding optical fiber receiver takes the meaning of optical matched receiver
(OMR) or optical reference receiver (ORR) respectively. These concepts are of basic importance
in understanding real receiver operation and how far away from the optimum receiver they are
or even how to improve their performances in the correct direction. It is self-evident that without
knowledge of how much improvement could be obtained on a given design any proper direction
would be very often a blind trial.

The optical matched receiver represents the theoretical best solution, but it requires a control
of the signal transmitted spectrum in order to achieve simultaneously a minimum additive noise
contribution and a full ISI cancellation. The requirement for a well-defined transmitted signal
spectrum is often not achievable from optical transmitters or at least it would require too much
technology effort to justify the gain in system performances.

The optical reference receiver represents the linear suboptimal optical receiver needed to approx-
imate best optical transmission system performances for any arbitrary transmitted signal spectrum.
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No stringent conditions are therefore required on the transmitter side. The definition of the ORR is
based on the linear inverse spectrum filter (LISF). Given a transmitted signal spectrum, the ORR
must perform proper signal filtering in order to have a signal spectrum at the decision section
belonging to the particular class satisfying the condition of zero intersymbol interference. It is cus-
tomary to define all functions and filters parameterized to the signaling time T . Any real receiver
implementation would therefore be compared with either the ORR or the OMR in order to obtain
a quantitative figure of merit for its performances.

8.5.1 The Optical Reference Receiver (ORR)

In the following the symbols ΘX(f ) and HS(f ) will be used to refer to the signal spectrum available
at the generic section X–X′ of the optical receiver and to the transfer function of the system S

respectively. Below is a list summarizing the major assumptions and features of the model adopted
for the optical reference receiver. Most of these assumptions serve as guidelines for understanding
model limitations and improvements.

1. The photodetection statistics collapse upon a delta-like probability density function (PDF). The
average value of the time-dependent optical intensity distribution is therefore represented by the
position of the delta-like PDF, with no fluctuations and uncertainty. So far, the detection process
has been reduced to a noiseless deterministic process.

2. The noise generated during the photodetection process, including the optical noise embedded in
the received pulse, is included in the total average white Gaussian noise (AWGN) term at the
receiver electrical reference section.

3. In a first-order low-signal analysis, signal-dependent noise contributions, such as RIN (relative
intensity noise), shot noise and signal-spontaneous beat noise, are implicitly assumed negligible
compared with signal-independent noise terms.

4. The ensemble average of the time-dependent optical intensity envelope detected at the receiver
fiber end is converted by the photodetector into an identical photocurrent pulse profile, with
unity conversion efficiency. The photodetector behaves like the ideal photoelectric converter
with a delta impulse response (instantaneous response) and unity conversion efficiency.

5. The optical transmitter output is directly connected to the optical receiver input using a very short
length of optical fiber so that the launched signal spectrum does not need to be modified. The
source signal spectrum available at the fiber launching section S –S ′ is ΘS(f ). These transmitting
conditions are referred to as back-to-back conditions.

6. The optical reference receiver includes the electrical linear filter with the frequency response
HR(f ). The filter HR(f ) takes into account all receiver transfer functions, including the pho-
todetector, the low-noise front end, the linear amplifier and the frequency response of the
reference filter.

According to assumptions 4 and 5 and referring to Figure 8.40, the electrical signal spectrum
ΘD(f ) available at the decision section D–D′ is given by

ΘD(f ) = ΘS(f )HR(f ) (8.56)

The optical reference receiver is defined as the optical receiver whose total frequency response
HR(f ) applied to the transmitted spectrum ΘS(f ) gives a signal spectrum ΘD(f ) at the decision
section D–D′ belonging to a special class of functions:

ΘD(f ) ≡ ΓT (f )

γT (t)
�←→ΓT (f ) ∈ L1(�)

(8.57)
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Figure 8.40 Block diagram of the optical reference receiver. The fiber link is assumed to be in the back-to-back
configuration and the fiber jumper does not affect the optical transmitted signal spectrum

The time domain representation γT (t) satisfies the following condition:

γT (kT ) = 0, k = ±1,±2, . . . (8.58)

The function ΓT (f ) is defined as the reference signal spectrum (RSS). According to the func-
tions (8.57), each function ΓT (f ) satisfies the condition of zero intersymbol interference over the
sampling rate T . From conditions (8.56) and (8.57) the required filter expression HR(f ) for the
optical reference receiver is found to be

HR(f ) = ΓT (f )

ΘS(f )
(8.59)

Figure 8.40 presents a block diagram of the optical reference receiver with the definition of the
electrical section involved. The receiver input section is represented by the photodetector followed
by the linear amplification section. The photodetected and amplified signal is therefore available at
section P –P ′ as the electrical amplitude (either current or voltage), assuming a unity conversion
gain HP (f ) = 1 V/W .

The receiving section is assumed to have an ideal electro-optical delta impulse response in
order for the optical received signal spectrum not to be modified. The frequency response of the
received signal at the intermediate section P –P ′ therefore coincides with the spectrum ΘS(f ) of
the transmitted signal at the source section S –S ′. The detected signal at P –P ′ is then filtered
according to Equation (8.56) in order to deliver a specified output signal spectrum at the decision
section D–D′ belonging to the reference family ΓT (f ).

In the next section, a general class of functions ΓT (f ) will be introduced, characterized by having
no intersymbol interference. Those functions will be referred to as the reference receiver spectrum
(RRS) at the decision section D–D′ and will be specified in a simple mathematical form. Once
the received signal spectrum ΘS(f ) is known, the optical reference receiver filter HR(f ) will be
completely specified by Equation (8.56). In the following, both the received signal spectrum ΘS(f )

and the reference receiver spectrum ΓT (f ) will be described in terms of analytical mathematical
functions. Real filters must therefore be designed in order to approximate the mathematical function
HR(f ) by means of proper polynomial fitting.
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8.5.2 The Reference Receiver Spectrum (RRS)

The aim of this section is to define a general class of functions that satisfy the requirements (8.58)
for the reference receiver spectrum ΓT (f ). In order to arrive at a definition of a general class
of those functions, first the well-known raised cosine pulse will be analyzed, which satisfies con-
ditions (8.58). After that, a simple condition will be deduced that is useful for generalizing the
required behavior to a more general class of function. The aim of the following generalization is
to find a wide class of functions that can fit real system responses using finite impulse response
(FIR) filter realization.

8.5.2.1 The Raised Cosine Pulse

The time domain expression of the raised cosine pulse defined over a time step T is as follows:

γT (t) = 1

T

cos(mπt/T )

1 − (2mt/T )2

sin(πt/T )

πt/T
, 0 ≤ m ≤ 1 (8.60)

The parameter m defines the shaping of the pulse and the position of a subset of zeros. It is the
shaping coefficient. The raised cosine function has two sets of zeros:

1. The first set of zeros belongs to the roots of the first factor in Equation (8.60):

cos(mπt/T )

1 − (2mt/T )2
= 0 ⇒ tk = ± T

2m
(2k + 1), k = 1, 2, . . . (8.61)

The even symmetry of the function in Equation (8.60) allows only the positive time axis to be
considered. According to Equation (8.61), the first positive zero corresponds to k = 1 and falls
at t1 = 3

2 (T /m). Subsequent zeros are found at the following time instants:

t2 = 5

(
T

2m

)
, t3 = 7

(
T

2m

)
, t4 = 9

(
T

2m

)
, . . . (8.62)

The distance ∆tk between any two consecutive zeros of the first factor in Equation (8.61) is
given by

∆tk ≡ tk+1 − tk = T

2m
[2(k + 1) + 1 − 2k − 1] = T

m
(8.63)

This result gives the meaning to the shaping coefficient m of the raised cosine pulse in Equation
(8.60): the reciprocal of the shaping coefficient 1/m represents the normalized period of the
zeros of the shaping factor.

Since the distance between any two consecutive zeros is constant, it can immediately be
concluded that all zeros of the shaping factor of the raised cosine pulse constitute a periodic
sequence, the period being ∆tk = T/m. In the limiting case of m = 1 from Equation (8.63), it
can be concluded that the zeros tk will be spaced exactly one time step apart from each other,
starting from t1 = 3

2 (T /m) : tk+1 − tk = T , k = 1, 2, . . .; m = 1.
Finally, to solve the indetermination for k = 0 in Equation (8.61), use can easily be made of

the elementary calculus theorems and find the following continuity condition at t = ±T/(2 m):

lim
t→±T/(2m)

cos(mπt/T )

1 − (2mt/T )2
= +π

4
(8.64)

2. The second set of zeros belongs to the roots of the second factor in Equation (8.60), namely the
sinc function:

sin(πt/T )

πt/T
= 0 ⇒ tj = ±jT , j = 1, 2, . . . (8.65)
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These zeros fall exactly every time step interval T . This property is most important since it
characterizes the sampling rate behavior of raised cosine pulse sequences. This second set of
zeros does not depend upon any shaping factor. It is strictly defined by the sampling window T .
According to Equation (8.65), the first zero falls at t1 = T , the second at t2 = 2T , and so on.

Both sequences in Equations (8.61) and (8.65) represent the set of all the zeros of the raised
cosine function. The expressions below summarize the two sequences:

Shaping factor zeros : tk = ± T

2m
(2k + 1), k = 1, 2, . . .

Windowing factor zeros : tj = ±jT , j = 1, 2, . . .

To illustrate the zero sequence, let us consider three different values of the shaping coefficient m.
The zeros have been identified graphically using two different characters, depending on whether
they are related to the shaping factor or to the windowing function in Equation (8.60). The character
‘x’ refers to a zero related to the shaping factor, while the character ‘o’ refers to a zero of the
windowing function.

1. m = 1: 
 tk = (2k + 1)

T

2
tj = jT


 ⇒


 T ,

3

2
T , 2T ,

5

2
T , 3T , . . .

o x o x o


 (8.66)

In this case, the zeros of the two factors in Equation (8.60) are interleaved and all zeros are of
first order. No zeros are therefore coincident.

2. m = 0.5: {
tk = (2k + 1)T

tj = jT

}
⇒


 T , 2T , 3T , 4T , 5T , . . .

o o o o o
x x


 (8.67)

In this case all the zeros come from the windowing factor sinc and are located at the integer
multiplet j of the time step T . In this particular case, starting from the time instant 3T the zeros
tk of the shaping are found, with the periodicity 2T , as expected from Equation (8.63). The
superposition between the two sequences of zeros leads to the second-order zero subsequence
located at time instants tk .

3. m = 1
3 :
 tk = (2k + 1)

3T

2
tj = jT


 ⇒


 T , 2T , 3T , 4T ,

9

2
T , 5T , 6T , 7T ,

15

2
T , . . .

o o o o x o o o x


 (8.68)

In this case, the first four zeros come from the windowing function. The contribution from the
shaping factor starts at 9

2T with a period 3T , as expected. All the zeros are interleaved and of
first order only.

The analysis presented here suggests that two different names should be introduced for the two
functions constituting the raised cosine expression in Equation (8.60). This approach serves as an
introduction to the next section where a general class of reference receiver spectrum functions will
be defined. Referring to Equation (8.60) gives the following definitions:

shaping pulse s(t) ⇒ s(t) ≡ cos(mπt/T )

1 − (2mt/T )2
, 0 ≤ m ≤ 1 (8.69)

Windowing function w(t) ⇒ wT (t) ≡ 1

T

sin(πt/T )

πt/T
(8.70)
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From the previous analysis, it is observed that:

1. The windowing function wT (t) is responsible for setting the zero sequence at each multiple of
the time step T . This guarantees no intersymbol interference at signaling T .

2. The shaping function s(t) in Equation (8.69) is responsible for setting different raised cosine
pulse shapes, depending on the value of the parameter m.

The important conclusion is that for every value of the parameter 0 ≤ m ≤ 1, the raised cosine
pulse presents the zero sequence at least corresponding to the multiple of the time step T . This
is a clear consequence of using the windowing function wT (t) as a factor in the product (8.60)
of the raised cosine pulse expression. Other eventual zeros will emerge from the shaping function
properties through the parameter m. However, those zeros do not influence the intersymbol inter-
ference contribution, since they are out of the sampling time instants tk = kT , k = ±1,±2, . . . . As
will be seen in the next section, the interesting properties of the raised cosine pulse shown above
clearly suggest using the same approach to introduce a more general class of functions, such as the
reference receiver spectrum.

Before closing this section, three computed raised cosine pulses are reported with reference to
the theory presented above. Figure 8.41 shows the raised cosine pulses using three different shaping
factors m, but exhibiting the same windowing pulse wT (t) with T = 100 ps. It is interesting to see
the two factors w(t) and s(t) interacting together, giving the well-known output pulse shaping.

Figure 8.41 showed the computed raised cosine pulse assuming a fixed windowing of T = 100 ps
and a shaping coefficient m = 1. According to Equation (8.63), the highest value of the shaping
coefficient corresponds to the tightest zero sequence, spaced exactly as the unit time step T . This
reflects the sharpest shaping function available for the given time step T . The zero sequence
follows the structure reported in Equation (8.66). Figure 8.42 presents the case of the reduced

Figure 8.41 Raised cosine pulse computed according to Equation (8.60). Two pulse factors are shown, namely
the shaping pulse and the windowing pulse. The combination of these two factors gives the raised cosine pulse.
The windowing pulse is designed for a time step T = 100 ps while the shaping coefficient is m = 1. It is evident
that the shaping pulse has zeros corresponding to every T = 100 ps, starting with the first zero at t1 = 150 ps,
in agreement with Equation (8.66)



The Optical Link Model 425

Figure 8.42 Raised cosine pulse computed using Equation (8.60). The windowing pulse is designed for a
time step T = 100 ps while the shaping coefficient is m = 0.5. The shaping pulse has zeros corresponding to
every T = 200 ps, starting from the first zero at t1 = 300 ps, in agreement with Equation (8.66)

shaping coefficient m = 1
2 , maintaining the same windowing function as considered above. The

resulting shaping function is smoother and the density of the corresponding zeros is one-half of the
windowing zeros, as expected from Equation (8.63).

The third case considered is presented in Figure 8.43 where the shaping function exhibits the
very low coefficient m = 1

10 . The shaping function is very smooth and the raised cosine pulse
closely resembles the windowing function. In the limiting case of a null shaping coefficient, the
raised cosine pulse coincides with the windowing function and the result is the well-known sinc
function. From Equation (8.61) the first zero of the shaping function is set at t1 = 15T .

In this section, the behavior of the raised cosine pulse has been analyzed and the interesting
contribution of the two factors, namely the windowing function and the shaping function, has
been found. These results, although not new, suggest using the same modular approach in order to
synthesize the proper reference receiver spectrum (RSS) using the ISI-free requirements. In the next
section this approach leads to the definition of a generalized class of Reference Receiver Spectrum
(RSS), which is quite useful when modeling the optical reference receiver.

8.5.3 A General Class of RRS

The knowledge learnt about the raised cosine pulse in the previous section suggests the introduction
of a new family of pulses that can be conveniently used to model a large variety of optical reference
receivers. The interesting feature common to all these pulse functions is the complete absence of any
intersymbol interference at the decision section. Starting with the definition (8.70) of the windowing
function

wT (t) ≡ 1

T

sin(πt/T )

πt/T

the generalized reference receiver spectrum (RRS) ΓT (f ) is defined as the Fourier transform of the
product γT (t) of the windowing function pulse wT (t) with every kind of shaping function pulse
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Figure 8.43 Raised cosine pulse computed according to Equation (8.60). The windowing pulse is designed
for a time step T = 100 ps while the shaping coefficient is m = 0.1. It is evident that the effect of the shaping
pulse is weaker than in the two previous cases and the resulting pulse closely resembles the windowing pulse
(sinc)

s(t) belonging to the space L1(�) of absolutely integrable functions over the real axis �:

γT (t) ≡ s(t)wT (t), γT (t)
�←→ΓT (f )

s ∈ L1(�) ∧ {s(kT ) �= ∞}, k = ±1,±2, . . .

(8.71)

It is simple to verify that the function γT (t) satisfies the requirement for having no intersymbol
interference:

tk = kT , k = ±1,±2, . . .

wT (tk) = 0

s(tk) �= ∞


 ⇔ γT (tk) ≡ s(tk)wT (tk) = 0 (8.72)

The function s(t) should not exhibit a singularity at the time instants tk . This condition is reported
in (8.71), together with the existence condition for the absolute integral over the real axis.

It should be noted that the singularity requirement s(tk) �= ∞ is not a necessary condition for
satisfying the definition of the generalized reference receiver spectrum ΓT (f ). It is instead a suffi-
cient condition. The condition for having no ISI requires in fact that the product γT (t) of the two
functions s(t) and wT (t), evaluated at every integer multiple of the time step T , has a zero. This
can be achieved even if the shaping function s(t) has a local singularity at tk = kT of lower order
than the zero of the windowing function wT (t) at the same sampling time instant.

It is important to note that the generalized reference receiver spectrum is not the frequency
response of the receiver, but instead is the required output signal spectrum that is needed in order
to have ISI cancellation. This is clearly stated by Equation (8.59). In the following subsections
several examples are given of shaping functions s(t) used to build up the generalized reference
receiver pulses γT (t) according to the conditions in (8.71).
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8.5.3.1 Gaussian Shaped Reference Pulse
The Gaussian shaped reference pulse is defined by setting the following shaping function:

s(t) = e−(t/σ )2/2 (8.73)

Figure 8.44 shows the Gaussian shaped reference pulse computed for three different increasing
values of the ratio between the standard deviation σ and the time step T : σ/T = 1, σ/T = 2,
σ/T = 5. Since the Gaussian function has no zero, the shaping function s(t) in Equation (8.73)
does not contribute to any additional zeros, and the zeros of the Gaussian shaped reference pulse
in Equation (8.71) are coincident with the same set of zeros generated by the windowing func-
tion wT (t).

The smaller the relative standard deviation σ/T , the smoother the Gaussian shaped reference
pulse becomes over the time step scale, and the characteristic oscillations of the sinc windowing
function becomes more and more damped. For increasing values of the Gaussian standard deviation,
the reference pulse becomes closer to the windowing function, showing correspondingly increasing
oscillations, as can be seen in the following figures. As a general rule, the lower the slope at the zero
transition, the better does the jitter immunity become, making the Gaussian shaped reference pulse
better suited for operation under highly jittered timing. From Equations (8.70), (8.71) and (8.73)
the complete analytical expression of the Gaussian reference pulse is derived:

γT (t) ≡ 1

T

sin(πt/T )

πt/T
e−(t/σ )2/2 (8.74)

Figures 8.45 and 8.46 present the resulting Gaussian shaped pulse assuming a larger standard
deviation. It is clear that by increasing the width of the Gaussian contribution, the resulting pulse
follows more closely the profile defined by the windowing function, exhibiting almost the same
oscillation amplitude in the pulse tails. A similar behavior has been verified in the previous raised
cosine examples.

Figure 8.44 Gaussian shaped reference pulse computed according to Equations (8.70) and (8.73). Two pulse
factors are shown, namely the Gaussian shaping pulse s(t) and the windowing pulse w(t). The combination of
the two factors gives the Gaussian shaped reference pulse γT (t). The windowing pulse is designed for a time
step T = 100 ps. The relative standard deviation is σ/T = 1. The Gaussian shaped pulse has the same zeros
as the windowing pulse, every T = 100 ps
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Figure 8.45 Gaussian shaped reference pulse computed according to Equation (8.74). The windowing pulse
is designed for a time step T = 100 ps and the relative standard deviation is σ/T = 2. The Gaussian shaped
pulse exhibits the same zeros as the windowing pulse

Figure 8.46 Gaussian shaped reference pulse computed according to Equation (8.74). The windowing pulse
is designed for a time step T = 100 ps and the relative standard deviation is σ/T = 5. A comparison with the
previous two cases reveals the almost negligible effect of the Gaussian shaping pulse due to a relative broader
standard deviation

8.5.3.2 Lorenzian Shaped Reference Pulse

The next shaping function s(t) being considered is the Lorenzian pulse. The terminology comes
from the Fourier spectral representation that is the Lorenzian function. In the time domain, the
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Lorenzian pulse is well known as the symmetric exponential pulse. It can be defined as

s(t) = e−|t |/τ (8.75)

The Lorenzian pulse is a monotonic exponential decreasing function of the time t and the parameter
τ characterizes the decay behavior (time constant). It has even symmetry. At the time origin t = 0,
the Lorenzian pulse (8.75) is normalized to unity. Since s(t) has no zero at all, the same conclusions
regarding the Gaussian pulse are also valid for the Lorenzian pulse. The zeros of the Lorenzian
shaped reference pulse are therefore coincident with the zeros of the windowing function. From
Equations (8.70), (8.71) and (8.75) the complete analytical expression of the Lorenzian shaped
reference pulse is derived:

γT (t) ≡ 1

T

sin (πt/T )

πt/T
e−|t |/τ (8.76)

Figure 8.47 shows the computed Lorenzian shaped reference pulse according to three different
values of the normalized time constant: τ/T = 1, τ/T = 2, τ/T = 5. The conclusions are quite
similar to the Gaussian shaped pulse of the previous subsection. From the computed Lorenzian
profile shown in Figure 8.47 it is evident that a time constant τ equal to the time step T makes the
pulse tail contribution quite negligible after about three time steps. A similar result was obtained
with the Gaussian shaped pulse in Figure 8.44. It is important to remember that the even symmetry
of the shaping function reflects of course the even symmetry of the whole pulse. This characteristic
is noteworthy, as we will see in the next example of the asymmetric single-pole response pulse.

Figures 8.48 and 8.49 show a less damped pulse profile due to the narrower time constant τ < T .

8.5.3.3 Single-Pole Shaped Reference Pulse

The three different reference pulses considered so for refer to time domain pulses with even symme-
try. This is in fact the case for the raised cosine, the Gaussian and the Lorenzian shaped reference

Figure 8.47 Lorenzian shaped reference pulse computed according to Equation (8.76). Two pulse factors are
shown, namely the Lorenzian shaping pulse s(t) and the windowing pulse w(t). The combination of these
two factors gives the Lorenzian shaped reference pulse. The windowing pulse is designed for a time step
T = 100 ps. The relative time constant is τ/T = 1. The Lorenzian shaped pulse has the same zeros as the
windowing pulse, every T = 100 ps
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Figure 8.48 Lorenzian shaped reference pulse computed according to Equation (8.76). The windowing pulse
is designed for a time step T = 100 ps. The relative time constant is τ/T = 2. The Lorenzian shaped pulse has
the same zeros as the windowing pulse, every T = 100 ps

Figure 8.49 Lorenzian shaped reference pulse computed according to Equation (8.76). The windowing pulse
is designed for a time step T = 100 ps. The relative time constant is τ/T = 5. The Lorenzian shaped pulse has
the same zeros as the windowing pulse, every T = 100 ps

pulses. The next two cases to be introduced refer to causal pulses, characterized by having a null
value in the negative time axis. The causality arises from the assumption that the pulse response
does not exist before the causal stimulus is applied at the time origin t = 0. The first case to
consider is the very common impulse response of a single-pole time-invariant linear system. The
second case uses the well known and most useful IV-order Bessel–Thompson impulse response.
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The single-pole shaped reference pulse assumes the same time dependence as the Lorenzian
pulse for a positive time axis, but is zero on the negative time axis:

s(t) =
{

e−t/τ , t ≥ 0
0, t < 0

(8.77)

The single-pole pulse is a monotonic exponential decreasing function of the time t > 0 and
the parameter τ characterizes the decay behavior (time constant). At the time origin t = 0, the
single-pole pulse has a finite discontinuity. From Equation (8.77),

t → 0−, s(0−) → 0

t → 0+, s(0+) → 1
(8.78)

Since s(t) has no zero at all, the single-pole shaped reference pulse has the same zeros as the
windowing function. From Equations (8.70), (8.71) and (8.78) the complete analytical expression
of the single-pole shaped reference pulse is derived:

γT (t) ≡



1

T

sin (πt/T )

πt/T
e−t/τ , t ≥ 0

0, t < 0
(8.79)

Figure 8.50 reports the computed single-pole shaped reference pulse using three different values
of the normalized time constant: τ/T = 1, τ/T = 2, τ/T = 5. Figures 8.51 and 8.52 show the
same single-pole shaped reference pulse as above but characterized by longer time constants. The
resulting pulse on the positive time axis closely resembles the oscillatory behavior of the windowing
function.

Figure 8.50 Single-pole shaped reference pulse computed according to Equation (8.79). The single-pole shap-
ing pulse s(t) and the windowing pulse w(t) are represented as components of the pulse. The combination of
these two factors gives the single-pole shaped reference pulse. The windowing pulse is designed for a time
step T = 100 ps. The relative time constant is τ/T = 1. As expected, the single-pole shaped pulse has a zero
every T = 100 ps
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Figure 8.51 Single-pole shaped reference pulse computed according to Equation (8.79). The relative time
constant is τ/T = 2. The increased relative time constant makes the tail oscillations more pronounced. The
single-pole shaped pulse has a zero every T = 100 ps, according to the windowing function

Figure 8.52 Single-pole shaped reference pulse computed according to Equation (8.79). The relative time
constant has been increased to τ/T = 5. The tail oscillations are more sustained and closer to the windowing
pulse. The single-pole shaped pulse has a zero every T = 100 ps, according to the windowing function

It will be seen later that even if the single-pole and the Lorenzian shaped pulses are close to each
other, their frequency responses are quite different. In particular, the single-pole shaped reference
pulse has a wider spectrum than the Lorenzian one. One important difference between the previous
three pulses and the causal single-pole pulse relies on their spectral characteristics. In fact, it is
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well known2 that the real signal f (t) has a conjugated antisymmetric spectrum F(ω), while real
and even signals have a real and even spectrum.

Causal signals have the real and imaginary spectral components linked together by the Hilbert
transforms.2 This has very important physical consequences in a real system. In any dielectric
waveguide, the causality of the relationship between the linear dielectric polarization field in
response to the applied electric field is the fundamental reason for the frequency chirping of light
modulators and sources under modulated conditions. The reason relies on the Hilbert transforms
that link together the real and the imaginary parts of the refractive index. Note that in every dielec-
tric waveguide the real part of the refractive index is responsible for the phase constant while the
imaginary part of the refractive index accounts for the waveguide absorption. A variation in the
imaginary part of the refractive index at the operating optical frequency, needed for the light mod-
ulation purpose, will determine a corresponding variation of the real part of the refractive index,
inducing a phase modulation of the transmitted field. The same relations in theoretical physics are
known as the Kramers–Kronig dispersion relations.3

8.5.3.4 IV-Order Bessel–Thompson Shaped Reference Pulse

In this section, a very important shaping pulse will be considered. Fourth-order Bessel–Thompson
(IV-BT) filters are extensively used in optical fiber transmission systems as the reference channel due
to the important characteristic of exhibiting the maximally flat delay transfer curve. For any given
order, the BT filter has the maximally flat group delay available among all other filter topologies
of the same order. The uniformity of the group delay in every transmission channel is among the
most important characteristics for preserving pulse skew and serious eye diagram degradation.

In this context, there is no interest in designing filters, but in analyzing properly shaped reference
pulses that can be used at the decision section of the optical reference receiver for achieving ISI-free
operation. In the following, it will be assumed that the pulse available at the decision section of the
optical reference receiver is shaped according to the fourth-order Bessel–Thompson profile. This
does not mean that a fourth-order Bessel–Thompson filter is used. In order to introduce the fourth-
order Bessel–Thompson (IV-BT) shaping pulse, it is convenient to start with the frequency response
function S(f ).4 The filter transfer function is needed in order to arrive at the impulse response s(t)
by using the numerical fast Fourier transform (FFT) of S(f ). Then the impulse response of the IV-
BT filter is used to build up the fourth-order Bessel–Thompson shaped reference pulse according
to Equations (8.70) and (8.71). It is important to remark that the analytical closed-form expression
of the IV-BT filter impulse response is not available, so it must be derived numerically from the
well-known frequency response.

The frequency response S(f ) of the fourth-order Bessel–Thompson filter is given by the fol-
lowing rational expression:

S(f ) = 105

105 + 105y + 45y2 + 10y3 + y4
, y = j2πf τ (8.80)

The constant τ has the meaning of the group delay tg(f ) at the limit of very low frequency (DC con-
dition, f → 0). The imaginary frequency variable y has been normalized using the time constant τ .
If the fourth-order Bessel–Thompson transfer function (8.80) is represented in terms of the modulus
and phase, the group delay tg(f ) is easily calculated as the frequency derivative of the phase:

S(f ) = A(f )ejφ(t) ⇒ tg(f ) ≡ 1

2π

dφ(f )

df
, lim

f →0
tg(f ) = τ (8.81)

2 A. Papoulis, The Fourier Integral and Its Applications, McGraw-Hill, 1987.
3 H. Römer, Theoretical Optics, an Introduction, John Wiley & Sons, Ltd, 2005.
4 ITU-T G.691, October 2000.
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The transfer function (8.80) is normalized at the frequency origin (DC condition):

lim
f→0

S(f ) = 1 (8.82)

According to the property of the Fourier transform pair (see the Papoulis reference, 1987), this
normalization condition reflects the unity area condition for the time domain representation s(t):

s(t)
�←→ S(f ),

∫ +∞

−∞
s(t) dt = S(0) = 1 (8.83)

It is convenient to introduce the dimensionless constant a in order to express the DC value τ of
the group delay tg(f ) in terms of the cut-off frequency fc:

a ≡ ωcτ = 2πfcτ (8.84)

The cut-off frequency fc is not specified in general. To be explicit, up to this point the value
that must be satisfied by the modulus |S(f )| of the transfer function when f = fc has not been
required. According to the value attributed to the modulus |S(f )| at the cut-off condition, the
characteristic constant a will assume a determined value. In order to clarify this important point,
the definition (8.84) of the parameter a is substituted into the expression of the imaginary frequency
variable y in Equation (8.80):

y = ja
f

fc
(8.85)

The relevant consequence of definition (8.84) is that at the cut-off frequency f = fc,

yc = ja (8.86)

Substituting Equation (8.86) at the cut-off frequency f = fc into the fourth-order Bessel–Thompson
transfer function (8.80), gives the following equation for the parameter a:

S(fc) = 105

105 + 105(ja) + 45(ja)2 + 10(ja)3 + (ja)4
(8.87)

Once the value of the transfer function S(fc) at the cut-off frequency has been fixed, the expres-
sion (8.87) allows calculation of the characteristic constant a and finally the definition of the filter
characteristic. Choosing the cut-off frequency as the frequency at which the modulus |S(fc)| of the
transfer function decays to 1/

√
2 = −3 dBe of the value reached at zero frequency, the characteristic

constant a of the fourth-order Bessel–Thompson filter is found:

|S(fc)| = 1√
2

⇒ a = 2.1139 (8.88)

The same procedure can be repeated for every other cut-off condition. Once |S(fc)| = α is set,
from Equation (8.87) the following equation needs to be solved in the variable a:

α = 105

|105 + 105(ja) + 45(ja)2 + 10(ja)3 + (ja)4| (8.89)
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To find the physical meaning of the characteristic constant a, it is sufficient to consider the defi-
nition (8.84). The characteristic constant a of the fourth-order Bessel–Thompson transfer function
has the meaning of the DC limit τ of the group delay expressed in terms of the reciprocal of the
cut-off angular frequency ωc = 2πfc:

lim
f →0

tg(f ) = τ = a

2πfc
(8.90)

Once the −3 dB cut-off frequency fc has been fixed, the DC limit τ of the group delay is determined
by Equation (8.90). This is valid for every order of the Bessel–Thompson filter. In particular, for
the fourth-order Bessel–Thompson transfer function,

τ = 2.1139

2π

1

fc

∼= 0.3364

fc
(8.91)

These properties are common to all Bessel–Thompson filters of any order. The DC value of the
group delay is exclusively determined by the −3 dB cut-off frequency.

Of course, for any given filter order there corresponds a proper value of the characteristic constant
a. As already specified, for the fourth-order Bessel–Thompson transfer function, the characteristic
constant is given by Equation (8.91). Thus

fc = 7.5 GHz ⇒ τ = 44.853 ps (8.92)

This value is typical for the ITU-T G.691 specification of the fourth-order Bessel–Thompson filters
operating at 10 Gbit/s, where the −3 dB cut-off frequency is fixed at 75 % of the bit rate.

Figure 8.53 reports the modulus and the phase of the transfer functions of four different fourth-
order Bessel–Thompson filters computed according to Equations (8.80), (8.85) and (8.91) using
Matlab 7.0.2. The four transfer functions differ for the cut-off frequency values, as reported
in the corresponding legend. The top graph shows the magnitude |S(f )| of the transfer function
expressed in decibels. The normalization bit rate is B = 10 Gbit/s, corresponding to the time step
T = 10 ps. The bottom graph shows the corresponding group delay versus frequency using unity
step normalization. It is evident that for fc = 0.75B = 7.5 GHz the DC value of the group delay
is in agreement with Equation (8.92).

Figure 8.54 presents the impulse responses of the same fourth-order Bessel–Thompson transfer
functions reported in Figure 8.53. The time domain pulses have been computed using a proper
Matlab 6.5 routine with the fast fourier Transform (FFT) algorithm.

The ITU-T standard requires the implementation of the IV-BT filter with a −3 dB cut-off at 75 %
of the signaling bit rate as the reference for validating the transmitted eye diagram. Figure 8.55
gives a detailed representation of the IV-BT impulse response corresponding to the required cut-off
frequency at fc = 0.75B = 7.5 GHz. It is evident that with causal pulse behavior no pulse ampli-
tude is available on the negative time axis. In addition, the bottom graph of the same figure shows
a magnification of the negative postcursor tail showing very low residual intersymbol interference
contributions. The first intersymbol contribution at t = T is less the 2 % of the normalized sample
amplitude. Subsequent postcursors give a negligible contribution. This low intersymbol character-
istic of the fourth-order Bessel–Thompson impulse response with a cut-off frequency set at 75 %
of the bit rate justifies the choice as the standard reference filter for transmitter eye mask testing
in ITU-T G.957 and G.691.
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Figure 8.53 Top: magnitude of the IV-BT transfer functions for four different cut-off frequencies. Bottom:
group delay of the same IV-BT transfer functions with the corresponding cut-off frequencies

Once the basic properties of the fourth-order Bessel–Thompson impulse response have been
derived, construction of the fourth-order Bessel–Thompson reference shaped pulse can proceed. In
this case, the analytical form of the shaping pulse is not available, but the numerical evaluation
according to the FFT algorithm can be used. Figure 8.56 show the numerically evaluated IV-BT
shaped reference pulse according to three different cut-off conditions for the shaping pulse. It is
evident that the broader the shaping pulse, the weaker is the damping action over the windowing
function and the stronger is the tail ripple sustained on the pulse postcursors. Of course, in the case
of causal shaping pulses, no tail precursor would be available at all.
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Figure 8.54 Impulse responses of the IV-BT transfer functions reported in Figure 8.53. All four impulse
responses have unity area due to proper normalization in Equation (8.83). It is of interest to note that the
impulse response corresponding to fc = 0.75B has approximately FWHM ∼= 100 ps = T and the zeros are
quite equally spaced for every time step T . This property justifies the choice for standard ITU-T G.691 and
G.954 optical transmitter reference filter

Figures 8.57 and 8.58 show the case of a lower-frequency cut-off of the IV-BT shaping transfer
function. The IV-BT shaping pulse is broader than in the above case and its intersymbol contribution
is no longer negligible at the first time step, t = T . Figure 8.58 shows the interesting case of an
even lower cut-off frequency of the IV-BT pulse. In this case, both the windowing pulse and
the IV-BT pulse interfere with each other, creating a new output pulse with a strong tail ripple.
Even if the resulting IV-BT shaped reference pulse does not have any ISI contribution due to the
windowing pulse synchronization action, this pulse is not suitable for implementing reference eye
diagrams.

8.5.4 Integral Representation Theorem of the RRS

In the previous section, the time domain representation of the reference receiver pulse γT (t) has
been defined as the product of the shaping pulse s(t) and the windowing pulse wT (t), according
to conditions (8.71). The product of any two functions in the time domain belonging to L1(�)

has a convenient representation in the frequency domain, by virtue of the frequency convolution
theorem (see the Papoulis reference, 1987). Moreover, the windowing function wT (t) has the well-
known ideal frequency window representation that allows easy mathematical handling. According
to conditions (8.71), the function s(t) belongs to the space L1(�) and therefore has the Fourier
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Figure 8.55 Computed IV-BT impulse response with the cut-off frequency fc = 0.75B = 7.5 GHz. The top
graph shows the complete impulse response while the bottom graph gives the magnification of the zero-crossing
region (marked with circles), showing the very low ISI contribution available from this pulse even if it is without
the windowing function
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Figure 8.56 Numerical evaluation of the IV-BT shaped reference pulse with the IV-BT pulse cut-off frequency
at fc = 0.75B. The IV-BT shaping pulse makes a negligible tail contribution for a time greater than two time
steps. Consequently, the output pulse is weakly affected by the windowing pulse

Figure 8.57 Numerical evaluation of the IV-BT shaped reference pulse with the IV-BT pulse cut-off fre-
quency at fc = 0.50B. The IV-BT shaping pulse makes a relevant intersymbol contribution at t = T but the
tail postcursors rapidly fall off for a time greater than two time steps. The windowing pulse provides tail
synchronization, causing the null ISI output pulse at every multiple of the time step
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Figure 8.58 Numerical evaluation of the IV-BT shaped reference pulse with the IV-BT pulse cut-off frequency
at fc = 0.25B. The IV-BT shaping pulse makes a very strong intersymbol contribution up to t = 2T , but the
tail postcursors rapidly fall off for a time greater than three time steps. The windowing pulse provides tail
synchronization, causing the null ISI output pulse at every multiple of the time step

integral representation. All these facts suggest a very easy and elegant way of finding the integral
representation of the reference receiver pulse. To demonstrate the integral representation theorem
of RSS, the Fourier Transform pairs are given as follows:

s, S ∈ L1(�) ⇒ S(f ) =
∫ +∞

−∞
s(t)e−j2πf t dt

�←→ s(t) =
∫ +∞

−∞
S(f )e+j2πf t df (8.93)

The same Fourier representation holds for the windowing function and for the reference receiver
pulse γT (t). The Fourier transform of the Reference receiver pulse γT (t) gives the reference receiver
spectrum (RRS), ΓT (f ):

wT (t)
�←→WT (f )

γT (t)
�←→ ΓT (f ) (8.94)

According to the frequency convolution theorem, the frequency representation of the reference
receiver spectrum ΓT (f ) has the following form:

ΓT (f ) = S(f ) ∗ WT (f ) ≡
∫ +∞

−∞
WT (α)S(f − α) dα (8.95)

The asterisk * denotes the convolution integral between the two functions S(f ) and WT (f ).
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The spectrum of the windowing function wT (t) is the elementary ideal square frequency window
of width T and unity height:

defined by

WT (f ) =




1, |f | ≤ 1

2T

0, |f | >
1

2T

(8.96)

Substituting the spectrum of the windowing function (8.96) into Equation (8.95) gives the following
integral representation of the reference receiver spectrum:

ΓT (f ) =
∫ f +1/(2T )

f −1/(2T )

S(y) dy (8.97)

From the above expression, it is interesting to remark that:

1. The integral representation of the reference receiver spectrum coincides with the frequency
smoothing over the bit rate window width B = 1/T of the reference shaping spectrum. Accord-
ingly, the windowing pulse wT (t) acquires the meaning of the smoothing window.

2. The integral representation of the reference receiver spectrum ΓT (f ) preserves the same sym-
metry as the shaping spectrum S(f ).

Substituting u = −x in Equation (8.97) gives the following identity:

ΓT (−f ) =
∫ −f+1/(2T )

−f −1/(2T )

S(y) dy = −
∫ f −1/(2T )

f +1/(2T )

S(−u) du =
∫ f +1/(2T )

f −1/(2T )

S(−u) du (8.98)

Hence, the symmetry of the shaping spectrum S(f ) is preserved by the reference receiver spectrum
ΓT (f ):

S(−f ) = ±S(f ) ⇒ Γ (−f ) = ±Γ (f ) (8.99)

8.5.4.1 Application to the Gaussian Shaped RRS

To illustrate the integral representation theorem (8.97), the case of the Gaussian reference shaping
pulse presented in Section 8.5.3.1 is considered. The Fourier transform of the Gaussian pulse (8.73)
is given by the following expression (see the Papoulis, reference, 1987), where σt is used explicitly
instead of σ in order to specify the time domain RMS width:

S(f ) = σt

√
2π e−2π2σ 2

t f 2 = 1

σf

√
2π

e−f 2/(2σ 2
f
)

(8.100)
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The corresponding standard deviations σt and σf satisfy the well-known uncertainty relationship
for the Gaussian transform pair:

σf = 1

2πσt

(8.101)

Substituting Equation (8.100) into Equation (8.97), the integral expression for the Gaussian
shaped reference spectrum is found. With the substitution u = √

2πσx, the integral (8.97) for
the Gaussian profile takes the following form:

ΓT (f ) = 1√
π

∫ √
2πσ [f +1/(2T )]

√
2πσ [f −1/(2T )]

e−y2
dy (8.102)

Using the definition of the error function (see the Römer reference, 2005), it is easy to derive the
following closed-form expression of the Gaussian shaped reference spectrum:

ΓT (f ) = 1

2

{
erf

[√
2πσ

(
f + 1

2T

)]
− erf

[√
2πσ

(
f − 1

2T

)]}
(8.103)

According to the corollary (8.98), the spectrum ΓT (f ) generated using Equation (8.100) must
have an even symmetry, as it is used for the Gaussian spectrum. This is easily verified from
Equation (8.103) using the odd symmetry property of the error function:

erf(x − a) = −erf(a − x), (x, a) ∈ R (8.104)

Setting the frequency variable to −f and using the odd symmetry of (8.104) gives the required
even symmetry of the Gaussian shaped reference receiver spectrum:

ΓT (−f ) = 1

2

{
erf

[√
2πσ

(
−f + 1

2T

)]
− erf

[√
2πσ

(
−f − 1

2T

)]}

= 1

2

{
−erf

[√
2πσ

(
+f − 1

2T

)]
+ erf

[√
2πσ

(
f + 1

2T

)]}
(8.105)

= ΓT (f )

Figure 8.59 shows the Gaussian shaped reference receiver spectrum ΓT (f ) computed using either
the expression (8.103) or the fast Fourier transform routine of the corresponding time domain pulse
γT (t) with σ = 1.

8.5.5 Examples of Reference Receiver Spectra

In this section are given the computed spectra of the reference receiver pulse families analyzed in
Section 5.4. In order to present the results as clearly as possible, every figure gives in the upper
graph the pulse composition in terms of the windowing pulse and of the shaping pulse, while the
lower graph shows the corresponding spectral composition. After computation of the detailed pulse
and spectrum compositions of a single sample for each pulse family, several examples of refer-
ence pulses belonging to the same family have been presented, together with the corresponding
spectra reproduced in the lower graph. The spectrum composition in terms of the convolution of
the windowing spectrum with the shaping spectrum is not reported in this latter case in order to
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Figure 8.59 Gaussian shaped reference receiver spectrum for σ = 1. The comparison between the FFT spec-
trum and the spectrum evaluated according to expression (8.103) clearly confirms numerically the validity of
the integral representation theorem (8.97)

simplify the graphical notation. Once the validity of the integral representation (8.97) has been
demonstrated, the reported spectra are computed using the Matlab 7.0.2 code based on the FFT
algorithm. The same results would have been obtained of course using the expression (8.97).
In order to make the spectrum comparison easier all spectra have been normalized to the DC
value.
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8.5.5.1 Raised Cosine Shaped Pulse (Figure 8.60)

Figure 8.60 Top: raised cosine shaped reference pulse with roll-off coefficient m = 1. Bottom: spectral com-
position. According to Equation (8.95), the resulting pulse spectrum is given by the frequency convolution of
the windowing spectrum with the shaping spectrum. The reported pulses are referred to a time step T = 100 ps
corresponding to the bit rate B = 10 Gb/s
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8.5.5.2 Gaussian Shaped Pulse (Figure 8.61)

Figure 8.61 Top: Gaussian shaped reference pulse with a normalized standard deviation σ/T = 2. Bottom:
spectral composition. According to Equation (8.95), the resulting pulse spectrum is given by the frequency
convolution of the windowing spectrum with the shaping spectrum. The reported pulses are referred to a time
step T = 100 ps corresponding to the bit rate B = 10 Gb/s
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8.5.5.3 Lorenzian Shaped Pulse (Figure 8.62)

Figure 8.62 Top: Lorenzian shaped reference pulse with a normalized time constant τ/T = 1. Bottom:
spectral composition. According to Equation (8.95), the resulting pulse spectrum is given by the frequency
convolution of the windowing spectrum with the shaping spectrum. The reported pulses are referred to a time
step T = 100 ps corresponding to the bit rate B = 10 Gb/s
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8.5.5.4 Single-Pole Shaped Pulse (Figure 8.63)
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Figure 8.63 Top: single-pole shaped reference pulse with a normalized time constant τ/T = 1. Bottom:
spectral composition. According to Equation (8.95), the resulting pulse spectrum is given by the frequency
convolution of the windowing spectrum with the shaping spectrum. The reported pulses are referred to a time
step T = 100 ps corresponding to the bit rate B = 10 Gb/s
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8.5.5.5 IV-order Bessel–Thompson Shaped Pulse (Figure 8.64)
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Figure 8.64 Top: IV-order Bessel–Thompson shaped reference pulse with normalized cut-off frequency
fc/B = 0.75. Bottom: spectral composition. According to Equation (8.95), the resulting pulse spectrum is
given by the frequency convolution of the windowing spectrum with the shaping spectrum. The reported pulses
are referred to a time step T = 100 ps corresponding to the bit rate B = 10 Gb/s

8.5.5.6 Raised Cosine Shaped Pulse Family
In Figure 8.65 shows both time domain pulses and frequency domain spectra modulus belonging
to the raised cosine shaped reference family, according to the following four values of the roll-off
coefficient: m = 0.1, 0.25, 0.50, 1.0. All considered cases refer to the time step T = 100 ps.

8.5.5.7 Gaussian Shaped Pulse Family
Figure 8.66 shows the computed pulses and spectra modulus belonging to the Gaussian shaped
reference family. According to the reference pulse definition (8.74), all considered pulses satisfy the
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Figure 8.65 Raised cosine reference pulse family. Top: time domain pulses. Bottom: frequency spectra rep-
resentation. All pulses are referred to the time step T = 100 ps. It is evident in the top representation that all
pulses satisfy the requirement for no ISI contribution at every multiple of the time step

requirement for no ISI contribution to every multiple of the sampling time step T . It is remarkable
how pulses characterized by larger values of the normalized shaping sigma exhibit longer oscillating
tails due to the dominant contribution of the windowing function.

8.5.5.8 Lorenzian Shaped Pulse Family

Figure 8.67 presents the time domain and frequency domain representation of four pulses of the
Lorenzian shaped reference family in Equation (8.76). In order to make a quantitative comparison
with a previous Gaussian family, the same values are chosen for the normalized time constant as
for the standard deviation of the Gaussian shaped pulses: τ/T = 0.5, 1, 2, 5.
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Figure 8.66 Gaussian shaped reference family. Top: time domain pulses. Bottom: frequency spectra repre-
sentation. All pulses are referred to the time step T = 100 ps

8.5.5.9 Single-Pole Shaped Pulse Family

Figure 8.68 shows the numerically computed time and frequency domain representations of four ele-
ments of the single-pole shaped reference family in Equation (8.79). The normalized time constant
has the same values τ/T = 0.5, 1, 2, 5.
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Figure 8.67 Lorenzian shaped reference family. Top: time domain pulses. Bottom: frequency spectra repre-
sentation. All pulses are referred to the time step T = 100 ps

8.5.5.10 IV-order Bessel–Thompson Shaped Pulse Family

The last reference receiver output response being investigated is the IV-order Bessel–Thompson
pulse family. Figure 8.69 reports the computed time domain and frequency domain representations
according to the procedure described in Section 8.5.3.4 for three different normalized cut-off fre-
quencies. In this case, the windowing pulse and the shaping pulse are presented together with the
resulting output pulse. The same procedure has also been used for the corresponding frequency
spectra:
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Figure 8.68 Single-pole shaped reference family. Top: time domain pulses. Bottom: frequency spectra repre-
sentation. All pulses are referred to the time step T = 100 ps

8.5.6 Summary

In this section, several mathematical functions used for modeling the linear impulse response and
related spectra of the optical reference receiver (ORR) are presented. Noise analysis and any time
recovery and jitter impairments are neglected, focusing only on the required pulse shape at the
decision section in order to avoid any intersymbol interference. This led to the concept of the
optical reference receiver as the suboptimal receiver, which is not necessarily matched to the
transmitted spectrum but satisfies the ISI-free operation. Once the transmitted spectrum is known,
the receiving filter allows the production of a proper output spectrum, leading to pulse detection
without an intersymbol contribution from adjacent pulses. In order to manage the mathematical
modeling of the output spectrum of the optical reference receiver, the corresponding output pulse
has been written as the product of the windowing function with the shaping function, leading to the



The Optical Link Model 453

−100 0 100 200 300 400 500 600 700 800

0

0.5

1

1.5

2

2.5

3
REFERENCE PULSE FAMILY - Shaping pulse - IV order Bessel-Thompson

Time [ps]

A
rb

itr
ar

y 
U

ni
ts

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

× 1010

0

0.2

0.4

0.6

0.8

1

REFERENCE PULSE FAMILY - Spectrum - IV order Bessel-Thompson

Frequency [Hz]

M
od

ul
us

, A
rb

itr
ar

y 
U

ni
ts

Shaping pulse : Fc = 1

Windowing pulse
Output pulse
Shaping pulse : Fc = 0.5

Windowing pulse
Output pulse
Shaping pulse : Fc = 0.20

Windowing pulse
Output pulse

Shaping spectrum : Fc = 1.0

Windowing spectrum
Output spectrum
Shaping spectrum : Fc = 0.50

Windowing spectrum
Output spectrum
Shapingspectrum : Fc = 0.20

Windowing spectrum
Output spectrum

Figure 8.69 Top: representation of the IV-BT reference family with the relative components from the win-
dowing pulse and the shaping pulse. According to shaping pulse causality, all output pulses are causal, but
the pulse profile is quite different depending on the normalized cut-off frequency. When the cut-off frequency
decreases below fc/B = 0.2, the IV-BT pulse component starts slowly and then interacts with the oscillat-
ing behavior of the windowing function, giving rise to the characteristic oscillating output response. Bottom:
corresponding frequency spectra

interesting results presented in the text. All the presented pulses satisfy the ISI-free requirements
at the decision section. Of course, they are differentiated from each other according to the filtering
requirements and the related noise bandwidths.

Table 8.1 presents a summary of the mathematical models used for the optical reference receiver
output spectra described in the text.

8.6 Conclusions
This chapter has dealt with the basic concepts for modeling the optical link in a multigigabit
transmission using multimode fiber. More attention has been paid to the signal modeling of the
transmitter and the receiver, neglecting noise aspects and other biasing-dependent phenomena in
the laser transmitter. The intention has been to give a quantitative expression that is useful for
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Table 8.1 Output pulse model expressions of the optical reference receiver

Pulse Expression Reference

Raised cosine γT (t) = 1

T

cos(mπt/T )

1 − (2mt/T )2

sin(πt/T )

πt/T
, 0 ≤ m ≤ 1 (8.60)

Gaussian γT (t) ≡ 1

T

sin(πt/T )

πt/T
e−(t/σ)2/2 (8.74)

Lorenzian γT (t) ≡ 1

T

sin(πt/T )

πt/T
e−|t |/τ (8.76)

Single-pole γT (t) ≡



1

T

sin(πt/T )

πt/T
e−t/τ , t ≥ 0

0, t < 0
(8.79)

Bessel–Thompson
(spectrum)

S(f ) = 105

105 + 105y + 45y2 + 10y3 + y4

y = j2πf τ, y = ja
f

fc
(8.80)

|S(fc)| = 1√
2

⇒ a = 2.1139

both transmitter and receiver modeling, including new contributions to the intersymbol interference
concept. A new approach to output pulse synthesis using the windowing function led to generalized
output spectra and the integral representation theorem. Many worked numerical examples complete
this chapter.



9
Principles of Electronic Dispersion
Compensation

Concepts and Limitations Applied to
Multimode Fiber Transmission

9.1 Introduction
The multimode fiber transmission system presented in Chapter 8 is based on the intensity modu-
lation and direct detection (IMDD) scheme. Using lightwaves by means of intensity modulation is
the simplest way to transfer information content over optical fibers. Other light modulation schemes
are of course available, but in this context reference will be made exclusively to IMDD. The basic
requirement for achieving proper IMDD transmission can be summarized in having as much light
energy as possible confined within each single time step. The capability of the decision process in
the optical receiver to recognize the information content associated to the single bit depends on the
ratio between the amount of signal energy E0 and the noise energy N0 included in the single bit
duration. The higher the ratio the easier it becomes to detect the signal information.

Among several causes that can lead to erroneous signal detection, two assume the highest priority,
namely the energy spreading outside the bit time and the noise increasing inside the bit time. If a
unit energy amount is assumed to transmit into the defined time step, but if according to dispersive
propagation behavior in the optical channel only a fraction, p < 1, of that energy arrives at its
destination within the time step, correspondingly 1 − p information energy will have been lost,
leading to sensible degradation in the decision process. Similarly, even assuming ideal channel
transmission, with the detected pulse showing unit energy per time step, if the amount of noise
dragged inside the same time step hides most of the signal recognition capability, the decision
process would be seriously damaged, leading to a high probability of making a wrong binary
decision. In this chapter, both of these decision process degradation causes will be discussed.

The purpose of each electronic equalizer is to reconfigure disperse optical pulses into the
assigned time step, effectively increasing the amount of useful signal density (energy per time
step). Unfortunately, the signal equalization cannot be performed without finding some additional
noise degradation. This effect is common to every equalizer, both to the simplest linear equalizer
and to the more complicated digital equalizers based on the minimum mean squared error principle.
The problem arises because conceptually the equalizer needs to restore the missing response of the

Multi-Gigabit Transmission over Multimode Optical Fibre: Theory and Design Methods for 10GbE Systems Stefano Bottacchi
 2006 John Wiley & Sons, Ltd. ISBN: 0-471-89175-4
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transmission channel and this operation increases the noise power at the decision process. In this
chapter, the ideal inverse filter equalizer (IFE) will be analyzed, which, although achieve zero-
forcing equalization, leads to an unacceptable noise increment for most of the multimode optical
fiber responses.

9.2 The Optical Decision Process
The purpose of this section is to introduce the detection theory of the optical signal in the presence
of several noise terms simultaneously affecting the optical receiver input in a multimode fiber
link operating at 10 GbE. Most of the following concepts are introduced without developing the
complete treatment that would be required in a book dedicated to this subject. Noise theory in
optical fiber transmission is a fundamental knowledge milestone and will be extensively covered in
a planned book on this subject. It is assumed here that the reader is almost familiar with the concepts
being presented. Nevertheless, each new concept introduced in this chapter has been presented for
a self-consistent understanding.

9.2.1 Noise Models and Approximations

In order to consider the different noise contributions impairing the optical detection and decision
processes, the optical fiber transmission systems and the modulation format must first be identified.
The system under consideration in this book operates with a single wavelength, at a multigigabit data
rate, without any optical amplification stage, using the conventional intensity modulation and direct
detection (IMDD) architecture. Noise contributions such as mode partition noise (MPN), reflection
noise (RN) and modal noise (MN) will not be included in the following first-order calculations.
Accordingly, the noise contributions that will be considered are the following:

1. Receiver thermal noise
2. Dark current shot noise
3. Signal shot noise
4. Laser source relative intensity noise

Mode partition noise arises when a multilongitudinal laser source, like the Fabry–Perot cavity
structure, feeds a multimode fiber. In this case, the time-dependent random distribution of the
emitted light power among several excited lasing modes at different wavelengths interacts with the
chromatic dispersion of the fiber, leading to a random profile output pulse. Amplitude fluctuations
of the output pulse are easily recognized as noise. Mode partition noise is not a peculiarity of
multimode fiber since it depends on interaction with the chromatic dispersion characteristic of
the fiber.

Reflection noise arises from the interaction of the laser source cavity with the light power reflected
back from the line. This interaction can generate a random contribution to the lasing process with
consequent frequency chirping and mode hopping. Reflection noise is present in every optical fiber
link, either multimode or single-mode.

Modal noise is instead a peculiarity of the multimode regime in a multimode fiber. It depends
on the interaction of the modal field distribution at every fiber link discontinuity, like the ones
produced by optical connectors, splices and any other passive optical component placed along the
fiber link. The modal power distribution (MPD) of the incoming light will suffer a variation at the
discontinuity, with some power exchange among excited modes, leading to random fluctuation of
the output pulse.

One relevant aspect considered in the analysis below is the dependence of noise terms with
respect to the average optical power at the receiver input. Depending on that relationship, a very
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different receiver behavior is expected at low or high optical power levels. The following general
assumptions are assumed to be verified:

1. All noise sources have zero mean and are stationary and ergodic processes.
2. All noise sources are assumed to be statistically independent and are described by a Gaussian

probability density function.
3. The average power of each noise source coincides with the variance of the process.
4. All processes are described as white Gaussian noise (WGN), with constant power spectral

density.

Assumption 1 holds for CW operation under stationary environmental conditions and is based
on the fundamental physics of each process. It is accepted as a basic requisite for all noise analysis.

Assumption 2 requires that all noise sources are independent from each other and that each noise
term is described as a normal process with a Gaussian probability density function. The mutual
independency imposes a relatively weak condition on the different processes involved and is widely
verified under standard operating conditions with relatively low optical power levels.

The Gaussian assumption, however, needs some comments for each specific noise source. Ther-
mal noise has a Gaussian probability density function (PDF) and needs no more justification or
comments. Shot noise is described by the Poisson probability density function, since shot noise is
a Poisson process. Nevertheless, it is well known that under high rate conditions, the fluctuations
of any Poisson process converge toward a Gaussian process and the equivalent centered Poisson
process is well depicted as a zero-mean Gaussian process. Under a relatively high rate occurrence of
the Poisson event, it is therefore customary to adopt a Gaussian approximation of the shot noise pro-
cess. According to the previous four noise terms contributions, it is therefore reasonable to use the
Gaussian approximation for the second and third noise terms involved, namely the signal-induced
shot noise and the dark current-induced shot noise.

The fourth noise term refers to the relative intensity noise (RIN) of the laser source. The relative
intensity noise is a peculiarity of the light source and is related to the amount of laser light
intensity fluctuations with respect to the average intensity emitted. It is well known that RIN
is not a white process, meaning that the power spectral density is not a flat distribution versus
the frequency. The RIN power spectrum usually exhibits a frequency peaking depending on the
relaxation oscillation frequency of the laser and on the associated package. In order to avoid long
settling times and dangerous ringing in the impulse response, laser module manufacturers usually
keep RIN peaking as far away as possible from the modulation frequency range of the laser. Under
this assumption, the relevant in-band contribution of the RIN behaves in an almost flat way and can
be approximated as white noise. The Gaussian assumption for the probability density function of
the RIN allows easily handling of the mathematics involved with the error probability calculation.
This is not of course a valid justification for adopting a Gaussian probability density function, but
since the fundamental physics behind the RIN deals with electron thermal agitation and spontaneous
emission, the Gaussian approximation behaves fairly well for including RIN in any optical receiver
noise calculation.

Assumption 3 is a consequence of the ergodicity condition. It is a fundamental result of the
theory of stochastic processes that every ergodic process has time averages coincident with ensemble
averages. This identity holds at least up to second-order averages involving the autocorrelation, the
mean and the power of the noise process. In particular, ergodicity leads to the coincidence of the
time-averaged power and the variance of each noise process.

The last assumption (4) deals with the spectral properties of the noise process. To simplify the
mathematical modeling, it will be assumed that every noise term has a flat power spectral density, at
least in the frequency range of the optical receiver. This characteristic will be referred to as in-band
white noise. This assumption allows the important concept of noise bandwidth to be used as the
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Figure 9.1 Block diagram of the optical receiver. Different signal sections have been reported. Equivalent
noise contributions are applied at the electrical input, section E–E′

metric for comparing the sensitivity performances among several optical receivers characterized by
the same data rate. As well as being used in this way, the first three terms, thermal noise, dark shot
noise and signal shot noise, are clearly white noise processes, while RIN needs some restrictions, as
introduced above. Figure 9.1 presents a block diagram of the optical receiver including the different
noise contributions.

9.2.1.1 The Noise Bandwidth

The noise bandwidth concept is widely used in every telecommunication field. The definition and
principal features will be reviewed shortly. It is well known from the noise theory of linear systems
that the power spectral density Gout(f ) of the noise at the output of a linear system is given by the
product of the noise power spectral density Gin(f ) at the input by the square modulus |H(f )|2 of
the transfer function:

Gout(f ) = |H(f )|2Gin(f ) (9.1)

The integral of the power spectral density Gout(f ) gives the noise power at the output section:

Nout =
∫ +∞

−∞
|H(f )|2Gin(f ) df (9.2)

If it is assumed that the power spectral density of noise at the input is constant, or at least it is
constant in the band-limited frequency range of the system transfer function, Gin(f ) can easily be
taken out of the integral (9.2) and written as

Nout = |H(0)|2Gin

∫ +∞

−∞
|H(f )|2
|H(0)|2 df (9.3)
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The transfer function has been normalized using the DC value. This is one common choice, but it
is not of course the only one possible. The integral in Equation (9.3) takes the meaning of the noise
bandwidth of the linear system. It coincides with the bandwidth seen by the uniform noise density
Gin at the input in order to generate the same output noise power Nout given in Equation (9.2).
Consequently, the noise bandwidth Bn can be defined as

Bn ≡
∫ +∞

−∞
|H(f )|2
|H(0)|2 df (9.4)

Using the noise bandwidth definition gives

Nin = GinBn

Nout = |H(0)|2Nin

(9.5)

which gives physical meaning to the definition (9.4). Figure 9.2 shows the graphical interpretation
of the noise bandwidth concept presented above.

The noise bandwidth can be considered as the metric of the linear system with respect to the
white noise stimulus. In other words, different linear systems can be compared quantitatively using
their noise bandwidth and assuming the same white noise distribution at the input. In particular, for
a given bit rate, it can reasonably be assumed that different optical receivers have the same electrical
bandwidth but different transfer functions, with different frequency profiles. This discussion leads to
the concept of the optimum optical receiver as the receiver that simultaneously maximizes the signal-
to-noise ratio (SNR) and minimizes the residual intersymbol interference power. It is clear at this
point that the larger noise bandwidth will allow higher noise power and more degraded (suboptimal)
sensitivity performances. It is already known that not only does noise power interfere with the
sensitivity performance but also the amount of residual intersymbol interference. A narrower system
bandwidth will lead to less noise power, of course, but will increase the ISI signal degradation.

9.2.1.2 Thermal Noise

The contribution of thermal noise in the optical receiver is described by the input equivalent noise
current density ic, expressed in pA/

√
Hz. Thermal noise comes from the electrical circuit of the

optical front end, mainly due to the input stage amplifier. In order to give a quantitative indication of

Figure 9.2 Graphical representation of the noise bandwidth. The sum of the areas of the dashed regions
outside and inside the rectangle is equal. This makes the gray rectangle subtended by the noise bandwidth
equivalent to the area subtended by the square modulus of the transfer function of the linear system
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Table 9.1 System specification of the optical receiver used
for the computation of the input equivalent noise current
density

Wavelength λ = 1310 nm
Photodetector efficiency η = 0.6
Bit rate B = 10.3125 Gb/s
Receiver type IV - order Bessel–Thompson
Cut-off frequency fc = 7.734 GHz
Noise bandwidth Bn = 11.14 GHz
Q-factor 7, BER = 10−12

Extinction ratio ER → ∞
Sensitivity limit PR = −17 dBm = 20 µW

the input equivalent thermal noise current density ic available in optical receivers, some parameters
of the transmission system must be introduced. Table 9.1 gives some parameters used for noise
calculation assuming that the optical receiver sensitivity is determined exclusively by the thermal
noise contribution. This approximation will be referred to as the thermal noise limited receiver. In
addition, it will be assumed that the optical receiver transfer function is shaped according to the
fourth-order Bessel–Thompson frequency response.

The photocurrent equivalent IR to the input average optical power evaluated at the sensitivity
limit PR is given by

IR = qλ

hc
ηPR = 12.7 µA (9.6)

where q = 1.602 × 10−19C is the electron charge, h = 6.626 × 10−34 J s is the Planck constant
and c = 2.998 × 108 m/s is the speed of light in vacuum.

Figure 9.3 shows the model used for the signal decision process. Since the extinction ratio
is infinite, the photocurrent equivalent IOMA corresponding to the optical modulation amplitude
(OMA) is just twice the photocurrent equivalent generated by the input average optical power.
The thermal noise is completely characterized by the RMS value σc of the Gaussian distribu-
tion. The suffix c stands for ‘circuit’, due to the source of thermal noise in every electronic
receiver.

In a binary decision process with equiprobable symbols and uniformly distributed noise fluctu-
ations with power σ 2

c over both logic levels, the decision distance d coincides with the average
photocurrent equivalent d = IR. The required standard deviation σc of the additive thermal noise
is therefore computed from the required Q-factor:

σc = IR

Q
= 1.81 µA, σ 2

c = 3.27 × 10−12A2 (9.7)

Once the input equivalent noise power σ 2
c and the noise bandwidth are known, the input equivalent

noise current density is computed:

ic =
√

σ 2
c

Bn

∼= 17 pA/
√

Hz (9.8)

By definition, the input equivalent noise current density is therefore constant versus the frequency.
It generates the required noise power at the receiver output after frequency integration over the
receiver total noise bandwidth. This value will be used through this book as the current density of
the input equivalent noise for a typical 10 GbE optical receiver.
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Figure 9.3 Schematic representation of the eye diagram obtained with an equalized signal pulse profile at the
decision section. In the considered case, the optical power associated at the low signal level is assumed to be
zero, leading to an infinite (ideal) extinction ratio. As described in the text, under this condition the average
optical power coincides with the decision amplitude and the optical modulation amplitude is given by twice
the average power

9.2.1.3 Dark Shot Noise

The dark current in the photodetector produces the shot noise contribution known as dark shot
noise. Assuming the photodiode dark current is ID = 5 nA, the corresponding shot noise power
becomes

σ 2
d = 2qIDBn = 17.8 × 10−18A2 (9.9)

The value is almost negligible compared to the circuit noise current density calculated in
Equation (9.8). It is important to note that both circuit noise current density and dark shot noise
are independent of the input optical power level. This means that their relative contribution to the
signal-to-noise ratio becomes smaller as long as the input optical power level increases.

9.2.1.4 Signal Shot Noise

The average value of the photocurrent generated by the incoming signal power produces a second
contribution of shot noise, known as the signal shot noise. The contribution of shot noise power
due to the received optical power is given by the following expression:

σ 2
s = 2qRPRBn (A2) (9.10)

where

R = qλ

hc
η (A/W) (9.11)

The constant R is the photodetector responsivity and includes the external quantum efficiency η and
the optical wavelength λ. Assuming that the operating wavelength λ = 1310 nm, the photodetector
responsivity R is

R(λ = 1310 nm) ∼= 1.057η (A/W) (9.12)

A typical value for the quantum efficiency of 10 Gb/s PIN diode ranges between 0.5 ≤ η ≤ 0.7.
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The important difference between the previous two terms is the linear dependence of the sig-
nal shot noise power from the received average optical power. The shot noise power increases
proportionally to the received optical power. This is the reason for having a negligible shot noise
contribution at a low power level, where it usually dominates receiver thermal noise. At a higher
power level, shot noise usually dominates thermal noise. Nevertheless, other second-order noise
contributions, like RIN and signal spontaneous beat noise in optically amplified links, usually do
not make signal shot noise the dominant term for optical receiver noise performances.

9.2.1.5 Relative Intensity Noise (RIN)

The last noise term being considered is relative intensity noise (RIN). This noise contribution is due
to light intensity fluctuations within the laser cavity caused by spontaneous emission amplification.
RIN is defined as the ratio between the spectral power density SI (f ) of the photocurrent equivalent
I (t) and the square value of its average 〈I 〉2:

RIN (f ) ≡ SI (f )

〈I 〉2
(dB/Hz) (9.13)

RIN is expressed as the ratio between the power spectral density (W/Hz) and the average power
(W). The dimension is therefore a time and the unit of measure is seconds, or more often dB/Hz. It is
important to remark that RIN is measured using the spectral distribution of the detected photocurrent
equivalent. Because of the definition, RIN is a function of electrical frequency. Assuming that the
spectral power density of the photocurrent equivalent is constant, the RIN coefficient therefore
becomes a constant over frequency. It is very easy to write the noise power contribution due to the
laser RIN coefficient. From the definition above, the noise power contribution at the receiver input
can be written as follows:

σ 2
RIN = R2P 2

R RIN Bn (A2) (9.14)

The most important characteristic of RIN is the dependence of the noise power on the square of the
received average optical power level. This characteristic makes RIN the dominating contribution at
the high power level over the remaining constant noise terms (thermal noise and dark shot noise)
and the linear noise term (signal shot noise).

9.2.1.6 Total Noise Power

The total noise power at the electrical input of the optical receiver is therefore given by summing
all four terms of the noise power, namely the thermal noise, the dark shot noise, the signal shot
noise and the relative intensity noise:

σ 2
tot(PR) = σ 2

c + σ 2
d + σ 2

s (PR) + σ 2
RIN(PR) (9.15)

After substituting the expressions of the noise components, from Equations (9.7), (9.9), (9.10)
and (9.14), the following explicit form is obtained:

Ntot(PR) = (i2
c + 2qID + 2qRPR + R2P 2

R RIN )Bn (9.16)

Figure 9.4 gives the results of the computation of the individual noise contributions and the total
noise power versus the received average optical power. The parameters used for the calcula-
tions are the same as reported in Table 9.1, plus the detector dark current ID = 5 nA. The noise
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Figure 9.4 Noise power plots of the four noise terms considered above. Thermal noise and dark shot noise
appear as constant lines. Signal shot noise has a slope of one decade/10 dB while RIN has a slope of two
decades/10 dB, as reported in the relative expressions

bandwidth Bn refers to the fourth-order Bessel–Thompson filter with cut-off at 75 % of the 10 GbE
bit rate:

i = 17 pA/
√

Hz

λ = 1310 nm

η = 60 %

Bn = 11.14 GHz

(IV -BT filter,fc=0.75B)

Idark = 5 nA




⇒ Sensitivity = −17 dBm at BER = 10−12, B = 10.3125 Gb/s (9.17)
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Different noise terms are clearly identified by their characteristic slope. Thermal noise and dark
shot noise are constant contributions versus input average optical power. Signal shot noise has a
unit slope showing one decade of noise power contribution every 10 dB of input average optical
power. Three different RIN contributions have been included in order to highlight the relative RIN
composition of the total noise power. RIN terms are clearly recognized by their double slope,
showing two decades of noise power contribution every 10 dB of input average optical power.
All three RIN coefficients considered here assume the dominant noise power contribution over the
remaining noise terms at some input optical power level in the range −16 dBm ≤ PR ≤ −7 dBm.
The highlighted line corresponds to the total noise power for the case of RIN = −128 dB/Hz. This
value is adopted in the IEEE 802.3, 10GBASE-LRM standard requirement. In the example above,
the breakeven point between thermal noise and RIN depends on the RIN coefficient considered. In
the case of RIN = −128 dB/Hz, the RIN takes a dominating role at about PR = −12 dBm. This
point can easily be determined as the intersection between the constant thermal noise line and
the RIN contribution line. Since at PR = −12 dBm the corresponding RIN contribution is more
then one decade lower it is reasonable to conclude that the optical receiver sensitivity is limited
by thermal noise of the input circuit. The same conclusion does not hold if the RIN coefficient
is higher, RIN = −121 dB/Hz. It that case, the breakeven point is close to PR = −16 dBm and
even at PR = −17 dBm the RIN contribution is not negligible with respect to the assumed thermal
noise term.

9.2.2 Electrical Signal Power

The classical theory of decision for NRZ pulses is based on the additive Gaussian noise assumption
evaluated at the decision section. In this case, the ratio between the electrical signal amplitude and
the RMS noise value at the sampling instant takes the role of a dominant variable in the bit error rate
(BER) calculation. It is known that optical detection is a square low process; hence, the electrical
signal amplitude is proportional to the optical signal intensity. This makes the decision theory in
optical fiber receivers easier and linearly related to the optical signal intensity. Nevertheless, it
is instructive to relate the BER calculation to the electrical signal-to-noise ratio (SNR) computed
at the decision section of the optical receiver. However, it should be remarked that the electrical
SNR must not be confused with the ratio d/σ between the signal amplitude at the sampling instant
and the RMS noise value. Sometimes, this misunderstanding creates an erroneous estimation of
the system performances. In fact, the electrical SNR involves the integration of the square of the
electrical pulse at the decision section in order to compute the average power.

In order to compute the electrical Signal-to-Noise ratio at the optical receiver input it is necessary
to define the signal pulse shape. The error probability of the binary detection process depends
directly on the ratio between the distance d of the sampled signal amplitude and the decision level
with the RMS noise amplitude σ . In order to relate the electrical average signal power Se to the
decision distance d and to the error probability it is therefore necessary to define the pulse shape
of the sampled signal.

In the following derivation, reference will be made to the optical signal schematic reported
in Figure 9.5. Assuming the NRZ coding and equiprobable bits, the average optical power PR,
the optical modulation amplitude POMA and the extinction ratio r are related by the following
relationship:

PR = 1

2
POMA

r + 1

r − 1
(9.18)

The two power levels P0 and P1 shown in Figure 9.5 must be intended as the ensemble average
values of the high logic level and the low logic level respectively, after coding in the optical
domain. To derive the previous equation, the following definitions of the extinction ratio r , the
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Figure 9.5 Schematic representation of the optical signal at the receiver input. The optical signal consists
of the intensity envelope modulating the optical field emitted by the light source. The intensity modulation is
affected by noise fluctuation, and the ensemble average of the light intensity corresponding to the high and low
logic levels are identified as P1 and P0

average received optical power PR and the optical modulation amplitude POMA are given:

r ≡ P1

P0
(9.19)

PR ≡ 1
2 (P0 + P1) (9.20)

POMA ≡ P1 − P0 (9.21)

Substituting Equation (9.19) into definitions (9.20) and (9.21), and equating equal terms, it is easy
to obtain Equation (9.18).

Introducing the photocurrents corresponding to the average power level PR and to the optical
modulation amplitude POMA gives the same relationships as above between the average value IR

of the detected photocurrent and the current swing IOMA corresponding to the optical modulation
amplitude:

IR = RPR

IOMA = RPOMA

(9.22)

Defining d as the half-amplitude of IOMA, d ≡ IOMA/2, from Equations (9.18) and (9.22), the
following expression is obtained:

IR = d
r + 1

r − 1
(9.23)

From this simple expression it is seen immediately that when the extinction ratio tends to infinite,
the distance d coincides with the average current IR. For every finite value of the extinction ratio, the
distance d is even lower than the average detected photocurrent. This is the explanation for the
average optical power penalty corresponding to every finite value of the extinction ratio. From
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Equations (9.23) and (9.22), the simple relationship between the distance d and the average optical
power PR is derived:

d = r − 1

r + 1
RPR (9.24)

Decreasing the extinction ratio, the average optical power must consequently be increased in order
to maintain the same value of the signal distance d . This is the concept of the optical power penalty
due to the finite value of the extinction ratio.

The total electric signal power Se is given by the sum of the average electrical power SR = I 2
R

with the power SOMA of the optical modulated signal shifted to the zero mean value:

Se ≡ SR + SOMA (9.25)

Using Equation (9.23) gives

Se = d2

(
r + 1

r − 1

)2

+ SOMA (9.26)

The total electric signal power Se is composed by two terms: the first term SR depends on the
sampled amplitude d and on the extinction ratio r , but is independent of the pulse shape, and the
second term SOMA depends instead on the pulse profile. Referring to Figure 9.5, the average power
SOMA is defined by the integration

SOMA ≡ 1

2T

∫ T

−T

|iR(t) − IR|2 dt (9.27)

This signal power contribution SOMA is the useful power, corresponding to the information
content included in the total receiving signal. The average power SR does not add any information
to the signal decision process and can be considered as the waist power. In the following, four cases
of pulse profiles will be considered: the rectangular pulse, the truncated sine pulse, the triangular
pulse and the trapezoid pulse. All four cases have a sampled amplitude equal to 2d , as reported in
the corresponding figures below.

9.2.2.1 Rectangular Pulse

Figure 9.6 shows the signal modeling for the rectangular pulse profile. The pulse has amplitude
IOMA = 2d and width equal to the time step T . The pulse has the following equation:

iR(t) =




IR + d, |t | ≤ T

2

IR − d, |t | >
T

2

(9.28)

In order to have a general case, in Figure 9.6 a finite extinction ratio r = 3 has been assumed.
From Equations (9.27) and (9.26),

SOMA,rect = d2

2T

∫ +T

−T

dt = d2, Se,rect = d2

[
1 +

(
r + 1

r − 1

)2
]

(9.29)

Figure 9.7 gives a simple hint for calculating the average signal power associated with the
rectangular pulse. Assuming an infinite extinction ratio, Equation (9.29) gives S

e,rect
r→∞

= 2d2.
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Figure 9.6 Rectangular pulse of amplitude IOMA = 2d and width T . The extinction ratio is r = I1/I0 = 3

Figure 9.7 Graphical calculation of the average signal power associated with the rectangular pulse

9.2.2.2 Sinusoidal Pulse

The truncated sinusoidal pulse resembles some band-limited pulse shape encountered during trans-
mission measurements and it is useful to include this pulse in the modeling. The truncated sinusoidal
pulse has the following equation:

iR(t) =

 IR + d cos

(
πt

T

)
, |t | ≤ T

IR − d, |t | > T

(9.30)

and is presented in the following Figure 9.8.
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Figure 9.8 Sinusoidal pulse of amplitude IOMA = 2d and period 2T . The extinction ratio is r = I1/I0 = 3.
A qualitative drawing of the eye diagram has been added

The period of the truncated sinusoidal pulse has been set equal to 2T in order to account for the
NRZ line code with an equiprobable bit sequence. From Equations (9.27) and (9.26) the following
is obtained immediately:

SOMA,sine = 1

2T

∫ +T

−T

d2 sin2

(
πt

T

)
dt = 1

2
d2, Se,sine = d2

[
1

2
+

(
r + 1

r − 1

)2
]

(9.31)

As discussed in the previous chapter, one of the most relevant pulse shapings available at the
decision section for avoiding any intersymbol interference pattern is the raised cosine function.
This particular pulse exhibits the characteristic oscillatory behavior along the symmetric tails. If
the raised cosine pulse is passed through a low-pass filter with the cut-off frequency slightly lower
than the signaling rate B = 1/T , the output pulse will closely resemble the sinusoidal shaping
encountered in this section, with almost smooth and flat tails.

9.2.2.3 Triangular Pulse

Figure 9.9 shows the model used for the triangular pulse. The triangular pulse represents a stronger
band-limited modeling of the signal at the decision section of the receiver than the truncated
sinusoidal pulse. The spectral content of the triangular pulse is in fact less than the truncated
sinusoidal pulse presented in the previous section and can be used to model a stronger bandwidth
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Figure 9.9 Triangular pulse of amplitude IOMA = 2d and period 2T . The extinction ratio is r = I1/I0 = 3

limitation of the transmission channel. The triangular pulse consistent with the data signaling rate
B = 1/T is represented by the following equation:

iR(t) =




IR − d, t ≤ −T

IR + 2d

T

(
t + T

2

)
, −T ≤ t ≤ 0

IR − 2d

T

(
t − T

2

)
, 0 ≤ t ≤ T

IR − d, t ≥ T

(9.32)

The pulse amplitude, the pulse width and the extinction ratio are assumed to be the same as in
the previous two cases. Using Equations (9.27) and (9.26), the following values have been obtained
for the average signal power and total electric power associated with the triangular pulse sequence:

SOMA = 1

3
d2, Se,trng = d2

[
1

3
+

(
r + 1

r − 1

)2
]

(9.33)

The calculation of the signal average power SOMA can easily be performed by observing that the
shape of the squared pulse |iR(t) − IR|2 is represented by two symmetric parabolic arms, as depicted
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Figure 9.10 Graphical representation of the squared value |iR(t) − IR|2 of the triangular pulse in Figure 9.10
after offset removal. The integration can be conveniently performed over one-half of the time step

in the Figure 9.10. From Equations (9.27) and (9.32),

SOMA = 1

2T

∫ T

−T

|iR(t) − IR|2 dt = 2

T

∫ T/2

0
|iR(t) − IR|2 dt

= 2

T

∫ T/2

0

4d2

T 2

(
t − T

2

)2

dt = 8d2

T 3

1

3

T 3

8
= 1

3
d2 (9.34)

9.2.2.4 Trapezoid Pulse

The last case to be considered is the trapezoidal pulse shown in Figure 9.11. The pulse is consistent
with the signaling data rate B = 1/T measured as the full-width at half-maximum, with symmetrical
transition times equal to τ . The pulse amplitude is equal to 2d .

Figure 9.11 Trapezoid pulse of amplitude IOMA = 2d and period 2T . The extinction ratio is r = I1/I0 = 3
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Using the pulse symmetry, the average signal power SOMA is easily computed using Equa-
tion (9.27):

SOMA = 1

2T

∫ 2T

0
|iR(t) − IR|2 dt = 1

2T
4

[∫ τ/2

0

(
2d

τ
t

)2

dt +
∫ T/2

τ/2
d2 dt

]
= d2

(
1 − 2

3

τ

T

)
(9.35)

The total signal power is then given by adding the average current power, according to Equa-
tion (9.26):

Se,trpz = d2

[
1 − 2

3

τ

T
+

(
r + 1

r − 1

)2
]

, 0 ≤ τ ≤ T (9.36)

Once the electric signal power SOMA has been related to the sampling amplitude d for differ-
ent pulse shapes, it is convenient to express the electric average power Se in terms of the optical
average power PR. From Equation (9.24) the decision distance d can be expressed as a func-
tion of the received average optical power PR. Substituting Equation (9.24) into Equations (9.29),
(9.31), (9.33) and (9.36) gives the expressions reported in Table 9.2. It is important to note the
quadratic dependence of the average electrical signal power on the average optical power, which
is characteristic of the photodetection process.

9.2.3 Electrical Noise-to-Signal Power Ratio: NSR

The total noise-to-signal power ratio is defined as the ratio between the total electric noise power
Ntot (PR) and the total electric signal power Se (PR), corresponding to the selected pulse profile:

NSR(PR) ≡ Ntot(PR)

Se(PR)
(9.37)

According to the expression (9.15) of the total noise power Ntot (PR), it is convenient to define the
noise-to-signal power ratio (NSR) for each noise component involved, comparing different NSR
contributions corresponding to each noise source involved. From Equations (9.15) and (9.37),

NSR(PR) = σ 2
c + σ 2

d + σ 2
s (PR) + σ 2

RIN(PR)

Se(PR)
(9.38)

Table 9.2 Average electrical power associated with the corresponding pulse profiles for
the consistent signaling data rate B = 1/T , assuming NRZ binary and equiprobable bit
sequences. The electrical power is expressed as a function of the received average optical
power PR, the detector responsivity R and the extinction ratio r

Pulse Average electrical power Reference

Rectangular Se,rect = R2P 2
R

[
1 +

(
r − 1

r + 1

)2
]

(9.24)

Truncated sinusoidal Se,sine = R2P 2
R

[
1 + 1

2

(
r − 1

r + 1

)2
]

(9.29)

Triangular Se,trng = R2P 2
R

[
1 + 1

3

(
r − 1

r + 1

)2
]

(9.31)

Trapezoid Se,trpz = R2P 2
R

[
1 +

(
1 − 2

3

τ

T

) (
r − 1

r + 1

)2
]

(9.36)
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Using the individual expressions of noise contributions in Equations (9.7), (9.9), (9.10) and (9.14),
the following components of the noise-to-signal ratio can be obtained:

NSRc ≡ i2
c Bn

Se(PR)
(9.39)

NSRd ≡ 2qIDBn

Se(PR)
(9.40)

NSRs ≡ 2qRPRBn

Se(PR)
(9.41)

NSRRIN ≡ R2P 2
R RIN Bn

Se(PR)
(9.42)

Figure 9.12 gives the plots of each component together with the total noise-to-signal ratio, assuming
three different RIN coefficients. The scale is reported in dB10.

The computed noise-to-signal ratios in Figure 9.12 need some comment. Noise terms with con-
stant values versus the optical power, like thermal noise and dark shot noise, appear as a straight
line with a negative slope equal to −20 dB/10 dB. The shot noise term, with the linear dependence
from the ensemble average of the optical power, is a straight line with a negative slope equal
to −10 dB/10 dB. Finally, the NSR due to RIN appears as the constant line as a consequence
of the quadratic dependence from the noise term of the optical average power. This behavior
clearly shows the performance limitation of the optical receiver affected by the laser RIN when
the optical average power reaches the threshold value. Figure 9.12 shows that the power thresh-
old decreases according to the RIN value. Assuming that the threshold is set by the intersection
between the thermal noise line and the RIN line, it has been concluded that the threshold decreases
by one-half of the RIN value reduction. In Figure 9.12 three different RIN values were considered,
−121 dB/Hz, −128 dB/Hz, −135 dB/Hz, with a 7 dB decrease for each step. Correspondingly, the
threshold decreases by 3.5 dB for each RIN value. Including the shot noise contribution, that simple
relationship would be altered.

9.2.4 Electrical Signal-to-Noise Power Ratio: SNR

In the previous section, the noise-to-signal ratio was considered because it has a simple linear
relationship with the different noise contributions. This means that by analyzing the NSR it is
possible to identify the dominant noise term by measuring the NSR slope around the required
optical power level. A similar motivation leads to the reciprocal function, namely the signal-to-
noise power ratio (SNR). This function is directly involved in the error performance of the optical
receiver. The electrical signal-to-noise ratio is defined as follows:

SNR(PR) ≡ Se(PR)

Ntot(PR)
(9.43)

Substituting the expressions of the total noise term in Equation (9.16) gives

SNR(PR) = Se(PR)

(i2
c + 2qID + 2qRPR + R2P 2

R RIN )Bn
(9.44)

The electrical signal power Se depends on the pulse shape, as derived in Section 9.2.3. In the fol-
lowing, the case of the trapezoid pulse defined in Equation (9.36) is first considered. It is important
to remark that the trapezoid pulse leads to either the rectangular pulse or the triangular pulse,
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Figure 9.12 Components of the noise-to-signal power ratio for the four noise terms considered above. The
extinction ratio has been set to r = 10. The NSR due to thermal noise and dark shot noise have the same slope
of −20 dB/10 dB. The NSR due to signal shot noise has a slope of −10 dB/10 dB while the NSR due to RIN
has a constant behavior according to the quadratic dependence of the optical power
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depending on the value of the transition time τ . Substituting Equation (9.36) into Equation (9.44)
leads to the following expression of the electrical SNR for the generalized trapezoid pulse:

SNR(PR) =
R2P 2

R

[
1 +

(
1 − 2

3

τ

T

) (
r − 1

r + 1

)2
]

(i2
c + 2qID + 2qRPR + R2P 2

R RIN )Bn
, 0 ≤ τ ≤ T , T = 1

B
(9.45)

In order to proceed with the generalization, it is first noted that the expressions of the total
electric power Se derived so far can be written in a simple common form by introducing the shape
coefficient δR. To this end, the function ζR(t) is defined as the normalized photocurrent pulse:

iR(t) ≡ IR + d ζ
R
(t) (9.46)

The signal average power SOMA in Equation (9.27) then takes the following form:

SOMA = d2 1

2T

∫ +T

−T

|ζR(t)|2 dt = d2δR (9.47)

where the shape coefficient is defined as

δR ≡ 1

2T

∫ +T

−T

|ζR(t)|2 dt (9.48)

From Equations (9.25) and (9.47) the following general expression for the total electrical signal
power is found:

Se = I 2
R + SOMA = d2

[(
r + 1

r − 1

)2

+ δR

]
(9.49)

Expressing the signal amplitude d using Equation (9.24) in terms of the average received optical
power and extinction ratio gives

Se = R2P 2
R

[
1 + δR

(
r − 1

r + 1

)2
]

(9.50)

According to previous analysis, the shaping factor therefore takes the following values:

δR,rect = 1

δR,sine = 1
2

δR,trng = 1
3

δR,trpz =
(

1 − 2

3

τ

T

)
, 0 ≤ τ ≤ T

Substituting the expression (9.50) of the electric signal power Se into Equation (9.45), the SNR for
the generic pulse profile takes the following form:

SNR = R2P 2
R

{
1 + δR[(r − 1)/(r + 1)]2

}
(i2

c + 2qID + 2qRPR + R2P 2
R RIN )Bn

(9.51)

This formula generalizes the four cases considered above using an arbitrary pulse profile defined
in Equations (9.46) and (9.48). This formula includes four noise terms in the denominator, but it
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is possible to extend the validity to any other noise term with the only condition being of mutual
independency. In this case, in fact, noise powers will add together, and it will be sufficient to
add new terms in the denominator of Equation (9.51). A further assumption is related to the noise
bandwidth and to the white noise equivalent concept, discussed in the previous section.

9.2.5 The Q-Factor

A parameter related to the electrical SNR and to the error performance calculation of the optical
receiver is the Q-factor. For a binary system with the same noise power distribution on both signal
levels, the Q-factor is given by the ratio between the sampled signal amplitude d and the RMS
value of the total noise power σtot affecting both signal levels:

Q ≡ d

σtot
(9.52)

The Q-factor is therefore a factor-of-merit of the decision process. The higher the Q-factor, the
lower is the error probability. It is a measure of the eye diagram opening referred to the RMS noise
amplitude at the decision section of the receiver. First the relationship between the Q-factor and the
received average optical power PR is considered. Substituting Equation (9.24) into Equation (9.52),
immediately gives

Q = r − 1

r + 1

RPR

σtot
(9.53)

The Q-factor can be related to the electrical SNR using the previous analysis. To this purpose,
using Equation (9.52) the total RMS noise σtot can be expressed in terms of the SNR and the
relationship can be substituted in Equation (9.53). After simple manipulations, it is found that

Q =
√

SNR

[(r + 1)/(r − 1)]2 + δR
(9.54)

In general, the Q-factor is a function of both the extinction ratio and the shaping coefficient.
Different pulse profiles satisfying the same extinction ratio and the same electrical SNR therefore
give different error probabilities. This is a consequence of the pulse profile and, in particular, how
the electrical average power is related to the pulse amplitude d . For the simplest case of the infinite
extinction ratio and an ideal rectangular pulse shape, the above relationship assumes the following
well-known form:

lim
r→∞
δR=1

Q =
√

SNR

2
(9.55)

It is convenient to write the relationship between the Q-factor and the electrical SNR using the
logarithmic transformation of the decibel. This transforms the parameter relationship into a linear
one. The following are defined:

QdB ≡ 20 log10 Q, SNRdB ≡ 10 log10 SNR (9.56)

From Equation (9.54),

QdB = SNRdB − 10 log10

[(
r + 1

r − 1

)2

+ δR

]
(9.57)
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This relation is important because it gives clear evidence of the performance degradation induced
by every finite value of the extinction ratio and increasing values of the shaping coefficient. In other
words, both the higher extinction ratio and lower shaping coefficient give better performances.

Figure 9.13 shows the Q-factor and the electrical SNR versus the average received optical power
and the extinction ratio for the same cases considered in Table 9.1 and Figure 9.12. Figure 9.14
shows the relation between the Q-factor and the electrical SNR expressed in decibels for different
values of the extinction ratio. Both figures refer to the ideal rectangular pulse with δR = 1. In
both figures, RIN varies according to the usual three values of −121 dB/Hz, −128 dB/Hz and
−135 dB/Hz, in order to show the threshold effect at relatively high power levels. RIN sets hard
limitations on the maximum value reached by the Q-factor. It will be seen in the next section that
this limits the minimum error rate achievable, leading to the characteristic error floor behavior.

It should be remembered that the total electrical signal power, including the DC average value,
are considered. For the ideal rectangular pulse, the DC component and the signal related component
are equal to each other.

9.2.6 Error Probability: BER

The bit error rate (BER) of a binary decision system affected by symmetric Gaussian noise on both
signal levels is given by the following expression:

BER(PR) = 1

2
erfc

[
Q(PR)√

2

]
(9.58)

The relation between the Q-factor and the average received optical power has been derived in
Equation (9.53). The followings assumptions are assumed to be verified:

1. Binary signal with equiprobable logic levels.
2. The noise has the same probability density distribution on both signal levels.
3. The noise has a Gaussian probability density function with zero mean.
4. The sampled signal has no intersymbol interference and the sampled amplitude is constant for

every sample.
5. The decision process is ideal without an uncertainty interval.

The complementary error function (erfc) is a direct consequence of the Gaussian noise assump-
tion. Substituting the expression (9.53) of the Q-factor gives the required relationship between the
error probability and the optical power PR:

BER(PR) = 1

2
erfc

[
RPR

σtot

√
2

(
r − 1

r + 1

)]
(9.59)

This expression relates the bit error rate to the extinction ratio and the total noise RMS value. It
is noted that the total noise includes all terms, constant, linear and quadratic contributions. This
reflects the very interesting profile of the BER function when it is plotted against the received
optical average power. Figure 9.15 reports the computed BER for the case of the optical receiver
considered in Table 9.1 and the eye diagram plotted in Figure 9.3. As usual, the extinction ratio has
been set at r = 10 and the total noise includes all the four contributions from thermal noise, dark
shot noise, signal shot noise and laser RIN. Three different RIN coefficients have been assumed,
namely RIN = −121 dB/Hz, RIN = −128 dB/Hz and RIN = −135 dB/Hz, and for each of them
the corresponding error probability curve has been computed and plotted.

It is interesting that, accordingly to previous noise plot behaviors, RIN values become the domi-
nant factor for the BER floor at high power levels. This is evident in Figure 9.15 as the BER plots
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Figure 9.13 Electrical SNR and Q-factor versus three different RIN coefficients for the optical receiver case
considered in the text. The extinction ratio has been set to r = 10 for all cases. The dash–dot lines represent
the required electrical SNR and Q-factor values in order to achieve the error probability BER = 10−12 for the
given extinction ratio r = 10

bend just above the threshold power values. Of course, the limiting BER value depends on the
noise parameters involved and it does not represent any real problem if it is located some orders
of magnitude below the required BER standards. Figure 9.16 shows a detailed view of the same
calculation for the higher range of useful BER values.
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Figure 9.14 The plot reports the relationship between the Q-factor and the electrical SNR versus different
values of the extinction ratio assuming an ideal square pulse shape. For the limiting case of the infinite extinction
ratio the Q-factor results 3 dB less than the SNR, according to the expression reported in the text. The dash–dot
line represents the required Q-factor for achieving BER = 10−12. The corresponding electrical SNR depends
on the extinction ratio
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Figure 9.15 Error probability of the optical receiver considered in the text as a function of the received
average optical power, for three different RIN coefficients

Assuming a reference error probability of BER = 1012, the optical power penalty due to RIN
degradation is about ∆PR = 2 dB when RIN increases between RIN = −128 dB/Hz and RIN =
−121 dB/Hz, but is only ∆PR = 0.3 dB when RIN increases between RIN = −135 dB/Hz and
RIN = −128 dB/Hz. This effect is due to RIN dominance as the quadratic noise term versus the
received optical power and justifies the assumption that RIN = −128 dB/Hz, as required by 10 GbE
standards.



480 Multi-Gigabit Transmission over Multimode Optical Fibre

Figure 9.16 Detailed view of the error probability of the optical receiver considered in the text as a function
of the received average optical power, for three different RIN coefficients

Figure 9.17 shows the BER as a function of the electrical SNR for different values of the
extinction ratio. Of course, in this case there is no longer any dependence on the RIN coefficients
because the independent variable is the SNR.

9.2.7 Conclusions

The sensitivity of a fiber optic receiver has been analyzed, including several noise contributions.
The total noise power presents a characteristic dependence versus the received average optical
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Figure 9.17 Error probability as a function of the electrical SNR, versus the extinction ratio. All plots refer
to the same ideal rectangular pulse with a unit shaping factor. The required electrical SNR ratio for achieving
BER = 1012 with an infinite extinction ratio is close to 20 dB10. This value corresponds to Q ∼= 7.0344 = 16.944
dB20 ⇒ SNR ∼= 98.966 = 19.955 dB10. Reducing the extinction ratio increases the required SNR for a given
error probability

power, in relation to the nature of contributing terms. Three different noise term behaviors have
been identified with respect to the received average optical power:

1. Constant: thermal noise and dark current shot noise
2. Linear: signal-induced shot noise
3. Quadratic: relative intensity noise of the laser source
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The expression of the electrical signal-to-noise power ratio has been derived in terms of different
pulse shapes assuming equiprobable NRZ binary symbols. The SNR is related to the receiving
average optical power through the extinction ratio and the pulse shape factor. Most importantly, the
signal-to-noise power ratio has been related to the Q-factor for the calculation of the error probability.

The last section introduced the optical power penalty and the signal-to-noise ratio penalty in terms
of RIN coefficients versus the extinction ratio. The interesting conclusion is that both optical power
and SNR penalties do not depend only on the RIN coefficient, but are a sensible function of the
extinction ratio. This is clear since the total noise above the RIN threshold suddenly deviates from
the almost flat behavior, due to the thermal noise dominant factor, toward the quadratic dependence
from the average received optical power. Since the error probability is a function of the eye diagram
opening (the sampled signal amplitude), for a decreasing extinction ratio a correspondingly higher
optical power level is therefore required to maintain the same sampled amplitude. Because of
the increased optical power level, a higher RIN contribution takes place and an increasingly strong
deviation from constant thermal noise is observed. In other words, the lower the extinction ratio, the
higher the average optical power must be in order to achieve the same error probability. However,
the noise grows according to a combination of linear and quadratic lows, inducing an increasing
power penalty. In this case optical power overcompensation is usually required.

9.3 Principles of Linear Equalization
In the first part of this book the propagation behavior and modeling principles of the multimode
optical fiber have been extensively studied in order to allow multigigabit transmission. The very
peculiar multimode propagation and differential group delay of multimode optical fibers severely
limits the transmission range of less than one hundred meters, assuming a fiber bandwidth of
500 MHz km. As already discussed, this would set a difficult limitation on the metro area application
of multimode fibers once multigigabit transmission technology is ready to be deployed for the low-
cost end user. The average link length of the existing fiber infrastructure usually exceeds one
hundred meters, often extending for more than two to three hundred meters. It is obvious at this
point that some engineering solution must be conceived in order to raise the applicability limit of
the existing fiber base up to at least the 10 GbE standard.

Among several proposals, still under discussion in recent Standardization Committees, the elec-
tronic dispersion compensation (EDC) technique will be considered. In this section, the basic
principle of the linear electronic compensation will be presented, introducing the inverse linear
filter equalizer and discussing both benefits and drawbacks of this solution. Due to the simplicity
and ideal performance of the inverse linear filter equalizer, this solution will be referred to as the
reference linear equalizer. It is important to remark, however, that the term ‘reference’ must not be
confused with the optimum equalizer. Linear equalization in fact suffers from high noise enhance-
ment due to a high-frequency peaking response. Accordingly, digital equalizer architectures have
proved to overcome or at least reduce the noise enhancement issue.

9.3.1 The Reference Channel

In order to introduce linear equalization, the reference multimode optical fiber transmission sys-
tem considered is reported in Figure 9.18. The transmitter generates the optical datastream at the
operating wavelength λ0 whose intensity envelope spectrum XT(f ) measured at the optical source
section S is shaped according to the square root of the raised cosine function Γm(f ):

XT(f ) = √
Γm(f ) (9.60)
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Figure 9.18 Block diagram of the reference optical transmission system. The optical link consists of a very
short multimode fiber jumper (back-to-back connection) in order to provide a transmitter-to-receiver connection
without adding any spectrum perturbation. The receiver transfer function, including the photodetection process,
is matched to the transmit spectrum at the source section S. The output spectrum at the decision section D

is shaped according to the raised cosine family of roll-off m. The receiver noise bandwidth has the minimum
value achievable for the given transmission rate

The optical receive section R is connected to the point S by a very short piece of multimode
fiber (jumper) which does not infer any signal degradation. Accordingly, at the receive section R

the intensity envelope spectrum XR(f ) coincides with the source signal XT(f ). Therefore, from
Equation (9.60),

XR(f ) = XT(f ) = √
Γm(f ) (9.61)

The optical receiver performs first the photodetection and then the proper electrical signal ampli-
fication and filtering. It is assumed that the optical receiver frequency response HR(f ), up to the
decision section but including the photodetection, will be matched to the optical intensity envelope
spectrum XT(f ) at the source section S:

HR(f ) = X∗
T(f ) (9.62)

The electrical signal spectrum XD(f ) at the decision section D is given by the product of the
input spectrum XR(f ) with the receiver transfer function HR(f ). Using the matching condi-
tion (9.61), the signal spectrum at the decision section therefore coincides with the raised cosine
function:

XD(f ) = XR(f )HR(f ) = |XT(f )|2 = Γm(f ) (9.63)
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The raised cosine pulse γm(t) with the proper signaling rate T = 1/B, the shaping factor m and
amplitude normalization have the following expressions:

Γm(f ) =




1, |f |T ≤ 1 − m

2
, T = 1

B

cos2

[
π

2m

(
f T − f

|f |
1 − m

2

)]
,

1 − m

2
≤ |f |T ≤ 1 + m

2

0, |f |T ≥ 1 + m

2

(9.64)

γm(t) = 1

T

cos(mπt/T )

1 − (2 mt/T )2

sin(πt/T )

πt/T
, 0 ≤ m ≤ 1, γm(0) = 1

T
(9.65)

The optical fiber transmission system just described represents the optimum linear transmission
system. It has the minimum noise bandwidth and the output signal has no intersymbol interference
pattern. In the following, this system will be referred to as the reference transmission system. The
noise bandwidth of the optical receiver is obtained after integration of the square modulus of the
receiver transfer function HR(f ), as reported in Equation (9.4):

Bn ≡
∫ +∞

−∞
|HR(f )|2
|HR(0)|2 df (9.66)

Using the definition (9.62) of the matched receiver with the required frequency response (9.64)
of the raised cosine pulse (9.65) gives HR(f ) = √

Γm(f ), HR(0) = √
Γm(0) = 1. Substituting in

Equation (9.66) immediately gives the well-known fundamental result:

Bn,ref =
∫ +∞

−∞
Γm(f ) df = 1

T
(9.67)

The noise bandwidth Bn,ref of the reference optical transmission system in Figure 9.18 is equal to
the signaling rate 1/T , for every value of the roll-off coefficient m. This is an important property of
the raised cosine family. The transmission system considered so far has a better optical sensitivity
for a given input equivalent noise power and detection efficiency. This is achieved according to
the following two features:

1. The minimum noise bandwidth (9.67) leads to the minimum RMS noise amplitude σtot at the
decision section.

2. The random sequence of binary weighted raised cosine pulses (9.65) at the decision section
leads to any intersymbol interference pattern.

Inserting a multimode fiber of given length between the S –R section will produce a perturbation
in the signal available at the decision section, originating a corresponding amount of intersymbol
interference. Figure 9.19 shows the same reference transmission system reported in Figure 9.18,
with the insertion of the multimode fiber link between the optical sections S and R. In order to
compensate for the frequency response perturbation introduced by the multimode fiber link, the
ideal inverse filter equalizer (IFE) is added between the electrical receiver and the decision section.

The transfer function HEQ(f ) of the ideal inverse filter equalizer is defined by the inverse transfer
function introduced by the perturbing multimode fiber link:

HEQ(f ) ≡ 1

HF(f )
(9.68)
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Figure 9.19 Block diagram of the linear transmission system including the multimode fiber link (mmf). The
section definition is the same as that used for the reference system in Figure 9.18 and has been omitted. The
optical receiver is matched to the transmitted intensity envelope spectrum. The frequency response of the fiber
link introduces a perturbation to the channel response, adding intersymbol interference at the decision section

This is immediate, concluding that the overall transfer function of the equalized transmission system,
including the multimode fiber link, leads to the required raised cosine signal spectrum at the decision
section.

The dispersion equalization performed by the ideal inverse filter equalizer is therefore complete,
restoring the original signal spectrum at the decision section that was available in the transmission
reference configuration. There would be no residual ISI after the ideal inverse filter equalizer.
Why has the equalizer in Equation (9.68) been defined as ideal? According to the definition (9.68),
the transfer function of the linear equalizer should be exactly the inverse of the transfer function
exhibited by the inserted multimode fiber link. This is not achievable in any practical situation, at
least for the following reasons:

1. High-frequency peaking. The multimode fiber exhibits a low-pass profile response, leading to
an inconsistent high-pass equalizing filter response with indefinitely high-frequency peaking to
overcome fiber bandwidth restriction.

2. Adaptation. The multimode fiber response changes during normal field operation due to many
environmental effects, such as temperature, mechanical vibrations, light polarization and any
other perturbing agent. The ideal inverse equalizer should therefore have precise adaptive capa-
bilities.

3. Filter synthesis. The exact electronic filter synthesis is not possible, leading to high-order poly-
nomial approximations.

4. Noise bandwidth enhancement. Most importantly, the huge increment of the receiver noise band-
width due to high-frequency enhancement of the equalizing filter will drastically degrade the
optical receiver sensitivity performances, even if the intersymbol interference pattern is com-
pletely canceled by the inverse ideal equalizer.

9.3.2 Noise Bandwidth of the Equalized Receiver

Even if the filter synthesis and the adaptation problems are neglected, the noise bandwidth enhance-
ment and the consequent optical power penalty remain. In this section, simple formulas will be
derived and the optical power penalties for different equalization cases will be computed. Refer-
ring to Figure 9.19 and to the definition of the ideal inverse filter equalizer in Equation (9.68), the
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transfer function of the equalized receiver using the inverse filter equalization (IFE) is given by

HR,EQ(f ) =
√

Γm(f )

HF(f )

and the noise bandwidth of the equalized receiver is given by the following integral:

Bn,EQ =
∫ B

−B

|HR,EQ(f )|2
|HR,EQ(0)|2 df = τ 2

∫ B

−B

Γm(f )

|HF(f )|2 df >
1

T
= Bn,ref (9.69)

It is noted that the noise bandwidth definition is consistent with the normalization assumptions
Γm(0) = 1 and |HF(0)| = τ , leading to

|HR,EQ(0)|2 = Γm(0)

|HF(0)|2 = 1

τ 2

The time constant τ specifies the amplitude of the transfer function of the multimode fiber consis-
tently with the assumption that the corresponding impulse is dimensionless with normalized peak
amplitude:

hF(0) =
∫ +∞

−∞
HF(f ) df = 1

Assuming that the modal response of the fiber has a low-pass profile, the noise bandwidth Bn,EQ

of the equalized receiver will always be larger than the noise bandwidth of the reference receiver.
This is easily understood if account is taken of the fact that the normalized low-pass profile of
the fiber response at the denominator of the integrand function in Equation (9.69) leads to a larger
value of the integral.

9.3.2.1 Single-Pole Modal Response

In order to show quantitatively the increase of the noise bandwidth with respect to the ideal Nyquist
channel when the ideal inverse filter equalizer (IFE) is used to compensate for the multimode fiber
bandwidth limitations, the case is considered of the multimode fiber transfer function expressed by
a dominant single-pole response. This is not intended as a real physical model. It is known that the
smooth single-pole frequency response does not fit the modal bandwidth behavior of the multimode
fiber very well. Nevertheless, this case is very simple to solve in a mathematical closed form, giving
useful information about the general concept of the equalization noise enhancement and the related
optical power penalty. Accordingly, it is considered that the multimode fiber link has the single-pole
frequency response reported below, where the cut-off frequency α ≡ fcT normalized to the bit rate
frequency B = 1/T is expressed as

hF(t) =




e−t/τ , t ≥ 0

0, t < 0

hF(0) = 1

HF(f ) = τ

1 + j
f

fc

⇒




|HF(f )|2 = T 2

4π2α2

1

1 + (f T /α)2

cut-off : fc ≡ 1

2πτ
, α ≡ fcT

τ = 1

2πα
= 1

2πfc

(9.70)

In this particular case, the normalization time constant HF(0) = τ coincides with the decay time
constant of the exponential impulse response. The parameter α sets the cut-off frequency of the
single-pole modal response. If α > 1, the cut-off exceeds the bit rate frequency; otherwise if α < 1
the cut-off frequency of the multimode fiber response is below the required bit rate. Substituting
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Equation (9.70) into Equation (9.69) and assuming the unit value m = 1 of the roll-off coefficient
of the raised cosine spectrum gives the following detailed noise bandwidth calculation of the optical
receiver featuring the ideal inverse linear equalizer (IFE):

B
n,EQ
(m=1)

= 2

(
T 2

4 π2 α2

)(
4 π2 α2

T 2

) ∫ 1/T

0

[
1 +

(
f T

α

)2
]

cos2
(π

2
f T

)
df

= 2
∫ 1/T

0

[
1 +

(
f T

α

)2
]

cos2
(π

2
f T

)
df (Hz) (9.71)

After direct integration, the following noise bandwidth for the IFE structure is obtained:

B
n,EQ
(m=1)

= Bn,ref

[
1 + 2

α2

(
1

6
− 1

π2

)]
(9.72)

Equation (9.67) was used to express the noise bandwidth of the matched receiver over the reference
channel, Bn,ref = 1/T . It is convenient to define the noise bandwidth enhancement factor ∆n(α):

∆n(α) ≡ Bn,EQ − Bn,ref

Bn,ref
= Bn,EQ

Bn,ref
− 1 (9.73)

Substituting Equation (9.72) into Equation (9.73) gives

∆n(α) = 2

α2

(
1

6
− 1

π2

)
∼= 0.1307

α2
(9.74)

From the result it can immediately be concluded that the noise bandwidth of the equalized
receiver, assuming a single-pole multimode fiber frequency response, is greater than the noise band-
width of the reference matched receiver for every value of the normalized cut-off frequency α. In
particular, if the cut-off frequency coincides with the bit rate frequency, α = 1, from Equation (9.74)
it is concluded that the noise bandwidth is about 13 % larger than the available minimum noise
bandwidth. This is transformed into suboptimal performance. In the case of a single-pole modal
response, the quadratic dependence (9.74) of the noise bandwidth enhancement factor ∆n(α) from
the reciprocal of the cut-off frequency leads to more than a 50 % noise bandwidth enhancement for
a half-rate cutoff, α = 1

2 . Figure 9.20 shows the computed plot of the noise bandwidth enhancement
factor ∆n(α) for the considered case. Different modal responses of course give different curves.
The single-pole response is among the smoother ones. Using the Gaussian frequency response the
noise bandwidth enhancement increases relatively faster than the normalized cut-off, resulting in
larger optical power penalties. Before closing this section it is important to remark that although the
noise bandwidth of the matched receiver does not depend on the raised cosine roll-off coefficient
m, this would not be the case when the inverse filter equalizer is used. In fact, the noise bandwidth
Bn,EQ of the equalized receiver in Equation (9.69) depends in general on the raised cosine profile.
This characteristic adds one degree of freedom in choosing a better equalization.

It is known from Section 9.2.1.1, assuming uniform noise power spectral density (white noise),
that the noise bandwidth ratio coincides with the noise power ratio. If the electrical SNR is consid-
ered, the obvious conclusion would be that the average signal power penalty would consequently
be related to the noise bandwidth ratio. This is true for electrical transmission systems, but is not
the case for the optical transmission system. The reason for this behavior is the square law process
inherent to the photodetection. In fact, for every intensity modulated direct detection (IMDD) opti-
cal communication system, the bit error rate is a function of the ratio between the received optical
power and the RMS noise amplitude at the input equivalent section, as reported in Equation (9.59).
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Figure 9.20 Top: computed noise bandwidth enhancement factor for the single-pole modal response. The
cut-off frequency is expressed in bit rate frequency normalized units. It is clear that setting the cut-off at half
the bit rate the noise bandwidth enhancement exceeds 50 % of the minimum ideal noise bandwidth. Bottom:
computed plot of the noise bandwidth ratio between equalized and matched receivers. Assuming a half bit rate
cut-off, the noise bandwidth ratio exceeds 1.8 dB
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This makes the received optical power level required for a given error probability directly related
to the RMS noise amplitude and not to the noise power. Consequently, the received optical power
ratio must be related to the square root of the noise bandwidth ratio.

In the next section the optical power penalty will be derived as a consequence of the noise
bandwidth enhancement factor.

9.3.3 The Optical Power Penalty

In the previous section the concept of the ideal inverse filter equalizer was introduced as the
reference solution for comparing different optical channels. How could the figure-of-merit of a
given multimode fiber link be quantified when ideal inverse filter equalization is applied? The
answer to this question leads to the concept of the optical channel metric. The following statement
defines the concept of the optical channel metric when applied to the ideal inverse filter equalizer:
the optical channel metric is defined by the value ∆PR of the average optical power penalty needed
to restore a given BER value, as consequent to the application of the ideal inverse filter equalization
to the reference Nyquist transmission system. The Nyquist reference transmission system is defined
in the following section. For the moment the derivation of the average optical power penalty due
to the noise bandwidth enhancement will be discussed.

The bit error rate (BER) of a white Gaussian noise (WGN) optical receiver affected by the
input equivalent noise power σ 2 (A2) is given by the complementary error function introduced
in Equation (9.58). For simplicity the total RMS noise amplitude is indicated by the variable σ ,
including constant, linear and quadratic components. It should be remembered that the independent
noise power components add together, while the total RMS noise amplitude is given by the square
root of the quadratic term summation. Referring to Equation (9.15), the total RMS noise amplitude
is written as

σ(PR) =
√

σ 2
c + σ 2

d + σ 2
s (PR) + σ 2

RIN(PR) (9.75)

Before continuing with the derivation of the optical power penalty, it is necessary to note that
power-dependent noise terms are a function of time. This is due to the assumed time dependence
of the intensity envelope of the detected optical signal. When the received average optical power
PR is considered, the time average of the ensemble average performed at each time instant on the
random optical sequence is used. This concept is important for correctly understanding the decision
process of the photodetected signal.

First a single optical pulse is considered. Both signal shot noise and RIN coincide with the
intensity fluctuations of the optical intensity. What is meant by the term ‘optical signal’ is sim-
ply the ensemble average of the optical intensity of the pulse. Therefore, optical fluctuations are
conceptually removed from what is intended as an optical signal in the detection process and are
considered separately as noise contributions. The optical signal referred to in intensity modulated
optical communication is obviously a function of the time, leading to the time-dependent ensemble
average. This is the detected optical pulse profile pR(t) and is not a random process but is the
ensemble average at every time instant of the optical random process at the photodetector input.

Now, a random sequence is launched of those optical pulses. The process now is ‘twice time
random’: first, because it is an optical pulse and, second, because of the random sequence of those
optical pulses. Implicitly, it is assumed that the ensemble average pR(t) performed at each time
instant affects only the single optical pulse, only the single process realization. According to the
random sequence assumption, however, the ensemble average pR(t) becomes the random process,
and the proper underscore sign is added, setting p

R
(t). It is in fact a random function of the

time, and the stochastic nature of p
R
(t) no longer depends on the optical field but instead on the

random sequence itself. This is the ergodic random process representing the photodetected signal
in the intensity modulated optical communication. The time average of each individual realization
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of pR(t) therefore coincides with the ensemble average 〈p
R
(t)〉, giving the received average optical

power PR:

pR(t) =
〈
p

R
(t)

〉
= PR (9.76)

Besides the conceptual relevance of these comments, why is there a need for them? The reason
is that the decision process is a punctual process. It is not an integral process. This means that the
time average PR of the detected optical pulse profile p

R
(t) is not properly involved in the decision

process. In particular, signal-dependent noise terms such as signal shot noise and RIN are clearly
functions of the instantaneous value the optical pulse assumes at the decision instant. Accordingly,
it can be concluded that both signal shot noise and RIN are functions of the process p

R
(t) and

not of the received average optical power PR. The practical consequence of this behavior is the
assumption of two different signal-dependent noise contributions corresponding to the high and
low signal levels in the binary decision system. Due to a higher instantaneous optical power level,
the shot noise term on the high signal level is considerably higher than the signal shot noise term
affecting the low signal level. In order to simplify the analysis of the error probability in optical
fiber communication, it is customary to adopt two different shot noise contributions, namely σs0

and σs1 on the low and high signal levels respectively. A very relevant practical consequence of
this approach is the optimum position of the decision threshold in optically amplified links. In this
case, in fact, the shot noise produced by the amplified spontaneous emission (ASE) is the dominant
noise term and the optimum threshold is considerably lower (30–35 %) than the mid position. This
is to compensate for the much higher shot noise power affecting the higher signal level than the
lower one.

In the following derivation of the optical power penalty the different shot noise and RIN contri-
butions on the high and low signal levels will be neglected and the symmetric noise power σ 2(PR)

reported in Equation (9.75) affecting the binary decision process will be assumed. A second impor-
tant approximation concerns the dependence of the total noise power from the received average
optical power. Even if the total noise power depends on the received optical power level, it will
be assumed that the variation of the received average optical power will not affect the total noise
power. It is clear that this approximation will be more justified the more the signal-dependent noise
terms add a negligible contribution to the total noise. The extinction ratio r and the photodetector
responsivity R are given and the input equivalent noise power spectral density is represented by the
constant distribution Gin. First the optical reference transmission system, reported in Figure 9.18,
is considered, using a matched receiver over the ideal Nyquist channel. In this case, the noise
bandwidth Bn,ref coincides with the bit rate frequency B, independently from the roll-off profile
chosen for the raised cosine output spectrum. The total noise power affecting the symmetric decision
process is then given by Equations (9.5) and (9.67):

σ 2 = GinBn,ref = Gin

T
(9.77)

The bit error rate is given by Equation (9.58), where the noise term reported in Equation (9.77)
has been substituted:

BER(PR,ref) = 1

2
erfc

[
RPR,ref√
2GinBn,ref

(
r − 1

r + 1

)]
(9.78)

The optical sensitivity of the reference transmission system is defined as the received average optical
power PR needed to achieve the required value of BER. In other words, it is assumed that for the
given parameter set in Equation (9.78), the BER reaches the required value, i.e. BER = 10−12,
at the power level PR,ref. The average optical power level PR,ref is the sensitivity of the optical
reference system, without any fiber link length inserted between the S –R sections.
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If a multimode fiber link is inserted between the transmitter and the receiver, the transmission
system becomes perturbed and the performances will be altered. From the previous section it can be
seen that by inserting the ideal inverse filter equalizer in front of the decision section the degraded
fiber channel response due to modal bandwidth limitation can be completely recovered, leading to
the required ISI-free signal at the decision section. This is achieved at the expense of a consistent
increase in the noise bandwidth. Now, the simple formula expressing the optical power penalty of
the optical reference system sensitivity will be derived. Since the linear equalizer is cascaded to the
low-noise front end and amplifier of the optical receiver, it is reasonable to assume that insertion of
the ideal inverse filter equalizer does not modify effectively the uniform spectral power density of
the input equivalent noise of the optical reference system. In other words, the thermal noise added
by the equalizer is negligible with respect to the total input equivalent noise level.

The input equivalent noise power spectral density of the equalized optical system using the
ideal inverse filter equalizer is represented by the constant distribution Gin. The noise bandwidth
Bn,EQ of the equalized system is increased with respect to the noise bandwidth Bn,ref of the ideal
Nyquist channel, as reported in Equation (9.69). Substituting the equalized noise bandwidth in
expression (9.78), the relationship is found between the BER and the required average optical
power level PR,EQ, including the inverse filter equalizer effect:

BEREQ(PR) = 1

2
erfc

[
RPR,EQ√
2GinBn,EQ

(
r − 1

r + 1

)]
(9.79)

Of course, since the complementary error function is a fast decreasing function of the argument,
a slight increment in the noise bandwidth corresponds to a relevant increase in the error proba-
bility. Considering the Q-factor of both the optical reference system and the equalized one, from
Equation (9.53)

Qref = r − 1

r + 1

RPR,ref√
GinBn,ref

QEQ = r − 1

r + 1

RPR,EQ√
GinBn,EQ

(9.80)

In order to restore the same BER value, both Q-factors must coincide; hence

PR,ref√
Bn,ref

= PR,EQ√
Bn,EQ

⇒ PR,EQ

PR,ref
=

√
Bn,EQ

Bn,ref
(9.81)

According to the definition given above, the increment PR,EQ/PR,ref of the received average
optical power needed to restore the same BER (the same Q-factor) coincides with the concept of
the optical power penalty. Introducing the decibel notation, the optical power penalty due to the
noise bandwidth enhancement for the inverse filter equalization is as follows:

∆PR ≡ 10 log10

(
PR,EQ

PR,ref

)
(9.82)

From Equation (9.67) the expression for the optical power penalty due to the ideal inverse filter
equalizer is

∆PR = 5 log10

(
Bn,EQ

Bn,ref

)
(9.83)

Finally, substituting the explicit integral expression (9.69) for the equalized noise bandwidth
gives the following noteworthy expression for the optical power penalty of the transmission system
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represented in Figure 9.19 of the arbitrary roll-off coefficient 0 ≤ m ≤ 1:

∆PR = 5 log10

[
2T τ 2

∫ 1/T

0

Γm(f )

|HF(f )|2 df

]
(dB) (9.84)

with Γm(0) = 1, |HF(0)| = τ .
The expression for the optical power penalty reported in Equation (9.84) is due to the equalization

noise bandwidth enhancement and quantifies the principal limitation in using this equalizer in real
multimode fiber systems. However, as already discussed, this ideal equalizer has a meaningful
relevance for understanding the benefit and the limitation of digital equalization, by representing
the ideal reference performance. In the following, two analytical examples will be considered.

9.3.3.1 Single-Pole Modal Response

From Equation (9.84), it is concluded that for every fixed frequency bit rate B and multimode fiber
modal response HF (f ), the optical power penalty depends on the value of the roll-off coefficient m

of the raised cosine output signal spectrum. The general expression of the optical power penalty of
the inverse filter equalizer assuming the single-pole modal response and raised cosine output signal
spectrum with a generic frequency roll-off is derived in the following section. For the moment,
the case of the unit roll-off coefficient, m = 1, is discussed. Substituting the single-pole modal
response (9.70) and the raised cosine spectrum (9.64) with m = 1 into Equation (9.84) gives the
following expression of the optical power penalty:

∆PR(α) = 5 log10

[
1 + 2

α2

(
1

6
− 1

π2

)]
, α = fcT , m = 1 (9.85)

Assuming that the single-pole cut-off frequency is several orders of magnitude higher than the
frequency bit rate leads to the negligible optical power penalty, as expected by the negligi-
ble compensation required. Figure 9.21 shows the computed optical power penalty according to
Equation (9.85). The single-pole modal response considered allows a closed-form calculation of
the optical power penalty through Equation (9.85). The corresponding plot in Figure 9.21 shows a
relatively smooth dependence of the optical power penalty on the cut-off frequency. This behavior
is characteristic of the smoothed frequency roll-off of the single-pole response. Assuming a strong
single-pole bandwidth limitation close to only 20 % of the bit rate frequency, this leads, according
to Figure 9.21, to ∆PR

∼= 3.1 dB. This is still an acceptable value if the limitations imposed on the
optical channel frequency response is considered.

9.3.3.2 Gaussian Modal Response

The conclusions found in the previous section would be quite different if the Gaussian response
had been referred to instead of the single-pole response. In this case, the analytical integration is
no longer available and numerical solutions must be used. Referring to the general expression of
the optical power penalty reported in Equation (9.84), the following Gaussian modal response and
unit roll-off raised cosine output spectrum, m = 1, are assumed:

Γ1(f ) = cos2
(π

2
f T

)
, −1 ≤ |f T | ≤ 1 (9.86)

HF(f ) = τe−f 2/(2σ 2
f
) (9.87)

Note that both frequency responses are correctly normalized assuming Γm(0) = 1, |HF(0)| = τ .
The Gaussian transfer function is characterized by the half-width at half-maximum or equivalently
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Figure 9.21 Computed average optical power penalty for the equalized transmission system assuming a
single-pole modal frequency response and the unity roll-off coefficient m = 1. The curve is plotted versus the
normalized cut-off frequency. Assuming that α = fcT = 1

2 then ∆PR
∼= 0.9 dB

by the −6 dB electrical bandwidth fc. From Equations (3.115) and (9.87), introducing the bit rate
normalized cut-off frequency α gives

fc ≡ α

T
, α > 0 (9.88)

Substituting in Equation (9.87) gives the Gaussian modal response with the normalized cut-off
frequency:

hF(t) = exp

[
−π2α2

log 2

(
t

T

)2
]

hF(0) = 1

⇒




HF(f ) = T

α

√
log 2

π
exp

[
−

(
f T

α

)2

log 2

]

HF(fc) = 1

2
HF(0)

τ = T

α

√
log 2

π

σf = α

T
√

2 log 2

(9.89)

The modal transfer function HF(f ) of the multimode fiber refers to the intensity of the light and
not to the field amplitude. However, due to the quadratic conversion of the photodetection process,
the noise response of the ideal inverse filter equalizer is given by the square modulus |HF(f )|2
of the modal fiber response. Substituting Equations (9.89) and (9.86) in Equation (9.84) requires
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the following integral to be solved in order to calculate the optical power penalty for the Gaussian
modal response. For the sake of clarity, the detailed dimensional constants cancellation is given:

∆PR = 5 log10

[
2T 2 α2 log2

π
T

α2

T 2

π

log 2

∫ 1/T

0

cos2[(π/2)f T ]

e−(f T /α)2 2 log 2
df

]

= 5 log10

[
2T

∫ 1/T

0
cos2

(π

2
f T

)
e−(f T /α)22 log 2 df

]
(9.90)

Substituting for the normalized frequency variable x ≡ f T gives

∆PR(α) = 5 log10

[
2

∫ 1

0
cos2

(π

2
x
)

e(x2/α2)2 ln 2 dx

]
, α ≡ fcT ,m = 1 (9.91)

Figure 9.22 shows the numerical computation of the optical power penalty according to Equa-
tion (9.91), assuming that the normalized Gaussian modal bandwidth α varies from 0.2 and 2.0.
Figure 9.23 presents the same calculation but using a logarithmic scale on the ordinate axis. This
plot clearly shows the threshold behavior of the optical power penalty for the Gaussian modal
bandwidth value lower than half a bit rate.

9.3.3.3 IV-Order Bessel–Thompson Modal Response

So far in Section 9.3 two simple analytical functions for modeling the multimode fiber response
have been considered, namely the single-pole and the Gaussian transfer functions. In this section,
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Figure 9.22 Computed optical power penalty (9.91) of the equalized system, assuming a Gaussian modal
response and unit roll-off of the raised cosine spectrum. The modal cut-off interval is ranging between
0.01 ≤ x ≤ 10. The optical penalty increases suddenly as the cut-off frequency decreases below the frequency
bit rate
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Figure 9.23 Logarithmic plot representation of the optical power penalty in Figure 9.22. At half a bit rate
cut-off, fc = 1/2T , the optical power penalty reaches ∆PR

∼= 2.8 dB, a higher value than the single-pole
response shown in Figure 9.21

the fourth-order Bessel–Thompson frequency response will be introduced, which could be used for
additional modeling of the multimode fiber behavior. At first sight, the fourth-order Bessel–Thomp-
son function has some features that do not fit the physical requirements of the multimode fiber
impulse response. First, the impulse response can assume negative values during the postcur-
sor tail evolution. Second, the characteristic group delay is strictly determined by the cut-off
frequency. These features are not physically compatible with the propagation characteristic of
the light intensity in optical fibers. Nevertheless, the fourth-order Bessel–Thompson frequency
response could be used for modeling some specific responses of the multimode fiber. Similar
comments, on the other hand, could be raised even for the single-pole or the Gaussian pulse
responses.

The normalized frequency response S(f ) of the fourth-order Bessel–Thompson filter is given in
Chapter 8, equation (8.80). The group delay τ and the cut-off frequency fc for a given amplitude
reduction are related by specifying the scaling constant a. In order to use S(f ) as the multimode
fiber response HF(f ), some modification of the modeling introduced in Chapter 8 is needed. In
order to be comparable with the other two modeling functions, the cut-off needs to be defined
at half-maximum instead of the usual 1/

√
2 and the normalization constant must satisfy the unit

amplitude condition of the impulse response, hF(0) = 1. Since the impulse response of the fourth-
order Bessel–Thompson filter is causal, s(0) = 0, t ≤ 0, and the constant τ cannot be determined
as was done in the previous cases by setting s(0) = τ

∫ +∞
−∞ S(f ) df = 1.

The standard fourth-order Bessel–Thompson filter definition will be used when the frequency
response has unit amplitude at the frequency origin and the cut-off frequency refers to 1/

√
2

amplitude decay. The frequency response S(f ) of the standard fourth-order Bessel–Thompson
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filter from Equation (8.80) is given, together with the characteristic relationships:

S(f ) = 105

105 + 105y + 45y2 + 10y3 + y4

y = j 2π f τd = j a
f

fc
⇒ τd = a

2πfc
(9.92)

S(0) = 1, |S(fc)| = 1√
2

⇒ a = 2.1139

The notation τd for the group delay of the fourth-order Bessel–Thompson filter is used to avoid
confusion with the normalization constant τ for the unit amplitude condition of the impulse response
of the multimode fiber.

The first modification deals with the cut-off frequency, which must be referred to the half-
maximum instead of the usual 1/

√
2 relative level. From Equations (9.92), by setting |S(fc)| = 1

2
the corresponding scaling constant a = 2.8860 is found. The second modification operated to the
standard fourth-order Bessel–Thompson filter response in Equation (9.92) regards the normalization
of the impulse response. The peak of the impulse response of the fourth-order Bessel–Thompson
filter (9.92) is located at τd and can be used for the normalization hF(0) = 1. In fact, multiplying
S(f ) by the phase shift factor exp(+j2πf τd) gives the corresponding impulse response translated
with the peak value at the origin. This allows the unit amplitude normalization of the impulse
response to proceed.

Introducing the two modifications mentioned above and using the conventional bit rate frequency
normalization x ≡ f T , α ≡ fcT , from Equation (9.92) the following fourth-order Bessel–Thomp-
son frequency response can be obtained, which is suitable for compliant modeling the multimode
fiber impulse response:

hF(t)

hF(0) = 1

}
←→




HF(y) = 105τey

105 + 105y + 45y2 + 10y3 + y4

y = j 2π f τd = j a
x

α
⇒ τd

T
= a

2πα

|HF(fc)|
|HF(0)| = 1

2
⇒ a = 2.8860

(9.93)

In general, the scaling constant a is obtained by solving the following equation for every fixed
cut-off level ρ:

0 < ρ < 1 ⇒ |HF(ja)|
|HF(0)| = ρ ⇒ a(ρ) (9.94)

However, independently from the normalized cut-off frequency α, by setting x = α the variable
y = ja leads to the same value of the scaling constant. In other words, the scaling constant a is a
function of only the cut-off level ρ and not of the normalized cut-off frequency. The normalization
constant τ is obtained by solution of the following condition:

τ : hF(0) = 1

T

∫ +∞

−∞
HF(x) dx = 1 (9.95)

The area subtended by the frequency response HF(x) depends on both the scaling constant a and the
normalized cut-off frequency α, and hence the normalization time constant is a function of both these
variables, τ = f (ρ, α). However, the effect of the normalized cut-off frequency α reduces only
to a proportional scaling factor, as demonstrated in the following numerical example. This can be
understood by a simple reasoning: if α increases by one order of magnitude, from Equations (9.93)
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Table 9.3 Computed scaling constant a and normalized time constant τ/T

for the fourth-order Bessel–Thompson frequency response reported in Equa-
tions (9.93) versus the cut-off level ρ and the cut-off frequency α. The solutions
corresponding to half-maximum, ρ = 1

2 and the unit cut-off frequency α = 1
are highlighted

ρ a τ/T

α = 0.01 α = 0.1
α = 1

τ1(ρ)/T
α = 10

0.1 5.3718 91.8842 9.1884 0.9188 0.0919
0.2 4.3251 73.9800 7.3980 0.7398 0.0740
0.3 3.7240 63.6997 6.3700 0.6370 0.0637
0.4 3.2736 55.9956 5.5996 0.5600 0.0560
0.5 2.8860 49.3654 4.9365 0.4937 0.0494
0.6 2.5188 43.0840 4.3084 0.4308 0.0431
0.7 2.1419 36.6364 3.6636 0.3664 0.0366
0.8 1.7227 29.4659 2.9466 0.2947 0.0295
0.9 1.2008 20.5400 2.0540 0.2054 0.0205

the variable y will assume the same values corresponding to one order of magnitude larger values of
the normalized frequency x, leading to one order of magnitude larger values of the indefinite inte-
gral. Consequently, the time constants must be one order of magnitude smaller and the reciprocal
scaling effect is demonstrated. Table 9.3 gives the numerical solution for the scaling constant a in
Equation (9.94) and the time constant τ in Equation (9.95) for the fourth-order Bessel–Thompson
frequency response (9.93) versus different cut-off levels 0.1 ≤ |HF(fc)|/|HF(0)| = ρ ≤ 0.9, assum-
ing four different values of the normalized cut-off frequency α = (0.01, 0.1, 1, 10). Neglecting
small differences in the scaling factor of the time constant due to numerical resolution accuracy,
the inverse relationship is largely proved. From the consideration above, it can be concluded that
the normalization time constant has the following expression:

τ(ρ, α) = 1

α
τ1(ρ) (9.96)

where:
τ1(ρ) ≡ τ(ρ, 1)

Substituting the multimode fiber fourth-order Bessel–Thompson response (9.93) and the raised
cosine spectrum (9.86) with the unit roll-off in Equation (9.84), the following normalized integral
representation of the optical power penalty for the fourth-order Bessel–Thompson modal response
is obtained:

∆PR(α) = 5 log10

[
2
∫ 1

0

∣∣∣∣1 + j
a

α
x − 3

7

(ax

α

)2 − j
10

105

(ax

α

)3

+ 1

105

(ax

α

)4
∣∣∣∣2

cos2
(π

2
x
)

dx

]
, α = fcT ,m = 1 (9.97)

It should be remembered that the scaling constant a = 2.8860 with half-maximum cut-off ρ = 1
2

at α = fcT and the integration variable x = f T is the bit rate normalized frequency. Figure 9.24
shows the computed plot of the scaling constant a and the normalization time constant τ/T versus
the cut-off level 0 < ρ < 1 for the unit normalized cut-off frequency α = 1. However, using the
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Figure 9.24 Computed scaling constant a and normalized time constant τ/T for the fourth-order Bessel–
Thompson frequency response reported in Equations (9.93) versus the cut-off level ρ and the cut-off frequency
α. The normalized time constant scales as the reciprocal of α

inverse relationship (9.96), the corresponding normalization time constant τ/T for every different
cut-off frequency can easily be obtained. Figure 9.25 shows the computed optical power penalty
versus the normalized cut-off frequency α, according to Equation (9.97).

This last example closes the section on optical power penalty calculations based on the expres-
sion (9.84). So far, a unit roll-off raised cosine spectrum has been implicitly assumed at the decision
section. This reflects the higher values of optical power penalties, as will be seen in detail in the next
section. In fact, the largest high-frequency content associated with the unit roll-off raised cosine
spectrum determined the highest noise power due to high-frequency equalization enhancement.

9.3.4 Influence of the Raised Cosine Shaping Factor

In order to include the effects of the shaping coefficient m in the analysis of the optical power
penalty, the expression (9.64) of the raised cosine spectrum is considered again and the bit rate
frequency normalized variable x = f T is used:

Γm(x) =




1, |x| ≤ 1 − m

2

cos2

[
π

2m

(
x − x

|x|
1 − m

2

)]
,

1 − m

2
≤ |x| ≤ 1 + m

2

0, |x| ≥ 1 + m

2

(9.98)

Substituting this expression in Equation (9.84) and assuming the single-pole and the Gaussian
modal responses according to Equations (9.70) and (9.89) respectively gives the following integral
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Figure 9.25 Logarithmic plot representation of the optical power penalty for the fourth-order Bessel–
Thompson channel with unit roll-off of the raised cosine spectrum. At a half bit rate cut-off, the optical
power penalty reaches about ∆PR

∼= 2.8 dB, as for the Gaussian channel

representations of the optical power penalties for the generic roll-off coefficient m of the raised
cosine output spectrum:

∆PR
Single−pole

= 5 log10

{
2
∫ (1−m)/2

0

(
1 + x2

α2

)
dx

+2
∫ (1+m)/2

(1−m)/2

(
1 + x2

α2

)
cos2

[
π

2m

(
x − x

|x|
(1 − m)

2

)]
dx

}

∆PR
Gaussian

= 5 log10

{
2
∫ (1−m)/2

0
e(x2/α2)2 ln 2 dx

+2
∫ (1+m)/2

(1−m)/2
e(x2/α2)2 ln 2 cos2

[
π

2m

(
x − x

|x|
1 − m

2

)]
dx

}
(9.99)

The explicit detailed expression for the fourth-order Bessel–Thompson response, which can be
easily derived from Equations (9.98), (9.93) and (9.84), is omitted. In particular, setting m = 1
in Equation (9.99) gives the same expressions found in Equations (9.85) and (9.91) respectively.
Figure 9.26 shows the computed optical power penalties for the three cases of single-pole, Gaussian
and fourth-order Bessel–Thompson responses, assuming in each case the following four different
values of the shaping factor, m = 0, m = 0.25, m = 0.50 and m = 1. It can be seen immediately
that the case m = 0 leads to the lower optical power penalty for each response. This conclusion is
expected because the case m = 0 has the narrowest signal bandwidth available for the given signal-
ing rate and the amount of equalization noise due to high-frequency enhancement is consequently
the lowest available for that configuration.
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Optical Penalty over the IV-order Bessel-Thompson Channel
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Figure 9.26 Computed optical power penalties for the single-pole, Gaussian and fourth-order Bessel–
Thompson modal responses, assuming different values of the raised cosine roll-off coefficient. Increasing values
of the shaping coefficient correspond to increasing high frequency content in the output signal spectrum which,
requiring larger amounts of equalization, drags more noise and leads to larger optical penalties. The Nyquist
shaping with m = 0 gives the absolute lowest optical penalty for every modal bandwidth. The encircled regions
highlight the optical power penalties evaluated at cut-off frequencies about 10 % of the frequency bit rate. In
this region the Gaussian channel leads to an optical power penalty approximately one order of magnitude higher
than the fourth-order Bessel–Thompson channel
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The computed plots in Figure 9.26 show clearly two different behaviors at relatively low and high
values of the normalized cut-off frequency. At a higher cut-off frequency, under relatively broad-
band channel transmission, the optical power penalty achieved by the inverse linear equalization
is almost the same for all three channel models selected. Some differences are still recogniz-
able relative to the shaping coefficient of the raised cosine output spectrum. According to the
peculiar square-law detection of the optical signal, in the broadband region the optical power
penalty decreases with a double slope versus the increasing cut-off frequency of the fiber chan-
nel. At a narrower channel bandwidth, the equalization penalty depends more specifically on the
selected channel modeling. It is clear that the single-pole modal response leads to the lowest
equalization penalty, while the Gaussian modal response determines the highest relative value
of the optical penalty. The fourth-order Bessel–Thompson response is between these responses.
The reason for this behavior is easily understood in terms of the different amount of equaliza-
tion required at higher frequencies. The sharpest Gaussian profile requires the more consistent
high-frequency peaking in the inverse linear equalizer, leading to the highest noise enhancement
assuming white noise distribution. The opposite happens for the single-pole channel, where the
smoothest response requires the weakest equalization, leading to minimum noise dragged into the
system.

Figure 9.26 shows that the lowest optical power penalty is associated with the roll-off coefficient
m = 0. This conclusion holds for every value of the normalized cut-off frequency of each one of
the represented modal responses. Setting m = 0 in Equations (9.97) and (9.99) gives the following
simple expressions of the optical power penalties, where only the multimode fiber response is
present:

∆PR
Single−pole

= 5 log10

[
2
∫ 1/2

0

(
1 + x2

α2

)
dx

]
(m=0)

∆PR
Gaussian

= 5 log10

[
2
∫ 1/2

0
e(x2/α2)2 ln 2 dx

]
(m=0)

(9.100)

∆PR

IV-BT
= 5 log10

[
2
∫ 1/2

0

∣∣∣∣1 + j
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x − 3
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(ax
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)2 − j
10

105

(ax

α

)3 + 1

105

(ax

α

)4
∣∣∣∣2

dx

]
(m=0)

In the next section, the relevant consequences of this choice of shaping coefficient will be seen.
The case m = 0 has a particular relevance. It defines the Nyquist channel response characterized
by having the receiver with the minimum bandwidth required for the given signal bit rate. Since
the extension of the signal spectrum required at the equalizer output is the minimum available for
that signaling rate, the amount of required equalization for a given multimode fiber modal response
is consequently also the minimum.

This reasoning leads to the fundamental concept of the minimum available optical power penalty
for every specific channel response profile and to the definition of the optical channel metric for
the ideal inverse filter equalizer. Similar concepts will be introduced in the next chapter concerning
digital equalizations and the related definition of the channel metrics for digital equalizers.

9.3.5 Penalty of the Inverse Filter Equalizer (IFE)

The frequency profile of the raised cosine output spectrum is determined by the roll-off coeffi-
cient, as sketched in Figure 9.27. The case m = 0 defines the ideal Nyquist spectrum and has the
fundamental property of exhibiting the smallest frequency content available for the given signal rate.
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Figure 9.27 Raised cosine frequency profile versus the roll-off coefficient. The spectrum refers to the bit
rate B

A very interesting feature of the ideal Nyquist spectrum is that it does not depend on the fre-
quency: it is constant up to a half bit rate. In the following, the ideal Nyquist spectrum will be
assumed to be available at the decision section of the inverse filter equalizer in the optical refer-
ence system in Figure 9.18. The corresponding optical power penalty in Equation (9.84) takes the
following simple but relevant form, where the normalized frequency variable x = f T is introduced:

∆PR
(m=0)

= 5 log10

[
2τ 2

∫ 1/2

0

1

|HF (x)|2 dx

]
(9.101)

The normalization assumptions of the multimode fiber response are |HF(0)| = τ . Introducing the
new notation PIEI ≡∆PR

(m=0)

, the expression (9.101) is defined as the optical power penalty of the

ideal inverse filter equalizer (PIEI, or penalty of the ideal equalizer (inverse)):

PIEI = 5 log10

[
2τ 2

∫ 1/2

0

1

|HF(x)|2 dx

]
, |HF(0)| = τ (9.102)

The important conclusion is that the optical power penalty PIEI depends only on the fiber channel
response and refers to the ideal inverse filter equalizer (IFE). According to Equations (9.102), the
following statements apply:

1. The function PIEI is the optical channel metric for evaluating the transmission performances of
the multimode fiber link assuming the ideal inverse filter equalizer (IFE).

2. The subscript I added to the notation of PIEI indicates that the optical power penalty refers to
the ‘ideal’ IFE.

3. The Nyquist reference channel is defined as the reference transmission system in Figure 9.18
where both the transmitter and the receiver frequency responses have raised cosine profiles with
the ideal (m = 0) roll-off coefficient.

This definition is important for understanding the meaning of the Nyquist reference channel in
the linear equalizer theory. These concepts will be used again later in Chapter 10 in the section
dedicated to digital equalizers, with some relevant differences. Figure 9.28 gives a block diagram
of the Nyquist reference channel.

The optical power penalty PIEI for the ideal inverse filter equalizer working over the single-pole
channel can be easily solved in closed mathematical form. Substituting the frequency response (9.70)
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Figure 9.28 Schematic representation of the ideal Nyquist channel as the reference channel used for the
definition of the optical power penalty PIEI for the inverse filter equalizer

into Equations (9.102) gives the corresponding optical power penalty for the single-pole modal
response already derived in Equation (9.100):

PIEI
Single−pole

= 5 log10

[
2
∫ 1/2

0

(
1 + x2

α2

)
dx

]
= 5 log10

(
1 + 1

12α2

)
(9.103)

Unfortunately, the same mathematical closed form is not available for both the Gaussian and the
fourth-order Bessel–Thompson modal responses and in that case, reference must be made to the
numerical calculation of PIEI using the respective responses in Equations (9.89) and (9.93).

Table 9.4 gives the PIEI values computed using the expression (9.102) and assuming respec-
tively the single-pole response in Equation (9.70), the Gaussian response in Equation (9.89) and
the fourth-order Bessel–Thompson response in Equations (9.93).

Figure 9.29 shows the corresponding PIEI plots versus normalized cut-off frequencies. All these
results are valid for the ideal Nyquist channel, assuming that the roll-off coefficient of the raised
cosine signal spectrum at the decision section is zero.

Once the reference transmission system and the ideal inverse filter equalizer have been defined,
the optical power penalty PIEI depends exclusively on the fiber modal response. In other words,
PIEI is a measure of the quality of the transmission fiber channel. It is the optical channel metric.
The smaller the PIEI, the better does the multimode link behave. Using PIEI it is therefore possible
to compare different multimode fiber links in terms of their capability to transfer information at
the multigigabit rate. The fiber whose response leads to the lowest PIEI value behaves as the best
link among the available population. The large variability of PIEI (dB10) at low cut-off values
shown with respect to the modal profile chosen and the dependence of the modal profile on the
environmental conditions make the equalization definition a very complicated task.

In the following, the Matlab scripts are given for the calculation of PIEI assuming respectively
the single-pole, the Gaussian and the fourth-order Bessel–Thompson responses.
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Table 9.4 Optical power penalty values computation for the single-pole, the
Gaussian and the fourth-order Bessel–Thompson modal responses. From the
reported data, it is concluded that at every cut-off frequency the single-pole modal
response guarantees the lowest value of PIEI. The optical power penalty relative
to the Gaussian and the fourth-order Bessel–Thompson modal responses suddenly
increases for cut-off frequencies below 30 % of the bit rate frequency

α = fcT PIEI (dB10)
Single-pole

PIEI (dB10)
Gaussian

PIEI (dB10)
IV-BT

0.1000 4.8502 65.9360 21.5111
0.2000 2.4451 12.7389 10.0339
0.3000 1.4232 4.3360 4.4766
0.4000 0.9104 2.0568 2.0755
0.5000 0.6247 1.1985 1.1355
0.6000 0.4521 0.7887 0.7185
0.7000 0.3411 0.5605 0.4999
0.8000 0.2658 0.4199 0.3701
0.9000 0.2126 0.3268 0.2860
1.0000 0.1738 0.2619 0.2281
1.5000 0.0790 0.1135 0.0979
2.0000 0.0448 0.0633 0.0545
5.0000 0.0072 0.0100 0.0086

10.0000 0.0018 0.0025 0.0021

9.3.5.1.1 Single-Pole Response
% The program computes the PIE I for the Single-pole channel
% according to (9.103).
%
clear;
xo min=0.01; % Minimum normalized cut-off
Np=100; % Number of frequency points per decade
x1 min=xo min;
x1=(x1 min:x1 min/Np:10*x1 min-x1 min/Np);
x2 min=10*x1 min;
x2=(x2 min:x2 min/Np:10*x2 min-x2 min/Np);
x3 min=10*x2 min;
x3=(x3 min:x3 min/Np:10*x3 min-x3 min/Np);
xo=[x1 x2 x3];
for k=1:length(xo),

PIEI(k)=5*log10(1+1/(12*xo(k)^2));
end;
loglog(xo,PIEI,'r');
grid on;
title('Penalty of the Ideal Inverse Filter Equalizer over the Single-pole

Channel');
xlabel('Normalized Cutoff Frequency 1/T');
ylabel('PIE I - [dB 1 0]');
hold on;
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Figure 9.29 Computed PIEI according to Equation (9.102) for three different multimode fiber responses:
Gaussian, single-pole and fourth-order Bessel–Thompson. The comparison reveals the characteristic smoothed
high-frequency roll-off of the single-pole response with respect to the sharpest Gaussian and Bessel–Thompson
profiles. When the normalized modal response reaches about 60 % of the frequency bit rate the three responses
show approximately the same penalty value, PIEI ∼ 0.5–0.8 dB. At lower modal cut-off, the Gaussian and the
Bessel–Thompson responses increase much more rapidly, leading to almost the same value PIEI ∼ 10 dB at
α ≤ 0.2. At decreasing cut-off values, the Gaussian response shows the worst behavior, reaching more than
a 65 dB penalty at α ≤ 0.1. At the same cut-off value, the fourth-order Bessel–Thompson response exhibits
about a 20 dB penalty and the smoother single-pole response remains below 5 dB
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9.3.5.1.2 Gaussian Response
% The program computes the PIE I for the Gaussian channel
% according to (9.102).
%
clear;
xo min=0.01; % Minimum normalized cut-off
Np=100; % Number of frequency points per decade
x1 min=xo min;
x1=(x1 min:x1 min/Np:10*x1 min-x1 min/Np);
x2 min=10*x1 min;
x2=(x2 min:x2 min/Np:10*x2 min-x2 min/Np);
x3 min=10*x2 min;
x3=(x3 min:x3 min/Np:10*x3 min-x3 min/Np);
xo=[x1 x2 x3];
dx=0.001;
x=(0:dx:+1/2-dx); % Integration interval
for k=1:length(xo),

H=exp((x/xo(k)).^2*2*log(2));
PIEI(k)=5*log10(2*sum(H)*dx);

end;
loglog(xo,PIEI);
grid on;
title('Penalty of the Ideal Inverse Filter Equalizer over the Gaussian

Channel');
xlabel('Normalized Cutoff Frequency 1/T');
ylabel('PIE I - [dB 1 0]');
hold on;

9.3.5.1.3 IV-Order Bessel–Thompson Response
% The program computes the PIE I for the IV-order Bessel– Thompson channel
% according to (9.102).
%
clear all;
%
% Cut-off frequency range
%
xo min=0.01; % Minimum normalized cut-off
Np=100; % Number of frequency points per decade
x1 min=xo min;
x1=(x1 min:x1 min/Np:10*x1 min-x1 min/Np);
x2 min=10*x1 min;
x2=(x2 min:x2 min/Np:10*x2 min-x2 min/Np);
x3 min=10*x2 min;
x3=(x3 min:x3 min/Np:10*x3 min-x3 min/Np);
xo=[x1 x2 x3];
%
% IV-order Bessel– Thompson response
%
dx=0.01;
x=[dx:dx:100];
Cutoff=0.5;
eps=1e-6;
Left=0;
Right=10;
a=(Left+Right)/2;
yc=i*a;
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Hc=105/(105+105*yc+45*yc^2+10*yc^3+yc^4);
Error=abs(Hc)-Cutoff;
while abs(Error)>eps,

if Error>0,
Left=a;

else
Right=a;

end;
a=(Left+Right)/2;
yc=i*a;
Hc=105/(105+105*yc+45*yc^2+10*yc^3+yc^4);
Error=abs(Hc)-Cutoff;

end;
dx=0.001;
x=(0:dx:1/2-dx); % Integration interval for the power penalty
for k=1:length(xo),

y=i*a*x/xo(k);
H=105./(105+105*y+45*y.^2+10*y.^3+y.^4);
PIEI(k)=5*log10(2*sum(1./(abs(H).^2))*dx);

end;
loglog(xo,PIEI,'g');
grid on;
title('Optical Penalty over the IV-order Bessel– Thompson Channel');
xlabel('Normalized Cutoff Frequency 1/T');
ylabel('PIE I - [dB]');
hold on;

The numerical solution of the three cases presented shows clearly the benefits and the limitations
of the ideal inverse filter equalizer. Due to the operating principle of high-frequency boosting to
compensate for the channel bandwidth roll-off, the principal limitation of the IFE is the noise
enhancement due to noise bandwidth amplification operated in the equalization section. Depending
on the amount of equalization required, the IFE can accomplish satisfactory results or unacceptable
noise corruption. This is the case of the single-pole channel response, where the smoother profile
allows for correspondingly smooth equalization, leading to a few dB of optical power penalty even
in the case of strong channel limitation. This is clearly quantified in Figure 9.29, where assuming a
single-pole normalized cut-off of only 10 % of the signal bit rate requires less than 5 dB of optical
power penalties. The same value of channel cut-off, but referred to a steeper frequency profile
like the fourth-order Bessel–Thompson or the Gaussian responses, leads to unacceptable noise
degradation, exceeding 20 dB and 60 dB respectively of optical power penalties.

9.4 Conclusions

In this chapter, the basic concepts and expressions have been introduced of the theory of the decision
process in binary digital optical transmission with Gaussian white noise. Section 9.2 introduced
noise modeling for optical fiber transmission. Different noise terms have been presented and the
relative mathematical equations have been used in several examples to compare their respective
contributions to system performance degradation. In particular, the distinction of noise contributions
into the basic three categories of constant, linear and quadratic dependent terms from the received
optical power have been detailed and their progressive contributions at increasing power levels
have been analyzed. The classical bit error rate formula has been presented with some applications
to fiber optic systems. The relationship with the signal-to-noise power in the electrical domain has
been derived for several signal models.
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Section 9.3 introduced the ideal inverse filter equalizer (IFE). This basic electrical equalizer
will be used as the reference for the comparison between more suitable digital architectures. In
particular, the characteristic noise enhancement factor of IFE has been quantitatively compared
among three different channel models, namely the single-pole, the Gaussian and the fourth-order
Bessel–Thompson responses. Closely related to the optical power penalty is the concept of the
channel metric PIEI for the ideal inverse filter equalizer. The concept of the penalty of the ideal
inverse linear equalizer presented in this section will be extended using the penalty of the ideal
digital equalizer according to the minimum mean square error (MMSE) optimization criteria. It
will be seen that for relatively low dispersion, the linear equalization might have some benefits
over the digital counterpart, but at relatively large dispersions the situation changes in favor of
the digital equalizer. The digital equalizer represents today a better solution for extending the
length operability of multimode fiber links compliant to IEEE 802.3 standard 10GBASE-LRM.
The expression of PIEI has been obtained with an original derivation based on the concept of noise
bandwidth enhancement. The smoothed single-pole channel is suitable for compensation using the
ideal inverse filter equalizer, leading to a residual penalty of less then 5 dB over only 10 % of the
channel bandwidth. The conclusions are quite different when assuming steeper channel responses,
such as those of the Gaussian or the fourth-order Bessel–Thompson profiles. In these cases, the
inverse filter equalizer is not suitable and so different, more efficient solutions must be conceived.
The expression of the channel metric for the inverse filter equalizer will be compared in the next
chapter with the equivalent expressions derived for the feedforward equalizer and the decision
feedback equalizer, for quantitatively classifying multimode fiber links.
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Decision Feedback Equalization

Expanding Multimode Fiber Capabilities

10.1 Introduction
In this chapter the theory and applications will be presented of the electronic dispersion compen-
sator (EDC) implemented using the decision Feedback Equalizer (DFE). The theory of the DFE
has been developed for more than thirty years and the DFE has found many successful appli-
cations in compensating channel distortion in multipath radio link since the 1970s. The theory
developed by J. Salz is presented and reference to his will be made fundamental paper ‘Optimum
Mean-Square Decision Feedback Equalization’.1 This book is intended to give a self-consistent
analysis of multigigabit transmission over multimode fibers, but the analysis and design of the
EDC structure is outside the scope. Nevertheless, a detailed theory of operation of the DFE is
presented in this chapter, assuming ideal systems assembled with digital filters of infinite length.
This approach leads to relevant conclusions and underlines the interaction among the principal
parameters affecting the EDC performances. The channel response and the noise-to-signal ratio
play a dominant role in the ideal DFE performance and in this chapter an exhaustive treatment of
three basic analytical channel models will be presented, namely the single-pole, the Gaussian and
the fourth-order Bessel–Thompson frequency responses. The theory to be presented is limited to
time-invariant linear systems and according to the work of J. Salz, the equalizer optimization is
based on the mean square error minimization.

The last section presents a block diagram structure of a typical electronic dispersion compensator
based on the decision feedback equalizer. The principal blocks are analyzed, highlighting the role
of the main parameters.

10.2 Principles of Digital Equalization
In Chapter 9 the limitation of the linear equalization over noisy channels in the presence of either
severe frequency attenuation or frequency nulls in the amplitude characteristic was discussed. Faster
data pulse rates place signal energy well within the high-frequency part of the spectrum where the
badly attenuated multimode fiber response results in a consistent intersymbol interference pattern.
As demonstrated in Chapter 9, severe intersymbol interference can in principle be corrected by

1 J. Salz, ‘Optimum Mean-Square Decision Feedback Equalization’, The Bell System Technical Journal, 52
(8), October 1973.

Multi-Gigabit Transmission over Multimode Optical Fibre: Theory and Design Methods for 10GbE Systems Stefano Bottacchi
 2006 John Wiley & Sons, Ltd. ISBN: 0-471-89175-4
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linear methods only at the expense of a significant noise enhancement, which in turn makes most
of the interference cancellation meaningless for improving receiver performances.

A great deal of research was expended more than forty years ago on the linear equalization
problems and a huge amount of literature is available on those subjects. In this section, reference
will be made to the mean square error (MSE) minimization procedure using the well-known decision
feedback equalization (DFE) proposed by J. Salz in his paper ‘Optimum Mean-Square Decision
Feedback’ describing his pioneering works on this subject at Bell Laboratories at the beginning of
the 1970s. A meaningful picture is given of the decision feedback equalizer described in this paper
by J. Salz:

A ‘bootstrap’ technique, commonly referred to as ‘decision feedback’, when combined with linear equal-
ization can yield significant performance improvements. In this method the samples of the pulse tails
(postcursors) interfering with subsequent or future data symbols are subtracted without incurring a sig-
nificant noise penalty. The effect of pulse tails (precursors) which occur prior to detection and interfere
with past symbols is minimized by a conventional linear equalizer. . . . We minimize mean-square error
. . . that allows trade-offs between added noise and intersymbol interference.

10.2.1 Problem Formulation and Modeling

The analysis starts by referring to the transmission system model shown in Figure 10.1 and including
the basic block diagram of the decision feedback equalizer. In this case no particular condition will
be assumed on either the transmitter or the receiver. In particular, transmitter and receiver frequency
responses will not be required a priori as in the previous case of the reference transmission system
shown in Figure 10.1 dealing with linear equalization. Unless otherwise stated, in the following
derivation time domain signals will be used almost exclusively. The input signal is constituted by
a random sequence of binary data symbols {a} picked at the rate B = 1/T and, taking on values
with equal probability, form the set {−1,+1}. At the sampling time tn = nT the random variable
a collapses upon the symbol an ∈ {a}, P {an = −1} = P {an = +1} = 1

2 . Here the bipolar binary
signal is used in order to simplify the mathematical treatment. Since the analysis is developed in
the electrical domain, this assumption does not influence the physical consistency of the optical
signals.

The input random signal G(t) is available at the generator section G–G′ (see Figure 10.1) and is
constituted by the sequence of equidistant delta impulses weighted by the random symbols an ∈ {a}:

G(t) =
+∞∑

n=−∞
anδ(t − nT ) (10.1)

The impulsive random sequence G(t) feeds the first part of the linear channel composed of the
optical transmitter and the multimode optical fiber, characterized by the impulse responses hT(t)

and hF(t) respectively. The impulsive sequence G(t), after passing through the impulse responses
hT(t) and hF(t), is converted into the corresponding pulse sequence, according to the same random
weighting of the source (10.1).

In the following derivation, the procedure used in the paper of J. Salz will be used. In order
to proceed as clearly as possible, first the dimensional gauge (ansatz) of the variables involved is
defined. Conjugate linear variables in the time and frequency domains are related by the Fourier
integral representation. Referring to Figure 10.1, the following ansatz will be assumed:

1. The impulse response of the optical transmitter hT(t) has the dimension of s−1. This implies
that the frequency response HT(ω) is dimensionless:

hT(t) (s−1) ⇒ HT(ω) = 1

2π

∫ +∞

−∞
hT(t)e+jωt dt (10.2)
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Figure 10.1 Block diagram of the transmission system using the decision feedback equalizer architecture. The
transmission system is assumed to be linear up to the sampler block. The optical transmitter, the multimode fiber
and the optical receiver are characterized by generic impulse responses. The input symbol random sequence is
{a} while the output received symbol random sequence is {â}. The equalizer task is to provide symbol-by-symbol
âk = ak with the minimum mean square error

2. The impulse response of the multimode fiber hF(t) is assumed to be dimensionless and the
corresponding frequency response HF(ω) has the dimension of time (s):

hF(t) ⇒ HF(ω) = 1

2π

∫ +∞

−∞
hF(t)e

+jωt dt (s) (10.3)

3. The impulse response of the optical receiver hR(t) has the dimension of s−1 and the correspond-
ing frequency representation HR(ω) is dimensionless:

hR(t) (s−1) ⇒ HR(ω) = 1

2π

∫ +∞

−∞
hR(t)e+jωt dt (10.4)

4. The impulse response q(t) of the cascaded linear subsystems, composed of the optical transmitter,
the multimode fiber and the optical receiver, otherwise stated as the channel and reported in the
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following expression, is dimensionless, while the frequency response Q(ω) of the channel has
the dimension of time (s):

q(t) = hT(t) ∗ hF(t) ∗ hR(t) ⇒ Q(ω) = 1

2π

∫ +∞

−∞
q(t)e+jωt dt (s) (10.5)

5. The impulse response of the feedforward filter (FFF), hW(t), has the dimension of s−1 and the
frequency response HW(ω) is therefore dimensionless:

hW(t) (s−1) ⇒ HW(ω) = 1

2π

∫ +∞

−∞
hW(t)e+jωt dt (10.6)

6. The impulse response r(t) at the sampler input is dimensionless and the corresponding spectrum
has the dimension of time (s):

r(t) = q(t) ∗ hW(t) ⇒ R(ω) = 1

2π

∫ +∞

−∞
r(t)e+jωt dt (s) (10.7)

The optical signal available at the optical fiber output is then detected by the photodiode and
converted into electrical current at the input of the optical receiver. The electrical amplifier provides
the required amplification and transimpedance function. The impulse response of the complete
optical receiver hR(t) includes both the photodiode and the transimpedance function.

The impulse response q(t) of the linear chain including the optical transmitter, the multimode
fiber and the optical receiver is then given by convolution of the corresponding individual responses:

q(t) = hT(t) ∗ hF(t) ∗ hR(t) =
∫ +∞

−∞
hR(t − τ2)

∫ +∞

−∞
hT(τ1)hF(τ2 − τ1) dτ1 dτ2 (10.8)

Referring to Figure 10.1 and to expressions (10.1) and (10.8), the signal at the section Q–Q′ is
given by the following expression:

Q(t) =
+∞∑

n=−∞
anq(t − nT ) (10.9)

Note that the random nature of the signal Q(t) is consequent to the random sequence {a} and
not to the deterministic impulse response q(t). The signal at the section Q–Q′ is affected by the
input equivalent noise n(t). It is assumed that the noise is a zero-mean white random process
characterized by the double-sided uniform power spectral density (white noise) Gi . The received
electrical signal Q(t) plus noise is then processed by the decision feedback equalizer (DFE) reported
in Figure 10.1, which is comprised of the linear digital filter (FFF) having the impulse response
hW(t), the sampler, the decision rule for selecting the detected digital state and the feedback digital
filter (FBF) characterized by the infinite set of real coefficients {b}. The symbol sequence at the
decision output is identified by {â}. In other words, the sequence {â} represents the received and
detected symbol sequence corresponding to the input launched sequence {a}. J. Salz gives the
following problem statement:

The general problem we would like solve is the symbol-by-symbol optimization by minimizing the mean
square error (MSE) between the sampled symbol vk and the corresponding launched symbol ak for every
sampling time instant tk = kT :

εk ≡ vk − ak

MSE
(t=kT )

= E{ε2
k} = E{(vk − ak)

2} (10.10)
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10.2.2 Open-Loop Samples

The signal R(t) at the output of the linear feedforward filter is given by the convolution of the
received signal Q(t) in Equation (10.9) with the impulse response hW(t) of the feedforward filter.
Indicating the overall impulse response at the FFF output with r(t), from Equation (10.8) and (10.9),

r(t) = q(t) ∗ hW(t) = hT(t) ∗ hF(t) ∗ hR(t) ∗ hW(t) (10.11)

and

R(t) =
+∞∑

n=−∞
anr(t − nT ) (10.12)

In order to make a step forward in the analysis, it is convenient to derive the open-loop signal
sample available at the output of the sampler at the instant tk = kT . The next section will analyze
this configuration.

10.2.2.1 The Signal Sample

Referring to the transmission system model reported in Figure 10.1, we open therefore the feedback
loop disconnecting the output of the feedback filter FBF from the summation node is opened and
the sample Rk = R(kT ) of the signal R(t) at the feedforward filter output is evaluated. From
Equation (10.12), the open-loop sample at the instant tk = kT is given by the following sum:

Rk =
+∞∑

n=−∞
anr[(k − n)T ] (10.13)

Note that the sample Rk is a random variable since it depends on the entire random symbol
sequence {a} launched at the input section. It is important at this point to investigate a little further
the structure of the sample Rk .

First, the following notation is introduced for the sample amplitude of the overall impulse
response:

r[(k − n)T ] ≡ rk−n (10.14)

Setting n = k, the symbol ak and the corresponding sampled pulse amplitude r0 = r(0) are identified
at the selected sampling time instant tk = kT . Without losing in generality, the series (10.13)
can conveniently be decomposed into the following three terms, where the notation defined in
Equation (10.14) is used:

Rk =
+∞∑

n=−∞
anrk−n = akr0 +

k−1∑
n=−∞

anrk−n +
+∞∑

n=k+1

anrk−n (10.15)

The open-loop sample Rk in Equation (10.15) has a meaningful interpretation. The three terms will
be analyzed separately:

1. The first term akr0 is the value of the isolated sampled symbol. This is the value of the sampled
pulse in the absence of any intersymbol interference from adjacent pulse contributions weighted
by the symbol ak . In other words, the term akr0 gives the pulse amplitude at the selected sampling
time tk = kT , assuming either zero intersymbol interference or isolated pulse transmission.

2. The series
∑k−1

n=−∞ anrk−n in the second term includes all the sample contributions with the index
−∞ < n ≤ k − 1. Substituting the index n into the samples rk−n leads to left-shifted pulses,
or anticipated pulses with respect to the sampling instant. The pulse body occurs prior to the
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selected sampling instant. This can easily be seen by considering a few cases. For n = k − 1
the corresponding pulse sample evaluated at tk = kT is

r(t − nT ) = r[t − (k − 1)T ]
t = kT−−−−→ r(T ) = r1

For n = k − 2, r2 = r(2T ) is obtained. In general, for n = k − p with p ≥ 1, rp = r(pT ) is
obtained. In conclusion, the following interpretation of the series of the anticipated pulses is
given:
(a) The series

∑k−1
n=−∞ anrk−n in Equation (10.15) represents the sampled contribution of the

tails of pulses r(t) that are located to the right of the corresponding reference pulse body.
(b) Since the tail considered is trailing the main body of the pulse, the sum

∑k−1
n=−∞ anrk−n

represents the intersymbol contribution of all pulse postcursors.
3. The series

∑+∞
n=k+1 anrk−n in the third term considers all the sample contributions with the index

k + 1 < n ≤ +∞. Substituting the index n into the samples rk−n leads in this case to right-
shifted pulses, or delayed pulses with respect to the sampling instant tk = kT . The pulse body
occurs after the sampling instant. The first contribution occurs at the index value n = k + 1 and
the corresponding pulse sample evaluated at tk = kT gives:

r(t − nT ) = r[t − (k + 1)T ]
t = kT−−−−→ r(−T ) = r−1

The second contribution comes from the index value n = k + 2 and gives r−2 = r(−2T ). In
general, for n = k + m, rk−n = r−m = r(−mT ) is obtained. In conclusion, the following inter-
pretation of the delayed pulse series is given:
(a) The sum

∑+∞
n=k+1 anrk−n represents the sampled contribution of the tails of the pulse r(t)

that are located to the left of the corresponding pulse body.
(b) Since the tail considered is leading the main body of the pulse, the sum

∑+∞
n=k+1 anrk−n

represents the intersymbol contribution of the pulse precursors.

The decomposition of the sampled amplitude in terms of precursor and postcursor contributions
is fundamental. Equation (10.15) is rewritten below highlighting this result:

Rk = akr0︸︷︷︸
Main sample

+
k−1∑

n=−∞
anrk−n

︸ ︷︷ ︸
Postcursor ISI

+
+∞∑

n=k+1

anrk−n

︸ ︷︷ ︸
Precursor ISI

(10.16)

Figure 10.2 shows a graphical representation of the single-impulse response r(t) assuming in gen-
eral different contributions between precursors and postcursors. The impulse response in Figure 10.2
is correctly represented on the time axis, which is what can be expected at a fixed electrical section.
For example, it can be imagined that the pulse is propagating along a cable or an electrical waveg-
uide and that the time evolution of the pulse at a fixed section z = z0 is measured. Imagine now
that the propagation description is reversed and several pictures are taken at fixed time instants of
the pulse evolution along the spatial axis. Of course, in this description, the precursors can be seen
to lead the pulse body and the postcursor follows it. In other words, the pulse precursor will be at
the right side of the left-to-right propagating pulse, while the postcursor will follow it to the back
side. This description is qualitatively represented in Figure 10.3.

Following this reasoning, it is evident that pulse precursors will interfere with past symbols,
while pulse postcursors will interfere with future symbols. It will be seen below that the DFE
architecture is capable of compensating only for the pulse postcursors, leaving the mitigation of the
pulse precursors to the linear feedforward filter at the input section of the DFE. This is clearly shown
in Figure 10.4, where the reference pulse centered at the sampling time t = kT is subjected to tail
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Figure 10.2 General impulse response r(t) evaluated at the output of the feedforward filter. The pulse
presents the main body located at the sampling time tk = kT . The pulse tails that occur prior to the sam-
pling time tk−1, tk−2, . . . , tk−m, . . . are defined as precursors. The pulse tails that occur after the sampling time
tk+1, tk+2, . . . , tk+p, . . . are defined as postcursors

Figure 10.3 Spatial representation of the impulse response crossing the observation window. The precursors
are on the pulse front, leading the pulse body, on the right side for the left-to-right propagation direction. On
the contrary, postcursors are on the pulse back, following the pulse body

interference from both precursors of right-shifted (future) pulses and postcursors of left-shifted
(past) pulses.

Changing the summation variable in Equation (10.16) by j = k − n, the two postcursor and
precursor sums assume respectively the following forms:

Signal postcursors ⇒
k−1∑

n=−∞
anrk−n =

(j=k−n)

+∞∑
j=1

ak−j rj = ak−1r1 + ak−2r2 + · · ·

Signal precursors ⇒
+∞∑

n=k+1

anrk−n =
(j=k−n)

−1∑
j=−∞

ak−j rj = ak+1r−1 + ak+2r−2 + · · ·
(10.17)
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Figure 10.4 Graphical illustration of the interference between precursors and postcursors in the ISI compo-
sition at the sampling time tk = kT . Future pulses interfere at the sampling time through their precursors. Past
pulses interfere at the sampling time through their postcursors

After changing the summation index, the positive index sum refers to the postcursor interference
term, while the negative index sum gives the precursor interference term. According to the new
index j = k − n, at the index value j = 1 is associated with the first interfering term corresponding
to the first postcursor sample. The dual situation occurs for j = −1 where the interfering term comes
from the first precursor sample. Using the new notation and redefining the summation index as n,
expression (10.16) can be written as follows:

Rk =
+∞∑

n=−∞
ak−nrn = akr0︸︷︷︸

Main sample

+
−1∑

n=−∞
ak−nrn

︸ ︷︷ ︸
Precursor ISI

+
+∞∑

n=+1

ak−nrn

︸ ︷︷ ︸
Postcursor ISI

(10.18)

The above expression is the value of the sampled signal at the instant t = kT evaluated at the FFF
output and assuming an open-loop configuration.

10.2.2.2 The Feedback Sample
The feedback sample F k in Figure 10.1 is constituted by the weighted sum of the output symbols
{â} through the deterministic sequence of coefficients {b} = {. . . , bk, bk+1, . . .}. Because of the
inclusion of the random sequence {â} of the output symbols, the feedback sample F k is also
a random variable. For the moment no further assumptions are made about the structure of the
deterministic sequence of coefficients {b} = {. . . , bk, bk+1, . . .}. Since the ISI cancellation process
by means of the feedback sample is to be investigated, the only recommendation that needs to be
satisfied would be the exclusion of the reference symbol âk from the returned feedback sample
setting the condition n 
= k. In that case, under the closed-loop configuration the information symbol
of interest would be canceled out. Accordingly,

Fk =
+∞∑
n=−∞
n 
=k

ânbk−n =
k−1∑

n=−∞
ânbk−n +

+∞∑
n=k+1

ânbk−n (10.19)

Using the same approach adopted for the signal sample Rk , the feedback sample F k can be decom-
posed into terms of both precursor and postcursor contributions. After changing the summation
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variable j = k−n in Equation (10.19), the same structure of the signal sample in Equation (10.18)
is obtained, with the only exception being the reference symbol âk :

F k =
+∞∑
n=−∞
n 
=0

âk−nbn =
−1∑

n=−∞
âk−nbn

︸ ︷︷ ︸
Precursor ISI

+
+∞∑

n=+1

âk−nbn

︸ ︷︷ ︸
Postcursor ISI

(10.20)

The general structure of the feedback sample derived in Equation (10.20) shows some incon-
sistency: in fact, it would never be able to feed back any precursor ISI contribution prior to the
precursor samples occurring. It is known that the precursor terms contributing to ISI at the sampling
time t = kT are generated by the tails of future pulses, for t > kT , not yet detected. This means
that every feedback technique based on ISI cancellation is inherently not capable of compensating
for pulse precursors. The consequence is that the precursor ISI summation in Equation (10.20)
must be removed, reducing the general form of the feedback sample to the single postcursor ISI
contribution. Accordingly, the feedback signal is given by the following sequence:

F k =
+∞∑

n=+1

âk−nbn

︸ ︷︷ ︸
Postcursor ISI

(10.21)

Now, progress can now be made using the closed-loop structure, subtracting the feedback sample
from the signal sample in front of the ideal sampler shown in Figure 10.1.

10.2.3 Closed-Loop Samples
Assuming the closed-loop configuration of the decision feedback equalizer in Figure 10.1,
the received sample at the time instant t = kT is obtained by subtracting the feedback
sample in Equation (10.21) from the signal sample in Equation (10.18) and adding the filtered
noise component:

vk = Rk − F k + [n(t) ∗ hW(t)]|t=kT (10.22)

Substituting the corresponding sequences (10.18) and (10.21) gives

vk =
+∞∑

n=−∞
ak−nrn −

+∞∑
n=+1

âk−nbn + [n(t) ∗ hW(t)]|t=kT (10.23)

Substituting the decomposition (10.18) of the signal sample Rk in terms of the reference sample,
postcursor and precursor contributions, from Equation (10.23)

vk = akr0 +
−1∑

n=−∞
ak−nrn +

+∞∑
n=+1

(ak−nrn − âk−nbn) + [n(t) ∗ hW(t)]|t=kT (10.24)

This expression is the same as reported in the paper of J. Salz. The sampled pulse amplitude vk

is a random variable since it is the result of both the random sequence {a} and of the input noise
n(t). Under optimum transmission conditions, without noise and interfering symbols, the sampled
amplitude vk at the time instant tk = kT would be akr0, which is proportional to the launched
symbol ak .

10.2.4 Minimum Mean Square Error (MMSE)

Under general noisy and intersymbol interference conditions, the sample vk will differ in general
from the required symbol akr0. The decision error can be defined as

εk ≡ vk − akr0 (10.25)
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The decision error εk is a random variable because it is the difference between two random variables.
The optimization process of the DFE receiver proceeds with the minimization of the Mean Square
Error (MSE):

MSE → E{ε2
k} = E{(vk − akr0)

2} (10.26)

The operator E{·} indicates the expected value of the ensemble average over the random quantity.
In the definition of the decision error, the implicit assumption is made that the reference symbol
ak has amplitude r0. This is consistent with the concept of the optimum transmission conditions
introduced above. Substituting Equation (10.24) into Equation (10.26) gives the following explicit
expression of the MSE:

MSE = E{ε2
k} = E



[ −1∑

n=−∞
ak−nrn +

+∞∑
n=+1

(ak−nrn − âk−nbn) + [n(t) ∗ hW(t)]|t=kT

]2

 (10.27)

A detailed calculation of the MSE is now discussed. The linearity of the expectation operator
allows the calculation of the expectation value of the sum as the sum of the expectation value of
each term. In particular, the square of the sum in Equation (10.27) includes six terms: three squared
terms plus three mixed products. Although it seems somewhat tedious, it is instructive to consider
instead all those terms and to see how most of them cancel out after the expectation operation takes
place. This approach is important since the reader can clearly understand the meaning of some
‘hidden’ assumptions about the signal modeling. In the following, for the sake of clarity, each term
will be considered separately.

The total expected value is given by the sum of the six contributions:

E{ε2
k} =

6∑
j=1

Ej (10.28)

From Equation (10.27), the following expressions for each term of the above sum are obtained:

E1 = E



( −1∑

n=−∞
ak−nrn

)2



E2 = E



[ +∞∑

n=+1

(ak−nrn − âk−nbn)

]2



E3 = E
{
[n(t) ∗ hW(t)]2|t=kt

}
E4 = 2E

{( −1∑
n=−∞

ak−nrn

)[ +∞∑
n=+1

(ak−nrn − âk−nbn)

]}

E5 = 2E

{( −1∑
n=−∞

ak−nrn

)
[n(t) ∗ hW(t)]|t=kT

}

E6 = 2E

{[ +∞∑
n=+1

(ak−nrn − âk−nbn)

]
[n(t) ∗ hW(t)]|t=kT

}

(10.29)

Each of these terms is analyzed in detail below, commenting on the validity of the assumptions
and their physical interpretation. Following the work of J. Salz, the MSE minimization will proceed
in two steps:
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1. Minimization with respect to the interfering symbols
2. Minimization with respect to the receiver optimization

The third optimization option reported in the work of J. Salz refers to the transmitter optimization,
but this issue will not be included in the present work and the reader is referred to more special-
ized references. The DFE optimal design will be limited to including both minimization of the
interfering terms and the linear receiver optimization, as reported in the general block diagram in
Figure 10.1.

10.2.4.1 Precursor Interference
The first term in Equations (10.29) is the second-order moment of the future symbols sequence:

E1 = E



( −1∑

n=−∞
ak−nrn

)2

 (10.30)

Each term of the sequence, in fact, gives the pulse amplitude corresponding to a sampling time
tk+1 = (k + 1)T , tk+2 = (k + 2)T , . . . , following the reference sampling instant at tk = kT . Those
samples will be referred to as future symbols. To simplify the expression (10.30), by virtue of
the statistical independence of the symbols in the sequence {a} = {ak+1, ak+2, . . . , ak+p, . . .}, the
expected value of the cross-terms coincide with the product of the respective expectations. Since
the expected value of each symbol is zero, it can immediately be concluded that the expected value
of all cross-terms is identically zero. Hence, from Equation (10.30),

E1 = E{a2}
−1∑

n=−∞
r2
n (10.31)

This expression has a meaningful interpretation: it coincides with the sum of the square value
of all precursors by the second-order moment of the symbol sequence. Of course, it must be
postulated that the symbol sequence is a stationary process, so the time origin can be neglected
for every statistical average evaluation. In particular, the second order moment of the precursor
symbols is coincident with the same average over the entire symbol sequence {a}. Assuming that
{a} is the sequence of µ-ary equiprobable symbols the following expected value of the squared
symbol sequence (the power of symbols assuming ergodic symbol sequence) is immediately found
to be

σ 2
a = E{a2} = µ2 − 1

3

µ = 2, binary symbols−−−−−−−−−−−−−−→ σ 2
a = E{a2} = 1 (10.32)

and the MSE of the precursor interference contribution is:

E1 =
−1∑

n=−∞
r2
n (10.33)

10.2.4.2 Postcursor Interference
The second term in Equations (10.29) coincides with the second-order moment of the feedback
error due to the past symbols sequence. It will be soon seen that this term is quite important in the
DFE theory, since it is related to the strong hypothesis of correct past decisions:

E2 = E



[ +∞∑

n=+1

(ak−nrn − âk−nbn)

]2

 (10.34)
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For every detected past sample ak−nrn, n ≥ 1, the feedback loop returns the estimated past sample
âk−nrn, n ≥ 1. In general, setting

cn ≡ ak−nrn − âk−nbn (10.35)

the expression (10.34) assumes the following simplified form:

E2 = E



( +∞∑

n=+1

cn

)2

 = E

{ +∞∑
n=+1

c2
n

}
+ 2E




+∞∑
n,m=+1

n 
=m

cncm


 (10.36)

If for every index n 
= m the corresponding random variables cn and cm are statistically independent,
from Equations (10.34) and (10.35) it can immediately be concluded that

E2 =
+∞∑

n=+1

E(ak−nrn − âk−nbn)
2 + 2

+∞∑
n,m=+1

n 
=m

(E{ak−nrn − âk−nbn}E{ak−mrm − âk−mbm}) (10.37)

This expression cannot be simplified further unless the strong assumption is made that all past
decisions are correct. This translates immediately into the identity between sampled symbols and
estimated symbols for every past decision:

âk−n = ak−n, n ≥ 1 (10.38)

The entire theory of the DFE is based on this hypothesis. This assumption is reported by the whole
bibliography on the digital equalization using the decision feedback architecture. This condition will
be adopted here and it will be assumed to be satisfied a priori, without any further investigation.
Under the assumption of the correct past decision, the feedback loop interconnection in Figure 10.1
leads to the minimization of the RMS error due to pulse postcursors. Substituting Equation (10.38)
into Equation (10.37) gives

E2 = E{a2}
+∞∑

n=+1

(rn − bn)
2 + 2E2{a}

+∞∑
n,m=+1

n 
=m

(rn − bn)(rm − bm) (10.39)

Therefore the expected value E2 is zero if and only if

bn = rn, n ≥ 1 ⇒ E2 = 0 (10.40)

In this expression, it is noted that the feedback digital filter has infinite length. In every practical
DFE design the filter length must be decided according to the longest postcursor expected by the
channel impulse response. According to the condition (10.40), it is concluded that the digital filter
used for the feedback loop must have a least the same length of the not negligible postcursor
samples. Figure 10.5 highlights this concept.

10.2.4.3 Equalization Noise

The third term in Equations (10.29) deals with the mean square value of the sample evaluated at
t = kT of the filtered white noise available at the output of the feedforward filter. In this contribution
to the total MSE the interfering terms are not present. Indicating with n(t) the zero mean noise
process at the input of the linear feedforward filter with the impulse response hW(t), the output
response is the following process:

wn(t) = n(t) ∗ hW(t) (10.41)
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Figure 10.5 Example of the impulse response at the FFF output showing a finite postcursor extent. In the
case shown the pulse energy is negligible for t > 9T and t < −2T . This allows for assuming an FBF filter
with nine taps, {b} = {b1, b2, . . . , b9}, in order to minimize the mean-square error of the postcursor tails

According to Equations (10.29) the expectation value of the square of the sampled output process
must be solved in response to the input stationary white noise:

E3 = E{[n(t) ∗ hW(t)]2|t=kT } = E{|wn(kT )|2} (10.42)

This is a well-known result of the theory of linear systems where stochastic inputs with the
average power E{|y(t)|2} of the output of a linear system with the impulse response h(t) driven
by zero mean stationary white noise n(t) the of power spectral density ζ0 is given by the following
fundamental result:

E{|y(t)|2} = Ry(0) = ζ0

∫ +∞

−∞
|h(t)|2 dt (10.43)

The average output noise power is given by the product of the noise power spectral density ζ0

with the energy of the impulse response h(t). Translating this theorem into this application, from
Equation (10.43) it can immediately be concluded that the mean square value in Equation (10.42)
is given by the product of the double-sided noise power spectral density Gi with the energy of the
impulse response hW(t) of the feedforward filter:

E3 = Gi

∫ +∞

−∞
|hW(t)|2 dt ≡ σ 2

n (10.44)

Using Parseval’s formula for finite energy signals, the same expression holds in the frequency
domain, leading directly to the concept of noise bandwidth. From Equation (10.44),

σ 2
n = Gi

∫ +∞

−∞
|hW(t)|2 dt = Gi

∫ +∞

−∞
|HW(f )|2 df = GiBn

hW(t)
�←→HW(f ), |HW(0)| = 1

(10.45)

The mean square error contribution due to the equalization noise considered here coincides
conceptually with the noise enhancement penalty analyzed previously in the case of inverse filter
equalization. However, there is a great difference between these two quantities. The noise penalty
found in the ideal inverse filter equalizer was a consequence of the noise bandwidth increase
with respect to the optimum receiver bandwidth with the input matched filter. This was clearly
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stated by expressions (9.83) and (9.84), where the ideal noise bandwidth of the matched receiver
is Bn = 1/T . The equalization noise power derived in this section, expression (10.45), is the noise
power computed through the noise bandwidth of the feedforward filter and this bandwidth still
needs to be compared with the ideal one, Bn = 1/T .

In the next section it will be shown that the receiver optimization requires an input matched filter
plus a proper tapped delay line for precursor interference minimization. The difference between the
equalization noise penalties in the ideal inverse filter and the DFE structure relies on the relatively
low value of the MSE due to the FFF noise bandwidth with respect to the much more relevant
contribution found in the case of the ideal inverse filter equalizer. A quantitative expression will
be found for the calculation of the equalization noise penalty in the DFE architecture.

10.2.4.4 Cross-Terms
The last three contributions to the MSE in expression (10.29) refer to the expected values of the
product of zero mean and uncorrelated random processes. The result immediately gives a null
expected value for each of them. In fact, the expected value of the product of two uncorrelated
processes coincides with the product of their respective expected values. Since zero mean processes
are assumed for both the symbol sequence {a} and the input noise n(t),

E{a} = 0, E{n(t)} = 0 (10.46)

In conclusion, each of the three terms above gives a null contribution to the total MSE. In the
following the derivation of each cross-term is considered in detail.

The fourth term coincides with the expected values of the product of the precursor sequence
with the compensation error of the postcursor sequence:

E4 = 2E

{[ −1∑
n=−∞

ak−nrn

][ +∞∑
n=+1

(ak−nrn − âk−nbn)

]}

= 2E

{ −1∑
n=−∞

ak−nrn

}
E

{ +∞∑
n=+1

(ak−nrn − âk−nbn)

}

= 2E2{a}
−1∑

n=−∞
rn

+∞∑
n=+1

(rn − bn) = 0 (10.47)

The assumption (10.28) is used to check the correctness of all past decisions.
The fifth term coincides with the expected value of the product of the precursor sequence with

the noise process at the output of the feedforward filter. Proceeding as above gives

E5 = 2E

{[ −1∑
n=−∞

ak−nrn

]
[n(t) ∗ hW(t)]|t=kT

}

= 2E

{ −1∑
n=−∞

ak−nrn

}
E{n(t) ∗ hW(t)|t=kT }

= 2E{a}
[ −1∑

n=−∞
rn

]
E{n(t)} ∗ hW(t)|t=kT = 0 (10.48)

The sixth and last term in Equations (10.29) coincides with the expected value of the product
of the compensation error of the postcursor sequence with the noise process at the output of the
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feedforward filter. The calculation is the same as that above for Equation (10.48), leading to the
zero contribution of E6 to the MSE:

E6 = 2E

{[ +∞∑
n=+1

(ak−nrn − âk−nbn)

]
[n(t) ∗ hW(t)]|t=kT

}
= 0 (10.49)

In conclusion, all three cross-terms in Equations (10.29) lead to a null contribution to the total MSE.
From Equations (10.33), (10.40), (10.44), (10.47), (10.48) and (10.49), the MSE expression in

Equation (10.27) assumes the following form, where a perfect past decision MSE minimization
due to postcursors feedback cancellation and zero mean stationary white noise are assumed for the
receiver input:

MSE =
−1∑

n=−∞
r2
n + σ 2

n (10.50)

This important result can be further improved by working on the feedforward filter optimization
with respect to the simultaneous minimization of both precursors and noise.

10.2.5 Receiver Optimization

The Mean square error (MSE) normalized to the average symbol power σ 2
a given in Equation (10.32)

is rewritten. Substituting in Equation (10.50) the detailed expressions (10.11) and (10.44) of the
impulse response r(t) and the noise power σ 2

n respectively gives

MSE

σ 2
a

=
−1∑

n=−∞

[∫ +∞

−∞
hW(τ )q(nT − τ) dτ

]2

+ T γi

∫ +∞

−∞
|hW(t)|2 dt

γi ≡ Gi

T σ 2
a

(10.51)

The normalized mean square error is dimensionless and can easily be verified by considering the
dimension of each term at the second member. Since q(t) is dimensionless and hW(t) has dimensions
of s−1, it can immediately be concluded that after time convolution, the resulting integrals are still
dimensionless. The second term results from the product of the integral, whose dimensions are also
s−1, with the dimensionless noise-to-signal power ratio γi and the time step T (s), which still gives a
dimensionless contribution. The new dimensionless variable γi ≡ Gi/(T σ 2

a ) assumes the meaning
of the noise-to-signal power ratio at the decision section, where the noise density is integrated in
the ideal noise bandwidth B = 1/T .

The problem to solve now is optimization of the feedforward filter impulse response hW(t)

which minimizes the MSE for a given system impulse response q(t) and noise-to-signal power
ratio γi . The system impulse response q(t) is given in Equation (10.8) and refers to the entire
impulse response, including the transmitter, the fiber (channel) and the optical receiver up to the
input section of the feedforward filter. The MSE minimization by means of the optimum impulse
response hW(t) requires the mathematical methods of the calculus of variations.

The result is an integral equation for the impulse response hW(t) whose solution has a represen-
tation in the form

hW(t) =
0∑

n=−∞
gnq(nT − t) (10.52)

where

gn = − 1

γi

∫ +∞

−∞
hW(τ )q(nT − τ) dτ (10.53)
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The solution hW(t) of the integral equations (10.52) and (10.53) represents the optimum impulse
response that minimizes the MSE for the given system impulse response q(t) and noise-to-signal
power ratio γi between the spectral noise density Gi and the average symbol power σ 2

a .
No further progress will be made with solution of these equations, but instead the form of the

expected solution given in Equation (10.52) will be assumed. Once the sequence of coefficients
g0, g−1, . . . , gn, . . . = {g} is known as the solution of the integral equations (10.52) and (10.53), it
is clear that the impulse response hW(t) is represented by cascading a matched filter to the system
impulse response q(t) with the anticausal tapped delay line with coefficients {g}. This is shown in
Figure 10.6.

If the impulse response of the anticausal tapped delay line is indicated by

hD(t) =
0∑

n=−∞
gnδ(t − nT )

the impulse response of the two-cascaded systems in Figure 10.6 is given by the
following convolution:

q(−t) ∗ hD(t) =
0∑

n=−∞
gn

∫ +∞

−∞
q(−t + τ)δ(τ − nT ) dτ

=
0∑

n=−∞
gnq(nT − t) = hW(t) (10.54)

which coincides with Equation (10.52). In conclusion, the optimum impulse response hW(t) of
the feedforward filter is composed of a matched filter having the impulse response q(−t) fol-
lowed by the anticausal tapped delay line with weights equal to the coefficients gn given in
Equation (10.53).

In the following section the expression of the minimum mean square error (MMSE) for the ideal
decision feedback equalizer will be presented.

Figure 10.6 Schematic representation of the optimum impulse response of the feedforward filter in
Equation (10.52) for the simultaneous minimization of the MSE due to noise and precursor interference
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10.2.6 Computation of the MMSE

The expression reported in Equation (10.50) or (10.51) clearly shows that the total mean square error
is given by the sum of the mean-square errors due to the power of precursors and the noise power
respectively. Although this statement might be obvious, it is important to make some comments
about it. The optimization of the DFE according to the theory presented so far and referenced to the
work of J. Salz leads simultaneously to minimization of the intersymbol and noise power. Those
two quantities are assumed to be statistically independent, which is the reason why their respective
powers are summed together. The residual intersymbol due to signal precursors is then modeled
mathematically as a random process, statistically independent from the noise and characterized by
the variance given by the first term in Equation (10.50).

In order to quantify the equalization performances of the DFE the MMSE expression derived by
J. Salz (equations 13 and 14 in the referenced paper) is given as

MMSE

σ 2
a

= exp

{
− T

2π

∫ +π/T

−π/T

log

[
1 + 1

T 2γi

+∞∑
n=−∞

|Q(ω − nωB)|2
]

dω

}
,

γi ≡ Gi

T σ 2
a

, ωB = 2π

T
(10.55)

Again, the dimensionless nature of the normalized MMSE is guaranteed by assuming that the spec-
trum |Q(ω)| of the impulse response q(t) has the dimension of time. This is a consequence of the
dimensionless assumption of the impulse response q(t), as will be seen below. The function Q(ω)

is the Fourier transform of the impulse response q(t) defined in Equation (10.8) and corresponds to
the linear channel response including the transmitter, the multimode fiber and the optical receiver,
up to section Q–Q′ in Figure 10.1:

Q(ω) =
∫ +∞

−∞
q(t)e−jωt dt (s) (10.56)

The variable ωB ≡ 2πB is the angular frequency corresponding to the bit rate frequency B = 1/T .
Using the frequency variable f and normalizing to the bit rate frequency, x ≡ f T = ωT/(2π),
from Equation (10.55)

MMSE

σ 2
a

= exp

{
−
∫ +1/2

−1/2
log

[
1 + 1

T 2γi

+∞∑
n=−∞

|Q(x − n)|2
]

dx

}
(10.57)

The MMSE is a functional of the transfer function Q(x) of the linear transmission channel,
defined from the input section of the transmitter up to the input section of the feedforward filter. The
expression (10.57) of the MMSE, for a given noise-to-signal power ratio γi , depends exclusively on
the channel response Q(x), where x = f T is the bit rate normalized frequency variable. This is one
of the most relevant characteristics of expression (10.57), where the MMSE gives the quantitative
measure of the expected performance of the linear transmission channel assuming ideal decision
feedback equalization.

The ‘ideal decision feedback equalization’ refers to the model developed in Section 10.2.4,
where infinite length FFF and FBF have been used. It is concluded that the maximum value of the
normalized MMSE in Equation (10.57) is equal to one. This is because the second addend under the
logarithmic operator is definite positive for every choice of channel response and noise-to-signal
ratio. Assuming small channel contributions and a large noise-to-signal ratio leads to an almost
negligible exponent value, and the MMSE is almost equal to one. In the following, some examples
of MMSE calculations according to Equation (10.57) are considered.
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10.2.6.1 The Ideal Nyquist Channel

The first case to be considered is the ideal transmission channel with a uniform frequency response
up to a half bit rate frequency and linear phase. This is well known as the ideal Nyquist channel.
Referring to Figure 10.1,

Q(x) = Γ0(x) =




T , |x| < 1
2

T

2
, x = 1

2

0,
∣∣x > 1

2

∣∣
(10.58)

Figure 10.7 gives a sketch of the folded-frequency response according to the summation in
Equation (10.57). The summation in (10.57) reduces to the constant

+∞∑
n=−∞

|Q(x − n)|2 = T 2

and in particular, the normalized minimum mean square error (MMSE) becomes

MMSE

σ 2
a

= exp

[
log

(
γi

1 + γi

)∫ +1/2

−1/2
dx

]
⇒ MMSE

σ 2
a

= γi

1 + γi

(10.59)

In particular, for the binary signal σ 2
a = 1,

MMSE = γi

1 + γi

(10.60)

This relation is quite simple and important. It states that the residual MMSE in the DFE structure
operating over a white noise Nyquist channel with binary symbols depends exclusively on the
noise-to-signal power ratio with the noise power computed in the ideal noise bandwidth Bn = B =
1/T . In particular, for a very low noise-to-signal power ratio, from Equation (10.60), we have
approximately:

γi  1 ⇒ MMSE ∼= γi (10.61)

On the other hand, for very large values of γi , the MMSE tends to one, as expected:

γi � 1 ⇒ MMSE ∼= 1 (10.62)

It is noted that in the case of the Nyquist channel there is no intersymbol interference and the only
residual MMSE must therefore be imputed to the noise-to-signal power ratio.

Figure 10.7 Frequency representation of the ideal Nyquist channel using the bit rate normalized frequency
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10.2.6.2 Single-Pole Channel

The second example is the single-pole response of the whole transmission channel between sections
G–G′ and R–R′. The causal single-pole impulse response satisfying the normalization requirement
is first set:

q(t) =
{

e−t/τ , t ≥ 0
0, t < 0

, q(0) = 1 (10.63)

The transfer function Q(f ) assumes the well-known single-pole profile:

Q(f ) = 1

1/τ + j2πf
= τ

1 + jf/f0
, f0 ≡ 1

2πτ
(10.64)

Substituting for the normalized frequency x = f T , x0 = f0T = [1/(2π)](T /τ), gives

Q(x) = T

2πx0

1√
1 + (x/x0)2

e−j arctan(x/x0) (10.65)

Using the channel response (10.65), the series in (10.57) assumes the following form:

1

T 2γi

+∞∑
n=−∞

|Q(x − n)|2 = 1

4π2x2
0γi

+∞∑
n=−∞

1

1 + [(x − n)/x0]2
(10.66)

Substituting Equation (10.66) in Equation (10.57) and assuming binary symbols (σ 2
a = 1), the fol-

lowing expression of the MMSE for the single-pole channel response is obtained:

MMSE = exp

(
−
∫ +1/2

−1/2
log

{
1 + 1

4π2x2
0γi

+∞∑
n=−∞

1

1 + [(x − n)/x0]2

}
dx

)
(10.67)

Figure 10.8 gives the numerical calculation of the MMSE using the single-pole channel response
in Equation (10.67) versus the normalized cut-off frequency x0 = f0T and assuming the noise-to-
signal ratio γi as parameter. It can easily be concluded from the common behavior of the curves
shown that the MMSE increases monotonically with the cut-off frequency x0 and the noise-to-
signal ratio γi . This result can reduce to a paradox at first sight, but a more in-depth reasoning
clarifies this apparent contradiction. In is clear in fact that at increasing cut-off frequencies the
intersymbol interference decreases accordingly, due to a much faster impulse response. This leads
to a decreasing interference power in both precursors and postcursors.

The reason is different: the optimum receiver is in fact matched to the channel response,
which leads to increasing noise bandwidth and corresponding noise power as the cut-off frequency
increases indefinitely. Stated differently, the large bandwidth corresponding to the increasing cut-off
frequency is not required by the signaling rate, it is redundant and it translates only into a waist
noise power. In that condition the MMSE is almost limited by the noise power, with a negligible
interference power contribution.

10.2.6.2.1 Broadband Single-Pole Channel
In the limiting case of either a very large single-pole bandwidth x0 � 1 or a very high noise-to-
signal power ratio, the previous expression tends to limx0→∞ MMSE = 1, leading to extremely
high error powers. This can physically be explained in terms of the indefinitely large bandwidth
available for the noise power calculation. At very large values of the normalized cut-off fre-
quencies, each computed curve shows the common asymptote MMSEx0→+∞ → 1. As already
stated, this behavior is due to the large noise bandwidth consequent to the matched receiver
condition.



528 Multi-Gigabit Transmission over Multimode Optical Fibre

N
or

m
al

iz
ed

 M
M

S
E

Figure 10.8 Computed MMSE for the single-pole channel reported in Equation (10.67). According to bot-
tom-up curves, the noise-to-signal ratio γi assumes respectively the values between −60 dB and 0 dB with a
10 dB step each. The MMSE increases monotonically with increasing cut-off frequency, leading to a better
equalization efficiency for lower cut-off frequencies

10.2.6.2.2 Narrowband Single-Pole Channel
The behavior of the MMSE for the single-pole channel is different at lower cut-off frequencies. In
that region in fact the limited channel bandwidth induces a high interference power but the receiver
matching condition minimizes the noise power. Figure 10.9 highlights this interesting behavior at
low and high cut-off frequencies. The left graph refers to the lower cut-off frequency range, with
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Figure 10.9 Computed MMSE for the single-pole channel response. The noise-to-signal parameters used are
the same as in Figure 10.8, but the normalized cut-off frequency range has been split according to lower
and higher values. It is evident, as expected, that at a lower cut-off range the MMSE has the characteristic
asymptotic behavior set by the noise-to-signal floor. At higher cut-off rates, the MMSE follows the predicted
asymptotic behavior towards the unit value, independently from the noise-to-signal ratio. It this case, in fact,
the MMSE saturates at unity for every value of γi

10−3 ≤ x0 ≤ 101 while the right graph shows the computed MMSE curves corresponding to the
higher cut-off frequency range, 100 ≤ x0 ≤ 103. At a very narrow single-pole response a different
asymptote corresponds instead for each noise-to-signal ratio γi , and the numerical computation
reveals that the asymptote value is closely related to γi . In order to demonstrate analytically the
narrowband asymptote, it is convenient to introduce the auxiliary function W(x) representing the
value of the series in the integrand of the MMSE expression in Equation (10.57):

W(x) ≡
+∞∑

n=−∞
|Q(x − n)|2 (10.68)

In particular, for the single-pole channel, from Equation (10.66),

W(x) = T 2

4π2

+∞∑
n=−∞

1

x2
0 + (x − n)2

(10.69)

The narrowband condition leads to a comb-like spectrum. Single terms 1/[x2
0 + (x − n)2] are cen-

tered on integer frequencies and their extent can be assumed indefinitely small for limiting values
x0 → 0. This means that in the integration interval − 1

2 ≤ x ≤ + 1
2 the only contributing term to

the series is almost the central one, associated with n = 0. All the remaining terms lead to a negli-
gible contribution in the limit of an indefinitely narrowband channel and the auxiliary function in
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Figure 10.10 Computed integrand functions of the exact MMSE expression in Equation (10.57) and of the
approximation in Equation (10.71) for the single-pole channel with x0 = 10−3. The logarithmic smoothing
strongly raises the tails, leading to a poor function approximation in those regions

Equation (10.69) can be approximated to

lim
x0→0

W(x) ∼= T 2

4π2

1

x2
0 + x2

(10.70)

Substituting into Equation (10.57) gives the approximated MMSE in the limiting case of indefinitely
narrowband single-pole channel:

lim
x0→0

MMSE ∼= exp

{
−
∫ +1/2

−1/2

[
1 + 1

4π2γi(x
2
0 + x2)

]
dx

}
(10.71)

Figure 10.10 shows the comparison between computed integrand functions in Equations (10.57)
and (10.71). The effect of the logarithmic smoothing on the function tails is clearly misleading,
changing the approximation in those regions.

The ideal DFE is capable of compensating for the strong intersymbol interference, even for the
very narrow bandwidth conditions of the single-pole channel, leading to a residual MSE limited
essentially by the noise contribution. From this first example it can be concluded that the ideal DFE
performs much better for very narrowband channels, achieving the lowest MMSE limited by the
noise-to-signal ratio. The matching condition required at the receiving section of the feedforward
filter in fact introduces a large noise power into the detection section, limiting the performance
without any more chance of improvement. Of course, these considerations rely on the assumption
of white noise, independently from the integration bandwidth. More realistic situations deal instead
with a colored noise spectrum, usually damping the high-frequency content.

10.2.6.3 Gaussian Channel

The last example considered refers to the Gaussian channel. The Gaussian transfer function is
characterized by the half-width at half-maximum or equivalently by the −6 dB electrical bandwidth
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f0. From Equation (3.115),

Q(f ) = 1

f0

√
log 2

π
e−(f/f0)

2 log 2 (10.72)

and
q(t) = e−(π2f 2

0 / log 2)t2
, q(0) = 1 (10.73)

It is noted that the channel impulse response q(t) is correctly normalized by setting q(0) = 1. Since
the area subtended by the Fourier transform gives the value at the origin of the corresponding time
domain function, from Equations (10.73) it can be concluded immediately that, independently from
the cut-off frequency, every Gaussian frequency response Q(f ) subtends the same unity area. Using
the normalized frequency variable x = f T gives

Q(x) = T

x0

√
log 2

π
e−(x/x0)

2 log 2, x0 ≡ f0T , 2f0 = FWHM (10.74)

The normalized cut-off frequency x0 identifies the half-width at half-maximum of the Gaussian
profile:

Q(x0) = 1

2

T

x0

√
log 2

π
= 1

2
Q(0)

The Gaussian channel response (10.74) is substituted into the series term in Equation (10.57)
giving

1

T 2γi

+∞∑
n=−∞

|Q(x − n)|2 = log 2

πx2
0γi

+∞∑
n=−∞

e−[(x−n)/x0]22 log 2 (10.75)

Substituting Equation (10.75) in Equation (10.57) and assuming binary symbols (σ 2
a = 1) gives the

following expression for the MSE for the Gaussian channel response:

MMSE = exp

[
−
∫ +1/2

−1/2
log

(
1 + log 2

πx2
0γi

+∞∑
n=−∞

e−[(x−n)/x0]22 log 2

)
dx

]
(10.76)

10.2.6.3.1 Narrowband Gaussian Channel
Very small values of the parameter x0 lead to narrow Gaussian terms in the series composition.
Adjacent Gaussians will not overlap significantly, leading to almost isolated contributions along
the normalized frequency axis. Limiting the analysis to the integration interval, it can be concluded
immediately that for x0 → 0 only the centered Gaussian results are included in the integration inter-
val. All the translated Gaussian profiles add negligible tail contributions to the series composition.
Figure 10.11 illustrates this behavior.

From Equation (10.76), the following approximation in the limit of the narrowband Gaussian
channel is obtained:

lim
x0→0

MSE = exp

[
−
∫ +1/2

−1/2
log

(
1 + log 2

πx2
0γi

e−(x/x0)
22 log 2

)
dx

]
(10.77)

The integrand function in Equation (10.77) is then considered. The narrowband Gaussian profile
illustrated in Figure 10.12 is concentrated around the frequency origin and extends within a very
limited multiple of the cut-off frequency. This is of course a consequence of the assumption

that x0  1. The integrand function log
{

1 + [log 2/(πx2
0γi)]e−(x/x0)

22 log 2
}

is therefore negligible
everywhere on the frequency axis except within that small interval around the origin. Without losing
in generality, that interval with (−(m/2)x0, +(m/2)x0) is defined, as shown in Figure 10.12, where
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Q (x + 2) Q (x + 1) Q (x − 1)Q (x)

x = fT0 1 2−1−2

x0 << 1

1
2

+1
2

−

Integration interval

Q (x − 2)

Figure 10.11 Qualitative illustration of the superposition of the translated narrowband Gaussian channel
responses according to the series in Equation (10.76). Due to the assumed narrowband response with x0  1,
any two adjacent Gaussians will never overlap significantly. The integration interval (− 1

2 , 1
2 ) is highlighted and

includes only the contribution from the baseband channel Q(x), symmetrically located around the frequency
origin

Figure 10.12 Graphical representation of the approximation (10.78) used for the calculation of the MSE for
the narrow bandwidth Gaussian channel. The reduced integration interval (−(m/2)x0,+(m/2)x0) allows for
approximating the logarithmic integrand function.
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m > 1 must be selected in order to validate the following approximation:

log

(
1 + log 2

πx2
0γi

e−(x/x0)
22 log 2

)
∼= log

(
log 2

πx2
0γi

)
−
(

x

x0

)2

2 log 2,

∣∣∣∣m : x ∈
(
−m

2
x0,+m

2
x0

)
⊂
(

−1

2
,+1

2

)
(10.78)

From Equation (10.77) and using the approximation (10.78),

lim
x0→0

MSE ∼= exp

{
−
∫ +(m/2)x0

−(m/2)x0

[
log

(
log 2

πx2
0γi

)
−
(

x

x0

)2

2 log 2

]
dx

}

= exp

[
−mx0 log

(
log 2

πx2
0γi

)
+ m3x0 log 2

6

]
(10.79)

After simple manipulations and using the result lim
x→0
a>0

xax = 1− the following approximation of

the MMSE for indefinitely narrowband Gaussian channel is obtained:

lim
x0→0

MSE ∼= lim
x0→0

[(
πγix

2
0

log 2

)mx0

e(m3x0 log 2)/6

]
= 1 (10.80)

In conclusion, for a very narrowband Gaussian channel the MMSE for the ideal DFE tends to
the limiting value of one, indicating a complete lack of equalization. This feature is quite impor-
tant and is completely different to the previous case where the MMSE was computed for the
single-pole channel. In that case, the limiting value for the narrowband single-pole channel was
asymptotically limited by the noise-to-signal ratio γi = T Gi/σ

2
a , leaving the consistent intersymbol

interference completely removed by the DFE operation. This is not the case for the Gaussian chan-
nels, where the narrowband Gaussian channel leads to increasing residual errors for a decreasing
narrowband response.

The different behaviors between the single-pole and Gaussian responses when operated under
ideal DFE is the reason for the success of DFE in compensating for band-limited copper transmission
lines, where the frequency roll-off closely resembles the single-pole of an even smoother (∼ 1/

√
f )

profile. However, it is known that multimode fiber optic has much more exotic impulse responses,
which under some circumstances can be approximated by the Gaussian profile, leading to less-
efficient decision feedback equalization.

Figure 10.13 gives the computed plots of the MMSE for the Gaussian channel response assuming
parametric noise-to-signal ratio variations between γi = −60 dB and γi = 0 dB, with the normalized
cut-off frequency ranging between a very small bandwidth up to unity roll-off 10−2 ≤ x0 ≤ 101.
The plots report the computed dependence of the MMSE from the noise power, assuming that
the lowest value corresponds to the lowest noise-to-signal ratio, for every fixed cut-off frequency.
However, the computed MMSE profile versus the normalized cut-off frequency for a fixed noise-
to-signal ratio clearly verifies the asymptotic behavior toward the frequency origin, as predicted in
Equation (10.80).

10.2.6.3.2 Broadband Gaussian Channel
Assuming very large values of the parameter x0 leads to broader Gaussian terms in the series com-
position. Translated Gaussians will overlap significantly, even for large index differences, leading
to almost a uniform spectral profile in the unit integration interval in Equation (10.76). Figure 10.14
reports the computed sum of the first 21 Gaussian terms

∑+10
n=−10 e−[(x−n)/x0]22 log 2, assuming x0 = 10.



534 Multi-Gigabit Transmission over Multimode Optical Fibre

N
or

m
al

iz
ed

 M
M

S
E

Figure 10.13 Computed MMSE profile versus the normalized cut-off frequency for the narrowband Gaussian
channel response. The plots are parameterized with increasing noise-to-signal ratios, ranging from γi = −60 dB
up to γi = 0 dB. The relevant feature is the asymptotic behavior encountered by every MMSE plot at negligible
channel bandwidth, and highlights the weakness of the DFE when solicited by the Gaussian channel response.
At a relatively narrow bandwidth, in the range of one-tenth of the bit rate, the DFE performance greatly
degrades for noisy channels. For typical values of the noise-to-signal ratio encountered in multimode optical
fiber transmissions, γi ∼ −20 dB–−10 dB, the MMSE ranges between 40 % and 60 %, leading to very weak
ISI compensation

It is evident that their overlapping leads to an almost uniform profile in the integration interval
− 1

2 ≤ x0 ≤ + 1
2 .

For an increasing cut-off frequency x0 → ±∞, the number of Gaussian profiles contributing to
the sum in Equation (10.76) increases accordingly, since each Gaussian broadens with x0 → ±∞.
How many Gaussians will contribute to the sum for a fixed cut-off frequency? The answer is, of
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Figure 10.14 Computed sum of the first 21 Gaussian contributions in the series factor in Equation (10.76).
The individual Gaussians are represented as curves while the sum is shown, and has been normalized to the
maximum value in order to make a consistent comparison. The sum of the first 21 terms leads to almost a
constant profile in the integration interval −0.5 ≤ x ≤ +0.5

course, that all Gaussians will contribute to the sum since each Gaussian is indefinitely extended on
the frequency axis, and even indefinitely translated Gaussians will add a finite positive contribution
to the integration interval.

However, only a finite number of them will add a significant contribution to the sum. This
number is proportional to the Gaussian broadening factor and then to the cut-off frequency x0. It
should be clear that for a given x0 the number of contributing Gaussians is of the same order of x0.
In fact, each term is limited at the upper end by the unit value that the Gaussian addend reaches
at the origin. Assuming that the first symmetrical N Gaussians are considering, it can immediately
be written that +N∑

n=−N

e−[(x−n)/x0]22 log 2

∣∣∣∣∣
x=0

≤ 2N + 1 (10.81)

where the equality sign holds in the limit x0 → ±∞-of indefinitely broadening Gaussians. Setting
N = Mx0, it can be conclude that

lim
x0→∞

+Mx0∑
n=−Mx0

e−[(x−n)/x0]22 log 2

∣∣∣∣∣∣
x=0

= 2Mx0 + 1 (10.82)
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This behavior is clear by shown in Figure 10.14. The limiting value of the series term in
Equation (10.76) for increasing values of the cut-off frequency is now considered. According to
the consideration above, it is concluded that

lim
x0→∞

1

x2
0

+∞∑
n=−∞

e−[(x−n)/x0]22 log 2 = lim
x0→∞

1

x2
0

(2Mx0 + 1) = 0 (10.83)

and the MMSE from Equations (10.76) and (10.83) becomes

lim
x0→∞ MSE = lim

x0→∞ exp

[
−
∫ +1/2

−1/2
log

(
1 + log 2

πx2
0γi

+∞∑
n=−∞

e−[(x−n)/x0]22 log 2

)
dx

]
= 1 (10.84)

Figure 10.15 shows the computed MMSE for the Gaussian channel versus the normalized cut-
off frequency for the parametric noise-to-signal ratio. As expected, the MMSE profile reaches
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Figure 10.15 Computed MMSE profile versus the normalized cut-off frequency for the broadband Gaus-
sian channel response. The plots are parameterized with an increasing noise-to-signal ratio, ranging from
γi = −60 dB up to γi = 0 dB. As expected, the MMSE shows the asymptotic behavior for a very large Gaus-
sian bandwidth. According to Equation (10.76), the MMSE reaches the asymptote faster for noise-limited cases.
Very low-noise situations are better for compensation by the DFE and the resulting MMSE is lower for a given
Gaussian bandwidth. Large bandwidth channels are limited by the noise due to the received matching condition
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asymptotically the unit value for indefinitely increasing the cut-off independently from the noise-
to-signal ratio.

The effect of the noise-to-signal ratio is the dominant reason for MMSE collapse in all broad-
band channels. The assumption of a matched receiver in the theory of the DFE makes the amount
of noise power entered proportional to the square of the channel bandwidth, leading to a noise-
limited DFE characteristic. This quadratic behavior is clearly shown by the computed MMSE
in the large bandwidth range and reported in Figure 10.15. Increasing the channel bandwidth
above x0 = 100 leads to an abrupt slope variation of the MMSE, increasing two decades for
every decade increment of the channel bandwidth. This value is characteristic for the noise-limited
operation.

10.2.6.3.3 Midband Gaussian Channel
The last condition to be discussed refers to the Gaussian channel whose bandwidth ranges between
approximately one-tenth of the bit rate frequency and ten times that value. This will be referred
to as the midband Gaussian channel. This case is most interesting since it represent the typical
situation requiring the DFE operation. In fact, besides the interesting mathematical and modeling
issues discussed so far, both very large and very low Gaussian channel bandwidths represent
limiting cases that for some reason will not support the DFE. If the bandwidth is too large, the
DFE receiver will be affected by noise limitation, while for an extremely low bandwidth, the DFE
is no longer capable of canceling out the residual intersymbol interference, even assuming an ideal
DFE architecture. In the midband Gaussian channel case the situation is completely different and
the DFE is quite efficient at canceling the symbol interference.

Figure 10.16 presents the computed MMSE according to Equation (10.76), assuming that the
normalized channel bandwidth ranges between 10−1 ≤ x0 ≤ 10+1 and with the same paramet-
ric noise-to-signal ratio assumed in all previous examples. The benefit of MMSE is evident
in the midband channel application: every MMSE curve reaches the minimum value for the
corresponding noise parameter value. The minimum is closely located between 30 % and 40 %
of the bit rate frequency. In conclusion, the better performances of the DFE operating over a
Gaussian channel are achieved when the channel bandwidth is about one-third of the bit rate
frequency.

In order to highlight this frequency range of the DFE operation for Gaussian channels,
Figure 10.17 shows the computed MMSE with a higher resolution in the parametric noise variation.
The noise-to-signal ratio ranges between 0 dB ≤ γi ≤ 20 dB, with a 1 dB step. Note that the notation
uses dB10 for the power ratio.

The result of the computed MMSE in Figure 10.16 suggests a simple example. A legacy mul-
timode fiber link is 150 meters long and has the modal bandwidth equal to BW = 500 MHz km.
Accordingly, the link bandwidth is f0 = BW/0.15 ∼= 3.33 GHz, which corresponds to x0 = f0T ∼=
0.323. Assuming a Gaussian modal response approximation and γi = −10 dB, from Figure 10.17
it can be concluded that MMSE ∼= 0.113, which corresponds to

√
MMSE ∼= 0.336 of the RMS

residual interference error.

10.2.7 The Eye Diagram Opening Penalty

In this section the MSE concept developed so far will be used in order to find a quantitative relation-
ship with the closure of the eye diagram due to residual intersymbol interference. Unless otherwise
stated, reference will be made to binary bipolar signals. This simplifies the mathematical descrip-
tion without losing in generality for fiber optic transmission systems. Referring to the schematic
representation of the signal given in Figure 10.18, it can be seen that each pulse at the decision
section is affected by the interference from adjacent symbols, in terms of both pulse precursors and
postcursors.

Eye opening is defined as the distance ξ between the average high level and the average low
level. The eye diagram opening is very closely related to the bit error rate (BER) performance of
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Figure 10.16 Computed MMSE for the midband Gaussian channel. The DFE case shows a consistent com-
pensation improvement for two very extreme cases of very low and very large Gaussian channel bandwidths.
The existence of the minimum value makes the MMSE less sensible to the frequency cut-off variation around
the corresponding frequency minimum. As expected, the noise parameter sets the minimum height

the transmission system. First the unperturbed eye opening is considered by introducing the variable
ξ0. Referring to Figure 10.18,

ξ0 = 2d (10.85)

The MMSE derived in the previous section coincides with the power of the ISI random process
εISI(t). Assuming a zero average ISI process 〈εISI(t)〉 = 0, the MMSE with the variance of the ISI
distribution is identified and the RMS deviation of the ISI process is proportional to the square root
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Figure 10.17 Computed MMSE for the Gaussian channel, assuming that the cut-off frequency ranges between
0.1 ≤ x0 ≤ 1. The noise parameter varies between 0 ≤ γi ≤ 20 dB with a 1 dB step. The position of the
frequency minimum results is almost insensible to the noise parameter and is closely located at around 35 %
of the normalized bit rate.

of the MMSE: √
〈ε2

ISI(t)〉 =|〈εISI(t)〉=0
σISI = ξ0

√
MMSE (10.86)

The RMS eye opening ξISI under perturbed conditions is due to ISI by the difference between the
unperturbed eye opening ξ0 and twice the RMS ISI amplitude:

ξISI ≡ ξ0 − 2σISI (10.87)
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Figure 10.18 Schematic representation of the binary decision affected by intersymbol interference. The ISI
affects the symbol decision at the sampling time region and is distributed across both decision levels with the
reported schematic distribution. The RMS value of the ISI distribution coincides with the square root of the
MMSE defined in the text. The signal decision distance d under ISI degradation is then reduced to d − σISI,
where σISI = ξ0

√
MMSE

In order to obtain nonnegative eye opening, which would of course be physically inconsistent,
the maximum amount of MMSE on each level must be a quarter. This condition corresponds
to the RMS ISI deviation σISI, reaching half the original eye opening amplitude. Accordingly,
from Equations (10.85), (10.86) and (10.87), the following expression of the eye opening under
intersymbol interference conditions is obtained:

ξISI = ξ0(1 − 2
√

MMSE), 0 ≤ MMSE ≤ 1
4 (10.88)

Larger values of the MMSE are not consistent, leading to an over-closed eye diagram, so will not
be consider here.

The bit error rate (BER) for a binary symbol affected by the same additive RMS noise σn on
both decision levels is given by Equation (9.58) and the Q-factor is defined in Equation (9.52).
Using the relationships just derived for the eye opening, the general value of the Q-factor can be
expressed as follow:

Q = ξ

2σn

(10.89)

The variable σn is the RMS noise amplitude. In particular, using Equations (10.85) and (10.89) the
expression of the Q-factor can be written for the unperturbed eye diagram and for the eye diagram



Decision Feedback Equalization 541

affected by intersymbol interference and noise respectively:

Q0 = d

σn

(10.90)

QISI = d(1 − 2
√

MMSE)

σn

(10.91)

Substituting Equation (10.90) into Equation (10.91) gives the expression of the Q-factor of the
perturbed eye diagram in terms of the unperturbed ones:

QISI = Q0(1 − 2
√

MMSE) (10.92)

Referring to Equation (10.88), the factor 1 − 2
√

MMSE assumes the meaning of the residual eye
opening due to the RMS intersymbol interference and noise under ideal DFE operation. Therefore,

ρISI ≡ 1 − 2
√

MMSE
with 0 ≤ MMSE ≤ 1

4

}
⇒ 0 ≤ ρISI ≤ 1 (10.93)

From Equation (10.88), the following simple and important relation can be obtained:

ξISI = ρISIξ0 (10.94)

These last two expressions reveal the effect of the residual MMSE on the relative eye diagram
opening penalty. It will be seen in the next section that these concepts lead directly to the calculation
of the optical power penalty. However, before discussing these important concepts a step forward
can be taken in the analysis of the eye diagram opening penalty due to intersymbol interference.
It is known from Equation (9.58) that the BER is directly related to the Q-factor, which allows
the optical power penalty to be identified as the relative variations of the Q-factor under perturbed
conditions, as well as unperturbed ones. In the following statement the concept of the optical
power penalty is given. In order to maintain the original BER value, the perturbed Q-factor must
be restored to the original unperturbed ones, which is achieved at the expense of some extra average
optical power required at the receiver input.

Although the statement is correct, it leads to erroneous calculations if applied directly to the DFE
theory developed up to now. The reason is that the concept of the optical power penalty needs a
reference condition to be used for comparing the perturbed situation. This seems an easy concept,
almost trivial, but the DFE theory is based on the receiver matching condition and this is channel-
dependent. The intention here is to provide a quantitative way to evaluate the DFE-based system
performances in terms of the amount of residual intersymbol interference when the band-limited
channel is applied. How could the DFE receiver performances be compared in terms of the inter-
symbol interference alone if they are matched to different channels and consequently would provide
quite different noise bandwidths? The solution to this problem will be presented in the next section.

For the moment the eye diagram opening penalty calculations due to intersymbol interference
will be continued. What is wrong? Somewhere the reader should have found an inconsistency in
the last few equations. These were left because this is an example of how a modeling sometimes
develops, even correcting false assumptions and eventually using themselves as new milestones.
The wrong assumption was in Equations (10.90), (10.91) and (10.92). Why? It occurs because the
RMS noise is different in the two cases of the unperturbed system, with the eye opening ξ0, and
the perturbed ones, with the eye diagram opening ξISI. The original eye opening ξ0 is based just
on the symbol amplitude at the decision instant, without any added noise.

The noise contribution is embedded in the DFE theory, is not removable and is a consequence of
the optimization process based on the matched receiver assumption. The noise power is then created
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during the mean-square error minimization procedure, for the given channel response and noise
power density. How could the eye diagram of the DFE receiver affected by noise and residual
ISI be conceptually compared with the noise-free and fully opened eye diagram? Referring to
Equations (10.90) and (10.91), the correct conclusion is that the RMS noise in the case of the
unperturbed system must be specified in terms of some reference condition and in any case it is
different from the RMS noise of the perturbed system. In conclusion, the two Q-factors are not
comparable.

Limiting the analysis now to the calculation of the optical eye closure and not to the optical power
penalty, the right approach is then to compare the eye opening ξ0 of the noise-free reference eye
diagram with the eye opening ξISI of the noisy and ISI affected eye diagram after the DFE receiver.
Again, the optical power penalty is not being calculated because the noise on the unperturbed eye
diagram is not being taken into account. Instead, only the eye diagram openings in the two cases
are compared. Assuming that the original, unperturbed eye opening is given by ξ0, the corrupted
eye diagram opening is given by ξISI in Equation (10.94). In order to restore the original RMS of
the eye opening in the presence of residual ISI and noise in the DFE receiver, the new value ξ ′

0
must be introduced such that

ξISI = ρISIξ
′
0 = ξ0 (10.95)

Hence
ξ ′

0

ξ0
= 1

ρISI
(10.96)

The eye diagram opening penalty ∆ξR due to residual ISI and noise generated by the ideal DFE
receiver is defined as the ratio between the required eye opening ξ ′

0 and the unperturbed eye
opening ξ0:

∆ξR ≡ 1

ρISI
= 1

1 − 2
√

MMSE
(10.97)

The condition 0 ≤ MSE ≤ 1
4 must be fulfilled. This procedure gives the correct eye opening

degradation in the DFE receiver if the perturbation, either residual intersymbol interference or noise,
satisfies some requirements. In the case of the intersymbol interference, the amount of residual error
is proportional to the unperturbed signal amplitude and every request to increase the received input
power translates into a corresponding increase of the residual intersymbol interference in terms of
the signal amplitude.

At this point it would seem meaningless to increase the optical power, but this is not the case
investigated. The Q-factor expresses the ratio between signal and noise entities, and even if the
relative ISI amplitude remains constant, by increasing the received optical power, the relative noise
amplitude decreases accordingly once the channel remains fixed. This leads to a larger Q-factor
and hence a lower BER. This reasoning is founded on the assumption that the noise is constant,
independent from the signal level. If, for example, the noise amplitude increases linearly with the
received optical power, the resulting Q-factor would remain constant at increasing input power and
the BER performance would also improve. In this case the BER will exhibit the well-known floor
behavior and required original performances would never be recovered in terms of any amount of
extra power.

Another case in which the BER performance remains constant versus increasing input optical
power is represented by the infinite peak ISI distribution. This is the familiar case of the Gaussian
probability density function. By increasing the received optical power, the relative amount of
residual ISI also increases and since it is indefinitely distributed along the amplitude axis (infinite
peak ISI distribution), there would be a constant finite probability of error detection, independently
from the input power level. In this case the errors are not generated by the noise level, which could
be relatively depressed by increasing the signal power (if noise is additive), but are generated by
unwanted (erroneous) signal transitions due to peaked ISI conditions. A clear example of an infinite
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peak residual ISI distribution is the Gaussian probability density function. Of course, in practice it
is quite unlikely to find the intersymbol interference distributed along the real axis with an infinite
peak probability density function. Instead, under severe intersymbol conditions it is reasonable to
find in practice the ISI distribution extending across the decision threshold, leading to decision
errors even under noiseless conditions. In that case, even in the presence of noise, it is clear that
the BER function will exhibit asymptotic (floor) behavior as opposed to the input optical power.
The ISI distribution will in fact grow proportionally with the received input optical power, leading
to unrecoverable error conditions.

Figure 10.19 shows a sketch of the threshold-crossing ISI distribution with the related BER floor
under noisy conditions. Since the noise is statistically independent from the intersymbol process
once the channels have been fixed, the probability density function of the sum of noise and ISI
is distributed according to the convolution of the probability density functions of noise and ISI.
The additive noise leads to a broader joint distribution than the ISI alone. Nevertheless, due to
the additive assumption, the relative noise fluctuations decrease accordingly as long as the input
optical power increases, leading to the joint distribution approaching the ISI alone at a higher
power level. This is the case shown in the bottom graph in Figure 10.19. At relatively low input
power levels, the noise contribution is still relevant to the erroneous threshold-crossing condition,
but at a higher power level the depressed noise term becomes almost irrelevant to the decision
process.

If the ISI distribution extends across the threshold the error rate will never be improved by
increasing the input power. In fact, the ISI is proportional to the signal amplitude and then to
the input optical power. This behavior leads directly to the horizontal asymptote of the BER plot,
known as the BER floor. No matter how large the input power becomes the error rate will remain
constant. In real systems several other factors limit the error performance to some degree. Among
the most important are the timing jitter and quadratic noise terms, such as the signal-spontaneous
beat noise in optically amplified systems and the RIN. Both of these noise terms depend on the
square value of the optical power, making the RMS noise amplitude linearly related to the input
power. This clearly determines a BER floor condition whose level depends on the quadratic noise
amount.

These conclusions lead to the following important statements:

1. The RMS eye closure due to the intersymbol interference is restorable, increasing the input
optical power if the following two conditions are simultaneously verified:
(a) The ISI distribution exhibits a finite interval of definition (it is not an infinite peak distribu-

tion, i.e. the Gaussian) and it does not cross the decision threshold level.
(b) The noise at the DFE receiver input is additive to the signal (it is not signal-dependent).

2. Once the above statement is satisfied, the RMS eye opening degradation due to both residual ISI
and noise in the ideal DFE receiver is fully recoverable and the eye diagram opening penalty
∆ξR is given by Equation (10.97):

∆ξR = 1

ρISI
= 1

1 − 2
√

MMSE

with 0 ≤ MMSE ≤ 1
4

The eye diagram opening penalty ∆ξR is usually computed in decibels. By definition,

∆ξdB ≡ 10 log10 ∆ξR

From Equation (10.97), the following expression of the eye diagram opening penalty expressed in
dB is obtained:

∆ξdB = −10 log10(1 − 2
√

MMSE) (10.98)
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Figure 10.19 Top: severe ISI with a threshold-crossing distribution. Even noiseless conditions will generate
decision errors due to an extended ISI distribution. The dashed lines indicate one standard deviation ISI
amplitude. Bottom: tails of the ISI distribution cross the decision threshold position, leading to the horizontal
asymptotic behavior (floor) of the bit error rate versus the input optical power
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10.2.8 Calculation of the Eye Diagram Opening Penalty

In this section the optical eye diagram opening penalty is computed using Equation (10.98) for
the two relevant cases of single-pole and Gaussian channel responses discussed in Section 10.2.6.
Owing to the limitation to a quarter of the maximum value of the MMSE for having a consistent
definition of the eye diagram opening penalty, this condition must be added to the computation of
the maximum acceptable MMSE. Figure 10.20 shows the computed eye diagram opening penalty
for the single-pole channel due to residual ISI using the expression (10.98) and assuming three
different noise-to-signal ratios, γi = −30 dB, −20 dB, −10 dB. As expected from the logarithmic
function behavior of the negative argument in Equation (10.98), the eye diagram opening penalty
in Figures 10.20 and 10.21 exhibits a sharp increase as long as the minimum mean square error
approaches the value MMSE = 1

4 . For lower cut-off frequencies, each curve exhibits a smoothed
profile, approaching the horizontal asymptote for x0 → 0. This peculiarity makes the single-pole
channel very well compensated by the DFE architecture.

The eye diagram opening penalty in the case of a Gaussian channel is quite different and is
characteristic of this frequency response. Figure 10.22 shows the computed MMSE and optical
power penalty for the Gaussian channel, assuming the same noise conditions and cut-off frequency
range as used in the single-pole case. The cut-off frequency x0 spans three decades, ranging from
10 times the bit rate frequency down to 100 times below. As expected from the conclusions of the
MMSE calculation in Section 10.2.6 for the Gaussian channel, a frequency interval exists that is
characterized by the minimum residual interference. This interval is quite visible in the eye diagram
opening penalty plot in Figure 10.22, which shows the characteristic bathtub profile. The interval of
the minimum eye diagram opening penalty is clearly reported in Figure 10.23, where the normalized
cut-off frequency spans over just one decade below the bit rate frequency. Assuming that the noise-
to-signal ratio γi = −20 dB, the eye diagram opening penalty is lower than approximately 4 dB in
the entire frequency decade. In particular, for x0 = 0.1, ∆ξdB

∼= 3.8 dB.
It is interesting to compare quantitatively the eye diagram opening penalty for both the single-pole

and the Gaussian channels, assuming the same noise factors and normalized frequency range. This
analysis is presented in Figure 10.24, where both channel performances are shown together on the
same graph. The noise-to-signal ratio assumes two values, namely γi = −20 dB andγi = −10 dB.
The cut-off frequency ranges between x0 = 0.1 and x0 = 1. For each noise factor γi , the eye
diagram opening penalty functions intersect at the cut-off frequency x̂0.

In general, the following behavior is found: to the left of the cross-over frequency x̂0 the single-
pole channel leads to a lower eye diagram opening penalty than the Gaussian channel. To the right
of x̂0, the Gaussian channel behaves better, showing a lower eye diagram opening penalty than
the single-pole channel. The reason for these opposite behaviors should be found in the different
causes leading to the eye diagram opening penalty. In the case of the smoothed single-pole frequency
profile, the noise is the dominant factor at higher cut-off frequencies. The steeper Gaussian profile
leads instead to a higher value of the residual interference at a lower cut-off, but to a lower MMSE
due to the reduced noise bandwidth at higher cut-off frequencies. It is remarkable that the net
gain of the Gaussian channel with respect to the single-pole channel reduces considerably at lower
noise-to-signal ratios. This can be explained in terms of a noise-limited eye diagram opening penalty
at higher cut-off frequencies, located to the right of x̂0. Reducing the noise factor leads to a less
relevant noise term and then both curves come closer together.

In conclusion, the single-pole channel leads to a lower optical eye diagram opening penalty
at lower cut-off frequencies. The Gaussian channel behaves better for slightly higher cut-off fre-
quencies, but the optical eye diagram opening penalty increases abruptly at a lower cut-off. This
might explains the success of the DFE receiver in compensating for copper-based transmission
lines where the channel profile closely resembles the smoothed single-pole channel. For the same
reason, Gaussian-like channels are very difficult to equalize using a DFE receiver when the cut-off
frequency ranges below 10 % of the bit rate frequency. In order to fix some examples, the case of
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Figure 10.20 Computed MMSE (top) and optical eye diagram opening penalty ∆ξdB (bottom) of the ideal
DFE versus normalized cut-off frequency for the single-pole channel according to Equations (10.67) and (10.98)
respectively. The noise-to-signal ratio assumes the three values γi = −30 dB, −20 dB, −10 dB. The definition
of the optical eye diagram opening penalty implies that 0 ≤ MMSE ≤ 1

4 , leading to abrupt vertical asymptotes
for each curve. The corresponding cut-off frequency gives MMSE = 1

4 . The almost flat behavior for extremely
narrowband channels reveals excellent intersymbol compensation.

a legacy multimode fiber link of 300 m is considered with a modal bandwidth of BW = 500 MHz
km, operating at 10 GbE. The link bandwidth is f0 = 1.667 GHz, resulting in a normalized cut-off
frequency of x0 = 1.667/10.3125 ∼= 0.162. Assuming a noise-to-signal ratio of γi = −17 dB gives
approximately ∆ξdB

∼= 3.1 dB. Figure 10.25 reports the computed optical eye diagram opening
penalty.
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MMSE for the single-pole channel
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Figure 10.21 Computed MMSE (10.67) and optical eye diagram opening penalty ∆ξdB (10.98) of the ideal
DFE for the same case shown in Figure 10.20, but on a reduced cut-off frequency range. The most relevant
behavior is the decrease in the optical eye diagram opening penalty at a reducing cut-off frequency. Assuming
γi = −17 dB, the optical power penalty evaluated at x0 = 0.1 is less than 2 dB. Of course, the optical eye
diagram opening penalty decreases for less noisy signals

Before closing this section, it is important to remark that the optical eye diagram opening
penalty ∆ξR in Equation (10.97) gives the expected eye diagram opening penalty. This is not trivial.
Depending on the probability density function of the joint process constituted by the residual ISI
and the added noise, the eye diagram opening ∆ξR can be more or less useful. It must be noted
that statistical quantities are being dealt with and so the eye closure ∆ξR represents the expected
(average) eye diagram opening penalty according to the ideal DFE receiver.
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MMSE for the Gaussian channel
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Figure 10.22 Computed MMSE (top) and optical eye diagram opening penalty ∆ξdB (bottom) of the ideal
DFE versus normalized cut-off frequency for the Gaussian channel according to Equations (10.76) and (10.98).
The noise-to-signal ratio assumes the three values γi = −30 dB, −20 dB, −10 dB. The optical eye diagram
opening penalty ∆ξdB for the DFE operating over the Gaussian channel reveals the characteristic bathtub
profile, showing the optimum cut-off frequency for each noise-to-signal ratio γi

10.2.9 Comments and Conclusions

To conclude this section, a summary is given of the content derived so far. The analytic expres-
sion (10.57) of the MMSE was found for the ideal DFE operating over a channel of given frequency
response Q(x), where x = f T is the bit rate normalized frequency. According to the work of
J. Salz, the DFE theory postulates infinite length digital filters, additive white noise and correct
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Figure 10.23 Computed MMSE (top) and optical eye diagram opening penalty ∆ξdB (bottom) of the ideal
DFE for the Gaussian channel with the four noise-to-signal ratios γi = −30 dB, −20 dB, −17 dB, −10 dB) and
in the normalized cut-off frequency range 0.1 ≤ x0 ≤ 1. The optical eye diagram opening penalty ∆ξdB has the
position of the minimum around x0 ≤ 0.35, almost independently of the noise parameter. The minimum value
increases accordingly to the noise power level

past decisions. All these three fundamental assumptions must be accounted for when discussing
the computed results. The MMSE for three special channels have been derived analytically. The
MMSE for the Nyquist channel was presented in Equation (10.60), the MMSE for the single-pole
channel was derived in Equation (10.67) and the MMSE for the Gaussian channel was reported in
Equation (10.76).

The optical eye diagram opening penalty ∆ξdB has been defined in Equation (10.98), assuming
binary symbols with additive white noise and a finite peak ISI distribution. Two important cases have
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Figure 10.24 Comparison of the optical eye diagram opening penalty ∆ξdB of the ideal DFE between the sin-
gle-pole and the Gaussian channels versus the normalized cut-off frequency 0.1 ≤ x0 ≤ 1, with noise-to-signal
ratios γi = −20 dB, −10 dB. For each noise-to-signal ratio, the intersection frequency between the two channels
is marked by x̂0. The Gaussian channel behaves better at relatively higher cut-off frequencies (x0 ≥ x̂0) than
the single-pole channel. At relatively lower cut-off frequencies (x0 ≤ x̂0) the single-pole channel acquires a
lower optical eye diagram opening penalty than the Gaussian channels

been evaluated numerically, the single-pole and the Gaussian channel responses. These functions
represent the approximate mathematical modeling of the copper-based transmission line and of the
multimode optical fiber respectively. The resulting optical eye diagram opening penalties assuming
ideal DFE are quite different. The single-pole response allows better compensation even assuming
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Figure 10.25 Comparison of the optical eye diagram opening penalty ∆ξdB of the ideal DFE between the sin-
gle-pole and the Gaussian channels versus the normalized cut-off frequency in the interval 0.1 ≤ x0 ≤ 1, with a
noise-to-signal ratio γi = −17 dB. This value corresponds approximately to Q ∼= 7.02, leading to BER ∼= 10−12.
The optical eye diagram opening penalty for the ideal DFE over the Gaussian channel exhibits the minimum
value at approximately 35 % of the bit rate frequency. The intersection between the single-pole and Gaus-
sian performances is at x̂0

∼= 0.18, giving approximately ∆ξdB(x̂0) ∼= 2.55 dB. The marked cut-off frequency
at about x0 ∼= 0.16 corresponds to the Gaussian link bandwidth of a 300 m length of multimode fiber with a
modal bandwidth of approximately BW ∼= 500 MHz km. The resulting optical eye diagram opening penalty
∆ξdB

∼= 3.15 dB

extremely narrowband conditions, while the Gaussian channel exhibits the optimum bathtub profile
versus the normalized cut-off range. The narrowband Gaussian channel can be equalized more easily
if the cut-off frequency ranges approximately between 15 % and 100 % of the bit rate frequency,
in relation to the noise power.
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Table 10.1 Minimum mean square error (MMSE) and optical power penalty expressions for an ideal DFE
applied to the selected channels with binary symbol transmission

Channel MMSE Optical eye closure Reference

General MMSE = exp

{
−
∫ +1/2

−1/2
log

[
1 + 1

T 2γi

+∞∑
n=−∞

|Q(x − n)|2
]

dx

}
∆ξdB = −10 log10(1 − 2

√
MMSE)

(10.57)

(10.98)

Nyquist MMSE = γi

1 + γi

∆ξdB = −10 log10(1 − 2
√

MMSE)
(10.60)

(10.98)

Single-pole MMSE = exp

(
−
∫ +1/2

−1/2
log

{
1 + 1

4π2x2
0 γi

+∞∑
n=−∞

1

1 + [(x − n)/x0]2

}
dx

)
∆ξdB = −10 log10(1 − 2

√
MMSE)

(10.67)

(10.98)

Gaussian MMSE = exp

[
−
∫ +1/2

−1/2
log

(
1 + log 2

πx2
0 γi

+∞∑
n=−∞

e−[(x−n)/x0 ]2 2 log 2

)
dx

]
∆ξdB = −10 log10(1 − 2

√
MMSE)

(10.76)

(10.98)

Before closing the section it is important to remark that the theory of the optimum mean square
decision feedback equalizer merges the input additive white noise with the residual intersymbol
interference after the feedforward filter (FFF). Therefore, the residual MMSE depends on both the
channel response and the noise-to-signal ratio γi . From the general MMSE expression reported in
Equation (10.57), it can be concluded that for indefinitely low noise power, in the limit γi → 0,
MMSE → 0 and from Equation (10.97), the optical eye diagram opening penalty is also vanishingly
small, ∆ξR → 0. Table 10.1 summarizes the principal formulas derived in this section.

In the next section the theory of the optical power penalty for the DFE receiver will be introduced.
As already stated at the beginning of this section, the concept of the optical power penalty is related
to the definition of the DFE reference receiver, still including the DFE architecture with the matched
filter but operating over the reference channel. The choice of the reference channel impacts over
the entire concept of the optical power penalty for the digital compensation technique using the
DFE architecture.

10.3 The Optical Power Penalty
Once the eye diagram opening penalty ∆ξR at the decision section of the DFE receiver due to
residual intersymbol interference and noise was derived, the problem of finding the optical power
penalty is directed toward the definition of the reference channel applied to the same ideal DFE
receiver. One of the most peculiar characteristics of the MMSE in the DFE theory is the matching
condition required at the receiving feedforward filter input. This means that every time the channel
changes, the FFF of the DFE receiver automatically adapts, providing the required matching. This
implies that changing the channel also changes the noise bandwidth and hence the total noise power
fed at the decision section of the receiver for fixed noise power spectral density. This is one of the
optimization requirements for achieving the MMSE.

10.3.1 The Reference Channel Problem

In order to proceed toward the definition of the reference channel, the initial requirement must be
remembered: to find the reference transmission system, characterized by any intersymbol interfer-
ence in order to compare it with the actual transmission system providing the optical power penalty
consequent to the ideal DFE implementation. Of course, in order to have a consistent calculation
of the DFE induced optical power penalty, the reference system must have the same transmitter
and the same ideal DFE receiver architecture as the actual system, including the same noise power
spectral density at the receiver input. The only difference between the reference and the actual
system would therefore be confined to the transmission channel. Which reference channel could
serve this purpose? At first sight, the only requirement that needs to be addressed to the reference
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channel is to provide any intersymbol interference. Accordingly, the only action expected by the
DFE receiver would be limited to the noise bandwidth. Any precursors or postcursors would be
added to the decision sample by the reference channel and the only perturbation added to the
sample would be the noise. However, since the reference channel behavior is being defined there
would be an additional requirement that the noise power fed at the decision section would be the
minimum available for the given noise power spectral density. It should be clear to the reader,
at this point of the discussion, what configuration of the reference channel is sought. Only one
channel satisfies simultaneously both the zero intersymbol interference condition and the minimum
noise bandwidth under the receiving matched condition. It is the Nyquist channel. Accordingly,
from Equation (9.98), the general Nyquist channel Nm(x) ≡ √

Γm(x) is the reference transmission
channel for the performance comparison with the ideal DFE receiver when applied to the actual
transmission channel:

Nm(x) =




T , |x| ≤ 1 − m

2

T cos

[
π

2m

(
x − x

|x|
1 − m

2

)]
,

1 − m

2
≤ |x| ≤ 1 + m

2

0, |x| ≥ 1 + m

2

(10.99)

0 ≤ m ≤ 1, x ≡ f T , T = 1

B

Figure 10.26 gives the computed plots of the Nyquist channel Nm(x) ≡ √
Γm(x) together with the

squared function N2
m(x) = Γm(x). The raised cosine function Γm(x) has been defined in Chapter 9,

expression (9.98).

10.3.1.1 MMSE for the General Nyquist Channel
Once the reference channel in Equation (10.99) has been defined, the theory developed so far can
be used to calculate the corresponding MMSE and eye diagram opening penalty. The MMSE has
already been calculated for the particular Nyquist channel N0(x) with m = 0 in Section 10.2.6.1
and the result is given in Equation (10.60). Now, the MMSE of the general Nyquist channel Nm(x)

according to Equation (10.99) is derived. Substituting Equation (10.99) in Equation (10.57) gives
the following MMSE expression for the general Nyquist channel:

̂MMSE = exp

{
−
∫ +1/2

−1/2
log

[
1 + 1

T 2γi

+∞∑
n=−∞

|Nm(x − n)|2
]

dx

}
(10.100)

The hat symbol has been added to the minimum mean square error evaluated for the Nyquist channel
in order to differentiate from the MMSE computed for the actual channel. First the series term shown
in the integrand in Equation (10.100) is considered. Substituting the Nyquist channel (10.99) gives

1

T 2γi

+∞∑
n=−∞

|Nm(x − n)|2 =




1

T 2γi

+∞∑
n=−∞

T 2, |x − n| <
1 − m

2

1

γi

+∞∑
n=−∞

cos2

[
π

2m

(
x − n − x − n

|x − n|
1 − m

2

)]
,

1 − m

2
≤ |x − n| ≤ 1 + m

2

0, |x − n| >
1 + m

2

(10.101)
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Figure 10.26 Computed spectrum of the Nyquist functions (top) and the raised cosine function (bottom)
versus the normalized frequency x = f T for the increasing roll-off factor m = 0, 0.2, 0.4, 0.6, 0.8, 1. Every
profile of the raised cosine function crosses one-half of the maximum at half the bit rate frequency. This
relevant property makes the double-sided noise bandwidth for the Nyquist channel independent of the roll-off
and equal to the bit rate frequency

This complex series representation can be easily solved by looking inside each term. The first
important remark to make regards the relationship between the integer series step . . . , n − 1, n, n +
1, . . . and the interval IN(0) = (|x| < 1), where the Nyquist function can assume nonzero values.
Stated differently, the Nyquist function is identically zero for every point outside that interval:

∀ x /∈ IN(0) = (|x| < 1) ⇒ Nm(x) = 0 (10.102)

Figure 10.27 gives a graphical representation of the first few functions |Nm(x − n)|2 in the above
series.
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Figure 10.27 Graphical representation of the first series terms in Equation (10.101) for the case m = 1. Due to
condition (10.103), for every integer n ≥ 2 :

(− 1
2 ,+ 1

2

) ∩ IN(|n| ≥ 2) = Ø. In the integration interval
(− 1

2 ,+ 1
2

)
only the central squared Nyquist functions and the first two side functions contribute to the integration term.
Their superposition in the integration interval gives the constant profile and according to Equation (10.99)
equals T 2

According to the definition (10.99) and to condition (10.102), the function Nm(x − n) is therefore
identically zero outside the interval IN(n) = (|x − n| < 1):

∀ x /∈ IN(n) = (|x − n| < 1) ⇒ Nm(x − n) = 0 (10.103)

Since each term Nm(x − n) in the series is translated into the integer number n of intervals IN(0),
it can immediately be concluded that in the integration interval − 1

2 < x < + 1
2 only the centered

function Nm(x) and at least the two side functions Nm(x − 1) and Nm(x + 1) contribute to the
summation. For every index |n| ≥ 2 in the series the contribution of Nm(x ± n) to the integration
interval is identically null:

(− 1
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2

) ∩ IN(|n| ≥ 2) = Ø.
From the graphical representation and the definition (10.99) it is easy to demonstrate that the

value of the series in Equation (10.101) in the integration interval reduces to the constant T 2,
independently of any value of the roll-off factor 0 ≤ m ≤ 1. To demonstrate this theorem, it is
observed that, from the even symmetry of the normalized raised cosine function in Equation (10.99)
and the unit translation, the sum of the central term (n = 0) with the first two neighborhoods
(n = ±1) has an even symmetry. Consequently, only the positive frequency half-profile can be
considered. The same conclusion holds for the negative frequency axis according to the even
symmetry. In the following the explicit expression of the sum of the first two terms, corresponding
to n = 0 and n = +1, is considered:
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(10.104)
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The value of the sum in the interval (1 − m)/2 ≤ x ≤ (1 + m)/2 can be computed immediately
by observing that the contribution of |N1(x − 1)|2 can be written in terms of the corresponding
ones for |N0(x)|2. In fact, from Equation (10.104),

cos2

[
π

2m

(
x − 1 − m

2

)]
+ cos2

[
π

2m

(
x − 1 + 1 − m

2

)]

= 1 + 1

2

{
cos

[
π

m

(
x − 1 − m

2

)]
+ cos

[
π

m

(
x − 1 + 1 − m

2

)]}

The second cosine term becomes
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The following identity holds for every roll-off coefficient:
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From Equation (10.104) it can be concluded that

|N0(x)|2 + |N1(x − 1)|2 = T 2, 0 ≤ x ≤ 1 (10.105)

The same conclusion holds for the negative frequency interval:

|N0(x)|2 + |N−1(x + 1)|2 = T 2, −1 ≤ x ≤ 0 (10.106)

Since +∞∑
n=−∞
n 
=0,±1

|Nm(x − n)|2

︸ ︷︷ ︸
−1≤x≤+1

= 0 (10.107)

from Equations (10.105), (10.106) and (10.107), it can be concluded that

1

T 2γi

+∞∑
n=−∞

|Nm(x − n)|2
︸ ︷︷ ︸

−1≤x≤+1

= 1

γi

(10.108)

It is important to note that this result is coincident with the series calculation performed in
Section 10.2.6.1. In that calculation, the special case of a Nyquist channel characterized by zero
roll-off with m = 0 was dealt with. Substituting Equation (10.108) into Equation (10.100) gives
the expression of the minimum mean square error for the general Nyquist channel:

̂MMSE = exp

[
− log

(
1 + 1

γi

)∫ +1/2

−1/2
dx

]

and ̂MMSE = γi

1 + γi

(10.109)
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The minimum mean square error ̂MMSE for the DFE receiver with the noise-to-signal ratio γi ,
operating over the Nyquist channel and independently from any value of the roll-off coefficient, is
expressed by Equation (10.109).

The result obtained in Equation (10.109) is as important as it is simple and of course coincides
with the ̂MMSE value obtained in Section 10.2.6.1 for the case of the zero roll-off Nyquist channel.
In fact, it is valid for every roll-off coefficient and since there is no intersymbol interference in the
DFE receiver operating over the Nyquist channel, the ̂MMSE depends only on the noise-to-signal
ratio γi . These results conclude the calculation of the ̂MMSE for the Nyquist channel. In the next
section the ̂MMSE for the Nyquist channel will be related to the eye diagram opening penalty and
finally the optical power penalty due to the DFE receiver operating over a general transmission
channel will be defined.

10.3.1.2 The Eye Diagram Opening Penalty

The eye diagram opening penalty ∆ξ̂R for the Nyquist channel follows directly from the MMSE the-
ory developed in the previous section and from the general eye diagram opening penalty expression
derived in Equation (10.97). Substituting the ̂MMSE expression (10.109) for the Nyquist channel
in Equation (10.97) gives

∆ξ̂R = 1

1 − 2
√

γi/(1 + γi)
, γi ≡ Gi

T σ 2
a

(10.110)

The requirement (10.88) on the maximum MMSE in order to have a consistent eye diagram opening
penalty definition translates immediately to the following requirement for the maximum noise-to-
signal ratio:

0 ≤ ̂MMSE ≤ 1
4 ⇒ 0 ≤ γi ≤ 1

3 (10.111)

As expected, at the limiting condition lim
γi→ 1

3
∆ξ̂R = +∞, an infinite eye opening is required to

overcome the ̂MMSE. Analogously to Equation (10.98), the eye diagram opening penalty for the
Nyquist channel expressed in dB is defined as

∆ξ̂dB = −10 log10

(
1 − 2

√
γi

1 + γi

)
(10.112)

10.3.2 Definition of the Optical Power Penalty

In the previous sections the expressions of the eye diagram opening penalty for the generic working
channel have been derived, assuming ideal DFE operation over the reference Nyquist channel.
The intention now is to define a consistent optical power penalty due to ideal DFE operation
over a generic transmission channel. Given the noise-to-signal ratio γi , the optical power penalty
consequent to implementation of the ideal DFE receiver derives conceptually from the comparison of
the eye diagram opening between the working channel and the Nyquist channel. In Section 10.2.6.1
it was concluded that for every noise-to-signal ratio γi , the minimum penalty of the eye diagram
opening is accomplished using the ideal DFE receiver over the Nyquist channel. This receiver
coincides with the autocorrelator, without any intersymbol interference. The concept of the optical
power penalty of the ideal DFE receiver therefore identifies with the comparison of the eye diagram
opening penalty ∆ξR for the working channel with the eye diagram opening penalty ∆ξ̂R for the
Nyquist channel. This is the penalty of using any channel different from the Nyquist ones but with
the same noise power spectral density. Using the same approach we followed in Equation (10.97),
the eye diagram opening of both the Nyquist and the working channels in terms of the respective
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residual minimum mean square errors can be written as

ξISI = ρISIξ0 (10.113)

ξ̂ISI = ρ̂ISIξ0 (10.114)

The optical power penalty can be defined by means of the eye diagram opening ξ ′
0 required

for the working channel in order to restore the residual eye diagram opening ξ̂ISI of the Nyquist
channel in consequence of the given noise factor γi :

ξ ′
0 : ξ ′

0ρISI ≡ ξ̂ISI (10.115)

Hence, from Equation (10.114),
ξ ′

0ρISI = ρ̂ISIξ0 (10.116)

The optical power penalty ∆PR for the DFE receiver operating over the working channel is given
by the ratio between the eye diagram opening ξ ′

0 and ξ0 according to Equation (10.116):

∆PR ≡ ξ ′
0

ξ0
= ρ̂ISI

ρISI
(10.117)

Substituting the expressions (10.93) for the cases of the Nyquist and working channels respectively
gives the following explicit expression of the optical power penalty for the DFE receiver:

∆PR = 1 − 2
√

γi/(1 + γi)

1 − 2
√

MMSE
(10.118)

As expected, once the noise-to-signal-ratio γi is fixed, the optical power penalty depends exclusively
of the transmission channel characteristic through Equation (10.57). The optical power penalty
expressed in decibels has the following expression:

∆PdB = 10 log10

(
1 − 2

√
γi

1 + γi

)
− 10 log10(1 − 2

√
MMSE) (10.119)

Finally, using Equation (10.98) and (10.112) gives

∆PdB = ∆ξdB − ∆ξ̂dB (10.120)

This expression summarizes the meaning of all the previous discussion regarding the effect of the
reference channel for noise integration. It is important to remark, however, that since the Nyquist
channel contribution ∆ξ̂dB is strictly positive, the optical power penalty in Equation (10.120) is even
lower than the corresponding eye diagram opening penalty ∆ξdB. The next section will present some
examples about this feature.

10.3.3 Calculation of the Optical Power Penalty

In this section the numerical evaluation is presented of the optical power penalties for the same
single-pole and Gaussian channels already considered in Section 10.2.8. In order to show the
quantitative effect of the DFE receiver, the following graphs report the eye diagram opening penalty
∆ξdB and ∆ξ̂dB for the working channel and for the Nyquist channel respectively, together with
the optical power penalty according to the definition (10.117).
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10.3.3.1 Single-Pole Channel

Figure 10.28 shows the optical power penalty plots for the single-pole channel versus the normal-
ized cut-off frequency with noise-to-signal ratios of γi = −40 dB, −30 dB, −20 dB. At very low
cut-off frequencies the noise power gathered into the system is comparably very small and the
total eye diagram opening penalty ∆ξdB tends to be equal to the corresponding value ∆ξ̂dB for
the Nyquist channel. This means that the average power of the sum of the residual intersymbol
interference with the noise has been minimized by the DFE action, leading to almost the same
value as that of the noise-limited Nyquist channel. In fact it should be remembered that in the
case of the Nyquist channel the only cause of the eye closure comes from the input additive
noise. By increasing the channel cut-off frequency, the input matching condition gathers addi-
tional noise power with respect to the Nyquist equivalent and the optical power penalty starts
to increase due to the relevant noise contribution. At the cut-off frequency, corresponding to the
intersection between ∆ξ̂dB and ∆PdB, the eye diagram opening penalty is ∆ξdB = 2∆ξ̂dB. This cut-
off condition can be considered as a threshold for DFE noise-limited operation in the single-pole
channel.

dB

Figure 10.28 Computed optical power penalties versus the normalized cut-off frequency for the DFE receiver
over the single-pole channel according to Equation (10.120). The noise-to-signal ratio has been set equal to
γi = −40 dB, −30 dB, −20 dB. The optical eye diagram opening penalties for the reference Nyquist channel
are also shown as constant lines



560 Multi-Gigabit Transmission over Multimode Optical Fibre

10.3.3.2 Gaussian Channel

The optical power penalty for the Gaussian channel is presented in Figure 10.29, assuming γi =
−40 dB, −20 dB. For every fixed noise value, the Nyquist channel has a constant eye diagram open-
ing penalty ∆ξ̂dB, given by Equation (10.112). The eye diagram opening penalty ∆ξdB for the Gaus-
sian channel, however, exhibits the characteristic long-horn profile from the normalized frequency.
The difference between these two functions defines the optical power penalty, as expressed by
Equation (10.120). The optical power penalty of ∆PdB follows the same long-horn profile, showing
the minimum region at approximately 35 % of the normalized bit rate frequency. This suggests the
optimum range of the cut-off frequency for implementing the ideal DFE over the Gaussian channel.

These examples close the section on the optical power penalty for the decision feedback equalizer.
The theory has been derived starting from the work of J. Salz and has been applied to the definition
of eye diagram opening impairments. The channel bandwidth has the principal role of determining
the residual eye diagram opening and consequently the amount of optical power penalty. To this
end, the Nyquist channel was introduced in order to provide the ultimate performing reference for
every working channel.

dB

Figure 10.29 Computed optical power penalty for the Gaussian channel according to Equation (10.120). The
noise-to-signal ratio assumes the value γi = −40 dB, −20 dB. The characteristic ‘long-horn’ profile has the
minimum value at approximately 35 % of the normalized bit rate frequency
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The single-pole and the Gaussian channels have been used to illustrate quantitative calculations
of the optical power penalties versus the respective normalized cut-off frequencies and noise param-
eters. In the next section the optical power penalty will be used to generalize the concept of the
channel metric, already discussed in Chapter 9, Section 9.3.3, in the case of the ideal inverse fil-
ter equalizer. One difference is noted between the ideal inverse filter equalizer and the decision
feedback equalizer, namely the equalization criterion. The ideal inverse filter equalizer assumes no
residual intersymbol, otherwise stated as the zero-forcing equalization. The DFE assumes instead
the smoother mean square error minimization, leading to a compromise between noise and residual
intersymbol interference. The corresponding channel metrics that can be defined accordingly use
these criteria, and their comparison must of course account for that.

10.4 The Channel Metric
According to the Theory of digital feedback equalization (DFE) presented so far, the ideal feedback
equalizer uses an infinite length feedforward filter (FFF) and feedback filter (FBF) and is based
on the minimization of the mean square error, under the assumptions of correct past decisions and
additive white noise. Accordingly, in the previous section the expression (10.119) of the optical
power penalty ∆PdB was derived for the ideal digital feedback equalizer. That expression is rewritten
in order to indicate explicitly the form of the minimum mean square error according to the DFE
theory reported in Equation (10.57):

∆PdB = 10 log10




1 − 2
√

γi/(1 + γi)

1 − 2 exp

{
− 1

2

∫ +1/2

−1/2
log

[
1 + (1/T 2γi)

+∞∑
n=−∞

|Q(x − n)|2
]

dx

}

 (10.121)

This expression is not new since it has already been used in the previous section to compute the
optical power penalty for the single-pole and the Gaussian channels.

10.4.1 Penalty for the Digital Equalizer (PIED)

The optical power penalty in Equation (10.121) depends exclusively on the channel impulse response
q(t) and on the noise-to-signal ratio γi . Note that the channel response q(t) is given in Equation (10.8)
by time convolution of the impulse responses of the optical transmitter, the multimode fiber and
the optical receiver, up to the input section of the feedforward filter. The impulse response q(t)

characterizes the optical channel and the noise-to-signal ratio γi sets the normalized noise power at
the receiver input. Both of these parameters uniquely define the transmission characteristic of the
optical link and the corresponding optical power penalty (10.121) assumes the meaning of the optical
channel metric relative to implementation of the ideal decision feedback equalization.

The DFE architecture that has been presented uses the decision feedback loop as the characteristic
structure. Consequently, the expression (10.121) will be referred to as the optical power penalty
of the ideal decision feedback equalizer and consequently the new notation PIED ≡ ∆PdB (the
suffix D stands for decision feedback) will be introduced. Equation (10.121) can be simplified by
recognizing the even symmetry of the integrand function. In fact, assuming that the channel response
q(t) is a real function of the time, the Fourier transform Q(x) = Q∗(−x) shows the conjugate even
symmetry. Hence, the spectrum (modulus) |Q(−x)| = |Q(x)| exhibits the even symmetry and from
the mirroring property |Q(x − n)| = |Q[−(x + n)]| the even symmetry of the auxiliary function
introduced in Equation (10.68) can be obtained:

W(−x) ≡
+∞∑

n=−∞
|Q[−(x + n)]|2 =

+∞∑
n=−∞

|Q(x − n)|2 = W(x) (10.122)
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Consequently, the integral at the exponent in Equation (10.121) can be computed by doubling the
value relative to the positive frequency interval, and the optical power penalty of the ideal digital
equalizer (DFE) becomes

PIED(x0, γi) ≡ 10 log10




1 − 2
√

γi/(1 + γi)

1 − 2 exp

{
−
∫ 1/2

0
log

[
1 + 1

T 2γi

+∞∑
n=−∞

|Q(x − n)|2
]

dx

}

 , (dB)

(10.123)

Although the terminology ‘Penalty of the ideal digital equalizer’ has been introduced, the expres-
sion (10.123) refers exclusively to the ideal decision feedback equalizer. Figure 10.30 shows the
computed PIED for the single-pole and Gaussian channels. The plots are the same as already pre-
sented in the previous section, as the expression of the optical power penalty (10.120) coincides
with the formula of the PIED presented in Equation (10.123). The signal-to-noise ratio is set as
a parameter, ranging between γi = −30 dB and γi = −10 dB with 5 dB steps. For the single-pole

dB

Figure 10.30 Computed PIED (x0, γi) for the single-pole channel according to Equation (10.123). As reported
in the text, the optical power penalty is referred to the Nyquist channel affected by the same receiver noise
power
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channel it is concluded that PIED (x0, γi) increases monotonically versus the normalized cut-off
frequency, reaching the infinite value for every fixed noise parameter γi . This means that the MMSE
is noise-limited at increasing cut-off, reaching the value of one-quarter and leading to a completely
closed (on the average) eye diagram.

Figure 10.31 gives the PIED (x0) computation for the Gaussian channel, using Equation (10.123).
The plots have the same profiles as Figure 10.29. The characteristic long-horn shaping reaches the
minimum penalty at around 35 % of the normalized bit rate. This cut-off range therefore leads to
better equalization results. It is interesting to compare the results of the two channels at a fixed
normalized cut-off frequency by choosing, for example, x0 = 0.1.

Table 10.2 reports the numerical data extracted from both Figures 10.30 and 10.31. At a consis-
tent bandwidth reduction, assuming x0 = 0.10, the optical power penalty required by the single-pole
channel is considerably lower than that of the Gaussian channel. As already mentioned, this is due
to the steeper slope profile of the Gaussian response with respect to the smoother single-pole one.

The optical power penalty PIED derived in this chapter is under discussion at the 10GBASE-LRM
Standardization Committee (IEEE802.3) in order to be used as the reference channel metric for

dB

Figure 10.31 Computed PIED (x0, γi ) for the Gaussian channel according to Equation (10.123). The optical
power penalty is referred to the Nyquist channel affected by the same receiver noise power. The increased
value of the MMSE corresponds to the increased value of the penalty due to contributions of both integrated
noise and residual intersymbol interference. The minimum penalty interval identifies the optimum equalization
range for the Gaussian channel
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Table 10.2 Comparison between the single-pole and the Gaussian channel
penalties PIED versus the noise-to-signal ratio and assuming fixed cut-off
frequencies x0 = 0.10 and x0 = 0.35. At x0 = 0.35 the Gaussian channel gives
PIED < 1 dB for every value shown of γi

γi (dB10) Optical power penalty PIED (γi) (dB)

Single-pole
x0 = 0.10

Gaussian
x0 = 0.10

Single-pole
x0 = 0.35

Gaussian
x0 = 0.35

−10 2.1662 9.0537 ∞ 0.8479
−15 0.7665 4.1598 3.3969 0.3351
−20 0.3556 2.7966 1.3514 0.1605
−25 0.1806 1.9842 0.6510 0.0826
−30 0.0959 1.4208 0.3376 0.0441

quantifying the performances of suitable DFE architectures operating over multimode optical fiber
link. As discussed in the first part of this book, the multimode fiber response is unfortunately not
uniquely defined for a given fiber link. It depends upon several launching conditions and environ-
mental effects, making the multimode optical channel characterization quite a cumbersome issue.
The 10GBASE-LRM Standardization Committee is attempting to define the maximum allowable
optical power penalty that can still be accommodated by the DFE, independently from a particular
multimode fiber response. The attempt is being made to correlate the maximum value of PIED

that can be accepted by the transmission system in order to provide the link operation under an
unknown multimode fiber impulse response.

10.4.2 Penalty for the Linear Equalizer (PIEL)

The channel metric (10.123) derived in the previous section refers to the decision feedback equalizer
(DFE). However, it is possible to consider that the equalizer does not perform the MMSE postcursors
interference cancellation using the nonlinear feedback loop. Instead, the MMSE signal compensation
is achieved using the stand-alone feedforward equalizer (FFE). In this case, the optical power penalty
refers to a different linear channel metric, and accordingly to the linear filtering provided by the
feedforward filter implemented in the input stage of the FFE, this structure is referred to as the
linear equalizer. The corresponding optical power penalty derived assuming the minimum mean
square error criterion leads to the definition of the channel metric for the linear equalizer, otherwise
stated as PIEL.

The inverse filter equalizer developed in Chapter 9 is of course a linear equalizer but the con-
vergence criterion for reaching the equalization is completely different. In that case, the complete
interference cancellation was referred to as the zero-forcing equalization (ZFE). In the case of the
FFE the convergence algorithm is based on the minimization of the mean square error, which leads
to a different system optical power penalty definition.

The difference between PIEL and PIED lies in the additional implementation of the feedback filter
in the DFE architecture, with the implicit nonlinear characteristic. All the remaining building blocks
are the same as in Figure 10.29, with the exception of the feedback filter (FBF). The minimum
mean square error of the linear (FFE) equalizer has the following expression:

MMSEFFE

σ 2
a

= T

2π

∫ +π/T

−π/T

1

1 + [1/(T 2γi)]
∑+∞

n=−∞ |Q(ω − nωB)|2
dω (10.124)
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The quantities:

γi ≡ Gi

T σ 2
a

, ωB = 2π

T

Q(ω)
�←→q(t) = hT(t) ∗ hF(t) ∗ hR(t)

have the same definition as the corresponding DFE solution. Assuming binary symbols σ 2
a = 1 and

using the bit rate frequency normalized variable x = f T , from Equation (10.124) the following
expression of the MMSE can immediately be obtained for the FFE:

MMSEFFE =
∫ +1/2

−1/2

1

1 + [1/(T 2γi)]
∑+∞

n=−∞ |Q(x − n)|2
dx (10.125)

In order to have a clear comparison between the minimum mean square errors for the DFE and the
FFE architectures, the dimensionless function Y (x) is introduced:

Y (x) ≡ 1

1 + [1/(T 2γi)]
∑+∞

n=−∞ |Q(x − n)|2
= 1

1 + [1/(T 2γi)]W(x)
(10.126)

The auxiliary function has been defined in Equation (10.68). The expression (10.57) of the
MMSE is considered for the DFE case, assuming binary symbols and adding the suffix DFE
in order to better differentiate it from the FFE case. Substituting Equation (10.126) in both
Equations (10.125) and (10.57) gives the following smart expressions for MMSEFFE and MMSEDFE

respectively:

MMSEFFE =
∫ +1/2

−1/2
Y (x) dx (10.127)

MMSEDFE = exp

{∫ +1/2

−1/2
log[Y (x)] dx

}
(10.128)

Referring to the contribution of J. Salz and using the property 0 < Y(x) < 1, the following inequal-
ity holds:

MMSEDFE = exp

{∫ +1/2

−1/2
log[Y (x)] dx

}
≤
∫ +1/2

−1/2
elog[Y (x)] dx =

∫ +1/2

−1/2
Y (x) dx = MMSEFFE

(10.129)

This gives the following remarkable statement. Given the noise-to-signal ratio γi , the minimum
mean square error of the ideal decision feedback equalizer is even lower than the corresponding
MMSEFFE of the ideal feedforward equalizer. Only one particular function Y (x) satisfies the equality
sign in Equation (10.219), leading to the same value for both the MMSEFFE and MMSEDFE. It is
the constant function. Setting Y (x) = Y0 in Equations (10.127) and (10.128) gives

Y (x) = Y0 ⇒




MMSEFFE = Y0

∫ +1/2

−1/2
dx = Y0

MMSEDFE = exp

(
log(Y0)

∫ +1/2

−1/2
dx

)
= Y0

(10.130)
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This conclusion is very important because it implies that the general Nyquist channel leads to
the same minimum mean square error for both the FFE and the DFE architecture. In fact, from
Equations (10.108), (10.109) and using the notation (10.126) for the function Y (x),

Ŷ (x) ≡ 1

1 + [1/(T 2γi)]
∑+∞

n=−∞ |Nm(x − n)|2︸ ︷︷ ︸
−1≤x≤+1

= γi

1 + γi

= ̂MMSE (10.131)

Hence, from Equation (10.130):

̂MMSEFFE = ̂MMSEDFE = ̂MMSE = γi

1 + γi

(10.132)

Once the expressions (10.125) and (10.132) of the minimum mean square error of the feedfor-
ward equalizer are known, operating over the general channel and the Nyquist channel respectively,
if the same procedure as the previous section is followed, the expression of the optical power penalty
PIEL for the ideal linear (not feedback) equalizer is derived. Following Equation (10.118),

PIEL ≡ 10 log10

(
1 − 2

√ ̂MMSE

1 − 2
√

MMSEFFE

)
(10.133)

Substituting Equations (10.125) and (10.132) in Equation (10.133) gives the following explicit form
of PIEL:

PIEL(x0, γi) ≡ 10 log10
1 − 2

√
γi/(1 + γi)

1 − 2

√√√√2
∫ +1/2

0

1

1 + [1/(T 2γi)]
∑+∞

n=−∞ |Q(x − n)|2
dx

(dB)

(10.134)

From expressions (9.102) in Chapter 9, (10.134) and (10.123), the optical power penalties PIEI,
PIEL and PIED respectively, evaluated for the Nyquist channel and expressed in decibels, are
identically zero, in agreement with the definition of the Nyquist channel as the reference channel
for bit error rate performances:

P̂IEI = P̂IEL = P̂IED = 0 (10.135)

Before closing this section, Table 10.3 summarizes the general expressions derived for the mini-
mum mean square error and the optical power penalty according to the various electronic equalizer
architectures. Table 10.4 reports instead the MMSE and the optical power penalties for the reference
Nyquist channel.

In the following section, the three different channel metrics are compare that have been ana-
lyzed using the single-pole and the Gaussian channels versus the normalized cut-off frequen-
cies and noise parameters. In addition to PIED and PIEL, a comparison will be made with the
optical power penalty PIEI of the ideal inverse linear filter equalizer, reported in Chapter 9,
Equation (9.102).

10.4.3 Channel Metrics Comparison: PIEI, PIEL, PIED

In order to make a consistent comparison between the two different channel metrics defined in
previous sections and the channel metric for the inverse filter equalizer defined in Chapter 9,
the multimode fiber transmission system needs to be set up accordingly. The channel structure
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Table 10.3 Summary of the general expressions of the minimum mean square error (MMSE) and of the optical
power penalties PIEI (9.102) in Chapter 9, PIEL (10.134) and PIED (10.123) for the inverse filter equalizer
(IFE), the feedforward equalizer (FFE) and the decision feedback equalizer (DFE) respectively, derived in the
text for the general channel

Equal-

General working channel

izer MMSE Optical power penalty

IFE – PIEI = 5 log10

[
2
∫ 1/2

0

1

|HF(x)|2 dx

]

FFE MMSE = 2
∫ 1/2

0

1

1 + [1/(T 2γi )]
∑+∞

n=−∞ |Q(x − n)|2
dx PIEL = 10 log10

1 − 2
√

γi /(1 + γi )

1 − 2

√√√√2
∫ 1/2

0

1

1 + [1/(T 2γi )]
∑+∞

n=−∞ |Q(x − n)|2
dx

DFE MMSE = PIED =

exp

{
−2

∫ 1/2

0
log

[
1 + 1

T 2γi

∑+∞
n=−∞ |Q(x − n)|2

]
dx

}
10 log10


 1 − 2

√
γi/(1 + γi )

1 − 2 exp

{
−
∫ 1/2

0
log[1 + [1/(T 2γi )]

∑+∞
n=−∞ |Q(x − n)|2] dx

}



Table 10.4 Summary of the general expressions of the minimum
mean square error (MMSE) and of the optical power penalties PIEI,
PIEL and PIED for the inverse filter equalizer (IFE), the feedforward
equalizer (FFE) and the decision feedback equalizer (DFE) respec-
tively, derived in the text for the reference Nyquist channel

Equalizer Reference Nyquist channel

MMSE Optical power penalty

IFE – PIEI = 0 dB

FFE ̂MMSE = γi

1 + γi

PIEL = 0 dB

DFE ̂MMSE = γi

1 + γi

PIED = 0 dB

is the same for both the feedforward equalizer and the decision feedback equalizer. According
to the definition given at the beginning of this chapter, it is characterized by the global impulse
response q(t) as reported in Equation (10.8) and corresponds to the temporal convolution of the
impulse responses of the optical transmitter hT(t), the multimode fiber hF(t) and the optical receiver
hR(t) respectively, up to the input section of the feedforward filter. In this model, the individual
composition of these three linear subsystems are neglected and it is assumed that the global impulse
response q(t) follows a specified function of the time. In previous examples, the single-pole and
the Gaussian functions were used extensively to model the channel response.

However, when reference is made to the inverse filter equalizer the picture involved is different.
According to the theory developed in Chapter 9, the impulse response of both the optical transmitter
hT(t) and the optical receiver hR(t) are uniquely specified by the inverse Fourier transform of the
square root of the raised cosine transfer function with zero roll-off. This is part of the definition of
the reference channel for the inverse filter equalizer. The third building block, which differentiates
the working channel behavior, is the impulse response of the multimode fiber hF(t). In order to
make a valid comparison among the three channel metrics PIEI, PIEL and PIED, the function hF(t)
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must be specified that satisfies simultaneously both the impulse response q(t), common to the FFE
and DFE structures, and the specific requirements for the working channel of the inverse filter
equalizer. The solution to this problem is quite simple: for an arbitrary impulse response q(t)

assigned to the working channel, the corresponding impulse response hF(t) of the multimode fiber
specified in the inverse filter equalizer channel model is given by the inverse Fourier transform

�−1{·} of the ratio between the channel response q(t)
�←→Q(ω) and the raised cosine spectrum

with zero roll-off, Γ0(ω):

hF(t) = �−1

{
Q(ω)

Γ0(ω)

}
⇒




HF(ω) = Q(ω)

Γ0(ω)

−π

T
< ω <

π

T

(10.136)

This statement is apparently obvious, but can lead to some misunderstandings. It is noted explic-
itly that if hR(t) = hT(t) = �−1{√Γ0(ω)} in the configuration of the working channel for the DFE
and FFE structures, according to the ansatz relations (10.2) and (10.4) the raised cosine Γ0(ω)

must be defined with unit dimensionless amplitude in the frequency domain. This is consistent
with the definition used in Equation (9.64) for the inverse filter equalizer. Substituting the corre-

sponding impulse response γ0(t)
�←→Γ0(ω) reported in Equation (9.65) into the channel impulse

response (10.8) with m = 0 gives
q(t) = hF(t) ∗ γ0(t) (10.137)

The channel impulse response q(t) is correctly normalized and dimensionless, while the corre-
sponding frequency response Q(ω) assumes the dimension of time, |Q(0)| = τ , in agreement
with the condition (10.5). The function γ0(t) in Equation (10.137) coincides with the function
sinc(t /T ):

γ0(t) = sinc

(
t

T

)
= 1

T

sin (πt/T )

πt/T
(10.138)

Table 10.5 reports explicit formulations of the optical transmitter, the optical receiver and the
multimode fiber model equations in the cases of the ideal inverse equalizer, the feedforward equal-
izer and the decision feedback equalizer respectively. The only degree of freedom is represented
by the choice of the channel response Q(f ).

From Table 10.5 it can be concluded that the frequency response HF(ω) of the multimode fiber
satisfies simultaneously both the channel response Q(ω), with the required dimension of time, and
the multimode fiber response of the inverse filter equalizer. Stated differently, once the channel
response Q(ω) has been defined in the FFE and DFE architectures, in order to have comparable
results, the frequency response reported in Equation (10.136) is assigned to HF(ω) in the IFE
configuration. The transmitter and the receiver for these two equalizers have an impulse response
equal to the square root of the dimensionless raised cosine function in Equation (10.137) with zero
roll-off. Therefore the definition of the channel is the same for all three equalization schemes, the
dimensional structure is respected and the corresponding results become comparable. The integration
limits for the calculation of PIEI in Equation (9.102) are consistent with the definition interval
shown in Equation (10.136). Substituting Equation (10.136) into Equation (9.102) and using the
normalized frequency variable x = f T gives the following relevant result:

PIEI = 5 log10

[
2τ 2

∫ 1/2

0

1

|Q(x)|2 dx

]
(10.139)

|Q(0)| = τ : q(0) =
∫ +∞

−∞
Q(f ) df = 1 (10.140)
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Table 10.5 The table summarizes the equation model for the inverse filter equalizer, the
feedforward equalizer and the decision feedback equalizer. The dimensional normalization
has been set in order to produce comparable results of the channel metrics and compliant
descriptions with the respective system model assumptions

Equalizer HT(f ) HF(f ) HR(f )

IFE




1, |f | <
1

2T
1√
2
, |f | = 1

2T

0, |f | ≥ 1

2T

Q(f ), |f | <
1

2T
|Q(0)| = τ




1, |f | <
1

2T
1√
2
, |f | = 1

2T

0, |f | ≥ 1

2T

FFE




1, |f | <
1

2T
1√
2
, |f | = 1

2T

0, |f | ≥ 1

2T

Q(f )

|Q(0)| = τ




1, |f | <
1

2T
1√
2
, |f | = 1

2T

0, |f | ≥ 1

2T

DFE




1, |f | <
1

2T
1√
2
, |f | = 1

2T

0, |f | ≥ 1

2T

Q(f )

|Q(0)| = τ




1, |f | <
1

2T
1√
2
, |f | = 1

2T

0, |f | ≥ 1

2T

Table 10.6 Summary of the general expressions of the channel metrics PIEI (10.139), PIEL (10.134)
and PIED (10.123) for the inverse filter equalizer (IFE), the feedforward equalizer (FFE) and the
decision feedback equalizer (DFE) respectively

Equalizer Channel metric for Q(x)

IFE PIEI = 5 log10

[
2τ 2

∫ 1/2

0

1

|Q(x)|2 dx

]

FFE PIEL = 10 log10
1 − 2

√
γi/(1 + γi)

1 − 2

√√√√2
∫ 1/2

0

1

1 + [1/(T 2γi)]
∑+∞

n=−∞ |Q(x − n)|2
dx

DFE PIED = 10 log10
1 − 2

√
γi/(1 + γi)

1 − 2 exp

(
−
∫ 1/2

0
log

{
1 + [1/(T 2γi)]

∑+∞
n=−∞ |Q(x − n)|2

}
dx

)

These expressions allow PIEI to be written in terms of the channel response Q(x) using the
same form as the other two equalizers, providing the normalization in Equation (10.140). Table 10.6
reports the explicit form of the three expressions for the channel metric. In the following two subsec-
tions the computed plots of PIEI, PIEL and PIED are given on the same graph versus the normalized
cut-off frequency for the single-pole, the Gaussian and the fourth-order Bessel–Thompson chan-
nels. It is noted that according to the definition of the reference in the inverse filter equalizer, the
noise parameter does not affect the corresponding optical power penalty PIEI because the receiver
is matched on the ideal Nyquist transmitter with HT(ω) = √

Γ0(ω), independently of the working
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channel characteristic, and the eye diagram degradation due to noise enhancement after the IFE
refers to that performance.

In the FFE and DFE structure, however, the receiving filter is matched to the entire working
channel q(t), while the reference channel exhibits the ideal Nyquist response. In these cases,
the receiver is different from the reference and the working conditions, which is the reason why
the optical power penalty depends on the noise-to-signal-ratio for both the feedforward equalizer
and the decision feedback equalizer. The different behaviors found at large values of the cut-off
frequencies between the IFE and both FFE and DFE depend on the different roles of the time
constants in front of the respective integrals, in Equations (10.139), (10.134) and (10.123). In the
case of PIEI the time constant coincides with τ 2, while in the cases of PIEL and PIED the time
constant is the time step T 2. Increasing the cut-off frequency leads to a corresponding reduction
of τ , leaving the contribution to PIEI unchanged. Instead, in the case of both PIEL and PIED, the
value of the series term in the integrals reduced accordingly, determining the divergence of both
channel metrics.

10.4.3.1 Single-Pole Channel

The square modulus of the single-pole channel frequency response is obtained from
Equations (10.63) and (10.65), where the channel response Q(x) satisfies the required normalization
|Q(0)| = τ = T/(2πx0) and x0 is the normalized cut-off frequency:

q(t) =



e−t/τ , t ≥ 0
0, t < 0
q(0) = 1

⇒




|Q(x)|2
∣∣∣
x=f T

= T 2

4π2x2
0

1

1 + (x/x0)2

τ = T

2πx0
= 1

2πf0

(10.141)

Substituting Equation (10.141) in Equations (10.139), (10.134) and (10.123) gives the following
expressions for the channel metrics for the inverse filter equalizer, the feedforward equalizer and
the decision feedback equalizer respectively:

PIEI(x0) = 5 log10

{
2
∫ 1/2

0

[
1 +

(
x

x0

)2
]

dx

}
= 5 log10

(
1 + 1

12x2
0

)
(10.142)

PIEL(x0, γi)

= 10 log10
1 − 2

√
γi/(1 + γi)

1 − 2

√√√√√√2
∫ +1/2

0

1

1 + [1/(4π2x2
0γi)]

+∞∑
n=−∞

1

1 + [(x − n)/x0]2

dx

(10.143)

PIED(x0, γi)

= 10 log10
1 − 2

√
γi/(1 + γi)

1 − 2 exp

(
−
∫ 1/2

0
log

{
1 + 1

4π2x2
0γi

+∞∑
n=−∞

1

1 + [(x − n)/x0]2

}
dx

) (10.144)

The channel metrics PIEL and PIED have been computed numerically from Equations (10.143)
and (10.144) respectively. Figure 10.32 gives the computed channel metrics for the three equalizers
versus the normalized cut-off frequency x0, assuming the same single-pole channel and the same
noise-to-signal ratio γi = −20 dB. The most evident difference between the FFE and DFE curves
from the IFE one is the opposite sloped sign versus the normalized cut-off frequency.
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Figure 10.32 Computed optical power penalties PIEI, PIEL and PIED versus the single-pole normalized
cut-off frequency of the inverse filter equalizer (IFE), the feedforward equalizer (FFE) and the decision feed-
back equalizer (DFE) respectively. The noise-to-signal ratio for the FFE and DFE has been set equal to
γi = −20 dB. The computed values report that the FFE and DFE give a better performance from the cut-off
frequency approximately below x0 = 0.35. In particular, at x0 = 0.20 then PIEI

∼= 2.5 dB, PIEL
∼= 0.85 dB and

PIED
∼= 0.75 dB

The IFE performance is in fact monotonically improving at higher cut-off frequencies because the
system tends toward the matched Nyquist reference system. Stated differently, when the channel
cut-off increases by one order of magnitude or more with respect to the bit rate, the filtering
effect of the channel becomes negligible and the system assumes the configuration of the matched
Nyquist system. At a lower cut-off, the amount of high-frequency enhancement consequent to the
bandwidth compensation in the IFE architecture drags more noise power into the receiver, leading
to a decreased performance (higher power penalty).

The feedforward equalizer (FFE) behaves in a similar way to the decision feedback equalizer
(DFE) at higher cut-off frequencies. This similar behavior can be easily explained in terms of
the dominant noise contribution of the input feedforward filter (FFF), which is present in both
configurations, with respect to the residual intersymbol interference of the feedback filter. At higher
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cut-off frequencies of the single-pole channel, the amount of intersymbol feedback to the sampler
is negligible and the feedback filter (FBF) almost does not work. The FFE and DFE performances
at higher cut-off frequencies are determined essentially by the noise enhancement due to the input
FFF matching conditions. At lower values of the cut-off frequencies of the single-pole channel, the
benefit of the feedback filter in the DFE structure becomes more and more evident. For decreasing
cut-off ranges of the single-pole channel, the performance of the DFE becomes superior to both
the FFE and IFE, exhibiting a threshold behavior corresponding to a cut-off frequency at around
25 % of the bit rate.

To give a more complete description, Figure 10.33 shows the optical power penalty comparison
for three different values of the noise-to-signal ratio, namely γi = −25 dB, −20 dB, −15 dB. The
behavior of the single-pole channel can be summarized in the following two statements:

Penalty comparison between IFE, FFE and DFE over the Single-pole Channel
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Figure 10.33 Comparison between the computed optical power penalties for the single-pole channel assuming
the inverse filter equalizer (IFE), the feedforward equalizer (FFE) and the decision feedback equalizer (DFE).
As explained in the text, the noise parameter does not affect the case of the IFE but it sets corresponding
different curves for both the FFE and DFE. At a lower cut-off frequency the dominance of the FFE and DFE
over the IFE is evident, making these equalizers very suitable for starting from the normalized bit rate cut-off
frequency below 25 %. At the bit rate cut-off frequency, the high-frequency damping of the IFE has a clear
benefit over the noise enhancement due to the FFE and DFE matched receivers
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1. At cut-off frequencies lower than 25 % of the bit rate frequency, the FFE and DFE architectures
behave much better than the IFE structure, even at a high noise level. By reducing the noise
level the improvement becomes still more evident.

2. At cut-off frequencies higher than 50 % of the bit rate frequency, the equalization performance
switches the behavior in favor of the inverse filter equalizer, leading to lower optical power
penalties even at low noise level condition.

Table 10.7 reports the computed channel metrics PIEI, PIEL and PIED versus selected cut-off
frequencies and the noise-to-signal ratio for the single-pole response. At relatively narrowband
conditions, with x0

∼= 0.5, the performance of the IFE is superior to those of the FFE and DFE for
the assumed noise parameter values. Decreasing the cut-off frequency, the situation reverts in favor
of the digital equalizers, even in noisier conditions. These considerations lead to the conclusion that
the complexity of the digital filter architectures is required when the channel bandwidth limitation
exceeds at last 20 % of the required bit rate frequency.

In order to complete the analysis of the single-pole channel, Figure 10.34 shows a comparison of
the three channel metrics PIEI, PIEL and PIED versus the noise-to-signal ratio γi , assuming selected
cut-off frequencies. The computed curves reveal the benefit of the digital equalization versus the
IFE in the lowest range of the cut-off frequencies. However, the interesting behavior is represented
by the steep increase shown by the optical power penalty of both FFE and DFE structures at
relatively high noise-to-signal ratios. This behavior clearly reveals the weakness of these solutions
under noisy conditions. Referring to Figure 10.34, it can be concluded that in the case of x0 = 0.20,
the DFE leads to unacceptable results when γi

∼= −9 dB. A similar behavior is observed at different
cut-off frequencies. In conclusion, for a given cut-off frequency the minimum value of the noise-
to-signal ratio for achieving equalization corresponds with a reasonable optical power penalty. In
order to have stable behavior in the example considered in Figure 10.34, the noise-to-signal ratio
should be lower than γi

∼= −11 dB at x0 = 0.30, about γi
∼= −9 dB at x0 = 0.20 and γi

∼= −6 dB

Table 10.7 Computed values of the optical power penalties PIEI (10.139), PIEL (10.134) and PIED (10.123)
versus the selected cut-off frequencies, assuming the single-pole channel. The smooth response leads to poor
benefit of the DFE structure with respect to the simpler FFE. This is clearly visible when comparing the same
noise-to-signal values. The equalization gain of both the FFE and DFE is evident with respect to the IFE
performances at cut-off frequencies lower than 20 %

Cut-off PIEI (dB10) PIEL (dB10) PIED (dB10)

x0 – γi = −25 dB γi = −20 dB γi = −15 dB γi = −25 dB γi = −20 dB γi = −15 dB

0.1000 4.8502 0.2822 0.5604 1.2307 0.1806 0.3556 0.7665
0.2000 2.4451 0.4108 0.8300 1.9138 0.3720 0.7498 1.7200
0.3000 1.4232 0.5739 1.1810 2.8811 0.5602 1.1518 2.8034
0.4000 0.9104 0.7440 1.5592 4.0632 0.7393 1.5491 4.0324
0.5000 0.6247 0.9098 1.9417 5.4882 0.9083 1.9383 5.4756
0.6000 0.4521 1.0686 2.3221 7.3066 1.0681 2.3210 7.3011
0.7000 0.3411 1.2205 2.7007 9.9795 1.2203 2.7004 9.9766
0.8000 0.2658 1.3665 3.0801 16.1398 1.3665 3.0800 16.1364
0.9000 0.2126 1.5078 3.4631 ∞ 1.5077 3.4630 ∞
1.0000 0.1738 1.6450 3.8528 ∞ 1.6450 3.8528 ∞
1.5000 0.0790 2.2935 6.0194 ∞ 2.2935 6.0194 ∞
2.0000 0.0448 2.9111 9.0753 ∞ 2.9111 9.0753 ∞
5.0000 0.0072 7.0581 ∞ ∞ 7.0581 ∞ ∞

10.0000 0.0018 ∞ ∞ ∞ ∞ ∞ ∞
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Figure 10.34 Computed channel metrics for the single-pole response versus the noise-to-signal parameter γi

for three cut-off frequencies, x0 = 0.05, 0.20, 0.30. At very low cut-off frequencies and relatively low γi , the
benefit of the DFE is evident, leading to sensible improvements over the FFE structure. At higher values of the
noise-to-signal ratio, the optical power penalty starts to increase very steeply, leading to unstable performances

at x0 = 0.05 for the DFE case. These conditions should be accounted for when both FFE and DFE
performances are evaluated in the range of the optical receiver sensitivity.

According to mathematical modeling and the computed profiles, the single-pole response leads to
digital channel metrics PIEL and PIED increasing with the constant slope, at very low noise levels,
of one decade every 20 dB of the noise-to-signal ratio. At a higher noise value, both penalties
increase steeply, reaching very high and unacceptable values depending on the assumed cut-off
frequency. This behavior is valid for the single-pole channel, but it can approximately be assumed
for real channel responses with similar smooth frequency profiles.

10.4.3.2 Gaussian Channel

The square modulus of the frequency response of the Gaussian channel is obtained from
Equation (10.74), where the channel impulse response q(t) has the required dimensionless
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normalization:

q(t) =
{

e−(π2f 2
0 / log 2)t2

q(0) = 1
⇒




|Q(x)|2 = T 2 log 2

πx2
0

e−(x/x0)
22 log 2

τ = T

x0

√
log 2

π

Q(x0) = 1
2 Q(0), 2x0 = FWHM, x0 ≡ f0T

(10.145)

The normalization constant τ is obtained by satisfying the condition (10.140). Substituting the
Gaussian response (10.145) in Equations (10.139), (10.134) and (10.123), the following integral
representation of the Gaussian channel metric is obtained in the cases of the inverse linear equalizer,
the feedforward equalizer and the decision feedback equalizer respectively:

PIEI(x0) = 5 log10

(
2
∫ 1/2

0
e(x/x0)

22 log 2 dx

)
(10.146)

PIEL(x0, γi)

= 10 log10
1 − 2

√
γi/(1 + γi)

1 − 2

√√√√2
∫ 1/2

0

1

1 + [log 2/(πx2
0γi)]

∑+∞
n=−∞ e−[(x−n)/x0]22 log 2

dx

(10.147)

PIED(x0, γi)

= 10 log10
1 − 2

√
γi/(1 + γi)

1 − 2 exp

(
−
∫ 1/2

0
log

{
1 + [log 2

(πx2
0γi)]

∑+∞
n=−∞ e−[(x−n)/x0]22 log 2

}
dx

) (10.148)

Figure 10.35 shows the computed optical power penalties PIEI, PIEL and PIED on the same
graph versus the normalized cut-off frequency for the Gaussian channel assuming γi = −20 dB.
As already discussed, the Gaussian response channel shows an optimum interval of the cut-off
frequency for achieving the minimum residual error in both the FFE and DFE configurations.
The minimum penalty interval is located at around 35 % of the bit rate frequency. The interest-
ing behavior of the computed plots consists in the rapid increase of the optical power penalties
as soon as the optimum interval is left. In particular, at x0 = 0.1 approximately PIED

∼= 2.8 dB
is found while the metric for the feedforward Equalizer increases indefinitely, PIEL → ∞. In
Figure 10.36 the computed channel metrics are presented for the Gaussian response at three dif-
ferent noise-to-signal ratios. As in the previous case, the noise parameter does not have any
effect on the IFE performance since it is embedded in the sensitivity of the Nyquist reference
channel. It has instead a great impact on the performances of both the FFE and DFE due to
the input FFF matching requirements in both equalizers. Table 10.8 reports the computed chan-
nel metrics for the IFE, FFE and DFE, according to Equations (10.146), (10.147) and (10.148)
respectively.

In order to complete the analysis of the Gaussian channel providing a quantitative comparison
with the single-pole response, Figure 10.37 shows the computed plots of the three channel metrics
PIEI, PIEL and PIED versus the noise-to-signal ratio γi , assuming selected cut-off frequencies. The
computed curves have the same behavior found in the case of the single-pole response. The opti-
cal power penalty increases monotonically with the noise-to-signal ratio. Approaching the higher
noise levels, the curves tend to become steely, reaching the vertical asymptote in correspondence
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Figure 10.35 Computed optical power penalties PIEI, PIEL and PIED versus the Gaussian normalized cut-off
frequency of the inverse filter equalizer (IFE), the feedforward equalizer (FFE) and the decision feedback
equalizer (DFE) respectively. The noise-to-signal ratio for the FFE and DFE has been set equal to γi = −20 dB.
The computed values show that the FFE and DFE give a better performance at approximately x0 = 0.35. In
particular, at x0 = 0.20 then PIEI

∼= 12 dB, PIEL
∼= 6 dB and PIED

∼= 0.7 dB

with a particular value of γi . The profile of the optical power penalty is significant in the case
of the DFE assuming a 10 % cut-off frequency. The curve increases with a constant slope of
almost 1 decade over 40 dB in the log scale up to γi

∼= −15 dB, leading to PIED
∼= 4.2 dB. Then,

by increasing the noise parameter, the slope starts to increase suddenly, almost reaching the ver-
tical asymptote at γi

∼= −9 dB. As a general indication, it can be concluded that in the case of
the Gaussian channel with a 10 % cut-off, the maximum value of the noise-to-signal ratio should
not exceed γi

∼= −15 dB in order to have a limited penalty and a repetitive equalization perfor-
mance.

In the next section the block diagram will be introduced of the electronic dispersion compensator
(EDC) architecture based on the DFE topology and used in commercially available integrated
circuits.
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Figure 10.36 Comparison between the computed optical power penalties for the Gaussian channel assum-
ing the inverse filter equalizer (IFE), the feedforward equalizer (FFE) and the decision feedback Equalizer
(DFE). The channel metric for the IFE is not affected by the noise parameter. For cut-off frequencies above
approximately the half bit rate, both the FFE and DFE behave similarly with monotonically increasing penalty
versus channel bandwidth. In the lower cut-off range, the performances of the FFE and DFE split into two
corresponding curve sets, according to the noise value. The DFE leads to sensible better performances at cut-off
frequencies of x0 ≤ 0.3

10.5 DFE Architectures
In this section the general architecture of the electronic dispersion compensator (EDC) will be
introduced, which is based on the decision feedback equalizer (DFE). In particular, the block
diagram of the principal functions required by the DFE will be considered, as well as how this
technique is used in state-of-the-art optical receivers for multigigabit applications. As a general
requirement given in the previous section, the transmission channel must be linear. This means in
particular that the transmission channel included between sections S –S ′ and Q–Q′ in Figure 10.38,
composed of the optical fiber and the optical receiver, must be linear. Assuming that the light
intensity is reasonably low enough to validate the optical linear regime for the multimode fiber,



578 Multi-Gigabit Transmission over Multimode Optical Fibre

Table 10.8 Computed values of the optical power penalties PIEI (10.146), PIEL (10.147) and PIED (10.148)
versus the selected cut-off frequencies assuming the Gaussian channel. The steeper response leads to consistent
benefit of the DFE structure with respect to the simpler FFE at relatively low cut-off values. In the case of the
Gaussian channel, the benefit of the DFE over the FFE structure is clearly visible for cut-off frequencies below
x0 ≤ 0.5

Cut-off PIEI (dB10) PIEL (dB10) PIED (dB10)

x0 – γi = −25 dB γi = −20 dB γi = −15 dB γi = −25 dB γi = −20 dB γi = −15 dB

0.1000 65.9360 ∞ ∞ ∞ 1.9842 2.7966 4.1598
0.2000 12.7389 3.3834 5.8906 15.9497 0.3899 0.6644 1.1029
0.3000 4.3360 0.3192 0.6231 1.2935 0.0983 0.1889 0.3805
0.4000 2.0568 0.1352 0.2650 0.5650 0.0907 0.1775 0.3784
0.5000 1.1985 0.1467 0.2896 0.6306 0.1360 0.2684 0.5844
0.6000 0.7887 0.1967 0.3907 0.8637 0.1944 0.3861 0.8535
0.7000 0.5605 0.2548 0.5089 1.1410 0.2544 0.5081 1.1393
0.8000 0.4199 0.3124 0.6274 1.4267 0.3123 0.6273 1.4264
0.9000 0.3268 0.3677 0.7423 1.7121 0.3677 0.7423 1.7120
1.0000 0.2619 0.4206 0.8535 1.9969 0.4206 0.8535 1.9969
1.5000 0.1135 0.6593 1.3702 3.4595 0.6593 1.3702 3.4595
2.0000 0.0633 0.8697 1.8482 5.1155 0.8697 1.8482 5.1155
5.0000 0.0100 1.8962 4.6184 ∞ 1.8962 4.6184 ∞

10.0000 0.0025 3.3515 13.2491 ∞ 3.3515 13.2491 ∞

there must therefore be a requirement that the optical receiver behaves linearly. Every gain section
that is inserted between the optical input section R–R′ and the equalizer input section Q–Q′ in
Figure 10.38 must therefore have a linear transfer characteristic over the complete optical receiver
dynamic range. The impulse response of the cascaded linear systems between the R–R′ and Q–Q′
sections is the function hR(t) defined in Section 10.4. Figure 10.38 shows the general block diagram
of the DFE-based optical receiver architecture.

The optical signal is converted and electrically amplified by the input stage of the optical receiver.
The photodiode and the low-noise transimpedance amplifier must have a linear transfer function
within the required optical dynamic range at the receiver section R–R′ of the transmission system.
The signal amplitude at the receiver output will therefore be changing linearly with the received
average optical power. For a better digital signal processing the electrical signal amplitude at the
feedforward Filter (FFF) input must have a fixed amplitude. This function is achieved by the
automatic gain controlled (AGC) amplifier, which provides a constant output signal amplitude at
the FFF input. The feedforward filter provides optimum input noise matching and precursor power
minimization by means of optimum tap weights. The output of the FFF is connected to the sum node
for postcursor power minimization and the resulting signal feeds the sampler delivering quantized
samples to the clock and data recovery (CDR) circuit. The digital signal at the CDR output is then
fed to the digital feedback filter (FBF) whose weights have been optimized for postcursor power
minimization.

A very general and demanding feature of every multigigabit optical receiver used with an multi-
mode optical fiber link is the adaptation capability of transmission channel fluctuations. It is already
known that the impulse response of the multimode fiber depends on many environmental conditions
and during normal operations the optical link must be capable of adapting automatically to such
response variations. To this end, every block has been designed with proper feedback loops to
guaranteed adaptations. These characteristics will not be analyzed further here, nor how to imple-
ment them, but it is important to understand the operating principles of each block included in the
multigigabit optical receiver designed to work on legacy multimode fibers. Referring to the general
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Figure 10.37 Computed channel metrics for the Gaussian response versus the noise-to-signal ratio for selected
cut-off frequencies. The improvement of the DFE over the IFE and FFE structures is evident for all the noise
ranges considered. The FFE does not provide suitable equalization at x0 = 0.1. As expected, the best results
are achieved when the cut-off frequency is close to 35 % of the bit rate frequency

block diagram in Figure 10.38, it is recognized that both digital filters should have tap weights
controlled by the adaptive algorithm for a better dynamic equalization capability. The sampler is
assumed to have the threshold controlled in order to minimize errors, and finally the CDR shows
the optimum timing instant set adaptively. The adaptation algorithm is managed by the on-chip
microcontroller. It is clear that the basic DFE architecture would not require any microcontroller
of firmware to work properly according to the theory introduced in the previous section, but under
a dynamic channel response minimization of the mean square error cannot be achieved without
the adaptive feedback architecture. The controllability of the DFE architecture greatly increases the
complexity of the receiver. This is due to the many variables involved in the optimization process
and the consequent multivariable variational calculus required. The stability of the convergence of
the optimization algorithm steeply reduces as the number of digital filter taps increase. Unfortu-
nately, the more the fiber link length increases the higher does the required tap number become
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Figure 10.38 Block diagram of the optical receiver deploying the electronic dispersion compensator (EDC)
implemented using the decision feedback equalization (DFE) scheme. The DFE includes four principal blocks
highlighted in light brown. The automatic gain controlled (AGC) amplifier provides linear amplification with
a constant output signal amplitude. The feedforward filter (FFF) provides noise input matching for minimal
noise bandwidth and precursor power minimization. The sampler delivers quantized signal levels to the clock
and data recovery (CDR) for proper retiming and decision. The feedback filter (FBF) returns digital samples to
the sampler input for postcursor power minimization. Each function is assumed to be controlled for adaptation
equalization. The on-chip microcontroller provides the required firmware and error management for digital filter
weights optimization

for optimum pulse equalization. The next sections briefly describe the main building blocks of the
DFE architecture.

10.5.1 Automatic Gain Controlled (AGC) Amplifier

The automatic gain controlled (AGC) amplifier provides the optimum signal amplitude to the input
of the feedforward filter. It can either amplify or attenuate the electrical signal delivered by the linear
optical receiver, depending on the optical input level at the receiving section. Figure 10.39 shows
the block diagram of a typical AGC amplifier structure. Two basic requirements are demanded to
the AGC amplifier: the dynamic range and the noise figure.
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Figure 10.39 Simplified block diagram of the AGC amplifier. Variable gain stages G1 and G2 are controlled
by the control loop in order to provide constant output amplitude. The amplitude detector samples the signal
amplitude at the buffer input and feeds the control loop. The output buffer has unit gain and provides output
line loading over the required matched impedance

The dynamic range identifies the capability of the amplifier to handle an input signal and to
amplify it linearly over the complete signal excursion. It is clear that the more the required dynamic
range is extended, the more complex would be the AGC design. For large dynamic range oper-
ations the amplifier bandwidth and the linearity parameters are related. According to the 10 GbE
standards, typical dynamic range requirements extend to about 30 dBe, corresponding to an input
signal amplitude ranging between 30 mVpp and 1000 mVpp.

The noise figure of the amplifier characterizes the amount of noise power added by the ampli-
fier to the input equivalent noise, assuming matched impedance source conditions. Due to linear
amplification, the noise power generated by the AGC is easily referred to the optical input section
and must be added to the total noise calculation. Typical optical sensitivity degradation accepted
by the AGC noise power would be of the order of less than 0.2 dBo.

10.5.2 Feedforward Filter (FFF)

The feedforward Filter (FFF) is located at the input of the decision feedback equalizer (DFE) and
consists of a transversal filter with a finite number of taps. According to the theory presented in
Section 10.4, the number of taps depends on the extent of precursors that must be minimized, so
its length increases with increasing precursor tail complexity of the incoming pulse. The weight of
each tap depends on the optimized solution using the variational method, as reported in the previous
section. Assuming adaptive equalization, tap weights are variables according to the optimization
algorithm. The value of each delay line step is equal to the time step T = 1/B. Figure 10.40 shows
the block diagram of the feedforward filter using the classical transversal filter structure.

The impulse response hW(t) of the feedforward filter represented in Figure 10.40 is derived from
the signal flow in the block diagram shown. Each delayed contribution of the input stimulus is first
multiplied by the corresponding coefficient gn and then summed at the output node. Hence:

hW(t) =
5∑

n=0

gnδ(t − nT ) (10.149)

The signal that is easily synthesized in Equation (10.149), although correctly representing the
feedforward filter impulse response in Figure 10.40, does not present the anticausal tapped delay
line required in Equation (10.52) and in Figure 10.6. The analysis and the implications of this
problem is outside the scope of this book and the reader is referred to more specialized references.
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Figure 10.40 Block diagram of the six- tap feedforward filter used for precursor minimization and optimum
noise filter (minimum noise bandwidth). The equalizer is realized by the transversal filter structure with a fixed
delay line T and optimum tap coefficients {g}. The value of the tap coefficients is set adaptively according to
the minimum error rate achievable

Figure 10.41 Block diagram of the five-tap feedback filter used in the DFE architecture. According to the
block diagram of the DFE represented in Figure 10.1, the delay line is realized with a clocked D-Flip-Flop.
This guarantees phase alignment between the current sample and the postcursors feedback samples. From
Equation (10.40), the coefficients {b} = b1, b2, . . . , must coincide with the postcursor samples {r} = r1, r2, . . .

10.5.3 Feedback Filter (FBF)

The feedback filter is shown in Figure 10.41 and provides postcursor ISI cancellation by applying
the proper weighted sum of the previous pulse tails to the current data sample. The length of the
FBF depends on the extent of the postcursors to be minimized. A typical transversal filter length
used in multimode fiber optic feedback equalization ranges between three and seven taps. The
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filter length influences the power consumption of the DFE and must be carefully balanced between
postcursor lengths and equalization efficiency.

Before closing this chapter, it should be noted that real EDC architecture is based on digital filters
of finite length. The performances of the implemented EDC then approximate the performances of
the ideal, infinite length structures presented in this chapter. The analysis and design of the EDC
based on the finite length DFE is outside the scope of this book and is one of the ‘hottest’ topics
of high-speed DSP applied to optical fiber multigigabit transmission.

10.6 Conclusions
These considerations close the chapter regarding the operating principles of the digital filters using
the DFE architecture. This chapter should be intended as an introduction to this field. There is
a very large amount of literature available on this subject which should be addressed for further
knowledge. The application of digital filters to fiber optic transmission systems is quite recent since
the large bandwidth of this transmission channel did not require any additional processing to achieve
the required transmission performances up to the advent of multigigabit optical communication in
the metropolitan area. The recent increase in transmission speed up to 10 Gb/s over multimode fiber
has merged the high-speed DSP technology in the optical transmission field.

This chapter has introduced the operating principles of electronic dispersion compensation
devoted to mitigate multimode fiber pulse dispersion in multigigabit transmission systems. It has
already been stated that electronic dispersion compensation by means of digital signal processing
is a mature technology, largely deployed in fading radio transmission, satellite communication and
even speech recognition. Nevertheless, despite the last few years spent on intense technology in an
attempt to achieve a single chip solution, electronic dispersion compensation still seems to be at
the preliminary stage, with many interesting laboratory demonstrations but not yet any that can be
deployed in the field. The reasons for these difficulties are recognized as two main issues: the high
speed of the signal rate and the strong adaptation required by the multimode fiber response. The
IC manufacturing capability is pushed to the limit, using 90 µm CMOS technology in a sub-watt
five-by-five millimeter BGA squared package.

It is meaningful that equivalent applications of electronic dispersion compensation for single-
mode fiber and copper transmission lines have been successfully tested and deployed in the field
for almost five years. As extensively analyzed in the first part of this book, the impulse response
of a multimode fiber link, including several connectors and standard launching conditions, is com-
pletely unpredictable, and in addition, it is very sensitive to environmental conditions and to the
launching polarization. All these characteristics make multimode fiber transmission at 10 GbE a
true engineering challenge.

In this chapter the first basic concepts and expressions of the theory of the decision process
in binary digital transmission with Gaussian white noise are introduced. The classical bit error
rate formula has been presented with some applications. The relationship with the signal-to-noise
power in the electrical domain has also been considered. Sections 10.3 and 10.4 dealt with the
ideal inverse filter equalizer and the digital equalization principles respectively by means of the
DFE architecture. The penalty for the ideal linear equalizer, PIEL, has been derived and used as
a channel metric in optical fiber transmission. The expression of PIEL has been obtained with
an original derivation based on the concept of noise bandwidth enhancement. Using the digital
equalizer, the equivalent optical power penalty for the digital equalizer, PIED, has been obtained.
Those two expression can be conveniently adopted as the channel metric or channel figure-of-merit
for quantitatively classifying multimode fiber links.



11
Transmission Experiments

Deploying Multigigabit Transmission
Experiments over Multimode Fiber

11.1 Introduction
The increasing demand for multigigabit transmission over legacy multimode fiber has very recently
produced a large amount of effort in characterizing the multimode fiber using laser-based optical
sources. The implementation of low-cost 10GbE optical sources requires the adoption of direct
modulation of the vertical cavity semiconductor laser (VCSEL), available in a receptacle plastic
package and enabling flex interconnection technology. The VCSEL structure is characterized by a
very low threshold current and very high modulation efficiency. Those two parameters are needed
for the design of a low-cost and low-power consumption optical transmitter suitable for the large
distribution of 10GbE in the metropolitan area network. The next device directly related to the
success of the 10GbE network is the multimode optical fiber. There is of course no need for
choosing these media, but there is the necessity to use the already installed fiber infrastructure. It
is known that this infrastructure is mostly implemented using relatively old multimode fiber, not
specifically designed for either multigigabit transmission or coupled to narrow beam laser sources.

After the introduction of the Gigabit Ethernet in 1997, the commercial relevance of using the
existing multimode fiber infrastructure was soon adopted as a new engineering challenge for the
IEEE 802.3 Committee. Extensive studies of the launching conditions and corresponding multimode
fiber characterization led to a consistent amount of data summarized in the statistical distribution of
the modal bandwidth of the installed fiber base. This information has been used since 2003 during
the trial of the 10GbE standard using the multimode fiber. The result of these studies has not yet
been released and the most crucial point, that of recognition by the Committee of including the
electronic dispersion compensator into the new standard 10GBASE-LRM, has not yet taken place.
Of course, more sophisticate launching conditions have been proposed and partially accepted, but
since the final target of the standard would be large deployment in the metropolitan area, the engi-
neering approach would consequently be very relaxed, minimizing sophisticated requirements and
calibration procedures. In addition, the urban environment is not quite a standard office environment,
leading to strong perturbation of the transmission system due to mechanical and thermal causes.

Multi-Gigabit Transmission over Multimode Optical Fibre: Theory and Design Methods for 10GbE Systems Stefano Bottacchi
 2006 John Wiley & Sons, Ltd. ISBN: 0-471-89175-4
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This has induced the Committee to require adaptive compensation technologies, capable of restoring
the minimum multimode fiber propagation capabilities in order to guarantee the multigigabit link
operation.

In this chapter, a summary will be given of the large amount of measurements devoted to
components and subsystems characterization for multigigabit transmission over multimode optical
fiber. Collected data include multimode fibers, laser sources, optical receivers and preliminary
samples of the electronic dispersion compensator available from pioneering IC companies. Those
measurements have been primarily done at the Fiber Optic Department of Infineon Technologies
AG, Berlin, during the last two years, in particular between 2003 and 2005, with the intention of
providing the background characterization of the basic components deployed in every multigigabit
transmission system using legacy multimode fiber.

11.2 Measurement Outline
In this chapter, for the first time the experimental results will be presented of transmission systems
operating at the 10GbE data rate and using different samples of legacy multimode fibers. The prin-
cipal actors in these measurement campaigns are the multimode fiber (MMF) and the electronic
dispersion compensator (EDC), and the major focus has been concentrated during the entire char-
acterization on those two system components. A chapter outline is now given with a summary of
the performed measurements.

1. Section 11.3 describes the experimental setup, including the detailed block diagram schematics.
All the major components of the measuring environment are briefly introduced and the princi-
pal parameters specified. An introductory theoretical explanation of the observed polarization-
induced pulse distortion in multimode fiber is considered in the Section 11.4.

2. The reference optical transmitter and receiver used through all the subsequent measurements are
presented in Section 11.5.

3. The first set of multimode fiber, otherwise known as the benchmark fiber, is characterized
in Section 11.6, where both single-pulse and eye diagrams are presented according to several
experimental setups.

4. Section 11.7 presents both the modeling and experimental results of the useful optical link
emulator simply realized using the standard OC-48 electrical filter.

5. The first polarization measurement effects at 10GbE are presented in Section 11.8. These exper-
iments have been conceived to raise, for the first time, the potential relevance of these effects
in the performance evaluation of multigigabit transmissions over multimode fibers.

6. Section 11.9 presents the measurements of the EDC operation in highly corrupted multimode
optical fiber link, including both electrical and optical characterizations. In addition to the bench-
mark fiber test, a complete set of new measurements performed using a second laboratory sample
of multimode fiber is presented and compared with the previous one.

11.3 Measurement Setup
In this section, the general measurement setup is presented, including a brief description of the
components. The measurements reported refer to the central wavelength of the second transmission
window exhibited by the optical fiber, nominally at λ = 1310 nm. This choice is compliant to the
requirement for the 10GBASE-LRM standard. Figure 11.1 shows the general composition of the
measurement setup. According to the specific measure, a part or all of the available components
have been used.

In the following sections, a brief description is given of each block reported in Figure 11.1.
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Figure 11.1 Block diagram of the general measurement setup. The two grey-shaded areas represent the
transmitter (top) and the receiver (bottom). The optical channel is configured by the optical launcher, the
multimode fiber link and the optical connectors inserted between any two fibers spools. Multimode fiber
connections are marked with double lines

11.3.1 TOSA

The transmitting optical Subassembly (TOSA) consists of either a directly modulated distributed
feedback (DM-DFB) laser diode or an electroabsorption modulator coupled with the distributed
feedback (EAM-DFB) laser diode, assembled within a coaxial package with a monitor photodiode
for light power monitoring. The TOSA is optically coupled to the single-mode fiber jumper by
means of standard FC or SC type single-mode optical connectors. The electrical signal input is
connected to the output of the pattern generator by means of standard SMA–microwave cables.
The laser or modulator biasing conditions for achieving proper calibrations of the extinction ratio
and average output power are accessible from standard controls available on the front panel.

Depending on the optical waveform, the extinction ratio varies between 3 dB and 10 dB with the
corresponding average output optical power ranging approximately between +1 dBm and −1 dBm.
Experimental evidence shows that by adjusting the laser biasing in order to increase the extinction
ratio, the BER performances of the EDC receiver can be considerably improved. This is not due to
a corresponding increase in the optical modulation amplitude for a given average power. Instead,
moving the low level closer to the laser threshold causes the low-to-high transition affected by
relevant relaxation oscillation to overshoot and allows an easier EDC recovery, even under severe
pulse deformation. This effect can be depicted as a pulse pre-emphasis that increases single pulse
energy and makes pulse detection recognizable after considerable pulse broadening.

11.3.2 Optical Attenuator and Polarization Controller

The output of the transmitter is directly coupled to the input of the optical attenuator using a
single-mode fiber patch cord, as shown in Figure 11.1. The optical attenuator is used to adjust the
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average optical power level at the input receiving section in order to allow bit error rate (BER)
measurements to be taken. The output of the attenuator is then connected through a single-mode
fiber patch cord to the input of the optical polarization controller using the angled single-mode
connector for reducing optical reflections. The polarization controller is used to change input from
any polarized or unpolarized light source into any well-defined state of polarization, feeding the
subsequent multimode fiber link. The design based on a linear polarizer followed by two bulk-optic
zero-order waveplates provides optimum determination and repeatability of the polarization states at
the output over a wide wavelength range. The polarization controller is composed of three sections:

1. The linear polarizer
2. The λ/4 waveplate
3. The λ/2 waveplate

First, the linear polarizer (1) is aligned to the input linear polarization state from the laser source
in order to maximize the transmission of the field intensity. In order to have the linear polarization
at the output of the polarization controller it is necessary to set the slow axis of the λ/4 waveplate
(2) orthogonal to the linear input polarization. In this case, both transversal components of the
input electric field will experience the same delay when passing through the λ/4 waveplate. Both
components of the output electric field will therefore be in phase and the linear polarization state
results. Any other angle will result instead in the elliptic polarization state. In particular, if the λ/4
waveplate is set at 45◦ to the input polarization, the output field will be circularly polarized. In the
third stage, the λ/2 waveplate (3) provides the rotation of the polarization vector available at the
output connector.

In order to understand how the λ/2 waveplate works, Figure 11.2 shows the decomposition of the
electric field in terms of the principal axes of the λ/2 waveplate. The angle between the input linear
polarization state and the reference slow axis of the λ/2 waveplate is given by ϕ. The electric field
component traveling along the slow axis of the λ/2 waveplate exhibits a 180◦ phase shift. If the slow

Figure 11.2 Schematic representation of the linear polarization rotation performed by the λ/2 waveplate. The
electric field component oscillating along the slow axis of the λ/2 waveplate exhibits a half-period delay (180◦)
and the output electric field oscillates along the direction rotated by 180◦ − 2ϕ
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axis of the λ/2 waveplate is aligned with the input polarization, rotation of the output polarization
by 180◦ results. If the λ/2H wave plate is set in quadrature with the input field orientation by
setting ϕ = 90◦, the output polarization state will remain unchanged since no field component will
propagate along the slow axis of the λ/2 waveplate. Any angle 0 ≤ ϕ ≤ 90◦ will therefore provide
a rotation of the output field equal to ϕout = 180◦ − 2ϕ with respect to the input orientation.

The λ/4 waveplate operates in exactly the same way but provides a 90◦ phase shift (λ/4) of the
electric field component aligned along the slow axis. This has a great impact on the output state of
polarization. Figure 11.3 shows the schematic construction of the electric field processed through
the λ/4 waveplate.

Figure 11.3 Schematic representation of the elliptical polarization (bottom) generated by the λ/4 waveplate
when the slow axis is oriented with the angle ϕ with respect to the linear input polarization. If the slow axis
is orthogonal to both electric field components (top), the input linear polarization is preserved at the output of
the λ/4 waveplate. Instead, if ϕ = 45◦ (middle), the output field is circularly polarized
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It is assumed that the time-harmonic input field Ein(t) oscillates at the angular frequency ω and
is linearly polarized with the angle ϕ with respect to the slow axis of the λ/4 waveplate:

Ein,x(t) = E cos ϕ sin(ωt)

Ein,y(t) = E sin ϕ sin(ωt)
(11.1)

The x component passing through the slow axis of the λ/4 waveplate is delayed by a quarter of
the period, and the output field assumes the following form:

Eout,x(t) = E cos ϕ sin
(
ωt − π

2

)
Eout,y(t) = E sin ϕ sin(ωt)

(11.2)

The x component of the output field is therefore in quadrature with the y component and, in general,
their amplitudes are different, according to the value of the angle ϕ:

Eout,x(t) = −E cos ϕ cos(ωt)

Eout,y(t) = +E sin ϕ sin(ωt)
(11.3)

It is clear at this point that the tip of the electric field vector describes an elliptic path every period
2π/ω, leading to the elliptic state of polarization. In particular, from Equations (11.3), if ϕ = 45◦

both components of the electric field have the same amplitude and the polarization is circular.
Assuming instead ϕ = 90◦, the input electric field has no component along the slow axis and the
output electric field has the same linear polarization as the input one. In conclusion, depending on
the input electric field component aligned along the slow axis of the λ/4 waveplate, the resulting
output field can be linear, circular or generally elliptical polarized.

11.3.3 Offset Launcher SM → MM

The single-mode output of the polarization controller is connected to the single-mode input section
of the IEEE 802.3 standard offset launch (OSL) patch cord. Figure 11.4 gives a schematic drawing

Figure 11.4 Schematic drawing of the offset launch conditioning used in the 10GBASE-LRM standard. The
offset position range depends on the core diameter of the multimode fiber used. The offset launcher excites
mainly the higher-order fiber modes, using mainly the middle of the core region. According to the standard, the
offset ranges between 14 µm ≤ r0 ≤ 20 µm for the 50 µm diameter fiber and between 17 µm ≤ r0 ≤ 23 µm in
the case of the 62.5 µm core diameter fiber
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of the offset launcher. The offset launch has been proposed by the IEEE 802.3 Standard Committee
during the Gigabit Ethernet definition in order to limit the variation shown by the modal bandwidth
of the multimode fiber installed base. Using the offset launch, the inner radial region of the multi-
mode fiber is excluded from laser source modal excitation, avoiding the degradation consequences
of a strong refractive index profile irregularity usually affecting the axial core region. The same
approach has been proposed by the IEEE 802.3 10GBASE-LRM Committee in order to reduce
the modal bandwidth spreading of the legacy multimode fiber installed base. The offset launch
patch cord is connected by means of either SC-PC or LC-PC standard type optical connectors. The
short piece (usually less then 20 cm long) of single-mode (SM) fiber is then fusion-spliced to the
multimode (MM) fiber section of the offset launcher using the specific offset coordinate required
by the standards for the given multimode fiber. In the case of 62.5 µm fiber core, the offset is set
in the radial range between 17 µm and 23 µm, while for the 50 µm fiber core, the offset must be
within the radial range between 14 µm and 20 µm.

The intent of the offset launch is to reduce the differential group delay (DGD) providing selective
launch conditions for high-order modes (skew rays) located mainly in the middle of the radial core
region. This approach avoids both the axial and core regions and the core–cladding boundary,
which can be affected by manufacturing defects. The problem concerning the offset launch is the
conservation of the excited mode distribution along the multimode fiber link when several optical
connectors are included. In fact, every connector affected by fabrication tolerances modifies the
optimal launched distribution leading to increased DGD.

11.3.4 Multimode Fiber

The multimode fiber link starts at the SC-PC connector of the multimode fiber section belonging to
the OSL patch cord. As reported in Figure 11.5, the multimode fiber link is assembled using one
or more fiber sections according to the available spool lengths. Consequently, in the measurement
setup the number of optical connectors can vary between two, in the 50 m single-section link case,
up to a maximum of four, in the case of three sections of 250 m link length. The fiber type used in
the measurements is the same for all the sections considered since it has been cut and connected
starting from a single spool of 62.5 µm multimode fiber manufactured by Siecor in 1996. Due to
the different numbers of connectors present in the different link compositions, the results are not
fully comparable. Nevertheless, as reported in Figure 11.5, at least the link compositions identified
as III, IV and VI, having only one link connector and the same launching fiber section (100 m–reel
A), are fully comparable in terms of measured performances.

In order to preserve the same launching conditions and to allow a performance comparison,
the same 100 m-A optical fiber link has been used as the launching pad for all five II. . . VI con-
figurations.

11.3.5 ROSA

The receiver optical subassembly (ROSA) collects the light intensity available from the last con-
nector of the multimode fiber link. In the experimental setup, a short fiber patch cord (1 m) is added
between the multimode fiber link and the receiver receptacle, allowing easier optical power mea-
surements to be taken. The end of the short multimode patch cord coincides with the TP3 standard
section. The optical receiver includes the InGaAs PIN photodetector and the linear transimpedance
amplifier suitable for 10GbE applications. The receiver background sensitivity in the back-to-back
configuration has been measured in order to fix the reference performance. The receiver used in
the measurement has differential output and is assembled over a ceramic evaluation board with
a flexible interconnection between the coaxial packaged PIN diode and the ceramic board. The
receiver package has an SC-receptacle optical input.
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Figure 11.5 Different link compositions of the Siecor benchmark multimode fiber used in the measurements.
Connector pairs are of the FC-PC type for multimode applications. TP2 is in the launch input reference section
and is connected to the multimode section of the offset launcher. TP3 is in the output link section and is
connected to the ROSA receptacle

11.3.6 EDC and CDR

The electronic dispersion compensator (EDC) is a single-chip device providing two-step pulse
equalization using the feedforward equalizer (FFE) and the decision feedback equalizer (DFE). The
equalization algorithm is based on the minimum mean square error (MMSE) principle: the residual
ISI after the equalizer exhibits the minimum power achievable for the given filter structure (length,
tap spacing). The EDC sample used in the experimental setup does not include a clock recovery
and a digital asynchronous signal is therefore available at the device output.

The clock and data recovery (CDR) chip is driven differentially from the digital output of
the EDC chip. The data have already been decided at the EDC section and the purpose of the
CDR is to filter random jitter generated during the equalization procedure. In addition, in the
experimental setup, the CDR provides high output swing capable of driving the error detector
above the minimum signal threshold in order to provide the correct signal detection process and
bit error rate measurements.
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11.3.7 Data Pattern and Waveform Records

The pulse pattern generator (PPG) has been set to output either datastream according to NRZ
coded PRBS (pseudo-random binary signal) of several lengths, 27 − 1, . . . 231 − 1, or single words
designed specifically to excite a single-pulse response. According to the specific issues of each link
measurement, a minimum set of digital communication analyzer (DCA) screen shots and numeric
text files have been collected at the following sections:

1. Eye diagram (.GIF file extension) at the optical transmitter output (TP2)
2. Eye diagram (.GIF file extension) at the multimode fiber link output (TP3)
3. Eye diagram (.GIF file extension) at the optical receiver output (before EDC)
4. Eye diagram (.GIF file extension) at the EDC analog output
5. Single pulse (.TXT file extension) at the multimode fiber link output (TP3)
6. Single pulse (.TXT file extension) at optical receiver output (before EDC)

Single-pulse waveforms have been collected in order to compute PIEI, PIEL and PIED channel
metrics for simulation purposes. In particular, the PIED metric is used to compare the performance
of the implemented EDC with the ideal EDC equalizer.

11.3.8 Single-Pulse Excitation

The way used to excite a single-pulse response needs some comments. The whole transmission
channel (transmitter, fiber, receiver, etc.) has been designed to operate with the average signal
value balanced between the high and low digital states. This means that under normal operating
conditions with random generated sequences the relative frequency of occurrence of the logic ‘0’
and ‘1’ is equal to 1

2 . Under these conditions, the electrical signal excursion around the average
value is equal on both sides and the circuitry operates balanced. This holds in particular for the laser
biasing conditions. The laser response is strongly affected by the biasing conditions and in order to
have single-pulse operation closely resembling PRBS operating conditions, the single-pulse word
sequence must be designed accordingly. To this purpose, it is necessary to satisfy the following
two conditions:

1. The single ‘1’ must have long enough ‘0’ precursors and postcursors in order to behave suffi-
ciently isolated in terms of the channel response capability.

2. The average level of the repeated word must be 1
2 in order to maintain the same average biasing

condition for the involved channel electronics and optics during normal PRBS operation.

According to the above criteria, the following fixed word pattern of 64 bits has been used during
all fixed word experiments:

[1111000011110000]︸ ︷︷ ︸
1
2

[0000100000000111]︸ ︷︷ ︸
1
4

[1111100011110111]︸ ︷︷ ︸
3
4

[0000111111110000]︸ ︷︷ ︸
1
2︸ ︷︷ ︸

1
2

The 64-bit word reproduced above has the average value of 1
2 and the isolated ‘1’ have eight ‘0’

precursors and eight ‘0’ postcursors. Under these single word conditions, the excited optical ‘1’
is reproduced with the same biasing conditions as for the PRBS from all the channel components
involved. This means that assuming PRBS satisfies linear superposition the PRBS sequence can be
reproduced exactly from the isolated pulse response by proper PRBS binary weights.
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Figure 11.6 Graphical representation of the transmission system sensitivity bounds using optical back-to-back
(BTB) configurations. The full-rate optical back-to-back configuration gives the best sensitivity and coin-
cides with the lower bound. Using the OC48 filter to drive the transmitter leads to the OC48 filtered optical
back-to-back configuration. This operating condition is limited by strong pulse dispersion and reasonably
represents the higher sensitivity bound

11.3.9 Optical Sensitivity Bounds

In addition to the six fiber link compositions reported in Figure 11.5, the transmission experiments
account for two other relevant measurements, namely the full-rate optical back-to-back and the
OC48 filtered optical back-to-back links. Those two measurements are devoted to setting proper
bounds to the transmission system performances. Both full-rate optical back-to-back and OC48
filtered optical back-to-back links include EDC operation. The full-rate optical back-to-back link
represents the lower bound for the sensitivity performance while the OC48 filtered optical back-to-
back link represents the upper bound for the sensitivity performance. It is noted that the identification
as lower and upper bounds refers to the minimum (best sensitivity) and maximum (worst sensitivity)
values respectively of the average optical power level needed at the receiver input (TP3) for
achieving the required BER value.

The lower bound is well approximated by the 50 m fiber link length while the upper bound of the
sensitivity is well approximated by the 300 m link length, assuming better polarization orientation.
Figure 11.6 presents the graphical description of the concepts just described. Using the fiber link and
not the link emulator through the electrical OC48 filter, the system sensitivity should be included
within the lower to upper bounds range.

11.4 Polarization Effects in Multimode Fiber
This section deals with a short theoretical introduction to the polarization effect observed in multi-
mode fiber transmission experiments. Polarization has never been accounted for in multimode fiber
and no related literature has been produced up to now on these specific phenomena. Polarization-
dependent distortion (PDD) in a multimode fiber pulse response was first observed by Infineon
Fiber Optic, IFFO GmbH, Berlin, during the characterization of long-reach high-speed multimode
fiber links according to the development of the new standard 10GBASE-LRM for the 10 Gb/s range
Ethernet.

11.4.1 Introduction

It has been experimentally observed that polarization-dependent distortion (PDD) manifests itself
in relatively long multimode fiber links exceeding 200 m when offset launching conditions are
implemented. Optical connectors can increase the effect assuming offset launching or they can
generate polarization-dependent distortion in the case of a central launch if the relevant offset is
accumulated due to several deployed connectors. Either offset launch or central launch with one
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or more optical connectors implemented along the optical link represents proper conditions for
stimulating polarization-dependent pulse broadening. For a given data rate, the effect is enhanced
for longer links and for perturbed refractive index profiles. This effect has never been accounted
for up to now, probably because at the moment these conditions need to be faced due to the actual
development of the 10GBASE-LRM standard, which requires simultaneously both a 10 Gb/s data
rate and longer (300 m) link lengths of multimode fiber using both offset launch and several link
connectors. Of course, there would be no contradiction in assuming that this effect is present,
even at a lower bit rate than 10 Gb/s, but the amount of pulse distortion achieved over the same
link lengths would be negligible with respect to the longer time step. Accordingly, experimental
expectations would detect similar polarization-induced pulse distortions even at a lower signaling
rate but for proportionally longer link lengths.

A very brief description of the polarization-dependent distortion observed in transmission exper-
iments for multimode fibers can be tentatively stated as follows:

1. The angle determined by linear polarization of the source field with the offset launch direction
changes the mode power partition among individual bound modes, leading to different DMD
profiles depending on the launching polarization.

2. For a given offset launch, the amount of power coupled to slower and faster modes is therefore
dependent on the input polarization, leading to a polarization-dependent output pulse. Since the
effects manifest themselves through the DMD, for a given source pulse width it is necessary to
take the pulse measurement after a minimum link length in order to detect consistent distortion.

3. A fundamental prerequisite for sensible polarization-induced pulse distortion is the perturbation
of the refractive index with respect to the ideal graded index profile in order to have enough time
resolution in the measurement. This is the reason why this effect is observed when operating
within the 10GBASE-LRM standard conditions.

11.4.2 Theoretical Concepts

As already stated, a complete theory of this effect has not yet been completed. Instead, a physical
justification and some theoretical concepts seem to have been accepted, giving a guide on how to
proceed further in the development of the theory. An ideal clad power law refractive index profile
with a single shaping coefficient α is considered, as shown in Figure 11.7.

The basic assumptions for the modal analysis of the ideal graded index multimode fiber will
now be reviewed.

Figure 11.7 Clad power law refractive index profile showing the effect of the refractive index profile coeffi-
cient α
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11.4.2.1 Cartesian Representation of the Field Components

1. The vector wave equation reduces to the scalar wave equation for each Cartesian component of
the electromagnetic field.

2. Each transverse field component Ex , Ey , Hx , Hy can be expressed as a linear combination of
the longitudinal component of the electric field Ez(r, φ) and the magnetic field Hz(r, φ).

11.4.2.2 Longitudinal Invariance

1. The general solution for the longitudinal component of the electric field Ez(r, φ) can be separated
in the following form:

Ez(r, φ, z) = ψ(r, φ)ei(βz−ωt) (11.4)

The factor β is the propagation constant of the mode and ω is the angular frequency of the true
monochromatic field.

2. The longitudinal components of the Cartesian representation of the electric and magnetic fields
satisfy the same scalar wave equation.

11.4.2.3 Circular Symmetry

The longitudinal component of the electric field Ez(r, φ) is separable into the product of a radial
dependent function Rνµ(r) and the angle dependent term Φν(φ).

1. Bound modes supported by the longitudinally invariant and circular symmetric fiber can be
represented in the following separated form:

ψνµ(r, φ) = Rνµ(r)

[
cos(νφ)

sin(νφ)

]
(11.5)

2. The index ν takes the meaning of the azimuth mode number and represents the number of
amplitude fluctuations of the field component versus a complete rotation around the fiber axis.

3. The index µ takes the meaning of the radial mode number and identifies the order of the
eigenvalues equation solution needed for satisfying the core–cladding boundary condition. For
clad power law profiles µ corresponds to the number of maxima in the radial direction.

4. According to Equation (11.5), the general solution for the angular function Φν(φ) is a linear
combination of sine and cosine terms of the argument (νφ).

5. The radial component Rνµ(r) in the cylindrical coordinate satisfies the following second-order
differential equation:

d2Rν(r)

dr2
+ 1

r

dRν(r)

dr
+

[
k2n(r)2 − β2 − ν2

r2

]
Rν(r) = 0 (11.6)

6. The general solution of the radial component for the clad power law refractive index profile is
expressed in mathematical closed form in terms of the Laguerre–Gauss functions.

11.4.2.4 Weakly Guiding Approximation

Assuming that the relative height ∆ of the refractive index between the center of the core and
the uniform cladding is sufficiently small (∆ ∼ 10−3), both electric and magnetic longitudinal
components of the field are negligibly small compared with their respective transversal components.
The electromagnetic field is almost linearly polarized in the transversal fiber cross-section (linearly
polarized modes for a weakly guiding fiber approximation).
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The solution of the boundary problem under a weakly guiding approximation leads to degenerate
solutions. Degenerate individual fiber modes have the same propagation constant βνµ (the eigenso-
lution of the boundary condition problem). Those individual and degenerate modes can be collected
within the same mode group. All fiber modes belonging to the same mode group propagate with
the same group velocity and do not experience any relative delay differences. According to the
ideal fiber model presented above, the modal solution constitutes a base set for the guided field.

11.4.3 Source Polarization and Offset Launch

Figure 11.8 shows the geometry of the offset launch with an arbitrary linear polarization. The
following statements seem to find consensus and experimental support at the actual status of the
theory development:

1. At the launching section, the polarization of the excited fiber modes (i.e. the direction of the
electric field of each excited fiber mode) is the same as that of the exciting light source. In
other words, the electric dipole oscillation in the glass composition follows the same direction
of the laser source field. This assumption implies that the amorphous glass material constituting
the optical fiber is linear and isotropic. More specifically, the symmetric tensor εjk of the
dielectric polarization reduces to the scalar value ε and the polarization vector P = εEs is simply
proportional to the source electric field Es. In order to simplify the mathematical description, it
is convenient to orient one coordinate axis, x or y, in the direction of the polarization of the
input field.

2. Once one of the two coordinate axes x or y as been oriented along the input polarization
direction, the offset launch condition leads to a specific amount of source power coupled into
each individual bound mode. In other words, the coupled power is not equally partitioned among
individual modes belonging to the same group.

3. The following is a key point: the excitation of each individual mode depends on the relative angle
γ = ξ − ϑ between the offset direction and the input polarization (see Figure 11.8). Individual

Figure 11.8 Geometrical representation of the launching section showing the laser light spot position (ρ, ξ )
and the polarization orientation ϑ . The relative angle between the offset direction and the source polarization
is given by the difference γ = ξ − ϑ
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modes bring a specific amount of source power, but the mode power MPD(k) supported by all the
degenerate modes belonging to the same group k (same propagation constant β) is independent
of the relative angle γ = ξ − ϑ .

4. The mode power distribution MPD(k) of the excited mode groups is independent of the linear
polarization of the input light source. The index k defines the mode group and it is assumed
that any integer value within the mode group number N is supported by the fiber structure,
1 ≤ k ≤ N .

5. Following the statements above, it is concluded that the impulse response of the unperturbed
ideal multimode fiber with cylindrical symmetry is independent of the orientation of the linear
input polarization.

This is a consequence of the independence of the mode power distribution MPD(k) versus
the source linear polarization. Since each mode group propagates with a characteristic group
velocity, the optical impulse response at the fiber end section remains unaltered during the input
polarization rotation.

6. The experienced pulse shape distortion due to polarization changes at the launching section seems
to be addressed, due to the refractive index profile perturbations and to any other stress-induced
birefringence that breaks the individual mode degeneracy. Each individual mode therefore con-
tributes independently to the output pulse, without experiencing any further degeneracy. Since
individual mode excitation is affected by the relative angle γ = ξ − ϑ between the offset direc-
tion and the input polarization, it can be concluded that under the perturbed condition, which
breaks the mode degeneracy, the multimode fiber impulse response is dependent on the relative
angle γ = ξ − ϑ between the offset direction and the input polarization.

11.4.4 Further Directions

Once the previous results concerning the ideal graded index fiber analysis is agreed, the only
justification for the polarization-induced pulse distortion that results can be found in the discrepancy
between the real fiber and the assumed ideal model. In the previous theory, individual modes can
be grouped together into a single-mode group because they experience the degeneracy of the
propagation constant. In other words, the eigenvalue equation for the boundary conditions leads to
the same solution for different combinations of the mode indices.

Once the perturbed refractive index is introduced in the model due to profile perturbation and
stressed induced birefringence, the degeneracy is suddenly broken and individual modes no longer
belong to the same mode group. Stated differently, under perturbed conditions mode groups lose
their identity and individual modes behave independently from each other, with their own propa-
gation constant and propagation delay. Since individual mode groups have been demonstrated to
be affected by the relative orientation of the input polarization for a given offset light spot, the
impulse response results depend on the relative orientation of the input offset coordinate and the
input polarization.

A clear picture of the effect can be seen if account is taken of the fact that in the ideal fiber
individual modes belonging to the same group travel in different outer regions of the core. If the
profile index is characterized by the same shaping coefficient, the delay of those individual modes
will be perfectly compensated and the corresponding group behaves as the same identity. However,
if the outer regions of the core are characterized by slight refractive index perturbations, the delay
compensation within the same group lacks validity and individual modes split apart, each one with
its own propagation constant. More important, it is assumed that the overlapping integral would not
be affected at first by the perturbation of the refractive index, therefore leading to the same value
of the coupled optical power as for the unperturbed mode group. However, once the perturbation
breaks the propagation constant degeneracy, each individual mode will contribute to the output
pulse composition at different time instants, leading to the dependence of the pulse response on the
relative angle γ = ξ − ϑ between the offset direction and the input polarization.
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11.5 Source and Receiver Characterization
In this section, some characterization measurements made on laser sources and the optical receiver
used during all the multimode fiber measurement campaigns are reported. Either directly modulated
or externally modulated DFB lasers have been used as reference light sources, emitting at 1310 nm.
The reference optical receiver consisted of the linear transimpedance Amplifier (TIA) coupled with
a high-speed PIN photodetector for multimode fiber detection. To this purpose, the diameter of
the active area of the photodetector was 50 µm and the overall optical receiver bandwidth was
approximately 8.5 GHz. The transmitter and the receiver responses are briefly presented according
to their single-pulse response, eye diagram, PRBS data pattern and noise characteristics. All time
domain measurements have been performed using the full bandwidth acquisition capabilities of
the Agilent DCA (20 GHz optical and electrical bandwidths) with an external trigger connected
to the pulse pattern generator synchronism signal output. Short single-mode and multimode fiber
patch cords have been used during testing procedures for a total length less than 5 m in length.
The optical fiber contribution to the measured transmitter and receiver performances can be fully
neglected due to the very short length of the patch cords involved.

11.5.1 Optical Reference Transmitter

Figure 11.9 shows the response of the 1310 nm optical transmitter to the NRZ single pulse and to
the corresponding NRZ-PRBS 231-1 eye diagram detected by the digital communication analyzer
(sampling oscilloscope) equipped with a high-speed optical head. Both the detected optical single
pulse and the eye diagram have been filtered internally to the DCA using the standard ITU-T
STM-64 fourth-order Bessel–Thompson filter. The single-pulse response has been time-averaged
(usually 128 averages per sample) in order to reduce considerably the effect of the additive noise
in the measure acquisition.

Figure 11.10 shows the NRZ single-pulse response captured for the externally modulated TOSA
under the same stimulus condition as above. Figure 11.11 reports a section of the PRBS 27-1
pattern used for generating the eye diagram. The selected pattern section corresponds to the digital
sequence ‘. . . 1010101111111000000. . .’.

Figure 11.9 Examples of the modulated response of the TOSA used as the reference transmitter in the
transmission experiments. The laser emits in the 1310 nm range and is directly modulated using an NRZ-PRBS
231-1 data pattern operating at B = 10.3125 Gbit/s. The eye diagram shows the extinction ratio ER ∼= 4.35 dB,
RMS jitter σj

∼= 3.10 ps and an optical modulation amplitude OMA ∼= 1.539 mW ∼= +1.87 dBm. The small
reflection detected in the time-averaged single-pulse response (postcursor) is due to electrical mismatch and is
partially responsible for the intersymbol interference seen in the corresponding eye diagram
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Figure 11.10 Modulated optical response of the TOSA used as the reference transmitter in the multimode
fiber transmission measurements. The laser emits in the 1310 nm range and is externally modulated using the
NRZ single pulse according to Section 11.3.8. The single-pulse response in this case does not exhibit any
relevant reflections due to an electrical mismatch

Figure 11.11 Unfiltered optical eye diagram (left) and corresponding time slot of the 27-1 PRBS data pattern
of the DM-DFB laser after a 1 m single-mode patch cord. The laser biasing is adjusted for the extinction ratio
ER ∼= 4.5 dB. Optical waveform symmetry can still be improved by decreasing the extinction ratio to about
ER ∼= 3.5 dB by biasing the laser at a higher power level

11.5.1.1 Laser Pulse Pre-emphasis

According to experimental results, the best link performance using a relatively long multimode fiber
and EDC does not correspond to the best-launched optical eye diagram. Due to fiber bandwidth
impairments, an optical pulse pre-emphasis is quite beneficial for reducing the bit error rate after
200–300 m of legacy multimode fiber. In order to achieve laser pulse pre-emphasis it is convenient
to bias the laser closer to the lasing threshold, making pulse generation more affected by relaxation
oscillation and related overshoot. According to a random pattern, single bits are strongly influenced
by this pre-emphasis approach due to their short duration. For the same reason, longer ‘1’ bit
sequences are qualitatively unaffected by the pre-emphasis. In that case, the overshoot influences
only the pulse rising edge, which is only a short fraction of the overall pulse duration. The laser
pre-emphasis is quite effective in achieving longer multimode fiber link distances. Figure 11.12
shows the eye diagram emitted from the same laser used in Figure 11.11 above, but biased closer
to the lasing threshold in order to produce a relatively higher overshoot response. The effect of the
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Figure 11.12 Unfiltered optical eye diagram (left) and corresponding time slot of the 27-1 PRBS data pattern
(right) of the DM-DFB laser after a 1 m single-mode patch cord. The laser biasing is adjusted in order to
exhibit relevant pulse pre-emphasis. The eye diagram has been measured with 3 dB attenuation with respect
to the unbiased eye in Figure 11.11. The eye opening is therefore almost identical between the two biasing
conditions. Due to the reduced laser biasing, the extinction ratio is increased up to ER ∼= 10.4 dB. Although
low-rate OMA is almost the same as the unbiased laser condition, the strong overshoot achieved on each rising
edge highly enhances single-pulse energy in order to facilitate pulse recognition, even after a severe bandwidth
limitation due to the long-reach (∼300 m) multimode fiber link

distorted single-pulse contributions to the overall eye diagram is evident. By lowering the value of
the bias current, an increased value of the extinction ratio corresponds accordingly.

These pictures should be compared with the eye diagram and optical pattern presented above for
the unbiased laser. It is evident that the overshot contribution enhances the single laser pulse. By
comparing both measures, it is interesting to conclude that, although they present almost the same
optical modulation amplitude evaluated at a low rate, the single-pulse overshoot is enhanced for
the pre-emphasized case. This is the reason why better EDC restoration is achieved under severe
bandwidth limitation.

The relevant conclusion is that although both patterns have almost the same OMA their behavior
after a long multimode fiber reach is quite different, making the pre-emphasized laser much more
suitable for improved link performances. In Figure 11.12 it is clear that the overshoot takes place
on every rising edge of the laser transition, including the longest ‘1’ sequence at the pattern
beginning. The EDC action is mainly requested to reconstruct the smoothed and distorted single
pulse by the fiber bandwidth limitation, and more specifically by the DMD characteristic. Laser
pre-emphasis simplifies considerably the single-pulse recognition by adding more energy to it. Due
to the nonlinear characteristic of the laser, the overshoot does not have an equivalent undershoot
counterpart on the falling edge. The threshold region prevents a symmetrical rising–falling edge
behavior. This is quite evident from the pattern shown in Figure 11.12.

11.5.2 Optical Reference Receiver

The optical signal generated from the modulated light source is coupled to the multimode fiber link
by means of the standard offset launch patch cord, according to the measurement setup reported
in Figure 11.1. In this section, the optical receiver characterization referring to the back-to-back
configuration will be discussed. The input of the optical receiver is then connected to the laser source
either through the offset launch patch cord or through the single-mode patch cord for comparison
purposes. Before discussing signal response characteristics, the optical receiver noise measurements
will be presented.
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Figure 11.13 Background noise distribution of the DCA (left) and noise joint distribution of the optical
receiver and DCA (right)

11.5.2.1 Noise Measurements

In order to evaluate the receiver thermal noise, Figure 11.13 shows the DCA background noise
and the joint optical receiver and DCA noise statistics respectively. It can be seen that the DCA
background RMS noise is given by σDCA

∼= 227 µV. The total noise is given by the sum of the
contributions from the optical receiver and the DCA, σ 2

T = σ 2
DCA + σ 2

R
∼= 940 µV. According to

the measured noise parameters, the receiver single-ended output RMS noise is then given by

σR =
√

σ 2
T − σ 2

DCA
∼= 912 µV. Assuming uncorrelated noise on both outputs of the differential opti-

cal receiver, the differential output RMS noise becomes σD,out = σR

√
2 ∼= 1.29 mV. Once the differ-

ential RMS noise at the output of the optical receiver has been calculated, assuming Gaussian noise
distribution, it is easy to estimate the differential output signal amplitude VD,out needed to guarantee
the required bit error rate. Setting BER = 10−12 with Q ∼= 7, leads to VD,out = QσD,out

∼= 9 mV.
In conclusion, assuming only thermal noise from the receiver circuitry, the estimated receiver dif-
ferential output signal swing corresponding to the sensitivity condition for having BER = 10−12 is
VD,out

∼= 9 mV. In order to make a negligible contribution to the optical sensitivity from the input
stage of the EDC chip, it is necessary to set the EDC differential sensitivity to a value sufficiently
lower than the estimated receiver differential output swing under the thermal noise sensitivity
condition, namely this should require VEDC,sens � VD,out

∼= 9 mV.

11.5.2.2 Signal Measurements

The signal response characterization of the optical receiver proceeds with the measurements of
the optical pulse response and the corresponding eye diagram. Figure 11.14 reports the measured
response at the electrical output of the reference receiver when the optical input is applied to
the laser pulse, as shown in Figure 11.9. In order to compare the propagation characteristic of the
standard offset launch patch cord with the single-mode patch cord, Figure 11.14 presents the optical
receiver response according to both interconnections with the same laser source. It is clear that the
short length of the standard offset launch patch cord does not affect the optical pulse propagation.

The weak filtering of the receiver bandwidth is evident when comparing both eye diagrams
shown in Figure 11.15, which correspond to the single-mode launch patch cord (left) and the
standard offset launch patch cord (right), with the transmitted eye diagram reported in Figure 11.9
shown in the right picture.

In order to document the differential output performances, Figure 11.16 shows the eye dia-
grams captured on both differential outputs of the optical receiver using the same optical input
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Figure 11.14 Measured pulse responses of the optical receiver assuming (left) the single-mode (SM) launch
patch cord and (right) the standard offset launch patch cord. The oscilloscope time base has been set to
200 ps/div. Comparing with the laser pulse shown in Figure 11.9 it is evident that the weak filtering is performed
by the receiver observing the smoothed ringing on the received pulse postcursors with respect to the sharpest
ones on the launched pulse

Figure 11.15 Measured eye diagram of the optical receiver assuming (left) the single-mode launch patch
cord and (right) the standard offset launch patch cord. The oscilloscope time base has been set to 20 ps/div.
Comparing with the eye diagram generated by the laser source shown in Figure 11.9 it is evident that the
increased intersymbol is generated by the weak filtering performed by the receiver response. Both eye diagrams
look very similar, confirming the negligible differences in term of propagation characteristics using either
single-mode launch or standard offset launch patch cords

signal through the offset launch patch cord as given in Figure 11.15 above. The slight asymmetry
observed between the two outputs might be due to either ceramic layout discrepancies or the IC
amplifier itself.

Before closing this section, Figure 11.17 shows the reference eye diagram evaluated at the
receiver output during the second set of measures performed in November 2003. This eye dia-
gram will be used later for the calculation of the optical power penalty by comparison with the
corresponding responses of the Siecor benchmark multimode fiber of several link lengths.

The optical transmitter and receiver characterizations briefly reported serve as a reference for
comparing the following multimode fiber propagation behavior. The approach is systematic but still
qualitative, with the intent of giving clear examples of the multimode fiber transmission capabilities
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Figure 11.16 Eye diagram measured at the optical receiver differential outputs using the standard offset
launch patch cord and assuming the same optical stimulus as above

Figure 11.17 Measure of the eye diagram detected at the output of the reference optical receiver in the
back-to-back configuration through a standard offset launch patch cord. This eye diagram serves as a reference
for the optical power penalty computation in the second set of measures performed in November 2003. The
acquisition date is displayed on the top-right corner of the screen-shot

at multigigabit data rates. A complete optical system characterization would of course be beyond
the scope of this book, which relies instead on specific laboratory technical characterization reports.

11.6 The Benchmark Multimode Fiber
In this section, the principal results achieved during propagation measurements on the samples of the
Siecor 62.5 µm multimode fiber are presented using selected link structures shown in Figure 11.5.
The next two sections, 11.7 and 11.8, introduce the simple legacy multimode fiber link electrical
emulator and the first measurements devoted to discover the polarization role in the multimode fiber
impulse propagation under offset launch and semiconductor laser excitation. As already mentioned
earlier, this particular multimode fiber sample offers the interesting opportunity of behaving like
a legacy multimode fiber of the installed base, with almost the minimum bandwidth requirement
in order to comply with the IEEE 10GbE standards. To this purpose, this fiber has been iden-
tified as the benchmark multimode fiber for 10GBASE-LRM transmission experiments. Several
measurements have been performed during 2003–2005, leading to a relevant amount of recorded
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data. In this section, a selection of those measurements will be presented, with particular attention
to highlighting mainly the most interesting and peculiar propagation behavior observed during the
laboratory measurements of the benchmark fiber. In this section, two different measurements are
given of the same Siecor benchmark multimode fiber samples, but performed during two different
periods. The responses look different, as expected, since the laboratory conditions, fiber layout and
connector distributions were not exactly the same. The first data reported refer to the measurements
performed in March 2004 while the second set was recorded in November 2003. The consistency of
the pulse responses and corresponding eye diagrams can be verified by looking at the measurement
date printed on each top-right corner of the screen-shots.

11.6.1 Single-Pulse Responses

During the measurements, several precautions have been kept in order to minimize every mechanical
and thermal stress of the fiber layout, including the optical connectors. The launching pad has been
kept fixed as much as possible in order to avoid exchanging the launching fiber link section if
not strictly necessary for achieving the specific multimode fiber layout. The single-pulse pattern
follows the scheme suggested in Section 11.3.8 and each measure has been conveniently averaged
for background noise reduction. Of course, the same averaging process would not be allowed in eye
diagram measurements, which is the reason why many more noisy eye diagrams have been detected
than the acquired single pulse. Every optical and electrical parameter has been maintained among
the six reported pulse responses and the corresponding eye diagrams, except for the time-averaging
and selected output datastream of the pulse pattern generator.

11.6.1.1 First Set of Measures (March 2004)

The next three figures, 11.18, 11.19 and 11.20, report the pulse responses of selected link lengths of
the Siecor benchmark fiber. The fiber response follows the layout reference shown in Figure 11.5,
with a 50 m link length step between any two subsequent measures. The first two screen-shots
in Figure 11.18 refer to 50 m and 100 m multimode link lengths respectively. The time base is
200 ps/div and is the same set for the reference pulse shown in Figure 11.15 with the offset launch
patch cord. The pulse broadening, or more generally the pulse distortion, is not yet evident. It should
be noted, however, that legacy multimode fibers exhibiting a perturbed refractive index profile,
when excited by the semiconductor laser light spot rarely exhibit repetitive behavior, leading to
controversial pulse responses that depend on launching conditions and fiber layout in the testing
area. It is well known to skilled technicians that slight manipulations of the fiber layout on the
testing bench leads to an unexpected pulse response. This is mainly due to the connector offsets
present along the link, which by exchanging launched power distribution provide different mode
excitations. For every fixed data rate, the effect of the DMD manifests itself after a minimum
link length. This is easily to explain in terms of the differential delay accumulated along the
pulse propagation relative to the duration of the launched pulse. The critical link length starts
approximately after 150 m for legacy multimode fibers operating at 10GbE. It should be noted that
the IEEE802.3 standard 10GBASE-SR, operating at 850 nm with a minimum modal bandwidth of
500 MHz km, prescribes a maximum achievable link length of only 82 m without requiring any
pulse compensation technique. In conclusion, legacy multimode fibers with the minimum modal
bandwidth of 500 MHz km at 1310 nm can be used to achieve link lengths below 100 m using laser
sources, but every required link length extension might incur serious pulse degradation and link
loss conditions.

The pulse sequence reported above is quite satisfactory, leading to a good multimode fiber link
performance. However, the same fiber samples, either using a different layout, exchanging the
position of the link sections or using different optical connectors to assemble the link, could lead
to very different pulse responses and transmission behavior. It is known that the multimode fiber
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Figure 11.18 Measured pulse response of the Siecor benchmark multimode fiber with a 62.5 µm nominal
core diameter operating in the 1310 nm wavelength range. The left screen-shot refers to the link length of 50 m,
while the right screen-shot shows the pulse response after 100 m. It is noted that although the timescale is fixed
at 200 ps/div for both measures, the vertical scale is adjusted individually for a full-range representation. Pulse
distortion is almost negligible for both cases

Figure 11.19 Measured pulse response of the Siecor benchmark multimode fiber with a 62.5 µm nominal core
diameter operating in the 1310 nm wavelength range. The left screen-shot refers to the link length of 150 m,
while the right screen-shot shows the pulse response after 200 m. It is noted that although the timescale is fixed
at 200 ps/div for both measures, the vertical scale is adjusted individually for a full-range representation. Pulse
distortion is evident in both measured pulses, with strong broadening in the 200 m case

response under laser light excitation is not a peculiarity of the fiber itself. It is for these reasons that
the adaptability of the electronic dispersion compensator is a fundamental requirement for service
deployment of multimode fiber link operating at the multigigabit data rate.

Figure 11.19 presents the two screen-shots relative to the 150 m and 200 m link lengths, still
using the same time base. The distortion of the detected pulse after 200 m is evident, reaching
the full-width at half-maximum at more than twice the bit rate. The large eye diagram closure is
expected due to strong intersymbol interference, as discussed later. However, despite doubling the
width, the pulse still has clear symmetry, without either precursors or postcursors.

Figure 11.20 shows the last two screen-shots relative to the last two fiber samples added. It is
interesting to see how the 250 m link length seems to have recovered some of the initial pulse
profile, showing slightly better energy confinement than the previous case of the 200 m link length.
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Figure 11.20 Measured pulse response of the Siecor benchmark multimode fiber with a 62.5 µm nominal core
diameter operating in the 1310 nm wavelength range. The left screen-shot refers to the link length of 250 m,
while the right screen-shot shows the pulse response after 300 m. The vertical scale is adjusted individually for
full-range representation. Pulse distortion dramatically increases during the last 50 m of the link length. The
pulse response detected after 300 m exhibits a triangular leading edge due to the relevant precursor contribution

This is part of the behavior of the multimode fiber response: the additional 50 m can accidentally
lead to mode power redistribution due to the optical connector offset with a slight improvement in
pulse confinement. The pulse response corresponding to the longest fiber link of 300 m, shown to
the right of Figure 11.20, manifests a consistent precursor contribution, leading to a total full-width
at half-maximum exceeding three times the bit duration.

11.6.1.2 Second Set of Measures (November 2003)

This second set of measures refers to the same samples of Siecor benchmark fiber, assembled accord-
ing to the layout given in Figure 11.5. It is important to show these measurements together with the
previous ones, in order to highlight the different responses available from the same fiber sample still
operating in the same experimental setup. Figure 11.21 presents the optical receiver pulse response
assuming the reference back-to-back conditions. The optical receiver input is connected directly to
the optical transmitter output by means of the standard offset launch patch cord.

The pulse width measured at full-width at half-maximum ∆t has been measured for each of the
following pulse acquisitions in order to compare the pulse broadening along the multimode fiber
propagation with the 50 m link length step. The reference pulse measured at the optical receiver
output gives ∆t = 116 ps, revealing approximately a 20 % pulse broadening with respect to the
signaling time step T = 1/B = 1/10.3125 GHz ∼= 96.970 ps.

Figures 11.22 and 11.23 show the pulse responses measured after 50 m, 100 m, 150 m and 200 m
of the multimode fiber link length, assuming the same configuration used in Figure 11.17. The
different timescale of 100 ps/div used for the oscilloscope acquisition is noted, leading to a higher
resolution of the captured sample.

The pulse response measures reveal a uniform optical pulse broadening along with the propagation
length. The effect of the modal bandwidth roll-off cuts out tail ringing and other higher frequency
transient responses, leading to a smoother, almost symmetric and Gaussian-like pulse response.
This behavior is important and is quite common for different benchmark multimode fibers. Until
the propagation distance remains below approximately 200 m, the DMD exhibited by legacy multi-
mode fibers leads to a pulse response that measures below 200 m from the launching pad, is almost
symmetric, with the characteristic bell-shaped profile, and fits the Gaussian model well. At increas-
ing distance, the DMD leads to more consistent multipeak pulse responses, where the contributions
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Figure 11.21 Measured pulse response of the optical receiver in the back-to-back configuration with the
standard offset launch patch cord. The time base is set to 100 ps/div. The average pulse width measured at
half-width at half-maximum is 116 ps, revealing the slight bandwidth limitation of the reference receiver. The
small bump of the right side of the pulse (postcursor) is present even in the pulse emitted from the laser source,
as reported in the left side screen-shot in Figure 11.9

Figure 11.22 Pulse responses of the optical receiver measured after 50 m (left) and 100 m (right) of the Siecor
benchmark multimode fiber. The average pulse width measured at half-width at half-maximum is 131 ps for
the 100 m link length

Figure 11.23 Pulse responses of the optical receiver measured after 150 m (left) and 200 m (right) of the
Siecor benchmark multimode fiber. The average half-width at half-maximum pulse widths are 152 ps for the
150 m link length and 186 ps in the case of the 200 m link length. Both pulse profiles have almost symmetrical
Gaussian-like profiles, with a balanced distribution of precursors and postcursors
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Figure 11.24 Pulse response of the optical receiver measured after 250 m of the Siecor benchmark multi-
mode fiber. The average half-width at half-maximum pulse width is 200 ps. The pulse profile is losing the
Gaussian-like shaping with more pronounced precursor terms

of both precursors and postcursors are quite evident. This is the case shown in the Figure 11.24
and refers to the 250 m link length. The pulse profile starts to lose the symmetric distribution and
manifests a more consistent body structure, with a mainly precursor composition.

A further increase in the fiber length up to 300 m causes the link response to become much
more unstable and sensitive to environmental conditions. A slight twist of the fiber gives a strong
pulse deformation at the receiving section. An example of this peculiar response is presented in
Figure 11.25, where the same multimode fiber link leads to different pulse responses as a conse-
quence of the smooth fiber manipulation in the proximity of link connectors.

The pulse profile shown on the screen-shot to the right side in Figure 11.25 represents an
interesting case of a balanced composition of postcursors and precursors, leading to the dual-bump
pulse profile. In addition, this pulse represents a very difficult test for the electronic dispersion
compensator running at 10 GbE because the distance between the two bumps is almost equal to the

Figure 11.25 Pulse responses of the optical receiver measured after 300 m of the Siecor benchmark multimode
fiber. Both pulses refer to the same experimental setup, with only a slight fiber twisting between them. The
left pulse has the average full-width at half-maximum equal to 250 ps while the twisted fiber response on the
right gives 257 ps. The interesting thing is not the small difference of the FWHM, but instead the different
shape exhibited by the right pulse with an almost equal precursor and postcursor contribution, leading to the
dual-bump pulse response
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signaling time slot (approximately 100 ps). The feedback filter in the decision feedback equalizer
acquires the postcursors at the clocked rate and sends them back to the sampler input for the
interference cancellation, according to the principle shown in Figure 10.1 of Chapter 10. The dual-
bump pulse determines the inherent ambiguity in the acquisition phase of the digital samples leading
to an erroneous decision process.

These considerations close the section on the multimode fiber single-pulse response measure-
ments. The next section presents the corresponding eye diagram measured using the same experi-
mental setup used for the single-pulse acquisitions.

11.6.2 Eye Diagram Responses

In this section, the measured eye diagram corresponding to the single-pulse responses presented
previously in Section 11.6.1.1 and 11.6.1.2 are given. While the single pulse was obtained after
time averaging for the additive noise reduction, the eye diagram must be captured using a full
bandwidth capability of the oscilloscope sampling head. Accordingly, in the representation of the
measured eye diagram, the receiver noise has been integrated over a wide bandwidth, leading to a
much noisier detected electrical signal than the single pulse acquisition using time averaging. This
difference must be taken into account if the reader compares the computer-generated eye diagram
using the measured single optical pulse response with the acquired eye diagram using instead the
full bandwidth optical detection. A second issue concerns the implicit linearity assumption found
every time the single-pulse response is used to build up the corresponding eye diagram using a
computer algorithm.

In conclusion, the following two remarks are important if a correct understanding is to be
gained of the relationship between the single-pulse response and the corresponding eye diagram
measurement:

1. Time averaging. The single-pulse response has been subjected to time averaging and conse-
quently to efficient noise reduction. The corresponding eye diagram is captured instead by using
the full bandwidth sampling head acquisition, with relatively large noise bandwidth integration.
This leads to a noisier eye diagram than the computer-generated one using the single-pulse
response.

2. Linearity. The single-pulse response is used by the computer algorithm to generate the corre-
sponding eye diagram. The algorithm simply shifts the pulse samples along the time coordinate
by a finite number of integer time steps and then adds them together with the corresponding
bit amplitude. Finally, the eye diagram is displayed in the required time window. During this
operation, the implicit assumption of linearity is used: each time-shifted single-pulse response
is multiplied by the bit amplitude and then summed together. What happens in reality is slightly
different. The pattern generator supplies the long sequence of synchronized pulses weighted by
the bit amplitude, which is represented as the linear superposition of impulse responses:

x(t) =
+∞∑

k=−∞
aks(t − kT ) (11.7)

The system composed of the laser source, the multimode fiber and the optical receiver responds
to this input stimulus according to the transfer characteristic L(·), and the output signal y(t) can
be represented by the following generic transformation:

y(t) = L[x(t)] = L

[ +∞∑
k=−∞

aks(t − kT )

]
(11.8)
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If the system is assumed to be linear, the transfer characteristic L(·) can be applied to each
individual pulse stimulus s(t) in order to obtain the single-pulse response p(t) = L[s(t)]. Then
the individual pulse responses are summed:

y(t) =
+∞∑

k=−∞
akL[s(t − kT )] =

+∞∑
k=−∞

akp(t − kT ) (11.9)

11.6.2.1 First Set of Measures (March 2004)

Figures 11.26 and 11.27 present the corresponding eye diagrams captured from the pulse responses
shown in Figures 11.18, 11.19 and 11.20. In particular, Figure 11.26 presents the eye diagrams
generated by the pulse responses in Figures 11.18 and 11.19 for 50 m and 100 m link lengths
respectively. Both screen-shots shown in Figure 11.27 refer instead to the same fiber link length of
150 m after a slight manipulation, but with a different redistribution of the same connected fiber link
on the optical bench. The eye diagram on the left refers to the optical pulse in Figure 11.19, while
the eye diagram on the right has been obtained after the same link manipulation. The corresponding
pulse response was not recorded at that time. The reference eye diagram measured at the output
of the optical receiver connected back-to-back to the optical transmitter using the standard offset
launch patch cord has been given in Figure 11.15 on the right screen-shot. That eye diagram can be
used to estimate the reference eye opening and therefore proceed to the calculation of the optical
power penalty achieved at the several link lengths reported.

The optical power penalty induced by the increased link length of the multimode fiber can be
estimated by measuring the eye diagram opening variation between two eye diagram measures.
Referring to Figure 11.26 it can be concluded approximately that, in this case, the opening of the
eye diagram measured after 100 m of link length is almost one-half of the eye diagram opening
evaluated after 50 m of link length, leading to the optical power penalty of about ∆P ∼= 3 dB. Using
the same approach for the eye diagram shown on the left screen-shot in Figure 11.27 should lead

L = 50m L = 100m

Figure 11.26 Measured eye diagrams of the Siecor benchmark multimode fiber with a 62.5 µm nominal core
diameter operating in the 1310 nm wavelength range. The left screen-shot represents the eye diagram captured
after 50 m of link length and corresponds to the pulse shown on the left screen-shot in Figure 11.18. The right
screen-shot shows the eye diagram detected after 100 m of link length and corresponds to the pulse shown on
the right screen-shot in Figure 11.18. It is evident that there is increased eye diagram closure when passing
from 50 m to 100 m of link length, even if such differences are not easily appreciated when looking at the
corresponding pulse responses in Figure 11.18
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L = 150m L = 150m

Figure 11.27 Measured eye diagrams of the Siecor benchmark multimode fiber with a 62.5 µm nominal core
diameter operating in the 1310 nm wavelength range. The left screen-shot represents the eye diagram captured
after 150 m of link length and corresponds to the pulse shown on the left screen-shot in Figure 11.19. The right
screen-shot shows instead the eye diagram detected after the same link length of 150 m, but after slight fiber
manipulation. The ordering of the fiber sections and connectors was the same as in the left case. It is evident
that the increased eye-diagram closure between the two cases is due to increased pulse interferences

to the conclusion that there would be negligible degradation for the additional 50 m of link length
when, moving from 100 m to 150 m. This is indeed the case when staying at the reported measures.
Moreover, this conclusion is in agreement with the measured single pulse after 100 m and 150 m
presented in Figures11.18 and 11.19 respectively. Both pulse responses look quite similar, if not
almost identical, and it is expected that they generate almost identical eye diagrams. However,
referring to Figure 11.27, using the same fiber layout, with only additional slight fiber twisting,
produces the closer eye diagram shown on the right screen-shot, leading to an additional optical
power penalty of ∆P = 4 ∼ 5 dB over the value estimated after 100 m.

11.6.2.2 Second Set of Measures (November 2003)

The following eye-diagrams presented in Figure 11.28 refer to the second set of multimode fiber
characterizations performed in November 2003 at Infineon Fiber Optic Laboratory, Berlin. They
have been measured using the same experimental setup that was configured for the determination of
the single-pulse responses shown in Figures 11.22 to 11.25. In this case the eye diagrams have been
recorded for every 50 m step, leading to one-to-one correspondence with the single-pulse response.

The eye diagram evaluated after 100 m of Siecor benchmark fiber presents about 2.1 dB of eye
closure with respect to the measure detected after 50 m of link length, and the eye diagram evaluated
after 150 m shows about an additional 4.3 dB closure with respect to the eye opening measured
after 100 m. In total, the measured eye diagram closure between 50 m and 150 m of link length
reaches about 6.4 dB. In order to compute the optical power penalty of the total link length, each
eye diagram closure must be referred to the reference eye diagram evaluated at the optical receiver
output connected back-to-back to the optical transmitter through the standard offset launch patch
cord and shown in Figure 11.17. The eye diagram evaluated after 50 m of link length exhibits about
0.3 dB of optical power penalty with respect to the reference conditions, leading to a total optical
power penalty of about 6.7 dB, reached after 150 m of link length. Increasing the link length further,
the eye diagram looks completely closed and the concept of eye closure loses its meaning.

These measurements support the common conclusion that uncompensated multimode fiber link
can be extended below 150 m in order to expect some residual eye diagram opening still sufficient
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L = 50m L = 100m

L = 150m L = 200m

L = 250m L = 300m

Figure 11.28 Eye diagrams measured at the output of the optical receiver after the Siecor benchmark multi-
mode fiber with a 62.5 µm nominal core diameter operating in the 1310 nm wavelength range. The measures
refer to the same transmission setup used for single-pulse acquisitions shown in Figures 11.22 to 11.25. These
measures clearly report the progressive eye diagram closure as the multimode fiber link approaches 200 m.
Between the link lengths of 150 m and 200 m the eye diagram closes completely, leaving an almost unrecog-
nizable signal pattern in correspondence with the longer link length



614 Multi-Gigabit Transmission over Multimode Optical Fibre

for signal detection. However, account must be taken of the great variability of every multimode
experimental setup designed to work at 10 GbE. The present two measurements, referred to as
November 2003 and March 2004, are a clear example of this variability of the achievable perfor-
mances. The November 2003 measurements gave better eye diagrams at the same link lengths with
respect to the March 2004 ones. There might be several reasons for this, including the peculiar
fiber layout, the launch polarization, the connectors and the adapter leading to different offset com-
binations, the electrical receiver calibration and the laser biasing conditions. For these reasons, the
IEEE 802.3 10GBASE-SR recommends using uncompensated multimode fibers up to a maximum
link length of 82 m, accepting a dispersion optical power penalty contribution of about 3.5 dB.

11.7 A Simple Optical Link Emulator
In this section, the application of the standard OC-48 or equivalently STM-16, fourth-order
Bessel–Thompson electrical filter is introduced as the simple tool for emulating the expected
response of legacy multimode fiber after approximately 200 m of link length. The measurement
setup therefore includes the electrical OC-48 standard filter inserted between the pulse pattern
generator and the electrical input of the optical transmitter. The transmitter bias is set according to
the required condition for the fiber link testing (extinction ratio, pre-emphasis, eye symmetry, etc.).
The 10 GbE NRZ-PRBS signal pattern is first filtered through the OC-48 filter with a −3 dB cut-off
frequency set at fc = 3

4 B = 1.866 GHz and then feeds the laser driver or the external modulator
driver, according to the required modulation technique.

The result is a strongly band-limited optical signal clocked at the bit rate frequency, closely
resembling the optical signal measured at an output of 200 m of link length of legacy multimode
fiber excited by laser light through the standard offset launch patch cord.

11.7.1 Modeling Approach

The optical signal available at the output connector of the standard Offset Launch patch cord is
used to emulate the broadened pulse shape response after approximately 200 m of link length of a
legacy multimode fiber with the modal bandwidth BW = 500 MHz km. As extensively analyzed in
Chapter 8, the impulse response of the fourth-order Bessel–Thompson filter is characterized by a
single body, slightly asymmetric with a low-ringing postcursor tail. Assuming direct modulation,
after passing through the nonlinear laser characteristic, the corresponding output optical pulse looks
more symmetric, with a pronounced single body and negligible ringing tail postcursors. This pulse
closely resembles the Gaussian profile. Unfortunately the multimode fiber response to a laser light
stimulus is scarcely solved using only the Gaussian-like pulse response. This is mainly due to a
very different DMD-induced pulse broadening, which can result from different launching conditions,
refractive index profile perturbations and a stressful environment. Nevertheless, the OC-48 filtered
optical link emulator provides results that are very stable and suitable for preliminary testing con-
ditions for EDC characterization.

The following five statements summarize the advantages of this simple legacy multimode link
emulator:

1. The high repeatability of the output response is due to electrical implementation of the standard
OC-48 filter.

2. The frequency response of the OC-48 fourth-order Bessel–Thompson filter represents a suitable
approximation to the Gaussian frequency response up to at least twice the cut-off frequency.

3. High-frequency optical interface differences are smoothed by the low frequency content of the
OC-48 filter, leading to very comparable results, even using different 10 GbE ROSA and TOSA
pairs. The low-frequency cut-off of the OC-48 filter in fact reduces the plausible differences that
can be measured in the high-frequency behavior of different 10 GbE ROSA and TOSA pairs.



Transmission Experiments 615

4. Symmetric, smoothed and broadened pulses are among the most difficult to be recognized and
restored by FFE-DFE based electronic dispersion compensator systems.

5. The modal bandwidth under over-filled launch (OFL) conditions can be easily scaled to the fiber
length equivalent of the OC-48 fourth-order Bessel–Thompson cut-off frequency evaluated at
half-maximum.

The −3 dBe cutoff frequency fc of the OC-48 filter coincides with 75 % of the OC-48 bit rate, i.e.
fc = 1.866 GHz. Since the modal bandwidth of the multimode fiber is defined at half-maximum of
the magnitude of the intensity transfer function, in order to find the length of multimode fiber that
is equivalent to the OC-48 response, first the frequency f0 corresponding to the half-maximum of
the magnitude of the OC-48 filter response must be computed. The amplitude-normalized Gaussian
profile GF(f ) with half-width at half-maximum f∆ is given by the following expression, where
the relationship (3.115) between f∆ and the standard deviation σf is used:

GF(f ) = e−(f/f∆)2 log 2 (11.10)

Figure 11.29 shows the optical link emulator setup. In order to obtain consistent results, the
optical transmitter and the receiver used for the emulation must be the same as those used for the
real transmission measurements, including the multimode fiber link.

Figure 11.29 Measurement setup for the optical link emulator using the OC-48 filter to drive the optical
transmitter. The insets show the expected eye diagrams according to the 10 GbE PRBS datastream
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Figure 11.30 Computed magnitudes of the frequency transfer function of the OC-48 filter and of the corre-
sponding Gaussian modal response with the same half-width at Half-maximum f∆ = f0 = 2.5479 GHz. The
OC-48 filter fits the equivalent Gaussian response very well up to at least 13 dB, corresponding to one octave
above the half-width at half-maximum frequency

The cut-off frequency of the OC-48 filter is set at fc = 1.866 GHz and the numerical computation
of the half-width at half-maximum gives f0 = 2.5479 GHz. Figure 11.30 shows the computed plots
of the magnitudes of both the OC-48 filter and the corresponding Gaussian profile with the same
half-width at half-maximum f∆ = f0 = 2.5479 GHz. If it is assumed that the multimode fiber has
a Gaussian response with a modal bandwidth BW = 500 MHz km, it can immediately be deduced
that the link length equivalent Leq of the OC-48 filter is

Leq = BW

f∆

= 500 MHz km

2547.9 MHz
∼= 196 m (11.11)

In conclusion, the OC-48 filter is a suitable electrical emulation of a multimode fiber Gaussian
response of link length Leq

∼= 196 m.
Before closing this section, it is necessary to add one more comment about the application of the

OC-48 filter as a multimode fiber link emulator. The laser diode and the electrical driver are not
linear devices, as they are designed to operate with digital signals. In order to reproduce the electrical
signal available at the OC-48 filter output on the optical domain, the electro-optical transducer
(TOSA) should have a linear transfer characteristic. In addition, the optical signal obtained at
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the transmitter output resembles closely the OC-48 datastream and, as shown in the following
section, fits quite well with the real eye diagram measured at the output of multimode fiber after
approximately 200 m of link length.

11.7.2 Measurement Report

Figure 11.31 presents the measured datastream of the OC-48 measurement setup, according to the
block diagram shown in Figure 11.29. All signals refer to the 10 GbE clock signal with fck =
10.3125 GHz and an NRZ PRBS 231-1 datastream. The first picture on the top-left side refers to the
signal at the output of the pattern generator. The signal then feeds the OC-48 filter whose output
reports the eye diagram presented in the screen-shot to the top-right picture. The large intersymbol
interference raises the characteristic pattern with the same periodicity of the clock source.

After being processed by the laser driver and the laser diode itself, the signal pattern is converted
to the optical domain, passes through the offset launch patch cord, according to the block diagram

Optical Receiver output 200m Siecor Benchmark Fiber 

PPG output at 10GbE OC-48 electrical output

Figure 11.31 Measured eye diagrams at different sections of the OC-48 multimode fiber link emulator. The
first screen-shot on the top-left side shows the 10 GbE eye diagram measured at the output of the pulse pattern
generator. The screen-shot on top-right side refers to the OC-48 filtered eye diagram evaluated at the electrical
filter output. The electrical cut-off frequency coincides with 75 % of the reference bit rate, i.e. fc = 1.866 GHz.
The bottom-left picture shows the measured eye diagram at the optical receiver output, while the bottom-right
screen-shot shows the eye diagram measured after 200 m of Siecor benchmark multimode fiber. The similarity
between the emulated eye diagram and the real one is noteworthy
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in Figure 11.29, and after the optical receiver detection, it is down-converted back to the electrical
domain. The screen-shot on the bottom-left side presents the eye diagram acquired at the optical
receiver output. It is represented using the 20 ps/div timescale, leading to an eye period over about
five horizontal divisions. The last picture on the bottom-right side reports instead the measurements
of the Siecor multimode benchmark fiber after 200 m of link length, assuming the same measurement
setup but without of course the OC-48 filter in front of the optical transmitter. The correspondence
between the two eye diagrams on the bottom row is impressive, demonstrating the validity, at least
in this case, of the OC-48 filter link emulation. Of course, the variability of the multimode fiber
response can lead to different pulse shapes and eye diagrams, but the conclusion and the advantages
of this simple multimode fiber link emulator still remains valid.

11.8 Polarization Measurements at 10 GbE
In the first part of this chapter the basic concepts behind the observed polarization effects in the
optical pulse propagation along multimode fiber links operating at the multigigabit data rate have
been briefly introduced. Those effects lead to the experimental evidence of the dependence of the
optical pulse shape detected after relatively long multimode links on the launched polarization
state for a given offset launch patch cord. It is noted that both the input polarization control and
the offset launch patch cord must be simultaneously accounted for as both have a polarization-
dependent pulse response in multimode fibers operating at the multigigabit data rate. Experimental
evidence has shown that the input polarization orientation has no effect on the pulse propagation
when the central launch is adopted. The conceptual justification of the polarization effects have
already been discussed so no further details will be given. Instead, in this section the measurements
performed on this phenomenon will be described and comments will be made on the interesting
results obtained.

Figure 11.32 shows the experimental setup used to investigate the observed polarization-
dependent pulse response in the multimode fiber link operating at multigigabit data rates. In order
to highlight the polarization dependence of the propagating pulses, the procedure will follow with
the measure of the eye diagram response corresponding to each orthogonal polarization state for
every fixed link length. As a general procedure, for a fixed link length and offset launch patch
cord, first the input linear polarization orientation leading to the best eye-diagram available at the
optical receiver output will be determined. This condition identified as the input best polarization.
Adjusting the polarization controller, the orthogonal polarization orientation is then set at the input
optical section. The measured eye diagram was sensibly degraded with respect to the first set of
the polarization state, according to the link length used; this behavior led to the definition of the
input worst polarization condition. Figure 11.32 shows a sketch of the two launching polarization
states. The eye diagrams have been measured at the output of the optical receiver corresponding to
the best and the worst input polarization states for every 50 m increment of the link length.

In order to investigate further the relationship between the input polarization state and the radial
offset launch position, a second measurement campaign has been performed using radial micro-
manipulator adjustment of the launch coordinate directly on the fiber core instead of the fixed
standard offset launch patch cord. In this case, of course, the launching single-mode fiber has been
directly butt-coupled to the selected radial position on the launching multimode fiber core section
using the micropositioning step controller. This procedure proved to be very useful in analyzing
the radial uniformity of the refractive index profile. Scanning the radial coordinate from almost
the center of the core toward the periphery, it would be possible to analyze the group delay com-
pensation by measuring the transmitted pulse distortion and retrieving profile perturbations of the
refractive index. The next section reports first the measurements using the standard offset launch
patch cord.
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Figure 11.32 Block diagram representation of the measurement setup for the polarization-induced pulse dis-
tortion in the multimode fiber link operating at the multigigabit data rate. The polarization controller sets the
two orthogonal polarizations, best and worst in the text, while the micromanipulator allows for precise radial
offset launch coordinate settings

11.8.1 Standard Offset Launch

The following measurements refer to two different linear polarization states, each launched at the
input section along different lengths of the same benchmark Siecor multimode fiber. It should be
noted that, in order to isolate the effect of the input polarization from any other possible cause
inducing pulse distortion, great attention has been paid during the experiment to modify only
the linear input polarization, without changing any other parameter of the experimental setup. Of
course, both the connector distribution and the fiber position on the optical bench are held to be
fixed.

All of the following figures in this section report two pictures: the first one of the left side refers
to the eye diagram associated with the input best polarization state, while the second one on the
right side shows instead the eye diagram measured with the input orthogonal polarization state.
It is evident from the measures below that by increasing the link length the polarization effect
takes more and more relevance, leading to an almost closed eye diagram in correspondence with
the input worst polarization when the link distance exceeds about 200 m. Figures 11.33 and 11.34
present the eye diagrams measured at the input section, after the standard offset launch patch cord
and after 50 m of link length of the Siecor benchmark multimode fiber respectively. In both cases,
the effect of the polarization change at the input section is not recognizable in terms of optical
pulse distortion.

Figure 11.35 reports the measured eye diagrams after 100 m of link length according to the two
orthogonal states of polarization. The effect on the output pulse shape is evident in this case, leading
to about 2 dB of eye diagram closure in correspondence with the worst polarization state.
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Reference: best polarization Reference: orthogonal polarization 

Figure 11.33 Measured eye diagram at the launching pad (reference) assuming orthogonal polarization states.
The left screen-shot shows the best eye diagram available versus the input polarization state and is referred to
the best linear polarization. The screen-shot on the right presents the eye diagram captured using the orthogonal
polarization (worst linear polarization)

50m: best polarization 50m: orthogonal polarization 0dB

Figure 11.34 Measured eye diagram after 50 m of link length. The screen-shot on the left shows the best eye
diagram available versus the input polarization state. The right screen-shot presents the eye diagram captured
using the orthogonal polarization. The eye diagrams are almost identical, revealing any polarization effects
after 50 m of link length

Figure 11.36 shows a very interesting measure of the polarization-induced pulse distortion. The
link length was only 150 m and the output eye diagrams associated with the two input polarization
states are quite different. The best-input polarization leads to the eye diagram on the left side,
which still exhibits a satisfactory eye shaping with about a 6 dB eye closure referred to the average
amplitude. The right picture shows the output of the same experimental setup where only the input
polarization state has been changed to the orthogonal direction. The corresponding eye diagram
is almost completely closed, leading to the estimated eye closure of about 8–9 dB. Under these
conditions, the optical transmission will probably fail even using EDC correction. However, under
uncontrollable input polarization states, the expected output will exhibit any eye diagram configu-
ration between the two cases shown in Figure 11.36, leading to a large variability of pulse profile.
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100m: best polarization 100m: orthogonal polarization ~2dB

Figure 11.35 Measured eye diagram after 100 m of link length. The screen-shot on the left shows the best eye
diagram available versus the input polarization state. The right screen-shot refers instead to the eye diagram
captured using the orthogonal polarization. In this case, the effect of the input polarization manifests itself
clearly, inducing pulse broadening. The eye diagram closure is estimated to be about 2 dB

150m: best polarization 150m: orthogonal polarization ~9dB

Figure 11.36 Measured eye diagram after 150 m of link length. The screen-shot on the left shows the best
eye diagram available versus the input polarization state. The right screen-shot refers instead to the eye diagram
captured when changing only the input polarization to the orthogonal state. In this case, the effect of the input
polarization manifests itself clearly, inducing large pulse broadening and a strong eye diagram closure of about
9 dB

It is well known, for example, that in VCSEL sources the output linear polarization is not stable,
leading to a time-dependent random orientation. This effect coupled with the offset launch will
raise the eye diagram fluctuation after a few hundred meters.

By increasing the link length further causes the polarization effect to become more pronounced.
Figure 11.37 presents the measurements of the eye diagrams and the corresponding PRBS pattern
captured after 200 m of link length according to two orthogonal orientations of the input polariza-
tion. Although it is still possible to find the optimum input polarization leading to the open eye
diagram after 200 m of Siecor benchmark multimode optical fiber, changing the input polarization
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200m: best polarization 200m: orthogonal polarization ~ ∞

Figure 11.37 Measured eye diagram after 200 m of link length. The left side shows two screen-shots reporting
the best eye diagram and a section of the corresponding PRBS patter available versus the input polarization
state. The right side shows instead the eye diagram and a section of the corresponding PRBS pattern captured
when changing only the input polarization to the orthogonal state. In this case, the effect of the input polarization
manifests itself strongly, inducing a complete eye diagram closure. The effect of the input polarization on the
pulse distortion is well represented by the corresponding highlighted sections of the PRBS pattern measured
according to the input orthogonal polarizations

orientation slightly leads immediately to the link loss condition. This is well demonstrated by the
right screen-shots showing the eye diagram and the PRBS pattern measured with the orthogonal
input polarization state respectively. The excessive pulse broadening is then responsible for the
completely closed eye diagram.

The last measure, shown in Figure 11.38, refers to the 250 m of link length. Despite the long
link, properly adjusting the input polarization was still possible in order to reach the link length
with the open eye diagram, as shown in the left screen-shot. It was found for the shorter 200 m
case presented above that changing the polarization orientation slightly led to a completely closed
eye diagram (the right side of Figure 11.37). The important conclusions of these experiments can
be summarized as follows:

1. Careful adjustment of the input linear polarization orientation (best polarization state) leads to
the open eye diagram, even after 250 m of Siecor benchmark multimode fiber. The same eye
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250m: best polarization 250m: orthogonal polarization ~∞

Figure 11.38 Measured eye diagram after 250 m of link length. The left side shows two screen-shots reporting
the best eye diagram and a section of the corresponding PRBS patter available versus the input polarization
state. The right side shows instead the eye diagram and a section of the corresponding PRBS pattern captured
when changing only the input polarization to the orthogonal state. In this case, the effect of the input polarization
manifests itself strongly, inducing a complete eye diagram closure. The effect of the input polarization on the
pulse distortion is well represented by the corresponding highlighted sections of the PRBS pattern measured
according to the input orthogonal polarizations

diagram was in general not achieved in the previous experiments where the launch polarization
state was not controlled.

2. Launching the polarization orientation orthogonal to the best polarization state leads to a pre-
maturely closed eye diagram with respect to the measurements of previous experiments where
the launch polarization state was not controlled.

In conclusion, the orientation of the launching polarization affects the pulse response of multi-
mode fiber where the standard offset launch is applied. Comparing with the same launch condition
but without any polarization control, eye diagrams that are achieved under optimal launch polar-
ization and for a given link length exhibit larger eye openings (best polarization state). Assuming
an input polarization orientation orthogonal to the optimal launch polarization (worst polarization
state) leads to closer eye diagrams at the same link length.

11.8.2 Controlled Offset Launch

In this section, the analysis is completed of the polarization-induced pulse distortion in the multi-
mode fiber link operating at the multigigabit data rate, extending the measurements to controlled
offset launch conditions. Since the major effects are detected at longer link lengths, as experienced
with the standard offset launch, in this experiment only the 200 m length case is considered. In
general, for each offset launch position two orthogonal polarizations were tested. According to the
procedure described in the previous cases, first the optimum polarization associated with the best
achievable optical eye diagram detected at the end section of the link length is found. Then the
polarization orientation is set orthogonal to the optimum one, leading to the closest eye diagram
detected at the end section of the same link. In the following measurements, the best and the worst
launch polarizations will be referred to with respect to the considered multimode fiber link.
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Figure 11.39 Schematic representation of the microcontrolled offset launch technique used for scanning the
multimode fiber core radius with the spot size of the laser source during the polarization experiment. According
to the standard offset launch specifications, the radial offset coordinate rL for the 62.5 µm core radius must
range between 17 µm and 23 µm from the fiber axis

The controlled offset launch setup is schematically represented in the Figure 11.39. The launching
tool is a standard single-mode fiber jumper connected on one side only in order to provide easy laser
diode coupling. The other side presents a bare cut and is manually aligned on the multimode fiber
core using an accurate micromanipulator positioning laboratory tool. The laser light spot maximum
emitted by the end section of the single-mode fiber is then aligned on the radial coordinate of the
multimode fiber core. The mode field diameter (MFD) of the standard single-mode fiber measured
at the near-field cross-section is typically 9 µm ± 1 µm, providing selective excitation of multimode
fiber mode groups.

The multimode fiber under test was the Siecor benchmark sample with a 62.5 µm core radius
and the standard offset launch condition must provide a light source coupling within the radial
interval 17 µm ≤ rL ≤ 23 µm. In order to compare the standard offset launch patch cord with
the microcontrolled offset launch, the following four different radial launch coordinates rL were
selected:

1. Axial launch with a nominal zero offset, rL = 0
2. Radial launch with a nominal offset of rL = 17 µm
3. Radial launch with a nominal offset of rL = 20 µm
4. Radial launch with a nominal offset of rL = 23 µm

Figure 11.40 provides a comparison among three different launching conditions that use the same
central launch coordinate, rL = 0, but exhibit three different polarization angles. Apart from the best
and the worst polarization orientations as usual, the 45◦ angle has been added. The result experienced
during the central launch is quite interesting: any polarization-dependent pulse distortion can be
observed. The three measured eye diagrams do not as the result of the launch polarization angle.
This is explainable in terms of the axial symmetries of both the laser spot and each individual mode
field.

Moving instead to a finite offset, the behavior closely resembles the measures obtained using
the standard offset launch patch cord. Figure 11.41 shows the eye diagram measured assuming
rL = 17 µm offset and two orthogonal polarization states. The best launch polarization has been
adjusted as usual to obtain the best open eye diagram. The worst launch polarization corresponds
to the orthogonal direction. The relative closure of the eye diagram demonstrates the relevance of
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200m – Central launch: best polarization 200m – Central launch: 45°° polarization 

200m – Central launch: orthogonal polarization

Figure 11.40 Measurements of the eye diagram obtained after 200 m of Siecor benchmark multimode fiber
using three different polarization orientations under central launch conditions. The eye diagrams look identical,
showing some dependence on the launch polarization

200m – 17µµm offset: best polarization 200m – 17µµm offset: orthogonal polarization

Figure 11.41 The measured eye diagrams refer to the orthogonal states of the polarization assuming 17 µm
offset. The eye diagram corresponding to the launch polarization orthogonal to the best orientation is completely
closed. The measurement is repetitive if the launching single-mode fiber is moved to the symmetric radial offset
located at −17 µm
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200m – 20µm offset: best polarization 200m–20µm offset: orthogonal polarization

Figure 11.42 The eye diagrams have been measured using two orthogonal states of the launch polarization
assuming 20 µm offset. The eye diagram (right) corresponding to the launch polarization orthogonal to the best
orientation (left) is completely closed. As in the previous case, the measurement is repetitive if the launching
single-mode fiber is moved to the symmetric radial offset located at −20 µm

200m – 23µµm offset: best polarization 200m – 23µµm offset: orthogonal polarization

Figure 11.43 The eye diagrams refer to the orthogonal states of the launch polarization assuming 23 µm
offset. The eye diagram on the right screen-shot is almost closed and corresponds with the launch polarization
orthogonal to the best orientation, shown on the left picture. The measurement is repetitive if the launching
single-mode fiber is moved to the symmetric radial offset located at −23 µm

the input polarization in this propagation experiment. The second step moves the offset position
at rL = 20 µm, corresponding to the middle of the launching range for the 62.5 µm multimode
fiber. Figure 11.42 presents the measured eye diagram according to the two orthogonal states
described above. It should be noted that the eye diagram launching the best polarization state is
slightly more open than when rL = 17 µm is assumed. This is of course explainable in terms of a
restricted selection of different group delays coinciding with the output pulse, leading to reduced
DMD contributions. The last measurement in Figure 11.43 refers to the offset position rL = 23 µm,
corresponding to the upper value according to the launching standards. The measured eye diagram
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under the best launch polarization looks quite similar to the first case where rL = 17 µm. The
expected variation with the orthogonal input polarization is largely verified as for the other two
cases.

The controlled offset measurements presented in this section were performed at Fiber Optic
Laboratories, Infineon Technologies, Berlin, in September 2004. The author is grateful to Dr Joerg
Kropp for conceiving the experiments, providing the related measurement setup and measuring
the data. The important conclusion that emerges from these results is confirmation of the launch
polarization dependencies of the pulse response in multimode fiber links excited by relatively short
laser pulses (100 ps) and exhibiting offset launch conditions. The control of the launch polarization,

Figure 11.44 Optical power penalty expressed as the eye diagram closure measured versus increasing link
length and assuming two orthogonal states of the launch polarization. The plots has been computed using the
experimental data presented in the previous section regarding the polarization measurements using the standard
offset launch patch cord. In addition to the eye closure data, the graph gives the relative eye diagram closure
between the two orthogonal polarization states. For the link length of 150 m the relative variation of the optical
power penalty reaches about 7.2 dB
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the offset launch and the multigigabit pulse transmission must all be simultaneously present in order
to see the effect. This is clearly demonstrated by the complete absence of any polarization-dependent
effect by simply setting central launch conditions (offset null) in the above experiments.

11.8.3 Conclusions

The measurements reported in this section were performed in order to highlight the effect of the
state of polarization (linear) in combination with the offset launch, connector offset and MMF link
length operating at 10 GbE. The orientation of the polarization state has been changed using an
Agilent polarization controller. For every fixed fiber link length, the best polarization state has been
found in terms of the maximizing eye opening at the fiber end. Then the orthogonal polarization
state has been launched and the corresponding eye diagram recorded.

According to the measurements, the effect of the polarization state is dramatically affecting the
eye opening at longer distances. At a link length of 250 m, using the best polarization state, the
eye diagram still showed some opening, but as soon as the orthogonal state was launched, the eye
diagram looked completely closed. Same behavior has been noticed at shorter distances, such as
100 m, 150 m and 200 m, with a proportional increasing effect. The linear polarization state acts as a
selective excitation of the higher-order modes that are not axially symmetric (azimuth dependence).
The amount of power transferred to each mode depends on the overlap integral and therefore on
the relative orientation between the offset direction at the launching section and the polarization
orientation. Depending on the perturbation of the refractive index, the different power distributions
among excited modes produce different optical pulse intensity distributions after some propagation
distance. Since the linear polarization state is not fixed, but instead is a random process depending
on environmental perturbations, the output eye diagram is expected to fluctuate accordingly. The
amount of fluctuation in the eye diagram closure depends on the fiber length and can reach several
decibels. Laser sources such as VCSEL and FP do not have a stable linear output polarization,
adding more perturbation to the polarization of the launched field.

To close this section, an estimation is given of the polarization-dependent optical power penalty
by measuring the relative closure of the eye diagram between the two orthogonal polarization states.
Figure 11.44 shows the computed optical power penalty versus fiber length for both polarization
states, assuming a standard offset launch patch cord. It is relevant that by increasing the link length
the polarization effect becomes stronger, leading to an increasing optical power penalty.

In Figure 11.45 it can be seen that the important conclusion does not refer to the absolute value
estimated for the eye diagram closure versus the link length; instead, the focus should be on the
relative increment of the optical power penalty accumulated for each link length between the best
and the worst launch polarizations. This is an indication of the expected peak-to-peak fluctuations
of the eye opening, assuming random input linear polarization. The eye closure fluctuation is a
monotonic increasing function of the link length and can be responsible for dramatic degradation
of the link performances if the link length exceeds about 150 m.

11.9 EDC Measurements over MMF
In this section, reports are given of some of the characterization measurements of engineering
samples of the electronic dispersion compensator performed at Fiber Optic Laboratories, Infineon
Technologies, Berlin, during the period 2003–2004. The EDC measurements use the same experi-
mental setup described previously in Sections 11.5 and 11.6 dealing with the reference transmission
system constituted by the optical transmitter, the Siecor benchmark multimode fiber and the optical
receiver. In order to present the material consistently, first the electrical performances of the sample
EDC will be discussed. Then the optical compensating capabilities of the EDC using the multimode
fiber link emulator discussed in Section 11.9.7 will be given. Finally, preliminary experimental
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results of the EDC operation will be presented for real multimode fiber links using the reference
transmission system depicted in Figure 11.1.

11.9.1 Electrical Measurements

The electrical characterization to be presented consists of the measurements of the eye diagrams
generated at both the analog and digital outputs of the sample EDC when the electrical input is
applied to a 10 GbE signal that is unfiltered or previously passed through the OC-48 standard filter.
It is known that the EDC is realized according to the FFE-DFE equalization structure. The FFE-
DFE architecture has been carefully analyzed in Chapter 10, and the general block diagram given in
Figure 10.38 will be referred to here. For a given input pulse, the algorithm optimizes the weights for
both the feedforward filter (FFF) and the feedback filter (FBF) in order to minimize the mean square
error (MSE). The minimization of the mean square error comes through two actions: the reduction
of the precursors through proper input filtering with the feedforward filter and the cancellation of
the postcursors by means of the feedback filter. The equalization algorithm provides the minimum
mean square error (MMSE) and not zero residual intersymbols, otherwise called zero-forcing (ZF)
equalization. In addition to that, the input filtering increases the noise bandwidth and the enhanced
noise power contributes to the total MMSE. The convergence algorithm is implemented into the
FFE-DFE structure balance between the residual intersymbol and the enhanced noise in order to
minimize the total MSE. Figure 11.45 shows the EDC output (right) after acting on the 10 GbE
input electrical signal (left) provided by the pulse pattern generator. The jittered output reveals
unfiltered high-frequency phase noise generated during the MMSE algorithm. The EDC output
signal shown in Figure 11.45 refers to the digital samples, measured after the sampler circuit
shown in Figure 10.38. In addition to the FFF equalization for input pulse precursors, it must be
noted that small signals of only a few mV in amplitude, like the reported measure, demand a high
gain input amplifier, which in turn increases the EDC noise figure. Once the basic functionality
of the EDC working at a 10 GbE data rate has been verified using the PPG reference signal, the
next step deals with the implementation of the OC-48 electrical emulation of strongly band-limited
10 GbE signals.

The 10 GbE NRZ-PRBS signal supplied from the PPG is first passed through the OC-48 filter and
then input to the EDC. As seen in Section 11.7, and in particular in Figure 11.31, the output signal
closely resembles the expected optical signal after about 200 m of the Siecor benchmark multimode

Figure 11.45 Eye diagram measurements at the EDC input (left) and output (right) when the pulse pattern
generator provides the 10 GbE NRZ-PRBS signal (left). Although the EDC output signal presents a lower
residual intersymbol interference, the pulse wavefront is more jittered than the input signal provided by the
PPG
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Figure 11.46 Electrical performances of the tested EDC sample using a 10 GbE input signal passed through
the standard OC-48 filter. The top-left picture shows the NRZ 27-1 PRBS eye diagram measured at the output of
the OC-48 filter. The top-right picture presents the corresponding EDC analog output. The eye diagram shows
a consistent opening with small residual interference and timing jitter. The bottom-left screen-shot shows the
data pattern measured at the same EDC analog output, highlighting the compensation achieved. The last picture
on the bottom-right screen-shot shows the EDC digital output, after the sampler circuit

fiber. The relevant difference between the 200 m link emulation using the OC-48 electrical filter
and the real multimode fiber response relies on the statistical fluctuation expected from the latter,
in spite of the stationary filter response. Taking a single step forward, the electrical OC-48 test is
first performed, moving into the optical modulation domain for only a second time. Figure 11.46
reports the measured performances of the EDC stimulated by the 10 GbE NRZ-PRBS electrical
signal supplied from the PPG and then passed through the standard OC-48 filter. The first screen-
shot on the top-left side shows the electrical eye diagram measured at the OC-48 filter. The eye
diagram is completely closed, exhibiting the characteristic periodic multiple small openings. The
top-right picture shows the EDC analog output, measured before the digital sampler. Referring to
the EDC block diagram given in Chapter 10, Figure 10.38, the eye diagram in the top-right screen-
shot has been captured after the summing node between the feedforward filter and the feedback
filter, at the sampler input. Stated differently, this is still an analog signal and gives the intrinsic
equalization performance, including both contributions from the two filters.

The effectiveness of the FFE-DFE architecture is self-evident from Figure 11.46, showing a good
signal recovery with moderate jitter and residual intersymbol interference. In order to confirm the
EDC functionality, the bottom-left picture shows the detailed NRZ-27-1 PRBS pattern corresponding
to the EDC analog output shown in the top-right picture. The pattern is inverted, which can easily



Transmission Experiments 631

be identified by counting seven successive zeros and six successive ones. Single time step bits are
almost completely resolved, demonstrating the correctness of the FFE-DFE algorithm implemented
in the tested EDC sample. The bottom-right picture shows the signal measured at the digital output of
the EDC, after the sampler circuit, and corresponds to the eye diagram detected at the analog output.

The electrical test performed with the OC-48 filter gives evidence of the recovery capability of
the sample EDC of strongly band-limited signals. Although the eye diagram recovered from the
band-limited OC-48 electrical signal looks more than satisfactory, the bit error rate measurements
raise significant performance degradation. Figure 11.47 shows the plot of the measured BER per-
formances of both 10 GbE unfiltered signal and then the OC-48 filtered case. It is evident that
the electrical sensitivity degradation is encountered by the EDC when it is solicited by the strong
equalization requirement. The major reason for the degradation should be passed to the larger noise
level generated by the input AGC when it is stimulated by the small band-limited single-pulse
pattern sections. According to the strong frequency limitation operated by the OC-48 filter, the

Figure 11.47 Measured bit error rate performances of the EDC with an electrical 10 GbE input datastream.
The curve represents the unfiltered NRZ-PRBS measure, while the other curve refers to the OC-48 electrical
filtered signal. The electrical sensitivity degradation of the EDC exceeds 12 dB evaluated at BER = 10−11

moving from less than 5 mV to about 20 mV
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input signal presents pulse sequences that are very different in amplitude, requiring a fast envelope
detection capability of the AGC control circuit which in turn increases the average noise level of
the EDC input stage.

The same consideration does not apply to the 10 GbE case where all the input pulse partial
sequences have almost the same amplitude and the AGC is stationary. The plots in Figure 11.47
show the comparison between the measured BER versus the single-ended input sensitivity of the
sample EDC. The curve represents the reference performance, assuming that the 10 GbE electrical
signal from the PPG directly feeds the EDC input, as described previously. The input sensitivity
reports about a 5 mV amplitude in the single-ended configuration for achieving BER = 10−12. After
passing the electrical signal through the OC-48 filter, the EDC performance degrades sensibly,
requiring more than 20 mV single-ended for reaching the same BER = 10−12, leading to about
12 dB sensitivity degradation.

The next step consists of running the same test in the optical domain, after passing the electrical
OC-48 filtered signal through both the optical transmitter and receiver before inputting the same
EDC sample. Further, real multimode fiber experiments will be considered. These tests are presented
in the following section.

11.9.2 Optical Measurements

The block diagram of the optical link emulator achieved using the OC-48 filter to drive the optical
transmitter has been presented in Figure 11.29. The EDC receives the OC-48 band-limited electrical
signal detected from the optical receiver. The difference from the previous electrical test consists
in the additional noise contributions generated through the electrical–optical–electrical double
conversion. In conclusion, the electrical signal presented to the EDC input is noisier than the cor-
responding electrical case and, in some instances, even more band-limited due to the additional
filtering operated by the optoelectronic conversions. Figure 11.48 presents the complete measure-
ment acquisitions for this experiment. The pictures correspond to the same electrical test discussed
in the previous section. The top-left picture shows the optical eye diagram of the 10 GbE NRZ 27-1
PRBS signal passed through the OC-48 filter and feeding the optical transmitter. The screen-shot
shows the optical signal detected by the broadband optical head of the Agilent DCA. The similarity
with the corresponding electrical response in Figure 11.46 is very good, revealing that the optical
transmitter does not contribute to any significant additional filtering. Despite that, the analog output
of the EDC shows sensible degradations with respect to the electrical case presented in Figure 11.46,
and the equalized eye diagram shows higher jitter and residual intersymbol interference. A similar
conclusion holds even for the eye diagram measure at the digital output of the EDC shown in
the bottom-right picture. Compared with the corresponding electrical test response in Figure 11.46,
much more jitter can be seen in this case, even if the amplitude is almost hard-limited by the digital
circuit. This is one of the most important points of the EDC design and related system performances.
The clock recovery circuit should be able to extract the clock frequency from the equalized analog
eye diagram without incurring high phase noise using a narrowband phase lock loop filter.

The two last pictures shown in Figure 11.48 give the same section of the PRBS pattern at
the input and at the analog output of the EDC. It is interesting to verify the single-bit equalization
procedure worked out by the FFE-DFE architecture in the sample EDC. As expected, longer uniform
bit sequences do not require significant equalization due to the lower convolution effect with the
narrowband impulse response of the OC-48 filter. The shortest pulse sequences, and in particular
the isolated single pulses, are instead strongly affected by the broad pulse convolution and require
the maximum amount of equalization in order to remove long precursors and postcursors. The
effect of the FFE-DFE structure is quite evident by comparing the upper and lower screen-shots
in Figure 11.48. Almost completely absent data transitions in the input sequence are efficiently
restored in the analog output pattern. This is particularly evident when examining the fast sequence
010101 at the end of the pattern period, which just precedes the longest 1111111 sequence.
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OC-48 filtered optical eye-diagram EDC analog output

EDC digital outputOC-48 filtered pattern – EDC input

OC-48 filtered pattern – EDC output

Figure 11.48 Measurements of the OC-48 optical link emulation enabling the EDC feature. The top-left
picture shows the EDC input eye diagram obtained after passing the 10 GbE PRBS through the OC-48 electrical
filter and driving the optical transmitter. To the top-right is shown the EDC analog output, while the EDC digital
output is shown below. The center and bottom left pictures show the PRBS pattern section captured at the
input and output of the EDC respectively
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Figure 11.49 Measurement of the bit error rate performance of the sample EDC operating on the OC-48
optical link emulation. The curve shows the BER measure, assuming an optical link back-to-back configuration
operating at 10 GbE. The other curve shows the same configuration when the optical transmitter is fed by
means of the OC-48 electrical filter. The accumulated optical power penalty between the two transmission
experiments can be estimated to be about 10 dB at BER = 10−7

Due to strongly degraded optical signals observed in both cases of OC-48 filtering and long link
lengths, EDC operation was quite stressed, including the high dynamics requirement in the first-
stage amplifier (AGC). Due to an AGC dynamic demand, a relevant phase shift has been observed
in all optical testing. Figure 11.49 presents the bit error rate calculation based on the current optical
measurements. It is interesting to compare the reference back-to-back optical performance including
the EDC but using a full-bandwidth optical link with the OC-48 emulation but inserting the standard
filter in front of the optical transmitter. The result shows a consistent performance degradation of the
emulated multimode fiber link with about 10 dB of optical power penalty evaluated at BER = 10−7.
It should be noted that lower BER values were not achieved in that experiment using the optical
emulation link.
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Once the sample EDC operation had been characterized using both electrical and optical band-
limited transmission using OC-48 filter emulation, the step forward is represented by the EDC
implementation into real multimode fiber links. According to the experimental setup characterized so
far, the Siecor benchmark multimode fiber will continue to be used. In addition, a second sample will
be tested with a 62.5 µm core diameter multimode fiber manufactured by Corning Glass Corporation
in late 1998. This second fiber sample has not been used as much for laboratory measurements as
the Siecor benchmark sample, but it represents a valid alternative with a better multimode fiber
response and a larger modal bandwidth. In the following, the Siecor benchmark multimode fiber
sample will be used first. Figure 11.50 presents the eye diagrams measured at the input and output
ports of the sample EDC after 100 m and 200 m respectively of the Siecor benchmark multimode
fiber. It is evident that strong eye diagram degradation is encountered between 100 m and 200 m at
the optical receiver output, as shown in the upper trace of both screen-shots shown in Figure 11.50.
After the first 100 m of link length, the eye diagram still presents an open profile. However, after
the subsequent 100 m of link length the eye diagram looks completely closed. The corresponding
EDC digital output is shown on the respective bottom traces.

Although the eye diagram measured at the EDC input after the total link length of 200 m is
completely closed, the digital equalizer is still capable of recovering an open eye diagram at the
digital output. The problem is represented by the very large amount of jitter shown by the EDC
digital output as a testimonial of the limiting equalization capabilities. Link distances longer then
200 m have never been achieved stably using the sample EDC over the Siecor benchmark fiber.

To conclude this section on the optical compensation capabilities of the sample EDC operating
over the multimode fiber, it should be noted clearly that the Siecor benchmark fiber behaves
very badly, even if it is still compliant with the IEEE standard requirements for 10GBASE-LRM
transmission. It may represent a limiting case but it is still a valid example of the multimode
fiber channel used for testing the electronic dispersion compensator performances at 10 GbE. For
the time being, the tested EDC samples were not capable of passing the target reach of 300 m
over this multimode fiber. The best performance achieved refers to only 200 m, as reported in
Figure 11.50. High sensitivity of the link performances exists when the multimode fiber length
exceeds 200 m, requiring additional solid adaptation capabilities of the implemented EDC. Under
some circumstances, during laboratory verification, longer link lengths have been achieved, but
the performances were very unstable. A slight perturbation of the experimental setup led in fact to

Figure 11.50 Measured eye diagram at the input (top trace) and digital output (bottom trace) of the sample
EDC for the benchmark multimode fiber of link lengths 100 m and 200 m respectively. Although both equalized
eye diagrams are both recognizable, the very large amount of jitter shown by the eye diagram reconstructed
after 200 m of link length looks quite unpractical
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immediate link loss conditions. It can be concluded instead that up to 200 m the link is satisfactorily
stable, raising the confidence level for this electronic compensation solution.

In order to have a different comparison term for the EDC performances over the multimode fiber
link, a second sample of the multimode fiber was used for link test experiments at 10 GbE. This is
briefly presented in the following section.

11.9.3 Using a Different Multimode Fiber

The multimode fiber to consider in this section belongs to the same standards of the Siecor bench-
mark fiber used so far, but it exhibits a more regular refractive index profile with consequently
a lower DMD and larger modal bandwidth. First a short overview is given of the single-pulse
response according to the several link lengths available, using the same optical transmitter and
receiver adopted for all the previous measurements. In other words, the only part that is changed
in this second set of experiments is the multimode fiber link. The multimode fiber was available
in three different lengths, namely 60 m, 120 m and 240 m, providing seven multiple link length
configurations, as shown in Figure 11.51.

Figure 11.51 Configurations of the multimode fiber link lengths used in the transmission experiments
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L = 60m

L = 240mL = 180m

L = 360m

L = 300m

L = 120mReference

L = 420m (#1)

L = 420m (#3)

L = 420m (#2)

Figure 11.52 Measure pulse response versus increasing lengths of the multimode fiber used in the second
experimental setup. The pulse responses have been collected for every 60 m link length step, as reported in
the layout in Figure 11.51. The propagation performances of this second fiber set are better than those of the
Siecor one, which can easily be concluded by comparison with similar pulse responses given in Figures 11.18
to 11.25

Figure 11.52 shows a close-up view of the single-pulse response measured at each optical link
configuration. The first picture on the top-left reports the reference transmitted pulse evaluated
in the back-to-back layout. This second fiber set exhibits a larger bandwidth, which can easily
be deduced by observing the single-pulse profile detected after the first two link lengths of 60 m
and 120 m respectively. Up to the 300 m link length, the pulse response looks very similar to
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the reference one, with smoothed profile variations but still preserving the original shape. The
pulse starts to lose the original shape after almost 360 m, showing about twice the width and
having a more symmetric triangular shape. At the maximum allowable link length of 420 m, three
different pulse responses are evaluated according to fiber twisting and manipulations. The pulse
width looks more than twice the size of the original one with either a triangular or a trapezoidal
profile.

Figure 11.53 presents the two different sections of the measured 27-1 PRBS pattern at the optical
transmitter output section and after 240 m of link length. The link bandwidth is still large enough
to resolve the single-pulse transitions without losing the corresponding eye diagram opening.

To complete the experimental characterization of the 10 GbE transmission link using the second
set of multimode fiber, in Figure 11.54 are shown the optical eye diagrams measured at the fiber
output and at the EDC analog and digital outputs respectively for each link length step. It is
evident that, although longer lengths of fibers correspond to closer eye diagrams, the detected

Reference Reference

L = 240m L = 240m

Figure 11.53 Measured 27-1 PRBS pattern sections at the optical transmitter output after 250 m of link length.
The link bandwidth is still large enough to resolve the single pulse with sufficient amplitude to achieve open
eye diagrams. This is shown qualitatively in the bottom-right screen-shot, where the single pulse crosses the
mid level of the signal amplitude. The left screen-shots refer to the double bit transitions sequence 00110011
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Reference

L = 300mL = 240m

L = 120mL = 60m

L = 180m

L = 360m L = 420m

Figure 11.54 Measured eye diagrams at the multimode fiber outputs for each link length step. The measured
signals correspond to the single pulse shown in Figure 11.53. After the 300 m link length, the modal bandwidth
allows a still reasonable eye diagram opening

signal after 300 m is quite satisfactory in terms of eye openings, as expected from the single-pulse
measurements.

The eye diagram available at the EDC analog output has been detected only for the target link
length of 300 m. In order to document the equalization capability of the EDC under low signal
conditions for 300 m of link length, the received average optical input power has been reduced
using the optical attenuator and the corresponding analog output of the EDC has been recorded.
Figure 11.55 shows these results. The additive noise contribution is evident, determining almost
proportional eye diagram closure. This is an indication that the equalization algorithm should not be
affected by the amount of input equivalent noise. In other words, the residual intersymbol amplitude
at the equalizer output does not seem to change consistently at different noise-to-signal ratios. It
should be noted that the eye diagram measurements given in Figure 11.54 have been detected
directly at the fiber end, before the optical receiver, using the 20 GHz optical head of the DCA.
The corresponding signal at the EDC input instead suffers an additional small bandwidth reduction
operated by the optical receiver frequency response.
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PR = −3 dBm

PR = −16 dBmPR = −12 dBm

PR = −6 dBmReceiver Output

L = 300m

Figure 11.55 These pictures report the eye diagrams measured at the EDC analog output versus different
average input optical power levels for the fixed link length of 300 m. The relative increasing noise contribution
to the eye diagram closure is evident by reducing the average optical power. The input stage AGC in fact tends
to maintain a constant output signal level, providing proportional noise amplification. Assuming independent
statistical processes, the additive noise and the intersymbol distributions convolve together, leading to the joint
statistical distribution

The last set of measurements given in Figure 11.56 refer to the eye diagram collected at the dig-
ital output of the sample EDC versus increasing multimode fiber link lengths at the fixed received
average input optical power PR = −6 dBm. The eye diagrams look increasingly jittered accord-
ing to the compensating effort for the increasing amount of intersymbol interference. The tested
transmission was properly linked to the maximum length available of 420 m, largely exceeding the
target reach of 300 m. It should be remembered, however, that these promising results have been
obtained with the second set of multimode fiber samples, with a better modal bandwidth response.

To conclude this section, Figure 11.57 gives the bit error rate performance evaluated for the
target reach of 300 m versus the receiver input average optical power level. The transmission system
experiment succeeded by showing the measured sensitivity of PR = −13.4 dBm at BER = 10−12.

These considerations close the discussion regarding the transmission system experiments devoted
to understanding the compensation capabilities of the FFE-DFE electronic dispersion equalizer
implemented in multigigabit transmission over multimode fibers. The results presented have been
achieved using two different multimode fiber sets, with different modal responses. The first mea-
surements reported used the Siecor multimode fiber samples that were appointed as the benchmark
fiber for the critical responses achievable and the related stressed operating condition demanded
for equalization techniques. The second multimode fiber sets used for transmission experiments
presented instead relatively larger bandwidths, leading to simpler equalization conditions in order
to reach the target link length of 300 m. It is remarked, however, that both fibers used in the testing
environment were compliant with ISO/IEC 11801 specifications for the 62.5 µm core diameter
multimode fibers.
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Reference

L = 300mL = 240mL = 180m

L = 420mL = 360m

L = 120mL = 60m

Figure 11.56 These pictures represent the eye diagram measured at the digital output of the sample EDC ver-
sus increasing link length, assuming a 60 m step and fixed received average input optical power PR = −6 dBm.
The corresponding eye diagrams evaluated at the analog output of the sample EDC have been shown in
Figure 11.54 for the same link lengths. The increasing residual intersymbol interference translates into corre-
sponding increasing jitter

11.10 Concluding Remarks
This chapter attempted to give an overview of the large experimental data collected during 10 GbE
transmission experiments using multimode fibers. Fiber response characterization has been presented
as well as direct modulated laser transmitters and PIN diode receivers. These components are
intended for large distribution in the metropolitan area fast access network. Consequently, although
they are required to perform at a 10 Gbs data rate, they must be cheaper than equivalent Telecom
market devices. They are intended for the fiber-to-the-home (FTTH) end-user and must be easily
assembled into hot-swappable small-form factor (SFF) optical modules for personal computer,
gigabit Ethernet router and network server applications. It has been remarked several times that the
multimode fiber is not in principle the most suitable optical transmission medium to accomplish
multigigabit links, but they have largely been installed in the metropolitan area since the beginning
of the 1980s and the increased bit rate demands must today relay on those media. At least alternative
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Figure 11.57 The plot reports the measured bit error rate versus the input average optical power at the
receiving end section of the 300 m multimode fiber link length. The sample EDC provided the required pulse
compensation, leading to the system sensitivity PR = −13.4 dBm at BER = 10−12

cheap solutions should be available using multimode fibers for linking several hundred meters at
10 GbE standards. This is the task of the upcoming IEEE 802.3 10GBASE-LRM standard.

The measurements reported in this chapter give a clear indication that the 10GBASE-LRM target
application can be achieved using the electronic dispersion compensation (EDC) technique based
on the FFE-DFE architecture. These powerful integrated circuits are beginning to be available on
the market at the present time and several leading IC companies are fully engaged in this race. Due
to the small-form factor standards requirements for optical modules, these ICs must be as small as
possible and they must be compliant to very demanding power consumption requirements. Today,
sample EDC techniques are realized using 90 nm CMOS technology and are available in small
5 × 5 mm or 7 × 7 mm square packages using ball grid array (BGA) technology, consuming less
than 1 W. It is very likely that within a short time (mid-2006) the first commercially available SFF
optical modules compliant with the 10GBASE-LRM standard will be on the market for field trial
purposes of leading optical system manufacturers and 10GbE service providers.
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Mode degeneracy, 330, 338, 347
Mode group delay, 69, 71, 74
Mode groups, 4, 8, 59, 69–72, 307, 345–350
Mode groups number, 307
Mode normalization, 365–366
Mode orthogonality, 78, 101, 183, 248
Mode partition noise (MPN), 381, 456
Mode power, 363–373
Mode power coupling coefficients, 363
Mode power distribution MPD(k), 598
Mode power normalization constant, 365
Model equations, 142–144
Modes distributions of the step index fiber,

350–362
Modified Bessel’s function of first kind, 323, 324
Modified transverse phase constant γ , 323
Modular modeling approach, 377
Modulation spectrum limited condition, 115
Moments of chromatic impulse response, 171–182
Moments of modal impulse response, 184–188
Monochromatic field, 69
Monochromatic optical field, 362
MSE for the Gaussian channel, 531
Multi-Gaussian source spectrum, 151

Multigigabit Ethernet (10GbE), 1, 4, 10, 26
Multigigabit link, 586, 641
Multigigabit transmission, 275, 284
Multilevel modulation format, 6
Multilongitudinal mode fp laser, 176
Multimode fiber (MMF), 1, 4
Multimode fiber bandwidth, 200, 249
Multimode fiber jumpers, 378
Multimode fiber transfer function, 103
Multimode impulse response model, 200–248
Multimode optical fibers, 2–3
Multipath delay dispersion, 329
Multipath pulse distortion, 8
Multiple-α profile region, 79
Multiple narrow line spectrum, 124
Multiple zero-dispersion wavelengths, 135
Multiple-lines optical source spectrum, 123–124
Multiple-lines source spectrum, 122
Multiple-valued group delay function, 131–135
Multivalued (ripple) group delay, 135

Narrowband Gaussian channel, 531–533
Narrowband phase lock loop filter, 632
Narrowband signal modulation approximation, 121,

123
Narrowband single-pole channel, 528–530
Negative dispersion, 93
No return to zero (NRZ), 9–11, 17, 25
Noise bandwidth, 11, 17, 107, 377, 378, 383,

457–459, 484
Noise bandwidth enhancement, 485, 487–489, 491,

492
Noise bandwidth of the equalized receiver,

485–489
Noise energy per bit N0, 455
Noise power, 456, 458, 459, 462
Nonabsorbing waveguide, 366, 368
Nondegenerate mode set, 70
Nonlinear group delay profile, 308
Nonlinear refraction, 62, 69, 76, 82
Normal region, 95–96
Normal transmission region, 128
Normalization condition of unity power, 122
Normalized average delay, 173
Normalized eigensolutions, 338
Normalized frequencies in the cladding , 337, 339
Normalized frequency, 325, 341
Normalized frequency in the core, 337,

339
Normalized FWHM deviation, 398–399
Normalized Gaussian frequency, 103
Normalized radial coordinate, 325
NRZ data transmission, 295
NRZ to PAM-4 Encoder, 10–11
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Numerical aperture, 230
Nyquist channel penalties, 557
Nyquist reference transmission system, 489
Nyquist spectrum, 382

OC-48 filter, 594, 614–616, 631
Offset launcher, 590–591
Offset launching patchcord, 4
OM1, OM2, OM3, 293, 296
On-axis notch modes, 359–362
On-axis peak modes, 359–362
On–off keying (OOK), 411
Open-loop samples, 513–517
Optical amplifier, 2, 35
Optical bandwidth (BW), 105
Optical carrier, 120
Optical channel metric, 489, 501–503
Optical channel unit (OCU), 378, 381
Optical connectors, 199, 268
Optical decision process, 456–482
Optical impulse response, 380, 394
Optical intensity envelope spectrum, 483
Optical launching condition, 187
Optical link discontinuity, 276
Optical link emulator, 586, 614–618
Optical link modeling, 377–383
Optical matched receiver (OMR), 378, 382, 419
Optical mode filtering (OMF), 6, 8–9
Optical modulation amplitude (OMA), 460, 464,

465
Optical polarization controller, 588
Optical power penalty, 465, 466, 489–498, 557,

562, 563, 566
Optical power penalty PIEI, 502, 503
Optical receive unit (ORU), 378, 381–382
Optical receiver transfer function, 460
Optical reference receiver (ORR), 378, 382,

419–421
Optical sensitivity, 484, 490
Optical sensitivity bounds, 594
Optical signal-to-noise ratio (OSNR), 25
Optical Solitons, 96
Optical standard receiver, 378
Optical transmit unit (OTU), 377–378, 380–381
Optimal launch polarization, 623
Optimized profile grading, 135
Optimum decision threshold, 417
Optimum detection position, 379
Optimum linear transmission system, 484
Optimum refractive index, 79–82
Optimum sampling time, 412
Optimum tap weights, 578
Orthogonality condition, 366–368
Over-filled launch (OFL), 59, 73, 102, 319
Overlapping integral, 369

PAM-4 Coding, 10, 24–25
Parabolic-clad refractive index, 125, 131
Parabolic-like group delay functions, 135–136
Paraxial approximation, 327–330, 337, 365
Pattern dependent jitter, 402, 407
Penalty for the linear equalizer (PIEL), 564–566
Penalty of the ideal digital equalizer(PIED),

561–564
Penalty of the inverse filter equalizer (IFE),

501–507
Penetration depth, 39
Phase constant βh(ω), 114, 115
Phase constants, 69
Phase distortion, 382, 419
Phase noise, 376, 381
Phase velocity vp, 60, 69, 88
Phasor, 320, 321
Photocurrent equivalent, 460, 462
Photodetector, 378, 420, 421
Photodetector external quantum efficiency, ηp(λ),

5, 6
Photodetector responsivity, 461, 490
Photodiode dark current, 461
Piecewise linear distribution, 236–238
Poisson probability density function, 457
Poisson process, 457
Polarization mode dispersion (PMD), 102
Polarization-dependent distortion, 594, 595
Polarization-dependent noise, 9
Polarized plane wave, 44
Polychromatic light source, 190
Polynomial approximation, 87–88
Postcursor interference term, 516
Postcursor peak, 270
Postcursor power minimization, 578, 580
Postcursor single-peak response, 312–313
Postcursors, 4, 7, 218, 225, 228
Postcursors interference, 519–520
Power attenuation, 120
Power normalized mode fields, 366, 367
Power spectral density (PSD), 119, 120, 122, 458
Poynting vector, 101, 330, 364
PRBS datastream, 377, 381
Precursor interference, 519
Precursor interference term, 516
Precursor single-peak response, 312
Precursors, 4, 7, 218, 225, 228
Principal dielectric axes, 102
Propagation constant, 69, 70, 84, 87
Propagation constant βh(ω), 114, 115
Proximity condition, 276, 277
Pseudo-random binary sequence (PRBS), 377,

380
Pulse broadening, 59, 69, 79, 93
Pulse compression, 93, 94
Pulse dispersion, 176–178
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Pulse postcursors, 514, 520
Pulse pre-emphasis, 587, 601

Q-factor, 17, 475–478, 491
Quaternary pulse amplitude modulation (PAM-4),

9–25
Quadratic group delay distribution, 202, 206, 208,

226, 227

Radial equation, 322
Radial mode number, 68, 332, 338, 364
Radial-dependent function R(r), 67
Radiated field, 364
Raised cosine, 14, 17
Raised cosine function Γm(f ), 482
Raised cosine pulse, 382, 422–425
Raised cosine pulse γm(t), 484
Raised cosine shaped pulse, 444
Raised cosine shaped pulse family, 448
Raised cosine shaping factor, 498–501
Random jitter, 375, 376, 381, 402
Random signal, 510
Receiver optical subassembly (ROSA), 591
Receiver optimization, 523–524
Rectangular pulse, 466–467, 475, 476
Red-shifted, 94–96
Reference channel, 433, 482–485, 487, 502,

552–557
Reference receiver spectrum, 421–437
Reference transmission channel, 553
Reflection noise (RN), 381, 456
Refractive index dip or pin, 79
Refractive index profile, 3, 59, 60, 71, 79, 92
Refractive index profile height parameter, 70
Relative intensity noise (RIN), 381, 420, 457, 462
Relaxation oscillation frequency, 457
Residual eye opening, 541
Residual ISI, 377
Resonance frequencies, 83
Responsivity R(λ), 6
Restricted central launching conditions, 221, 223
Restricted excitation, 262, 269–272
Restricted launch (RL), 102
Restricted offset launch conditions (ROLF), 4
Rise time, 107, 110
RMS pulse width, 113, 177–180, 275, 277, 279
RMS width of the light source, 116

Saddle-like shaping, 313
Sampled symbols, 512, 513, 520
Sampler, 511, 512, 579, 580
Sampling resolution, 388–390
Scalar field equations, 320
Scalar wave equation, 67, 68, 321, 323, 326
Scalar wave function Ψν(r, φ), 326

Second optical window, 139
Self-phase modulation (SPM), 62
Sellmeier equation, 82–83
Sellmeier group delay profile, 144, 150
Sellmeier ripple (SR) profile, 150
Sellmeier uniform (SU) profile, 150
Sellmeier-Ripple-Multi-Gaussian, 151, 167–169
Sellmeier-Ripple-Single-Gaussian, 151, 157–159
Sellmeier-Uniform-Multi-Gaussian, 151, 160–166
Sellmeier-Uniform-Single-Gaussian, 151, 154–156
Separation constant, 322
Shaping coefficient, 422–424
Shaping factor κ , 242, 245
Shaping function, 424–427
Sheet resistance, 38
Shot noise, 377, 411, 412, 420
Shot noise power, 25
Signal energy per bit E0, 455
Signal sample, 513–516
Signal shot noise, 461–462
Signal spectrum, 387, 419, 420
Signal-ISI joint statistic, 415–419
Signal-spontaneous beat noise, 462, 25
Signal-to-noise ratio (SNR), 7, 11, 25, 377, 382,

412, 459, 464
Signaling rate, 468, 469, 484, 499, 501
Single peak impulsive response, 171
Single pole, 382
Single-line optical source spectrum, 120–122
Single-mode optical fiber, 2
Single-pole channel, 527–530, 559, 570–574
Single-pole modal response, 486–489, 492
Single-pole shaped pulse, 431, 432, 447
Single-pole shaped pulse family, 450–451
Single-pole shaped reference pulse, 429–433
Sinusoidal pulse, 467–468
Skin effect, 37–39, 58, 298, 300
Slope of the group delay, 123, 124, 137, 139,

176
Slow axis, 588, 589
Slowly varying envelope approximation (SVEA),

87, 97
Small-form-factor (SFF), 641, 642
Smoothing window, 441
SONET OC-48, 115
SONET OC-196, 115
SONET OC-768, 115
Source coupling coefficient distribution, 189
Source coupling distribution, 276
Source field, 364, 370–373
Source polarization, 597–598
Source power coupling, 199
Source power coupling coefficients, 206–208
Source power flow, 371
Source power spectrum, 134, 137, 142, 143
Source power spectral density, 308
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Source power spectral distribution, 189, 203, 260
Source spectral width, 151, 176
Spatial Gaussian decay, 281
Speckle noise, 4, 6
Spectral excitation in the anomalous 1550 nm range,

137–139
Spectral excitation in the low dispersion 1310 nm

range, 139–142
Spectral excitation in the normal 850 nm range,

136–137
Square root frequency response, 298
Staircase group delay distribution, 312
Stationary point, 127, 131, 142
Stationary processes, 457
Step index profile, 81
Step-index fiber, 320–363
Superposition of the modal intensity, 183
Superposition principle, 76–78, 122, 123
Surface emitting LED, 102
Surface impedance, 38
Surface inductance, 44, 45
Surface resistance, 42
Symmetric dual-peak response, 313
Symmetric group delay distribution, 239, 263
Synchronous superposition, 311–313

Tap delay, 7
TE modes, 330–332
TE0µ and TM0µ Modes, 338–340
TEM wave, 51
Theory of multimode frequency response,

248–273
Theory of stochastic processes, 457
Thermal noise, 457, 459–460, 463, 464
Thermal noise limited receiver, 460
Thickness frequency, 39–41
Third optical window, 137, 175
Third order derivative β(3)(ω), 100
Third order dielectric susceptibility χ(3)(r, t),

62
Third order susceptibility, 76
Three-term Sellmeier equation, 83–85
Threshold-crossing ISI distribution, 543
Tilt angle, 319
Time-centered chromatic response, 254, 260
Time convolution, 308, 319
Time domain, 123, 124, 137, 142, 171
Time domain ripple amplitude, 58
Time scaling assumption, 279
Time-harmonic field, 320
Time-shifting theorem, 249, 250, 255
TM modes, 332–333
Total bound power, 365, 370
Total electric signal power Se, 466, 471
Total internal reflection, 329

Total launched energy, 74
Total noise power, 462–464, 480, 490
Total propagation delay, 114
Total pulse dispersion, 280–281
TP3 standard section, 591
Trailing edge, 94–96
Transfer function HEQ(f ) of the ideal inverse filter

equalizer, 484
Transimpedance amplifier (TIA), 599
Transimpedance function, 512
Translational invariant, 63
Transmission length, 299
Transmission line impedance, 44, 46–48
Transmitting optical subassembly (TOSA), 587,

599, 600
Transversal field components, 320, 330, 333, 356,

369
Transversal filter, 581, 582
Transversal laplacian, 63, 67
Transversal orthogonality, 328–329
Transverse phase constant, 321–323
Trapezoid optical pulse, 384–393
Trapezoid pulse, 470–471
Triangular pulse, 468–470

Unbounded electromagnetic wave, 329
Uncorrelated noise, 602
Undoped silica glass, 85, 93
Uniform modal excitation, 223, 251–255
Unit time step T , 424
Unit vectors, 320, 321, 334, 369, 372

V parameter, 325
Vacuum dielectric permittivity, 329
Vacuum impedance, 329
Vacuum magnetic permeability, 329
Variance of the chromatic impulse response, 177,

182
Variance theorem, 195–198
Vector equations, 61, 63, 65
Vector wave equation, 62–65, 67
Vector wave equation for the electric field,

63–64
Vector wave equation for the magnetic field, 64–65
Vertical cavity surface emitting laser (VCSEL),

1, 4

Wave phase fronts, 60
Waveguide chromatic dispersion, 92
Wavelength division multiplexing, 115
Wavenumber, 329
Weak guidance condition, 67, 77
Weakly guiding approximation, 64
Weakly guiding fibers, 69–71, 369–370
Weakly guiding optical fibers, 329
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White Gaussian noise (WGN), 489
Windowing function, 423–425, 437
Windowing pulse, 424, 437, 440, 441
Windowing pulse synchronization, 437
Working channel, 557, 568, 570
Worst polarization state, 619, 623

XFP standard, 37

Zero-dispersion frequency, 86, 93, 95
Zero-dispersion wavelength, 90, 91, 116, 131, 133,

135, 152, 153, 179
Zero-forcing equalization (ZFE), 383, 456, 564




